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1 INTRODUCTION 

1.1 Background 

Drug-induced liver injury (DILI) is one of the major reasons for severe adverse 

reactions upon therapeutic drug intake today. It has led to many cases of drug attrition, 

withdrawal or restricted usage and is the leading cause of acute liver failure [8-10]. 

Promising innovative medications like the antidiabetic troglitazone and the 

anticoagulant ximelagatran had to be removed from the market shortly after approval. 

Other drugs like the antituberculotic isoniazid and the anticonvulsant valproate were 

labeled with a black box warning which controls and limits their prescription. Case 

estimates of DILI are around 19 per 100’000 treated individuals [11]; however, it is 

supposed that these numbers suffer from large underreporting [12]. Heterogeneous 

symptoms, delayed onset, lack of dose dependence and incomplete awareness of 

contributing risk factors hinder control and diagnosis of liver toxicity. A large impact on 

patients’ health and on pharmaceutical industry and a challenge for authorities and 

scientific community is the result. Many efforts to understand mechanisms and 

develop mitigation strategies have been undertaken by researching companies and 

academia. Even holistic collaborative networks have been founded to better monitor 

DILI and explore approaches for improved safety [13, 14]. 

To improve risk assessment and promote causality elucidation, it is important to 

understand underlying physiological processes and their interaction with an 

administered drug. Therefore, the current understanding of DILI will be explored in the 

following sections and put into context with relevant body functions, available test 

systems and analytical markers. 

  



2 Introduction 

1.2 The liver in context of drug metabolism 

The liver is the most important organ for metabolic activity and the biggest exocrine 

gland in the human body. It is located centrally in the torso and well connected to the 

blood flow by two afferent vessels, the Arteria hepatica and the Vena portae, which 

transport arterial (A. hepatica) and venous blood (V. portae) from the unpaired 

abdominal viscera. Following the passage of the hepatic capillary system, the blood is 

released through the Vena hepatica and the Vena cava inferior to systemic circulation 

(Figure 1.1A). With its gate-keeping function the liver has various responsibilities. 

Important ones are synthesis and breakdown of endogenous substrates in 

carbohydrate, protein and lipid metabolism as well as regulation of coagulation and 

hormone homeostasis. Besides, it is essentially involved in the process of 

detoxification and excretion of xenobiotics. 

The liver tissue is composed by different cell types, non-parenchymal cells (sinusoidal 

endothelial cells, Kupffer cells, and stellate cells) and parenchymal cells, the 

hepatocytes. With 80% of total volume, the latter represent the largest cell population 

of the liver and are its most important functional subunit. The enzymatic equipment for 

biotransformation of most xenobiotic compounds is located here; catalysis of drug 

modifications to more hydrophilic species enables their excretion via bile or urine. 

Biotransformation is generally divided into two phases, an activating (phase I) and a 

conjugating step (phase II). Activation of chemical entities can be achieved by 

hydrolytic, reductive, or oxidative processes. The most frequent pathway is the 

oxidation of alkylated heteroatoms or aromatic / hydroxylated functions, predominantly 

catalyzed by monooxygenases of the cytochrome P450 (CYP) enzyme superfamily. 

Other phase I drug-metabolizing enzymes are flavin-containing monooxygenases 

(FMO), alcohol / aldehyde oxidases (oxidation), esterases, epoxide hydrolases 

(hydrolysis) and NADPH-cytochrome P450 reductases (reduction). To enable 

elimination activated species are then mostly coupled to hydrophilic endogenous 

substances such as glucuronic acid, sulfonic acid or glutathione (GSH) by transferases 

[15]. 

Metabolism of xenobiotics during the first liver passage can prevent or reduce their 

systemic circulation and is therefore called “first pass effect”. It can result into 

decreased plasma levels or bioavailability, but also support the activation of a pro-

drug. 
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Functionality of the hepatocytes are closely related to the histo-anatomic architecture 

of the liver lobes: An oxygen gradient between portal triad (hepatic artery, hepatic 

portal vein, bile duct) and the central hepatic vein defines different metabolic zone 

within the hepatocytes along the sinusoid with decreasing oxidative activity 

(Figure 1.1B). 

In summary, the liver is a particular target for xenobiotic respectively drug action 

and effects, but even more importantly for interactions and side effects. All blood from 

the gastrointestinal tract, containing orally absorbed drug, passes the liver with the 

potential of first metabolic interaction. Clearance of an active compound from the 

systemic circulation is prepared via biotransformation in the liver. Direct effects of a 

xenobiotic or those of a metabolite bear the potential of harming the liver, e.g. by 

altering functions or triggering immune response. 

 

 

 

Figure 1.1: Functional macro- and microanatomy of the liver 

  



4 Introduction 

1.3 Drug-induced liver injury (DILI) 

1.3.1 Definition of DILI 

Drug-induced liver injury (DILI) is defined as an adverse effect upon drug intake at 

therapeutic doses. It may cause pathophysiological or pathological alterations of liver 

parameters or liver function with diverse severity. Many contributing factors to DILI 

remain unclear today. Thus, the term ‘DILI’ and its diagnosis are mainly characterized 

by exclusion of other possible etiologies except for the side effect of an administered 

xenobiotic agent. It is characterized by time to onset, clinical features, course of 

recovery, specific risk factors, previous reports on hepatotoxicity of the implicated 

agent and can be supported by knowledge on effects after rechallenge and liver biopsy 

[16]. It is widely accepted that environmental factors such as comedications and host 

factors such as genetic predisposition and underlying disease impact the 

manifestation of DILI to at least the same extent as the liability of the drug itself do. 

Significant clinical DILI determinants are either changes in the hepatic biomarker 

status or functional loss. The former comprise of 5-fold elevation of aspartate 

transaminase (AST) or alanine transaminase (ALT) as compared to the upper limit of 

normal (ULN) or 2-fold elevations in either alkine phosphatase or bilirubin plus any rise 

in ALT or AST levels [17]. The latter arise from degenerative processes with steatotic, 

cholestatic, cirrhotic, or necrotic characteristics [18]. Hyman Zimmerman observed a 

correlation between the occurrence of jaundice and fatality of DILI. On this basis, the 

FDA defined “Hy’s law” as predictor for fatal hepatotoxicity with bilirubin levels higher 

than 2 mg/mL and AST / ALT higher than 3-times ULN [19]. An overview on different 

DILI phenotypes is given in Table 1.1, illustrating that it can mimic various types of 

liver injury, and even one drug may cause different clinical pattern. E.g. Isoniazid is 

known to cause three types of acute liver impairment as well as chronic hepatitis [20]. 

The term DILI is often accompanied by the attribute ‘idiosyncratic’ (also IDILI), literally 

meaning ‘mixture of characteristics’. This expression points towards the unpredictable 

character of these adverse effects. They lack dose dependence, occur in low 

incidence, cannot be addressed in animal models and are therefore not detected in 

drug discovery. Fatalities in patients, high therapeutic costs for the health care system 

and economic damage for the pharmaceutical industry are the consequences. 

Consequently drug developing companies but also health care authorities and the 
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scientific community are highly interested in improving mechanistic understanding and 

safety assessment of new drugs. Dedicated projects in industry are promoted, 

research groups in academia investigate underlying mechanisms and even holistic 

collaborations have been launched: a drug-induced liver injury network (DILIN) was 

initiated by the US National Institute of Diabetes and Digestive and Kidney Diseases 

aiming for a better documentation and critical review of hepatotoxicity cases [13] and 

project called MIP-DILI (mechanism-based integrated systems for the prediction of 

drug-induced liver injury) was launched as a collaboration between academia and 

industry, supported by the European [14]. Both aim for a better documentation, 

understanding and improved analytical tools for liver toxicity. 

 

Table 1.1: Clinical phenotypes of DILI adopted from [18] 

Phenotype Characteristics  Example drug 

Immunoallergic hepatitis skin rash, eosinophilia, fever phenytoin 

autoimmune hepatitis-like autoantibodies detectable nitrofurantoin 

acute hepatic necrosis parenchymatic necrosis isoniazid 

acute viral hepatitis-like fatigue isoniazid 

Acute liver failure parenchymatic necrosis,  
INR > 1.5, encephalopathy 

bromfenac 

cholestatic hepatitis 
alkaline phosphatase and  
bilirubin elevations 

amoxicillin clavulanate 

bland cholestasis pruritis  anabolic steroids 

acute fatty liver  
with lactic acidosis 

steatosis,  
mitochondrial dysfunction 

valproate 

nonalcoholic fatty liver steatosis (steatohepatitis) Amiodarone 

sinusoidal obstruction syndrome obliteration of central veins cyclophosphamide 

chronic hepatitis 
fatigue, bilirubin elevation 
 necrosis 

isoniazid 

nodular regeneration formation of nodules azathioprine 

vanishing bile duct syndrome 
loss of interlobular bile ducts,  
cholestasis 

β-lactam antibiotics 

cirrhosis collagenization methotrexate 
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1.3.2 Mechanistic hypotheses 

Different hypotheses have been established which try to explain the heterogeneous 

pattern of DILI. None of them is currently able to describe all cases of drug induced 

hepatotoxicity; however, for individual examples they may apply. 

 

Bioactivation 

Bioactivation is widely accepted as important contributing factor to the pathogenesis 

of hepatotoxicity. In situations where reactivity of phase I metabolites is too high or 

phase II substrates are depleted, they are prone to bind to any partner of matching 

nucleophilicity in immediate vicinity. Less frequently, also phase II metabolism can 

lead to bioactivation. E.g., the glucuronic acid in acyl glucuronides displays a good 

leaving group which can be substituted by an amino acid residue. For instance, this 

mechanism was observed in non-steroidal anti-inflammatory drugs (NSAIDs). They 

contain free carboxylic acid moieties that can be conjugated via UDP glucuronosyl 

transferases (UGTs) [21]. 

Drugs that directly impair function of macromolecules upon binding are alkylating 

cytostatic agents. They contain structural elements that can be activated to carbo-

kations and are prone to react with nucleic acids which disables their reduplication by 

crosslinking or disruption of DNA strands. This is pharmacologically intended to stop 

tumor growth; however, unspecific reactivity can be responsible for various adverse 

effects on proliferating tissues [22]. A prominent example is cyclophosphamide, an 

anticancer drug used for treatment of many types of tumors. Its alkylating principle is 

phosphoramide mustard, which is generated from the pro-drug after CYP2B6-

mediated activation and subsequent non-enzymatic cleavage [23]. As shown in 

Figure 1.2, also other alkylating by-products emerge from this pathway, exhibiting non-

target effects. One of them is acrolein, which is renally cleared and prone to react with 

bladder epithelia, resulting in cystitis or even cancer [24]. Adverse effects in liver and 

heart may also be mediated via formation of covalent DNA or enzyme adducts and 

GSH depletion by acrolein [25, 26]. 
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Figure 1.2: Metabolic pathways and bioactivation of cyclophosphamide 

 

Hapten hypothesis 

Covalent modifications on proteins can result in direct functional impairment or loss 

but also in neoantigen formation. The novel adduct, unknown to the body, is able to 

trigger immunogenicity which involves uptake of the modified protein by antigen 

presenting cells (APC), hydrolytic processing and surface presentation in the major 

histocompatibility complex to T cells. This process activates the immune cascade 

including autoantibody formation and was observed for the first time by Landsteiner. 

He detected that small molecules could only act as immunogens when bound to 

proteins and are thus referred to as ‘haptens’ [27, 28]. 

Relevance of this hypothesis was demonstrated for antibiotics of the penicillin family. 

Their β lactam ring is a target for nucleophilic attack by free amino groups of proteins 

resulting in ring opening and covalent adducts formation mainly with the generated 

penicilloyl group. These adducts are known to trigger formation of specific IgE 

antibodies and thus to mediate allergic reactions [29, 30]. 

 

Danger hypothesis 

Drugs such as raloxifen, simvastatin and olanzapine form covalent protein adducts 

[3, 31], however, they do not cause idiosyncratic reactions. Hence, another hypothesis, 

called “danger hypothesis”, was formulated by P. Matzinger. She postulated the 

necessity of a danger signal in addition to the modified protein to trigger 

immunogenicity. She refers to the fact that also during physiological defense a 
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secondary stimulation of T-cells is needed to activate APCs and initiate immune 

response instead of tolerance [32]. This danger signal might be triggered by e.g. 

cellular stress from reactive drug metabolites, heat shock proteins (HSP) or bacterial 

endotoxins such as lipopolysaccharide (LPS) from underlying infections [33, 34]. 

 

Pharmacological interaction (P-I) hypothesis 

A third important theory is based on Pichler’s observation that drug-exposed cloned T 

cells proliferated in absence of metabolic activity [35]. He presumed that some drugs 

can bind directly to the MHC T cell receptor complex and provoke an immune response 

without any preceding metabolic activation, binding to free proteins or digestion by 

APCs. An example for this hypothesis is sulfamethoxazole which was shown to be 

presented in an unstable, but MHC-restricted fashion independent of processing [36]. 

The name P-I hypothesis derives from the suggestion that a drug can interact directly 

as pharmacological agent with the immune receptor [37]. 

