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A THz-pump and x-ray-probe experiment is simulated where x-ray photoelectron

diffraction (XPD) patterns record the coherent vibrational motion of carbon

monoxide molecules adsorbed on a Pt(111) surface. Using molecular dynamics

simulations, the excitation of frustrated wagging-type motion of the CO molecules

by a few-cycle pulse of 2 THz radiation is calculated. From the atomic coordinates,

the time-resolved XPD patterns of the C 1s core level photoelectrons are generated.

Due to the direct structural information in these data provided by the forward

scattering maximum along the carbon-oxygen direction, the sequence of these

patterns represents the equivalent of a molecular movie. VC 2015 Author(s). All
article content, except where otherwise noted, is licensed under a Creative
Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4922611]

I. INTRODUCTION

Pump-probe experiments have brought about the field of femtochemistry1 where the molec-

ular dynamics in chemical reactions is studied in real time. An ultrashort pump pulse of laser

light triggers some process in a molecule, while a probe pulse of electrons or electromagnetic

radiation records the transient structural changes either directly in the nuclear coordinates or

indirectly via the electronic or vibrational properties of the system after a defined delay on the

femtosecond time scale. Pulsed electron and x-ray diffraction have been successfully used as

time-resolved direct structural probes for molecules in the gas phase.2,3 However, many impor-

tant chemical reactions can be boosted and steered by heterogeneous catalysis, where the

molecules are adsorbed on a solid surface.4,5 Surface sensitive techniques with femtosecond

temporal resolution have been developed over the last two decades. Bond weakening and bond

breaking processes have been followed by time-resolved non-linear optical methods6 and by

time-resolved two-photon photoemission.7,8 More recently, the advent of x-ray free-electron

lasers (XFEL) has made it possible to observe bond breaking and bond formation on surfaces

via x-ray absorption and x-ray emission experiments.9,10 On the other hand, experiments meas-

uring the dynamics of the nuclear coordinates on surfaces directly via time-resolved diffraction

methods have remained scarce,11 which reflects the difficulty of obtaining such data on a femto-

second time scale.

Photoelectron diffraction comes up as a promising probe technique, because the photoexcita-

tion process is on the attosecond time scale12 and the detected photoelectrons probe only the sur-

face region of a solid due to their short inelastic mean free paths. The kinetic energy distribution

of the photoelectrons reflects the molecular orbital energies and core levels of the adsorbed

molecules, while their angular distribution contains information on bond angles and distances.

This is due to a diffraction effect where a photoelectron wave is produced at one particular atom
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within the molecule and subsequently scattered coherently off the neighboring atoms.13 The pho-

toemitter can be selected by measuring the intensity distribution of the corresponding core-level

spectrum.

A necessary condition for the observation of photoelectron diffraction from molecular adsor-

bates is that all molecules within the sampled surface area are oriented in a unique way.

Orientational disorder, be it static or thermal, will reduce the diffraction contrast. This applies

also to studies of structural dynamics, and therefore any pump-probe scheme using this technique

requires the excitation of coherent molecular motion. Optical mechanisms for inducing vibrational

coherence are well established and have permitted the study of vibrational relaxation on the fem-

tosecond time scale by optical means, exploiting the transient changes of a macroscopic polariza-

tion.14 Recently, the use of THz pulses, exerting a time-dependent torque on molecular dipoles,

has been proposed as a trigger for coherent motion inducing a chemical reaction.15

Time-resolved photoelectron diffraction experiments are becoming possible with the avail-

ability of ultrashort x-ray pulses from an XFEL or from higher harmonics generation using

intense laser pulses. This article presents a simulation of what one can expect from an experi-

ment using x-ray pulses a few tens of femtoseconds long with a photon energy of 1000 eV. The

simple case of a diatomic molecule bonded in an upright orientation at a metal surface will be

represented by the system of CO molecules adsorbed on a Pt(111) surface. The simulated pro-

cess is the near-resonant excitation of a frustrated “wagging”-type translation of the molecule

by a THz pulse (see Fig. 1). The coupling of the molecular motion to the THz field is described

simply by putting point charges on the carbon and oxygen atoms, and no electronic friction is

considered. The resulting dynamics therefore lacks some features, most importantly the damp-

ing of the field-induced wagging motion. Nevertheless, such toy model calculations provide

important insight into what is left in terms of x-ray photoelectron diffraction (XPD) modula-

tions when an ensemble of molecules is coherently excited.

