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Competition is a well-studied and powerful mechanism for informa-
tion processing in neuronal networks, providing noise rejection, signal
restoration, decision making and associative memory properties, with rel-
atively simple requirements for network architecture. Models based on
competitive interactions have been used to describe the shaping of func-
tional properties in visual cortex, as well as the development of functional
maps in columnar cortex. These models require competition within a cor-
tical area to occur on a wider spatial scale than cooperation, usually im-
plemented by lateral inhibitory connections having a longer range than
local excitatory connections. However, measurements of cortical anatomy
reveal that the spatial extent of inhibition is in fact more restricted than
that of excitation. Relatively few models reflect this, and it is unknown
whether lateral competition can occur in cortical-like networks that have
a realistic spatial relationship between excitation and inhibition. Here we
analyze simple models for cortical columns and perform simulations of
larger models to show how the spatial scales of excitation and inhibition
can interact to produce competition through disynaptic inhibition. Our
findings give strong support to the direct coupling effect—that the pres-
ence of competition across the cortical surface is predicted well by the
anatomy of direct excitatory and inhibitory coupling and that multisy-
naptic network effects are negligible. This implies that for networks with
short-range inhibition and longer-range excitation, the spatial extent of
competition is even narrower than the range of inhibitory connections.
Our results suggest the presence of network mechanisms that focus on
intra-rather than intercolumn competition in neocortex, highlighting the
need for both new models and direct experimental characterizations of
lateral inhibition and competition in columnar cortex.
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1 Introduction

How can we expect to tease apart the mechanisms of neocortex? The only
justification for our hubris is the observation that each area of cortex exists
not as a solitary and unique design, but instead adopts a variation on a
shared but elusive theme (Ramón y Cajal, 1892; DeFelipe & Jones, 1998;
Mountcastle, 2003; Douglas & Martin, 2007; Muir et al., 2011). Known as
the canonical cortical microcircuit (Douglas, Martin, & Whitteridge, 1989), the
notion that every cortical area reproduces a common network motif kindles
a hope that each cortical area might also perform its computational role
using a common form of computational dynamics.

Competition between the activity of several neurons is a well-studied
mechanism that has been suggested as a canonical computation for cortex
due to the useful theoretical properties of competitive interactions and the
relative simplicity of implementing competition with neuronal elements.
Two neurons are said to be in competition with each other if the activity of
one of the neurons directly or indirectly reduces the activity of the other.
Although two cross-connected inhibitory neurons have this property, more
attention is usually paid to the information-encoding properties of excita-
tory neurons of cortex. These neurons form the vast majority of projections
to and from other cortical areas and subcortical nuclei, and so they could
be considered to embody the result of a cortical area’s computation. The
simplest networks that implement competition consist of two or more ex-
citatory neurons coupled to a single common inhibitory neuron (Coultrip,
Granger, & Lynch, 1992; Douglas, Mahowald, & Martin, 1994; Douglas &
Martin, 2007). Depending on the parameters of the network, the excita-
tory neurons can be placed in a competitive regime. The excitatory neuron
that receives the strongest external input will then effectively suppress the
activity of other excitatory neurons through disynaptic inhibition via the
shared inhibitory neuron. In extreme cases a single excitatory neuron—the
“winner”—will be active, and all other excitatory neurons will be inactive.
This network behavior is known as hard winner-take-all (WTA) behavior.

The set of excitatory neurons can be placed in a geometric (or topological)
space, with a distance-based neighborhood function defining cooperative
connections among the excitatory neurons. The WTA then behaves as an
associative memory network, where fixed points shaped by the excitatory
neighborhood function are placed in competition. In this regime, a “win-
ner” is no longer a single neuron but a set of cooperating excitatory neurons.
The autoassociative function of these networks brings desirable information
processing properties such as noise rejection and analog signal restoration
(Douglas & Martin, 2007). This network architecture has been proposed as
a model for cortical computation by interpreting each excitatory neuron as
representing a cortical column. For example, ring models of orientation tun-
ing for primary visual cortex assign a different preferred orientation to each
excitatory neuron (Douglas et al., 1994, Ben-Yishai, Bar-Or, & Sompolinsky,
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1995; Somers, Nelson, & Sur, 1995). More elaborated models consist of
multiple subnetworks, each spanning the full range of preferred orienta-
tions (a hypercolumn), with global competition within each hypercolumn
and feedforward inhibition between competing hypercolumns (Lundqvist,
Rehn, Djurfeldt, & Lansner, 2006; Lundqvist, Compte, & Lansner, 2010).
Models for working memory in prefrontal cortex have been proposed us-
ing similar cooperative and competitive mechanisms (Amit & Brunel, 1995;
Durstewitz, Kelc, & Güntürkün, 1999; Compte, Brunel, Goldman-Rakic, &
Wang, 2000; Miller, Brody, Romo, & Wang, 2003). For a review, see Durste-
witz, Seamans, & Sejnowski, 2000). In these models, a pattern of activity
is embedded in the configuration of recurrent excitatory connections. This
pattern of activity is then self-sustaining once activated by external input,
and wide-ranging inhibitory feedback is used to ensure stability and ro-
bustness of the stored activity pattern.

Defining WTA models in these ways makes several assumptions about
the anatomy and physiology of inhibition in columnar cortex. First, in-
hibitory projections are wide ranging in the WTA models described. Global
inhibition can be softened by adopting a Mexican hat network connectivity
profile, whereby a point in the network sends spatial inhibitory connections
extending over a longer range than excitatory connections (Somers et al.,
1995; Sperling, 1970) (see Figure 1A). However, inhibitory neurons in neo-
cortex are mostly limited in their lateral extent, making projections either
vertically between cortical layers or proximal to their somata (Lund, 1987;
Lund & Wu, 1997; Lund & Yoshioka, 1991; Lund, Hawken, & Parker, 1988;
DeFelipe, 2002; Douglas & Martin, 2004; Markram et al., 2004, Douglas &
Martin, 2009). Some inhibitory neurons are coupled via electrical synapses
called gap junctions, providing an effective excitatory coupling across an
inhibitory population (Galarreta & Hestrin, 1999; Gibson, Beierlein, & Con-
nors, 1999). This could theoretically serve to widen the effective spatial ex-
tent of inhibition. Unfortunately, the electrical connections are weak (Galar-
reta & Hestrin, 1999, Gibson et al., 1999), sparse compared with the num-
ber of chemical synapses made by a neuron (Fukuda, Kosaka, Singer, &
Galuske, 2006), and mostly absent in adult animals (Conners, Bernardo, &
Prince, 1983; Peinado, Yuste, & Katz, 1993). For these reasons, gap junc-
tions cannot generally be relied on as a substrate for long-range spreading
of inhibitory influences. Some models address this concern through long-
range excitatory projections that selectively target inhibitory neurons (Li,
1998, 2002; Rutishauser, Slotine, & Douglas, 2012) or by including instanta-
neous disynaptic inhibition while neglectingf-inhibitory recurrence (Pinto
& Ermentrout, 2001; Kang, Shelley, & Sompolinsky, 2003; Levy, Reyes, &
Alex, 2011). However, reconstructions of cortical neurons that engage in
long-range excitatory projections do not reveal evidence for neuron-class-
specific connections (Kisvárday et al., 1986; but see Bock et al., 2011).

Second, the physiology of inhibition is either untuned or broadly tuned
in WTA models, so that inhibition is activated similarly by any input to
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Figure 1: Mexican hats versus cortical anatomy. (A) A classical Mexican hat
profile of lateral connectivity, with short-range excitation (light gray; positive)
and longer-range inhibition (dark gray; negative) leading to a net profile (black
line) that is vaguely reminiscent of a sombrero. (B) The effective lateral coupling
for a slice through layer 2/3 of cat visual cortex (Binzegger, Douglas, & Martin,
2007). Strong local inhibition coupled with long-range excitation results in a
net profile with local inhibitory dominance and much weaker lateral excitatory
dominance. Inhibitory synapses were estimated to be 10 times stronger than
excitatory synapses (Binzegger, Douglas, & Martin, 2009). (C) Raw synaptic
profiles of excitation (positive curves) and inhibition (negative curves) for layer
2/3 of cat visual cortex (Binzegger et al., 2007). Faint curves show data from
individual reconstructed neurons; darker curves indicate the average over the
set of reconstructed neurons. Scale bars in panels B & C: horizontal: 500 µm,
vertical: 2 synapses per 50 × 50 × 50 µm volume.

cortex, a stance that is not supported by in vivo single-cell electrophysiology
(Mariño et al., 2005).

Finally, in the simplest WTA networks, inhibitory neurons receive no
external input. In columnar cortex, inhibitory neurons certainly receive in-
put from outside the layer their soma resides in, from both other layers
and other cortical and subcortical structures (Binzegger, Douglas, & Mar-
tin, 2004). There is no evidence that feedforward inputs specifically target
excitatory or inhibitory classes (Freund, Martin, Somogyi, & Whitteridge,
1985; Freund, Martin, & Whitteridge, 1985; Anderson, Dehay, Friedlander,
Martin, & Nelson, 1992).

To seriously consider competition as a canonical computational mech-
anism for cortex, this potential conflict between model assumptions and
cortical anatomy must be resolved. When is it possible for two points in
columnar cortex to be in competition? In this letter, we study this question
in both very small networks that can be analyzed mathematically and in
larger networks via simulations.
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In section 2 we present linear-threshold network models for groups of
two or three cortical columns and determine analytically the conditions
under which two columns can be in competition through disynaptic or
multisynaptic inhibition. In addition to examining these simple models
that are tractable for direct analysis, we also present simulations in larger
1D and 2D models in section 3. The parameters in these models are designed
to capture the anatomical issue of the relative extent of lateral excitatory
and inhibitory projections. Through piecewise linear systems analysis of
the tractable models, we obtain bounds on parameter regimes that permit
disynaptic inhibitory competition between two cortical columns, and we
then compare these results with the larger simulation models.

Surprisingly, we find that the presence and strength of cooperation or
competition between two columns in a network is determined primarily by
the direct excitatory and inhibitory coupling between the two columns, with
indirect network effects only weakly modulating this direct cooperation or
competition. We refer to this phenomenon as the direct coupling effect.
Our results provide a simple intuitive rule of thumb for understanding
cooperation and competition between two columns in a large network: that
cooperative and competitive effects arise primarily from the direct influence
of one column on another.

