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Abstract

Nanomechanics of Confined Polymer Systems

Polymers anchored to surfaces play an important role in nature and technology,
and regulate diverse interfacial phenomena in areas such as tribology and colloidal
stability. Polymers grafted to surfaces at high density form elongated “brushes”
with characteristic lengths much larger than free coils in solution. These brushes
can reduce interfacial friction and wear as well as impart fouling resistance to
surfaces. In light of these functionalities it is important to understand the be-
haviour of surface-grafted polymers at the molecular and nanoscopic level. An
emerging area of interest are polymers attached to nanopores. Theoretical stud-
ies predict interesting morphologies and dynamics of such confined brushes in
and around nanopores, but nanopore environments have been difficult to study
experimentally. In this thesis a unique polymer-functionalized nanopore-like ex-
perimental system is presented, functionalized with poly(ethylene glycol) (PEG).
Atomic force microscopy (AFM) is employed to probe the PEG brushes with
nanometre spatial precision and sub-nanonewton force sensitivity, revealing novel
dynamics depending on the local grafting position of PEG with respect to the nan-
opore geometry. Further, AFM is used together with fluorescence microscopy to
show how polymer–protein interactions can be used together with the anti-fouling
property of PEG to sort specific biomolecules from complex biological fluids to
nanoscale targets. This shows a way how to confer biological recognition and
specificity to synthetic nanoscale systems which is important for biosensing and
bioseparation applications.
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Chapter 1

Introduction

1.1 Motivation: Polymer-functionalized nanoscale

systems

Nanopores and nanochannels are emerging as a novel class of materials to mediate

transport between reservoirs [1–3]. Channel diameters typically ranging from a few

nm to 100 nm approach the dimensions of molecular aggregates or large molecules,

which allows for unprecedented control of material flow through the channels.

This can be combined with simultaneous sensing of what is going through the

pore, especially when pores are functionalized at the entrances and/or within the

channel [4].

One versatile and comparably easy way to achieve such a functionalization is the

surface grafting of polymers at the pore opening and walls [5]. The conformation

of surface-attached polymers is a classical subject in polymer science [6–8]. When

polymer chains are tethered to the surface on one end (so-called grafting), they can

adopt different conformations, depending on the polymer grafting density. At low

enough densities, the individual polymer chains do not interact with each other,

and form a “mushroom” at the anchoring point. In the absence of chain–surface

interactions, the mushroom size is typically on the order of the unperturbed chain

1
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size in solution. When the grafting distance between individual chains becomes

smaller than the mushroom size, the polymer chains will extend away from the

grafting surface in order to maximize the favoured interaction of monomers with

solvent, i.e. to lower the osmotic pressure within the brush [6, 7, 9]. The stretched

layer is called a polymer “brush”.

Polymer brushes can make nanopores anti-fouling (i.e. resistant to non-specific

adsorption of other particles) [10–13], and by changing the polymer morphology

based upon an external stimulus (e.g. temperature, solvent or pH [14, 15]) the flow

of solvent and solute through a pore can be regulated [16, 17]. Despite these po-

tential advantages and emerging applications of polymer-functionalized nanopores,

direct experimental probing of polymer morphology, interactions and dynamics in-

side and outside of a nanopore remains a challenge. The detailed knowledge of

molecular behaviour of polymers in nanopores and their interactions with material

and solvent passing through the pore could aid in improving nanopore character-

istics such as selectivity, flux, biocompatibility and fouling resistance, and guide

the selection or design of polymers for a desired nanopore functionality.

Further, insights into polymer-functionalized nanopores can help in deciphering

the functional transport mechanisms of biological nanopores. For example, the

nuclear pore complex (NPC), a pore regulating the transport of molecules in and

out of the cell nucleus has similar dimensions but much more sophisticated gating

control than current synthetic nanopores [18, 19]. The transport is regulated by

intrinsically disordered protein domains which can be likened to polyelectrolytes

lining the nanopore walls and filling the central channel. Understanding the beha-

viour of surface-attached polymers and polyelectrolytes might elucidate also the

operating mode of biological analogues such as the NPC, and vice versa learn-

ing from biology might bring about further improvements to synthetic nanopore

design.

Some experiments have been performed by probing the morphology of polymer
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brush-functionalized nanopores or nanopore-like systems via atomic force micro-

scopy [20–22], but mostly treatment of these systems has been limited to theoret-

ical calculations or simulations [23, 24]. These provide interesting hypotheses that

are waiting to be experimentally tested. Recent simulations show for example

that a nanopore’s geometric details influence the confined polymer morphology

and functionality non-trivially [16, 25].

More generally, while many experiments probing the mechanics of polymer brushes

attached to extended flat surfaces have been carried out [26–30], as well as on 2D-

nanopatterned brushes [31], polymers grafted to true 3D nanoscale surfaces have

not been measured as often [32].

Moreover, even for polymer brush dynamics on extended flat surfaces open ques-

tions still remain, for example about the height of a polymer brush under a con-

stant or oscillatory shear, with some experiments and theory reporting a swelling of

the brush and increase of the polymer layer height [33–35], while others predicting

a decline of layer height [36] or measuring no height change [27, 37].

1.2 Thesis outline

I continue this chapter by introducing the principles of atomic force microscopy

(AFM), the main experimental apparatus used in this thesis. I also explain the

fundamentals of polymer theory that apply to our experimental systems and theor-

etically describe the behaviour of compressed and confined surface-attached poly-

mers.

In chapter 2 I describe the materials and the sample handling, measurement and

analysis methods used in this thesis.

Chapter 3 employs various experimental methods to characterize poly(ethylene

glycol) (PEG), the polymer of interest in this thesis, in solution and especially

when attached to macroscopic and nanopore-like surfaces. I present AFM meas-

urements of a 3D nanoscale system consisting of Au nanorings, functionalized with
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PEG which forms a brush on the Au rings. A second similar PEG-functionalized

nanohole system is investigated for comparison.

In chapter 4 I investigate how polymer brushes behave when confined by an AFM

tip. I compare PEG brush dynamics and morphology at local features provided by

our nanoring system, i.e. the flat ring and the nanopore-like central hole regions.

When probing the brush by AFM at a range of loading rates (i.e. tip approach

velocities), I show that the brush in the pore behaves differently than over the

flat area. I further show that depending on the surface density of PEG chains,

sudden transitional jumps in the force can occur. These resemble “polymer escape

transitions” that have been theoretically described. I analyse the data in this

context, comparing experiment to theory.

Chapter 5 demonstrates how intrinsic polymer–protein interactions between PEG

brushes on the nanorings and PEG-binding antibodies can be used for sorting

specific biomolecules from complex bulk biological fluids to synthetic nanoscale

targets. I show how anti-PEG antibodies can bind and ferry cargo to PEG tar-

gets which normally do not interact with proteins. Moreover, anti-PEG binding

triggers a stimuli-responsive conformational collapse in the PEG brush, thereby

imparting an intrinsic “smart” biorecognition functionality to the PEG. I use the

AFM to probe the PEG nanomechanics, and fluorescence microscopy to measure

the biochemical interactions between proteins and the PEG brush.

Finally, chapter 6 concludes this thesis with a discussion of the work presented

here together with an outlook on future directions and opportunities.
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1.3 Atomic force microscopy1

1.3.1 Basic operation

The essence of the atomic force microscope (AFM) [38] lies with the nanometre-

sharp tip or probe that is located at the end of a very sensitive “spring-board”-like

cantilever (Fig. 1.1). Attractive or repulsive interactions that act on the tip as it is

moved over a surface cause the cantilever to bend, thereby providing a mechanical

means to probe local nanoscale effects. This allows for the topographical imaging

of surfaces from sub-millimetre scan sizes down to the single molecule [39] or even

atomic resolution [40]. Moreover, because the AFM is operational even in liquids,

it provides for a direct quantitative measure of surface properties in authentic

environments of interest. Beyond imaging, the AFM is also suited to measure

intra- and inter-molecular interactions [41]. A bare AFM tip can act as a confining

surface that measures the local response of an surface-attached molecular layer,

e.g. a polymer brush [20]. Taken together, the AFM is ideal for probing the local

properties of a surface with high spatial precision and force sensitivity.

A standard AFM tip has a sharpness (i.e. tip radius) of a few to some tens of

nanometres and is fabricated at the free end of a microcantilever. When the

AFM tip is close to a surface or in mechanical contact, forces acting on the tip

translate into a mechanical deflection of the cantilever, which is detected optically

using a laser beam that reflects off the back side of the cantilever (Fig. 1.1).

A position-sensitive detector (PSD) in the form of a four-quadrant diode then

converts the vertical and horizontal beam deflections into voltage signals, which

are continuously recorded.

The high spatial resolution of the AFM is achieved by the ability to control rel-

ative positions of cantilever and sample with high accuracy. This is accomplished

via piezoelectric crystals, which expand or contract along a preferred axis upon
1Parts of this section have been published in the following book chapter: Hyotyla J. T.,

Lim R. Y. H., 2012. Atomic Force Microscopy (AFM). In: J. W. Steed & P. A. Gale, eds.
’Supramolecular Chemistry: From Molecules to Nanomaterials.’ pp. 659–668.
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Figure 1.1: Schematic illustration of basic AFM operation. Scanning occurs
either by translating the cantilever or the sample stage via piezoelectric crystals.

A laser reflected from the back of the cantilever measures its deflection.

application of a bias voltage. The use of piezoelectric scanners allows controlling

the lateral (denoted X, Y) and vertical (Z) position of the tip and/or sample with

sub-nanometre resolution. At this accuracy, raster scanning the sharp tip over the

sample results ideally in an image resolution of a few nm and <1 nm in the lateral

and vertical directions, respectively.

1.3.2 Imaging modes

The most common mode of AFM operation is to raster-scan the sample with

the tip either in constant contact (contact mode imaging) or intermittent contact

(tapping mode imaging) with the underlying surface. In contact mode, the sample

topography data is collected by feeding the vertical cantilever deflection through

a feedback loop into the Z piezo scanner so that the vertical deflection is kept at

a constant setpoint. During scanning the feedback loop continuously adjusts the

vertical tip position, which ensures constant contact to the sample surface. The

topography (i.e. sample height) data is gathered from the position of the Z piezo at

each sampling point. In tapping mode, the cantilever is typically oscillated near

its resonance frequency, which allows the tip to continuously “tap” the sample

surface. The PSD detects the amplitude of the oscillation, which is determined
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mostly by the average distance of the tip to the sample and is used as the feedback

loop setpoint variable.

1.3.3 Force spectroscopy

Most of the AFM data about polymer brush morphology and dynamics in this

thesis has been obtained using force spectroscopy. Fig. 1.2 illustrates the principle.

The AFM cantilever is vertically ramped towards and away from the sample (called

approach and retract phases) as its lateral position is kept constant. During

ramping the cantilever deflection and its Z position are constantly recorded. Since

the cantilever deflection relates to the force acting on the tip, we obtain a force

curve, F (d) with the force F plotted against the distance between sample substrate

and tip (tip-sample distance d). See Methods, section 2.2.6 for details about

transforming the cantilever deflection into a calibrated force.

Figure 1.2: Demonstrating the principle of force spectroscopy. While the
cantilever is ramping in Z-direction towards (approach; top left) and away from
the sample (retract; top right), the force acting on the tip is recorded (bottom).

See text for explanation of the numbered force curve segments.

Typically a force curve consists of the following segments (Fig. 1.2): (1) During

initial approach of the tip towards the sample surface, no force is acting on the

cantilever (“free cantilever”). (2) Upon contact with the sample, forces acting



8 Chapter 1. Introduction

on the tip (here, a polymer brush resisting compression by the tip) cause the

cantilever to bend and an increasing force to be recorded. (3) After moving a

desired distance or reaching a defined force, the cantilever movement reverses to

retract from the sample. If the sample is elastic, initially the retraction force curve

tracks the approach data, but if parts of the sample (here, a polymer chain) adheres

to the tip, a negative force (downwards bending of the cantilever) is recorded. (4)

Once the cantilever bending force exceeds the adhesion force, the tip snaps off the

surface and the cantilever returns to a free state. At this point the ramp cycle

is repeated. If desired, the cantilever is moved laterally to a new position before

ramping again.

Force spectroscopy is very versatile because the complete time- and distance-

resolved interaction between the tip and the sample is available. Based on this,

various parameters of interest can be extracted, such as the height and stiffness

of a polymer brush (see Methods, section 2.2.6). Further, by changing the speed

of ramping, dynamic interaction forces can be accessed, as we show in chapter 4.

1.4 Polymers in solution and at surfaces

1.4.1 Polymer sizes in solution

For linear polymers in solution, we can define a characteristic length scale R, which

is the radius of the spherical volume that is occupied by the polymer. For real

polymers, the volume filled by the polymer depends on the relative contributions

of each monomer’s interaction with the solvent and with other monomers, the so-

called excluded volume interactions. The excluded volume v is a single parameter

that summarizes the net two-body interaction between monomers [42]. It includes

the short-range hard-core repulsion between monomers (which gives a positive

contribution to v) as well as any attractive longer-range interactions between the

monomers (which reduce v). We can then distinguish between solvent regimes
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based on the excluded volume which lead to different polymer coil sizes in solu-

tion: (1) In good solvents there is only a small contribution of monomer-monomer

attraction, leading to a large v, and the polymer is in a well-swollen state (i.e.

“the polymer likes to interact with solvent molecules”). (2) At theta conditions

(θ), the negative and positive contributions to v cancel out, and the chain behaves

like an ideal chain with random-walk (Gaussian) statistics. Since the excluded

volume depends also on temperature, there is only a single theta point for a given

polymer–solvent combination. (3) In bad solvents, the monomer–monomer attrac-

tion outweighs, and we get a negative v which signifies an effective attraction of

monomers. Polymers in bad solvents collapse unto themselves.

The Flory theory is a simple successful theory for polymer coil sizes in solvents.

The Flory theory calculates the size of a polymer chain by balancing the energetic

and entropic contributions to the free energy of a chain [42]. The excluded volume

effect described above tends to energetically swell a polymer chain in good solvents,

while the loss of entropy of a stretched chain contributes a free energy term in the

other direction. Free energy minimization with respect to the coil volume leads

to a Flory length R = RF of the chain, with the number of monomers N , and the

monomer size a:

RF ≈ aN3/5 . (1.1)

The operator ≈ means here and for the rest of this chapter that we leave out

numerical prefactors of order unity, which depend here on the solvent quality.

This is good enough to extract general scaling behaviours. In comparison, an

ideal chain (no intermolecular interactions, e.g. theta solvent) leads to a different

power law:

R ≈ aN1/2 . (1.2)

1.4.2 Polymers attached to surfaces

Surface-attached (grafted) polymers exhibit unique physicochemical properties

that regulate diverse interfacial phenomena in a wide variety of areas ranging
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from tribology, colloidal stability and biology [43–45] to nanopores [25].

The conformation of polymer chains grafted at one end to a surface (e.g. cova-

lently attached) depends on the surface grafting density σ, or equivalently to the

average grafting distance between two chains, g = σ−1/2. We can apply scal-

ing considerations, using the so-called blob picture, to understand the resulting

polymer morphologies [7, 8, 42, 46]. This method gives correct predictions up to

numerical prefactors of order unity. A blob is a correlation element of size ξ in

a polymer chain. Within a blob, the polymer chain behaves randomly, while at

distances larger than ξ, the chain conformation is not random. The energy scale

associated with a blob is kBT , with kB being the Boltzmann constant and T the

temperature. For polymer chains in good solvents, ξ = RF , i.e. the chain forms a

single random coil blob.

At grafting distances g > RF , the surface-attached chains behave mostly as in

solution, i.e. they form a single blob of size RF , a mushroom (Fig. 1.3a). When

grafting distances become smaller than RF , the polymers start to repel each other

and form a stretched layer of blobs of size ξ = g, a polymer brush (Fig. 1.3b). In

this Alexander–de Gennes model, the brush has uniform density up to its height

h after which it drops to zero (i.e. the brush density is a step function).

The height of the brush can then be estimated by applying a Flory-type argument

of two competing free energy terms. The first term, fstretch, describes the entropic

cost of stretching an ideal chain to length h. The second term, fvolume, describes

the real chain excluded volume energy cost of overlapping monomers.

A polymer chain in the brush consists of Nb = h/g number of blobs. The entropic

cost of a stretched chain is on the order of kBT per blob:

fstretch ≈ kBTNb = kBT
h

g
. (1.3)

Within a blob, the sub-chains follow ideal chain statistics, so a blob contains nb

subunits with nb ≈ g2/a2 (Eq. 1.2). With this, the height of the brush can be
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Figure 1.3: Blob picture of polymers covalently attached to a surface. (a) At
large enough grafting distances (g > RF ), polymer chains form mushrooms of
size ∼ RF . (b) As grafting distances are decreased (g < RF ), polymer chains
are forced to form smaller blobs of size g, thereby extending to a brush of height
h. Adapted from Advances in Colloid and Interface Science, 27, P.G. de Gennes,
’Polymers at an interface, a simplified view’, 189-209, Copyright (1987), with

permission from Elsevier [8].

expressed as

h ≈ gNb = g
N

nb

≈ Na2

g

(1.4)

and by combining with Eq. 1.3 we get

fstretch ≈ kBT
h2

Na2
. (1.5)

The excluded volume cost is on the order of kBT per monomer overlap. The

number density of monomers in the brush is

ϕ ≈ N
σ

h
(1.6)
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and the probability of a second monomer being in the excluded volume of a given

monomer is vϕ. The excluded energy term is then

fvolume ≈ kBTNvϕ

≈ kBTNv
Nσ

h

(1.7)

which leads to the following free energy equation for a polymer brush with a

step-like profile:

ftot = fstretch + fvolume

≈ kBT

(
h2

Na2
+ v

N2σ

h

)
.

(1.8)

Minimizing ftot with respect to h yields the scaling prediction for the brush height

(prefactors have been left out):

h ∼ N(vσ)1/3 . (1.9)

We immediately see that the brush height scales with N , compared to N3/5 for

free chains in solution. This means that brushes can become much longer than

the unperturbed size of a polymer chain. At not too high grafting densities,

the excluded volume parameter v can be neglected and the scaling with regards

to grafting density relation becomes h ∼ σ1/3, but at high densities the excluded

volume effects play a larger role and experimentally scaling relations up to h ∼ σ0.6

have been measured [47]. Self-consistent mean field calculations and experiments

have revealed that the brush density profile is not step-like but rather parabolic,

i.e. with gradually decreasing density at larger distances from the surface [48].

Brush height calculations using such a density profile still show the same scaling

as predicted by the Alexander–de Gennes free energy balance derived above.
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1.4.3 Confinement of surface-attached polymer brushes

Because confinement of a brush displaces the polymer from its energetic minimum,

a force resisting the confinement will result. The compression of polymer brushes

by infinite planes has been calculated theoretically, and the compression of surface-

attached polymers by macroscopic obstacles is accurately experimentally accessible

via surface force apparatus measurements [49–51].

Based on the step-like Alexander–de Gennes profile and by postulating no inter-

penetration of chains, de Gennes calculated the force needed to push two parallel

plates functionalized with polymer brushes towards each other [8]. For infinite

plates, the force per unit area (i.e. pressure P (d)) as a function of the inter-plate

distance d is:

P (d) =
kBT

g3

[(
2h

d

)9/4

−
(

d

2h

)3/4
]

d < 2h (1.10)

where h is the brush height per plate. The Derjaguin approximation [51, 52]

relates the interaction energy per unit area W (d) between two parallel plates at

distance d to the force between a sphere and a plate, F (d), at the same distance:

F (d) = 2πRW (d) (1.11)

where R is the sphere radius. With

W (d) =

∫ ∞

d

P (x) dx (1.12)

we can express Eq. 1.10 in terms of the force required by a polymer brush-coated

sphere pushing on a brush-coated plate:

F (d) = 2πR
kBT

g3

∫
2h

d

[(
2h

x

)9/4

−
( x

2h

)3/4
]
dx . (1.13)

An AFM tip can be regarded as sphere-like at the very apex. Since the polymer

chains do not interpenetrate, we can convert the calculated force to apply to a
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bare AFM tip pushing on a polymer-brush functionalized surface by replacing 2h

with h and dividing F by 2 [26]. The final expression is then:

F (d) =
8π

35
RtipkBT

h

g3

[
7

(
h

d

)5/4

+ 5

(
d

h

)7/4

− 12

]
(1.14)

where R has been replaced by Rtip, the AFM tip radius at the apex.

For d/2h in the range of 0.2 to 0.9 the AdG equation (Eq. 1.10) has an exponential

form and can be approximated by [51]:

P (d) ≈ 100

g3
kBT e

−πd/h . (1.15)

By applying the Derjaguin approximation and reducing to the form of a bare AFM

tip pushing on a polymer brush-functionalized surface following the steps above,

we get:

F (d) = Rtip
50h

g3
kBT e

−2πd/h 0.2 < d/h < 0.9 . (1.16)

As the step-like AdG brush profile is not realistic, Milner–Witten–Cates (MWC)

developed a pressure expression analogous to the AdG one with a parabolic brush

profile [48]:

P (d) =
P0

h

[
ln

(
d

2h

)
+ 2

(
d

2h

)
−
(

d

2h

)4
]

(1.17)

with

P0 =
kBTN

2

(
π2a4

12

)1/3

g−10/3 (1.18)

where N and a are the number of monomers and the monomer size. With the

Derjaguin approximation applied and the transformation for a bare AFM tip push-

ing on a surface with a polymer brush, we get:

F (d) = πRtipkBTN

(
π2a4

12

)1/3

g−10/3

[
h

d
+

(
d

h

)2

− 1

5

(
d

h

)5

− 9

5

]
. (1.19)

The AdG and the MWC equations lead to very similar force profiles at intermedi-

ate to high compression, and have been verified by using two functionalized mica
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sheets pushing on each other in a surface force apparatus [53] and by colloidal

probe AFM (where the sharp tip has been replaced by a µm-sized colloid) [28]. At

large separations, i.e. small forces, the MWC formula gives more accurate results

when compared to experiments than the AdG model. This is to be expected,

since it is exactly at weak compression where the difference between a step and a

parabolic profile will play a role.

