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Summary

An optimal in vitro permeability screening model for the evaluation of BBB drug

permeability accounts for active and passive transport processes, as well as for non-

defined drug-cell interactions. In addition, it should be as little laborious as possible,

and preferably from humans. Such an in vitro model would be an important tool for

the evaluation of BBB permeability in drug development. However, most of the

established in vitro models use cells of non-human origin, which is not optimal for the

prediction of brain permeability in humans. Therefore, we evaluated the immortalized

human brain capillary endothelial cell line BB19 as an in vitro model of the BBB.

BB19 cells are derived from human brain endothelium and are immortalized with

E6E7 genes of human papilloma virus. They express factor VIII-related antigen and

von Willebrand’s factor. Cells exhibit cobblestone-like morphology. However,

tightness of the cell monolayer had not been investigated so far. Restrictive tight

junctions are a prerequisite for drug transport studies. Therefore, the sucrose

permeability of BB19 cells on different filters was tested and compared to porcine

brain capillary endothelial cells. However, the tightness of BB19 cell monolayers was

insufficient and still needs further optimization. Furthermore, the ability of BB19 cells

to discriminate between the paracellular marker sucrose and the transcelluar marker

propranolol was tested in a transport assay. However, hardly any discrimination

between sucrose and propranolol (Papp = 1.30 x 10-5 vs. 2.18 x 10-5) was seen. The

effects of different supplements such as chlorophenylthio-cAMP with the

phosphodiesterase inhibitor RO-20-1724, dexamethasone, 1,25 dihydroxyvitamin D3,

and C6-conditioned medium on cell morphology, ZO-1 expression, and tightness of

the BB19 cell monolayers were investigated. Cells showed an improvement towards

a more primary BCEC morphology with C6-conditioned medium, dexamethasone,

and 1,25-dihydroxyvitamin D3. In a next step, we studied the expression of important

BBB transporters, such as P-gp, MRPs, SLCs, and BCRP. The presence of P-gp,

MRP4, and BCRP has been shown on mRNA level, by immunostaining, and Western

blot. MRP1, MRP2, MRP5, OAT3, and OAT4 were also detected by RT-PCR.

Functional properties of the BBB were shown with uptake of propranolol, morphine,

and sucrose. The uptake data was similar to the results gained from the established

porcine brain capillary endothelial cell model. Uptake studies with daunomycin and



Summary

11

the P-gp inhibitor verapamil showed functional activity of P-gp. We conclude that

BB19 cells might be feasible as a human in vitro model of the BBB for drug uptake

studies. However, for the assessment of transport studies, further improvements of

this model are necessary.

Furthermore, we assessed the expression and inducibility of CYPs, that may play a

role in the metabolism of CNS-active drugs, in BB19 cells. So far, only little is known

about the expression and functional role of CYPs at the BBB. The presence of

CYP1A1, and to a lower extent, of CYP3A4 could be shown on RNA level. Treatment

with benzo[a]pyrene induced the CYP1A1 transcript level approximately 11-fold,

whereas the treatment with rifampicin did not significantly change the expression

level of CYP3A4. CYP1A1 was also detected by immunostaining and Western blot.

However, no inducibility of CYP1A1 could be observed on protein level. No functional

activity could be shown in the P450-GLOTM assay.

Only little is known about the impact of P-gp for the distribution of neuroleptic drugs

into the brain. In collaboration with the Psychiatric Clinic of the University of Mainz,

Germany, the potential of neuroleptic drugs and drug metabolites to modulate P-gp

was studied in uptake and efflux assays in the P-gp overexpressing cell line

P388/mdr1. Aripiprazole and quetiapine, and to a lower extend risperidone, the

metabolite 9-OH risperidone, the metabolite norclozapine, and olanzapine could be

identified as P-gp inhibitors. Clozapine was a weak inhibitor of P-gp, while

haloperidol did not show any modulation of P-gp function.

In an industrial collaboration project, we evaluated the BBB permeability of different

preclinical CNS active compounds in porcine BCECs, and aimed to develop a

combined in vitro model, simultaneously studying BBB penetration and

pharmacolological effect.

The investigated preclinical compounds could be ranked according to their BBB

permeability in porcine BCEC.

Until now, drug candidates pass through a consecutive series of screening assays,

where in a first screening procedure the antagonism or inhibition of a receptor or

enzyme is tested in vitro. In a second step, the membrane permeability properties are

assessed in cell-culture models (White, 2000). However, CNS-active compounds first
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have to pass the BBB (which we assessed with the transport through porcine BCEC);

only this fraction will contribute to the effects on the receptor (which we obtained in a

target receptor screening assay). This situation was incorporated in our combined

approach, improving the screening–criteria for the selection of potential drug

candidates, by reason that a compound with a moderate pharmacological efficacy

(which usually is excluded from further screens), but with high BBB permeability,

might be a better drug candidate, than a compound with a high pharmacological

efficacy but poor BBB permeability properties.

In addition, knowing the dose-response relationship of a test compound in the target

receptor screening assay from a standard curve, we evaluated, whether it was

possible to directly estimate the extent of BBB permeability of a test compound in this

combined in vitro model, which could save elaborate analytical measurements.

In a first approach, we performed the transport of CNS active compounds from AP to

BL in porcine BCEC. The collected samples from the BL compartment were applied

in the target receptor screening assay. Our preliminary experimental results revealed

that this combined in vitro assay might be a promising new approach for the

identification of drug candidates. However, with the future goal of application in

industrial drug screening, extensive further opimization is necessary.
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1 Introduction

1.1 The blood-brain barrier

1.1.1 History

In the late 19th century, the German scientist Paul Ehrlich observed that systemic

injection of water-soluble dyes stained all organs except the brain and spinal cord

(Ehrlich, 1885). Subsequent experiments by his student Edwin Goldmann

demonstrated that in opposite, dyes that were injected into the brain did not stain any

of the peripheral organs. This provided the early evidence of a physical barrier

between the CNS and the peripheral circulation (Goldmann, 1909). Lewandowsky

(1900) was the first to use the term Blut-Hirn Schranke, while studying the limited

permeation of potassium ferrocyanate into the brain (Hawkins and Davis, 2005). The

current understanding of basic structures of the blood-brain barrier (BBB) is based

upon the general work of Reese, Karnovsky, and Brightman in the late 1960s. In

electron microscopy studies with mice, they demonstrated that the BBB exists as a

selective diffusion barrier, built by the brain capillary endothelial cells (BCEC), and is

characterized by the presence of tight cell-cell junctions (Reese and Karnovsky,

1967).

1.1.2 Anatomical description

The BBB is formed by brain capillary endothelial cells, which are surrounded and

supported by astrocyt foot processes and pericytes. Figure 1.1 shows a cross-

sectional representation of a brain capillary. The circumference of the capillary lumen

is enclosed by a single endothelial cell. The endothelial cells of the BBB are

distinguished from those in the periphery by increased mitochondrial content

(Oldendorf et al., 1977), a lack of fenestrations (Fenstermacher et al., 1988), minimal

pinocytotic activity (Sedlakova et al., 1999), and the presence of tight junctions (TJ),

which limit paracellular transport (Rowland et al., 1991). Pericytes are cells of

microvessels that wrap around endothelial cells, providing structural support.

Pericytes and endothelial cells share a common basal lamina, a membrane of 30 to



Introduction

18

40 nm thickness, composed of collagen type IV, heparin, sulphate proteoglycans,

laminin, fibronectin, and other extracellular matrix proteins (Farkas and Luiten, 2001).

Astrocytes are glial cells that wrap the cerebral capillaries continuously with their foot

processes (Goldstein, 1988).

Figure 1.1 Schematic cross-sectional representation of a cerebral capillary. Astrocyte end-feet are closely

applied to the endothelial cells and cover the entire basal surface area of the brain capillary

endothelial cells. The basal lamina surrounds pericytes and endothelial cells. From Rowland et

al., 1991

The BBB is present in all brain regions except for the circumventricular organs

including area postrema, median eminence, neurohypophysis, pineal gland,

subfornical organ, and lamina terminalis. (Ballabh et al., 2004).

1.1.3 Tight junctions

The junctional complex of the BBB comprises tight junctions (TJ) and adherens

junctions (AJ). TJs interlink between the plasma membranes of adjacent endothelial
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cells and limit the paracellular passage of molecules (Figure 1.2). In freeze-fracture

replica electron micrographs TJs are depicted as a set of continuous

intramembranous strands or fibrils. The TJ consists of three integral membrane

proteins, namely claudin, occludin, and junctional adhesion molecules (JAM), and a

number of cytoplasmic accessory proteins including the zonula occludens (ZO)

proteins ZO-1, ZO-2, ZO-3, cingulin, and others. Cytoplasmic proteins link membrane

proteins to actin, which is the primary cytoskeleton protein for the maintenance of

structural and functional integrity of the endothelium.

Claudins are the major components of TJ. They are 22 kDa phosphoproteins and

have four transmembrane domains. Claudins bind homotypically to claudins on

adjacent cells to form the primary seal of the TJ. The COOH-terminus of claudins

binds to cytoplasmic proteins, including ZO-1, ZO-2, and ZO-3 (Furuse et al., 1998,

Furuse et al., 1999). The presence of claudin-1 and claudin-5 has been described in

endothelial TJ forming the BBB (Liebner et al., 2000, Morita et al., 1999).

The integral TJ protein occludin is a 65 kDa phosphoprotein, which is significantly

larger than claudin. Occludin has four transmembrane domains, a long cytoplasmic

COOH-terminus, and a short cytoplasmic NH2-terminus. The cytoplasmic domains of

occludin are directly associated with ZO proteins (Hirase et al., 1997). The

expression of occludin has been documented in adult human brain (Papadopoulos et

al., 2001) but not in normal human newborn and fetal brain. Occludin appears to be a

regulatory protein that can alter paracellular permeability (Hirase et al., 1997).

The junctional adhesion molecules (JAM, 40 kDa), belong to the immunoglobulin

superfamily (Martin-Padura et al., 1998). They have a single transmembrane domain

and an extracellular domain with two immunoglobulin-like loops formed by disulfide

bonds. Three JAM proteins, JAM-1, JAM-2, and JAM-3 have been detected in rodent

brain sections. JAM-1 and JAM-3, but not JAM-2 are expressed in brain blood

vessels (Aurrand-Lions et al., 2001). The expression of JAM at the human BBB

remains to be explored.

Cytoplasmic proteins involved in TJ formation include zonula occludens proteins (ZO-

1, ZO-2, and ZO-3), cingulin, 7H6, and several others. They contain domains that

function as protein binding molecules and thus play a role in organizing proteins at

the plasma membrane, interacting directly with claudins, occludin, and JAM (Ebnet et

al., 2000, Itoh et al., 1999, Mitic et al., 2000). Actin, the primary cytoskeleton protein,

binds to the COOH-terminus of ZO-1 and ZO-2. This complex cross-links
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transmembrane elements and thus provides structural support to the endothelial cells

(Haskins et al., 1998).

Figure 1.2 Basic molecular organization of BBB tight junctions. From Hawkins and Davis, 2005.

1.1.4 Adherens junctions

Adherens junctions (AJ) are composed of the membrane protein cadherin that joins

the actin cytoskeleton via intermediary proteins, the catenins, to form adhesive

contacts between cells. AJs assemble via homophilic interactions between the

extracellular domains of calcium-dependent cadherin on the surface of adjacent cells.

The cytoplasmic domains of cadherins bind to the submembranal plaque proteins ß-

or -catenin, which are linked to the actin cytoskeleton via a-catenin. AJ components

including cadherin, a-actinin, and vinculin have been shown in intact microvessels of

the BBB in rat (Matter and Balda, 2003).
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1.1.5 Astrocyte-endothelial interaction

It is generally assumed that astroglia induce and maintain the barrier properties of

the brain capillary endothelium, improving BBB functions (Davson and Oldendorf,

1967), for a review see (Haseloff et al., 2005). The fact that astrocyte-conditioned

medium (ACM) induces junction formation in cerebral capillary endothelial cells in

vitro led to the search of one or more glia-derived soluble factors (Arthur et al., 1987,

Rubin et al., 1991). The bovine fibroblast growth factor (FGF) has been found to

increase the tightness of the BBB in vitro (el Hafny et al., 1996), which is consistent

with the observation that mutant mice lacking FGF-2 and FGF-5 show decreased

levels of tight junction proteins (occludin, ZO-1) and defects in the barrier function

(Reuss et al., 2003). Furthermore, the transforming growth factor-(TGF-), released

from astrocytes has been observed to mediate the regulation of certain EC proteins

(Tran et al., 1999). In addition, factor src-suppressed C-kinase substrate (SSeCKS)

has been shown to stimulate astrocytic expression of angiopoietin-1 and its secretion

into the medium. Treatment of endothelial cells with SSeCKS-conditioned medium

increases the expression of tight junctions and decreases the [3H]-sucrose

permeability (Lee et al., 2003).

Other authors claimed that the induction of BBB features depends on a close and

long lasting contact between astrocytes and capillary endothelial cells (Risau et al.,

1986, Stewart and Wiley, 1981), requiring their continuous presence in the medium.

In addition, a direct contact between endothelial cells and astrocytes has been

postulated to be essential (Tontsch and Bauer, 1991). Moreover, it has been reported

that BBB-related marker enzymes were only induced in subconfluent endothelial cells

(Meyer et al., 1991). However, the development of in vitro co-culture systems

consisting of endothelial cells and astrocytes (Dehouck et al., 1990, Stanness et al.,

1996), did not lead to unequivocal results. Cultured astrocytes were mainly derived

from newborn animals (favourite origin rat or mouse) and mostly represented type I

astrocytes in culture. Usually, these cells grow well under experimental conditions,

proliferate and allow passaging several times without loosing expression of glial

fibrillary acidic protein, a commonly monitored astrocytic marker. However, it is

unknown at present whether the expression profiles of other glia-specific markers

change during serial passaging of these cells, as it has been observed in cultured

endothelial cells, which are known to exhibit decreased activities of BBB-associated
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marker enzymes (such as -glutamyl transpeptidase) under culture conditions

(Mischeck et al., 1989, Ballabh et al., 2004).

Most of the data concerning endothelial-glial interaction has been obtained with

astrocytes and cerebral endothelial cells in vitro. However, in in vivo experiments,

were astroglial cells were selectively injured following chronic systemic injections of

the antimetabolite 6-aminonicotinamide in postnatal rats, no active role of astrocytes

in BBB function could be seen. The postnatal microvasculature continued to express

BBB markers robustly throughout the CNS without the influence of continuously

secreted, astrocyte-derived substances (Krum, 1996). An alternative possibility would

be that astrocytes mediate the removal of an internal blockade in the endothelium,

which prevents the expression of BBB proteins.

1.1.6 Pericytes and the blood-brain barrier

Pericytes are cells of microvessels, such as capillaries, venules, and arterioles that

wrap around the endothelial cells. They are thought to provide structural support and

vasodynamic capacity to the microvasculature. Metabolic injury to pericytes in

diabetes mellitus is inter alia associated with microaneurysm formation in the retina

(Kern and Engerman, 1996), which supports the view that pericytes play an essential

role in the structural integrity of microvessels. The role of pericytes in angiogenesis

and differentiation of the BBB has been studied in an in vitro culture model

(Ramsauer et al., 2002). This study suggests that pericytes stabilize capillary-like

structures formed by endothelial cells in culture with astrocytes by preventing

apoptosis of the endothelium. The fact that endothelial cells associated with pericytes

are more resistant to apoptosis than isolated endothelial cells further supports the

role of pericytes in structural integrity and genesis of the BBB. Other studies support

the concept that pericytes regulate angiogenesis and may play a role in BBB

differentiation (Balabanov and Dore-Duffy, 1998).

1.2 Other barriers in the brain

Besides the BBB, access to the brain is restricted by the blood-cerebrospinal fluid

barrier (BCSFB). This is a composite barrier comprising the choroid plexus and the

arachnoid epithelium, forming the middle layer of the meninges (Abbott, 2005, de
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Lange, 2004). The choroid plexus has fenestrated and therefore highly permeable

capillaries at the blood side, which are covered by a monolayer of epithelial cells that

face the cerebrospinal fluid (CSF). These epithelial cells form the basis of the barrier

function of the choroid plexus. The choroid plexus is present in the ventricles of the

brain as leaf like floating structures. It is the main source for cerebrospinal fluid

production (Cserr, 1971). The BCSFB resides between circulating blood and

circulating CSF, and therefore, soluble factors in these fluids may regulate the

function of this barrier. As well as the BCECs, the epithelial cells of the choroid

plexus are connected by tight junctions, restricting paracellular transport. The

organization of these tight junctions is parallel by sparsely interconnected strands,

which makes them slightly more permeable that those between the BCECs.

Furthermore both cell types express numerous transport systems for influx and/or

efflux of nutrients, metabolic products, xenobiotics, and ions (de Lange, 2004).

1.3 Drug transporters at the BBB

The BBB comprises a multitude of transporters, which limit the passage of

xenobiotics and endogenous substances, or allow the controlled passage of nutrients

and other substances from and to the CNS (de Lange, 2004, Fricker and Miller,

2004, Loscher and Potschka, 2005). Figure 1.3 illustrates the cellular localization of

selected drug transporters on brain capillary endothelial cells forming the blood-brain

barrier.
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Figure 1.3 Schematic diagram of selected drug transporters on brain capillary endothelial cells forming the

blood-brain barrier. The localization of OATP-A remains unclear.

1.3.1 ABC-Transporters

ATP-binding cassette (ABC) transporters play a major role for the distribution and

elimination of drugs from and to the brain. This large superfamily consists of

membrane proteins which are able to transport a wide variety of substrates across

membranes against concentration gradients with ATP hydrolysis as a driving force.

The human genome consists of 48 ABC genes, which can be classified into seven

subfamilies based upon gene structure, amino acid alignment, and phylogenetic

analysis (Dean, 2005, Loscher and Potschka, 2005). The following depiction focuses

on those members of these subfamilies that are expressed at the BBB (ABCB,

ABCC, and ABCG).

1.3.1.1 P-glycoprotein

The first identified and best studied ABC transporter is the MDR1 gene product P-

glycoprotein (P-gp, ABCB1). P-gp is a 170-kDa phosphorylated glycoprotein, which

acts as a multispecific, ATP-driven drug efflux pump (Sharma and Rose, 1995).

Overexpression of P-gp in tumor cells causes multidrug resistance in these cells

(Juliano and Ling, 1976). P-gp is expressed in endothelial cells of the blood-brain
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barrier. Several studies, comprising isolated membranes, freshly isolated endothelial

cells, isolated capillaries, and tissue slices, show a predominant distribution of P-gp

at the apical membrane (Beaulieu et al., 1997, Fricker and Miller, 2004, Jette et al.,

1993, Sugawara et al., 1990). Besides in humans, P-gp is expressed in BCECs of

other species, such as fish, birds, monkeys, rats, mice, cattle and pigs, protecting the

brain from lipophilic xenobiotics, which otherwise could penetrate the BBB by passive

diffusion. In rodents, the MDR1 gene is encoded by two genes (mdr1a, mdr1b) with

overlapping substrate specificity. While mdr1a is expressed in brain capillaries of

mice and rats, mdr1b is only found in brain parenchyma (Cordon-Cardo et al., 1989,

Thiebaut et al., 1989). In addition, P-gp is present in a variety of other tissues,

including epithelial cells of the liver, kidney, choroid plexus, colon, small intestine,

and adrenal gland (Chin and Liu, 1994).