 

 

 

Figure 1.3: Key mechanistic hypotheses for idiosyncratic drug reactions: Bioactivation 

or intrinsic activity of a drug leads to binding to residues of free proteins or the T-cell 

receptor and triggers an immune response. Adopted from Uetrecht, ‘Idosyncratic Drug 

reactions: Current Understanding’ [38]. 
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Non immune hypotheses 

Besides the discussed theories there are other mechanistic concepts describing 

examples where characteristics for hypersensitivity reactions are not present. For 

these cases, mitochondrial impairment or presence of an inflammagen such as 

lipopolysaccharides (LPS) is discussed as risk factors [39, 40]. 

 

Despite these theories, important mechanistic knowledge to explain unexpected drug 

reactions is missing and only individual examples fit to the given explanations, even 

though, as stated by Uetrecht, hypotheses are not mutually exclusive. Reactive 

intermediates might act as danger signal on top of being a hapten [38]. An overview 

of the three most important hypotheses is shown in Figure 1.3. 

 

1.3.3 Risk factors for DILI 

Various factors are discussed to contribute to the pathogenesis of DILI in susceptible 

individuals in contrast to tolerant ones. These comprise of characteristics of the drug 

itself (pharmacokinetics and -dynamics), environmental factors (e.g. diet or 

comedication) and, probably of major importance, host dependent risk factors, both 

genetic and non-genetic ones. An overview is given in Table 1.2. 

The influence of gender or age as susceptibility factor for DILI has been assessed in 

several studies with no clear evidence for increased risk in one demographic 

subpopulation. Even though some investigations found women at higher risk than men 

[41, 42] and children as compared to adults [43, 44], these did not correct for 

differences in patient prevalence and disease incidence / medication profile for the 

different patient groups [45, 46]. Also dietary liabilities, like alcohol or tobacco 

consume as source of liver stress or inflammation factors have not been clearly 

matched with increased susceptibility [47]. 

Drug related risk factors, in contrast, are characterized in a more substantial manner. 

Compounds given at less than 50 mg per day in contrast to higher dosing regimens 

lack the risk of liver impairment [48]. This observation by Lammert et al. implicates that 

idiosyncrasy, in contrast to general belief, is dose dependent, but saturated at 

concentrations where a dose-response for effects are seen. 

Lammert also reported a correlation between increased incidence for adverse effects 

and a high degree (>50%) of hepatic metabolism [49]; specifically, metabolism via 
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CYP2C9 and CYP2C19 was found to be associated with increased risk as compared 

to transformation via other CYPs [50]. This may be due to their polymorphic character, 

i.e. in differences in catalytic activity. Toxicity of tienilic acid for example is mediated 

by metabolic activation via CYP2C9: Its oxidized metabolite readily inactivates the 

enzyme by formation of covalent adducts [51]. Circulating antibodies against CYP2C9 

drug conjugates were found to be responsible for the autoimmune response of 

affected patients [52]. Moreover, polypharmacy represents a risk for pharmacokinetic 

interactions, such as potentiated effects of two drugs that are eliminated over the same 

pathway [18]. E.g., co-administration of cerivastatin and fibrates enhanced the risk of 

rhabdomyolysis and resulted in the withdrawal of the HMG-CoA inhibitor cerivastatin. 

It is meanwhile known that adverse effects were caused by increased plasma levels 

due to inhibition of CYP3A4. 

Also, patients exposed to comedications often suffer from underlying diseases which 

can modulate the risk for toxicity, especially when the liver is affected e.g. by hepatitis 

or HIV. However, data quality on this aspect is poor and does not allow definite 

conclusions [47]. 

 

Table 1.2: Overview of contributing factors for idiosyncratic drug reactions 

Risk factor Example Involved drug 

Drug class /structural 
alert 

Primary aromatic amine 
moiety 

sulfamethoxazole 

Exposure 
Dose 
Metabolic pathways 

troglitazone, pioglitazone 

Co-medication 
drug-drug interactions at DM 
enzymes 

ketoconazole, terfenadin  

genetic difference of 
enzyme equipment 

CYP2C polymorphism tienilic acid 

Genetic differences of 
the immune system 

HLA genotype lumiracoxib 

 

In the last decades improved analytical tools and method allowed for a more in-depth 

analysis of genetic differences in patients. Mainly polymorphic proteins resp. enzymes 

involved in drug metabolism have been identified as risk factors. Differences in 

expression of the phase II detoxifying enzymes N acetyl transferase (NAT) and  S 

transferase (GST) as well as polymorphic CYP enzymes (e.g. CYP2D6, CYP2C9, as 
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mentioned above) can influence the metabolic pattern and thus a drug’s safety. 

Moreover, interindividual differences in the immune response via specific human 

lymphocyte antigen (HLA) variations co-determine tolerance or occurrence of 

idiosyncratic reactions. One of the best studied example in this context is abacavir-

induced hypersensitivity, which is correlated to the HLA B*5801 genotype [53]. Other 

drugs bearing increased risk in patients with specific HLA types are lumiracoxib, 

ximelagatran and amoxicillin-clavulanate [54-56]. However, the lumiracoxib example 

also shows limitations of isolated consideration of the HLA liabilities: Selection of 

patients based on this criterion results in a massive over-exclusion, as 94.4% of 

patients with the respective HLA type do not develop liver toxicity [54]. 

 

1.3.4 Oxidative stress as risk factor for DILI 

During oxidative stress the balance between oxidant and antioxidant forces in the body 

is disturbed. The liver is especially sensitive to this disturbance as some of its major 

functions include handling reactive oxygen species (ROS): Activation of molecular 

oxygen to superoxide during mitochondrial ATP production can form hydrogen 

peroxide (H2O2) or hydroxyl radicals (OH•), biotransformation of xenobiotics by 

monooxygenase enzymes produces H2O2 and superoxide as byproducts, 

physiological immune defense involves peroxisomal H2O2 formation in hepatocytes 

and superoxide generation in Kupffer cells and neutrophils [57, 58]. These reactive 

species can readily react with nucleophilic structures in proximity, i.e. proteins, DNA 

and lipids which may then be altered in function [59]. Modification of sulfhydryl and 

aromatic moieties in proteins may induce harmful conformational changes, oxidation 

of mitochondrial DNA can cause interference for transcription, and lipid peroxidation 

may result in reduced membrane integrity. E.g., OH•-catalyzed lipid peroxidation 

generates peroxy intermediates which can recruit further fatty acids for oxidation and 

thus initiate a chain reaction. This process has been demonstrated for carbon 

tetrachloride toxicity [60] and can result in serious membrane damage and even 

inflammatory effects via activation of stellate cells [61]. 

In physiological conditions pro-oxidant processes are balanced by the antioxidant 

response pathway, a cellular, gene regulated protection mechanism against radical-

induced damage [62], as depicted in Figure 1.4: The cytosolic Kelch-like 

ECH-associated protein 1 (Keap1) suppresses the nuclear factor erythroid 2-related 
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factor 2 (Nrf2), a transcription factor, in the normal state. However, under oxidative 

stress conditions Nrf2 is released, translocates to the nucleus and binds to a DNA 

promotor sequence, the antioxidant response element (ARE). This triggers 

transcription of the affected genes, encoding for cytoprotective proteins such as 

detoxifying phase II enzymes and antioxidants to support inactivation of endogenous 

and xenobiotic reactive species. Examples are aldo-keto reductases (AKR), heme 

oxygenases (HMOX), microsomal epoxide hydrolases (mEH), NADPH:quinone 

oxidoreductases (NQO), UGTs, superoxide dismutases (SOD) and various enzymes 

involved in GSH metabolism. GSH (γ-L-glutamyl-L-cysteinylglycine) is the most 

important free radical scavenger in the human body; with its intracellular concentration 

of up to 10 mM it supports spontaneous and enzymatic detoxification and regeneration 

via its reactive thiol group [63]. 

However, when the oxidative stress is too excessive, cellular defense mechanisms 

may be insufficient: Examples are the intake of > 4 g acetaminophen which depletes 

the GSH pool by adduct formation with the iminoquinone metabolite or menadione-

induced redox cycling which is mediated by P450 reductase-catalyzed formation of 

radicals, followed by regeneration of parent [64, 65]. In these cases free radicals 

cannot be managed anymore and pathophysiological changes occur. 

 

Figure 1.4. Activation of Nrf2 as redox sensitive signaling factor. Ubiquitination of Nrf2 

results in cleavage of the Nrf2-Keap1 complex and translocation to the nucleus. As a 

heterodimer with Maf, Nrf2 binds to ARE and activates transcription. Adapted by 

permission from Macmillan Publishers Ltd: Nat Rev Drug Discov (Ref [66]) copyright 

(2005). 
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1.3.5 Drug examples 

Many DILI drugs that were investigated with respect to their toxicity mechanism 

possess several liabilities that may contribute to their safety profile. This complicates 

identification of susceptible discovery drugs and discrimination from safe analogues. 

Diclofenac and troglitazone are examples where toxicity most likely results from the 

interplay of some of the discussed risk factors. 

Diclofenac 

Diclofenac is an NSAID widely prescribed against rheumatoid disorders. However, it 

is associated with liver injury and liver failure [67, 68] which was not predicted in animal 

models nor correlated to the dose. Mechanistic investigations identified several drug-

related liabilities for toxicity which are summarized in Figure 1.5. 

Diclofenac undergoes CYP2C9- and CYP3A4-catalyzed hydroxylation of its aromatic 

rings in para-position to the imino group. Further P450- and MPO-mediated oxidations 

result in the formation of imino-quinone species which readily react with nucleophilic 

protein residues. In addition, UGT-mediated conjugation of diclofenac forms unstable 

acyl glucuronides. The ester bridge carbon exhibits electrophilic properties and 

attracts nucleophilic partners. Isomerization from the 1-O-β- to a 3-O-β-form can also 

give rise to electrophilic aldehydes that form covalent adducts with nucleophiles [51]. 

Accordingly, changes in genes encoding for the involved enzymes can decrease 

susceptibility towards DILI [69, 70]. Disposition of the major acyl glucuronide 

metabolite is mainly in the canalicular plasma membrane, mediated via active MDR2-

transport. Thus, decreased transporter activity also reduces the risk for DILI [70]. In 

addition, diclofenac metabolites were shown to decrease the cellular ATP content [71, 

72] and to impair mitochondrial function via respiration uncoupling after disruption of 

the proton gradient [73]. Furthermore, oxidative stress has been described as risk 

factor, originating from the activation of the antioxidant response pathway by 

diclofenac metabolites [74, 75]. Imino-quinone-like intermediates are also prone to 

undergo redox cycling and potentiate the pro-oxidant state [76]. Besides, in some 

patients hypersensitivity symptoms were observed and IgM antibodies were identified, 

reactive against erythrocytes only in presence of 4’-hydroxydiclofenac acyl 

glucuronide [77]. This provides evidence for involvement of the immune system and 

may offer an explanation for the diverging safety pattern in patients. However, no 
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genetic polymorphisms or underlying disease could be clearly correlated with 

increased risk for diclofenac-induced hepatotoxicity [73]. 

 

 

 

Figure 1.5: Metabolic pathways of diclofenac and their functional consequence 

 

 

Troglitazone 

Troglitazone (TGZ) was the first peroxisome proliferator-activated receptor gamma 

(PPARγ) agonist from the thiazolidinedione group in use for treatment of type II 

diabetes [78]. However, the FDA decided to withdraw TGZ from the market in 2000 

due to high incidence of reports hepatotoxicity [79, 80]. 

After numerous studies, several factors contributing to hepatotoxicity have been found 

(see Figure 1.6). Two structural moieties of TGZ undergo CYP-mediated bioactivation: 

The chromane moiety can be oxidized to an electrophilic quinone-methide 

intermediate prone to react with nucleophilic acceptors [81]. Besides, the 

thiazolidinedione residue can undergo S-oxidation resulting in ring scission with 

increased electrophilicity. This feature is common within the group of structural 

analogue glitazone drugs. Rosiglitazone (RGZ) and pioglitazone (PGZ) were also 

found to form GSH conjugates, but are generally considered as safe [82]. One reason 
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may be the cytotoxicity caused by TGZ but not RGZ and PGZ in humans [83]. In 

addition, the parent TGZ and its major sulfate metabolite are related to cholestasis. 

Both species were found to inhibit the bile salt export pump (BSEP) in rat and human 

[84, 85]. The resulting intracellular accumulation of bile salts causes mitochondrial 

toxicity and a loss of membrane potential [86, 87]. Remarkably, RGZ and PGZ 

possess a similar potential to inhibit BSEP [88]. 

Summarizing these effects, it can be concluded that hepatotoxicity is related to the 

TGZ-unique chromane moiety which may, as additional risk factor, induce oxidative 

stress via redox cycling of the quinone metabolite. Furthermore, the higher dosage as 

compared to RGZ and PGZ may provoke the manifestation of effects like BSEP 

inhibition into cholestasis. 

 

 

Figure 1.6: Selected metabolic pathways of troglitazone and functional consequence 
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1.4 Tools for investigation of metabolism and drug safety 

1.4.1 Hepatic in vitro systems for drug metabolism 

To study pharmacokinetic and related safety questions, it is important to use test 

systems that can mimic the liver with respect to the needed functions, as it would be 

unethical to conduct early screening and safety studies in humans. Likewise animal 

experimentation should be applied only when reasonable to assure compliance to the 

3R principle of replacement, reduction and refinement in animal testing. Interspecies 

differences are another reason for waiving them. Thus, several in vitro model systems 

are employed to provide information on selected pathways with different abilities to 

reflect hepatic function. 

