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I. SUMMARY 

 

Activity-dependent plasticity in neurons involves changes in synaptic 

transmission and connectivity. These changes lead to altered neuronal circuit 

properties and are thought to underlie learning and memory. Transcription and 

protein synthesis are indispensable in order to maintain changes in neural 

circuitry over periods of several hours or longer. Therefore signaling from the 

synapse to the nucleus is required to control activity-dependent expression of 

RNA and proteins which have to be transported back to the activated synaptic 

sites. 

The small actin-binding protein profilin has been shown to accumulate in 

postsynaptic dendritic spines of pyramidal neurons as a necessary element in 

activity-dependent stabilization of synaptic morphology, a putative anatomical 

correlate of changes in transmission strength. In this work I show that profilin also 

enters the nucleus in an NMDA receptor and Ca2+ dependent manner. However, 

in contrast to spine targeting, nuclear enrichment is reversible within minutes 

after removal of the stimulus. Nuclear accumulation of profilin is likely coupled to 

activity-dependent actin polymerization at the cell cortex which also takes place 

in response to NMDA receptor stimulation.  

Nuclear profilin has been implicated in different steps of gene expression 

including transcription and pre-mRNA splicing. Activity-dependent nuclear and 

synaptic accumulation suggests profilin to be involved in different aspects of 

neuronal plasticity. To this end, I introduce approaches to elucidate profilin 

function in experience-dependent plasticity and gene expression.
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II. INTRODUCTION 

 

II.1. Neuronal plasticity and memory 

 

Neurons convey information by transmitting electrical signals. Any information 

reaching our nervous system via sensory organs and needed to be processed 

will therefore be translated into electrical signals. Processing of information, be it 

selecting necessary from unnecessary information, storage, or retrieval, requires 

changes in electrical circuits. Neurons as cells of our bodies contain all the 

necessary elements to mediate changes in neuronal circuitry: They can modify or 

replace transmitter molecules at cell-cell junctions or channel molecules 

necessary for transmission along the cell, or can even grow new connections or 

retract old ones. These diverse properties of its constituents provide the nervous 

system with the ability to modulate electrical circuitry and ultimately to adapt to 

input changes, a property referred to as plasticity. Cellular and molecular 

adaptive changes, i.e. plasticity at a cellular and molecular level, should therefore 

lead to changes in electrical circuitry and ultimately to behavioral plasticity. This 

is tested in contemporary neuroscience research on various models of learning 

and memory, partly because learning of a new task is a behavioral output which 

can be tested according to defined criteria in genetic model organisms. 

Importantly, this allows neuroscientists to relate higher cognitive functions to 

changes in electrical circuits and eventually to molecular properties of a cell. 

 

II.1.1. Synaptic plasticity 

 

Connection points between neurons, synapses, are likely candidates for 

modulating neuronal circuitry. One famous model put forward by Donald Hebb 

(Hebb, 1949) suggests that learning occurs when synaptic connections become 

more effective. In particular, Hebb postulated that synaptic connections become 

stronger when pre- and postsynaptic elements were stimulated simultaneously. 
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Almost 25 years after Hebb’s hypothesis, neuroscientists came up with a 

physiological observation describing a phenomenon which shared many 

properties with Hebb’s postulated mechanism for a learning-related synaptic 

change (Bliss and Lomo, 1973): Long-term potentiation (LTP) of synapses, which 

describes a long-lasting change in synaptic efficacy following strong stimulation 

patterns, and has initially been discovered in the hippocampal formation of the 

forebrain. “LTP” as referred to in the literature is sometimes used synonymously 

with hippocampal LTP and I shall focus on the hippocampus as the main model 

system in the following description, although basic properties may be similar in 

other brain regions, e.g. the neocortex. In fact, hippocampal LTP comprises three 

basic properties: Cooperativity, i.e. the need for strong stimulation to overcome a 

threshold for induction; associativity, meaning that even a weak input can be 

potentiated if it is active at the same time as a strong stimulus to a separate but 

convergent input; input-specificity, meaning that inputs which are not active at the 

time of the strong stimulus do not show potentiation (reviewed in Bliss and 

Collingridge, 1993).  These properties, and associativity in particular,  are present 

in Hebb’s model of  changes in neuronal circuitry : “The  general idea is an old 

one, that any two cells or systems of cells that are repeatedly active at the same 

time will tend to become associated, so that activity in one facilitates activity in 

the other” (Hebb, 1949). LTP and its brother, long term depression (LTD) (Lynch 

et al., 1977), which describes a long-lasting decrease in synaptic efficiency 

following other stimuli, have therefore - due to common principles with postulates 

for synaptic plasticity - been proposed to form a neural basis for learning and 

memory (Braunewell and Manahan-Vaughan, 2001; Maren and Baudry, 1995).  

The molecular basis for LTP and LTD has been under investigation by molecular 

neurobiologists and a picture has emerged that glutamate receptors play a major 

role in establishing principles of cellular plasticity. LTP (and LTD) induction 

depends on activation of the NMDA type of glutamate receptors, which in its 

mode of activation bears some properties of LTP: Under resting membrane 

conditions, the NMDA receptor is blocked by magnesium ions (Mg2+), which are 

released upon strong depolarization of the postsynaptic cell. Thereby only strong, 
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cooperatively acting stimuli lead to activation of NMDA receptors. Depolarization 

of the postsynaptic neuron is initiated by activation of AMPA type of glutamate 

receptors and subsequent influx of sodium ions (Na+). This type of receptor has 

been implicated to play a role in LTP/LTD via its surface expression: If a synapse 

were only to express NMDA but no AMPA receptors the lack of depolarization 

would mean the failure of any postsynaptic response (silent synapse). However, 

these synapses increase the number of postsynaptic AMPA receptors in 

response to LTP stimuli, providing a simple model for the expression of LTP 

(Malinow and Malenka, 2002). LTD, on the other hand, can then be explained by 

removal of AMPA receptors from the synapse in response to LTD stimuli (Beattie 

et al., 2000; Luscher et al., 1999). Together these data implicate glutamate 

receptors as major factors underlying hippocampal LTP and LTD. 

 

Are changes in receptor expression or properties the only synaptic events 

responsible for plasticity at the synapse? Synaptic growth is one mechanism 

implicated in experience-dependent plasticity, both as changes in synaptic 

morphology and changes in synapse numbers. However, synaptic morphology 

and receptor expression are no alternative concepts of plasticity, but are linked: 

Synapse size is one determinant of the number of synaptic glutamate receptors 

in the hippocampus (Matsuzaki et al., 2001; Nusser et al., 1998), and theoretical 

models of synaptic transmission identify the size of the synaptic zone itself as an 

important parameter of synaptic strength (Kruk et al., 1997).  Growth of new 

connections has been observed in experience-dependent plasticity in the rat 

barrel cortex for inhibitory synapses (Knott et al., 2002). Moreover, a fraction of 

spine synapses on pyramidal neurons in the mouse barrel cortex and visual 

cortex was shown to undergo turnover in long-term in vivo imaging experiments 

(Grutzendler et al., 2002; Trachtenberg et al., 2002). Thus a change in wiring at 

the synaptic level emerges as a concept of experience-dependent plasticity, in 

addition to changes in synaptic “weight” as expressed by the phenomena of LTP 

and LTD.  
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How are changes in wiring patterns and synaptic transmission efficiency linked or 

do they describe alternative concepts of synaptic plasticity? This question 

remains unanswered, although it was shown that LTP stimuli can induce growth 

of new dendritic protrusions in a slice culture system (Engert and Bonhoeffer, 

1999). 

 

Morphological plasticity in postsynaptic dendritic spines is mediated by the actin 

cytoskeleton, which possesses the dynamic properties necessary to confer 

subsecond shape changes as well as growth and retraction during development 

(Fischer et al., 1998; Maletic-Savatic et al., 1999). Strikingly, drugs preventing 

proper actin assembly also interfere with formation of LTP (Kim and Lisman, 

1999; Krucker et al., 2000). This together with data showing the actin 

cytoskeleton implicated in arrangement of synaptic signaling molecules including 

neurotransmitter receptors (Allison et al., 1998; Shen et al., 2000) implies actin 

as a mediator of synaptic plasticity and suggest it to be a necessary element in 

linking synaptic wiring and transmission strength. Given the importance of the 

actin cytoskeleton in synaptic plasticity and its central role of the work described 

in this thesis, I shall discuss it in more detail in a following chapter. 

 

II.1.2. Neuronal plasticity: Pathways emerging from the synapse 

 

Synaptic plasticity, as discussed in the previous chapter, involves molecular 

changes at the synapse, either by insertion or removal of proteins or by 

posttranslational modifications. In this regard, different molecular pathways may 

underlie short-term and long-term synaptic changes (McGaugh, 2000). In the 

long term, newly synthesized proteins may be needed to replenish stores of 

proteins which have been recruited to the synapse or also simply to make up for 

turnover of synaptically localized proteins. This is in line with observations that 

protein synthesis is essential for both the late phase of long-term changes in 

synaptic transmission and for long-term memory (Kelleher et al., 2004; 

McGaugh, 2000).  
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Proteins being used at the synapse could both be synthesized locally or in the 

soma and be targeted to synapses. There is evidence for both scenarios, as 

protein synthesis has been shown to occur in isolated dendrites and somatically 

synthesized proteins have been shown to localize to synaptic sites (Bresler et al., 

2004; Kang and Schuman, 1996). In any case, novel protein synthesis depends 

on mRNA, implicating nuclear events like transcription and RNA processing in 

neuronal plasticity, which is in line with published data (Frey et al., 1996; Nguyen 

et al., 1994). Mature mRNA provides the template for somatic protein synthesis, 

but some mRNAs have also been shown to be transported to dendrites or even 

to synapses (Steward and Worley, 2001; Wang and Tiedge, 2004).  

 

The dependence of long-term changes in synaptic strength on protein synthesis 

and transcription could either reflect the synthesis of specific proteins or RNAs 

necessary for modifying activated synapses in a way to establish them as 

potentiated or depressed units over a long timescale (several hours to days, 

weeks, or sometimes “forever”) or simply the need for exchange of these 

macromolecules which have a limited lifespan. Several lines of evidence argue 

for the former and against the latter possibility: 

- Stimuli evoking long-term changes in synaptic transmission activate 

specific signaling pathways rather than enhancing neuronal transcription 

or translation globally (see below). Likewise, interference with specific 

pathways can block synaptic and behavioral plasticity. 

- Activity-dependent gene expression comprises genes expressed at 

comparatively low levels in unstimulated neurons (Fagni et al., 2002). 

- Genetic deletion of specific transcription factors influencing activity-

dependent transcription has an impact on LTP, but not on neuronal 

development or basic synaptic transmission (Ramanan et al., 2005). 

 

Different pathways have been implicated in activity dependent gene expression 

and long-term plasticity: (1) Ca2+/calmodulin-dependent kinase pathways: Upon 

synaptic activity and postsynaptic influx of calcium either through NMDA or 
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voltage-gated calcium channels, members of the Ca2+/calmodulin dependent 

protein kinase (CaMK) family are activated. The large holoenzyme CaMKII is 

recruited to synapses in an activity-dependent manner and this redistribution 

activates the kinase function. In its activated form, CaMKII is necessary and 

sufficient for the induction of LTP (Lledo et al., 1995; Otmakhov et al., 1997; 

Shen and Meyer, 1999). Mice with a genetic mutation in the CaMKII 

autophosphorylation loop, effectively inhibiting kinase activation, lack 

hippocampal LTP and fail to learn a spatial learning task (Giese et al., 1998). 

CamK IV, on the other hand, is involved in signal transduction of nuclear calcium 

waves and activation of transcription factors such as CREB (Hardingham et al., 

2001).  

(2) Ras/MAP kinase pathway: NMDA receptor-dependent Ca2+ influx activates 

the MAP kinase pathway, which is necessary for the late phase of LTP, 

expression of some immediate early genes and memory consolidation (Bozon et 

al., 2003). 

(3) Protein kinase C (PKC): PKC isoforms are elevated in the hippocampus 

following induction of LTP, and inhibitors of this group of kinases specifically 

block persistence of LTP while leaving initial potentiation intact (Colley et al., 

1990). Consistent with the effect on synaptic plasticity, infusion of PKC inhibitors 

into the hippocampus of rats after training induces retrograde amnesia 

(Jerusalinsky et al., 1994). 

(4) Protein kinase A (PKA) pathway: Inhibitors of protein kinase A have been 

shown to disrupt the late, protein-synthesis dependent phase of LTP and impair 

memory when infused into the hippocampus several hours after training. PKA 

activity has been linked to phosphorylation of the transcription factor CREB, 

which likewise increases in the hippocampus after training and is implicated in 

memory consolidation (Bernabeu et al., 1997; Schafe et al., 1999). 

 

Using the pathways described above, activation of postsynaptic sites leads to 

signaling to the nucleus, impacting upon transcription factors and activating gene 

expression. Some of these target genes are discussed in chapter III.2.3. 
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According to a hypothesis put forward by Frey and Morris, strong synaptic 

activation might set a molecular “tag” at the synapse. This tag would recruit 

target molecules which had been expressed in an activity-dependent manner, 

leading to a modification of the protein content of the synapse and long-term 

stabilization of a change in synaptic efficacy (Frey and Morris, 1998a). The model 

is explained in Fig. I1: 

 

Fig. I1.: Synaptic tagging as a model for synapse-specific long-term plasticity. 