1.4.4 Polymer escape transition

When the compression of a polymer mushroom by a finite obstacle or piston of

size on the order of the polymer was first considered theoretically based on scaling

theory, some interesting behaviour emerged [54–56]. If the compressing piston

radius is larger than the mushroom size but smaller than the contour length of

the polymer, two distinct chain conformations will occur, with a sudden transition

between them. For weak compression, the complete chain stays confined under

the piston. Scaling considerations predict F (d) ∼ d−8/3 in good solvent, where

F (d) is the force needed to compress the mushroom at distance d from the grafting

surface (Fig. 1.4a). For strong compression, below a critical distance, it becomes

energetically favourable for a stretched tether to form up to the piston edge, and

for the rest of the chain to form an unconfined random coil outside the compressing

piston (Fig. 1.4b). The stretched tether expends conformational energy which is

however more than offset by the release of the rest of the chain from confinement.

Here the predicted force relationship is F (d) ∼ d−2. Between the two states a

first-order transition occurs (i.e. a discontinuous jump in force).

This polymer escape transition has been confirmed by further theoretical calcula-

tions and with simulations at theta conditions [57] and in good solvents [58–60].

The escape transition has been compared to similar transitions for polymers ad-

sorbing from solution and for polymers in repulsive potentials [61–63]. The escape

transition has also been described for more complex polymer chains, such as block

copolymers [64] and star polymers [65, 66]. Simulations at finite temperatures
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Figure 1.4: (a) A polymer chain that is compressed under a flat obstacle
breaks down into a number of independent blobs, each blob having the size on
the order of the distance between the two confining surfaces. (b) As the chain is
further compressed, the chain escapes from beneath the obstacle. The resulting
stretched tether together with a large blob outside the obstacle is energetically
more favourable than the fully confined configuration. Adapted from Ref. [55].

show that the sharp transition can become “smeared out” or even disappear com-

pletely especially for short chains because the chain is able to easily move between

confined and escaped states.

AFM, having a sharp tip as a probe not much larger than single polymer coils,

was recognized early as a potential way to probe these escape transitions experi-

mentally, and so several works have calculated or simulated the escape under more

realistic “AFM-like” conditions, i.e. different tip shapes and off-centre compression

[67–69]. These confirm the predicted scaling laws even in less idealized systems,

but also show a possible smearing of the transition.

So far no experimental work exists to our knowledge which measures the force

response of a single compressed polymer chain. This might be due to the diffi-

culty of obtaining such high spatial and force resolutions needed to probe a single

mushroom. It is easier to prepare and measure a surface functionalized with a

polymer brush. Some theoretical works have addressed a finite obstacle compress-

ing a polymer brush in the context of escape transitions. One molecular dynamics

simulation in good solvent shows that chains escape under a compressing tip, but

no first-order transition is visible in the force [70], while another simulation under

theta conditions finds a visible transition between confined and escaped chains

[71].

Even for polymer brush systems only a few experimental works address the poly-

mer escape transition. Compression of polyethylene glycol (PEG) / polystyrene
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brushes was shown to exhibit abrupt transitions in force near the grafting sur-

face [26], but the measurements pre-date the theoretical discussions of escape

transitions and the authors only talk about a “jump into contact”. A different

experiment combining AFM and electrochemical measurements to probe PEG

mushrooms shows no transitions in force, but the electrochemical data indicates

an escape of the polymer when highly compressed [72].

1.5 Poly(ethylene glycol)

The polymer of choice in this work is poly(ethylene glycol) (PEG)2, specifically

its derivative methoxy-PEG-thiol (mPEG-SH) which is terminated by a methoxy

group (CH3−O) at one end and a thiol group (SH) on the other end. The chem-

ical formula of mPEG-SH is H3C−O[−CH2−CH2−O]n−CH2−CH2−SH (Fig. 1.5).

The thiol end group provides a means to covalently attach the PEG to Au sur-

faces, and the methyl keeps the other end of the chain inert by not exposing an

oxygen. PEG itself is a hydrophilic polymer.

Figure 1.5: Chemical formula of methoxy-PEG-thiol (mPEG-SH), the PEG
derivative used in this thesis for covalent attachment to Au surfaces via the thiol

group.

The driving impetus to use PEG lies in its unique properties that can be harnessed

technologically. PEG is biocompatible, i.e. it does not elicit a strong immune re-

sponse in the body [73]. PEG is also highly antifouling, i.e. it prevents adsorption

of proteins and other macromolecules from solution to PEG-coated surfaces [29,

74]. These extraordinary characteristics stem from the strong hydration proper-

ties of PEG [75]. The PEG backbone participates in the water molecule hydrogen
2PEG is sometimes also referred to as poly(ethylene oxide), PEO.
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bonding [76, 77]. This strong interaction with water adds energy costs to adsorp-

tion of macromolecules, leading to their rejection from the vicinity of PEG and

thus to the antifouling and nonimmunogenic properties.

Due to its anti-fouling properties, PEG is widely used for surface passivation.

PEG-coated filtration membranes show a reduction in fouling [78]. Surfaces func-

tionalized with PEG prevent adhesion of cells and bacteria, making them a can-

didate for protecting medical implants [79–81]. The biocompatibility of PEG also

has lead to its use in drug development. PEG modification of some proteins in-

hibits an immune response against them, in contrast to unmodified proteins [82].

PEG is the most used polymer for this so-called “stealth” behaviour [83, 84].

The abovementioned features and its use in technological and medical applications,

together with the ease of handling and ready commercial availability make PEG

an interesting polymer to investigate. Particularly in chapter 5 we make use

of the PEG antifouling characteristics to reject unspecific proteins from nanoscale

targets while allowing specific interactions to provide exclusive access to the PEG-

protected samples.
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Materials and Methods

2.1 Materials

2.1.1 Au nanorings

Arrays of 20× 20 gold nanorings were fabricated by electron beam lithography

(EBL) and subsequent evaporation on 0.17 µm± 0.02 µm thick standard micro-

scopy cover glass slides (round, 24mm diameter; Karl Hecht Assistent, Germany).

Each sample was cleaned by ultrasonicating in acetone and isopropanol (IPA),

followed by thorough rinsing with deionized (DI) water and drying with N2 gas.

950 kDa poly(methyl methacrylate) (PMMA) was spin-coated at 5000 rpm onto

the substrate to create a 350 nm thick polymer resist layer for EBL. After the

coating, the samples were placed into an oven and baked for 15min at 170 ◦C.

After preparing the resist layer, EBL was performed with an Elionix ELS-7000

(Elionix, Japan) EBL system. The nanostructure patterns were written at a dose

of 800µC/cm2 by using an electron beam with acceleration voltage of 100 kV and

a beam current of 20 pA. After exposure, the samples were developed in a solu-

tion of 3 parts IPA and 1 part methyl isobutyl ketone (MIBK) for 70 s, followed

by rinsing in IPA and DI water for 20 s and drying with N2. An adhesion layer

of ∼5 nm Cr followed by ∼30 nm Au was deposited on the samples by thermal

19
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evaporation. The lift-off was performed by soaking in acetone for 10min and final

rinsing in acetone, IPA and DI water, followed by drying the sample with N2.

Two different nanoring geometries were used in this work. Structures with nominal

dimensions of 400 nm and 100 nm for the outer and the inner diameter of the rings

were used unless otherwise mentioned (also denoted rings with large central holes).

For experiments in chapter 4 additionally nanorings with outer and inner diameters

of 400 nm and 50 nm were fabricated (denoted rings with small central holes for

disambiguation). For both samples the distance between individual nanorings was

chosen as 1.3 µm so that neighbouring nanorings did not interact with each other.

2.1.2 Solutions

Deionized water (DI H2O) was obtained from an in-house system (Barnstead

Nanopure, Thermo Scientific; 18.2MΩcm resistivity). Phosphate-buffered sa-

line (PBS) with 1.5mM KH2PO4, 2.7mM Na2HPO4, and 155.2mM NaCl, pH

7.2, was obtained from Invitrogen (USA). Bovine serum albumin (fraction V;

A9647, Sigma-Aldrich, USA) was dissolved in PBS to obtain a 1% BSA solution

(10mg/ml), used for the SPR BSA height determination (chapter 3), and as pas-

sivating molecules for fluorescence measurements (chapter 5). Rabbit serum was

obtained from Eurogentec (Belgium). A 5 µl amount of 1M Tris-buffer, pH 8, was

added per 100µl of serum. NaOH solutions were prepared by dissolving NaOH in

DI water to obtain the appropriate concentration.

2.1.3 Poly(ethylene glycol) (PEG)

Thiolated methoxy-terminated PEG (mPEG-SH) with molecular weights of 5 kDa,

10 kDa and 20 kDa (average monomer numbers of 114, 228 and 455, respectively)

was obtained from Laysan Bio, USA. Incubation solutions for the experiments

were prepared by dissolving the desired amount of mPEG-SH in the incubation

solvents (H2O, PBS, or 0.6 – 0.9M Na2SO4 in PBS, as described in the results)
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and agitating vigorously for 20 s. PEG cloud point concentrations were identi-

fied by dissolving a large amount of PEG in the desired Na2SO4 solvent, and

gradually diluting the PEG solution until the appearance switched from cloudy to

transparent. Cloud point concentrations for 5 kDa, 10 kDa and 20 kDa mPEG-SH

identified this way were 0.83mg/ml, 0.36mg/ml and 0.15mg/ml in 0.9M Na2SO4,

respectively, and additionally 0.3mg/ml and 9.0mg/ml for 20 kDa PEG in 0.7M

and 0.6M Na2SO4, respectively.

2.1.4 Antibodies

Monoclonal mouse IgG1 antibodies against PEG (E11, anti-PEG) [85] were co-

valently labelled at the N-terminus with Alexa Fluor 488 5-SDP ester (A30052,

Invitrogen, USA) for 2 h at room temperature with a 10× molar excess of dye

according to the manufacturer’s protocol. UV/vis spectrophotometry indicated a

labelling efficiency of ∼1 dye molecule per antibody by comparing absorbance at

280 nm (protein) and 494 nm (dye) after purification of the labelled anti-PEG. Cy3-

labelled polyclonal donkey anti-mouse (715-165-151, Jackson Immunoresearch,

USA) and Cy5-labelled polyclonal donkey anti-rabbit (711-175-152, Jackson Im-

munoresearch) were used as the specific and unspecific IgG, respectively. UV/vis

showed ∼1 dye molecule per antibody for both.

2.2 Methods

2.2.1 Sample cleaning

All grafting surfaces, i.e. surface plasmon resonance chips, Au nanoring and Au

nanohole samples, used in this thesis were cleaned as following. Samples were

ultrasonicated in acetone and isopropanol (IPA) for 20min each and dried in an

N2 stream, followed by exposure to UV-Ozone (Model 42A-220; Jelight, USA) for

45min.



22 Chapter 2. Materials and Methods

The samples were further cleaned in RCA1 solution1. RCA1 solution was prepared

by mixing 6 parts H2O with one part NH4OH (∼30%), and heating the solution

to 65 ◦C. After reaching 65 ◦C, the solution beaker was removed from the heating

plate, and one part H2O2 (30%) was added. In our case, the solvent volumes were

50ml : 8.3ml : 8.3ml of H2O : NH4OH : H2O2. After waiting for 2min, the

samples were then immersed into the RCA1 solution for 10min.

We note that usually RCA1 is prepared with a 5:1:1 ratio, but in our case this

proved too harsh, damaging the nanostructures on our samples. A slightly less

aggressive ratio was chosen, and no loss in cleaning quality was observed. By

using RCA1 cleaning, even already functionalized samples could be returned to an

unfunctionalized, bare Au state. For measurements in chapter 5, RCA1 cleaning

was not used, since only freshly produced nanoring samples were used in the

experiments.

Finally, the samples were rinsed with H2O, and finally ultrasonicated in Ethanol

for 30min. After drying in an N2 stream, the sample functionalization was started

immediately.

2.2.2 Nanostructure functionalization

Nanostructures (Au nanoring and Au nanohole arrays) were functionalized by

covalently attaching mPEG-SH to Au surfaces via the thiol group. To achieve

this, the samples were incubated in mPEG-SH containing solution at the desired

concentration immediately after cleaning. For high-concentration PEG solutions

(>10mg/ml in H2O and PBS), a drop of ∼60 µl PEG solution was placed on top

of the nanostructures and left to incubate in darkness at room temperature. For

lower concentrations (solutions containing Na2SO4), the samples were immersed

in the PEG solutions in a beaker and incubated in darkness at room temperature

while gently shaking the beaker. Incubation was carried out for 14 – 24 h, after
1RCA1 and its constituent solvents are hazardous. Adhere to the appropriate safety measures

when preparing and handling RCA1.
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which the samples were ultrasonicated for 10 s, rinsed in DI water and dried in a

stream of N2 gas. The samples were then used immediately for measurements.

2.2.3 PEG characterization by dynamic light scattering

Dynamic Light Scattering (DLS) measurements were performed using a Zetasizer

Nano instrument (Malvern, UK). To measure the 20 kDa mPEG-SH hydrodynamic

size in good solvent, 5mg/ml was dissolved in PBS. To measure the PEG size at

cloud point conditions, 0.13mg/ml mPEG-SH was dissolved in PBS with 0.9M

Na2SO4. The samples were centrifuged at 16 000 × g for 15min just before the

measurement to degas them and to precipitate any dust or aggregate particles.

Three measurements per condition were performed and averaged, each measure-

ment consisting of 10 runs with 50 s acquisition time each. The measurements were

done at 25 ◦C, the input parameters into the analysis were viscosity 0.9074 cP and

refractive index 1.332 (values for PBS). The hydrodynamic size was calculated in

a standard manner by the DLS machine manufacturer’s software from the intens-

ity distribution fit to the correlation curves, while making sure that the number

distribution fit showed >99% of molecular species being at said size.

2.2.4 Surface plasmon resonance (SPR)

Surface Plasmon Resonance (SPR) measurements were performed at 25 ◦C with

a Biacore T100 instrument (GE Healthcare Life Sciences). “SIA Kit Au” (GE

Healthcare) bare Au SPR sensor chips were used for measurements. Sensor sur-

faces were cleaned (see section Sample cleaning above) and mounted on the SPR

chip holder for immediate usage. The PBS running buffer was filtered and de-

gassed using filterware of 0.2 µm pore size. All samples used in SPR measurements

were centrifuged at 16 000× g for 15min just before loading the samples into the

machine to degas them and to precipitate any dust or aggregate particles.
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Grafting density measurements

For PEG grafting density measurements, the sensor surface was incubated with

the desired concentration and solvent at a flow rate of 5 µl/min for 30min. After

incubation, PBS was injected into the flow cell and the amount of bound PEG

was measured (in Resonance Units, RU). From the RU signal, the average distance

between two PEG grafting sites can be calculated with the following equation [86,

87]:

gSPR =

√
1000 ·MW · 1021

NA · RU
(2.1)

where gSPR is the average grafting distance in nm, MW is the PEG molecular

weight in Da, and NA the Avogadro number. This formula uses the relation

1000 RU = 1ng/mm2.

Brush height measurements

SPR was used to measure the brush height of the surface-grafted PEG brush by

using non-interacting molecules as probes of layer height as described by Schoch

and Lim [86]. One flow cell of the SPR machine was used as a reference cell and

blocked with (ethylene glycol)3−undecane−thiol (EG3−U−SH; chemical formula

HO−(CH2CH2O)3−(CH2)11−SH, Nanoscience). EG3−U−SH was prepared by

diluting the stock solution to 10mM with ethanol, and further diluting to 1mM

with PBS. The reference cell was incubated with EG3−U−SH for 30min at a flow

rate of 2 µl/min. mPEG-SH was grafted to three other cells, as described above.

After incubation of reference and sample cells, Bovine Serum Albumin (BSA) was

injected into all cells as non-interacting probes. Each BSA injection lasted for

30 s at a flow rate of 10 µl/min, with 1min PBS flow in between BSA injections.

First, 5 sequential BSA injections were performed to equilibrate the system, then

3 injections to measure the height of the molecular surface layer.
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From the SPR response of the BSA injections, the brush height in the main cell,

dsample, can be calculated [86]:

dsample =
ld
2
ln

(
Rref

Rsample

)
+ dref (2.2)

where ld is the surface plasmon wave decay length into the sample medium, Rref is

the SPR response of the reference cell during BSA injection, Rsample the response

in the sample cell, and dref is the layer height in the reference cell. Following

the calculations described in Schoch and Lim [86], we used ld = 292 nm and

dref = 2nm. Fig. 2.1 shows in a schematic way how the SPR height measurement

is performed and how the non-interacting BSA molecules modulate the SPR signal

from which the molecular layer height can then be calculated.

Figure 2.1: (a) Schematic measurement procedure of a polymer layer height
(d2) using SPR with a sample and a reference cell. (b) SPR signal (exponen-
tially decaying evanescent wave above the Au surface) arising from injected BSA
molecules (red area) over the reference and sample cells, from which the brush
height (blue area) in the sample cell can be calculated. Reprinted with per-
mission from Langmuir, 29, R. L. Schoch and R. Y. H. Lim, ’Non-interacting
molecules as innate structural probes in surface plasmon resonance’, 4068-4076,

Copyright (2013) American Chemical Society [86]
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2.2.5 Atomic force microscopy (AFM)

All AFM measurements were done on a Bioscope Catalyst or Bioscope 2 AFM

with a Nanoscope V controller, running the Nanoscope version 8 (Catalyst) or

7 (Bioscope 2) control and acquisition software (Bruker, USA). Technical differ-

ences between the two AFM systems were negligible regarding our measurements.

The AFMs were part of a combined setup integrated with a commercial optical

fluorescence (TIRF) microscope (see section Fluorescence measurements, p. 38).

All experiments were performed in PBS unless otherwise noted. Samples were

mounted on the AFM immediately after cleaning (see section Nanostructure func-

tionalization, p. 22). The cantilever was mounted on the AFM and equilibrated

together with the sample for ca. 1 h before use. Fig. 2.2 shows a schematic of the

combined AFM and TIRF setup probing an Au nanoring in buffer.

Figure 2.2: Schematic of the combined AFM and TIRF setup probing a Au
nanoring in buffer.

Cantilever calibration

In order to accurately measure interaction forces with the AFM, careful calibration

of the cantilever is important. The cantilever can be regarded as a spring obeying
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Hooke’s law, and so its deflection is described by

F = k · δ (2.3)

where F is the normal force acting on the cantilever, δ is the vertical displacement

of the cantilever from its equilibrium position, and k is the cantilever spring con-

stant. As the cantilever is bent by an applied force acting on the tip at the end

of the cantilever, the laser light reflection angle changes and the laser spot moves

across the position-sensitive detector (PSD). We introduce a calibration factor,

the deflection sensitivity χ,

χ = δ/∆U (2.4)

which relates the voltage change in the PSD signal (∆U) to the corresponding

linear displacement δ of the cantilever tip. By combining this with Eq. 2.3 we

obtain an expression for the force acting on the cantilever which can be calculated

from the change of the vertical displacement voltage signal:

F = k · χ ·∆U . (2.5)

Accurate force values can be obtained once χ and k are calibrated.

To calibrate the deflection sensitivity χ, the cantilever was ramped on the hard

unfunctionalized glass surface of a sample and the voltage signal vs Z piezo move-

ment, U(Z), was recorded. As the tip cannot penetrate into the glass, any move-

ment of the (calibrated) Z piezo downwards must correspond to a deflection of the

cantilever upwards by the same distance. χ is calibrated by fitting this linear part

(when the cantilever is in contact with the glass) of U(Z) with a linear fit. The

inverse slope of this fit is then

∆Z/∆U = δ/∆U = χ . (2.6)

The deflection sensitivity was measured and averaged from at least three differ-

ent positions ∼1 µm apart, and was re-calibrated any time a new cantilever was

mounted or the laser spot was moved relative to the cantilever.
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The cantilever spring constant, k, was calibrated using the thermal tune method

[88, 89]. This well-established method of calibration was provided by the controller

and software of our AFMs. In short, the thermal tune method uses the approxim-

ation of the cantilever as an ideal harmonic oscillator. Then, by the equipartition

theorem, ⟨
1

2
mω2

0δ
2

⟩
=

1

2
kBT (2.7)

where the brackets denote the time averaged value, m is the oscillator mass, ω0 =√
k/m, kB the Boltzmann constant, and T the temperature. We can simplify this

equation to

k =
kBT

⟨δ2⟩
. (2.8)

⟨δ2⟩ can be found by measuring the noise spectrum of a free cantilever, performing

a power spectral density analysis on the data and integrating the area under the

first resonant peak in the spectrum (as higher resonances don’t contribute much to

the cantilever energy). The integrated power equals the time averaged cantilever

displacement ⟨δ2⟩ and can be used to calculate the spring constant from Eq. 2.8.

Additional correction factors need to be added to account for deviations from the

ideal harmonic oscillator picture [89]. In our experiments, the spring constant was

calibrated once for each new cantilever, before starting the measurements.

Cantilevers

Biolever cantilevers (OBL type B, Bruker) were used for all measurements (for

exceptions see below). OBL(B) are rectangular Si3N4 cantilevers, coated with Au

on all sides, with length, width and thickness of ∼ 100µm, ∼30 µm and ∼0.18 µm

(manufacturer’s specifications). The tip is a vertically bisected pyramid with

∼7µm height and 45° side wall angles, with a sharpened apex (Fig. 2.3a and

b). The tip apex radius was measured by high-magnification scanning electron

microscopy of used and unused cantilevers. To measure the tip radius, a circle

was fitted manually to the very apex of a tip in SEM images, and the best fitting

circle’s radius was determined to be the tip apex radius. For OBL, the nominal

radius is given as ∼30 nm by the manufacturer. SEM measurements confirmed
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the tip radius to be in the range of 25 – 40 nm, with some tips having radii as

low as 10 nm. Based on the SEM images of used cantilevers taken after the AFM

measurements, a slight blunting was visible, but inspection of topographical AFM

images confirms that the bulk of the measurements was performed with tip radii

≤40 nm. The spring constant was on average k = 8.1 pN/nm± 1.5 pN/nm.