Cellular systems 

The gold standard for metabolism studies are primary hepatocytes. They provide a 

realistic image of hepatic biotransformation because all relevant drug-metabolizing 

enzymes are present and also influence of active and passive transport on cellular 

drug uptake can be studied. Additionally, changes in gene expression e.g. via enzyme 

induction can be detected with RNA profiling, protein quantification or functional 

assays. Metabolism-induced and direct cytotoxicity can be assessed and enables DILI 

studies. However, cells from different donors may show large interindividual 

differences such as in activity of polymorphic enzymes. Moreover, access to human 

tissue is limited and handling and storage with retained viability is laborious. To cope 

with these problems, techniques like stem cell-derived hepatocytes or tumor derived 

cell lines have been emerging in the last years. They can be used for specific questions 

but are not valid to replace functional, mature hepatocytes yet. 

Subcellular fractions 

Liver microsomes (LM) are the most popular system to investigate hepatic metabolism. 

These artificial vesicles from the endoplasmatic reticulum comprise mainly CYP 

enzymes, FMOs and UGTs. They can be prepared easily and pooling of many donors 

can provide a representative enzyme pattern. Long-time storage without activity loss 

is possible which facilitates handling and enables high throughput-based applications. 

However, limitations are the lack of cofactors, which must be added separately to start 

the enzymatic reaction. Also the enzyme abundance does not represent the in vivo 
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situation and may result in overestimation of oxidative pathways. Another subcellular 

model for metabolism studies is the S9 fraction. This is the supernatant after 

centrifugation of cell homogenate at 9000g and is comprised by the microsomal and 

cytosolic fraction. Hence, as compared to LM, it additionally contains sulfotransferases, 

GSTs, xanthine oxidases (XO), aldehyde dehydrogenases (ADH) and NATs. 

Both systems are employed for kinetic and metabolic profiling of a drug, but mainly for 

inhibition studies in the context of drug-drug interactions. 

Recombinant enzymes 

The simplest method to study selected metabolic pathways is by using single drug 

metabolizing enzymes, e.g. CYPs. They can be generated recombinantly in host 

organisms like yeast, E. coli or other bacterial cell lines. Often co-expressed with P450 

oxidoreductase they are employed for reaction phenotyping, drug-drug interaction 

studies (enzyme inhibition) and specialized mechanistic questions. Due to the high 

concentration of CYPs as compared to other metabolic systems, recombinant 

enzymes are valuable to study metabolism of stable compounds. However, a full 

metabolic pattern cannot be deducted and only some specific enzymes are available. 

To compare results with microsomal activities, correction factors must to be integrated. 

 

1.4.2 Reactive metabolite assessment 

Reactive metabolite formation has been generally accepted as one major contributing 

factor to DILI. Thus, minimization of human exposure to reactive metabolites is 

desirable and should be controlled by identification of metabolic soft spots early in 

drug discovery [6]. 

As electrophilic metabolites have a short lifespan, it is more appropriate to monitor 

stable reaction products with nucleophilic acceptors. The most reliable way to detect 

and quantity reactive metabolites is via determination of covalent binding of 
14C-radiolabeled compound to cellular proteins in in vitro metabolism systems such as 

hepatocytes or microsomes. After removal of free compound, the protein bound 

radioactivity can be easily quantified by e.g. scintillation counting. However, synthesis 

of radiolabeled compound is laborious and thus expensive. Therefore, assays using 

cold substrate have emerged as well. Most reactive intermediates can be trapped as 

sulfur-adducts with the soft nucleophilic scavenger GSH. Detection of GSH conjugates 
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is routinely done with mass spectrometry which allows for untargeted analysis [89, 90]. 

However, hard electrophiles such as iminium-containing intermediates do not form 

stable adducts with GSH. They can be trapped using 14C-labeled cyanide as trapping 

agent and are quantified over radioactivity counting [91]. Also, other preclinical 

screening assays such as enzyme inhibition assays can give information on binding 

of reactive species to functional proteins. Time-dependent inhibition of CYP enzymes 

indicates irreversible conjugation of parent or metabolite to the active or an allosteric 

site of the enzyme. 

 

1.4.3 Investigation of cellular oxidative stress and related toxicity 

Consequences of oxidative stress can be examined on different levels within the cell. 

These are adaptation of cell homeostasis as a response to oxidative stress, specific 

damage of cell organelles, or cytotoxicity, all providing different types of information.  

To monitor cellular adaptation towards pro-oxidant states, it is beneficial to observe 

effects related to the antioxidant response pathway. For example, the increased 

transcription of genes encoding for cytoprotective proteins manifests in elevated 

mRNA levels. Activity determination of dependent antioxidant enzymes (e.g. SOD, 

GSH peroxidase, and catalase) or agents (e.g. ascorbate, tocopherol) may serve as 

complementary markers. Most frequently GSH depletion or dimerization is used as 

analytical marker [92]. These adaptive processes indicate alterations in the cellular 

health state, also transient or prolonged ones, early before overt damage occurs. 

However, it may be difficult to decide whether changes are physiological or will result 

in pathological effects. 

Another strategy is the detection of modified end-products that do not occur 

physiologically, such as carbonylation of amino acid residues due to protein oxidation 

or 8-hydroxy-2’-deoxyguanosine formation due to DNA oxidation. Lipid peroxidation 

can be determined via conjugates of specifically formed aldehydes, malondialdehyde 

and 4-hydroxynonenal, both cleavage products of peroxidized polyunsaturated fatty 

acids. Peroxidation of arachidonic acid gives rise to isoprostanes, the cis-isomers to 

the prostaglandins. They are chemically stable and can be measured from different 

biological fluids noninvasively. These markers clearly indicate a pathophysiological 

excess of pro-oxidant species that the cell cannot balance anymore. Still, in some 
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cases this damage may be repaired whereas in others it may be persistent and result 

in cell toxicity. 

Finally, it is possible to monitor effects based on major functional impairment or even 

cell death, such as deficient ATP production or cell membrane leakage via 

extracellular occurrence of lactate dehydrogenase (LDH), or alanine aminotransferase 

(ALT) and aspartate aminotransferase (AST) in vivo. However, these markers can only 

reveal evident toxic effects and do not give insight on preceding mechanistic pathways. 

In summary all groups of markers are complementary and contribute to a 

comprehensive picture of mechanisms and outcomes of disturbance of cell 

homeostasis. 

 

1.4.4 DILI in drug development: Screening approaches 

The illustrated examples show that many aspects of idiosyncratic DILI remain unclear 

and that working hypotheses cannot be translated to all cases. Therefore, the 

perception of valuable safety assessment moved away from isolated evaluation of 

bioactivation towards the generation of differentiated mechanistic information on a 

drug’s toxicity risk as illustrated in Figure 1.7. Experience from drug discovery showed 

that the simplification ‘structural alert = bioactivation = toxicity’ does not apply, mainly 

because in vivo metabolism often differs from the detected in vitro pathways [93]. 

However, as reactive metabolite formation is the only accepted evidence in the 

development of DILI, use of this information as a starting point for risk assessment is 

reasonable. Recent approaches improved the safety prediction of absolute covalent 

binding data by normalizing to the dose [5, 31, 48, 94] or by estimation of a covalent 

binding body burden [3, 95]. Still, false positive and false negative results are 

remaining and consequently it was suggested to consider mechanistic effects on cell 

health state to characterize compounds reliably [7]. Thompson and coworkers applied 

this strategy by defining a panel of in vitro assays addressing cellular endpoints. 

Together with covalent binding data, these were then combined to an integrated in 

vitro hazard matrix which allowed for distinction of a safe and different hazard zones 

[96]. However, most development drug candidates possess at least some in vitro alerts 

that would translate into a hazard. Thus, an evaluation of in vivo risk would remain 

problematic for them. 
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In summary, recognition of the complexity of idiosyncratic toxicity in the last years 

resulted in the creation of integrated mitigation strategies which may compensate for 

incomplete mechanistic understanding of DILI. However, all attempts show that a 

comprehensive risk assessment is not possible from the existing in vitro tools yet. 

 

 

 

Figure 1.7. Changing understanding of reasonable safety assessment for DILI from 

covalent binding determination to an integrated mitigation strategy. 
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2 OBJECTIVE OF THE WORK 

This work was conducted to establish improved in vitro testing strategies to address 

risk factors for DILI in context with metabolic drug activation. Thus, the goal was a 

better differentiation between safe and DILI drugs. 

Bioactivation potential should be evaluated in combination with pharmacokinetic 

properties as surrogate for DILI risk. As complementary tool to current risk assessment, 

robust safety biomarkers from non-invasive sources should be identified and validated 

with DILI model compounds. The main focus was on investigation of oxidative stress. 

This compound-related risk factor for hepatotoxicity gives insight into cellular 

mechanisms and may also serve as markers for monitoring of patients. Overall, an 

extrapolation across species from rodent to human as well as from in vitro model 

systems to the in vivo situation should be established. 
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3 RESULTS AND DISCUSSION 

 

3.1 The value of bioactivation assessment for the prediction of DILI 
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Abstract 

Idiosyncratic drug-induced liver injury (DILI) is a major concern for pharmaceutical 

industry. Chemical reactive drug metabolites (RM) and subsequent covalent protein 

binding (CVB) are believed to contribute to mechanisms leading to DILI. Various 

efforts have been made in the past to proof or disproof the correlation between CVB 

properties, daily dose and other pharmacokinetic properties and a drug’s susceptibility 

to cause DILI. Most of the concepts including the ‘zone classification system’ 

previously established by Nakayama suffer from a high number of false positive 

correlations or equivocal classifications. Here, we examined a large set of 91 drugs 

with different history of DILI. An improved classification of DILI properties from 85 to 

94% correctly classified compounds was achieved by correcting CVB by intrinsic 

clearance. A further improvement to 97% correct classifications was achieved by 

substituting daily dose by the hepatic inlet concentration, determined by systematic 

concentration and absorption. As the intrinsic property of covalent binding alone does 

not correlate quantitatively with DILI risk, we propose to use microsomal glutathione 

(GSH) trapping as binary output and surrogate for CVB. A good correlation to high risk 

DILI drugs was evident, especially when integrating daily dose. Here, a sensitivity of 

78% and a specificity of 94% for correct classification were achieved. Even though 

GSH trapping may miss certain electrophiles and phase II bioactivation is not captured 

in microsomes, fewer false negative classifications were observed than by hepatocyte 

CVB. In contrast, the integration of drugs with intermediate risk for DILI (based on case 

reports) decreased the correlation significantly. This may be due to misleading 

classification but also to the fact that mechanisms independent from bioactivation are 

involved in development of DILI. 
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Introduction 

Idiosyncratic drug-induced liver injury (DILI) is a major concern for pharmaceutical 

industry as it occurs only rarely, but is often related to serious outcomes such as liver 

failure and death. Due to the low frequency and poor predictability in preclinical 

studies, DILI has led to late stage attrition or withdrawal of promising new medical 

treatments [1, 2]. Investigation of case examples of affected drugs led to the 

generation of different hypothesis for the development of DILI which suggest an 

involvement of chemical reactive metabolites. These may be able to exert covalent 

binding (CVB) to cellular macromolecules and damage their function, a process which 

is generally accepted as initializing or at least contributing mechanism to DILI. 

Therefore assessment of CVB properties of a drug is nowadays frequently conducted 

in drug discovery with the aim to reduce bioactivation to a minimum [3]. 

However, a growing body of evidence exists on the fact that CVB does not determine 

toxicity alone, including qualitative and quantitative aspects. Some drugs that exhibit 

CVB do not cause problems in clinics and some drugs that bind to proteins to a high 

extent exhibit less toxicity than others with a low degree of CVB. These findings 

suggest that additional risk factors must be involved in modulation of DILI response 

[4, 5]. 

The original approach of quantitative determination of CVB from microsomal matrix 

was able to detect hepatotoxins [6], however resulting in many false positive results 

due to the exaggerated ratio of bioactivation relative to detoxification pathways. 

Therefore, hepatocytes were then selected as more appropriate system which 

accounted for phase II conjugation reactions as alternative or detoxification pathways 

besides oxidative bioactivation. The gained quantitative improvement could still did not 

result in the avoidance of false correlations. It was therefore attempted to incorporate 

relevant pharmacokinetic parameters that could normalize the amount of in vitro CVB 

to its relevant equivalent in vivo. Bauman et al. used a ‘total body burden of CVB’ 

(calculated from total and CVB related intrinsic clearance together with the daily dose) 

as correction factor for absolute data to improve separation of hepatotoxins and non 

hepatotoxins [7]. The finding, that a relationship exists between daily dose and DILI 

[8] was also applied by Nakayama et al.. The authors established a ‘zone classification 

system’ for toxic versus safe drugs by multiplication of hepatocyte CVB data and daily 

dose as decision criteria [9]. Here, it was possible for the first time to cluster 
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compounds based on bioactivation properties. Based on this knowledge Satakis and 

coworkers designed a decision tree for continuation or termination of suspicious drug 

candidates using clinical dose and an ‘in vitro reactive metabolite assay signal’ [10]. 

