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Summary 

Spermatogenesis is a complex differentiation process in which male gametes, known as 

spermatozoa, are produced from spermatogonial stem cells in the seminiferous tubules of 

the testis. The spermatogenesis process is typically divided into three phases: a mitotic 

phase, a meiotic phase and post-meiotic spermiogenesis. During mammalian 

spermiogenesis, haploid round spermatids undergo remarkable morphological changes and 

an extensive reorganization of chromatin to differentiate into mature spermatozoa. As part 

of the chromatin reorganization, most histones in round spermatids are replaced by 

transition proteins and subsequently by protamines. This histone-to-protamine exchange is 

required for efficient compaction of paternal genome into the sperm head and implicated in 

male fertility. Nonetheless, previous studies found that 1-10 % histones are still retained at 

specific loci, particularly at unmethylated CpG-rich promoters, in mouse and human sperm. 

How spermatid chromatin is reorganized genome-wide during spermiogenesis while some 

loci are exempted from histone eviction is still elusive. 

Our previous study has shown that the residual nucleosomes in mouse sperm largely 

contain the histone H3 variant, H3.3. The study also revealed differential histone turnover of 

canonical and variant H3 in round spermatids, which may underlie the final histone 

composition in mature sperm. In order to determine the dynamics of H3 variants during 

mouse spermatogenesis, I analyze protein expression of canonical and variant H3 proteins 

at different stages of male germ cells by triton-acetic acid-urea gel-Western blotting. 

Surprisingly, I find that mouse testis-specific H3 variant (H3t), not canonical H3, is the most 

abundant H3 protein from spermatogonia to spermatids and that most canonical H3 is 

replaced by H3.3 during meiosis. I further observe that a relatively large portion of H3t is 

removed from chromatin during the process of histone-to-protamine exchange compared 

with H3.3, which is consistent with that H3.3 is the predominant H3 in residual sperm 

nucleosomes. Taken together, the first part of my thesis reveals important findings on 

chromatin composition and dynamics of histone H3 variants during mouse spermatogenesis. 

In the second part of my thesis, I describe the discovery that histone H3 is cleaved at its N-

terminal tail by a serine protease activity in nuclei of the late-stage mouse spermatids. 

Arginine 26 and lysine 27 on H3 are important to the H3 protease activity. This proteolytic 
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cleavage of H3 tail may result in nucleosome destabilization and then contribute to 

nucleosome eviction during spermiogenesis. Interestingly, I find that the acetylation on H3 

can prevent H3 from proteolytic cleavage in vitro and that the genome-wide distribution of 

H3 lysine 27 acetylation (H3K27Ac) is positively correlated to the occupancy of nucleosomes 

containing transcriptionally active mark in sperm, suggesting that the inhibition of H3 

cleavage by acetylated lysine 27 in late-stage spermatids may lead to the nucleosome 

retention at specific loci in mature sperm. Overall, these findings provide novel insights into 

the mechanism of nucleosome eviction and retention during spermiogenesis through the 

regulation of H3 proteolytic cleavage. 
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Chapter 1: Introduction 

1.1 Definition of epigenetics 

Deoxyribonucleic acid (DNA) is the macromolecule that consists of a large number of linked 

nucleotides and is present in nearly all living organisms. DNA stores genetic information that 

is arranged in hereditary units, called genes, and is required to build and maintain the cells 

and tissues of an organism. In order to decode genetic information to control cells, DNA is 

transcribed into messenger ribonucleic acid (mRNA) by RNA polymerases, and then mRNA 

carries the instructions from DNA to ribosomes to guide protein synthesis, known as 

translation. Proteins translated from mRNA are regarded as the end products of gene 

expression and perform most of the functions of cells. Therefore, the two-step process, 

transcription and translation, is well-documented as the central dogma of molecular biology.  

The genetic information encoding DNA can be transmitted from parent cell to daughter cells 

through semi-conservative replication followed by cell division. Thus, a daughter cell is 

genetically identical to parent cell. However, while being exposed to environmental changes 

or stress, cells can modify their gene expression profile that changes cellular and 

physiological trait to response external environmental effects without alterations in the DNA 

sequence. Moreover, multicellular organisms consist of many distinct types of cells that are 

differentiated from a fertilized zygote, the earliest developmental stage of the embryo. 

Despite containing identical genomic DNA inherited from zygote, each cell type has a unique 

gene expression profile to maintain its biological function and structure in organisms. To 

dissect the molecular mechanism by which a cell changes its phenotype without a change in 

genotype either during development or during environmental stimulation, a relatively new 

science called epigenetics is quickly growing and aroused wide-spread interest over the last 

decade. 

The term epigenetics was coined by Conrad Waddington in the early 1940s. He proposed 

the model of “epigenetic landscape” to describe the influence of genetic processes during 

development and defined epigenetics as “the branch of biology which studies the causal 

interactions between genes and their products which bring the phenotype into being” 

(Goldberg et al. 2007). Over the following years, the definition of epigenetics has evolved 

with the increasing knowledge of genetics. Today the term of epigenetics has been generally 
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accepted as meaning “the study of changes in gene function that are mitotically and/or 

meiotically heritable and that do not entail a change in DNA sequence” (Wu and Morris 

2001). Nowadays, epigenetics is emerging as an important field associated with the studies 

of developmental biology, stem cell biology and diseases, such as oncogenesis. The 

molecular mechanisms of epigenetic regulation described in current literatures include DNA 

methylation, post-translational histone modification, exchange of histone variants and 

chromatin architectures and non-coding RNAs. These epigenetic mechanisms construct a 

regulation network to contribute to proper gene regulation. In sections below, I will 

introduce DNA methylation, histone modifications and histone variants.  

1.1.1 DNA methylation 

DNA methylation is the “oldest” epigenetic modification known to regulate gene expression. 

In prokaryotes, DNA methylation is restricted to adenine and cytosine residues (Marinus 

1987). In eukaryotes, DNA methylation occurs at the fifth position of the pyrimidine ring of 

cytosine bases. 5-methylcytosine (5mC) is primarily restricted to the context of CpG 

dinucleotides, whereas some non-CpG methylation is also found in mammals (Woodcock et 

al. 1987; Ramsahoye et al. 2000; Lister et al. 2009). 70 to 80 % of cytosines at CpG sites in 

mammalian somatic tissues are methylated (Ehrlich et al. 1982; Jabbari and Bernardi 2004). 

Most of these methylated regions are distributed at repetitive genomic elements, such as 

satellite sequences, centromeric repeats, transposons, parasitic elements and endogenous 

retroviruses. Therefore, DNA methylation is considered as a host defense mechanism to 

suppress the expression of repetitive elements and endogenous retrovirus genes (Slotkin 

and Martienssen 2007).  

Moreover, approximately 10 % CpG dinucleotides in the genome are clustered together in 

0.5-5 kb long stretches of DNA, called CpG islands (CGI). CpG islands are often found at the 

promoter regions or with the first exon of expressed genes and generally lack DNA 

methylation for the expression of most housekeeping genes and many regulated gene. 

Approximately 70 % promoters of human genes are associated with CpG islands (Saxonov et 

al. 2006). It is well-known that hypermethylation of CGI promoters leads to stable 

transcriptional repression and gene silencing. Because the methyl group on cytosine is 

situated in the major groove of the DNA helix where many proteins, like transcription 
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factors, interact with DNA, DNA methylation on CGI can modulate the binding of 

transcription-relative proteins to promoters (Watt and Molloy 1988; Schubeler 2015). In 

addition, a family of proteins, known as methyl-CpG-binding proteins, has been identified to 

bind on methylated CpG sites and then recruit repressor complexes to alter chromatin 

structure and finally contribute to transcription silencing (Bogdanovic and Veenstra 2009; 

Baubec and Schubeler 2014).  Therefore, DNA methylation and gene expression are 

inversely correlative.  

The pattern of DNA methylation is stable and heritable by daughter cells through mitosis. 

DNA methyltransferase 1 (Dnmt1) activity is required for maintaining global DNA 

methylation during DNA replication. Dnmt1 expression is regulated by cell cycle-dependent 

transcription factors and increases at S phase of cell cycle (Kishikawa et al. 2003). During 

DNA replication, Dnmt1 is recruited by PCNA and Np95 protein to replication forks and 

methylates newly synthesized DNA strand based on DNA methylation pattern on parental 

DNA strand (Chuang et al. 1997; Bostick et al. 2007; Sharif et al. 2007). The deletion of 

Dnmt1 leads to mouse embryonic lethality at 10.5 days post coitum and significant loss of 

global DNA methylation (Li et al. 1992), demonstrating that the maintenance of DNA 

methylation by Dnmt1 is essential for normal mammalian development. 

Many studies have shown that the other DNA methylation process, called de novo DNA 

methylation, is present in mammals. During preimplantation development, maternal and 

paternal genomes undergo a wave of DNA demethylation, at which most of the methylation 

patterns inherited from the gametes are removed. This loss of DNA methylation is reversed 

by de novo DNA methylation after implantation (Monk et al. 1987; Howlett and Reik 1991; 

Kafri et al. 1992). In addition, de novo DNA methylation is also present in both male and 

female germ cells during gametogenesis and plays an important role in the establishment of 

genomic imprinting in germ cells (Smallwood and Kelsey 2012). Two DNA 

methyltransferases, Dnmt3a and Dnmt3b, are mainly responsible for de novo DNA 

methylation process (Okano et al. 1998) and serve partially redundant function in the 

establishment of DNA methylation pattern (Okano et al. 1999). But the expression profiles 

of both de novo methyltransferase are quite different during embryonic development 

(Watanabe et al. 2002), so Dnmt3a mutation and Dnmt3b mutation cause different 

developmental defects (Okano et al. 1999). Furthermore, the conditional knockout mice of 
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Dnmt3a and Dnmt3b show that Dnmt3a is required for DNA methylation at most imprinting 

control regions (ICRs) in the germ cells, while Dnmt3b contributes to  methylation of some 

ICRs in the germs cells (Kaneda et al. 2004). Therefore, Dnmt3a and Dnmt3b have 

overlapping and distinct functions for DNA methylation depending on the stage of 

development and the cell type. 

 
Figure 1. The cycle of DNA methylation and demethylation. DNA methyltransferases (DNMTs) methylate 
cytosine within the context of a CpG dinucleotide to yield 5-methylcytosine (5mC) through replication-
dependent or independent manner. One potential mechanism of DNA demethylation implicate that Ten-
eleven translocation (TET) enzymes oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) 
and 5-carboxylcytosine (5caC). 5fC and 5caC can be excised by thymine DNA glycosylase (TDG) and replaced by 
cytosine through base excision repair (BER). 

 
DNA demethylation in animals can occur through either a passive or an active mechanism. 

Passive DNA demethylation is replication-coupled and thought to take part in the absence 

or the prevention of Dnmt1 activity during replication. Without Dnmt1 activity, newly-

synthesized DNA strands cannot maintain the DNA methylation pattern from parental 

strands, and thereby DNA methylation level is reduced after several rounds of replication. 

By contrast, the active mechanism of DNA demethylation involves enzymes that directly 

modify 5mC (Figure 1). First TET (ten-eleven translocation) dioxygenase enzymes 

sequentially oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-

carboxylcytosine (5caC) (Iyer et al. 2009; Tahiliani et al. 2009; Ito et al. 2011). 5fC and 5caC 

are removed by thymine DNA glycosylase (TDG) and then replaced by cytosine through BER 

(base excision repair) pathway (He et al. 2011; Zhang et al. 2012). During the 
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reprogramming in early embryonic development, mass DNA demethylation is modulated by 

TET3 and subsequently by replication-dependent passive demethylation (Gu et al. 2011; 

Guo et al. 2014). Other TET proteins, TET1 and TET2, mediate global DNA demethylation 

during primordial germ cell development (Hackett et al. 2013; Vincent et al. 2013). 

1.1.2 Histone modifications 

Genomic DNA in eukaryotic cells is wrapped around histones to form nucleosomes that is 

used to compact large genomic DNA into the nucleus. Each nucleosome core particle is 

consisting of approximately 147 base pairs DNA in 1.7 superhelical turns wrapped around a 

histone octamer containing two copies each of four core histones H2A, H2B, H3, and H4 

(Luger et al. 1997; Davey et al. 2002). Histones have a large proportion of positively charged 

amino acids that neutralize negatively charged DNA backbone to form higher-order 

chromatin structures. In addition to the core histones, there is a linker histone, called H1, 

which interacts with linker DNA region (approximately 20-80 nucleotides in length) between 

nucleosomes to stabilize the chromatin fiber (Thoma et al. 1979). Although DNA is packaged 

tightly and orderly by nucleosomes, nucleosomes still allowing other proteins to access DNA 

for biological processes such as transcription, DNA replication and DNA repair. The 

properties of nucleosomes can be modulated in different ways, including the covalent 

modification of histones, the replacement of canonical histones to variants and the 

nucleosome reposition by ATP-dependent chromatin remodeling complexes.  

The flexible N-terminal or C-terminal tail of four core histones is extended out from the face 

of nucleosome (Figure 2). These histone tails are known to contain many positively-charged 

amino acids that electrostatically interact with negatively-charged phosphate groups along 

nucleosomal DNA, linker DNA and the acidic patches of the neighboring nucleosomes for 

the formation of higher-order chromatin structure (Mutskov et al. 1998; Angelov et al. 2001; 

Davey et al. 2002; Dorigo et al. 2004). Based on in vitro studies, the deletion of histone tails 

alters nucleosome structure, reduces nucleosome stabilization and increases the 

accessibility of nucleosomal DNA (Ferreira et al. 2007; Biswas et al. 2011; Iwasaki et al. 

2013). Therefore, histone tails play a crucial role in maintaining nucleosome structure and 

dynamics. In addition, histone proteins, especially histone tails, are subject to large numbers 

and different type of post-translational modifications, such as acetylation, methylation, 
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phosphorylation, ubiquitination and so on (Figure 2) (Bannister and Kouzarides 2011; 

Zentner and Henikoff 2013). These histone modifications are involved in various DNA 

processes including replication, repair and transcription by either directly altering 

nucleosome structure or providing docking platforms for activators, repressors and 

chromatin remodeling complexes. With the advent of next-generation sequencing 

technology, the genome-wide distributions of histone modifications and DNA-binding 

proteins are more easily characterized by chromatin immunoprecipitation sequencing (ChIP-

seq) analysis (Zentner and Henikoff 2014). Also, a growing number of histone modifications 

such as lysine crotonylation and 2-hydroxyisobutyrylation have been identified through the 

advanced proteomic technologies (Tan et al. 2011; Arnaudo and Garcia 2013; Dai et al. 

2014).  

 
Figure 2. Nucleosome structure and the summary of post-translational modifications identified in core 
histones. A nucleosome consists of 147 base pairs of DNA wrapping around two copies of each core histones, 
H3, H4, H2A and H2B (Davey et al. 2002). The tails of core histones protrude from the nucleosome and are 
covalently modified at serval residues by distinct modification, such as acetylation (Ac), methylation (me), 
phosphorylation (P), ubiquitination (Ub) and crotonylation (Kcr). Particularly, lysine is able to be mono-, di-, or 
trimethylated, and arginine is able to be mono- or dimethylated in vivo. 
 

Histone acetylation 

Acetylation is the first described histone modification on lysine residues and linked to 

transcriptional activation. It is catalyzed by histone acetyltransferases (HATs) with acetyl-

CoA as acetyl group donor and is erased by histone deacetylases (HDACs). Acetylation 

neutralizes the positive charge of lysine to loosen the charge-dependent interaction 

between histone and DNA and thereby open the chromatin structure to allow transcription 
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machinery access to DNA. Therefore, histone hyeracetylation is a feature of active 

promoters and enhancers for transcription initiation. In addition, histone acetylation is also 

associated with other cellular processes that require DNA access. For example, both 

histones H4 and H2A show increased levels of acetylation following DNA double-strand 

break generation to relax histone-DNA contacts for DNA repair factors binding (Bird et al. 

2002; Murr et al. 2006; Jiang et al. 2010). And H3 and H4 acetylation are also considered to 

play an important role in facilitating firing of replication origins before DNA replication 

(Unnikrishnan et al. 2010). Therefore, the charge neutralization of histone lysine by 

acetylation is necessary not only for transcription activation but also for efficient DNA 

replication and repair. 

In addition to influence nucleosome structure directly, acetylated lysine residues on 

histones are recognized by a specific protein domain, the bromodomain, which is found in 

numerous chromatin-associated proteins including transcription factors, transcription 

initiation factors, chromatin remodeling factors and acetyltransferases (Zeng and Zhou 

2002). Aberrant expression and genetic rearrangements of bromodomain-containing 

proteins have been implicated in a wide range of human diseases such as cancer, 

inflammation and neurodegenerative diseases (Muller et al. 2011). Recently, bromodomain-

containing proteins have emerged as therapeutic targets in a remarkable range of disease 

models (Shi and Vakoc 2014). 

Histone methylation 

Histones can be methylated on the side chains of both lysine and arginine residues with the 

potential additional of one, two or three methyl groups, and methylation is commonly 

found on histone H3 and H4. Unlike acetylation and phosphorylation, histone methylation 

does not alter the charge of lysine and arginine, and so methylation has less effect in 

directly modulating nucleosome dynamics. But methylation can recruit diverse chromatin 

effector molecules to regulate chromatin and transcription states (Taverna et al. 2007). So 

far, there are three families of histone methyltransferases that catalyze the addition of 

methyl groups donated from S-adenosyl methionine (SAM) to histones. The SET-domain 

containing proteins and DOT1-like proteins have been shown to methylate lysine residues 

(Rea et al. 2000; Feng et al. 2002), and the protein arginine N-methyltransferase (PRMT) 
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family has been shown to methylate arginine residues (Bedford and Clarke 2009). Lysine 

methylation on histone can be removed by lysine-specific demethylases and Jumonji histone 

demethylases (Shi et al. 2004; Tsukada et al. 2006). Unlike HAT and HDAC, histone 

methyltransferases (HMTs) and histone demethylases (HDMs) have very restricted substrate 

specificities, so generally distinct residues on histones are methylated or demethylated by 

distinct HMTs or HDMs.  

Furthermore, methylations on different histone residues contribute to distinct cellular 

functions as well as different degrees of residue methylation (mono-, di- and trimethylation). 

For example, trimethylation at H3 lysine 4 (H3K4me3) is linked to transcription activation 

and is enriched at the promoter regions and around transcription start site (TSS) to 

modulate transcription initiation (Ng et al. 2003; Bernstein et al. 2005; Lauberth et al. 2013), 

but monomethylated H3 lysine 4 (H3K4me1) generally marks enhancer regions (Heintzman 

et al. 2007). Trimethylation at H3 lysine 9 and 27 (H3K9me3 and H3K27me3) are associated 

with transcriptional repression and heterochromatin formation. H3K9me3 shows a relatively 

homogenous distribution on inactive regions, whereas H3K27me3 is enriched around the 

inactive gene promoters (Kooistra and Helin 2012). Trimethylation at H3 lysine 36 

(H3K36me3) is generally found in downstream of the TSS in the gene body and is involved in 

suppressing cryptic transcription in gene bodies (Carrozza et al. 2005; Keogh et al. 2005). 

Therefore, the location of the methyl residue on histone and the degree of methylation 

cause the different function and distribution of histone methylation marks. 

Methylation can be present at multiple lysine and arginine residues on the same histone. 

However, some histone methylations have mutually antagonistic relationship. For instance, 

dimethylation on H3R2 prevents the methylation of H3K4 (Guccione et al. 2007; Kirmizis et 

al. 2007). In addition, H3K4me3 and H3K4me2 marks can recruit histone lysine 

demethylases, PHF8 and KDM7A, to transcription initiation sites to remove repressive marks, 

such as methylation on H3K9 and H3K27 residues (Horton et al. 2010). Thus H3K9me3 and 

H3K27me3 are excluded from active promoter regions. Interestingly, although H3K4me3 

and H3K27me3 are usually enriched at active and inactive gene promoters, they are found 

to colocalize in some genomic regions, termed bivalent domains, in embryonic stem cells. 

These bivalent domains are thought to play a role in keeping pluripotency by poising 

developmental regulatory genes for either activation or repression during embryonic 
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differentiation (Azuara et al. 2006; Bernstein et al. 2006). Mll2, a Set1/Trithorax-type H3K4 

methyltransferases, is mainly responsible for H3K4 trimethylation at bivalent domain in 

embryonic stem cells (Denissov et al. 2014). 

Histone phosphorylation 

Because phosphate group carries negative charges, histone phosphorylation can modulates 

the nucleosome dynamics through altering charge-dependent DNA-histone interaction as 

acetylation. The addition of phosphates on histones creates charge repulsion between the 

highly negatively charged DNA backbone and histone, potentially weakening the association 

of DNA and histones (Banerjee and Chakravarti 2011). Therefore, histone phosphorylation 

functions in various cellular processes such as DNA damage response, transcription 

regulation and chromatin compaction (Rossetto et al. 2012). Phosphorylation of histone 

H2A variant H2A.X on serine 139 in mammals, termed to γH2A.X, has been well-known as a 

critical marker for DNA damage response (Rogakou et al. 1998). When DNA double-strand 

break occurs, protein kinases ATM and ATR carry out H2A.X phosphorylation (Burma et al. 

2001; Ward and Chen 2001), and γH2A.X spreads bidirectionally over several kilobases to 

megabases on each side of the DNA break (Rogakou et al. 1999; Iacovoni et al. 2010). This 

wide distribution of γH2A.X increases the DNA accessibility and also provides a binding 

platform for DNA repair factors and chromatin remodeling complexes to alter chromatin 

structure and repair DNA breaks. For example, MDC1, a repair mediator, can interact with 

γH2A.X through recognition by its BRCT domain and then serves as a scaffold for recruiting 

more DNA repair-relative proteins (Rogakou et al. 1999; Jungmichel and Stucki 2010).  

Moreover, it has been reported that histone H3 phosphorylation occurs during mitosis and 

meiosis. Threonine 3, serine 10, threonine 11 and serine 28 on H3 tails are phosphorylated 

by distinct protein kinases at prophase of mitosis, and these phosphorylation levels decline 

at anaphase. A cascade of mitotic histone phosphorylation is associated with the processes 

of chromatin condensation and kinetochore assembly (Sawicka and Seiser 2012). In 

particular, H3 serine 10 is adjacent to H3 lysine 9 that was shown to be methylated to 

recruit HP1 proteins for heterochromatin formation in silence regions. Interestingly, the 

phosphorylation on H3 serine 10 (H3S10ph) during mitosis was demonstrated to promote 

the ejection of HP1 proteins bound to the adjacently methylated H3K9 (Fischle et al. 2005; 
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Hirota et al. 2005). This suggests that H3S10ph influences chromatin structure during 

mitosis through the regulation of protein binding to chromatin.  

Histone ubiquitylation  

Except acetylation and methylation, lysine residues can also be modified by ubiquitylation. 

Unlike other modifications consisting of small chemical group, ubiquitylation is the addition 

of 76 amino-acid protein ubiquitin to the free amino group of lysine residues to form a 

branched molecule. Histone ubiquitylation is generally in the form of monoubiquitination 

that is not relevant to protein degradation as polyubiquitination. Histone H2A and H2B are 

two of the most abundant ubiquitinated proteins in the nucleus, and approximately 5-15 % 

of H2A and 1-2% of H2B are modified by ubiquitylation (Cao and Yan 2012). However, both 

ubiquitinated core histones play distinct functions in transcriptional regulation.  

Monoubiquitination on H2A lysine 119 (H2AK119ub, uH2A) catalyzed by Ring1A, Ring1B and 

Bmi1 in polycomb repressive complex 1 is involved in Polycomb-mediated transcriptional 

repression by restraining RNA pol II from elongation (Wang et al. 2004; Cao et al. 2005; 

Stock et al. 2007; Zhou et al. 2008). In addition, during DNA damage response, H2A and 

H2A.X around DNA break sites are ubiquitinated by RNF8 and RNF168 to recruit checkpoint 

and repair proteins (Mattiroli et al. 2012; Panier and Durocher 2013). By contrast, 

monoubiquitination on H2B lysine 120 in human or lysine 123 in yeast occupies at the gene 

body of transcriptional active genes to promote transcriptional elongation (Minsky et al. 

2008). It is required for establishments of H3K4 methylation by COMPASS and H3K79 

methylation by Dot1 during transcription (Sun and Allis 2002; Lee et al. 2007).  

1.1.3 Histone variants 

In metazoans most nucleosomes are assembled by canonical histone proteins (H3, H4, H2A 

and H2B). It is well-documented that multiple copies of genes encoding canonical histone 

proteins are organized as clusters in the genome, and there are approximately 75 distinct 

canonical histone mRNAs in mammals (Marzluff et al. 2002). Moreover, the transcription of 

canonical histone genes is tightly coupled to DNA replication. Their mRNAs are highly 

synthized at the beginning of S phase of mitosis and then are rapidly degraded at the end of 

S phase (Marzluff et al. 2008). Thus, canonical histones constitute the main histone supply 

during DNA replication. The 3’ end of canonical histone mRNAs contain a stem-loop 
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sequence, instead of polyadenylation, that is recognized by a stem-loop binding protein 

(SLBP) (Battle and Doudna 2001). This interaction between histone mRNA and SLBP is 

required for histone pre-mRNA processing, histone mRNA stabilization, transport and 

efficient translation at S phase (Marzluff et al. 2008). 

In addition to the canonical histones, replacement variant histones have been described in 

each histone protein except histone H4 (Maze et al. 2014; Henikoff and Smith 2015). Unlike 

canonical histone, variant histones are typically encoded by single gene or low copy number 

of gene in genome. Variant histone mRNAs usually are polyadenylated without stem-loop 

sequence, and most their synthesis are DNA replication-independent (Wells and Kedes 1985; 

Ivanova et al. 1994). Moreover, variant histones differ from canonical histone either by the 

alternation of a few amino acids or by the addition of domain. These differences result in 

that variant histones have specific incorporation manners, influence post-translational 

modification and also alter the physical properties of the nucleosome (Maze et al. 2014). 

Therefore, the substitution of canonical histones by variants has been implicated in many 

biological processes such as transcription and DNA repair. 

Table 1. The summary of histone H3 proteins 

Histone H3 name Expression/ 
deposition Chaperones Functions 

Canonical 
H3.1 

RD CAF1 Replication and repair 
H3.2 

Variants 
H3.3 RI HIRA/ATRX/DAXX Transcription activation, heterochromatin 

maintenance, ERVs silence and MSCI   
CenH3 RI HJURP/DAXX Chromosome segregation 

Testis-specific 
variants 

H3t    
H3.X ND ND ND 
H3.Y    
H3.5    

RD, replication dependent; RI, replication independent; ND, not determined; EVR: endogenous retroviral elements; MSCI: 
meiotic sex chromosome inactivation. 
 

Canonical H3 

In eukaryotes except S. cerevisiae, canonical H3 is composed of two H3 proteins, H3.1 and 

H3.2. The protein sequences of both canonical H3 are almost identical and differ in only one 

amino acid. They are highly expressed at S phase to provide the main supply for chromatin 

assembly during DNA replication. Chaperone CAF-1 is well-known to mediate the deposition 

of canonical H3-H4 into the replication fork (Verreault et al. 1996; Tagami et al. 2004). 
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During replication, parental nucleosomes ahead of the DNA replication fork are dissembled 

via Asf1 and FACT chaperon complexes with the MCM2-7 helicase. Asf1 transfers the 

parental or new synthesized H3-H4 dimer to CAF-1. Subsequently CAF1 is recruited by PCNA 

and deposits two canonical H3-H4 dimers or a (H3-H4)2 tetramer into DNA at the replication 

fork. After (H3-H4)2 tetramer deposition, two H2A-H2B dimers are added to form a 

complete nucleosome (Alabert and Groth 2012).  

