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Summary 

 

Neuronal activity is one of the most fascinating and complex properties of living 

cells, in which a quickly dissolving signal, or a pattern of them, is used to transfer a 

tremendous amount of information at any given time. This ensemble of signals must 

be fine tuned through the coupling of this activity patterns with a cell memory system 

that can ensure neuronal homeostasis and synaptic plasticity in response to mutating 

stimuli. Epigenetic processes provide an efficient way to transform activity dependent 

neuronal information into lasting effects on gene expression. Among others, the 

modification of histones at conserved critical residues is a well described epigenetic 

mechanism. Polycomb group proteins are some of the major cellular machineries 

mediating such regulation, and their function has been extensively studied during 

early phases of development. Nevertheless, their function in post-mitotic neurons is 

less understood. The broad aim of the present work is to investigate Polycomb protein 

function in the context of specialized neuronal functions, such as migration and 

proper establishment of inhibitory synapses. We therefore focused our attention on 

two proteins, Ezh2 (a Polycomb Repressive complex 2 subunit) and Scml2 (a 

Polycomb Repressive complex 1 variant member).  

Epilepsy represents one of the most prevalent and detrimental neurological diseases, 

characterized by a disregulation of neuronal activity resulting into unpredictable 

synchronized waves, or seizures, spreading throughout the central nervous system. 

Evidences from both animal models and from human brain tissue have started to 

unveil that epilepsy and epileptogenesis can be associated with epigenetic changes. 

Aim of this work is to describe a novel epileptic syndrome, that opens a door to a new 

possible mechanism at the basis of activity disregulation in the brain. SCML2 is a 

poorly studied gene, which translates into a member of the Polycomb Repressive 

Complex 1, a master regulator of gene repression and chromatin compaction. By 

generating mutant mice lacking the SCML2 functional protein, we discovered that its 

function is important to ensure proper inhibitory inputs onto excitatory neurons. A 

similar mechanism may be acting in the cortex as well as in the spinal cord, leading to 
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hyperexcitability and the development of synchronous activity upon challenge. Our 

analysis provides the first case of a Polycomb protein involved in the pathogenesis of  

human epilepsy and shed some light into a possible whole new field of investigation, 

where a deeper understanding of such epigenetic processes will likely lead to exciting 

new discoveries and possible new treatment options for a highly unmet medical need. 
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Chapter 1 

Introduction 

1.1	
  Epigenetic	
  and	
  transcriptional	
  regulation	
  in	
  the	
  brain	
  

Mammalian transcription is a highly complex process, which controls fundamental 

aspects of cell diversity and organismal adaptation. Neurons, in particular, exhibit 

remarkable specialization and plasticity, which is mediated, in part, by activity 

dependent changes in gene expression1. One method to control activity-dependent 

gene expression is modulating the accessibility of genes to the transcriptional 

machinery via alterations in chromatin structure, the mechanisms of which are still 

poorly understood2. The exploration of brain epigenomes, which consist of various 

types of DNA methylation and covalent histone modifications, as well as high order 

chromatin structures and topologically organized domains, is providing new and 

unprecedented insights into the mechanisms of neural development, neurological 

disease and aging3. Chromatin regulators contribute to dynamic changes in gene 

expression but also maintain cell fates by providing stable, heritable states of gene 

expression. Many chromatin regulators have been demonstrated to be essential for 

developmental processes, including the development of the brain4.  

Several major events and processes must be precisely orchestrated during normal 

brain development and failure to properly regulate these processes, due to a genetic or 

environmental insult, can result in cognitive deficits and other features of 

neurodevelopmental disorders. A consensus is emerging on the role of chromatin 

regulatory mechanisms as key players in several of the major events during neural 

development. In this context, the repressive function mediated by the Polycomb 

protein family, forming functional complexes named Polycomb Repressive 
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Complexes (PRCs), is a well-established necessary function that enables embryonic 

mouse development as well as maintenance of stem cell identity and execution of 

differentiation programs. At the present time, several studies have described neuronal 

specific functions of Polycomb group proteins at the early stages of life, and an 

increasing body of literature begin to unveil their specialized role during adulthood in 

complex processes, such as puberty5 or synaptic plasticity6.   