Left, a strongly activated synapse (lightning bolt) becomes rapidly enriched in a 

molecule (small filled symbol) present in the dendrite. Middle, Strong activation of 

the cell also leads to synthesis of RNA and proteins (empty ellipse) in the 

nucleus, soma or possibly dendrites. The molecule present as a molecular tag at 

the activated synapse then serves to recruit macromolecules expressed in an 

activity-dependent manner (right). Adapted from Frey and Morris, 1998. 
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II.2. The actin cytoskeleton 

 

II.2.1. General properties 

 

The actin cytoskeleton, equivalent to the microfilament system in mammalian 

cells, is one of three cytoskeletal elements, next to the microtubules and the 

intermediate filaments. A defining property of microfilaments, in addition to their 

small diameter, is their ability to change their arrangement rapidly, often within 

fractions of seconds (Pollard and Borisy, 2003). Electron microscopy of actin 

filaments in cells, pioneered by Svitkina and Borisy, shows a variety of 

microfilament structures ranging from finely woven meshes in lamellipodia to 

densely packed bundles in filopodia (Svitkina et al., 1995). These seemingly 

unrelated structures can be converted into one another by expression or 

downregulation of different kinds of actin-binding proteins, highlighting the central 

importance of these modulators of actin filament assembly (Mejillano et al., 2004; 

Svitkina et al., 2003; Vignjevic et al., 2003). Actin-binding proteins influence 

filament organization not by rebuilding a stiff framework, but by modulating the 

actin polymer assembly which is under constant renewal by exchange of 

subunits, a process called treadmilling.  

 

The high degree of plasticity in actin filament assembly not only accounts for 

different shapes of cellular subdomains as mentioned above, but is also the 

reason for the variety of functions in which actin filaments are involved, including 

cell division, cell migration, endocytosis and muscle contraction. Moreover, 

globular actin does not only serve as a building block for filaments, but also has 

proposed nuclear functions as a monomer or in structures currently unknown 

(Pederson and Aebi, 2005). 
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II.2.2. Actin binding proteins 

 

As mentioned above, actin filaments are under continuous turnover of their 

subunits even when they don’t seem to grow, a process known as treadmilling. 

Thus one end of a particular filament shows a net loss of subunits and is 

therefore called the minus or shrinking end, whereas the other end shows a net 

gain of actin subunits and is referred to as the plus or growing end. Actin 

filaments can be decorated with myosin heads as a special preparation for 

electron microscopy, defining the plus and minus ends as barbed and pointed 

ends, respectively, with respect to their appearance on electron micrographs 

(Svitkina et al., 1995). Treadmilling is influenced by a number of actin binding 

proteins, leading to an enhanced treadmilling rate, which in vivo can be two 

orders of magnitude faster than for actin alone in vitro (Pollard and Borisy, 2003). 

Not surprising, whole sets of actin binding proteins are dedicated not only to 

treadmilling, but also to dendritic nucleation, bundling, crosslinking, capping or 

severing of actin filaments, and contribute to actin dynamics, as illustrated in a 

still simplified model for leading edge protrusion in Fig. I2. 
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Fig. I2:  A model for nucleation/array treadmilling for protrusion of the leading 

edge. 

Growing filaments at the membrane are responsible for pushing the leading edge 

forward, and depolymerization at the shrinking edge of the actin cortex provides 

monomers for further growth. Regulatory steps are explained in the figure. From 

Pollard and Borisy, 2003. 

 

Actin rearrangements at the cell cortex is performed with the cytoplasmic actin 

isoforms β and γ, which are expressed in all non-muscle cells, while skeletal, 

cardiac and smooth muscle cells use their respective α-actin isoforms 

(Rubenstein, 1990). 

As outlined in Fig. I2, actin treadmilling is modulated by a number of actin 

monomer binding proteins which lead to local increase in polymerization- 

competent actin subunits, as the rate of actin filament elongation is proportional 

to the concentration of subunits (Pollard, 1986).  

One factor in accelerating treadmilling is profilin, which binds actin monomers at 

the barbed end, catalyzes exchange of ADP in actin to ATP (Mockrin and Korn, 

1980) and allows elongation of the barbed end of the filament. Profilin is 

regulated by a number of cellular factors via its poly-L-proline and 

phosphatidylinositol binding domains, as discussed in more detail in a separate 

chapter on profilin (II.2.5). Profilin competes for actin monomer binding with the 

actin-sequestering protein thymosin β4, but profilin’s binding is tighter (Pantaloni 

and Carlier, 1993). 

In the actin filament, ATP-bound actin hydrolyzes in an irreversible process to 

ADP-actin, marking the age of a subunit within the filament (Carlier and 

Pantaloni, 1986).  At the pointed end, proteins of the ADF/cofilin family 

accelerate actin depolymerization and thus replenish the monomer pool. The 

concerted action of profilin, thymosin β4 and cofilin maintains a concentration of 

unpolymerized actin far from equilibrium, providing the cell with a monomer pool 

to sustain fast protrusion (cf. Fig.I2) (Pollard and Borisy, 2003).  

 



Introduction 12

New barbed ends for the formation of filament branches (or entirely new 

filaments) can be produced by three mechanisms: severing of existing filaments, 

uncapping of existing filaments, or de novo nucleation (i.e. the formation of a new 

filament from a nucleus of subunits) (Condeelis, 1993). For leading edge 

protrusion as depicted in Fig. I2, de novo nucleation seems to be the dominant 

process for which a complex of seven proteins termed Arp 2/3 complex is a 

central player, capping the pointed end and initiating new growth at a 70° angle 

(Mullins et al., 1998). As for other proteins modulating actin assembly, the 

importance of the Arp2/3 complex was established in Listeria motility assays 

which make use of the fact that certain bacteria exploit the cellular actin 

machinery for their intracellular movement (Welch et al., 1998). However, 

experiments in intact cells showed that Arp2/3 is not essential for leading edge 

motility, demonstrating that simplified models may not be accurate to display 

possibly redundant functions of a large number of actin binding molecules in a 

cell (Di Nardo et al., 2005). 

As to severing functions, they are mainly exhibited by ADF/cofilin and by gelsolin, 

both of which have been shown to contribute to actin polymerization in vertebrate 

cells (Falet et al., 2002; Zebda et al., 2000).   

 

Filaments grow until they are capped, hence capping limits the number of 

growing microfilaments and thereby funnels protrusive activity within a 

microdomain (Carlier and Pantaloni, 1997; Cooper and Schafer, 2000). Important 

molecules in this regard are capping protein/CapZ and gelsolin, which through its 

modular structure influences actin assembly in more than one way (Carlier and 

Pantaloni, 1994). 

 

Further important functions for actin binding proteins are bundling and 

crosslinking, responsible for organization of individual filaments into higher order 

structures. Proteins falling into this category use their multiple (at least two) actin 

binding sites to direct the formation of either tight bundles (bundling proteins, 
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actin binding sites in close proximity) or loose assemblies (loose bundling, 

crosslinking proteins, actin binding sites further apart) (Puius et al., 1998). 

 

II.2.3. The actin cytoskeleton in pyramidal neurons 

 

Actin plays a major role in neuronal development regulating neurite formation 

and growth cone guidance (Dehmelt and Halpain, 2004; Dent and Gertler, 2003). 

Here I concentrate on the role of the actin cytoskeleton in mature pyramidal 

neurons as being relevant to the following experimental work. 

Electron microscopy studies showed that actin in pyramidal neurons of the rat 

forebrain is mainly concentrated in postsynaptic dendritic spines, particularly at 

the postsynaptic density (PSD), but also in subsynaptic regions and the spine 

apparatus (Cohen et al., 1985; Matus et al., 1982). One study reported lower 

actin levels in axonal presynaptic sites associated with synaptic vesicles (Cohen 

et al., 1985). EM data did not report significant actin levels in the soma; however, 

light microscopy suggests that monomeric G-actin within the large volume of the 

cell body adds up detectable amounts (Friedman et al., 1998; Micheva et al., 

1998), and filamentous (F-)actin accumulates in the soma upon calcium influx 

through synaptic receptors or upon anoxia (Friedman et al., 1998; Furuyashiki et 

al., 2002).   

In dendritic spines, the actin filaments mediate seemingly contradictory functions: 

On the one hand, they exhibit resistance towards actin-depolymerizing drugs 

such as cytochalasins and latrunculins and stability over many hours (Allison et 

al., 1998), on the other hand subsecond changes in motility are also mediated by 

actin (Fischer et al., 1998). This has led to a model in which two types of actin 

filaments are present in spines: One stable pool of core actin filaments 

surrounded by a dynamic actin pool at the tip and cortex of the spine (Halpain, 

2000).  

 

Synaptic activity impacts upon the dynamic actin pool, stopping spine motility and 

imposing a round and morphologically stable spine structure (Fischer et al., 
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2000).  Actin-based motility is inversely correlated to mobility within the spine 

membrane, identifying one function of the spine microfilaments as regulating 

surface protein mobility (Richards et al., 2004). In line with these observations, 

the actin cytoskeleton has been shown to be a mediator of removal of AMPA 

receptors from the synapse in response to LTD stimuli (Allison et al., 1998; Shen 

et al., 2000).  

LTP stimuli induce a volume increase of single postsynaptic spines mediated by 

the actin cytoskeleton (Matsuzaki et al., 2004). Moreover, hippocampal LTP 

depends on functional postsynaptic actin filaments as demonstrated by 

experiments involving blockers of filament assembly (Kim and Lisman, 1999; 

Krucker et al., 2000). However, it is not clear which function of the actin 

cytoskeleton is involved in induction of LTP. Morphological plasticity suggests an 

involvement of connective changes, but roles in synaptic signaling scaffolds as 

well as influences of receptor expression via endocytosis or exocytosis are 

equally possible (Lledo et al., 1998; Shirao and Sekino, 2001).  

Activation of the NMDA receptor leads to long-term stability of the spine structure 

for at least several hours (Ackermann and Matus, 2003). This suggests that 

mechanisms mediating long-term stability of the actin cytoskeleton have to come 

into effect. Consistent with this, LTP in the perforant path (the connection 

between entorhinal cortex and dentate gyrus) induces F-actin accumulation in 

the dendritic layer of dentate gyrus neurons which lasts for weeks (Fukazawa et 

al., 2003). 

 

II.2.4. Nuclear actin 

 

Actin was reported to be present in nuclei as early as the 1970s, when Clark and 

Merriam discovered actin to dynamically distribute between the cytoplasm and 

the nucleus of Xenopus oocytes (Clark and Merriam, 1977). However, functions 

have only been ascribed to nuclear actin during the last few years, possibly 

owing to lack of recognition of nuclear actin in mammalian cells. Nuclear actin 

apparently takes on previously unknown structures that are not stained by 
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standard laboratory techniques such as dye-coupled phalloidin (Pederson and 

Aebi, 2002).  

 

Actin in the nucleus has been linked to the following functions: 

 

(1) RNA transcription: RNA is transcribed in the nucleus of eukaryotic cells by 

three polymerases (RNA polymerase I, II and III) synthesizing different RNAs. 

For messenger RNA transcription mediated by RNA polymerase II, actin was 

found to be associated with pre-mRNA binding proteins and stimulate 

transcription in insect cells (Percipalle et al., 2003; Percipalle et al., 2002; 

Percipalle et al., 2001). Soon thereafter, actin was identified to be a necessary 

cofactor for mRNA transcription in cultured mammalian cells (Hofmann et al., 

2004). Actin and myosin I were identified to be involved in transcription by RNA 

polymerase I, which synthesizes ribosomal RNA in nucleoli (Fomproix and 

Percipalle, 2004; Philimonenko et al., 2004). Furthermore, actin associates with 

RNA polymerase III and was shown to localize to a gene transcribed by this 

polymerase in vivo (Hu et al., 2004). Of note, actin partially colocalizes with Cajal 

bodies, subnuclear structures suggested to be maturation or storage sites for 

transcriptional complexes (Gedge et al., 2005). 

(2) chromatin remodeling: Chromatin remodeling is performed by huge protein 

complexes, and actin has been shown to be a constituent of various of these 

complexes in cells from different organisms (Olave et al., 2002). Interestingly, 

actin has a function in linking a protein involved in pre-mRNA transcription to a 

histone deacetylase, providing a connection between transcription and chromatin 

remodeling (Sjolinder et al., 2005).  

(3) a function at the nuclear envelope: Field emission scanning electron 

microscopy identified “pore-linked filaments” (PLFs) attached to nuclear pores 

which are sensitive to latrunculin A and can be modified by jasplakinolide 

(Kiseleva et al., 2004). In this context, it is interesting to note that actin has been 

implicated in mRNA export from the nucleus (Hofmann et al., 2001; Kimura et al., 

2000). Together with data showing an actin cortical network at the inner nuclear 
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membrane (Holaska et al., 2004), this raises the possibility that an intranuclear 

actin cortex dynamically interacts with the nuclear lamina and nuclear pore 

complexes to play a role in nuclear export of macromolecules (Pederson and 

Aebi, 2005).  

(4) nuclear actin rods: Several stress signals induce the formation of large actin 

accumulations termed rods in cultured cells (Fukui and Katsumaru, 1979; Iida et 

al., 1986; Iida and Yahara, 1986). Interestingly, they often contain cofilin which is 

well known to produce rods in the cytoplasm upon overexpression (Aizawa et al., 

1999; Nishida et al., 1987). The function of these rods has remained elusive, with 

the exception of nuclear and cytoplasmic rods in Dictyostelium, which have been 

implicated in the maintenance of dormancy and viability at the spore stage of the 

developmental cycle (Sameshima et al., 2001). 

 

The structure(s) of actin in the nucleus are still unknown, although the purification 

of actin from chromatin-remodeling complexes and transcriptomes suggests that 

at least some of the actin performs a nuclear function as a monomer (Olave et 

al., 2002; Pederson and Aebi, 2002). A critical factor for the configuration of 

nuclear actin is the presence or absence of actin-binding proteins, some of which 

have been shown localize to the nucleus under different conditions (Pederson 

and Aebi, 2005). It remains to be seen which of these proteins exhibit a nuclear 

function of their own and which primarily impact upon nuclear function by 

influencing actin structure or binding properties. 