In addition, although both canonical H3 share expression and incorporation manner, the 

post-translational modifications on H3.1 and H3.2 are slightly different. H3.2 contains more 

methylated H3K27, a repressive mark, than H3.1 in human cell lines, but H3.1 is enriched for 

repressive mark (methylated H3K9) as well as active mark (acetylated H3K14) (Hake et al. 

2006). Thus, a single amino acid exchange on canonical H3 may influence the genomic 

localization and then result in different modifications on two canonical H3 proteins. 

H3.3 

The replacement variants of H3 best characterized in mammals are H3.3 and centromeric 

H3 (CenH3) in eukaryotes. H3.3 is encoded by two distinct intron-containing genes, H3f3a 

and H3f3b, and is synthesized throughout the cell cycle. H3.3 and canonical H3 have only 4-5 

amino acid differences that do not affect fundamental nucleosome structure (Tachiwana et 

al. 2011).  But these different amino acids on H3.3 recruit H3.3-specific histone chaperones 

to direct H3.3 localization to specific loci in the genome. Two H3.3-specific histone 

chaperones, the HIRA complex and the DAXX/ATRX complex, have been identified to 

facilitate H3.3 deposition by replication-independent manners (Tagami et al. 2004; Lewis et 

al. 2010). Based on genome-wide studies, it is well-known that H3.3 is generally enriched at 

active promoters, gene bodies and enhancers (Mito et al. 2005; Wirbelauer et al. 2005; Jin 

et al. 2009) and is decorated with active marks of transcription, such as H3K4me3, 

H3K36me3, H3K9ac and H3K27ac (McKittrick et al. 2004; Hake et al. 2006). H3.3-containing 

nucleosomes with active marks at promoters and enhancers undergo rapid turnover, which 

may allow for the accessibility of the transcriptional machinery as well as transcription 

factors (Kraushaar et al. 2013). HIRA chaperone complex is responsible for the H3.3 

deposition into genic, euchromatic regions during transcription (Ray-Gallet et al. 2002; 

Tagami et al. 2004).  However, in embryonic stem cells, H3.3 occupancy is also observed at 
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the bivalent promoters of developmentally regulated genes, which are poised for activation 

upon differentiation (Goldberg et al. 2010), and H3.3-HIRA can recruit polycomb repressive 

complex 2 (PRC2) to establish H3K27me3 mark on bivalent promoters of developmentally 

regulated gene (Banaszynski et al. 2013). In addition, H3.3 deposition is not always linked to 

transcriptional activation. Recent studies have shown that H3.3 also can be incorporated 

into silent pericentric heterochromatin, telomeres and endogenous retroviral elements 

(ERVs) by Daxx/ATRX chaperone complex, instead of HIRA (Goldberg et al. 2010; Lewis et al. 

2010; Dhayalan et al. 2011; Elsasser et al. 2015). H3.3 depletion leads to telomere-

dysfunction, abnormal karyotype, the reduction of H3K9me3 on ERVs and the upregulation 

of ERVs expression (Wong et al. 2009; Elsasser et al. 2015). Therefore, H3.3 also plays an 

important role in the establishment of silenced chromatin states and in maintenance of 

genome stability. 

Although H3f3a and H3f3b encode the same protein sequence of H3.3, they have different 

expression patterns and function during mouse development. The H3f3b homozygous 

mutation causes lethality at birth and growth-deficiency in mouse embryos (Bush et al. 2013; 

Tang et al. 2015), whereas the mice of H3f3a homozygous mutation are viable. Furthermore, 

the male mice of H3f3b heterozygous mutation is sterile, but H3f3a mutation male mice are 

fertile (Tang et al. 2015). Therefore, H3.3 from H3f3b is relatively more important than H3.3 

from H3f3a during embryonic development and spermatogenesis. 

CenH3 

CenH3 (CENP-A in mammals) is other well-characterized replacement H3 variant in 

eukaryotes and is specifically localizes at centromeres, which link sister chromatids and 

serve as the attachment sites for the spindle microtubules during mitosis. CenH3 deposition 

plays an important for maintaining centromere structure, the formation of kinetochores and 

proper chromosome segregation during mitosis. The deletion of CenH3 results in 

chromosome missegregation defect and mitotic defect (Howman et al. 2000; Zeitlin et al. 

2001; Regnier et al. 2005). In mammals, CenH3 deposition is replication-independent. 

CenH3 is highly expressed at the late G2 phase of mitosis and is deposited into centromeres 

during telophase and early G1 phase (Boyarchuk et al. 2011). Holliday Junction-Recognizing 

protein (HJURP) has been identified to be a CenH3-specific chaperon (Dunleavy et al. 2009; 
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Foltz et al. 2009; Shuaib et al. 2010). Moreover, CenH3 only has 50 to 60 % identity to 

canonical H3 at histone fold domain and contains a unique N-terminal tail, so CenH3-

containing nucleosome shows the distinct biophysical properties compared with canonical 

nucleosome. CenH3-histone H4 tetramer are more compact and structurally more rigid than 

the canonical H3- H4 tetramer (Black et al. 2004). In addition to form octamer nucleosomes, 

CenH3 particles have been shown to exist as hemisomes, hexasomes and tetramers in vitro 

and in vivo in (Dalal et al. 2007; Mizuguchi et al. 2007; Furuyama and Henikoff 2009; 

Williams et al. 2009; Bui et al. 2012; Shivaraju et al. 2012).  

Other H3 variants 

Except H3.3 and CenH3, there are four other H3 variants, H3.X, H3.Y, H3t and H3.5, 

identified in human tissues before. H3.X (also known as H3.Y.2) and H3.Y (also known as 

H3.Y.1) are primate-specific histone H3 whose expressions are found in human brain, testis, 

certain tumor tissues and cancer cell lines (Wiedemann et al. 2010). The identity of protein 

sequence between H3.X and H3.Y is 89.7 %, but H3.X contains a specific long C-terminal tail 

that does not exist in other H3 proteins. Nutritional- and growth-associated stress stimuli 

increase the number of H3.Y-expressing cells, and the knockdown of H3.Y influences cell 

growth and downregulates the expression of genes involved in cell cycle control in U2OS 

(Wiedemann et al. 2010). But the incorporation mechanism, localization and detail function 

of H3.X and H3.Y are still unclear. 

H3t (also known as H3.1t, TH3 and H3.4) and H3.5 (also known as H3.3C) have been 

identified in human genome, and both of them are highly expressed in human testis (Witt et 

al. 1996; Schenk et al. 2011). H3.5 is encoded in H3f3C gene whose transcript is highly 

identical to H3.3/H3f3B mRNA. When H3.5 is ectopically expressed in HEK293 cells, it is 

preferentially localized at euchromatin region (Schenk et al. 2011). So H3.5 may come from 

H3f3b gene duplication and have similar function as H3.3. Furthermore, other testis-specific 

H3 variant, H3t, have been well characterized in human testis. H3t is specifically transcribed 

in human testis (Witt et al. 1996). Previous studies have reported that nucleosomes 

assembled by human H3t are more unstable than canonical nucleosomes in vitro and have 

more rapid turnover in vivo because of two human H3t-specific residues, Met71 and Val111 

(Tachiwana et al. 2010). The different physical properties of human H3t-containing 
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nucleosome may function in global chromatin reorganization during meiosis and post-

meiotic event in testis. In addition, H3t expression in mouse and rat testes has been 

described briefly before (Meistrich et al. 1985; Govin et al. 2007; Garcia et al. 2008; 

Montellier et al. 2013). Although mouse H3t has 98 % identity to human H3t, mouse H3t 

contains Val71 and Ala111 that are the same to canonical H3, not human H3t. Therefore, 

mouse H3t-containing nucleosome may have distinct physical properties to human H3t-

containing nucleosome. But so far the biological function and incorporation mechanism of 

human and mouse H3t are unknown. 

1.2 Spermatogenesis 

Spermatogenesis is a complex differentiation process in which male gametes, commonly 

called sperm but specifically known as spermatozoa, are derived from primordial germ cells 

and occurs in the seminiferous tubules of the testis. The spermatogenesis process is 

typically divided into three phases: mitotic phase, meiotic phase and spermiogenesis (Figure 

3). In the proliferative phase, the diploid spermatogonia undergo successive mitotic 

divisions to form clones of cells that finally form primary spermatocytes. In meiotic phase, 

the primary spermatocytes undergo two meiotic divisions to form haploid spermatids. In 

spermiogenesis, the spermatids change their morphology and chromatin structure to 

differentiate into spermatozoa. Interestingly, because cytokinesis is not complete during 

mitotic and meiotic division, spermatogenetic cells are connected by cytoplasmic bridges 

throughout spermatogenesis. Thus spermatogenetic cells may share essential signals 

through this intercellular connection to synchronize cell division and differentiation 

(Greenbaum et al. 2011). In addition to spermatogenic cells, three types of somatic cells, 

peritubular myoid cells, Sertoli cells and Leydig cells, are present in or adjacent to the 

seminiferous tubules. Peritubular myoid cells form a single layer at the external side of 

basement membrane to maintain seminiferous tubule structure. The functions of Sertoli 

cells include providing structural support and nutrition to spermatogenetic cells and 

regulating the process of spermatogenesis. In addition, Sertoli cells act as phagocytes to 

degrade degenerating germ cells and residual cytoplasm after sperm release (Breucker et al. 

1985; Blanco-Rodriguez and Martinez-Garcia 1999). Leydig cells are found adjacent to the 

seminiferous tubules and produce androgenic hormones to promote spermatogenesis when 
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luteinizing hormone (LH) stimulate them. In below sections, I will introduce the epigenetic 

and chromatin dynamics from primordial germ cells to spermatozoa. 

 
Figure 3. Schematic overview of mouse spermatogenesis. Primordial germ cells (PGC) are derived from 
epiblast cells of embryo and migrate to the gonadal ridge region. The global DNA demethylation occurs in 
PGCs. After migration, male PGCs are arrested at G1 phase as prospermatogonia (ProSpg). After birth, 
prospermatogonia restart transcription and mitosis and become type A spermatogonia (A Spg). Type A 
spermatogonia undergo multiple mitotic divisions to differentiate into type B spermatogonia (B Spg) and then 
primary spermatocytes. The formation recombinant synapsis, DNA break response (e.g. γH2A.X) and meiotic 
sex chromosome inactivation take part at different stage of primary spermatocytes. After meiosis II, 
spermatocytes are divided into haploid round spermatids (RS) that undergo dramatic morphological change 
and chromatin remodeling to differentiate into mature sperm. Most histones are replaced by transition 
proteins In elongating spermatids (Esp) and then by protamines in condensing spermatids (CS). 
 

1.2.1 Primordial germ cells and spermatogonia 

During mammal embryogenesis, primordial germ cells (PGCs) arise from epiblast cells of the 

postimplantation embryo and subsequently migrate to the gonadal ridge region that is the 

precursor of the gonads. After PGCs migration and sexual determination, male PGCs enter 

mitotic arrest at G1 phase of the cell cycle and remain as prospermatogonia (gonocytes) 

before birth (Western et al. 2008). Interestingly, in order to express germline-specific genes 

and restore the totipotency to the next generation, two epigenetic reprogramming happens 

during PGCs migration to gonads. Early PGCs undergo DNA demethylation at imprinted loci, 

transposons and a subset of germline-specific genes through replication-dependent (passive) 

and replication-independent (active) mechanism (Lee et al. 2002; Lane et al. 2003; Sato et al. 

2003; Hackett et al. 2012; Seisenberger et al. 2012). This reduction of DNA methylation is 

co-incident with the loss of H3K9me2 and the increase of H3K27me3 (Seki et al. 2005; 
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Hajkova et al. 2008). When PGCs enter gonads, the second reprogramming occurs at which 

DNA methylation is completely erased at other regions such as gene bodies and intergenic 

regions, and the levels of linker histone H1, H3K9me3 and H3K27me3 are also reduced (Seki 

et al. 2005; Seki et al. 2007; Hajkova et al. 2008). Following complete DNA demethylation in 

PGCs, the genome must undergo de novo methylation by Dnmt3a and Dnmt3b in 

prospermatogonia (gonocytes) stage, especially imprinted genes and repeat sequences 

(Davis et al. 1999; Davis et al. 2000; Kato et al. 2007). The acquisition of DNA methylation in 

male germ cells also continues after birth at mitotic and meiotic phase of spermatogenesis 

(Oakes et al. 2007).  

After birth, prospermatogonia in the fetus resume mitotic proliferation and become post-

natal spermatogonial stem cells. Spermatogonial stem cells are localized along the 

basement membrane of seminiferous tubules and have self-renewal and differentiation 

capacity to maintain stem cell pool and also sperm production throughout the male life. In 

rodents, based on their nuclear morphology, spermatogonia have been divided into three 

subtypes: type A, intermediate and type B spermatogonia. The type A single (As) 

spermatogonia are thought the most undifferentiated spermatogonial stem cells, and 

heterochromatin is absent from the nucleus of As spermatogonia. The As spermatogonia can 

undergo two mitotic divisions to form type A pair (Apr) spermatogonia and subsequently a 

chain of four type A aligned (Aal) spermatogonia that are still in undifferentiated stage. Aal 

spermatogonia continue to go through multiple rounds of division to become differentiating 

spermatogonia (A1, A2, A3, A4, intermediate and B). Unlike undifferentiated spermatogonial 

stem cells, type B spermatogonia contain a large amount of heterochromatin. The type B 

spermatogonia undergo one mitotic division and then give rise to primary spermatocytes 

that progress into meiosis. 

1.2.2 Meiotic phase of spermatogenesis 

During meiosis, a single round of DNA replication is followed by two cycles of cell division, 

termed meiosis I and meiosis II, to produce four haploid spermatids from one diploid type B 

spermatogonium. In the first meiotic prophase, replicated homologous chromosomes pair 

along their lengths and form synapsis from leptotene to zygotene stages and then synapse 

completely at pachytene stage. Pairing and synapsis of homologous chromosomes are 
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crucial for correct chromosome segregation during meiosis and ensures that mature 

gametes contain a full set of chromosomes (Handel and Schimenti 2010). In addition, these 

chromosomal pairing and synapsis accompanies the recombination, which is thought to 

increases the genetic diversity to next generations. Recombination is initiated by DNA 

double-strand breaks that can recruit homologous recombination repair machinery. 

However, in mammals, males carry X and Y sex chromosomes with homology restricted to 

only a small portion of their length (Burgoyne 1982). In pachytene stage, the sex 

chromosomes partially synapse through their pseudo autosomal regions to form the sex- or 

XY-body and undergo chromatin remodeling to silence X- and Y-linked genes (Handel 2004). 

This phenomenon of transcription silencing is known as meiotic sex chromosome 

inactivation (MSCI). It is well-known that many DNA damage response proteins and histone 

markers, such as γH2A.X, uH2A, MDC1and 53BP1, are accumulated in sex body and thought 

to facilitate the initiation of MSCI (Turner 2007). Interestingly, from early to later pachytene 

stage, canonical H3.1 and H3.2 are progressively replaced by variant H3.3 only in sex body 

(van der Heijden et al. 2007). This histone exchange may alter epigenetic modifications in 

sex chromatin presumably required for MSCI. After lengthy process of the first meiosis, the 

second meiotic division occurs immediately to generate haploid spermatids. 

1.2.3 Spermiogenesis 

Spermiogenesis is a post-meiotic process in which the haploid spermatids produced from 

division of secondary spermatocytes undergo a series of changes to differentiate into 

mature spermatozoa. Based on the nuclear size and morphology, spermatids can be 

classified into three subtypes: round, elongating and condensing (elongated) spermatids. 

The main changes during spermiogenesis include acrosome formation, flagellar tail 

formation, removal of cytoplasm and nuclear condensation. The acrosome is an organelle 

derived from Golgi apparatus and forms a cap-structure covering the anterior part of the 

sperm nucleus. The acrosome contains many hydrolytic enzymes that can break down the 

zona pellucida around the ovum, allowing the sperm nucleus to enter the ovum during 

fertilization (Tulsiani et al. 1998). The long flagellum is a specific structure in sperm that 

connects to posterior to the nucleus and is composed of microtubules. The flagellar 

movement is driven by dynein motor proteins, which use the energy of ATP hydrolysis to 

slide the microtubules, to propel sperm through the female reproductive tract (Inaba 2011). 
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Moreover, when spermiogenesis process is complete, mature sperm is released from Sertoli 

cells into the lumen of the seminiferous tubule. At this time point, the unnecessary 

organelle and cytoplasm of spermatids, known as the residual body, are separated from 

sperm and are phagocytosed by the Sertoli cell (Chemes 1986). Then the released sperm 

without cytoplasm is transported from testis to the epididymis for storage. However, 

mature sperm still carries many mitochondria as an energy source for flagellar movement 

(Piomboni et al. 2012). 

During the last stage of spermiogenesis, the nuclear volume of spermatid dramatically 

reduces. In order to compact male genomic DNA into small sperm nucleus, chromatin in 

spermatids is subject to dramatic remodeling during which global histones on chromatin are 

replaced by transition proteins at elongating spermatid stage and finally by protamines. 

Because protamines are small arginine-rich proteins, protamines can interact with negative 

charged DNA backbone more strongly than histones. Also, protamines contain many 

cysteine residues that can form inter- and intra-protamine disulfide bounds essential for the 

formation of highly compacted chromatin (Carrell et al. 2007). In addition, chromatin 

compaction by protamines can protect paternal genome in sperm heads from physical and 

chemical damages. There are two protamines proteins, protamine 1 (Prm1) and protamine 2 

(Prm2), expressed in human and mouse testes. The disruption of Prm1 or Prm2 in mice 

leads to morphologically abnormal sperm (Cho et al. 2001). Although Prm2-deficient sperm 

can activate metaphase II-arrested mouse eggs through intracytoplasmic sperm injection, 

most of zygotes are unable to develop to blastocyst stage (Cho et al. 2003). Moreover, the 

absence and mutation of protamine 2 have been reported in infertile male patients (de 

Yebra et al. 1993; Tanaka et al. 2003). Therefore, the proper protamine expression for 

histone-to-protamine exchange plays a critical role in sperm maturation, paternal DNA 

stabilization and male fertility. 

During histone-to-protamine exchange processing, the hyperacetylation of histone H4 and 

DNA breaks have be observed in elongating spermatids (McPherson and Longo 1993a; 

Sonnack et al. 2002; Laberge and Boissonneault 2005; Govin et al. 2007). Hyperacetylated 

H4 is thought to facilitate histone eviction by directly reducing DNA-histone interactions and 

opening the chromatin structure for recruiting chromatin remodeling machinery. In mice 

and humans, reduced levels of histone H4 hyperacetylation in sperm correlates with 
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impaired fertility (Sonnack et al. 2002; Fenic et al. 2004). In addition, it has been reported 

that bromodomain testis-specific protein, Brdt, is able to bind acetylated H4 at the time of 

histone replacement by transition proteins (Moriniere et al. 2009). Mice expressing a 

truncated form of BRDT lacking the first bromodomain show defects in fertility caused by 

abnormal nuclear compaction in post-meiotic spermatids (Shang et al. 2007). Furthermore, 

SWI/SNF, an ATP-dependent chromatin remodeling complex, can be recruited to 

hyperacetylation site through interacting with Brdt (Dhar et al. 2012). Therefore, H4 

hyperacetylation in elongating spermatid may provide a docking platform for bromodomain 

protein to regulate histone replacement and chromatin remodeling. Recently, a 

bromodomain-containing proteasome activator, PA200, has been reported to recognize 

histone acetylation, especially H4 and H2B acetylation, to degrade histone during 

spermiogenesis. The deletion of PA200 in mice causes accumulation of core histones in 

elongated spermatids and reduces male fertility (Qian et al. 2013). Thus H4 hyperacetylation 

is also relative to histone degradation during spermiogenesis. 

Double-strand DNA break is other notable mark that occurs in elongating spermatid during 

histone-to-protamine exchange processing, so elongating spermatid chromatin contains the 

high level of γH2A.X (Leduc et al. 2008). And histone hyperacetylation induced by HDAC 

Inhibitor treatment can promote DNA breaks in spermatids (Laberge and Boissonneault 

2005). It is well-known that the activity of topoisomerase II beta (TOP2B) is responsible for 

generating DNA breaks in elongating spermatids (McPherson and Longo 1993b; Chen and 

Longo 1996). Because protamine-bound DNA is less supercoiled than nucleosome-bound 

DNA, supercoiled DNA is formed after nucleosome removal during spermiogenesis. TOP2B is 

capable of unwinding and untangling DNA by creating a transient DNA break. Previous 

studies showed that TOP2B activity in spermatids is regulated by poly(ADP-ribose) 

polymerase 1 (PARP1) and poly(ADP-ribose) glycohydrolase (PARG1) (Meyer-Ficca et al. 

2011). However, in general, the enzyme-bridged DNA breaks transiently introduced by 

TOP2B do not induce a DNA damage response. The γH2A.X signal in elongating spermatids 

may be generated by abortive TOP2B reactions. As post-meiotic spermatid is haploid, non-

homologous end-joining (NHEJ) pathway or similar processes is thought to mediate the 

following DNA repair (Leduc et al. 2008). 

1.2.4 Testis-specific histone variants 
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Various histone variants are specific expressed in the testis. As described in above section, 

four H3 variants, H3t, H3.X, H3.Y and H3.5, have been identified in testis or specifically in 

human testis. In addition to H3 variants, H1, H2A and H2B also have testis-specific variants 

in mammals.  

There are three linker histone H1 variants, H1t, H1T2 and HILS1, specifically present in the 

testis. The H1t is detectable in pachytene spermatocytes and round spermatids (Drabent et 

al. 1996). But H1t-deficient male mice are fertile and have normal spermatogenesis, because 

canonical H1 expression increases to replace H1t function during spermatogenesis (Drabent 

et al. 2000). The H1T2, also known as HANP1, is selectively expressed in post-meiotic 

spermatids. The loss of H1T2 leads to abnormal nuclear condensation during histone-to-

protamine exchange and reduces male fertility (Martianov et al. 2005; Tanaka et al. 2005). 

Moreover, HILS1 is other spermatid-specific linker histone and highly expressed elongating 

and condensing spermatids (Yan et al. 2003). 

At least four testis-specific H2B are identified in the testis so far. TH2B is the well-studied 

testis-specific H2B variants, which is detectable around meiotic stage and replaced canonical 

H2B progressively during meiosis (Montellier et al. 2013). Although TH2B deletion has no 

impact on male fertility, transgenic male mice expressing TH2B with C-terminal tag is sterile 

because of aberrant histone-to-protamine exchange (Montellier et al. 2013). Moreover, the 

spermatid-specific H2B (ssH2B) is found in rat round spermatids and is degraded during 

nuclear compaction (Unni et al. 1995). And mRNA expression of other two H2B, H2BL1 and 

H2BL2, are specifically detected in the mouse testis. H2BL1 is strongly present in spermatids 

compared to pachytene spermatids, but H2BL2 expression level is relatively low in meiotic 

and post-meiotic stages (Govin et al. 2007). 

Six non-canonical H2A variants are reported to be highly expressed in the testis. The 

expression profile of TH2A is similar to TH2B, because their genes are localized adjacently on 

chromosome 17 and share the same promoter (Huh et al. 1991). TH2A is detectable from 

meiotic stage during spermatogenesis (Shinagawa et al. 2015). The deletion of both TH2A 

and TH2B causes incomplete release of cohesion at interkinesis after meiosis I, abnormal 

histone replacement during spermiogenesis and thereby male infertility. Interestingly, the 

lack of TH2B is compensated for by overexpression of canonical H2B in spermatocytes and 
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spermatids, but canonical overexpression of H2A was not found (Shinagawa et al. 2015). 

Thus TH2A may play a more important role than TH2B during spermatogenesis. Moreover, 

H2A.Bbd, X-chromosome-encoded histones, is highly expressed in mouse elongating 

spermatids and is also found in human sperm (Ishibashi et al. 2010). H2A.Bbd-containing 

nucleosome is unstable in vitro (Gautier et al. 2004), so H2A.Bbd may contribute to the 

displacement of histones by protamines in the later stage of spermatids. The expression of 

H2A.Lap1 is found in spermatocytes and spermatids. H2A.Lap1 is specifically localized at 

transcription start sites of active genes in pachytene and round spermatids based on ChIP-

seq analysis and is also enriched in sex chromosomes at the late round spermatids 

(Soboleva et al. 2012). Three novel H2A variants, H2AL1/L2/L3, are identified in mouse 

genome and is highly expressed in spermatids. H2AL1 and H2AL2 are enriched in pericentric 

regions in condensing spermatids and may participate in reprogramming of pericentric 

heterochromatin (Govin et al. 2007).  

1.2.5 Nucleosome retention in mature spermatozoa 

During human and mouse spermiogenesis, histone-to-protamine exchange is not complete.  

10 to 15 % of nucleosomes are retained in human sperm compared with somatic cell, and 

1% of nucleosomes are retained in mouse sperm (Gatewood et al. 1987; Brykczynska et al. 

2010). The retained nucleosomes are not randomly distributed in sperm genome. 

Nucleosomes are preferentially retained at promoter regions of genes, especially at 

unmethylated CpG-rich promoters, and imprinting regions in human and mouse sperm 

(Hammoud et al. 2009; Brykczynska et al. 2010; Erkek et al. 2013). Retained nucleosomes in 

sperm are marked by distinct histone modifications depending on the regulatory elements 

of genes. For example, most promoters of testis-specific and housekeeping genes have 

strong enrichment of H3K4me2 in sperm, but promoters of development regulatory genes 

that are repressed in early embryos are marked by H3K27me3 in sperm (Brykczynska et al. 

2010). Therefore, the histone marks on the retained nucleosomes in sperm are likely to 

transmit paternal epigenetic information to next generation after fertilization and then 

contribute to embryo development.  
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1.3 Scope of the thesis 

Histone H3.3 is a non-canonical H3 variant that is expressed and deposited into chromatin 

throughout cell cycle. Our previous study has reported that mouse spermatids and sperm 

have high proportion of histone H3.3 variant compared with embryonic stem cells, and 

retained nucleosomes at CpG-rich promoter in sperm largely consist of H3.3 (Erkek et al. 

2013). Other study also indicated that H3.3 is expressed throughout spermatogenesis, and 

that its expression level increases at mid-stage of pachytene spermatocytes and persists in 

post-meiotic phase based on H3.3 immunostaining results (Yuen et al. 2014). When one of 

two H3.3 genes, H3f3b, is mutated, male mice are sterile because of spermatogenesis arrest 

at round spermatid stage, abnormal protamine deposition and high rates of apoptosis. 

(Yuen et al. 2014; Tang et al. 2015). Therefore, H3.3 is required for proper spermatogenesis. 

Moreover, the existence of a testis-specific H3 variant, called H3t or H3.4, was first 

identified in human testis and also reported in rat and mouse testis before (Trostle-Weige et 

al. 1984; Witt et al. 1996; Govin et al. 2007). Compared with canonical H3 nucleosome, 

human H3t-containing nucleosome is less stable in vitro, suggesting that the variant may 

contribute to histone turnover during meiosis and histone-to-protamine exchange 

(Tachiwana et al. 2008). However, the detail characterization and biological function of H3t 

in vivo are still unclear. Therefore, the first part of the thesis presented here aim at 

determining the dynamics of H3 variants compared with canonical H3 during 

spermatogenesis and also understanding the relationship between H3 modification and H3 

variants in each stage of spermatogenetic cells. 