 

1.2	
  Basic	
  mechanisms	
  of	
  epigenetic	
  regulation	
  by	
  Polycomb	
  

A fast increasing body of evidences point at a crucial role for Polycomb Group 

Proteins in a wide variety of molecular mechanisms, ultimately impacting the vast 

majority of physiological processes in health and disease.   

Polycomb Group Proteins have been classically characterized as epigenetic 

repressors, acting through their biochemical activity on histone proteins. Polycomb 

proteins have been divided in two major Repressive Complexes, the Polycomb 

Repressive Complex 1 (PRC1) and the Polycomb Repressive Complex 2 (PRC2). 

PRCs are etero-multimeric protein complexes with a core cathalitical component and 

several variable accessory proteins. A key feature of these complexes is that their 

gene targeting depends on previously established chromatin states at that locus7. In 

particular PRCs catalyze the chemical modification of histone tails at different 

residues, and these modifications, in turn, are fundamental for subsequent binding of 

downstream effectors or simply modify the overall chemical properties of chromatin, 

therefore being key to its compaction and accessibility. The two major groups of PcG 

protein complexes exhibit distinct enzymatic activities: Polycomb repressive complex 

2 (PRC2) catalyses di- and tri-methylation of histone H3 at lysine 27 (H3K27me2/3), 

and Polycomb repressive complex 1 (PRC1) catalyses monoubiquitination of histone 
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H2A at lysine 119 (H2AK119ub1) and/or compacts chromatin. 

Polycomb repressive complex 1 (PRC1) has a core of four proteins. In Drosophila 

melanogaster, these components are: Polycomb (Pc), with trimethylated histone H3 

lysine 27 (H3K27me3) binding activity, Polyhomeotic (Ph), Sex combs extra (Sce) 

and Posterior sex combs (Psc). PcG complexes are generally simpler in Drosophila 

than in mammalian cells, where alternate subunit compositions create larger families 

of related PRC1-type and PRC2-type complexes. There are at least six distinct groups 

of mammalian PRC1 complexes, PRC1.1–1.6, each comprising one of six Polycomb 

group RING fingers (PCGFs), and the E3 ligase RING1A/B8.  

 

Figure 1. Schematic representation of the subunit composition of the mammalian 
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Polycomb Repressive Complex (PRC) 1 and 2.  

 

This complexity presents an ongoing challenge to sort out precisely which 

biochemical functions depend upon which subunits and family members. The same 

scenario is true for the PRC2, where the core PRC2 complex, which is conserved 

from Drosophila to mammals, comprises four components: EZH1/2, SUZ12, EED 

and RbAp46/48 (also known as RBBP7/4). Notably, the PRC2 components, in 

contrast to those of PRC1, underwent little duplication in mammals, with vertebrates 

containing two copies of enhancer of zeste homologue, EZH1 and EZH2. They target 

the same genes and are thought to contribute to the repression of the same pathway9. 

In addition to the four core members, other proteins transiently interact with PRC2 

(for example, DNMTs, HDAC1, SIRT1and SCML2), but their effect on PRC2 

function is unclear and needs further investigation. 

Nevertheless, certain core PcG complex activities, conserved from flies to humans, 

have been defined (as Sce in Drosophila, see table 1). Studies conducted in flies 

provide evidences that PRC1 basic molecular mechanism of gene repression, is more 

complex and variable than what proposed in the classical model of H2AK119ub1 

deposition. In fact, it has been shown that repression does not always require H2A 

ubiquitylation. The repressive activity associated with PRC1 is therefore far more 

heterogeneous than expected. Moreover, the canonical PRC1 multimer can be 

partially disassembled without necessarily losing its repressive function as it is 

demonstrated by the fact that the repression of some genes occurs in the absence of 

the Pc component, which binds to trimethylated H3K27 (H3K27me3)10,11. This 

evidence also questions the classical vision of the two complexes, PRC1 and PRC2 
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working together and opens the possibility of many new targets where the several 

differentially assembled complexes may exert their exclusive and specific H3K27me3 

independent gene regulation12.  

As mentioned, the variable components present in mammalian genomes confer to 

these complexes a great flexibility in carrying out their function onto differential sets 

of target genes within many different cell types and at different times of 

development7. 

 

Table 1. PRC1 and PRC2 core complex components in Drosophila melanogaster 

and humans (from Schwartz and Pirrotta, Nature Reviews Genetics, 2013). 