 

II.2.5. Profilin 

 

Profilin is a small, yet very versatile globular protein of only about 15 kDa. It was 

originally described as an actin binding protein from nonmuscle cells (Carlsson et 

al., 1977), and its principle role as a monomer binding protein in actin filament 

assembly has been described in chapter II.2.2. Since its discovery, the number of 

interaction partners ascribed to profilin in mammalian cells has grown to around 

30 today, which in turn lead to novel functions attributed to profilin (Witke, 2004). 
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Here I try to introduce established or putative cellular functions of profilin 

isoforms in order to provide background knowledge for the results section of this 

thesis. 

Proteins of the profilin family comprise at least four isoforms in mammals which 

show differential tissue distribution. The first profilin to be described, profilin I, is 

expressed in most tissues with the exception of skeletal muscle and therefore 

also often referred to as the “ubiquitous” isoform (Witke et al., 1998). Profilin II is 

almost exclusively expressed in the central nervous system and therefore also 

called the brain isoform. It can be alternatively spliced, although isoform profilin 

IIa makes up about 95% of brain profilin II and therefore is commonly used 

synonymously with profilin II (Di Nardo et al., 2000). I will follow this 

nomenclature and refer to profilin IIa as “profilin II” throughout the text. Profilins III 

and IV are recently discovered family members with testis-specific expression; 

knowledge about their properties and functions is very limited (Braun et al., 2002; 

Hu et al., 2001; Obermann et al., 2005). Although profilins I and II show limited 

sequence homology (65% sequence identity for mouse isoforms) their structures 

are almost superimposable (Nodelman et al., 1999). 

Next to actin binding, profilin has two major binding sites: One for 

phosphoinositides (mainly PIP2 and PIP3) and one for poly-L-proline stretches 

(Lassing and Lindberg, 1985; Metzler et al., 1994). The poly-L-proline binding 

site and the actin binding site lie on opposite sides of the profilin protein and 

therefore profilin is still able to bind to actin when interacting with certain 

regulatory molecules, e.g. on the cell surface. The phosphoinositide binding 

region, however, overlaps with both the actin binding and the poly-L-proline 

binding site. Consequently, PIP2 has been shown to regulate the binding of 

profilin to both actin and poly-L-proline (Lambrechts et al., 1997; Lassing and 

Lindberg, 1985). 

 

The high number of profilin interacting molecules identified today is mainly due to 

poly-L-proline binding. In fact, next to actin, phosphoinositides and the neuronal 

scaffolding protein gephyrin (the binding site for the latter being still unknown), all 
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profilin binding proteins contain one or more poly-L-proline stretches (Witke, 

2004). Figure I3 shows a schematic representation of profilin interactions in the 

cell leading to proposed functions as disussed below. 

 
Fig. I3: Network of molecular interactions of profilin. Abbreviations used: AF-6, 

All-1 fusion partner from chromosome 6; EVL, Ena VASP like; FMRP, fragile X 

mental retardation protein; FRL, forming-related gene in leukocytes; HSP, heat 

shock protein; Mena, mouse homolog of Drosophila enabled; POP, partner of 

profilin; SMN, survival of motor neuron protein; VASP, vasodilator-stimulated 

phosphoprotein; VCP, valosine-containing protein; WASP, Wiskott-Aldrich 

syndrome protein; WAVE, WASP family verprolin-homologous protein; WIP, 

WASP interacting protein. From Witke, 2004. 

 

Profilin can be recruited to sites of filament dynamics at the cell membrane via its 

interaction with surface-linker proteins of the Ena/VASP, WASP, ERM or formin-

homology domain families (Holt and Koffer, 2001). VASP was the first protein 

identified in this respect and is thought to regulate actin polymerization at focal 

adhesions by antagonizing the capping of actin filaments and by nucleating actin 

polymerization (Bear et al., 2002; Walders-Harbeck et al., 2002). 
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A well-established function of profilin thanks to genetic experiments in yeast and 

Drosophila is its involvement in membrane trafficking and endocytosis (Pearson 

et al., 2003; Wolven et al., 2000). In mammalian cells, a proteomic approach on 

brain extracts demonstrated profilin binding to proteins of the secretory pathway, 

with some differences in binding affinities between profilin isoforms I and II (Witke 

et al., 1998). In further support of this function, profilin II can regulate dynamin 1, 

the central regulatory GTPase in vesicle budding, by competing with known 

dynamin ligands (Witke, 2004). 

 

In neurons there is about three times more profilin II than profilin I (Witke et al., 

2001). Recently, some publications indicated possible functions for profilins in 

both excitatory and inhibitory neurons. Profilin has been reported to play a role in 

the actin-dependent process of neurite outgrowth, regulated by signals activating 

the small GTPase RhoA and the subsequent activation of Rho-dependent kinase 

ROCK (Da Silva et al., 2003). However, this effect on early neurite growth in 

cultured hippocampal neurons was apparently compensated for in later stages of 

dendritic development.  

A ROCK –  profilin II pathway has also been shown to mediate organization of the 

Golgi apparatus regulated by the profilin binding protein Citron-N (Camera et al., 

2003). Interestingly, Citron-N also localizes to postsynaptic densities of 

glutamatergic synapses onto GABAergic neurons in the hippocampus, 

suggesting a link between the secretory pathway and the postsynapse (Zhang et 

al., 1999). Interneurons also contain profilin at postsynaptic scaffolds of 

GABAergic synapses by means of profilin’s interaction with gephyrin (Giesemann 

et al., 2003).  

In hippocampal pyramidal neurons, profilin regulates actin-dependent 

morphological plasticity of postsynaptic dendritic spines (Ackermann and Matus, 

2003). It is recruited to spines by activation of postsynaptic NMDA receptors with 

similar kinetics as the blockade of synaptic motility, and a peptide preventing 

binding of profilin to poly-L-proline interferes with redistribution. Profilin II targets 

more effectively to spine heads than profilin I, which may suggest an involvement 
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of Ena/VASP molecules as targeting sites which bind profilin II with higher 

affinities (Gertler et al., 1996; Reinhard et al., 1995). Interaction of profilin with 

the VASP family member Mena at postsynaptic sites has already been 

demonstrated in the aforementioned interaction of profilin with the scaffolding 

protein gephyrin (Giesemann et al., 2003). 

 

Profilin has also been described as a nuclear protein, although its functions there 

are not yet fully understood. Some evidence points to a role in RNA processing: 

First, profilin interacts with SMN, the protein mutated in patients with a genetic 

form of spinal muscular atrophy (Giesemann et al., 1999). SMN complexes have 

been implicated in formation and maturation of ribonucleoprotein complexes, and 

could therefore act on transcription, pre-mRNA splicing and RNA transport 

(Gubitz et al., 2004). Second, a study using highly specific antibodies in 

fibroblasts showed profilin I to be present in Cajal bodies and splicing speckles, 

structures which have been postulated to be storage or maturation sites for 

transcriptional complexes and spliceosomes, respectively (Skare et al., 2003). In 

this work, Skare and colleagues showed that profilin accumulated in storage sites 

when transcription was blocked and antibodies against profilin inhibited 

transcription in an in vitro assay. 

A recent report by Lederer and colleagues suggests that profilin acts as a 

transcriptional modulator: They identified a new profilin ligand, termed p42POP 

(partner of profilin) which is expressed in a variety of tissues, most heavily in 

brain (Lederer et al., 2005). Sequence homology to myb transcription factors 

suggested a role in transcription, and reporter gene assays showed that p42POP 

worked as a transcriptional repressor. Importantly, functionally binding profilin 

counteracted this effect, while profilin with a mutated poly-L-proline binding site 

had no influence. Interestingly, profilin has also been shown to be an essential 

co-factor for transcription of the RSV virus, supporting actin-dependent 

transcription (Bitko et al., 2003; Burke et al., 2000). 

A putative nuclear function for profilin suggests that profilin nuclear localization is 

regulated so that profilin can influence gene expression in response to cellular 
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stimuli. In fact Stuven and colleagues found that regulation occurs at the level of 

nuclear export, with profilin being exported in a complex together with actin 

(Stuven et al., 2003). This is mediated by a novel nuclear export receptor termed 

exportin 6 that only has profilin and actin as known cargoes. Exportin 6 binds to 

actin which in turn is complexed with profilin and interference of profilin binding to 

actin prevents profilin export, but also hinders export of actin. The existence of a 

nuclear transport system specific for profilin and actin suggests that tight 

regulation of nuclear actin and profilin levels is important and further suggests 

that modulation of this export pathway specifically influences nuclear functions of 

profilin and actin, possibly gene expression. 

 

II.3. Aim of this work 

 

The aim of my thesis work was to investigate activity-dependent signaling from 

the actin cytoskeleton to the nucleus. A growing body of evidence implies actin-

regulating proteins in influencing nuclear functions, particularly gene expression. 

Evidence for changes in actin dynamics impacting upon activity-dependent gene 

expression would describe a novel pathway of neuronal plasticity, linking 

stabilization of synaptic morphology to synthesis of macromolecules necessary 

for long-term plasticity. In particular, nuclear accumulation of profilin is of interest 

as profilin is a molecule necessary for blocking actin dynamics in activated 

postsynaptic dendritic spines. The aim of my work here was to describe the 

nuclear accumulation of profilin with respect to kinetics, signaling pathway, 

reversibility and function.  
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III. RESULTS 
 

III.1. Reversible, activity-dependent targeting of profilin to neuronal nuclei 
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ABSTRACT 

The actin cytoskeleton in pyramidal neurons plays a major role in activity-

dependent processes underlying neuronal plasticity. The small actin-binding 

protein profilin shows NMDA receptor-dependent accumulation in dendritic 

spines, which leads to suppression of actin dynamics and long-term stabilization 

of synaptic morphology. Here we show that following NMDA receptor activation 

profilin also accumulates in the nucleus of hippocampal neurons via a process 

which involves rearrangement of the actin cytoskeleton. This bidirectional 

targeting suggests a novel mechanism of neuronal plasticity in which profilin both 

tags activated synapses and influences nuclear events. 

 

Keywords: synaptic plasticity; pyramidal neuron; hippocampus; actin 

cytoskeleton 
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INTRODUCTION 

Changes in connection strength between neurons have long been known to 

depend on protein synthesis and transcription (Kelleher et al., 2004; McGaugh, 

2000) and several activity-dependent changes in signaling pathways leading to 

transcriptional activation have been implicated in learning and memory (Berman 

et al., 1998; Bourtchuladze et al., 1994; Silva et al., 1992). Nevertheless, 

knowledge about synapse-to-nucleus signaling in neurons is limited and few 

molecules entering the nucleus upon stimulation of neuronal activity have been 

identified.  

Evidence implicates the postsynaptic actin cytoskeleton as a necessary element in 

NMDA receptor-dependent long-term potentiation (LTP) of synaptic transmission (Kim 

and Lisman, 1999; Krucker et al., 2000).  

A putative anatomical correlate of this synaptic plasticity is found in dendritic 

spines, postsynaptic structures present at excitatory synapses which show 

prominent actin-based morphological plasticity (Dunaevsky et al., 1999; Fischer 

et al., 1998). Spine motility is modulated by activation of NMDA receptors, 

leading to suppression of actin dynamics and stabilization of synaptic structure 

that may last for several hours after the initiating stimulus (Brunig et al., 2004). 

Outstanding questions concern the signaling mechanism that mediates these 

changes in actin filament behavior and the identity of the molecules responsible 

for maintaining the stable state. 

One candidate to have emerged recently is profilin, a small actin binding protein 

which is targeted to dendritic spines by stimulation patterns that block actin 
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dynamics and subsequently remains concentrated there for several hours 

(Ackermann and Matus, 2003). The implied relationship between profilin 

redistribution and long-duration stabilization of the spine cytoskeleton is further 

suggested by experiments showing that a small peptide which inhibits binding of 

profilin to cell surface proteins blocks NMDA receptor-induced actin cytoskeleton 

stabilization (Ackermann and Matus, 2003). 

Despite its small size profilin binds a wide range of molecular partners in different 

cellular compartments (Witke, 2004). These include the nucleus where profilin 

isoforms are selectively associated with nuclear substructures including Cajal 

bodies (Skare et al., 2003) and are shuttled through the nucleus by a mechanism 

involving a defined export pathway (Stuven et al., 2003).  

 

MATERIALS AND METHODS 

Cell Culture, Transfection, and Microscopy. Neuronal cultures were prepared 

from either E19 rat or E17 mouse hippocampus as described (Goslin and 

Banker, 1991) and maintained in glia-conditioned, serum-free medium 21-30 

days before imaging. Transfections were carried out using the Amaxa 

Nucleofector system according to the manufacturer’s instructions. The 

expression plasmids for profilin II-GFP and GFP-actin fusion proteins have been 

described before (Ackermann and Matus, 2003; Kaech et al., 1997). Point 

mutations for the F59A and G120F variants were introduced into the profilin II 

cDNA using the Quik Change Mutagenesis Kit (Stratagene).  
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Imaging was performed in Tyrode’s solution (119 mM NaCl, 5 mM KCl, 25 mM 

HEPES, 33 mM glucose, 2 mM MgCl2, 2mM CaCl2, 2 mM glycine) at 37°C. For 

stimulation experiments, either the stimulating agent was added to Tyrode’s 

solution, or, for 0 Mg2+ activation, the solution was changed to Tyrode’s without 

MgCl2 supplemented with 5 μM glycine. 

The rat embryonic fibroblast cell line REF52 was grown under standard 

conditions in DMEM with 10% fetal calf serum. 

For organotypic slice cultures, slices were prepared from postnatal day 8 

transgenic mice expressing profilin II-GFP from the chicken β−actin promoter 

(Ackermann and Matus, 2003) as described (Gahwiler et al., 1991). For 

microscopy, cultures were observed under continuous perfusion with artificial 

cerebrospinal fluid (ACSF: 124 mM NaCl, 2.5 mM KCl, 2 mM MgSO4, 1.25 mM 

KH2PO4, 26 mM NaHCO3, 10 mM glucose, 4 mM sucrose, 2.5 mM CaCl2) 

saturated with 95% O2/5% CO2. ACSF (0 Mg2+/glycine) was ACSF without 

MgSO4 and supplemented with 5 μM glycine.  

