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Preface 

Parts of the INTRODUCTION (1.1 and 1.3.3) have been prepared as a literature review 

on RBM3 and CIRP, which is submitted to Cell Mol Life Sci for publication. The section 

1.2.1 of the INTRODUCTION, parts of the MATERIALS AND METHODS section, chapter 

3.1.3 and 3.2 of the RESULTS and parts of the DISCUSSION have been published in 

FASEB J (Zhu X et al., 2015). 
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Abstract 

Moderate hypothermia promotes the survival of neural cells in a wide range of brain 

disorders. During hypothermia, a subgroup of proteins including two homologues, 

RNA-binding motif protein 3 (RBM3) and cold-inducible RNA-binding protein (CIRP), 

is substantially induced when global translation is attenuated. Both RBM3 and CIRP 

do not only enhance cell viability and suppress apoptosis under lower temperature, 

but also exert multiple functions in euthermic environment. Since CIRP has a dual 

role in either cytoprotection or inflammation-mediated cell damage, we 

concentrated on RBM3, which has been shown so far as a beneficial factor for cell 

survival. 

The goal of the thesis was to figure out the mechanisms of RBM3 action in 

cytoprotection when cells are exposed to various stressors. In an in vitro hypoxic-

ischemic model, we noticed that hippocampal neural cells were protected by 

moderate hypothermia, accompanied with an induction of RBM3. In HEK293 cells, 

RBM3 enhanced cell viability and suppressed oxidative stress-induced apoptosis. In 

particular, we focused on endoplasmic reticulum (ER) stress because recent studies 

suggest that ER stress activates unfolded protein response (UPR) and eventually 

causes apoptosis in brain injuries and neurodegenerative diseases. In order to 

examine the hypothesis that RBM3 influences cell fate via regulating UPR, we 

challenged organotypic hippocampal slice cultures with ER stress inducers and 

observed exacerbated PERK-eIF2α-CHOP signaling in RBM3 knockout mice compared 

to wildtype mice. Furthermore, in HEK293 cells RBM3 attenuated PERK-eIF2α-CHOP 

signaling by inhibiting PERK phosphorylation. However, RBM3 neither interacted with 

PERK directly, nor altered the expression of ER stress sensor BiP. An interactome 

analysis of RBM3 in HEK293 cells revealed nuclear factor NF90 as a novel binding 

partner of RBM3 and PERK. Notably, NF90 was required for RBM3-mediated 

regulation of PERK activity. In addition, during our research we noticed that RBM3 

downregulated a subset of pro-apoptotic miRNAs while upregulated a group of anti-

apoptotic miRNAs, which may also contribute to its anti-apoptotic activity. In 
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summary, this study confirmed the cytoprotective role of RBM3, and revealed 

underlying molecular mechanisms including the prevention of oxidative stress-

induced apoptosis, the inhibition of PERK-eIF2α-CHOP signaling and the modulation 

of apoptosis-related miRNAs. 

Key words: RBM3; cell death; oxidative stress; ER stress; miRNA 
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1. Introduction 

1.1 Cold responsive proteins 

Decreased body temperature is a key feature of seasonal hibernation, which is an 

entrained state of slowed metabolism that widely exists in amphibians and mammals 

to endure food austerity (Carey HV et al., 2003; Storey KB, 2010; Milsom WK and 

Jackson DC, 2011). As a direct cellular consequence of decreased body temperature, 

global protein synthesis is repressed, thereby switching the cellular program from cell 

growth to cell preservation. In contrast to the general decrease in protein synthesis, 

the production of a small group of proteins, including cold-inducible RNA-binding 

protein (CIRP; alternative abbreviation: CIRBP; synonymous: heterogeneous 

ribonucleoprotein A18, hnRNP A18) and RNA binding motif protein 3 (RBM3), 

increases in hibernating animals (Williams DR et al., 2005; Sano Y et al., 2015). 

In clinical practice, therapeutic hypothermia (32-34°C) has been proven a potent tool 

to alleviate neurological deficits in infants with hypoxic-ischemic encephalopathy 

(HIE) (Committee on Fetus and Newborn et al., 2014) and in adults with acute brain 

injuries (Yenari MA and Han HS, 2012). Whereas much deeper hypothermia is used 

during cardiac and transplant surgery (Lampe JW and Becker LB, 2011), CIRP and 

RBM3 synthesis peaks in a range of mild to moderate temperatures (32-34°C) (Tong G 

et al., 2013). Because clinical hypothermia is associated with various life-threatening 

side effects (Choi HA et al., 2012), CIRP and RBM3 are promising research candidates 

for new therapies. 

Apart from their functions under hypothermia, various studies have indicated that 

CIRP and RBM3 also have important functions in cell protection under general 

endogenous and environmental stresses at normal temperatures (Lleonart ME, 2010).  

Here, we provide a comprehensive and systematic overview of biological functions 

mediated by CIRP and RBM3, within and outside the context of hypothermia by 

systematically considering most of the papers published on CIRP and RBM3 thus far.  
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1.1.1 Structure, evolution and spatial distribution 

RBM3 was first identified as an X-chromosome linked gene that mapped to region 

Xp11.23 on the short arm (Derry JM et al., 1995). RBM10 gene locus is in close 

proximity, while another RNA-binding motif protein (RBM) gene, RBMX, is located on 

region Xq26 (Martínez-Arribase F et al., 2006). These three X chromosome-linked 

genes all encode proteins belonging to the RBM family, and their expressions are 

often analyzed together, such as in breast cancer and astrocytoma (Martínez-

Arribase F et al., 2006; Martín-Garabato E et al., 2008; Schneider J et al., 2011; Zhang 

HT et al., 2013). Surprisingly, in male rats, the expression level of RBM3 in sexually 

dimorphic nucleus of the preoptic area (SDN-POA) neurons is almost 2-fold that in 

female rats, although it declines 50% upon NMDA receptor inactivation. In contrast, 

the expression level of RBM3 in females is unaffected by an NMDA receptor inhibitor, 

indicating a dose-dependent mechanism related to X-chromosome inactivation (Hsu 

HK et al., 2005).  

The gene coding for CIRP, the homologue of RBM3, is localized on chromosome 

19p13.3 (Nishiyama H et al., 1997a), which may indicate the different evolutionarily 

origins of CIRP and RBM3.  

Both of CIRP and RBM3 belong to a group of stress-responsive proteins sharing high 

sequence similarity (Figure 1.1 and Table 1.1). Two highly conserved RNA-recognition 

motifs (RRMs), namely RNP1 and RNP2, are located at the N terminal protein end 

and are moderately conserved in eukaryotes, the consensus sequences of RNP1 and 

RNP2 are (K/R)G(F/Y)(G/A)FVX(FY) and (L/I)(F/Y)(V/I)(G/K)(G/N)L, respectively (Ciuzan 

O et al., 2015). Notably, the two RRMs of CIRP and RBM3 show functional and 

partially sequence similarities to the two RNA-recognition motifs of cold shock 

proteins (CSP) present in almost all organism from bacteria to higher eukaryotes and 

accordingly are called cold shock domains (CSD), with the consensus sequence 

(K/S)G(F/K/Y)G(F/L)IXX and (L/I/V)(F/Q)(V/A/L)HX(STR), respectively (Horn G et al., 

2007). Prokaryotic CSPs exert important functions in cold response due to drastic 

drops in temperature, e.g., from 37°C to 10°C, and in other euthermic stress 
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responses, indicating common features as well as differences between CIRP/RBM3 

and CSPs (Horn G et al., 2007; Ciuzan O et al., 2015). Because the C-terminal end of 

both CRIP and RBM3 proteins contains a less conserved arginine-glycine--rich domain 

(RGG), CIRP and RBM3 belong to the large family of glycine-rich proteins (GRP) and 

because they are featured with RRMs they belong to the subfamily Class IVa of GRPs 

(Mangeon A et al., 2010; Ciuzan O et al., 2015).  

The evolution of Class IVa GRP subfamily to which CIRP and RBM3 belong is highly 

conserved across vertebrates and higher plants (Ciuzan O et al., 2015) (Figure 1.1). 

The evolutionary conservation occurs at not only the primary amino acid sequence 

level but also the functional level. For example, in Arabidopsis, the well-characterized 

member of this subfamily, AtGRP7, is indispensable in cold adaption and 

drought/osmotic stress response (Cao S et al., 2006; Kim JS et al., 2007; Yang DH et 

al., 2014). AtGRP7 also regulates a number of post-transcriptional and translational 

events (Streitner C et al., 2010; Streitner C et al., 2012; Köster T et al., 2014; Löhr B et 

al., 2014), functions as circadian oscillator (Heintzen C et al., 1997), and is involved in 

pathogen defense (Lee HJ et al., 2012). In poikilotherm animals such as fish, CIRP 

homologues are also elevated upon environmentally osmotic or severe cold stresses 

(<10°C), but may not change at normal ambient temperature (20-25°C) (Pan F et al., 

2004; Hsu CY and Chiu YC. 2009; Verleih M et al., 2015). The well-studied amphibian 

and mammalian CIRP and RBM3 possess biological functions highly similar to AtGRP7 

and fish CIRPs, implying their preservation of biological activities (see below for 

further details).  

An interesting finding from the alignment of mammalian RBM3 sequences is that the 

RGG domain is almost absent in some RBM3 isoforms in species including Capra 

hircus, Bos taurus and Pongo abelii (Zargar R et al., 2015; Figure 1.1 and Table 1.1).  

The spatial distribution of CIRP and RBM3 in major organs differs. In humans, RBM3 

expression is low or absent in thyroid and heart, where CIRP is abundant in these 

organs (Danno S et al., 1997; Wellmann S et al., 2010). In hibernating bears, RBM3 is 

upregulated in all tissues, including muscle, liver and heart (Fedorov VB et al., 2009; 

Fedorov VB et al., 2011), whereas CIRP fails to be stimulated in muscle and liver 
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tissues in rats with chronic intermittent cold exposure (Wang X et al., 2015). 
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Figure 1.1 Protein alignment and 
homology tree of CIRP and RBM3 in 
different species (alignment and tree 
are prepared by DNAMAN, sequence 
origins are listed in Table 1.1). 
Xla: Xenopus laevis; Ath: Arabidopsis 
thaliana; Bta: Bos Taurus; Gga: 
Gallus gallus; Chi: Capra hircus; Hsa: 
Homo sapiens; Mmu: Mus musculus; 
Rno: Rattus norvegicus; SSa: Salmo 
salar.  
L: long full-length RBM3; S: short 
truncated RBM3. 
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Table 1.1 The proteins used for alignment in Figure 1.1  
 Species Name Reference No. 

in Uniprot 
Full Name 

Plant Arabidopsis 
thaliana 

Ath_GRP7 Q03250 Glycine-rich RNA-
binding protein 7 

Arabidopsis 
thaliana 

Ath_GRP8 Q03251 Glycine-rich RNA-
binding protein 8 

Fish Salmo salar Ssa_CIRP B5DGC5 Cold-inducible RNA-
binding protein 

Amphi-
bian 

Xenopus laevis Xla_xCIRP1 O93235 Cold-inducible RNA-
binding protein A 

Xenopus laevis Xla_xCIRP2 Q9DED4 Cold-inducible RNA-
binding protein B 

Bird Gallus gallus Gga_CIRP Q45KQ2 Aggrecan promoter 
binding protein (CIRP 

homologue) 

Mammal Bos Taurus Bta_CIRP Q3SZN4 Cold inducible RNA 
binding protein 

Bos Taurus Bta_RBM3_L F6RBQ9 Uncharacterized 
protein 

Bos Taurus Bta_RBM3_S Q3ZBA4 RNA binding motif 
(RRM) protein 3 

Capra hircus Chi_RBM3 W8E7I1 RBM3 

Mus musculus Mmu_CIRP P60824 Cold-inducible RNA-
binding protein 

Mus musculus Mmu_RBM3 O89086 RNA-binding protein 3 

Rattus 
norvegicus 

Rno_CIRP P60825 Cold-inducible RNA-
binding protein 

Rattus 
norvegicus 

Rno_RBM3 Q925G0 RNA-binding protein 3 

Homo sapiens Hsa_CIRP Q14011 Cold-inducible RNA-
binding protein 

Homo sapiens Hsa_RBM3 P98179 RNA-binding protein 3 
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1.1.2 Induction 

1.1.2.1 Inducers 

Hypothermia: CIRP and RBM3 are general stress-responsive genes; their expressions 

can be induced by a variety of stressful conditions, including cold stress, which is the 

first identified condition that increases CIRP and RBM3 expression (Nishiyama H et al., 

1997b; Danno S et al., 1997). In mammalian cells, the expressions levels of both CIRP 

and RBM3 reach their peaks upon mild to moderate hypothermia (28-34°C) and drop 

significantly upon deep hypothermia (15-25°C) (Nishiyama H et al., 1997b; Tong G et 

al., 2013; Rzechorzek NM et al., 2015). The dose response kinetics of CIRP and RBM3 

are somehow different depending on the systems studied (Danno S et al., 1997; Tong 

G et al., 2013.; Neutelings T et al., 2013; Rzechorzek NM et al., 2015). In an in vivo 

mouse model, cooling at 16-18°C for 45 min is sufficient to stimulate the expression 

of RBM3, but not CIRP, in the brain (Peretti D et al., 2015). In contrast, hyperthermia 

(39-42°C) causes substantial decreases in CIRP and RBM3 either in cultured cells in 

vitro (Nishiyama H et al., 1997b; Danno S et al., 1997) or under pathological or 

experimental conditions in vivo (Nishiyama H et al., 1998; Danno S et al., 2000). 

Notably, RBM3 induction is extremely sensitive to temperature change; even a 1°C 

drop from 37°C to 36°C is sufficient (Jackson TC et al., 2015).  

 

Hypoxia: Under natural circumstances when breathing air containing 21% oxygen at 

sea level, the oxygen concentrations in different tissues of the body are considerably 

heterogeneous (Sharp FR and Bernaudin M, 2004). Reduced oxygen tension 

compared to physiological tension (hypoxia) occurs during diverse acute and chronic 

injuries or diseases in brain, lung, blood vessels and other organs or tissues as well as 

in cancers (Harris AL, 2002). Experimentally, both moderate (8%) and severe (1%) 

hypoxia can drastically induce CIRP and RBM3 expression to a comparable level by a 

mechanism that involves neither hypoxia-inducible factor-1 nor mitochondria 

(Wellmann S et al., 2004). Oxygen-regulated expression of CIRP and RBM3 may 
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indicate their roles in response to pathological changes such as hypoxic-ischemia, 

carcinogenesis, and inflammation. 

 

Radiation: Independent of the first characterization of CIRP from Nishiyama et al., in 

1997, Sheikh et al., identified the UV light-induced heterogeneous nuclear  

ribonucleoprotein A18 (hnRNP A18) in the same year, which was  soon proven to be 

a CIRP homologue in hamster and which may play a role in DNA damage repair 

(Sheikh MS et al., 1997). Similarly, ionizing radiation can also stimulate a number of 

hnRNPs, including CIRP; induced hnRNPs are involved in the repairing of radiation-

induced DNA damage (Haley B et al., 2009). However, whether radiations can induce 

RBM3 overexpression remains unclear. In addition, spaceflight increases CIRP and 

RBM3 expression (Baba T et al., 2008; Lebsack TW et al., 2010), which may result 

from radiations in space.  

 

Miscellaneous: Toxins and drugs can also promote CIRP and RBM3 induction. For 

instance, the neurotoxin domoic acid elevates CIRP and RBM3 expression at a late 

stage (Ryan JC et al., 2005). Moreover, CIRP responses to lipopolysaccharide (LPS) 

treatment (Prieto-Alamo MJ et al., 2009) and positively regulates IκB in the NF-κB 

signaling pathway (Brochu C et al., 2013). Likewise, RBM3 is present in the regulatory 

profile of LPS-induced gene expression (Cok SJ et al., 2004). Growth factors, such as 

insulin-like growth factor-1 (IGF-1) and fibroblast growth factor 21 (FGF21), can 

induce CIRP and RBM3 expressions, respectively (Pan Y et al., 2015; Jackson TC et al., 

2015). Furthermore, a well-studied hormone with both endogenous and exogenous 

sources, melatonin, may augment the induction of RBM3 upon mild hypothermia in 

young neurons but not in mature neurons (Jackson TC et al., 2015).  Of note, very 

recently RBM3 has been shown to be suppressed by metformin and AMP analog 

AICAR, probably via the inference of cell metabolism and the activation of AMPK 

(Laustriat D et al., 2015). This indicates that stress is not always an inducer, but can 

also be an inhibitor of cold responsive proteins. 
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1.1.2.2 Molecular mechanisms 

The precise mechanism by which hypothermia and other stresses modulate the 

transcription and translation of CIRP and RBM3 is poorly understood, although 

several models that address various regulatory levels have been suggested. A core 

promoter and an alternative promoter have been identified in mouse CIRP gene; 

both promoters are activated upon mild hypothermia (Al-Fageeh MB and Smales CM, 

2013).  

Furthermore, alternative splicing is one important route in response to cold stress. 

Hamsters, which are non-hibernating animals, express a long CIRP transcript in their 

hearts. This transcript has an extra insert containing a stop codon inside of the open 

reading frame (ORF), which probably leads to a truncated translational product and 

aberrant function. In contrast, hibernating animals predominantly express the short 

isoform with complete ORF. Artificial hypothermia can partially promote a shift from 

the long isoform to the short functional isoform (Sano Y et al., 2015). In contrast, in 

mouse fibroblasts, the 5’-UTR and full-length ORF of CIRP are present in two 

transcripts that are generated under hypothermic conditions, whereas the isoform 

under euthermic condition lacks the 5’-UTR and the code for initial methionine (Al-

Fageeh MB and Smales CM, 2009). The mechanism by which a CIRP transcript with 

alternative splicing is generated is versatile in different organisms. In addition, cold 

stress upregulates the level and stability of the longest CIRP transcript which contains 

a putative internal ribosome entry site (IRES) (Al-Fageeh MB and Smales CM, 2009). 