P-gp has a broad substrate specificity including organic cations, weak organic bases,

some organic anions and some uncharged compounds, such as polypeptides and

polypeptide derivatives. Thus it appears that P-gp can handle various classes of

drugs including chemotherapeutics, immunosuppressants, antibiotics, anti-HIV drugs,

opioids, and calcium channel blockers (Fricker and Miller, 2004). Studies using

mdr1a/b gene knockout mice, show that P-gp deficient mice exhibit significantly

elevated drug levels, particularly in the brain (Schinkel et al., 1997, Schinkel et al.,

1994). On the other hand, there is a loss of protection and subsequent neurotoxicity

by the loss of P-gp function, which has been observed during the treatment of mdr1a

gene knockout mice with the antihelminthic ivermectin. The enhanced uptake

compared to ivermectin-treated control (wild type) mice, leads to significantly

elevated drug concentrations in the brain, resulting in dramatic neurotoxicity (Kwei et

al., 1999, Schinkel et al., 1994).

The first P-gp inhibitor described is the calcium channel blocker verapamil. It inhibits

the efflux of drugs that are P-gp substrates and restores drug sensitivity in multidrug-

resistant leukaemia cell lines (Tsuruo et al., 1981). Another first-generation inhibitor

is the immunosuppressive drug cyclosporine A. Both drugs are substrates of P-gp as

well, suggesting that they act as competitive inhibitors. However, due to low binding

affinities of these inhibitors, high doses causing toxic effects would be required for

the clinical use. Furthermore these first-generation compounds are unselective to P-

gp and inhibit cytochrome P450 3A (CYP3A) as well (Benet et al., 2004). Many P-gp

substrates are metabolized by CYP3A (e.g. cytostatic agents), where the
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coadministration of the substrate together with the first-generation inhibitor leads to a

decreased clearance, causing an additional degree of toxicity (Breedveld et al.,

2006). Second-generation inhibitors, e.g. valspodar (PSC833), are analogs of the

first generation of inhibitors, showing higher binding affinities and lower toxic effects.

They were initially developed to reverse multidrug resistance. However, the second

generation inhibits CYP3A as well, leading to a toxicity, that is unacceptable for

clinical use (Fischer et al., 1998). The third generation of P-gp inhibitors, such as

elacridar, zosuquidar, and tariquidar were developed with the goal to specifically

interact with P-gp (Mistry et al., 2001, Slate et al., 1995, den Ouden et al., 1996,

Martin et al., 1999). Preclinical studies have shown that their concomitant use with P-

gp substrates, such as paclitaxel, docetaxel, and imatinib, can improve the

distribution of these anticancer agents into the CNS (Kemper et al., 2003, Kemper et

al., 2004, Kemper et al., 2004, Dai et al., 2003). However, no clinical studies with

third generation inhibitors, investigating CNS penetration of drugs, have been

published so far.

Several xenobiotics, such as rifampicin, phenobarbital, dexamethasone, clotrimazole,

and reserpine are able to induce P-gp expression in vitro and in vivo, which can lead

to drug-drug interactions. Some inducers affect both P-gp and cytochrome P450

enzymes, causing drug-drug interactions involving both of these systems (Westphal

et al., 2000, Lin, 2003).

1.3.1.2 ABCC family (MRPs)

The multidrug resistance-associated proteins (MRPs, ABCC family) belong to the

ABC superfamily of membrane transporters. Until now, 13 members of this family

(including MRP1-9) have been identified (Conseil et al., 2005). However, compared

to P-gp, the data on these ABC transporters in the BBB is much more limited

(Loscher and Potschka, 2005). MRPs transport organic anions (e.g. methotrexate),

glutathione, glucuronide-conjugated compounds, various nucleoside analogs, but

also neutral drugs. Therefore P-gp and MRPs have an overlapping substrate

specificity, so that several drugs are substrates for both families (Borst et al., 2000,

Loscher and Potschka, 2005).
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The first discovered member of the ABCC family is MRP1 (ABCC1). It was identified

in cancer cells in 1992, but has also been detected ubiquitously in normal human

tissues (Zhang et al., 2004). MRP1 has been identified in bovine brain capillaries,

and in porcine BCECs by RT-PCR. The extent of MRP expression is variable and

depends on the culture conditions (Gutmann et al., 1999). Confocal laser scanning

microscopy and Western blot analysis showed a predominant distribution of MRP1 in

the apical membrane. In contrast, the localization of MRP1 in epithelial cells is

basolateral, which has been demonstrated in numerous studies in various epithelial

preparations (Zhang et al., 2004). However, the contribution of MRP1 to the BBB still

is controversial at this time. Studies in mrp1 gene knockout mice do not show any

differences in the transport kinetics for several MRP substrates compared to wild

type (control) mice (Cisternino et al., 2003).

Immunostaining, RT-PCR, and functional experiments demonstrated the presence of

MRP2 (ABCC2) in fish, porcine, rat, and human brain, and showed a localization on

the apical membrane of BCECs (Fricker et al., 2002, Miller et al., 2000, Miller et al.,

2002, Potschka et al., 2003). Furthermore, MRP2 is found in epithelial cells of the

liver, kidney and intestine of humans (Chu et al., 2006). Studies with mrp2-deficient

rat mutants (TR-) showed significantly enhanced phenytoin levels compared to

normal rats, indicating that MRP2 limits the distribution of this compound into the

CNS (Potschka et al., 2003).

Using primary cultured bovine brain microvessel endothelial cells and the capillary-

enriched fraction from bovine brain homogenates, RT-PCR analysis only showed low

levels of MRP3 (ABCC3) (Zhang et al., 2000). It is predominantly found in liver, gut

and kidney, where it is localized basolaterally (Kool et al., 1997), which has been

proposed for BCECs as well (Potschka et al., 2003). However, little is known about

the role of MRP3 at the BBB, so far.

MRP4 (ABCC4) has been detected in bovine brain capillaries by RT-PCR (Zhang et

al., 2000). Besides the brain, MRP4 is expressed in many other tissues, such as

lung, kidney, bladder, gallbladder, tonsil, skeletal muscle, pancreas, and prostate

(Schinkel and Jonker, 2003). Confocal laser scanning microscopy and Western blot

analysis showed an almost equal distribution of MRP4 on the apical and basolateral
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membrane of bovine BCECs, suggesting that MRP4 may influence substrate

transport both into and out of the brain (Zhang et al., 2004).

Using RT-PCR, MRP5 (ABCC5) and MRP6 (ABCC6) have been identified in cultured

bovine brain capillaries as well (Zhang et al., 2000). Besides the brain, MRP5 is

widely expressed throughout most tissues, whereas MRP6 is predominantly found in

liver and kidney (Borst et al., 2000, Kool et al., 1997). While the apical localization of

MRP5 has been clearly demonstrated in bovine BCECs by confocal laser scanning

microscopy and by Western blot analysis (Zhang et al., 2004), the proposed

basolateral localization of MRP6 (Loscher and Potschka, 2005) still needs to be

confirmed by further investigations, as well as the potential role of MRP5 and MRP6

at the BBB, which still remains unclear.

1.3.1.3 BCRP (ABCG2)

ABCG2 was first identified in a highly doxorubicin-resistant breast cancer cell line

(MCF-7/AdrVp), and was therefore named breast cancer resistance protein (BCRP)

(Doyle et al., 1998). Like all members of the ABCG subfamily, it is a ABC half-

transporter that forms a functional homodimer (Sugimoto et al., 2005). Besides the

BBB, BCRP is expressed in placenta, bile canaliculi, colon, and small intestine

(Doyle and Ross, 2003). The presence of BCRP at the BBB was first discovered in

porcine BCECs (Eisenblatter and Galla, 2002). Using RT-PCR and Western blot

analysis, the expression of BCRP was demonstrated in both normal and tumor

human tissue as well. Like P-gp, BCRP is localized at the apical surface of the

microvessel endothelium (Cooray et al., 2002). The substrate specificity of BCRP is

broad, comprising a wide variety of drugs (e.g. mitoxantrone, topotecan, and

prazosine), carcinogens and dietary toxins (van Herwaarden and Schinkel, 2006).

BCRP has several substrates in common with P-gp, such as doxorubicine,

daunorubicine, and rhodamine-123 (Doyle and Ross, 2003). Analysis of the total

mRNA pool indicates that the expression of BCRP in the BBB is higher than P-gp

and MRP1, therefore it was concluded that BCRP might play an important role in the

exclusion of xenobiotics from the brain (Eisenblatter et al., 2003).

A small number of BCRP inhibitors has been discovered recently as well (Ahmed-

Belkacem et al., 2006). The best studied so far is elacridar, which is an efficient
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inhibitor of P-gp as well (Breedveld et al., 2006). In vivo studies in mdr1a/1b gene

knockout mice with topotecan (which is a specific substrate of BCRP but not of P-gp)

show a six-fold increase of the plasma concentration of topotecan when

coadministered with elacridar. These observations may be a result from the inhibition

of BCRP in these P-gp knockout mice (Jonker et al., 2000). A more specific BCRP

inhibitor is fumitremorgin C, a fungal toxin derived from aspergillus fumigatus, which

can be used for pharmacological studies in vitro. However, due to its neurotoxicity,

no application in animals or humans is possible (Rabindran et al., 2000).

Furthermore, the proton pump inhibitor pantoprazole has recently been identified as

a specific BCRP inhibitor. Pantoprazole only has a minimal effect on CYP3A4 and

has been safely used in patients with peptic ulcers so far, which is a promising

prerequisite for its safe use in patients. A potential application may be the combined

use with anticancer agents, which could lead to an enhanced CNS penetration of

these drugs (Breedveld et al., 2006).

1.3.2 SLCs

The superfamily of solute carriers (SLC) includes ion coupled transporters, facilitated

transporters, and exchangers. During the last decade, 298 transporter genes have

been classified into 43 families of solute carriers (Hediger et al., 2004). The SLC

membrane proteins use chemical and/or electrical gradients to move molecules

across cell membranes. Na+ is the favoured cation to move solutes into cells,

whereas anion exchange moves solutes out of cells. Typical endogenous substrates

comprise amino acids, glucose, bicarbonate, bile acids, ascorbic acid, urea or fatty

acids. However, there is an involvement in drug transport and drug disposition as

well. Besides the brain, SLC membrane proteins can be found in kidney, liver, and

intestine. Here, we focus on solute carriers that have been identified at the BBB.

These SLCs are members of the SLCO (also known as OATP or SLC21) and

SLC22A (also known as OAT) family, and are characterized by their multispecificity.

Currently, the SLCO family includes fourteen members in rodents and human

(Kusuhara and Sugiyama, 2005). Two members of this family, human OATP-A

(alias, SLCO1A2, OATP1A2 or SLC21A3) and the rat Oatp2 (human homologue:

SLCO1B1 alias OATP2, OATP-C or SLC21A6) have been detected in brain



Introduction

30

capillaries by immunostaining (Gao et al., 1999, Gao et al., 2000). OATP-C is a

bidirectional transport protein, which is localized both on the apical and the

basolateral membrane of the endothelial cell. At present, neither the localization of

OATP-A, nor the role of OATPs for the BBB function are clear (Fricker and Miller,

2004).

The SLC22A family includes organic cation transporters, organic cation/carnitine

transporters and organic anion transporters. Among the SLC22A family, the organic

anion transporter OAT3 (SLC22A8) has been found at the BBB (Kusuhara and

Sugiyama, 2005). Immunostaining reveals a basolateral localization of OAT3 in rat

BCECs (Mori et al., 2003). OAT3 substrates include para-aminohippuric acid (p-AH),

benzylpenicillin, indoxylsulfate, and homovanillic acid (Kusuhara and Sugiyama,

2005). In vivo transport studies with p-AH in rats suggest that Oat3 plays an

important role in the elimination of this substrate from the cerebral cortex (Kakee et

al., 1997). However, the elucidation of the function of OAT3 at the BBB is still

ongoing.

1.4 Cytochrome P450 enzymes

Cytochrome P450 enzymes (CYP) are members of a superfamily of heme-containing

monooxygenases. Currently, approximately 50 CYP enzymes can be divided into 17

gene families. The families CYP1, CYP2, and CYP3 contribute to hepatic drug

metabolism, including many xenobiotics and endogenous, lipophilic substrates.

Although CYPs are primarily located in the liver, CYPs can be found in many other

organs, including lung, small intestine, and colon (Ding and Kaminsky, 2003).

However, the amount of total CYPs in the brain is only about 0.5-2% of that in liver

(Warner et al., 1988). Even though the actual role of brain CYPs remains to be

elucidated, local cerebral drug metabolism is thought to be likely, as CYP enzymatic

activity has been reported in human brain (Bhamre et al., 1993).

Typical CYP inducers, such as phenobarbital and phenytoin have been shown to

increase the expression of certain CYP isoforms in the brain. Therefore, it has been

suggested that the induction of brain CYPs has an impact on local drug metabolism

(Gervasini et al., 2004, Schilter et al., 2000). However, little is known so far about the

expression and functional role of CYPs at the BBB. Therefore in this thesis, we



Introduction

31

studied the amount and inducibility of selected CYP isoforms that may play a role in

the metabolism of CNS active drugs at the BBB with our human in vitro model, the

BB19 cells.

1.4.1 CYP1A

Both CYP1A1 and CYP1A2 are involved in the oxidation of a wide spectrum of

endogenous compounds and xenobiotics, and can be induced by polycyclic aromatic

hydrocarbons. CYP1A2 is involved in the metabolism of psychotropic drugs,

including amitriptyline, imipramine, fluvoxamine, clozapine, and olanzapine. The

presence of CYP1A1 and CYP1A2 has been confirmed in brain tissue, repeatedly.

However reports regarding their distribution in the brain are contradictory. Western

blot analysis revealed, that CYP1A1, but not CYP1A2, can be induced in the

arachnoid, dura mater, choroid plexus, pineal gland and pituitary, and might play a

role in the protection of the brain from xenobiotics (Morse et al., 1998).

1.4.2 CYP2D6

CYP2D6 is involved in the metabolism of a large number of psychoactive drugs,

including many antidepressants and neuroleptics, such as citaloprame, fluoxetine,

nortryptiline, haloperidole, thioridazine, among many others (Dahl and Bertilsson,

1993, Gervasini et al., 2004). CYP2D6 is one of the most polymorphic isoforms of the

cytochrome P450 enzymes in humans, resulting in poor, intermediate, efficient or

ultrarapid metabolizers of CYP2D6 substrates (Casner, 2005, Ingelman-Sundberg,

2005). CYP2D6 is expressed in specific cerebral regions and cell types, such as the

frontal cortex, putamen, hippocampus and Purkinje cells of the cerebellum (Siegle et

al., 2001, Miksys et al., 2002). It has been suspected that the well established

genetic variability of CYP2D6 in the liver may also exist in brain, leading to

interindividual differences in the metabolism of drugs in the CNS. However, this

presumption has not been proven yet, whereas conversely, quinidine, a specific

CYP2D6 inhibitor that does not cross the BBB, is able to impair the biotransformation

of codeine to morphine. (Gervasini et al., 2004, Kathiramalainathan et al., 2000).

CYP2D6 activity can also be modulated by a number of endogenous compounds.

Neurotransmitters and related substances, such as epinephrine, serotonin,
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tryptamine, and tyrosine, have shown to be potent inhibitors of CYP2D6 (Gervasini et

al., 2004). All these findings taken together indicate an important role of CYP2D6 in

the human brain.

1.4.3 CYP3A

The human CYP3A subfamily plays the most important role in the metabolism of

xenobiotics. The major isoform CYP3A4 accounts for about 30% of the total hepatic

CYPs. Other isoforms are CYP3A3, CYP3A5, and CYP3A7 (Gervasini et al., 2004).

About 60% of all drugs are metabolized by CYP3A, including many CNS active

drugs, such as antidepressants, antiepileptics, neuroleptics, and sedatives (Zhou et

al., 2005).

Several potent inducers of CYP3A are known, including rifampicin, dexamethasone,

and phenobarbital (Kato et al., 2005). CYP3A has been detected in human brain on

mRNA level, with highest amounts in the pons region (Farin and Omiecinski, 1993).

Furthermore, in vitro studies showed that CYP3A4 demethylates amitriptyline to

nortriptyline in rat and human brain microsomes (Voirol et al., 2000). These findings

may lead to the assumption that brain CYP3A may play a significant role in the

metabolism of CNS active drugs. However, the functional relevance of these findings

still needs to be proved.

1.4.4 Regulation of cytochrome P450 by nuclear receptors

The expression of CYPs is selectively regulated by ligand-activated nuclear

receptors. The pregnane X receptor (PXR), an orphan nuclear receptor, has been

shown to regulate the expression of CYP3A in mice, rats, and humans (Lehmann et

al., 1998, Mikamo et al., 2003). PXR ligands comprise a wide range of compounds,

including many steroids, antimycotics, and antibiotics (e.g. rifampicin). After

activation by the ligand, PXR forms heterodimers with the retinoic X receptor (RXR),

which is another nuclear receptor. This heterodimer binds to specific DNA

sequences, and regulates the expression of its target genes. In addition to CYP3A,

other targets of PXR are P-gp, other ABC transporters, and CYPs (Honkakoski and

Negishi, 2000, Lehmann et al., 1998).
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The constitutive androstane receptor (CAR) is another nuclear receptor. It plays an

important role in the regulation of CYP2B, CYP2C, CYP3A, and MRPs, among other

target genes. CAR is closely related to PXR. Besides showing a high sequence

homology, CAR and PXR share a similar mechanism of action by forming

heterodimers with RXR (Xiao et al., 2002, Tirona and Kim, 2005).

The expression of each member of the CYP1A family is inducible by the aryl

hydrocarbon receptor (AhR). After activation by a ligand, such as polycyclic aromatic

hydrocarbons (PAH), AhR heterodimerizes with the aryl hydrocarbon nuclear

translocator and activates the transcription of its target gene (Denison and Whitlock,

1995).

1.5 Models for the prediction of BBB permeability

In drug discovery and development, the investigation of BBB permeability is

demanded for CNS-active drug candidates, as well as for drug candidates with non-

CNS indications. However, poor BBB permeability is recognized to be one of the

leading causes of failure in the development of CNS-active drugs. This has led to the

development of different in vitro, in vivo, and in silico methods for the assessment of

BBB drug permeability.