Imaging was carried out using a Leica DM-IRBE microscope, a Yokogawa 

microlens Nipkow confocal system, a cooled CCD camera (SensiCam, PCO 

computer optics) and MetaMorph imaging software.  

Image analysis and quantification. Image analysis was carried out by 

quantification of confocal images of the same cells at different points in time 

using MetaMorph software. Levels of nuclear accumulation were measured by 

determining average fluorescence intensities in elliptic regions in the nucleus and 

the cytoplasm and calculating the ratio. Changes in nuclear/cytoplasmic 
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fluorescence (“Δ nuclear/cytoplasmic fluorescence”) values were determined by 

subtracting the ratio at time point 0 (start of the experiment) from the ratios at 

respective time points. “Fold induction of nuclear fluorescence” was calculated by 

dividing nuclear fluorescence intensities after activation by intensities before the 

start of the experiment. For actin accumulation at the cell cortex, we performed a 

linescan around the edge of the soma of a confocal plane and divided the 

average intensity by the average fluorescence intensity of an elliptic region in the 

soma close to the nucleus (“cortical/perinuclear fluorescence”). For the relative 

cortical/perinuclear fluorescence, the above parameter was expressed as a 

fraction of its maximal value over time. 

 

RESULTS 

Neuronal activity induces reversible nuclear accumulation of profilin 

To explore possible activity-dependent changes in distribution of profilin between 

cytoplasm and nucleus we examined dissociated cultures of pyramidal neurons 

from rat hippocampus and organotypic slice cultures of hippocampus from 

transgenic mice expressing profilin II-GFP under the control of the chicken 

β−actin promoter. In mature dissociated cultures (> 21 days in vitro) under resting 

conditions, the profilin II-GFP fusion protein was concentrated in the cytoplasm 

but largely excluded from the nucleus (Fig. 1a, left). However, after stimulating 

NMDA receptors by exposing the cultures to medium lacking the NMDA receptor 

blocker Mg2+ and containing the co-activator glycine, profilin II-GFP accumulated 

in the nucleus (Fig. 1a, middle).  This effect was reversible since profilin II-GFP 
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returned to a predominantly cytoplasmic distribution when the cells were re-

exposed to standard medium in which NMDA receptors are blocked (Fig. 1a, 

right). As previously reported (Ackermann and Matus, 2003) profilin II-GFP also 

accumulated in dendritic spines following NMDA receptor activation (Fig. 1b, 

compare left and middle panels). However in contrast to its reversible 

accumulation in the nucleus profilin II-GFP remained concentrated in dendritic 

spines after the receptor stimulating medium was removed. This difference is 

shown in Figs. 1a and 1b (right panels) which are taken from the same image 

stacks (see also Supplementary Material, Videos 1-3). 

 

To determine the kinetics of nuclear accumulation, we performed confocal time-

lapse microscopy on profilin II-GFP expressing neurons following NMDA receptor 

activation. Significant nuclear accumulation of profilin II-GFP, expressed as an 

increase in the ratio of nuclear to cytoplasmic fluorescence, was visible after two 

minutes (Fig. 1c, filled squares). Profilin continued to accumulate until the 

stimulus was withdrawn, and subsequently redistributed to the cytoplasm on a 

similar timescale. Some profilin II-GFP remained in the nucleus following 

stimulus withdrawal but this may be accounted for, at least in part, by a small 

non-specific increase in nuclear fluorescence apparent in control cultures subject 

to medium change without activation (Fig. 1c, empty squares). To assess 

whether cells would respond in the same way after having already been 

activated, we carried out an experiment in which the cycle of stimulation and 

recovery was repeated twice (Fig. 1d). As before, nuclear accumulation of profilin 
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II-GFP was fast and reversible in both rounds of activation. Taken together, these 

experiments establish profilin nuclear accumulation as a rapid and reversible 

process capable of repeated induction. 

Nuclear accumulation of profilin depends on NMDA receptor stimulation 

and extracellular Ca2+ 

The conditions of low Mg2+ and elevated glycine used above are designed to 

stimulate NMDA subtype glutamate receptors. To verify their involvement we 

carried out a pharmacological analysis of the nuclear accumulation of profilin and 

its reversal. Consistent with the involvement of NMDA receptors, reversible 

targeting of profilin II-GFP to the nucleus occurred when cultures were stimulated 

with either 0 Mg2+/glycine, the endogenous neurotransmitter glutamate, or the 

receptor-specific agonist NMDA.  Moreover in cells exposed to glutamate profilin 

nuclear accumulation could be blocked by the NMDA receptor antagonist APV, 

but not by NBQX, an antagonist of AMPA-type glutamate receptors (Fig. 2b). 

Nuclear targeting was also absent when cells were stimulated while in medium 

lacking Ca2+ indicating that influx of extracellular calcium is necessary for the 

effect to occur (Fig. 2b and c). Potential downstream signaling molecules 

involved in neuronal plasticity mechanisms include Ca2+/calmodulin dependent 

enzymes, the MAP kinase cascade and protein kinase A (Curtis and Finkbeiner, 

1999). However, neither the Ca2+/calmodulin blocker W7, the MAP kinase 

blocker PD98059 nor the PKA activator forskolin had a significant effect on 

nuclear accumulation of profilin (Fig. 2a, b). 
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To determine whether nuclear targeting of profilin occurs in organized brain 

tissue we examined organotypic slice cultures from the hippocampus of 

transgenic mice expressing profilin II-GFP. Neurons in these cultures expressed 

the fusion protein to varying degrees but nevertheless showed reversible 

targeting of profilin II-GFP to the nucleus following transitory activation by 

exposure to 0 Mg2+/glycine medium (Fig. 3a). As for dispersed cell cultures, 

profilin II-GFP accumulated in the nucleus within a few minutes and translocated 

back into the cytoplasm after removal of the stimulus (Fig. 3b).  

Actin-binding is necessary for nuclear export of profilin 

Recent evidence indicates that actin and profilin shuttle through the nucleus and 

are exported as a complex by means of a novel nuclear transport receptor, 

exportin 6 (Stuven et al., 2003). Consequently, the distribution of profilin between 

nucleus and cytoplasm should depend on its functional interaction with actin. To 

test whether this was the case in cultured hippocampal neurons, we examined 

the effects of two independent point mutations of profilin II, profilin IIF59A or 

profilin IIG120F, that have been demonstrated to reduce its binding to actin 

(Schluter et al., 1997). When expressed as fusion proteins with GFP each of 

these actin-binding mutants showed preferential accumulation in the nuclei of 

both neurons and fibroblasts in contrast to wild-type profilin II, which was 

excluded from the nucleus as expected (Fig. 4a). In hippocampal neurons the 

nuclear accumulation of these mutant proteins occurred in the absence of 

stimulation suggesting that the exclusion of profilin II from the nucleus under 

steady-state conditions depends on export of a profilin-actin complex, as already 
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suggested by data for exportin 6-mediated  nuclear export(Stuven et al., 2003). If 

this were the case it might be expected that actin would distribute independently 

of profilin in stimulated neurons where profilin has accumulated in the nucleus. 

To examine this possibility we used time-lapse microscopy to follow the 

distribution of GFP-tagged β- and γ- cytoplasm actins in hippocampal neurons 

before and after stimulating NMDA receptors with 0 Mg2+/glycine. Under 

conditions where profilin II-GFP showed strong accumulation in the nucleus (Fig. 

4b) both N- and C- terminal fusions of β- and γ- actins remained outside the 

nucleus (Fig. 4b and c). Instead we observed an activity-induced increase in the 

concentration of γ-cytoplasm actin at discrete locations on the cell body surface 

accompanied by a corresponding decrease in the cytoplasm (Fig. 4b). These 

observations are consistent with previous evidence for activity-dependent 

accumulation of actin at postsynaptic sites on the cell body of hippocampal 

neurons(Furuyashiki et al., 2002). 

Activity-dependent redistribution of actin to the cell cortex 

Receptor-induced recruitment of actin to the cell cortex independently of profilin 

suggests a potential explanation for the accumulation of profilin in the nucleus 

where profilin export, which depends on its complex formation with actin, would 

be reduced (Stuven et al., 2003). Quantifying the ratio of GFP-γ-cytoplasmic actin 

at the cell cortex compared to the perinuclear region showed that actin 

translocation to the cell cortex is an activity-dependent and reversible 

phenomenon, similar to the nuclear accumulation of profilin (Fig. 5a and b). 

However, redistribution of actin to the cell cortex was more rapid than that of 
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profilin to the nucleus, being maximal after 2 minutes (Fig. 5c). By contrast, 

redistribution of actin from the cell cortex back to the cytoplasm following removal 

of the stimulus showed a similar time-course to that of profilin from the nucleus to 

the cytoplasm (Fig. 5c). When NMDA receptors were blocked by APV, no actin 

redistribution was observed (Fig. 5b). 

Together these observations suggest a mechanism of activity-induced 

cytoskeletal changes in the pyramidal neuron cell body, initiated by the 

accumulation of filamentous actin at the cell cortex in response to a rise in 

somatic Ca2+ levels.  

 

DISCUSSION 

Recent work has begun to identify some cellular components involved in 

signaling from the actin cytoskeleton to the nucleus (Miralles et al., 2003; Ruegg 

et al., 2004), but the molecular mechanisms involved in this relationship are not 

fully understood. Large pyramidal neurons with their highly specialized 

cytoskeletal microdomains are involved in long-term morphological modifications 

dependent on transcription and protein synthesis. The accumulation of the actin-

binding protein profilin II in the nucleus of hippocampal neurons upon stimulation 

of NMDA receptors coupled with the translocation of perinuclear actin to the 

somatic cell cortex, thus decreasing the amount of actin able to enter the 

nucleus, are of special interest in this regard. Dispersion of actin to the cell cortex 

might explain the nuclear accumulation of profilin, since its nuclear export 

depends on its binding to actin. In agreement with this model, our kinetic data 
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show a fast redistribution of actin and a slower response of profilin following 

NMDA receptor activation, but similar kinetics of relocation of the two proteins 

following removal of the stimuli.  

 

NMDA receptor activation and Ca2+ influx are also necessary for long duration 

stabilization of the actin cytoskeleton in dendritic spines and for long term 

electrophysiological changes underlying synaptic plasticity (Bliss and 

Collingridge, 1993; Brunig et al., 2004). In this context it is interesting that recent 

work has identified a novel nuclear profilin-binding protein, p42POP (partner of 

profilin) which in reporter gene assays acts as a transcriptional repressor, whose 

activity is modulated by profilin binding (Lederer et al., 2005). A putative role for 

profilin in gene expression is also suggested by data showing profilin being 

necessary for RNA splicing in vitro (Skare et al., 2003), and interacting with SMN 

which is important for assembly of ribonucleoprotein particles (Giesemann et al., 

1999; Gubitz et al., 2004).  

 

It is striking that profilin accumulates in both postsynaptic dendritic spines and 

the nucleus in response to NMDA receptor signaling. The simultaneous targeting 

of profilin to these sites matches properties that have been hypothesized as 

necessary for synaptic tagging, a mechanism in which a molecular tag is set at 

individual activated synapses while at the same time the nuclear events required 

for long-term consolidation of activity-dependent changes are initiated (Frey and 

Morris, 1998a). 
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FIGURE LEGENDS 

Figure 1: Activity-dependent nuclear accumulation of profilin II, a rapid and 

reversible process. 

(a), (b), confocal microscopy images of dispersed hippocampal neurons 

expressing a profilin II-GFP fusion protein. Cells were activated by an 

extracellular solution lacking the NMDA receptor blocker Mg2+ and supplemented 

with glycine (5μM). Confocal stacks were taken before and 25 minutes after the 

start of activation, the medium was then changed back to normal Tyrode’s and 

another stack was taken after 25 minutes. Confocal nuclear (a) and dendritic (b) 

planes of the same stacks (cf. Supplementary Material, Videos 1-3) are shown. 

(c), cells were activated as described above, and image stacks were taken every 

2 minutes. Medium was changed back to physiological Mg2+ concentrations at 15 

minutes, as indicated. The change in nuclear versus cytoplasmic fluorescence 

(Materials and Methods) in confocal images was plotted against time (filled 

squares, error bars representing SEM; n=7). As a control, medium was replaced 

without changing its composition (empty squares; n=6). *difference between 

activity-induced profilin nuclear accumulation and a nonspecific increase in 

nuclear/cytoplasmic fluorescence was significant up to the value at 40 minutes 

(25 minutes after stimulus removal; t-tests, α=0.05, p<0.05) but not thereafter. 

(d), cells were activated as above for 5 minutes, allowed to recover for 10 

minutes, stimulated again for 5 minutes and finally allowed to recover in regular 
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medium. Confocal images were analyzed as described above (n=5; error bars 

represent SEM). 

 

Figure 2: Pharmacological experiments show NMDA receptor and Ca2+ 

dependence of profilin II nuclear accumulation. 

(a), dispersed hippocampal neuronal cultures were activated by bath application 

of various stimuli in Tyrode’s solution. Cells (n refers to number of cells 

observed) were followed by time-lapse microscopy and scored for showing 

visible nuclear accumulation after 20-30 minutes. Subsequently, in some 

experiments the medium was changed back to regular Tyrode’s and cells were 

scored for partial reversibility of nuclear accumulation again 20-30 minutes later. 

For the forskolin experiments, a batch of cells showing high degree of nuclear 

accumulation (100%) with glutamate stimulation was used.  

(b), batches of cells showing a high percentage of nuclear accumulation in 

control conditions (either glutamate bath application or 0 Mg2+ stimulation) were 

used to determine the influence of pharmacological agents on nuclear 

accumulation of profilin.  Cultures were incubated in Tyrode’s solution containing 

the indicated amount of blockers for 20-30 minutes prior to the beginning of the 

experiment, which was carried out as described in (a). Control experiments 

without the pharmacological agents were carried out in the same way using the 

same batches of cells.  