During mammalian spermiogenesis, global histones on chromatin are replaced by transition 

proteins and subsequently by protamines in order to compact paternal genome DNA into 

sperm head. It is well-known that H4 hyperacetylation and DNA damage response coincide 

with histone displacement at elongating spermatid stage (Grimes and Henderson 1984; 

Govin et al. 2007). Hyperacetylated H4 is thought to reduce DNA-histone interaction and 

may promote histone removal from DNA. A recent study showed that a proteasome 

activator, PA200, recognizes acetylated H4 and H2B through its bromodomain-like region 

and is involved in histone degradation in elongating spermatids (Qian et al. 2013). The loss 

of PA200 causes histone accumulation in the late stage of spermatid and reduces male 

fertility (Khor et al. 2006; Qian et al. 2013). Moreover, other studies demonstrated that Rnf8, 
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an E3 ubiquitin-protein ligase of H2A and H2B involving in DNA damage response, is able to 

regulate MOF-mediated H4K16 acetylation in elongating spermatids and is required for 

proper histone removal during sperm maturation (Lu et al. 2010). Nevertheless, it is largely 

unclear what the molecular mechanism of global histone eviction from DNA is during 

spermiogenesis. Additionally, our previous studies showed that 1 to 10 % of histones are 

retained at specific genomic regions, particularly at unmethylated CpG-rich promoters, in 

human and mouse sperm (Gatewood et al. 1987; Hammoud et al. 2009; Brykczynska et al. 

2010; Erkek et al. 2013). These residual nucleosomes in sperm genome carry 

transcriptionally active or repressive modifications that may link to the transmission of 

paternal epigenetics to next generation. But how specific nucleosomes are kept in specific 

genomic regions is unresolved. Therefore, in the second part of thesis, the major aim was to 

investigate the molecular mechanisms of histone replacement and histone retention during 

mouse spermiogenesis. 
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PRC1 coordinates timing of sexual differentiation of
female primordial germ cells
Shihori Yokobayashi1{, Ching-Yeu Liang1,2, Hubertus Kohler1, Peter Nestorov1,2, Zichuan Liu1, Miguel Vidal3, Maarten van
Lohuizen4, Tim C. Roloff1 & Antoine H. F. M. Peters1,2

In mammals, sex differentiation of primordial germ cells (PGCs) is
determined by extrinsic cues from the environment1. In mouse
female PGCs, expression of stimulated by retinoic acid gene 8
(Stra8) and meiosis are induced in response to retinoic acid provided
from the mesonephroi2–5. Given the widespread role of retinoic acid
signalling during development6,7, the molecular mechanisms that
enable PGCs to express Stra8 and enter meiosis in a timely manner
are unknown2,8. Here we identify gene-dosage-dependent roles in
PGC development for Ring1 and Rnf2, two central components of
the Polycomb repressive complex 1 (PRC1)9,10. Both paralogues are
essential for PGC development between days 10.5 and 11.5 of gesta-
tion. Rnf2 is subsequently required in female PGCs to maintain high
levels of Oct4 (also known as Pou5f1) and Nanog expression11, and to
prevent premature induction of meiotic gene expression and entry
into meiotic prophase. Chemical inhibition of retinoic acid signal-
ling partially suppresses precocious Oct4 downregulation and Stra8

activation in Rnf2-deficient female PGCs. Chromatin immunopre-
cipitation analyses show that Stra8 is a direct target of PRC1 and
PRC2 in PGCs. These data demonstrate the importance of PRC1
gene dosage in PGC development and in coordinating the timing of
sex differentiation of female PGCs by antagonizing extrinsic retinoic
acid signalling.

In mammalian somatic cells, PRC1 and PRC2 proteins are trans-
criptional repressors that function in large multiprotein complexes
and that modify chromatin by mono-ubiquitinating histone H2A at
lysine 119 (H2AK119u1) and trimethylating histone H3 at lysine 27
(H3K27me3), respectively9,12. At day 12.5 of embryonic development
(E12.5), in PGCs marked by Cdh1 (E-cadherin) staining13, we obser-
ved nuclear localization of PRC1 components Rnf2 (also known as
Ring1B), Mel18 (also known as Pcgf2) and Rybp (Fig. 1a and
Supplementary Fig. 1) as well as a robust H2AK119u1 signal, suggest-
ing the presence of catalytically active PRC1 complexes (Fig. 1a). To
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Figure 1 | Rnf2 regulates PGC development and Oct4 and Nanog
expression in Rnf2cko female gonads. a, Immunofluorescence staining of
H2AK119u1, Rnf2 and Cdh1 with DAPI (49,6-diamidino-2-phenylindole) in
Rnf21 and Rnf2cko gonadal sections from E12.5 female embryos. Arrowheads
denote Rnf21 PGCs and asterisks denote Rnf2D PGCs. Scale bars, 10mm.
b, Immunofluorescence staining of Oct4 in E13.5 Rnf21 and Rnf2cko whole
gonads and mesonephroi. Scale bars, 300mm. c, Average number of Oct4-
positive cells in whole gonads at E10.5–E13.5. Error bars indicate 1s.d.
n 5 2–12. *P , 0.005; **P , 1.0 3 1025 (Student’s t-test). d, Classification of
Cdh1-positive PGCs according to Rnf2 and Oct4 protein levels in Rnf21 and
Rnf2cko E12.5 gonads. y axis represents the number of PGCs that were

normalized to areas analysed (10,000mm2). Numbers in brackets denote
number of PGCs scored per embryo. *P , 1.0 3 1028 (chi-squared test).
e, Representative histograms showing Oct4(DPE)–GFP signals in PGCs from
female Rnf21 and Rnf2cko E12.5 gonads. Boxplots showing the ratios of PGCs
with high GFP intensity (.103, enclosed by dashed line in histogram) over all
GFP-positive cells (enclosed by solid line) in different embryos. Numbers in
brackets denote number of embryos analysed. *P , 0.05; **P , 0.005
(Student’s t-test). f, Representative qRT–PCR data of Rnf2, Oct4 and Nanog in
Rnf21 and Rnf2D PGCs (normalized to Tbp). Error bars indicate 1s.d. of 2–3
technical replicates. *P , 0.05; **P , 0.01 (Student’s t-test).
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address the function of PRC1 in PGC development (Supplementary
Fig. 2), we conditionally deleted Rnf2 in PGCs from E9.5 onwards by
generating mice carrying a floxed and a mutant allele of Rnf2 (Rnf2fl/D)
and a Cre recombinase driven by the mouse Tnap promoter (Tnap-
cre)14,15. To concomitantly assess possible functional redundancy with
the Rnf2 paralogue Ring1 (refs 10, 16), we studied mice that were either
heterozygous or homozygous deficient for Ring1 (ref. 17) (referred to
as Rnf2 conditional knockout (Rnf2cko) mice and Ring1D Rnf2cko mice,
respectively) (Supplementary Figs 3 and 6a). This strategy resulted in
,90% deletion efficiency at E11.5 (Supplementary Fig. 4). At E12.5,
Rnf2, Mel18, Rybp and H2AK119u1 were lost in PGCs of Rnf2cko

embryos but not of Rnf2fl/D embryos, carrying one functional allele,
indicating that complex stability and catalytic activity of PRC1 is regu-
lated by Rnf2 in PGCs at E12.5 (Fig. 1a and Supplementary Figs 1 and
4). By contrast, Ezh2 and H3K27me3 levels were similar in Rnf2cko

versus control PGCs, suggesting globally unaltered PRC2 function in
Rnf2cko PGCs (Supplementary Fig. 5).

To study the fate of Rnf2-deficient PGCs, we analysed expression of
the pluripotency and germ cell marker Oct4 in whole gonads of
E10.5–E13.5 embryos (Fig. 1b and Supplementary Fig. 2). We observed
a strong reduction of Oct4-positive PGCs, specifically in female
Rnf2cko embryos but not in male Rnf2cko or control embryos, starting
around E12.5 of gestation (Fig. 1b, c). By contrast, double deficiency of
Ring1 and Rnf2 caused a strong reduction of Oct41 PGCs by E11.5 in
both sexes (Supplementary Fig. 6b, c), indicating an essential role for
PRC1 in PGCs after their migration into the embryonic gonad
(Supplementary Fig. 2)11.

To further dissect the role of Rnf2 in regulating Oct4 expression
versus PGC development, we assessed co-expression of Oct4 and Rnf2
at E12.5 in Cdh11 PGCs in Rnf2cko embryos (Fig. 1d). The number of
PGCs lacking detectable Rnf2 protein was strongly reduced in female
but not male gonads, despite the fact that gonads of both sexes harboured
comparable numbers of Rnf2-deficient PGCs at E12.0 (Supplemen-
tary Fig. 4a, and data not shown). We further observed a pronounced
downregulation of Oct4 protein in female and some male Rnf2-deficient
PGCs (Fig. 1d). These data indicate that Rnf2 contributes to maintaining
Oct4 expression, particularly in female PGCs, beginning between E12.0
and E12.5.

We subsequently investigated the mechanism underlying the reduc-
tion in female Rnf2-deficient PGCs. We failed to observe increased
levels of apoptosis or major changes in cell cycle progression (data not
shown). To study changes in gene expression, we introduced a green
fluorescent protein (GFP) transgene driven by the promoter of Oct4
lacking the proximal enhancer (Oct4(DPE)–GFP))18 into the Rnf2cko

strain and isolated pure populations of PGCs by fluorescence-activated
cell sorting (FACS) (Fig. 1e). By quantitative reverse transcriptase PCR
(qRT–PCR), we barely detected any Rnf2 transcripts in isolated
Rnf2cko PGCs, confirming efficient deletion of the Rnf2fl allele by
Tnap-cre (Fig. 1f; see also Supplementary Fig. 4). Hence, we subse-
quently refer to PGCs from Rnf2cko embryos as Rnf2D. We also noticed
significant reductions in GFP intensities in Rnf2D PGCs isolated from
male and female E11.5 and E12.5 embryos compared to controls
(Fig. 1e), suggesting decreased Oct4(DPE) promoter activity in these
cells. qRT–PCR analysis showed significantly reduced Oct4 and Nanog
expression in female GFP-positive Rnf2D PGCs at E11.5 and E12.5
(Fig. 1f and data not shown). Thus, Rnf2 is required for maintaining
the expression of pluripotency factors in PGCs.

We next analysed genome-wide expression in purified PGCs. The
number of misregulated genes in female compared to male Rnf2D

PGCs at E12.5 was 12-fold higher (Fig. 2a and Supplementary Table
1). Consistent with the fact that PRC1 is a transcriptional repressor,
,90% of misexpressed genes were upregulated. At E11.5, we only
observed a few misregulated genes in Rnf2D PGCs (Supplementary
Table 1), consistent with the timing of the mutant phenotype. Accor-
ding to Gene Ontology analysis, gene functions related to meiosis (syn-
apsis, sister chromatid cohesion) were highly over-represented among
genes upregulated in female Rnf2D PGCs. By contrast, nucleosome
functions were enriched in downregulated genes, as reported previously
for Ring1 and Rnf2 double-deficient germinal vesicle oocytes10 (Sup-
plementary Fig. 7 and Supplementary Table 2). Notably, we barely
found any over-representation of developmental gene functions in
Rnf2D PGCs, a classical feature of PRC1 deficiency in ESCs16,19 and
germinal vesicle oocytes10. To test whether this is due to functional
redundancy of the Ring1 paralogue, we profiled expression in
Ring1D Rnf2D PGCs purified from E11.5 embryos. Consistently, many
developmental gene functions were over-represented among upregu-
lated genes (Supplementary Fig. 8 and Supplementary Table 2). These
data indicate that although Ring1 expression is sufficient to safeguard
global repression of canonical Polycomb target genes in PGCs, Rnf2 is
required in female E12.5 PGCs for repression of genes driving meiosis.

At E11.5, gonads still possess the potential to develop into either
ovaries or testes, but are committed to a sex-specific differentiation
process 2 days later. To relate aberrant expression in Rnf2D PGCs to
changes occurring during normal PGC differentiation, we profiled
expression in Rnf21 PGCs isolated between E11.5 and E13.5. In this
developmental period, sixfold more genes were upregulated in female
(810) than in male (132) Rnf21 PGCs, with an additional 196 genes
being upregulated in both sexes, suggesting the activation of female-
and male-specific ‘PGC-differentiation programs’ (PDPs) (Fig. 2b).
Among genes upregulated in E12.5 female Rnf2D PGCs, 223 (43%)
were found to be part of the female PDP (Fig. 2b and Supplementary
Fig. 7b) (P value 2.67 3 102159; geometric test), being activated about
1 day ahead compared to those in Rnf21 PGCs (Fig. 2c).
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Figure 2 | Rnf2 deficiency induces extensive transcriptional misregulation
in female PGCs. a, Venn diagrams showing the numbers of genes misregulated
in male and female Rnf2D PGCs compared to Rnf21 PGCs at E12.5. b, Venn
diagram showing the numbers of genes upregulated in female (red) and male
(blue) control PGCs between E11.5 and E13.5 and in female Rnf2D PGCs
compared to Rnf21 PGCs at E12.5 (pink oval). c, Relative expression levels of
1138 probe sets upregulated in male (m) and female (f) Rnf21 PGCs between
E11.5 and E13.5 (b) in various samples indicated. Unsupervised clustering
analysis shows clustering of female E12.5 Rnf2D PGCs with female E13.5 Rnf21

PGCs, whereas E12.5 male Rnf2D and Rnf21 PGCs clustered together. d, Micro-
array expression values of early meiosis program genes. Genes significantly
upregulated in Rnf2D PGCs of both sexes are indicated in bold; those in female
Rnf2D PGCs only in bold with asterisk. n 5 3 per condition; fold change .1.5;
adjusted P value ,0.05.
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We next identified that 24 out of 119 genes annotated with the Gene
Ontology term ‘meiosis’ (GO:0007126) were part of the female PDP,
probably reflecting activation of an ‘early meiosis program’ (Fig. 2d).
Among these 24 genes, 10 were precociously upregulated in female
Rnf2D PGCs, including Stra8, required for meiotic initiation5, and
others such as Rec8, Sycp3, and Hormad2, which have key functions
in cohesion, chromosome synapsis and recombination20–22. Using
qRT–PCR, we measured high Stra8, Rec8 and Sycp3 messenger RNA
levels at E13.5 in female Rnf21 PGCs (Fig. 3a). At E11.5 and E12.5,
Stra8 and Rec8 were precociously activated, with up to 20-fold higher
expression levels in female Rnf2D versus Rnf21 PGCs. Sycp3 was
expressed in Rnf21 PGCs from both sexes with up to fourfold
increased levels in female Rnf2D PGCs (Fig. 3a). Immunofluore-
scence analyses revealed strong Stra8 nuclear localization by E12.5
in PGCs of Rnf2cko gonads, whereas the protein only started to accu-
mulate in control PGCs at E13.5 (Fig. 3b and Supplementary Fig. 7c).
For Sycp3, we observed focal nuclear staining at E13.5 and synapto-
nemal complex staining at E14.5 in Rnf2D germ cells, whereas only
axial elements of meiotic chromosomes were visible in Rnf21 germ
cells at E14.5 (Fig. 3c, d, data not shown). These data indicate that
precocious transcriptional activation of Stra8 and other PGC differ-
entiation and meiosis genes in female Rnf2D PGCs induces these cells
to prematurely stop proliferation and enter into meiotic prophase,
hence accounting for the lower number of female Rnf2D PGCs at
E12.5. We also measured increased expression of genes functioning
in retinoic acid metabolism, such as Aldh1a2, Crabp1 and Crabp2 in
female Rnf2D PGCs at E11.5 and 12.5 (Supplementary Fig. 7d and data
not shown), probably enhancing retinoic acid signalling and meiotic
entry in a feed-forward manner23.

We next wanted to find out why Stra8 transcription is abnormally
activated only in female Rnf2D PGCs. In male gonads, retinoic-acid-
mediated induction of Stra8 is counteracted by the somatically expressed
retinoid-degrading enzyme Cyp26b1 and by the Fgf9 signalling pathway

(Supplementary Fig. 2)3,4,24. PRC1 may therefore not be required to
suppress Stra8 expression in males. To study this possibility, we aimed
to overcome the antagonizing activity of Cyp26b1 and cultured
E11.5 genital ridges for 24 h in the presence of all-trans retinoic acid
(ATRA)3,4. ATRA increased Stra8 expression in isolated Rnf21 PGCs
of both sexes to levels comparable with what we measured in female
Rnf2D PGCs treated with vehicle (Fig. 4a). Intriguingly, ATRA addi-
tionally enhanced Stra8 expression in male as in female Rnf2D PGCs to
.fivefold higher levels compared to Rnf21 PGCs (Fig. 4a), indicating
that PRC1 effectively suppresses retinoic-acid-induced Stra8 activa-
tion in PGCs of both sexes. We observed comparable responses for
Rec8 and Sycp3 expression (Fig. 4a). By contrast, Stra8 activation
was completely suppressed in all genotypes by treatment with Win-
18446 (N,N9-octamethylenebis(dichloroacetamide)), an inhibitor of
the retinoic acid biogenesis pathway25 (Fig. 4a). Likewise, 2-day in vivo
exposure of PGCs to Win-18446 in developing embryos suppressed
premature Stra8 protein expression (Supplementary Fig. 9a, b). In
addition, numbers of Oct4-expressing PGCs in Rnf2cko gonads were
significantly increased upon treatment in vitro and in vivo with Win-
18446 (Fig. 4b and Supplementary Fig. 9c, d). These results indicate
that sensitization of PGCs to retinoic acid signalling by Rnf2 deficiency
contributes to precocious exit from the PGC state and activation of
the meiotic program in female gonads.

Subsequently, most Rnf2D PGCs were unable to complete meiosis
and to develop into mature oocytes (Supplementary Fig. 10), possibly
as a consequence of the precocious entry into meiosis that may even-
tually impair, perhaps in concert with other aberrant changes in gene
expression (Fig. 2b), the execution of the natural female PDP and
oogenesis. Alternatively, PRC1 may exert a separate essential function
later during meiotic progression.

Finally, we performed a micro-chromatin immunoprecipitation
(mChIP) assay on isolated Rnf21 PGCs. At E11.5, the Stra8 promoter
was strongly enriched with PRC2-mediated H3K27me3 and with
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Figure 3 | Female Rnf2D PGCs enter
precociously into meiotic prophase.
a, Representative qRT–PCR data of Stra8, Rec8 and
Sycp3 transcripts (normalized to Tbp) in isolated
PGCs. Error bars indicate 1s.d. of two technical
replicates. *P , 0.05 (Student’s t-test).
b, Immunofluorescence staining of Oct4 and Stra8
in Rnf21 and Rnf2cko female gonads at E12.5 and
E13.5. Scale bars, 10mm. c, Classification of Cdh1-
positive PGCs according to Rnf2 and Sycp3 protein
levels in Rnf21 and Rnf2cko E13.5 gonads of
individual embryos. Numbers in brackets indicate
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d, Immunofluorescence staining of Sycp3 and Rnf2
in Rnf21 and Rnf2cko E14.5 ovaries. Scale bars,
10mm.
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H3K4me3, indicative of a Polycomb repressed, yet potentially trans-
criptionally primed, chromatin state. During subsequent stages, we
noticed a progressive decrease in H3K27me3 levels in female PGCs
consistent with Stra8 transcriptional activation, whereas the promoter
remained bivalent in male PGCs (Fig. 4c). By contrast, the Hoxa9
promoter was bivalent in all conditions (Supplementary Fig. 11).
Likewise, we detected Rnf2 association with the Stra8 promoter at
E11.5 and E12.5 PGCs and a significant decrease in Rnf2 occupancy
in female but not male PGCs at E13.5. Together, these experiments
suggest that Stra8 is directly regulated by PRC2 and PRC1 in PGCs of
both sexes.

In summary, we identified an essential role for PRC1 in PGC
development between E10.5 and E11.5. Later, between E11.5 and
E13.5, Rnf2 effectively modulates the sensitivity of PGCs to retinoic-
acid-mediated induction of meiosis by directly controlling the compet-
ence of Stra8 and probably of other meiotic genes for transcriptional
activation. Like the proposed role of Cbx2 in temporal co-linearity of
Hox gene activation26, we speculate that PRC1 maintains repression of
Stra8 and other genes of the PGC differentiation and early meiosis
programs until retinoic acid signalling has reached a certain threshold
(Fig. 4d). In addition, PRC1 regulates the expression of pluripotency
genes in PGCs, possibly indirectly by suppressing transcription of nega-
tive regulators. Impairing PRC1 function in these parallel pathways
probably leads to a synergistic effect, thereby promoting premature
transition from proliferation into meiosis.

METHODS SUMMARY
Embryos were obtained by timed matings, by scoring noon of the day after
mating as E0.5. Genital ridges were cultured in drops of Dulbecco’s minimal eagle
medium supplemented with 10% fetal calf serum at 37 uC with 5% CO2 in air.
For expression profiling, we collected in triplicate 500 PGCs per embryo by
fluorescence-activated cell sorting and processed, hybridized to Affymetrix
Mouse Gene 1.0 arrays and analysed as described previously10. Gene Ontology
terms were obtained using GOstat (http://gostat.wehi.edu.au). mChIP was per-
formed as described previously27.

Full Methods and any associated references are available in the online version of
the paper.
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METHODS
Mice and embryo collection. Rnf2cko mice with Rnf2-deficient PGCs were gen-
erated by combining a floxed Rnf2 (Rnf2fl) allele14 with the Tnap-cre transgene
allele as illustrated in Supplementary Fig. 3. Introduction of the Ring1 mutation17 is
illustrated in Supplementary Fig. 6a. For PGC isolation, embryos were sired by
fathers that were homozygous for the Oct4(DPE)–GFP transgene. Mice were
maintained on a mixed background of 129/Sv and C57BL/6J. Embryos were
obtained by timed matings, by scoring noon of the day following mating as 0.5
embryonic day of development (E0.5). The genotype of embryos was determined
by PCR as described previously14. Sex of gonads was determined by PCR for Ubex1
using the following primers: forward, 59-TGGTCTGGACCCAAACGCTG
TCCACA-39; reverse, 59- GGCAGCAGCCATCACATAATCCAGATG-39. All
experiments were performed in accordance with the Swiss Animal Protection laws
and institutional guidelines.
Antibodies. For immunofluorescence analyses, the following primary and sec-
ondary antibodies were used: polyclonal anti-Oct4 (sc-8628, 1:150), monoclonal
anti-Rnf2 (gift from H. Koseki, 1:400)28, monoclonal anti-E-cadherin (Invitrogen,
1:250), polyclonal anti-Stra8 (rabbit, gift from M. Griswold, 1:1,000)29, polyclonal
anti-Sycp3 (rabbit, gift from C. Heyting, 1:500)30, polyclonal anti-Mel18 (sc-
10774, 1:50), polyclonal anti-Rybp (1:400)31, monoclonal anti-H2AK119u1 (Cell
signaling, 1:500), polyclonal anti-H3K27me3 (gift from T. Jenuwein, 1:500)32,
monoclonal anti-Ezh2 (Novocastra, 1:200), anti-goat IgG-Alexa 488, anti-rabbit
IgG-Alexa 488, anti-mouse IgG-Alexa 555 and anti-rat Cy5. For ChIP analysis,
anti-H3K4me3 (Millipore, 17-614), anti-H3K27me3 (Millipore, 07-449) and anti-
Rnf2 (Active motif, 39663) were used.
Immunofluorescence. For whole-mount stainings, dissected gonads with meso-
nephroi were fixed for 15 min in 3% paraformaldehyde in PBS (pH 7.4) and
permeabilized with 0.5% Triton X-100 in PBS for 20 min on ice. Fixed embryos
were blocked overnight at 4 uC in PBS containing 0.1% Triton X-100, 10% BSA
and 5% normal donkey serum, and were then incubated with primary antibodies
in blocking solution overnight at 4 uC. Gonads were washed three times for 1 h in
PBS containing 0.1% Triton X-100 and 2% BSA before application of secondary
antibodies. For detection, secondary antibodies were diluted 1:500 in blocking
solution and gonads were incubated overnight at 4 uC followed by three washing
steps for 1 h in PBS with 0.1% Triton X-100. Gonads were stained briefly with
DAPI and mounted in Vectashield (Vector). For gonadal section stainings, the
posterior part of embryos or gonads with mesonephroi were frozen in Tissue-Tek
Optimal Cutting Temperature (OCT) compound (Sakura Finetek) on dry ice.
Alternatively, the materials were fixed with 3% paraformaldehyde in PBS (pH
7.4) for 10 min, soaked in 30% sucrose solution overnight and embedded in
OCT compound. Twelve-micron-thick cryo-sections were cut from frozen blocks
with Microm HM355S. Cryo-sections were fixed with 3% paraformaldehyde for
10 min at room temperature (about 20 uC), permeabilized in 0.5% Triton X-100 in
PBS for 4 min at 4 uC and blocked for 30 min in PBS containing 1% BSA at room
temperature. Sections were incubated with primary antibodies in blocking solu-
tion overnight at 4 uC and subsequently washed three times for 10 min in PBS with
0.05% Tween-20. Incubation of secondary antibodies was done in the blocking
solution for 1 h at room temperature.
Microscopy and image analysis. Immunofluorescence stainings of gonads were
analysed using the Zeiss LSM 700 confocal microscope. For whole-mount gonads,
images were acquired by using a tile function with a z-series of 1-mm slices in ZEN
software and whole image was reconstructed using the XUV-tools software. We
counted the number of Oct4-positive cells using a spot function in Imaris
(Bitplane) software.
Isolation of PGCs expressing the Oct4(DPE)–GFP transgene by FACS.
Dissected gonads were enzymatically disrupted using 0.025% trypsin at 37 uC
for 8 min. Trypsin activity was inhibited by adding fetal calf serum in Hank’s
buffer salt solution without phenol red. Gonads were dispersed by pipetting and
subjected to FACS. Embryos were processed individually for expression analysis.
PGCs isolated from several embryos were pooled for ChIP analysis.
qRT–PCR. Total RNA was extracted from isolated PGCs or surrounding somatic
cells from individual embryos using the PicoPure RNA Isolation Kit (KIT0202)
according to the manufacturer’s instructions (Stratagene) with the addition of
100 ng Escherichia coli ribosomal RNA as carrier. RT–PCR was performed using
SuperScript III Reverse Transcriptase (Invitrogen) according to the manufac-
turer’s protocol. qPCR reactions were performed with complementary DNA cor-
responding to 20 cells using the SYBR Green PCR Master Mix (Applied
Biosystem) in an ABI Prism 7000 Real time PCR machine. All qPCR measure-
ments were normalized to the endogenous expression level of Tbp. We performed
qRT–PCR analyses on multiple pairs of Rnf2cko and control littermates. Data in
figures present technical replicates for pairs of genotypes. Primers used were as
follows: Rnf2 (forward, 59-TTAGAAGTGGCAACAAAGAGTG-39; reverse, 59-
CGCTTCATACTCATCACGAC-39), Oct4 (forward, 59-GATGCTGTGAGCCA