As none of these approaches could avoid an overlap of toxic and non-toxic compounds 

with false positive and false negative outcomes, Thompson at al. defined an ‘in vitro 

hazard matrix’ comprised by a CVB burden together with cellular toxicity endpoints as 

additional risk factors for DILI [11]. With this approach the authors managed to 

eliminate false negative, but not false positive results. Although this approach 

eliminates the risk of moving potential DILI drugs into clinical development, this 

approach likewise is overly sensitive and may unduly eliminate potentially safe and 

efficacious new drugs. This shortcoming of most approaches applied to reactive 

metabolite characterization during drug discovery and early development has recently 

been summarized by a consortium of scientists from pharmaceutical industry and 

academia [12]. The considerations in this article that for the first time attempted to 

reflect a consensus on common strategy regarding reactive metabolite 

characterization proposes daily dose as critical input parameter to DILI risk. 

The rationale of the described strategies to incorporate dose or clearance was to more 

precisely and realistically estimate the drug’s exposure to the body, in particular the 

liver. Exposure is influenced by various factors from all pharmacokinetic phases which 

need to be considered for evaluation. Namely, the fraction absorbed, first-pass 

intestinal metabolism, systematic distribution, fraction of hepatic (first pass) 

metabolism and elimination modulate the total in vivo exposure. In this study, we 

evaluated the contribution of different input variables to the correct classification of 

DILI outcomes for a dataset of 91 drugs by statistical approaches. The aim was to 

numerically describe risk factors for DILI by incorporation of normalized daily dose 

(body burden) and other pharmacokinetic parameters in order to provide a numerical 

classification of critical parameters such as “high” and “low” dose. In vitro microsomal 

intrinsic clearance or the theoretical liver inlet concentration as correction factors were 

incorporated into CVB data to better classify DILI drugs. We used a comprehensive 

data set of 91 drugs with and without DILI history, having CVB data for 51 of them. For 

these compounds the relationship between CVB properties and daily dose as originally 

shown by Nakayama was applied and compared to the proposed new correlation 

models. To account for the supposed small impact of absolute CVB, the potential to 

replace quantitative CVB data by qualitative bioactivation data was investigated as 



Results and Discussion 31 

well. The ability of drugs to form stable glutathione (GSH)-drug conjugates was 

evaluated as binary output. 

In vitro data was generated in house and completed with data from literature. Clinical 

pharmacokinetic data was extracted from literature. It has to be noted that most of the 

chosen toxic compounds cause hepatotoxicity as adverse endpoint. However, also 

some drugs whose idiosyncrasy manifests in immune- or hemotoxicity were included. 

It is believed that underlying mechanisms are comparable or mediated via similar 

pathways. All results were investigated by ordinal logistic regression and confusion 

matrix evaluation as statistical tools. 
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Material and Methods 

Chemicals 

Williams’ medium E, dimethyl sulfoxide p.a., formic acid p.a., insulin, streptomycin, 

penicillin, hydrocortisone, glucose-6-phosphate disodium salt hydrate, β-nicotinamide 

adenine dinucleotide phosphate hydrate (NADP), were obtained from Sigma Aldrich 

(St. Louis, MO, USA). Glutamine, gentamycin were purchased from Life Technologies 

Invitrogen (Lucerne, Switzerland) and acetonitrile LC-MS grade from Fisher Scientific 

(Wohlen, Switzerland). Water of chromatography grade and magnesium dichloride 

(MgCl2) was obtained from Merck (Darmstadt, Germany). Radiolabeled and unlabeled 

compounds were synthesized in house. Human liver microsomes were purchased 

from BD Biosciences, Woburn, MA. 

 

CVB to human hepatocytes 

For 51 marketed compounds CVB data was received from different sources which 

were either from in house studies or published results (in house, n=11; Nakayama et 

al., n=33 [9]; Thompson et al., n=4 [11]; Bauman et al., n=2 [7]; Lévesque et al., n=1 

[13]) using a comparable experimental setup. For the in house experiment procedure 

was as follows: Human cryopreserved hepatocytes were thawed in accordance to the 

supplier’s protocol and diluted to a final concentration of 106 cells / ml in incubation 

medium. After 15 minutes of pre-incubation 10 µM 14C-radiolabeled compound was 

added and cells were kept at 37°C in a humidified atmosphere (5% CO2/95% air) for 

3 h. Incubation was stopped by precipitation with one volume of acetonitrile on a filter 

plate (Multiscreen deep well solvinert, Millipore). After 15 min of mixing, the plate was 

centrifuged at 20°C for 20 min at 1800g, collecting the filtrate into a deep well plate. 

The remaining precipitate was washed 8 times with MeOH/0.1%H2SO4, collecting the 

eluting wash solution in four portions by centrifugation for 3 min at 1500g. An aliquot 

of the filtrate and each wash step was transferred to labeled microscintilation plate 

(LumaPlate™-96, Perkin Elmer) and radioactivity measured on a scintillation counter 

(Topcount NXT HTS, Perkin Elmer) to determine recovery of radiolabeled compound 

and progress of the wash steps. 

The amount of CVB was calculated from the non-extractable radioactivity after 

solubilization of the denaturated protein with 0.1 M NaOH/1% SDS as determined by 
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β-scintillation counting (TriCarb 3100 TR, Packard) and colorimetric determination of 

the protein concentration, as shown in Equation 3.1.1. 
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GSH trapping assay 

Human liver microsomes at a concentration of 1 mg/mL were incubated with 20 µM 

compound in 0.1 M sodium phosphate buffer substituted with 1 mM NADPH and 5 mM 

GSH. After 60 minutes incubation time reaction was stopped by adding one volume 

acetonitrile Organic solvent was then evaporated under a stream of nitrogen. After 

centrifugation at 5000g at 4°C for 10 min samples were injected to the LC-MS system. 

 

LC-MS analysis of GSH trapping samples 

LC-MS/MS analysis were performed on a triple quadrupole mass spectrometer 

(QTRAP 4000, AB Sciex, Warrington, UK) interfaced with a Shimadzu high 

performance liquid chromatography system. Analytes evaporated sample were 

enriched and separated by on-line SPE coupled chromatography within 14 min. Mass 

spectrometric detection was executed in negative electrospray ionization mode using 

a precursor ion (PI) scan with dependent enhanced resolution (ER) and enhanced 

product ion (EPI) scan. This method was previously reported by others [14, 15]. 

 

Human liver microsomal stability assay 

Compounds were dissolved in DMSO to obtain a 4 mM stock solution which was 

further diluted in incubation medium for use in experiments. Microsomal incubation 

was prepared by supplementation of 0.1 M sodium phosphate buffer (pH 7.4) with 

3 mM glucose 6 phosphate, 0.5 mg/mL HLM, 3 mM MgCl2 and 10 µM of the respective 

compound. Incubation was started by addition of 1 mM NADPH and stopped after 1, 

3, 6, 9, 15, 25, 35, and 45 min by precipitation with three volumes acetonitrile 

containing internal standard. Samples were analyzed using LC-MS/MS (see there). 

Intrinsic clearance was calculated with the slope of the degradation curve as depicted 

in Equation 3.1.2 and 3.1.3. 
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LC-MS/MS analysis of in vitro stability samples 

The system consisted of a Shimadzu HPLC connected to a triple quadrupole tandem 

mass spectrometer (5500 QTRAP, AB Sciex, UK) equipped with either a XBridge 

phenyl column, 3.5 µm, 1.0 x 50 mm (Waters, Ireland) or with an Supelco Ascentis 

express C18 column, 2.7 µm, 2.1 x 20 mm (Sigma-Aldrich, St. Louis, MO). 

Two microliter sample were injected to the system and separated by gradient elution 

with mobile phase one consisting of water containing 0.5% formic acid/methanol 

(eluent A1; 95/5, v/v) and methanol (eluent B1) or mobile phase two consisting of water 

containing 20 mM ammonium bicarbonate/methanol (eluent A2; 95/5, v/v) and 

methanol (eluent B2). The gradient started with a total flow of 0.500 ml/min at 100% A 

which was kept for 0.07 min. Eluent B was then increased in a ballistic-shaped manner 

from 0% to 100% within 0.7 min. The flow was increased to 0.700 ml/min and the 

system flushed with 100% B for 0.18 min. From 0.91 to the end of the run at 1.4 min 

the system was re-equilibrated with 100% eluent A. MS detection was performed by 

selected reaction monitoring. Tuning parameters were defined for each analyte by the 

help of compound standards in positive or negative electrospray ionization mode 

depending on structural properties. 

 

Calculation of liver inlet concentration 

For the calculation of a theoretical liver inlet concentration ([I]in, Equation 3.1.4) the 

sum of the systematic average ([I]av, Equation 3.1.5) and the uptake to the liver was 

calculated considering the following parameters: logD at pH 6.0, polar surface area 

(PSA), absorption rate constant (ka, Equation 3.1.6), clearance after oral dose (CL/F), 

dose (D), dose interval (τ), fraction of dose reaching the portal vein (FDp=fraction 

absorbed x fraction escaping gut metabolism) and hepatic blood flow (Qh). 
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log L
 = 0.623 + 0.154 ∗ log TU.V − 0.007 ∗ YZ[ [16]  Eq. 3.1.6 

 

Lipohilicity was calculated with the following software tools: ClogP v4.94 program 

(BioByte Corp., Claremont, USA) for logP, Moloc (Gerber Molecular Design, Amden, 

Switzerland) for PSA and MoKa 1.1.0 (Molecular Discovery Ltd, Pinner Middlesex, 

UK) for pKa. The values used and the result can be found in Table A3.1.2. 

 

Statistical analysis 

Statistical determination of ordinal logistic regression for the correlation of different 

dependent variables was performed using the software Matlab 7.12. Equation 3.1.7 

describes the variables as follows: β are the coefficients of the regression and p the 

probability for a drug to be in one of the risk categories. Var1 and Var2 are the 

covariates that were correlated to generate a clustering of the compounds as shown 

in Table 1. The separation line between two risk categories was defined for the case 

the odds were unity as described by Nakayama el al., by application of Equation 3.1.8 

[9]. 

Dependent on the results of the ordinal logistic regression, sensitivity, specificity, 

positive (precision) and negative predictive value (NPV) were determined for the 

correct classification of DILI risk from a confusion matrix (Figure A3.1.1). Separation 

of low risk from risk and high risk drugs (condition A) was assessed and compared the 

separation in a reduced dataset containing low risk and high risk drugs (condition B). 

A similar approach was applied to validate the quality of the different correlation 

approaches after incorporation of pharmacokinetic parameters and substitution of 

CVB data by reactive metabolite formation (GSH trapping). 
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Table 3.1.1: Definition of covariates used for ordinal logistic regression analysis. 
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 Var1 Var2 

Model 1 
(Nakayama) 

Daily dose CVB_heps 

Model 2 
(this work) 

Daily dose CVB_heps /CLint 

Model 3 
(this work) 

Liver inlet 
concentration 

CVB_heps 
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Results 

Experiment design 

Ninety-one model compounds were classified based on their history of safe use or 

development of DILI (Table A3.1.1). Compounds were classified in three categories 

with respect to their safety profile as previously reported [17]. Drugs withdrawn from 

the market or carrying a hepatotoxicity-related label were classified as ‘high risk’ drugs, 

substances with known history of liver injury were assigned as ‘risk’ drugs and those 

without increased incidence for liver damage were marked as ‘low risk’. For all drugs 

intrinsic clearance determination and GSH trapping assay was performed in 

microsomes or taken from the literature [18-20]. Oral plasma clearance data and other 

pharmacokinetic properties were extracted from literature (Table A3.1.2). For a subset 

of 51 compounds quantitative CVB data was collected (in house and literature results 

as described in Material and Methods, Table A3.1.1) and a theoretical portal vein 

concentration (‘liver inlet’) was calculated (Table A3.1.2). A quantitative evaluation of 

the different approaches for classification of DILI based on selected input variables 

results was conducted after ordinal logistic regression and further determination of 

descriptors for predictive values based on a confusion matrix approach. 

 

Statistical evaluation of variables describing DILI classification 

The present study was designed with the goal to evaluate the most sensitive variables 

for DILI classification based on drug bioactivation propensities and generic 

pharmacokinetic properties. Inspection of parameters of the present data set revealed 

that none of the used parameters was able to predict DILI in isolation. Means of CVB 

and clearance data did not show any obvious trend and possessed a wide standard 

deviation. This observation was also confirmed by a partial least squares discriminant 

analysis (PLA-DA) of the variables: The highest contributing value to separate the 

different classes was seen for dose and hepatic inlet concentration which are closely 

related (see Equation 3.1.5) with a trend towards a connection of high dose and high 

risk. Clearance was classified as minor determinant and covalent binding as important 

contribution factor, however not significant for one group (Figure 3.1.3). 

In order to investigate a potential improvement of the prediction of hepatotoxicity 

based on drug bioactivation, we build on the established zone classification system by 

Nakayama and coworkers [9]. This approach utilized hepatocyte covalent binding 
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(CVBhep) and daily dose as variables to classify drugs with different DILI properties. 