1.5.1 In vitro models

Isolated brain capillaries were the first in vitro model of the BBB. Viable capillaries

can be isolated from brain tissues of various species. The BBB-specific gene

expression of endothelial receptors and carriers of these isolated brain capillaries

remains close to the in vivo situation. They can be used for binding and uptake

assays and to study BBB transport systems for nutrients and peptides at the mRNA

and protein level (Pardridge, 1998). However, isolated brain capillaries are not

metabolically viable and have very low levels of ATP (Pardridge, 1999, Lasbennes et

al., 1983). Another disadvantage of isolated brain capillaries is a high potential of

contamination of the preparation by other brain-derived cells (Takakura et al., 1991).

The successful isolation and culturing of brain capillary endothelial cells (BCEC) in

the 1980s led to the development of cell culture systems for the assessment of
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BBB drug permeability in vitro (Pardridge, 1998). Up to the present, a wide rage of in

vitro models, including primary or immortalized brain capillary cells from different

species have been established (Bickel, 2005, Gumbleton and Audus, 2001). Some

groups even use cell lines of non-cerebral origin, such as the Madin-Darby canine

kidney (MKCK) cells (Veronesi, 1996) or the human Caucasian colon

adenocarcinoma (Caco-2) cell line (Lohmann et al., 2002). BCEC monolayers can be

cultured on permeable filters, which allows the study of bidirectional substance

transport from the apical to the basolateral side, and vice versa.

Primary cultures of BCECs can be obtained from many species, including rat,

mouse, dog, or primate. However, cells of porcine and bovine origin are the most

commonly used, as only these sources provide adequate quantities for a sufficient

number of permeability experiments (Bickel, 2005). These cells maintain most of the

in vivo BBB features, however some transporters are downregulated, as for example

the glucose transporter 1 (GLUT1), which is suppressed 150-fold in bovine BCECs

compared to the in vivo level (Boado and Pardridge, 1990). Some groups use co-

cultures with astrocytes or glioma cell lines (Dehouck et al., 1990, Boveri et al., 2005)

or add astrocyte conditioned medium to improve the tightness of the BBB (Shivers et

al., 1988).

In this thesis, the porcine BCEC model was applied for the study of BBB permeability

of different CNS active preclinical substances provided by an industrial collaboration

partner. Therefore we investigated the bidirectional transport of these compounds in

this in vitro model of the BBB.

A major drawback for the use of such systems as in vitro screening models for BBB

permeability is that the preparation is time consuming and requires considerable

technical resources. In addition, the function of primary cultures of BCECs may vary

from batch to batch (Terasaki et al., 2003). Furthermore, due to ethical

considerations, these cells cannot be obtained from humans.

Immortalized BCEC lines have the advantage that the generation of a sufficient

amount of cells for high-throughput screening is less laborious compared to primary

endothelial cells. However, the so far characterized immortalized cell lines fail to

generate a sufficiently restrictive paracellular barrier for the use in transendothelial

permeability investigations (Gumbleton and Audus, 2001). An efficient and predictive
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in vitro permeability screening model, based on immortalized human BCECs, would

be an important tool for the evaluation of BBB permeability in drug development. In

this thesis, we evaluated the immortalized human brain capillary endothelial cell line

BB19. This cell line has been used to study cytoadherence of Plasmodium

falciparum-infected erythrocytes in vitro (Prudhomme et al., 1996). BB19 cells are

derived from human brain endothelium and are immortalized with E6E7 genes of the

human papilloma virus. They express factor VIII-related antigen and von Willebrand’s

factor. Cells exhibit a cobblestone like morphology. However tightness of BB19

monolayers had not been investigated so far.

1.5.2 In vivo models

A common method for the assessment of BBB permeability is the intravenous

administration of a test substance into an animal. After a single bolus injection of a

radiolabeled test compound, the animal is decapitated and the brain tissue is

analyzed for radioactivity (Mater et al., 1959). Tissue uptake can also be measured

over long periods using constant rate infusion. This method fully represents

physiological conditions and offers simple technical handling. However, elaborate

analytics are required, to exclude metabolite uptake (Bickel, 2005).

Metabolism in other organs is excluded with the brain uptake index (BUI) technique.

In this method, a rapid bolus injection of radiolabeled test and reference substances

is injected into the common carotid artery of anesthetized animals (Oldendorf et al.,

1982, Oldendorf, 1970). The procedure is relatively fast and permits to analyze the

effects of a wide range of modifications of the injectate composition, such as pH,

osmotic pressure, or protein binding (Bickel, 2005).

A higher sensitivity compared to the BUI can be achieved with the brain perfusion

method. This method uses a retrograde catherization of the carotid artery in the

anesthetized animal, and ligation of all branches of the external and internal carotid

artery. Subsequently, the perfusion with an oxygenated buffer, containing the test

substance, is initiated. The cerebrovascular permeability can be estimated from the

brain parenchymal uptake of the test substance (Takasato et al., 1984). However,

this method is technically more difficult compared to the BUI technique.
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In the last decade, the microdialysis technique has increasingly been applied. In

this method, a microdialysis probe is implanted into the brain. After administration of

the drug, the dialyzed drug from the extracellular fluid into the probe can be

measured. This method allows repeated or continuous sampling in freely moving

animals. However, major disadvantages of this technique are the variability of the

results depending on the localization of the probe, and an invasive procedure

causing traumatic injury (Aasmundstad et al., 1995, Westergren et al., 1995).

The latest method used to study transport across the BBB in vivo is positron

emission tomography (PET). This non-invasive technique can be applied in

humans. After intravenous injection of the radiotracer, the subject is positioned in a

PET scanner, which can detect positrons emitted by the radiotracer. Additional to the

assessment of BBB permeability, PET provides information about region-specific

drug distribution in the brain (Webb et al., 1989). Limitations of this methods include

a short half-life of the isotope, high cost of the instrumentation, and the lack of

differentiation between parent drug and metabolites (Bonate, 1995).

1.5.3 In silico models

In silico models ought to predict BBB permeability from chemical structures. For the

development of these computational models, experimental brain uptake data is

correlated with molecular properties, such as lipophilicity and molecular weight

(Goodwin and Clark, 2005, Clark, 2003). So far, only passive permeability at the BBB

has been modelled, because the knowledge about the relationship between

molecular structure and active or facilitated transport is still limited (Bickel, 2005).

Thus, in silico models may be a useful tool for the initial screening of lead

compounds to predict passive BBB permeability. However, up to the present, these

models do not substitute in vitro or in vivo models of the BBB.
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1.6 Models for the assessment of drug efflux transporter

activity

Efflux transporters do not only influence the brain uptake of drugs, but also the

absorption, elimination, and distribution into other tissues besides the brain.

Therefore numerous in vitro and in vivo models have been developed for the

identification of drugs that interact with drug efflux transporters, particularly for P-gp

(Zhang et al., 2003) .

1.6.1 In vitro models

In general, three groups of in vitro systems for the assessment of P-gp drug efflux

have been described, namely uptake/efflux, transport, and ATPase activity.

Uptake and Efflux studies can be performed with cell suspensions, cell

monolayers, or membrane vesicle preparations. For uptake and efflux studies, the

uptake or efflux of a fluorescent or radioactive P-gp substrate into cells or vesicles is

monitored under control conditions and in the presence of P-gp inhibitors or test

substances. In this thesis, we used a murine mdr1a/1b overexpressing monocytic

leukaemia cell line (P388/mdr1) and the corresponding parental cell line (P388/par),

and a human T-lymphocytic leukaemia cell line overexpressing MDR1 (CCRF-

CEM/MDR1) and the corresponding parental cell line (CCRF-CEM/Par), which all are

suspension cells (Pourtier-Manzanedo et al., 1992). This in vitro system was applied

for the identification of P-gp inhibitors among selected neuroleptic drugs and drug

metabolites. Therefore, we studied the influence of these compounds, on the uptake

and efflux of the fluorescent P-gp substrate rhodamin123.

Transport assays for P-gp drug efflux can only be performed in P-gp expressing

cells forming functionally polarized cell monolayers with highly restrictive tight

junctions. Bidirectional transport of test substances from the apical to the basolateral

side, and vice versa, can be studied under control conditions and in the presence of

P-gp inhibitors (Drewe et al., 1999, Zhang et al., 2003, Schwab et al., 2003).

The transport assay with porcine BCEC was applied for the identification of P-gp

substrates among selected neuroleptic compounds. Therefore, we studied the
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influence of verapamil, a P-gp inhibitor, on the BBB permeability of neuroleptic

compounds in porcine BCEC.

The ATPase assay is another in vitro assay to determine if a drug interacts with P-

gp. During drug transport, ATP is hydrolyzed to ADP and inorganic phosphate, by the

P-gp ATPase, which can be detected colorimetrically. Interacting test drugs modulate

the activity of the P-gp, resulting in the modulation of the rate of ATP hydrolysis. This

is a commercially available assay, which is performed with cell membrane

preparations enriched with human P-gp. However, a high intra- and inter-assay

variability has been reported for this assay (Orlowski et al., 1996, Zhang et al., 2003).

1.6.2 In vivo models

The influence of P-gp on drug disposition into the brain can be studied with P-gp

gene knockout mice. As described earlier in chapter 1.3.1.1, in mice, P-gp is

encoded by mdr1a and mdr1b. Only mdr1a is found at the BBB. There are single

knockout mice, lacking mdr1a (Schinkel et al., 1994), as well as double knockout

mice, lacking both mdr1a and mdr1b (Schinkel et al., 1997). Both types of knockout

mice have been used extensively for the evaluation of brain accumulation of drugs. It

has been shown in mdr1a and mdr1a/1b gene knockout mice that brain uptake of P-

gp substrates can increase up to 100-fold compared to wild type mice (Schinkel and

Jonker, 2003, Thompson et al., 2000). However, there are limitations of knockout

mice. The absence of a gene may lead to a compensatory upregulation of other

related genes, such as mrp1 and bcrp (Johnson et al., 2001, van der Deen et al.,

2005). Furthermore, due to ubiquitous expression of P-gp, its removal will affect other

tissues than the brain, which may lead to altered pharmacokonetics, lack of viability,

or systemic toxicity (Zhang et al., 2003).
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1.7 Applications of in vitro models

1.7.1 Neuroleptic drugs

Between 20-40% of schizophrenic patients are resistant to neuroleptic medication,

even when these drugs are administered at maximum tolerated doses. Although the

underlying causes of insufficient drug response are still unclear, there are numerous

suspected assumptions, including neuropsychological impairment and abnormal

brain morphology (Hellewell, 1999). Another possible explanation may be the

modulation of brain uptake of neuroleptic drugs by P-gp. The modulation of P-gp

activity may furthermore lead to pharmacokinetic drug-drug interactions, which could

affect the safety and efficacy of neuroleptic drugs. Therefore, there is an increasing

interest in the elucidation of the influence of P-gp on the distribution of neuroleptic

compounds into the brain. There is increasing evidence from in vitro assays that

neuroleptic drugs may modulate P-gp activity. Haloperidol and quetiapine, and to a

low extend clozapine, and its metabolite norclozapine, have been identified as P-gp

inhibitors in a radioligand displacement assay in vitro (El Ela et al., 2004). Quetiapine

and risperidone, and to a lower extend olanzapine, were identified as P-gp substrates

in an ATPase assay, whereas clozapine and haloperidol only showed very weak

activity in this assay (Boulton et al., 2002). Other experiments using the ATPase

assay with risperidone and its major metabolite 9-OH risperidone showed that

risperidone is a better P-gp substrate than 9-OH risperidone, which was confirmed in

experiments with mdr1a gene knockout mice (Ejsing et al., 2005). However, only little

is known about the impact of P-gp for the distribution of neuroleptic drugs into the

brain (El Ela et al., 2004).

In this thesis, we investigated the influence of the following neuroleptic compounds

(provided by the Psychiatric Clinic of the University of Mainz, Germany) on uptake

and efflux of rhodamin123 in P388/mdr1 cells (Figure 1.4): aripiprazole, clozapine

and its metabolite norclozapine, haloperidol, quetiapine, ziprasidone, risperidone and

its metabolite 9-OH risperidone, and olanzapine.
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2 Aim of the thesis

The major aim of this thesis was the evaluation of the immortalized human brain

capillary endothelial cell line BB19 as an in vitro model of the BBB. An efficient and

predictive in vitro permeability screening model, based on immortalized human

BCECs, would be an important tool for the evaluation of BBB permeability in drug

development.

Therefore, the following investigations were conducted during this project:

 The tightness of the cell monolayers and the ability of BB19 cells to

discriminate between transcellular and paracellular markers were studied.

 The effects of specific cell culture supplements on cell morphology, ZO-1

expression, and tightness of the BB19 cell monolayers were investigated.

 The expression of important BBB transporters was studied.

 It was determined if the BB19 model exhibits functional properties of the BBB.

 Expression and inducibility of CYPs were assessed.

In addition, different in vitro models were applied for the assessment of BBB drug

permeability in the following projects:

 In collaboration with the Psychiatric Clinic of the University of Mainz, Germany,

the potential of neuroleptic drugs to modulate P-gp function was studied.

 The BBB permeability of different CNS active compounds was evaluated in an

industrial collaboration project.

In a further industrial collaboration project we aimed to develop a combined in vitro

model, simultaneously studying BBB penetration and pharmacological effect.
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3 Materials and methods

3.1 Materials

RO-20-1724 and 1,25-dihydroxyvitamin D3 were kindly provided by Roche

Pharmaceuticals, Basel, Switzerland. All other chemicals were purchased from

commercial sources at the highest purity available.

3.2 Evaluation of BB19 cells

3.2.1 BB19 cells

BB19 cells, human BCECs immortalized with the E6E7 genes of human papilloma

virus, were kindly provided from Jacques G. Prudhomme, Department of Biology,

University of California, Riverside, U.S.A. The cell line (passage 11-13) was cultured

as monolayer culture (cell culture medium: MEM, 0.5 mM sodium pyruvate, MEM non

essential amino acids, and 50 µg/ml gentamicin, containing 10% heat inactivated

fetal bovine serum (FBS, Invitrogen, Basel, Switzerland)).

Cells were seeded onto culture surfaces precoated with 2 µg/cm2 rat tail collagen at a

density of 100,000 to 150,000 cells/cm2 and were cultured in an incubator at 37C

with 5% CO2, 95% fresh air and saturated humidity. Cell culture medium was

changed every 2 to 3 days. Cells attached to the cell culture surfaces within one day,

and started to grow after the second day in culture.

For transport assays, cells were seeded with a density of 100,000 cells/cm2 onto BD

FalconTM polyethylene terephthalate (PETE) culturing inserts (0.4 µm pore size, 0.9

cm2 growth area) or on Transwell® polycarbonate filters (0.4 µm pore size, 1 cm2

growth area), both precoated with 10 µg/cm2 rat tail collagen, cultured under

standard conditions. Transport assays were performed at confluency, after 5 days in

culture. For immunostaining, BB19 cells were seeded onto chamber slides (Nunc,

Naperville, IL, U.S.A.) precoated with rat tail collagen (20 µg/cm2) and poly-D-lysine

(10 µg/cm2) at a density of 100,000-200,000 cells/cm2.
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3.2.2 Porcine BCEC

Primary cultures of porcine brain capillary endothelial cells were prepared as

described (Audus and Borchardt, 1986) with the following modifications: Cortical grey

matter from six freshly obtained porcine brains was minced and incubated in MEM

(Invitrogen) containing 0.5% dispase (Roche Diagnostics AG, Rotkreuz, Switzerland)

for 2 hours. Cerebral microvessels were obtained after centrifugation in MEM

containing 1 mg/ml collagenase/dispase (Roche Diagnostics AG) for 4.25 hours. The

resulting cell suspension was supplemented with 10% horse serum and filtered

through a 150-µm nylon mesh. BCECs were isolated on a continuous 50% Percoll

gradient (Pharmacia, Uppsala, Sweden) (centrifugation at 1000×g for 10 minutes).

For transport assays, isolated endothelial cells were seeded onto BD FalconTM PETE

cell culture inserts with 0.4 µm pore size and 0.9 cm2 growth area (BD Biosciences

Discovery Labware, Le Pont de Claix, France) coated with 2 µg/cm2 rat tail collagen

(Roche Diagnostics), with a density of 100,000 cells/cm2 or on Transwell®

polycarbonate filters (Costar, Cambridge, MA, U.S.A) with 0.4 µm pore size and 1

cm2 growth area coated with 2 µg/cm2 rat tail collagen, in 12-well plates and cultured

under standard cell culture conditions (Audus and Borchardt, 1986) (cell culture

medium: 45% MEM, 45% Ham’s F-12, and 20 mM HEPES and 100 µg/ml gentamicin

containing 10% heat activated horse serum, (all Invitrogen)). Transport experiments

were performed at confluency after 7 days in culture.

3.2.3 Conditioned medium

To test the influence of different supplements on the expression of tight junction

proteins, BB19 cells were seeded onto chamber slides, and at the third day of

culture, 10 µM dexamethasone, 0.5 µM 1,25-dihydroxyvitamin D3, 250 µM

chlorophenylthio-cAMP (all Fluka Chemie GmbH, Buchs, Switzerland) with 35 µM

RO-20-1724, or C6-conditioned medium taken from an astrocyte culture (mixed 1:1

with culture medium) were added to the culture medium. The influence on P-gp and

BCRP expression was tested with 10 µM rifampicin. Cells were incubated with these

factors for 72 hours.
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3.2.4 RT-PCR

Total RNA was isolated from confluent monolayers of BB19 cells using the RNeasy

Mini Kit (Qiagen, Hilden, Germany). After DNase I digestion the RNA was quantified

with a GeneQuant photometer (Pharmacia). The purity of the RNA preparations was

high, as demonstrated by the 260 nm/280 nm ratio (range 1.8-2.0). One µg of total

RNA was reverse transcribed with Superscript II (Invitrogen) according to the

manufacturer’s protocol, using random hexamers as a primer. A total of 25 ng cDNA

was used as a template for PCR with a set of primers. Primers (Table 3.1) were

designed with the assistance of Primer Express software (Applied Biosystems,

Rotkreuz, Switzerland). Primers were synthesized (Invitrogen) for the following

genes: multidrug resistance-associated proteins (MRP1-5), organic anion

transporting polypeptide (OATP-A) organic anion transporter (OAT1, OAT3, and

OAT4) and breast cancer resistance protein (BCRP). Glyceraldehyde phosphate

dehydrogenase primers (GAPDH) were used as an internal control.

The primers for RT-PCR of P-gp (MDR1) were synthesized according to the original

sequence of Limtrakul and colleagues (Limtrakul et al., 2004) the primers for OATP-

C were synthesized according to the original sequence of Briz and colleagues (Briz

et al., 2003).

PCR was performed with a thermocycler (Biometra, Göttingen, Germany). Each

sample was amplified for 40 cycles (94°C for 30s, 60°C for 40s, 72°C for 60s). The

reaction mixture contained 2.5 µl of the cDNA template, 0.625 U AmpliTaq gold DNA

polymerase (Applied Biosystems), 2.5 µl 10x PCR buffer (Mg2+ -free, Applied

Biosystems), MgCl2 at a final concentration of 3 mM, 2 µl of dNTP reaction mixture

(2.5 mM each, Applied Biosystems), 7.5 pmol of each primer and water to a final

volume of 25 µl. As negative control, not reverse transcribed RNA was used. The

PCR products were separated by gel electrophoresis in 1.5% agarose and visualized

by UV in the presence of ethidium bromide.