 

The understanding of how the recruitment of Polycomb is carried out to target 

specific genomic sites is of primary importance to understand its several functions. In 

D. melanogaster, recruitment happens due to direct DNA – Protein interactions at the 

level of discrete and defined sites called Polycomb Response Elements (PREs). 

Intense investigation has failed to discover a similar mechanism in vertebrates, where 
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PREs where not found. In contrast, the vertebrate Polycomb complex seems to be 

directed to target genes by locus-specific interactions or by a more generalized 

targeting mechanism13. Nevertheless. Only few examples provide an unbiased 

evidence that a locus-specific mechanism, based on transcription factor’s DNA 

binding or on long-non-coding RNA molecules, really exist (ie. E2F, MGA, MAX, 

JARID2, Xist, etc.) 14-17. The current model seems to consider this specific interactions 

as a very specialized function, whereas more general mechanisms of targeting play a 

role in broader genomic domains. Indeed, in vertebrates seems that Polycomb 

occupancy very often occurs at CpG rich regions, so called CpG islands (CGIs), 

which are usually 1 to 2 kb long18. Polycomb recruitment at CGIs has been 

extensively investigated in regard to KDM2B-containing PRC1 complexes, even 

though several observations suggest that other alternative targeting mechanisms are 

also in place. Recent advances are also questioning the hierarchical model by which 

PRC1 complexes would be recruited to chromatin in a PRC2 dependent manner13,19. In 

fact, Blackledge and colleagues have reported that several subtypes of variant PRC1 

complexes, artificially targeted to engineered genomic locations, were able to recruit 

PRC2 complexes, leading to new H3K27me3 deposition in a H2AK119ub1-

dependent mechanism in vivo. In conclusion, our understanding of Polycomb function 

is rapidly evolving to a very complex and sophisticated system of several molecular 

mechanisms that specific cell types in different conditions use to achieve fine tuned 

gene regulation. Non canonical complexes generate a wide variety of functions that 

may well be used as alternative strategies for a coordinated regulation of different 

gene pools.  



 12 

 

Figure 2. Chromatin regulators have essential roles throughout neural 

development. The fundamental processes of neural development are illustrated. 

Chromatin regulators discussed in this review are noted under the processes in which 

they have important roles. The key indicates whether a particular regulator promotes 

or inhibits each neurodevelopmental process. a | A timeline of human neural 

development. b | The development of the vertebrate nervous system begins during 

gastrulation. In the early embryo, neural progenitor cells undergo symmetrical 

proliferative division. c | With the expansion of the number of cell types and the size 
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of the nervous system, the cell bodies of both neural progenitors and resulting 

postmitotic neurons migrate away from their birthplace to appropriate regions in 

response to environmental cues. d Neural progenitors asymmetrically divide to give 

rise to neurons, glial cells or intermediate progenitors. Neural differentiation 

generates enormous numbers of diverse cell types in the nervous system. e After 

migrating neurons have reached their destinations, they extend axonal and dendritic 

processes, which are guided by intricate cellular interactions and guidance molecules 

to appropriate target regions, where they further elaborate processes to cover 

receptive fields and innervate targets. f Mature synapses are formed between neurons 

that are connected to each other. Synaptogenesis begins during embryonic 

development, but subsequent synaptic stabilization and plasticity occur throughout 

life and are adaptive to learning experiences and other activity-dependent 

environmental inputs. g Active apoptosis and local degenerative pruning events 

maintain and refine established neuronal morphologies and neural circuit assembly. 

NPC, neural progenitor cell. (from Ronan et al., Nature Reviews Genetics, 2013)  

 

1.3	
  Epigenetic	
  mutations	
  and	
  human	
  brain	
  pathologies	
  

Next Generation Sequencing technologies and new analytical tools are driving at a 

fast pace the transition to a new way of moving from the leads offered by human 

pathologies to the generation and study of the causal links that current model 

organisms offer. Thanks to these advancements, the roles of chromatin and chromatin 

remodelers in neural development are rapidly emerging from human disease studies. 