We used this approach as reference model that we further developed by modifying the 

input variables to two dependent models. An overview of the outcome is displayed in 

Table 1. As reference, model 1 corresponds to the original Nakayama model with an 

extended dataset, model 2 uses intrinsic clearance normalized covalent binding 

(CVB/CLint) and dose as determinants and model 3 employed covalent binding in 

combination with the hepatic inlet concentration as covariates. 

 

Quantitative CVB properties as prediction factor for DILI 

Inspection of individual input variable of the present data set revealed that none of the 

used parameters was able to predict DILI when applied in isolation. Means of CVB 

and clearance data did not show any obvious trend and possessed a wide standard 

deviation. This observation was also emphasized by a partial least squares 

discriminant analysis (PLA-DA) of the variables: The highest contributing value on 

separation of different classes of DILI was evident for dose and hepatic inlet 

concentration which are closely related (see Equation 3.1.5). These parameters 

revealed a trend towards the correlation of “high dose” with “high risk”. Clearance was 

classified as minor determinant and covalent binding as important contribution factor, 

however not statistically significant for one group. 

However, a combination of different parameters that previously had been argued to 

determine the classification of DILI resulted in distinct clusters for the different 

categories of DILI drugs. The results are graphically displayed in Figure 3.1.1. This 

classification was largely confounded when the entire dataset of compounds (n=51) 

was analyzed including those compounds classified as “risk” (Figure 3.1.1, left). 

Reducing the compound set to those compounds that were classified as “low risk” and 

“high risk” (n=33) a significantly better separation of both groups was achieved 

(Figure 3.1.2, right). Visual inspection of the data suggests an improved classification 

of DILI drugs when comparing to the reference model 1 to the most comprehensive 

approach in model 3. This included pharmacokinetic parameters and physico-

chemical properties of drugs that were used to derive a liver inlet concentration. A cut-

off line to separate safe from high risk drugs could be calculated by ordinal logistic 

regression with only one false positive classification (#42, gemfibrozil). 

A quantitative summary of the descriptive values of the different models is shown in 

Table 3.1.2. It was retrieved using a confusion matrix with the cut-off lines calculated 



Results and Discussion 39 

from the regression analysis for the three models. The values emphasize the 

differences in correct prediction for low risk (safe) versus risk and high risk drugs 

(condition A) and the reduced data set (low risk vs. high risk, condition B). The 

percentage of correctly classified compounds in average is 14% better for condition B 

as compared to condition A. For condition B an improvement for all parameters for 

model 3 as compared to model 2 and for model 2 as compared to model 1 indicates 

that the inclusion of clearance and liver inlet data results in an overall better 

predictivity. For condition A that attempt to classify safe drugs relative to risk and high 

risk drugs, an improvement for the most complex correlation of model 3 was not 

observed. Here, specificity and precision increased slightly whereas sensitivity and 

NPV decreased. 

 

Reactive metabolite formation as prediction factor for DILI 

We further investigated the substitution of CVB data by the qualitative potential of 

reactive metabolite formation as indicated by trapping of reactive species with 

glutathione (GSH) that was available for a set of n=91 compounds. Therefore, the first 

step was to assess the overlap between results from CVB assessment and its potential 

surrogate GSH trapping. 

A positive outcome in CVB assessment was defined with a threshold of greater than 

10 pmol drug derived material bound per milligram of hepatocyte protein. This value 

is derived from historical background data. The same outcome in both assays for the 

chosen data was achieved for 35 of 51 compounds (positives and negatives). Only 4 

of the 19 ‘true’ positives are classified as safe, all of them being low dose drugs (0.035 

mg – 20 mg/d). On the other hand, 9 (of 16) of of the ‘true’ negative compounds do 

have DILI alerts, for them, the average dose was 1700 mg/d. One of them, zomepirac 

(#91), which is known to form instable acyl glucuronides, has been recently found 

positive in CVB assessment, however only with 19.8 pmol/mg after 4 h of incubation 

[11]. With respect to the deviating results, the predicitvity of GSH adducts seems to be 

better as compared to CVB. 90% of the compounds with GSH alert and without CVB 

alert are classified as DILI drugs. Here, the oxidative activation seems to be the 

bioactivation pathway involved in reactive metabolite formation. This may not be 

captured in hepatocytes due to lack of dynamic range in hepatocyte CVB studies. The 

amount of toxic compounds in the false negative section, in contrast, is only 50%. 
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The correlation between CVB and body burden was further confirmed by substitution 

of quantitative CVB with GSH adduct formation which was done for a largely expanded 

data set (n=91 vs n=51 for CVB properties). 

Here, GSH adduct formation as qualitative outcome succeeded in classifying 64% of 

all compounds correctly for condition A (n=91 compounds). For the reduced data set 

(condition B eliminating the intermediate DILI risk category, n=54 compounds) even 

70% true results were obtained The sensitivity of the assay for condition B was at 77% 

suggesting that only 4 out of 18 DILI drugs were not correctly classified (Figure 3.1.2, 

bottom). Three of those four drugs were high dose drugs. E.g. ritonavir does form 

reactive metabolites which directly bind to the active side of the involved enzyme, 

namely CYP3A4 and are not able to diffuse away from the binding pocket. The 

precision of 55% reveals that the GSH experiment is over-sensitive (Figure 3.1.2, top). 

10 over 36 low risk drugs possess the potential to from RM. However, one of them 

was the aforementioned drug gemfibrozil (#42) whose classification may have to be 

reviewed. The other compounds were low dose drugs with an average dose of 28 mg 

per day. 

In general, the majority (76%) of high risk compounds given at > 100 mg per day 

possess a GSH flag, however, only the minority (15%) of low risk compounds given at 

> 100 mg per day do so. Low risk drug with a dose of < 100 mg per day had 35% GSH 

trapping positive results. One example is Ethinylestradiol (#35). Its ethinyl moiety is 

prone to form reactive metabolites, however as the daily dose is only 0.035 mg, the 

exposure to the reactive metabolite is not sufficient to cause toxicity. 

Based on these findings the daily dose was integrated as secondary criteria for risk 

assessment via GSH trapping. Applying this definition for the 54 safe and high risk 

drugs resulted in a vast improvement of prediction power (Figure 3.1.3). With only 4 

false negative and 2 false positive results (11%) a sensitivity of 78%, a specificity of 

94%, a precision of 88% and an NPV of 89% were achieved. 

Integration of the intermediate DILI risk category also revealed a substantial reduction 

of false positive results, i.e. a relevant reduction of over-exclusion of compounds. 

However, in parallel, the number of false negatives is increasing. Judging GSH adduct 

formation or a high dose as positive outcome leads to the invert effect: Whereas false 

positives are increased, the number of false negative results is reduced which is 

equivalent with an increase in sensitivity. In addition to the dose correlation a slight 

trend could be seen for high risk compounds that did not have a GSH trapping alert 
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when incorporating plasma clearance. Low clearance drugs may be underestimated 

in their CVB risk from short-period in vitro assays if bioactivation processes are 

quantitatively too slow. 
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Figure 3.1.1: Correlation of different variables for a zone classification of compounds 

of different classes of DILI properties as separated after linear logistic regression. 

Drugs with a low risk ( ), risk ( ) or high risk ( ) were clustered using the established 

Nakayama model (CVB in hepatocytes and daily dose) [model 1] or intrinsic clearance 

normalized CVB and daily dose [model 2] or CVB and hepatic inlet concentration 

[model 3]. Condition A (left) used three groups to DILI outcome (high risk, risk, low risk 

drugs) and condition B used a reduced data set (high risk, low risk drugs). 
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Figure 3.1.2: Reactive metabolite formation as results from GSH trapping (alert on top 

and absence of alert on bottom) in relation to daily dose and DILI category. 

 

 

 

 

 

Figure 3.1.3 Correlation plot for 

different variables for toxicity prediction. 

Height of the column corresponds to the 

amount of contribution. Standards 

deviations ranging from positive to 

negative indicate the absence of a 

significant trend within one of the tested 

groups. 

 

  



44 Results and Discussion 

Table 3.1.2: Predictive value of the different correlation models as determined after 

ordinal logistic regression and confusion matrix evaluation. Condition A (top) refers to 

the comparison of the group of the low risk compounds against risk and high risk and 

the condition (B) (bottom) to the comparison of low risk drugs against high risk 

compounds. 

    Sensitivity Specificity Precision NPV Correct 
       
Condition A  
(low risk vs. 

risk, high risk) 

Model 1 85% 71% 85% 71% 80% 
Model 2 82% 59% 80% 63% 75% 
Model 3 85% 65% 83% 69% 78% 

              
       

Condition B 
(low risk vs. 

high risk) 

Model 1 88% 82% 82% 88% 85% 
Model 2 94% 94% 94% 94% 94% 
Model 3 100% 94% 94% 100% 97% 

              
 

 

 

Table 3.1.3: GSH adduct formation as prediction factor for DILI. A GSH alert in 

combination with a daily dose higher than 100 mg was judged as positive outcome to 

predict the classification of high dose and low risk drugs. 

   Risk for DILI   

   n=54 high low   

GSH alert at 
> 100 mg  

yes 14 2 88% 

no 4 34 89% 

    78% 94% 89% 
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Discussion 

CVB as prediction factor for toxicity 

Although it is a generally accepted hypothesis that excessive covalent binding or 

critical covalent binding to sensitive cellular target proteins is related to development 

of toxicity, the quantitative relationship between both remains vague. Several groups 

have demonstrated the progress and limitations of a quantitative risk assessment 

based on covalent binding data over the last couple of years. The major shortcoming 

of several models was a remaining amount of false classified compounds. A reason 

may be the lack of mechanistic parameters in these analyses. Complex secondary 

mechanisms cannot be captured in vitro such as binding of reactive metabolites to 

physiologically sensitive proteins or the formation of neo-antigens triggering immune 

response only in certain cases. Therefore the susceptibility of individual patients 

remains elusive. In contrast to previous studies we applied a global inspection of a 

large dataset consisting of in house and collected literature data. We applied statistical 

analysis to describe the obtained results and compared different scenarios, namely 

the whole data set and a reduced set consisting of safe and high risk drugs. 

Using these prerequisites, the aim of this study was to review the relevance of covalent 

binding properties of compounds relative to their administered dose, systemic 

clearance and liver burden over time. It was presumed that a rapidly metabolized 

compound would not interact with a potential target in the same manner as a slowly 

activated compound. Therefore, bioactivation data was corrected for experimental 

(intrinsic) clearance. However, as integration of CLint data does only add value for 

drugs with an at least moderate turnover in vitro, oral plasma clearance data from 

clinical trials is needed for more meaningful information. As most comprehensive 

parameter for a drug’s potential to (adversely) interact with the liver the portal vein 

concentration was deemed. The applied calculation (see Equation 3.1.4) was 

comprised by two main components, the systematic average concentration and the 

absorption. Here, physicochemical properties and clinical pharmacokinetic data were 

integrated. 

Correlation of the present, extended data set (n=51) using the well accepted 

Nakayama-model (model 1) showed a comparable zone classification as described 

[9]. Normalization of the absolute CVB for the intrinsic clearance (model 2) and 

transformation of the maximum daily dose to a theoretical liver inlet concentration of 
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the (model 3) resulted in an improvement of predictability for low risk and high risk 

drugs. Here, sensitivity, selectivity, precision and NPV were increased by 9% from 

model 1 to 2, and by additional 3% for model 3. 

An improvement was seen namely for drugs where the primary input variable biased 

the classification in model 1. Acetyl salicylic acid [ASS] (#2) and rimonabant (#68) are 

generally considered as safe but exhibit a high dose (up to 2 g for ASS) and absolute 

CVB (1114 pmol/mg for rimonabant). On the other side benzbromarone (#12) and 

nevirapine (#53) are toxic drugs that show relatively low CVB in hepatocytes (12.1 and 

2.9 pmol/mg) and were therefore judged as safe. However, integration of in vivo 

clearance and bioavailability over the liver inlet concentration resulted in an adjustment 

to the correct area. The only false clustered compound in the latter model was 

gemfibrozil (#42) ranging as low risk compound in the hepatotoxic area. Although 

gemfibrozil is generally considered as relatively safe, reports on cholestatic events 

upon drug intake have been reported [21]. Besides, occurrence of myotoxicity is 

reported to be elevated, especially in combination with statins [22, 23]. The reason 

that the present study revealed benefit from incorporation of pharmacokinetic 

parameters which was not seen in a comparable extent in previous works as 

conducted by Bauman et al [7] may be due to the selection of extreme case examples 

(by excluding of the intermediate risk category for analysis) which however still 

represented a substantially larger data set (n=33 vs. n=18). This enabled the detection 

of general trends that may not apply for every individual drug. 