Materials and methods

45

Primer Access. no. Sequence Size (bp)

GAPDH M17851 Forward: 5’-GGTGAAGGTCGGAGTCAACG-3’

Reverse: 5’-ACCATGTAGTTGAGGTCAATGAAGG-3’

577

MDR1 Limtrakul et al., 2004 Forward: 5’-GCCTGGCAGCTGGAAGACAAATACACAAAATT-3’

Reverse: 5’-CAGACAGCAGCTGACAGTCCAAGAACAGGACT-3’

283

MRP1 NM_004996 Forward: 5’-CACACTGAATGGCATCACCTTC-3’

Reverse: 5’-CCTTCTCGCCAATCTCTGTCC-3’

317

MRP2 NM_000392 Forward: 5’-CCAATCTACTCTCACTTCAGCGAGA-3’

Reverse: 5’-AGATCCAGCTCAGGTCGGTACC-3’

473

MRP3 AF085690 Forward: 5’-TCTATGCAGCCACATCACGG-3’

Reverse: 5’-GTCACCTGCAAGGAGTAGGACAC-3’

328

MRP4 AF071202 Forward: 5’-AAGTGAACAACCTCCAGTTCCA-3’

Reverse: 5’-CCGGAGCTTTCAGAATTGAC-3’

518

MRP5 NM_005688 Forward: 5’-CTAGAGAGACTGTGGCAAGAAGAGC-3’

Reverse: 5’-AAATGCCATGGTTAGGATGGC-3’

333

OATP-A U21943 Forward: 5’-CTGTCAAACAAGCTGCCCACA-3’

Reverse: 5’-GAATACAGCTGCAATTTTGGAACAC-3’

497

OATP-C Briz et al., 2003 Forward: 5’-TGTCTTTGCATGTGCTGGAAA-3’

Reverse: 5’-TTGCCACTTGAAGATTTGCAAC-3’

604

OAT1 AB009697 (004790) Forward: 5’-GCCACTAGCTTTGCATACTATG-3’

Reverse: 5’-CTCTTGTGCTGAGGCCTG-3’

636

OAT3 AB042505 Forward: 5’-TCTTGGCTCTCACCTTTGTGC-3’

Reverse: 5’-GATAGGCATCCCTTCCCAAAC-3’

459

OAT4 AB026116 Forward: 5’-GCCTCGCCATTCTAGCCAA-3’

Reverse: 5’-CAAAGACCACACGCAGGGT-3’

383

BCRP AY289766 Forward: 5’-TTTCAGCCGTGGAACTCTTT-3’

Reverse: 5'-TGAGTCCTGGGCAGAAGTTT-3'

462

Table 3.1 Primer sequences used for RT-PCR

3.2.5 Immunocytochemistry

For immunostaining, BB19 cells, grown in Chamber Slides (Nunc, Wiesbaden,

Germany), were used. Cells were washed twice with PBS and fixed for 20 minutes

with 4% (w/v) paraformaldehyde in PBS. Subsequently, tissues were permeabilized

for 5 minutes with 0.5% (v/v) Triton X-100 in PBS and washed twice again with PBS.

For immunostaining, cells were incubated for 2 hours at 37C in a humid chamber

with the primary antibody dissolved in PBS supplemented with 3% (w/v) FBS. After

washing twice with PBS, the fluorochrome conjugated secondary antibody dissolved

in PBS supplemented with 3% (w/v) BSA was added for 1 hour at room temperature,

in a humid chamber and in the dark. Stained cells were then washed twice with PBS

and mounted with FluorSave (Calbiochem, San Diego, CA). Fluorescence stained
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cells were examined on a confocal Zeiss LSM 150 inverted laser scanning

microscope (Carl Zeiss, Oberkochen, Germany).

Primary antibodies used for these experiments were the murine monoclonal

antibodies (Mab) JSB-1 (2.5 µg/ml; ALEXIS, Lausen, Switzerland), or C219 (5 µg/ml,

ALEXIS) directed against P-gp, a murine Mab to MRP1 (MRPr1, 10 µg/ml; ALEXIS),

a murine Mab to MRP2 (M2I-4, 2.5µg/ml, ALEXIS), a murine anti-MRP3 Mab (M3 II-

9, 5µg/ml), a rat anti-MRP4 Mab (M4I-80, 4µg/ml) a rat anti-MRP5 Mab (M5 I-1,

10µg/ml), a rabbit polyclonal anti-ZO-1 (2.5 µg/ml, Zymed Laboratories, San

Francisco, CA), and the murine Mab BXP-21 directed against BCRP (5 µg/ml,

ALEXIS). Cells were subsequently incubated for 1 hour at room temperature with a

secondary antibody. Used antibodies were a Cy2TM conjugated rabbit anti-rat IgG

(Dako Corp., Santa Barbara, CA) in PBS/3% rabbit serum, a Cy2TM-conjugated anti-

mouse (15 µg/ml, Jackson ImmunoResearch, Soham, UK), IgG, a Cy2TM-conjugated

goat anti-rabbit IgG (7 µg/ml, Jackson ImmunoResearch), and a Cy3TM-conjugated

goat anti-mouse IgG (15 µg/ml, Jackson ImmunoResearch). The cells were rinsed

with PBS, mounted with FluoroSave, and examined on a Zeiss Axiophot

fluorescence microscope equipped with a Zeiss Plan-Neofluar objective.

3.2.6 Western blot

The presence of P-gp and BCRP was studied by Western blot analysis using the

murine Mab C219 (ALEXIS) for P-gp and the murine Mab BXP-21 directed against

BCRP (ALEXIS). SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was

performed with a Mini-Protean II apparatus (Bio-Rad, Zurich, Switzerland). To BB19

or porcine BCEC cell homogenates (2-4 mg/ml protein, obtained from cells either

cultivated under standard conditions or supplemented with 10 µM rifampicin), the

same amount of Lämmli buffer (Bio-Rad) was added. The samples were loaded onto

a 4% acrylamide/bisacrylamide gel. After electrophoresis, the proteins were

transferred electrophoretically (2 hours at a constant amperage of 250 mA) to a 0.45

µm pore size nitrocellulose membrane using a Mini Transblot cell (Bio-Rad). The

transfer buffer contained 192 mM glycine, 25 mM Tris-HCl, and 20% methanol. The

membrane was blocked overnight at 4°C with 5% powdered skimmed milk in PBS

containing 0.05% Tween 20 (PBS-T). Washed membranes were incubated with Mab

C219 (1 µg/ml) or Mab BXP-21 (1.25 µg/ml) in PBS-T and 1% powdered skimmed
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milk for 2 hours at 37°C. Washed membranes were incubated for 1 hour at room

temperature with horseradish peroxidase-conjugated rabbit anti-mouse IgG (1:500)

(Dako) in PBS-T containing 1% milk powder. Membranes were washed in PBS-T and

P-gp or BCRP were visualized using enhanced chemiluminescence detection (ECL-

kit by Amersham, Buckinghamshire, UK).

3.2.7 Uptake assays

Uptake assays were performed at 20°C using confluent monolayers of BB19 cells, 5

days after seeding in 24-well cell culture plates with surface areas of 2 cm2/well. Cells

were washed using Hanks Balanced Salt Solution supplemented with 1 mM sodium

pyruvate, pH 7.4 (HBSS-P) (both Invitrogen). Cells were incubated for 1, 2, 5, 10, 20,

30, 60 or 120 minutes with 0.3 µCi/well of the extracellular marker [14C]-sucrose

(Amersham) together with either 0.3 µCi/well of [3H]-morphine (Du Pont, Boston, MA)

or [3H]-propranolol (Amersham). Then cells were washed with HBSS-P. The cell

monolayers were solubilized in 0.8% triton-X for 20 minutes and the solutions were

transferred to scintillation vials. Radioactivity was determined by liquid scintillation

counting (Packard TriCarb 2000, Packard, Dreieich, Germany).

3.2.8 Daunomycin uptake – assay for P-gp functionality

The uptake assay was performed as described above, with the following

modifications: After washing with HBSS-P, cells were preincubated for 15 minutes

with HBSS-P with or without 100 µM verapamil. Cells were incubated for 30 minutes

with 1 µM daunomycin (0.3 µCi/well [3H]-daunomycin (Perkin Elmer, Boston, MA) and

unlabelled daunomycin) with or without 100 µM verapamil. Then cells were washed

with HBSS-P, and it was further proceeded as described above.

3.2.9 Transport assays

For the study of transendothelial transport, cells were used when they reached

confluency. Cells were seeded onto BD FalconTM PETE cell culture inserts, or on

Transwell® polycarbonate filters, both in 12-well plates precoated with 10 µg/cm2 rat

tail collagen. Cell culture medium was removed from upper and lower compartment,

and both compartments were washed with transport buffer (HBSS-P, pH 7.4). Both
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sides of the compartments were filled with pre-warmed transport buffer. The transport

assay was performed at constant temperature (37°C) on a rotary platform (50 RPM

on an Orbital Shaker, Forma Scientific, Marietta, OH, U.S.A.). At time t=0, 0.3

µCi/well [14C]-sucrose or [3H]-propranolol was added to the upper compartment

(donor chambers, apical side) or to the lower chamber (donor chambers, basolateral

side) respectively. In defined time intervals, samples were drawn from the lower

compartment (acceptor chamber, basolateral side) or from the upper compartment

(acceptor chamber, apical side), respectively. Instagel® plus scintillation liquid was

added (Canberra Packard S.A., Zurich, Switzerland), and samples were analyzed by

scintillation counting (Packard TriCarb 2000, Canberra Packard S.A.). The acceptor

volume was readjusted with assay buffer after each sample was taken, and counts

from acceptor side samples were corrected for the amount of radioactivity removed

by previous sampling. The compound apparent permeability Papp was calculated with

equation 1:

0

/

CA

dtdQ
Papp 
 (equation 1)

where dQ / dt is the rate of translocation, A is the surface of the cell culture insert

and C0 is the initial concentration of [3H]-sucrose.

Permeability coefficients give a relation between the permeability of the monolayer

and the permeability of empty filters (precoated with rat tail collagen, without cells).

The slopes of the volume cleared vs. time represent the clearance for each condition.

The clearance of each well was related to the clearance of empty wells and used to

calculate the permeability coefficients (Pe) of the endothelial monolayer, as shown in

equations 2 and 3 according to (Rist et al., 1997):

fe mmPS

111
 (equation 2)

and

A

PS
Pe  (equation 3)

where PS is the permeability-surface area product, A is the surface area of the filter

and me and mf are the volumes cleared vs. time, corresponding to endothelial cells

on filters and to empty filters, respectively.
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3.3 Expression and inducibility of CYPs in BB19 cells

3.3.1 Absolute quantification of mRNA expression of cytochrome P450

enzymes

3.3.1.1 Principle

Gene expression of different CYP isoforms in BB19 cells was studied with real time

RT-PCR (TaqMan®). Before real-time PCR amplification could be performed, the

isolated cellular mRNA had to be reverse transcribed into cDNA. The cDNA was

subsequently quantified with TaqMan® analysis using the standard curve method.

Therefore we used external standards, which comprised known amounts of specific

cDNA fragments of the gene of interest. Consequently, the unknown amount of

cDNA in the analyzed samples could be expressed as absolute transcript numbers of

the corresponding gene.

3.3.1.2 Generation of cDNA standards for absolute mRNA quantification

In order to generate standard curves, we used gene-specific cDNA fragments with

known concentrations as standards. These standards serve as a template during the

real-time PCR, because they cover the TaqMan® primer/probe area and therefore

they are amplified similar to the cellular reverse transcribed mRNA of the appropriate

gene. Standards were obtained by classical PCR amplification using primers that

anneal outside the area where the TaqMan® primers anneal on the template. Since

CYPs are expressed in the liver, we used reverse transcribed RNA of human liver

extract as a template for classical PCR amplification. For the gene-specific PCR, we

used 25 ng cDNA per 25µl reaction volume including each primer at a concentration

of 300 nM. The primers (Table 3.2) were designed using the primer express software

2.0 (Applied Biosystems) and were manufactured by Invitrogen. The components of

the PCR reaction (AmpliTaq Gold, 10x PCR buffer, dNTPs, MgCl2) were purchased

from Applied Biosystems. Thermal cycling was conducted using a Mastercycler

personal from Eppendorf (Hamburg, Germany), and an annealing temperature of

55°C was used. The PCR products were purified by running a 1.5% agarose gel

(TAE buffer, 100 V, 50 minutes) and by a subsequent gel extraction (gel extraction

kit, Qiagen). When cDNA yields were too low, the PCR amplification was repeated

using the purified product of the first PCR as a template. The obtained standards
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were quantified using the PicoGreen® dsDNA quantitation kit according to the

manufacturer’s protocol (Molecular Probes, Eugene, OR). The PicoGreen® reagent is

an ultrasensitive fluorescent nucleic acid stain for quantitating double-stranded DNA

using bacteriophage lambda DNA as a standard. The amount of cDNA in the sample

was expressed as ng DNA per ml. In addition, the purified and quantified PCR

products were analyzed by sequencing (Microsynth GmbH, Balgach, Switzerland).

The received sequences were aligned to the genes of interest using the BLAST

program (http://www.ncbi.nlm.nih.gov/BLAST), in order to confirm the identity of the

PCR products. For further calculations, the molecular weights of the cDNA fragments

were determined on the basis of the corresponding sequence with the help of a

biopolymer calculator (http://paris.chem.yale.edu/extinct.frames.html).

Primer Access. no. Sequence Size (bp)

CYP1A1 NM_000499 forward 5'-GAGGTCCTGATAAGCACGTTGC-3'

reverse 5'-AGGTCCAAGACGATGTTAATGATCT-3'

439

CYP1A2 AF182274.1 forward 5'-ACTTTGACAAGAACAGTGTCCGG-3'

reverse 5'-GCCAAACAGCATCATCTTCTCA-3'

536

CYP2C19 NM_000769 forward 5'-GATTGTAAGCACCCCCTGGA-3'

reverse 5'-GGATGAGGTCGATGTATCTCTGG-3'

470

CYP2D6 NM_000106 forward 5'-CTTCTCCGTCTCCACCTTGC-3'

reverse 5'-TCCCGGCAGAGAACAGGTC-3'

520

CYP3A4 AF182273 forward 5'-AGAAAGTCGCCTCGAAGATACAC-3'

reverse 5'-TGCAGTTTCTGCTGGACATC-3'

613

Table 3.2 Sequences of primers that were used for the generation of gene-secific cDNA standards

3.3.1.3 Standard curve method

A standard curve for each gene on every plate is essential for the accurate

quantification of mRNA transcript numbers. The standard curves were generated by

a serial dilution of cDNA standard solutions with known amounts of PCR template.

However, the starting amount for the PCR had to be evaluated in order to obtain

curves that span the range above and below the amount of the unknown samples.

Therefore, the quantified standard solutions were first analyzed in TaqMan® assays,

http://www.ncbi.nlm.nih.gov/BLAST),
http://paris.chem.yale.edu/extinct.frames.html).
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and were then adapted accordingly by further dilutions, receiving the standard

dilution (StdD), in order to obtain adequate curves.

Linear standard curves were composed by plotting the Ct values of the standards

against the log of their corresponding serial dilution factor. Slope and Y-intercept of

the standard curve line were then calculated by linear regression. By measuring the

Ct value of the unknown sample under the same conditions, its corresponding serial

dilution factor X could then be determined.

Based on the serial dilution factor X, the number of cDNA molecules of the analyzed

gene in the sample (transcript number) could be estimated. Therefore, the number of

cDNA fragments in the applied standard solution was calculated and subsequently

multiplied with the serial dilution factor (X) of the sample. Usually, the transcript

number is normalized to 1 µg RNA. The transcript number per µg RNA (TN) was

calculated as shown in equation 4:

MWStdD

XNVC
TN




 (equation 4)

where C is the concentration of the standard (determined with the PicoGreen® assay,

V is the volume of sample cDNA that contains 1 µg of reverse transcribed RNA (this

is 0.1 ml for the common cDNA concentration of 10 ng/µl. N is Avogadro’s number

(6.022 x 1023 molecules per mol), and MW is the molecular weight of the standard.

3.3.1.4 Incubation conditions of BB19 cells

To test the inducibility of different CYP isoforms in BB19 cells, they were seeded onto

6-well cell culture plates (9.2 cm2/well) coated with 2 µg/cm2 rat tail collagen and

cultured under standard conditions. After 3 days, the cells had reached 70% of

confluency, and were treated with 10 µM benzo[a]pyrene, 100 µM Aroclor 1254, or

10 µM rifampicin (all Fluka Chemie GmbH) for 72 h. The compounds were dissolved

in dimethyl sulfoxide (DMSO). The final DMSO concentration did not exceed 1%.

3.3.1.5 Real-time PCR (TaqMan® assay)

The 5`nuclease assay or TaqMan® assay is a highly sensitive method to determine

mRNA levels quantitatively. This method uses a target specific oligonucleotide, the

TaqMan® probe, which anneals between the forward and reverse primer sites. The
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probe carries a reporter dye on the 5`end (6-carboxy-fluorescein) and a quencher

dye on the 3` end (6-carboxy-tetramethyl-rhodamine). As long as the probe is intact,

the fluorescence of the reporter dye is suppressed by the quencher dye. However,

during the PCR, the DNA polymerase (Taq polymerase) cleaves the probe due to its

5`-3` exonuclease activity. Now, a fluorescent signal is generated, because the

reporter dye is separated from the quencher dye. Consequently, there is an increase

of fluorescence after each PCR cycle. With the ability to measure the PCR products

as they are accumulating, in "real time", it is possible to measure the amount of PCR

product at a point in which the reaction is still in the exponential range. It is only

during this exponential phase of the PCR reaction, where it is possible to extrapolate,

to determine the starting amount of template. During the exponential phase in real-

time PCR experiments, a fluorescence signal threshold is determined, at which point

all samples can be compared. Therefore, the number of PCR cycles required to

generate enough fluorescent signal to reach this threshold is defined as the cycle

threshold, or Ct. These Ct values are directly proportionate to the amount of starting

template and are the basis for calculating mRNA expression levels. The baseline is

defined as the PCR cycles in which a signal is accumulating but is beneath the limits

of detection of the instrument.

TaqMan® experiments were performed on a 7900HT Sequence Detection System

using 384 well plates, with total reaction volumes of 10 µL (Applied Biosystems,

Rotkreuz, Switzerland). PCR conditions were throughout 10 minutes 95°C followed

by 40 cycles of 15 s 95°C and 1 minutes 60°C. TaqMan® Universal PCR Mastermix

(Applied Biosystems) was used. Each reaction contained 1 ng/µL cDNA and the

concentrations of primers and probes were 900 nM and 225 nM, respectively.