II. THE SYSTEM

Platinum is a well established and efficient catalyst for reactions of carbon monoxide, and

as such has been of great interest to the chemical industries for a long time.16 There have been

FIG. 1. Sketch of the pump-probe experiment to record time-resolved XPD data. The 2 THz pulse (red) acts as pump pulse

and the CO molecule on top of the Pt(111) surface follows the field of the THz radiation (black arrows). With the (blue)

x-ray pulse the molecular orientation is probed by recording an XPD pattern. The unscattered C 1s photoelectron wave is

indicated by solid circles, the wave scattered off the oxygen atom by light grey circles. The solid curve above the surface

illustrates the resulting C 1s intensity distribution. Note: The wavelength of the 2 THz pulse is much larger (k � 150 lm)

than shown here.
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numerous studies examining the system CO on Pt(111) with different experimental meth-

ods.17,18 From LEED and thermal desorption experiments, the CO adsorption behavior is well

known.19–21 For coverages H < 1=6, the molecules adsorb exclusively on energetically favored

atop sites of the platinum surface. For H > 1=6, they adsorb also on the bridge sites, until at

T¼ 300 K the coverage is saturated at H ¼ 0:5, where a c(4� 2) superstructure emerges.22 At

this coverage, 50% of the molecules are adsorbed on the bridge and 50% on the atop site. With

increasing coverage, the work function of the CO/Pt(111) system shows a peculiar behavior:

before the coverage reaches H ¼ 1=6 the work function continuously decreases but rises again

for higher coverages until at H ¼ 0:5 it has nearly the same value as the pristine metal surface.

This behavior could be explained by different local dipole moments of CO at the two different

adsorption sites.19 Later calculations showed that the dipole moment of CO has indeed opposite

sign when adsorbed on the bridge site as compared to the atop site.23 It is known that the small

dipole moment of CO depends on the strength of the bonding to a metal surface,24 and a

change of adsorption site could lead to the observed change of polarity.

The molecules are chemisorbed mainly by hybridization of the molecular 5r-orbital and

the sp-band of the platinum, and back-donation of metallic d-electrons into the 2p� orbitals.25,26

The 5r molecular orbital is located largely on the carbon atom which is close to the surface,

while the oxygen atom points away from the surface,21 forming a linear Pt-CO equilibrium con-

figuration at the atop site, perpendicular to the surface as shown in Fig. 2. The molecules are

thus in an upright position, with wagging-type frustrated translations forming the lowest-energy

nuclear degrees of freedom. This model was corroborated in a XPD study by Wesner et al.27

The intensity of the C 1s core-level is enhanced along the CO bond axis due to strong forward

scattering off the oxygen atom, and the corresponding peak was found to be centered along the

surface normal. The width of this peak was broader than what is expected from single-

scattering cluster calculations (SSC). This was explained with a wagging-type motion of the

CO molecule caused by a frustrated translation. Assuming an isotropic azimuthal distribution of

this wagging motion, a line shape analysis showed that the maximum tilt angle of the molecules

should be less than h ¼ 10� at room temperature.

FIG. 2. Atop bonding configuration of CO on Pt(111): Mulliken charges in atomic unit (e) determined for a singlet (S¼ 0)

Pt7�3 � CO cluster from BMK density functional theory calculations using 6-31G* and LANL2DZ basis sets (see text).

Positions of carbon and oxygen atoms were optimized, while the geometry of Pt atoms was fixed as in bulk metal. The sur-

face of the cluster where the CO binds corresponds to the (111) lattice plane.
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In order to characterize the diffusion, desorption and dissociation characteristics of the mol-

ecules, the system was also examined with vibrational spectroscopy. One of the normal modes

discovered in a helium scattering experiment was attributed to precisely the frustrated transla-

tional mode of the CO on Pt(111) mentioned above. The corresponding vibrational frequency at

a saturated coverage was measured to be � ¼ 1:79 THz,28 without showing any wave vector de-

pendence. This means that the mutual interaction between the adsorbed molecules is weak.