2 Analytical Models

2.1 A Cortical “Column.” The concept of a cortical column is primarily
functional (Mountcastle, Berman, & Davies, 1955). In cat, monkey, ferret,
tree shrew, and many other higher mammals, neurons existing on a line
perpendicular to the pia share many commonalities in their function. Aside
from the canonical example of cat somatosensory cortex (Mountcastle et al.,
1955), neurons in visual cortex exhibit this strong columnar organization
by sharing the orientation preference of their vertically adjacent neighbors
(Hubel & Wiesel, 1968). However, this fact should not be interpreted to mean
that a “column” is an isolated unit, either functionally or anatomically. A
lateral displacement of even the width of a neuron’s soma is sufficient to
record a measurable difference in orientation preference in visual cortex,
implying that a functional column is about as small as it can possibly be
(Hubel & Wiesel, 1968). Anatomically, projections from the neurons in a
column are diffuse. Although many intrinsic cortical projections are made
across laminae, they nevertheless span a horizontal distance much larger
than the size of a single soma in columnar and rodent cortex (Weliky & Katz,
1994; Hellwig, 2000; Lund, Angelucci, & Bressloff, 2003; Thompson & Ban-
nister, 2003; Holmgren, Harkany, Svennenfors, & Zilberter, 2003; Boucsein,
Nawrot, Schnepel, & Aertsen, 2011). Input projections to cortex also do not
treat single columns as independent entities; single input fibers projecting
from the LGN cover large areas in primary visual cortex (Lund et al., 2003).
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The notable exception is rodent somatosensory cortex, where input fibers
carrying information from single whiskers project to large, nonoverlapping
regions within layer 4 known as barrels.

In this letter, we take a column to be a small region within a neocortical
area of a higher mammal, of the minimum size such that the function of each
column is homogeneous but that neighboring columns can have different
functions. This allows us to simplify the neurons in a column to a small
population of interacting excitatory and inhibitory units. However, our
simulations incorporate the fact that single columns make lateral projections
to a large number of neighboring columns and receive input from a similar
large number of neighbors. The function of our column model is discrete,
but the virtual anatomical inputs and outputs of our columns are highly
overlapping.

2.2 Model Simplifications. We assume that a column of cortical tissue
can be reduced to a population of excitatory neurons and a population
of inhibitory neurons. We model the average activity of these two classes
with two linear-threshold units, which are known to be a good approxima-
tion to the I–F (current to firing rate) curve for an adapted cortical neuron
(Ermentrout, 1998a). The differing proportions of inhibitory and excitatory
neurons in cortex are modeled by adding a factor to our synaptic weights to
correct for this. Although different neuron classes may have different time
constants of activation, we will show that the possibility of competition is
independent of these time constants.

We assume that neurons connect to each other based on opportunity and
without bias, an assumption known as Peters’ rule (Peters, 1979; Braiten-
berg & Schüz, 1991). This implies that an excitatory projection to a point
in cortex forms synapses with both excitatory and inhibitory neurons at
that location, without preference for a particular neuron class. This is the
most conservative assumption to make regarding neural connectivity. Al-
though some specific connections are known to exist in cortex (Fairén &
Valverde, 1980; Somogyi, Freund, & Cowey, 1982; Stepanyants, Tamás, &
Chklovskii, 2004; Morishima, Morita, Kubota, & Kawaguchi, 2011), the ma-
jority of local and lateral connections do not show evidence of class-specific
targeting (Kisvárday et al., 1986; Binzegger et al., 2004). We further assume
that input to a cortical column targets both excitatory and inhibitory popu-
lations, without bias (Freund, Martin, Somogyi et al., 1985; Freund, Martin,
& Whitteridge, 1985; Kisvárday et al., 1986; Anderson et al., 1992; Keller &
Asanuma, 1993).

We assume that connections between columns in cortex are arranged
predominantly spatially, such the coupling strength between two points
decreases monotonically with distance. This is of course not true for a
single cortical neuron, but is a reasonable aggregate assumption based on
Peters’ rule (Binzegger et al., 2004; Perin, Berger, & Markram, 2011).
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Figure 2: Columnar models analyzed in this letter. All analytical models are
constructed of column elements (A), each composed of an excitatory (outlined
circles) and an inhibitory (filled circles) linear-threshold unit (Wilson & Cowan,
1973). A single column is internally coupled with recurrent excitatory (pointed
arrowheads) and inhibitory (circular arrowheads) weights. Excitatory input
(ιn) is provided equally to all units in a column. (B) Two interacting columns
(internal connections within a column not shown). (C) A ring composed of
three columns with identical connections between columns. (D) A chain of three
columns with different weights for short and long connections. Parameters are
defined in Table 1.

2.3 Basic Column Model. The foundation of the analytical models pre-
sented here is a simplified version of a cortical column, consisting of a cou-
pled pair of an excitatory and an inhibitory linear-threshold unit (Wilson &
Cowan, 1973; Landsman, Neftci, & Muir, 2012; see Figure 2A). These units
are designed to correspond in behavior to the average excitatory neuron
and average inhibitory neuron in the small population of neurons within a
single cortical column of very narrow width. The excitatory and inhibitory
pair of units are assumed to exist at the same point on a cortical sheet,
so that each unit has the same average self-connectivity as with the other
unit of the pair. In this letter, when we refer to “self-excitation” and “self-
inhibition,” we mean recurrent excitation within the population of neurons
that is represented by a single excitatory or inhibitory unit.
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Table 1: Analytical Model Parameters.

wER Recurrent synaptic weight from an excitatory unit to the units in the same
column

wECm Synaptic weight from an excitatory unit to the units in another cortical
column m steps away

wIR Recurrent synaptic weight from an inhibitory unit to the units in the same
column

wICm Synaptic weight from an inhibitory unit to the units in another cortical
column m steps away

τn Time constant of unit n
αn Activation gain of unit n
ϑn Activation threshold of unit n
ιn External input current to column n

The column dynamics are governed by the system of equations,

τE · ẋE + xE = wER · αE
[
xE − ϑE

]+ − wIR · αE
[
xI − ϑI

]+ + ι, (2.1)

τI · ẋI + xI = wER · αE
[
xE − ϑE

]+ − wIR · αE
[
xI − ϑI

]+ + ι, (2.2)

where xE and xI are the internal state of the excitatory and inhibitory
unit in the pair; [x]+ denotes the linear-threshold transfer function [x]+ =
max (x, 0); and other parameters are as described in Table 1.

2.4 Summary of Analytical Method. The details of our analysis are
presented in appendix A. Briefly, we construct a set of differential equations
embodying one of the columnar network models shown in Figure 2. Since
the systems are piecewise-linear, a Jacobian of the system can be constructed
for each linear partition in the state space defined by the activity of all
units (Hahnloser, 1998b). The real parts of the eigenvalues and trace of the
Jacobians determine when the system is stable in a bounded input-bounded
output (BIBO) sense. The BIBO stability criterion guarantees that the system
will not approach infinite activity for a finite input. For the simple systems
shown in Figure 2, the set of eigenvalues can be described analytically.
This allows constraints on each of the system parameters to be found that
guarantee BIBO stability.

To determine whether two columns in a model are in competition, we
measure the activity increase or decrease of activity in the excitatory unit in
column 2 produced by an increase in the input to column 1 (i.e., ∂ x̄E2/∂ι1).
The value of this partial derivative depends on the system parameters, in-
cluding the weights between the two columns. When the partial derivative
is negative, increasing the input to column 1 leads to a decrease in the ac-
tivity of column 2 via disynaptic inhibition or other network effects. Due to
the symmetric nature of our models, the same interaction would also occur
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in the reverse direction from column 2 to column 1. If increasing the input
to either column decreases the activity of the other, we say the columns are
in competition. Again, for our simple models, we can find closed analyt-
ical forms for the partial derivative ∂ x̄E2/∂ι1 and so can solve for simple
conditions on each of the system parameters corresponding to competitive
interactions.

By combining the conditions for BIBO stability and for competition, we
can determine what parameter constraints ensure that a model operates in a
stable winner-take-all (WTA) mode. Our method for evaluating competition
operates on system fixed points and does not take into account transient
modes. However, we also identify when a system is expected to operate in
a nonoscillatory mode such that transient dynamics can be ignored.

2.5 Two-Column Analytical Model. Analysis of the two-column model
is described in detail in section A.2. This model examines two points in a
columnar cortical system in an abstract form, including only the direct exci-
tatory and inhibitory connections between the two columns (see Figure 2B;
wEC and wIC, respectively). More complex network interactions contributed
by intermediate columns are excluded in this minimalistic model.

The question explored by the simple two-column model is this: When
can two points in columnar cortex be in direct competition, disregarding
network connectivity external to the columns in question? To answer that
question, we examine the fixed-point solutions of the two-column model
to determine its behavior and examine the Jacobian of the model network
to determine its stability properties (see Figure 3). For the two columns
to be in competition, an input given only to column 1 should reduce the
activity of column 2, and this must occur in a network that is stable in a
bounded-input, bounded-output sense (BIBO stability).

We found that two points in a columnar system can be in competition
only when the inhibitory coupling wIC between the two columns is stronger
than the excitatory coupling wEC. This is a strong result that does not de-
pend on the thresholds for excitation and inhibition or on the time constants
of excitation and inhibition (see section A.2). We found also that hard-WTA
competitive behavior (i.e., one column is silenced by the other) can occur
only for a certain range of input differentials between the two columns.
This result implies that for non-saturating columnar systems, there is no
parameter regime that guarantees hard-WTA operation regardless of the
network input; networks operate in a soft- or hard-WTA regime depend-
ing on the difference in input between two columns. We also found that
nonzero thresholds for excitation and inhibition cannot introduce or abol-
ish competition. However, they can establish a memory state in an already
competitive network. A network in this regime can maintain suprathresh-
old activity without input once a winner has been determined.