AGGCAAG-39; reverse, 59-GGCTCCTGATCAACAGCATCAC-39), Nanog (for-
ward, 59-CTTTCACCTATTAAGGTGCTTGC-39; reverse, 59-TGGCATCGG
TTCATCATGGTAC-39), Stra8 (forward, 59-CAAAAGCCTTGGCTGTGTTA-
39; reverse, 59-AAAGGTCTCCAGGCACTTCA-39), Rec8 (forward, 59-CCAA
CAAGGAGCTGGACTTC-39; reverse, 59-GGACAGCACCAAGAGCAGAT-
39), Sycp3 (forward, 59-GTGTTGCAGCAGTGGGAAC-39; reverse, 59-GCTTT
CATTCTCTGGCTCTGA-39), Aldh1a2 (forward, 59-CCCTGACAGTGGCT
TTGAGT-39; reverse, 59-CTGTGGGTTGAAGGGAGCTA-39), Crabp1 (forward,
59-GCTTCGAGGAGGAGACAGTG-39; reverse, 59- CAGCTCTCGGGTCCAG
TAAG-39), Crabp2 (forward, 59-GCCGAGAACTGACCAATGAT-39; reverse,
59-GGAAGTCGTCTCAGGCAGTT-39), Tbp (forward, 59-TGCTGTTGGTGAT
TGTTGGT-39; reverse, 59-AACTGGCTTGTGTGGGAAAG-39).
Expression profiling of PGCs and data analysis. We performed expression
profiling on PGCs isolated from three pairs of Rnf2cko and control littermates for
each developmental time point. RNA was extracted from 500 PGCs isolated per
embryo using the PicoPure RNA Isolation Kit (KIT0202) according to the manu-
facturer’s instructions (Stratagene). The quality of the RNA was assessed using the
Agilent 2100 Bioanalyzer and RNA 6000 Pico Chip. The extracted RNA was con-
verted into OmniPlex Whole transcriptome amplification (WTA) cDNA libraries
and amplified by WTA PCR using reagents supplied with the TransPlex WTA1 kit
(Sigma) following the manufacturer’s instructions with minor modifications. The
obtained cDNA was purified using the GeneChip cDNA Sample Cleanup Module
(Affymetrix). The labelling, fragmentation and hybridization of cDNA was per-
formed according to Affymetrix instructions (GeneChip Whole Transcription
Sense Target Labelling technical manual, Rev. 2) with minor modifications.
Samples were hybridized to Affymetrx Mouse Gene 1.0 arrays. Microarray quality
control and analysis was carried out in R 2.10.0 and Bioconductor 2.5. In brief, array
quality was assessed using the ‘arrayQualityMetrics’ package. Raw data was read
into R and normalized with RMA using the ‘affy’ package and differentially
expressed genes were identified using the empirical Bayes method (F test) imple-
mented in the LIMMA package. P values were adjusted for false discovery rate
(FDR) using the Benjamini and Hochberg correction. Probe sets with a log2 average
contrast signal of at least 3, an adjusted P value of ,0.05, and an absolute linear fold-
change of at least 1.5-fold were selected. The P values reported for enriched Gene
Ontology terms were obtained using GOstat (http://gostat.wehi.edu.au) (Sup-
plementary Figs 7 and 8 and Supplementary Table 2). A list of genes belonging
to the GO term ‘meiosis’ (GO:0007126) were obtained using R annotation packages
(library(org.Mm.eg.db) and library(GO.db)) (Fig. 2d and Supplementary Table 1).
For RNA-sequencing experiments, RNA was extracted from 500 PGCs per embryo
using RNeasy Micro Kit (Qiagen). The RNA amplification and cDNA generation
were performed using NuGEN Ovation RNA-seq System V2 (Part no. 7102) and
sequencing libraries were prepared using TruSeq DNA Sample Preparation Kit
(low-throughput protocol) (Part no. 15005180 Rev. C). Barcoded libraries were
sequenced in one lane of Illumina HiSeq instrument. The resulting sequencing
reads were filtered, aligned to Refseq gene models and weighted as described
previously33.
Treatment of gonads with agonist and antagonist of retinoic acid signalling.
Both gonads per embryo were dissected and were cultured together or separately
in a drop of Dulbecco’s minimal eagle medium supplemented with 10% fetal calf
serum at 37 uC in a humidified atmosphere of 5% CO2 in air. ATRA (Sigma) and
Win-18446 (ABCR) were dissolved in dimethylsulphoxide (DMSO). These com-
pounds were added to culture media with concentration of 0.5mM for ATRA or
2mM for Win-18446. Control cultures were treated with DMSO vehicle as appro-
priate. For in vivo administration of Win-18446, 100 mg per ml stock solution (in
DMSO) was diluted with oil and 2.5 mg was injected intraperitoneally into preg-
nant female mice at E10.5. Embryos were collected at E12.5. DMSO mixed with oil
was injected into pregnant female mice for control experiments.
Specific target amplification (STA) qRT–PCR on single germinal vesicle
oocytes. Germinal vesicle oocytes were isolated from ovaries and carefully washed
with removing cumulus cells. STA was performed using the CellsDirect One-Step
qRT–PCR Kit (11753-100) according to the manufacturer’s instructions
(Invitrogen). In brief, the oocytes were individually added to the reaction mix
containing RNase Inhibitor (Ambion) and primers of target genes of interest.
After amplification, the samples were treated with Exonuclease I (New England
Biolabs) and used as template for qPCR. Primers used were as follows: Rnf2
(forward, 59-CAGGCCCCATCCAACTCTTA-39; reverse, 59-CAACAGTGGCA
TTGCCTGAA-39), Ssu72 (forward, 59-GGTGTGCTCGAGTAACCAGAA-39;
reverse, 59- CAAAGGAGCGGACACTGAAAC-39).
mChIP analysis. Small-scale ChIP experiment was performed as previously
described27 with some modifications. In brief, 15,000 FACS-sorted PGCs were cross-
linked with 0.5% paraformaldehyde in PBS for 10 min at room temperature and
quenched with 125 mM glycine. PGCs were then lysed in 50 mM Tris-HCl, pH 8.0,
10 mM EDTA, 1% SDS, and protease inhibitors. The cell lysate was sonicated in a
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Diagenode Bioruptor to achieve a mean DNA fragment size of around 200–400 base
pairs. After centrifugation, the supernatants were diluted with radio immunopreci-
pitation assay (RIPA) buffer to an equivalent of 2,500 PGCs and incubated with
antibody-bound protein G-magnetic beads overnight at 4 uC. The beads were
washed four times with the RIPA buffer and one time with 10 mM Tris HCl,
pH 8.0, 10 mM EDTA buffer, and bead-bound complexes were incubated with
complete elution buffer (20mM Tris-HCl, pH 7.5, 5 mM EDTA, 50 mM NaCl, 1%
SDS, 50 mg per ml proteinase K) at 68 uC for DNA elution, crosslink reversal and
protein digestion. Finally, immunoprecipitated DNA was purified by phenol-chlo-
roform extraction and ethanol precipitation and dissolved in MilliQ water for qRT–
PCR analysis. Primers used were as follows: Stra8 (forward, 59-GTATCGCC
GTAACTCCCAGA-39; reverse, 59-GCAGATGACCCTCACACAAG-39), HoxA9
(forward, 59- GGAGGGAGGGGAGTAACAAA-39; reverse, 59-TCACCTCGCCT
AGTTTCTGG-39).
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In mammals, fusion of two morphologically distinct gametes—oocytes 
and spermatozoa—leads to the formation of totipotent embryos. 
Acquisition of totipotency is thought to be mediated by extensive epi-
genetic reprogramming of parental genomes, and this in turn affects 
DNA methylation, histone modifications and possibly replication 
timing and transcriptional activity in a parent-specific manner1–4.  
It is currently unclear to what extent differential reprogramming of 
maternal and paternal genomes is due to differences in chromatin 
states inherited from the oocyte and spermatozoon4–11. Beyond DNA 
methylation1,2,6,12, it is unknown which types of parental chromatin 
states are maintained or reprogrammed in early embryos. If certain 
parental chromatin states were to escape reprogramming in the early 
embryo, such information could constitute an intrinsic intergen-
erational epigenetic program directing gene expression in the next 
generation13. If these chromatin states also were to escape reprogram-
ming during gametogenesis, the inheritance program would func-
tion transgenerationally13. An increasing number of studies point to 
inter- or transgenerational transmission of acquired phenotypic traits 
that are related to temporal exposure of grandparents or parents to 
alternative instructive environmental cues14–18. Mechanistically, such 
phenotypic changes may be related to (transient) alterations of an 
intrinsic inheritance program.

Whether histones and associated post-translational modifica-
tions have a role in maternal and paternal transmission of intrinsic  
or acquired epigenetic information is largely unknown13. In many 
metazoans, male germ cells undergo an extensive chromatin remodel
ing process in their final differentiation into sperm, during which 
genomic DNA becomes newly packaged into a highly condensed 
configuration by sperm-specific proteins. In mammals, removal of 

histones is generally not complete10,11,19–24. Furthermore, remain-
ing histones have been reported to stay associated with the pater-
nal genome during de novo chromatin formation in the zygote  
after fertilization9.

We and others recently showed that histones retained in human 
sperm are to some extent enriched at the regulatory sequences of 
genes10,11. We also demonstrated that H3K4me3- and H3K27me3-
marked histones are retained at the promoters of specific sets of 
genes in mouse spermatozoa11. The extent of evolutionary con-
servation of nucleosome retention at gene regulatory sequences in 
spermatozoa and the mechanistic principles of such retention are,  
however, unknown.

To address conservation and to dissect the molecular logic under
lying nucleosome retention, we determined the genome-wide 
nucleosome occupancy in mouse spermatozoa, which contain only 
1% residual histones. We show here that combinatorial effects of 
sequence composition, histone variants and histone modifications 
determine the packaging of sperm DNA. Nucleosomes in sperm 
mainly localize to unmethylated CpG-rich sequences in a histone 
variant–specific manner and are differentially modified. Comparison 
of histone-variant profiles between postmeiotic round spermatids 
and sperm suggests that the retention of variant-specific nucleo-
somes in sperm is linked to levels of nucleosome turnover in haploid  
round spermatids.

RESULTS
Nucleosomes localize at GC-rich sequences in mouse sperm
To assess the potential of paternal epigenetic inheritance by 
nucleosomes in mice, we first aimed to determine the location of 
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Molecular determinants of nucleosome retention at  
CpG-rich sequences in mouse spermatozoa
Serap Erkek1–3, Mizue Hisano1, Ching-Yeu Liang1,2, Mark Gill1, Rabih Murr1, Jürgen Dieker4, Dirk Schübeler1,2, 
Johan van der Vlag4, Michael B Stadler1,3 & Antoine H F M Peters1,2

In mammalian spermatozoa, most but not all of the genome is densely packaged by protamines. Here we reveal the molecular 
logic underlying the retention of nucleosomes in mouse spermatozoa, which contain only 1% residual histones. We observe high 
enrichment throughout the genome of nucleosomes at CpG-rich sequences that lack DNA methylation. Residual nucleosomes 
are largely composed of the histone H3.3 variant and are trimethylated at Lys4 of histone H3 (H3K4me3). Canonical H3.1 and 
H3.2 histones are also enriched at CpG-rich promoters marked by Polycomb-mediated H3K27me3, a modification predictive 
of gene repression in preimplantation embryos. Histone variant–specific nucleosome retention in sperm is strongly associated 
with nucleosome turnover in round spermatids. Our data show evolutionary conservation of the basic principles of nucleosome 
retention in mouse and human sperm, supporting a model of epigenetic inheritance by nucleosomes between generations.
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nucleosomes in spermatozoa. We isolated 
motile spermatozoa from caudal epididymi 
and performed deep sequencing of DNA 
associated with mononucleosomes prepared 
by micrococcal nuclease (MNase) digestion 
of sperm chromatin. Genome-wide analyses 
indicated an approximately ten- and two-
fold overrepresentation of nucleosomes at 
promoter regions and exons, respectively, 
whereas nucleosomes were underrepre-
sented at introns and repeat regions (Supplementary Fig. 1a,b).  
We observed promoter enrichment at many but not all genes  
(Fig. 1a). Classification of promoters according to their GC content, 
CpG ratio and length of CpG-rich region25 revealed that high-CpG 
and intermediate-CpG promoters are highly and moderately enriched 
in nucleosomes, respectively, whereas most promoters with low CpG 
content lack nucleosomes (Fig. 1b). Nucleosomal enrichment is not 
restricted to CpG-island (CGI) promoters but is also detected at 
intra- and intergenic CGIs as well as within GC-rich simple repeat 
sequences (Fig. 1c and data not shown).

To investigate whether nucleosomal occupancy in sperm corre-
lates with a specific sequence composition, we determined single-
nucleotide frequencies in 1-kilobase (kb) windows tiled throughout 
the genome. Whereas G and C correlate positively with nucleo-
some occupancy genome wide, A and T do not (Fig. 1d). We next 
assessed the contribution of different dinucleotides to nucleosome 
occupancy, independent of single-nucleotide frequencies, by calcu-
lating the ratio between observed and expected frequencies for each 
dinucleotide. Notably, these analyses revealed that, predominantly, 
the CpG dinucleotide contributes to sequence-related nucleosomal 
packaging of sperm DNA (Fig. 1d), whereas the GpC dinucle-
otide has almost no contribution. The ApA and TpT dinucleotides  
contribute moderately.

To establish whether the observed CpG dinucleotide association 
reflects an intrinsic DNA sequence preference for nucleosome forma-
tion, we reanalyzed in vitro nucleosome-reconstitution data of histone 
octamers assembled onto yeast genomic DNA26. We observed a strong 
contribution of G and C to in vitro nucleosome formation, as reported 
before (in ref. 27). However, we observed no specific contributions 
of either CpG or GpC dinucleotides (Supplementary Fig. 2a,b).  
Thus, the strong association of CpG density with nucleosome reten-
tion in mouse sperm does not reflect an intrinsic preference of 
nucleosomes for CpG-rich DNA. Instead, it represents a new feature 

of CGIs in genome function executed during mouse male germ-cell 
development28. Motif analysis did not reveal any specific sequence 
compositions other than a strong correlation to GC composition 
(Supplementary Fig. 1c).

Nucleosomes localize at unmethylated CpG-rich DNA in sperm
The nucleosomal occupancy at CGIs in sperm markedly contrasts 
with the depletion of nucleosomes at CGI promoters in somatic 
cells29–31. Indeed, we observed extensive nucleosomal depletion 
around transcriptional start sites (TSSs) and a clear inverse correla-
tion between nucleosome occupancy and CpG frequency in mouse 
liver32 (Fig. 1e,f). In somatic cells, however, nucleosomes are not 
depleted at CGI promoters repressed by Polycomb-group proteins 
or by DNA methylation33. Therefore, to investigate whether nucleo-
somes are preferentially retained at CGIs that are DNA methylated 
in sperm, we performed bisulfite conversion and high-throughput 
sequencing of sperm DNA associated with nucleosomes34. In con-
trast to our expectation, methylated genomic regions were devoid 
of nucleosomes in sperm (Fig. 2a). We observed a similar inverse 
relationship by using genome-wide shotgun bisulfite sequencing data 
from mouse sperm (Fig. 2b)6. This exclusive inverse relationship is 
well illustrated at imprinting control regions (ICRs) in mouse sperm. 
Whereas paternal ICRs regulating somatic expression of genes such 
as H19, Dlk1, Gtl2 (official symbol Meg3) and Rasgrf1 (ref. 35) are 
methylated and devoid of nucleosomes, ICRs controlling maternally 
imprinted gene clusters (for example, Kcnq1ot1, Snrpn and Peg10) 
are unmethylated and contain nucleosomes (Supplementary Fig. 3). 
Furthermore, GC-rich retroelements such as LINE1 elements that 
are methylated in sperm and become demethylated after fertiliza-
tion1 lack nucleosomes in sperm (data not shown). These data are 
compatible with a model in which DNA methylation established early 
during male germ-cell development36 prevents nucleosome retention  
during spermiogenesis.
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Figure 1  Nucleosome occupancy in sperm  
is highly dependent on CpG composition.  
(a) Nucleosome occupancy and GC percentage 
at representative CGI and non-CGI loci in 
mouse sperm. Chr, chromosome. (b) Density 
plot showing the distribution of nucleosome 
enrichment ± 1 kb around TSSs of genes 
classified according to GC content as high (HCP),  
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(c) Nucleosome occupancy and GC  
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the mouse genome. (f) Average profiles for 
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By analyzing sequence characteristics of CGIs and their DNA 
methylation states, we found strong positive correlations between 
nucleosomal enrichment and the number and density of CpG  
dinucleotides within CGIs devoid of DNA methylation (Fig. 2c). 
Using a linear mathematical model, we can predict nucleosome occu-
pancy in mouse sperm as a function of CpG dinucleotide frequency 
and DNA methylation level (Fig. 2d).

We and others previously showed that retained histones are not ran-
domly distributed in human sperm but are to some extent enriched at 
GC-rich regulatory elements of genes10,11,37. As for mice, we observed 
an inverse relationship between the degree of nucleosomal occupancy 
and the level of DNA methylation in human sperm38 (Supplementary 
Fig. 2c–f). Thus, these analyses demonstrate that nucleosome 
retention at unmethylated CGIs is conserved between mouse and  
human spermatozoa.

Histone H3 variant–specific occupancy at CGIs in mouse sperm
The unique nucleosomal organization in sperm, highly distinct 
from that in somatic cells29–31, emphasizes extensive chromatin-
remodeling processes occurring during the formation of spermato-
zoa. Given the important roles of histone variants in transcription, 
cellular differentiation, reproduction and development39–41, we 
asked whether canonical H3.1 and H3.2 and variant H3.3 histones 
may serve specific functions in nucleosome eviction versus retention  

during spermiogenesis. We performed western blot analysis with 
antibodies specific for either histones H3.3 (Supplementary  
Fig. 4a) or histones H3.1 and H3.2 (referred to as H3.1/H3.2 because 
the antibody recognizes an epitope shared by histones H3.1 and 
H3.2)42. In comparison to proliferating embryonic stem cells (ESCs) 
and even to quiescent aging neurons43, in round spermatids and 
sperm histone H3.3 is incorporated into chromatin to a higher extent 
than are H3.1/H3.2. This suggests an extensive and rapid replacement 
of canonical histones by the H3.3 variant, presumably upon entry into 
meiotic prophase and/or during spermatid differentiation (Fig. 3a). 
In sperm, histone-H3.3 profiles from chromatin immunoprecipita-
tion and sequencing (ChIP-seq) are highly similar to nucleosomal 
profiles, whereas H3.1/H3.2 profiles are not (Fig. 3b). Consistently 
with this, histone H3.3 enrichments are well predicted by the linear 
model, and this suggests a CpG density–linked retention mechanism 
for histone H3.3–containing nucleosomes (Fig. 3c). Regions contain-
ing H3.1/H3.2 histones are, in contrast, systematically underestimated 
by the model, a result suggesting that the retention of canonical and 
H3.3-variant histones may be differentially regulated.

Nucleosome turnover in round spermatids
To understand the timing and mechanisms of chromatin remodel
ing, we profiled the occupancy of histone H3.3 and H3.1/H3.2 
nucleosomes and measured levels of mRNA transcripts by ChIP-seq 

and RNA sequencing in round spermatids. 
We observed a widespread reduction in 
H3.1/H3.2-nucleosome occupancy around 
TSSs of genes in round spermatids in con-
trast to sperm (Fig. 4a). We next classified 
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negatively with DNA methylation in sperm.  
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methylation states genome wide (central bar, 
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percentiles, respectively; whiskers, 1.5 times  
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correlation of nucleosome occupancy with average 
DNA methylation according to a previous study6, 
in 1-kb windows genome wide. (c) Relationship 
between number of CpGs in CGIs and width of CGIs 
as a function of nucleosome enrichment in sperm. 
CGIs48 were grouped into four classes according  
to their DNA methylation status in sperm6.  
(d) Correlation of observed to predicted nucleosome  
enrichment, calculated by a linear model 
integrating CpG dinucleotide frequency and DNA 
methylation status in 1-kb windows (R = 0.789). 
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gene promoters according to CpG density 
and RNA-transcript levels of associated genes 
(Fig. 4b). For expressed genes, we observed 
eviction of H3.1/H3.2 nucleosomes around 
TSSs of CpG-rich (≥3% CpG) and CpG-
poor (<3% CpG) genes that correlated well 
with mRNA levels of associated genes. For 
moderately to highly expressed CpG-rich 
genes, we also observed clear positioning of 
remaining nucleosomes around TSSs. These 
data suggest a transcription-coupled eviction 
of canonical histones.

For nonexpressed genes, we measured low 
levels of eviction of canonical histones at 
CpG-rich TSS regions but not at CpG-poor 
TSS regions (Fig. 4b). This finding is con-
sistent with studies reporting nucleosome 
depletion around silent CGI promoters in 
somatic cells30–32. Depletion of H3.1/H3.2 
nucleosomes around TSSs in spermatids is 
more pronounced than that of histone-H3.2  
hemagglutinin-tagged nucleosomes in ESCs 
(Fig. 4b and Supplementary Fig. 4b)44. Possibly, this is due to 
progressive loss of canonical histones during transcription in post
replicative germ cells.

For histone-H3.3 nucleosomes, we also measured some deple-
tion around TSSs that was more pronounced downstream of TSSs at 
moderately and highly expressed genes (Fig. 4a,b). Comparison of 
occupancy levels of histones H3.3 and H3.1/H3.2 suggests extensive 
transcription-coupled eviction of canonical histones and subsequent 
replacement by H3.3 nucleosomes in round spermatids. We inter-
pret the ratio of histones H3.3 to H3.1/H3.2 as a proxy measure for  
nucleosome turnover.

Control of H3 variant–specific occupancy at CGIs in sperm
To understand the relationship between histone variant–specific 
nucleosome turnover in round spermatids and retention in sperm, 
we compared the level of occupancy for both variants in both cell 
types, at regions with nucleosomal enrichments in spermatozoa. We 
observed that regions that are highly and intermediately enriched for 
histone H3.3–containing nucleosomes in sperm are actually depleted 
of such nucleosomes in round spermatids, a result suggesting dynamic 
redistribution in cis or de novo incorporation of H3.3 nucleosomes 
later during spermatid differentiation, for example, in late-round or 
elongating spermatids (Fig. 5a). In contrast, H3.1/H3.2 nucleosomes 
are predominantly detected at weak nucleosomal-peak regions in 
spermatozoa. Furthermore, such local H3.1/H3.2 enrichments in 
sperm highly resemble those in round spermatids, and this suggests 

that H3.1/H3.2 nucleosomes retained in sperm largely reflect reduced 
turnover of canonical H3.1/H3.2 histones in spermatids (Fig. 5a).

We next assessed the connection between CpG density (Fig. 3) and 
nucleosome turnover in spermatids (Fig. 4) in relation to histone 
variant–specific nucleosome retention at promoter regions of genes 
in sperm (Fig. 5b). CGI promoters (with ≥3% CpG) that undergo 
intermediate to high nucleosomal turnover in round spermatids have 
high levels of histone H3.3 in sperm. In contrast, non-CGI promoters 
(<3% CpG) are subjected to low to intermediate nucleosome turnover 
and are relatively enriched for H3.1/H3.2. Finally, a group of CGI 
promoters is enriched for both H3.1/H3.2 and H3.3 (Fig. 5b). These 
promoters are generally characterized by intermediate turnover in 
spermatids. Together, these data show that CpG density and the extent 
of turnover in spermatids relate to the identity of histones retained 
in sperm.

H3K27me3 associates with H3.1/H3.2 retention in sperm
To study whether histone modification states may affect nucleo-
some dynamics during spermiogenesis, we performed ChIP-seq for 
H3K4me3 and H3K27me3, two modifications associated with CGIs in 
somatic cells. We measured comparable enrichments around TSSs for 
both modifications in round spermatids and sperm (Supplementary 
Fig. 5a), a result indicating propagation of the modification state 
during spermiogenesis. CGI promoters (with ≥3% CpG) containing  
histone-H3.3 nucleosomes are generally marked by H3K4me3 in sperm 
(Fig. 6a). A fraction of CGIs with intermediate H3K4me3 levels are 
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highly enriched in H3K27me3, and this indicates the presence of biva-
lent promoters in sperm (Fig. 6b; cluster 4 in Supplementary Fig. 5b).  
Notably, such H3K4me3 and H3K27me3 double-marked CGI  
promoters also show enrichment for H3.1/H3.2 histones in sperm 
(Fig. 6a,b). These data suggest the presence of bivalent promoters in 
sperm that contain a mixture of H3.3 and H3.1/H3.2 nucleosomes. 
The data further suggest that Polycomb proteins and/or PRC2- 
mediated H3K27me3 suppress, at least in part, the default eviction of 
H3.1/H3.2 histones at CGIs in round spermatids and consequently 
promote the retention of preexisting canonical histones during  
chromatin remodeling in elongating spermatids. In accordance,  
CGI promoters with low to intermediate levels of nucleosome turn
over in spermatids are H3K27me3 positive in spermatids and in 
sperm (Supplementary Fig. 5d).

Determinants of nucleosome retention in sperm
On the basis of sequence composition, occupancy levels of nucleo-
somes and histone variants and histone modifications at gene pro-
moters as well as expression states, we can classify genes into five 
different clusters (Fig. 6c) that correlate well with different gene 
functions in cellular homeostasis (clusters 2 and 3), germ-cell and 

embryonic development (clusters 1 and 4, respectively) and stimulus 
perception and host defense (cluster 5) (Supplementary Table 1 and 
Supplementary Figs. 5b and 6a–j).

To quantify the extent by which expression and the different chro-
matin characteristics such as histone variants and modifications 
measured in round spermatids as well as CpG density contribute to 
nucleosome occupancy in sperm, we performed a variance partition-
ing analysis for promoter regions (Fig. 6d). Combining all of these 
variables can explain a total of 79.4% and 70% of the variance in H3.3 
and H3.1/H3.2 occupancies in sperm.

For histone-H3.3 occupancy in sperm, CpG density of promoters  
has, as expected, the highest unique contribution, whereas H3.3 
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occupancy in spermatids has a small unique contribution (Fig. 6d;  
clusters 1–4 in Fig. 6c). Notably, 78% of the variance is explained when 
CpG density and H3.3 occupancy in spermatids are used together as 
the only variables in the partitioning analysis. These data suggest that 
extensive histone H3.1/H3.2 turnover and ensuing H3.3 deposition 
at CGIs in round spermatids contribute to H3.3 retention at such 
promoters in sperm.

In contrast, H3.1/H3.2 enrichments in sperm mostly relate to 
H3.1/H3.2 enrichments in round spermatids (Fig. 6d; cluster 5 
in Fig. 6c). Moreover, CGI promoters marked by H3K27me3 in 
round spermatids preferentially retain H3.1/H3.2 in sperm (Fig. 6d;  
cluster 4 in Fig. 6c). When H3.1/H3.2 and H3K27me3 enrich-
ments in round spermatids are taken as the only variables, 68% of 
the total of 70% variance is explained. These quantifications sug-
gest that low nucleosome turnover at H3K27me3-marked promot-
ers in spermatids substantially contributes to H3.1/H3.2 retention  
in sperm.

When performing the variance partitioning analysis genome wide 
at 1-kb windows that do not intersect with TSS regions and any other 
CGIs, we observed that only 30% to 42% of variance for histones H3.3 
and H3.1/H3.2, respectively, is explained by CpG density and chro-
matin characteristics measured in round spermatids (Supplementary 
Fig. 5e). Nonetheless, occupancy levels of histone variants in sperm 
relate well to the occupancy of the corresponding variants in sper-
matids. This relationship supports a model of nucleosome retention 
without major remodeling in cis during spermatid maturation and 
protamine incorporation.