In general, IRES can provide a cap-independent mechanism for approximately 10% 

protein translation when global translation is attenuated during hypothermia or 

other stresses (Mitchell SA et al., 2005). In RBM3 transcript, the presumed discovery 

of an IRES in the 5’- leader sequence (Chappell SA et al., 2001; Chappell SA and 

Mauro VP, 2003) has led to additional experiments with transgenes in some 

biotechnological models until very recently (Fux C et al., 2004; Wang Z et al., 2013; 

Cheng X et al., 2014). However, the presumed RBM3 IRES was unmasked as a cloning 

artifact derived from the thoc1 gene on chromosome 18 and not from the authentic 
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X-chromosome-located RBM3 gene (Baranick BT et al., 2008). Interestingly, a short 

isoform of RBM3 is more abundant in sleep deprivation (SD) mouse, while a long 

isoform with different 3’-untranslated region (UTR) predominantly exists in control 

mice, suggesting that these isoforms  may play different roles in circadian oscillation 

(Wang H et al., 2010).   

In addition to alternative splicing, transcription factors may contribute to the 

modulation of cold-responsive gene transcription. At 32°C, a great number of the 

transcription factor Sp1 is recruited to the mild-cold responsive element (MCRE) in 

the 5’-flanking region of CIRP gene than at 37°C, leading to increased CIRP expression 

(Sumitomo Y et al., 2012).  

Post-translational modifications are important component for cell signaling. 

Harboring the C-terminal RGG domain, arginine methylation is widely distributed in 

CIRP and RBM3, as well as their plant homologues AtGRP7 and AtGRP8. Arginine 

methylation of RNA-binding proteins is performed by protein arginine 

methyltransferases (PRMTs) and associates with various functions including germ cell 

reproduction and neural development (Blackwell E et al., 2012). Experimentally, 

PRMT5 was found to modify arginine residues in AtGRP7 and AtGRP8 (Deng X et al., 

2010). In frog, xPRMT1 mediates arginine methylation in xCIRP2, which guides 

nuclear-cytoplasmic migration of xCIRP2 (Aoki K et al., 2002). In mammalian neurons, 

two RBM3 splicing isoforms differ by a single arginine and behave distinct subcellular 

localization, which may be due to the methylation of the differentiated arginine 

residue (Smart F et al., 2007) (see below for nuclear-cytoplasmic shuttling). 

Bioinformatic analysis also reveals potential phosphorylation sites in CIRP and RBM3, 

but they remain to be validated experimentally.  

Overall, versatile mechanisms exist by which CIRP and RBM3 expression are altered 

and modified in response to stresses, suggesting a wide-range of organism adaption 

to various external and internal challenges. 
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1.1.3 Molecular and cellular activities 

1.1.3.1 Regulation of post-transcriptional and translational events 

As RNA-binding proteins, CIRP and RBM3 have the capacity to bind RNAs, and 

modulate them at the post-transcriptional levels (Danno S et al., 1997; Morf J et al., 

2012; Xia Z et al., 2012). In general, such post-transcriptional interactions by RNA-

binding proteins and other regulatory elements, involve binding to the target regions 

within the 3’-UTR, which spans between a stop codon and poly(A) tail (Schwerk J and 

Savan R, 2015). Upon UV radiation, CIRP binds to the 3’-UTR of two stress responsive 

transcripts, replication protein A (RPA) and thioredoxin (TRX), thereby stabilizing the 

bound mRNA and promoting their translation (Yang C and Carrier F, 2001; Yang R et 

al., 2006). Both CIRP RRM domains and the RGG domain are required for the 

maximal binding to TRX mRNA; these domains bridge 5’- and 3’-UTR of TRX transcript 

via eIF4G, a key component in the translational machinery to enhance TRX 

translation (Yang R et al., 2006). A CIRP-binding motif found in RPA and TRX 3’-UTR 

also exists in the 3'-UTR of ataxia telangiectasia mutated and Rad3-related (ATR) 

mRNA, a key regulator of the DNA damage response (Yang R et al., 2010).  Thus, CIRP 

repair of UV-induced DNA damage is mediated at least partially by ATR (Yang R et al., 

2010).  

Similar to CIRP, RBM3 can also bind to and alter the translation of mRNA, as shown 

for cyclooxygenase-2 (COX-2), interleukin-8(IL-8) and vascular endothelial growth 

factor(VEGF) in macrophages or cancer cells (Cok SJ et al., 2004; Sureban SM et al., 

2008), presumably in a cell type-specific manner (Wellmann S et al., 2010). RBM3 is 

also involved in alternative splicing. In prostate cancer cells, RBM3 represses the 

variant v8-v10 of CD44 mRNA to inhibit the stemness and tumorigenesis but 

enhances the standard spliced CD44 transcript (Zeng Y et al., 2013). 

In addition to the 3’-UTR, poly(A) tail is an important regulatory elements for CIRP 

and RBM3 mediated post-transcriptional modulation. Actually, both CIRP and RBM3 

are enriched in poly(A) sites and control alternative polyadenylation of a variety of 
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genes, including circadian genes (Liu Y et al., 2013; Hu W et al., 2014). Moreover, in 

the regulation of TRX mRNA, poly(A) tail can strengthen the binding of CIRP to TRX 

3’-UTR and enhances its stability (Yang C and Carrier F, 2001). 

Another RNA-binding protein, human antigen R (HuR), which is known to bind to AU-

rich element of 3’-UTR (Brennan CM and Steitz JA, 2001), can strengthen CIRP- and 

RBM3-mediated regulation. In African clawed frog, the CIRP homologue xCIRP2 

interacts with ElrA, a HuR homologue, which may assist xCIRP2 in inhibiting mRNA 

deadenylation (Aoki K et al., 2003). Interactions of HuR with CIRP or RBM3 have also 

been discovered in mammalian cells (Guo X et al., 2010, Sureban SM et al., 2008). 

CIRP and RBM3 also modulate the translational process in several ways. In general, 

RBM3 enhances global protein translation (Dresios J et al., 2005; Smart F et al., 2007). 

The underlying mechanisms of this enhancement include (1) binding to 60S 

ribosomal subunits in an RNA independent manner; (2) increasing the formation of 

active polysomes; (3) inactivating eukaryotic initiation factor 2 alpha (eIF2α) via 

dephosphorylation, which initiates the assembly of translational machinery; (4) and 

facilitating the phosphorylation of eukaryotic initiation factor 4E (eIF4E) (Dresios J et 

al., 2005; Smart F et al., 2007). However, whether RBM3 can regulate translation via 

microRNAs remains controversial (see 1.3.3). Moreover, our recent study revealed 

many ribosomal proteins that are associated with RBM3 (Zhu X et al., 2015), 

supporting its role in promoting translation. 

In contrast, the function of CIRP in protein translation is unclear. Similar to RBM3, 

CIRP can associate with ribosomes (Mastumoto K et al., 2000). The RGG domain of 

CIRP tethers a specific 3’-UTR and suppresses translation (De Leeuw F et al., 2007; 

Gonçalves Kde A et al., 2011). Additionally, a few evidences have shown that CIRP 

may also inhibit gene transcription and translation by targeting regulatory elements 

in the gene. For example, APBP-1, the chicken homologue of CIRP, binds to the cis-

element of the gene encoding for aggrecan and represses its expression (Pirok EW 

3rd et al., 2005). However, overexpression of CIRP at 37°C in an engineered CHO cell 

line improves recombinant interferon gamma protein production (Tan HK et al., 

2008). How CIRP affects protein translation remains to be discussed. The molecular 
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functions of CIRP and RBM3 were summarized by a previous review (Figure 1.2). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 RBM3 and CIRP regulate transcription, translation and epigenetic modifications.  

(LLeonart ME, 2010) 

1.1.3.2 Signaling pathways 

As regulatory proteins, CIRP and RBM3 are involved in complex signaling pathways 

related to cellular physiological processes such as cell growth, senescence and 

apoptosis. For example, CIRP activates ERK pathway by increasing the 

phosphorylation of ERK1/2 (Sakurai T et al., 2006; Artero-Castro A et al., 2009; Liu J 

et al., 2015). In the Wnt/β-catenin signaling, CIRP and RBM3 have been identified as 

a downstream target and an upstream regulator, respectively. The frog XCRIP is a 

target of XTcf-3 downstream of β-catenin (van Venrooy S et al., 2008), whereas in 

mammalian cancer cells, RBM3 increases β-catenin and enhances TCF/LEF-targeted 

gene transcription (Venugopal A et al., 2015). Accordingly, the kinase and 

endogenous inhibitor of β-catenin, GSK-3β, is downregulated by RBM3 (Venugopal A 

et al., 2015). GSK-3β itself upregulates CIRP transcription, phosphorylates CIRP 

protein and promotes its cytosolic translocation (Liu GP et al., 2008; Yang R et al., 
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2006; Yang R et al., 2010). In the unfolded protein response, RBM3 represses the 

phosphorylation of PERK and eIF2α, which leads to a decrease in CHOP expression 

(Zhu X et al., 2015). Notably, although RBM3 and CIRP are both induced by 

hypothermia, hypothermia itself can enhance the ER stress response without 

inducing apoptosis (Rzechorzek NM et al., 2015). Upon ischemia-induced ER stress, 

hypothermia has a protective effect, suppressing the ER stress response (Poone GK et 

al., 2015) in accordance with Zhu et al.,’s report (Zhu X et al., 2015). Moreover, CIRP is 

involved in MAPK (Xia ZP et al., 2012), NF-κB (Brochu C et al., 2013) and p53 signaling 

pathways (Lee HN et al., 2015). The biological meaning of the involvement of CIRP 

and RBM3 in these pathways will be elucidated in the following paragraphs.  

1.1.3.3 Nuclear-cytoplasmic shuttling  

The RGG domain is a nuclear localization signal (Heine MA et al., 1993); because both 

CIRP and RBM3 contain such a domain, they should localize in the nucleus. 

Experimentally, as summarized above, CIRP and RBM3 are predominantly found in 

the nucleus (Rzechorzek NM et al., 2015), regulate gene expression or bind to mRNA 

for posttranscriptional regulation. In addition, many GRPs including the plant 

homologue AtGRP7 are able to shuttle to the cytoplasm under physiological or 

stressful conditions (Kim JS et al., 2008; Lummer M et al., 2011) so are CIRP and 

RBM3. In Xenopus laevis, xCIRP2 serves as a major cytoplasmic protein in oocytes 

(Mastumoto K et al., 2000). An RG4 region in the RGG domain has been identified as 

a nucleocytoplasmic shuttling signal of xCIRP2 (Aoki K et al., 2002), which is 

important for guiding the accumulation of xCIRP2 in the cytoplasm when the RG4 

region is methylated by the methytransferase xPRMT1 (Aoki K et al., 2002). In 

response to cytoplasmic stresses and endoplasmic reticulum (ER) stress, CIRP is 

relocalized from the nucleus to cytoplasmic stress granules (SGs) in a manner 

independent of TIA-1, the major mediator of SG formation (De Leeuw F et al., 2007). 

Both RRM and RGG can independently promote CIRP migration into SGs, and 

methylation of arginine in RGG is required for exiting the nucleus, consistent with 
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findings in frogs (De Leeuw F et al., 2007). In RBM3, the absence of a single arginine 

residue in RGG leads to more preferentially localization in dendrites of neurons 

rather than in nuclei (Smart F et al., 2007). A pool of RBM3 proteins can also shuttle 

to the ER upon ER stress and regulate the activity of ER membrane-bound protein 

PERK, albeit the majority of RBM3 remains in the nucleus (Zhu X et al., 2015). 

Collectively, these studies reveal the critical role of the arginine residue of the RGG 

domain in cytoplasmic shuttling and indicate the diverse nuclear and cytolasmic 

functions of CIRP and RBM3. 

1.1.3.4 Cell cycle  

Hypothermia is known to slow cell proliferation and to cause cell cycle arrest. In 

contrast to early studies, which have shown an inhibitory role of CIRP in cell growth 

upon hypothermia (Nishiyama H et al., 1997b) and no effect of RBM3 (Danno S et al., 

2000), a more recent series of mechanistic investigations revealed that both CIRP and 

RBM3 positively modulate the cell cycle at different stages. CIRP has been shown to 

bind RNA-binding protein human antigen R (HuR) and to upregulate its expression. 

Elevated HuR further increases cyclin E1, a key positive regulator for G1/S transition, 

and promotes mitosis (Guo X et al., 2010, Wu Y et al., 2011). Furthermore, CIRP 

accelerates G0/G1 and G1/S transitions by inhibiting the phosphorylation of cyclin D1 

and p27 via the kinase Dyrk1b/Mirk (Masuda T et al., 2012). In another report, CIRP 

appears to promote progression through G2/M phase (Liu J et al., 2015). Additionally, 

activation of ERK pathway by CIRP downregulates cyclin inhibitors p16, p21 and p19, 

which leads to enhanced proliferative activity and bypassed senescence (Artero-

Castro A et al., 2009). RBM3 also interacts with HuR, overcomes G2/M transition, and 

prevents mitotic catastrophe by downregulating cyclin B1 and phosphorylated 

checkpoint proteins Chk1/Chk2 as well as Cdc25c (Sureban SM et al., 2008; Ehlén A 

et al., 2010). An RBM3 knock-out mouse model confirmed that cells are arrested in 

G2/M phase in the absence of RBM3 (Matsuda A et al., 2011). Hence, the current 

understanding is that CIRP and RBM3 possess very similar roles in facilitating cell 
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proliferation. 

1.1.3.5 Anti-apoptosis 

Apoptosis is induced by numerous exogenous and endogenous signals, involves 

various signaling pathways, and occurs in a broad range of diseases (Reed JC, 2002). 

RBM proteins are largely known as a family that modulates apoptosis (Sutherland LC 

et al., 2005). Many studies have revealed that both CIRP and RBM3 mediate, at least 

partially, the hypothermic protection of cells from apoptosis, especially in neuronal 

cells. Specifically, CIRP suppresses apoptosis in neural stem cells (Saito K et al., 2010) 

and cortical neurons probably through mitochondrial pathways (Zhang HT et al., 

2015). Inhibition of p53, Fas and caspase-3 pathways also contribute to CIRP-

mediated anti-apoptotic effects (Zhou KW et al., 2009; Lee HN, 2015; Li S et al., 2012). 

RBM3 inhibits staurosporine-induced apoptosis in neuronal or neuron-like cells by 

repressing PARP cleavage (Chip S et al., 2011). The induction of Bcl-2 and suppression 

of caspase expression may also be involved in RBM3-mediated survival against 

apoptosis (Zhu X et al., 2015; Ferry AL et al., 2011). 

1.1.4 Biological functions and diseases 

1.1.4.1 Brain disorders 

Therapeutic hypothermia can not only efficiently reduce primary injury and prevent 

secondary injury in acute ischemia (Yenari MA and Han HS, 2012) and spinal cord 

injury (SCI) (Alkabie S and Boileau AJ, 2015) but may also slow down the progression 

of chronic neurodegenerative diseases (Salerian AJ and Saleri NG, 2008). In vitro, the 

two cold-responsive proteins CIRP and RBM3 both function against apoptosis in 

cultured primary neurons or neuron-like PC12 cells (Kita H et al., 2002; Chip S et al., 

2011; Zhang HT et al., 2015), indicating their indispensable roles in therapeutic 

hypothermia. 

The role of CIRP in brain ischemic injury is controversial. In animal ischemic models, 
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CIRP expression kinetics after ischemic injury is still uncertain. CIRP mRNA levels 

measured by Northern blot were found to decrease 3-6 h after transient ischemia in 

rat hippocampus but to remain unchanged in cerebral cortex during a 48 h 

observation period (Xue JH et al., 1999). However, in the same ischemic model, real-

time RT-PCR showed a gradual increase in CIRP mRNA by approximately 5-fold until 

24 h after cerebral ischemia in rat cortex (Liu A et al., 2010). In contrast to ischemia, 

hypothermia considerably induced CIRP expression by approximately 30-fold until 24 

h, and the combination of hypothermia and ischemia did not further enhance the 

CIRP level from 30-fold (Liu A et al., 2010). 

An elevated level of reactive oxygen species (ROS) is one important detrimental 

factor in the induction of oxidative stress during ischemia-reperfusion injury in the 

brain (Sanderson TH et al., 2013). In PC12 cells, CIRP expression has been observed 

to be downregulated upon H2O2 treatment (Xue JH et al., 1999), unlike its plant 

homologues AtGRP7 and AtGRP8 (Schmidt F et al., 2010). When CIRP is induced 

endogenously or overexpressed airtificially, H2O2-induced apoptosis in cultured 

neural cells is dramatically inhibited, indicating a neuroprotective role of CIRP (Li S et 

al., 2012; Liu J et al., 2015). In contrast to this beneficial intracellular action of CIRP, 

release of CIRP into the blood system is associated with the activation of detrimental 

immune responses. Zhou et al., reported secretion of CIRP from microglia after 

cerebral ischemia with subsequent CIRP-mediated TNF-α expression and activation 

of signaling pathways leading to neuroinflammation and causing neuronal damage 

both in vivo and in vitro (Zhou M et al., 2014). An investigation of alcohol-induced 

brain inflammation also demonstrated that extracellular CIRP critically mediates 

neuroinflammation by upregulating TNF-α and IL-1β (Rajayer SR et al., 2013). To 

summarize, CIRP exerts opposing functions during brain ischemia-reperfusion injury. 

On one hand, as long as CIRP remains intracellularly localized, CIRP protects neurons 

from apoptosis; on the other hand, once CIRP is released, e.g., from microglia, it 

mediates devastating neuroinflammation from cellular level in the early stage. 

However, in a long term, the damaged neurons are eliminated by inflammation and 

regenerated neurons can substitute the dysfunctional ones (Kizil C et al., 2015).  
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RBM3 also responds to spinal cord injury (SCI) by increasing the number of RBM3-

positive cells after SCI in a rat model (Cui Z et al., 2014; Zhao et al., 2014) with 

varying temporal dynamics reported: in one report, RBM3 expression peaked at one 

day after SCI (Zhao et al., 2014), while in the other, RBM3 significantly increased 1 

day post-SCI but did not reach the maximal expression level until 5 days post-SCI (Cui 

Z et al., 2014). The spatial expression of RBM3 in these two reports is also 

inconsistent. Zhao et al., reported that neurons and only a few astrocytes were 

positive for RBM3 under normal conditions and that RBM3 was induced in both 

neurons and astrocytes (Zhao et al., 2014). In the other study, RBM3 expression was 

even higher in astrocytes than in neurons in the sham group, and only astrocytic 

RBM3 can response to SCI-induced stress (Cui Z et al., 2014). This discrepancy may 

result from the instable surgery conditions, although both reports generally support 

the hypothesis that RBM3 is inducible upon SCI and may exert important 

pathophysiological functions.  