The two-column model described here ignores contributions from other
columns across the cortical surface. We considered whether multisynaptic
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Figure 3: Stability and competitive parameter regimes for the two-column
model. Shown is the derivative ∂ ¯xE2/∂ι1, the net effect on column 2 for an
increase in the input to column 1. Competition is possible when the derivative
is negative (indicated within dashed boundaries). This condition is satisfied
when the mutual inhibitory coupling wIC is stronger than the mutual excita-
tory coupling wEC. Shown is the Part[11] derivative; the parameter regimes that
ensure competition for Part[10] are identical, but the shape of the derivative
surface is linear. Div: BIBO unstable (divergent); AS: Asymptotically stable, no
competition; AS WTA: asymptotically stable, competitive regime; Osc: oscil-
latory dynamics caused by overly strong inhibition. wER = 2.5; wIR = 5. Other
parameters are not relevant for the presence of competition.

inhibition provided by intermediate columns could be strong enough to
drive competition between two points by exploring more elaborate models
that include intermediate columns, described in the following sections.

2.6 Three-Column Ring Analytical Model. The two-column model
neglects the effect of network interactions that might be mediated by addi-
tional columns. For example, competition between two distant points in a
columnar system could be mediated by a third column placed at an inter-
mediate location. We explored this possibility by designing networks con-
taining three columns. The first such network had three columns arranged
in a ring (see Figure 2C). The connections in the model are homogeneous,
such that every column is equivalent. Competition in this network is sought
between two of the three columns.

This model is analyzed in detail in section A.3. We found, just as for the
two-column model described above, that competition can occur only when
the direct inhibitory coupling between the two columns is stronger than
the direct excitatory coupling. The third column cannot provide a sufficient
indirect inhibitory contribution to mediate competition. We call this the
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direct coupling effect: the interaction between two columns is primarily
determined by direct excitatory and inhibitory coupling.

However, since the three columns in the model examined here were
arranged in a ring, it is possible that the direct excitatory and inhibitory
connections between the two columns that should compete were unrealis-
tically strong. We therefore examined another three-column model with the
columns arranged in a line rather than a continuous ring.

2.7 Three-Column Chain Analytical Model. The direct connections be-
tween two distant columns in cortex may be weak; certainly two proximal
columns are expected to have stronger coupling than two distant columns.
We examined a more general form of the three-column network, where
three columns are arranged in a linear chain (see Figure 2D). Competi-
tion was sought between the columns at the two ends of the chain (edge
columns). As for the previous model, analysis of this network indicated
whether competition between two distant columns in cortex (represented
by the edge columns) could be driven by the activity of an intermediate
column (represented by the central column). The principal difference from
the previous model was in the structure of the connections between the two
edge columns. These columns shared symmetric mutual coupling weights
(wEC2 and wIC2), which were not constrained to be equal to the weights be-
tween the central and edge columns (wEC1 and wIC1). The three-column chain
model therefore approximated the physical arrangement of three equally
spaced columns, such that the two edge columns were further apart and
therefore more weakly connected.

This model is analyzed in detail in section A.4. Surprisingly, despite the
potentially weaker coupling between the edge columns, the central column
was still not able to drive competition between them. This appears unintu-
itive, but is caused by the assumption of homogeneous local connections
between neighboring columns. For one edge column to indirectly inhibit
the other, it must first activate the central column. This implies that the
excitatory coupling from edge to center columns should be stronger than
the inhibitory coupling. Likewise, since connections in cortex are assumed
to be homogeneous, the connections from the center to both edge columns
are then also dominated by excitation. This implies that driving an edge
column will recruit both excitation and inhibition in the central column,
but that driving the central column will also activate the edge columns. It
is therefore not possible to indirectly activate the central column by driving
an edge column and have a net suppressive effect on the opposite edge
column.

We also examined the conditions required for competition between an
edge column and the center column. In this configuration, the two end
columns could be positioned close together in cortical space with the cen-
tral column equidistant (but far) from both end columns. Coupling between
the edge columns could be arranged to be dominated by inhibition, with
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excitatory coupling between edge and center columns, which one might as-
sume would lead to indirect competition between edge and center columns.
However, for the indirect competition to outweigh direct excitation, direct
inhibition between edge columns would have to be so strong that it would in
fact lead to complete suppression of one edge column, thereby eliminating
the effect. Thus the direct coupling effect applies also to this configura-
tion; coupling between center and edge columns must be dominated by
inhibition for competition to be present between them.

Once again, we must conclude from this analytical model that for com-
petition to occur between two columns, we need consider only the direct
column-to-column coupling, which must be dominated by inhibition.

3 Simulation Models

The simple analytical models we have described had only a few units and
directly modeled at most three columns. The constraints for stability and
competition were remarkably similar from the simplest to the most com-
plex analytical model, implicating the direct excitatory and inhibitory cou-
pling over multisynaptic network interactions. But how predictive are these
simple models for a larger-scale 1D or 2D simulation composed of many
columns, and with realistic spatial profiles of connectivity? The models dis-
cussed so far treated a cortical column as an isolated entity; the interactions
between several columns were divorced from the remainder of a cortical
area. We would like to understand how competition is mediated across a
homogeneous cortical surface. We would also like to address the possibility
that the summed effect of inhibition from many columns across a larger
model might succeed in driving competition where a single intermediate
column cannot.

To answer these questions, we simulated linear and two-dimensional
models composed of columns with the same structure as the basic analyti-
cal column (see Figure 2A). In place of simple point-to-point connectivity,
we introduced spatial profiles of synaptic connections based on gaussian
fields (see Figures 4A and 4B) with synaptic parameters estimated from the
experimental literature (see appendix B).

3.1 Presence of Competition in Simulated Networks. The series of
analytical models described in section 2 suggest that competition through
disynaptic inhibition can occur between two columns only when the di-
rect inhibitory coupling between those columns is stronger than the direct
excitatory coupling—the direct coupling effect. In this section, we explore
how well that prediction applies to networks that include spatial profiles
of synaptic weights from excitatory and inhibitory units that extend across
many columns. Connections in these models were made homogeneously,
meaning that every point in the network had the same spatial profile
of excitatory and inhibitory coupling. For networks with this structure,
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Figure 4: The direct coupling effect predicts the presence and strength of
competition in homogeneous linear networks. Linear networks were designed
with gaussian synaptic profiles of excitation (light gray areas in A and C) and
inhibition (dark gray areas in A and C) projecting identically from each point.
In the first network (left, A and B), the spread of inhibition was narrower than
that of excitation, indicated by the difference between the profiles of excitation
and inhibition (black curves). A second network was constructed with a wider
profile of inhibition (right, C and D). The profile of competition was probed,
using point stimuli, by injecting positive current into both units of a single
column (arrowheads in B and D). The net current received by each unit is shown
for excitatory units (light curves in B and D) and inhibitory units (dark curves
in B and D), once the network has reached fixed-point equilibrium. When the
internal state is negative, that unit is effectively suppressed by the point stimu-
lus, implying competition between that unit and the stimulated point. Hatching
indicates regions of the linear network where the inhibitory coupling with the
stimulated location is stronger than the excitatory coupling—the locations for
which competition should be possible according to our analytical predictions.
Asterisks and shading in B indicate regions where multicolumnar interactions
cause weak competition, an effect that is not present in the analytical networks of
section 2. The inset in B shows a heavily magnified version of this region (verti-
cal magnification ×104). Parameters for these simulations are given in Table 3 in
appendix B.

stability was predicted well by the behavior of a single column, under the
parameter transformation that the sum of the weights from a single point
was equivalent to the weights in the single-column model (Landsman et al.,
2012),

wE,eff =
∫

j
wE ji and wI,eff =

∫

j
wI ji, (3.1)
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where wEji and wIji are the excitatory and inhibitory projections from point
i to point j, respectively. We find that the stability criteria given for our net-
works hold regardless of the spatial pattern of a stimulus. In other words,
local columnar inhibitory feedback is able to stabilize local excitatory ac-
tivity, even in the presence of wide-ranging excitatory input to a column in
the model.

We examined the presence and absence of competition in these linear
models by injecting a point excitatory stimulus into a single column of
a quiescent network with stable, nonoscillatory dynamics (see section 2).
Once the network reached the stable fixed point, we measured the net
current arriving at each column in the network, provoked by the point
stimulus passing through the entire network. Two locations are in competi-
tion if providing a positive input current to a source column results in a net
suppressive effect on a target column, indicated by a net negative current
arriving at the target column. Since the coupling patterns of our networks
are homogeneous and symmetric, the effect of injecting a point excitatory
stimulus is identical between any two locations on the network when us-
ing either location as the source. Therefore, locations across the network
for which the effect of a point stimulus is to provide a net negative input
current are in mutual competition with the stimulated column.

We designed linear networks with spatial profiles of lateral connectivity
encompassing lateral excitation and lateral inhibition (see Figures 4A and
4C). Each network consisted of 360 columns spaced at a 12.5 µm pitch.
The spatial range of lateral excitation for both models shown in Figure 4
was σE = 750/4 µm; the spatial range of inhibition was σI = 550/4 µm for
the network with local inhibition (see Figure 4A) and σI = 800/4 µm for
the network with lateral inhibition. Total synaptic strength for each neuron
was estimated to be realistic for cat visual cortex (see Table 3) synaptic
coupling between columns was determined by the mean field estimate
under the assumption of gaussian connectivity profiles, normalized to the
total estimated synaptic strength. Injecting excitatory input currents into
single columns of these models produced regions across the networks that
received net excitatory and inhibitory currents at a steady state through the
combined interactions of many columns of the networks.

We found that under realistic spatial profiles of lateral excitation and
short-range inhibition (see Figures 4A and 4B), and under a Mexican hat
arrangement with lateral inhibition (see Figures 4C and 4D), the direct
coupling effect predicted a central region of competition that matched the
simulation results to within the spatial resolution of the simulation. How-
ever, in the case of lateral excitation, a region of competition mediated
by multicolumnar interactions emerged (asterisks and inset in Figure 4B).
This competition occurred because a column activated by lateral excitation
distant from the point stimulus can suppress activity locally through short-
range inhibitory connections. However, since the gain of single synaptic
connections is low, an effect relying on three or more synapses must also
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be comparatively weak. Under the realistic parameters simulated here, the
scale of the multisynaptic effect was at least four orders of magnitude
weaker than that produced by the direct coupling effect.