It was recently suggested that the wagging motion of the polar CO molecule could be

enhanced by intense THz laser pulses of resonant frequency so that the molecules tilt down

close enough to the surface to initiate a dissociation reaction.15 Here, we propose and simulate

an experiment in a regime where the THz pulses do not tilt the molecules entirely down to the

surface, but rather lead to a coherent wagging motion of an ensemble of molecules. It is shown

that the molecular motion can then be followed in real time with a time-resolved XPD experi-

ment using a pump-probe setup. In such a measurement, a THz pulse acts as the pump pulse to

excite the frustrated translational mode coherently, while a synchronized pulsed x-ray beam,

e.g., from an XFEL, acts as the probe pulse with a variable delay. Selecting the C 1s core level

as emitter, XPD patterns can be recorded for a sequence of time delays on the femtosecond

scale between the two pulses. In these patterns, the position of the carbon-to-oxygen forward

scattering peak allows to follow the orientation of the molecule on an ultrashort time scale.

From such data, one can thus directly produce a molecular movie.

III. METHODS

A. Atomistic simulations

To simulate this experiment, the motion of a CO molecule on a small atomic slab repre-

senting the Pt(111) surface was calculated before, during, and after the arrival of a THz pulse,

which was represented by a few-cycle periodic perturbation (v.i.). All molecular dynamics

(MD) simulations29,30 were carried out with the CHARMM code.31 The system consisted of

one CO molecule and a 7-layer, 6� 6 Pt(111) surface with 2D-periodic boundary conditions.

The interaction among the atoms and with the external electric field of the exciting THz pulse

was described via a conventional force field parametrization. Different parametrizations for the

non-bonded (electrostatic and van der Waals parameters) CO adsorbate were used. In one of

them, only the electrostatics was retained (see Table I) but there were also simulations with

standard van der Waals parameters.31

The interaction among the Pt atoms in the fcc lattice was described with a 12-6 Lennard-

Jones potential according to Heinz et al.32 with a cutoff of 12 Å. The parametrization reprodu-

ces the experimental density (withþ 0.02% of error), surface tension (�0.2%) as well as

mechanical properties (Young modulus (þ4%), bulk modulus (�17%), shear modulus (þ6%),

and the Poisson ratio (þ7%)) of platinum in quantitative to good qualitative agreement with

TABLE I. Force field parametrization of the system. The electric field of the THz pulse was polarized parallel to the sur-

face, along the x-axis.

Atoms Potential r0; h0 q; �0; kr ; kh

C Electrostatic: �q � ExðtÞ � x — þ0:5e

O Electrostatic: �q � ExðtÞ � x — �0:5e

Pt � � � Pt L-J: �0
r0

r

� �12 � 2 r0

r

� �6
h i

2.845 Å 7:8 kcal
mol

Pt-C Stretch: kr

2
ðr � r0Þ2 1.95 Å 565 kcal

mol Å
2

C-O Stretch: kr

2
ðr � r0Þ2 1.15 Å 2364 kcal

mol Å
2

Pt-C-O Bend: kh
2
ðh� h0Þ2 180� 64:3 kcal

molðdegÞ2

Pt � � � Pt-C Bend: kh
2
ðh� h0Þ2 90� 27:54 kcal

molðdegÞ2
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experiments at ambient conditions. The same parametrization was used for all Pt atoms regard-

less of their distance from the surface or interaction with the CO molecule.

The interactions between the three covalently bonded central atoms (Pt-C-O) were

described by harmonic bond (Pt-C, C-O) and angle (Pt-Pt-C, Pt-C-O) potentials. Equilibrium

bond lengths were taken from the literature, and force constants were tuned such as to match

the experimentally determined frequencies.21 For determining the point charges on the atoms,

density functional theory (DFT) calculations were carried out for a Pt7�3–CO cluster consisting

of 7 Pt atoms in the top layer and 3 Pt atoms in the bottom layer (Fig. 2), using Gaussian09.33

The BMK (Boese-Martin for Kinetics) hyper-GGA functional34 was used, which was proven to

be the most reliable for small Ptx–CO clusters for predicting binding-site preference.35 Basis

sets 6–31G* and LANL2DZ (core potentialþ basis) were used for CO and Pt atoms, respec-

tively. The lowest energy singlet state (S¼ 0), representing the ground state, was investigated

in our calculations.