Nonetheless, integration of the ‘risk’ drug class as unacceptable group did not result 

into an improved prediction for the complex models. A positive change in one quality 

parameter was accompanied by a negative change in another one, resulting in an 

overall similar prediction power that did not improve (see Table 3.1.3, lower part). The 

reason for these findings can be understood when inspecting the applied statistical 

model (PLS-DA). Dose and CVB were identified as most contributing variables for the 

separation of the different classes. Figure 3.1.3 emphasizes that CVB alone is not 

indicative for DILI classification. The most important factor for the calculated liver inlet 

concentration is the dose; the impact of both variables is comparable. For a 

comprehensive comparison of the models it has to be considered also, that data 

collection is much more complicated for in vivo parameters as used in model 3. For 

safety and monetary reasons the aim of industry and authorities is to learn about 

potential adverse reactions as early as possible, at a point where pharmacokinetic 
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data are rarely available. Substitution of clinical data by physiology-based 

pharmacokinetic modeling displays a source of ambiguity. 

The constant prediction power may originate from the uncertainty in extracted and 

calculated results. As data on the fraction absorbed (Fa) is rarely accessible, mostly 

oral bioavailability (Foral) was used as parameter. In cases where no value was 

available, 1.0 (equivalent to 100%) was assumed. However, the difference between 

Fa and Foral can be crucial if the compound possesses a high first pass (gut and liver) 

metabolism. In these cases, the fraction absorbed would be underestimated by Foral. 

In addition to the included parameters, knowledge on the fraction metabolized (fm) as 

opposed to renal or biliary excretion of unchanged drug is crucial [24]. Only if the 

amount of hepatic metabolism equals 1 (i.e. 100% of the elimination of the compound 

is via metabolism) the in vitro bioactivation is comparable to the in vivo situation. 

The case of gemfibrozil illustrates a bottleneck of the compound classification. For 

very toxic or extremely well-tolerated substances (here: high risk and low risk) the DILI 

history is very clear. However, several drugs possess case reports of hepatic 

alterations and for most of them an exclusion of other causalities such as co-

medication or underlying disease is rarely possible. This may lead to false positive 

conclusions [25]. On the other hand, DILI is also believed to be underreported because 

of insufficient pharmacovigilance systems or awareness of the causative context [26]. 

Strategies for the handling of DILI cases by the authorities may also deviate depending 

on indication of the drug, medication alternatives or class effects. It is therefore a 

primary challenge to rate the ‘true’ safety profile of a drug. 

 

GSH adduct formation as prediction factor for toxicity 

Analyses of the present and previously reported data indicate a limited impact of 

quantitative covalent binding in human hepatocytes and their narrow dynamic range 

(a background of approx. 2 pmol/mg up to 100 pmol/mg for high-binding compounds). 

It was therefore hypothesized that assessing bioactivation in a binary yes/no manner 

by GSH adduct formation may be sufficient for reliable evaluation. 

Previous studies showed that the amount of GSH adducts and the amount of covalent 

binding are not correlated. It was suggested recently that this is due to the differences 

in reactivity of glutathione and microsomal protein, as well as the deficiency of 

glutathione to trap hard electrophiles and the differences in life time and partition 

(aqueous/protein) of RMs [27]. However, conduction of GSH trapping is much simpler 
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and does not require radiolabeling of compounds. Therefore, GSH trapping assays 

are frequently incorporated into preclinical risk assessment strategies. GSH adduct 

formation, mainly in combination with CYP mechanism-based inhibition data can serve 

as indicator for the risk of hepatotoxicity and substitute CVB data [10, 17]. Likewise, 

we found a correlation between GSH adduct formation and toxicity which was 

improved after integration of dose, as it was proposed recently [28]. Only a small 

amount of false positive as well as negative results were retrieved when 100 mg daily 

dose was added as criterion (Table 3). This correction may account for detoxification 

mechanisms that are depleted at higher drug doses. 

As GSH trapping is routinely conducted in liver microsomes and hepatocytes are 

considered as gold standard for covalent binding assessment, potential differences in 

outcome of the assays may be also due to the metabolic system. To exclude this bias 

the correlation of covalent binding data in microsomes and hepatocytes of the present 

data set were confirmed (data not shown). A comparison of GSH and CVB assay 

showed a congruence of 69%. Detailed inspection of the results showed a higher 

failure for quantitative CVB evaluation in human hepatocytes to correctly classify 

toxicity as compared to GSH adduct formation. The majority of compounds with 

positive GSH trapping result and lack of significant CVB were indeed DILI drugs. The 

reason may be predominant activation via CYP enzymes in the present cases. CYPs 

are higher expressed in microsomes, which is the test system of the GSH trapping 

assay. The lower sensitivity and dynamic range of CVB determination in hepatocytes 

may result in failed recognition of CVB properties in that assay. Remarkably 47% of 

the compounds that tested negative for bioactivation by quantitative CVB and GSH 

trapping belong to the DILI classes (risk and high risk) drugs. This can be explained 

by the high clinical dose (average1400 mg/day) together with a low rate of 

bioactivation in vitro: The CLint values for the affected compounds range from 0 to 

19.2 mL/min/mg with a mean of 5.8 mL/min/mg and median of 2-5 mL/min/mg. 

Alternatively it is also likely that other, non bioactivation related mechanisms contribute 

to the observed toxicity of these molecules. 

 

 

Perspective for future risk assessment of DILI 

The central question of this research was to find better ways of classifying DILI 

properties for drug candidates. It is appreciated that this early classification is by no 
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means a predictive measure of DILI outcome in the clinical setting. Still the existing 

correlation between bioactivation, pharmacokinetic parameters including daily dose 

emphasizes that bioactivation may leads to a substantially increased DILI risk. This 

particularly holds true for cases where a certain dose threshold is exceeded. The 

comprehensive analysis of the set of 91 drugs with classified DILI properties suggests 

100 mg as a threshold dose for additional safety considerations. Considering the 

limited impact of the absolute amount of CVB, we suggest to non-quantitatively 

determine reactive metabolite formation by e.g. GSH trapping. In contrast, a better 

understanding of the drug exposure is of major importance as mitigation factor for DILI 

risk [29]. The integration of pharmacokinetic knowledge can support a reliable 

judgment of the outcome of a bioactivation assay. This may be not applicable for 

screening tasks, however, this tool may confirm the decision on whether to terminate 

or continue drug development for individual cases. 

Another strategy for a better understanding of the relationship between protein 

covalent binding and toxicity outcomes is the detailed analysis of protein targets of 

reactive metabolites. It is hypothesized that the specific modification of critical protein 

targets and not the total unspecific covalent binding in general determines the risk for 

toxicity. 

For a consolidated evaluation of this hypothesis a reactive metabolite target protein 

database has been created by Hanzlik and coworkers. Their goal was to provide a 

listing of known RM targets to enable the identification of general protein patterns that 

determine toxicity [30]. However, until now database entries are mainly available for 

chemicals. Additionally, association of protein bands on a gel do not necessarily reflect 

that these proteins were covalently modified until the protein modification has been 

unequivocally demonstrated on a peptide or amino acid level. The identification of 

peptide targets from functional enzymes was reported for a model compound known 

to induce high CVB to rat and human hepatic tissue by application of a targeted 

proteomics approach [31]. However, detection of protein targets can be challenging 

when the absolute covalent binding is low or the abundance of the target is minute 

relative to a large excess of unmodified proteins. A comprehensive correlation of 

protein targets and DILI impact will be revealed in the future when more proteomic 

data is available. 

Besides the limitations of existing RM assessment tools, one must also be aware that 

bioactivation is almost never the only determinant for drug-induced hepatotoxicity. 
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Heterogeneous mechanisms are involved in its development and do not allow the 

prediction via one single approach. Thus, for a significant improvement of safety 

assessment causalities have to be understood in detail and translated into 

investigation models and biomarkers [12]. These may then replace or complement the 

need of integrating bioactivation findings in a proper context [32]. 

In summary, the current knowledge advises to design potent, selective and therefore 

low dose drugs with moderate turnover and minimal undesired bioactivation. For drug 

candidates that are deficient of some of the desired properties, the presented 

assessment tools can support the rating of these compounds and the selection of the 

best among a series of related compounds. It may be necessary to embark on detailed 

assessment of secondary toxicity endpoints as potential contributing factors in order 

to estimate the DILI risk for a predicted dose range in case a DILI risk cannot be 

excluded. 
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Appendix 

 

  Condition   

  positive negative   

Test 
+ true positive (TP) false positive (FP) Precision TP/TP+FP 

- false negative (FN) true negative (TN) NPV TN/TN+FN- 

  Sensitivity specificity   

  TP/ TP+FN TN/ TN+FP  
 
 

 

Figure A3.1.1: Definition of a confusion matrix with output parameters to evaluate the 

qualitative outcome of an individual experimental set-up. 
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Table A3.1.1: Experimental data for low risk drugs 

 

index name 
 daily 
dose 
 [mg] 

RM alert by 
GSH 
trapping 

CLint_HLM* 
[mL/min/mg] 

CVB_heps 
[pmol/106 
cells] 

Source 
CVB 

2 Acetyl salicylic acid 2000 no 10.0 0.4 int. 

4 Amantadine 600 no 3.0 nd  

7 Amlodipine 10 no  5.6 13.3 [9] 

9 Aripiprazole 30 yes 5.0 nd  

11 Baclofen 10 no [0.1] nd  

14 Buspirone 30 yes 19.0 nd  

15 Caffeine 900 no 4.0 0.2 [9] 

26 Dextromethorphan 180 no 16.0 nd  

31 Donepezil 10 yes 2.0 13.5 [9] 

33 Enalapril 20 no 2.0 nd  

35 Ethinylestradiol 0.035 yes 32.0 80.6 [9] 

41 Gabapentin 2400 no 8.5 nd  

42 Gemfibrozil 900 yes 12.0 8.4 int. 

47 Levofloxacin 750 no [0.1] 0.1 [9] 

48 Lidocaine 105 yes 6.0 2.2 int. 

49 Lisinopril 20 no 2.8 nd  

50 Lorazepam 3 no 2.0 nd  

51 Memantine 30 no [0.1] nd  

54 Nifedipine 60 yes 7.0 nd  

55 Olanzapine 20 yes [0.1] 43.8 [11] 

56 Olmesartan 40 no 38.0 1.4 [9] 

57 Paroxetine 40 yes 6.0 nd  

58 Pentobarbital 100 no 6.0 nd  

60 Pindolol 15 yes [0.1] nd  

61 Pioglitazone 45 no 7.0 31.9 [11] 

62 Pravastatin 80 yes 4.0 2.5 [9] 

68 Rimonabant 20 no 10.0 1114.8 [11] 

71 Rosiglitazone 8 yes 6.0 42.5 [9] 

72 Sertraline 50 no 5.0 nd  

74 Sitagliptin 100 yes [0.1] nd  

76 Sumatriptan 100 no 11.4 nd  

81 Tocopherol acetate 20 no 24.0 1.2 int. 

85 Valsartan 320 no 2.0 0.4 [9] 

86 Venlafaxine 150 no [0.1] nd  

88 Warfarin 15 no [0.1] 8 [9] 

90 Zolpidem 20 no 6.0 nd int. 
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Table A3.1.1 contd: risk drugs 

 

index name 
 daily 
dose 
[mg] 

RM alert 
by GSH 
trapping 

CLint_HLM* 
[mL/min/mg] 

CVB_heps 
[pmol/106 
cells] 

Source 
CVB 

1 Acetaminophen 4000 yes [0.1] 8.4 [9] 

3 Alprazolam 1.5 no 3.0 nd  

6 Amitriptyline 150 no 6.0 nd  

10 Atorvastatin 80 no 15.0 209.2 [9] 

16 Captopril 75 yes [0.1] nd  

18 Carvedilol 25 yes 8.0 nd  

19 Celecoxib 400 no 15.0 7.1 [9] 

20 Chlorpromazine 500 yes 7.0 nd  

22 Citalopram 40 no 3.0 nd  

23 Clopidogrel 75 yes 513.0 75 [9] 

25 Desipramine 150 yes 5.0 nd  

27 Diazepam 15 yes 7.0 0.1 [33]  

28 Diclofenac 200 yes 68.0 65.8 int. 

29 Diltiazem 180 no 5.0 nd  

30 Diphenhydramin 300 no 5.0 0.1 [7] 

32 Duloxetine 20 yes 37.9 nd  

34 Erythromycin 1000 no 3.0 nd  

36 Felbamate 3000 no [0.1] 0.1 [7] 

37 Fenofibrate 300 no 515.4 nd  

38 Fluoxetine 20 yes 6.0 9 [9] 

40 Furosemide 80 no 2.0 nd  

43 Haloperidol 10 yes 4.0 nd  

45 Imipramine 300 yes 6.0 15.5 [9] 

46 Indomethacin 200 yes 4.0 32.9 int. 

59 Phenytoin 600 no 2.0 3.7 [9] 

63 Prazosin 4 yes 5.0 nd  

64 Procainamide 4000 yes 8.0 nd  

65 Propranolol 480 yes 4.0 9.4 [9] 

66 Quetiapine 600 yes 11.0 nd  

67 Ranitidine 300 no [0.1] nd  

69 Risperidone 6 yes 6.0 nd  

73 Simvastatin 20 no 124.0 nd  

75 Sulfamethoxazole 1600 no [0.1] 0.8 [9] 

77 Tacrine 160 yes 2.0 5.4 [9] 

78 Tamoxifen 40 yes [0.1] 64.9 [9] 

87 Verapamil 480 yes 5.0 16 [9] 

89 Zafirlukast 40 no 16.0 19.1 [9] 
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Table A3.1.1 contd: high risk drugs 

 

index name 
 daily 
dose 
[mg] 

RM alert by 
GSH 
trapping 

CLint_HLM* 
[mL/min/mg] 

CVB_heps 
[pmol/106 
cells] 

Source 
CVB 

5 Aminophenazone 3000 no [0.1] 1 [9] 

8 Amodiaquine 2450 yes 76 91.3 [9] 

12 Benzbromarone 150 yes 10 12.1 [9] 

13 Bromfenac 200 yes 1 43.8 int. 

17 Carbamazepine 1200 yes 2 8.6 [11] 

21 Cilazapril 5 no 67 nd  

24 Clozapine 900 yes 7 82.7 [9] 

39 Flutamide 750 yes 20 9.7 [9] 

44 Imiloxan 500 yes 9 40.8 int. 

52 Nefazodone 600 yes 51 43.3 int. 

53 Nevirapine 400 yes [0.1] 2.9 [9] 

70 Ritonavir 1200 no 4 47.7 [9] 

79 Ticlopidine 600 yes 20 89.5 [9] 

80 Tienilic acid 500 yes [0.1] 77.2 int. 

82 Tolcapone 600 yes 515.4 nd  

83 Troglitazone 600 yes 9 26.7 int. 

84 Valproic acid 4200 yes 19.2 9.3 [9] 

91 Zomepirac 600 no 5 7.2 [9] 
*[0.1]: no substrate depletion observed 

 int:  in house data 
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Table A3.1.2 

 
   Calculated properties Literature Values  

index name 
 max. 
dose 
[mg] 

logD6.0 PSA ka 
CL 
oral 
[L/h] 

Ref
. 