HYDRA2R-100NGG cantilevers (Applied Nanostructures, USA) were used in

chapter 4 to compare the measurements to OBL. The HYDRA is as well a Si3N4

cantilever, coated with Au on all sides (length, width, and thickness of ∼ 100µm,

∼35 µm and ∼0.2 µm, tip height ∼5 µm; Fig. 2.3c). Tip radii determined from

SEM images were 15 – 20 nm, the spring constant was k = 11.2 pN/nm± 0.8 pN/nm.

RTESP cantilevers (Bruker) were used to obtain topographic images of nanostruc-

tures in tapping mode in air.

Figure 2.3: Scanning electron micrographs of AFM tips. (a) OBL tip.
(b) OBL tip apex. (c) HYDRA tip apex.

Force volume measurements

AFM force curves were recorded in force volume (FV) mode. FV maps with

32× 32 force curves per map were recorded over randomly selected individual

nanorings and nanoholes. FV maps were obtained over an area of 300 nm× 300 nm

for nanoholes, and 500 nm× 500 nm for nanorings. To avoid tip contamination or

damage, great care was taken to minimize unnecessary scanning of the AFM tip

on the surface before or between FV acquisitions. Unless otherwise noted, force

curves were taken with tip approach velocities of ∼2 – 5 µm/s. Force triggering

was used to limit the maximal applied force during ramping to 500 – 700 pN.
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To improve statistics for the loading rate experiments in chapter 4, the point-and-

shoot feature of the AFM software was used to take large amount of force curves

at specific locations over a nanoring (i.e., over the central hole, over the ring Au

surface). Before applying point-and-shoot, an image of the nanoring was taken in

contact mode at minimal force (<50 pN) in XY closed loop mode, to determine

the exact position where the following force curves were recorded relative to the

nanoring. In order to achieve various tip velocities between 0.4 – 29 µm/s, the

cantilever was ramped at 0.6 – 4.9Hz with ramp sizes between 300 nm and 3 µm.

The movement of the Z piezo was measured using the internal “height sensor”

provided by the AFM hardware to avoid introducing piezo nonlinearities into the

force curve data.

2.2.6 AFM data analysis

Cross-sectional height profiles were extracted from AFM topographic images with

Gwyddion2 [90] and averaged to obtain the height of the non-PEGylated nanor-

ings. FV topography maps were corrected after measurement by linearly fitting

the glass part (i.e. excluding the nanostructures) of each pixel row and subtracting

the whole row by the fit, thereby levelling the data relative to a known surface

(the plain glass). FV maps in Figs. 3.9 and 4.7 were 3× 3 median filtered to

reduce visual pixel noise. Other FV maps were kept unfiltered because the exact

pixel values were deemed useful for visual analysis of the maps. Force volume

maps and point-and-shoot force curve datasets were analysed by custom-written

software using IGOR Pro (WaveMetrics, USA). Appendix B provides a manual

for the operation of the custom software. The algorithms used to analyse each

recorded force curve are described in the next sections.
2http://gwyddion.net

http:// gwyddion.net
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Raw force curve transformation

Raw curves with deflection voltages vs Z piezo position were read from binary

Nanoscope files. The non-contact part of the force curves was fitted with a linear

equation and the fit subtracted from the curve. The raw recorded voltages were

converted into forces by multiplying them with the calibrated deflection sensit-

ivity χ and the spring constant k. The force vs Z piezo position curves (F (Z))

were transformed into force vs tip-sample distance curves (F (d′)) by adding the

cantilever deflection at each point to the piezo height:

d′ = Z + δ . (2.9)

This way the force acting on the cantilever is plotted against the real distance of

the tip from the sample surface (the Z position decreases as the tip moves closer

to the surface, while the deflection increases as the cantilever is bent upwards

by the acting force). A hard surface is represented by a vertical force curve (i.e.

infinite slope, termed “hard-wall”) and softer surfaces have smaller slopes. Finally

the force curve is shifted horizontally by the position of the hard-wall contact, d′0,

so that the final transformed curve is F (d) = 0 at the hard-wall.

d = d′ − d′0

= Z + δ − d′0 .
(2.10)

d′0 was determined by averaging the tip-sample distances of the hard-wall part of

the curve. Fig. 2.4 shows the transformation of two schematic force curves above

surfaces of different stiffnesses.

Brush height calculation

Unless noted otherwise, we use a noise-based method for measuring the brush

height by AFM. The brush height (i.e., initial contact point of the tip with the

brush, relative to the hard surface beneath) was calculated from approach force

curves by first binomially smoothing the curve, and taking the distance at which
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Figure 2.4: Transformation of the raw sensor voltage vs Z piezo movement
curve (left) to a force vs tip-sample distance curve (right). Curves (1) and (2)
correspond schematically to ramping over a bare hard surface (e.g. glass) and

over a softer layer, respectively.

the force crosses twice the magnitude of the smoothed baseline (non-contact) force

noise. Smoothing was carried out to prevent individual outliers or noise spikes from

influencing the brush height calculation. This brush height calculation algorithm

robustly assigns a brush height for each analysed force curve, regardless of the

exact shape of the curve, but underestimates the real brush height somewhat,

since a finite force (estimated ∼20 pN) has to be already applied to the brush

before detection of the height (see results in chapter 3 for details).

In chapter 5, the brush height was determined by a different algorithm using an

exponentially decaying curve,

Ffit(d) = Ae−τd . (2.11)

Eq. 2.11 was fitted to the steric repulsive region of the approach force curve with A

and τ as free parameters, and the brush contact distance was defined at the point

Ffit = 1pN. Not all force curves could be fitted well by an exponential equation.

Only curves with a good fit were considered in the analysis. This fit algorithm

results in slightly larger (i.e. possibly more realistic) brush height values than the

noise-based method used otherwise in this thesis, but is less robust in regard to

different force curve shapes.
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Brush stiffness calculation

To calculate the stiffness of the brush, two different methods were used. The linear

stiffness, s [N/m], was defined as:

s =
∆F

∆Z
=

150 pN− 50 pN

Z(150 pN)− Z(50 pN)
(2.12)

where Z(F ) is the Z piezo position at force F of the approach curve. 50 pN

and 150 pN were chosen as the limits because these forces are in the sterically

repulsive interaction regime between tip and brush and so the calculated stiffness

represents the brush properties (Fig. 2.5a). A curve recorded on a hard substrate

has a stiffness equal to the cantilever spring constant, shard = k. Values above

shard are not possible physically, values below signify softer material.

A second measure of stiffness, the Young’s modulus, was obtained by applying

the Hertzian contact model of a sphere indenting an elastic half-space [91] to the

approach force curves. The general Hertz force equation is of the form

F (d) = A(d0 − d)3/2 (2.13)

where F (d) is the force at separation distance d, A is a proportionality constant,

and d0 is the contact point (i.e. zero indentation, in our case the brush height).

The Hertz model for a sphere indenting an elastic half-space yields the following

form for A:

A =
4

3

1

(1− ν2)

√
RE (2.14)

where ν is the sample Poisson number (fixed to 0.3), R the indenting tip radius

(fixed to 40 nm), and E the Young’s modulus. It was not possible to fit the full

repulsive part of the force curves with a single fit. Instead, when splitting the

curves in two regions and fitting each region with its Young’s modulus, reasonable

fits were achieved, with two separate Young’s moduli, E1 and E2, for each force

curve (Fig. 2.5b). Both parts of the force curve were fit simultaneously. Formally,
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the fitting equation is expressed as

F (d) =
4

3

1

(1− ν2)

√
R ·

⎧⎪⎨⎪⎩E1 (d01 − d)3/2 , for d > dsplit

E2 (d02 − d)3/2 , for d ≤ dsplit .

(2.15)

The subscripts 1 and 2 denote fit parameters valid in region 1 and 2, respectively.

The splitting distance dsplit was regarded as a free parameter as well. Fig. 2.5

shows an example force curve analysed with the two described stiffness extraction

methods.

Figure 2.5: Two different stiffness measurements performed on a force curve
(red dots = data). (a) Extracting the linear stiffness from the Z piezo movement
between 50 and 150 pN. (b) Young’s moduli E1 and E2 extracted from fits (blue
line) of the Hertz contact model to the force curve split in two separate regions.

Escape transition determination

For the determination of escape transition-like effects (chapter 4), each approach

force curve over a nanoring was manually classified as either containing a sudden

jump in force or not. Curves where this could not be determined unambiguously

were excluded from classification (∼15% of curves over a ring, especially at the

very edge of the rings due to spurious interactions of the tip with the ring walls).

The classified curves were binned according to the lateral distance of their acquis-

ition position from the ring centre and the number of curves containing a jump

was normalized to the total number of classified curves for each bin. Typically,

of the 1024 curves in each map around 500 were recorded over the ring, the rest

being over the glass substrate and hence not of interest.
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2.2.7 Scanning electron microscopy (SEM)

Lateral sizes of nanostructures (nanorings and nanoholes), as well as AFM tip di-

mensions, were measured by imaging with the Hitachi S-4800 field emission scan-

ning electron microscope (Hitachi, Japan). Nanostructure samples were cleaned

and afterwards directly imaged by SEM without additional pre-treatment. AFM

cantilevers were taken directly out of the storage box (for imaging new tips) or

soaked in DI H2O for ∼18 h and left to dry for several days in an enclosed con-

tainer before imaging by SEM (for tips used in experiments). The cantilevers

were attached to SEM sample holders by adhesive carbon conductive tapes, and

conductive silver was applied over the cantilever chip substrate (not touching the

cantilever itself) to enhance the conductive connection between cantilever and

SEM sample holder.

2.2.8 Anti-PEG characterization

Immunoblots

To check the specificity of anti-PEG antibodies against PEG on a standard assay,

immunoblotting was performed. 20 kDa mPEG-SH at different concentrations

(1 µl per dot) was applied on dry nitrocellulose membranes (0.45 µm pore size,

Whatman, UK). The membranes were blocked with 5% skim milk and incubated

with 50 nM anti-PEG and unspecific control antibodies in PBS-Tween20 (0.1%

wt./vol.) for 2 h at room temperature and washed afterwards with PBS-Tween20.

Secondary antibody incubation was performed with alkaline phosphatase-conjuga-

ted goat anti-mouse-IgG (1 : 5000 dilution; A3562, Sigma-Aldrich) for 1 h. After

washing, CDP-Star chemiluminescent substrate (Applied Biosystems, USA) was

added onto the membranes for 5min. The membranes were exposed on medical

x-ray films (Fujifilm, Japan).
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Anti-PEG to PEG binding constants

Custom SPR sensor substrates were prepared for measuring the binding affinity of

Anti-PEG towards a surface-attached PEG brush. Glass slides (10mm×12mm×

0.17mm, Karl Hecht, Germany) were immersed into freshly prepared Piranha

solution3 (3 : 1 H2SO4 : H2O2) and subsequently sonicated in DI water followed

by high purity ethanol and dried under a N2 gas stream. Next, the glass slides were

cleaned for 30min in UV-ozone before thermal evaporation of 2 nm Ti and 50 nm

Au layers onto the glass slides in vacuum. The substrates were then stored in an

argon atmosphere after removal from the vacuum deposition chamber until usage.

SPR measurements were performed using a BIAlite system (GE Healthcare Life

Sciences, formerly Biacore) consisting of two flow cells. All reagents used in the

measurements were dissolved in PBS that was filtered through 0.2 µm membrane

pores (Sarstedt). The samples were then spun in a centrifuge for degassing.

The bare gold surfaces were incubated with 0.5mM 20 kDa mPEG-SH for 25min

in flow cell 2. Flow cell 1 was passivated with 1mM 6-mercaptohexanol (6-MH)

(Fluka) in PBS for 5min and used as a reference. After mPEG-SH incubation,

an additional 1mM 6-MH was added for 3min to both flow cells at a flow rate of

2 µl/min to block any remaining Au surfaces left exposed. Fluorescently-labelled

anti-PEG (E11) was then applied at different concentrations (0.08 nM, 0.156 nM,

0.3125 nM, 0.625 nM, 1.25 nM and 2.5 nM) for 33min at 3 µl/min flow rate each.

The PBS running buffer was filtered and degassed with 0.2 µm pore size filterware

(Nalgene) before connecting to the SPR instrument. The SPR measurements were

performed at 25 ◦C.
3Piranha solution is very dangerous. Adhere to the appropriate safety measures when pre-

paring and handling it.
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2.2.9 Antibody incubation on nanorings

For the antibody experiments in chapter 5, anti-PEG, specific IgG, and/or un-

specific IgG antibodies (for an explanation of the terms, see chapter 5) were pre-

incubated together with either 1% BSA or rabbit serum at their final concentra-

tions for at least 1 h prior to use. BSA was used in all PBS-based experiments

to reduce the unspecific adsorption of antibodies (so as to reduce background

fluorescence) on the glass substrate with the following exceptions: (i) AFM force

measurements in the absence of antibodies (i.e., PBS; Fig. 5.4), (ii) after NaOH

washing (Fig. 5.4), and (iii) the fouling control (Fig. 5.8a). BSA was not used in the

blood serum experiments given that rabbit serum albumin was already present.

Solutions were pipetted on individual samples (pre-incubated for 15min in 1%

BSA or serum) and incubated for 30min in darkness. Fluorescence and AFM

measurements were performed without washing the sample or replacing/diluting

the solution.

After the first incubation was performed as above, the reversibility data in PBS

(Fig. 5.3f) were obtained by applying 500mM NaOH (pH 13.7) in deionized water

to the sample surface for 30min in darkness, after which the sample was rinsed

with deionized water. This rather harsh condition affected the quantitative re-

versibility of anti-PEG binding over subsequent targeting–wash cycles (Fig. 5.3f),

but was important at the time to ensure the complete removal of prebound an-

tibodies. Over the course of our later experiments in blood serum (Fig. 5.7), we

subsequently found that 10mM NaOH (pH 12) was the optimal condition to clean

and regenerate the PEG, all other aspects of the cleaning protocol remaining the

same. Therefore, the extent of PEG regeneration can vary with NaOH conditions.

For time-lapse measurements, the sample surface was pre-incubated as above.

Fluorescence images were taken before adding antibodies and directly after addi-

tion.
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2.2.10 Fluorescence measurements

Total internal reflection fluorescence (TIRF) setup

Fluorescence images were obtained with a 1.46 NA TIRF 100× oil immersion

objective (Leica Microsystems, Germany) with an additional tube magnification

of 1.6× in a Leica DMI6000 B inverted microscope integrated together with the

AFM system. The fluorescence microscope was fitted with a TIRF module (Leica

AM TIRF MC) using three solid-state lasers with wavelengths of 488 nm, 561 nm

and 635 nm. Table 2.1 lists the band pass filter cubes used by the different laser

lines. The sample was automatically illuminated at the correct angle to achieve

an evanescent wave decay length of 90 nm in TIRF mode, and wide-field laser

illumination of the sample in epifluorescence mode. Images were taken with an

EMCCD camera (C9100-02, Hamamatsu, Japan) in 14-bit mode with a resulting

pixel size of 50 nm/pixel. Data sets used for the analysis of fluorescence intensity

were collected under the same parameters and constant EM gain. In Figs. 5.3a–

d, 5.7a, and 5.8, the exposure times for Alexa488, Cy3, and Cy5 were set at

2 s, 600ms, and 3 s with constant EM gain, respectively. In Fig. 5.8c, the Cy3

channel was exposed for 300ms. During time-lapse imaging, for each time point,

the sample surface was manually focused before taking an image.

Table 2.1: Excitation and emission bandpass filter cubes
used for TIRF imaging

Filter pass bands

Laser line (fluorophore) excitation (nm) emission (nm)

488 nm (Alexa Fluor 488) 490± 10 525± 25

561 nm (Cy3) 560± 5 610± 33

635 nm (Cy5) 635± 5 720± 30
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Fluorescence Data Analysis

Fluorescence images were rotated, cropped, and pseudocolored using ImageJ [92].

Brightness and contrast values were adjusted for best visual clarity. For Figs. 5.3a–

d, 5.7a, and 5.8, automatic background subtraction was performed as provided by

ImageJ (sliding paraboloid method, radius 100 pixels).

Quantitative fluorescence intensity analysis in Figs. 5.3 and 5.7 was performed

identically for each condition with custom macros in ImageJ (see appendix B for a

description of the macros). 10× 10 nanorings within the array were selected for in-

tensity analysis. First, individual nanoring intensities were obtained by averaging

over all pixels enclosed within a diameter of 16 pixels. Next, the background in-

tensity was averaged over an area of 100 pixels× 500 pixels outside the ring array.

The mean fluorescence intensity was calculated by averaging over the 100 indi-

vidual nanoring intensities and dividing by the background intensity. We found

that the mean fluorescence intensities obtained in the absence of antibodies gave

values above background. This was caused by small autofluorescence effects at the

nanorings, which we measured to be 2% above the background for Alexa488 and

Cy3 and 6% above the background for Cy5. Nevertheless, we accounted for these

effects by subtracting the non-zero values from all mean fluorescence intensities

on a per channel basis.

Subsequently, the mean intensities from Alexa488 and Cy3 were scaled to have

the same value at the first targeting measurement with the same scaling factor

being applied to each respective fluorescence channel throughout all the targeting

and washing steps. The calculated fluorescence intensities were additionally offset

so that background (autofluorescence subtracted) equals unity. In this way, the

relative intensities remained self-consistent and allowed comparisons to be made

within individual experimental sets. Histograms were calculated from these relat-

ive intensities with a bin width of 0.1 fluorescence units.

For time-lapse fluorescence analysis, a single average fluorescence intensity value

was extracted for each time point and plotted against time after the start of
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the incubation. The intensity was obtained by averaging fluorescence intensities

within a diameter of 16 pixels over 100 rings. Each kinetic trace was fitted with

the equation

I(t) = A
(
1− e−kobst

)
(2.16)

with I(t) being the fluorescence intensity at time t, A being the equilibrium in-

tensity at infinite time, and kobs being the observed kinetic rate constant. Each

trace was normalized by A.
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Characterization of Poly(ethylene

glycol) Grafted to Au Surfaces and

Nanostructures

Poly(ethylene glycol) (PEG) grafted to Au surfaces forms the bulk of the samples

in this thesis. It is thus important to accurately characterize the grafting condi-

tions and the resulting polymer morphology on the surfaces. In this chapter we

first characterize the PEG coil size in solution. Afterwards, systematic studies of

PEG layer formation on Au surfaces are performed. By using surface plasmon res-

onance (SPR) we can measure the density of PEG chains covalently grafted to the

Au surface from solution under various grafting conditions and for different PEG

chain lengths (i.e. chain molecular weights). We apply a recently developed SPR

technique for measuring molecular layer heights and show that PEG is forming a

polymer brush on the surface under our chosen grafting conditions. Additionally

we show how different grafting conditions lead to different final brush heights.

In this chapter we introduce our main experimental system of Au nanorings fabric-

ated on microscopy glass slides. The functionalization of the nanorings with PEG

(PEGylation) creates unique, “real” 3D nanopatterned polymer brush systems

(as opposed to nanopatterning on flat surfaces) with different local geometries.

41
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Atomic force microscopy (AFM) with its nanometre-sharp probe is well suited to

measured the PEG brush morphology and other nanomechanical and dynamical

properties on the nanorings. We compare AFM measurements on the nanorings

to our SPR data for flat surfaces, and to different theoretical models of brush

compression by an obstacle.

Finally, to show that our AFM-based approach is valid and useful for different kind

of polymer-brush functionalized nanoscale structures we perform AFM measure-

ments on Au nanoholes with a slightly differing geometry. Here we demonstrate

how differently sized PEG chains grafted to the nanostructures can have a pro-

found effect on the access of nanoscale particles to the inner volume of the nano-

holes.

3.1 PEG chain size in solution

The size of polymer coils in solution influences the grafting density on the surface

in a “grafting-to” approach [93]. The polymer coil size in a solvent decreases as

the conditions change from good solubility to marginal solvation at the “cloud

point” (at which precipitates start to form, thus clouding the solution). In our

experiments, we use H2O and phosphate-buffered saline (PBS) as examples of

good solvents for PEG. Adding Na2SO4 to the solvent drives the solution towards

the cloud point. In the experiments described in this thesis we take advantage of

the different resulting grafting densities when incubating our samples at different

salt (Na2SO4) and PEG concentrations.

First, to establish the PEG coil size in good solvent and at cloud point, we per-

formed dynamic light scattering measurements (DLS; Methods section 2.2.3) of

20 kDa PEG chains at good solvent conditions (PBS, 5mg/ml PEG concentration)

and just below cloud point (0.9M Na2SO4 in PBS, 0.13mg/ml PEG concentra-

tion). Figure 3.1 shows the correlation function and number fraction distribution

of 20 kDa PEG in good solvent, and Figure 3.2 shows the data for the cloud point

conditions. In both cases we have a good fit to the correlation curves from which
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the coil sizes can be extracted. The number fraction distribution shows a single

peak in each case, indicating that >99% of coils by number have sizes within

this peak. The deviation of the correlation curve fit at large time scales indicates

some possible formation of aggregates or precipitates, which however do not in-

terfere with the measurements. The actual size of the PEG coils was extracted

from the intensity fraction distribution, as this is more accurate. The measured

hydrodynamic sizes were RH,PBS = 9.3 nm± 2.4 nm for the good solvent case, and

RH,CP = 0.69 nm± 0.07 nm at cloud point. The hydrodynamic size is the dia-

meter of a solid sphere with same diffusion times as the measured particles. For

the linear polymer PEG it corresponds to the characteristic polymer coil size (i.e.

Flory length RF ). The data indicate a complete collapse of the coils at cloud

point to a fraction of their well-solvated size. It is thus reasonable to assume that

grafting to a surface at cloud point leads to a much denser polymer layer at the

surface because the already adsorbed polymer chains exert a much smaller steric

hindrance effect to new chains adsorbing from the solution.

Figure 3.1: DLS measurement of 20 kDa PEG, 5mg/ml in PBS (good solvent
conditions). Correlation function data (triangles) and fit (solid line). Inset:

Particle diameter distribution (number fraction).