Until now, studies have supported the notion that RBM3 is a general neuroprotective 

effector, while CIRP can either protect neuronal cells or induce massive neuronal 

death by mediating neuroinflammation once released. To the best of our knowledge, 

in contrast to CIRP, no data published thus far suggest that RBM3 might be released.  

1.1.4.2 Cancers 

Deduced from the above-summarized features, CIRP and RBM3 are both involved in 

cell cycle regulation and cell proliferation, and are both present in proliferating and 

malignant cells. Therefore, both are considered proto-oncogenes, promoting cancer 

cell proliferation and transformation in vitro (Sureban SM et al., 2008; Tang C et al., 

2015; Wellmann S et al., 2010) and are differentially expressed in a variety of 

different cancers compared to normal tissues (Table 1.2). Despite these common 

features, their roles in clinical cancer development seem to be opposite. RBM3 

expression always correlates with good prognosis and reduced risk of disease 

progression and recurrence, whereas CIRP seems to be an indicator for poor 
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prognosis (Table 1.2).  

Breast cancer is the leading cancer type in women, and RBM3 is overexpressed in 

this cancer (Martínez-Arribase F et al., 2006), with a direct correlation of RBM3 

expression level and improved clinical outcome (Jögi A et al., 2009). 

In female genital organ, RBM3 correlates with favorable cisplatin sensitivity and good 

prognosis in epithelial ovarian cancer (EOC) (Ehlén A et al., 2010), presumably via a 

mechanism by which RBM3 suppresses poor prognostic markers MCM3, Chk1 and 

Chk2, which are all involved in DNA integrity and the cell cycle (Ehlén Å et al., 2011).  

In males, prostate cancer is one of the most common cancer types in the male 

genital system. Very similar to breast cancer and EOC, a high level of RBM3, as an 

independent biomarker in prostate cancer, predicts a low risk of disease progression 

and recurrence (Josson L et al., 2011a). Interestingly, high RBM3 expression is found 

in poorly differentiated prostate tumor (Shaikhibrahim Z et al., 2013), whereas 

experimental downregulation of RBM3 and CIRP in prostate cancer cells attenuates 

cell survival and enhances chemosensitivity (Zeng Y et al., 2009). These observations 

are consistent with the role of RBM3 in promoting cell proliferation and survival but 

cannot explain the favorable prognosis, indicating the involvement of other 

mechanisms. One study suggests that the activation of v-ets avian erythroblastosis 

virus E26 oncogene homolog (ERG) and the depletion of PTEN may contribute to 

RBM3-mediated good prognosis in prostate cancer (Grupp K et al., 2014). Another 

study indicates that RBM3 attenuates the stemness and tumorgenesis of prostate 

cancer cells by inhibiting CD44 variant splicing (Zeng Y et al., 2013), although this 

finding is in contrast to findings in colorectal cancer (Venugopal A et al., 2015). 

Specific cancer types likely differentially affect RBM3 signaling as is known for other 

proteins such as oestrogen receptors (Thomas C and Gustaffson JÅ, 2011). Moreover, 

low RBM3 in testicular non-seminomatous germ cell cancer correlates with high risk 

of treatment failure (Olofsson SE et al., 2015). In addition, in urinary organs, reduced 

RBM3 levels in urothelial bladder cancer are associated with tumor progression and 

poor prognosis (Boman K et al., 2013); while high RBM3 expression correlates with 

21 
 



lower stage tumors and decreased risk of lymphovascular invasion (Florianova L et 

al., 2015). 

Colorectal cancer is the most common type of cancer of the digestive system, and a 

high level of RBM3 expression is associated with improved prognosis (Hjelm B et al., 

2011), whereas a loss of RBM3 expression is associated with poor prognosis and 

right-sided localization (Melling N et al., 2015). Therefore, RBM3 has been proposed 

as a potential prognostic biomarker, especially in young patients (Wang MJ et al., 

2015).  

RBM3 is downregulated in HPV-negative oropharyngeal squamous cell carcinoma 

compared to normal oral mucosa (Martinez I et al., 2007). Instead, high nuclear 

expression of RBM3 in esophageal and gastric adenocarcinoma correlates with 

intestinal metaplasia-associated tumors and predicts low risk of recurrence and 

death independently (Jonsson L et al., 2014). 

Furthermore, low RBM3 expression in other cancer types is associated with poor 

survival as well. RBM3 is expressed in malignant melanoma (Badli A et al., 2003), and 

low expression of RBM3 is associated with tumor progression and poor prognosis 

(Jonsson L et al., 2011b). High MCM3 expression is observed with a reduced RBM3 

level similar to epithelial ovarian cancer (Nodin B et al., 2012). The only exception 

published so far is astrocytoma, where higher expression of RBM3 is associated with 

a higher grade and may promote astrocytic carcinogenesis (Zhang HT et al., 2013). 

CIRP is differentially expressed in many cancer types (Artero-Castro A et al., 2009). In 

hepatocellular carcinoma (HCC), CIRP has been proposed to promote carcinogenesis 

by controlling ROS accumulation and cancer stem/progenitor cell expansion (Sakurai 

T et al., 2015). In addition, as a novel inflammation mediator, CIRP links chronic 

inflammation and colorectal tumorgenesis by stimulating cytokines, including TNF-α 

and IL-23 (Sakurai T et al., 2014), and by increasing IL-1β and IL-6 levels in resident 

liver macrophages (Sakurai T et al., 2015). Furthermore, CIRP is upregulated by 

chronic inflammation, which subsequently inhibits apoptosis and promotes cancer 

progression, indicating that CIRP expression could be a marker for predicting the risk 
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of HCC (Sakurai T et al., 2015) and that inhibiting CIRP could be a therapeutic value in 

cancer treatment (Lee HN et al., 2015). In pituitary adenoma, high CIRP expression 

correlates with proliferating invasive and recurrent tumor (Wang M et al., 2015), and 

in oral squamous cell carcinoma, CIRP is co-expressed with TLR4 and is associated 

with a short survival rate (Ren WH et al., 2014). Additionally, CIRP is thought to be 

involved in the progression of ductal carcinoma into invasive breast cancer (Mangé A 

et al., 2012). At the molecular level, CIRP increases the expression of CyclinE1, an 

important cell cycle regulator, thereby promoting proliferation and tumor 

progression in breast cancer (Guo X et al., 2010; Wu Y et al., 2011). In endometrial 

carcinoma and some endometrial hyperplasia, CIRP expression is absent or markedly 

decreased compared to normal endometrium, indicating a role of CIRP in normal 

proliferative events (Hamid AA et al., 2003), although the clinical outcome is 

uncertain. In summary, increasing numbers of clinical studies have demonstrated 

that CIRP is linked to poor clinical outcome in cancer.  

A pivotal feature of most tumors is hypoxia (Wilson WR and Hay MP. 2011). The 

hypoxic cancer stem cell niche provides a microenvironment for the maintenance of 

immature cancer cells (Kise K et al., 2015), and hypoxia triggers the induction of CIRP 

and RBM3 (Wellmann S et al., 2004). In fact, experiments in colorectal cancers 

showed that RBM3 suppresses GSK3β activity and enhances β-catenin signaling to 

induce stemness of cancer cells (Venugopal A et al., 2015), in contrast to findings in 

prostate cancer cells (Zeng Y et al., 2013). However, the clinical data gathered on 

RBM3 in various tumor types (Table 1.2) with RBM3 as a marker of better outcome 

point towards a more complex network of RBM3 interaction than considered thus far. 

Various specific cell types likely affect RBM3 baseline expression and functions 

differentially; the cell environment also has an important impact on RBM3. 

In conclusion, whereas both CIRP and RBM3 show common features of proto-

oncogenes at the cellular level, their roles in the clinical tumor setting are diverse, 

with CIRP as a marker of worse prognosis and RBM3 as a marker of good prognosis. 

Among a variety of possible mechanisms that may explain this disparity, we would 

like to highlight the following consideration based on the available above-described 
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data. Major inflammatory pathways are involved in carcinogenesis (Elinav E et al., 

2013). In contrast to RBM3, CIRP is secreted from microglia cells after ischemia (Zhou 

M et al., 2014) and functions as an inflammatory mediator during sepsis (Qiang X et 

al., 2013) (see also below). This extracellular action of CIRP has been linked to 

detrimental consequences. Albeit no data have yet been published regarding similar 

extracellular action in cancers, it is hypothesized that extracellular CIRP signaling in 

cancers may contribute to tumor progression and worse outcome through cytokine 

activation, as supported by the works from Sakurai T et al., (Sakurai T et al., 2014; 

Sakurai T et al., 2015). Moreover, reduced CIRP level is believed to associate with the 

enhanced chemosensitivity and selectivity of cancer cells (Zeng Y et al., 2009; He H et 

al., 2015). However, decreased RBM3 leads to higher chemosensitivity as well (Zeng Y 

et al., 2009), making it difficult to explain the correlation of RBM3 with beneficial 

prognosis in cancer patients. 

 
Table 1.2 The roles of CIRP and RBM3 in cancer 

 Cancer type CIRP or RBM3 
involved 

Proposed 
mechanism 

Prognosis 
with high 

expression 

References 
 

Urogenital 
cancer 

Breast cancer both RBM3 - Good Jögi A et al., 
2009 

CIRP increase 
Cyclin E1 

Poor Guo X         
et al., 2010; 
Mangé A et 

al., 2012 
Epithelial 

ovarian cancer 
RBM3 inhibit 

MCM3, 
Chk1 and 

Chk2 

Good Ehlén A  
et al., 2010; 

Ehlén Å  
et al., 2011 

Endometrial 
carcinoma 

CIRP - Unclear Hamid AA 
et al., 2003 

Prostate cancer RBM3 involve ERG 
and PTEN; 
enhance 
chemo- 

sensitivity; 
CD44 

splicing on 
stemness 

Good Josson L  
et al.,2011a; 

Grupp K  
et al., 2014; 

Zeng Y  
et al., 2009; 

Zeng  Y  
et al., 2013; 

Shaikhi- 
brahim Z  

et al., 2013 
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Testicular 
non- 

seminomatous 
germ cell cancer 

RBM3 - Good Olofsson SE 
et al., 2015 

Urothelial 
bladder cancer 

RBM3 - Good Boman K et 
al., 2013 

Gastro- 
intestinal 

cancer 

Oropharyngeal 
squamous cell 

carcinoma 

both RBM3 - Down- 
regulated, 
outcome 
unknown 

Martinez I 
et al., 2007 

CIRP induce 
TLR4- 

related 
inflamma- 

tion 

Poor Ren WH  
et al., 2014 

Esophageal  and 
gastric 

adenocarcinom
a 

RBM3 - Good Jonsson L et 
al., 2014 

Liver cancer CIRP increase 
ROS, IL-1β 
and IL-6; 
suppress 

p53 

Poor Sakurai T et 
al., 2015; 
Lee HN  

et al., 2015 
 

Colorectal 
cancer 

both RBM3 suppress 
GSK3β 

activity and 
enhance β-

catenin 
signaling 

Good Hjelm B  
et al., 2011;  
Melling N  

et al., 2015; 
Wang MJ  

et al., 2015; 
Venugopal 

A et al., Mol 
Carinog. 

2015 
CIRP Induce 

TNF-α and 
IL-23 

Poor Sakurai T  
et al., 2014 

Other 
cancers 

Melanoma RBM3 Inhibit 
MCM3 

Good Nodin B  
et al., 2012;  
Jonsson L et 
al., 2011b;  

Badli A  
et al., 2003 

Astrocytoma RBM3 - Unknown Zhang HT et 
al., 2013 

Pituitary 
adenoma 

CIRP - Poor Wang M  
et al., 2015 
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1.1.4.3 Other functions 

The biological activities of CIRP and RBM3 are versatile. Novel functions have been 

identified rapidly in recent years, including the regulation of circadian rhythm, 

reproduction and development, immune response and so on. 

 

Circadian rhythm: CIRP and RBM3 show high homology with the two glycine-rich 

RNA-binding proteins, AtGRP7 and AtGRP8, in Arabidopsis thaliana; both of these 

proteins are pivotal components in a circadian-regulated feedback loop (Heintzen C 

et al., 1997; Schmal C et al., 2013). It is assumed that CIRP and RBM3 may also 

modulate circadian rhythm in animals. In mammals, the central clock in the 

suprachiasmatic nucleus (SCN) synchronizes the body temperature cycles to 

environmental light-dark cycles (Morf J and Schibler U, 2013) and to peripheral clocks 

(e.g., liver and pancreas) systematically (Mohawk JA et al., 2012; Gerber A et al., 

2015). CIRP expression is diurnally regulated by light signal in the SCN of mice 

(Nishiyama H et al., 1998) as well as in amphibian brain (Saito T et al., 2000; 

Sugimoto K and Jiang H. 2008). Abnomal diet which affects peripheral clocks in liver 

and pancreas can also alter CIRP expression level (Oishi K et al., 2013; Li XM et al., 

2010). In sleep-wake cycle, CIRP (Bellesi M et al., 2015) and RBM3 are differentially 

expressed in distinct stages and dysregulated situations (Costa M et al., 2015; Wang 

H et al., 2010). In 2012, the molecular mechanism of CIRP in the regulation of 

circadian rhythm was described: it modulates a variety of circadian oscillator genes, 

including CLOCK gene, in a post-transcriptional pattern in mammals (Morf J et al., 

2012). Therefore, CIRP and RBM3 are both believed to be components of mammalian 

circadian oscillation, which not only is regulated by body temperature and responds 

to the change in the environment such as light and food in a subtle manner but also 

controls the expression of downstream circadian genes. 

 

Reproduction and development: In the very early beginnings of CIRP and RBM3 

research, both were discovered with high expression in mammalian testis but with 
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different spatial pattern, CIRP was predominantly in germ cells (Nishiyama H et al., 

1998), whereas RBM3 was mainly in Sertoli cells (Danno S et al., 2000). The different 

spatial expression patterns of CIRP and RBM3 may indicate their distinct functions in 

spermatogenesis. Several mechanisms have been proposed to explain the 

temperature-sensitive function of CIRP in spermatogenesis and testicular injury 

protection, including mRNA stabilization (Xia Z et al., 2012), DNA integrity 

maintenance (Banks S et al., 2005), the suppression of pro-apoptotic proteins p53 

and Fas (Zhou KW et al., 2009), as well as the inhibition of oxidative stress-induced 

apoptosis in germ cells (Xia Z et al., 2013). Furthermore, CIRP regulates cell cycle and 

promotes the proliferation of immature germ cells by interacting with Dryk1b/Mirk 

to inhibit its binding to p27 (Masuda T et al., 2012), and modulates p44/p42, p38 and 

SAPK/JNK MAPK pathways (Xia ZP et al., 2012). 

Oocytes and embryo cryopreservation is of great importance in reproductive 

medicine (Edgar DH and Gook DA, 2012). To freeze an egg or embryo, a novel flash-

freeze process called vitrification has replaced the traditional slow-cooling method 

with more benefits (Edgar DH and Gook DA, 2012). RBM3 and CIRP are both involved 

in the protection against cold stress or crystallization during vitrification of oocytes 

(Jo JW et al., 2012; Wen Y et al., 2014; Jo JW et al., 2015) and embryos (Boonkusol D 

et al., 2006), as well as in the cryopreservation of genital organs of livestock (Devi L et 

al., 2014; Du T et al., 2015).  

Both CIRP and RBM3 are key factors during development. The investigations of the 

roles of CIRP in development focus on amphibians, which are well-described models 

for developmental study. In X. laevis, XCIRP-1 is transiently expressed in developing 

kidney and brain (Uochi T and Asashima M, 1998) and is required for embryonic 

kidney formation (Peng Y et al., 2000) and anterior brain development (van Venrooy 

S et al., 2008). The regulatory mechanisms of CIRP in development include the 

maintenance of adhesion molecules and cell movement (Peng Y et al., 2006). 

Furthermore, the expression of a CIRP homologue in Mexico axolotl peaks in the 

neural plate and fold at stage 15 during development (Bhatia R et al., 1999). All the 

collective data support the notion that CIRP is indispensable in versatile events 
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during development. Under euthermic conditions, the RBM3 level peaks during the 

early postnatal periods and then decreases to a basal level in most regions of the 

brain except for areas where proliferation is active, such as the subventricular zone 

(SVZ) and the rostral migration stream (RMS) (Pilotte J et al., 2009; Chip S et al., 

2011), indicating a pivotal role of RBM3 in the maintenance of stemness and 

proliferation in neuronal cells.  

 

Immune Response: In 2013, CIRP was identified as a novel inflammatory mediator 

released from the heart and liver into the circulatory system stimulating TNF-α 

during hemorrhagic shock and sepsis (Qiang X et al., 2013), and thus accelerating the 

imflammation phase to improve wound healing (Idrovo JP et al., 2016). Interestingly, 

CIRP expression can be also impaired by TNF-α (Lopez M et al., 2014), suggesting a 

negative feedback loop. Similar to the dual role of CIRP in the brain, as discussed 

above, CIRP does not only protect hepatocytes from oxidative stress (Sakurai T et al., 

2013), but also stimulates inflammation in liver (Godwin et al., 2015). Today, CIRP is 

suggested as a potential diagnostic marker for sepsis (Zhou Y et al., 2015). In RBM3 

knockout mice, no obvious change of cytokine expression has been found in DNA-

mediated immune response (Matsuda A et al., 2011). Hence, the role of RBM3 in 

inflammation is still unclear and remains to be clarified. Thus far, whether RBM3 can 

be secreted has remained unknown. 