Primers and probes (Table 3.3) were designed according to the guidelines of Applied

Biosystems with help of the Primer Express 2.0 software. Primers were synthesized

by Invitrogen (Basel, Switzerland), probes by Eurogentec (Seraing, Belgium).
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Primer Access. no. Sequence length (bp)

CYP1A1 NM_000499 probe 5`-CGCTATGACCACAACCACCAAGAACT-3` 26

forward 5`-GTCATCTGTGCCATTTGCTTTG-3` 22

reverse 5`-CAACCACCTCCCCGAAATTATT-3` 22

CYP1A2 AF182274.1 probe 5`-CACAGCCATCTCCTGGAGCCTCATGTA-3` 27

forward 5`-CAATGACGTCTTTGGAGCAGGAT-3` 23

reverse 5`-CAATCACAGTGTCCAGCTCCTTC-3` 23

CYP2C19 NM_000769 probe 5`-TAATCACTGCAGCTGACTTACTTGGAGCTGGG-3` 32

forward 5`-GAACACCAAGAATCGATGGACA-3` 22

reverse 5`-TCAGCAGGAGAAGGAGAGCATA-3` 22

CYP2D6 NM_000106 probe 5`-CAGCTGGATGAGCTGCTAACTGAGCACA-3` 28

forward 5`-CCTACGCTTCCAAAAGGCTTT-3` 21

reverse 5`-AGAGAACAGGTCAGCCACCACT-3` 22

CYP3A4 AF182273 probe 5`-TTCTCCTGGCTGTCAGCCTGGTGC-3` 24

forward 5`-TCTCATCCCAGACTTGGCCA-3` 20

reverse 5`-CATGTGAATGAGTTCCATATAGATAGA-3` 27

Table 3.3 Sequences of real-time PCR primers and specific probes

3.3.2 Immunocytochemistry of CYP1A1

BB19 cells were seeded onto chamber slides and at the third day of culture, 10 µM

benzo[a]pyrene was added to the culture medium. After 72h incubation, the

immunostaining was performed as previously described in chapter 3.2.5. Primary

antibody used for this experiment was the rabbit polyclonal antibody to human

CYP1A1 (1:50) (Abcam, Cambridge, UK). Secondary antibody used was a Cy2TM-

conjugated goat anti-rabbit antibody (7 µg/ml, Jackson ImmunoResearch, Soham,

UK).

3.3.3 Western blot of CYP1A1

The presence of CYP1A1 was studied in BB19 cells and porcine BCEC, both

cultured as described in chapter 3.2.10.4. Western blot analysis was performed as

previously described in chapter 3.2.6, using the rabbit polyclonal antibody to human

CYP1A1 (1:500) (Abcam).
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3.3.4 Functional CYP1A1 activity with P450-GLO™  assay

3.3.4.1 Principle

The P450-GLO™ assay kit (Promega Corp., Madison, WI, USA) was used to

measure CYP1A1 activity in intact cultured BB19 cells. Compounds that induce the

CYP gene expression increase levels of CYP enzyme activity, which is assayed

biochemically as an end point of gene induction. In P450-GLO™ assays, the

luminogenic substrates used are cell permeable, as is D-luciferin, the P450-GLO™

reaction product. P450-GLO™ luminogenic substrates are added to the cell culture

medium and are allowed to incubate for a predetermined period of time. Substrates

enter cells, likely by passive diffusion, where CYPs convert them to D-luciferin that

diffuses out of cells into medium. A sample of culture medium is then combined with

P450-GLO™ luciferin detection reagent to initiate a luminescent reaction with firefly

luciferase. The luminescence correlates directly to the level of CYP activity.

3.3.4.2 BB19 cell culture and CYP1A1 induction

BB19 cells were seeded on 24-well cell culture plates with a surface area of

2cm2/well, coated with 2 µg/cm2rat tail collagen. Cells were cultured under standard

culture conditions. After 2 days, cells were incubated with 10 µM benzo[a]pyrene or

their vehicle controls for 72 h.

3.3.4.3 P450-GLO™ CYP1A1 assay

After termination of the incubation period, induction and vehicle control media were

replaced with 0.3 ml fresh medium containing 0.1 mM D-luciferin-CEE, the

luminogenic CYP1A1 substrate from the P450-GLO™ CYP1A1 assay kit. For basal

CYP1A1 activity measurements, the luminogenic substrate was added to a set of

vehicle control wells. For induced CYP1A1 activity measurements, the luminogenic

substrate was added to the incubated wells. For background luminescence

determinations, the luminogenic substrate was added to a set of empty coated wells

without cells. The plate was incubated for 4 hours with the luminogenic substrate at

37°C. At the end of the incubation period, the luminescent assay was performed. 100

µl of medium was removed from each well to a 96-well opaque white luminometer

plate, and 100 µl of reconstituted luciferin detection reagent from the P450-GLO™ kit
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was added to initiate a luminescent reaction. After 20 minutes of incubation at room

temperature, luminescence was read on a plate reading luminometer (Bio Assay

Reader, HTS 7000 Plus, Perkin Elmer). Background luminescence values were

subtracted from induced and uninduced (vehicle control) values.

3.4 Identification of P-glycoprotein substrates and inhibitors

among neuroleptic compounds

3.4.1 Mouse monocytic leukaemia cell line (P388)

The murine monocytic leukaemia cell lines P388/par (parental cell line) and the

doxorubicin-resistant subline P388/mdr (cell line overexpressing P-gp) were obtained

from Dr. C. Geroni (Pharmacia & Upjohn, Centro Ricerche e Sviluppo, Milano, Italy).

Both cell lines are growing in suspension and were cultured in RPMI glutamax 1640

medium supplemented with 10% heat-inactivated FBS, 1 mM sodium pyruvate, 10

mM HEPES buffer, 0.02 mg/ml asparagine, 1% 1x minimum essential medium with

non-essential amino acids, 0.4% 1x minimum essential medium with vitamins, 0.05

mM mercapto-ethanol (all Invitrogen). The P388/mdr cells were continuously grown

in the presence of 0.25 µg/ml doxorubicin. One day before each experiment, cells

were grown in doxorubicin-free medium.

3.4.2 Human leukaemia cell lines (CCRF/CEM)

The human T-lymphocytic leukaemia cell line overexpressing MDR1 (CCRF-

CEM/MDR), and its parental analogue CCRF-CEM/Par were a gift from Dr. A. Simon

(Altana Pharma Ltd, Konstanz, Germany). Cells are growing in suspension and were

cultured in RPMI 1640 medium with Glutamax-I, supplemented with 10% FBS.

CCRF-CEM/MDR cells were continuously cultured in the presence of 1 µg/ml

vincristine. One day before each experiment, cells were grown in vincristine-free

medium.
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3.4.3 Sulforhodamine B assay

The sulforhodamine B (SRB) cytotoxicity assay was performed to evaluate the

toxicity of the solvent DMSO at various concentrations. In this assay, the total cell

number was determined by measuring cellular protein. The protein binds to the dye,

sulforhodamine B, and it is then extracted from the cells in a Tris base solution. The

assay was carried out as follows: BB19 cells were seeded onto a 96-well plate. 24

hours later, when the confluency of the cell layer reached about 50%, the cells were

treated with various DMSO concentrations (from 0 to 3%) for 45 minutes. Then the

supernatant was removed and the cell layers were washed with medium. Then 200 µl

medium and 20 µl fixative (trichloracetic acid 50%) were added to every well. The

plates were incubated for 1 hour at 4 °C. The medium was aspirated and the plates

were rinsed five times with ultrapure water. The plates were allowed to air-dry over

night. 100 µl of the sulforhodamine B solution (0.4% SRB in 1% acetic acid) was

added to the cells. The plates were stained for 30 minutes. Subsequently, the stain

was removed, and the cells were rinsed five times with 1% acetic acid. Again, the

plates were allowed to air-dry. 200 µl of the solubilisation solution (100 mM Tris, pH

10.5) was added to the plates, and incubated on a shaker at room temperature for 5

minutes. The samples were analyzed at =540 nm on a Spectra MAX 250 microplate

spectrophotometer (Molecular Devices Corporation, California, USA).

3.4.4 Microtiter plate based rhodamine 123 uptake and efflux assay

To load P388 or CCRF-CEM cells with rhodamine 123 (R123) prior to efflux, cells

were incubated with 1 µM (P388) or 5 µM (CCRF-CEM) of R123 in the presence of

100µM verapamil in order to block P-gp. After 10 minutes, incubation was stopped

by transferring the samples on ice. Cells were dispersed onto a 96-well microtiter

plate and washed twice with or without the neuroleptic drugs at 4°C. Efflux was

initiated by resuspending the cell pellet in R123-free HBSS-P with or without test

drug (efflux buffer) at room temperature. After 6 minutes (P388) or 12 minutes

(CCRF-CEM) of efflux, 180 µl of the efflux buffer was removed from each well, and

added to a 96-well opaque white plate for analysis. For the uptake studies, cells were

washed twice with HBSS-P. Then, the cells were lysed with 0.8% triton X for at least

20 minutes. 180 µl of the lysed cell suspension was removed from each well, and

added to another 96-well opaque white plate. Samples were analyzed for R123
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fluorescence in a plate reader (Bio Assay Reader, HTS 7000 Plus) with 485 nm

excitation and 535 nm emission filters.

3.4.5 Transport studies with neuroleptic compounds

For the preliminary study of transendothelial transport, porcine BCEC were used

when they reached confluency. Cells were seeded onto 12-well Transwell®

polycarbonate filter plates, precoated with 10 µg/cm2 rat tail collagen. Cell culture

medium was removed from upper and lower compartment. After washing with HBSS-

P, cells were preincubated for 15 minutes with HBSS-P, with or without 100 µM

verapamil at the upper compartment. The incubation buffer consisted of the test

compounds in a solution containing 250 µg/ml of the paracellular marker fluorescein

isothiocyanate dextran (FITC-dextran, MW=4000) in HBSS-P with or without 100 µM

verapamil. Cells were incubated with the incubation buffer either at the upper or at

the lower compartment. After 45 minutes at constant temperature (37°C) on a rotary

platform (50 RPM on an Orbital Shaker), samples were drawn from the upper and

lower compartment. Samples were analyzed by the Psychiatric Clinic of the

University of Mainz, (Mainz, Germany) by quantitative HPLC. The preliminary results

of these experiments are shown in the appendix.

3.4.6 Estimation of kinetic parameters

ED50, which is the concentration of test compound, that exerts a half-maximal efflux

or uptake inhibition of the marker, was estimated from a saturable relationship using

non-linear regression analysis using Microcal Origin, version 6.1 (Northampton, MA,

USA). The data points obtained with the R123 uptake and efflux assay were fitted

with the sigmoidal Emax model (equation 5):
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where Emax is the maximal response (fluorescence of marker substrate when

maximal P-gp inhibition is achieved), E0 is the baseline response (fluorescence of

marker substrate when P-gp is not inhibited), C is the concentration of inhibitor, and

n is the Hill sigmoidicity coefficient (the slope factor, which quantifies the steepness).
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The inhibitory capacity of a test compound (Icompound) at concentration x µM, to inhibit

the R123 uptake or efflux is described by equation 6:

PHBSS

xconcatcompound
compound

F

F
I




 ... (equation 6)

where x is the concentration at which maximal inhibition is achieved, F is the

difference in R123 assay buffer in absence and in presence of test compound, and

FHBSS-P represents the R123 fluorescence in assay buffer in absence of test

compound. The inhibitory capacity of the test compounds is systematically related to

the inhibitory capacity of 100 µM verapamil in the same experiment where verapamil

has the function of an internal standard. The resulting Irel is described by equation 7:

verapamil

xconcatcompound
rel

F

F
I




 ... (equation 7)

3.5 Evaluation of BBB permeability of different CNS active

compounds

3.5.1 Transport studies

For the study of transendothelial transport, porcine BCEC cells were used when they

reached confluency. Cells were seeded onto 12-well Transwell® PETE filters with 0.4

µm pore size, precoated with 20 µg/cm2 collagen S, type I from calf skin (Roche

Diagnostics). Cell culture medium was removed from upper and lower compartment

and both compartments were washed with transport buffer (HBSS-P, pH 7.4). Both

sides of the compartments were filled with pre-warmed transport buffer. The transport

assay was performed at constant temperature (37°C) on a rotary platform (50 RPM

on an Orbital Shaker. At time t=0, different concentrations of the test compounds, in

HBSS-P containing 250 µg/ml FITC-dextran, were added to the upper compartment

(donor chambers, apical side) or to the lower chamber (donor chambers, basolateral

side) respectively. In defined time intervals, samples were drawn from the lower

compartment (acceptor chamber, basolateral side) or from the upper compartment

(acceptor chamber, apical side), respectively. The acceptor volume was readjusted
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with assay buffer after each sample was taken, and amounts from acceptor side

samples were corrected for the amount of removed compound by previous sampling.

Samples were analyzed by liquid chromatography with mass spectrometry (LC-

MS/MS) by the industrial collaboration partner. Calculation of Papp values were done

as described in chapter 3.2.9.

3.5.2 Assay for the screening of target receptor antagonists

The assay was performed by the industrial collaboration partner. The binding of an

agonist to its receptor is associated with an increase in intracellular calcium

concentrations ([Ca2+]i). This can be monitored in cells, stably expressing the target

receptor using a fluorescent calcium indicator. The fluorescence increases after

binding to intracellular free calcium, which can be measured. The response can be

abolished by antagonists.

3.5.3 Combined study of BBB permeability and target receptor effect

Porcine BCEC were seeded onto 12-well Transwell® PETE filters with 0.4 µm pore

size, precoated with 20 µg/cm2 collagen S, type I from calf skin (Roche Diagnostics)

and cultured until cells reached confluency. Cell culture medium was removed from

upper and lower compartment and both compartments were washed with transport

buffer (HBSS-P, pH 7.4). The transport assay was performed at constant

temperature (37°C) on a rotary platform (50 RPM on an Orbital Shaker. At time t=0,

different concentrations of the test compounds in HBSS-P, were added to the upper

compartment. After 45 minutes, samples were drawn from the lower compartment. In

order to test these samples in the target receptor screening assay, samples were

added to 96-well-plates and it was further proceeded as described in chapter 3.5.2.

Samples were also analyzed by LC-MS/MS by the industrial collaboration partner.

3.6 Statistics

Data are given as mean ± standard error of the mean (SEM). For statistical

comparison, groups of data were compared by analysis of variance (one-way

ANOVA). Mean values were considered to be statistically different at a value of
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P<0.05. Pair wise comparisons were performed by two-tailed unpaired t-test. The P-

values were adjusted by Bonferroni’s correction for multiple comparisons. All

statistical calculations were done using SPSS for Windows software (version 11.0).
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4 Results

4.1 Evaluation of BB19 cells as an in vitro model of the BBB

Since it was our principal goal to develop a human in vitro model for the BBB, in a

first step, the genetic karyotype of BB19 cells was determined to ensure that the cells

are of human origin (data not shown), which BB19 cells proved to be.

4.1.1 Tightness of BB19 cells compared to porcine BCEC

Transport of the extracellular marker [14C]-sucrose across confluent cells cultured on

cell culture inserts was investigated. Transport of sucrose across monolayers of

BB19 was compared with the transport across our established system of primary

porcine BCEC (Table 4.1). Transwell® polycarbonate filters were the optimal insert to

obtain highly resistant porcine BCEC monolayers (Papp=1.19 x 10–5 cm/sec, empty

filters Papp= 7.55 x 10 –5 cm/sec, Pe=1.45 x 10 –5 cm/sec), whereas tightness of BB19

cells was not reached with these inserts (Papp=5.44 x 10 –5 cm/sec). BB19 cells grown

on these filters were more than 4.5-fold leakier than the primary porcine BCECs.

Other cell culture inserts (such as Transwell® clear) were investigated to evaluate if

tightness of BB19 cell could be improved. However, these filter inserts failed to

improve cellular tightness. Only cultivation of BB19 cells on BD FalconTM PETE

culturing inserts lead to a higher tightness of BB19 monolayers (Papp=1.30 x 10 –5

cm/sec, empty filters Papp= 3.17 x 10 –5 cm/sec, Pe=2.25 x 10 –5 cm/sec). When BB19

cells were cultivated on BD FalconTM PETE inserts, the tightness of these

monolayers was in the same range as the primary porcine cell culture system

(Papp=1.51 x 10 –5 cm/sec, empty filters Papp= 3.17 x 10 –5 cm/sec Pe=2.66x10 –

5cm/sec). However, hardly any discrimination between the paracellular marker

sucrose and the transcellular marker propranolol (Papp= 1.30x 10-5 vs. 2.18 x 10 –5

cm/sec) was seen.
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P(app)

( x 10-5 cm/sec)

P(app) empty filter

( x 10-5 cm/sec)

Pe

( x 10-5 cm/sec)

BB19 on BD FalconTM PETE inserts 1.30±0.12 3.17±0.22 2.25±0.34

BB19 on Transwell® polycarbonate

filters

5.44±0.02 7.55±0.17 19.5±0.2

pBCEC on BD FalconTM PETE

inserts

1.51±0.05 3.17±0.22 2.66±0.16

pBCEC on Transwell® polycarbonate

filters

1.19±0.26 7.55±0.17 1.45±0.39

Table 4.1 Sucrose permeability across BB19 and porcine BCEC monolayers on different filters. Values

are mean ±SEM, n=3.

4.1.2 Influence of cell culture conditions on staining of ZO-1

Immunostaining of ZO-1 was performed in cells cultured under previously described

conditions after 15 days in culture (Figure 4.1). A high staining of ZO-1 was observed

in control cells, as well as in all the other cells cultured with different cell culture

conditions.