3.2 PEG grafting density

To have an accurate understanding of the grafting of methoxy-PEG-thiol (mPEG-

SH) to gold surfaces, we used surface plasmon resonance (SPR) to assess the final
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Figure 3.2: DLS measurement of 20 kDa PEG, 0.13mg/ml with 0.9M Na2SO4
in PBS (cloud point conditions). Correlation function data (triangles) and fit

(solid line). Inset: Particle diameter distribution (number fraction).

grafting density for different PEG chain sizes and grafting solutions. We performed

SPR measurements with 5 kDa, 10 kDa and 20 kDa mPEG-SH on bare Au sensor

chips, both at good solvent conditions and at cloud point, as well as at various

conditions in between. The thiol end group forms a stable covalent bond with the

Au surface of the sensor chip. The grafting densities calculated from the adsorbed

mass signal (Methods section 2.2.4) proved to be very reproducible, varying less

than 3% between independently prepared samples. Figure 3.3 shows an example

sensogram with 20 kDa PEG grafted under three different conditions. Grafting

in good solvent (PBS; 40mg/ml PEG) results in much less adsorbed mass on

the surface than near the cloud point in 0.9M Na2SO4 (0.1mg/ml PEG), even

though the PEG concentration in solution is much lower in the latter case. The

use of very low PEG concentration (2.5 µg/ml) in 0.6M Na2SO4 results in an

intermediate amount of PEG at the surface.

Table 3.1 summarizes the grafting densities, σ (in number of chains per unit area),

and average grafting distances, g = σ−1/2, for PEG at various incubation condi-

tions. Figure 3.4 shows an overview of grafting distances plotted against the PEG

concentration in Na2SO4-containing solvent. For each PEG molecular weight there

is a maximum achievable grafting density, above which higher PEG concentrations

in solution do not yield an increased adsorption to the surface. This “plateau” is

reached already far below the cloud point PEG concentration (right-most point
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Figure 3.3: Examples of 20 kDa mPEG-SH surface immobilization SPR senso-
grams (RU = SPR response units). From 500 – 2300 s (i.e. for 30min), PEG was
injected at the concentrations and in the solvents indicated. Before and after,
PBS was flowed over the sensor surface. The surface density of attached PEG
was read out from the response unit difference (∆RU, which is proportional to
the adsorbed mass) to the baseline. The resulting average grafting distances
between adjacent polymer chains were g0.9M = 2.1 nm, g0.6M = 2.8 nm, and

gPBS = 3.9 nm.

for each condition in Figure 3.4). Larger grafting distances can be achieved by

using appropriately low PEG incubation concentrations. As expected, shorter

PEG chains allow for higher grafting densities under otherwise identical grafting

conditions. For 20 kDa PEG we show that using 0.9M instead of 0.6M Na2SO4

yields a slightly higher grafting density (i.e. lower grafting distance).

Figure 3.4: Average PEG surface grafting distances from SPR measurements.
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Table 3.1: Grafting densities (σ) and corresponding average grafting
distances (g = σ−1/2) of mPEG-SH (molecular weight MW ) grafted at

concentration c in the given solvent to Au SPR chip surfaces.

MW c solvent σ g

(kDa) (mg/ml) (chains/nm2) (nm)

20 40 H2O 0.066 3.9

40 PBS 0.059 4.1

0.15a 0.9M Na2SO4 0.21 2.2

0.3a 0.7M Na2SO4 0.17 2.4

9.0a 0.6M Na2SO4 0.13 2.8

0.001 0.6M Na2SO4 0.069 3.8

10 20 PBS 0.21 2.2

0.36a 0.9M Na2SO4 0.39 1.6

0.001 0.9M Na2SO4 0.15 2.6

5 10 PBS 0.31 1.8

0.83a 0.9M Na2SO4 0.59 1.3

0.001 0.9M Na2SO4 0.25 2.0

a cloud point conditions.

3.3 PEG polymer brush formation

As can be seen from Table 3.1 and Figure 3.4, most grafting conditions investigated

here lead to an average grafting distance between chains that is smaller than the

hydrodynamic size in good solvent (for 20 kDa PEG, RH,PBS = 9.3 nm). This

means that the chains cannot remain in a random-coiled mushroom state and

must assume a brush morphology on the surface. We investigated this using a

recently developed SPR-based method [86, 94] employing non-interacting particles

to directly probe the height of a molecular layer on the surface. This method

bypasses refractive index uncertainties which usually compromise the reliability of

height measurements in SPR (Methods section 2.2.4).

After grafting 20 kDa PEG to the sensor chip Au surface at different conditions,

the resulting layer height in PBS solvent was measured. For this, non-interacting
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Table 3.2: Grafting distances (g) and resulting polymer brush heights
(h) for 20 kDa PEG grafted to the Au SPR sensor surface at concentra-
tion c, in the indicated solvent. The brush height was measured in PBS.
After a wash with NaOH to remove weakly bound polymer chains, the

brush height was measured again (hwash).

c solvent g h hwash

(mg/ml) (nm) (nm) (nm)

40 PBS 4.1 19 17

0.001 0.6M Na2SO4 3.2 27 26

0.1a 0.9M Na2SO4 2.1 39 33

a cloud point conditions.

molecules were flowed over the grafted PEG layer, in our case the protein bovine

serum albumin (BSA), which has been shown not to bind to PEG brushes [95].

Comparing the SPR signal of the BSA probe molecules over the PEG layer to the

signal over a passivated reference surface on the same chip allows the calculation

of the PEG layer height. Figure 3.5 shows an example sensogram with a standard

PEG immobilization signal, followed by three short BSA injections to probe the

layer height. Table 3.2 lists the measured heights in PBS solvent for three chosen

grafting conditions. For all conditions, the measured heights are larger than the

hydrodynamic coil size in solution, which means that the PEG indeed forms a

brush on the surface.

Figure 3.5: SPR sensogram with the PEG immobilization signal (40mg/ml
of 20 kDa PEG in PBS), and afterwards three BSA injections to probe the

immobilized layer height.
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As expected from polymer brush theory [6], a smaller grafting density yields a

shorter brush height. The scaling of polymer brush height h as a function of its

surface density σ follows the power law

h ∼ σn (3.1)

with n being between 0.33 and 0.6 for moderate to high brush densities in a

good solvent [47]. For our measurements the best fit is n ≈ 0.5, which is in

good agreement with published results [47]. The measurements also show that

although the grafting at cloud point conditions happens with collapsed PEG coils,

the chains re-extend to form a brush after switching to good solvent conditions.

To check the stability and covalent bonding of the PEG-thiols to the Au surface,

after measuring the initial brush height with the BSA method we flowed 0.2M

NaOH over the PEG brushes for 300 s. This treatment removes any weakly non-

covalently bound species from the surface. Immediately afterwards we re-measured

the height in PBS. The NaOH wash lead to a reduction in brush height of 5 – 15%

(Table 3.2). Due to signal drift in the system we could not accurately measure

the grafting distance after NaOH wash, but from our fitted power-law exponent

(Eq. 3.1) we see that the calculated grafting distance increases by 5 – 15% as well.

This means that the predominant amount of PEG chains was covalently bound to

the surface, forming a stable polymer brush.

3.4 PEG-functionalized Au nanorings

To investigate the behaviour of PEG brushes confined to 3D nanoscale objects,

we use Au nanorings as our main experimental system in this thesis. Arrays of

20× 20 Au nanorings were fabricated on microscopy glass slides (Methods sec-

tion 2.1.1), with each nanoring having the following dimensions: inner diameter

∼ 100 nm, outer diameter ∼ 400 nm (measured by SEM), height ∼30 nm (meas-

ured by AFM). Figure 3.6 shows optical and SEM images of a nanoring array. The
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nanorings were functionalized with 20 kDa PEG at the different conditions invest-

igated by SPR (Methods section 2.2.2), and measured by AFM in PBS solvent.

Figure 3.7 shows AFM contact mode scanning images of bare unfunctionalized and

PEGylated nanorings (incubated with 40mg/ml PEG in PBS). The topography

of the bare rings can easily be resolved by the AFM tip, whereas when scanning

at a low force over PEGylated rings (<50 pN; ca. 20 pN is the lowest achievable

setpoint above the noise threshold), the PEG forms a repulsive barrier against the

pushing tip and the rings appear occluded. It is noteworthy that at the centre of

the nanorings there are no PEG chains attached to the glass base. Nevertheless

the PEG chains at and near the inner walls stretch out towards the centre and

cover the central hole.

Figure 3.6: (a) Optical image of a 20× 20 Au nanoring array fabricated on
a glass slide. (b, c) False-color SEM images of Au nanorings at two different

magnifications (yellow: Au; gray: glass).

Figure 3.7: AFM height images (contact mode imaging) of bare Au (left) and
PEGylated nanorings (right), scanned at low force (<50 pN). Scale bar, 500 nm.
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Figure 3.8 shows the dynamic and flexible nature of the PEG chains on the rings.

As previously we see the barrier effect of PEG at low force (<50 pN). At higher

force (1.4 nN) the AFM tip pushes through the PEG chains, revealing the under-

lying ring topology. Upon returning to a low force setpoint, the barrier against the

scanning tip is re-established again. This also shows that the PEG brush remains

undamaged when imaged at a high force.

Figure 3.8: AFM height images (contact mode scanning) of PEGylated Au
nanorings. Top row: Image taken at a low scanning force (<50 pN), visualizing
the PEG brush above the nanorings. Middle row: When the same sample is
scanned at high force (1.4 nN) the AFM tip pushes through the brush, revealing
the nanoring structure. Bottom row: Upon returning to a low scanning force,

the brush barrier is re-established again. Scale bar, 500 nm.

By using force spectroscopy, we obtain additional quantitative information about

the PEG brush on the nanorings. Fig. 3.9 shows force volume (FV) maps with

32× 32 force curves (one curve per pixel, over an area of 500 nm× 500 nm; see

Methods section 2.2.5) taken above individual nanorings. FV maps were recorded

in PBS for rings PEGylated at low density (as measured by SPR; incubation in

40mg/ml PEG in PBS, gSPR = 4.1 nm) and at high density (0.13mg/ml PEG in

0.9M Na2SO4 in PBS, gSPR = 2.2 nm). The solvent of the high-density sample was

then exchanged in-situ from PBS to 0.9M Na2SO4 in PBS, followed by another

FV measurement.

Fig. 3.10a shows typical approach force curves for the low- and high-density brush

on a nanoring, compared to a curve taken over the unfunctionalized glass part of

the sample. When compressing the brush, we measure an exponentially increasing

steric repulsive force up to the hard-wall contact point, at which the tip cannot

penetrate further into the sample and an “infinitely stiff” barrier is measured. At

low density, the repulsive interaction starts closer to the hard-wall compared to the
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Figure 3.9: Force volume maps over individual nanorings functionalized with
20 kDa PEG, taken under different conditions. The top row shows the topo-
graphy of each ring (extracted from the hard-wall position), the bottom row
shows the brush heights relative to the hard-wall position. The column labels
indicate the grafting density of PEG, as measured by SPR (gSPR), and the

solvent at time of measurement. Scale bar, 100 nm.

high density case. This is what we expect for a lower vs higher brush. Appendix A

contains additional example force curves taken over low and high density brushes.

Over glass, no long-range interaction between tip and sample is measurable before

the contact to hard-wall. Fig. 3.10b shows a comparison between a force curve

on glass in PBS, and on the PEGylated ring in 0.9M Na2SO4. As expected from

the DLS measurements, the PEG chains collapse to tight coils, so that no brush

is detected by AFM any more. The PEG remains on the rings though, as can be

seen by an occasional pulling and stretching of one or several PEG chains upon

tip retraction, which leads to a negative force as the cantilever is bent towards to

surface. No such pulling curves are recorded on glass.

The brush height can be extracted from each recorded force curve by measuring the

onset of the repulsive force. We define the brush height as the distance from the

point where the force exceeds twice the baseline noise level (noise-based method,

see section 2.2.6), to the hard-wall part of the force curve (which is set to zero
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Figure 3.10: (a) Typical approach force curves taken over the ring for a high-
density (gSPR = 2.2 nm, red) and a low-density (gSPR = 4.1 nm, blue) brush in
PBS. For comparison, a force curve over the unfunctionalized glass next to a
PEGylated nanoring is shown (black). (b) Comparison of approach (red) and
retract (blue) force curves over unfunctionalized glass in PBS and over a high-
density PEGylated nanoring in 0.9M Na2SO4. The glass force curve is offset by

(5 nm, 100 pN) for clarity.

height). Fig. 3.11 illustrates the brush height measurement principle where the

height is measured relative to the hard-wall surface at the position where the tip

is probing.

Figure 3.11: Cartoon illustrating the brush height measurement on top of a
nanoring by an AFM tip. (a) Over the ring, the tip-sample distance d and the
brush height h are measured relative to the ring surface. (b) At the central

hole, d and h are measured relative to the pore base.

Fig. 3.12 shows brush height histograms extracted from the FV maps in Fig. 3.9.

When the brush is surrounded by good solvent (PBS; Fig. 3.12a and b), we see

two distinct peaks in the histograms. The first one, at heights <5 nm, stems

from the curves obtained above the glass. Here, no PEG molecules are present,

but our algorithm assigns an “apparent” brush height for these regions as well.

The brush height measurement and calculation algorithm is robust for heights

above 5 nm, but becomes inaccurate below that threshold, due to measurement

noise and possible spurious short-range interactions between tip and substrate.
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Thus even pixels with no brush can get a small brush height value assigned. The

glass peak serves as an internal control to assert that both the sample and the

AFM tip are clean. The second peak shows the brush height distribution above

the PEGylated nanoring. The two peaks are fitted together with a sum of two

Gaussian distributions, and the brush height over the rings can be extracted from

the mean value of the second fitted Gaussian.

Figure 3.12: Brush height histograms for nanorings functionalized with 20 kDa
PEG (from data in Fig. 3.9). (a) PEG grafted at low density (gSPR = 4.1 nm),
measured in PBS. (b) Grafted at high density (gSPR = 2.2 nm), measured in
PBS. (c) Grafted at high density, measured in 0.9M Na2SO4. Solid lines are
Gaussian fits to measured brush heights on glass (no PEG) and on the rings.
The dashed line indicates the average brush height over the ring. In c, the brush

has collapsed, and only one peak is discernible.

For nanorings incubated at low density conditions (Fig. 3.12a), we obtain a brush

height of h = 16.2 nm. For high density conditions (Fig. 3.12b), we get h =

19.5 nm. These brush heights can be compared to the ones measured by the SPR

BSA method at identical grafting conditions: 17 – 19 nm for low PEG density

and 33 – 39 nm for high density (Table 3.2). In the low density case we measure

a slightly lower value by AFM than by SPR, while in the case of high density

grafting we get a significantly smaller value. Smaller values from our AFM noise-

based brush height measurement method than from the SPR method are expected,

since the tip has to exert a force on the brush first before a repulsion can be

measured (see Discussion, section 3.7 for further elaboration).

After exchanging the solvent to 0.9M Na2SO4 for the high-density sample, the

data collapses into a single histogram peak <5 nm (Fig. 3.12c). At this condition,

the unfunctionalized glass and the PEGylated ring cannot be distinguished any

more based on the height measurement, as we already saw from the force curves

in Fig. 3.10b.
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3.5 PEG brush compression force analysis

The theoretical force vs distance equations that were derived for two polymer

brush–functionalized plates pushing towards each other, and later adapted for an

AFM tip pushing onto a polymer brush grafted on a flat surface, can be compared

to our measurement data (see derivations in Introduction, section 1.4.3). Since

the brush height and the surface grafting density are variables in the theoretical

equations, the parameters extracted from fits of the theoretical equations to the

AFM data can be compared to the values from SPR measurements. Fig. 3.13

shows force curves recorded at high and low density brush conditions (as defined

previously) and best fits of different applicable models to the data.

Figure 3.13: Logarithmic plots of force curves taken over rings PEGylated at
high density (gSPR = 2.2 nm, red squares) and at low density (gSPR = 4.1 nm,
blue circles). The force curves were fitted with the exponential approximation of
the Alexander–de Gennes equation (solid lines), the full Alexander–de Gennes
equation using a step brush profile (black dashed lines), and with the Milner–
Witten–Cates equation using a parabolic brush profile (grey dashed lines). The

noise limit of the measurement system is slightly below 20 pN

We fitted the data to the full Alexander–de Gennes (AdG) equation with Derjaguin

approximation, adapted for a brush attached on a single surface,

F (d) =
8π
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where F (d) is the repulsive force at distance d from hard-wall contact, the tip

radius Rtip = 30 nm (based on SEM images of the tip), kB is the Boltzmann con-

stant, temperature T = 300K. The grafting distance g and the brush equilibrium

height h were free parameters. The equation fits the data well up to tip-sample

distances of d ≈ 5−10 nm. At large d the sensitivity of the AFM is not enough to

determine the quality of the fit. At short d the theoretical fit deviates substantially

from the data.

The AdG equation assumes a step form of the brush profile, i.e. a uniform brush

density up to its brush height h, and zero density beyond. For real brushes, the

profile has been measured to be parabolic instead. An improved model is thus the

Milner-Witten-Cates (MWC) equation which calculates the force for a parabolic

brush profile. The MWC force, with Derjaguin approximation and single-surface

brush is

F (d) = πRtipkBTN
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(3.3)

with N = 455 being the monomer number for 20 kDa PEG, and a = 0.35 nm the

monomer size. Again, h and g were left as free parameters for the fit. The MWC

equation yields a very similar fit to the data as the AdG model at forces which

are accessible to our setup. The good fit range is slightly enhanced towards short

and long distances d, but at small d the fit deviates again substantially from our

data.

The most commonly used equation to describe the force needed to compress a

brush by an AFM tip is the exponential approximation of the AdG-equation, which

is valid at intermediate tip-sample distances, 0.2 < d/h < 0.9. With Derjaguin

approximation and single-surface brush:

F (d) = Rtip
50h

g3
kBT exp

(
−2πd

h

)
(3.4)

where g and h are free parameters for grafting distance and brush equilibrium

height. As can be seen in Fig. 3.13, this equation fits our data well, over the
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Table 3.3: Grafting distances (g) and brush heights (h) for low and
high density 20 kDa PEG grafted to the nanorings, extracted from force
curve fits to three different theoretical equations and the noise-based

measurement method.

low density high density

g (nm) h (nm) g (nm) h (nm)

AdGa 11.0 35 8.5 38

MWCb 9.2 38 7.2 43

expc 9.0 34 7.5 41

noise-based – 16 – 20

a Alexander–de Gennes
b Milner–Witten–Cates
c exponential approximation to AdG

widest range of distances and forces, despite actually being an approximation to

the full AdG equation. It is also immediately visible that the exponential equation

is indeed a valid approximation to the AdG equation at intermediate distances.

Table 3.3 shows the obtained grafting distances and brush heights from best fits for

all three equations and brush heights from the noise-based method. The MWC and

exponential approximation equations yield very similar values, the AdG equation

produces significantly larger grafting distances. Due to its nature, the noise-based

method yields the lowest brush heights and no grafting distance data. The values

obtained are consistent with the expectation that the high grafting density con-

ditions (as measured by SPR) yield a higher grafting distance and larger brush

height from the AFM force curve fits, compared to the low grafting conditions.

When comparing to SPR data, we note that the AFM fits yield much larger graft-

ing distances. The brush height extracted from the force curve fits matches the

SPR value for high grafting density conditions, but is much larger for the low

density case.
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3.6 PEGylated Au nanoholes

Nanohole arrays (Figure 3.14) correspond quasi to inverted nanoring systems, and

are especially useful as plasmonic sensors [96, 97]. We used AFM force spec-

troscopy to investigate an Au nanohole system with hole diameters of ∼115 nm

(measured by SEM) and hole depths of ∼25 nm (measured by AFM). We com-

pare the effect of PEGylation on these nanoholes with our previous measurements

on the similarly sized nanorings. As the spatial localization of analytes in the

nanoholes can be measured in a plasmonic sensor setting, it is especially inter-

esting to see how PEGylation of the nanohole array might influence the access

of analytes to the nanohole “interior”. PEGylation of the sample was performed

as with the nanorings, using mPEG-SH which covalently binds to the Au surface

and the inner walls of the nanoholes (Methods section 2.2.2). Two different PEG

molecular weights, 10 kDa and 20 kDa, were used to PEGylate the nanohole array

at cloud point conditions, leading to a high grafting density of PEG on the sur-

face (gSPR,10k = 1.6 nm; gSPR,20k = 2.2 nm). As our previous measurements with

the nanorings showed, the PEG-thiol only binds to gold and not to glass. Thus

the bottom glass surface at the center of the nanoholes remained free of attached

chains.

Fig. 3.15 shows force volume maps (32× 32 pixels, 300 nm× 300 nm) of three

different nanoholes: an unfunctionalized one, and those functionalized with 10 kDa

and 20 kDa PEG, respectively. The topography maps (left panels in Fig. 3.15)

show a clearly distinguishable nanohole in each case. The brush contact height

maps (right panels) visualise at which height relative to the Au surface the AFM

tip encountered steric repulsion by the PEG brush. Values above 0 nm mean that

the brush is felt before the tip crosses the Au surface plane while values below

0 nm indicate that the tip has entered the hole before coming in contact with a

brush. Since there is no brush in the unfunctionalized sample, contact occurs only

at the hard-wall surface, and thus the contact height map tracks the topography

map. For the functionalized samples, a brush can be measured on the whole Au

surface, with the 10 kDa brush being less high than the 20 kDa one, as expected.
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Figure 3.14: False-color SEM image of an Au nanohole array (yellow: Au
surface; grey: bottom glass surface of nanoholes). Scale bar, 300 nm. Inset:
Cross-section of a single nanohole measured by AFM. Tip convolution makes

the edges appear inclined although they are steep in reality.

An interesting difference between the two brushes can be seen over the nanohole

itself. With 10 kDa PEG, the brush contact height is <0 nm at the centre of the

hole, while with 20 kDa PEG the contact height stays above 0 nm even at the very

centre.