 

Miscellaneous: Other studies suggest RBM3 is involved in viral infection (Wright CF et 

al., 2001; Dellis S et al., 2004) and skeletal muscle regulation (Dupont-Versteegden EE 

et al., 2008; Ferry AL et al., 2011). In addition, CIRP was found to inhibit transient 

outward potassium (Ito) channel, consequently modulates cardiac repolarization (Li J 

et al., 2015), and to regulate telomerase activity (Zhang Y et al., 2015). These studies 

open new avenues to the understanding of multiple functions of CIRP and RBM3. 

However, all these studies require more evidence for confirmation and elucidation. 

The common and distinct functions of CIRP and RBM3 are summarized in Figure 1.3. 
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Figure 1.3 Common and distinct functions of CIRP and RBM3. A: molecular and cellular functions; B: 

physiological and pathological functions. Nuc-cyto: nuclear-cytoplasmic. The distinct functions of CIRP 

or RBM3 may not be exclusive for respective protein, but due to insufficient investigations on its 

homologue. 
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1.2 Unfolded protein response (UPR) 

1.2.1 Main signaling pathways of UPR  

The ER is an important cellular compartment for both protein synthesis/folding and 

calcium homeostasis. A variety of physiological and pathological insults can disturb 

normal ER function, causing an accumulation of misfolded or unfolded proteins in 

the ER, referred to as ER stress. ER stress subsequently triggers a specific set of 

intracellular signaling pathways collectively known as the unfolded protein response 

(UPR). Based on the type of transmembrane sensors for misfolded/unfolded proteins, 

such as the chaperone glucose regulated proteins 78 (GRP78, also known as 

Immunoglobulin Binding protein, BiP), the UPR comprises three canonical signaling 

pathways: the PRKR-like ER kinase (PERK)-eukaryotic translation initiation factor 2α 

(eIF2α)-CCAAT/enhancer-binding protein homologous protein (CHOP) pathway, the 

inositol-requiring protein 1α (IRE1α)-X-box-binding protein 1 (XBP1) pathway and the 

activating transcription factor 6α (ATF6α) pathway (Figure 1.4; Ron D and Walter P, 

2007; Wang M and Kaufman RJ, 2014).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.4 Three main branches of unfolded protein response (UPR) signaling pathways  

(Wang M and Kaufman RJ, 2014) 
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The three branches behave at different time points during ER stress. At early stage, 

all the three arms are activated and cells are protected via several mechanisms 

including the formation of stress granule and the halting of translational process. 

Instead, upon prolonged ER stress, IRE1α pathway is soon attenuated, followed by 

ATF6α pathway. The PERK pathway, however, is persistent and ultimately initiates 

apoptosis (Lin JH et al., 2007).  

1.2.2 UPR and brain disorders 

Both ER stress and UPR activation are involved in the pathology of many, if not all, 

acute and degenerative diseases of the brain (Yang W and Paschen W, 2009; Halliday 

M and Mallucci GR, 2014; Xin Q et al., 2014). In hypoxic-ischemic insults, intracellular 

calcium load disturbances play an important role in causing ER stress (Bodalia A et al., 

2013), while ER stress subsequently provokes inflammation and mitochondrial 

dysfunction (Xin Q et al., 2014). In contrast, each neurodegenerative disorder is 

characterized by the accumulation of disease-specific misfolded proteins, resulting in 

ER stress (Halliday M and Mallucci GR, 2014). Notably, PERK-eIF2α-CHOP signaling is 

highly associated with neurodegenerative diseases like Alzheimer’s disease and prion 

disease, serving as potential therapeutic targets (Halliday M and Mallucci GR, 2014). 

1.2.3 Hypothermia and UPR 

As mentioned above, early UPR activation can protect cells unless ER stress is 

prolonged. Hypothermia itself can stimulate all the three main arms of UPR without 

initiating apoptosis, partially explaining the advantages of pre-conditioning with 

hypothermia (Rzechorzek NM et al., 2015). In parallel, both RBM3 and CIRP are 

induced during preconditioning (Rzechorzek NM et al., 2015), suggesting their 

involvement in the regulation of UPR. On the contrary, upon ischemia-induced ER 

stress, hypothermia is protective by suppressing CHOP, the effector protein leading to 

apoptosis (Poone GK et al., 2015). These studies addressed the model that, 

therapeutic hypothermia can activate UPR to make cells adapt to subsequent cellular 
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stress, but repress UPR-induced apoptosis upon persistent ER stress signal. 

1.3 MicroRNA (miRNA) biology 

1.3.1 Biogenesis of miRNA 

MiRNAs are small non-coding RNA molecules with around 21 nucleotides. They are 

widely found in different organisms and regulate numerous developmental and 

cellular processes post-transcriptionally. Most of miRNAs are generated in vivo from 

canonical pathway: transcribed primary precursors (pri-miRNA) are processed by 

Drosha/DGCR8 complex into 70-nucleotide precursor (pre-miRNA) in the nucleus; 

pre-miRNA is further exported into cytoplasm and processed by Dicer complex in 

order to generate mature miRNA duplex; finally, one strand of the duplex is 

incorporated into RISC complex to guide the degradation of specific mRNA (Figure 

1.5, Krol J et al., 2010; Lin S and Gregory RI, 2015). 

1.3.2 miRNA and brain disorders 

An increasing number of researches demonstrate that miRNA play important roles in 

both acute brain injuries and neurodegeneration (Saugstad JA, 2010). Microarray 

data reveals massive changes in miRNA expression profile upon spinal cord injury 

(SCI), traumatic brain injury (TBI) and ischemic stroke (Bhalala OG et al., 2013). 

Specific miRNAs have been verified and analyzed functionally and mechanistically. 

For instance, miR-15a and miR-497 can both target Bcl-2 transcript thus promote 

apoptosis during ischemic injury (Yin KJ et al., 2010a; Yin KJ et al., 2010b). In the 

cases of neurodegenerative diseases, the expressions of key proteins in disease 

progression are regulated by one or more specific miRNAs (Bushati N and Cohen SM, 

2008; Eacker SM et al., 2009). To name a few, BACE1 in Alzheimer’s disease and PITX3 

in Parkinson’s disease are modulated by miR-29a/b-1 and miR-133b, respectively 

(Hébert SS et al., 2008; Kim J et al., 2007). 
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Figure 1.5 Canonical biogenesis of miRNA (Lin S and Gregory RI, 2015) 

1.3.3 Hypothermia, RBM3 and miRNA 

Moderate hypothermia can change the miRNA expression profile (Potla R et al., 

2015). It may not only contribute to its protective function in injuries and diseases 

including traumatic brain injury (TBI) (Truettner JS et al, 2011; Truettner JS et al, 2013) 

and cardiac arrest (Gilje P et al., 2014), but may also correlate with deleterious 

consequences such as in intestinal hypothermic arrest (Lin WB et al., 2015) and 

unintentional hypothermia after surgery (Billeter AT et al., 2012). RBM3 is considered 

to alter miRNA levels as well and contributes thereby to global protein translation 

under hypothermia (Dresios J et al., 2005). A few years later, Pilotte J et al., reported 

that RBM3 positively modulates a majority of miRNAs, and negatively regulates only 

a minority. They also observed that RBM3 binds to 70-nucleotide and facilitates its 

processing to Dicer complex (Pilotte J et al., 2011). However, the finding that RBM3 

upregulates most of miRNAs is conflicting to the fact that RBM3 increases overall 

translation (Dresios J et al., 2005). Particularly, miR-125b shows a decreasing 

tendency when RBM3 is overexpressed as shown by Dresios J et al., but the opposite 
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is demonstrated by Pilotte J et al.,, making the RBM3-mediated modulation of miRNA 

controversial (Dresios J et al., 2005; Pilotte J et al., 2011). Therefore, it is believed 

that RBM3 executes a regulatory function in miRNA expression, while the exact role 

remains largely unclear. 

1.4 Scope of the thesis 

The two cold-responsive proteins CIRP and RBM3 mediate the protective functions of 

moderate hypothermia, and regulate a variety of physiological processes beyond the 

context of cold. Recent studies have revealed a dual-role of CIRP: on one hand it 

protects cells in various stressful conditions; on the other hand it exacerbates stress-

induced injuries via stimulating inflammation, and promotes cancer progression. 

Instead, RBM3 is generally beneficial for cell survival without detrimental effects. 

Therefore, we focused our study on the actions of RBM3 in cytoprotection. 

The first objective was to confirm the protective effects of RBM3 in diverse stressful 

conditions relating to brain acute and chronic disorders. Oxidative stress plays a vital 

role in brain ischemia/reperfusion (Sanderson TH et al., 2013). Endoplasmic 

reticulum (ER) stress is associated with various brain disorders, and ER stress-

activated UPR promotes acute damage exacerbation or chronic disease progression 

(Yang W and Paschen W, 2009). We aimed to discover the consequences on cell fate 

when manipulating RBM3 level upon oxidative stress or ER stress. 

Secondly, our purpose was to investigate the regulatory role of RBM3 in PERK-eIF2α-

CHOP pathway of UPR under ER stress. Among the three branches of UPR, PERK-

eIF2α-CHOP signaling is the dominant pathway under persistent ER stress ultimately 

resulting in apoptosis. We hypothesized that RBM3 prevents cell apoptosis by 

impairing PERK-eIF2α-CHOP pathway. We intended to examine this assumption in 

different models. 

In the third part, we made efforts to figure out whether RBM3 can modulate pro- 

and anti-apoptotic miRNAs. As RBM3 can up- or downregulate distinct groups of 

miRNAs (Pilotte J et al., 2011), we suggested that RBM3 might decline pro-apoptotic 
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miRNA level and simutaneously promotes anti-apoptotic miRNA expression, by which 

it enhances the possibility of cell survival.  
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2. Materials and Methods 

2.1 Animals and organotypic hippocampal slice cultures  

All animal experiments were performed with permission of the local animal care 

committee and in accordance with international guidelines on handling laboratory 

animals and current swiss law. RBM3 knockout (KO) mice were kindly provided by 

Prof. Tadatsugu Taniguchi (University of Tokyo). Hippocampi from C57BL/6J wildtype 

(WT) and RBM3 KO mice were isolated from postnatal day 3 (P3) mice and 

organotypic slice cultures were prepared as described previously (Chip S et al., 2014). 

Briefly, transversal hippocampal slices were sectioned using a McIlwain tissue 

chopper (Ted Pella, Redding, CA, USA) under aseptic conditions with a thickness of 

350 μm. Slices were carefully separated and laid over 0.4  μm Millicell-CM culture 

inserts with 30  mm diameter (Millipore) in six-well plates, and cultured in 1 mL per 

well medium containing HEPES-buffered minimal essential medium (50%), Hank’s 

buffered salt solution (HBSS) (25%), and heat-inactivated horse serum (25%) 

supplemented with glutamax (2 mM, Life Technologies), glucose (1 g/L), pH 7.3, in 

humidified incubator with 5% CO2 at 37°C. Medium was changed 24 h after the slices 

were prepared and then every other day until the harvest of the cultures. At 5 days 

in vitro (DIV), the cultured slices were challenged with oxygen–glucose deprivation 

(OGD) or ER stress at either 32°C (moderate hypothermia) or 37°C (normothermia) as 

described below. 

To induce ER stress, 0.3 μM thapsigargin was added to the medium and slices were 

used after 0.5 h for phos-eIF2α detection, after 6 h for CHOP mRNA quantification, 

after 8 h for CHOP protein detection and after 24 h of thapsigargin exposure for 

propidium iodide (PI, Sigma-Aldrich) staining. Slices (n=4-6) were homogenated and 

proceeded to standard total protein or mRNA extraction protocol as described below. 

PI (1 μg/mL) was added to the slices for 30 min, then the samples were observed 

under inverted microscope with 10X objective lens (Olympus IX51, Olmpus, 
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Volketswil, Switzerland). Photographs were taken with Olympus U-CMAD3 camera 

(Olympus). 

2.2 Cell culture and manipulation 

Human embryonic kidney cells, HEK293, were maintained at 37°C under 5% CO2 in 

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine 

serum (Gibco/LuBioScience, Lucerne, Switzerland), unless indicated elsewhere. Cells 

were treated with H2O2, thapsigargin or tunicamycin (all Sigma-Aldrich, Buchs, 

Switzerland) at indicated concentrations and exposure times. PERK inhibitor (3 μM, 

Millipore/Merck Millipore, Darmstadt, Germany) was used for 6 h prior to 

thapsigargin treatment. For target gene knock-down, 2×105 cells were cultured for 24 

h followed by transfection of scrambled or gene-specific siRNAs (30 pM, Qiagen, 

Hombrechtikon, Switzerland) with lipofectamine 2000 (Life Technologies, Zug, 

Switzerland). Flp-In T-Rex 293 cell line (Life Technologies) was used to construct 

inducible RBM3 overexpressing cells according manufacturer’s recommendations, 

and RBM3 overexpression was induced with 4 ng/mL doxycycline for 24 h. Episomal 

mammalian expression vector pCEP4 (Life Technologies) was applied for the 

construction of constitutive RBM3 overexpressing cell line as published previously 

(Chip S et al., 2011). 

2.3 Oxygen-glucose deprivation (OGD) 

OGD experiment with organotypic hippocampal slice cultures was modified following 

previous report (Rytter A et al., 2003). In brief, 10X OGD medium supplement was 

prepared as follows: 3 mM CaCl2, 700 mM NaCl, 52.5 mM NaHCO3, 700 mM KCl, 12.5 

mM NaH2PO4, 20 mM MgSO4 and 100 mM sucrose, pH adjusted to 6.8. Six-well 

plates containing 1 mL 1X OGD medium (glucose-free Hank’s buffered salt solution 

plus 1X OGD medium supplement) in each well were placed in anaerobic chamber 

(Elektrotek Ltd., Keighley, UK) with the 10% H2, 5% CO2 and 85% N2 for 1 h. The 

equilibrated 1X OGD medium was kept in the anaerobic chamber at 37℃ overnight. 
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At 5 DIV, cultured slices were washed once in fresh 1X OGD medium and transferred 

to balanced 1X OGD medium in the anaerobic chamber. OGD was performed with 10 

H2, 5% CO2 and 85% N2 for 15 min and the tissues were further transferred to 37℃or 

32℃ incubator for up to 48 h. During post-OGD incubation, 60 μL medium from each 

culture was taken for CellTox™ Green Cytotoxicity Assay (Promega) at 0 h, 6 h, 24 h 

and 48 h under manufacturer’s instructions. After 48 h incubation, cultures were 

subjected to PI staining and RBM3 immunostaining.  

2.4 Protein extraction and Western blot 

Cells were lysed in lysis buffer (1% Triton X-100, 50 mM Tris, 150 mM NaCl, 1X Roche 

Protease Inhibitor Cocktail, pH 8.0), separated by NuPAGE Novex 4-12% Bis-Tris 

protein gels (Life Technologies) and transferred to Amersham Hybond-P PVDF 

membranes (Amersham/GE Healthcare Life Sciences, Glattbrugg, Switzerland). 

Membranes were incubated with primary antibodies at 4℃ overnight: anti-phos-

PERK Thr981 diluted 1:250 (sc-32577), anti-PERK 1:1000 (sc-13073), anti-phos-PKR 

Thr446 1:250 (sc-101783), anti-PKR 1:1000 (sc-708), anti-GADD153/CHOP 1:1000 (sc-

575), anti-NF45 1:5000 (sc-271718) (all from Santa Cruz Biotechnology, Dallas, TX, 

USA); anti-phos-eIF2α Ser51 1:500 (#9721), anti-eIF2α 1:5000 (#9722), anti-Bip 

1:1000 (#3177), anti-HuR 1:1000 (#12582),  anti-Bcl-2 1:1000 (#2870), and anti-β-

actin 1:2000 (#4967) (all from Cell Signaling/Merck Millipore, Darmstadt, Germany); 

anti-RBM3 1:1000 (14363-1-AP, Proteintech, Manchester, United Kingdom); anti-

NF90 1:1000 (anti-DRBP76, 612154, BD Biosciences, Allschwil, Switzerland). After 

washing, membranes were incubated with the following secondary antibodies 

conjugated with horseradish peroxidase (HRP) and diluted 1:10000 for 1 h at room 

temperature: anti-rabbit IgG (#7074, Cell Signaling), anti-mouse IgG (4759, Carl Roth, 

Karlsruhe, Germany), and finally the signals were detected with enhanced 

chemiluminescence system (Clarity ECL Western Blotting Substrate, Bio-Rad 

Laboratories, Cressier, Switzerland). 
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2.5 Real-time RT-PCR 

Total RNA was isolated using ReliaPrepTM RNA Cell Miniprep System (Promega, 

Dübendorf, Switzerland). cDNA was prepared by GoScriptTM Reverse Transcription 

System (Promega) to measure mRNA levels. In order to measure mature microRNAs, 

cDNA was synthsized by NCode VILO miRNA cDNA Synthesis Kit (Life Technologies). 