H3K27me3 associates with gene repression in early embryos
To assess the potential of nucleosomes and associated modifications 
retained in sperm for regulating transcription in the next genera-
tion, we analyzed the expression of genes belonging to the five dif-
ferent clusters (shown in Fig. 6c) in oocytes and in preimplantation 
embryos11,45. We observed that housekeeping genes in cluster 2 are 

significantly more likely to be de novo transcribed (48.7% compared 
to 39.6%; Fig. 7a) in early embryos as well as in oocytes (48.8% 
compared to 40.4%; Fig. 7b) than are genes belonging to cluster 1 
enriched for germline functions. Notably, H3K4me3 is more enriched 
around TSSs of cluster 1 genes than cluster 2 genes in sperm (Fig. 6c 
and Supplementary Fig. 5b). Analogously, genes of clusters 3 and 4  
have similar H3K4me3 enrichments in sperm (Supplementary  
Fig. 5b), yet they display significantly different expression states in 
early embryos (Fig. 7a,b). These data suggest a rather limited poten-
tial, if any, of H3K4me3 nucleosomes in sperm to predetermine tran-
scription in early embryos (Fig. 7a). This may relate to the prevalent 
H3K4 trimethylation at CGIs in spermatids and ESCs and during 
somatic differentiation that is independent of their transcriptional 
status28 (Supplementary Fig. 5c).

In contrast, only ~16% of CGI promoters marked by H3K27me3 
(and H3K4me3) in sperm (cluster 4) are expressed in pre
implantation embryos (Fig. 7a). Moreover, many Polycomb- 
target genes in sperm are similarly modified by H3K27me3 in ESCs 
(Supplementary Fig. 5c). These data support a model of H3K27me3 
mediating epigenetic inheritance of transcriptional repression  
between generations.

DISCUSSION
The role of histones and associated post-translational modifications 
in maternal and paternal transmission of epigenetic information is 
currently unknown. Here we describe a systematic genome-wide char-
acterization of chromatin states in mouse spermatids and spermato-
zoa. We show that the histones retained to a level of 1% in the sperm 
of mice11 are highly enriched at CGIs that are not methylated at the 
underlying sequence. Likewise, we demonstrate that in human sperm 
the CGIs in which the 10–15% of residual histones are somewhat 
enriched10,11,37 are also unmethylated. Because CGIs are frequently 
associated with gene promoter function, the evolutionarily conserved 
presence of modified nucleosomes at unmethylated CGIs in the sperm 

Figure 7  Model of nucleosome retention during spermiogenesis. (a,b) Expression states of genes belonging to different clusters (Fig. 6c) during 
oogenesis and early embryogenesis. We classified genes as ‘not expressed’, ‘oocyte’, ‘2–8 cell’ and ‘blastocyst’ as described before11. Embryonic 
expression was classified according to the first expression stage during development. Genes transcribed in oocytes and two-cell to eight-cell embryos 
or in oocytes and blastocyst embryos were classified as 2–8 cell or blastocyst (a) or as oocyte (b). We matched 14,032 of 19,180 RefSeq genes for 
expression during oogenesis and embryogenesis45. Numbers of genes in each cluster are 1,097, 4,419, 3,431, 2,417 and 2,668, respectively.  
*P < 1.0 × 10–6 (by Fisher’s exact test). (c) Model of nucleosome turnover and retention during spermiogenesis. H3.3 nucleosomes, marked by 
H3K4me3, become stably incorporated at unmethylated CGIs in response to cessation of global histone turnover and transcription in late round 
spermatids. Reduced turnover of H3K27me3-marked H3.1/H3.2 nucleosomes in round spermatids promotes retention of such nucleosomes in 
spermatozoa. Nucleosome retention at unmethylated CGIs would be mediated by unknown CGI-binding factors suppressing nucleosome eviction or  
could alternatively result from a reduced affinity of protamines for CG-rich DNA. In the presence of DNA methylation, protection against eviction is lost, 
owing to the inability of the CGI-binding factor(s) to bind methylated DNA.
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of mammals suggests a central role for CGIs and retained nucleosomes 
in paternal intrinsic epigenetic inheritance between generations13.

Our data show that CGIs in mouse sperm generally contain the vari-
ant histone H3.3 protein (clusters 1–4 in Fig. 6c), whereas canonical  
H3.1/H3.2 proteins are present at only some CGIs (cluster 4 in Fig. 6c).  
Comparative analysis of chromatin states in round spermatids and 
sperm suggests that the level of nucleosome turnover in round 
spermatids determines the type of H3 histone retained at CGIs  
in sperm.

In round spermatids, we measured an extensive eviction of canoni-
cal nucleosomes around the TSSs of genes and replacement by histone 
H3.3–containing nucleosomes. The extent of nucleosome turnover 
positively correlates with the transcriptional activity of associated 
gene promoters, as in somatic cells32,44. CGIs in round spermatids also 
show transcription-independent nucleosome turnover, as observed 
in somatic cells30–32, and this possibly reflects dynamic competi-
tion between nucleosomes and transcription factors for CGI bind-
ing. Notably, the overall extent of replacement of H3.1/H3.2 to H3.3 
around TSSs is more pronounced in postmitotic round spermatids 
than, for example, in replicating ESCs. These data suggest that male 
germ cells undergo extensive remodeling of their chromatin during 
the approximately 2 weeks after their entry into meiosis and in sub-
sequent differentiation as haploid spermatids.

In sperm, histone H3.3 is enriched at most CGIs, as a reflec-
tion of turnover in spermatids. In contrast, H3.1/H3.2 is present at  
CGIs with low to intermediate nucleosome turnover in spermatids and 
that are marked by H3K27me3 in round spermatids and sperm. These 
findings suggest that PRC2 proteins directly or indirectly through 
H3K27me3 inhibit nucleosome turnover in round spermatids,  
thereby promoting H3.1/H3.2 retention in sperm. At non-CGI pro-
moter genes (cluster 5 in Fig. 6c), we observed only minor enrichment 
of H3.1/H3.2 nucleosomes around the TSSs of some genes, and this 
supports the notion of poor nucleosome retention, if any, at non- 
CGI promoters.

Currently, the mechanisms driving nucleosome retention versus evic-
tion during spermiogenesis are unknown. Our findings support a model 
in which histone-H3.3 nucleosomes present at CGIs in sperm become 
stably incorporated into chromatin and marked by H3K4me3 in late 
round spermatids in response to a global cessation of histone turnover 
and transcription (Fig. 7c). Reduced nucleosome turnover, as observed 
at H3K27me3-marked CGIs in spermatids, would promote retention of 
canonical H3.1/H3.2 in sperm. This model entails that CpG-rich DNA 
would somehow resist loading of transition proteins and protamines in 
elongating spermatids, thereby enabling nucleosome retention at CGIs 
as measured in sperm. Resistance to loading could be mediated by CGI-
binding proteins binding unmethylated DNA and protecting nucleo-
somes locally from eviction. Alternatively, it could reflect a reduced 
intrinsic affinity of protamines for CG-rich DNA. A variation on this 
model is that transcription factors, chromatin factors and histone-H3.3 
nucleosomes would continue to compete for binding to CGIs during 
the histone-to-protamine exchange process in elongating spermatids.  
This dynamic process may block protamine incorporation.

Approximately ten-fold more nucleosomes are retained in human 
sperm in comparison to mouse sperm. While using the same chro-
matin preparation and high-throughput sequencing procedures, we 
observed a reduced contribution of CpG dinucleotides to nucleo-
some occupancy in human versus mouse spermatozoa (0.28 versus  
0.71 Pearson correlation coefficient in Supplementary Fig. 2c;  
ref. 11 and Fig. 1d). These data may therefore suggest that the eviction 
of nucleosomes at CpG-poor regions in the genome is less efficient 
during spermiogenesis in humans than in mice.

Bisulfite sequencing analysis of genomic DNA of mouse and human 
sperm revealed an inverse correlation between nucleosome occu-
pancy and DNA methylation. These data are compatible with a model 
in which DNA methylation established early during male germ-cell 
development36, for example, at paternal ICRs (Supplementary Fig. 3), 
directly or indirectly prevents nucleosome retention during spermio-
genesis (Fig. 7c). Such a mechanism would preclude transmission of 
chromatin states associated with methylated DNA in immature male 
germ cells. The differential reprogramming of DNA methylation in 
zygotes that were generated by microinsemination of round sper-
matids versus mature spermatozoa7 may thus indicate the presence 
of specific chromatin states with methylated DNA, for example, at 
repetitive sequences in round spermatids that are lost in sperm.

A recent study reported enrichment of H3K9 dimethylation at 
the ICRs of H19 and Rasgrf1 (ref. 5). Though we observed minor 
enrichment for H3K27me3 at these regions, we failed to detect any 
noteworthy nucleosomal occupancy (comparison of enrichments in 
Supplementary Figs. 3 and 6). In contrast, unmethylated maternal 
ICRs contain nucleosomes marked by H3K4me3 and/or H3K27me3 
(also described in ref. 46). More generally, we observed higher enrich-
ments for modified histones than for core histones as well as extensive 
enrichments for histone modifications adjacent to relatively narrow 
peaks of nucleosomes (Supplementary Figs. 3 and 6). Technically, 
differential enrichment is probably due to a higher sensitivity of 
antibodies for modified histones and an overall lower abundance of 
modified histones. Biologically, enrichment for histone modifications 
in the absence of nucleosomes may reflect retention of nucleosomes 
in only a low percentage of spermatozoa that could possibly lead to 
variegated paternal transmission. These findings suggest that caution 
is warranted in interpreting enrichment values for modified histones 
in sperm in cases where occupancy data of corresponding nucleosomes  
is absent.

Our study demonstrates that largely the same genes are marked by 
H3K27me3 in round spermatids and in sperm. In germinal-vesicle 
oocytes deficient for Ring1 and Rnf2, two key components of the PRC1 
complex, 62% of the upregulated genes are marked by H3K27me3 in 
mouse sperm, whereas only 35% of the unaffected genes are PRC2 tar-
gets in sperm47. Notably, about 85% of PRC2 targets in sperm remain 
repressed during preimplantation development. Correspondingly, 
ESCs contain only a slightly reduced number of PRC2 targets 
(Supplementary Fig. 5c). Promoters of several pluripotency factors 
such as Oct3/4 (official symbol Pou5f1), Sox, Esrrb and Klf5 contain 
H3K27me3-marked nucleosomes in sperm, whereas Nanog is DNA 
methylated and essentially devoid of nucleosomes. Klf4 is strongly 
labeled with H3K4me3-marked nucleosomes and weakly labeled with 
H3K27me3 (Supplementary Fig. 6k–p). Notably, repression of Sox2 
and Klf4 in germinal-vesicle oocytes is dependent on Ring1 and Rnf2 
function47. Together, these data suggest that Polycomb may mediate 
gene repression in the male as in the female germ line. Although prin-
cipally hypothesizing the paternal transmission of modified nucleo-
somes, epigenetic reprogramming of some H3K27me3-marked genes 
such as certain pluripotency factors would be required to occur in 
early preimplantation embryos to support their development. The 
majority of Polycomb targets, however, remain repressed in early 
embryos and would not need to be reprogrammed, and this is con-
sistent with a model of intergenerational or possibly transgenerational 
inheritance of an intrinsic epigenetic memory program.

Methods
Methods and any associated references are available in the online 
version of the paper.
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Accession codes. Data have been deposited with NCBI Gene 
Expression Omnibus under accession code GSE42629.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Biological sample collection. Mouse sperm were collected from C57BL/6J 
mice by using a swim-up procedure as described11. To isolate round spermatids,  
testicular cells were prepared from 28-d-old C57BL/6J mice. Isolated cells were 
subjected to Hoechst (Invitrogen, cat. no. 33342) staining for 30 min at 37 °C, and 
round spermatids were collected by fluorescence-activated cell sorter (FACS) to 
90% purity. All experiments were performed in accordance with the Swiss animal 
protection laws (license 51, Kantonales Veterinäramt, Basel, Switzerland) and 
institutional guidelines.

Mononucleosomal DNA preparation and native ChIP. We performed chro-
matin isolation from mature sperm under native conditions as described11. 
MNase treatment for sperm was performed with 15 U (Roche Nuclease S7,  
cat. no. 10107921001) at 37 °C for 5 min per 2 million spermatozoa. Round-
spermatid chromatin was isolated in a similar way, except for omission of DTT 
treatment used for sperm. MNase treatment for round spermatids was performed 
with 5 U at 37 °C for 30 min per 1 million cells. Chromatin immunoprecipita-
tion (ChIP) was carried out with antibodies to H3.3 (Millipore 17-10245 ChIP 
grade (first replicate) and Millipore 09-838 (second replicate)), H3.1 and H3.2 
(H3.1/H3.2)42,49, H3K4me3 (Millipore 17-614) and H3K27me3 (Millipore  
07-449) by using approximately 15 million to 20 million sperm or 5 million 
round spermatids and ~5 µg antibody per ChIP. Both mononucleosomal and 
immunoprecipitated DNA were resolved by 5% polyacrylamide electrophoresis, 
and 150-bp DNA was gel-purified. Input genomic DNA control was prepared by 
treatment of sperm with DTT and detergents as in mononucleosomal prepara-
tion, isolation of genomic DNA and subsequent sonication. The reproducibility 
of nucleosome isolations and ChIP experiments was demonstrated by the use of 
biological replicates (Supplementary Fig. 7).

RNA isolation. RNA from FACS-sorted round spermatids was isolated by the 
Qiagen RNeasy Mini kit. RNA integrity was confirmed by running RNA samples 
on Agilent 2100 Bioanalyzer mRNA pico arrays.

Library preparation and sequencing. Library preparation for ChIP-seq was 
done with the Illumina ChIP-seq DNA Sample Prep Kit (cat. no. IP-102-1001). 
Before preparation of RNA-seq libraries, rRNA from RNA was depleted by 
the Ribo-Zero rRNA removal kit (Epicentre Biotechnologies). Strand-specific 
RNA-seq libraries were prepared by the Illumina directional mRNA-seq library 
preparation prerelease protocol. The quality of libraries was assessed by Agilent 
2100 Bioanalyzer. Libraries were sequenced on Illumina GA II (36-bp reads) and 
Illumina Hiseq 2000 (51-bp reads).

Chromatin-bound (histone) fractionation and immunoblotting. Round sper-
matids were isolated from C57BL/6J mouse testes by centrifugal elutriation50, 
and fractionation of chromatin-bound material was performed according to a 
previous study51, with some modifications. Briefly, cells were resuspended in 
buffer A (10 mM HEPES, pH7.5, 10 mM KCl, 1.5 mM MgCl2, 0.05% Nonidet 
P-40 and 0.5 mM DTT with protease inhibitors) and incubated for 10 min on ice.  
After centrifugation, the nuclear pellet was collected and washed twice with 
buffer A. Nuclei were further lysed in buffer B (3 mM EDTA, 0.2 mM EGTA,  
1 mM DTT and protease inhibitors). Then insoluble chromatin was collected 
by centrifugation, washed twice with buffer B and resuspended in 0.2 M HCl to 
extract histones. Sperm samples collected by the swim-up procedure were initially 
treated with 50 mM DTT at room temperature for 2 h. Then the chromatin- 
bound fraction was isolated as described for round spermatids and was con-
centrated by trichloroacetic acid precipitation. Chromatin-bound extracts were 
analyzed by 15% SDS-PAGE gels and transferred onto PVDF membranes that 
were incubated with antibodies to histones H3 (Abcam ab1791, 1:6,000), H3.3 
(Millipore 17-10245, 1:1,500) and H3.1/H3.2 (1:4,000)42,49.

Processing and alignment of the reads. Filtering, alignment and processing of the 
reads for both ChIP-seq and RNA-seq were done as described34. Reads from native 
ChIP-seq experiments were shifted by 74 nucleotides, corresponding to half the 
length of a nucleosome, toward their 3′ end to account for the fragment length.

Genomic coordinates. All coordinate regions used in analyzing mouse ChIP-
seq and RNA-seq data were based on the mouse mm9 assembly (July 2007 Build 

37 assembly by NCBI and Mouse Genome Sequencing Consortium). To obtain 
1-kb windows used in genome-wide analysis, the mouse genome was divided 
into nonoverlapping 1-kb windows. From these, the subset of mapable windows 
(as defined in ref. 34) was used in the subsequent analysis. RefSeq coordinates 
were downloaded from UCSC52 (http://hgdownload.cse.ucsc.edu/goldenPath/
mm9/database/refGene.txt.gz from 16 August 2009). For each gene, coordinates 
corresponding to the longest known transcript were selected.

Genomic regions were classified as promoter, exon, repeat, intron or intergenic 
as follows. Promoter is defined as the bases covering ± 1 kb surrounding RefSeq 
transcripts. Exons are exonic sequences of RefSeq transcripts that do not overlap ±  
1 kb from the TSS. Repeats are repeat elements of repeat masker (obtained from 
http://hgdownload.cse.ucsc.edu/goldenPath/mm9/database/chr*_rmsk.txt.gz 
(where the asterisk is substituted by chromosome number) 30 January 2009) that 
do not overlap promoter/exon regions. Introns are intronic sequences of RefSeq 
transcripts that do not overlap promoter/exon/repeats. The remaining part of the 
genome, which is not promoter/exon/repeat/intron, was classified as intergenic. 
Genomic regions used in analysis of published human ChIP-seq data were based 
on the human hg18 assembly (March 2006 Build 36.1 assembly by NCBI and 
International Human Genome Sequencing Consortium). One-kilobase windows 
for the human genome were generated in a similar way as for the mouse genome.

Classification of genes according to their promoter GC content. CpG classifi-
cations of the genes as high CpG (HCP), intermediate CpG (ICP) and low CpG 
(LCP) was performed according to criteria defined in ref. 25. For the classifica-
tions, coordinates ± 1 kb surrounding TSSs were used (Fig. 1b).

Calculation of observed/expected ratios for dinucleotide frequencies. 
Dinucleotide and single-nucleotide counts per 1-kb window were obtained by the 
R package Biostrings (Biostrings: string objects representing biological sequences, 
and matching algorithms; R package version 2.26.2). The observed/expected ratio 
was calculated as follows: XYcnt/(Xcnt·Ycnt)·(Wsize − 1), where XYcnt is the dinucleo
tide count of XY in one 1-kb window, Xcnt and Ycnt are single nucleotide counts, 
and Wsize is the window size (1 kb).

CGI definition and usage. CGI definitions are based on a CpG cluster algo-
rithm48. The algorithm was run with default parameters on mm9 to obtain 
genomic coordinates of CGI.

UCSC tracks. Wiggle files were generated for 100-bp windows and uploaded to 
the UCSC genome browser52. Data were visualized by smoothing over 3 pixels 
(Figs. 1a,c and 3b).

Quantification of enrichment levels genome wide, at promoter regions and 
nucleosome peaks. Enrichment levels for ChIP-seq experiments were calculated 
for 1-kb windows, promoter regions of the genes (±1 kb surrounding TSSs) and 
nucleosome peaks identified by hidden semi-Markov model (Supplementary 
Note describes identification of nucleosome peaks). To calculate enrichment, 
total read counts mapping to a coordinate region were calculated for ChIP 
and control (input genomic DNA) samples. Then these counts were normal-
ized to account for different library sizes between ChIP and control samples. 
Enrichment for each region was calculated as the ratio between library size– 
normalized read counts for ChIP and control samples according to the follow-
ing formula: log2(((Cntsmp/LSizesmp·min(LSizesmp, LSizecnt)) + pscnt)/((Cntcnt/
LSizecnt·min(LSizesmp, LSizecnt)) + pscnt)), where Cntsmp is the total number of 
reads mapping to the coordinate in ChIP sample, LSizesmp is the total library size 
for the ChIP sample, Cntcnt is the total number of reads mapping to the coordinate 
in the control sample, LSizecnt is the total library size for the control sample and 
pscnt is a constant number (pscnt = 8) that was used to stabilize enrichments on 
the basis of low read counts.

Plotting profiles around genomic regions. For each sample, reads mapping to 
the genomic regions of interest (Fig. 4 and Supplementary Fig. 4b) were summed 
for every base pair within the genomic region analyzed. Average read counts per 
bp were calculated by dividing the total number of reads per bp to total number 
of genomic regions analyzed. To plot average enrichment values for multiple 
ChIP-seq samples on the same plot, counts were scaled by the library size, and 
enrichment values were calculated as the ratio between scaled read counts of ChIP 
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and control samples (sonicated sperm genomic DNA). Profiles were smoothed 
for plotting by taking the rolling mean over 40 bp.

Heat-map plots. For ChIP-seq experiments, the number of reads covering each 
base pair in the region ± 3 kb around TSSs of genes was quantified. Read coverage 
was averaged in 50-bp windows along ± 3 kb TSSs. Within each data set, values 
were scaled to arrange between 0–1. CpG coverage around ± 3 kb was obtained 
by Bioconductor-package Biostrings, and coverage intensities were scaled in a 
similar way as for ChIP-seq features. Expression data for RS was calculated as 
log2(read count per transcript). Clustering was performed by using k means with 
k = 5, empirically selected as the minimal value of k that resulted in distinct 
clusters consisting of homogenous members.

Variance partitioning analysis. Variance partitioning analysis was performed by 
R-package yhat (yhat: interpreting regression effects; R package version 1.0-5). 
Unique and combinatorial effects for each variable were obtained by the function 
commonalityCoefficients().

GO-term analysis. GO-term analysis was performed by using Bioconductor-
package topGO53. Enrichment tests were done by Fisher’s exact test  
(Supplementary Table 1).

49.	van der Heijden, G.W. et al. Asymmetry in histone H3 variants and lysine methylation 
between paternal and maternal chromatin of the early mouse zygote. Mech. Dev. 
122, 1008–1022 (2005).

50.	Barchi, M., Geremia, R., Magliozzi, R. & Bianchi, E. Isolation and analyses of 
enriched populations of male mouse germ cells by sedimentation velocity:  
the centrifugal elutriation. Methods Mol. Biol. 558, 299–321 (2009).

51.	Méndez, J. & Stillman, B. Chromatin association of human origin recognition 
complex, cdc6, and minichromosome maintenance proteins during the cell cycle: 
assembly of prereplication complexes in late mitosis. Mol. Cell Biol. 20,  
8602–8612 (2000).

52.	Kent, W.J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 
(2002).

53.	Alexa, A., Rahnenfuhrer, J. & Lengauer, T. Improved scoring of functional groups 
from gene expression data by decorrelating GO graph structure. Bioinformatics 22, 
1600–1607 (2006).
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Erratum: Molecular determinants of nucleosome retention at CpG-rich 
sequences in mouse spermatozoa
Serap Erkek, Mizue Hisano, Ching-Yeu Liang, Mark Gill, Rabih Murr, Jürgen Dieker, Dirk Schübeler, Johan van der Vlag,  
Michael B Stadler & Antoine H F M Peters
Nat. Struct. Mol. Biol. 20, 868–875 (2013); published online 16 June 2013; corrected after print 12 July 2013

In the version of this article initially published, the parentheses in Figure 2a denoting noninclusive endpoints in ranges had not been indicated. 
The error has been corrected in the HTML and PDF versions of the article.
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Abstract 

Specialized histone variants incorporated into nucleosomes play important roles in gene 

regulation and modulation of chromatin structure. Although many testis-specific histones 

have been reported before, the dynamics of testis-specific and canonical histone H3 

expression during male germ cell development in mouse is still unclear. Here, using triton-

acetic acid-urea (TAU) gel electrophoresis, we identify that mouse testis-specific histone H3 

(H3t) is the most predominant H3 protein from spermatogonia to spermatids. The mouse 

H3t gene is highly transcribed in mitotic spermatogonia and is downregulated in subsequent 

germ cell stage. These data suggest that incorporation of H3t into chromatin in 

spermatogonia is regulated in a DNA replication-coupled manner as described for canonical 

H3. Interestingly, we find that most canonical H3 is removed and replaced by H3.3 variant 

during meiosis. Next, during the process of histone-to-protamine exchange, most of H3t is 

evicted from chromatin in comparison to H3.3, which leads to the predominant presence of 

H3.3 in the residual nucleosomes of sperm. Moreover, we observe that the transcriptional 

activity mark, trimethylation on H3 lysine 4 (H3K4me3), is globally erased in pachytene 

spermatocytes but is restored on H3.3 rather than on H3t in round spermatids, suggesting 

that H3.3 is involved in the activation of postmeiotic transcription. Collectively, our study 

demonstrates the characterization of mouse H3t and an extensive dynamics of histone H3 

variants in male germ cell development which may prime for histone eviction during 

spermiogenesis. 

 

Introduction 

The fundamental unit of chromatin is the nucleosome that is composed of DNA wrapped 

around a histone octamer assembled by two each of core histone H3, H4, H2A, and H2B 

(Luger et al. 1997). This nucleosome structure provides an efficient organization to compact 

genomic DNA into the nucleus. Histones are subjected to many post-transcriptional 

modifications, such as methylation, acetylation and phosphorylation, which directly alter 

the degree of chromatin compaction or recruit different protein complexes to affect 

chromatin structure and regulate gene expression (Zentner and Henikoff 2013). Based on 

expression and mode of incorporation into nucleosomes, histone proteins are classified into 
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canonical histones and replacement variant histones (Skene and Henikoff 2013; Maze et al. 

2014). Canonical histones are encoded by multicopy intronless genes that are highly 

expressed during S-phase of cell cycle, ensuring a major supply for nucleosome 

incorporation during replication (Marzluff et al. 2008). By contrast, the expression and 

incorporation of replacement variant histones are generally replication-independent. Except 

for H4, each of the core histone classes has histone variants. Compared with canonical 

histones, variant histones have slightly different protein sequences that direct histone 

incorporation into chromatin outside S-phase and influence the physical properties of 

nucleosomes. The exchange of histone variants contributes to gene regulation, DNA repair, 

chromosome segregation and other processes through altering nucleosome stability and 

chromatin structure (Maze et al. 2014).  

In histone H3 family in mammals, H3.1 and H3.2 are defined as canonical H3, which are 

highly expressed during S phase and are deposited into replication fork by CAF-1 chaperon 

complex during DNA replication (Tagami et al. 2004). By contrast, the replacement variants 

of H3 best characterized in mammals are H3.3 and centromeric H3 (CenH3). Two distinct 

intron-contained genes, H3f3a and H3f3b, encode H3.3 that are synthesized and deposited 

throughout the cell cycle. It is well-known that H3.3 deposition at active promoters, gene 

bodies and transcription factor-binding sites is mediated by HIRA chaperone (Tagami et al. 

2004; Goldberg et al. 2010). But recent studies showed that H3.3 also can be incorporated 

into heterochromatin regions, such as pericentric repeats and telomeres, by Daxx/ATRX 

complex to maintain genome stabilization (Lewis et al. 2010). CenH3 is a centromere-

specific H3 variant that is required for kinetochore assembly and chromosome segregation 

(Dunleavy et al. 2009; Foltz et al. 2009). CenH3 protein is synthesized in G2 phase and 

deposited into DNA outside of replication in late mitosis or G1 phase by HJURP chaperon 

(Boyarchuk et al. 2011).  

Moreover, four H3 variants are identified in human tissues. The expression of testis-specific 

H3 (H3t, also known as H3.1t and H3.4) and H3.5 (also known as H3.3C) are specifically 

detected in human testes (Witt et al. 1996; Schenk et al. 2011). H3.X (also known as H3.Y.2) 

and H3.Y (also known as H3.Y.1) are primate-specific histone H3 identified and expressed in 

human brain, testis and certain tumor tissues (Wiedemann et al. 2010). Previous studies 

have shown that nucleosomes containing human H3t are more unstable than conventional 
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nucleosomes, suggesting that H3t containing nucleosomes may contribute to global 

chromatin reorganization during meiosis and post-meiotic event (Tachiwana et al. 2010). In 

mouse, testicular expression of H3t transcript and protein has been described before (Govin 

et al. 2007; Montellier et al. 2013), and the GM12260 pseudogene in mouse genome was 

predicted to encode for H3t. However, the characterization of mouse H3t function and the 

dynamics of H3 variants during male germ cell development in mouse testis are still unclear. 