Fig. 3.16 shows the brush height for each force curve taken on the FV maps.

Because the pyramidal AFM tip interacts with the nanohole walls, the measured

depth of a nanohole increases as the tip moves towards the center (even though the

holes have steep walls in reality). This allows to discriminate measurements at the

edge of a nanohole and at the center. These areas are coloured correspondingly in

Fig. 3.16.

The brush height is plotted in two different ways. First, we show the brush contact

height (Fig. 3.16a, corresponding to the FV maps in Fig. 3.15). It can be seen that

without PEG, the data follows the hard-wall line, while the PEGylated samples

show a brush contact point above hard-wall. The 10 kDa PEG brush does not

extend enough over the whole nanohole, so that the contact point dips below the

Au surface already at the edges of the nanoholes. With 20 kDa PEG, the brush

stays above the Au surface the whole time. Fig. 3.16b shows the brush height
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Figure 3.15: Force-volume maps of nanoholes (32× 32 pixels,
300 nm× 300 nm), unfunctionalized and functionalized with 10 kDa and
20 kDa PEG. The left panels show the hard-wall topography of the Au surface
and the nanohole. Deviations from circular shape of holes are due to limited
pixel resolution and drift in the measurement system. The right panels show
the brush contact height relative to the Au surface, i.e. the height at which the
brush is felt by the AFM tip, with the Au surface set to 0 nm. Scale bar, 50 nm.
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Figure 3.16: Scatterplots of brush heights vs hard-wall topography depths
from force curves taken over bare and PEGylated Au nanoholes. Depths >0 nm
correspond to the Au surface, while data points <0 nm correspond to force
curves taken at the nanohole edges and over the hole. Each symbol represents
a single force curve. The same data is plotted here in two different views. (a)
Brush contact height, i.e. the brush height compared to the Au surface, which
is set as 0 nm. (b) Brush height above hard-wall, i.e. the hard-wall position at
each pixel is set as 0 nm. This representation corresponds to the brush height

measurements shown for nanorings.

relative to the hard-wall position of each pixel, meaning to the Au surface outside

the holes and to the glass basal surface when ramping over the holes. These

relative brush height values are equivalent to the brush height analysis performed

on the nanoring samples.

We find that without PEG, the algorithmically calculated “brush height” on the Au

surface stays within 0.3 nm± 0.5 nm, i.e. there is no interaction between surface

and tip except for the eventual hard-wall contact. With 10 kDa PEG we measure

a brush height of 6.4 nm± 1.7 nm above the Au surface, and with 20 kDa PEG the

brush height is 18.1 nm± 3.6 nm above the Au surface. As expected, the brush

height is considerably less with the shorter PEG chains. The value for 20 kDa PEG
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agrees well with our measurements on the Au nanorings. The brush height stays

relatively constant at the edges and over the nanoholes as well, with a possible

slight increase as the tip probes the centres of the holes. Appendix A shows raw

force curves recorded over the nanohole surfaces.

3.7 Discussion

The DLS measurements confirm the physical basis of increased grafting density

upon cloud point grafting. At cloud point conditions we see clearly that the PEG

coils collapse to very small diameters. The cloud point conditions we use are just

below a phase transition towards aggregated PEG chains, as can be witnessed by

eye when observing the clouding of the PEG solution upon crossing the cloud point.

Indeed, the DLS correlation measurement data at cloud point conditions cannot

be fit nicely at large time scales (which correspond to larger particles in solution).

This might be already a sign of aggregates forming, although the number at our

conditions is still sufficiently small as not to disturb the main measurement.

The SPR measurements show that we can tune the grafting density of PEG grafted

to an Au surface from a mushroom regime up to a very dense brush regime by

changing (a) the grafting solvent, or (b) the PEG concentration. Even though a

polymer brush is already formed in good solvent grafting conditions (i.e. H2O or

PBS), the brush density is markedly increased upon using cloud point grafting

conditions with Na2SO4 in the solvent (up to threefold increase in chain density

for 20 kDa PEG). We can see a clear dependence of the final PEG grafting density

on the concentration of Na2SO4 we use. As Table 3.1 and Fig. 3.4 show, keeping

the same PEG concentration, the average grafting distance increases from 2.8 nm

to 2.2 nm as we go from 0.6M to 0.9M Na2SO4. This is a significant increase in

an already highly dense brush state. On the other hand, the PEG concentration

does not play a large role in the final grafting density for a very wide range of

concentrations. Only as the PEG concentration is heavily reduced (3 – 4 orders

of magnitude below the cloud point concentration) an effect becomes visible on
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the grafting density, as the adsorption from solution to the Au surface occurs

most likely much slower than for higher concentrations. A similar effect has been

previously measured with PEG grafted from PBS solvent [98].

The SPR height measurement method by using non-interacting particles as mo-

lecular layer height probes (in our case the protein BSA) was previously used to

measure the height of 20 kDa PEG grafted from good solvent [86]. Our measure-

ments agree with the published results, and we further show that increased density

leads to a significantly higher brush. A doubling of the brush height is observed

when the average grafting distance is reduced by a factor of two.

AFM measurements on Au nanorings confirm that the general SPR findings are

also valid on the nanoscale. PEG grafted from solution forms a brush on the

nanorings which interestingly also occludes the central pore of the rings, although

no PEG chains are grafted directly at the pore. This means that chains must

extend from the inner walls and edges towards the centre, as has already been

previously demonstrated [20].

Our AFM force spectroscopy measurements show lower brush heights compared

to SPR, especially at higher grafting densities. A general underestimation of the

physical brush height is an effect of the brush height measurement method where

we detect the brush when its repulsive force on the cantilever exceeds the AFM

noise threshold, at which point the tip has already slightly compressed the brush.

The AFM tip is also known to splay the brush upon indentation, which further

reduces the apparent height of the brush [99, 100].

We note that while in SPR a doubling of the brush height from low to high

brush density was measured, in the AFM measurements the increase is only 20%.

Because the denser brush should actually provide a larger repulsive force against

the tip, we conclude that most likely the change of grafting conditions from PBS

to 0.9M Na2SO4 leads to an increase in grafting density but not by the same

amount as in the SPR setup. The peculiar geometry of the nanorings and the

nanoscale size of the rings itself could play a role here.
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To circumvent the fact that the outer, most-extended, parts of the brush can’t be

detected by AFM due to limits in sensitivity, we fitted our data with theoretical

equations of surface-attached polymer brushes compressed by a spherical tip. The

fits give an extrapolation beyond our noise limit to assess the full physical height

of a polymer brush, together with providing an average grafting distance which we

again can compare to SPR data. The theoretical AdG and MWC force equations

were originally developed for parallel plates pushing on each other and later ad-

apted for a spherical AFM tip. It is immediately visible that the AdG and MWC

curves are a poor fit to our AFM data at high compression forces. The approxim-

ations used apparently break down when the tip is near the surface. Interestingly,

the exponential approximation to the full AdG equation fits our data the best. All

theoretical fits lead to too large average grafting distances. At low density grafting

conditions, the values of g ≈ 9−11 nm are similar to or even larger than the poly-

mer hydrodynamic size, which would not lead to a brush formation, but a clear

brush is measured by AFM. Again we see that the equations developed for large

macroscopic surfaces pushing towards each other do not correctly scale down to

the AFM tip dimensions. As expected, the brush heights provided by the theoret-

ical fits are larger compared to the values obtained from our noise threshold-based

analysis method. Curiously, while at low density the noise method matches more

closely with the SPR results, at high density the theoretical fits yield heights closer

to SPR data. In no case do we find such large differences between low and high

density grafting conditions with AFM as with SPR. This again indicates that the

real grafting densities achieved on the nanorings do not differ as much as in SPR

incubations under same conditions.

Finally, we show by probing PEGylated nanohole arrays that AFM force spec-

troscopy of polymer-functionalized nanoscale structures is generally applicable

to various samples. Using the nanohole arrays we show that by functionalizing

nanopore-like structures with PEG of different molecular weights, qualitatively

different results can be obtained. With 10 kDa PEG we showed that the nano-

hole inner volume remains accessible by the AFM tip, while grafting 20 kDa PEG

blocks the access to the hole (the AFM tip feels the repulsive effect of the PEG
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brush already above the hole entrance). This is presumably also true for any

particle of size on the order of the AFM tip radius (i.e. ∼30 nm) or larger. This

effect could be used for size-exclusion filtering or providing selective access to

nanoplasmonic-based sensor elements (e.g. nanoholes) [97].



Chapter 4

Behaviour of Nanoscale PEG

Brushes under Confinement

4.1 Locally distinct geometries on Au nanorings

In this chapter, our interest lies in how polymer chains in a brush behave under

compressive load. Especially intriguing is the difference between a brush on a flat

surface and in a nanopore-like geometry. To probe both configurations on the same

sample, we used our Au nanorings fabricated on glass substrates, functionalized

with 20 kDa mPEG-SH. AFM force spectroscopy was used to measure observables

of interest, such as the local brush height and the brush stiffness, as well as dynamic

confinement effects upon compression of the brush.

On a single Au nanoring with an outer diameter of ∼ 400 nm, inner diameter

of ∼ 100 nm and a height of ∼30 nm we distinguish between two different nano-

structural domains: (a) a large (compared to the characteristic length scale of indi-

vidual polymer chains) flat area over the main ring structure, and (b) a nanopore-

like environment at the centre of the ring. Fig. 4.1 shows a to-scale drawing of a

PEG-covered nanoring and the probing AFM tip. The two main regions of interest

are marked as “hole” and “ring” regions. As can be seen from the drawing, prob-

ing the ring region corresponds to compressing a uniform polymer brush by the

65
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tip apex. In comparison, when probing the hole region, the compression doesn’t

happen strictly perpendicularly to the brush grafting surface and is possibly com-

bined with shearing of the chains which are attached to the side walls. Thus, we

should expect different static and dynamic behaviours between the hole and the

ring region. We assess this by probing the two different regions of the nanoring at

varying loading rates (i.e. tip approach velocities) ranging from 0.4 – 29 µm/s. We

compare the apparent local brush heights and stiffnesses, as differences in brush

conformation and dynamics should be visible in these observables over our range

of velocities which span two orders of magnitude.

Figure 4.1: To-scale schematic of an AFM tip probing an Au nanoring with a
PEG polymer brush grafted on it. The tip size and lateral nanoring dimensions
are based on SEM images, while the nanoring and brush heights are measured
by AFM. Two distinct regions can be analysed: the flat “ring” region, and the
“hole” region with a nanopore-like geometry. Even though no molecules are
grafted to the center of the hole, due to the finite size of tip and hole and the
extension of the chains of the polymer brush, the tip feels the brush well before
reaching the bottom surface, resulting in an apparent brush height there (hhole).

4.2 Brush height under varying loading rates

20 kDa mPEG-SH was covalently grafted on the nanorings at cloud point con-

ditions (0.13mg/ml of PEG in PBS / 0.9M Na2SO4). Under these conditions,

the resulting average grafting distance between chains measured by SPR was

gSPR = 2.2 nm. The average brush height over the ring measured by AFM with
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our standard noise-based method (see Methods, section 2.2.6) at intermediate tip

velocities (3.4 µm/s) is 20.4 nm± 8.4 nm, which is somewhat lower than obtained

from the SPR measurements (see chapter 3 for details). We have to keep in mind

that we slightly underestimate the brush height, but nevertheless our method al-

lows robust and accurate relative comparison of brush heights and morphologies

under varying compressive and confining conditions.

Fig. 4.2 shows histograms of measured brush heights over the hole and the ring

regions, respectively. The data (from 3 different samples with total Nnanorings = 13,

and nhole = 533 and nring = 650 individual force curves per loading rate) can be

well fitted with Gaussian distributions. In the hole region, we see a clear trend

of decreasing apparent brush heights with increasing loading rates. A similar but

much weaker tendency appears over the ring region. Plotting the means of the

Gaussian fits vs the loading rates (Fig. 4.3) shows more clearly that at low loading

rates up to 1 µm/s the brush height is 26 nm, after which it gradually decreases

down to 14 nm over the hole and to 19 nm over the ring. For the hole region this is

a decrease of 43%, and 26% over the ring. Note that at equilibrium, i.e. when the

AFM tip is far away and not in contact with the brush, the brush height doesn’t

change. The measured difference is in the apparent brush height upon compression

and stems from the dynamic interaction between the tip and the brush.

Figure 4.2: Combined histograms of brush height measurements for loading
rates between 0.4 – 29 µm/s (symbols). Solid lines are Gaussian distribution fits

to the data. (a) hole region (b) ring region.
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Figure 4.3: Mean apparent brush heights extracted from Gaussian fits to the
experimental data (see Fig. 4.2).

4.3 Brush stiffness under varying loading rates

Fig. 4.4 shows the histograms and Gaussian fits for the linear stiffness of the brush,

calculated as the gradient in the force curve between repulsive forces of 50 – 150 pN

(for detailed explanations of the stiffness measurement algorithms, see Methods

section 2.2.6). This force region lies between the first contact with the brush and

the hard-wall grafting surface, i.e. we measure directly the repulsive action of

the brush. The Gaussian means vs loading rates are plotted in Fig. 4.5. At the

hole, the linear stiffness increases above a certain loading rate threshold, while

at the ring, no significant trend can be extracted at the accessible rates in this

experiment. Interestingly, at low loading rates the brush over the hole appears

softer than over the ring, but as loading rates increase we see a cross-over, with the

polymer chains ending up being stiffer over the hole. This illustrates the different

brush confinement dynamics in flat and nanopore-like geometries.

Figure 4.4: Histograms of the linear stiffness measured at varying loading
rates (symbols). Solid lines are Gaussian fits to the data. (a) Hole region. (b)

Ring region.
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Figure 4.5: Linear stiffness means extracted from Gaussian fits to experimental
histograms from Fig. 4.4.

To complement the brush characterization, we used a second, independent method

of assessing the brush stiffness. We regard the brush as a compliant isotropic film

and fit our force curves with the Hertzian contact model. This allows us to ex-

tract the Young’s modulus of the film which is a measure of the brush stiffness

(Methods section 2.2.6). The force curves can be fitted well by using two dis-

tinct regions in the indentation of the brush which have different Young’s moduli.

Region 1 is the softer part following brush-tip contact with a measured Young’s

modulus (E1) of around 0.1MPa. Region 2 is ca. tenfold stiffer with E2 ≈ 1MPa

in the more compressed part of the brush, up to the hard-wall contact. The pres-

ence of two distinct regions when applying the Hertz model has been shown in

earlier work of PEG grafted on flat Au surfaces, yielding very similar values for

the Young’s moduli [101]. Qualitatively the observed results match with the fol-

lowing model: at weak compression near the top of the brush the PEG chains are

flexible, disentangled and have low monomer density [7], which gives a low elastic

modulus. Upon stronger compression, the chains become more confined and pos-

sibly correlated or entangled, which leads to a significantly stiffer behaviour and is

visible as the tenfold increased elastic modulus. This cross-over from soft to stiff

behaviour occurs ∼10 nm above the hard-wall surface. We should note that the

Hertz model of an isotropic compliant half-space is a very crude approximation

of a surface-grafted polymer brush and also does not take substrate effects into

account. Nevertheless the fitted Young’s modulus values can be used for relative

comparisons, and our E2 measurements give same order of magnitude results as
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bulk Young’s modulus measurements of PEG hydrogels [102].

Fig. 4.6 shows the means for E1 and E2 as extracted from Gaussian fits to his-

tograms, plotted against the loading rate, for the hole and the ring regions. E1

increases slightly with increasing loading rate in both the hole and the ring re-

gions, but the dependence is weak. Over the hole, E1 is consistently softer than

over the ring for all loading rates. For E2 we see similar results as with the linear

stiffness measurement. Over the ring E2 stays mostly unchanged (a decrease of

17% from the lowest to highest loading rate), whereas there is a doubling of the

elastic modulus over the hole from the lowest to the highest loading rate. At low

loading rates, E1 in the hole region appears softer than in the ring region (as for

the whole loading rate range with E1), but ends up being stiffer at high loading

rates.

Figure 4.6: Mean Young’s moduli from region 1 (E1, a) and region 2 (E2, b)
of the compression force curves over the hole and the ring.

Finally, Fig. 4.7 shows overview force volume maps of a single nanoring with

the ring topography and the calculated brush height, linear stiffness and Young’s

modulus values. The force curves in this map were taken at 4.9 µm/s tip approach

velocity. Comparing the values at the central hole and over the ring in the FV

maps, good agreement can be seen to the data shown above which was taken in

point-and-shoot mode (see Methods, section 2.2.5) with much higher number of

force curves than could be extracted from a 32× 32 pixel FV map. The linear

stiffness is slightly lower at the hole compared to the ring surface, whereas E1 is

clearly less at the hole (compare to Figs. 4.5 and 4.6a). E2 shows large inhomo-

geneities over the map, but on average the hole and ring stiffness are very similar.
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The brush height in the FV map is larger at the hole, which does not correspond

to the data shown above (Fig. 4.3). This might arise from statistical fluctuations

and the low resolution compared to accurate probing of the central hole in point-

and-shoot mode, which again demonstrates the need for high volume and high

spatial precision recording of force curves.

Figure 4.7: Force volume maps of a single nanoring display various observables
of interest. Force curves were taken at an intermediate tip velocity of 4.9 µm/s.
(a) Topography. (b) Brush height. (c) Linear stiffness. (d) Young’s modulus
in force curve region 1. (e) Young’s modulus in force curve region 2. For the
Young’s moduli, no useful fits could be performed on glass; this unanalysed

region is marked in grey. Scale bar, 100 nm.

4.4 Escape transition effects upon PEG compres-

sion

Upon compressing the PEG brush, we noticed that some of the recorded force

curves show a jump or discontinuity in the repulsive force which resembles the

behaviour predicted for a polymer escape transition of single chains (Fig. 4.8; see

section 1.4.4 for an overview). We conducted further investigations of this ef-

fect, comparing possible influencing factors such as ring and tip geometry, and

brush grafting density. Samples of two different nanoring geometries were pre-

pared: rings with a large central hole of ∼ 100 nm diameter, and rings having
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a small central hole of ∼50 nm diameter (the other dimensions were identical,

i.e. ∼ 400 nm outer diameter and ∼30 nm height). 20 kDa mPEG-SH was grafted

to the rings under different conditions resulting in different grafting densities of

PEG chains. We then performed AFM force spectroscopy measurements on these

samples in PBS solvent, using two different AFM cantilever models with distinct

tip geometries.

Figure 4.8: (a) Predicted force curve from scaling theory. The cartoons show
schematically a confined but unescaped polymer chain, and an escaped chain
with a stretched tether. Scaling analysis predicts that in a good solvent, before
the escape transition the force increases in proportion to d−8/3, and after escape
proportional to d−2, with a sudden jump (first-order transition) in between. (b)
A typical force curve showing an escape transition (black dots). Fits to the data:
power law F ∼ d−1.4 (dashed blue line); power law with additional offset in the
hard-wall position F ∼ (d− d0)

−2.2 with d0 = −6 nm (solid red line); best fit to
the theoretical scenario of many mobile mushrooms, Eq. 4.3 (dash-dotted green

line).

Our recorded transitions occur in the sterically repulsive part of the force curve, i.e.

while the tip is physically compressing the brush and before the tip has reached the

underlying hard-wall Au substrate. Comparison to the predicted force vs distance

relationships from scaling theory shows that before the transition the force curves

can be fitted with a power law,

F (d) ∼ d−ν (4.1)

where F (d) is the force acting on the tip at distance d from the grafting surface.

The best fit produces ν = 1.4. This does not match the prediction for a single

mushroom under compression from scaling theory, where for good solvent, ν =

8/3 ≈ 2.7 [54]. Because we are compressing a brush with an AFM tip, instead of
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the theoretical compression of a single chain by a cylindrical piston, deviation in

the power law exponent is expected. We can account for a possible offset in the

hard-wall position by adding another fitting parameter d0. With

F (d) ∼ (d− d0)
−ν (4.2)

we get ν = 2.2 and d0 = −6 nm. This exponent can be better reconciled with the

theoretical models and lies between the scaling analysis predictions for a mush-

room, ν = 8/3, and for an immobile brush compressed by a piston, ν = 2 [56].

At the transition, in almost all cases the tip jumps directly to the grafting sur-

face which is seen as being infinitely stiff by the AFM tip. This is in contrast

to the predicted F (d) ∼ d−2 dependence after transition. In the literature we

further find calculations of a system of many mobile surface-grafted mushrooms

below a compressing obstacle [54, 56]. In that case we have a repulsive power-law

force which decreases exponentially below a certain “yield stress” (i.e. threshold

distance), when the mobile chains move out from under tip completely. The res-

ulting force curve has the form

F (d) ∼ d−8/3e−Ad−5/3

(4.3)

and can partially be fitted to our data as well, as Fig. 4.8b shows. Additional force

curves with escape transitions are shown in Appendix A (Fig. A.4).

4.5 Role of local geometry for escape transitions

Our two nanoring geometries provide different ratios of the central hole width

compared to the size of the flat region on the Au ring itself. We can use this

to investigate the influence of geometrical factors on the escape transitions. By

recording force volume (FV) maps of 32× 32 force curves over one nanoring, the

escape transition occurrences can be spatially resolved as a function of their lateral

position on the ring. Because we assumed that the PEG grafting density and the
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AFM tip shape might play an important role in the transition effect, we performed

measurements with two different cantilever types (henceforth called HYDRA, hav-

ing a sharp tip with ca. 15 – 20 nm tip radius; and OBL with a broader tip, ca.

25 – 40 nm radius), and at two different grafting densities, denoted low and high

densities. The low grafting density conditions were achieved by incubating the

sample in 40mg/ml of 20 kDa PEG in PBS (average grafting distance between

chains on the surface, as measured by SPR, gSPR = 4.1 nm), and the high grafting

density by incubating 2 µg/ml PEG in 0.6M Na2SO4 in PBS (gSPR = 2.9 nm).