Real-time PCR was performed with GoTaq qPCR Master Mix (Promega) in 15 μL 

reaction volume. β-actin and β-2 microgloblin (β2m) were used as reference genes 

for mouse and human mRNA samples, respectively. U6 was used as a reference gene 

for human miRNA measurement. Primer sequences for real-time PCR were listed 

below (mmu: Mus musculus; hsa: Homo sapiens):  

mmu-β-actin-F: GGCCAACCGTGAAAAGATGA  

mmu-β-actin-R: CACAGCCTGGATGGCTACGT (Al Chawaf A et al., 2007) 

hsa/mmu-CHOP-F:  CATCACCACACCTGAAAGCA  

hsa/mmu-CHOP-R:  TCAGCTGCCATCTCTGCA (Bettaieb A and Averill-Bates DA. 2015) 

hsa-β2m-F: GATGAGTATGCCTGCCGTGTG 

hsa-β2m-R: TCCAATCCAAATGCGGCATCT (Wellmann S et al., 2004) 

hsa/mmu-Bcl-2-F: TGGGATGCCTTTGTGGAACT 

hsa/mmu-Bcl-2-R: GAGACAGCCAGGAGAAATCAAAC (Pugazhenthi S et al., 2000) 

hsa-Bip-F: GGAAAGAAGGTTACCCATGC  

hsa-Bip-R: AGAAGAGACACATCGAAGGT (Kosakowska-Cholody T et al., 2014) 

hsa-pre-miR-16-F: GCAGCACGTAAATATTGGCGT  

hsa-pre-miR-16-F: CAGCAGCACAGTTAATACTGGAGA (Suzuki HI et al., 2009) 

hsa-pre-let-7a-F: TGAGGTAGTAGGTTGTATAGT 

hsa-pre-let-7a-R: TGTATAGTTATCTCCCAGTG (Trabucchi M et al., 2009) 

hsa-miR-16-F: TAGCAGCACGTAAATATTGGCG (Gao SM et al., 2012) 

hsa-let-7a-F: GCCGCTGAGGTAGTAGGTTGTA (Zhang HH et al., 2007) 

hsa-miR-106b-F: TAAAGTGCTGACAGTGCAGAT (Zhao ZN et al., 2012) 

hsa-miR-93-F: CGGCGGCAAAGTGCTGTTCGTG (Zhao ZN et al., 2012) 

hsa-miR-25-F: CATTGCACTTGTCTCGGTCTGA (Zhao ZN et al., 2012) 
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hsa-U6-F: CGCAAGGATGACACGCAAATTC (Gao SM et al., 2012) 

For miRNA relative quantification, universal reverse primer was provided by NCode 

VILO miRNA cDNA Synthesis Kit (Life Technologies). Thermal cycles were carried out 

on StepOne Real-Time PCR Systems (Applied Biosystems/Life Technologies, Zug, 

Switzerland) at 95℃ for 5 min, followed by 45 cycles of 95℃ for 15 s and 60℃ for 1 

min. Values were normalized to respective reference gene expressions and quantified 

with comparative CT method.  

2.6 Cell viability assay  

Cell viability was measured using CellTiter 96 AQueous One Solution Cell Proliferation 

Assay kit (Promega). The assay was performed by adding 20 μL assay reagent 

containing MTS tetrazolium compound to 5×104 cells in 100 μL volume for 2 h. The 

absorbance was recorded by 96-well plate reader under 450 nm wavelength.  

2.7 Fluorescence-activated Cell Sorting (FACS)  

Episomal mammalian expression vector pCEP4 (Life Technologies) was used to 

overexpress RBM3 in HEK293 cells for FACS analysis. To knock down RBM3, RBM3 

specific siRNA was transfected into HEK293 cells for 48 h. Apoptosis was induce by 5 

mM H2O2 treatment for 1 h, then the stressed cells were transferred to fresh DMEM 

medium without H2O2 but containing only 1% fetal bovine serum. The percentages of 

apoptotic cells were determined with Annexin V Apoptosis Detection Kit APC 

(eBioscience). In brief, 1×106 cells were suspended in 200 μL Annexin Binding Buffer 

and stained with 10 μL Annexin V-APC (AnnV) for 15 min in dark at room 

temperature. Subsequently, cells were washed with 200 μL Annexin Binding Buffer 

again and stained with 5 μL propidium iodide (PI). Analysis was performed by 

FACSCalibur FL3/FL4 at the speed of 400 cells/second (BD Biosciences) according to 

manufacturer’s instructions. The proportion of AnnV(+) and PI (-) cells indicate cells 

undergoing apoptosis. 
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2.8 Co-Immunoprecipitation (CoIP) 

4 μg of primary antibodies (the same as used for Western blot) or control normal 

mouse IgG (sc-2025), and normal rabbit IgG (sc-2027) (both from Santa Cruz 

Biotechnology) were conjugated to 50 μL Dynabeads Protein G 50% slurry (Life 

Technologies) for 45 min at room temperature. HEK293 cells were harvested and 5 

mg cell lysates were incubated overnight at 4℃ with antibody-coupled Dynabeads 

Protein G. For RNase treated group, cell lysates were pre-treated with 10 U/μL 

RNaseT1 (Fermentas/ Life Technologies, Zug, Switzerland) for 15 min at room 

temperature before subjected to the beads. Proteins were eluted from beads in 

NuPAGE LDS Sampler Buffer (Life Technologies) containing 50 mM DTT at 70℃ for 10 

min). In CoIP experiments, when detecting antibody and IP antibody were generated 

from the same species, HRP conjugated Protein G (P-21041, Life Technologies) was 

used as secondary antibody to minimize the interfering signals from heavy chains 

and light chains. 

2.9 Mass Spectrometry 

RBM3 overexpressing cells were derived from Flp-In T-Rex 293 cell line. Both RBM3 

non-induced and induced cells were lysed, purified by affinity purification and 

digested into peptides to screen RBM3 interaction partners. The complex peptides 

mixture was separated by C18 HPLC column and directly analyzed by LC/MS-MS (LTQ 

Orbitrap XL, Thermo Fisher Scientific, Waltham, MA, USA). RBM3 interacting proteins 

were identified by comparing the experimentally acquired fragment spectra and 

theoretically fragmented protein database (SwissProt/UniProt), and validated by 

subtracting background protein. Searching was applied with Sorcerer search tool and 

Sequest search algorithm. The experiment and data analysis were performed by 

CaptiVate Dualsystems Biotech (Dualsystems Biotech, Schlieren, Switzerland) as 

published previously (Glatter T et al., 2009). 

41 
 



2.10 Immunostaining 

HEK293 cells were cultured on BioCoat Poly-D-Lysine Coverslips (BD Biosciences), 

treated with or without 3 μM thapsigargin for 6 h, and fixed in freshly made 4% 

paraformaldehyde for 10 min at 37°C. After washing with phosphate-buffered saline, 

cells were permeabilized with 0.5% TritonX-100 and blocked with 5% normal goat 

serum. Primary antibodies against NF90 (diluted 1:100), RBM3 (1:50), and PERK (1:50) 

were incubated with cells at 4℃ overnight and then washed 3 to 4 times. Then, 

secondary antibodies conjugated with fluorescent dye Alexa Fluor 488 or Alexa Fluor 

568 (Life Technologies) were added and incubated at room temperature for 1 h. 

Mounting was performed with mounting medium containing DAPI. Images were 

acquired with Olympus AX-70 microscope using 40X objective lens and SPOT Insight 

CCD camera. For organotypic hippocampal slice cultures, the fixation with 4% 

paraformaldehyde were performed overnight at 4°C, and the dilution for RBM3 

antibody was 1:100. Then the staining procedure was the same as for HEK293 cells. 

2.11 Proximity ligation assay (PLA) 

For proximity ligation assay (PLA), HEK293 cells were prepared as the steps for 

immunostaining until the incubation with primary antibodies was completed. 

Subsequently, incubation with PLA probes, probe ligation and amplification steps 

were conducted following the manufacturer’s manual (Duolink/ Sigma-Aldrich, Buchs, 

Switzerland). For primary antibody pairs which were generated from the same 

species, Duolink In Situ Probemaker was used to pre-conjugate primary antibodies to 

PLA oligos. Cells were mounted with DAPI-containing mounting medium. Microscopy 

was performed as for normal immunostaining. 
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2.12 Statistics 

Quantificational data were presented as mean ±S.D. from at least three independent 

experiments. Significance was assessed by two-tailed student’s t-test. The values 

with P<0.05 was considered as significant in statistics. 
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3. Results 

3.1 Hypothermia and RBM3 promote cell survival 

3.1.1 Hypothermia prevents neural cell death in OGD model  

OGD is an in vitro model for ischemia/reperfusion injury in cultured tissues or cells 

(Rytter A et al., 2003). We used organotypic hippocampal slice cultures from 

postnatal day 3 (P3) animals as described previously (Chip S et al., 2011). Organotypic 

hippocampal slices were cultured 5 days in vitro, and challenged with OGD for 15 min. 

Subsequently, the slices were transferred to fresh incubation medium containing dye 

for CellTox™ Green Cytotoxicity Assay, and incubated at either normothermic or 

hypothermic conditions. The dye binds to naked DNA molecular and gives a 

fluorescent signal, indicating the disruption of membrane integrity and cell death. 60 

μL medium of each culture was taken for the measurement of the fluorescent signal 

at 0, 6, 24 and 48 h after OGD (Figure 3.1).  

 

 

 

 

 

 

 

 

Figure 3.1 Schematic experimental procedure of OGD model in organotypic hippocampal slice culture 

from post-natal day 3 C57BL/6J WT mice. DIV, days in vitro; OGD, oxygen-glucose deprivation; PI 

staining, propidium iodide staining. 
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The results showed a gradual increase in cell death after OGD in both normothermic 

and hypothermic groups, indicated by fluorescent signal strengths obtained from 

DNA-binding indicator dye (Figure 3.2). No significant difference of cell death was 

observed between the two groups until 24 h after OGD, while cell death was 

dramatically prevented by hypothermia between 24 and 48 h after OGD (Figure 3.2).  

 

 

 

 

 

 

 

 

Figure 3.2 Moderate hypothermia protects neural cells from OGD. Organotypic hippocampal slice 

cultures from C57BL/6J WT mice were challenged with 15 min OGD, and transferred to 37°C or 32°C 

incubator in five independent experiments for up to 48 h. 60 μL medium was taken from each culture 

for CellTox™ Green Cytotoxicity Assay at indicated time point. 0 h is defined as immediately after OGD 

treatment (*P<0.05). 

 

 

 

 

 

 

 

Figure 3.3 Representative PI staining (left panel) and immunostaining of RBM3 (right panel) from 

C57BL/6J WT organotypic hippocampal slice cultures. Cultures were incubated at 37°C or 32°C after 

OGD or mock treatment for 48 h. Representative results are shown from three independent 

experiments. Scale bar: 500 μm. 

45 
 



The principle of propidium iodide (PI) staining is similar to CellTox™ Green 

Cytotoxicity Assay. In brief, PI molecule can be excited with fluorescent signal only 

when binding to DNA released from dying cells, indicating necrotic and late apoptotic 

cells, but impermeant to living cells.  PI staining signal confirmed an elevated dead 

cell number after 48 h post-OGD incubation at 37°C, and a reduced dead cell number 

when hypothermia was performed (Figure 3.3). Immunostaining revealed increased 

RBM3 expression under hypothermia, especially in dentate gyrus (DG) and CA3 

region of hippocampus (Figure 3.3). After OGD treatment RBM3 level decreased, but 

recovered to some extent by hypothermic treatment (Figure 3.3), presenting a 

negative correlation with cell death. 

In addition, the anti-apoptotic protein Bcl-2 was found to be upregulated by 

moderate hypothermia in cultured hippocampus, while in the absence of cold-

inducible RBM3, Bcl-2 expression is attenuated (Figure 3.4). These results support 

the notion that moderate hypothermia favors neural cell survival upon hypoxic-

ischemic injury, and RBM3 may play a role in the protection. 

 

 
 
 
 
 
 
 
 
 
 
Figure 3.4 Moderate hypothermia and RBM3 are both positively associated with Bcl-2 expression in 

organotypic hippocampal slice culture. Organotypic hippocampal slices from RBM3 WT or KO mice 

were cultured at 37°C or 32°C for 48 h and subsequently homogenated to detect Bcl-2, RBM3 and β-

actin by Western blot. Representative results are shown. Asterisk indicates RBM3 band. 

 

46 
 



3.1.2 RBM3 protects cells from H2O2-induced oxidative stress 

Oxidative stress is an important deleterious factor in ischemia/reperfusion injury 

(Sanderson TH et al., 2013). In order to figure out the role of RBM3 in cell death 

provoked by oxidative stress, we used human embryonic kidney 293 (HEK293) cells 

for the manipulation of RBM3 expression. Recombinant RBM3 was overexpressed by 

the episomal mammalian expression vector pCEP4, and RBM3 downregulation was 

achieved by specific siRNA targeting human RBM3 gene. Similar to that observed in 

organotypic hippocampal slice culture model, the expression of Bcl-2 was also 

elevated in cells overexpressing RBM3 but decreased in RBM3 knock-down HEK293 

cells (Figure 3.5).  

 

 

 

 

 

 

Figure 3.5 RBM3 promotes Bcl-2 expression in HEK293 cells. RBM3 was constitutively expressed in 

pCEP4 system (left panel) or downregulated by siRNA (right panel) in HEK293 cells. After 24 h culture 

at 37°C, cells were harvested and western blot was performed to measure Bcl-2, RBM3 and β-actin 

expressions. Representative results are shown. Asterisks indicate RBM3 band. Scr: scrambled. 

 

In the next step, we used hydrogen peroxide (H2O2) to induce oxidative stress in 

HEK293 cells with constitutive RBM3 overexpression or transient RBM3 gene 

silencing. Cell proliferation assay was performed to measure cell viability, and 

fluorescence-activated cell sorting (FACS) analysis with Annexin V/PI double-staining 

was used to determine the percentage of apoptotic cells. Our results revealed 

reduced cell viability and increased apoptotic cell numbers in the hydrogen peroxide-
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treated group compared with the control group (Figure 3.6 and 3.7). The lack of 

RBM3 led to fewer viable cells and aggravated apoptosis. Conversely, when RBM3 

was overexpressed, cell viability was enhanced and apoptosis was substantially 

prevented compared with the empty vector control (Figure 3.6 and 3.7). To conclude, 

RBM3 is beneficial for cell viability and survival during oxidative stress-induced 

apoptosis. 

 

 

 
 
 
 
 
 
 

 

Figure 3.6 RBM3 enhances cell viability in HEK293 cells. Oxidative stress was induced in the 

manipulated cells from Figure 3.5 by 5 mM H2O2 for 1 h following by 24 h incubation in fresh DMEM 

medium containing 1% fetal bovine serum. Left panel is for RBM3 overexpression and right panel is for 

RBM3 knock-down. Non-treated cells were used as controls. Cell viability was determined by 

proliferation assay. Data from six independent experiments was analyzed for significance evaluation 

(**P<0.01, ***P<0.001). 

3.1.3 Both hypothermia and RBM3 prevent ER stress-induced cell death 

ER stress is widely involved in both acute and neurodegenerative brain disorders. 

Unfolded protein response is activated upon ER stress and attempts to rescue cells by 

halting protein translation at early stage, but prolonged ER stress can lead to cell 

death eventually (Yang W and Paschen W. 2009; Xin Q et al., 2014; Halliday M and 

Mallucci GR. 2014). Therefore, we examined whether hypothermia and RBM3 can 

rescue the neural cells upon sustained ER stress by challenging organotypic 

hippocampal slice cultures with 0.3 μM ER stress inducer thapsigargin (Tg) for 24 h.  
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Figure 3.7 RBM3 prevents apoptosis in HEK293 cells. The same batch of cells from Figure 3.6 was 

analyzed for apoptotic proportion by FACS. Annexin V positive (AnnV+) and propidium idodide 

negative (PI-) cells were considered as apoptotic cells at early or middle stages. One representative 

FACS result from three independent experiments was shown (upper and middle panels). Average 

values from triplicates were used for statistical analysis (lower panel, left for RBM3 overexpression 

and right for silencing. n.s.=not significant, *P<0.05, **P<0.01). 
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After 24 h treatment with Tg, necrotic and late apoptotic cell number was 

significantly higher than non-treated samples as analyzed by propidium iodide (PI) 

staining (Figure 3.8). Instead, cell death was alleviated in hypothermic group when 

compared to the normothermic group (Figure 3.8). Accordingly, PI staining revealed 

more severe cell death in RBM3 KO mice under sustained ER stress at normothermia 

compared with WT mice (Figure 3.8). However, cell death did not obviously differ 

between RBM3 WT and KO samples within hypothermic group (Figure 3.8). This 

indicates that RBM3 may not be the sole factor mediating hypothermic effect on 

neuroprotection. Other compensating pathways may be activated when RBM3 is 

depleted. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.8 Both moderate hypothermia and RBM3 prevent neural cell death from ER stress-induced 

cell death. Organotypic hippocampal slice cultures were prepared from RBM3 WT or KO mice and 

challenged with or without 0.3 μM thapsigargin (Tg) for 24 h at 37°C or 32°C, and then subjected to PI 

staining. Five independent experiments were performed. Representative results are shown. Scale bar: 

500 μm. 
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3.2 Hypothermia and RBM3 suppress PERK-eIF2α-CHOP 

signaling pathway under sustained ER stress 

3.2.1 Hypothermia and RBM3 inhibit PERK-eIF2α-CHOP pathway 

Since moderate hypothermia and RBM3 were proved to attenuate ER stress-induced 

cell death in 3.1.3, we attempted to find out the underlying mechanisms. Among the 

three main signaling pathways of unfolded protein response, PERK-eIF2α-CHOP 

pathway is the dominant one contributing to cell apoptosis provoked by prolonged 

ER stress signals (Lin JH et al., 2007). In order to examine whether hypothermia and 

RBM3 affect the key components of PERK-eIF2α-CHOP pathway, we performed 

Western blot and real-time RT-PCR at different time points in thapsigargin-stressed 

organotypic hippocampal slice culture as described in Figure 3.9.  

 
 
 
 
 
 
 
 
 
Figure 3.9 Schematic experimental procedure of organotypic hippocampal slice culture from post-

natal day 3 C57BL/6J mice (RBM3 WT or KO). Slices were collected 0.5 h after thapsigargin treatment 

for phos-eIF2α and total-eIF2α protein detection, 6 h for CHOP mRNA quantification, and 8 h for CHOP 

and β-actin protein detection. DIV, days in vitro; Tg, thapsigargin; WB, Western blot; qPCR, 

quantitative real-time RT-PCR. 

 

When organotypic hippocampal slices were stressed with thapsigargin, the increase 

of phos-eIF2α, CHOP mRNA and CHOP protein levels was prevented in hypothermic 

group (Figure 3.10). Interestingly, in the controls without thapsigargin, hypothermia 

exposure increased phos-eIF2α as compared to normothermia, whereas CHOP 
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expression remained at low levels (Figure 3.10). Next, we examined ER stress 

response by comparing RBM3 KO and WT mice. In thapsigargin-treated hippocampal 

slice cultures eIF2α phosphorylation and CHOP mRNA as well as protein expression 

were elevated in RBM3 KO mice, indicating exuberant ER stress signaling via the 

PERK-eIF2α-CHOP pathway in the absence of RBM3 (Figure 3.10). Under 

hypothermic conditions we noted no differences in ER stress response between 

RBM3 KO and WT mice (Figure 3.10), consistent with the result in Figure 3.8 and 

supporting the involvement of compensating mechanisms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.10 Both hypothermia and RBM3 suppress PERK-eIF2α-CHOP pathway in neural cells. 