We performed equivalent experiments in two-dimensional networks
with symmetric gaussian profiles of lateral excitation and inhibition, with
other parameters identical to the one-dimensional models. The overall pat-
terns of competition and facilitation were qualitatively the same as for the
one-dimensional linear networks (not shown).

3.2 Accuracy of Analytical Predictions. The direct coupling effect
predicted competition for the particular weight parameters simulated in
Figure 4. To determine how well the two-column analytical predictions hold
for an arbitrary homogeneous model, we directly compared the numerical
predictions between a linear model and our two-column model configured
with identical coupling strengths. We simulated 2500 linear models with
gaussian profiles of excitatory and inhibitory coupling (such as those shown
in Figure 4), built with random and independent excitatory and inhibitory
spatial ranges and total synaptic strengths as given in Table 3. Each model
was composed of 400 columns (400 excitatory and 400 inhibitory units).
We injected current into 50 pairs of columns in each model, taken in turn
and spanning a range of spatial separations, and numerically computed the
resulting activation fixed point. We then injected a step current into one col-
umn in the pair and numerically computed the partial derivative ∂ x̄E2/∂ι1
to measure the presence and strength of competition between the pair of
columns, as for the analytical models described above (see section 2.4). We
then reduced the linear model to a two-column configuration by removing
all weights except those within and between the units in the pair of driven
columns. The derivative ∂ x̄E2/∂ι1 was again computed numerically for the
two-column model. Cases where the sign of the predicted and measured
strengths of competition did not match indicated weight configurations
where the analytical predictions did not hold.

Figure 5 shows the comparison between the strength of competition
predicted under the two-column model and the strength of competition
measured in the line model. The derivatives computed for the two-column
model showed an impressive predictive power for the line model, such that
most prediction and measurement pairs lay close to a 45 degree line passing
through the origin. A small gain factor difference between predicted and
measured facilitation was apparent due to the effect of recurrent amplifica-
tion in network interactions in the line model. A very small proportion of
simulated line models exhibited competition when the two-column model
predicted facilitation, and vice versa (highlighted points in Figure 5). How-
ever, all mismatches between two-column and line model results occurred
close to the origin, where interactions between the two tested columns were
very weak.
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Figure 5: The two-column model is a good predictor of facilitation and com-
petition in a line model. Each point corresponds to a numerical computation
of the partial derivative ∂ x̄E2/∂ι1, which determines the presence and strength
of competition between two columns (see section 2.4). Predictions of compe-
tition (WTA; negative ∂ x̄E2/∂ι1) and predictions of facilitation (Fac.; positive
∂ x̄E2/∂ι1) matched well between the two-column and line models, indicating
that the direct coupling effects in the line model dominated over multicolum-
nar network interactions. Configurations where the two-column model pre-
dicted competition but the line model exhibited facilitation (or vice versa) are
indicated by highlighted points (Mismatch). Mismatched predictions were con-
fined to regions close to the origin, where only weak interactions between the
two columns were present (i.e., neither strong competition nor facilitation). The
inset shows the central region magnified 20 times to highlight the region of
prediction mismatch.

4 Discussion

We explored the possibility of competition between columns in simple mod-
els for columnar cortex that allow the relationship between competition and
the spatial profiles of excitation and inhibition to be examined directly. Net-
works composed of up to three columns were analytically tractable and
could be solved exactly. In this way we obtained closed-form constraints
on the model parameters that permit competition to exist between two
columns, which we found to involve only the direct lateral coupling be-
tween the columns. In a columnar model with homogeneous connectivity,
the direct inhibitory coupling between two columns must be stronger than
the direct excitatory coupling to permit competition to emerge.

In our analyses described here, we found that our toy analytical mod-
els provided a great deal of insight into the behavior of larger systems
that are not tractable for analysis. In particular, we found that conditions
for stability and competition are remarkably insensitive to the size of the
analyzed model and continue to apply even in the context of increasingly
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complex network interactions (see also Landsman et al., 2012). Surprisingly,
we found that the presence and strength of competition or cooperation be-
tween two columns was primarily determined by the direct excitatory and
inhibitory coupling between those columns. We observed very slight devi-
ations from our analytical expectations in 2D and 1D models. However, the
deviations due to multicolumnar network interactions were considerably
weaker than the direct coupling effects predicted by our analytical models.
We therefore expect that in a biologically realistic network or in cortex itself,
the first-order direct coupling effects are likely to remain, while the small
deviations from these effects are unlikely to be a significant factor in the
face of the many noisy phenomena that influence a biological network.

We found the constraint relating inhibitory and excitatory coupling to
be independent of the time constants and thresholds of excitatory and in-
hibitory elements in a network. However, positive excitatory thresholds
introduce a subtractive influence on the fixed point of a network. This can
introduce the appearance of competition if the internal state of the network
is not accessible and instead the output firing rate gains g1 =

[
xE1

]
+ /ι1 and

g2 =
[
xE2

]
+ /ι2 are used to evaluate the presence of competition. If both

columns are driven with unequal inputs ι1 and ι2, a subtractive threshold
will result in the gains g1 and g2 being unequal, even if the derivatives
∂xE1/∂ι2 and ∂xE2/∂ι1 are equal. The difference in gains does not indicate
the presence of competition through recurrent network interactions in this
case, and the ratio g1/g2 will converge to 1 as the overall strength of input in-
creases. Illusory competition can also occur if the inputs to the network are
appropriately structured. For example, Mexican hat–shaped input can in-
duce lateral cooperative and competitive interactions in a network without
lateral inhibition (Linkser, 1986).

Increasing the length of the inhibitory time constant can lead to oscilla-
tory dynamics (Wilson & Cowan, 1973; Hahnloser, 1998a; Tang & Tan, 2005;
Landsman et al., 2012). This does not change whether the fixed points of the
network express competition between columns, but can cause the network
to oscillate around the fixed point. In this case, the fixed point will not be
informative of the dynamics of the network and may not accurately reflect
the relationship between the activity of two columns.

4.1 Implications for Cortical Models. Our results show that the possi-
bility and lateral extent of disynaptic competition in cortical field models
with homogeneous, nonspecific connectivity is accurately predicted by the
direct difference between the spatial profiles of excitation and inhibition
emerging from a point. The predictions for lateral excitation and inhibition
architectures are illustrated in Figure 6. Classical lateral-inhibition archi-
tectures produce an annulus of competition surrounding a core of facilita-
tion, depending on the relative strengths of the excitatory and inhibitory
components (see Figures 6A–6C). This mechanism has been used via
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Figure 6: Lateral competition is highly spatially constrained by local inhibition.
(A) If the profile of excitation (light shading; positive) arising from a point
is narrower than the profile of inhibition (dark shading; negative), then the
net influence over space adopts the classical “mexican hat” profile (B). Seen
from above C, competition is possible in an annulus (between the white and
black dashed circles in C) surrounding a core of cooperation. However, if the
profile of inhibition is narrower than that of excitation (D), the net influence
adopts an inverse Mexican hat (E), and the spatial occurrence of competition
is dramatically reduced. Strong competition through disynaptic inhibition can
occur only in the region local to a driving neuron (within the black dashed circle
in F)—indeed, narrower than the range of inhibitory projections. The result is
independent of scale.

lateral-inhibition neighborhood functions in developmental models of cor-
tical areas to provide local spatial grouping of function and medium-range
decorrelation of function, and to therefore reproduce some of the form
of functional maps in visual cortex (von der Malsburg, 1973; Swindale,
1982; Grabska-Barwińska & von der Malsburg, 2008; Antolı́k & Bednar,
2011; Plebe, 2012). The same mechanism can be used to describe pattern
formation during ongoing activity in columnar cortex (Ernst, Pawelzik,
Sahar-Pikielny, & Tsodyks, 2001; Pinto & Ermentrout, 2001; Blumenfeld,
Bibitchkov, & Tsodyks, 2006; Baker & Cowan, 2009).

Broadly tuned or untuned inhibitory feedback has also been used in
abstract competitive models to explain the intracortical emergence of sharp
orientation tuning in primary visual cortex (Douglas et al., 1994; Ben-Yishai
et al., 1995; Somers et al., 1995; Li, 1998, 2002). If we are to interpret these
models as applying to columnar visual cortex (e.g., cat, tree shrew, ferret,
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monkey), where orientation is smoothly mapped to space across the surface
of area 17, then these models require competition over long distances across
the cortical surface.

In contrast, the extent of competition in lateral-excitation models is ex-
pected to be even narrower than the range of local inhibition (see Figure 6F).
Note that this is true in spite of the presence of widespread disynaptic inhi-
bition in the models. Since the measured cortical architecture appears to be
of this type, our results raise serious questions for all cortical models that
rely on lateral or global inhibition.

Our results do not mathematically prohibit competition between
columns in cortex. Not only are there extremely weak deviations from
the direct coupling effect in the models we examine, but it is also certainly
possible to hard-wire a model of arbitrary and asymmetric connections
between columns to provide multicolumnar competition. Our models ex-
amine the expectation for homogeneous and symmetric cortical networks,
reflecting the minimal assumption of opportunistic connectivity between
neurons. Our results show that the baseline expectation for competition in
cortex can be estimated by the direct coupling between points in cortex.
Searching for competition in cortex must be a search for deviations from
nonspecific, homogeneous, and symmetric connectivity.

Accordingly, we considered whether effective lateral inhibitory profiles
(and thereby lateral competition) might be obtained in a network with
lateral excitatory projections and only local inhibitory projections, through
specificity of where on a respective axonal and dendritic tree synaptic con-
nections were formed. For example, synapses on an inhibitory axonal arbor
that are distal to the soma of the source neuron might be biased to contact the
distal segments of its targets (see Figures 7A–7C). This effectively widens
the spatial range of inhibition without requiring long-range inhibitory
projections, and under the direct coupling effect therefore permits lateral
competition to occur (see Figure 7C). The opposite mode of synapse loca-
tion specificity would also support lateral competition (see Figures 7D–7F).
This hypothesis is consistent with the assumptions made for our analytical
models, consistent with the known spatial ranges of excitatory and
inhibitory axonal projections and consistent with the absence of neuron
class projection bias described in the literature (Kisvárday et al., 1986).