Fig. 4.9 shows the occurrences of escape transitions over nanorings with a small

central hole using the two different AFM tips. To our surprise, the probability

for an escape transition is very similar all across the nanoring. Apparently the

position of the chains with respect to the edges and the central hole does not play

a big role in allowing escape transitions to occur. Unfortunately, tip interactions

with ring side walls induce too much noise into the force curves to allow drawing

any conclusions at the very edge of the ring (i.e. the outermost pixels of the ring

in the topography maps). Comparing the two different AFM tips, we measure a

slightly increased probability of seeing escape transitions with the broader OBL

tip: roughly in 40% of all curves over the ring with HYDRA, and in 55% with

OBL.

When we look at the nanorings with a large central hole, using the same low

grafting density and OBL tip, we see significantly fewer escape transitions, only

in ∼15% of all curves over the ring (Fig. 4.10a). Again no discernible dependence

on the lateral position over the ring is seen. The PEG brush also extends from the

inner walls towards the centre of the hole and even though the AFM tip probing

the central hole interacts with the chains, no escape transitions are measured

there. We note that some local clustering of escape transition effects might be

occurring (e.g. in the lower right quadrant of the ring in Fig. 4.10a). This would

hint at inhomogeneities or correlations in the local ordering of the PEG chains

on the nanoring, but current measurements are not sufficient to draw definite

conclusions. With the small hole nanorings (Fig. 4.9) such clustering would not

be visible due to the overall high density of escape events.
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Figure 4.9: Escape transitions for nanorings with a small central hole (50 nm
diameter) at low PEG grafting density (g = 4.1 nm). The panels show a to-
pography map of the nanoring with all pixels exhibiting an escape transition
marked in blue, and a histogram of the fraction of curves having an escape
transition at a given distance from the centre of the ring. (a) Nanoring meas-
ured with the sharper HYDRA tip (15 – 20 nm radius). (b) Nanoring measured

with the broader OBL tip (25 – 40 nm radius). Scale bar, 100 nm.

At high polymer chain grafting densities (Fig. 4.10b and c), the escape transitions

disappear almost completely, independent of which tip is used. With only a few

escape transitions per nanoring, spatial distributions and local correlations cannot

be extracted.

When looking at the forces and the tip-sample distances at which the escape

transitions occur (Fig. 4.11), we find differences there as well, in addition to es-

cape event frequencies. The forces and distances cluster around a mean value

for each experimental condition. For small central hole nanorings grafted at low

density and measured with the HYDRA cantilever, the average transition force is

204 pN± 51 pN and occurs at the tip-sample distance 3.2 nm± 1.3 nm (Fig. 4.11a).

For the same conditions, measured with the OBL cantilever, the transitions shift to

lower forces of 95 pN± 48 pN and to larger distances of 6.1 nm± 2.0 nm (Fig. 4.11b).

Since the repulsive force of a brush rises for decreasing tip-sample distances,

transition occurrences at lower forces are consistent with them occurring at lar-

ger distances. For the large central hole sample, at low density, measured with
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Figure 4.10: Escape transitions for nanorings with a large central hole (100 nm
inner diameter). Topography maps show force curve pixels with escape trans-
itions marked in blue. (a) Low grafting density (gSPR = 4.1 nm), probed with
an OBL tip. The histogram shows the fraction of pixels having an escape trans-
ition as a function of their distance from the ring centre. (b) High grafting
density (gSPR = 2.9 nm), OBL tip. Only three escape transitions were recorded

(arrows). (c) High grafting density, HYDRA tip. Scale bars, 100 nm.

OBL, we have an average force of 134 pN± 67 pN and distance of 4.2 nm± 2.6 nm

(Fig. 4.11c).

4.6 Discussion

4.6.1 Polymer brush response under varying loading rates

Our results show that polymer brush response to compression and confinement by

a nanoscale object (here, the AFM tip) changes when different loading rates (i.e.

tip approach velocities) are applied. It is notable that changes in the properties

are especially visible in the “hole” region, where the PEG brush is probed in a

nanopore-like geometric environment. Over the “ring” region, in the flat Au part
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Figure 4.11: Histograms showing the forces and tip-sample distances at which
the escape transitions occur. (a) Small central hole, low density, HYDRA can-
tilever (corresponds to Fig. 4.9a). (b) Small central hole, low density, OBL
cantilever (corresponds to Fig. 4.9b). (c) Large central hole, low density, OBL

cantilever (corresponds to Fig. 4.10a).

of the nanoring, the dependence on loading rate is muted or disappears altogether.

The decrease in the dynamic apparent brush height at higher loading rates is

present in both regions, but much clearer in the hole. Both the linear stiffness

and the Young’s modulus E2 show strong dependence on the loading rate over the

hole, but negligible dependence over the ring region. E1 on the other hand seems

to remain mostly the same over our range of loading rates, between 0.4 – 29 µm/s.

Considering our experimental system, we should check whether any viscoelastic

effects on the cantilever itself could contribute to a loading-rate dependent effect.

As discussed by Evans [103], a viscoelastic effect of the moving cantilever manifests

itself on a characteristic time scale τ = ζ/k, where ζ is the cantilever damping

coefficient and is in the order of 10−3 pN s/nm and k is the cantilever spring con-

stant, in our case ∼8 pN/nm. These values lead to a characteristic response time

of about 0.1ms. The contact time between the brush and the AFM tip in our

experiments lies between 1 – 100ms (approach part). We conclude from this that

the intrinsic viscoelastic response of the cantilever is fast enough that it should

not play a role in our measurements. Further, we recorded the internal Z piezo

sensor signal which accurately monitors the real physical position of the piezo. By

utilising this data in our force curve analysis we eliminated any nonlinear piezo

effects which are always present and could otherwise introduce artefacts into our
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data. Thus, our results display a true effect of the polymer brush under dynamic

confinement.

Our results confirm that we have indeed two different regimes on our nanostruc-

tures, the flat and the nanopore-like part. The larger magnitude of most loading

rate dependent effects at the pore leads to the following picture: At the flat areas

we have only pure compression of the brush, normal to the grafting surface, while

at the pore other mechanical interaction modes are present in addition to com-

pression. As can be seen in the to-scale depiction in Fig. 4.1, when the tip is

probing the centre of the pore, brush compression as well as lateral shearing is

likely to occur.

Over the flat part, where we expect purely compressional effects, we measure a

modest decrease in the height at high loading rates. This might stem from vis-

coelastic and hydrodynamic effects. Rate-dependent non-oscillatory probing of

polymer brushes with a sharp AFM tip has to our knowledge not been carried out

in the literature. Experiments show that probing a PEG brush with a large col-

loidal probe induces an additional repulsive force, and so actually a larger meas-

ured dynamic brush height [28]. This effect is attributed to the hydrodynamic

draining of solvent between the colloid and the surface. The colloidal probes used

in those experiments had a diameter of ∼5 µm, and so it is unlikely that a similar

effect would be visible with our tips with an apex radius of ∼30 nm. Noise-based

AFM probing experiment of polymer brushes show that cantilever motion can

couple to viscous modes of the brush at separations much larger than the physical

height of the brush [30]. This coupling was not visible in the static force profile

in the same experiment (comparable to very low loading rates in our system), but

it is conceivable that at high loading rates increased viscoelastic forces act on the

brush even before physical contact is established and reduce the measured brush

height.

Interestingly, in our experiment the dynamic height decrease is even more pro-

nounced in the nanopore region. We can assume that similar effects as over the

flat area contribute to the measured decrease, but additional effects come to play
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to increase the effect size. Dissipative particle dynamics simulations have shown

that under shear, individual chains become stretched laterally in the direction of

shear, and the polymer brush layer height decreases with increasing shear rate [36,

104].

When performed at varying velocities or frequencies, stiffness measurements probe

the internal molecular relaxation dynamics of the polymer brush [105]. We don’t

find significant correlations between the measured stiffness and the loading rate

for chains probed at the ring region. Presumably the steric repulsion effect of a

compressed polymer brush is elastic and there are no relaxation modes that would

manifest themselves as a loading rate dependent change in measured stiffness. On

the other hand, our measurements show that in the pore environment a definite

loading rate dependency is visible. Shearing and off-normal compression can in-

troduce possibilities for chain rearrangements and relaxations. Relaxations with a

characteristic time faster than the AFM tip approach could lead to a softer brush

response while those with a slower characteristic time keep the chains entangled

and locked into position, thus stiffening the brush. That these additional relax-

ation modes are accessible in the nanopore confinement situation could explain

both the softer response of the brush in the pore region compared to the ring

region at low loading rates, as well as the progressive stiffening as we increase the

loading rate.

It is interesting to observe that our measured elastic modulus of the brush in the

weakly confining part of the force curve (E1) is always lower in the pore compared

to the ring surface. A clear loading rate dependence is difficult to extract. The

results indicate that the additional shearing effects that lead to a stiffer brush

response only become important at increased confinement of the chains. Previous

AFM measurements with similar nanoring structures at intermediate loading rates

also showed a softer brush at the pore compared to over the ring, in accordance

with our results [20].

Regarding future directions of experimentally accessing polymer morphologies and
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dynamics in and near nanopores, one interesting avenue concerns the possible ap-

pearance of different morphological scenarios for the polymers as the nanopore

size shrinks further and reaches the scale of the polymer chains [16, 25]. In poor

solvent, such strong confinement is predicted by simulations to lead to novel mor-

phologies besides a collapse to the grafting walls, e.g. a formation of a polymer plug

in the centre of the pore [25]. No predictions have been offered for the dynamics

of such a plug under compression and shear.

4.6.2 Escape transition effects upon brush compression

An AFM tip has the ideal dimensions to measure a possible polymer escape trans-

ition. With the tip radius Rtip and the polymer Flory radius RF , the ratio in our

system is approximately Rtip/RF ≈ 2− 4; or when compared to the grafting dis-

tance between chains, gSPR, the ratio is ca. Rtip/gSPR ≈ 5− 10. This satisfies the

condition that the compressing obstacle should be much larger than the unper-

turbed chain but much smaller than a stretched-out chain [59]. Because a single

mushroom is very difficult to access experimentally, our experiments have focused

on checking whether any escape transitions can occur within a polymer brush

instead. Our AFM measurements show that when compressing a PEG brush,

sudden transitions in force can indeed occur. These discontinuities resemble the

theoretical descriptions of polymer escape transitions. Before the transition point,

the force as a function of the distance to the grafting surface can be fitted with a

power law, but the obtained exponent does not match the analytical calculations

or simulation results for a single confined chain (ν = 1.4 from best fit instead of

ν = 8/3 ≈ 2.7). This is to be expected, since the ideal compression of a single

mushroom is rather far away from the experimental situation of an AFM tip com-

pressing a polymer brush. Jimenez and Rajagopalan performed simulations that

show a transition when compressing a brush, but no force scaling relationships

were provided which could be compared to the current data [71].

Our measurements deviate further from the analytical models and simulations by

showing a direct jump to hard-wall contact at the escape transition. Calculations
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show that compressing the stretched tether of the escaped polymer chain should

result in a force following a d−2 power law [54, 67, 68]. The direct jump to

hard-wall could be explained by a modification of the escape mechanism. One

can imagine that if the polymer chains on the Au surface are mobile enough,

they can completely move out from under the compressing tip after the initial

transition in order to further decrease the total energy. This would lead to the

tip jumping to hard-wall contact, as we see in our data. After retracting the tip,

the increased local crowding just outside the tip-surface contact area would lead

to a “back flow” of the chains and reformation of the original brush state. While

calculations and simulations involving chains that can move or splay from under

the compressing obstacle do not show an escape transition, they do describe a

lower force response compared to a brush of fixed chains [56, 70]. This behaviour

seems to be confirmed by our data which shows a less steep power law scaling than

predicted for mushrooms or immobile brushes. Other AFM brush compression

experiments have also shown this effect [99].

Calculations have been performed of systems where many mobile surface-grafted

mushrooms are compressed by a large piston. In such a scenario there is a maximal

repulsive force (“yield stress”) after which the force decreases as the mushrooms

move out of the obstacle’s way and the system becomes totally squashed [54, 56].

However, similar scenarios with brushes have not been shown. The same mobile

many-mushroom system was considered with additional attractive van der Waals

forces present and it was concluded that for many real situations the mushrooms

are ineffective in providing a steric barrier against the compressing piston and thus

no maximum in force would be visible. It is conceivable that a similar evacuation

mechanism could be present with a brush, but the much denser brush succeeds

in providing an adequate barrier to the piston, thus showing a maximum in com-

pressive force before snapping in to the grafting surface due to van der Waals

forces. This might lead to force curves like we see in our data.

A striking result is the disappearance of escape transitions at high grafting dens-

ities of the brush. This is intuitively easy to understand, as a less dense brush

provides enough available space for an escape or evacuation mechanism of some
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sort, while a dense brush lacks the space. In the dense case we then have pure com-

pression of the brush. These results can reconcile the presence [26] and absence

[106] of escape transitions in various AFM polymer brush compression experiments

in the literature.

Our spatially resolved maps of 3D nanopore-like geometries show that across a

single ring the probability for an escape transition is approximately constant,

independent of where on the nanoring we compress the brush. This is surprising,

since it should not be expected that the brush has exactly the same morphology

near the walls of the ring and far away from them. We note that over the central

hole we rarely see an escape transition, and it was not possible to reliably determine

whether an escape transition occurs at the very edges of a ring (within ∼± 10 nm

from the edges). More sensitive measurements might still reveal local geometry

effects here.

Although there were no variations in the occurrence of escape transitions within

one ring, geometrical effects became visible for different combinations of the nan-

oring and tip geometry. Any AFM measurement is always the result of the con-

volution of the sample and tip geometries, and here this seems to influence the

occurrence of escape transitions. As an example, in Fig. 4.9 the signature of the

sharper HYDRA tip is visible by the better resolved 50 nm wide central hole,

whereas the hole is almost too narrow to be resolved by the broader OBL tip.

As a result we see an elevated number of escape transitions with the OBL tip

even though the nanoring sample is the same. That this is not a pure tip effect

becomes clear when we look at nanorings with the larger central hole (Fig. 4.10a).

Here we see a clearly reduced amount of escape transitions over the ring with

the OBL tip, all grafting and measurement conditions and materials being the

same as for the small hole samples. The following emerging pattern can be seen

in the presented force volume maps: the larger the “flat” area of the ring as seen

by the compressing tip is, the more probable are the escape transitions. The

exact mechanics leading to this result remain unclear at the moment, but it seems

feasible that chains could have correlations across the whole of the nanoring (some
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tens of nanometres, corresponding to as few as a hundred polymer chains) that

influence the accessible states of the particular polymer chains under compression.

Another tip effect becomes visible when we look at the forces and distances at

which the transitions occur. The easier the chains can escape beneath the com-

pressing tip, the lower the force will be at which the transition occurs and the

earlier (at larger tip-sample distances) it will occur. The chains escape at higher

forces and smaller distances for the HYDRA tip than for the OBL tip. Here the

tip geometry might play a major role in determining the escape force and distance.

A more detailed study with a complete set of different AFM tips vs nanostruc-

tured samples is warranted to further elucidate the behaviour these first results

regarding tip and ring geometry show.





Chapter 5

Synthetic Protein Targeting with

Nanoscale PEG Targets and PEG

Antibodies

This chapter was published as a peer-reviewed journal article in:
Hyotyla J. T., Deng J., Lim R. Y. H., 2011. Synthetic Protein Targeting by the In-
trinsic Biorecognition Functionality of Poly(ethylene glycol) Using PEG Antibodies
as Biohybrid Molecular Adaptors. ACS nano, 5(6), pp. 5180–7.

5.1 Introduction

Considerable efforts are being made in biomaterials and biointerface science to

engineer biocompatible materials that exhibit recognition and specificity [44, 45,

107–109]. According to Elbert and Hubbell [44], this refers to the ability to “endow

an entirely synthetic material with the biological recognition characteristics of bio-

logical macromolecules”. Lying at the intersection between biology and materials

science, biorecognition materials not only are important for exerting control over

biological processes (e.g., tissue regeneration) [110] but are envisaged to impart

bioinspired functionality in technological systems [45, 107].

85
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An area that is of important practical benefit lies in how biorecognition materials

can regulate molecular sorting and precision immobilization in complex biological

fluids [44, 107, 109, 111]. To put this in perspective, the way specific proteins are

sorted and delivered to exact spatial locations (e.g., organelles) within the complex

environment of the cell (i.e., protein targeting) [112] is physically unprecedented.

One problem lies with protein denaturation on engineered surfaces [113] that often

leads to non-specific contamination and fouling. For instance, protein microarrays

where surface-immobilized proteins capture analyte molecules from solution are

known to suffer from these effects [111, 114]. This can be remedied by construct-

ing biocompatible polymer brushes chemically derivatized with biotin [115, 116],

or histidine-binding nitrilotriacetate (NTA)–metal ion complexes [43], to impart

both antifouling and biorecognition properties at biointerfaces. These then al-

low for the binding of streptavidin-modified or His-tagged proteins, respectively.

While successful, it should be noted that these chemical-based strategies impart a

property of extrinsic biorecognition (i.e., indirect) because the proteins do not a

priori recognize the polymers themselves. This imposes the limitation where only

a predetermined set of tagged proteins can be targeted and not endogenous pro-

teins sourced from authentic biological fluids. The latter aspect might be possible

with proteins that are covalently immobilized on polymer brushes [117]; however

no (extrinsic) biorecognition has yet been reported.

The objective of this work lies in exploiting the intrinsic protein–polymer biore-

cognition interactions between PEG-binding antibodies and PEG to sift out and

sort specific molecular “cargoes” from a complex biological environment to site-

specific targets. On the basis of its renowned properties of biocompatibility and

protein resistance, PEG [118] is used extensively (i) in technology to impart fouling

resistance against protein and cell adsorption on surfaces [119] and ultrafiltration

membranes for water purification [10], as well as (ii) in biomedical applications [84]

to reduce immunogenicity and increase resistance to proteolytic cleavage in drug

targeting [84, 118]. Subsequently, PEG-binding antibodies have been developed

for the identification and analysis of pharmacokinetic parameters of PEGylated
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molecules in drug development and clinical applications [85, 120, 121]. Neverthe-

less, it should be noted that the use of PEG-binding antibodies in the current

context lies not in detecting PEGylated surfaces per se, but as biohybrid mo-

lecular adaptors or “receptors” that deliver and mediate the binding of specific

protein ‘cargoes’ to PEG. Further appeal rests in how intrinsic biorecognition in-

teractions may exert a biomimetic stimuli-induced conformational change in the

PEG. This so-called smart “protein-like” functionality is unique in comparison to

current stimuli-responsive polymers where conformational changes are triggered

by changes in solvent quality, pH, and temperature [122].

5.2 Results

To show how PEG-binding antibodies can be applied toward synthetic protein

targeting, we obtained a PEG-binding mouse IgG monoclonal antibody (i.e., E11

[85]; henceforth known as anti-PEG) that is known to recognize the repeat ethyl-

ene oxide (EO) subunits on the PEG backbone. An immunoblot assay shows

that anti-PEG binds with high specificity to the 20 kDa PEG chains (Fig. 5.1a;

Methods section 2.2.8). Its equilibrium dissociation constant was measured by

surface plasmon resonance (SPR) by flowing anti-PEG at different concentra-

tions over a PEG-functionalized SPR chip. The equilibrium dissociation con-

stant, KD, was calculated by fitting the equilibrium SPR binding signal, Req, at

each respective concentration to the Langmuir adsorption isotherm [123], giving

KD = 0.40 nM± 0.09 nM (Figs. 5.1b and c).

Therefore, from a strict materials perspective, anti-PEG is remarkable in that it

provides an exclusive biochemical interface for binding to PEG. To be precise, this

is to our knowledge the first ever instance where a protein specifically recognizes

and binds a completely synthetic, unmodified polymer (i.e., the anti-PEG spe-

cifically recognizes the PEG backbone itself). Thereafter, we hypothesized that

the anti-PEG could act as a biohybrid molecular adaptor that selectively targets

specific secondary antibodies out of bulk solution and used (i) polyclonal donkey
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anti-mouse secondary IgG as model cargo (“specific IgG”) and (ii) polyclonal don-

key anti-rabbit secondary IgG (“unspecific IgG”), which does not bind anti-PEG

as a fouling control.

Figure 5.1: (a) Comparison of immunoblots with unlabelled and Alexa488-
labelled anti-PEG. An unspecific mouse monoclonal IgG was used as negative
control. (b) SPR sensogram for quantifying anti-PEG binding to 20 kDa PEG
at increasing anti-PEG concentrations. (c) Calculation of the anti-PEG–PEG
equilibrium dissociation constant, KD, by a Langmuir adsorption isotherm fit
to the equilibrium SPR binding signals, Req, obtained at different anti-PEG

concentrations.

Spatially distinct PEG targets were constructed by tethering 20 kDa methoxy-

and thiol-terminated polyethylene glycol (mPEG-SH) chains via covalent thiol

bonds to Au nanorings (“PEGylated nanoring”, Fig. 5.2; Methods section 2.2.2).

The nanorings were fabricated 1.3 µm apart on glass slides in a 20× 20 array

format with each bare nanoring having a thickness and inner and outer diameter
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of 27.1 nm± 1.6 nm, 115 nm± 8 nm and 367 nm± 6 nm, respectively. A combined

atomic force microscope (AFM) and total internal reflection fluorescence (TIRF)

microscope was used to correlate nanomechanical changes in the PEG chains

to subsequent biochemical interactions via fluorescence, respectively (Fig. 5.2b).

After PEGylation, the hydrated PEG chains form polymer brushes, which act as

barriers over individual nanorings [20].

Figure 5.2: Combining nanofabrication, AFM, and TIRF. (a) Bright-field op-
tical view of a 20× 20 array of Au nanorings fabricated on a glass slide. Scale
bar, 5µm. Lower left: Individual nanorings resolved by AFM before PEGyla-
tion. Lower right: A polymer brush barrier forms over each nanoring after
PEGylation. Scale bar, 1 µm. (b) Combining AFM and TIRF allows for the
direct correlation of local nanomechanical effects in the PEG brush to antibody-

associated biochemical interactions occurring at each nanoring.