A change towards a more spindle-like shape, closer to primary BCEC appearance,

was most pronounced with C6-conditioned medium, and was observed with

dexamethasone and 1,25-dihydroxyvitamin D3 as well. No morphological difference

in BB19 cells cultured in chlorophenylthio-cAMP combined with RO-20-1724

compared to control cells, and no change towards a more spatial ZO-1 expression

was observed. However, none of the cell culture conditions could improve the

tightness (i.e. sucrose permeability) of the BB19 monolayers (data not shown).
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Figure 4.1 Immunocytochemical staining of the tight junction associated protein ZO-1 in confluent BB19

cells, grown under different culture conditions (200x magnification), bar is 100 µm, 1 is Z0-1

staining, 2 is the corresponding transmission image: (A) standard medium, (B) negative control

(C) with C6-conditioned medium (D) with 250 µM chlorophenylthio-cAMP (CPT-cAMP)

combined with 35 µM RO-20-1724, (E) with 10 µM dexamethasone, (F) 1,25-dihydroxyvitamin

D3

4.1.3 Expression of ABC-transporters

The expression of MDR1, MRP1, MRP2, MRP3, MRP4, MRP5, OATP-A, OATP-C,

OAT1, OAT3, OAT4, and BCRP was investigated in our BBB model BB19 on mRNA

level. The presence of MDR1, MRP1, MRP2, MRP4, MRP5, OAT3, OAT4, and

BCRP mRNA in BB19 cells could be shown by conventional RT-PCR (Figure 4.2).
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Figure 4.2 RT-PCR of BBB transporters MDR1, MRP1, MRP2, MRP4, MRP5, OAT3, OAT4, and BCRP in

BB19 cells

To evaluate the expression of some of these ABC transporters on protein level, we

performed immunocytochemistry. As shown in Figure 4.3, P-gp, MRP4, and BCRP

were detected on protein level as well. However, MRP5 staining was not significantly

different from the negative control, no MRP3, and only very low amounts of MRP1,

and MRP2 could be detected by immunocytochemistry (data not shown).
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Figure 4.3 Immunocytochemical staining of BBB transporters in confluent BB19 cells: (A) BCRP (bar is

100 µm), insert shows enlarged cell (bar is 10 µm) (B) negative control for BCRP (bar is 100

µm), (C) MDR1 (bar is 100 µm), insert shows enlarged cell (bar is 10 µm) (D) negative control

for MDR1 (bar is 100 µm) E) MRP4 (bar is 100 µm), insert shows enlarged cell (bar is 10 µm)

(F) negative control for MRP4 (bar is 100 µm)

The presence of P-gp and BCRP in BB19 cells and porcine BCEC was studied by

Western blot analysis (Figure 4.4). P-gp over-expressing P388 cells were used as a

positive control for P-gp. BB19 cells as well as the porcine BCEC showed an

immunoreaction with the Mab C219 in the molecular weight range of 170 kDa, which

was present in P388-cells as well, indicating the presence of P-gp in both BB19 cells

and porcine BCEC. Porcine BCEC, but not BB19 cells treated with rifampicin,

showed a broader band than cells cultivated in regular medium, indicating a higher

amount of P-gp. Western blot analysis with the Mab BXP-21 showed a distinct

immunoreaction in the molecular weight range of 70 kDa in BB19 cells. A lower, but

also distinct staining was seen in porcine BCEC. This is indicative for the expression

of BCRP in both BBB cell culture models. The BCRP staining was not influenced by

rifampicin, neither in BB19 cells nor in porcine BCEC.
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Figure 4.4 Western blot analysis (A) P-gp in BB19 cells treated with 10 µM rifampicin, (B) P-gp in BB19

cells (standard medium), (C) P-gp in porcine BCEC treated with 10 µM rifampicin, (D) P-gp in

porcine BCEC in standard medium, (E) P-gp positive control, MDR1 transfected P388 cells 1:5

diluted, (F) BCRP in BB19 cells, (G) BCRP in porcine BCEC

4.1.4 Uptake assays

Uptake of the reference substances propranolol, morphine and sucrose into BB19

cells was measured at various time points up to 120 minutes (Figure 4.5). As

expected, from uptake data gained from the established porcine BCEC model

(Huwyler et al., 1996), morphine penetrated into BCECs to a lower degree than

propranolol, and diffusion of sucrose into the cells was minimal. Uptake of the

extracellular marker sucrose was followed over a time period of 120 minutes; 0.06%

of the applied dose of sucrose was recovered. This value did not increase with

incubation time.
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Figure 4.5 Uptake of [14C]-sucrose, [3H]-morphine, and [3H]-propranolol into BB19 cells. Symbols

represent means  SEM. (vertical lines) for 3 data points

In a next step, the influence of the P-gp inhibitor verapamil on the uptake of the P-gp

substrate daunomycin into BB19 cells was investigated. Figure 4.6 shows that the

inhibition of P-gp by verapamil led to a significantly (P<0.01) increased (1.45-fold)

uptake of daunomycin.

Figure 4.6 Uptake of [3H]-daunomycin with or without verapamil. Columns represent means 

SEM. (vertical lines) for 3 data points. An asterisk indicates statistical significance by

Student’s t-test
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4.1.5 Expression and inducibility of CYPs in BB19 cells

To investigate the presence and inducibility of selected CYPs, which are known to

play a role in the metabolism of CNS active drugs, in BB19 cells, cells were

incubated either with or without known inducers of CYPs for 72 hours, as previously

described in chapter 3.3.1.4: CYP1A1 and CYP1A2 with 10 µM benzo[a]pyrene

(Krishnan and Maru, 2005), CYP2C19 with 100 µM Aroclor 1254 (Borlak and Zwadlo,

2003), and CYP3A4 with 10 µM rifampicin (Goodwin et al., 1999). The expression of

CYP2D6 was investigated without any treatment, as CYP2D6 is not inducible

(Anzenbacher and Anzenbacherova, 2001). After RNA extraction, DNase I digestion

and reverse transcription, real time PCR (TaqMan® assay) was performed to

investigate the expression of CYP1A1, CYP1A2, CYP2D6, CYP2C19, and CYP3A4,

determined as the number of transcripts per µg total RNA.

The presence of CYP1A1 and, to a lower extent, of CYP3A4 in BB19 cells could be

shown, whereas CYP1A2, CYP2D6, and CYP2C19 were not detected by the

TaqMan® assay. The transcript level of CYP3A4 was about 33-fold lower than the

transcript level of CYP1A1. As seen in Figure 4.7, the treatment with benzo[a]pyrene

induced the CYP1A1 transcript level approximately 11-fold, whereas the treatment

with rifampicin did not significantly change the expression level of CYP3A4.

Figure 4.7 Absolute mRNA expression of CYPs in BB19 cells, treated with medium only or with a common

inducer for 72hours: (A) CYP1A1 ± benzo[a]pyrene, (B) CYP3A4 ± rifampicin. Data represent

mean ± SEM, n=3. *P< 0.05.
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Only CYP1A1 was found to be inducible in BB19 cells. Therefore, we performed

immunocytochemistry, to determine the CYP1A1 expression and inducibility on

protein level. Cells were either cultivated in their standard culture medium or with 10

µM benzo[a]pyrene for 72 hours. As shown in Figure 4.8, CYP1A1 was detected in

BB19 cells on protein level as well. However, CYP1A1 staining was not significantly

changed after treatment with benzo[a]pyrene. Notably, the treated BB19 cells appear

to be larger than the untreated cells.

Figure 4.8 Immunocytochemical staining of CYP1A1 in BB19 cells, grown under different culture conditions

(200x magnification), bar is 100 µm. (A) standard medium, (B) negative control (C) with 10 µM

benzo[a]pyrene (D) negative control with 10 µM benzo[a]pyrene.

The presence of CYP1A1 in BB19 cells was also studied by Western blot analysis

and compared with the expression in porcine BCEC (Figure 4.9). BB19 cells, as well

as the porcine BCEC, showed an immunoreaction with the CYP1A1 antibody in the

expected molecular weight range of approximately 54 kDa, indicating the presence of

CYP1A1 in both BB19 cells and porcine BCEC. Neither the porcine BCEC, nor the

BB19 cells treated with benzo[a]pyrene, showed a modified band compared to cells

cultivated in regular medium.
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Figure 4.9 Western blot analysis (A) CYP1A1 in BB19 cells treated with 10 µM benzo[a]pyrene, (B)

CYP1A1 in BB19 cells (standard medium), (C) CYP1A1 in porcine BCEC treated with 10 µM

benzo[a]pyrene, (D) CYP1A1 in porcine BCEC in standard medium.

4.1.6 Functional investigation of CYP1A1 activity

To investigate, whether the expression of CYP1A1 in BB19 cells and can also be

observed at a functional level, the P450-GLOTM assay was performed as previously

described in chapter 3.3.4. Cells incubated with benzo[a]pyrene for 72 hours were

compared with cells cultivated under standard culture conditions, whereas the

background luminescence was determined with empty coated wells without cells.

The incubated BB19 cells, as well as the cells under standard culture conditions, only

evolved luminescence in the range of the background luminescence, indicating that

neither of the BB19 cells show any functional CYP1A1 activity (data not shown).

50 kD

 A  B  C  D
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4.2 Identification of P-glycoprotein substrates and inhibitors

among neuroleptic compounds

4.2.1 Preliminary investigations

Prior to the functional experiments, we investigated the maximal final dimethyl

sulfoxide (DMSO) concentration that could be used to dissolve our test compounds

without any toxic effects in the utilized cells. Furthermore, the influence of test

compounds on the fluorescence of R123 (quenching) was investigated.

4.2.1.1 Toxicity of DMSO

The sulforhodamine B assay was performed with P388/mdr1, P388/par, CCRF/mdr1,

and CCRF/par cells to assess the maximal DMSO concentration that could be used

to dissolve our test compounds. In the investigated DMSO concentration range (0.01-

3%), no toxicity could be seen (data not shown).

Other solvents used to dissolve the test compounds were ethanol and methanol (no

toxicity assay was performed for these solvents). Table 4.2 shows the final solvent

concentrations of each test compound. The final solvent concentration did not

exceed 2%.

4.2.1.2 Quenching

In order to avoid false interpretations, we checked if the spectral behaviour of R123 is

changed in the presence of our test compounds (so-called quenching). Therefore, we

investigated the influence of the highest applied test compound concentration on

R123 fluorescence intensity without cells. None of the applied test compounds

showed any influence on the intensity of R123 fluorescence (data not shown).

4.2.2 Inhibition of P-gp mediated R123 uptake in P388 cells

Inhibition of P-gp mediated R123 uptake was measured in a microtiter plate based

uptake assay using mdr1 overexpressing mouse lymphocytes (P388/mdr1). The

corresponding parental cell line P388/par was used to account for effects that are not

related to P-gp. The neuroleptic compounds haloperidol, clozapine, norclozapine,
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olanzapine, quetiapine, and risperidone were investigated up to a maximal

concentration of 200 µM, whereas due to solubility limitations, the highest applied

concentrations were 100 µM for aripiprazole and 9-OH risperidone, and 10 µM for

ziprasidone. Domperidone, a known P-gp inhibitor (Schinkel et al., 1996) and a

peripherally acting dopamine antagonist without CNS effects, was used up to a

concentration of 200 µM. In every experiment, 100 µM verapamil (a known P-gp

inhibitor) was used as internal standard. None of the applied compounds modulated

the uptake of R123 into P388/par cells (Figure 4.10A and B).

The assay discriminates between effective and noneffective inhibitors of R123

uptake, as shown in Figure 4.10C and D). Ziprasidone did not exert any influence on

the uptake of R123. However, because of its poor solubility, the maximal

concentration applied was too low for an accurate experimental determination of the

ED50. Therefore, a possible affinity of ziprasidone to P-gp could not be determined.

No affinity of haloperidole to P-gp could be shown, as no modulation of the R123

uptake was observed. All other studied compounds showed an affinity to P-gp, as

demonstrated by inhibition of R123 uptake. The ED50 values of uptake inhibition are

summarized in Table 4.2. The metabolite 9-OH risperidone showed the highest

affinity to P-gp with an estimated ED50 value of 0.09. High affinities were also

observed for aripiprazole and to a lower extent for quetiapine. Norclozapine,

risperidone, olanzapine, and domperidone showed intermediate affinites with

estimated ED50 values between 40.2 and 86.5 µM. Clozapine displayed the lowest P-

gp affinity of all compounds tested in the uptake assay, with an ED50 value of 178.2

µM.

The observed P-gp inhibition was concentration-dependent. Regarding the relative

inhibitory capacity (Irel), diplayed in Table 4.2, olanzapine, 9-OH risperidone, and

quetiapine showed the highest inhibiton, with an inhibitory capacity above verapamil.

Inhibitiory capacity of risperidone was equal to verapamil, while all other compounds

displayed intermediate inhibitory capacities Irel between 0.45 (norclozapine) and 0.74

(aripiprazole).
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Figure 4.10 Effect of the neuroleptic test compounds haloperidol (HAL), clozapine (CLZ), norclozapine

(NORCLZ), olanzapine (OLZ), aripiprazole (ARI), quetiapine (QUET), ziprasidone (ZIP),

risperidone (RIS) and 9-OH risperidone (OHRIS) and domperidone (DOM), a known P-gp

inhibitor on R123 uptake into P388/par cells (A and B) and P388/mdr cells (C and D). The

extent of R123 uptake in buffer, only containing the equivalent concentration of solvent, was

used as control and set to 100%. Values represent mean ±SEM for n=3-6. Data points were

fitted with regression analysis using equation 5 as described in the methods section (chapter

3.4.6).

4.2.3 Inhbibition of P-gp mediated R123 efflux in P388 cells

Inhibition of P-gp mediated R123 efflux of all compounds was measured in the same

microtiter plate based assay with P388/mdr1 and P388/par cells, which was used for

uptake studies, as described in the methods section (chapter 3.4.4). In every

experiment, 100 µM verapamil (a known P-gp inhibitor) was used as internal

standard. None of the applied compounds modulated the efflux of R123 into

P388/par cells (Figure 4.11A and B).
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The assay discriminates between effective and noneffective inhibitors of R123 efflux,

as shown in Figure 4.11C and D). Again, because of the poor solubility of

ziprasidone, the maximal concentration applied (10 µM) was too low for an accurate

experimental determination of the ED50 value. Therefore, a possible affinity of

ziprasidone to P-gp could not be determined. In agreement with the uptake assay, no

affinity of haloperidole to P-gp could be shown, as no modulation of the R123 efflux

was observed either. All other studied compounds demonstrated an inhibition of

R123 efflux as well. The ED50 values of efflux inhibition are summarized in Table 4.2.

Risperidone and aripiprazole showed the highest affinity to P-gp with an estimated

ED50 value of 1.
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Figure 4.11 Effect of the neuroleptic test compounds haloperidol (HAL), clozapine (CLZ), norclozapine

(NORCLZ), olanzapine (OLZ), aripiprazole (ARI), quetiapine (QUET), ziprasidone (ZIP),

risperidone (RIS) and 9-OH risperidone (OHRIS) and domperidone (DOM), on R123 efflux from

P388/par cells (A and B) and P388/mdr cells (C and D). The extent of R123 efflux in buffer, only

containing the equivalent concentration of solvent, was used as control and set to 100%. Values

represent mean ±SEM for n=3-6. Data points were fitted with regression analysis using equation

5 as described in the methods section (chapter 3.4.6).
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High affinities were also observed for 9-OH riperidone and quetiapine. Norclozapine

comparatively showed an intermediate affinity, whereas the lowest affinities were

determined for domperidone, clozapine, and olanzapine, with estimated ED50 values

between 109.8 and 151.9 µM.

Regarding the relative inhibitory capacity (Irel), diplayed in Table 4.2, norclozapine

showed the highest inhibiton, with an inhibitory capacity equal to verapamil.

Inhibitiory capacity of olanzapine was slightly lower compared to verapamil, while all

other compounds displayed intermediate inhibitory capacities, with Irel between 0.44

(olanzapine) and 0.82 (domperidone).

uptake assay efflux assay

test compound
Used solvents
[% v/v]

ED50

P388/mdr1
[µM]

max Irel
c ED50

P388/mdr1
[µM]

max Irel
c

haloperidol 1% DMSO nila nila nila nila

clozapine 1% DMSO 178.2 0.65 151.9 0.68

norclozapine 1% DMSO 40.2 0.45 45.8 1.05

olanzapine 1% DMSO 64.8 1.81 179.1 0.44

domperidone 1% methanol/DMSO
in HBSS-P pH 6.9

86.5 0.52 109.8 0.82

aripiprazole 1 % DMSO
in HBSS-P pH 6.8

1.9 0.74 1.0 0.9

quetiapine 1% DMSO 11.1 1.35 10.7 0.67

ziprasidone 1% DMSO nilb nilb nilb nilb

risperidone 1% DMSO/ethanol 48.6 1.00 1.0 0.79

9-OH risperidone 2% DMSO/ethanol 0.09 1.5 11.8 0.62

Table 4.2 Used solvent concentrations (in HBSS-P, pH 7.4, unless otherwise noted) and biological effects

of tested neuroleptic compounds. All ED50 values were estimated from a regression analysis,

using equation 5, as described in the methods section.
aParameter could not be estimated. Most likely mdr1 is not inhibited.
bDue to solubility limitations, the highest concentration applied was 10 µM. Up to this

concentration, no manifestation of the described parameters was seen.
crelative inhibitory capacity (Irel), calculated with equation 7, is the capacity of a test compound

(at the concentration where maximal inhibition was reached) to inhibit the R123 uptake or efflux

relative to the inhibitory capacity of 100 µM verapamil, inhibitory capacity of verapamil was set

to 1.
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4.2.4 Uptake and efflux experiments with CCRF-CEM cells

Inhibition of P-gp mediated R123 uptake and efflux was investigated in CCRF-CEM

cells as well. However, for unknown reasons, the data gained from these assays

were highly divergent in both parental and MDR1 overexpressing cells. Therefore,

the obtained results could not be interpreted (data not shown).
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4.3 Evaluation of BBB permeability of different CNS active

compounds

4.3.1 Transport studies

The blood-brain barrier permeability of nine different CNS active compounds,

preclinical substances provided by an industrial collaboration partner, was studied in

bi-directional transport studies in porcine BCEC. The paracellular marker FITC-

dextran, which was used to monitor the integrity of the cell monolayer, showed

permeabilities of Papp= 2-4 x 10-6 cm/sec, empty filters Papp= 6.18 x 10-6 cm/sec.

Transport was investigated with 2.5, 5, 10, 20, and 40 µM of test compound either

applied to the apical (AP) or the basolateral (BL) side.

The following Figures 4.12-4.20 depict the results of the transport experiments with

these different preclinical substances: (A) shows the time dependent transport (up to

60 minutes) of the test compound at all the investigated concentrations from AP to

BL, (B) shows the time dependent transport (up to 60 minutes) of the test compound

at all the investigated concentrations from BL to AP, whereas (C) depicts the dose

dependent transport (up to 40 µM) from AP to BL and from BL to AP.

The involvement of active transport can be concluded, when the transport from AP to

BL differed from BL to AP. A higher transport from BL to AP than from AP to BL

indicates efflux by a transporter localized on the AP (luminal) side of the BCEC,

restricting the brain uptake.
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Figure 4.12 Transport of No-01 through porcine BCEC from AP to BL (A) and from BL to AP (B), and dose

dependent transport after 20 minutes from AP to BL and BL to AP (C). Values are mean ±SEM,

n=3.

Time dependent transport of No-01 (Fig. 4.12) from AP to BL was not significantly

lower than transport from BL to AP at all time points and concentrations investigated.

Overall high transport (up to 2.3 nmol/60 min/cm2, which corresponds to 230 µmol/60

min/total brain capillary endothelial surface (BCE-A) [approx. 10 m2]) was observed in

both directions (Table 4.3). The linear dose dependent transport in both directions

indicated passive diffusion.
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Figure 4.13 Transport of No-02 through porcine BCEC from AP to BL (A) and from BL to AP (B), and dose

dependent transport after 20 minutes from AP to BL and BL to AP (C). Values are mean ±SEM,

n=3.