Organotypic hippocampal slice cultures were prepared from RBM3 WT or KO mice and challenged 

with or without 0.3 μM Tg at 37°C or 32°C in five independent experiments. Slices were homogenated 

to detect phosphorylated eIF2α, total eIF2α, CHOP, and β-actin (upper panel, representative Western 

blot with samples from two independent experiments is presented), and to analyze CHOP mRNA 

analysis in triplicates (lower panel, *P<0.05, n.s. =not significant). 
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To investigate the effect of moderate hypothermia and RBM3 on the PERK-eIF2α-

CHOP ER stress signaling pathway in vitro, we treated HEK293 cells with increasing 

concentrations of thapsigargin (0, 0.3 and 3 μM) and incubated them under either 

normothermic or hypothermic conditions. As shown in Figure 3.11, the key 

components of the PERK-eIF2α-CHOP pathway, including phosphorylated PERK, 

phosphorylated eIF2α and CHOP protein, were activated in a dose-responsive fashion 

to thapsigargin treatment and were attenuated by hypothermia (Figure 3.11). 

Notably, in groups without thapsigargin treatment, eIF2α phosphorylation was higher 

upon hypothermia (Figure 3.11), which is consistent with the findings in the 

hippocampal slice culture model (Figure 3.10). Simultaneously, RBM3 expression was 

significantly increased under hypothermic conditions (Figure 3.11). 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 3.11 Moderate hypothermia inhibits PERK-eIF2α-CHOP pathway in HEK293 cells. HEK293 cells 

were incubated at 37°C or 32°C for 48 h and treated in the following 24 h with thapsigargin (Tg) at 

indicated concentrations without changing temperature. Cells were subjected to Western blot with 

indicated primary antibodies. The specific band of RBM3 is labeled with an asterisk. 

 

Since compensating mechanisms during moderate hypothermia may interfere with 

the revealing of RBM3 function (Figure 3.8 and Figure 3.10), we aimed to study 

exclusively on RBM3 instead of general hypothermia. To focus on the effect of RBM3, 
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we overexpressed human RBM3 in HEK293 cells using the Flp-In 293 T-Rex system. 

When recombinant RBM3 was expressed upon addition of 4 ng/ml doxycycline, 

endogenous RBM3 expression was not altered (Figure 3.12). Whereas thapsigargin 

treatment strongly increased PERK and eIF2α phosphorylation in Flp-In 293 T-Rex 

cells compared to the negative control, PERK and eIF2α phosphorylation were 

inhibited in cells expressing recombinant RBM3 (Figure 3.12), indicating that RBM3 

has an inhibitory effect on the PERK-eIF2α-CHOP signaling pathway.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.12 Overexpressed RBM3 inhibits PERK-eIF2α-CHOP pathway in HEK293 cells. RBM3 

expression was induced by 4 ng/mL doxycycline (Dox) in Flp-In T-Rex 293 cells and subsequently 

challenged with 0.3 μM Tg for 6 h or 24 h. Incubation with Tg was terminated after 6 h for phos-PKR, 

total PKR, phos-PERK and total PERK; 24 h for phos-eIF2α, total-eIF2α, CHOP, RBM3 and β-actin. A 

representative Western blot is shown, primary antibodies are indicated, protein bands corresponding 

to endogenous (endo, 17 kDa) and recombinant (rec, 25 kDa) RBM3. Of note, in the Flp-In T-Rex 293 

cell system RBM3 is fused with a strep tag resulting in a higher molecule weight. 
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To determine the effect of reduced RBM3 expression, RBM3 knock-down was 

performed using specific siRNAs. Two siRNA oligos specifically targeting RBM3 were 

transfected into HEK293 cells, and both exhibited efficient silencing of RBM3 

expression (Figure 3.13). In cells treated with RBM3 siRNA oligos, PERK 

phosphorylation was enhanced upon ER stress induction by thapsigargin in contrast 

to mock-treated cells (Figure 3.13). Accordingly, eIF2α phosphorylation and CHOP 

expression were sharply elevated upon RBM3 silencing (Figure 3.13). Although PERK, 

the PKR-like ER kinase, exhibits high similarity with PKR in the kinase domain and 

shares similar function with PKR to phosphorylate eIF2α (Yan W et al., 2002), RBM3 

overexpression or silencing did not affect PKR phosphorylation with or without 

thapsigargin treatment (Figure 3.12 and Figure 3.13, respectively).  

         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.13 Reduced RBM3 level exacerbates PERK-eIF2α-CHOP signaling in HEK293 cells. RBM3 

expression was silenced by transfection of two different specific siRNAs (RBM3#1 and RBM3#2) in 

HEK293 cells as compared to scrambled (Scr) siRNA for 48 h and then stressed with 3 μM Tg for 6 h 

(left panel). Cells transfected with Scr or RBM3#2, followed by 3 μM Tg treatment were analyzed by 

Western blot. Incubation with Tg was terminated after 6 h for phos-PKR, total PKR, phos-PERK and 

total PERK; 24 h for phos-eIF2α, total-eIF2α, CHOP, RBM3 and β-actin (right panel). Asterisks indicate 

specific RBM3 band. 
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To exclude drug-specific effects, we used an additional ER stress inducer tunicamycin 

and compared its effect with thapsigargin. Mechanistically, tunicamycin elicits ER 

stress by blocking N-linked glycosylation while thapsigargin inhibits ER Ca2+ pump (Lin 

JH et al., 2007). Similar results of the activated PERK-eIF2α-CHOP signaling were 

found in tunicamycin-treated cells (Figure 3.14). Whereas the pathway activation 

occurred faster after treatment with thapsigargin as compared to tunicamycin at 

given concentration (Figure 3.14), cell viability was comparable for both compounds 

(Figure 3.15).  

 
 
 
 
  
 
 
 
 

 

Figure 3.14 The ER stress inducers thapsigargin (Tg, left panel) and tunicamycin (Tu, right panel) 

increase both the level of phos-PERK and phos-eIF2α in HEK293 cells. Western blot was performed 

with protein samples from HEK293 cells treated with 3 μM Tg or 3 μg/mL Tu for 0, 3, 6, 8, 24, and 48 

hours (h) as indicated, primary antibodies are indicated.  

 

 

 

 

 

 

 

Figure 3.15 Cell viability with samples from Figure 3.14 was determined by cell proliferation assay. 

HEK293 cells were treated with thapsigargin (Tg, left panel) or tunicamycin (Tu, right panel) at given 

concentrations for 24 h. Data from three independent experiments was analyzed (*P<0.1, **P<0.01). 
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Similar effects were observed with RBM3 silencing in tunicamycin treated cells as 

observed upon thapsigargin treatment. RBM3 knock-down led to an increase of PERK 

and eIF2α phosphorylation, indicating that the effect was related to ER stress in 

general (Figure 3.16). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.16 Silenced RBM3 expression also enhances PERK-eIF2α-CHOP signaling upon tunicamycin-

induced ER stress. HEK293 cells were transfected with two RBM3 siRNAs (RBM3#1 and RBM3#2) or 

scrambled (Scr) siRNA as used in Figure 3.13, and then stressed with 3 μg/mL tunicamycin (Tu) for 48 h. 

Cell lysates were subjected to Western blot, primary antibodies are indicated. Asterisk indicates 

specific RBM3 band.  

3.2.2 Screening of RBM3 interacting partners 

Given the observation that RBM3 influences the PERK-eIF2α-CHOP signaling pathway 

at its most upstream point, we were interested in understanding how PERK activity is 

regulated by RBM3. First, we tested the hypothesis that RBM3 binds to PERK and 

thereby regulates its phosphorylation. In co-immunoprecipitation (CoIP) experiments, 

we used HuR and Bip as positive controls. HuR is known to interact with RBM3 

(Sureban SM et al., 2008), and Bip binds to PERK in physiological condition but 

dissociates from PERK under ER stress (Bertolotti A et al., 2000). However, we failed 

to demonstrate a direct interaction between RBM3 and PERK by either CoIP or 

reverse CoIP, although the positive controls were successful (Figure 3.17). This may 
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imply that, either the interaction between RBM3 and PERK is transient or too weak 

to be captured by this technique, or they do not interact with each other.  

 

 
 
 
 
 
 
 
 
 
Figure 3.17 RBM3 does not show direct binding to PERK. HEK293 cells were treated with or without 3 

μM Tg for 6 h, then lysed gently, and lysates were subjected to RBM3 or PERK antibody coupled 

magnetic beads. Immunoglobulin G (IgG) was used as negative control. Representative Western blots 

for PERK and RBM3 are given. HuR and Bip were used as positive controls for RBM3 and PERK 

interactors, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.18 Overexpression of RBM3 does not regulate Bip expression. RBM3 overexpressing Flp-In T-

Rex 293 (4 ng/mL doxycycline, Dox) or control cells (no Dox) were treated without or with 0.3 μM Tg 

for 3, 24, and 48 h. Bip transcripts were measured by real-time RT-PCR. Data from three independent 

experiments show no statistical significant differences comparing results from doxycycline treated and 

untreated cells when stressed or unstressed. Representative Western blot for Bip and β-actin is given. 

rec, recombinant; endo, endogenous. 

 

58 
 



Second, we examined whether RBM3 regulates the key folding sensor BiP, which 

binds to and inactivates PERK in unstressed conditions (Bertolotti A et al., 2000).  Bip 

expression was dramatically elevated upon ER stress, but neither the overexpression 

nor the silencing of RBM3 affected Bip mRNA or its protein expression (Figure 3.18 

and Figure 3.19).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.19 Absence of RBM3 does not affect Bip expression. HEK293 cells transfected with RBM3 

specific siRNAs (RBM3#1 and RBM3#2) or scrambled (Scr) siRNA were treated without or with 3 μM Tg 

for 3, 24, and 48 h. Real-time RT-PCR was performed to examine Bip mRNA expression. No statistical 

significant differences were noted when comparing data from three independent experiments as 

given between respective RBM3 and Scr siRNA groups. Representative Western blot for Bip and β-

actin is shown. 

 

Therefore, we suspected the involvement of additional factors in the regulation of 

RBM3 and PERK interaction. To test this possibility, we screened for putative RBM3-

binding proteins. Recombinant human RBM3 fused to streptavidin tag was 

overexpressed in HEK293 cells, and baits from 4 independent experiments were 

purified via affinity tags and digested into peptides. The peptides were identified by 

mass spectrometry (Figure 3.20). Sixtyfive candidate RBM3-binding proteins were 

identified, over 50% of them with functions in transcription and translation (Figure 

3.21 and Appendix II). Among these proteins, two members of the nuclear factors 
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associated with dsRNA (NFAR) family, namely NF45 and NF90, exhibited the highest 

screening scores in all independent experiments performed and were consequently 

chosen for further study.  

NF45 and NF90/NF110 (NF110 is an NF90 long isoform) form a heterodimer and are 

involved in a variety of events, including DNA break repair, transcriptional and post-

transcriptional regulation (Parker LM et al., 2001). In further, NF90 binds to PKR and 

regulates PKR phosphorylation (Parker LM et al., 2001). Of interest, similar to PERK, 

PKR also phosphorylates eIF2α in response to distinct types of stress (Donnelly N et 

al., 2013), although its activity is not regulated by RBM3 (Figure 3.12 and Figure 3.13). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.20 The flowchart of screening RBM3-interacting proteins. Strep-tagged RBM3 overexpression 

was induced by doxycycline in Flp-In T-Rex 293 cells. Cell lysates were subjected to Strep-Tactin beads 

and washed with phosphate-buffered saline (PBS). Eluted RBM3 and its interactors were digested into 

peptides and identified by mass spectrometry. (The flowchat was modified from Promega website 

“Protein Purification and Analysis” Figure 11.16. 

https://ch.promega.com/resources/product-guides-and-selectors/protocols-and-applications-

guide/protein-purification-and-analysis/) 
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Figure 3.21 Classification of candidate RBM3-interacting proteins according their function. The 

complete list with detailed screening results and protein names is provided in Appendix II. 

 

Interaction of RBM3 with NF45 or NF90 in HEK293 cells was confirmed using CoIP 

(Figure 3.22). Pretreatment of cell lysates with RNase T1 indicated that the 

interaction between RBM3 and NF45 or NF90 is mediated by RNA (Figure 3.22), 

whereas NF45 binds to NF90 in an RNA-independent manner (Figure 3.23) as 

published elsewhere (Guan D et al., 2008).  

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.22 RBM3 shows an interaction with NF45 and NF90 in a RNA dependent manner, whereas 

NF90 and NF45 bind to PERK independently of RNA mediation. A similar procedure for CoIP was 

performed as described in Figure 3.17 with additional RNase T1 pre-treatment as indicated, and 

representative Western blots for NF110/NF90, NF45, and PERK are given (left panel). Samples 

precipitated with PERK antibody and detected with NF90 or NF45 antibodies were exposed longer for 

a better resolution (right panel). 
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Results from CoIP unambiguously supported the notion that NF90 directly binds to 

PERK, as the interactions were generally unaffected by RNase treatment (Figure 3.22 

and Figure 3.23). However, a shift from NF90 short isoform to NF110 long isoform 

upon RNase digestion was observed in NF90-PERK interaction but not in NF45-PERK 

interaction (Figure 3.22 and Figure 3.23). This probably indicates a different but not 

distinct role of NF110 compared to NF90, and/or the involvement of some RNA 

species in the context of NF90-PERK interaction. Moreover, we noted also the NF45-

PERK interaction (Figure 3.22) did not appear in reverse CoIP (Figure 3.23), indicating 

a weaker or less indirect interaction as compared to NF90-PERK interaction.  

 
 
 
 
 
 
 
 
 

 

 

Figure 3.23 NF90 interacts with PERK and NF45 independently of RNA in reverse CoIP. A similar 

procedure for CoIP was performed as in Figure 3.17 with additional RNase T1 pre-treatment as 

indicated. Representative Western blots for PERK, NF110/NF90 and NF45 are given. The interaction of 

NF90 and PERK was confirmed by reverse CoIP. NF45-PERK interaction was not observed in reverse 

CoIP (left panel). Samples precipitated with NF90 or NF45 antibodies and detected with NF45 or NF90 

antibodies respectively were exposed longer for a better resolution to show NF45-NF90 interaction 

(right panel). Asterisk indicates NF45. HC: antibody heavy chain.  

 

Comparing the expression of NF45, NF90/ NF110 as well as the CoIP products, there 

was no difference noted between normothermia and hypothermia (Figure 3.24). We 

suggested that, only a small proportion of the proteins are involved in the 

interactions and exert related functions. 
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Figure 3.24 Hypothermia does not change the interactions between RBM3 and NF45/NF90. A similar 

CoIP procedure was performed as described in Figure 3.17 with cells cultured at 37°C or 32°C for 24 h. 

Western blots for RBM3, NF45 and NF90 are given. 

 

In parallel, we studied the distribution patterns of RBM3, NF90, NF45 and PERK in 

situ in HEK293 cells. Immunostaining revealed that RBM3, NF90 and NF45 localize 

mainly in nucleus in both thapsigargin untreated or treated samples (Figure 3.25 and 

Figure 3.26). Whereas the ER membrane-bound protein, PERK, was mainly 

cytoplasmic localized on ER membranes (Figure 3.25 and Figure 3.26). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.25 Subcellular localization of NF90, PERK, and RBM3. HEK293 cells were cultured on glass 

surface for 48 h, challenged with 3 μM Tg for 6 h, and stained with antibodies against RBM3, NF90 and 

PERK. The nuclei were stained with DAPI. Scale bar: 10 μm. 
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Figure 3.26 Subcellular localization of NF45, PERK, and RBM3. The same procedure was executed as 

Figure 3.25. NF45 was stained instead of NF90. The nuclei were stained with DAPI. Scale bar: 10 μm. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

Figure 3.27 Proximity ligation assay (PLA) was performed in HEK293 cells with or without ER stress 

induction as described in Figure 3.26. Antibodies used for control samples without ER stress: RBM3 

only (negative control), NF45 and NF90 (positive control). The following interactions in situ were 

studied, RBM3 and PERK, RBM3 and NF90, RBM3 and NF45, NF90 and PERK, and NF45 and PERK. DAPI 

stained nuclei in blue. Scale bar in all panels: 10 μm. 
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Proximity ligation assay (PLA) is a method demonstrating protein interactions in situ. 

With the method of PLA, we confirmed that RBM3 is located in proximity to both 

NF45 and NF90, co-localizing in both the nucleus and cytoplasm (Figure 3.27). The 

PERK and NF90 interaction occurred in a non-nuclear pattern (Figure 3.27). A similar 

interaction pattern was observed for NF45 and PERK (Figure 3.27). Combining with 

the immunostaining data, the results support the idea that only a small pool of 

proteins are involved in these interactions and mainly in the cytoplasm, in 

accordance with that observed in CoIP experiments. 

3.2.3 NF90 is required for RBM3-mediated PERK inhibition 

Having demonstrated the direct physical interactions of PERK with RBM3 and NF90, 

we next investigated whether these interactions are of functional importance. For 

this purpose, NF90 gene expression was silenced using two different siRNAs in 

HEK293 cells treated for 24 h with thapsigargin. RBM3 siRNA was used as a positive 

control, and scrambled siRNA served as a negative control. PERK phosphorylation 

was reduced with both NF90-specific siRNAs and was increased upon RBM3 knock-

down (Figure 3.28).  

 
 
 
 
 
 
 
 
 

 

 

Figure 3.28 PERK phosphorylation was blunted in HEK293 cells exposed to 3 μM Tg for 24 h when 

transfected with NF90 siRNAs (NF90#1 or NF90#2), and enhanced when transfected with RBM3 

siRNAs (RBM3#1 or RBM3#2) as compared to control scrambled siRNA (Scr). A representative Western 

blot for phos-PERK, total PERK, NF90, RBM3, and β-actin is shown. RBM3 is indicated with asterisk. 
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Furthermore, co-transfection of RBM3 and NF90 siRNAs followed by ER stress 

induction with thapsigargin led to a remarkable reduction of phos-PERK and phos-

eIF2α compared to the negative control, very similar to samples treated with a 

combination of RBM3 siRNA and a specific PERK inhibitor (Figure 3.29).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.29 NF90 is indispensable for RBM3 mediated PERK activity. HEK293 cells were transfected 

with RBM3 and NF90 specific siRNAs in either separate or combined settings and then treated with or 

without Tg (3 μM for 24 h) as indicated. Cells treated with siRBM3 combined with PERK inhibitor prior 

to Tg were used as controls. Phos-PERK, total PERK, phos-eIF2α, and total eIF2α were analyzed by 

Western blot. 