Fig. 5.3 shows TIRF images obtained in a phosphate-buffered saline (PBS) solu-

tion simultaneously pre-incubated with Alexa488-labelled anti-PEG1, Cy3-labelled

specific IgG, Cy5-labelled unspecific IgG (∼7 nM per antibody), and 1% (150µM)

unlabelled bovine serum albumin (BSA). Strong fluorescent signals corresponding

to anti-PEG and specific IgG are seen at the PEGylated nanorings (Fig. 5.3a–c).

In comparison, inverted contrast is observed for unspecific IgG in epifluorescence
1An immunoblot was used to confirm that the labelling procedure did not impair the spe-

cificity of anti-PEG towards PEG (Fig. 5.1)
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(i.e., the PEGylated nanorings are dark compared to the surrounding area), in-

dicating a lack of localization despite being abundant in solution (Fig. 5.3d). We

note that this is also observed for specific IgG in the absence of anti-PEG (see

later, Fig. 5.8b). Time-lapse measurements recorded approximately equal accu-

mulation rates of 1.6× 10−3 s−1 and 1.5× 10−3 s−1 for anti-PEG and specific IgG,

respectively (Fig. 5.3e), indicating that specific IgG is being escorted with anti-

PEG from solution. This is further supported by their mean fluorescence intens-

ities and intensity distributions that are closely correlated over three consecutive

targeting–washing cycles (Fig. 5.3f; see Methods, section 2.2.10). The observed

decrease in the net fluorescence intensity per cycle, however, may be attributed

to the harsh 500mM NaOH (pH 13.7) cleaning solution used to ensure complete

removal of the antibodies during each washing step. This was later avoided by

lowering the concentration and pH of the NaOH solution (see Fig. 5.7b).

AFM force volume (FV) spectroscopy [20] was used to monitor changes in the PEG

brush height under the influence of the different antibodies (Fig. 5.4). In PBS, the

PEG barrier height is 29.5 nm± 4.8 nm and 34.2 nm± 11.2 nm above the nanor-

ing surface and the glass surface (at the nanoring center or “pore”), respectively.

After adding the specific and unspecific IgG, the barrier height at these locations

reduces to 24.4 nm± 1.6 nm and 29.5 nm± 9.0 nm, respectively. This reduction in

PEG height could arise from physical interactions (e.g., van der Waals force) oc-

curring between the non-PEG-binding antibodies and the underlying gold surface

that would exert a “compressive” effect on the intervening PEG brush [124]. Nev-

ertheless, their lack of accumulation (as seen in TIRF; see Fig. 5.8) suggests that

the PEG is still in a brush-like barrier state. When anti-PEG is bound to the PEG

(as confirmed by TIRF), the height at the nanoring surface and the pore further

reduces to 20.0 nm± 2.8 nm and 19.5 nm± 5.1 nm, respectively. Closer inspection

of force curves reveal further insights into the brush structure (Fig. 5.5).

We observe an exponential increase in force upon AFM tip approach above the

PEGylated ring and pore, in contrast to the hard-wall repulsion measured over

the glass surface. This indicates that the PEG forms a polymer brush over the

entire nanoring [20]. After addition of specific and unspecific IgG at ∼10 nM
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Figure 5.3: Precision targeting of specific IgG via anti-PEG. (a) TIRF reveals
anti-PEG binding to each PEGylated nanoring. Scale bar, 2 µm. (b) The
targeting of specific IgG from solution. (c) Merged co-localisation signal of
anti-PEG and specific IgG. (d) The “inverted contrast” in epifluorescence shows
that unspecific IgG is abundant in solution but does not accumulate at the
PEGylated nanorings. This is confirmed by a lack of fluorescence in TIRF
(inset; dashed circles indicate the positions of individual nanorings). (e) Time-
lapse TIRF fluorescence intensity measurements for anti-PEG (green squares)
and specific IgG (red circles), respectively. The solid lines are single exponential
fits (Eq. 2.16) to the data. (f) Fluorescence quantification over consecutive
targeting–wash cycles. By definition, the fluorescence intensity obtained in the
absence of all three antibodies is set to unity. The mean nanoring intensities that
remain at a constant 1 : 1 ratio (anti-PEG : specific IgG) indicate that targeting
is reversible, as validated by the overlap in their intensity distributions (inset).
Error bars denote the standard deviation of nanoring intensities on a single

sample.

each, the repulsive force over the nanorings retains its exponential form, although

with a slightly lower decay length, i.e. brush height. The change over glass can

be explained by unspecific adsorption of the proteins (BSA and antibodies). In

comparison, when adding ∼4 nM anti-PEG to the solution, dominant instabilities

are present in the measured force curves over the ring and pore. Together with

a clear reduction of the brush height (particularly at the pore), this indicates a

disruption of the PEG barrier upon binding of anti-PEG, with the bound anti-

bodies likely contributing to the instabilities. The less obvious reduction at the

nanoring surface is most likely marred by the accumulation of antibodies there
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Figure 5.4: Correlating nonbinding/binding interactions to conformational
changes in the PEG barrier. The average cross-section of a bare nanoring is
shown in yellow. The PEG brush forms a barrier in PBS that envelops the
nanoring surface and the central pore, respectively (blue squares). A slight
reduction at both the nanoring and the pore is measured in the presence of
specific and unspecific IgG (red circles). Anti-PEG binding elicits a strong
reduction (green inverted triangles) that is more obvious at the pore because
the PEG chains collapse to their tethering sites along the inner wall and not to
the pore’s basal glass surface. After removal of anti-PEG with NaOH, the brush
height re-extends to its original brush height (black triangles). The outermost
measurements (i.e., <− 200 nm and >200 nm) result from the adsorption of BSA
and/or nonspecific molecules to the glass surface surrounding the nanorings.
Force curves acquired at the outer nanoring edge have been omitted due to
unstable tip contact. Error bars denote the standard deviation at each point.

(IgG has a hydrodynamic radius of ∼5 nm) [125]. Subsequently, the PEG brush

barrier recovers to a height of 29.6 nm± 8.0 nm (nanoring) and 34.6 nm± 6.2 nm

(pore) after removing the anti-PEG using NaOH, and the force curves are restored

to a similar form as before antibody incubation. This reversible “collapse” of the

PEG chains might explain how the brush can maintain its antifouling property

over several targeting–wash cycles.

Sequential binding experiments of first anti-PEG and then specific IgG show

that anti-PEG alone binds to the PEGylated nanorings with an observed rate

of 2.3× 10−3 s−1 (Fig. 5.6). After removal of unbound anti-PEG in solution, we

find that specific IgG binds to the pre-bound anti-PEG with an observed rate of

2.4× 10−3 s−1. Interestingly, while specific IgG binds to the anti-PEG on the PEG

targets, there is almost no co-localization between specific IgG and anti-PEG on
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Figure 5.5: Representative force curves obtained upon approach of the AFM
tip towards the sample at three distinct positions, i.e. over glass (top), over the
nanoring surface (middle), and over the central pore (bottom). Blue: PEG brush
in PBS before antibody binding; red: PEG brush with specific and unspecific
IgG added; green: PEG brush with dominant instabilities (arrows) after anti-

PEG addition.
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the glass surface. This shows that the anti-PEG maintains its bioactivity when

bound to PEG, but not on the glass surface.

Figure 5.6: (a) TIRF measurements during incubation with only anti-PEG
in solution. The upper panel shows time-lapse data (symbols) and a single
exponential fit (Eq. 2.16) to the data (solid line). The lower panel shows spe-
cific binding of anti-PEG to PEGylated nanorings (4 rings, lower left corner)
accompanied with random non-specific adsorption to the surrounding glass sur-
face. Scale bar, 2 µm. (b) Sequential incubation of specific IgG (after removal
of unbound anti-PEG in solution). Upper panel: time-lapse data (symbols)
and single exponential fit (solid line). Lower panel: the specific IgG is now
co-localized with the anti-PEG on the same PEGylated nanorings, but not on

glass.

Finally, all three antibodies (∼7 nM per antibody) were incubated in blood serum

(containing 50 – 100mg/ml protein and ∼2mg/ml lipids) to assess the effect-

iveness and reversibility of our synthetic protein targeting assay in an authentic,

multicomponent biological fluid. As in PBS, the co-localization of specific IgG and

anti-PEG is unmistakable (Fig. 5.7a), with their ratios (anti-PEG : specific IgG)

remaining close to unity over two consecutive NaOH wash–antibody incubation

cycles (Fig. 5.7b). Here, the 10mM NaOH (pH 12) washing solution did not result

in a decrease of the fluorescence intensity between cycles (compare with Fig. 5.3f).
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Hence, PEG not only is antifouling against nonspecific entities within the serum

but also maintains its viability to anti-PEG binding (and specific IgG targeting)

over consecutive washes. This shows that specific IgG targeting by anti-PEG is

robust, reproducible, and reversible.

Figure 5.7: Reversible targeting in blood serum. (a) TIRF images obtained
over three consecutive targeting–wash cycles. Targeting is reversible after 10mM
NaOH washing steps, although the number of anti-PEG and specific IgG mo-
lecules (= intensity) can differ between PEGylated nanorings. Scale bar, 1 µm.
(b) Fluorescence quantification at the PEGylated nanorings. By definition, the
fluorescence intensity obtained in the absence of all three antibodies is set to
unity. The overall intensities of specific IgG and anti-PEG are reproducible over
two targeting–wash cycles with an approximate 1 : 1 distribution ratio (inset).
Accumulation of the unspecific IgG does not occur at the PEGylated nanorings.
The error bars denote the ring intensity standard deviations within one sample.

5.3 Discussion

On the basis of these results, the use of the PEG–anti-PEG system may be able

to resolve several issues related to interfacial protein stability. First, PEG tar-

gets do not denature in complex biological environments (except oxidation by
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alcohol dehydrogenase) [126]. Second, the mode of specific IgG capture by anti-

PEG in solution before PEG targeting precludes binding artefacts and potential

loss of bioactivity that result from the surface immobilization of capture protein-

s/antibodies (e.g., from denaturing and molecular orientation effects) [111, 114].

Third, precision targeting from a complex milieu (i.e., serum) is achieved without

sample prepurification given the antifouling characteristics of PEG. Likewise, no

washing steps or dilutions are required for targeting. Fourth, given its inability

to denature, PEG targets can be reversibly washed and targeted unlike surface-

bound protein targets. Fifth, PEG preserves and maintains antibody bioactivity

on surfaces [127]. By incubating the antibodies sequentially, we find that specific

IgG binds to anti-PEG prebound to the PEGylated nanorings but not to anti-

PEG nonspecifically adsorbed on the glass (Fig. 5.6). Therefore, this method of

preloading PEG with anti-PEG may be even applied in ELISA-based assays [111].

Sixth, the relative ease at which PEG functionalization can be carried out en-

hances the prospect of nanoscale miniaturization in biodiagnostics (i.e., a protein

microarray spot size is typically ∼ 200µm, whereas our targets are sub-micrometre

in size) [128]. Altogether, these attributes satisfy six out of the eleven perform-

ance benchmarks listed by Wu et al. concerning the future development of assay

capture surfaces in complex biological milieus [111].

The biochemical selectivity and spatial targeting precision we observe is governed

by applying a concept that accounts for molecular sorting, selective targeting,

and surface fouling as closely interconnected effects. As we illustrate in Fig. 5.8,

this requires (1) a nanoscale target exhibiting antifouling properties in complex

media (e.g., PEG brush); (2) a molecular adaptor with exclusive access to the

intended target (e.g., anti-PEG); and (3) a suite of specific cargoes that do not

themselves bind to the target but instead “hitchhike” along with the molecular

adaptor (e.g., specific IgG). Based on these hierarchical principles, its implement-

ation is not likely limited to PEG-based systems alone. Nevertheless, PEG-based

applications can benefit from expanding the repertoire of target cargoes by en-

gineering bispecific antibodies [129] (or other antibody variants) [130] that would
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similarly act as biohybrid molecular adaptors that bind to PEG and another epi-

tope (e.g., a disease biomarker). This adds a biochemical versatility that may be

advantageous over the use of chemically derivatized biorecognition polymers [43]

given the fact that untagged endogenous proteins can be sourced directly from

authentic biological fluids. In combination with nonfouling PEGylated surfaces,

such biohybrid adaptors could have potential applications spanning from nanopat-

terning to biosensing technologies and for regulating molecular transport processes

more generally.

Technological implications aside, we observe that anti-PEG binding leads to a

reduction in the repulsive Z-range of the PEG brush barrier that correlates to a

conformational compaction. This might stem from a loss of conformational en-

tropy in the PEG that is further exacerbated by the presence of several anti-PEGs

that bind in a bivalent manner either intermolecularly between PEG chains or in-

tramolecularly along a single chain. While theoretical efforts are starting to yield

insight into the underlying physics of such behaviour [131], the relevance of this

biomimetic effect, where intrinsic biorecognition and binding can induce conform-

ational changes in an entirely synthetic polymer, resides in how it is analogous to

the folding of intrinsically disordered (also called natively unfolded) proteins [132]

upon binding to a ligand. This so-called “protein-like” functionality is unique in

comparison to current stimuli-responsive polymers, where conformational changes

are triggered by changes in solvent quality, pH, and temperature [122]. From a

structural viewpoint, resolving exactly how anti-PEG binds to the PEG backbone

may provide further insight into the molecular basis of fouling resistance in PEG

[11].

5.4 Conclusions

The essence of our work in this chapter lies in being able to connect a biological

material system to an abiological one by intrinsic biorecognition. Specifically,

anti-PEG acts as a biohybrid molecular adaptor that can be used to sift specific
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Figure 5.8: Molecular sorting, selective targeting, and surface fouling are in-
terconnected effects. (a) Fouling: in the absence of PEG and anti-PEG, TIRF
images show that “red”, specific IgG (top) and “magenta”, unspecific IgG (cen-
ter) bind nonspecifically to (i.e. foul) the bare nanorings. (Bottom) Red Y
and magenta Y symbols correspond to specific IgG and unspecific IgG in solu-
tion, respectively. Fouling is denoted by the red and magenta bands over the
nanoring. Scale bar, 1 µm. (b) Antifouling: in the absence of anti-PEG, the
PEGylated nanorings remain dark in epifluorescence, although specific IgG (top)
and unspecific IgG (center) are abundant in solution. The lack of fouling at the
nanorings (TIRF, inset) indicates that both antibodies are being repelled by
the PEG brush barrier (bottom). (c) Precision targeting: in the presence of
“green” anti-PEG, specific IgG is distinctly co-localized with anti-PEG at the
PEGylated nanorings (top). In contrast, unspecific IgG does not co-localize
(center). By binding specifically to anti-PEG, specific IgG is precisely targeted
to the PEGylated nanorings via exclusive anti-PEG binding interactions with
the PEG (bottom). This is accompanied by a conformational compaction or

“collapse” of the PEG brush.
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proteins out of complex biological fluids for immobilization onto PEGylated tar-

gets. In part, this is inspired by how biological “adaptors” (known as transport

receptors or karyopherins) identify and target specific proteins (deemed for trans-

port into the nucleus) from the cytoplasm to nuclear pore complexes in eukaryotic

cells [133]. In fact, the central pore of the nuclear pore complex is comprised of

several intrinsically disordered proteins, which have been implicated in regulating

the transport of selective cargo by reversibly collapsing during binding with kary-

opherins [134]. Thus, it may be possible to harness the binding-induced collapse of

PEG to function as a selective gating mechanism in stimuli-responsive nanoporous

membranes [135] (as opposed to changing solvent conditions) [20].





Chapter 6

Conclusions and Outlook

6.1 Conclusions

In this thesis we have thoroughly characterized the covalent grafting of poly(ethy-

lene glycol) (PEG) to Au surfaces from solution. We have shown how the size of the

polymer and especially the grafting conditions can greatly influence the grafting

density of PEG chains on the surface. Cloud point grafting by using Na2SO4

in the grafting solution extends the possible grafting densities towards the very

dense regime. By varying the PEG and Na2SO4 concentrations we have explored

a parameter space where the final grafting densities can be tuned from mushroom

regime to dense brushes. We further applied a recently developed surface plasmon

resonance (SPR) technique [86] using non-interacting macromolecules (the protein

BSA) to directly measure the height of PEG brushes on a flat Au surface, and find

that our results are in accordance to polymer theory predictions [8] and to other

measurements [47]. We especially note that by controlling the grafting density, we

can tune the polymer brush height in a wide range.

We have presented a unique, truly three-dimensional nanoscale experimental sys-

tem in the form of Au nanorings. Our nanorings have distinct nanostructural geo-

metric domains, such as a nanopore-like environment at the centre of the rings.

Conventional nanopatterning methods use a two-dimensional flat surface as the

101
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grafting surface to create patterns in the lateral directions [136]. In comparison,

here we have a grafting surface that is modulated in all 3 dimensions. This is

crucial for modelling a nanopore-like environment. The Au nanorings were PEG-

functionalized (PEGylated) at the same conditions as we used for SPR to enable

direct comparison between the two systems. We have used atomic force microscopy

(AFM) as a tool for probing interactions and forces of polymers at the nanorings

at spatial resolutions of a few nm and at forces down to 20 pN.

Using AFM to measure the morphology and dynamics of the Au nanoring system,

we first confirm that changing the grafting conditions leads to similar trends in

the final surface density and brush height changes as seen by SPR. By employing

different analysis methods, we conclude that most likely surface densities do not

change by as much upon change in grafting conditions as on the flat SPR Au chip.

Unfortunately, a direct measurement method of surface densities or adsorbed mass

on the nanostructures is lacking at present.

Nanopore polymer functionalization is of great interest for creating filtering and

sensing systems with single-molecule sensitivity and control. It is thus of import-

ance to understand the morphology and dynamic behaviour of polymer chains

grafted at nanopores. So far mainly theoretical considerations are available, and

experimental probing of polymer-functionalized nanopore systems is difficult to

conduct. Our Au nanorings with easy handling and access to nanomechanical and

optical probing by AFM and fluorescence microscopy, yet having a real nanopore-

like geometry, are ideally suited to address polymer dynamics at nanopores, as

well as the sorting and targeting of biological molecules to nanoscale PEG targets.

By dynamically compressing the PEG brushes on the nanorings and varying the

AFM loading rate over two orders of magnitude, we show that the loading rate

influences the response of the brush to the compressing tip. In particular we have

shown that the local nanoring geometry influences the brush properties such as

height and stiffness. At the nanoring central hole we see a distinctly different

response to compression at various loading rates than over the ring Au substrate.

This we attribute to different modes of mechanical interaction in these two regions.
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At the flat surface, elastic compression of the polymer brush takes place, while over

the nanopore-like central region additional modes such as shearing could occur.

Finally, we have explored and shown how nanoscale PEGylated targets can be

used as a synthetic targeting system for biological macromolecules. By employing

an antibody-based model system we show a way how the anti-fouling and biocom-

patibility properties of PEG can be harnessed to selectively and specifically target

cargoes even from complex biological fluids towards synthetic nanoscale struc-

tures. Further, we show that PEG brushes can change their morphology upon the

stimulus of specific biochemical binding interactions. In the context of protein-

functionalized nanopores, this “smart” stimuli-responsive behaviour could show a

way towards specific and robust filtering and transport systems.

6.2 Outlook

Based on our experiments with nanorings and nanoholes, we see that polymers

(here: PEG) of appropriate length can create a steric barrier across a nanopore

or -channel. By tuning the polymer size, a barrier against desired particle sizes

can be created, leading a way towards a nanofiltering system based on size exclu-

sion. Further, as we have shown in chapter 5, (bio-)molecules can be introduced

that interact specifically with the PEG barrier, allowing targeting of cargoes to

the barrier and even locally disrupting the PEG barrier by biochemical binding

interactions, leading possibly to exclusive access of our PEG-binding molecules to

the pore interior. Taken together, this could be harnessed to create nanopores or

membranes with possibly single molecule control and sensitivity, and at the same

time specificity towards certain molecules or particles. An obvious follow-up to

our proof-of-concept of these effects on nanorings grafted to a solid substrate is to

create real nanopores or nanoporous membranes that connect two reservoirs, and

correlate transport or flux measurements with our AFM and fluorescence data.

Towards this end we have fabricated suspended SiN membranes with arrays of

solid-state nanopores, with dimensions comparable to our current nanoring system
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(Fig. 6.1). Having a similar Au ring grafting substrate around the nanopores,

there is an opportunity to use the grafting parameters investigated in this thesis to

rationally design nanopores with PEG barriers of desired properties. The nanopore

behaviour could be assessed both by AFM and by transport measurements between

reservoirs, and so similarities and possible differences elucidated between nanorings

on a substrate and free-standing nanopores.

Figure 6.1: Scanning electron micrograph of suspended nanopore array. The
nanopores with pore length of ∼ 100 nm and width ∼ 100 nm, surrounded by Au

ring structures. Scale bar, 500 nm.

PEG barriers exclusively accessed by specific molecules could also be used to

create nanohole arrays as plasmonic sensors [97] with restricted molecular access

to the sensing volume. If only desired molecules can pass to the detection volume,

specificity could be greatly enhanced even in non-ideal sensing situations (e.g. from

“dirty” or complex fluids).

Regarding dynamic effects of polymer brush compression by an AFM tip, we have

seen interesting effects depending on the local geometry, both in the collective

response to confinement (i.e. brush height and stiffness changes), as well as in

single events such as a polymer escape-like transition. Here our system has not

been thoroughly described theoretically, so providing a clear picture of polymer

brush mechanics remains difficult at the moment. For example, simulations of

tip-like structures shearing a brush in nanopores, or of an AFM tip compressing

a brush at various speeds would be welcomed (in comparison to large obstacles or
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uniform shear velocity fields, as has been done). Experimentally, fully exploring

the effect of relative tip and pore or ring sizes could enhance our understanding

of the effects measured in this thesis.





Appendix A

Force Curves

This appendix contains typical raw force vs tip-sample distance curves.