Time dependent transport of No-02 (Figure 4.13) from AP to BL was equal to

transport from BL to AP at all time points and concentrations investigated. Overall

high transport (up to 3.5 nmol/60 min/cm2, which corresponds to 350 µmol/60

min/total BCE-A in both directions, as well as linear dose dependent transport in both

directions indicated passive diffusion.
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Figure 4.14 Transport of No-03 through porcine BCEC from AP to BL (A) and from BL to AP (B), and dose

dependent transport after 20 minutes from AP to BL and BL to AP (C). Values are mean ±SEM,

n=3.

Time dependent transport of No-03 (Figure 4.14) from AP to BL was equal to

transport from BL to AP at all time points and concentrations investigated. Overall

high transport (up to 2.2 nmol/60 min/cm2, which corresponds to 220 µmol/60

min/total BCE-A in both directions, as well as linear dose dependent transport in both

directions indicated passive diffusion.
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Figure 4.15 Transport of No-04 through porcine BCEC from AP to BL (A) and from BL to AP (B), and dose

dependent transport after 20 minutes from AP to BL and BL to AP (C). Values are mean ±SEM,

n=3.

The difference in time dependent transport of No-04 from AP to BL and from BL to

AP (Figure 4.15) is not statistically significant at any time point or concentration.

Overall very low transport (up to 0.04 nmol/60 min/cm2, which corresponds to 4

µmol/60 min/total BCE-A from AP to BL, and up to 0.2 nmol/60 min/cm2, which

corresponds to 20µmol/60 min/total BCE-A from BL to AP) was observed. Dose

dependent transport from AP to BL was not significantly lower than transport from BL

to AP. The high standard deviation indicated divergent data.
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Figure 4.16 Transport of No-05 through porcine BCEC from AP to BL (A) and from BL to AP (B), and dose

dependent transport after 20 minutes from AP to BL and BL to AP (C). Values are mean ±SEM,

n=3.

Time dependent transport of No-05 (Figure 4.16) from AP to BL was equal to

transport from BL to AP at all time points and concentrations investigated. Overall

low transport (up to 0.5 nmol/60 min/cm2, which corresponds to 50 µmol/60 min/total

BCE-A) was observed in both directions. A saturation curve was observed in both

directions of dose dependent transport, which indicated that the involvement of efflux

transporters was possible.
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Figure 4.17 Transport of No-06 through porcine BCEC from AP to BL (A) and from BL to AP (B), and dose

dependent transport after 20 minutes from AP to BL and BL to AP (C). Values are mean ±SEM,

n=3.

Time dependent transport of No-06 (Figure 4.17) from AP to BL was not significantly

higher than transport from BL to AP at any time point or concentration investigated.

Overall high transport (up to 2.9 and 2.3 nmol/60 min/cm2 from AP to BL and from BL

to AP respectively, which corresponds to 290 and 230 µmol/60 min/total BCE-A from

AP to BL and from BL to AP respectively) was observed in both directions. There

was a tendency to a saturation curve in both directions of dose dependent transport,

which indicated that the involvement of transporters and facilitated transport was

possible. However, as this observation was small and considering the high standard

deviation, simply passive diffusion cannot be ruled out.
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Figure 4.18 Transport of No-07 through porcine BCEC from AP to BL (A) and from BL to AP (B), and dose

dependent transport after 20 min. from AP to BL and BL to AP (C). Values are mean ±SEM,

n=3.

Time dependent transport of No-07 (Figure 4.18) from AP to BL was not significantly

lower than transport from BL to AP at any time point or concentration investigated.

Overall low transport (up to 0.3 nmol/60 min/cm2, which corresponds to 30 µmol/60

min/total BCE-A) was observed in both directions. Dose dependent transport showed

clear saturation curves in both directions, which indicated that the involvement of

transporters was possible.
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Figure 4.19 Transport of No-08 through porcine BCEC from AP to BL (A) and from BL to AP (B), and dose

dependent transport after 20 min. from AP to BL and BL to AP (C). Values are mean ±SEM,

n=3.

Time dependent transport of No-08 (Fig. 4.19) was equal in both directions at all time

points and concentrations. Overall high transport (up to 3.5 nmol/60 min/cm2, which

corresponds to 350 µmol/60 min/total BCE-A) in both directions, as well as linear

dose dependent transport in both directions indicated passive diffusion.
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Figure 4.20 Transport of No-09 through porcine BCEC from AP to BL (A) and from BL to AP (B), and dose

dependent transport after 20 min. from AP to BL and BL to AP (C). Values are mean ±SEM,

n=3.

Time dependent transport of No-09 (Fig. 4.20) was equal in both directions at all time

points and concentrations. Overall high transport (up to 2.5 nmol/60 min/cm2, which

corresponds to 250 µmol/60 min/total BCE-A) was observed in both directions. The

linear dose dependent transport from AP to BL indicated passive diffusion, whereas a

tendency to a saturation curve was observed from BL to AP, wherefore the

involvation of a transporter may be considered. However, as this observation is

rather small, simply passive diffusion may not be ruled out.
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Compound Apparent permeability (Papp ) Approx. overall transport

(AP to BL)

[10-5cm/sec]

(BL to AP)

[10-5cm/sec]

Papp (AP to BL) /

Papp (BL to AP)

AP to BL

[mol/60min /

total BCE-A]

from BL to AP

[mol/60min /

total BCE-A]

No-01 1.1±0.3 1.8±0.09 1.6 230 230

No-02 2.6±0.09 2.9±0.03 1.1 350 350

No-03 2.8±1.0 2.2±0.3 0.8 220 220

No-04 0.045±0.01 0.27±0.04 6 4 20

No-05 0.62±0.1 0.84±0.2 1.4 50 50

No-06 2.9±0.3 1.5±0.6 0.5 290 230

No-07 0.73±0.2 0.87±0.2 1.2 30 30

No-08 2.3±0.2 2.8±0.1 1.2 350 350

No-09 2.0±0.2 2.4±0.3 1.2 250 250

Table 4.3 Apparent permeability of preclinical test compounds and approx. overall transport through

porcine BCEC.

Table 4.3 resumes parameters from the transport assays. The following rank order

from low to high AP to BL transport was observed No-04 < No-05 < No-07 < No-01 <

No-09 < No-08 < No-02 < No-03 < No-06. The influence of efflux transporters could

not be assumed for any compound from the bidirectional flux, as none of the

differences were statistically significant.

4.3.2 Combined study of BBB permeability and target receptor effect

Transport of the test compounds No-04 and No-05 from AP to BL in porcine BCEC

was performed with the following concentrations: 2.5, 5, 10, 20, and 40 µM. Samples

from the BL compartment where collected after 45 minutes. Only the initial

concentration applied to the AP side, but not the concentration of the samples on the

BL side was known. With these samples, the target receptor screening assay was

performed in cells expressing the human target receptor (using 50 µl of sample and

100 µl of assay buffer, giving a 3-fold dilution of the sample) by the industrial

collabortation partner. Standard curves comprising concentrations ranging between

100 pM and 10 µM of the investigated test compound were carried along with each

experiment.

The BL samples from the transport experiment of No-04 hardly showed any effect

(the estimated ED50 was not even reached with the BL sample of the highest used
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concentration of 40 µM), assuming the transported concentrations of No-04 were to

low for an adequate effect on the target receptor in the target receptor screening

assay (ED50 of No-04=2.41µM). 

Dose-response curves were gained with the BL samples from the transport

experiment with No-05, used in the target receptor assay (Figure 4.21), as well as a

standard curve of No-05 (Figure 4.22).

Figure 4.21 Dose-response curve of No-05 (BL samples, gained from the transport assay in porcine BCEC)

in the target receptor assay. Only the initial test compound concentration applied to the

transport compartment, but not the concentration of the samples applied at this assay is known.

Values are mean ±SEM, n=3.
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Figure 4.22 Standard curve of No-05, graphically fitted (with origin 6.1 using equation 5), from dose-

response curve gained in target receptor screening assay. ED50 of No-05=13.4 nM.
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From the extent of response gained from each of the samples applied at the target

receptor screening assay, the concentrations of the samples could be estimated,

knowing the relationship between the extent of response and applied dose from the

standard curve.

The concentration of these samples was analyzed with LC-MS/MS by the industrial

collaboration partner as well. Therefore, results of the estimated concentrations of

the BL samples from the transport assay, applied in the target receptor screening

assay, could be compared to the measured values. As shown in Table 4.4, the

concentrations estimated with the target receptor screening assay are lower than the

concentrations gained from the LC-MS/MS analysis, the difference diminishes with

higher applied doses, giving a ratio of measured versus estimated concentration of

80-fold for 2.5 µM and a ratio of 2.5-fold for 40 µM initially applied concentration.

Initial AP

concentration of

samples [µM ]

Estimated concentration

from target receptor

screening  assay [nM]

Concentrations measured

by LC-MS/MS [nM]

Ratio

measured /

estimated

2.5 0.36 29.4±9.2 81

5 15 52.9±11 3.5

10 16.5 78.9±13.4 4.8

20 36 128.3±16.8 3.5

40 48 120±8 2.5

Table 4.4 Concentrations of No-05 samples, drawn from the BL compartment after 45 minutes in a

transport assay with porcine BCEC. Values gained from analysis by LC-MS/MS were compared

to values gained by estimation of concentrations from the target receptor screening assay using

the dose-response relationship of a standard curve. Values are mean ±SEM, n=3.
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5 Discussion

5.1 Evaluation of BB19 cells as in vitro model of the BBB

The optimal in vitro model for the BBB accounts for active and passive transport

processes, as well as non-defined drug-cell interactions. In addition, it is as little

laborious as possible, and preferably is from human origin.

Paracellular transport of sucrose is a well accepted predictor to evaluate the

restrictiveness of BBB cellular monolayers (Gumbleton and Audus, 2001).

On Transwell® polycarbonate filters, the BB19 cells failed to build a tight monolayer,

the Papp is barely different to the Papp of empty filters, while porcine BCEC grew to

optimal tightness on these filters. Tightness of BB19 cells could be improved on BD

FalconTM PETE cell culture inserts, where they exhibited a 2.4-fold higher tightness

compared to empty filters, leading to a Papp of 1.30x10-5 cm/sec, which corresponds

to Papp-values of porcine BCEC cultivated either on Transwell polycarbonate filters or

on BD FalconTM PETE cell culture inserts. The same range of Papp-values was

reported of other cell culture models using bovine or porcine brain capillary cells

(Torok et al., 2003, Dehouck et al., 1992, Abbruscato and Davis, 1999). However,

Omidi and colleagues, who evaluated the immortalized mouse brain capillary

endothelial cell line b.End3 found a sucrose permeability in the same range as our

BB19 cells, and report that their monolayers lacked real discrimination with respect to

the permeation of transcellular and paracellular probes, even though the sucrose

permeability compares favorably with data in the literature for systems considered to

represent a restrictive barrier (Omidi et al., 2003). It should be noted that, in

opposition to Pe values, Papp values do not account for the blank values of empty

filters, and therefore are solely expedient for the comparison of monolayers grown on

the same type of cell culture inserts. Empty Transwell® polycarbonate inserts (all

empty filters are precoated with rat tail collagen and are without cells) have a 2.4-fold

higher sucrose permeability than the empty BD FalconTM PETE filters, which leads to

a lower sucrose permeability coefficient of Pe=1.45x10-5 cm/sec for the porcine BCEC

cultivated on Transwell® polycarbonate inserts versus Pe=2.25x10-5cm/sec for BB19

cells cultured on BD FalconTM PETE inserts (and Pe=2.66x10-5cm/sec for porcine
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BCEC). According to Monnaert and colleagues, Pe values higher than 1.67x10-5

cm/sec are indicative for a leaky BBB (Monnaert et al., 2004). A serum-free model

with primary porcine BCECs has reached a remarkable Pe of 1.0x10-6 cm/sec, which

could be even improved with hydrocortisone to a Pe of 5.0x10-7 cm/sec (Franke et al.,

1999, Hoheisel et al., 1998). A permeability coefficient of Pe=6.8x10-5cm/sec for

sucrose has been reported for the well-characterized RBE4 cell line co-cultured with

C6 glioma cells (Lagrange et al., 1999). Another study reported a sucrose

permeability coefficient of Pe=3.8x10-5cm/sec for RBE4 cells co-cultivated with

astrocytes (Rist et al., 1997), which, according to Gumbleton and Audus, is

considered to be leaky and therefore unsuitable for the study of transendothelial

transport (Gumbleton and Audus, 2001).

In addition, the BB19 cell monolayers do not show any adequate discrimination

between the paracellular marker sucrose and the transcellular marker propranolol

(Papp= 1.30x10-5 vs. 2.18x10-5 cm/sec), which further confirms that the model is not

suitable for transport studies yet, and still needs to be improved.

It has been shown that the microenvironment can influence the permeability

properties of endothelial cells in situ. With respect to cellular permeability of cultured

endothelial cells, astrocyte-derived factors seem to play a central role (Janzer and

Raff, 1987, Stewart and Wiley, 1981). Therefore medium conditioned by C6 cells, a

glioma cell line, was used. In addition, supplements were investigated, which have

been shown to improve cultured BCEC monolayers. We used the cAMP analog

chlorphenylthio-cAMP in combination with the cAMP specific phosphodiesterase

inhibitor RO-20-1724 (Rubin et al., 1991) and the glucocorticoid dexamethasone

(Grabb and Gilbert, 1995). Glucocorticoids, i.e. hydrocortisone were shown to

improve the barrier properties of a porcine and a murine in vitro model of the BBB

(Hoheisel et al., 1998, Weidenfeller et al., 2005) . 1,25-dihydroxyvitamin D3 was

shown to regulate differentiation in many cell types, including normal, immortalized,

and tumor cells (Bouillon et al., 1995). The supplement concentrations we used in

our experiments were in the range of the effective concentrations published in the

previously cited publications.

The influence of the cell culture conditions on the differentiation of the BB19 cells and

on the degree of tight junction formation was studied by the assessment of the ZO-1

pattern. Zonula occludens protein (ZO-1) is associated with the junctional complex of
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high resistant tight junctions (Krause et al., 1991). A distinct morphological

improvement toward a more spindle-like morphology was seen with C6-conditioned

medium. The use of primary astrocytes might lead to a even better differentiation

than the use of the C6 cell line (Boveri et al., 2005).

A more primary BCEC-like appearance was also seen with dexamethasone or 1,25-

dihydroxyvitamin D3. Chlorophenylthio-cAMP and RO-20-1724 failed to cause any

improvement of the patterns of ZO-1, and showed no difference compared to the

controls. No change upon spatial ZO-1 expression was observed. In opposition to the

cell monolayers of the above cited publications, none of the cell culture conditions

could improve the tightness (i.e. sucrose permeability) of the BB19 monolayers.

The expression of typical blood-brain barrier drug transporters is mandatory for the

usability of potential in vitro cell culture systems. It has been shown that ABC

transporters, such as P-gp, play a functional part in establishing a barrier between

the blood and the brain (Fricker et al., 2002, Miller et al., 2000, Regina et al., 1998,

Schinkel et al., 1996). Studies using mdr1a/b gene knockout mice show significantly

elevated drug levels, particularly in the brain (Schinkel et al., 1997). The expression

of P-gp, detected on mRNA level, Western blot and with immunostaining in BB19

cells indicates that the BB19 cell culture model exhibits important features of the

BBB.

The expression of several MRP homologs in brain endothelial vessels has been

reported. MRP1, MRP4, MRP5 and MRP6 have been identified in bovine brain

capillaries by RT-PCR. Confocal laser scanning microscopy and Western blot

analysis showed a predominant distribution of MRP1 and MRP5 in the apical plasma

membrane, and an almost equal distribution of MRP4 on the apical and basolateral

plasma membrane. MRP3 was detected in cultured bovine brain microvessel

endothelial cells but not in capillaries (Zhang et al., 2004, Zhang et al., 2000). The

presence of MRP2 in human brain, and its localization at the apical membrane of

capillary endothelial cells was shown previously (Fricker et al., 2002, Miller et al.,

2002, Miller et al., 2000, Potschka et al., 2003). MRP1, MRP2, MRP4, and MRP5

were detected in BB19 cells on mRNA level. MRP4 was also detected by

immunostaining. However, MRP1, MRP2 and MRP5 were not detected with

immunostaining. The brain multidrug resistance protein (BMDP), which had been

discovered at the porcine blood-brain barrier (Eisenblatter et al., 2003), is highly

homologous to the human BCRP (BCRP/ABCG2). The presence of BCRP was
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demonstrated in both normal and tumor human brain tissue. Like P-gp, this

transporter has been localized to the apical surface of microvessel endothelium, and

both have several substrates in common (Cooray et al., 2002). The presence of

BCRP in BB19 cells has been demonstrated on mRNA level, Western blot, and with

immunostaining. Analysis of the total mRNA pool indicated previously that expression

of BCRP in the blood-brain barrier is even higher than P-gp and MRP1, therefore it

was concluded that BCRP might play an important role in the exclusion of

xenobiotics from the brain (Eisenblatter et al., 2003).

Members of multispecific organic anion transport proteins (OATP2, OATs and MCTs)

are present in the blood-brain barrier. Human OATP-A and the rat Oatp2 have been

identified in brain capillaries by immunostaining (Gao et al., 2000, Gao et al., 1999).

However, neither OATP-A nor OATP-C could be shown in BB19 cells on mRNA

level.

Both OAT3, and OAT4, but no OAT1 were detected in BB19 cells by RT-PCR.

Northern blot analysis previously revealed that rat OAT3 (SLC22A8) mRNA is

expressed in the brain, while the role of OAT1 and OAT4 at the BBB still remains

unclear.

Propranolol is a basic lipophilic drug, that has a high brain to plasma ratio and is

sequestered in the brain (Pardridge et al., 1984). Therefore, it is commonly used as a

transcellular marker of the blood-brain barrier. Time-dependent uptake of morphine,

together with the reference substances propranolol, and sucrose into BB19 cells was

performed during an incubation time of 120 minutes. Morphine penetrated to a lesser

degree than propranolol, and diffusion of sucrose into the cells was minimal, which is

similar to the uptake data gained from the established porcine brain capillary

endothelial cell model (Huwyler et al., 1996).

Uptake of daunomycin, a substrate of P-glycoprotein (Kwon et al., 1996) was

significantly increased (1.45-fold) by the P-gp inhibitor verapamil, indicating functional

expression of P-gp, which indicates that, in spite of the absence of a sufficiently

restrictive paracellular barrier, BB19 cells still may be suitable for drug uptake studies

(Gumbleton and Audus, 2001). Preliminary investigations suggest, that monitoring

the uptake kinetics into cerebral capillary endothelial cell monolayers may even be

superior to transmonolayer flux measurements for predicting the passive diffusion of

polar permeants across the BBB in vivo (Johnson and Anderson, 1999).
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In conclusion, we could demonstrate that important ABC transporters, such as P-gp

and BCRP that constitute the BBB, are expressed in BB19 cells. Furthermore, we

were able to improve cellular morphology, tight junction protein patterns, and

tightness of the monolayer towards an appearance similar to primary BCEC.