First, the positions of the carbon and oxygen atoms were optimized while the Pt atoms

were kept fixed at distances corresponding to bulk fcc Pt. The DFT calculation suggests

Mulliken charges36 of þ0:31e and �0:25e for C and O atoms, respectively (see Fig. 2). A mir-

ror dipole of CO can be observed in the Pt7�3 cluster with significant atomic charges. As the

interaction with the external electric field is shielded in the bulk metal, zero charge was

assigned to all Pt atoms in the slab model. Furthermore, as an approximation, atomic point

charges þ0.5 and �0.5 were assigned to the C and O atoms, respectively. Predicting the

dipole moment even for a free CO molecule in vacuum is a challenging problem in quantum

chemistry. The performance of various methods varies considerably with the level and precise

nature of theory and depends sensitively on the basis set.37 The task for accurate calculations

is even more formidable when other atoms, especially transition metal atoms, are bonded to

CO. Depending on the chemical environment, adsorption site, and occupation of neighbouring

adsorption sites, different charge distributions on the CO adsorbate have been found

previously.23

The time evolution of the system was followed from atomistic simulations which were

carried out as follows. First, the system was heated and equilibrated at T¼ 300 K, followed by

an equilibrium (NVT) dynamics at constant volume and temperature. Excitation by the electric

field was mimicked by a cosine pulse of frequency �¼ 2 THz with a pulse duration of 5 ps,

covering 10 optical cycles, with a polarization parallel to the surface (see Fig. 1). The field am-

plitude of 6� 108 V/m induces motion parallel to the surface (hindered translation) by coupling

to the point charges on the polar CO molecule. After the pulse was switched off (5 ps later),

the system was allowed to propagate freely.

B. Simulations of diffraction maps

From the MD calculations performed with the CO molecule sitting on a 7-layer Pt slab, the

coordinates of atoms within a smaller cluster consisting of two layers of Pt atoms and one CO

molecule (see Fig. 1) were extracted every 5 fs. They define a time-resolved trajectory of

molecular motion and served as input coordinate files for SSC calculations to simulate time-

dependent C 1s XPD patterns for excitation with a photon energy of h� ¼ 1000 eV, which

leads to a kinetic energy of the photoelectrons of 710 eV in vacuum. The single-scattering

approximation with spherical wave emission38 used here is sufficiently accurate for the present

case of a single oxygen atom in the forward-scattering geometry.39

Since the spatial resolution of the electron detector is on a macroscopic scale, the photoelec-

tron signal is averaged over large parts of the light spot, i.e., the XPD measurement integrates

over the forward scattering peaks from an ensemble of molecules. To mimic this, an ensemble

averaging over 50 independent simulations was carried out at every time step. Each trajectory

started at a different initial point in phase space, randomly sampled from the thermal motion of

the field-free system. One should notice that a time-resolved XPD experiment will reveal molec-

ular oscillations only if a large number of molecules undergo a coherent motion.
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IV. RESULTS AND DISCUSSION

A. Analysis of a single trajectory

In Fig. 3, the behavior of a single, individual CO molecule bonded at an atop site of a

Pt(111) cluster is illustrated over a time interval that ranges from 2.5 ps before to 20 ps after

excitation with the THz pulse. In (b) and (c), simulated C 1s XPD patterns covering the 2p
solid angle above the surface are shown. In both plots, there is a broad and bright spot associ-

ated with the forward scattering peak along the carbon-oxygen direction. Fringes due to first-

and higher-order interference between electron waves directly emitted towards the detector and

those scattered off the oxygen atom40 are evident in both cases. In fact, they are all concentric

with the peak, but the stereographic projection distorts this relationship while truly mapping

them to circles. The position of the main maximum gives the tilting angle h of the molecule as

well as the azimuthal direction / of the tilt very precisely, as can be confirmed by comparison

with atomic coordinates of the input cluster. It should be noted that at these high kinetic ener-

gies, the backscattering of the photoelectrons off the Pt atoms below the molecule is weak.

Therefore, these XPD maps do not show any hint of the three-fold symmetry of the atop

binding site. For this very reason, the cluster size for the SSC calculations has been limited to

two layers of Pt atoms.

The polar tilt-angle time series of a single molecular trajectory is reported in Fig. 3(a).

These data were taken directly from the atomic coordinates of the MD simulation. Polar angles

associated with azimuthal angles 90� < / < 270� were multiplied by a factor of �1, in order

to visualize the oscillatory behavior of the wagging motion. The figure shows that even before

excitation by the pump pulse (delay t< 0 ps), the molecule has a significant wagging motion.