4. In fact, several pathological brain conditions and psychiatric disorders have been 

linked to mutated chromatin regulators such as autism spectrum disorder (ASD) and 

schizophrenia, not to mention the many other complex syndroms. Tables 13 and 24 
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provide a good example of the diversity of epigenetic regulators involved in such 

disorders. These lists include embryonic defects, multiorgan disorders and 

neurological syndromes that show symptom onset at very different stages of life. This 

observation implies that, either brain-specific, neuron-specific or even neuronal 

subpopulation-specific epigenetic mechanisms function, is crucial for proper brain 

function at post developmental stages and/or the disruption of such mechanisms early 

in an individual’s life leads to pathologic manifestation only many years later. This 

may be due to the long lasting intrinsic feature of many epigenetic modifications, 

such as DNA methylation or high order permissive or repressive chromatin domains. 

Once in place they may well be responsible for long lasting effect on proper gene 

expression and regulation in the nervous system. DNA methylation has been long 

studied in the context of some neurodevelopmental syndromes, the most relevant 

example being the Rett Syndrome, caused by mutations in the gene MeCP220.  It is 

beyond the scope of the present work to review the broad literature about the 

involvement of defective DNA methylation in neural developmental defects, 

nevertheless it represents the first example of the involvement of epigenetic regulation 

in the etiopathology of a cognitive disease.  

If we consider instead the role of histone covalent modifications in 

neurodevelopmental syndromes, we see examples of a early childhood diseases, such 

as Coffin-Lowry syndrome21, or neurodegeneration and regression beginning after 

adolescence (as in Kleefstra syndrome)22 or other examples occurring very in life, as 

hereditary sensory and autonomic neuropathy type 1, (HSAN1) with early-onset 

dementia3.  It is indeed only recently that evidences accumulated about the 

remarkable plasticity that chromatin epigenetic states retain even long after the exit of 

the neuronal cells from the cell cycle23,24. This observation clearly explains why 
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mutations in chromantin regulators that are redundant and/or dispensable for early 

development may acquire unique and specific functions in the adult nervous system, 

and their mutations selectively affect only some neuronal populations or specific 

circuits. Even though it is believed that all the epigenetic modifications are reversible, 

available data show an accumulation of repressive epigenetic marks in the aging 

brain. This phenomenon is accompanied by the progressive downregulation of 

neuronal genes25,26. It is therefore not hard to imagine a role for Polycomb repressive 

complexes during this process, which we just begin to understand. In fact, an age 

dependent modulation of epigenetic state has been reported also with respect to 

histone covalent modifications, such as H3K4me3 and the PRC2 mark H3K27me327. 

Importantly, global levels of repressive Polycomb mediated histone marks did not 

correlate with transcription, but were nonetheless increased in the aging brain27 as 

well as in another model of accelerated brain senescence with cognitive 

abnormalities(Chun Mei Wang et al.). The dissection of epigenetically driven 

molecular cascades involving the role of key histone modifiers in post mitotic neurons 

has shed light on some of their notable function. As key events in the life of a post 

mitotic neuron, we will consider its migration from the birthplace to its final location, 

as well as the establishment of proper synaptic connectivity in order to form 

functional circuits. Mutations affecting both mechanisms have been linked to several 

neurological and psychiatric disorders. Interestingly, inactivation of the chromatin 

remodeler ATRX in the mouse was found responsible of a striking increase in 

neuronal apoptosis during early stages of corticogenesis28. In human patients, 

mutations of ATRX leads to severe cognitive impairment and autism. Nevertheless, 

the molecular cascade that link, on one side, ATRX disfunctions in the nucleus to, on 

the other side, the observed neurological phenotypes, remains to be elucidated3. The 



 16 

problem exemplified by ATRX is common to several of the chromatin regulators 

found mutated in other neurodevelopmental disorders (Table 1 and Table 2). It is now 

evident the lack of understanding of the pathways that, downstream of epigenetic 

regulators, control in a cell specific manner the connectivity and function of sub-

circuit elements which ultimately represent the causal knot of the underlying 

pathology. Interestingly, mutations of several chromatin regulators playing a role in a 

neurodevelopmental context are also involved in human cancer. BRG and BRM, in 

example, two highly homologous members of the BAF complex, are found frequently mutated 

in different tumors, such as medulloblastoma, which is a brain cancer as well as in 

neurodevelopmental syndromes (reviewed in ref. 17). It seems that BRM and BRG, even 

though mostly found co-expressed in the same tissues and cell types, may carry out 

different functions in neural development, since similar mutations cause different 