(c), differences in response to activation by NMDA in the presence or absence of 

ectracellular Ca2+. Cells were stimulated with 10 μM NMDA in Tyrode’s either 
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containing (filled squares, error bars represent SEM; n=4) or lacking (empty 

squares; n=2) 2 mM Ca2+.  Medium was changed back to Tyrode’s without 

NMDA at 15 minutes and data were analyzed as described in Figure 1. 

 

 

Figure 3: Nuclear accumulation of profilin II in organotypic slice cultures. 

(a), an organotypic slice from a transgenic profilin II-GFP mouse cultured for 6 

weeks was activated by replacing the imaging medium (ACSF) with ACSF ( 0 

Mg2+/glycine) (Materials and Methods). Stacks of confocal images were taken 

every 5 minutes and the stimulus was withdrawn at 30 minutes by changing back 

to ACSF. Images show a region of the slice at selected time points. Arrowheads 

highlight example cells responding to activation / recovery with different kinetics. 

(b), quantification of nuclear accumulation over time in 52 cells in 3 different 

organotypic slice cultures. Confocal images were used for quantification as 

described before (Materials and Methods). * difference in nuclear/cytoplasmic 

fluorescence after stimulation compared to before was significant (t-tests, 

α=0.05, p<0.01). ** difference in nuclear/cytoplasmic fluorescence after removal 

of the stimulus compared to before removal (29 minutes) was significant (t-tests, 

α=0.05, p<0.01). 

 

Figure 4: Subcellular distribution of profilin depends on its binding to actin. 

(a), different profilin II-GFP fusion proteins –  wildtype profilin II and actin-binding 

mutants F59A and G120F, respectively - were expressed in hippocampal 
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neurons (upper panel) and embryonic fibroblasts (lower panel). Images shown 

are epifluorescent images of neurons at 3 days in vitro and fibroblasts 24 hours 

after transfection. The distribution shown in these example images (cytoplasmic 

vs. nuclear+cytoplasmic) is representative for all cells observed under the 

described culture conditions (n=20 for each category). 

(b), mature hippocampal neurons of the same batch transfected with either 

profilin II-GFP or two different actin-GFP fusions were stimulated with 0 Mg2+ 

solution as indicated and images taken before and 25 minutes after activation. 

(c), nuclear accumulation of fusion proteins in cells followed by live microscopy 

as described in (b) was quantified by calculating the fold induction of nuclear 

fluorescence for each category (Materials and Methods). Abbreviations for 

categories represent: profilin II-GFP (PIIG), GFP-γ−actin (Gγ), β−actin-GFP (βG). 

Control stimulations were done by replacing the medium without changing its 

composition (n=7 in each category; error bars represent SEM; * difference 

between stimulation and control group is statistically significant for profilin II-GFP 

(t-test, α=0.05, p<0.01)). 

 

Figure 5: Activity-dependent relocation of actin to the cell cortex.  

(a), mature rat hippocampal neurons in dispersed culture transfected with GFP-

γactin (Gγ) were stimulated with Tyrode’s solution without Mg2+ and the stimulus 

removed after 25 minutes. Confocal stacks were taken before and at the end of 

the activation period and 25 minutes after recovery.  
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(b), quantification of the effect of actin accumulation at the cell cortex. 

Cortical/perinuclear fluorescence in comparable confocal planes was determined 

as described in Methods. Left, quantification of the experiments described in (a) 

(n=14; *differences between the values after activation compared to both before 

activation and after reversal are significant (ANOVA, α=0.05, p<0.01)). Right, 

quantification of similar experiments performed in the presence of 100 μM APV 

(n=20; error bars represent SEM). 

(c), single cells were followed over time with confocal stacks taken every 2 

minutes. The stimulus (0 Mg2+) was removed at 15 minutes, the relative 

cortical/perinuclear fluorescence for each time point was determined as 

described in Materials and Methods and plotted against time (n=4; error bars 

show SEM).  

 
 
Supplementary Material, Video legends 

 

Video 1: Z-stack of confocal fluorescent images of a hippocampal neuron in 

dispersed culture expressing the profilin II-GFP fusion protein. This stack was 

taken before activation, with the culture in regular medium (Tyrode’s). Confocal 

planes are 0.5 μm apart. 

Video 2: Z-stack of confocal fluorescent images of the same cell as in Video1, 

taken 25 minutes after activation with medium lacking Mg2+ and containing 5 μM 

glycine. 
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Video 3: Z-stack of confocal fluorescent images of the same cell as in Videos 1 

and 2. Medium was changed back to regular Tyrode’s after acquisition of Video 2 

and Video 3 taken 25 minutes afterwards. 
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III.2. Supplementary data 

 

The observation of activity-dependent profilin II accumulation implies many 

questions, most importantly functional ones. Among open questions, three 

important ones can were singled out to address the function of nuclear profilin II 

in brain neurons: 

(1) Which brain regions/neurons show profilin II accumulation under which 

circumstances? 

(2) What happens if we reduce profilin II levels in neurons? 

(3) Can we make a link between profilin II and gene expression? 

These questions were experimentally approached as follows: 

(1) Generation of specific antibodies to profilin II in order to stain the 

endogenous protein in brain sections. This provides us with a tool to follow 

activity-dependent changes in profilin II distribution in different brain areas 

upon paradigms of in vivo activity. 

(2) Small interfering RNAs (siRNAs) were designed to downregulate profilin II 

expression in neurons. The use of small hairpin RNAs in expression 

vectors allows the use of established transfection methods to interfere with 

gene expression in neuronal cultures. However, as transfection efficiency 

in neurons is limited, the use of gene-targeted profilin II -/- mice, which 

were obtained from the laboratory of Walter Witke (EMBL, Monterotondo), 

provides a more efficient way to study the consequences of lack of profilin 

II in neurons. 

(3) Real-time RT-PCR of candidate genes was established in order to test for 

a possible involvement of profilin II in activity-dependent gene expression. 

As the questions referred to above don’t stand alone, but all converge on profilin 

II function, so do the tools created, being most effective when used in 

combination to perform experiments addressing profilin II function in neuronal 

nuclei. The following chapters concentrate on technical aspects of creation of 

these tools and their testing to prove applicability in experimental assays. 
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III.2.1 Generation of rabbit antibodies against profilin II 

 

The use of green fluorescent protein (GFP) has revolutionized cell biology by 

allowing researchers to follow proteins in living cells, while in many cases not 

interfering with the functionality of proteins fused to GFP (Ludin and Matus, 1998; 

Tsien, 1998). However, expression of a fusion protein from a transgene does not 

give insight into the behavior of endogenous proteins as expression levels vary 

among tissues and cell types and artifacts of overexpression cannot be ruled out. 

Therefore investigation of the endogenous proteins is a valuable addition to live 

microscopy data of ectopically expressed proteins, and antibody staining is still 

the method of choice.  

Polyclonal antibodies are commercially available from antisera of different 

species, most commonly rabbits. I decided to use a recombinant protein as 

antigen, which offers the advantage to obtain antibodies recognizing a folded 

version of the protein instead of a sequence that may be buried inside the native 

protein. A GST-profilin II protein was expressed in E. coli and purified using 

standard methods (see Methods). The expression system offered the possibility 

to cleave off the GST moiety by means of the protease thrombin, but cleavage 

was inefficient (Fig. S1a). Therefore, a mixture of profilin II and GST-profilin II 

was used to immunize two rabbits, and early and later bleeds were tested in 

immunoblots to determine their specificity. Antisera of rabbit #1947 recognized 

primarily profilin in early bleeds, but shifted specificity towards a cross-reactive 

protein in later bleeds (not shown). However, antisera of rabbit #1946 showed 

great specificity towards a single band of ca. 15 kDa in immunoblots of whole 

brain extracts, and could be shown to recognize a recombinant fusion protein of 

maltose binding protein to profilin II from E. coli (Fig. S1b). These experiments 

indicate that antisera from rabbit #1946 detect denatured profilin II protein on 

immunoblots. 

The specificity of the antibody towards native profilin II in cells was tested on 

fibroblasts transfected with expression plasmids of either profilin II-GFP or profilin 

I-GFP (Fig. S1c). The antibody recognized cells transfected with profilin II-GFP, 
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but showed only background staining in cells transfected with profilin I-GFP, 

demonstrating isoform-specificity towards profilin II in cells.  

As these results on ectopic profilin II were encouraging, the antibody was tested 

on dispersed hippocampal neurons to determine the distribution of the 

endogenous protein. However, despite testing several different fixation and 

permeabilization methods, the antibody always yielded a granular staining 

pattern throughout the cell which was never seen for profilin II-GFP. Moreover, 

expression of transgenic profilin II-GFP in neurons did neither alter staining 

pattern nor staining intensity, and siRNA constructs against profilin II did not 

decrease staining intensity (not shown). Therefore it has to be concluded that the 

antiserum #1946 cannot recognize profilin II in neurons using standard 

fixation/permeabilization methods. A possible explanation could be that the 

epitopes recognized by the antibody are masked in the presence of binding 

partners in neurons. Therefore another member of the Matus lab carried out 

experiments with tissue sections which had been treated with a heated citrate 

buffer to remove crosslinks and retrieve antigens (Pileri et al., 1997)(Urs Mueller, 

personal communication). This treatment gave rise to specific staining in tissue 

sections, demonstrating the usefulness of the antibody for visualizing 

endogenous profilin II levels. 

 

III.2.2. A knock-down strategy to investigate profilin II function 

 

Since their first description only a few years ago, small interfering RNAs have 

become a widely used tool to study gene function in a variety of cell systems 

(Tuschl and Borkhardt, 2002). siRNAs use an endogenous RNA decay pathway 

via the RNA induced silencing complex (RISC) to destroy mRNAs and thereby 

downregulate gene expression. More recently, plasmids expressing small 

doublestranded RNAs via a fold-back mechanism in a hairpin loop (therefore also 

termed small hairpin RNAs) have been found to be equally effective in mediating 

RNA decay (Brummelkamp et al., 2002). This method was employed in my work 

in order to establish a tool for downregulation of profilin II in neurons. 
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Small interfering RNAs have been intensely studied during recent years, and the 

wealth of data on functional versus nonfunctional sequences led to the 

establishment of design rules (Reynolds et al., 2004). Employing these rules (see 

Methods) I selected two sequences termed siProfII20 and siProfII380 for the 

design of small hairpin RNAs. Constructs expressing these shRNAs were 

transfected into rat embryonic fibroblasts, together with an expression vector for 

profilin II-myc. Cell lysates were pepared 48 hours after transfection, separated 

by SDS-PAGE and the subsequent immunoblot probed with anti-myc antibody 

(Fig.S2a). The siRNA constructs proved to efficiently downregulate profilin II-myc 

expression compared to empty vector, with siProfII380 being more effective than 

siProfII20 (Fig.S2b). In order to test the usefulness in mouse neurons, dispersed 

hippocampal cultures from transgenic mice expressing profilin II-GFP were used, 

which express the transgene more homogenously than wildtype cultures 

transfected by one of the established transfection methods. SiProfII380 was co-

transfected together with the fluorescent protein DsRed under the control of the 

CMV promoter in order to identify transfected neurons, and GFP signal intensity 

provided the readout for profilin II expression levels (FigS3c). Data analysis 

showed that the siRNA downregulated profilin II-GFP to 18±3 % (mean±SEM, 

Fig. S2d). Taken together, these experiments established the efficacy of small 

hairpin RNAs to downregulate exogenous profilin II in neurons. 

 

III.2.3. Real-time PCR analysis of immediate early gene expression 

 

Activity-dependent nuclear accumulation of profilin II and profilin’s implication in 

transcriptional modulation (Burke et al., 2000; Lederer et al., 2005) and RNA 

processing (Giesemann et al., 1999; Skare et al., 2003) suggest a possible 

involvement of profilin II in activity-dependent gene expression. I decided to 

approach this question by real-time PCR of candidate genes which are known to 

be upregulated by neuronal activity. The following section gives an overview on 

these genes and their implication in activity-dependent gene expression, 

neuronal plasticity and memory: 
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The activity-regulated cytoskeletal-associated protein (Arc) is regulated on the 

transcriptional level by rapid upregulation in response to diverse stimuli in 

neurons (Lyford et al., 1995), including growth factors, neurotransmitters, 

electrical stimulation patterns and drugs of abuse (Fosnaugh et al., 1995; Lyford 

et al., 1995; Yin et al., 2002). In a learning paradigm, it was noted that Arc 

mRNA, though elevated directly after a 30 minutes training period, already 

declined as training persisted and novelty was low at 60 minutes (Kelly and 

Deadwyler, 2003).  

The transcription factor cFos has been known to be induced by neuronal activity 

for a long time (Dragunow and Faull, 1989). Therefore, staining for c-Fos has 

become the method of choice to demonstrate activity-induced gene expression in 

a variety of behavioral paradigms including several forms of learning and 

memory formation (Barth et al., 2004; Holahan and White, 2004; Puurunen et al., 

2001). Induction of c-Fos depends on activation of NMDA receptors and on the 

other hand, absence of c-Fos causes impairments in NMDA-receptor dependent 

synaptic plasticity and hippocampus-dependent memory tasks (Fleischmann et 

al., 2003). 

Homer1a is a variant of the Homer1 gene, with activity leading to upregulation of 

the gene and conversion of intronic to exonic sequences (Bottai et al., 2002). 

Homer proteins provide a scaffold for metabotropic glutamate receptors and TRP 

channels at the synapse which cannot be built by variant Homer1a (Fagni et al., 

2002; Yuan et al., 2003). Consequently, activity-dependent Homer1a expression 

is implicated in functional and morphological synaptic plasticity (Sala et al., 

2003). 