The question of dendritic location specificity is difficult to tackle ex-
perimentally, and so has been only sparsely examined. In the mammalian
hippocampus, both long-range and local projections are laminar specific,
which due to the highly ordered radial arrangement of Purkinje and gran-
ule cell dendrites implies that individual pathways are highly selective for
particular dendritic (and somatic) domains (Blackstad, 1956, 1958; Ribak
& Seress, 1983; Soriano & Frotscher, 1989; Han, Buhl, Lörinczi, & Somo-
gyi, 1993; Deller, Martinez, Nitsch, & Frotscher, 1996). Lamination is also
a striking feature of the neocortex, and there is some evidence that affer-
ent projections to cortex are also laminar-specific. Petreanu and colleagues
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Figure 7: Dendrite location specificity modifies the effective range of inhibition
and competition. (A–C) Estimated profiles of effective inhibition and competi-
tion, under the assumption that inhibitory synapses are made onto excitatory
neuron dendrites in a biased manner, such that synapses on a distal inhibitory
axonal segment contact only distal dendritic segments (and proximal contact-
ing proximal). The effective range of inhibition (dashed gray curve in A) can be
wider than the spatial range of individual inhibitory axons (dark shaded curve
in A; difference between excitation and inhibition shown in B). Under the direct
coupling effect, this would permit disynaptic competition to occur over larger
spatial distances (C; see Figure 6F). (D–F) If distal inhibitory synapses are made
onto proximal excitatory dendritic segments and vice versa (D), then side lobes
of effective inhibition arise (dashed gray curve in D; difference between excita-
tion and inhibition shown in E) and the range of competition is again increased
with respect to nonspecific connectivity (F; see Figure 6F). Conventions as in
Figure 6. Scale is in proportion with synaptic strength estimates for cat visual
cortex (see appendix B).

investigated whether individual pathways targetting rodent barrel cortex,
arising from other cortical areas and subcortical structures, formed synapses
on specific dendritic segments of excitatory neurons (Petreanu, Mao, Stern-
son, & Svoboda, 2009). They found that long-range projections to neurons
in layers 2, 3, and 5 targeted specific dendritic domains ranging in depth
from basal to apical dendrites. In contrast, local excitatory projections from
layers 2 and 3 to neurons in layer 5 did not show a preference for a par-
ticular dendritic location. However, the results in hippocampus and barrel
cortex do not measure preference for lateral dendritic location of the form
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we discussed in Figure 7, but only for vertical dendritic location within a
cortical column. In principle, the experimental technique of Petreanu and
colleagues could be applied to explore lateral dendritic specificity, but this
remains an unexplored hypothesis.

4.2 Intracolumnar Competition. Our results indicate that while lateral
competition is difficult to justify in columnar cortical architectures, com-
petition could nevertheless occur between neighboring cortical columns
over short distances (see Figures 4A, 4B, and 6D, 6F). Within a single col-
umn, the machinery required for competition—recurrent excitatory and
inhibitory connections—is readily available without making unreasonable
assumptions about the cortical architecture. Indeed, responses of neighbor-
ing neurons in cat visual cortex are highly decorrelated, over and above
what is expected from differences in their respective receptive fields (Yen,
Baker, & Gray, 2007; Tolhurst, Smyth, & Thompson, 2009; Ecker et al., 2010;
Martin & Schröder, 2013). This surprising lack of correlation between neu-
rons with similar orientation preference and similar retinotopic location
could occur through local competition between neurons within a cortical
column. Decorrelation of neurons that receive similar inputs would increase
the information coding capacity of single neurons and populations in cortex
(Shamir & Sompolinsky, 2004; Averbeck, Latham, & Pouget, 2006).

Some existing models for learning receptive field properties in cortex are
defined without an explicit mapping to cortical space, but are nevertheless
compatible with the concept of strong competition within a column of vi-
sual cortex (Olshausen & Field, 1996; Bell & Sejnowski, 1997; Perrinet, 2004;
Rehn & Sommer, 2007). These models seek to learn maximally sparse corti-
cal representations by providing negative feedback between neurons with
similar receptive fields. Neurons in strongest competition would therefore
represent similar locations and preferred orientations in visual space, and
consequently map to similar locations in cortical space.

Recent work exploring competition and information processing in non-
columnar (mouse visual) cortex (Muir, Molina-Luna, Helmchen, & Kampa,
2014), competition and learning within local populations (Jug, Cook, & Ste-
ger, 2012) and dynamics of cortical columns with local inhibition (Lands-
man et al., 2012) show that local excitatory connectivity can provide a rich
repertoire of complex dynamics and competitive behaviour for information
processing in cortex.

Appendix A: Detailed Analysis

A.1 Analytical System Definition. The differential equation for a single
unit in the system is given by

τn · ẋn + xn = W
(
a ⊙ [x − v]+

)
+ ιn, (A.1)
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Table 2: Variables in the System Differential Equations.

τn Time constant for unit n
T Matrix composed of all network time constants τn
xn Activation value of unit n
x Vector composed of unit activations xn
αn Activation gain of unit n (slope of the linear-threshold transfer function)
a Vector composed of unit gain factors αn
ϑn Activation threshold of unit n
v Vector composed of unit activation thresholds ϑn
wij Synaptic weight from unit j to unit i
W Matrix composed of all network weights wij
W+ Matrix composed of network weights, with rows and columns

corresponding to inactive units set to zero, that is, the weight matrix
corresponding to the active network partition

ιn External instantaneous input current injected into unit n
J+ Jacobian of the system for the active network partition
Part

[
p
]

Nomenclature for referring to a particular partition p of the network,
where p is a Boolean vector indicating which columns of the network
are active in the partition

λp Set of eigenvalues of the system Jacobian J, in partition p
N Number of units in the network

where xn is the activation of unit n; τn is the time constant of unit n; W is
the matrix composed of the individual weights wij of the network; a is the
vector of activation gains αn of the network; v is the vector of activation
thresholds ϑn; ιn is the current injected into unit n; and with

x =

⎡

⎢⎢⎢⎣

x1
x2
...
xN

⎤

⎥⎥⎥⎦
;a =

⎡

⎢⎢⎢⎣

α1
α2
...
αN

⎤

⎥⎥⎥⎦
;v =

⎡

⎢⎢⎢⎣

ϑ1
ϑ2
...
ϑN

⎤

⎥⎥⎥⎦
;W =

⎡

⎢⎢⎢⎣

w11 w12 . . . w1N
w21 w22 w2N
...

. . .
...

wN1 wN2 . . . wNN

⎤

⎥⎥⎥⎦
.

(A.2)

In this notation, [x]+ is the linear-threshold transfer function given by
[x]+ = max (x, 0), and a ⊙ b denotes the element-wise product of the vectors
a and b. The activation gains αn can be absorbed into the weights arising
from each unit without loss of generality; for further analysis, we take
∀n : αn = 1 and omit the vector a from equation A.1. All parameters except
the weights W are constrained to be non-negative. The definition of all
parameters is given in Table 2.

The local stability and behavior of a linear-threshold network can be de-
termined by examining the eigenvalues and the trace of the system Jacobian,
under the assumption of a specified active network partition (Hahnloser,
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1998a). This Jacobian is given by J+ =
(
W+ − I

)
⊘ T, where I is the identity

matrix; A ⊘ B denotes element-wise division of the matrices A and B; W+

is the network weight matrix, with rows and columns corresponding to
inactive units set to zero; and T is the N × N square matrix composed of all
unit time constants τN:

T =

⎡

⎢⎣
τ1 · · · τ1
...

. . .
...

τN · · · τN

⎤

⎥⎦ . (A.3)

A partition is stable in the bounded-input bounded-output (BIBO) sense
when the eigenvalues of J+ have no positive real components, and
Trace

(
J+)

≤ 0. Note that the full system can have a mixture of stable and
unstable partitions and that the system can be globally stable if all unsta-
ble partitions result in a transition to stable partitions (Hahnloser, 1998a).
Partitions that contain large eigenvalues with complex components have
oscillatory dynamics, which lead to either stable or unstable spirals depend-
ing on the magnitude of the real component of the eigenvalues.

A.2 Stability and Behavior of Two Columns. Here we describe in detail
the analysis of the two-column network presented in the body of the letter
(section 2.5; see Figure 2B). This network consists of two excitatory and two
inhibitory units xEn and xIn, respectively, where n is the column number.
The time constants for the system are defined by the class of each unit,
with a class time constant τE for the excitatory units and another τI for the
inhibitory units. Activation thresholds are similarly defined by class, giving
ϑE and ϑI. The pair of units in a column receive a common input ιn. The
system weights are as shown in Figure 2B; the weight matrix is therefore
given by

W =

⎡

⎢⎢⎢⎢⎣

wER wEC −wIR −wIC

wEC wER −wIC −wIR

wER wEC −wIR −wIC

wEC wER −wIC −wIR

⎤

⎥⎥⎥⎥⎦
. (A.4)

In this work, partitions are denoted by superscripts indicating which
columns of the network are active. For example, λ11 denotes the set of
eigenvalues in the network partition when columns 1 and 2 have nonzero
activity. The network partition itself is denoted Part[11]. Sets of equations
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that apply to a given partition are grouped with a vertical line as shown
here:

A
B

∣∣∣∣
11

A.2.1 Simplifying Substitutions. We define two values, (R and (C, which
correspond to the excess of inhibition over excitation within a column (i.e.
recurrent connections) and between columns, given by

(R = 1 + wIR − wER and (A.5)

(C = wIC − wEC.

A.2.2 Zero Thresholds; Equal Time Constants. We begin by examining the
system where ϑE = ϑI = 0 and τE = τI = τ . Under these simplifying as-
sumptions, the system eigenvalues are given by

λ11 =
{−1

τ
,
−1
τ

,
(C − (R

τ
,
−(C − (R

τ
, (A.6)

λ10 =
{−1

τ
,
−1
τ

,
−1
τ

,
−(R

τ
.