disorders. Moreover, mutations in EZH2, a member of the PRC2, identified in 

patients with Weaver’s syndrome, a disease characterized by general overgrowth and 

several neurological abnormalities, such as speech delay, seizures, mental retardation, 

hypotonia or hypertonia, and behavioral problems, are, in other cases, leading to 

cancer. Although EZH1 and EZH2 are thought to be highly redundant, up to date no 

disease have been found caused by EZH1 mutations, underlying once again the cell 

specific functions that likely lay behind pathological mutations of these epigenetic 

regulators. The striking correlation, exemplified by EZH2 or by several members of 

the BAF complex, between cancers and neurological diseases once more points at the 

importance of the characterization of the common pathways leading to very diverse 

diseases. 

The study of SCML2 (see Chapter 3), a component of variant PRC1 complexes, is 

well engraved in this paradigm. In fact, even though poorly studied, SCML2 has been 
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implicated, together with other MBT (Malignant Brain Tumor) containing 

homologues proteins, in medulloblastoma29. Nevertheless, its function was only 

investigated in the context of spermatogenesis, leaving unexplained the possible role 

that SCML2 may be playing in the brain.  

Despite observations of dynamic PcG activity in postmitotic neurons, few studies 

have addressed the role of PcG-mediated repression in neurological disease, and none 

in epilepsy. Moreover, several mutations occurring in chromatin regulators leads to 

Autism Spectrum Disorders (see Table 1 and Table 2), which are well known to be 

often co-morbid with seizures and epilepsy. In the present work, we aim at shading 

some light into SCML2 function, starting from two rare mutations that we have found 

by whole-exome sequencing (described in Chapter 3) in severely affected patients 

with a novel epileptic syndrome. 

 

 

Table 2. Monogenic brain disorders associated with DNA methylation and 

histone-modification defects. (from Jakovcevski and Akbarian, Nature Medicine, 

2012). 
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Table 3. Chromatin regulators mutated in human mental disorders. (from Ronan 

et al., Nature Reviews Genetics, 2013). 
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1.4	
  Genetic	
  and	
  epigenetic	
  basis	
  of	
  epileptic	
  syndromes	
  

 

Epileptic encephalopathies are a group of partially overlapping neurological 

syndromes where patients are affected by psychomotor dysfunctions and severe 

clinical epilepsy, often with infantile spasms30. After for long time being considered a 

non genetic disease, it is now known that genetic mutations are the basis of most 

neurodevelopmental syndromes. Nevertheless an increased effort should be made to 

increase the number of studies, and samples within studies, in order to achieve a 

useful understanding of the pathogenesis of epileptic syndromes leading to possible 

cures. To complicate this effort, despite the steep advancement of molecular biology 

techniques, two main obstacles remain. The first one is the etherogeneity of human 

conditions characterized by the development of seizures and epilepsy, and the second 

one is the partial penetrance that many mutations display. De novo mutations often 

represent the cause of neurodevelopmental disorders, and offer the possibility for 

researchers to have an entry point into the investigation of molecular mechanisms of 

the disease.  On the technical side, an additional hindrance is represented by the 

natural occurrence of de novo mutations also in healthy individual30. Only in recent 

years, our understanding has taken a leap forward thanks to novel research on 

mechanisms that regulate neuronal excitability or modulate circuit activity. The 

molecular deficiencies contributing to neuronal dysfunction in epilepsy are now 

beginning to be clarified but it is still missing a general approach to the study of 

altered function at the circuit level and a systemic investigation of the dysfunctional 

molecular pathways, likely arising in the cell nucleus, leading to the generation of 

seizures. Moreover, a big open question is how increased synchrony in local 

microcircuits, often undetectable, following an initial sensory input or an insult then is 
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able to travel throughout the cortex and reach distal regions of the brain31. A plethora 

of studies have shown the basic principles of seizures generation, as either caused by 

mechanisms that ultimately activate synaptic and voltage-gated excitatory currents, 

or, by contrast, down regulate synaptic and voltage-gated inhibitory currents. Not 

surprisingly, such impairments of the inhibitory/excitatory balance lead to seizures. 