 

Finally, we checked if the protein interactions are involved in the NF90-mediated 

activity as discovered above. Whereas RBM3 knock-down alone did not influence the 

interaction between PERK and NF45/NF90, a double knock-down of RBM3 and NF90 

led to a significant decrease of PERK and NF45/NF90 interaction (Figure 3.30). 

Surprisingly, even a small proportion of RBM3 is sufficient to maintain RBM3-NF90 

and RBM3-NF45 interactions, consisting with the hypothesis that only the small 

amount of RBM3 in cytoplasm but not the major nucleic RBM3 is responsible for the 

interactions and functions in regulating ER stress response, as discussed above. Taken 

together, these data support the notion that NF90 alone regulates PERK 

phosphorylation, and is necessary for mediating RBM3 function on PERK activation. 
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Figure 3.30 PERK and NF45/NF90 interaction in the absence of RBM3 and NF90. HEK293 cells were 

treated with RBM3 and NF90 siRNA in a separate or combined way as in Figure 3.29. CoIP was 

performed with RBM3 and PERK antibodies as in Figure 3.17. NF90 and NF45 were detected by 

Western blot. RBM3 and PERK inputs are also given. Asterisks indicate RBM3 band. 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

67 
 



3.3 Hypothermia and RBM3 regulate miRNA expression 

3.3.1 Hypothermia reduces the expression of pro-apoptotic miRNA 

Several groups of pro-apoptotic and anti-apoptotic miRNAs are conserved in 

mammals (Garofalo M et al., 2010). As a therapeutic approach, moderate 

hypothermia can alter miRNA expression upon brain injuries and reduce neural 

apoptosis (Truettner JS et al., 2011). To investigate if moderate hypothermia 

modulates pro-apoptotic miRNAs, we selected miR-16 and let-7a, two well-

characterized pro-apoptotic miRNAs as putative targets. In HEK293 cells, both 

expressions of mature miR-16 and let-7a were attenuated by hypothermia treatment, 

while their respective precursors were accumulated accordingly (Figure 3.31), 

indicating that hypothermia suppresses the shift from precursor miRNA to mature 

miRNA at least for miR-16 and let-7a. In addition, we examined Bcl-2 mRNA, the 

target for miR-16 (Cimmino A et al., 2005). Moderate hypothermia dramatically 

elevated the level of Bcl-2 transcript (Figure 3.32), at least partially due to the 

decreased level of miR-16. This finding is also consistent the increasing Bcl-2 protein 

level under hypothermia (Figure 3.4), and supports the anti-apoptotic function of 

moderate hypothermia.  

 

 

 

 

 

Figure 3.31 Moderate hypothermia inhibits the expression of pro-apoptotic miR-16 and let-7a, and 

increases their respective precursors. HEK293 cells were cultured at 37°C or 32°C for 24 h and 

harvested for mature miRNA (left panel) as well as pre-miRNA (right panel) analysis by real-time RT-

PCR. Average values from triplicates were used for statistical analysis (**P<0.01, ***P<0.001). 
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Figure 3.32 Moderate hypothermia elevates Bcl-2 expression. HEK293 cells were cultured at 37°C or 

32°C for 0, 24 and 48 h. Cells were collected for the analysis of Bcl-2 mRNA by real-time RT-PCR. Three 

independent experiments were performed (*P<0.05, **P<0.01).  

 

3.3.2 RBM3 negatively regulates pro-apoptotic miRNAs 

Previous research has demonstrated that RBM3 positively regulates a large group of 

miRNAs, while negatively regulates a smaller pool (Pilotte J et al., 2011). To unravel 

whether RBM3 inhibits pro-apoptotic miRNAs, we used constitutively expressed 

RBM3 in pCEP4 system in HEK293 cells. Empty vector was used as negative control. 

We used miR-16 and let-7a as putative targets of RBM3 as that for hypothermia. The 

overexpression of RBM3 resulted in a reduction of mature miR-16 and let-7a in 

comparison with the empty vector, and the precursors of miR-16 and let-7a were 

accumulated (Figure 3.33). On the contrary, downregulated RBM3 level significantly 

enhanced miR-16 and let-7a level with decreasing precursor miRNAs (Figure 3.34). In 

further, miR-16 targeted Bcl-2 transcripts decreased when RBM3 was silenced (Figure 

3.35), in accordance with the protein data observed in HEK293 cells (Figure 3.5). 

These data suggested that RBM3 inhibits the maturation of miR-16 and let-7a from 

their respective precursors and prevents apoptosis, in accordance to the findings 

with hypothermia. However, our data is contradict to Pilotte’s report, in which miR-

16 and let-7a are downregulated in the absence of RBM3 in mouse B-104 cell line 
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(Pilotte J et al., 2011). As their work is also inconsistent to the fact that RBM3 

promotes global translation (Dresios J et al., 2005; Smart F et al., 2007) and anti-

apoptotic function (Chip S et al., 2011), we suspect that their inconsistent results 

derive from cell-specific effects. 

 

 

 

 

 

 

 

Figure 3.33 Overexpressed RBM3 represses the expression of pro-apoptotic miR-16 and let-7a, and 

increases their respective precursors. RBM3 was constitutively expressed in pCEP4 system in HEK293 

cells. Cells were cultured at 37°C for 24 h, then collected for mature miRNA (left panel) and pre-miRNA 

(right panel) analysis by real-time RT-PCR in triplicates (*P<0.05, **P<0.01, ***P<0.001). 

 

 

 

 

 

 

 

Figure 3.34 Reduced RBM3 level upregulates the expression of pro-apoptotic miR-16 and let-7a, and 

downregulates their respective precursors. RBM3 was knocked down by specific siRNA (RBM3#2) for 

24 h in HEK293 cells. Real-time RT-PCR was taken to detect mature (left panel) and precursor (right 

panel) miR-16 and let-7a. Three independent experiments were performed for statistic analysis 

(*P<0.05, **P<0.01). 
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Figure 3.35 The absence of RBM3 attenuates Bcl-2 expression. RBM3 was downregulated by siRNA 

(RBM3#2) for 24 h, and then incubated for additional 0, 24 and 48 h. Bcl-2 (upper) and RBM3 (lower) 

mRNAs were analyzed by real-time RT-PCR in triplicates (**P<0.001, ***P<0.01).  

3.3.3 RBM3 positively regulates anti-apoptotic miRNAs  

Several groups of miRNAs have been described to contribute to UPR-dependent 

activities (Chitnis N et al., 2013). In previous study, the anti-apoptotic miR-106b-93-

25 cluster was found to be under control of PERK and further influence cell destiny 

(Gupta S et al., 2012). To examine whether the expression of the miR-106b-93-25 

cluster is subject to RBM3, we measured the expression of miR-106b and miR-93, as 

well as miR-25 in RBM3 knock-down HEK293 cells. As expected, both miR-106b and 
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miR-93 were downregulated by thapsigargin induced ER stress, when PERK was 

activated (Figure 3.36).  Silencing of RBM3 declined miR-106b and miR-93 expression 

with or without PERK activation (Figure 3.36). Instead, miR-25 remained unchanged 

rather than a decreasing tendency upon ER stress in HEK293 cells, whereas miR-25 

expression dropped when RBM3 was absent in unstressed cells (Figure 3.36). 

Therefore, we conclude that the lack of RBM3 results in the reduction of the miR-

106b-93-25 cluster in general and probably contributes to exacerbated apoptosis. 

However, the regulation of miR-106b-93-25 by RBM3 may not be related to PERK 

activation. 

 

 

 

 

 

 

 

 

 

Figure 3.36 RBM3 knock-down leads to the inhibition of anti-apoptotic miR-106b-93-25 cluster. 

HEK293 cells were transfected with scrambled (Scr) or RBM3 specific siRNA (RBM3#2), and challenged 

with 3 μM thapsigargin (Tg) for 6 h. Then the cells were harvested for mature miRNA analysis, the 

expressions of miR-106b, miR-93, and miR-25 were measured from three independent experiments by 

real-time RT-PCR (**P<0.01, ***P<0.001). 
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4. Discussion 

Former studies displayed a high expression level of RBM3 in neuron precursors and 

young neurons in the subventricular zone (SVZ) and the rostral migratory stream 

(RMS), suggesting a pivotal role in neuron stem cell proliferation and brain 

development (Pilotte J et al., 2009; Chip S et al., 2011). In brain injury and 

neurodegenerative diseases, neuron stem cell-based therapy has become an 

important approach to regenerate the damaged or lost neurons and recover their 

functions (George PM and Steinberg GK, 2015; Barker RA et al., 2015). Hypothermia 

displays a critical role in protecting neuron stem cells in the region of dentate gyrus 

(DG) upon ischemic brain injury (Kwak M et al., 2015). In our study, RBM3 was 

dramatically increased by hypothermia in DG of cultured hippocampal slices (Figure 

3.3), in accordance with its activity in proliferation of neuron precursors and 

immature neurons. In OGD model which mimics hypoxic-ischemia, RBM3 was 

globally downregulated (Figure 3.3) and may contribute to the failure of neuron 

regeneration after ischemic injury. The therapeutic hypothermia after OGD 

treatment can rescue neural cells, probably in part by reactivate RBM3 in DG to some 

extent, although not fully recovered (Figure 3.3). Altogether, our data support the 

hypothesis that hypothermia maintains neuron stem cell numbers and functions 

through elevating RBM3 level in brain disorders. 

The provocation of oxidative stress is one of the main characteristics in cerebral 

ischemia/reperfusion injury and neurodegeneration (Pradeep H et al., 2012; Dasuri K 

et al., 2013). The overproduction of reactive oxygen species (ROS) results primarily 

from dysfunctional mitochondria as well as from other organelles or complexes like 

peroxisomes, disrupting oxidant/anti-oxidant balance in neural cells (Pradeep H et al., 

2012; Dasuri K et al., 2013). Oxidative stress activates multiple downstream events 

including calcium imbalance, excitotoxicity, neuroinflammation, protein modification 

and degradation, which all lead to neural cell death (Pradeep H et al., 2012; Dasuri K 

et al., 2013). Our data suggested that the expression of RBM3 prevents oxidative 

stress-induced apoptosis (Figure 3.6 and Figure 3.7), similar to the effects of its 
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homologue CIRP as reported by other groups (Liu J et al., 2015; Sakurai T et al., 2015). 

We assumed there is an overlapping function of these two sequence-conserved cold 

responsive proteins against oxidative stress.  

A hallmark of hypothermia in mammalian cells is the general inhibition of protein 

synthesis, which is mainly regulated through an increase in phosphorylated eIF2α 

(Hofmann S et al., 2012). The same protein synthesis brake is activated upon ER 

stress causing eIF2α phosphorylation through the kinase PERK (Donnelly N et al., 

2013). It is important to note that either hypothermia alone or ER stress alone can 

elevate eIF2α phosphorylation, indicating that moderate hypothermia itself is a cell 

stressor but does not provoke apoptosis (Rzechorzek NM et al., 2015). However, in 

the presence of additional and considerably stronger stress factors such as prolonged 

ER stress, hypothermia is protective. For example, hypothermia attenuates ER stress-

induced apoptosis through CHOP in rat models of cerebral ischemia (Liu X et al., 2013; 

Poone GK et al., 2015). This finding was confirmed by our data, which indicate that 

moderate hypothermia attenuates PERK and eIF2α phosphorylation and subsequent 

apoptosis in the presence of sustained ER stress (Figure 3.10 and Figure 3.11). This 

peculiar overlap attracted our attention and, together with the known facts about 

RBM3, propelled our research to investigate RBM3 signaling in detail.   

RBM3 has been shown to trigger translation, and it has been deduced that RBM3 

may prevent a more dramatic reduction of protein synthesis under conditions of 

hypothermia (Dresios J et al., 2005; Smart F et al., 2007). In our experimental settings, 

RBM3 was proposed as a PERK and eIF2α inhibitor both in the absence and presence 

of ER stress (Figure 3.10; Figure 3.12; Figure 3.13 and Figure 3.16), assuming that 

RBM3 could be exclusively advantageous for cells to overcome stressful conditions 

without exerting detrimental adverse effects associated with hypothermia.  

We found an increased ER stress response in hippocampal organotypic slice cultures 

from RBM3 KO mice as well as in cell cultures with transient RBM3 knockdown 

(Figure 3.10 and Figure 3.13). Forced expression of RBM3 in cell cultures, either 

endogenously by hypothermia or exogenously by recombinant RBM3, blocked the 

thapsigargin triggered ER stress response (Figure 3.11 and Figure 3.12). Very recently, 
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RBM3 has been identified as an important mediator of structural plasticity and 

protective effects in rodent models of neurodegeneration. RBM3 overexpression, 

achieved either endogenously through hypothermia before the loss of the RBM3 

response in advancing neurodegeneration or by lentiviral delivery, resulted in 

sustained neuroprotection by preventing neuronal loss and restoring synapse 

reassembly (Peretti et al., 2015). Notably, only RBM3, but not the RBM3 homologue 

CIRP was significantly induced in their settings (Peretti et al., 2015), implying distinct 

induction patterns of RBM3 and CIRP in vivo. Although the underlying mechanism is 

unknown, one hypothesis may involve the suppression of eIF2α kinase PERK, which 

has been shown as a potential therapeutic target in Alzheimer’s disease-related 

deficits of synapse plasticity (Ma T et al., 2013) and has been linked by our findings to 

RBM3. Based on our findings of increased ER stress response in RBM3 KO mice it 

might be speculated that RBM3 KO mice are more susceptible to neurodegeneration. 

In our organotypic hippocampal slice culture model of ER stress the lack of RBM3 did 

not impair the cytoprotective effect of hypothermia (Figure 3.10), posing the 

question if other cold response mechanisms may counteract the lack of RBM3, such 

as CIRP. In fact, the potential functional overlap of RBM3 and CIRP demands further 

experiments in RBM3 KO mice for example by applying hypothermia after stroke and 

by cross-breading RBM3 with CIRP KO mice. Additionally, even though deep 

hypothermia was used in experimental rodents to mimic hibernation (Peretti D et al., 

2015), moderate cooling temperature is considered to be safer and more favorable 

for human to avoid increasing side effects and risks of deep hypothermia, which is in 

accordance with induced RBM3 expression pattern at different cooling temperature. 

In addition to PERK, three other kinases, PKR, GCN2 and HRI, also phosphorylate 

eIF2α in response to distinct types of stress known as integrated stress response (ISR) 

(Harding HP et al., 2003; Donnelly N et al., 2013). ISR is characterized by the 

formation of cytoplasmic non-membrane RNA granules, known as stress granules 

(SGs), which are composed of initiation factors, ribosomal proteins, translationally-

stalled mRNAs and RNA binding proteins. Upon stress, the assembly of SGs is 

initiated by phosphorylated eIF2α in a rapid dynamic manner to stall global 
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translational process. Once the stress has been removed, SGs disperse and protein 

translation recovers (Anderson P et al., 2015). Our results demonstrated that RBM3 

regulates eIF2α activity in a stress-responsive pattern. Many of the putative RBM3 

interacting partners identified in our RBM3 interactome screening are described to 

exist in stress granules and to modulate transcriptional and translational processes 

(Figure 3.21 and Appendix II). For example, NF90 has been shown to co-localize with 

stress granule markers in cytoplasm in infected cells although most of NF90 proteins 

remain in the nucleus (Wen X et al., 2014). Our data support this finding, RBM3, 

NF45 and NF90 predominantly localize in the nucleus (Figure 3.25 and Figure 3.26), 

but interaction occurs in a non-nuclear pattern together with the ER membrane 

bound protein PERK (Figure 3.27). Thus, we suppose that a pool of RBM3 proteins 

can shuttle to ER upon ER stress, and regulates the activity of ER membrane-bound 

protein PERK, albeit the majority of RBM3 remains in the nucleus. Silencing of RBM3 

expression by siRNA cannot abolish RBM3-NF45 and RBM3-NF90 interactions, 

confirming the notion that only a small pool of RBM3 in cytoplasm is involved in 

these interactions (Figure 3.30). Meanwhile, the RBM3-NF45/90-PERK interactome 

exists in a ribonucleoprotein complex, which is mainly located in cytosol, and thereby 

exerts its function on ER stress response and presumably on stress granule formation, 

where the RBM3 interactome could be involved in protecting mRNAs as a chaperone, 

promoting cell growth, and preventing apoptosis. Supportively, a previous report has 

demonstrated that CIRP is localized predominantly in nucleus as well, and migrates to 

stress granules in RGG motif-dependent manner upon ER stress and other cellular 

stresses (De Leeuw F et al., 2007). The high similarity of RGG domain between RBM3 

and CIRP provides the structural basis of their comparable migration behavior. 

However, as a component of stress granules, CIRP represses protein translation (De 

Leeuw F et al., 2007), which is opposite to the role of RBM3 in global translation 

(Dresios J et al., 2005; Smart F et al., 2007), indicating the distinct regulatory function 

of CIRP and RBM3 in translational events (see also 1.1.3.3). 

In general, our data provide evidence for a key role of RBM3 in the interplay among 

hypothermia, ER stress, and cell protection (Figure 4.1). We identified RBM3 as an 
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inhibitor of the canonical PERK-eIF2α-CHOP ER stress pathway. Specifically, RBM3 

inhibits PERK phosphorylation in an NF90-dependent manner, ultimately resulting in 

reduced apoptosis. Our findings were confirmed in a KO mouse model of RBM3 and 

establish a signaling mechanism by which RBM3 prevents the dysfunction and 

apoptosis of cells under stressful conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Model for RBM3-regulating ER stress response by acting as PERK inhibitor 
together with NF90. 
 