Note that the system can never have complex eigenvalues, and so single
partitions can never have oscillatory dynamics. The system is globally BIBO
stable under the condition

(R > abs
(
(C

)
, (A.7)

where abs
(
(C

)
is the absolute value of (C.

In many of the conditions for stability that will follow, the constraint
(R > 0 (or similar), implying that wER < 1 + wIR, appears often. With all
other weights set to zero and the excitatory gain αE = 1, a value of wER = 1
implies that if the excitatory unit has a net activity of r, then the recurrent
excitatory input current supplied back to the same excitatory unit will
also be r. In other words, the open-loop gain of the recurrent excitatory
connection is unitary. If wER > 1, implying that the open-loop gain of the
recurrent excitatory connection is greater than unitary, it is easy to see that
the activity of the excitatory unit will grow without bound (in the absence
of any network stability mechanism such as recurrent inhibition, or single-
unit stability mechanism such as a saturating transfer function). If wER < 1,
the open-loop gain of the recurrent excitatory connection is less than 1,
implying that for an activity of r, the recurrent excitatory input will be less
than r.
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Note that we generally ignore the partition where all columns are
switched off (Part[00] or Part[000] for a three-column network). This par-
tition is never unstable (under the reasonable assumption of bounded
weights), never oscillatory, cannot exhibit competitive behavior, and is
guaranteed to transition to another partition for inputs greater than the
excitatory threshold ϑE .

To determine when and whether this two-column network can dis-
play competitive behavior, we examine the fixed points x̄n of the system
(Rutishauser & Douglas, 2009). These are found by solving the system
of differential equations (see equation A.1) by setting ẋn · τn = 0. The two
columns are in competition if the net action of the network is such that
an increase in the input to column 1 results in a decrease in the input to
column 2. The fixed points of the two-column network are given by

x̄E1 = x̄I1 =
ι2 · (C − ι1 · (R

(2
C − (2

R

x̄E2 = x̄I2 =
ι2 · (C − ι1 · (R

(2
C − (2

R

∣∣∣∣∣∣∣∣∣

11

and (A.8)

x̄E1 = x̄I1 = ι1
(R

x̄E2 = x̄I2 = ι2 − ι1·(C
(R

∣∣∣∣∣

10

.

We now calculate the partial derivatives ∂ x̄E2/∂ι1 for Part[11] and Part[10],
which are given by

∂ x̄E2

∂ι1
=

(C

(2
C − (2

R

∣∣∣∣∣

11

and (A.9)

∂ x̄E2

∂ι1
= −

(C

(R

∣∣∣∣
10

.

For competitive behavior to exist between the two columns, we require
that the partial derivative ∂ x̄E2/∂ι1 < 0 for both partitions, so that regardless
of the initial conditions of the network, column 2 is inactivated by an input
only to column 1. This criterion implicitly assumes that the excitatory unit
in column 1 is above threshold, since a subthreshold input to column 1
could not have any effect on the activity of column 2. The condition above
is satisfied when

∧
[

(C < (R

[((R > 0) ∧ ((C > 0)] ∨ [(R < 0]
. (A.10)
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Combining these conditions with the global conditions for stability (see
equation A.7) gives the global conditions for stable WTA system behavior,
namely,

0 < (C < (R. (A.11)

The factor (R > 0 in equation A.11 is required for the network to be
globally stable. The factor (C > 0, however, speaks directly to the possibility
of lateral competition in this simple network, since it reduces to wIC > wEC.
The direct inhibitory connection between the two columns, wIC, must be
stronger than the corresponding excitatory connection, wEC. This is a strong
result, since the derivatives of the fixed points (see equation A.9) do not
depend on the respective time constants of inhibition and excitation. For
any combination of τE > 0 and τI > 0, differential amplification can occur
only if the network is dominated by lateral inhibition.

A.2.3 Hard Winner-Take-All Behavior. A network is said to display hard
WTA behavior if it permits only the strongest-driven unit to remain active,
while suppressing the activity of all more weakly driven units to zero.
Interpreted for our simple two-column network, if column 1 and 2 are
driven with a related input ι2 = δ · ι1 where 0 < δ < 1, then for hard WTA
behavior, the fixed-point activity of column one should be positive (x̄E1 > 0),
while column 2 should be silenced (x̄E2 ≤ 0). Solving the fixed points in
equation A.8 for these conditions, in addition to the requirements for BIBO
stability, gives the following constraints on the system parameters:

[
(R > 0

]
∧

[
(C < (R

]
∧

[
δ ≤

(C

(R

]
. (A.12)

The first two terms come directly from the conditions for stable WTA be-
havior, equation A.11. The third term dictates whether the network can
display hard WTA behavior. Unfortunately, the factor δ, which governs the
difference between the inputs to columns 1 and 2 is constrained by the
weights in the network. For a given set of weights, the network will pro-
duce hard winner-take-all behavior only for sufficiently different values of
the input. For columnar systems of this form, a network that displays hard
WTA behavior for any differential input cannot exist. There is no regime
that operates exclusively in a hard WTA mode.

A.2.4 Gain of the Winning Column. For completeness, we derive the gain
of the two-column system. When operated in a competitive regime, the
gain of the winning column is obtained by examining the steady-state
equations in equation A.8. When the network is operating in a soft WTA
regime, competition can occur without inactivating column 2. We provide a
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differential input to columns 1 and 2 such that ι1 = ιC + ιδ and ι2 = ιC, where
ιC is a common-mode component and ιδ is the differential component, with
ιδ > 0. Since the network is in Part[11], the gain of the winning column
(assumed to be column 1) is given by

G = x̄E1

ι1
=

ιC · (C −
(
ιC + ιδ

)
(R(

ιC + ιδ
) (

(2
C − (2

R

) . (A.13)

The gain of the winning column has both a common-mode and differential
component.

If the network is operating in a hard WTA regime the system must
be in Part[10], therefore, the gain of the winning column is given by (see
Rutishauser & Douglas, 2009)

x̄E1

ι1
= 1

1 + wIR − wER
= 1

(R
. (A.14)

A.2.5 Unequal Time Constants. The time constants of excitation and in-
hibition have no effect on the fixed points of the two-column network.
However, the fixed points are a useful description of the network activity
only to the extent that they help to predict the response of the system to a
given input. Depending on the network parameters, the fixed points can
be exponentially unstable (if the system has unbounded behavior) or can
provide a focus around which the network activity oscillates.

For a single column, the parameter constraints that ensure oscillatory
behavior implicate slow inhibition as the mechanism for generating os-
cillations (Wilson & Cowan, 1973; Hahnloser, 1998a; Ermentrout, 1998b;
Landsman et al., 2012). In all cases, oscillations are not possible unless the
time constant for inhibition τI is longer than the time constant for excitation
τE . The general constraints relating τI and τE are given by

(a − b)τE

(wER − 1)2 < τI <
(a + b)τE

(wER − 1)2 , where (A.15)

a = 1 + wER(wIR − 1) + wIR and b = 2
√

wER · wIR(wIR − wER + 1). The con-
straint in equation A.15 requires that τI is longer than τE , since the factor of
τE in the first term is always larger than 1 as long as wER ≤ 1 + wIR (a gen-
eral constraint for stability similar to that given in equation A.7). If wER = 1,
then the relationship constraining τI and τE is given by the simpler form,

τI >

(
1 + wIR

)2
τE

4 · wIR
, (A.16)
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which likewise constrains τI to be longer than τE for oscillatory dynamics.
For the two-column model, the constraints are obtained by examining

the eigenvalues for the system where τI ̸= τE , which have the form

λ = 1
2τI · τE

{
−p + q ±

√
r

−p − q ±
√

s
, where (A.17)

p = τI − wER · τI + τE + wIR · τE ; q = wIC · τE − wEC · τI; r = −4(1 + wEC−
wER − wIC + wIR)τI · τE + ((1 + wEC − wER)τI + (1 − wIC + wIR)τE )2; and
s = 4(−1 + wEC + wER − wIC − wIR)τI · τE + ((−1 + wEC + wER)τI − (1 +
wIC + wIR)τE )2.

Unfortunately, the simplifying substitutions of (R and (C (see equation
A.5) do not help here. The system is oscillatory when either of r or s becomes
negative. The parameter constraints obtained by expanding these inequali-
ties have a similar form to equation A.15, but are long, complicated, and not
included here. Nevertheless, for the two-column network as for the single
column, τI must be longer than τE for oscillatory dynamics to be present.

A.2.6 Nonzero Thresholds. The thresholds for excitation and inhibition ϑE
and ϑI do not enter the expressions for the system eigenvalues and therefore
cannot have an effect on the stability or oscillatory dynamics of the network.
However, the thresholds do play a role in determining the fixed points of
the network, and so might determine whether competitive interactions can
occur. If nonzero thresholds are allowed separately for the excitatory and
inhibitory units, then the fixed points for the two-column network (for
ι2 = 0) are given by

x̄E1 = x̄I1 = ι1·(R
−(2

C+(2
R

+ f

x̄E2 = x̄I2 = ι1·(C
(2

C−(2
R

+ f

∣∣∣∣∣∣∣

11

and (A.18)

x̄E1 = x̄I1 = ι1
(R

+ wIR·ϑI−wER·ϑE
(R

x̄E2 = x̄I2 = − ι1·(C
(R

+ wIC·ϑI−wEC·ϑE+(wER·wIC−wEC·wIR)(ϑE−ϑI)
(R

∣∣∣∣∣∣∣

10

,

where f = (wIC+wIR)ϑI−(wEC+wER)ϑE
(C+(R

.
The fixed points in equation A.18 show that the response of the network

contains a component that depends on the thresholds of excitation and
inhibition ϑE and ϑI but not on the input ι1 and a separate component that
depends on the input but not on the thresholds. Therefore, thresholds for
excitation and inhibition that are identical between the two columns can
modify the fixed points only in a manner independent of the input to the
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network. This implies that the partial derivatives ∂ x̄E2/∂ι1 in both partitions
are independent of the activation thresholds, and in fact they have the same
form as in equation A.9. Setting a nonzero threshold for either excitation or
inhibition therefore has no effect on the existence of competition between
columns.