This is due to thermal activation of the frustrated translational mode, which is excited with �n
quanta at room temperature,41,42 where �n � kBT=�hx � 3:5. Although the mean tilting angle

should be up to h ¼ 10�, a single molecule can have larger amplitudes due to statistical fluctua-

tions. When excited by the pump pulse, more energy is transferred into the frustrated

FIG. 3. (a) Time evolution of the wagging motion of a CO molecule on a Pt(111) surface for a single molecule before, dur-

ing and after excitation with a 2 THz radiation pump pulse. Polar angles of the carbon-to-oxygen direction are plotted, irre-

spective of the azimuthal direction. For delays between the dashed vertical lines the pump pulse is present. Full XPD maps

are displayed in (b) and (c), corresponding to times as marked in (a). The specific delays are chosen to show the near maxi-

mum excursions of the polar angle. The two maps are plotted in stereographic projection in a linear grey scale with maxi-

mum intensity in white. The red dot indicates emission normal to the surface.
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translational mode due to direct coupling to the field and energy transfer from other modes, and

the angular amplitude of the wagging motion increases.

After the pump pulse is turned off (t> 5 ps), the amplitude does not relax back to its char-

acteristic thermal values within 20 ps even though the slab could serve as a heat reservoir with

sufficiently large heat capacity. This is due to the absence in the present model of dissipation

via electronic friction induced by the interaction between the vibrating CO-dipole and the elec-

trons of the metal.43 In the method used here, the only way to dissipate energy into the Pt(111)

cluster is by coupling to the lattice vibrations which is very inefficient. Earlier quantum chemi-

cal calculations of the lifetime of the wagging mode excited with one quantum (n¼ 1) via only

electronic relaxation yielded a value s ¼ 29:4 ps.43 In the present work, very high vibrational

states are excited by the THz pump pulse (n> 10), making a comparison of lifetimes more dif-

ficult, but the lifetime of the frustrated translational excitations is clearly overestimated.

Nevertheless, the �30 ps lifetime found in previous calculations suggests that after excitation

the hindered translation remains activated for many vibrational periods which should be suffi-

cient for detection in a real experiment.

In fact, the wagging amplitude shown in Fig. 3(a) increases even further after the THz

pulse is gone, and it shows some hints of a beating. Being aware of the absence of electronic

friction damping in these calculations, this nevertheless suggests that energy transfer via vibra-

tional coupling between different modes of molecular motion might be observable in such data.

Such mode coupling can also be detected in the power spectra of the Pt-C, C-O, and Pt-C-O

coordinates and the motion characterizing the frustrated translation. However, such considera-

tions are unable to quantify the coupling strength between the modes. We note in passing that

the coupling of the frustrated translation (which is not described by a separate term in the force

field) to other degrees of freedom is probably very small as judged from the absence of any

relaxation after switching off the external perturbation. This is corroborated further by the

observation that the frequency of the frustrated translation before and after excitation is

1.79 THz and 2.08 THz, respectively. In other words, after the perturbation is switched off, the

frequency of the frustrated translation does not return to its equilibrium value.

B. Analysis of an ensemble of trajectories

In a real experiment, XPD intensity modulations are averaged over an ensemble of mole-

cules. To mimic this, the 50 diffraction patterns obtained from 50 independent trajectories were

averaged at each time step and a molecular movie was created that shows the averaged time-

evolution of the full ensemble. In Fig. 4, parts of the movie are presented. It shows the same

delay scan covering 27.5 ps as in Fig. 3, where the 5 ps long pump pulse is present from 0 to 5

ps. Before and after this excitation period, the system is unperturbed.

In Fig. 4(a), the time series of average polar tilt angles of the CO molecules is shown. It

was determined by extracting the emission maximum of the averaged diffraction maps obtained

from the SSC calculations. Before the arrival of the THz pulse, the polar angle is centered

around 0�, with much lower fluctuations than in the single trajectory of Fig. 3(a). Although

individual molecules show an activated frustrated translational mode, the isotropic distribution

of the azimuthal plane of oscillation as well as their incoherent phases leads to an averaging

out of the polar tilt angle that is extracted from the averaged XPD maps.