The cytoplasmic β−actin is an immediate early gene in a variety of tissues, and is 

being upregulated in neurons upon activity (Ramanan et al., 2005). Moreover, 

β−actin mRNA levels are sensitive to changes in the actin cytoskeleton 

(Bershadsky et al., 1995), possibly by being one target gene of a feedback loop 

signaling changes in the F-actin/G-actin ratio to the nucleus (Sotiropoulos et al., 

1999). 
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Together, these genes comprise NMDA-receptor dependent expression (all), 

neuron-specific induction (Arc) or widespread immediate early genes (c-Fos, 

β−actin), regulation on transcriptional and RNA-processing level (Homer1a), 

induction in response to changes in the actin cytoskeleton (β−actin) and signaling 

mechanisms back to the synapse (Homer1a, β−actin). Thus they constitute 

potential target genes for profilin in neuronal nuclei. 

As control genes for which RNA levels should remain constant after NMDA-

receptor activation, I selected 18S ribosomal RNA and α-tubulin. 

18S rRNA is a gene which has more recently emerged as the housekeeping 

gene of choice for researchers, as it has been shown to be superior in terms of 

stable expression to traditional housekeeping genes such as GAPDH or β-Actin 

in different contexts (Aerts et al., 2004; Al-Bader and Al-Sarraf, 2005; Bas et al., 

2004).   

Α-tubulin as a component of microtubules is highly regulated in brain tissue 

during development when neurite outgrowth occurs (Bond and Farmer, 1983). 

However, in mature tissue, one would expect a low and constant expression 

level. In accordance with this, α-tubulin has been successfully used as an 

internal control gene for cortical tissue in a learning paradigm in adult monkeys 

(Tokuyama et al., 2002).  

 

In order to set up a real-time PCR protocol for testing expression of candidate 

genes in neurons, I designed primer pairs along the RNA sequence of the 

respective six genes. These primer pairs were tested in regular RT-PCR on brain 

RNA/cDNA before being used in real-time assays. Following this testing, six 

primer pairs were selected which showed a single band in endpoint RT-PCR (not 

shown) and a single peak in dissociation temperature analysis in real-time 

assays, indicating the synthesis of a single PCR product without formation of 

primer dimers (Fig. S3a). The primer pairs were then screened for PCR efficiency 

in a dilution series experiment, and the C(t) values (indicating the number of 

cycles needed to reach the logarithmic phase) for each dilution plotted against 

the dilution factor (logarithmic) to obtain the efficiency curve (Fig. S3b). All PCR 
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reactions with primer pairs for the candidate genes / control genes showed PCR 

efficiencies between 90-110%, making them good tools to observe gene 

expression.  

In conclusion, real-time RT-PCR was established for four candidate and two 

control genes to determine the influence of profilin II on activity-dependent gene 

expression. 

 

Figure S3 (next page): Primer pairs for different genes were tested in real-time 

PCR. (a), representative dissociation curves of single measurements using the 

primer pairs noted on the left and cDNA from mouse brain RNA as a template. 

(b), a dilution series of cDNA from mouse brain RNA (1:1, 1:10, 1:100, 1:1000) 

was used in triplicates as templates for real time PCR, the C(t) values 

determined by the ABI software and the mean C(t) values plotted against the 

dilution factor (expressed as decade logarithms). The efficiency was determined 

as described in Methods 
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IV. METHODS 

 

Antibody generation. A GST-profilin II expression plasmid (pGEX4T1-profilin II) 

was cloned by excising the coding sequence of profilin II from pEGFPN2-profilin 

II (a gift from B. Jockusch, University of Braunschweig, Germany) using 

EcoRI/SalI restriction enzymes and inserting it into the same sites of pGEX4T-1 

(Amersham Biosciences). The fusion protein was purified from E. coli strain BL21 

using the following protocol: a 10 ml overnight culture was diluted to 100 ml in 

LB/ampicillin, grown for 1 hour at 37°C, fusion protein expression induced by 

addition of IPTG (1 mM), grown for 3 hours at 37°C and bacterial cells harvested 

by centrifugation (5000 g, 5’). The pellet was resuspended in 10 ml NETN buffer 

(20mM Tris/Cl pH 8.0, 100 mM NaCl, 1 mM EDTA, 0.5% NP 40, 1 mM DTT, 

protease inhibitors), sonicated 3 times for 10 seconds (70% power), the bacterial 

debris spinned down (SS34, 12 000 rpm, 10’) and the supernatant incubated with 

pre-equilibrated glutathione-sepharose 4B (Pharmacia) at 4°C for one hour.  The 

sepharose beads were gently pelleted (500 g), washed three times with NETN 

and once with 50 mM Tris pH 8, and finally the fusion protein was eluted by 

incubation of the beads with 15 mM glutathione in 50 mM Tris pH 8.  

GST-profilin II was cleaved by the addition of thrombin, which cleaves after GST 

due to design of the pGEX4T-1 plasmid. GST was removed by incubating with 

glutathione-sepharose as described above, and profilin II protein and GST-

profilin II were combined, dialysed against 50 mM Tris pH8 and used for injection 

of two rabbits (Eurogentec, Herstal, Belgium). Small (SZ) and large (GP) bleeds 

were precipitated by ammonium sulfate, and the protein precipitate dissolved in 

PBS and dialysed. 

For the fusion of maltose binding protein (MBP) to profilin II, profilin II cDNA was 

excised from pEGFP-profilin II by EcoRI/SalI restriction digest and cloned into the 

same restriction sites of pMAL-c2x (New England Biolabs). MBP-profilin II protein 

was expressed in E. coli strain BL21 and purified using an amylose resin 

according to the manufacturer’s instructions (New England Biolabs). In brief, 

bacteria were grown till they reached logarithmic growth phase in LB medium 
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containing 0.2% glucose to suppress the expression of amylase. MBP-fusion 

protein expression was induced by the addition of IPTG, bacteria incubated for 

ca. 3 hours, harvested and lysed by freeze-thawing and sonication. Extracts were 

cleared of bacterial debris by centrifugation and loaded on an amylose resin 

column; after washing steps, the fusion protein was eluted by a 10 mM maltose 

solution in column buffer. 

 

siRNA design and constructs. Small interfering RNAs were designed using a 

web interface to select possible siRNA sequences in a given RNA 

(www.dharmacan.com/sidesign) . Further selection criteria were exposure on 2D 

structure (www.bioinfo.rpi.edu/applications/mfold/old/rna/form1.cgi) and lower 

internal stability at the 5’end of the antisense strand (Khvorova et al., 2003). 

Using these selection criteria, the two sequences siProfII20 (5’-

ACGTGGATAACCTGATGTG-3’) and siProfII380 (5’-

AGGCATACTCAATGGCAAA-3’) were chosen as stem sequences, and a loop 

sequence, transcriptional stop signal and restriction site overhangs added. This 

gave rise to oligo sequences 5’- 

CAACAAGATCTCACGTGGATAACCTGATGTGttcaagagaCACATCAGGTTATC

CACGTTTTTTGGAAAAGCTTTGTTG-3’ for siProfII20 and 5’- 

CAACAAGATCTCAGGCATACTCAATGGCAAAttcaagagaTTTGCCATTGAGTAT

GCCTTTTTTGGAAAAGCTTTGTTG-3’ for siProfII380. Each of these oligos were 

mixed with their reverse homolog counterparts in ligation buffer (Roche), 

denatured by boiling in a water bath, and slowly cooled down by placing the 

water beaker on ice. The resulting DNA dimer was cut using BglII/HindIII, 

precipitated, dissolved and cloned into BamHI/HindIII sites of vector pTER which 

allows inducible small hairpin RNA expression in mammalian cells (van de 

Wetering et al., 2003).  

 

Cell lysates, electrophoresis and immunoblot. For rat embryonic fibroblast 

extracts, cells grown in 6 well dishes were washed with PBS, scraped from the 

dish, spinned down in a microcentrifuge (1000 g) and the pellet dissolved in 100 

http://www.dharmacan.com/sidesign
http://www.bioinfo.rpi.edu/applications/mfold/old/rna/form1.cgi
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μl cytoplasmic extraction (CE) buffer (10 mM HEPES pH7.6, 60 mM KCl, 1 mM 

EDTA, 0.075 % Nonidet-P40, 1 mM dithiothreitol, protease inhibitors), incubated 

on ice (5’) with subsequent pelleting of nuclei (1500 g) and removal of the 

cytoplasm (cell extract) to add to SDS-loading buffer. Proteins were separated on 

SDS-polyacrylamide gels and blotted onto Immobilon-P PVDF membranes. Blots 

were probed with antibodies against c-myc (Santa Cruz sc-40 (9E10), 1:500), 

profilin II (GP1946, as described, 1:100) or β−tubulin (Santa Cruz sc-9104, 

1:500). 

 

Real-time PCR. RNA was extracted from mouse brain using Trizol reagent 

(Invitrogen) according to the manufacturer’s instructions. Reverse transcription 

was performed using the Thermoscript RT-PCR system (Invitrogen). Real-time 

PCR reactions were performed in optical 96-well thermal cycling plates (Applied 

Biosystems). Reactions were set up employing the SYBR green method in which 

the dye intercalates DNA, leading to a correlation of fluorescence and 

doublestranded DNA produced. SYBR green PCR-super mix (Invitrogen) with 

ROX as reference dye was used to set up reactions in a total volume of 25 μl. 

The results were analyzed using the manufacturer’s software (Applied 

Biosystems) and for further calculations data were transferred to Microsoft Excel. 

For dilution series, mean C(t) values were plotted against the decade logarithm 

of the dilution factor and the slope of the resulting fitted curve used to calculate 

the PCR efficiency by the formula E= 10exp(1/slope) -1.  

Sequences of the primers used for detection of activity-dependently expressed 

genes and control genes were: 

Arc:  mArc347for: 5’-GGAGGGAGGTCTTCTACCGTC-3’ 

 mArc460rev: 5’- CCCCCACACCTACAGAGACA-3’ 

c-Fos: mc-Fos330for: 5’-AATGGTGAAGACCGTGTCAGGA-3’ 

 mc-Fos433rev: 5’- CCCTTCGGATTCTCCGTTTCT-3’ 

Homer1a:  mHomer1a1757for: 5’- ATGCCAGCAGAAGGAAGGCTT-3’ 

  mHomer1a1867rev: 5’- AGTCCAGTAATGCCACGGTACG-3’ 

β-actin: mbactin1201for: 5’- GCTTCTAGGCGGACTGTTACTG-3’ 
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  mbactin1301rev: 5’- GCCATGCCAATGTTGTCTCT-3’ 

α-tubulin:  Tuba550for: 5’- GAGTTCTCCATTTACCCAGCCC-3’ 

  Tuba652rev: 5’- AGGCACAATCAGAGTGCTCCAG-3’ 

18SrRNA: 18SrRNA876for: 5’-ACCGCGGTTCTATTTTGTTGGT-3’ 

  18SrRNA979rev: 5’-CGCCGGTCCAAGAATTTCA-3’ 

All primer pairs were used with the following cycling parameters: 50°C 2’, 95°C 

2’, 40 cycles of (95°C 15’’, 55°C 30’’, 72°C 30’’).  

 

 

GFP-tagged expression plasmids. Expression plasmids for profilin II-GFP and 

GFP-tagged versions of actin have been described before (Ackermann and 

Matus, 2003; Kaech et al., 1997). The construction of profilin IIF59A is described 

elsewhere (Ackermann, 2003). Profilin IIG120F-GFP was constructed using 

pEGFPN2-profilin II and the Quik change mutagenesis system (Stratagene). 

Mutant primers were 5’- 

GGGAAAAGAAGGGGTGCATTTCGGCGGATTGAATAAGAAGGC-3’ and the 

corresponding reverse complementary primer.  

 

Cell culture and transfection. Hippocampal pyramidal neurons were cultured 

according to Goslin and Banker, with minor modifications. In brief, hippocampi 

from E18/E19 rat or E17 mouse embryos were dissected in HBSS, briefly 

trypsinized and triturated to dissociate cells. The cells were gently pelleted, 

resuspended in HBSS and counted. For transfection using the Amaxa 

Nucleofector, ca. 1.5 million neurons were used for one electroporation together 

with 3 μg of DNA, following the manufacturer’s instructions, and plated on 18 mm 

coverslips in a 10 cm bacterial culture dish. For cultures of untransfected neurons 

(e.g. neurons from profilin II-GFP transgenic mice), between 3 x 105 and 5 x 105 

neurons were plated per dish. Neurons were grown on top of a glia feeder layer 

on glass cover slips coated with poly-L-lysine and maintained in serum-free 

medium consisting of MEM (Invitrogen) and an N2 supplement(Goslin and 

Banker, 1991) .  
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Pharmacological reagents. N-methyl-D-aspartate (NMDA) was from Sigma or 

Tocris; D(-)-2-amino-5-phosphopentanoic acid (APV) was from Sigma or RBI; 6-

cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 1,2,3,4-Tetrahydro-6-nitro-2,3-

dioxo-benzo(f)quinoxaline-7-sulfonamide (NBQX) were from RBI; W-7 and and 

phorbol 12-myristate 13-acetate (PMA) were from Alexis; nifedipine was from 

Sigma. 
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V. GENERAL DISCUSSION 

 

V.1. Discussion 

 

This work shows phenomenological data on activity-dependent changes in the 

actin cytoskeleton and the possible implications for neuronal plasticity. In the 

discussion, I want to start by looking at the microscopy data on activity-

dependent localization changes, discuss their relevance and meaning in a cell 

biology context, and then move on to implications for cellular plasticity and finally 

neurobiology. 