A.2.7 Memory State with Nonzero Thresholds. Winner-take-all networks
can support the existence of a memory state, where activity persists in
the absence of external input (Rutishauser & Douglas, 2009). The stability
and configuration of this memory state can be explored by examining the
steady-state network activity equations, with input terms ι1 and ι2 set to
zero. For the two-column network presented here, equation A.18 reveals
that for Part[11], the common-mode term f in equation A.18 will completely
determine the network response. If f is positive, a stable memory state will
exist; however, this memory state is identical for both columns, and so the
activity of both columns will become equal. If f is negative, the memory
state in Part[11] is unstable, and one or both columns will become inactive.

For the memory state to operate in a competitive switchable mode, where
the activity in the network can be nudged from one column to the other,
the two-column model must be able to operate in a hard-WTA regime in
the absence of input. This is unrelated to the condition in section A.2.3,
which applies for nonzero input. For the memory state to be stable, the
steady-state solutions given in equation A.18 for Part[10] must be positive
for the winning column (assumed to be column 1) and negative for the
losing column (column 2).

A.3 Stability and Behaviour of a Three-Column Ring. Here we describe
the analysis of a three-column ring network, with 50% more brevity than for
the two-column network. This network consists of three identical columns,
each with the same parameters as for the two-column network described
above (see Figure 2C). The columns are arranged in a linear ring, with each
column connecting symmetrically to its nearest neighbors. The dynamic
equations for the system are as in equation A.1, with the system weight
matrix given by

W =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wER wEC wEC −wIR −wIC −wIC

wEC wER wEC −wIC −wIR −wIC

wEC wEC wER −wIC −wIC −wIR

wER wEC wEC −wIR −wIC −wIC

wEC wER wEC −wIC −wIR −wIC

wEC wEC wER −wIC −wIC −wIR

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.19)
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The eigenvalues for this network are given by

λ111 = 1
2 · τI · τE

{
p1 ± √r1(
2 · wEC + wER − 1

)
τI +

(
1 + 2 · wIC + wIR

)
τE − √r2

λ110 =− 1
τE

,− 1
τI

,
1

2 · τI · τE

{
p1 ± √r1

p2 ± √r1

λ100 =− 1
τE

,− 1
τI

,
1

2 · τI · τE

(
−1 + wER

)
τI −

(
1 + wIR

)
τE ± √

r3, where

(A.20)

r1 = −4(1 + wEC − wER − wIC + wIR)τI · τE + ((1 + wEC − wER)τi + (1 − wIC
+wIR)τE )2; r2 = 4(2 · wEC + wER − 2 · wIC − wIR − 1)τI · τE + ((2 · wEC + wER
−1)τI − (2 · wIC + wIR − 1)τE )2; r3 = 4(−1 + wER − wIR)τI · τE + ((wER − 1)

τI − (1 + wIR)τE )2; p1 = (wER − wEC − 1)τI + (wIC − wIR − 1)τE ; and
p2 = (wEC + wER − 1)τI − (1 + wIC + wIR)τE .

Again, the thresholds for excitation and inhibition do not enter the eigen-
values and so cannot have an effect on the stability of the system. Examining
the case frequently used in the literature where τE = τI = τ , the eigenvalues
of the system have the much simpler form

λ111
τE=τI

=
{
− 1

τ
,− 1

τ
,− 1

τ
,−

2(C + (R

τ
,
(C − (R

τ
,
(C − (R

τ
(A.21)

λ110
τE=τI

=
{
− 1

τ
,− 1

τ
,− 1

τ
,− 1

τ
,−

(C + (R

τ
,
(C − (R

τ

λ100
τE=τI

=
{
− 1

τ
,− 1

τ
,− 1

τ
,− 1

τ
,− 1

τ
,−(R

τ
.

Under the assumption of equal time constants, the parameter bounds for
global BIBO stability are given by

[
2(C + (R > 0

]
∧

[
(C < (R

]
. (A.22)

To determine the conditions for competitive interaction between columns
1 and 2, we examine the steady-state solutions for the system as for the
two-column model. Here the steady-state solutions for driven columns 1
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and 2 are given by the exhaustive and exhausting set of equations

x̄E1 = x̄I1 = ϑI − −2·ι1+ι2
3((R−(C)

− h1

x̄E2 = x̄I2 = ϑI − ι1−2·ι2
3((R−(C)

− h1

x̄E3 = x̄I3 = ϑI − ι1+ι2
3((R−(C)

− h1

∣∣∣∣∣∣∣∣∣

111

(A.23)

h1 =
3

(
2 · wEC + wER − 1

)
ϑI − 3

(
2 · wEC + wER

)

3
(
2 · (C + (R

)

x̄E1 = x̄I1 = ι1− ι2
2((R−(C)

+ ι1+ ι2
2((R+(C)

+ h2

x̄E2 = x̄I2 = −ι1+ ι2
2((R−(C)

+ ι1+ ι2
2((R+(C)

+ h2

x̄E3 = x̄I3 = (ι1+ ι2)(C
−(C−(R

+ h3

∣∣∣∣∣∣∣∣∣

110

h2 = ϑI +
(
wEC + wER − 1

)
ϑi −

(
wEC + wER

)
ϑE(

(R + (C
)

h3 =

2
((

−1 + wER
)
wIC − wEC · wIR

)
ϑI + 2

(
wEC − wER · wIC + wEC · wIR

)
ϑE

−(C − (R

x̄E1 = x̄I1 = ι1·(R
(2

R−(2
C

+ h4

x̄E2 = x̄I2 = ι2 + ι1·(C
−(C−(R

+ h3

x̄E3 = x̄I3 = ι1·(C
(2

C−(2
R

+ h4

∣∣∣∣∣∣∣∣

101

h4 =
(
wEC + wER

)
ϑE −

(
wIC + wIR

)
ϑI

−(C − (R

x̄E1 = x̄I1 = ι1
(R

+ wIR·ϑI−wER·ϑE
(R

x̄E2 = x̄I2 = ι2 + (wEC−wIC)ι1
(R

+ h5

x̄E3 = x̄I3 = (wIC−wEC)ι1
(R

+ h5

∣∣∣∣∣∣∣∣∣

100

h5 =
(
wIC − wERwIC + wEC · wIR

)
ϑI +

(
wER · wIC − wEC · wIR − wEC

)
ϑe

(R
.

As in the two-column analysis, we examine the partial derivatives
∂ x̄E2/∂ι1 for each partition to find the parameter bounds that guarantee
competitive interactions between columns 1 and 2. As we saw previously,
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the activation thresholds ϑE and ϑI drop out of the derivatives, leaving the
simple form

∂ x̄E2

∂ι1
=

(C(
(C − (R

) (
2 · (C + (R

)

∣∣∣∣∣

111

(A.24)

∂ x̄E2

∂ι1
=

(C

(2
C − (2

R

∣∣∣∣∣

110

∂ x̄E2

∂ι1
=

−(C

(C + (R

∣∣∣∣
101

and

∂ x̄E2

∂ι1
=

−(C

(R

∣∣∣∣
100

.

For the three-column ring network, the parameter bounds that ensure
competition between columns 1 and 2 are given by

[
(C < (R

]
∧

[((
(R > 0

)
∧

(
(C > 0

))
∨

(
(R < 0

)]
. (A.25)

When combined with the conditions for BIBO stability (see equation A.22),
these bounds reduce to the wonderfully simple

[
(C > 0

]
∧

[
(C < (R

]
, im-

plying once again that wIC>wEC.
Perhaps surprisingly, the third column cannot mediate competition be-

tween columns 1 and 2 by providing disynaptic inhibition. For competition
to occur, the direct inhibitory coupling between columns 1 and 2 must be
stronger than the direct excitatory coupling.

A.3.1 Oscillatory Behavior. The three-column ring has oscillatory dynam-
ics if any of the roots r1 through r3 from the system eigenvalues (see equation
A.20) are negative. The full parameter bounds are not included here, but
oscillatory dynamics are again possible only if the inhibitory time constant
τI is longer than the excitatory time constant τE .

A.4 Stability and Behavior of a Three-Column Chain. Here we describe
the analysis of a three-column chain network. This network is similar to the
three-column ring, but with the columns conceptually placed on a line
rather than a circle (see Figure 2D). The connectivity between the outer
two columns is modified such that they are more weakly coupled than
in the ring model. This model is designed to explore whether competition
between two distant columns (columns 1 and 3) can be driven by a spatially
intermediate column (column 2). The dynamic equations for the system are
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as in equation A.1, with the system weight matrix given by

W =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wER wEC1 wEC2 −wIR −wIC1 −wIC2

wEC1 wER wEC1 −wIC1 −wIR −wIC1

wEC2 wEC1 wER −wIC2 −wIC1 −wIR

wER wEC1 wEC2 −wIR −wIC1 −wIC2

wEC1 wER wEC1 −wIC1 −wIR −wIC1

wEC2 wEC1 wER −wIC −wIC1 −wIR2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.26)

For this network, we modify our simplifying assumptions from equation
A.5 slightly, to incorporate the difference in nearest and distant column
connections, and so use

(R = 1 + wIR − wER, (A.27)

(C1 = wIC1 − wEC1,

(C2 = wIC2 − wEC2.

The eigenvalues for this network are given by

λ111
τE=τI

= −1
τ

,
−1
τ

,
−1
τ

,
(C2 − (R

τ
,
−1
2τ

(
(C2 + 2 · (R ±

√
8 · (2

C1+(2
C2

)

(A.28)

λ110 = −1
τE

,
−1
τI

,
−1

2 · τE · τI

⎧
⎨

⎩
q1 + q2 ±

√(
q1 + q2

)2 − r4

q3 + q4 ±
√(

q3 + q4
)2 − r5

λ100 = −1
τE

,
−1
τE

,
−1
τI

,
−1
τI

,
−1

2 · τE · τI

×
{

p4 ±
√

p2
4 − 4

(
1 − wER + wIR

)
τE · τI

λ110
τE=τI

= − 1
τ

,− 1
τ

,− 1
τ

,− 1
τ

,−
(C1 + (R

τ
,
(C1 − (R

τ

λ100
τE=τI

= − 1
τ

,− 1
τ

,− 1
τ

,− 1
τ

,− 1
τ

,−(R

τ

where q1 = (1 − wIC1 + wIR)τE ; q2 = (1 + wEC1 − wER)τI; q3 = (1 + wIC1+
wIR)τE ; q4 = (1 − wEC1 − wER)τI; r4 = 4(1 + wEC1 − wER − wIC1 + wIR)τE · τI;
r5 = 4

(
1 − wEC1 − wER + wIC1 + wIR

)
τE · τI; and p4 =

(
1 + wIR

)
τE +(

1 − wER
)
τI.
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The eigenvalues for Part[111] above are given only for the simplifying
case where τE = τI, as the general case is overly complex. The eigenvalues
for Part[101] are identical to those for Part[110], but depend on the weights
wEC2 and wIC2 (as well as on (C2) in place of wEC1, wIC1, and (C1, respectively.