The reality nevertheless show us that epilepsies are not characterized by permanent 

states of neuronal excitation but rather by a constant increased probability for a 

seizure to take place32. In fact, with the exception of the most severe cases, in the 

great majority of epileptic patients seizures represent less than 1% of the total nervous 

system activity33. The needed expansion of our theories describing epileptogenesys 

have therefore to take into account that such network imbalances are usually 

compensated for and not present at steady state, neither in animal models nor in the 

majority of epileptic patients. Although probably not causal for ictogenesis, the steady 

state of a brain’s circuit might be a permissive factor that increase seizure probability, 

as exemplified by diseases such as autosomal dominant nocturnal frontal lobe 

epilepsy34 or catamenial epilepsy35. If instead we have a look at the molecular level, 

mutations in both pre- and postsynaptic proteins indeed support the model in which an 

imbalance of inhibition versus excitation deriving from misregulated synaptic 

plasticity may lead to the transition from high, but physiological, levels of neural 

activity into epileptic activity. This model of synaptically driven activity-dependent 

disinhibition would have a similar effect of that of a dysregulation of ionic 

concentrations in the epileptic neurons, in fact supported by several studies reporting 

human epilepsies due to mutations affecting calcium, potassium, protons and/or 

chloride ionic gradients36,37. It is believed that in healthy people the activity-dependent 

modification of synapses (short term plasticity) or the dysregulation of ion gradients 
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never generate a self-reinforcing, positive feedback cycle of increased activity, 

disinhibition and consequent further increases in activity, therefore not resulting in 

seizures or ultimately, epilepsy.  

	
  

1.5	
  Pathways	
  to	
  epileptic	
  syndromes	
  

 

If activity dependent shifts in short term synaptic plasticity may underlie the 

generation of seizures, it still needs to be discussed the case of abnormal excitation 

that may, alone or in combination with the aforementioned mechanisms, contribute to 

the epileptic phenotypes. With respect to the molecular mechanisms possibly leading 

to iperexcitability, data are available reporting a number of mutations in the PI3K, 

IGF and mTOR pathway (Fig.3). These mutations associate with complex brain 

malformations that usually come with epilepsy. Upregulation of this pathway may 

cause an excessive synaptic connectivity leading to epilepsy38. Similarly, several 

pathways controlling the proper specification and migration of inhibitory interneurons 

have been show to play a fundamental role in keeping excitation in check. Indeed, as 

it is the case for mutants in ARX, or aristaless related homeobox gene, failure to reach 

the final destination after migration and finally properly integrating into newly formed 

neural circuits, is crucial for keeping a correct inhibitory/excitatory balance39. In other 

cases, after proper migration, a specific subclass of inhibitory interneurons was found 

to be unable to carry out its function by properly inhibiting its target cells. An 

example of this kind of disorders affecting the class of Parvalbumin Interneurons is 

represented by mutations in SCN1A40. Proper inhibition is established by specialized 

neurons that, after being generated in the ganglionic eminences at prenatal stages of 

development, migrate to their final location and integrate themselves into newly 
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forming circuits. Different subclasses of inhibitory interneurons are known to target 

different excitatory neurons on either the cell soma, the axonal tract of the dendrites, 

in this way assuring a fine regulation of neural transmission.  

  

Fig. 3 Schematic representation of the mTOR and thr REST pathways 

Ultimately, after proper specification, migration and connectivity, the neurons must 

retain the functional property of assuring a response to external excitatory and 

inhibitory stimuli by modulating several cellular parameters, such as neurotransmitter 

synthesis, vesicle trafficking, synapse stabilization or elimination etc. In this process, 

called homeostasis, the neuronal cell has to put in place feedback and signaling 

mechanisms in order to be able to fuction in a constantly changing network. 

Conditions that generate an excess of neuronal activity are thought to lead to 
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downregulation of excitatory current; on the other side an upregulation of inhibitory 

currents will occur under circumstances of persistent reduced excitation41. Several 

intracellular pathways have been shown to contribute to neuronal homeostasis. Aim 

of this introduction is to provide an overview of the known mechanisms that will 

allow for a deeper understanding of the following chapters. Attention will be therefore 

given to pathways that have discovered a possible epigenetic link in the context of 

neuronal homeostasis in an activity dependent manner. At the present time, two 

pathways have directly or indirectly been implicated in the epigenetic adaptive 

response of neuronal cells to prolonged excitation. The first pathway involving 

epigenetic regulators clearly playing a role in epileptogenesys is involving the 

repressor element 1 (RE1)- silencing transcription factor (REST; also known as 

neuron-restrictive silencer factor (NRSF). REST negatively regulates the expression 