Fig. A.1 and Fig. A.2 show example force curves taken over Au nanorings function-

alized at low density and high density PEG brush conditions, respectively. PEG

grafted at lower density leads to a lower brush height on the nanorings. This can

be seen in the example force curves, where at low density conditions the repulsive

interaction between tip and brush starts closer to surface. Fig. A.3 shows typical

force curves taken over the Au surface of nanohole samples. 20 kDa PEG exhibits

a significantly larger brush height than 10 kDa PEG. Force curves over unfunc-

tionalized (bare) samples don’t show any brush behaviour. Attractive interactions

between the AFM tip and the bare surface cause a jump into contact when the tip

is close to the surface. Fig. A.4 shows example force curves exhibiting an escape

transition-like jump in the force while compressing a 20 kDa PEG brush on Au

nanorings.
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Figure A.1: Typical force curves recorded over Au nanorings functionalized
with 20 kDa PEG at low brush density conditions (grafting solution 40mg/ml
PEG in PBS; gSPR = 4.1 nm). Average brush height is 16.2 nm. Note the onset
of repulsion at lower distances (i.e. smaller brush height) compared to high

density conditions (Fig. A.2).
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Figure A.2: Typical force curves recorded over Au nanorings functionalized
with 20 kDa PEG at high brush density conditions (grafting solution 0.13mg/ml
PEG in 0.9M Na2SO4 in PBS; gSPR = 2.2 nm). Average brush height is 19.5 nm.
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Figure A.3: Typical force curves over Au nanohole samples. (a) Sample
functionalized with 20 kDa PEG. Average brush height 18.1 nm. (b) 10 kDa
PEG, average brush height 6.4 nm. (c) Bare Au surface with jump into contact

due to attractive interactions between tip and surface.
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Figure A.4: Typical force curves exhibiting a sudden escape transition-like
jump in force during compression of a 20 kDa PEG brush on an Au nanoring.
Force curves with transitions at different forces and distances have been selected.





Appendix B

Data Analysis Software

This appendix describes the custom-written data analysis software used in this

thesis. Section B.1 briefly describes ImageJ macros used for the fluorescence in-

tensity analysis in chapter 5. Section B.2 serves as the user manual for the custom

IGOR software used for most AFM data analysis in this thesis. All code is avail-

able under a free license.

B.1 ImageJ image analysis macros

A set of ImageJ [92] macros was used to assist with the fluorescence intensity

measurements in this thesis. The macros can be downloaded at https://github.

com/jhyot/imagej-helper-macros. These macros can be imported and run via

the usual ImageJ macro commands (refer to the ImageJ manual for a description

of how to run macros).

copy-timings-to-clipboard.ijm

This macro analyses any optical microscopy time series file and copies the acquisi-

tion times of each frame to the clipboard. After starting the macro, select the time

series file you wish to analyse, and then select which series and channels you’d like
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to include in the output. After the macro finishes, the timings are copied into the

clipboard in a tab-separated format (a column for each selected channel), so that

it can be easily pasted e.g. into a spread sheet.

The Bio-Formats [137] plugin for ImageJ1 must be installed for the macro to work.

measure-ring-intensities.ijm

This macro measures the fluorescence intensity over the nanorings in a nanoring

array such as seen in Fig. 3.6. The macro can handle a single image or a stack of

images. Upon running the macro a dialog window will ask for various parameters.

The grid angle and position of the top-left ring can optionally be determined in a

visual way: Draw exactly one line ROI horizontally across a row of rings (determ-

ines the angle), and one point ROI in the center of the top-left ring (determines

the x and y starting coordinates).

Parameters can also be read in from a file. The parameter file can be chosen in

the next window appearing after closing the parameter dialog. In the parameter

file, parameters must be defined one per line in the format parameterName=value.

For a list of all parameters look at the header of a result file after running the

analysis once. Missing or invalid parameter values will be replaced by a default

value.

Fluorescence intensities can be adjusted for background by two different methods

(the third option is no background adjustment).

median min

The median min method runs a median filter over the image to reduce noise

outliers and takes the minimum intensity value around each ring as the

background for that ring. This background value is subtracted from the ring

intensity to arrive at the background-corrected ring intensity.
1http://www.openmicroscopy.org/site/products/bio-formats

http://www.openmicroscopy.org/site/products/bio-formats
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avg normalized

The avg normalized method takes the average intensity (no filtering applied)

within a background ring region (bounded by an inner and outer radius as

defined in the analysis parameters), and normalizes the nanoring intensity

by this background average for each ring.

roi-multi-measure.ijm

This is a small helper macro to quickly measure all ROIs for all slices in all open

images. The user can define ROIs for a single image, and then automatically have

the ROIs measured in all slices and images. For this to work, the ROIs must not be

named in a slice-specific way, i.e. the sss-yyyy-xxxx format is not allowed. The

macro writes the pixel area, average intensity, standard deviation, and integrated

intensity into a single file.

B.2 AFM analysis software

The custom AFM analysis software package consists of IGOR Pro procedure files

(WaveMetrics, USA)2. It has been tested with IGOR version 6.3.4 under Windows

7. The analysis software can be downloaded at https://github.com/jhyot/

afm-forcecurve-analysis.

The software offers a basic user interface for loading force curves and force volume

maps from Bruker (formerly Veeco) Nanoscope files, analysing the brush height

of each force curve, and reviewing and classifying curves. Further, additional

functionality is available by calling specific functions manually (from the command

window, a macro or a procedure). The software has been tested with data obtained

by Nanoscope versions 7.3 and 8.1x.
2http://www.wavemetrics.com/

https://github.com/jhyot/afm-forcecurve-analysis
https://github.com/jhyot/afm-forcecurve-analysis
http://www.wavemetrics.com/
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This manual is divided into three parts. Section B.2.1 describes the installation,

start and configuration of the software. Section B.2.2 describes the features access-

ible through the graphical user interface (GUI), and section B.2.3 finally describes

the additional functions not available through the GUI. Basic familiarity of IGOR

Pro operation is assumed, and knowledge about functions and procedures is ne-

cessary for using the functions not provided through the GUI.

B.2.1 Installation and configuration

Installation

Download the software package and place all included files and folders into any

folder. No additional installation is necessary. In the root folder, forcecur-

ve-analysis.ipf is the main program file. The config folder contains configur-

ation files which can be edited by the user. The lib folder contains most of the

software code, and does not need to be modified by the user.

Loading the software

To load the software package, start Igor by opening the forcecurve-analysis.ipf

file (e.g. double-click on the file), or load the file within Igor from the menu File

Open File Procedure... . Compile the script by selecting Macros Compile from the

menu, or Compile in the procedure window. On successful compilation, all the other

files are loaded automatically and a new top-level menu entry Force Map Analysis

will appear (Fig. B.1).

Configuration

Some basic parameters for data loading and analysis are configured by editing

the file config/fca-config.ipf which is available once the code has been loaded

(see above). Access the file by selecting Windows Procedure Windows fca-config.ipf .
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Figure B.1: Menu for accessing the GUI functions of the AFM analysis soft-
ware.

Enable editing by clicking on the pencil symbol in the lower left corner. This file

contains parameters which each control a particular aspect of the software. Change

a parameter by editing the part following the assignment symbol = . Parameters

have been set to sensible values by default, but depending on the data, changing

the values can be necessary for correct results.

The following parameters influence the loading of Nanoscope data files.

ksVersionReq

Lists all valid file versions that can be read by this software (separated by

commas). Any files recorded by differing Nanoscope software versions will

not be loaded and produce an error to protect from unnoticed wrong loading

or analysis. Usually the file format does not change between Nanoscope

versions, so additional versions can be added here (see the header of the

Nanoscope data file for the version string), but careful inspection of the

results should be performed when first loading data from a new version.

ksFixPointNum

Defines how the number of data points per force curve is determined.
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0: Automatically read the number of points from the force curve data file.

1: Fix the number of points to the value given in the next parameter (this

setting is mainly left for legacy reasons).

ksFCPoints

Number of points per force curve. This parameter only has an effect if

ksFixPointNum is set to 1.

ksFVRowSize

Number of pixels per row in a force volume map. Since maps are quadratic,

this also defines the number of rows. Only the values 16 and 32 have been

thoroughly tested.

ksFileTypeFV

The string by which force volume files are identified (the header of the files

is searched for this string). There should be no reason to change this para-

meter, unless the Nanoscope file format has changed.

ksFileTypeFC

The string by which single force curve files are identified (the header of the

files is searched for this string). There should be no reason to change this

parameter, unless the Nanoscope file format has changed.

ksHeaderEnd

The string which defines the end of the header in data files. There should

be no reason to change this parameter, unless the Nanoscope file format has

changed.

The following parameters influence aspects of data analysis.

ksBaselineFitLength

Value between 0 and 1. Sets the fraction of the whole force curve length

that is used for baseline fitting. Too small values lead to inaccurate fits if

the force curve has some irregularities. Too large values also lead to wrong
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fits if the baseline is not perfectly linear (as can be the case for very long

ramp sizes).

ksBrushCutoff

Used only if the brush height calculation is based on the exponential fit

algorithm. Defines the brush height as the distance at which the exponential

fit crosses this force value (in pN). Note: In the current version of the

software there is no straightforward way to switch to the exponential fit

brush height calculation.

ksBrushOverNoise

Used only if the brush height calculation is based on the noise threshold

algorithm. Defines the brush height as the distance at which the smoothed

force curve crosses the smoothed baseline noise multiplied by this factor.

Smaller values give larger (more realistic) brush heights but lead to higher

susceptibility to noise. Values <1 are not useful.

ksDeflSens_ContactLen

Approximate length of the piezo ramp during which there is contact between

tip and sample (in nm). This doesn’t have to be accurate but provides

guidelines for the fitting algorithm. The default value should work for most

force curves. If the deflection sensitivity fit leads to wrong values, changing

this parameter can improve results.

ksDeflSens_EdgeFraction

Defines how much of the hard-wall portion of a curve is getting fitted for

deflection sensitivity. The default value should work for most force curves. If

the deflection sensitivity fit leads to wrong values, changing this parameter

can improve results. Useful values are in the range of 0.01 – 0.1.

ksFixDefl

Defines how the deflection sensitivity is determined for each curve. 0: The

deflection sensitivity is fitted separately for each curve. 1: Read the sensit-

ivity from the header of the force curve or force volume file.
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ksXDataZSens

Defines whether available Z sensor (height sensor) data is used instead of

the fixed ideal ramp size set when recording force curves. Using Z sensor

gives more correct data. For this, one ramp channel has to be set to Z sensor

(sometimes denoted Height sensor) during recording. 0: Don’t use Z sensor

data. 1: Use Z sensor data if it is available. 2: Always use Z sensor data

(aborts data analysis if it is not available).

ksMaxGoodPt

Some force data may have corrupted data at the end of the curves. If such

cases are not detected automatically, this parameter can be set to the point

number after which the rest of the force curve is ignored. Set to -1 to ignore

this parameter.

B.2.2 GUI features

This section describes the features available through the Force Map Analysis menu

(Fig. B.1).

Before loading and working with a force volume file or a force curve file set, you

should create and switch to a new data folder in Igor. Working directly in the

root data folder is not recommended. To create a new data folder, select Data

Data Browser from the top menu, followed by New Folder... in the data browser

window. Enter a unique name and select Set As Current Data Folder . Each force

curve data set should go into its own data folder. Nested folders are allowed.

Loading and analysing data

Loading and analysing a force volume file

Select Force Map Analysis Open FV File... . In the settings dialog, choose whether to

load any friction data and Z sensor data present in the FV dataset. Only select

yes if your dataset includes this data. These settings are saved per data folder. If



Appendix B. Data Analysis Software 121

you want to change them later, choose Settings... from the menu. Next, select the

file to load. The quasi-topography map appears after successful loading of the FV

file.

Choose Select / Load curves from the menu to select which force curves from the

map to import into Igor and to analyse. Select individual force curves by clicking

on the corresponding pixel in the map, or All to select all curves.

Next, select Start Analysis from the menu to perform the brush height and related

analysis of the previously loaded force curves. After the analysis is finished, an

image representing the brush heights is displayed. Any errors during this step can

be related to inappropriate configuration values (see Section B.2.1) or trying to

load data which is not present (such as Z sensor data).

The menu command Load and Analyse Whole FV Map... serves as a shortcut to auto-

matically open a FV file and load and analyse all force curves.

Navigating through the data

After successful loading and analysis of the FV data, you can view any force curve

by clicking on the corresponding pixel in the quasi-topography or brush height

maps. A new graph is shown each time a pixel is selected. To navigate through

the data without opening a new graph, hold Ctrl while in the force curve graph

and use the arrow keys to navigate around the map.

Figure B.2: Force curve graph.



122 Appendix B. Data Analysis Software

In the force curve graph (Fig. B.2), you have several buttons to control the data

presentation. All regular Igor formatting methods and options are available as

well. The Zoom and Unzoom buttons cycle through predefined zoom levels. The

zoom levels can be re-defined through editing of the source code (see Section B.2.3).

The Approach and Retract buttons show or hide the approach and retract parts of

the force curves, respectively. The button starting with X: switches between

display modes and displays the current mode. X: TSD is showing the force vs

tip-sample-distance curve, while X: Zpiezo is showing the force vs Z piezo position

curve. Metadata prints metadata for the displayed curve gathered during loading

and analysing to the command window.

The graphs can be closed at any time, but any changes to the presentation of the

graph will be lost.

Images

The menu command Load Image... allows to select and load a different image as

the quasi-topography map. This is useful when you want to process the topo-

graphy map in a different software (e.g. flattening) and then import it back to

Igor. Show Image and Show Height Results bring the quasi-height image and the

brush height map to the front, respectively, if they have been hidden after the

initial loading. Note that closing the images (instead of just hiding them) cannot

be undone.

Loading and analysing a collection of individual force curves

In addition to a force volume file, this software can also load and analyse indi-

vidual force curves. Use the menu items Open FC Folder... , Select / Load Curves and

Start Analysis (or the shortcut Load and Analyse Whole FC Folder... ) to import all force

curves located in a given folder. All files in the folder which are recognized as

force curves will be analysed. The curve files are imported in the order of their

filenames.

After selecting the source folder, you can choose between three different types:
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line Indicates that the individual force curves were taken in a straight line over

the surface (e.g. using the point-and-shoot mode of Nanoscope). The cross-

section force curve analysis graph will open after the analysis step (Fig. B.3).

box Indicates that the force curves were taken in a quadratic pattern similar to

the force volume mode. When selecting this option, the data set behaves as

though it was loaded from a force volume file.

random

Indicates that the force curves have neither a linear nor box-like relation to

each other. After analysis, the cross-section force curve analysis graph will

open for ease of analysing and displaying the data. But although the curves

are shown to be in one line, this is only for display purposes.

Cross-section analysis

The cross-section force curve analysis window (Fig. B.3) will open after analysis

of line or random type force curve data. This window is divided in three parts.

The top part shows the hard-wall topography (black line) and brush height (red

area) for each force curve. The middle part shows the force (i.e. vertical deflection)

data, and the bottom part shows the friction data (horizontal deflection).

The vertical and horizontal deflection graphs show both approach and retract

curves. The dashed vertical line indicates the calculated brush contact point.

The buttons above the graph allow to choose between tip-sample-distance and

piezo position modes, and to switch between predefined zoom levels. The zoom

levels can be re-defined through editing of the source code (see Section B.2.3). By

holding the Shift key and moving the mouse over the force curves, a vertical guide

appears. Moving the cross-hair in the top panel (either by dragging it or with

left/right arrow keys) selects the corresponding force curve data set. All graphs

can be customized by using the standard Igor features.
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Figure B.3: Cross-section force curve analysis window.

Reviewing data

Once data has been loaded and analysed by the software, several data review

functions are available through the Review submenu.

Flagging curves

The function Review Flag Curves... allows to flag force curves based on paramet-

rizable criteria. The different criteria allow to find force curves with general bad

quality or incorrect fits. Once the Flag Curves algorithm has been run, Review

Mark Flagged shows the flagged curves as red markers in the topography and brush

height images (only for FV data).

The flaggedcurves wave stores the value 1 at the index of every flagged curve,

and can be used for custom analysis or processing of flagged curves.
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Reviewing curves

Selecting Review Review All Curves or Review Review Flagged Curves starts the review

mode. Each curve in turn can be accepted or rejected as a valid data point. When

using Review Flagged Curves , the non-flagged curves are automatically accepted as

valid. The Zoom and Unzoom buttons cycle through the predefined zoom levels

(customizable through editing of the source code, see Section B.2.3). The default

zoom level for the next curve can be selected in the drop-down list. The Redo last

button returns to the previous curve. The Stop button stops the review.

Brush heights from accepted and rejected curves are stored in the heights_acc

and heights_rej waves, respectively. The data can be used to perform calcula-

tions and statistical analysis based on the particular subset of data. If a review is

stopped before reviewing all curves, the brush heights from the remaining curves

will not be added to either of the new waves.

Classifying curves

The Review Classify Curves function is a specialized reviewing tool that was used

to analyse the data for Chapter 4.5. In its current form it can only be used to

classify force curves taken over a ring-like structure. A force curve can be classified

as “exhibiting a certain feature”, or “not exhibiting the feature” (or excluded from

classification, e.g. when the data quality is too bad). After the classification step,

a histogram is computed that shows the frequency of the classified feature as a

function of the distance from the center of the ring (with and without normalizing

for the number of curves at a given distance). Pixels which have low enough quasi-

topography height (i.e. which lie outside the ring structure) are automatically

excluded from classification.

Helper Functions

The Helper menu provides access to some utility functions.
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Brush Histogram

Calculates and displays a histogram of brush heights over the whole data-

set. The display will not show outliers with very large brush height values,

because those are usually measurement or analysis errors.

Subtract Baseline

Subtracts a baseline (linear fit) from the designated wave. If the active win-

dow has a “A” cursor placed on a trace, then that wave is used, otherwise

a dialog will ask for the wave name. You can exclude regions from parti-

cipating in the baseline fit by placing them between pairs of cursors (i.e.

between A and B, C and D, etc.). The original wave will be backed up as

backups/<wavename>_baselinesubtr.

Median Filter Image

Applies a median filter with a 3× 3 pixel kernel to a given image, and also

filters out any NaN pixels. You will be asked for the image wave name to

be filtered. The original wave will be backed up as backups/<wavename>

_medianfilt.

B.2.3 Additional functions

Some functionality is not accessible via the Force Map Analysis menu but only by

directly calling specific functions, e.g. in the Command Window or from custom

scripts. The following sections briefly describe the additional useful functions,

grouped by functionality. The full explanation of the input and output parameters,

and implementation details can be obtained by reading the source code.

Brush height analysis

Most functions in the file lib/fca-analysis.ipf perform the brush height cal-

culation and related analysis, and are accessible through the menu. Additionally

some functions can be called manually for further analysis. It is recommended
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to call the additional analysis functions only after performing a regular analysis

through the menu, to ensure that all necessary setup is done and waves have been

created.

CalcLinStiffness

Calculates the linear brush stiffness for the currently loaded data, as used

in section 4.3 and described in the Methods in section 2.2.6. The resulting

data will be saved in the linstiffness wave.

CalcHertzEModAll

Calculates the brush Young’s modulus for the currently loaded data. The

algorithm is described in section 4.3. Uses the twohertz curve fitting func-

tion from lib/fca-fitting.ipf. Note that some coefficients for the fit

are hardcoded in the CalcHertzEMod function. The calculated E1 and E2

Young’s moduli are saved in the emod1 and emod2 waves.

Functions residing in the file lib/fca-absolute-relative-heights.ipf are used

to produce the “brush contact height” analysis and corresponding plots in sec-

tion 3.6.

absrelheights

Creates the wave that holds the “brush contact height” data (i.e. image

height plus brush height). It’s called “absolute” height in the functions, as

opposed to “relative” height, which is the brush height above the hard-wall

contact point. Parameters img and bheights are existing image and brush

height wave names, while the other parameters are names of waves that will

be created by the function (absolute brush height wave and the two different

“zero” lines).

scatterplots

Creates the scatterplots used in section 3.6. Parameters are as above, with

img, bheights and added names of existing waves, while the other two will

be created.
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plot_color, plot_color_auto

Creates the coloured areas on the scatterplot (or any other plot). plot_color

takes the color boundary positions as parameters, while plot_color_auto

chooses the boundaries automatically based on the first X wave data in the

plot.

absrelheights_combine

Concatenates multiple input waves into a single output wave and displays a

scatterplot of the combined data.

Loading rate analysis

The code in lib/fca-loadingrate-analysis.ipf was used to analyse the data

and create the graphs for section 4.2. Unfortunately, the code is extremely special-

ised for the particular task and no effort has been spent to make it more general

and user-friendly. The interested reader is welcome to look through the code and

associated comments.

Helper Functions

Helper functions assist with miscellaneous small tasks. The functions are located

in lib/fca-datainfo.ipf and lib/fca-wave-handling.ipf.

PrintInfo, PrintInfoDF

Prints information about the current data folder or one passed as parameter.

PrintParams

Prints analysis and curve parameters. The desired parameters must be

passed into the function. The function searches global analysis paramet-

ers and per-curve parameters and prints out any matches. The second in-

put argument selects the curve number for which to print the parameters.

To see what parameters are available, have a look at the internalvars/

analysisparameters variable and at the fcmeta text wave.
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SaveBackupWave, RestoreBackupWave

Saves and restores a given wave to/from the backups data folder.

MakeTempCurve

Extracts a single curve from the full curve dataset. This can be used to try

out analysis and operations on a given wave. It is intended to be used with

the fc and rfc group of 2D waves. The index to be extracted can be passed

in by hand or it can be read from an open graph displaying the desired curve.

Curve Fitting

The curve fitting functions in lib/fca-fitting.ipf can be used from a script or

from the Igor Analysis Curve Fitting... dialog. The mathematical formulas can be

found in the code comments within the individual functions. Most functions are

transformed to work with nm and pN units, since the loaded and analysed force

curves are saved in these units.

Zoom settings

Although all graphs can use standard Igor zooming and scaling functions, many

force curve graphs include special zoom buttons for convenient setting of standard

zoom levels. The zoom levels can be configured in the config/fca-zoom-config.

ipf file. The configuration is done by editing a matrix with zoom values. Each

field in the matrix corresponds to a curve type, zoom level, and axis. The source

file has additional comments to help with finding the correct field for changing a

specific zoom setting.
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