Here, by using triton-acetic acid-urea (TAU) gel electrophoresis, we observe a novel H3 

protein band specifically expressed in mouse testes compared to somatic adult tissues. 

Mass spectrometry analysis confirmed its identity as mouse H3t protein. We find that 

mouse H3t transcripts are particularly highly abundant in spermatogonia while being 

reduced at later stages of spermatogenesis. In agreement, H3t is the predominant H3 

protein in spermatogonia over canonical H3.1 and H3.2. During subsequent meiotic and 

postmeiotic stages, the relative amount of H3.3 increase, and most of H3.1 and H3.2 are 

replaced by H3t and H3.3. Surprisingly, H3t levels are greatly reduced in mature sperm 

having undergone the histone-to-protamine replacement. Instead, we measure 

considerable levels of H3.3 and canonical H3 in the residual nucleosomes, arguing that H3t 

may function as a replacement variant involved in histone eviction during spermiogenesis 

while the canonical histones and H3.3 are resistant to eviction and are selectively retained 

at specific sites in mature sperm, e.g. at CpG rich sequences as reported previously (Erkek et 

al. 2013). 

 

Results 

Identification of mouse testis-specific H3 (H3t) on TAU gel 

Our previous study has revealed that H3.3 is more abundant than canonical H3 variants, 

H3.1 and H3.2, in mouse epididymal sperm using H3.3 and H3.1/3.2-specific antibodies for 

SDS-PAGE-Western blotting (Erkek et al. 2013). To address whether H3.3 is also enriched in 

mouse adult testis compared to other mouse tissues, we perform triton-acetic acid-urea 

(TAU) gel-electrophoresis followed by Western blotting to separate H3 variants by 

hydrophobicity and charge (Shechter et al. 2007). We subsequently probe it for H3 with an 
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antibody recognizing the C-terminus of H3 that is highly conserved between all known 

canonical and variant H3 proteins. As shown in Figure 1A, we observe that histone acid 

extracts from total testis contained more H3.3 (blue arrowhead) and less H3.1/H3.2 

(red/orange arrowheads) as compared to the nuclear extract from mouse embryonic stem 

(ES) cells and any other mouse tissue tested, including post-replicative brain tissues. 

Interestingly, we reproducibly note a H3 protein migrating faster than H3.1 (labeled by 

green arrowhead) present in testis extracts, but not in other tissue extracts. Its expression 

level is notably higher than that of H3.1, H3.2 and H3.3. Moreover, this faster migrating H3 

species is detected by H3.1/H3.2-specific antibodies, and not by a H3.3 antibody, 

distinguishing between H3 variant specific amino acids at residue 31 of the N-terminal tail of 

the H3 proteins (Supplementary Figure 1A).  

Previously, Montellier and colleagues have identified the presence of H3t peptides 

corresponding to the GM12260 pseudogene in mouse spermatocytes and round spermatids 

by mass spectrometry (Montellier et al. 2013). GM12260 encodes a predicted protein that is 

98% identical similar to human H3t and close to canonical H3.1/3.2, but not H3.3 (Figure 1B). 

We confirm by RNA-sequencing analysis that GM12260 is highly transcribed in mouse round 

spermatids, but not in mouse ES cells (Supplementary Figure 1B) (Erkek et al. 2013). 

Therefore, we speculate that the novel H3 species present in mouse testis extract and 

migrating faster than H3.1 in the TAU gel corresponds to mouse H3t. 

To confirm this hypothesis, we perform mass spectrometry analyses on the putative H3t 

(band 1) and control bands including H3.1 (band 3) and H3.3 (band 2 and 4) (Figure 1C). 

After normalizing for peptides that are identical in all H3 proteins, we measure levels of the 

H3t specific-peptide (residues 18-26, with Val24) and canonical H3 peptide (residues 18-26, 

with Ala24) in these four H3 bands. Consistent with our expectation, band 1 isolated from 

testis extract contains 8 fold more of the H3t peptide than of the canonical H3 peptide. 

Bands 2-4 barely contain any H3t specific peptide (Figure 1C, 1D). Furthermore, H3t 

overexpressed in HEK293 cells migrates at a comparable position in the TAU gel as 

endogenous H3t from mouse testis, just below the H3.1 band (Supplementary Figure 1C). 

Taken together, these results demonstrate the migration patterns of the various mouse H3 

histones in TAU gels and showed that in contrast to embryonic stem cells (Loyola et al. 
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2006), H3t and H3.3 are the two H3 proteins predominantly present in chromatin of adult 

mouse testis. 

Mouse H3t is initially expressed in mouse testes on postnatal days 8 to 10 

We next ask when H3t and H3.3 replace canonical H3 during spermatogenesis. In order to 

investigate the dynamics in expression of the H3 variants, we first examine H3t, H3f3a and 

H3f3b transcript levels in testes of juvenile mice undergoing the first wave of 

spermatogenesis. We use Stra8, Sycp3 and Tnp2 as pre-meiosis, meiosis and post-meiosis 

control markers (Figure 2A, bottom panels). After normalization to ribosome S17, we find 

that H3t transcript is expressed in testes at 7 days postpartum (dpp), not in ES cells, and 

dramatically increases when the first wave of spermatogonia differentiation into meiotic 

spermatocyte occurs at 8-10 dpp (Figure 2A, upper right panel). Strikingly, two H3.3-

encoded genes, H3f3a and H3f3b, have entirely different transcriptional profiles in the first 

wave of spermatogenesis. The H3f3a transcript is expressed at a low level until the time of 

formation of haploid spermatids (Figure 2A, upper middle panel). In contrast, H3f3b 

transcript is stably expressed over subsequent days of testis development. (Figure 2A, upper 

right panel). These results are in line with the observation that mutation of H3f3a leads to 

sperm defects and subfertility, while spermatogenesis is arrested at the round spermatid 

stage already in H3f3b heterozygous mutant animals (Couldrey et al. 1999; Tang et al. 2015).  

Next, we evaluate protein levels of each H3 variant in testes of juvenile mice by TAU 

gelelectrophoresis and Western blotting. Consistent with above transcription results, we 

observe low H3t protein levels in 8-10 dpp testes. Its expression increases dramatically from 

12 dpp until adulthood (Figure 2B and the quantification in Figure 2C). Likewise, H3.3 levels 

increase upon advancing testicular development. In contrast, H3.1 and H3.2 protein levels 

get progressively reduced during the first wave of mouse spermatogenesis.  

Dynamics of H3 variants during mouse spermatogenesis 

Besides male germ cells, the testis contains different somatic cells, such as Sertoli and 

Leydig cells. To exclude H3 proteins extracted from somatic cells in testis, we purify germ 

cells from different development stages of adult mouse testes using two different 

approaches. First, we perform fluorescence-activated cell sorting (FACS) using Hoechst 
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33342 and c-Kit staining to isolate diploid type-B spermatogonia from adult mouse testes. 

The fraction contained 75% spermatogonia, mixed mainly with pre-leptotene spermatocytes 

(Supplementary Figure 2A and B) (Barroca et al. 2009; Hammoud et al. 2014). At the same 

time, we purify pachytene spermatoctyes on the basis of their DNA content using Hoechst 

staining with 95% cell purity (Lassalle et al. 2004) (Supplementary Figure 2A and B). 

Moreover, we use the centrifugal elutriation to isolate haploid round and condensing 

spermatids individually based on cell size (Barchi et al. 2009), and the percent cell purity in 

both spermatid fractions is over 90% (Supplementary Figure 2B).  

Next, we extract mRNA from spermatogonia, spermatocytes and round spermatids to 

analyze expression of each H3 variant as well as stage-specific germ-cell markers described 

above. Notably, we find that H3t transcript is high in spermatogonia but dramatically 

decreases in spermatocytes and spermatids (Figure 3A, upper left panel). Since 

spermatogonia undergo DNA replication, H3t expression and incorporation into chromatin 

may be DNA replication-dependent as canonical H3. Consistent with results in Figure 2A, 

H3f3a transcript level progressively increase from the spermatogonia to round spermatid 

stage, while H3f3b transcript level is generally high and more stably between cell types 

(Figure 3A, upper middle and left panels).  

To relate RNA to protein expression, we examine the relative levels of different H3 proteins 

from spermatogonia to mature sperm by TAU-Western blotting. We find that all four H3 

isoforms H3t, H3.1, H3.2 and H3.3, are expressed togetherin spermatogonia, but H3t protein 

is most abundant (Figure 3B and the quantification in Figure 3C). Intriguingly, H3.1 and H3.2 

proteins are not detectable in pachytene spermatocytes and spermatids, while H3.3 protein 

expression is increased in spermatocytes. Thus, H3t and H3.3 likely function as the two 

major H3 replacement proteins in meiotic and postmeiotic chromatin. Surprisingly, we 

reproducibly observe increased levels of H3.3 and particularly of H3.1 and H3.2 in mature 

spermatozoa, while H3t protein levels is drastically reduced (Figure 3B and C). This data 

argue that H3t-containing nucleosomes are more extensively removed from chromatin than 

H3.3-containing nucleosomes during spermiogenesis. Truly remarkably, the substantial 

amount of H3.1 and H3.2 present in mature sperm suggest that these canonical histones, 

incorporated into chromatin in replicating spermatogonia, resist the histone-to-H3t 

turnover and histone-to-protamine turnover programs.   
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H3t has less H3K4me3 modification than H3.3 in spermatogenic cells 

It is well-known that trimethylation on H3 lysine 4 (H3K4me3) is a histone mark for 

transcription activation and is more abundant on histone H3.3 variant than on H3.1/H3.2 in 

somatic cells (McKittrick et al. 2004; Loyola et al. 2006). Given the extensive replacement of 

H3.1 and H3.2 nucleosomes by H3t nucleosomes, we wonder about H3K4me3 levels on H3t 

and H3.3 in male germ cells. By using TAU-Western blotting with anit-H3K4me3 antibody, 

we find that H3K4me3 is strongly enriched on H3.3 over H3t in spermatids, even more than 

in ESCs (Figure 4A and the quantification in Figure 4B). Further, we use the reversed phase 

HPLC to isolate H3.3 and H3t from round spermatid acid extracts and then performe SDS-

PAGE-Western blotting with equal loading amounts of H3.3 and H3t. This result is consistent 

with above finding that H3t contains less H3K4me3 than H3.3 (Figure 4C). In addition, 

interestingly, TAU gel results in Figure 4A shows that H3K4me3 is dramatically reduced to an 

undetectable level either on H3.3 or on H3t in pachytene spermatocytes. Although previous 

studies have reported that pachytene spermatocytes have transcription activity (Turner et al. 

2005), the number of transcribed genes may be lower in pachytene spermatocytes than in 

spermatids because of synapsis formation. Taken together, these results demonstrate that 

less H3K4me3 is deposited in H3t in male germ cells similar to canonical H3.1/H.2 in somatic 

cells, and that global H3K4me3 level changes dramatically from meiotic spermatocyte to 

post-meiotic spermatids.  

 

Discussion 

In the present study, we describe the characterization of mouse testis-specific histone H3 

(H3t) and found that H3t and H3.3 are two major H3 proteins during mouse 

spermatogenesis, not canonical H3.1 and H3.2. In spermatogonia stage, all of four H3 

proteins, H3.1, H3.2, H3.3 and H3t, are present, but H3t is the most predominant one. When 

spermatogonia differentiate into primary spermatocyte, most canonical H3.1 and H3.2 are 

removed, and H3.3 amount increases at pachytene spermatocyte stage. Interestingly, 

previous studies showed that testis-specific H2B and H2A variants, TH2B and TH2A, are also 

highly synthesized and then replace canonical H2B and H2A at meiotic stage in mouse testes 

(Montellier et al. 2013; Shinagawa et al. 2015). Therefore, these data suggest that meiotic 
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spermatocytes have remarkably histone variant exchange event, in which canonical histones 

are replaced by H3.3 and testis-specific histones variants that may destabilize nucleosome 

structures (Li et al. 2005; Tachiwana et al. 2010) and contribute to global chromatin 

reprogramming during meiosis.  

Based on previous studies, it has been indicated that nucleosomes containing human H3t 

are less stable than conventional nucleosome in vitro and have rapid turnover in vivo 

because of two human H3t-specific residues, Met71 and Val111 (Tachiwana et al. 2010). 

Furthermore, Val111 on human H3t reduces the efficiency of human Nap1-mediated 

nucleosome formation in vitro (Tachiwana et al. 2008). Mouse H3t encoded by GM12260 

pseudogene has 98 % identify to human H3t. Human and mouse H3t protein share specific 

residues, Val24, His42, and Ser98, but mouse H3t has not Met71 and Val111 residues as 

human H3t. Therefore, mouse H3t nucleosome may have different physical properties 

comparing to human H3t nucleosome. Nonetheless, we observe that most of mouse H3t is 

removed during histone-to-protamine replacement from condensing spermatid to mature 

sperm stage, as compared to H3.3. It is possible that mouse H3t may destabilize nucleosome 

structure as human H3t to promote nucleosome eviction during sperm maturation. Previous 

studies have showed that meiotic cells have the high level of phosphorylated histones, such 

as H2A.X phospho-Ser139, H3 phospho-Ser10, H3 phospho-Thr3 and H4 phospho-Ser1 

(Hamer et al. 2003; Krishnamoorthy et al. 2006; Nickerson et al. 2007; Nguyen et al. 2014), 

for DNA repair and chromosome segregation in yeast and mammals. Possibly, H3t Ser98 

could be phosphorylated and then involved in chromatin remodeling during meiosis stage. It 

will be crucial to decipher the importance of two H3t-specific residues during 

spermatogenesis in future in vitro and in vivo studies.  

Because of the different genomic occupancy of H3 variants, H3 variants are decorated by 

diverse post-translational modifications that are relative to distinct biological functions. For 

example, in somatic and ES cells, H3.3 is generally localized at the active promoters, gene-

regulation elements and gene bodies of active genes and is enriched in active markers, such 

as H3K4me3, H3K9Ac and H3K79me3, considered as representative of transcriptionally 

active state. By contrast, canonical H3.1 and H3.2 are generally distributed in 

heterochromatin and have more H3K9me3, H3K27me2 and H3K27me3 associated with gene 

silence and the formation of facultative heterochromatin. And our results show that mouse 
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H3t considered as H3.1/H3.2 substitute has less H3K4me3 enrichment than H3.3 in mouse 

spermatids. Therefore, these suggest that mouse H3t in mouse spermatid could play a 

similar role as H3.1/H3.2 in somatic cells to mediate gene silence and maintain 

heterochromatin. In addition, we find that total H3K4me3 level is dramatically reduced 

either on H3t or on H3.3 in pachytene spermatocytes and is restored after meiosis 

consistent with previous immunostaining findings (Song et al. 2011). Because of DNA repair 

coupled with chromosomal recombination occurs in early meiosis, the number of 

transcriptionally active genes may decrease that leads to global H3K4me3 reduction in 

pachytene spermatocytes. Likewise, erasing most of H3K4me3 in spermatocytes may 

promote the re-organization of H3K4me3 to quickly switch expression profiles from meiotic 

genes to post-meiotic genes after meiosis. Together, these results indicate that the 

transcriptionally active modification on histone H3 is subjected to dynamic change during 

and after meiosis. 

It is well-documented that the transcription and deposition of canonical histones are tightly 

coincident with DNA replication.  Multiple copies of canonical histone genes are rapidly 

transcribed at the beginning of S-phase to produce a large amount of histones required for 

nucleosome assembly at replication fork, and canonical histone mRNAs are quickly 

degraded at the end of S-phase. In the 3’ untranslated region (UTR) of canonical histone 

mRNA, there is a stem loop structure, which can recruit stem-loop binding protein (SLBP) to 

stabilize and translocate histone mRNA to polyribosomes, instead of a poly(A)-tail (Marzluff 

et al. 2008). Unlike replication-dependent canonical histones, the expression and deposition 

of replacement histone variants (non-canonical histones) are not limited at S-phase. Their 

mRNAs are transcribed independent on replication and polyadenylated at 3’UTR. In this 

present study, we observe that the transcript level of H3t gene encoded by GM12260 

pseudogene is remarkably higher in spermatogonia, in which mitotic division occurs in order 

to provide a continuous supply of male stem cells and produce primary spermatocytes. 

Likewise, there is a stem loop-like sequence close to the 3’ end of GM12260 pseudogene, 

suggesting that H3t expression may be regulated by DNA replication-dependent manner as 

described for canonical H3. In addition, previous studies used in vivo radioactive protein 

labeling to show that H3t protein in rat is expressed and incorporated into chromatin during 

mitotic phase of spermatogonia (Trostle-Weige et al. 1984; Meistrich et al. 1985). Taken 
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together, these findings demonstrate that like canonical H3, H3t expression and 

incorporation to chromatin could be DNA replication-dependent and occurs at mitotic 

spermatogonia. 

In addition to the dynamics of H3t expression during spermatogenesis in this study, we also 

find two genes encoding H3.3 are expressed in different pattern during spermatogenesis. 

H3f3b is transcribed stably at high level during the first wave of spermatogenesis and also in 

different stages of spermatogenic cells, while the level H3f3a transcription is relatively low 

before meiosis and is upregulated in post-meiotic spermatids. In addition, our previous 

genome-wide study has showed that H3.3 turnover occurs at promoter regions during 

mouse spermiogenesis. Together, these data suggest that the expressing of H3f3a after 

meiosis may contribute to H3.3 turnover in postmeiotic spermatids, and that H3f3b 

expression may be essential for whole developmental process of male germ cells. 

Interestingly, a previous study indicated that H3f3b mutant mice died at birth, and H3f3b 

heterozygous male mice are sterile with abnormal spermiogenesis at round spermatid stage 

(Tang et al. 2015). And another study using different knockout strategy indicated that the 

rate of apoptosis increases at spermatogonia and spermatocyte stage in H3f3b mutant 

mouse testes (Yuen et al. 2014). But H3f3a mutant male mice are viable and sub-fertile with 

sperm deficiency (Tang et al. 2015). Thus, H3f3b plays a more important role throughout 

mouse spermatogenesis than H3f3a, which is in line with our H3f3a and H3f3b transcript 

profiling results. 

 

Materials and methods 

Isolation of mouse spermatogonia, spermatocytes, spermatids and sperm 

Male C57BL/6J mice were used in this study. For isolating spermatogonia and pachytene 

spermatocytes, testicular cells were trypsinized from adult male testes and were stained by 

Hoechst 33342 (Invitrogen, cat. no. 33342) first and subsequently by c-Kit antibody 

conjugated with Phycoerythrin (Affymetrix, 12-1171). Pachyene spermatocytes were 

collected based on DNA content by fluorescence-activated cell sorter (Getun et al. 2010), 

and spermatiogonia were isolated based on c-Kit signal and DNA content according to 

previous studies (Hammoud et al. 2014). Round, elongating and condensing spermatids 



58 
 

were separated by centrifugal elutriation based on cell size as described (Barchi et al. 2009). 

Mature sperm was obtained from adult epididymides by performing a swim-up procedure 

as described (Hisano et al. 2013). The purity of each cell fractions was confirmed by 

immunostaining with DAPI and specific markers, such as gamma-H2AX, Sycp3, for each 

stage of spermatogenetic cells. All animal experiments were performed in accordance with 

the Swiss animal protection laws and institutional guidelines. 

Histone acid extraction, TAU-gel Western blotting and RP-HPLC 

For acid extraction of histones from mouse tissue, tissues from C57BL/6J mice were cut into 

small pieces, resuspended in tissue lysis buffer (15 mM Tris-HCl pH 7.5, 60 mM KCl, 11 mM 

CaCl2, 5 mM NaCl, 5 mM MgCl2, 250 mM sucrose, 0.5 mM DTT, 5 mM sodium butyrate, 0.3 

% NP-40 and protease inhibitor cocktail) and homogenized by dounce homogenizer. After 

centrifugation, nuclear pellet was resuspended in 0.2 N HCl and incubated at 4°C for at least 

2 hours to solubilize histones. For acid extract of histones from purified spermatogenetic 

cells, we lysed cells by Buffer A (10 mM HEPES pH 7.5, 1.5 mM MgCl2, 10 mM KCl, 0.05 % 

NP-40, 0.5mM DTT, 5 mM Sodium butyrate and protease inhibitor cocktail) to separate 

nuclear and cytoplasmic fractions. After centrifugation, histones were extracted from 

nuclear pellet by 0.2N HCl as above steps. Histones in acid solution were precipitated with 

trichloroacetic acid (TCA) and finally dissolved into TAU sample buffer or Milli-Q water. 

Using TAU gel and RP-HPLC for separating H3 variants were done as described (Shechter et 

al. 2007). Histone samples in TAU sample buffer were loaded into 15 % TAU gel to separate 

histone proteins and then transferred to PVDF membrane for Western-blotting. Histone 

samples in water were injected into reverse-phase HPLC with C8 column and fractionated by 

using an acetonitrile gradient. Fractions containing H3 were verified by SDS-PAGE Western 

blotting. Primary antibodies used for Western blotting were H3 (Abcam, ab1791), H3K4me3 

(Millipore, 07-473), H3.3 (Cosmo, CAC-CE-040B) and H3.1/H3.2 (Cosmo, CAC-CE-039B). 

RNA extraction, reverse transcription and Quantitative real-time PCR 

Total RNA was extracted from testis tissue and spermatogenetic cells by using Qiagen 

RNeasy mini kit and RNeasy micro kit. RNA was treated with DNase (TURBO DNA-free™ Kit). 

cDNA was synthesized by using SuperScript® III First-Strand Synthesis System with random 

hexamers, and then amplification of cDNA was analyzed with Fast SYBR® Green Master Mix 
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on the 7500 Fast Real-Time PCR System. All transcript levels were normalized to 

housekeeping gene, ribosomal protein S17. Sequence of primers for real-time PCR were 5’- 

GGCACGGAAGTCGACGGGA-3’ and 5’- CCACCGTGCCAGGGTG-3’ for mouse H3t, 5’- 

CGGCGTGTGTAGGGGAA-3’ and 5’- CGAAGGCTGCGAACACAA-3’ for H3f3a, 5’- 

CGGGGTGAAGAAGCCTCA-3’ and 5’- GGTAACGACGGATCTCTCTCA-3’ for H3f3b, 5’- 

CAAAAGCCTTGGCTGTGTTA-3’ and 5’- AAAGGTCTCCAGGCACTTCA-3’ for Stra8, 5’- 

GTGTTGCAGCAGTGGGAAC-3’ and 5’- GCTTTCATTCTCTGGCTCTGA-3’ for SYCP3 and 5’- 

AAGTGAGCAAGAGAAAGGCCGTCA-3’ and 5’- ACATC CTGGAGTGCGTCACTTGTA-3’ for Tnp2. 

Mass spectrometry analysis 

H3 bands were excited from Coomassie-stained TAU gel or SDS-PAGE, processed twice by 

propionylation of free and monomethylated amino groups prior tryptic digestion and finally 

treated with propionic anhydride to modify the amino goups of the peptide N-terminis.. 

Peptides were separated and analyzed by nano-HPLC (Easy-nLC 1000) coupled to an LTQ 

Orbitrap Velos hybrid mass spectrometer (all Thermo Scientific). Mascot 2.3 (Matrix Science) 

was used for database search. Label-free quantification was performed using Progenesis-LC 

(nonlinear Dynamics). For normalization, eight H3 peptides (residue 54-63, 64-69, 73-83, 

117-128 and 130-134) were selected which are conserved in the H3 family. 
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Figure 1. Identification of testis-specific H3 (H3t) in mouse testis. (A) Protein expression of H3 proteins in 
different mouse tissues. H3.1, H3.2 and H3.3 were separated by TAU gel and analyzed by Western 
blotting with general H3 antibody. SDS-PAGE-Western blotting was used for verifying loading amount of 
total H3 extracted from each mouse tissues. (B) Amino acid sequence alignment of mouse H3.1, H3.2, 
H3.3, human H3t (H3.4), and mouse H3t translated from pseudogene GM12260. And amino acids 
specifically on human and mouse H3t are highlighted in yellow. (C) Coomassie blue staining of histones 
from testis and mouse embryonic stem cells (ESC) on TAU gel. Red boxes represent H3 bands excited for 
mass spectrometry analysis. (D) Normalized peak abundances of the canonical H3 (18-26) peptide 
KQLATKAAR and the human replacement variant H3t(18-26) peptide KQLATKVAR in the TAU gel bands 
one to four (see Figure 1C). The N-term and the lysines of the peptides are propionylated.  
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Figure 2. Mouse H3t expression during the first wave of spermatogenesis (A) RNA expression level 
of H3t, H3f3a and H3f3b in total testes isolated from different days post-partum (dpp) of C57BL/6 
mice. Stra8, SycP3 and Tnp2 RNA expression levels during the first wave of spermatogenesis are as 
developmental controls. Ct values analyzed by qPCR were normalized to the values of housekeeping 
gene, ribosomal protein S17. (B) Protein expression of four H3 proteins from 4 dpp to adult testes. 
The equal amount of total H3 from each testis sample was loaded into TAU gel. Arrowheads indicate 
localizations of H3 variants on TAU gel. (C) Quantification of the proportion of four H3 proteins in 
testis at different dpp from (B). The intensity of each H3 band was calculated by ImageJ. 
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Figure 3. The dynamic expression of H3 variants from spermatogonia to mature sperm. (A) Relative 
RNA expression level of H3t, H3f3a, H3f3b, and developmental control genes (Stra8, Sycp3 and Tnp2) 
normalized to housekeeper ribosomal protein S17. Type-B spermatogonia (Spg) and pachytene 
spermatocytes (Pachytene) were purified from adult mouse testes by using FACS, and round 
spermatids (RS) were isolated by centrifugal elutriation. (B) Protein expression of four H3 from 
spermatogonia to mature sperm compared to ES cells. TAU gel was used to separating H3 proteins, 
and equivalent of total H3 was loaded. Condensing spermatids (CS) were purified by centrifugal 
elutriation, and mature sperm was isolated from mouse epididymis by swim-up methods. (C) 
Quantification of the proportion of each H3 variant in ES cells and spermatogenetic cells from (B). 
The intensity of each H3 band was calculated by ImageJ. 
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Figure 4. H3t contains less H3K4me3 modification in spermatogenetic cells. (A) The results of TAU 
gel-Western blotting probed with H3K4me3 and H3 antibodies. Histone H3 was extracted from 
mouse embryonic stem cell (ESC), pachytene spermatocyte (Pach), round spermatid (RS) and 
condensing spermatid (CS). (C) The percent abundance of H3K4me3 on H3 variants. The intensity of 
each H3K4me3 band on TAU gel-Western blotting from figure A was measured by ImageJ and 
normalized by the intensity of corresponding H3 bands. (D) The levels of H3K4me3 on H3.3 and H3t 
from round spermatid extract were analyzed by SDS-PAGE-Western blotting. RP-HPLC was used for 
separating H3.3 and H3t from round spermatid acid extract. 
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Supplementary figure 1. The characterization of mouse H3t. (A) Histones were extracted from in 
mouse embryonic stem cells (ESC) and round spermatids (RS) for TAU gel-Western blotting probed 
with general H3, H3.3-specific and H3.1/H3.2-specific antibodies. (B) GM12260 pseudogene is highly 
transcribed in mouse spermatids. UCSC genome browser snapshot of GM12260 (H3t) locus shows 
RNA-seq results from round spermatid and ESC. (C) The confirmation of H3t localization on TAU gel. 
H3t was overexpressed in 293 cells, and separated by RP-HPLC and subsequently by TAU gel. Green 
arrowhead indicated over-expressed H3t.  