of many neuronal genes in non- neuronal cells and neuronal precursor cells. It also 

regulates neuronal gene expression in mature neurons2. REST binds to the co-

repressors CoREST and mSin3A, which in turn recruit histone deacetylase 1 

(HDAC1) and HDAC2. By regulating chromatin structure these deacetylases repress 

the expression of hundreds of neuronal genes. About 2,000 genes have REST-binding 

motifs, nevertheless REST could potentially bind many more sites, including ~10% of 

all neuronally expressed genes, some of which encode proteins that are fundamental 

regulators of neuronal excitability and have been independently associated to epileptic 

mechanisms. These genes include several key components of the inhibitory post-

synaptic structure, such as type A GABA (GABAA) receptor β3 subunit (GABRB3), 

GABAA receptor δ-subunit (GABRD) or other channels such as the ionotropic 

AMPA2 glutamate receptor (GRIA2). Also BDNF and genes encoding 

hyperpolarization-activated cyclic nucleotide-gated (HCN) channel subunits 1–4 
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(HCN1–HCN4) have been reported as targeted by REST following status epilepticus. 

Evidences are accumulating, in fact, that status epilepticus could account for the 

reactivation of REST in order to suppress important mediators of neuronal 

excitability. The REST pathway, as well as the mTOR pathway, are very exciting new 

potential targets for intervention in the epileptogenic process. The most prominent 

unanswered question is indeed to determine if activation of the REST or mTOR 

pathways are a primary mechanisms of epileptogenesis or rather just a consequence of 

this pathological process. Either way, epigenetic targets may well represent the new 

avenue to treatments for a number of unresponsive cases of epilepsy. 

 

1.6	
  From	
  brain	
  insult	
  to	
  Polycomb	
  proteins:	
  the	
  first	
  insights	
  

 

In the recent years, some insights have been provided into the role that epigenetic 

regulators of the Polycomb family may play in neurological diseases, including 

epilepsy. In fact, few hints from a handful of studies are starting to call for a deeper 

understanding of these mechanisms. The lead begins from the existing remarkable 

link between stroke and epilepsy. From the point of view of the epigenetic 

mechanisms, it needs to be noted that the REST pathway is a common response to 

neural insults. Indeed, both ischemic insults and seizures have been shown to activate 

the otherwise silent REST transcription42.  

REST have been shown to repress the expression of miR9 and miR12443, which in 

turn is necessary to drive the transition to a neurogenic BAF complex44 (Fig. 6) 

(reviewed in Ronan and Crabtree, 2013). But where are the Polycomb Complexes, 

(PRC1 and PRC2) involved? Recent data show that occupancy of PRC1 and PRC2 
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complexes on chromatin inversely correlate with the presence of remodeling complex 

such as REST or BAF45. In addition to this observation, more direct evidence are 

arising from in vivo model stroke and epilepsy. In a model of Ischemic Tolerant 

brain, SCMH1, a member of the Polycomb Repressive complex 1, was unbiased 

found upregulated by quantitative mass spectrometry46. The same study shows that 

SCMH1 and BMI1 (another member of the same complex) bind to the promoter of 

two notable potassium channels, Kcna5 and Kcnab2. Moreover, knockdown or 

overexpression of either of the PRC1 proteins shows a significant alteration in potassium 

currents. Both Kcna5 and Kcnab2 have been found mutated in human pathologies, and 

specifically Kcnab2 was found mutated in a epileptic syndrome, the so called Monosomy 

1p3647. Homozygous mutations of this channel in the mouse have shown cognitive defects in 

the form of impaired learning and amygdala hyperexcitability48. In another study, found that 

Polycomb proteins were ether iper- or hypomethylated after intraperitoneal injection of 