Foral* Ref. 
[I]in 

[mg/
L] 

low risk          

2 
Acetyl salicylic 
acid 2000 1.34 51.1 2.96 87.5 [34] 0.63 [35] 39.8 

7 Amlodipine 10 1.14 83.0 1.65 22.5 [36] 0.81 [37] 0.2 

15 Caffeine 900 -0.12 48.3 1.85 4.7 [38] [1.0]  25.2 

31 Donepezil 10 1.16 37.2 3.48 9.7 [39] 0.95 [40]* 0.4 

35 Ethinylestradiol 0.0035 4.12 32.4 10.7 33.7 [41] 0.01 [42]* 0.0 

42 Gemfibrozil 900 3.59 39.2 7.98 15.1 [43] [1.0]  0.5 

47 Levofloxacin 750 -1.61 64.6 0.84 7.6 [44] [1.0]  10.5 

48 Lidocaine 105 -0.12 25.3 2.68 248.3 [45] 0.42 [45] 1.3 

55 Olanzapine 20 0.86 27.6 3.65 16.1 [46] 0.7 [47] 0.6 

56 Olmesartan 40 5.59 107 5.42 4.9 [48] 0.36 [49] 1.2 

61 Pioglitazone 45 4.62 60.6 8.14 3.3 [50] 0.83 [51] 3.7 

62 Pravastatin 80 1.63 94.7 1.63 263 [52] 0.18 [53] 0.3 

68 Rimonabant 20 2.67 42.1 5.49 4.4 [54] 0.18 [55]* 0.4 

71 Rosiglitazone 8 2.67 60.4 4.09 2.1 [56] 0.99 [57] 0.5 

81 
Tocopherol 
acetate 20 12.30 29.0 206 20  [1.0]  42.8 

85 Valsartan 320 0.31 96.8 0.98 8 [59] 0.23 [60] 2.4 

88 Warfarin 15 2.13 49.1 4.05 26.6 [61] 0.93 [62] 0.6 

risk           

1 Acetaminophen 4000 0.36 41.3 2.45 19.6 [63] 0.87 [64] 96.8 

10 Atorvastatin 80 2.42 87.3 2.43 18.8 [65] 0.12 [53] 0.4 

19 Celecoxib 400 3.97 68.5 5.68 28.1 [66] [1.0]  24.1 

23 Clopidogrel 75 2.16 23.6 6.18 5.5e4 [67] [1.0]  4.8 

27 Diazepam 15 2.71 27.1 7.08 1.8 [68] [1.0]  1.4 

28 Diclofenac 200 1.28 40.6 3.43 26.6 [69] 0.65 [70] 4.9 

30 Diphenhydramin 300 1.19 12.1 5.26 48 [71] [1.0]  16.6 

36 Felbamate 3000 0.76 90.1 1.29 2.3 [72] [1.0]  94.3 

38 Fluoxetine 20 2.35 19.7 7.03 43 [73] [1.0]  1.5 

45 Imipramine 300 2.31 6.7 8.55 240 [74] 0.42 [74] 11.2 

46 Indomethacin 200 2.19 57.0 3.64 2.9 [75] 0.77 [76] 8.7 

59 Phenytoin 600 2.28 51.3 4.12 0.2 [38] 0.93 [77] 149 

65 Propranolol 480 0.92 35.7 3.27 325.5 [78] 0.01 [79]* 0.2 

75 
Sulfa-
methoxazole 1600 -1.16 82.8 0.73 75.8 [80] 0.99 [81] 12.9 

77 Tacrine 160 0.55 30.5 3.12 1404 [82] 0.17 [83]* 0.9 

78 Tamoxifen 40 4.38 13.2 16.0 3.6 [84] 0.24 [85] 2.0 

87 Verapamil 480 1.76 59.5 3.00 371.7 [86] 0.90 [87] 13.4 

89 Zafirlukast 40 5.58 94.7 6.61 20 [88] [1.0]  20.0 
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Table A3.1.2 contd. 

 

   calculated properties Literature values   

index name 

 
max. 
dose 
[mg] 

logD6.0 PSA ka 
CL 
oral 
[L/h] 

Ref Foral* Ref 
[I]in 

[mg/L
] 

high risk          

5 
Amino-
phenazone 3000 0.58 26.8 3.35 2.2 [89] [1.0]  160.7 

8 Amodiaquine 2450 4.00 42.2 8.77 4140 [90] [1.0]  222.4 

12 
Benz-
bromarone 150 4.30 39.8 10.2 3.4 [91] [1.0]  17.6 

13 Bromfenac 200 3.08 66.6 4.27 7.3 [92] [1.0]  10.0 

17 
Carbama-
zepine 1200 1.46 35.8 3.96 3.5 [93] 0.83 [94] 55.1 

24 Clozapine 900 1.57 27.1 4.72 18 [95] 0.48 [96] 23.2 

39 Flutamide 750 3.51 58.6 5.67 0.4 [97] [1.0]  122.1 

44 Imiloxan 500 1.15 31.0 3.83 655.7 [98] [1.0]  19.9 

52 Nefazodone 600 4.50 50.4 9.19 33.8 [99] 0.14 [100]* 8.7 

53 Nevirapine 400 3.55 47.4 6.89 3.9 [101] [1.0]  32.8 

70 Ritonavir 1200 2.97 108 2.1 17.3 [102] 0.7 [103] 21.2 

79 Ticlopidine 600 2.90 4.1 11.0 269.3 [104] [1.0]  68.3 

80 Tienilic acid 500 1.25 55.3 2.68 4.1 [105] [1.0]  19.0 

82 Tolcapone 600 1.80 86.6 1.96 7.1 [106] 0.6  [106] 10.8 

83 Troglitazone 600 4.96 73.1 7.50 29.8 [107] 0.43 [107] 20.6 

84 Valproic acid 4200 1.88 29.1 5.12 0.6 [108] 0.99 [108] 511.9 

91 Zomepirac 600 1.31 49.7 3.00 11.3 [109] [1.0]  20.9 
[1.0]: no value found; *F in rat (propranolol, rimonabant in monkey) 
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Abbreviations 

CL   Clearance 

CLint   Intrinsic clearance 

CVB   Covalent protein binding 

CYP   Cytochrome P450 

DILI   Drug-induced liver injury 

ER   Enhanced resolution 

EPI   Enhanced product ion 

F   Bioavailability 

Fa   Fraction absorbed 

FDp   Fraction of dose reaching the portal vein  

fm   Fraction metabolized 

Foral   Oral bioavailability 

GSH   Glutathione 

HLM   Human liver microsomes 

Iav   Systemic concentration 

Iin   Liver inlet concentration 

ka   Absorption constant 

LC-MS/MS  Liquid chromatography / tandem mass spectrometry 

LogD   Distribution coefficient 

logP   Partition coefficient 

NPV   Negative predictive value 

PI   Precursor ion 

PLA-DA  Partial least squares discriminant analysis 

PSA   Polar surface area 

Qh   Hepatic bloodflow 

RM   Reactive metabolite 
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4 SUMMARY AND OUTLOOK 

The term drug-induced liver injury (DILI) describes adverse effects upon therapeutic 

drug treatment. They are relatively rare, affecting only 1 of 104 - 106 patients, and 

remain mostly unpredictable. Due to development of severe hepatotoxicity or death, 

drugs causing DILI display a high risk for patients and have been withdrawn from the 

market or severely restricted in use. For the pharmaceutical industry late stage attrition 

due to DILI represents a big burden stretching development time and effort and 

generating potential risk at high costs. A better characterization of the disease pattern 

and its contributing factors is needed. Currently experimental tools to build preclinical 

mitigation strategies are sparse, but urgently required to help establish an improved 

risk assessment. One possible mechanism of toxicity involves the formation of 

chemically reactive metabolites (RM) which interact with cellular macromolecules or 

signaling pathways. A direct link between RM formation and DILI remains speculative 

in most cases. Numerous studies of affected drugs demonstrate the plausible 

involvement of RM formation and subsequent covalent binding to proteins. Still, RMs 

are not detected for all DILI drugs and RMs do not lead to DILI in every case. Thus, a 

synergistic effect of multiple (unknown) mechanisms is supposed to result in DILI. 

The aim of this work was to review mechanisms leading to DILI, consisting of RM 

formation and other potentially contributing risk factors such as oxidative stress, cyto- 

or mitochondrial toxicity. Results were critically evaluated in light of the predictivity for 

DILI and comprise a gap analysis of current approaches. Biomarkers are proposed as 

complementary endpoints. Development and validation of analytical methods were 

conducted for in vitro experiments followed by application of tool compounds to 

demonstrate the correlation to in vivo studies. 

For the in-depth analysis of bioactivation data and its correlation to DILI, a validation 

set of drugs was selected. These included three groups of compounds, namely those 

with severe manifestation of DILI, drugs with reported DILI cases and drugs with a 

history of safe use. Different models were drafted to evaluate quantitative covalent 

binding as predictive parameter for DILI. The hypothesis was that the intrinsic property 

of in vitro covalent binding is not a descriptive parameter, as exposure of a toxic drug 

or metabolite in the body is determined by pharmacokinetic factors. E.g., low clearance 

drugs might result in experimental false negative results when they are not significantly 

activated in vitro. Thus, pharmacokinetic properties such as plasma clearance or 
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hepatic inlet concentration were incorporated into the correlation analysis. A 

quantitative description of the models was established by sensitivity, specificity, 

precision and negative predictive value. As previously reported, a correlation between 

covalent binding, the daily dose and DILI was evident. This correlation further 

improved when adjusted for intrinsic clearance and substituting dose with the 

theoretical liver inlet concentration. It is further suggested to use glutathione adduct 

formation as surrogate for covalent binding. This approach was able to separate safe 

and high risk DILI drugs when evaluated in context of dose and clearance. The 

correlation did not hold true for medium risk drugs where a big overlap to safe drugs 

was noticeable. This may be due to equivocal drug classification or the fact that 

additional factors contribute to the development of DILI. 

One of the risk factors contributing to DILI is the excessive overproduction of reactive 

oxygen species (ROS), i.e. oxidative stress. Oxidative stress can be measured e.g. by 

cellular damage, biomarkers of lipid peroxidation or secondary signals like gene 

expression. Isoprostanes were chosen as biomarkers for further investigation. They 

derive from radical-catalyzed peroxidation of arachidonic acid. Selected isomers of 

this heterogeneous group were reported as biomarkers of ROS in the past. An online 

separation chromatography coupled mass spectrometry method was developed to 

simultaneously detect various isoprostanes and prostaglandins with a low limit of 

quantification. Analytical method validation allowed application of these biomarkers to 

a proof of concept study in primary rat and human hepatocytes. Results indicate a 

significant time and dose dependent cellular response for different isoprostane 

isomers by treatment with ferric nitrilotriacetic acid, a chemical known to cause 

oxidative stress. Furthermore, the value of isoprostanes as biomarkers of cellular 

oxidative stress was shown for DILI model compounds. The anticancer agent 

flutamide is known to cause hepatotoxicity, most likely by formation of reactive 

metabolites and impairment of mitochondrial function. Formation of imino-quinone 

intermediates may initiate redox cycling and cause excessive generation of ROS. In 

order to attenuate drug-induced ROS, hepatocyte cell culture was supplemented with 

pro-oxidant substrates for the in situ generation of hydrogen peroxide. Treatment of 

rat and human hepatocytes with flutamide induced oxidative stress as indicated by a 

time and dose dependent increase of isoprostane concentration. Other lipid 

peroxidation products, namely the hydroxynonenal (HNE) derived conjugates, HNE 

mercapturic acid (MA) and its reduced form dihydroxynonene MA, were found to be 
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augmented upon treatment with flutamide as well. These were included into the 

biomarker panel. Under the test conditions no cytotoxicity was present, emphasizing 

the potential of lipid peroxidation products to early detect upcoming liver damage in in 

vitro systems. The described biomarkers could be translated between species from 

rat to human in hepatocytes. Further, results in Fischer F344 rats revealed their 

applicability to in vivo and enabled their classification relative to other cellular oxidative 

stress markers. In rats, the antioxidant response pathway was investigated via 

quantitative determination of mRNA for cytoprotective enzymes. In rat hepatocytes 

and rat liver increased RNA expression levels for glutathione-S-transferase, heme 

oxygenase, and NADPH:quinone oxidoreductase were detected. This suggests 

adaptation of cell homeostasis upon oxidative stress induced damage prior to overt 

cellular or organ damage. It can be assumed that pro-oxidant processes result in 

pathophysiological changes contributing to manifestation of DILI. Thus, the 

characterization of bioactivation potentials and oxidative stress conditions as 

contributing factor to DILI may be appropriate to characterize DILI risk. The 

development of new analytical tools using state of the art mass spectrometry enabled 

quantitative biomarker analysis and glutathione adduct screening from the same 

sample. 