 

 

 

 

 



67 
 

 

 
 

Supplementary figure 2. The purification of different stage of spermatogenetic cells from mouse 
testes. (A) The Hoechst FACS profile of testicular cells. The population of pachytene spermatocyte 
labeled by red was isolated by FACS. Spermatogonia were purified based on DNA content and c-Kit 
level. (B) The cell purity of each spermatogenetic cells fraction. Spermatogonia (Spg) and pachytene 
spermatocyte (Pach) were isolated by FACS. Round and condensing spermatid (RS and CS) were 
isolated by centrifugal elutriation.  
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Abstract 

Mammalian spermiogenesis is a post-meiotic differentiation process during which haploid 

male germ cells dramatically remodel their chromatin structure and undergo a remarkable 

cellular morphogenesis to become mature sperm. As part of the chromatin remodeling 

events, most of histones are replaced by transition proteins and subsequently by basic 

protamines. This histone-to-protamine exchange results in the efficient chromatin 

condensation to package paternal DNA into the sperm head and is essential for male fertility. 

Nonetheless, previous studies have shown that around 1% to 10% nucleosomes are retained 

in mouse and human mature sperm. The residual nucleosomes may provide means for the 

transmission of paternal epigenetic information between generations. The mechanism of 

global chromatin remodeling during spermiogenesis remains largely unclear. Here, we 

observe that histone H3 is cleaved at its N-terminal tail by a serine protease activity in nuclei 

of late stage spermatids and that cleaved H3 histones are subject to a rapid degradation by 

the proteasome. This H3 proteolytic cleavage is conserved from mouse to human. We 

propose that removal of the H3 N-terminal tail destabilizes nucleosome structure and may 

thereby contribute to nucleosome disassembly and global histone removal during 

spermiogenesis. We map the cleavage sites by mass spectrometry analysis and identify that 

arginine 26 and lysine 27 on the H3 N-terminal tail are crucial residues for H3 protease 

activity. Strikingly, we find that acetylation on H3 inhibits H3 cleavage process in vitro. 

Likewise, the genome-wide distribution of acetylation on H3 Lysine 27 (H3K27Ac) is 

positively correlated with the occupancy of nucleosomes containing transcriptionally active 

mark in mature sperm, indicating that preventing H3 from proteolytic cleavage by H3K27Ac 

may contribute to specific nucleosome retention in sperm.  

 

Introduction 

Nucleosome is a basic unit of chromatin organization in eukaryotes, which packages 

genomic DNA efficiently into the cell nucleus. It consists of 146 bp DNA wrapped around a 

histone octamer assembled by two copies of core histone variants, H3, H4, H2A and H2B 

(Luger et al. 1997). Besides being a packaging unit, nucleosomes play important regulatory 

roles in many nuclear processes such as transcription, DNA replication and DNA repair by 
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modulating DNA accessibility. It is well-known that histones are subject to post-translational 

modifications by histone-modifying enzymes that alter the histone-DNA interaction and 

provide docking sites for chromatin-associated proteins to regulate chromatin structure 

(Musselman et al. 2012; Zentner and Henikoff 2013). Moreover, nucleosome structure can 

be perturbed by ATP-dependent chromatin remodeling enzymes that use the energy of ATP 

hydrolysis to evict nucleosomes, mobilize nucleosomes along DNA and exchange histones 

(Becker and Workman 2013). Thus, histone modifying and chromatin remodeling enzymes 

are crucial for the regulation of nucleosome dynamics and DNA accessibility. Recently, the 

proteolytic cleavage of histone has been reported to facilitate the nucleosome turnover. For 

example, histone H3 is proteolytically cleaved by cathepsin L protease on its N-terminal tail 

during mouse embryonic stem cell differentiation (Duncan et al. 2008). And similar H3 tail 

cleavage is also reported in other cellular processes, such as cell senescence, viral infection 

and sporulation (Falk et al. 1990; Tesar and Marquardt 1990; Santos-Rosa et al. 2009; 

Duarte et al. 2014). Because histone tails can stabilize nucleosome structure and contain 

many post-translational modification sites for recruting chromatin regulator, histone tail 

clipping may influence chromatin structure and then promote histone eviction. 

During mammalian spermiogenesis, chromatin in spermatids is subject to dramatic 

remodeling. Most of histones are replaced in elongating spermatids by transition proteins 

and subsequently by protamines (Rousseaux et al. 2005). Protamines are arginine-rich 

proteins strongly interacting with DNA and to condense genomic DNA into the small sperm 

head. The histone-to-protamine exchange plays a critical role in sperm maturation and male 

fertility (Oliva 2006). Based on previous studies, H4 hyperacetylation observed at elongating 

spermatid stage is thought to reduce nucleosome stability and promote histone removal 

from DNA (Grimes and Henderson 1984; Govin et al. 2007). Also Rnf8-dependent histone 

ubiquitination facilitates histone removal during histone-to-protamine exchange in 

elongating spermatids through regulating H4K16 acetylation (Lu et al. 2010). In addition, a 

recent study showed that PA200, a proteasome activator highly expressed testes, 

recognizes acetylated H4 and H2B through its Bromodomain-like region and involves in the 

histone degradation during spermatogenesis (Qian et al. 2013). Nonetheless, the molecular 

mechanism of global histone eviction from chromatin during spermiogenesis is largely 

unclear. We and others recently showed that 1-10 % of nucleosomes are retained at specific 
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genomic regions, particularly at unmethylated CpG-rich promoters, in human and mouse 

sperm (Gatewood et al. 1987; Hammoud et al. 2009; Brykczynska et al. 2010; Erkek et al. 

2013). These residual nucleosomes carry active or repressed modifications that may involve 

in the paternal transmission of epigenetic information to next generation. But the 

mechanisms of specific nucleosome retention in sperm chromatin are unresolved.  

In this study, we identify a proteolytic cleavage of the N-terminal tail of histone H3 during at 

the late stage of spermiogenesis, which may destabilize nucleosome structure and thereby 

promote nucleosome eviction during the histone-to-protamine exchange. This H3 cleavage 

processing is catalyzed by a putative serine protease present in spermatid nuclei. We show 

that residue Arg26 and Lys27 on H3 are important for H3 protease activity and that H3 

acetylation inhibits H3 protease activity. Further, chromatin immunoprecipitation analysis 

indicates that acetylation on H3 Lys27 is correlated with nucleosome retention at promoter 

regions containing transcriptionally active mark in mature sperm. Taken together, our 

studies demonstrate a H3 tail cleavage process during spermiogenesis which may contribute 

to global nucleosome eviction.  

 

Results 

Identification of short form of H3 found in the later stage of spermiogenesis 

It is well-known that histones are evicted from the genome and replaced by transition 

proteins and then by protamines during mammal spermiogenesis. In order to investigate the 

dynamics of histone turnover during mouse spermiogenesis, we use fluorescence-activated 

cell sorting (FACS) to isolated pachytene spermatocytes from adult mouse testes by DNA 

contact and performed centrifugal elutriator to isolate different stages of spermatids by cell 

size. While performing histone acid extraction and then immunoblotting with antibody 

against C-terminal part of general histone H3, we observe a faster running species of H3 

specifically in elongating/condensing spermatids (Esp/CS) and sperm compared with 

spermatocytes (Spc), round spermatids (RS) and embryonic stem cells (ESC) (Figure 1A and 

1B). But we do not detect any fast migrating bands of other core histones, H4, H2A and H2B 

in mouse spermatids (Figure 1C). These results indicate that the proteolytic cleavage of H3 
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N-terminal tail occurs during spermiogenesis. Previous in vitro studies have showed that the 

removal of H3 N-terminal tail decreases nucleosome stability and affects histone-DNA 

interaction (Biswas et al. 2011; Iwasaki et al. 2013). Thus, H3 cleavage occurring at the late 

stage of spermatid may promote global nucleosome eviction by nucleosome destabilization. 

Moreover, we detect the cleaved form of H3 also in human mature sperm (Figure 1B), 

suggesting that N-terminal H3 cleavage is conserved in mammalian species.  

Furthermore, a previous study demonstrated that proteasome containing PA200 activator is 

required for histone degradation in mouse spermatids (Qian et al. 2013). To confirm 

whether cleaved H3 can be degraded by proteasomes, we isolate elongating/condensing 

spermatids from mouse testes, and cultured them with proteasome inhibitor, MG132, for 

24 hours. As showed in Figure 1D and 1E, inhibiting the proteasome by MG132 causes the 

accumulation of cleaved form of H3 in spermatids. Thus, this finding supports that cleaved 

H3 could be subsequently degraded by proteasomes. 

H3 protease in spermatids is from serine protease family 

To determine which mouse spermatogenic cells contain H3 protease activity, we incubated 

nuclei isolated from ES cells, pachytene spermatocytes, round spermatids and 

elongating/condensing spermatids in presence or absence of protease inhibitors at 32 °C for 

half hour.  Strikingly, we find that H3 in spermatid nuclei is more extensively cleaved in the 

absence of the protease inhibitors in vitro, not in spermatocyte and ES cell nuclei. Thus H3 

protease is present in the nuclei of round and elongating/condensing spermatids (Figure 2A). 

Likewise, treating spermatids with 0.5 % paraformaldehyde before in vitro incubation also 

inhibits further H3 cleavage in vitro (Figure 2B). However we do not detect any cleaved H3 in 

round spermatids in vivo (Figure 1A). The possible explanation is that round spermatids have 

an inhibition mechanism of H3 protease activity, but it may be disturbed during nucleus 

isolation. Furthermore, in order to identify which protease family H3 protease in spermatid 

belongs, we use the same in vitro assay but replaced general protease inhibitors to 

individual protease inhibitors that inactivate specific protease families The experiments 

showed that the serine protease inhibitors, AEBSF and Aprotinin, prevent H3 cleavage in 

vitro (Figure 2C), but not cysteine protease inhibitor, E64. Thus, we propose that H3 

protease activity in mouse spermatids is from serine protease family.  
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The characterization of H3 protease from spermatids in vitro 

To characterize the putative H3 protease in mouse spermatids, we establish an in vitro H3 

cleavage assay. Because H3.3, a replication-independent H3 variant, is abundant in mouse 

spermatid and sperm (Erkek et al. 2013), and we have known that the cleavage site is 

localized  on H3 N-terminal tail, we purify recombinant histone H3.3 with C-terminal 6xHis 

tag from E. coli or mononucleosomes containing overexpressed H3.3 with C-terminal 3xFlag 

tag from HEK293 cells as substrates. We then incubate them with nuclear extracts of 

elongating/condensing spermatids at 32°C and detected the cleaved H3 products by 

immunoblotting with anti-His or anti-Flag antibody (Figure 3A). Interestingly, although both 

H3 substrates are cleaved at N-terminus by the H3 protease present in nuclear extracts of 

spermatids in this assay, the H3 in nucleosomes isolated from HEK293 cells is a better 

subtracts than native H3 purified from E. coli (Figure 3B and C). It is possible that 

nucleosome structure and post-translational modifications on H3 affect the enzyme activity 

and the binding affinity of H3 protease. Moreover, this H3 cleavage in vitro reaction is also 

inhibited by the serine protease inhibitor AEBSF, not by proteasome inhibitor MG132 

(Figure 3D and Supplementary figure 1A). Therefore, H3 cleavage in vitro results from a 

serine protease activity, not from proteasome degradation.  

To identify the subcellular localization of the H3 protease activity in spermatids, we 

fractionate spermatid extract into cytoplasmic, nuclear-soluble and chromatin-bound 

fractions for the in vitro H3 cleavage assay. Additionally, it is well-known that spermatid has 

an acrosomal compartment that is derived from the Golgi apparatus and contains abundant 

proteases for fertilization. In order to exclude a possible contamination by proteases from 

acrosome in each fraction, we use an antibody recognizing Golgi protein, RCAS1 (Engelsberg 

et al. 2003), to verify where Golgi-derived acrosomal components are. The result show that 

H3 protease activity is present in nuclear-soluble and chromatin-bound fraction, but not in 

cytoplasmic fraction containing Golgi proteins (Figure 3E). Therefore H3 protease activity 

measured in spermatid nuclei is not due to contaminating acrosomal proteases during cell 

extraction.  

Arg26 and Lys27 on H3 is important for H3 protease activity  
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We next ask which amino acid residue on H3 tail is important for H3 protease activity. Since 

the molecular weight of the cleaved H3 is around 2 to 3 kD less than a full-length H3, we 

hypothesize that a major cleavage site would localize between Ala21 and Pro30 residues on 

H3 N-terminal tail and that some residues in this region may be necessary for H3 protease 

recognition, binding or activity. We, therefore, express a series of mutant H3-3xFlag 

individually in HEK293 cells and purified mononucleosomes containing mutant H3 by using 

anti-Flag resins as substrates for in vitro cleavage assay. We find that only Arg26 and Lys27 

double mutations (R26A/K27A) on H3 completely inhibit cleavage process in vitro, but not 

other substitutions (Figure 3F and Supplementary figure 1B). Therefore Arg26 and Lys 27 

residues are crucial for H3 protease activity or binding. In addition, this substrate preference 

is similar to trypsin-like proteases, which cleave peptide bonds following a positively 

charged amino acid, such as lysines and arginines.  

Determination of proteolytic cleavage sites of H3 in spermatids 

To study in more detail the proteolytic cleavages sites on the H3 N-terminal tail, we first use 

antibodies against different H3 modifications and variants for immunoblotting to check 

whether they can recognize cleaved H3. Remarkably, besides the antibody against C-

terminal part of H3 that we had used above, we also observe that the cleaved H3 produce is 

detected by antibodies recognizing trimethylation on H3 Lys27 (H3K27me3), 

phosphorylation on H3.3 Ser31 (H3.3S31ph) and C-terminal part of H3.3. By contrast, 

antibodies again trimethylation on H3 Lys4 (H3K4me3) and acetylation on H3 Lys27 

(H3K27Ac) did not recognize the cleaved H3 (Figure 4A). These results reveal that proteolytic 

cleavage sites are localized around Lys27 residue on H3 tail and that acetylation and 

methylation on Lys27 may influence H3 protease activity or target recognition. 

Next, we examine precious cleavage sites by mass spectrometry analysis. Because cleaved 

H3 may be degraded by proteasomes quickly in elongating spermatids after protease 

proteolysis, cleaved H3 existed in a small portion of total H3. Therefore, we use cleaved H3 

3xFlag produced abundantly from in vitro H3 cleavage assay to verify cleavage sites by mass 

spectrometry analysis. Moreover, H3 contains several lysine and arginine residues on its tail 

that leads to too short trypsin-digested peptides to be analyzed efficiently by MS. We 

therefore replace the wild-type H3 subtract to H3 R26A mutation that did not affect 
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cleavage processing in vitro (Figure 3F) and can generate a longer peptide (from Lys18 to 

R40) covering putative cleavage sites after lysine propionylation and subsequently trypsin 

digestion. Strikingly, compared to full-length H3 band, mass spectrometry analysis shows 

that the cleaved H3 band has remarkably more four N-terminal truncated peptides 

beginning at Ala24, Lys27, Ser28 and Thr32 (Figure 4B). And the truncated peptide from 

Ser28 to Arg40 was relatively more abundant than other truncated peptides in cleaved H3 

band (Figure 4C). Therefore we propose that a major cleavage site is between amino acids 

27 and 28 on H3 tail, and that a minor cleavage site is between amino acids 23 and 24.  

Identification of H3 protease in the mouse testis 

In order to identify H3 protease in mouse spermatids, we first use CaptoQ sepharose to 

fractionate the nuclear extract of spermatids by the gradient of salt and then examine H3 

protease activity from each fraction by the in vitro H3 cleavage assay (Figure 5A). In addition, 

based on above findings, the putative H3 protease in mouse spermatids has a substrate 

preference that is similar to that of trypsin-like proteases. Therefore, we use benzamidine 

sepharose, which binds strongly with the catalytic domain of trypsin or trypsin-like 

proteases, to fractionate testis extract. Proteins binding on benzamidine sepharose are 

eluted by acid glycine solution, and then we confirm H3 protease activity in each fraction by 

the in vitro H3 cleavage assay (Figure 5B). Through protein identification by mass 

spectrometry analysis, we find that the peptides of one serine protease, tripeptidyl 

peptidase II (Tpp2), is specifically detected in fractions exhibiting H3 protease activity from 

both sepharose columns (Supplementary figure 2). In addition, Tpp2 is highly expressed in 

mouse spermatids compared with cathepsin L, a well-known H3 protease in mouse ES cells 

(Duncan et al. 2008) (Figure 5C). Therefore we propose that Tpp2 is a putative H3 protease 

in mouse spermatids. 

H3 acetylation prevent H3 from cleavage 

It is well-known that histone H4 becomes generally hyperacetylated in elongating 

spermatids during the process of histone-to-protamine exchange. Likewise we observed 

acetylation on Lys27 of H3 in elongating spermatids by immunostaining (Supplementary 

figure 3). So we next ask whether H3 acetylation regulates H3 cleavage processing. To 

address this question, we incubate native H3 with 6xHis tag purified from E. coli with p300 
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catalytic domain that can acetylate lysine residues, including Lys27, on H3 in vitro (Figure 

6A). Surprisingly, when using acetylated H3 as substrate for in vitro cleavage assay, all 

cleavage is inhibited (Figure 6B). And based on above findings, we had already known a 

major cleavage site is at Lys27 that also can be acetylated by p300 in vitro. Together, we 

propose that acetylation on Lys27 may be an important factor preventing cleavage 

processing.  

H3K27Ac is relative to nucleosome retention with active marker in mature sperm 

Our previous study has found that there are around 1% nucleosomes retained in mouse 

sperm (Brykczynska et al. 2010), and that these retained nucleosomes are enriched at CpG-

rich promoters marked by either H3K4me3 or H3K27me3 (Erkek et al. 2013). Therefore, we 

next ask whether H3K27Ac preventing H3 from cleavage is relative to nucleosome retention 

during sperm maturation. To verify the relationship between H3K27Ac and nucleosome 

retention, we perform chromatin immunoprecipitation coupled to deep sequencing (ChIP-

seq) with anti-H3K27Ac antibody in round, elongating and condensing spermatids. H3K27Ac 

distribution is consistent from round to condensing spermatids (Supplementary figure 4A) 

and also is enriched more at CpG-rich promoters than CpG-low promoters (Supplementary 

figure 4B and C). Compared to nucleosome occupancy in mouse sperm from our published 

data, we observe that H3K27Ac enrichment at transcriptional start sites (TSS) in round 

spermatids correlates modestly with nucleosome-retention region in sperm (Figure 6C and 

6D left panel). But when we divide TSS into CpG island (CGI)-contained TSS and non-CGI TSS 

and then overlay scatter plots with H3K27me3 enrichment in round spermatids, a repressive 

histone marker, the results indicate that nucleosome-retained regions in sperm without 

H3K27Ac accumulation are marked by H3K27me3, specifically at CGI-contained TSS (Figure 

6D middle and right panel). Moreover, we observe that H3K27Ac distribution in spermatids 

is positively correlated with the occupancy of the residual nucleosomes containing 

transcriptionally active histone mark, H3K4me3, at TSS in mature sperm (Figure 6E). We 

therefore speculate that H3K27Ac may protect H3 containing active markers at TSS from 

proteolytic cleavage and then modulate nucleosome retention in mature sperm.  

Discussion 
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During mammalian spermiogenesis, spermatids undergo dramatic morphological and 

chromatin-structural changes to differentiate into spermatozoa. In this differentiation 

processing, most nucleosomes are evicted from chromatin and are replaced by transition 

proteins and then by protamines to condense paternal DNA into the small sperm head. 

Compared to somatic cells, only 1 to 10 % nucleosomes are retained in mouse and human 

sperm chromatin (Brykczynska et al. 2010). Despite remarkable progress in the elucidation 

of histone-to-protamine exchange during spermiogenesis, a comprehensive explanation of 

the mechanisms of nucleosome eviction and retention remains elusive. We observe a 

proteolytic cleavage of histone H3 occurring at the late stage of spermatids and sperm. 

Based on the crystal structure of the nucleosome core particle, N-terminal tail of H3 

exposed on the surface of the nucleosome contains an α-helices (amino acid 14-20) that can 

interact with DNA at the edge of nucleosome (Biswas et al. 2011). The truncation of H3 tail 

has been shown to result in the alternation of histone-DNA contact, nucleosome 

destabilization, and variation in the rate of nucleosome sliding on DNA in vitro (Ferreira et al. 

2007). In addition, expressing tail-truncated H3 in cells influences the replication-coupled 

nucleosome assembly and disrupts the formation of a silent higher order chromatin 

structure (Ahmad and Henikoff 2002; Sperling and Grunstein 2009). Together, H3 tail is 

required for assembling nucleosome, maintaining nucleosome structure, regulating DNA 

accessibility. Therefore, H3 proteolytic cleavage occurring in spermatid nuclei may 

destabilize nucleosome structure and then contribute to global nucleosome eviction during 

histone-to-protamine exchange processing.  

H3 tail cleavage has been reported in different biological systems, and serval proteases 

belonging to either cysteine or serine protease families are involved in H3 cleavage 

processing. For example, cathepsin L, a cysteine protease, was find to cleave H3 tail around 

Ala21 residue during mouse embryonic stem cell differentiation, and acetylation on Lys23 

can reduce cathepsin L-mediated cleavage of H3 (Duncan et al. 2008). Moreover, cathepsin 

L also manipulates H3 cleavage during oncogene-induced senescence in fibroblasts and 

melanocytes (Duarte et al. 2014). But the H3 protease activity identified in human 

embryonic stem cells is exerted by a serine protease activity, not by cathepsin L (Vossaert et 

al. 2014). And recently two serine proteases, glutamate dehydrogenase (GDH) in chicken 

livers (Mandal et al. 2013; Purohit et al. 2013) and PRB1 in yeast (Xue et al. 2014) have been 
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identified as histone H3 specific proteases. These suggest that H3 can be clipped by distant 

proteases depend on cell type and species. In our study, the H3 protease activity in 

spermatid nuclei is from a trypsin-like serine protease. After fractionating spermatid nuclear 

extract and analyzing protein content by mass spectrometry, we identify a trypsin-like 

protease, tripeptidyl peptidase II (Tpp2), enriched in fractions with H3 protease activity. In 

future, we will continue to investigate whether Tpp2 mediates H3 cleavage processing 

during spermiogenesis.  

Acrosome formation during spermiogenesis has been reported to influence nuclear 

compaction and chromatin reorganization during spermiogenesis (Kang-Decker et al. 2001; 

Yao et al. 2002; Lin et al. 2007; Xiao et al. 2009; Fujihara et al. 2012). A DAPI-intense 

doughnut-like structure is observed in round spermatid nuclei (De Vries et al. 2012). This 

structure is co-localized with acrosomal sac, a Golgi-derived sac-like structure attached to 

spermatid nucleus. And less nucleosomes and histones are localized at the doughnut-like 

structure, but transition proteins are enriched in it in spermatids. Moreover, H4 acetylation 

is also found to be enriched in doughnut-like structure. Therefore, this DNA-intense 

doughnut-like structure is thought to be an initiation site of chromatin remodeling in 

histone-to-protamine exchange processing (De Vries et al. 2012). Because a putative H3 

protease, Tpp2,  have been found to be accumulated in acrosome in mature sperm (Zhou et 

al. 2013), it is possible that Tpp2 could be shuttle between spermatid nuclei and acrosome 

through this doughnut-like structure and subsequently cleave H3 to promote nucleosome 

removal at this structure.  

Proteasome has been reported to play an important role in histone degradation during 

spermiogenesis. PA200, an activator of proteasome, is highly expressed in testes, and its 

deficiency leads to defective spermatogenesis with abnormal spermatocytes and spermatids 

and the reduction of male fertility (Khor et al. 2006). Recently, Qian et al. showed that core 

histones are accumulated at elongating spermatids in PA200-deficent testis. PA200 contains 

bromodomain-like regions that recognize acetylated histones, especially acetyl-H2B and 

acetyl-H4, to degrade acetylated histones (Qian et al. 2013). Thus PA200-mediated histone 

degradation is acetylation-dependent, not polyubiquitin-dependent. Furthermore, in this 

present study, we find that inhibiting proteasomes by MG132 inhibitor causes the 

accumulation of cleaved form of H3 in elongating/condensing spermatids. Therefore, as in 
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Figure 7, we propose that histone H3 is cleaved on its tail by a putative serine protease that 

might destabilize nucleosome structure, and subsequently, destabilized nucleosomes may 

be evicted by uncharacterized chromatin remodelers. It is possible that the H4 

hyperacetylation and H3 proteolytic cleavage are present together in the same nucleosomes 

at elongating spermatid stage, so evicted nucleosomes containing H4 acetylation and 

cleaved H3 are subsequently degraded by PA200 proteasome or other proteasomes. In 

future research, it is interesting to dissect the correlation between hyperacetylated H4 and 

H3 proteolytic cleavage during histone-to-protamine exchange in elongating spermatids. In 

addition, we find H3K27Ac prevents H3 from cleavage proteolysis and is correlated to 

nucleosome retention at active promoters in mature sperm. However, whether H3K27me3 

also has the same role as H3K27Ac in protecting H3 from cleavage remains an important 

issue that requires further investigations. In summary, our findings reveal a histone H3 

proteolysis processing during mouse spermiogenesis that may contribute to global 

nucleosome removal. 

 

Materials and methods 

Antibodies 

Primary antibodies used for Western blotting and chromatin immunoprecipitation were H3 

(Abcam, ab1791), gamma-H2A.X (Millipore, 05-636), H4Ac (Millipore, 06-866), beta-tubulin 

(SIGMA, T4026), H4 (Abcam, ab10158), Tnp2 (Santa Cruz, sc-21106), His-tag (Invitrogen, 37-

2900), Flag-tag (SIGMA, F7425), H3K4me3 (Millipore, 07-473), H3K27Ac (Abcam, ab 4729), 

H3Ac (Millipore, 06-599), H3K27me3 (Millipore, 07-449), H3.3-phospho S31 (Abcam, 

ab92628), H3.3 (Millipore, 09-838). 

Isolation of mouse spermatocyte, spermatid and sperm 

Male C57BL/6J mice were used in this study. For isolating pachytene spermatocytes, 

testicular cells were trypsinized from adult male testes and then were stained by Hoechst 

33342 (Invitrogen, cat. no. 33342) for 30 min at 37 °C. Pachyene spermatocytes were 

collected by fluorescence-activated cell sorter (FACS) according to previous study (Getun et 

al. 2010). And round, elongating and condensing spermatids were separated individually 
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from testicular cells by centrifugal elutriation based on cell size as described (Barchi et al. 

2009). Mature sperm was obtained from adult epidemya by performing a swim-up 

procedure as described (Hisano et al. 2013). All experiments were performed in accordance 

with the Swiss animal protection laws and institutional guidelines. 

Histone extraction 

Cells were incubated with Buffer A (10 mM HEPES pH 7.5, 1.5 mM MgCl2, 10 mM KCl, 0.05 

% Nonidet P-40, 0.5mM DTT, 5 mM Sodium butyrate and protease inhibitor cocktail) to 

separate nucleus and cytoplasm. After centrifugation, nuclear pellet was re-suspended into 

0.2 N HCl and incubated on ice for at least 1 hour to solubilize histones.  Then histones were 

precipitated by trichloroacetic acid (TCA) and finally were dissolved into Milli-Q water.  