 

V.1.1. Nuclear transport of profilin and actin 

 

In this thesis, I describe the nuclear accumulation of the small actin-binding 

protein profilin in response to neuronal activity and the subsequent activation of 

NMDA receptors. Judged simply by its size (ca. 15 kDa) and its compact protein 

structure (Nodelman et al., 1999), profilin should be able to enter the nucleus by 

normal diffusion through the nuclear pore. The nuclear pore is a proteinacious 

structure in the nuclear envelope encircling a central channel of about 50 

nanometers (nm) (Pante, 2004). Based on this channel size, it is assumed that 

the molecular cut-off for molecules being able to diffuse freely through the pore is 

at around 40 kDa (Becskei and Mattaj, 2005). Thus it is unclear whether a fusion 

protein of profilin II and GFP (calculated molecular weight: 43 kDa) as used in 

this work would still be able to enter the nucleus passively. However, Stuven and 

colleagues provide convincing evidence for passive diffusion of profilin-GFP 

fusions through the nuclear pore in their work on the identification of exportin 6 

(Stuven et al., 2003). They show that isolated nuclei prepared in a way that 

neither nuclear transport factors nor energy resources are present can be 

supplied with profilin-GFP in the medium so that the fusion protein equilibrates 

between the medium and the nucleus. Upon addition of exportin 6 protein and 

ATP, the fluorescent protein shifts to the medium with the nucleus showing no 
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fluorescent signal, effectively demonstrating passive nuclear import by diffusion 

and energy-dependent, exportin 6-mediated nuclear export of profilin-GFP.  

Nuclear export of profilin depends on its interaction with actin; this is 

demonstrated by my observation that two different profilin point mutations 

accumulate in the nucleus in the absence of neuronal activity (III.1, Fig.3). 

Furthermore, Stuven and colleagues demonstrated that exportin 6 binds to actin, 

which in turn binds profilin, leading to nuclear export of the profilin-actin 

(profilactin) complex. Interestingly, profilin binding also greatly facilitates nuclear 

export of actin, making complex formation of these two proteins a prerequisite for 

efficient nuclear export of both. Therefore I asked the question whether actin 

would accumulate in the nucleus of neurons under conditions of profilin nuclear 

accumulation, possibly due to either sequestering of profilin by nuclear binding 

partners or a general inhibitory effect on nuclear export. In this respect, it has 

recently been shown that a Drosophila profilin homologue is necessary for 

nuclear export (Minakhina et al., 2005). A widespread effect on nuclear transport 

following LTP stimuli has been demonstrated by Thompson and colleagues, who 

showed that importins translocate to the nucleus in response to strong NMDA 

receptor activation, effectively inhibiting further classical nuclear localization 

signal-dependent nuclear import (Thompson et al., 2004). Therefore also a 

general effect on nuclear export cannot be excluded a priori, however my data 

show no nuclear accumulation of actin-GFP or GFP-actin following NMDA 

receptor activation (III.1, Fig. 4). The mechanism of nuclear import of actin is 

unknown, although none of the actin isoforms contains a classical nuclear 

localization signal. Passive entry through the nuclear pore is possible, but other 

nuclear import pathways cannot be ruled out. 

 

The data presented in the results section argue for profilin nuclear accumulation 

being a consequence of less availability of actin for shuttling through the nucleus. 

A decrease in perinuclear actin leads to less actin entering the nucleus and 

supporting profilin export, thus causing profilin to accumulate in the nucleus over 

time. The reason for the decrease in perinuclear actin is the accumulation of 
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actin at the cell cortex in response to NMDA receptor activation, a very rapid 

process preceding profilin nuclear accumulation (III.1, Fig.5). A model illustrating 

these observations and their potential interplay is given in Figure D1: 

 

Figure D1: Model for cytoskeletal changes in response to NMDA receptor 

activation (hypothesis): Left, strong synaptic activity (lightning bolt) leads to 

opening of NMDA receptors and influx of calcium (Ca), which rapidly spreads 

throughout the cell (left, middle). Middle, in the soma actin (red) polymerizes at 

the cell cortex and therefore less actin is available to transport profilin (green) out 

of the nucleus. Right, consequently profilin accumulates in the nucleus, in 

addition to its targeting from the dendrite to activated synaptic sites.   

 

In my experiments, GFP-tagged γ−cytoplasmic actin showed activity-dependent 

redistribution to the cell cortex, although it cannot be ruled out that β−actin shows 

the same effect when tagged N-terminally with GFP (III.1., Fig. 4). However, 

there is reason to think that γ−actin may be the dominant isoform undergoing this 

redistribution in vivo, as γ−actin is expressed evenly throughout the cell while 

β−actin localizes to peripheral sites in neurites (Bassell et al., 1998; Micheva et 

al., 1998).  

GFP-tagged γ−actin shows a very rapid redistribution to the cell cortex in 

response to NMDA receptor activation and Ca2+ influx. What may be the 

mechanisms? To discuss this, I want to take a look at what we know about actin 

cytoskeleton regulation in response to calcium signals. 
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V.1.2. Calcium and the actin cytoskeleton 

 

Despite a number of actin binding proteins known to be regulated by Ca2+, a 

detailed understanding of the relationship of actin to calcium is still lacking. Actin 

binding proteins regulated by calcium (directly or indirectly) fall into a variety of 

categories, ranging from bundling proteins (α-actinin, spectrin, fimbrin) to 

severing proteins (gelsolin, ADF/cofilin), motor proteins (myosin), or proteins with 

mixed functions (calponin, gelsolin, caldesmon, ADF) (Dent and Gertler, 2003; el-

Mezgueldi, 1996; Mangeat and Burridge, 1984; Sarmiere and Bamburg, 2004; 

Silacci et al., 2004). This list is by no means complete but illustrates how difficult 

it is to predict the effect of a change in calcium concentration on actin filament 

assembly, as this will depend on the expression of calcium dependent actin 

regulatory proteins in a certain celltype or cellular subdomain, among other 

factors. 

One of the best studied systems for actin cytoskeleton changes in response to 

calcium is the neuronal growth cone, which uses actin filament regulation to steer 

axons in the direction of growth (Henley and Poo, 2004).  A rise in internal 

calcium in the growth cone inhibits retrograde actin flow (Welnhofer et al., 1999). 

Moreover, local calcium increase by calcium uncaging induces filopodia 

formation from axons near growth cones, indicating that calcium is capable of 

inducing actin polymerization (Lau et al., 1999). Conversely, an increase in 

calcium levels can also induce growth cone collapse by disruption of F-actin 

bundles (Zhou and Cohan, 2001). These results demonstrate that even within the 

same cellular domain, the actin cytoskeleton can react differently to a change in 

calcium levels, possibly due to different degrees of calcium increase (Henley and 

Poo, 2004). For actin accumulation at the cortex of the neuronal cell soma, the 

phenomenon presented in this work was previously observed by Furuyashiki and 

colleagues using slightly different cell culture systems and stimulation paradigms 

(Furuyashiki et al., 2002). A fast and reversible polymerization of actin at the cell 

cortex is in line with other reports showing that actin can undergo drastic 
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rearrangements on a very fast timescale (Dramsi and Cossart, 1998; Vicker, 

2002; Wang, 1991).   

 

Conversely, the actin cytoskeleton has been shown to influence intracellular 

calcium levels by regulating Ca2+ channels as well as Ca2+ release from internal 

stores (Lader et al., 1999; Leach et al., 2005; Rosado and Sage, 2000; Wang et 

al., 2002). Strikingly, the actin cytoskeleton has also been shown to influence 

Ca2+ dependent transcription. The transcriptional activity of NFAT (nuclear factor 

of activated T cells) is modulated by actin dynamics influencing the duration of 

intracellular Ca2+ increase in response to various stimuli (Rivas et al., 2004). This 

is one example of the translation of actin dynamics into gene expression patterns 

which I want to discuss further with respect to a putative role for nuclear profilin.  

 

V.1.3. The actin cytoskeleton and gene expression 

 

The cytoskeleton mediates changes in cell morphology in response to extra- and 

intracellular signals, often maintaining altered cell shapes for long periods of 

time. Actin assembly is regulated by controlling the balance between polymerized 

and non-polymerized actin, implying the need for new actin monomers in cells 

undergoing actin assembly (cf. chapter II.2). Therefore it has been proposed that 

general changes in the organization of the cytoskeleton can control cytoskeletal 

gene expression (Ben-Ze'ev, 1991). 

The actin gene itself, although often referred to as a “housekeeping gene” in 

gene expression studies, has been shown to be transcriptionally regulated in 

response to growth factor stimulation and adhesion to the substratum, both 

having an immediate effect on actin organization (Dike and Farmer, 1988; 

Farmer et al., 1983; Greenberg and Ziff, 1984).  

Experiments using actin-modulating drugs demonstrated that altered levels of 

monomeric actin are the most significant correlate for changes in expression of 

the actin and vinculin genes (Bershadsky et al., 1995). The primary transcription 

factor influenced by actin monomers was shown to be the serum response factor 
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(SRF) (Sotiropoulos et al., 1999). In fibroblasts, cytoplasmic actin monomers can 

bind to the SRF coactivator MAL, which is released and enters the nucleus upon 

integration of the actin monomer into filaments (Miralles et al., 2003). Of note, 

MAL can also enter the nucleus of cortical neurons in a Rho-dependent manner 

leading to modulation of SRF activity (Tabuchi et al., 2005). SRF in turn has been 

found to be necessary for expression of several neuronal immediate early genes, 

including c-Fos, Egr1/zif268, Arc and β-actin (Ramanan et al., 2005). 

These data suggest a model in which transcriptional modulators are sequestered 

in the cytoplasm and enter the nucleus upon actin polymerization. 

Adding to this, it is interesting to note that the actin-regulating protein migfilin also 

accumulates in the nucleus upon cytoplasmic calcium influx (Wu, 2005). 

Strikingly, migfilin contains a proline rich sequence analogous to profilin-binding 

proteins. In the nucleus, migfilin interacts with the transcription factor CSX/NKX2-

5 and increases its transcriptional activity in cardiomyocytes (Akazawa et al., 

2004). 

 

Profilin redistribution follows a similar pathway: Calcium influx leads to actin 

polymerization, which causes profilin to accumulate in the nucleus and enable it 

to interact with nuclear binding partners involved in gene expression. Thus it is 

tempting to speculate that profilin carries out a similar function in neurons as the 

other transcriptional modulators described above in various cell systems. 

However, knowledge about nuclear profilin binding proteins is not sufficient to 

suggest potential target genes. In the following section I will summarize the 

knowledge on nuclear profilin with respect to its possible involvement in gene 

expression. 

 

V.1.4. Gene expression in response to NMDA receptor dependent 

nuclear accumulation of profilin 

 

As the presence of actin in the nucleus has emerged to be not mainly an artifact 

but coupled to specific functions, nuclear actin-binding proteins (ABPs) have 
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been suggested to mainly serve the function of regulating actin (Gettemans et al., 

2005; Pederson and Aebi, 2005). On the other hand, nuclear ABPs may also be 

independent of actin in their nuclear function and primarily act via specific nuclear 

interaction partners of their own. These options are not mutually exclusive, since 

actin is thought to perform different nuclear functions involving distinct actin pools 

(cf. chapter II.2.4). These pools could involve distinct actin structures and 

therefore different binding partners, highlighted by the fact that different 

monospecific actin antibodies recognize distinct nuclear actin pools 

(Schoenenberger et al., 2005).  

In the case of profilin, regulation of actin-dependent transcription was the first 

nuclear function demonstrated, namely transcription of the respiratory syncytial 

virus genome (Burke et al., 2000). Since profilin is necessary for nuclear export 

of actin, a role in modulating actin functions by regulating nuclear actin levels 

seems obvious. However, the export model of Stuven and colleagues implies 

that profilin-actin complexes may be present inside the nucleus as long as the 

binding to exportin 6 is blocked by other interactions (Stuven et al., 2003).  

On the other hand, the interactions of profilin with survival of motor neuron 

protein (SMN) and the Myb-type transcriptional repressor p42POP, together with 

the direct influence of profilin protein on p42POP dependent repression in 

reporter gene assays, imply a role for actin-independent profilin interactions in 

nuclear profilin functions (Giesemann et al., 1999; Lederer et al., 2005).  

 

“Myb-type” transcription factors are defined solely by sequence homology to the 

myb proto-oncoprotein and have mainly been described in differentiating and 

proliferating cells (Oh and Reddy, 1999). They regulate distinct sets of target 

genes, highlighted by the fact that c-myb and its highly related viral homolog v-

myb display strikingly different transcriptional activities (Liu et al., 2005). 

Combined with the finding that myb DNA binding domains recognize sites 

defined by a highly abundant sequence (PyAACT/GG, Py=pyrimidine base) 

(Ganter et al., 1999), this demonstrates that it is not feasible to predict target 
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genes of a novel myb-type transcription factor exclusively by an in silico 

approach.  

 

The high expression level in brain and the direct modulation of activity by profilin 

make p42POP a good candidate for mediating profilin nuclear activity. However, 

the growing number of profilin ligands implies that other proteins might be 

functionally interacting with nuclear profilin. To this end, a collaboration with 

Michael Rebhan (FMI Bioinformatics) was set up to determine novel 

transcriptionally active profilin ligands. A set of genes implicated in transcription 

was screened by the following criteria: 

(1) presence of a poly-L-proline stretch of at least 10 prolines interrupted by only 

one other amino acid. 

(2) more stringent criterion: presence of a poly-L-proline stretch of at least 11 

prolines interrupted by only one other amino acid. 

(3) poly-L-proline site interrupted by no other amino acid than either glycine or 

leucine 

(4) expression in brain 

(5) absence of any defined secondary structure in regions around the poly-L-

proline site 

The reason for imposing these criteria on the genes was that a number of known 

profilin ligands fulfill them, according to analysis of their protein sequence and 

predicted structure (Michael Rebhan, personal communication).   

Additionally, genes and proteins fulfilling these criteria were screened for 

expression data in array experiments (GEO (Gene Expression Omnibus) 

database), known protein/protein interactions and cellular processes involved as 

being of interest with respect to a function in neurons.  