As summarized in 1.3.3, RBM3 can either up- or downregulate miRNA expression, 

but to specific miRNA such as miR-125b, the regulatory tendencies are contradict 

(Dresios J et al., 2005; Pilotte J et al., 2011). The inconsistence may associate with 

different models or cell types as well as culturing conditions, indicating a complicated 

context of RBM3 in regulating miRNA biogenesis. Our findings support the 

assumption that RBM3 regulates the transition from precursor miRNA to mature 

miRNA (Pilotte J et al., 2011). However, it is quite surprising to see both pro- and 

anti-apoptotic miRNAs are positively regulated by RBM3 (Pilotte J et al., 2011), which 

makes it ambiguous to explain the anti-apoptotic role of RBM3. In our settings, 

instead, the pro-apoptotic miRNAs, miR-16 and let-7a, were inhibited by RBM3 
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(Figure 3.33 and Figure 3.34), which is opposite to Pilotte’s findings (Pilotte J et al., 

2011) but supports the effects of hypothermia (Figure 3.31) and anti-apoptotic 

activity by increased Bcl-2 transcripts (Figure 3.35). We assume, at least in part, 

RBM3 prevents cell apoptosis by negatively modulating pro-apoptotic miRNAs. 

The expression of mir-106b-93-25 cluster is suppressed by PERK activation and their 

reduction results in ER stress-related apoptosis (Gupta S et al., 2012). In our model, 

we observed that RBM3 positively modulates miR-106b-93-25 cluster in general 

(Figure 3.36), which supports its effects on PERK activity in ER stress response (Figure 

3.10; Figure 3.12; Figure 3.13 and Figure 3.16) and Pilotte’s report (Pilotte J et al., 

2011). Interestingly, although the primary precursors are transcribed simultaneously, 

miR-25 expression pattern behaves differently compared to miR-106b and miR-93 

under ER stress (Figure 3.36). In the aspect of sequence similarity, miR-25 belongs to 

miR-17 family while miR-106b and miR-93 are both miR-92 family members (Tan W 

et al., 2014). This probably explains the inconsistent mature miRNA expression 

patterns due to related functional discrepancy. Actually, the differential expression of 

miR-25 compared to miR-106b and miR-93 was also observed by other study (Liang 

WC et al., 2015). Besides of the anti-apoptotic functions, the expression of miR-106b-

93-25 cluster is present in neural stem cells and promotes their proliferation (Brett JO 

et al., 2011). Thereafter, the positively modulated miR-106b-93-25 by RBM3 is 

consistent with the association RBM3 with neurogenesis after neural ischemic 

damage (Figure 3.3). 

In summary, RBM3 appears to be generally cytoprotective in stressful conditions 

relating to brain injuries and diseases. First, our work unraveled that RBM3 prevents 

oxidative stress-induced cell apoptosis. Second, the protective mechanism of RBM3 

includes attenuating of ER stress response by inhibiting PERK phosphorylation, which 

involves the assistance of RBM3 interactor NF90. Third, the modulation of pro-

apoptotic and anti-apoptotic miRNA subsets can also contribute to RBM3-mediated 

effects against apoptosis. Our study provides evidences to demonstrate that RBM3 

promotes cell survival under stress through versatile mechanisms. RBM3 represents 
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a unique cellular tool present in many cell types, that can be activated by various 

cellular stressors including hypothermia and that can be utilized by the cells 

depending on the specific cellular context to adapt stressful environment. 
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Appendix I 

Abbreviations 

AICAR: 5-Aminoimidazole-4-carboxamide ribonucleotide 

AnnV: annexin V  

APBP-1: aggrecan promoter-binding protein-1 

ATF6: activating transcription factor 6α 

ATR: ataxia telangiectasia mutated and Rad3-related  

β2m: β-2 microgloblin 

Bcl-2: B-cell lymphoma 2 

BiP: binding-immunoglobulin protein 

cDNA: complementary deoxyribonucleic acid 

CHOP: CCAAT/enhancer-binding protein homologous protein 

CIRP: cold-inducible RNA-binding protein 

CoIP: co-immunoprecipitation 

COX-2: cyclooxygenase-2 

CSD: cold shock domain 

CSP: cold shock protein 

DAPI: 4',6-diamidino-2-phenylindole 

DG: dentate gyrus 

DMEM: Dulbecco’s modified Eagle’s medium  

Dox: doxycyclin 

eIF2α: eukaryotic translation initiation factor 2α 

eIF4E: eukaryotic initiation factor 4E  

EOC: epithelial ovarian cancer 

ER: endoplasmic reticulum 

ERG: v-ets avian erythroblastosis virus E26 oncogene homolog 

FACS: fluorescence-activated cell sorting 

FGF21: fibroblast growth factor 21 
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GRP: glycine-rich protein 

HBSS: Hank’s buffered salt solution 

HCC: hepatocellular carcinoma  

HEK293: human embryonic kidney 293 

HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HuR: human antigen R 

IGF-1: insulin-like growth factor-1 

IRE1α: inositol-requiring protein 1α 

IRES: internal ribosome entry site 

KO: knockout 

LPS: lipopolysaccharide 

MCRE: mild-cold responsive element  

miRNA: microRNA 

MS: mass spectrometry 

NF45/90/110: nuclear factor 45/90/110 

n.s.: not significant 

OGD: oxygen-glucose deprivation 

ORF: open reading frame 

PBS: phosphate-buffered saline 

PERK: PRKR-like ER kinase 

PKR: protein kinase R 

PI: propidium iodide 

PLA: proximity ligation assay 

pre-miR16/let-7a: miR-16/let-7a precursor 

RBM3: RNA-binding motif protein 3 

Real-time RT-PCR: real-time reverse transcriptase polymerase chain reaction 

RGG: arginine/glycine-rich domain 

RMS: rostral migration stream 
RNase: ribonuclease 

RNP1/2: ribonucleoprotein 1/2  
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RPA: replication protein A  

RRM: RNA recognition motif 

ROS: reactive oxygen species 

SCI: spinal cord injury  

SCN: suprachiasmatic nucleus 

Scr: scrambled siRNA 

SD: sleep deprivation  

SDN-POA: sexually dimorphic nucleus of the preoptic area 

SG: stress granule 

SVZ: subventricular zone 

TBI: traumatic brain injury  

Tg: thapsigargin 

TRX: thioredoxin 

Tu: tunicamycin 

UPR: unfolded protein response 

UTR: untranslated region 

WB: western blot 

WT: wildtype 

xCIRP: Xenopus homologue of cold-inducible RNA-binding protein 

XBP1: X-box-binding protein 1 
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Appendix II 

Screening data for RBM3 interactors in HEK293 cells 

CaptiVate™ Services: Experimental Results   

Bait Name:  

   

RBM3 

  Purification: 
   

Strep-tag affinity purification 

Experiment (Exp) L and M: 
 

37°C  

  Experiment (Exp) N and O: 
 

32°C 

   
          

    

Nr. of 
unique 

peptides 

 Nr. of 
unique 

peptides 
    

 

Swiss prot 
Acc 

Overal 
rank 

Exp
L 

Exp
M 

Rank 
Exp L 
and M 

Exp
N 

Exp 
O 

Rank 
Exp N 
and O 

Protein name 
 

P98179 A 58 58 A 44 48 A RNA-binding protein 3   
Q12906 A 36 39 A 11 15 A NF90, Interleukin enhancer-binding factor 3   
O00425 A 29 26 A 11 7 A Insulin-like growth factor 2 mRNA-binding protein 3   
Q12905 A 14 18 A 9 10 A NF45, Interleukin enhancer-binding factor 2   
Q9Y6M1 A 16 17 A 1 1 C Insulin-like growth factor 2 mRNA-binding protein 2   
Q9NUD5 A 9 14 A 4 3 B Zinc finger CCHC domain-containing protein 3   
Q9UKM9 A 8 7 A 2 1 C RNA-binding protein Raly   
Q15369 A 4 4 B 4 3 B Transcription elongation factor B polypeptide 1  
Q86SE5 A 1 1 C 1 1 C RNA-binding Raly-like protein  
A6NLC5 A 1 1 C 1 1 C UPF0524 protein C3orf70   
Q6PID8 B 10 7 A 2 0 D Kelch domain-containing protein 10   
Q15370 B 4 5 B 3 0 D Transcription elongation factor B polypeptide 2   
P62891 B 1 0 D 1 1 C 60S ribosomal protein L39   
Q9HCE1 C 24 26 A 0 0 - Putative helicase MOV-10  
Q92900 C 7 8 A 0 0 - Regulator of nonsense transcripts 1   
Q9NZB2 C 6 8 A 0 0 - Constitutive coactivator of PPAR-gamma-like protein 1  
Q9Y2Q9 C 3 5 B 0 0 - 28S ribosomal protein S28  
P27694 C 0 0 - 3 5 B Replication protein A 70 kDa DNA-binding subunit  
P61326 C 3 4 B 0 0 - Protein mago nashi homolog   
O15234 C 2 3 B 0 0 - Protein CASC3   
Q86TS9 C 1 4 C 0 0 - 39S ribosomal protein L52  

O75569 C 1 4 C 0 0 - 
Interferon-inducible double stranded RNA-dependent 
protein kinase activator A   

Q12926 C 2 2 B 0 0 - ELAV-like protein 2   
Q00577 C 1 3 C 0 0 - Transcriptional activator protein Pur-alpha   
Q9Y676 C 1 3 C 0 0 - 28S ribosomal protein S18b   
Q9Y5S9 C 1 2 C 0 0 - RNA-binding protein 8A   
Q92665 C 1 2 C 0 0 - 28S ribosomal protein S31  
P10745 C 1 0 D 1 0 D Retinol-binding protein 3   
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P82932 C 1 1 C 0 0 - 28S ribosomal protein S6  
P52298 C 1 1 C 0 0 - Nuclear cap-binding protein subunit 2  
Q8TCC3 C 1 1 C 0 0 - 39S ribosomal protein L30  
P51398 C 1 1 C 0 0 - 28S ribosomal protein S29  
P82933 C 1 1 C 0 0 - 28S ribosomal protein S9  
P10155 C 1 1 C 0 0 - 60 kDa SS-A/Ro ribonucleoprotein  
Q86VH2 C 1 1 C 0 0 - Kinesin-like protein KIF27  
Q9UKY7 C 0 0 - 1 1 C Protein CDV3 homolog  
P52815 D 0 3 C 0 0 - 39S ribosomal protein L12  
Q8WZ42 D 0 0 - 0 2 D Titin  
P14923 D 0 0 - 2 0 D Junction plakoglobin  
Q9BYD6 D 0 2 D 0 0 - 39S ribosomal protein L1  
Q15428 D 0 2 D 0 0 - Splicing factor 3A subunit 2  
P62258 D 1 0 D 0 0 - 14-3-3 protein epsilon  
P49368 D 1 0 D 0 0 - T-complex protein 1 subunit gamma  
P50991 D 1 0 D 0 0 - T-complex protein 1 subunit delta  
Q96HQ2 D 1 0 D 0 0 - CDKN2AIP N-terminal-like protein  
Q8N5N7 D 1 0 D 0 0 - 39S ribosomal protein L50  
P06881 D 1 0 D 0 0 - Calcitonin gene-related peptide 1  
Q9NPE2 D 1 0 D 0 0 - Neugrin  
Q6RFH5 D 1 0 D 0 0 - WD repeat-containing protein 74  
O75843 D 1 0 D 0 0 - AP-1 complex subunit gamma-like 2  
Q96CP2 D 0 0 - 0 1 D FLYWCH family member 2  
O75127 D 0 0 - 0 1 D Pentatricopeptide repeat-containing protein 1  
Q9BYH8 D 0 0 - 0 1 D NF-kappa-B inhibitor zeta  
Q5H9U9 D 0 0 - 0 1 D Probable ATP-dependent RNA helicase DDX60-like  
Q70CQ2 D 0 0 - 0 1 D Ubiquitin carboxyl-terminal hydrolase 34  
Q01469 D 0 0 - 1 0 D Fatty acid-binding protein  
Q15517 D 0 0 - 1 0 D Corneodesmosin  
P50570 D 0 0 - 1 0 D Dynamin-2  
Q6ZT12 D 0 0 - 1 0 D E3 ubiquitin-protein ligase UBR3  
A6NLC8 D 0 0 - 1 0 D Putative TAF11-like protein ENSP00000332601  
P24386 D 0 0 - 1 0 D Rab proteins geranylgeranyltransferase component A 1  
Q12884 D 0 0 - 1 0 D Seprase  
O76094 D 0 0 - 1 0 D Signal recognition particle 72 kDa protein  
O75940 D 0 0 - 1 0 D Survival of motor neuron-related-splicing factor 30  
Q12767 D 0 0 - 1 0 D KIAA0195  
Q04844 D 0 1 D 0 0 - Acetylcholine receptor subunit epsilon  
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Bait: Protein of interest (RBM3) used as bait in the affinity purification 

 

Overall ranking (ranking not respecting the different treatments of the samples) 

Class A Interactors: 
  

Interactors which have been identified in all 4 biological replicates.  
They represent highly likely interactors of RBM3 bait 

Class B Interactors: 
  

Interactors which have been identified in 3 biological replicates.  
They represent likely interactors of RBM3 bait 

Class C Interactors: 
  

Interactors which have been identified in two biological replicates. These proteins may  
represent weak , transient and/or substoichiometric interactors of RBM3 bait 

Class D Interactors: 

  

Interactors which have been identified in only one of the biological replicates. These 
proteins  
may still represent real interactors of your protein of interest. Proteins within these group  
rather represent weak, transient and/or substoichiometric interactors of RBM3 bait 

Note: 
        

 

Data filtering: 

 

All identified proteins were filtered against a contaminant database to subtract common  
background proteins 

Unique Peptides:   Unique peptides of a particular protein that allows its clear identification (non redundant) 

 
 
 

 
 
 
 
 
 
 
 
 
 

103 
 



Acknowledgement 

After over four years study, eventually it comes to the end of my PhD. During this 

tough but fruitful period, many people supported my work and life and I am sincerely 

grateful to their efforts. 

 

Firstly, I have to express the gratitude to my supervisor, Dr. Sven Wellmann, who gave 

me the opportunity to join in his lab and work on RBM3 project. Although busy with 

clinical business and clinical studies, you were always enthusiastic with the data 

interpretations, discussions and suggestions on RBM3 project, and your guidance on 

the general orientation both in my work and my career is of great importance for me. 

 

Thanks to Prof. Dr. Josef Kapfhammer and Dr. Sophorn Chip in Institute of Anatomy. 

Both of you introduced the concepts and methods of neuroscience study to me. I can 

never forget your guidance at the bench and at the microscope. 

 

Thanks to Prof. Dr. Anne Spang in Biozentrum, your critical assessment is definitely 

beneficial for the improvement of my work. 

 

I am also thankful to Andrea Zelmer and Markus Saxer, the lab technicians in UKBB 

and Institute of Anatomy respectively, who provide substantial assistances to my 

experiments. And the PhD students Etsuko Shimobayashi, Pradeep Sherkhane,Sinoy 

Sugunan and Sabine Winkler in Institute of Anatomy, thanks for your scientific 

discussions and your career advices. I am happy to share the interesting and funny 

things in science and life with you. 

 

Finally, I would like to thank my parents. You gave me your best care and supported 

me for my career all these years. You always encouraged me whenever I met 

difficulties. Thanks again! 

 
104 

 



Curriculum Vitae 

105 
 


	Preface
	Abstract
	1. Introduction
	1.1 Cold responsive proteins
	1.1.1 Structure, evolution and spatial distribution
	1.1.2 Induction
	1.1.2.1 Inducers
	1.1.2.2 Molecular mechanisms

	1.1.3 Molecular and cellular activities
	1.1.3.1 Regulation of post-transcriptional and translational events
	1.1.3.2 Signaling pathways
	1.1.3.3 Nuclear-cytoplasmic shuttling
	1.1.3.4 Cell cycle
	1.1.3.5 Anti-apoptosis

	1.1.4 Biological functions and diseases
	1.1.4.1 Brain disorders
	1.1.4.2 Cancers
	1.1.4.3 Other functions


	1.2 Unfolded protein response (UPR)
	1.2.1 Main signaling pathways of UPR
	1.2.2 UPR and brain disorders
	1.2.3 Hypothermia and UPR

	1.3 MicroRNA (miRNA) biology
	1.3.1 Biogenesis of miRNA
	1.3.2 miRNA and brain disorders
	1.3.3 Hypothermia, RBM3 and miRNA

	1.4 Scope of the thesis

	2. Materials and Methods
	2.1 Animals and organotypic hippocampal slice cultures
	2.2 Cell culture and manipulation
	2.3 Oxygen-glucose deprivation (OGD)
	2.4 Protein extraction and Western blot
	2.5 Real-time RT-PCR
	2.6 Cell viability assay
	2.7 Fluorescence-activated Cell Sorting (FACS)
	2.8 Co-Immunoprecipitation (CoIP)
	2.9 Mass Spectrometry
	2.10 Immunostaining
	2.11 Proximity ligation assay (PLA)
	2.12 Statistics

	3. Results
	3.1 Hypothermia and RBM3 promote cell survival
	3.1.1 Hypothermia prevents neural cell death in OGD model
	3.1.2 RBM3 protects cells from H2O2-induced oxidative stress
	3.1.3 Both hypothermia and RBM3 prevent ER stress-induced cell death

	3.2 Hypothermia and RBM3 suppress PERK-eIF2α-CHOP signaling pathway under sustained ER stress
	3.2.1 Hypothermia and RBM3 inhibit PERK-eIF2α-CHOP pathway
	3.2.2 Screening of RBM3 interacting partners
	3.2.3 NF90 is required for RBM3-mediated PERK inhibition

	3.3 Hypothermia and RBM3 regulate miRNA expression
	3.3.1 Hypothermia reduces the expression of pro-apoptotic miRNA
	3.3.2 RBM3 negatively regulates pro-apoptotic miRNAs
	3.3.3 RBM3 positively regulates anti-apoptotic miRNAs


	4. Discussion
	References
	Appendix I
	Appendix II
	Acknowledgement
	Curriculum Vitae