Although the BB19 cells appear to be unsuitable for transendothelial assessments, it

could be shown with uptake experiments, that important functional characteristics of

the BBB are fulfilled. These investigations could lead to the establishment of a new in

vitro BBB model of human origin that might be an important tool assessing BBB

mechanisms.

5.2 Expression and inducibility of CYPs in BB19 cells

Besides being a physical and a transport barrier, the BBB has also been described to

be a metabolic barrier, consisting of numerous enzymes, such as aminopeptidase A,

aminopeptidase M, and angiotensin-converting enzyme (Allt and Lawrenson, 2000).

Of the phase I metabolizing enzymes, CYPs play an important role in the

biotransformation of several CNS active drugs. However, even though CYPs have

been identified in the brain, their functional role still remains to be elucidated.

Furthermore, data about the expression of CYPs at the BBB is very limited.

Therefore we made an attempt to investigate the presence and inducibility of

selected CYP isoforms (that may play a role in the metabolism of CNS active drugs)

in our in vitro model of the BBB, the BB19 cells. On mRNA level only the presence of

CYP1A1 and, to a lesser extent, CYP3A4 could be shown, whereas CYP1A2,

CYP2D6, and CYP2C19 were not detected. Some agents are known to induce

certain CYP isoforms, which could lead to interactions with CNS active drugs that are

substrates of these CYP isoforms. Only CYP1A1 was found to be inducible by

benzo[a]pyrene, whereas the treatment with rifampicin did not significantly change

the expression level of CYP3A4. In general, CYP1A1, is not only induced by

polycyclic aromatic hydrocarbons (PAH), CYP1A1 is also involved in the

transformation of PAHs to reactive intermediates, which irreversibly bind to DNA. The

main sources of these carcinogenic PAHs include tobacco smoke, urban air, and

charcoal grilled food (Granberg et al., 2003). The potential role of CYP1A1 induction

for the susceptibility of brain cancer requires further investigations.
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The presence, of CYP1A1, but not its inducibility, could be confirmed on protein level

by immunostaining and Western blot. Notably, for unknown reasons, the BB19 cells

treated with benzo[a]pyrene appear to be larger than the untreated cells. To

determine the causes of this finding in future investigations, a toxicity assay should

be conducted, to identify a putative toxicity of the benzo[a]pyrene treatment. Several

pathways have been identified, which regulate the cell size in eukaryotic cells

(Bjorklund et al., 2006). Benzo[a]pyrene may be modulating these pathways,

particularly by the induction of apoptosis.

The presence of CYP1A1 could not be confirmed on a functional level, as no catalytic

activity could be detected in the P450-GLO™  assay. However, as a positive control is

missing, the significance of this experiment is limited. Therefore, further

investigations need to be carried out, to determine the role of CYP1A1 at the BBB. It

may be supposable that CYP1A1 might contribute to the metabolic barrier of the

BBB, protecting the brain from xenobiotics. The same might be assumed for

CYP3A4, however, for definite assumptions the expression of CYP3A4 needs to be

studied on protein level and functionally, as well. On the other hand, it may be

assumed that CNS active drugs that are substrates of CYP1A2, CYP2D6, and

CYP2C19 are mainly metabolized in the liver, as none of these enzymes could be

detected in BB19 cells. However, further experiments, e.g. in freshly isolated brain

capillaries, on protein level as well as functional experiments, are necessary to

confirm these assumptions.

5.3 Identification of P-glycoprotein inhibitors among

neuroleptic compounds

There is increasing evidence from in vitro assays that neuroleptic drugs may

modulate P-gp function. However, so far, only little in known about the influence of

newer atypical neuroleptic drugs on P-gp, and on its role in the distribution and

elimination of neuroleptic compounds (El Ela et al., 2004). Different neuroleptic

compounds, metabolites, and domperidone were investigated for their inhibitory

properties in microtiter plate based uptake and efflux assays using mdr1

overexpressing P388/mdr1 cells, and the corresponding parental P388/par cells for

the assessment of effects that are not related to P-gp. With these assays, the tested

compounds could be classified into effective (clozapine, norclozapine, olanzapine,
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domperidone, aripiprazole, quetiapine, risperidone, 9-OH risperidone) and

noneffective P-gp inhibitors (haloperidol).

None of the tested compounds modulated the uptake or the efflux of the P-gp

substrate R123 in P388/par cells, which supports the hypothesis of a selective

interaction with P-gp rather than any unspecific effects or the involvement of other

transport mechanisms.

The newer atypical neuroleptic drugs quetiapine and aripiprazole both showed high

inhibitory properties. A previous investigation with quetiapine, were the quetiapine-

mediated inhibition of [3H]-talinolol transport across Caco-2 monolayers was studied,

is in concordance with our findings (El Ela et al., 2004). Quetiapine has also been

identified as a P-gp substrate in an ATPase assay (Boulton et al., 2002). Aripiprazole

is the most recently introduced atypical neuroleptic drug, thus no P-gp investigations

have been previously reported with this compound.

Clozapine and, to a lower extent, norclozapine, have been identified as P-gp

inhibitors in vitro before as well (El Ela et al., 2004). However, in our studies, the P-

gp affinity of clozapine was rather low compared to norclozapine or the other

investigated compounds. A very low affinity to P-gp has also been observed

previously in the ATPase assay (Boulton et al., 2002).

There are no previous investigations concerning the P-gp inhibitory properties of

risperidone and its major metabolite 9-OH risperidone. Whereas it has been reported

that risperidone, and to a lower extend 9-OH risperidone, are P-gp substrates in vitro,

which was confirmed in experiments with mdr1a gene knockout mice (Ejsing et al.,

2005).

Similar to the results from our efflux assay, the inhibitory potency of olanzapine to P-

gp was comparatively low (El Ela et al., 2004), whereas, in contrary, an intermediate

P-gp affinity and a high inhibitory capacity were detected for olanzapine in the uptake

assay. The causes for these differences (e.g. unspecific effects or limitations of the

assay) remain to be explored.

For haloperidol, only a very weak activity has been observed in the ATPase assay

(Boulton et al., 2002), whereas, contrary to our results, a different study reported P-

gp inhibitory properties in vitro (El Ela et al., 2004).

It has to be noted that discrepancies between the findings from our assays and

literature data may be due to the different methods utilized, as observed findings

depend on the experimental set-up.
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Ziprasidone did not exert any influence on uptake or efflux of R123. However, the

maximal applied concentration was only 10 µM. At higher concentrations, ziprasidone

precipitates when the DMSO stock solution is added to the aqueous assay buffer.

Due to these solubility limitations, the highest applied concentration was too low for

an accurate experimental determination of the inhibitory parameters. Therefore, a

possible affinity of ziprasidone to P-gp could not be determined. In general, all of the

tested neuroleptic compounds are highly lipophilic, which limited the solubility of most

of the investigated compounds and subsequently the application of higher

concentrations. Therefore, it could not be confirmed, if a plateau was reached with

the highest applied concentration. Thus, only approximate interpretations of the

inhibitory properites of the applied compounds could be made.

In addition to the neuroleptic drugs and drug metabolites, we investigated the

inhibitory properties of domperidone, which is a known P-gp inhibitor (Schinkel et al.,

1996). Domperidone is a peripherally acting dopamine antagonist, which does not

exert any CNS effects in humans or wild-type mice. Contrariwise, mdr1a gene

knockout mice show extrapyramidal symptoms, which are typical neurological side

effect of neuroleptic drugs. Thus, domperidone could be used as a positive control for

in vivo experiments with mdr1a/1b gene knockout mice. Experiments with mdr1a/1b

gene knockout mice could be helpful to elucidate the in vivo relevance of the

inhibitory properties of the neuroleptic compounds, found in our in vitro assays.

5.4 Evaluation of BBB permeability of different CNS active

compounds

5.4.1 Transport studies

The aim of this study was to investigate the BBB permeability of nine different test

compounds in vitro. Porcine BCEC are reported to express important efflux

transporters, such as P-gp, MRPs, and BCRP, and are generally accepted as in vitro

model to study the ability of compounds to penetrate the BBB (Franke et al., 2000,

Torok et al., 2003, Eisenblatter et al., 2003). The involvement of active transport was

concluded by the investigation of a saturable dose-dependent transport and

asymmetrical fluxes in bi-directional transendothelial transport, where a higher

transport from BL to AP than from AP to BL indicates efflux by a transporter localized
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on the AP (luminal) side of the BCEC. Comparing the test compounds, low transport

(= 50 µmol/60min/total BCE-A) was observed from No-04, No-07, and No-05,

whereas the overall transport of all the other compounds was high (220-

350µmol/60min/total BCE-A). None of the investigated compounds showed

statistically significant asymmetrical fluxes. No-07 and No-05 showed clear saturation

curves in both directions, whereas the transport from AP to BL was not significantly

lower than in the opposite direction, which may indicate the involvement of

transporters in both directions. For all other compounds, passive diffusion can be

assumed, as no evidence for the involvement of active transport could be seen. No-

06, showed a tendency to a saturation curve; however, the observation was small,

and the standard deviation was too high for the assumption of the involvement of

active transport mechanisms. Since porcine BCEC express several active

transporters at the AP and BL side, further investigations would be necessary to

confirm the gained results and to assign the involvement of specific transporters.

Further experiments may include the inhibition of active carrier systems by the

performance of the transport experiments at 4°C, or with the presence of inhibitors,

such as verapamil, cyclosporine, or PSC833 for the inhibition of P-gp, or MK571 for

the inhibition of MRP.

5.4.2 Combined study of BBB permeability and target receptor effect

There has been a many-fold increase of the number of compounds available for drug

discovery through combinatorial chemistry (Paul, 1999, Radl, 1998), as well as the

identification of new biological drug targets, which allows the identification of lead

compounds in in vitro assays (Fernandes, 1998). However, more than 98% of

candidate CNS-targeting drugs have been halted mid-development because of poor

permeability across the BBB, presenting a major problem to the pharmaceutical

industry (Pardridge, 2001, Terasaki et al., 2003). Until now, compounds pass through

a consecutive series of screening assays, where in a first screening procedure the

antagonism or inhibition of a receptor or enzyme is tested in a high-throughput in

vitro assay, following membrane permeability properties in cell culture models in a

second step (White, 2000). We have made a first attempt to develop a combined in

vitro model, simultaneously studying BBB penetration and pharmacological effect.

CNS-active compounds first have to pass the BBB (which was studied with the
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transport through porcine BCEC); only this fraction will contribute to the effects on the

receptor (which was obtained in the target receptor assay). This situation is

incorporated in our combined approach, improving the screening-criteria for the

selection of potential drug candidates, by reason that a compound with a moderate

pharmacological efficacy (which is usually excluded from further screens), but with a

high BBB permeability, might be a better drug candidate than a compound with a

high pharmacological efficacy but poor BBB permeability properties. No-04 and No-

05 (ED50 of 2.41 µM and 13.4 nM in the target receptor assay, respectively) were

tested in the combined assay. The BBB permeability of No-04 was low, as seen in

the previous transport experiment as well (approx. overall transport from AP to BL of

0.04 nmol/60min/cm2), resulting in an insufficient response in the target receptor

assay. From the dose-response curve obtained from the combined experiment with

No-05, and the appropriate standard curve of No-05, the concentrations of the

samples could be estimated, knowing the relationship between the extent of

response and applied dose from the standard curve. These results of the estimated

concentrations of the BL samples from the transport assay, which were tested in the

target receptor assay, could be compared to the values measured by LC-MS/MS. If

the extent of BBB penetration could be determined directly with the target receptor

assay, elaborate LC-MS/MS capacity for the quantification could possibly be saved.

However, the concentrations estimated with the target receptor assay were lower

than the concentrations gained from the LC-MS/MS analysis. The difference

diminishes with higher applied doses, giving a ratio of measured versus estimated

concentration of 80-fold for 2.5 µM and a ratio of 2.5-fold for 40 µM initially applied

concentration. These are preliminary experimental results from the development of

this combined in vitro assay, with the future goal to be applied in industrial drug

screening, revealing that a an extensive further optimization is necessary.

Accuracy as well as reproducibility has to be improved to obtain the right results the

first time. This is required, because extensive retesting degrades the productivity of

an industrially applied assay. The experimental procedure must be applicable to a

wide variety of chemical structures and should therefore be validated with an

appropriate number of standard compounds. The in vitro / in vivo correlation should

be validated in animal models, as a high concordance with the in vivo situation is

demanded. The experimental procedure must be optimized towards simple handling,

and a minimal number of experimental steps. This procedure should be fast enough
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to keep up with the input rate of new compounds from chemistry, and should allow a

high degree of automatization (White, 2000).

In conclusion, the demand on this combined in vitro assay is to determine drug-like

properties of a library of test compounds, to investigate the efficacy (which is the

ability of a compound to produce a desired pharmacological effect), as well as the

ability of the compound to pass through the blood-brain barrier to reach the target

receptor. If the extent of BBB penetration could be determined directly out of the

target receptor assay, LC-MS/MS measurements would not be necessary for the

quantification anymore.

Drug-like properties are determined by further properties, such as persistence,

safety, and pharmaceutical properties of the compound, such as solubility, rate of

dissolution etc. Thus, for the identification of drug candidates, additional screening

assays, investigating these further properties, are certainly indispensable. Our assay

was designated and applicable for the discovery of CNS-active compounds.

However, the ability of compounds to penetrate the blood-brain barrier is almost

always of interest, not only as a property for the distribution into the brain, but also to

screen for non-CNS indications, where a low BBB permeability is demanded to avoid

adverse effects.
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6 Conclusions and outlook

The evaluation of the immortalized human brain capillary endothelial cell line BB19

as an in vitro model of the BBB revealed that important ABC transporters, such as P-

gp and BCRP, that constitute the BBB, are expressed in BB19 cells. Furthermore, we

were able to improve the cellular morphology towards an appearance similar to

primary BCEC. Although BB19 cells appear to be unsuitable for transport studies, it

could be shown with uptake experiments, that important functional characteristics of

the BBB are fulfilled. These investigations could lead to the establishment of a new in

vitro model for the study of BBB uptake mechanisms.

Investigating the the presence and inducibility of CYPs in BB19 cells, only the

presence of CYP1A1 and CYP3A4 could be demonstrated. Inducibility of CYP1A1

could only be shown on mRNA level, whereas no inducibility was seen for CYP3A4.

The relevance of these findings, e.g. a potential role of CYP1A1 induction at the BBB

for the susceptibility of brain cancer, requires further investigatons. However, our

results do not give enough evidence if CYPs, that are located at the BBB, may

function to protect the brain from xenobiotics. Further studies, e.g. with freshly

isolated brain capillaries and endothelial cells, could contribute to further

understanding of the functional role of CYPs at the BBB.

The ability to inhibit P-gp function could be demonstrated for most of the investigated

neuroleptic drugs and drug metabolites (except for haloperidol and ziprasidone).

Reports from other groups are in concordance with most of our findings.

Discrepancies between our results and the findings of other groups may be explained

by the utilization of different methods. However, in vivo, additional pharmacological

factors, such as metabolism by CYPs in the liver or other transport mechanisms (e.g.

BCRP), may be involved. To elucidate the in vivo relevance of the inhibitory

properties of the investigated neuroleptic compounds, there are ongoing experiments

with mdr1a/1b gene knockout mice at the Psychiatric Clinic of the University of

Mainz.
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For the nine investigated CNS active compounds, a ranking regarding their BBB

permeabilities could be determined. The involvement of active transport mechanisms

was supposed for two compounds that showed clear saturation curves in both

transport directions. To confirm the gained results and to assign the involvement of

specific transporters, additional transport experiments should be conducted in

presence of inhibitors, at 4°C to inhibit active carrier systems, or in cell lines

overexpressing a specific transporter.

Our preliminary experimental results from the development of a combined in vitro

model, simultaneously studying BBB penetration and pharmacological effect,

revealed that a combined in vitro assay might be a promising new approach for the

identification of drug candidates. Screening-criteria for the selection of potential drug

candiates might be improved in a combined assay. If, in addition, the extent of BBB

penetration of a test compound could be directly estimated out of this combined

assay, analytical measurements could be safed. However, extensive further

optimizations and validations with a wide variety of compounds are necessary to

substantiate the accuracy and the reproducibility of this assay. Furthermore, the

concordance to the in vivo situation should be evaluated in animal models. In

addition, the experimental procedure will have to be optimized for industrial

applications.
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8 Appendix

8.1 Preliminary transport studies with neuroleptic drugs

The bidirectional transport assay (from AP to BL and vice versa) with porcine BCEC

was applied for the identification of P-gp substrates among selected neuroleptic

compounds. Therefore, in a pilot study, we studied the influence of verapamil, a P-gp

inhibitor, on the BBB permeability of neuroleptic compounds, provided by the

Psychiatric Clinic of the University of Mainz, Germany. The paracellular marker FITC-

dextran was used to monitor the integrity of the cell monolayer. FITC-dextran

permeability after 45 minutes was rather high (10-20% and 63-65% with cells or

empty filters respectively from AP to BL, and 1-6% and 10-11% with cells or empty

filters respectively from BL to AP) indicating an insufficient tightness of the

monolayers and asymmetrical FITC-dextran transport.

The applied concentration was 200 µM for haloperidol, clozapine, norclozapine,

olanzapine, quetiapine, risperidone and domperidone, 100 µM for aripiprazole and 9-

OH risperidone, and 10 µM for ziprasidone. Test compounds were either applied to

the apical (AP) or the basolateral (BL) side.

Figure 8.1 depicts the transport of the investigated compounds from apical to

basoolateral without or in the presence of 100 µM verapamil. The transport of

norclozapine from apical to basolateral was significantly increased (1.4-fold) by the

P-gp inhibitor verapamil, indicating that norclozapine may be a substrate of P-gp. No

significant difference was found for any of the other investgated compounds. The

ziprasidone concentrations were below the limit of quantification. However, no

conclusions can be made with these preliminary results.
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Figure 8.1 Transport of test compound from apical to basolateral with or without verapamil.

Columns represent means  SEM for 3 data points. An asterisk indicates statistical

significance by Student’s t-test (P<0.05)
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Figure 8.2 Transport of test compound from basolateral to apical with or without verapamil.

Columns represent means  SEM for 3 data points. An asterisk indicates statistical

significance by Student’s t-test (P<0.05).
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The transport of the investigated compounds from BL to AP without or in the

presence of 100 µM verapamil is shown in Figure 8.2.

Surprisingly, the transport of haloperidol and aripiprazole from BL to AP were

significantly increased by the P-gp inhibitor verapamil (2.2-fold and 1.7-fold

respectively). It would have been expected that the transport of a P-gp substrate from

BL to AP is decreased in the presence of verapamil. No significant difference was

found for any of the other investgated compounds. These results may indicate the

involvement of other transport mechanisms. However, these are preliminary results,

which do not allow any definite assumptions. The assay needs to be repeated with

tight monolayers to reliably assess the direction of the net fluxes, and at various time

points, to obtain time dependent transport data.
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