Table D1 lists the genes which fulfilled all the criteria mentioned and their known 

features/functions in relation to brain or neurons. 
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Uniprot 
accession # 

Gene name Fuzzpro 
10 P, 1 
mismatch 

Fuzzpro 
11 p, 1 
mismatch 

SymAtlas 
brain 
expression 

Poly-L-Proline 
interrupted by 
only G or L 

Q61329/Q15911 ATBF1, alpha-
fetoprotein 
enhancer binding 
protein 

+ + + + 

P17483 Homeobox 
protein Hox-B4 

+ + n.d. + 

Q9Y467 Zinc finger protein 
SALL2 
Spalt-like TF 

+ + + + 

Q61345 Foxd1 (Forkhead 
box protein D1) 

+ + +++ + 

 
 
Uniprot 
accession # 

SABLE 
No flanking 
2ndary 
structures (N-
term/C-term) 

Protein/protein 
interaction data 

GEO Homologues, cellular 
function, expression 

Q61329/Q15911 
(continued) 

10/100 Myb proteins Sp1 
transcriptional 
activation in 
myoblasts 

Myoblast differentiation, 
STAT3 pathway, liver 
regeneration, embryonic 
brain, cell differentiation, 
neuronal maturation 

P17483 
(continued) 

70/70 Other 
homeobox 
proteins 

Regulation by 
antipsychotic 
drugs 

Cell renewal and 
differentiation 

Q9Y467 
(continued) 

10/90 - Co-regulated 
with 
calsenilin1 

Highest levels in adult 
brain, probably TF 

Q61345 
(continued) 

100/130  Regulated in 
Circadian 
rhythm  
 

Predominantly 
expressed in brain and 
temporal half of the 
retina; early 
development 

 
Table D1: potential profilin ligands implicated in transcription. Abbreviations used: 

TF = transcription factor, STAT = signal transducer and activator of transcription. 

Adapted from Michael Rebhan (unpublished; personal communication) 

 

V.1.5. Profilin as a synaptic tag 

 

Taken together, published data on the p42POP-profilin interaction and the 

putative interactions above suggest a role for profilin in modulating transcription.  
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A function for profilin in gene expression would mean that this protein embodies 

properties of a molecule setting a synaptic tag (Frey and Morris, 1998a) and 

influencing the production of macromolecules enabling long-term plasticity as 

outlined in the introductory chapter II.2.5 (Fig. I1). However, profilin nuclear 

accumulation seems to be functionally linked to actin polymerization at the soma, 

not at distant spines where depletion of monomeric actin could hardly have an 

impact on nuclear export of profilin. Nevertheless, somatic actin polymerization 

could occur at functional synapses; axo-somatic synapses do occur on pyramidal 

neurons, but they tend to show anatomical aspects of inhibitory rather than 

excitatory synapses (Gray, 1959). It is tempting to speculate that nuclear profilin 

could influence cytoskeletal gene expression in a fashion similar to actin-filament 

assembly in other cell systems (Ben-Ze'ev, 1991). 

On the other hand, even if strong calcium influx mediated by NMDA receptors 

alters the cytoskeleton at somatic synapses, gene products expressed in 

response to activity can still target to distal sites. In fact, if profilin represents a 

synaptic tag, it would recruit macromolecules to synapses where it is enriched in 

an activity-dependent manner, which has so far only been described for spine 

synapses (Ackermann and Matus, 2003). One property of a synaptic tag is that it 

can promote long-term changes in transmission strength in the synapses 

expressing it. Consequently, synapses have been shown to be potentiated by 

stimuli normally insufficient for expression of LTP if paired with a strong stimulus 

converging on the same set of cells (Frey and Morris, 1997; Frey and Morris, 

1998b). The idea is that the “weak” stimulus sets a tag at its synapses which is 

only converted to a long-lasting change in transmission strength because the 

strong stimulus leads to activity-dependent gene expression. Thus the cellular 

mechanisms leading to synaptic tagging on the one hand and gene expression 

on the other may occur together in many cases of in vivo activity, but are not 

causally linked. In this respect, it is conceivable that in a culture system certain 

stimuli trigger gene expression but do not lead to synapse tagging, e.g. via the 

activation of extrasynaptic receptors. 
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Profilin is a good candidate as a putative synaptic tag, since its activity-

dependent concentration is restricted to spine heads. On the other hand, 

synaptic targeting has not been shown to be reversible so far which would not be 

in agreement with the current models of a temporally restricted tag (Frey and 

Morris, 1998a; Martin and Kosik, 2002). However, long-term reversibility following 

in vivo activity has not been investigated, leaving open the possibility that bath 

application procedures in a cell culture system may activate certain signaling 

pathways to a degree that does not allow recovery below a threshold level. 

Profilin, in contrast to other candidates for synaptic tags, has a potential impact 

on nuclear events and shows activity-dependent nuclear accumulation. This 

accumulation is reversible and can be re-induced (III.1, Fig.1), in agreement with 

the idea that different synapses within a cell could be potentiated at different 

times.  

In conclusion, profilin embodies several properties of a synaptic tag, yet work in 

organized tissue will be needed in the future to determine whether it fulfills all the 

criteria imposed on a synaptic tag from electrophysiological experiments. 

 

Of note, a nuclear function for profilin II may not be restricted to activity-

dependent gene expression in pyramidal neurons: Although profilin II is primarily 

expressed in neurons of the central nervous system, lower expression levels can 

be detected in thymus, spleen, kidney and gut (Witke et al., 2001). The isoform 

profilin IIb, created through alternative splicing, makes up only ca. 5% of total 

profilin II in brain tissue but can constitute more than 50% in kidney and ES cells 

(Di Nardo et al., 2000). Profilin IIb has been shown to possess severely reduced 

binding to actin and to phosphoinositides, which should lead to steady-state 

localization to the nucleus as shown for actin-binding mutants F59A and G120 F 

of profilin II (Di Nardo et al., 2000)(chapter III.1, Fig.4).   
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V.2. Outlook on future experiments 

 

The data presented in this thesis gives us some answers to the questions we 

asked before starting the project, but more significantly enables us to ask more 

precise questions for future work. As already mentioned in chapter III.2, activity-

dependent nuclear accumulation of profilin is a phenomenon which can be 

further investigated by the help of tools created in this work and provided by 

collaborators. In this section I try to outline approaches which I believe to be able 

to contribute to an understanding of the data presented in this thesis. 

 

V.2.1. The impact of actin polymerization on nuclear accumulation of 

profilin 

 

As described in chapter III.1, nuclear accumulation of profilin can be explained by 

activity-dependent polymerization of actin at the cell cortex. However, a direct 

link between these two observations would strengthen the argument made in 

chapter III.1 and the hypothesis put forward in V.1 that profilin is a mediator of 

changes in gene expression in response to alteration of actin filament assembly.  

Actin filament assembly can be influenced by cell-permeable drugs which can 

either decrease or increase the amount of actin filaments by different 

mechanisms. One interesting class of drugs with respect to the intended follow-

up experiments in this project are latrunculins, metabolites from the sea sponge 

Latrunculia magnifica (Spector et al., 1983), which bind actin monomers and 

prevent their incorporation into filaments (Coue et al., 1987). On the other hand, 

latrunculin does not interfere with actin-binding of profilin since the two binding 

sites do not overlap (Yarmola et al., 2000). However, it cannot be excluded that 

latrunculin would interfere with binding of profilin.actin to exportin 6. Therefore 

the use of another class of actin-depolymerizing drugs, cytochalasins, should be 

useful to confirm results obtained with latrunculins. Cytochalasins cap the barbed 

end of actin filaments, leading to net depolymerization from the pointed end and 

interference with actin-dependent processes (Cooper, 1987).  
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On the other hand, actin filament-stabilizing drugs such as phalloidins or 

jasplakinolide can be used to shift the equilibrium between filaments and 

monomers towards filaments (Estes et al., 1981; Visegrady et al., 2005). In 

conclusion, actin-depolymerizing drugs can be used to look for prevention of 

activity-induced nuclear accumulation of profilin, while actin filament-stabilizing 

drugs may induce nuclear accumulation in the absence of activity. The use of 

different classes of drugs to account for possible nonspecific effects of particular 

drugs is preferred.  

 

V.2.2. Long term changes in synaptic transmission strength and nuclear 

accumulation of profilin 

 

As already mentioned in introductory chapters, profilin is necessary for activity-

dependent stabilization of postsynaptic dendritic spines, a putative anatomical 

correlate of changes in transmission strength. The concomitant accumulation in 

the nucleus suggests an involvement in different aspects of long-term plasticity 

as put forward by the synaptic tagging hypothesis (cf. chapter II.2.5, Figure I1 

and chapter V.1.5). Therefore it is of interest to investigate the relationship of 

nuclear profilin and changes in transmission strength, long-term potentiation 

(LTP) and long-term depression (LTD).  The main model system for the cell 

biological work in this thesis have been hippocampal pyramidal neurons, and 

LTP and LTD in the hippocampus have been particularly well studied (Lynch, 

2004). LTP/LTD can be evoked in CA1 neurons by stimulation of the axon bundle 

(Schaffer collaterals) from CA3 neurons, an experiment which can be performed 

on acutely cut slices in vitro. Transgenic mice expressing profilin II-GFP as well 

as wild-type mice coupled with antibody staining can be used (cf. chapter III.2.1). 

Since profilin nuclear accumulation is rapidly reversible (chapter III.1., Figure 1) it 

is important to check profilin distribution at different points in time, also during the 

induction period. It is possible that a certain threshold of somatic calcium 

concentration necessary for nuclear accumulation of profilin is only reached 

temporarily. 
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On the other hand, it will be interesting to determine whether the expression of 

long term potentiation or depression is altered in profilin knockout mice. For 

instance, SRF knockout mice, which have impaired expression of several 

immediate early genes, show a reduction in both the early and late phase of LTP 

(Ramanan et al., 2005). In this respect, the absence of a putative synaptic tag 

and transcriptional modulator should have a profound effect on at least the late 

phase of LTP. However, care has to be taken with respect to upregulation of 

potentially redundant molecules such as profilin I. 

 

V.2.3. Experience-dependent plasticity and nuclear profilin 

 

Specific sensory experience leads to activity in defined neuronal pathways, which 

can be highlighted by staining for activity-dependently expressed genes such as 

c-Fos (cf. chapter III.2.3). In this context, it will be necessary to relate the 

accumulation of profilin in neuronal nuclei to neurons activated upon sensory 

experience in order to obtain an indication for the relevance of this phenomenon 

in vivo. Production of an isoform-specific antibody for tissue section stainings 

(chapter III.2.1) provides the technical prerequisite for performing these 

experiments. Behavioral paradigms which can be used to evoke activity in a 

known subset of neurons include whisker stimulation after trimming of certain 

whiskers, fear conditioning and dark/light rearing (Barth et al., 2000; Campeau et 

al., 1991; Mower and Kaplan, 1999; Staiger et al., 2002). Again, as mentioned in 

the section above, timing of analysis could be crucial in order to be able to 

visualize differences in nuclear profilin levels. 

 

V.2.4. Nuclear profilin and gene expression 

 

Chapter III.2.3 gave an introduction to my approach of looking at candidate gene 

expression in neurons. The rationale for choosing these genes has been outlined 

there, explaining the involvement of gene products in synaptic plasticity and their 

upregulation in response to both electrical and sensory stimulation. However, it is 
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likely that other genes not described so far are expressed in an activity-

dependent manner and can be influenced by putative transcriptional modulators 

such as profilin. Therefore a screening approach would add to an understanding 

of a possible role of nuclear profilin in gene expression. Microarray experiments 

provide a wealth of data; however, their results have to be evaluated by follow-up 

experiments with quantitative approaches such as real-time PCR (Rajeevan et 

al., 2001). Moreover, any readout on gene expression comparing tissue from 

wildtype and knockout animals (e.g., neuronal cultures from wildtype versus 

profilin II -/- mice) does not directly link the absence of the protein in question 

(i.e., profilin) to a nuclear function; a significant difference in expression of a 

specific gene may as well be due to influence on a cytoplasmic signaling 

pathway. For instance, neurons from profilin II knockout animals have been 

reported to show increased neurite branching during early development and 

increased endocytosis (Da Silva et al., 2003; Gareus et al., 2005). Therefore it is 

necessary to back up data obtained from studies of cells deficient in profilin II 

with data from cells showing increased nuclear profilin II. In this respect, the actin 

binding mutants F59A and G120 F (cf. III.1, Figure 3) may prove to be valuable 

tools. Candidate genes emerging from a screening approach could be tested for 

increased expression by antibody stainings on cells transfected with nuclear 

profilin mutants. 
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Appendix A:  Abbreviations used 

 

ABP   actin-binding protein 

AMPA   α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid 

APV   D(-)-2-amino-5-phosphopentanoic acid 

Arc   activity-regulated cytoskeletal-associated protein 

Ca2+   calcium 

CaMKII/IV  calcium/calmodulin-dependent protein kinase II / IV 

CMV   cytomegalovirus 

CREB   cAMP responsive element binding protein 

GABA   gamma-aminobutyric acid 

GAPDH  glyceraldehyde 3-phosphate dehydrogenase 

GFP   green fluorescent protein 

GST   glutathione-S-transferase 

HBSS   Hank’s balanced salt solution 

IPTG   isopropyl β-thiogalactoside 

kDa   kilodalton 

LTD   long term depression 

LTP   long term potentiation 

MAP kinase  mitogen-activated protein kinase 

MBP   maltose binding protein 

MEM   minimal essential medium 

n.a.   not applicable 

n.d.   not determined 

nm   nanometer 

NMDA   N-methyl D-aspartate 

μm   micrometer 

p42POP  partner of profilin, molecular weight 42 kDa 

PBS   phosphate-buffered saline 

PCR   polymerase chain reaction 

PIP2   phosphatidylinositol-4,5-bisphosphate 
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PLF   pore-linked filament 

ROCK   Rho-dependent protein kinase 

RSV   respiratory syncytial virus 

RT-PCR  reverse transcription polymerase chain reaction 

SDS-PAGE  sodium dodecyl sulfate –  polyacrylamide gel electrophoresis  

SEM   standard error of the mean 

siRNA   small interference ribonucleic acid 

SMN   survival of motor neuron protein 

SRF   serum response factor 

STAT   signal transducer and activator of transcription 

shRNA  small hairpin ribonucleic acid   

TF   transcription factor 
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