When the linearly polarized pump pulse starts driving the molecular motion, they start to

align their azimuthal directions along the light polarization (/ ¼ 0�=180�) and a coherent wag-

ging oscillation begins. This can be understood by the picture of a dipole in an electrical

field transversal to the dipole moment: the frustrated rotational frequency of CO on Pt(111) is

� ¼ 12:33 THz.21 Hence, the rotational movement of a CO molecule is almost one order of

magnitude faster than its frustrated translational wagging motion. As a consequence, within a

half cycle of the 2 THz pulse during which the electrical field has a constant sign, the mole-

cules have enough time to align their tilting motion parallel to the laser field. Therefore, a

coherent oscillation with �¼ 2 THz starts for delays Dt > 0 fs. While the pump pulse is
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present, the amplitude of the oscillation increases steadily to approximately h ¼ 20� as more

and more energy is deposited in the tilting modes of the molecules.

In our model, the absolute magnitudes of the charges on C and O atoms are equal, thus,

while the THz field will exert a significant torque on CO, its net force will be zero. Normal

mode analysis on the Pt7�3-CO cluster has shown that the frustrated translational and frustrated

rotational normal modes can be decomposed into a mixture of translation and rotation of CO in

ratios of 90% : 10% and 7% : 93%, respectively. Thus, both modes involve tilting motion of

the molecules which is directly recorded in the XPD data. Furthermore, classically the THz

field couples primarily to the higher-frequency frustrated rotations; however, being off-resonant

with it will not excite it very effectively. As the frustrated translational mode has also some

rotational character, it can be excited by a near-resonant oscillating torque exerted by the THz

field. In the ensemble averaged evolution of the polar angle (see Fig. 4), it is observed that after

switching off the THz field, the amplitude of the oscillations in the polar angle keeps increasing

for a while. This can be explained by considering an energy flow from the highly excited frus-

trated translational mode to the less excited frustrated rotational mode. The amplitude reaches a

maximum about 10 ps after the THz pulse has gone, which suggests that the two modes equili-

brate. In a real experiment, the observed increase would be counteracted by a relaxation due to

electronic excitations within the metal surface. Nevertheless, these data suggest that one should

be able to extract information about the temporal evolution of the energy transfer between

different modes from such experiments.

Figures 4(b)–4(d) show individual frames from the molecular movie created from the

averaged diffraction maps. Due to the coherent molecular motion, distinct forward scattering

maxima are visible for each case, also at times of maximum negative (b) and positive (c) excur-

sion within the wagging mode. On the other hand, the interference fringes that are visible in

the frames from the single trajectory (Figs. 3(b) and 3(c)) are here completely smeared out due

to the averaging. As shown in Fig. 4(d), the forward scattering peak is broadened at a later

time, 20 ps after the THz pulse, because the azimuthal alignment of the molecules in the THz

field has relaxed and the wagging motion becomes more isotropic.

FIG. 4. Simulation of a THz pump-XPD probe measurement. In (a), the time-dependent polar angle of maximum emission

from the averaged diffraction maps is plotted. It represents the ensemble-averaged orientation of the CO molecules on

Pt(111). For positive delays, an oscillation with � ¼ 2:0 THz is visible. At delays between the dashed lines the pump pulse

is present. (b)–(d) The averaged diffraction maps that were calculated with SSC simulations. No normalization was applied.

The delay times of all three patterns are marked in (a) with black circles. Each diffraction map is ensemble averaged over

calculations from 50 different cluster files. The red dots in the center of the maps show the normal emission direction.
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Fig. 5 illustrates this broadening more clearly, along with the disappearance of the interfer-

ence fringes, by displaying polar sections along the x direction through the simulated diffraction

maps. More importantly, the curves demonstrate that the diffraction contrast remains quite pro-

nounced even after the ensemble averaging. The contrast can be quantified by the anisotropy of

the forward scattering peak, defined as A ¼ ðImax � IpedÞ=Imax, where Imax is the maximum in-

tensity of the peak and Iped is a mean value of the pedestal intensity to the left and right of the

peak. While single trajectories (Fig. 5(a)) show values of typically about A¼ 0.7, ensemble

averaging (Fig. 5(b)) reduces these values to about 0.63 near the end of the THz pulse, and

finally to about 0.5 after the relaxation of the azimuthal alignment of the molecules.

The temporal evolution of the azimuthal alignment is illustrated in Fig. 6, in which the po-

lar and azimuthal positions of the oxygen atoms with respect to the carbon emitters are plotted

for three different times before, during, and after the THz pulse. While the distribution of the

50 different molecular trajectories at delay Dt ¼ �1125 fs shows no preferred azimuthal align-

ment, the molecules have the highest azimuthal order at the end of the pump period, to which

Dt ¼ 4150 fs is close. At times long after the pump pulse, like at Dt ¼ 24960 fs, the molecule

orientations spread over a larger azimuthal range, which is also seen in the longer delay data of

Fig. 4(d). The two delays, Dt ¼ 4150 and Dt ¼ 24960 fs, were selected such that the coherent

wagging oscillation is at maximum amplitude.