Protease activity in mouse spermatid nuclei 

In Figure 2, cells were incubated with ice-cold Buffer A (10 mM HEPES pH 7.5, 1.5 mM MgCl2, 

10 mM KCl, 0.05 % Nonidet P-40, 0.5mM DTT, 5 mM Sodium butyrate) without any protease 

inhibitors. After centrifugation, nuclear pellet was re-suspended into Buffer A and incubated 

at 32 °C for 30 min without or with protease inhibitors, such as AEBSF, Aprotinin and E64. 

Nuclear pellet was collected again by centrifugation at 4 °C and lysed by 1X SDS sample 

buffer. Western blotting analysis with general H3 antibody was used to confirm cleaved H3 

amount compared with full-length H3. 

Purification of recombined H3 protein and its mono-nucleosome 

For native H3 purification, histone H3.3 with C-terminal 6x-His tag was overexpressed in 

BL21 E.coli after IPTG induction and purified as substrate by using TALON metal affinity resin. 

For H3 nucleosome purification, plasmid containing H3.3 ORF with C-terminal 3x-Flag tag 

was transfected into HEK293 cells to overexpress ectopic H3.3 for 2 days. These cells were 

lysed by Buffer A to obtain nuclei that were continually treated with micrococcal nuclease 

(MNase). After MNase treatment, nucleosomes were extracted by high salt buffer (10 mM 

Tris-HCl pH 7.4, 2 mM MgCl2, 2 mM EDTA, 600 mM NaCl, 10 mM sodium butyrate and 

protease inhibitor cocktail), and mono-nucleosomes were collected by using sucrose 

gradient. Mono-nucleosomes assembled by ectopic H3.3-3xFlag were isolated by anti-FLAG® 

M2 magnetic beads (Sigma, M8823).  

In vitro H3 cleavage assay 

Nuclear extract from elongating/condensing spermatids was prepared as described (Duncan 

et al. 2008). H3.3-6xHis purified from E.coli and H3.3-3xFlag mono-nucleosome isolated 
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from HEK293 cells were incubated with spermatid nuclear extract at 32 °C for 15 to 120 min, 

and then reactions stopped by adding SDS sample buffer. Protein level of cleaved H3 was 

analyzed by Western blotting with His-tag and Flag-tag antibodies. 

In vitro mouse spermatid culture  

Elongating/condensing spermatids were isolated by centrifugal elutriation, incubated into 

Dulbecco's Modified Eagle's Medium (DMEM) including 10% fetal bovine serum, L-glutamine, 

and penicillin-streptomycin, and treated with 10 μM proteasome inhibitor, MG132 at 32 °C 

for 24 hours. Then spermatids were lysed by 1x SDS sample buffer and boiled at 95 °C. 

Proteins were analyzed by Western blotting. 

In vitro H3 acetylation assay 

H3.3-6xHis purified from E.coli was incubated with recombinant p300 catalytic domain 

protein (Active motif, 31205) and 50 µM Acetyl-CoA in protease buffer (10 mM HEPES pH7.5, 

10 mM KCl, 1.5 mM MgCl2, 0.34M sucrose, 10% glycerol, 0.1 mM DTT) for 37 °C for 1 hour. 

Acetylation level on H3 was verified by Western blotting with H3Ac and H3K27Ac antibodies.  

Mass spectrometry for mapping cleavage sites on H3 

Full-length H3 and cleaved H3 bands from in vitro H3 cleavage assay were excised from 

coommassie-stained SDS-PAGE, propionylated by using propionic anhydride and 

subsequently digested by trypsin for overnight. Peptides were separated and analyzed by 

nano-HPLC (Agilent 1100 nanoLC system, Agilent Technologies) coupled to an LTQ Orbitrap 

Velos hybrid mass spectrometer (Thermo Scientific).  

Protease enrichment and identification 

Nuclear extract of mouse spermatids was prepared as described above, injected into 

CaptoQ column or benzamidine column and fractionated with 40 mM to 1 M KCl gradient or 

50 mM glycine pH3. Each fraction was then analyzed by in vitro H3 cleavage assay as 

described above and subjected to mass spectrometry analysis 

Native chromatin precipitation (N-ChIP) 

Native ChIP was performed according to a previous study (Hisano et al. 2013) with some 

modifications. Briefly, condensing spermatid and elongating spermatids were treated 50 

mM DTT in PBS with 5 mM sodium butyrate for 1 and 0.5 hours before cell lysis, except 

round spermatid. Cells were lysed into Buffer 1 with detergents (0.3 M Sucrose, 15 mM Tris-
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HCl pH 7.5, 60 mM KCl, 15 mM NaCl, 5 mM MgCl2, 0.1 mM EGTA, 0.5 mM DTT and 0.5 % 

NP-40 and 1 % DOC) and then treated with proper MNase to digest chromatin to mono-

nucleosomes. This chromatin solution from spermatids or sperm mixed with H3K27Ac 

antibody at 4 °C for overnight incubation, and Dynabeads® Protein G was added in to pull 

down H3K27Ac nucleosomes. After elution and protease K digestion, immunoprecipitated 

DNA were resolved by 5% polyacrylamide electrophoresis, and 150-bp DNA was purified 

from gel for further library preparation.  

Sequence data processing and analysis 

The UCSC genome assembly mm10 was used as a reference genome. Transcript annotations 

are based on the UCSC knownGene database and were obtained from the Bioconductor 

package TxDb.Mmusculus.UCSC.mm10.knownGene. Genomic coordinates of CpG islands 

were obtained from the UCSC genome annotation database (http://hgdownload.soe. 

ucsc.edu/goldenPath/mm10/database/; file name: cpgIslandExt.txt.gz). Datasets of sperm 

MNase-seq, H3K27me3 ChIP-seq in round spermatids and H3K4me3 ChIP-seq in round 

spermatids and sperm were obtained from (Erkek et al. 2013). These datasets are available 

under GEO accession number GSE42629. Sequencing reads were aligned using Rbowtie 

(parameters '-m 1 --best --strata') against the mouse genome (UCSC version mm10), by 

using QuasR (Gaidatzis et al. 2015). Read counts were calculated in R, for transcription start 

site regions, i.e. 1kb or 2kb regions centered on transcription start sites (for genes with 

multiple transcription start sites annotated, the most 5' transcription start site was 

considered). In order to regularize small count values, a pseudo-count of 8 was added to 

read counts. In addition and for display in the scatter plots only, a small amount of noise 

was added to read counts to reduce overplotting. In supplementary figure 4 B-C, read 

counts were normalized by library size. CpG density was calculated as the ratio of observed 

over expected CpG dinucleotides in transcription start site regions. 
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Figure 1. Histone H3 proteolysis during spermiogenesis. (A) Western blot analysis probed 
with an antibody against the C terminus of H3. Pachytene spermatocytes (Spc) were purified 
from mouse testes by FACS, and round spermatids (RS) and elongating/condensing 
spermatids (Esp/Cs) were isolated by centrifugal elutriator. Mouse embryonic stem cell line 
(ESC) was a control. (B) Western blot analysis of cleaved H3 in mouse and human sperm (C) 
The nuclear extract from round and condensing spermatids were analyzed by Western 
blotting with antibodies against C-terminal domain of histone H4, H2A and H2B. (D) The 
dynamics of cleaved H3 in elongating/condensing spermatids after proteasome inhibitor 
treatment. Elongating/condensing spermatids isolated from mouse testis were treated with 
10 μM MG132 at 32°C for 24 hours in vitro. (E) Analyses of band intensity from (D) are 
presented as the relative ratio of cleaved H3 to β-tubulin. 
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Figure 2. H3 protease in mouse spermatids is a serine protease. (A) H3 protease activity in 
the nuclei of mouse spermatids. The nuclei were isolated from ESC, pachytene 
spermatocytes (Spc), round spermatids (RS) and elongating/condensing spermatids (Esp/CS) 
and incubated at 32°C for 30 min with or without protease inhibitor cocktail.  (B) H3 
protease activity was inhibited by the treatment of 0.5 % paraformaldehyde (PFA) before 
nucleus isolation as described in (A). (C) H3 protease activity is inhibited by serine protease 
inhibitors. The nuclei of elongating/ condensing spermatids were incubated with serine 
protease inhibitors, AEBSF and Aprotinin, and cysteine protease inhibitor, E64. 
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Figure 3. In vitro characterization of H3 protease activity from mouse spermatid. (A) 
Schematic of in vitro H3 cleavage assay. (B) In vitro H3 cleavage assay using native H3 as 
subtract. H3 with 6x-His tag was overexpressed and purified from E.coli. H3-6x-His was 
incubated with spermatid nuclear extract (NE) at 32°C for different incubation times. (C) In 
vitro H3 cleavage assay using nucleosome as subtract. The mononucleosomes containing H3 
with C-terminal Flag tag were isolated by Flag resins from 293 cells and then incubated with 
spermatid nuclear extract. (D) The serine protease inhibitor AEBSF blocks H3 protease 
activity in in vitro H3 cleavage assay. (E) The nuclear-soluble fraction (NE) and chromatin-
bound fraction (CS) contain H3 protease activity, not cytoplasmic fraction (Cyt). (F) The 
double mutation of H3 on Arg26 and Lys27 residues prevents H3 from cleavage in in vitro H3 
cleavage assay.  
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Figure 4. Identification of the cleavage site on H3 (A) Western blot analysis with antibodies 
against distinct modifications on H3 and specific H3 variants in round spermatid (RS) and 
condensing spermatid (CS) samples. (B) The comparison of truncated peptide abundance 
between cleaved H3 and full-length H3 by mass spectrometry analysis. Mononucleosomes 
assembled by H3 R26A mutation was used as substrate in in vitro H3 cleavage assay. 
Cleaved H3 and full-length H3 bands were excised from SDS-PAGE and digested by trypsin 
after lysine propionylation. The protein sequences of four truncated peptides identified 
were shown at left panel. (C) Pie chart demonstrating the percent abundance of four 
truncated peptides identified in cleaved H3 band. 
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Figure 5. Fractionation of nuclear extract by CaptoQ and benzamidine columns to enrich 
H3 protease. (A) CaptoQ fractions from spermatid nuclear extract were assayed by in vitro 
H3 cleavage assay. (B) Benzamindine fractions from testis nuclear extract were assayed in in 
vitro H3 cleavage assay. (C) Heat map depicting the gene expression of Tpp2 and cathepsin L 
in type A spermatogonia (A Spg), type B spermatogonia (B Spg), leptotene spermatocytes 
(Lep), pachytene spermatocytes (Pach), round spermatids (RS), elongating spermatids (Esp) 
and Sertoli cells based on published RNA-seq data (Gan et al. 2013). Cathepsin L is identified 
as H3 protease in mouse embryonic stem cells (Duncan et al. 2008), but its expression is 
relatively low in mouse spermatids. By contrast, Tpp2 is highly transcribed in mouse 
spermatids. 
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Figure 6. Acetylation on H3 inhibits H3 cleavage in vitro and relates to nucleosome retention in 
mature sperm (A) Native H3-6xHis purified from E.coli was acetylated by p300 catalytic domain in 
vitro. H3K27Ac and pan H3Ac antibodies were used for Western blotting to confirm the acetylation 
level on H3. (B) In vitro H3 cleavage assay using acetyl-H3-6xHis as subtract. (C) The snapshot from 
genome browser showing the genomic distribution of H3K27Ac in round, elongating and condensing 
spermatids compared to the nucleosome occupancy and the distribution of H3K4me3 and 
H3K27me3 in mature sperm. (D) Scatter plots showing the correlation between H3K27Ac enrichment 
in round spermatids and nucleosome occupancy in sperm at transcription start site (TSS) +/- 1 kb. 
Gene promoters (TSS +/- 1 kb) were classified into CpG Islands (CGI)-containing promoters (red dots 
in left panel) and non-CGI-containing promoters (grey dots in left panel). The scatter plot of CGI 
promoters and non-CGI promoter were separated and overlaid by H3K27me3 enrichment in round 
spermatids (middle and right panels). (E) Scatter plots showing the correlation between H3K27Ac 
enrichment in round spermatids and H3K4me3 enrichment in round spermatids (left panel) and 
sperm (right panel) at transcription start site (TSS) +/- 1 kb. 
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Figure 7. The model of H3 proteolytic cleavage in chromatin remodeling processing 
during spermatogenesis. N-terminal tail of H3 is cleaved at Arg26 and Lys27 by a putative 
serine protease activity, present in spermatid nuclei during spermiogenesis. Acetylation 
on H3 Lys27 (H3K27Ac) prevents H3 from proteolytic cleavage and is relative to 
nucleosome retention in sperm. Methylation on Lys27 of H3 may also have the same 
function as H3K27Ac to prevent cleavage. After cleavage, nucleosomes might be 
destabilized and easily evicted by unknown chromatin remodelers or chaperones. Finally 
cleaved H3 and evicted nucleosomes are degraded by proteasomes.  
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Supplementary figure 1. (A) MG132, a proteasome inhibitor, treatment in in vitro H3 
cleavage assay. H3 protease activity in spermatids is not from proteasomes. (B) In vitro H3 
cleavage assay using H3 with various mutation sites (mutations on residue 21-23 and 
residue 23-26) as substrates.  
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Supplementary figure 2. Mass spectrometry analysis of CaptoQ and benzamidine fractions 
identified the presence of tripeptidyl-peptidase II (Tpp2) specifically in the fractions 
exhibiting H3 cleavage activity. Tpp2 peptides identified in the CaptoQ fractions with 
protease activity are marked by underline. Tpp2 peptides identified in benzamidine fractions 
with protease activity are marked by red bold characters. 
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Supplementary figure 3. Immunofluorescence analyses of H3K27 acetylation in wildtype 
seminiferous tubules at spermatogenic stage VIII. H3K27Ac is detected ate elongating 
spermatids (yellow arrows). 
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Supplementary figure 4. (A) The correlation of H3K27Ac enrichment at +/- 1 kb TSS between 
three stages of spermatids (round spermatid, RS; elongating spermatid, Esp; condensing 
spermatid, CS). (B) Scatter plots showing the correlation between H3K27Ac and CpG density 
at +/- 1 kb TSS from round to condensing spermatids. (C) The box plots showing the 
distribution of H3K27Ac enrichment in CpG island-contained TSS and non-CpG TSS at +/- 1 
kb window.  
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Chapter 6: Discussion and Outlook 

6.1 The dynamics of H3 variants during mouse spermatogenesis 

In the first project, I first performed triton-acetic acid-urea gel to separate histone H3 

proteins and thereby found that testis-specific H3 (H3t) is abundant in mouse testis and is 

highly expressed from spermatogonia stage. Strikingly, the protein expression of canonical 

H3.1 and H3.2 are lower in spermatogonia compared with H3t, and dramatically decreased 

to undetectable level during meiosis. By contrast, from spermatogonia to spermatid stage, 

H3t protein is still maintained at high level, and H3.3 protein level increases during meiosis. 

Therefore, H3t and H3.3 become two predominant H3 proteins in spermatocytes and 

spermatids. Previous studies have shown that H3.3 protein is required for correct 

spermatogenesis. The disruption of one of H3.3 genes, H3f3b, causes male infertility 

because of arrest of round spermatids or abnormal protamine incorporation (Yuen et al. 

2014; Tang et al. 2015). However, whether H3t also plays a crucial role during 

spermatogenesis is still unclear. In order to dissect the biological role of H3t, we are 

generating H3t-knockout mice. In the future, it will be interesting to know the importance of 

H3t during male germ cell development and to investigate whether the lack of H3t is 

compensated by enhanced or prolonged of canonical H3 proteins. 

There are two waves of transcription found during spermatogenesis. The first wave of 

transcription happens at spermatogonia stage before meiosis to express mitotic- and 

meiotic genes, and the second wave one happens at the late spermatocytes and round 

spermatids to express genes involved in spermiogenesis (Sassone-Corsi 2002; White-Cooper 

and Davidson 2011). I found that mouse H3t encoded by GM12260 pseudogene is highly 

transcribed during the first wave of transcription in spermatogonia, and its transcript 

decreases dramatically during meiotic and post-meiotic stage. In addition, 3’ UTR of H3t 

gene contains a stem loop sequence, which is generally present at 3’ end of canonical 

histone mRNA and is required for replication-dependent histone expression. Therefore, 

these results suggest that H3t incorporation into nucleosomes might be regulated by a DNA 

replication-coupled process as described for canonical H3.  

In somatic cells, H3.3 is localized at promoter regions and gene bodies of active genes and 

carries histone modifications associated with transcription activation, like H3K4me3 and 
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H3K27Ac. In contrast, canonical H3 is enriched in histone modifications known to correlate 

with transcription repression (McKittrick et al. 2004; Hake et al. 2006). In mouse spermatids, 

I found that H3K4me3 is also enriched on H3.3 than H3t, suggesting that H3t may have a 

similar “decoration” of histone marks to somatic canonical H3 and replace the function of 

canonical H3 in male germ cells. It will be of great interest in future studies to further 

investigate the detail of histone marks on H3t compared with H3.3 by mass spectrometry 

analysis and immunoblotting with specific antibodies again different histone modifications.  

In addition, surprisingly, I observed that H3K4me3 reduces to an undetectable level either 

on H3.3 or on H3t in pachytene spermatocytes, but after meiosis round spermatids is able to 

restore H3K4me3 level. Previous studies showed that pachytene spermatocytes still have 

transcriptional activity occurring in synapsed meiotic chromosomes except unsynapsed sex 

chromosomes (Turner et al. 2005). It is possible that the number of expressed genes is lower 

in pachytene spermatocytes than in other cell stages, so the global H3K4me3 level 

decreases a lot in pachytene stages. In addition, this low level of H3K4me3 at the late stage 

of spermatocytes may promote a quick reconstitution of H3K4me3 on the promoters of 

spermiogenesis-relative genes to switch gene expression profile after meiosis. Interestingly, 

two H3K4me3 demethylase, KDM5A and KDM5D, have been reported to be highly 

expressed in spermatogonia and spermatocytes (Akimoto et al. 2008; Nishio et al. 2014). 

Therefore, deciphering potential developmental roles of the H3K4me3 demethylases in 

meiotic stage will be interesting to explore in future studies. 

Furthermore, when the spermatid differentiates into mature sperm, global nucleosomes are 

removed and replaced by transition proteins and then by protamines. Only 1 % of 

nucleosomes are specifically retained at unmethylated CpG-rich promoters in mature 

mouse sperm according to our previous studies (Brykczynska et al. 2010; Erkek et al. 2013). 

In this project, I observed that most H3t is removed during histone-to-protamine exchange 

process, and 1 % residual nucleosomes in sperm contain a large amount of H3.3. This result 

represents that more H3t is evicted from chromatin than H3.3 during spermiogenesis. I 

propose two possible causes for the significant reduction of H3t. First, previous study 

indicated that human H3t can destabilize nucleosome structure in vitro (Tachiwana et al. 

2010). Although mouse and human H3t have 3 amino acids difference, mouse H3t-

containing nucleosome may also have less stability than canonical nucleosome to enhance 
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H3t eviction from chromatin. Further in vitro biochemical analyses are necessary to examine 

the influence of mouse H3t on nucleosome structure. Second, like canonical H3 in somatic 

cells, H3t may be widely distributed in chromatin of round spermatids, whereas H3.3-

nucleosomes carrying histone marks of active transcription may be incorporated at 

promoter of active genes and undergo rapid turnover in round spermatids (Erkek et al. 2013; 

Kraushaar et al. 2013).  During histone-to-protamine exchange process, transcriptional 

nucleosome turnover is abolished, which causes H3.3 accumulation around promoter 

regions, especially at unmethylated CpG-island promoters (Erkek et al. 2013). At the same 

time, unknown complexes may bind to unmethylated CpG-islands to suppress the eviction 

process of H3.3-nucleosomes, or histone marks specifically on H3.3 could prevent H3.3-

containing nucleosomes from proteolytic cleavage and eviction. By contrast, H3t does not 

have specific localization and histone marks to prevent eviction (Figure 1). Thus most H3t is 

removed from chromatin than H3.3 during spermiogenesis. In addition, I detected canonical 

H3.1 and H3.2 in mature sperm. The possible explanation is that a very small portion of 

canonical H3 under detectable level is not replaced by H3t during meiosis and is stably kept 

in heterochromatin with repressive histone marks from spermatogonia to sperm. After H3t 

removal, the proportion of canonical H3 in residual nucleosomes in mature sperm is 

increased to detectable level. 

 
Figure 1. Model of histone H3t eviction and H3.3 retention during histone-to-protamine exchange 
process. H3t-nucleosomes are widely distributed in the chromatin in round spermatids, but H3.3-
nucleosome is specific localized around active CpG island (CGI) promoters with active histone marks. 
A very small portion of canonical H3.1/H3.2 with repressive marks is kept in heterochromatin regions 
throughout spermatogenesis. The genome localization and histone marks could influence the 
process of nucleosome eviction.  
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Taken together, the findings in this part of study describe the characterization of mouse H3t 

and also reveal an unexpected dynamic of H3 variant during mouse spermatogenesis (Figure 

2). 

 
 

Figure 2. Summary of the dynamics of H3 variants during spermatogenesis 
 

6.2 The proteolytic cleavage of histone H3 during spermiogenesis 

Histone H3 is well-known to have a long N-terminal tail protruding from the nucleosome 

core particle. Many residues on H3 tail are added by various post-translational modifications 

to regulate nucleosome structure directly and also to recruit other proteins to change 

chromatin structure. Previous studies showed that H3 tail interacts with DNA at the edge of 

nucleosome to form higher order structure of chromatin (Biswas et al. 2011). The lack of H3 

tail leads to destabilize nucleosome in vitro and increase accessibility within silent 

heterochromatin in vivo (Ferreira et al. 2007; Sperling and Grunstein 2009). Interestingly, 

the endogenous proteolytic cleavage of N-terminal tail of histone H3 has been reported in 

different cell types. During the differentiation of mouse embryonic stem cells (ESCs), H3 is 

cleaved by cathepsin L, a cysteine protease, and the primary H3 cleavage site is between 

amino acids 21 and 22 of the amino terminus (Duncan et al. 2008). However, it remains to 

elucidated the role of H3 cleavage by cathepsin L during in ESCs differentiation. Likewise, a 

recent study also showed that cathepsin L mediates H3 proteolytic cleavage during cellular 

senescence in human fibroblasts, and ectopic expression of N-terminus truncated H3 

induces fibroblast senescence (Duarte et al. 2014). Thus, H3 proteolytic cleavage functions 

as a key regulator of cellular senescence. Moreover, the H3 N-terminus cleavage by other 

proteases, especially serine protease family, also occurs in yeast sporulation, chicken liver 

and human ESCs. The vacuolar proteinase B (PRB1) is identified as H3 protease in yeast 
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under condition of nutrient deprivation (Santos-Rosa et al. 2009; Xue et al. 2014). In chicken 

liver, glutamate dehydrogenase (GDH) is found to have the serine protease activity to clip 

H3 tail (Mandal et al. 2013; Purohit et al. 2013). In contrast to mouse ESCs, H3 in human 

ESCs is cleaved by unidentified serine protease, not by cathepsin L, during differentiation 

(Vossaert et al. 2014). Therefore, the proteolytic cleavage of H3 tail is universal 

phenomenon and believed to play a role in histone turnover. 

In the second project, I found that N-terminal tail of histone H3 is subject to the proteolytic 

cleavage by a serine protease activity in the late-stage spermatids, and H3 proteolytic 

cleavage during spermiogenesis is conserved in human and mouse. We propose that the H3 

cleavage process in spermatids is a potential mechanism to alter nucleosome structure and 

to contribute to global nucleosome removal during spermiogenesis. In order to further 

investigate the function of H3 cleavage during spermiogenesis, we are generating a mouse 

expressing “cleavage-resistant” H3 protein. Based on my finding, the major cleavage sites on 

H3 tail are localized around Arg26 and Lys27 residues. Mutations on both residues protect 

H3 from cleavage. Thus Arg26 and Ly27 are important for H3 protease recognition and/or 

activity in mouse spermatids. In addition, I identified that H3t is a predominant H3 protein in 

mouse spermatids and need to be largely removed during histone-to-protamine exchange. 

Therefore, we directly mutated both residues 26 and 27 to alanines on H3t in mouse zygotes 

by the CRISPR/Cas-mediated genome engineering. In the future, through the 

characterization of this mutant mouse line, we hope of identify whether the proteolytic 

cleavage of H3 contributes to histone removal during sperm maturation. 

DNA damage response and histone H4 hyperacetylation are well-known marks coincident 

with histone displacement in elongating spermatids. The high level of H2A ubiquitination 

induced by DNA damage is observed in elongating spermatids (Chen et al. 1998; Baarends et 

al. 1999). These histone ubiquitination in elongating spermatids is believed to mediate 

chromatin reorganization. Based on previous studies, the lack of RNF8, an ubiquitin E3 ligase 

of H2A and H2B, causes the reduction of acetylated H4 on Lys16, abnormal histone 

accumulation in sperm and finally male infertility (Lu et al. 2010). Therefore RNF8-

dependent histone ubiquitination is required for the replacement of histones by protamines 

during spermiogenesis. Furthermore, a recent study found that a testis-specific proteasome 

activator, PA200, recognizes acetyl-H4 and acetyl-H2B via its bromodomain-like region and 
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then mediates the acetylation-dependent degradation of histones during spermiogenesis 

(Qian et al. 2013). Therefore, H4 acetylation not only directly affects nucleosome structure 

but acts as a signal for histone degradation. Likewise, I found that treating elongating 

spermatids with proteasome inhibitor leads to the accumulation of cleaved H3. This finding 

suggests that cleaved H3 is degraded by proteasomes after proteolytic cleavage. But it is 

unclear whether H4 hyperacetylation and RNF8-mediated histone ubiquitination are 

associated with H3 proteolysis. In the future, it is interesting to examine the genome-side 

distribution of cleaved H3 in elongating spermatids and clarify whether cleaved H3 is 

enriched in nucleosomes containing hyperacetylated H4 and ubiquitinated H2A/H2B.  

In addition to H3 cleavage that we identified in the late stage spermatids, the proteolytic 

cleavage is found to involve in protamine maturation during spermiogenesis. In human and 

mouse, two types of protamines are identified: the protamine 1 and the family of protamine 

2 proteins. There is a difference between the syntheses of the two protamines. Protamine 1 

(P1) is synthesized directly as mature protein, whereas protamine 2 (P2) is synthesized as a 

long precursor (pre-P2). After binding to DNA, pre-P2 is proteolytically cleaved at its N-

terminus to form mature P2 in the late stage spermatids (Carre-Eusebe et al. 1991; 

Chauviere et al. 1992). The normal P1/P2 ratio is roughly 1 in fertile human 

sperm(Belokopytova et al. 1993). But, sperm from many infertile patients has P1/P2 ratios 

higher than 1, and pre-P2 is abnormally accumulated in them (Belokopytova et al. 1993; de 

Yebra et al. 1993; de Yebra et al. 1998). Therefore the proteolytic processing of protamine 2 

precursor is thought to influence male fertility (de Mateo et al. 2011). Although the specific 

proteases and mechanisms mediating the proteolysis of pre-P2 have not yet been identified, 

these findings combining my finding suggest that chromatin of the late stage spermatid is 

exposed in protease-rich environment, and proteases may function in the regulation of 

chromatin reorganization during spermiogenesis through cleaving histones and protamines.  
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