The global BIBO stability of the system is guaranteed, for the case where
τE = τI, by the parameter bounds

∧

⎡

⎣
−(R < (C1 < (R.

2 · (2
C1

(R
− (R < (C2 < (R

. (A.29)

The steady-state equations for the general case of τE ̸= τI are overly com-
plex and are not included here. In the case where excitatory and inhibitory
thresholds ϑE = 0 and ϑI = 0, the steady-state equations are given by

x̄E1 = x̄I1 =
ι2

(
−(2

C1 + (C2 · (R
)
+ ι1

(
(2

C1 − (2
R

)
(
(C2 − (R

) (
−2 · (2

C1 + (R
(
(C2 + (R

))

x̄E2 = x̄I2 =
(
ι1 + ι2

)
(C1

2 · (2
C1 − (R

(
(C2 + (R

)

x̄E3 = x̄I3 =
ι1

(
−(2

C1 + (C2 · (R
)
+ ι2

(
(2

C1 − (2
R

)
(
(C2 − (R

) (
−2 · (2

C1 + (R
(
(C2 + (R

))

∣∣∣∣∣∣∣∣∣∣∣∣∣

111

(A.30)

x̄E1 = x̄I1 = ι1 · (R

−(2
C1 + (2

R

x̄E2 = x̄I2 =
ι1 · (C1

(2
C1 − (2

R

x̄E3 = x̄I3 =
ι1

(
−(2

C1 + (C2 · (R
)
+ ι2

(
(2

C1 − (2
R

)

(2
C1 − (2

R

∣∣∣∣∣∣∣∣∣∣∣∣

110

x̄E1 = x̄I1 =
ι2 · (C2 − ι1 · (R

(2
C2 − (2

R

x̄E2 = x̄I2 = −
(
ι1 + ι2

)
(C1

(C2 + (R

x̄E3 = x̄I3 =
ι1 · (C2 − ι2 · (R

(2
C2 − (2

R

∣∣∣∣∣∣∣∣∣∣∣∣

101

x̄E1 = x̄I1 = ι1
(R

x̄E2 = x̄I2 = −
ι1 · (C1

(R

x̄E3 = x̄I3 = ι2 −
ι1 · (C2

(R

∣∣∣∣∣∣∣∣∣∣∣

100

.
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For the general case of ϑE,ϑI ̸= 0, the activation thresholds ϑE and ϑI once
again drop out of the steady-state derivatives ∂ x̄E2/∂ι1, leaving the form

∂ x̄E2

∂ι1
=

(C1

2 · (2
C1 − (R

(
(C2 + (R

)

∣∣∣∣∣

111

(A.31)

∂ x̄E2

∂ι1
=

(C1

(2
C1 − (2

R

∣∣∣∣∣

110

∂ x̄E2

∂ι1
=

−(C1

(C2 + (R

∣∣∣∣
101

∂ x̄E2

∂ι1
=

−(C1

(R

∣∣∣∣
100

.

Stable WTA behavior is guaranteed under the conditions

[
(2

C1

(R
< (C2 < (R

]

∧
[
(R > abs

(
(C1

)]
. (A.32)

Since (2
C1 must be nonnegative, and (R is constrained to be positive by the

second condition in equation A.32, then (2
C1/(R must also be nonnegative,

and so (C2 > 0 by the first condition in equation A.32. Similar to the pre-
vious models, this implies that wIC2 > wEC2. We find that once again, for
competition to occur between columns 1 and 3, the direct inhibitory cou-
pling between those columns must be stronger than the direct excitatory
coupling.

Similar conditions hold for competition between columns 1 and 2,
with input applied to column 1. Stable competition can exist under the
conditions

[
0 < (C1 < (R

]
∧

[
2(2

C1

(R
− (R < (C2 < (R

]

. (A.33)

Even more starkly than in equation A.32 above, we have the condition (C1 >

0, which implies that wIC2 > wEC2. Coupling between columns 1 and 2 must
be dominated by inhibition for competition to occur. A coupling regime that
supports competition in Part [111] requires the network dynamics in that
partition to be unstable, leading to a transition to another partition where
one edge column is inactive, thus removing the possible effect of indirect
competition mediated by that column.
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Appendix B: Parameters for the Simulation Models
Table 3: Estimation of Network Parameters.

Value Formula Estimate Units References

1 Prop. of excitatory neurons 0.82 (Proportion) (Gabott & Somogyi, 1986; Martin & Whitteridge, 1984)
2 Input to pyramidal cell (total) 7000 Synapses (Binzegger et al., 2004)
3 (exc. synapses) R2 × R1 5740 Synapses
4 (inh. synapses) R2 × (1 − R1) 1260 Synapses
5 (exc. from other L2/3 pyr.) 3500 Synapses (Binzegger et al., 2004)
6 Input to basket (inh.) cell (total) 4000 Synapses (Binzegger et al., 2004)
7 (exc. synapses) R6 × R1 3280 Synapses
8 (inh. synapses) R6 × (1 − R1) 720 Synapses
9 Synapses per L2/3 pyr. cell axon 5000 Synapses (Binzegger et al., 2004)
10 Synapses per basket cell axon 4200 Synapses (Binzegger et al., 2004)
11 L2/3 pyr. local/total boutons 0.5 (Proportion) (Binzegger et al., 2007)
12 Average spontaneous firing rate 7.56 Hz (Noda, Freeman Jr, Gies, & Creutzfeldt, 1971)
13 exc. spikes per pC input 0.066 spikes/pC (Ahmed, Anderson, Douglas, Martin, & Whitteridge, 1998)
14 inh. spikes per pC input 0.310 spikes/pC (Nowak et al., 2003)
15 exc. PSP charge 0.1 pC/spike (Binzegger et al., 2009)
16 inh. PSP charge (basket) 0.365 pC/spike (Binzegger et al., 2009)
17 syn. release probability 0.1 (probability) (Binzegger et al., 2009)
18 exc. synapse strength per syn. R15 × R17 0.01 pC/spike/syn.
19 inh. synapse strength per syn. R16 × R17 0.0365 pC/spike/syn.
20 exc. gain multiplier per syn. R13 × R15 × R17 660 × 10−6 pC/pC/syn.
21 inh. gain multiplier R14 × R16 × R17 11 × 10−3 pC/pC/syn.
22 inh. syn. strength delta (est.) R21/R20 17.14 (Proportion)
23 inh. syn. strength delta 10.00 (Proportion) (Binzegger et al., 2009)
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Table 3: Continued.

Value Formula Estimate Units References

Spontaneous input
24 exc. spikes into L2/3 pyr. cell R3 × R12 × R17 4339 Hz
25 inh. spikes into L2/3 pyr. cell R4 × R12 × R17 953 Hz
26 exc. spikes into basket cell R7 × R12×R17 2480 Hz
27 inh. spikes into basket cell R8×R12×R17 544 Hz

Estimated effective lumped output weights
28 L2/3 pyr cell

∑
wE R1 × R9 × R13×R18 2.71 pC/pC

29 Basket cell
∑

wI (delta) (1 − R1)×R10 × R20 × R23 4.99 pC/pC
30 Basket cell

∑
wI (delta est.) (1 − R1) × R10 × R21 8.55 pC/pC

Note: exc: excitatory; inh: inhibitory; prop: proportion; pyr: pyramidal; syn: synapses.
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Braitenberg, V., & Schüz, A. (1991). Anatomy of the cortex: Statistics and geometry. New
York: Springer-Verlag.

Compte, A., Brunel, N., Goldman-Rakic, P. S., & Wang, X.-J. J. (2000). Synaptic
mechanisms and network dynamics underlying spatial working memory in a
cortical network model. Cerebral Cortex, 10(9), 910–923.

Conners, B. W., Bernardo, L. S., & Prince, D. A. (1983). Coupling between neurons
of the developing rat neocortex. Journal of Neuroscience, 3(4), 773–782.

Coultrip, R., Granger, R., & Lynch, G. (1992). A cortical model of winner-take-all
competition via lateral inhibition. Neural Networks, 5, 47–54.

DeFelipe, J. (2002). Cortical interneurons: From Cajal to 2001. Progress in Brain Re-
search, 136, 215–238.

DeFelipe, J., & Jones, E. G. (1998). From: A new concept of the histology of the nerve
centers. In Cajal on the cerebral cortex. New York: Oxford University Press.

Deller, T., Martinez, A., Nitsch, R., & Frotscher, M. (1996). A novel entorhinal pro-
jection to the rat dentate gyrus: Direct innervation of proximal dendrites and cell
bodies of granule cells and GABAergic neurons. J. Neurosci., 16(10), 3322–3333.

Douglas, R. J., Mahowald, M. A., & Martin, K. A. C. (1994). Hybrid analog-digital
architectures for neuromorphic systems. IEEE Transactions on Neural Networks, 5,
1848–1853.

Douglas, R. J., & Martin, K. A. C. (2004). Neuronal circuits of the neocortex. Annual
Review of Neuroscience, 27, 419–451.

Douglas, R. J., & Martin, K. A. C. (2007). Recurrent neuronal circuits of the neocortex.
Current Biology, 17(13), R496–R500.

Douglas, R. J., & Martin, K. A. C. (2009). Inhibition in cortical circuits. Current Biology,
19(10), R398–R402.

Douglas, R., Martin, K. A. C., & Whitteridge, D. (1989). A canonical microcircuit for
neocortex. Neural Computation, 1, 480–488.
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