V. CONCLUSIONS AND OUTLOOK

The present simulations show how time-resolved XPD can visualize structural dynamics,

taking advantage of coherent motion in an ensemble of adsorbed molecules. An example of a

molecular movie is presented in which molecular motion can be followed in real time and with

atomic resolution. In a realistic experiment, e.g., at an XFEL, the x-ray pulses should have a

temporal width of the order of a few tens of femtoseconds in order to achieve a reasonable

sampling of the 1.79 THz oscillation. A coverage of H ¼ 1=6 should not be exceeded because

of the different adsorption regimes and accordingly opposite dipole orientations of the mole-

cules. Antiphase oscillations at atop and bridge adsorption sites would lead to a blurring of the

resulting time-dependent XPD patterns.

FIG. 5. Polar intensity scans for quantifying the angular contrast. (a) and (b) Sections along the x direction through the

simulated photoelectron diffraction maps displayed in Figs. 3 and 4, respectively. All curves have been normalized so that

maximum intensity equals unity.
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While THz pulses with a shape as used in these toy-model simulations can be synthesized,

in principle, the currently most common half-cycle THz pulses should also be able to coher-

ently excite the wagging mode discussed here. Interaction of the THz field with the underlying

metal surface is an issue. The polarization parallel to the surface required for this experiment

will be very effectively screened, leading to a node exactly where the high field strength is

needed. In order to overcome this problem, one will have to fabricate surfaces with small, crys-

tallographically aligned Pt(111) islands on a dielectric substrate that could lead to THz field

enhancement at the metallic surfaces via plasmonic effects.44

The THz fluence will have to be carefully adjusted for maximum excitation of wagging

motion without excessive desorption of CO molecules. For excitation with IR photons, the CO

desorption rate depends on both, the pulse duration and fluence. It was shown that desorption is

negligible for pulse durations longer than 500 fs,45 but only up to a fluence of F¼ 5 mJ/cm2. In

the MD simulations, a field amplitude of E ¼ 6� 108 V/m was used in order to obtain these

strong coherent wagging motions. With a pulse duration of t¼ 5 ps, a comparably large fluence

of F¼ 239 mJ/cm2 results. Since the metal-adsorbate stretch modes are much faster than the

THz oscillations,21 coupling to these modes, which are the main responsible vibrational modes

for desorption, will be weak, in particular, for the chosen polarization of the THz pulse.

Moreover, the results of our work suggest that the oscillatory signal in the XPD data could still

be picked up with THz fields reduced by an order of magnitude. And in any case the THz and

x-ray beams will be scanned across the surface as is usual for XFEL experiments on solid

samples.

A further discussion of desorption mechanisms and the limits of field strength is beyond

the scope of this work. The same applies to the ability of the substrate to screen the electric

field and thus to influence the coupling of the THz radiation to the wagging motion of CO.

Moreover, electronic relaxation processes leading to the faster attenuation of the coherent

motion have not been included in this work. Introducing electronic friction46 in the MD simula-

tions would make the computational model more realistic. Finally, the photoelectrons will be

subject to strong streaking by the THz field while it is present,47 but the structural dynamics

after the excitation should be free from measurement artifacts.

In summary, this study demonstrates that time-resolved XPD is a promising technique for

following the structural dynamics of small molecules adsorbed on a surface with femtosecond

FIG. 6. Angular order of the CO molecules. At three different times, the angular position ðh;/Þ of the oxygen atom with

respect to the carbon emitter is plotted for each of the 50 trajectories: before the THz pulse (black), near the end of the pulse

(red) and 20 ps after the pulse (green).
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resolution. Importantly, the ensemble averaging, which is inherent in this technique, does not

smear out the structural information as long as vibrational modes are excited coherently. THz

radiation is well suited for this purpose. The amount of structural detail in ensemble averaged

data is high enough that energy transfer between different modes might potentially be observed.

A full digital version of the two molecular movies, i.e., single trajectory (Fig. 3) and en-

semble averaged data (Fig. 4), can be downloaded in the supplementary material.48
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