In conclusion, this work describes the advances and limitations of RM characterization 

as risk for DILI. It highlights the value of characterizing danger signals, e.g. induced 

by oxidative stress. Specifically, biomarkers derived from lipid peroxidation and cell 

signal analysis may support preclinical risk assessment. It further stresses the 

importance of integrated risk mitigation strategies that are able to capture a variety of 

relevant drug properties and the mechanism by which they modulate toxicity. It must 

be also taken into account that patient related risk factors are likely to play a major 

role in development of DILI. Therefore, it is necessary to judge elucidated pathways 

on their potential to cause inter-individual differences. To minimize the general risk of 

adverse effects including DILI, the predominant goal in drug discovery must be the 

optimization of pharmacokinetic drug properties to yield low dose and selective drugs. 
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5 ZUSAMMENFASSUNG UND AUSBLICK 

Der Begriff arzneimittelinduzierter Leberschaden (engl.: drug-induced liver injury [DILI]) 

beschreibt adverse Effekte, die durch Arzneimittelanwendung in therapeutischen 

Dosen ausgelöst werden. Diese treten relativ selten, bei nur 1 von 104 - 106 Patienten, 

auf und sind mehrheitlich unvorhersehbar. Aufgrund der Entwicklung 

schwerwiegender Hepatotoxizität und Letalität stellen DILI-auslösende Arzneimittel 

ein hohes Risiko für Patienten dar und müssen vom Markt genommen oder gravierend 

anwendungsbeschränkt werden. Ein Entwicklungsstopp in späten Phasen der 

klinischen Arzneimittelprüfung aufgrund von DILI bedeutet für die pharmazeutische 

Industrie eine große Belastung, die die Zeit und den Aufwand der Entwicklung 

vergrößert und potenzielles Risiko verbunden mit hohen Kosten generiert. Aus diesen 

Gründen ist eine bessere Charakterisierung des Krankheits-bildes und seiner 

Einflussfaktoren notwendig. Aktuell sind experimentelle Hilfsmittel zum Aufbau 

präklinischer Strategien zur Risikominimierung rar, jedoch zur Etablierung einer 

besseren Risikoabschätzung dringend erforderlich. Ein möglicher Mechanismus ist 

die Bildung von chemisch reaktiven Metaboliten (RM), die mit zellulären 

Makromolekülen oder Signalwegen interagieren können. Allerdings ist ein direkter 

Zusammenhang zwischen RM Bildung und DILI in den meisten Fällen bisher 

spekulativ. Zahlreiche Studien mit betroffenen Arzneistoffen zeigen die mögliche 

Beteiligung von RM und der daraus resultierenden kovalenten Bindung an Proteine. 

Dennoch sind RM nicht für alle DILI-Fälle nachgewiesen und es gibt Arzneistoffe, in 

denen RM nicht zu DILI führen. Daher wird ein synergistischer Effekt aus vielen 

(unbekannten) Mechanismen als Auslöser für DILI vermutet. 

Ziel dieser Arbeit war es, Mechanismen, die zu DILI führen, zu überprüfen; hierzu 

gehörten sowohl die Bildung von RM als auch andere potenzielle Risikofaktoren wie 

oxidativer Stress, zelluläre oder mitochondriale Toxizität. Ergebnisse wurden in 

Hinblick auf Prädiktivität für DILI bewertet und stellen eine sog. GAP-Analyse (engl. 

gap = Lücke) der bestehenden Ansätze dar. Hierfür werden Biomarker als 

komplementäre Endpunkte vorgeschlagen. Für diese wurden analytischen Methoden 

für in vitro Experimente entwickelt und validiert, die daraufhin für Modellsubstanzen 

angewendet und zu in vivo Studien korreliert wurden.  

Für die detaillierte Analyse von Bioaktivierungsdaten und ihrer Korrelation zu DILI 

wurde ein Validierungssatz von Substanzen ausgewählt. Dieser beinhaltete drei 
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Gruppen: Substanzen mit schwerwiegender DILI-Form, Substanzen, für mit DILI-

Fallberichte existieren und solche, die in Bezug auf DILI sicher angewendet werden 

können. Um kovalente Binding quantitativ als prädiktiven Parameter für DILI zu 

beurteilen,  wurden verschiedene Modelle entworfen. Diese basierten auf der 

Hypothese, dass die intrinsische Fähigkeit zu kovalenter Bindung in vitro als 

deskriptiver Parameter nicht ausreicht, da die Exposition einer toxischen Substanz 

oder ihres Metaboliten im Körper durch ihre Pharmakokinetik bestimmt wird. Zum 

Beispiel können Substanzen mit niedriger Stoffwechselrate zu einem falsch negativen 

Ergebnis führen, wenn sie in vitro nicht aktiviert werden. Daher wurden 

pharmakokinetische Eigenschaften wie Plasmaelimination oder hepatische 

Einströmungskonzentration für die Korrelationsanalyse einbezogen. Quantitativ 

wurden die Modelle durch Sensitivität, Spezifität, Präzision und negativen 

Vorhersagewert beschrieben. Wie im Vorfeld berichtet, war ein Zusammenhang 

zwischen kovalenter Bindung, der Dosis und DILI vorhanden. Die Korrelation wurde 

besser, wenn kovalente Bindung gegenüber der intrinsischen Clearance normalisiert 

oder die Dosis durch eine theoretische Portalvenenkonzentration ersetzt wurde. 

Weiterhin kann die Bildung von Glutathionaddukten als Surrogat für kovalente 

Bindung vorgeschlagen werden. Mit diesem Ansatz war es möglich, sichere 

Arzneistoffe von solchen der Hochrisikiogruppe zu trennen, wenn er im Kontext von 

Dosis und Clearance betrachtet wurde. Für die Substanzen der mittleren 

Risikokategorie galt dieser Zusammenhang nicht; hier war eine große 

Überschneidung zu den sicheren Substanzen vorhanden. Die Ursache hierfür könnte 

einerseits die Unsicherheit in der Klassenzuordnung sein oder die Tatsache, dass 

zusätzliche Faktoren bei der Entwicklung von DILI mitwirken. 

Einer der Risikofaktoren, die zu DILI beitragen, ist die exzessive Überproduktion von 

reaktiven Sauerstoffspezies (engl. reactive oxygen species [ROS]), also oxidativer 

Stress. Oxidativer Stress kann z.B. durch Zellschäden, Lipidperoxidation oder 

sekundäre Signale wie Genexpression gemessen werden. Für weitere 

Untersuchungen wurden Isoprostane als Biomarker ausgewählt. Diese stammen aus 

der radikalkatalysierten Peroxidation von Arachidonsäure. Einzelne Isomere dieser 

heterogenen Gruppe wurden schon in der Vergangenheit als Biomarker für ROS 

beschrieben. Es wurde eine kombinierte Methode für Festphasenextraktion und 

chromatographische Trennung mit massenspektrometrischer Detektion  entwickelt, 

die die gleichzeitige Analyse von diversen Isoprostanen und Prostaglandinen bei 
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niedrigem Quantifizierungslimit erlaubte. Die Validierung der Analytik ermöglichte in 

der Folge die Anwendung der Biomarker in einer Machbarkeitsstudie mit primären 

humanen - und Rattenhepatozyten. Die Ergebnisse mehrerer Isoprostanisomere 

zeigen eine signifikante zeit- und dosisabhängige zelluläre Reaktion auf Behandlung 

mit Eisennitrilotriazetat, einer Chemikalie, die oxidativen Stress auslöst. Weiterhin 

wurde auch für DILI Modellsubstanzen die Bedeutung von Isoprostanen als Biomarker 

für zellulären oxidativen Stress gezeigt. Das Krebstherapeutikum Flutamid ist dafür 

bekannt, Hepatotoxizität auszulösen, wahrscheinlich durch die Bildung von RM und 

Schädigung der mitochondrialen Funktion. Die Bildung von 

Iminochinonzwischenstufen könnte Redox-Cycling initiieren und dadurch exzessive 

Generierung von ROS triggern. Um die Hepatozyten auf den Effekt 

arzneistoffinduzierter ROS zu sensibilisieren, wurde die Zellkultur mit pro-oxidativen 

Substraten für die in situ Bildung von Wasserstoffperoxid ergänzt. Durch die 

Flutamidbehandlung von Ratten- und humanen Hepatozyten wurde oxidativer Stress 

ausgelöst, erkennbar durch einen zeit- und dosisabhängigen Anstieg der 

Isoprostankonzentrationen. Andere Lipidperoxidationsprodukte, namentlich die 

Hydroxynonenalderivate (HNE) HNE-Merkaptursäure (MA) und ihr reduziertes 

Analogon Dihydroxynonen-MA, zeigten ebenfalls eine Konzentrationserhöhung durch 

Flutamidbehandlung. Daher wurden sie zum Biomarkerset hinzugefügt. Unter den 

Testbedingungen konnte keine Zytotoxizität festgestellt werden, eine Tatsache, die 

das Potential der Lipidperoxidationsprodukte, entstehende Leberschäden in in vitro 

Systemen früh zu erkennen, hervorhebt. Die beschriebenen Biomarker zeigten 

Übertragbarkeit zwischen den Spezies Ratte und Human in Hepatozyten. Des 

Weiteren bezeugten Ergebnisse in Fischer F344 Ratten deren Anwendbarkeit in vivo 

und ermöglichten eine Einordnung relativ zu anderen zellulären Markern für oxidativen 

Stress. In Ratten wurde die antioxidative Reaktion durch quantitative Bestimmung von 

mRNA Expressionsleveln für zytoprotektive Enzyme untersucht. Hepatozyten und 

Leberproben von Ratten zeigten eine erhöhte Expression der RNA für Glutathion-S-

Transferasen, Hämoxygenasen und NADPH:Chinon Oxido-reduktasen. Dieses deutet 

auf eine Adaption der Zellhomöostase an Schäden induziert durch oxidativen Stress 

hin, die sich bemerkbar macht, bevor ein offensichtlicher Zell- oder Organschaden 

auftritt. Daraus kann geschlossen werden, dass prooxidative Prozesse zu 

pathophysiologischen Veränderungen führen, welche zur Manifestierung von DILI 

beitragen. Deswegen ist die Charakterisierung von Bioaktivierungspotential und 
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oxidativem Stress als Beitrag zu DILI für eine Risikobewertung sinnvoll. Die 

Entwicklung von neuen analytischen Verfahren mit Massenspektrometern aktueller 

Technik ermöglicht zum Beispiel quantitative Biomarkeranalyse und Messung von 

Glutathionaddukten aus derselben Probe. 

Zusammengefasst beschreibt diese Arbeit die Fortschritte und Limitationen der 

Charakterisierung von RM als Risikofaktor für DILI. Sie stellt den Wert der Analyse 

von Warnsignalen, die z.B. durch oxidativen Stress ausgelöst werden können, heraus. 

Besonders Biomarker, die aus der Peroxidation von Lipiden hervorgehen, und die 

Analyse von Zellsignalwegen können die präklinische Risikobewertung unterstützen. 

Die Arbeit betont weiterhin die Bedeutung von integrativen Strategien zur 

Risikominimierung, die in der Lage sind, viele relevante Substanzeigenschaften zu 

erfassen und damit auch die Mechanismen, durch die sie Toxizität modulieren. Es 

muss jedoch auch berücksichtigt werden, dass wahrscheinlich patientenabhängige 

Risikofaktoren eine bedeutende Rolle in der Entwicklung von DILI spielen. Daher ist 

es notwendig, beteiligte Mechanismen in Hinblick auf ihr Potential, interindividuelle 

Unterschiede zu verursachen, zu bewerten. Um das generelle Risiko für adverse 

Effekte (einschließlich DILI) zu reduzieren, muss es das erste Ziel der 

Arzneistoffentwicklung sein, niedrig dosierte und selektive Substanzen durch die 

Optimierung pharmakokinetischer Eigenschaften zu erlangen. 