Kainic Acid, a wifely used model of induced status epilepticus49. Included in a rather short list 

of differentially methylated genes were PhC2, Suz12 and sfmbt2. Independently, it has been 

shown PRC1 and PRC2 genes respond to Kainic Acid administration in the murine 

hippocampus. In fact, effects on transcripts levels of PRC1 and 2 were already visible after 1 

hour from the treatment. The genes where firstly upregulated after 1 hour, then 

downregulated in following measurements after 2, 8 and 12 hours. These data altogether 

suggest an involvement of Polycomb Group Proteins in mechanisms related to either the 

genesis of status epilepticus or the tolerance to brain insults. Again, the fundamental 

question of whether certain epigenetic states act in favor of the subsequent 

development of hyper synchronous neural activities, characteristics of status 

epilepticus, or they represent a consequence of such activities, deriving from altered 

neural networks remain unanswered. Either way, Polycomb proteins, and more in 

general epigenetic mechanisms may well represent new targets for the many 



 26 

untreatable forms of human epilepsies. Further work is needed to precisely elucidate 

these epigenetic mechanisms. In the work presented in this thesis, the role of another 

member of the PRC1, SCML2, homologous to the previously mentioned SMCH1 and 

Sfmbt2 

 

Fig. 4 Epigenetic mechanisms of stroke and epilepsy. Model showing REST-

dependent epigenetic remodeling of the gria2 promoter in response to ischemic stroke 

or seizures. Global ischemia (left) or seizures (right) activate REST. REST binds to 

the RE1 element within the promoter of its target gene gria2 and recruits mSin3A and 

CoREST, HDACs-1/2, G9a and MeCP2. The REST-corepressor complex promotes 

epigenetic remodeling of core histone proteins at the gria2 promoter. This, in turn, 

represses GluA2 expression, leading to formation of GluA2-lacking, Ca2+-permeable 

AMPARs. (from Hwang et al., Neuropsychopharmacology Reviews, 2013). 
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Chapter 2 

 Aim of the thesis. 
 

Aim of the present work is to describe and characterize two newly discovered 

pathways, involving the two epigenetic regulator SCML2 and EZH2. The first one in 

the context of a novel human epileptic syndrome, and the second in its key role as 

regulator of neuronal migration during precerebellar system development. 
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Chapter 3 

 

Submitted manuscript: Mutations in the Polycomb protein SCML2 

cause a novel human epileptic syndrome by disrupting the inhibitory 

drive on excitatory neurons. 
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Homeostatic regulation of excitation/inhibition balance is a fundamental feature 

of healthy neuronal ensembles1,2 whose alteration may underlie complex 

psychiatric and neurological diseases such as epilepsy, autism and cognitive 

disabilities3-5. Inhibitory synapses are main cellular elements controlling the 

excitability of principal excitatory neurons in the central nervous system (CNS)6, 

and deficits in inhibitory signaling can cause pathological hyperexcitability7,8. 

Here, we found that mutations in Sex Comb on Midleg-Like 2 (SCML2), a X-

linked member of Polycomb Repressive complex 1 (PRC1), cause a novel human 

neurological syndrome of neuronal excitability resulting in multiple muscle 

contractures and early onset infantile epilepsy. Analysis of Scml2 mutant mice 

provided insights into the etiology of the human syndrome, revealing 

spontaneous cortical hyperexcitability, impairment of inhibitory currents and 

synapses on cortical excitatory neurons associated with reduction of postsynaptic 

Gephyrin and Neuroligin 2, increased susceptibility to seizures, and impaired 

inhibitory synapses in spinal motor neurons. Thus, SCML2 is a novel 

postsynaptic inhibitory synapse regulator and its mutation may lead to 

previously unrecognized neurodevelopmental conditions of neuronal 

hyperexcitability.  
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GABAergic and glycinergic inhibitory synapses are main cellular elements keeping in 

check excitability of principal neurons in the CNS9. Severe deficits in inhibitory input 

during development and in adulthood cause pathological hyperexcitability, resulting 

in the clinical features of epilepsy7,10,11. Many of the genes that have been linked to 

epilepsy regulate inhibitory interneuron development and function, with only a 

handful of post-synaptic molecules regulating inhibitory response of excitatory 

neurons7,8. Moreover, to date no chromatin writer has been involved in the regulation 

of the inhibitory synapse program during normal development, whose mutation may 

lead to alteration of the proper excitation/inhibition balance and epilepsy.   

By whole exome-sequencing of two independent families (Fig. 1; Methods; 

Supplementary Note), we identified two segregating pathogenic mutations in the 

coding sequence of SCML2. SCML2 is located on chromosome Xp.2215 and is a non-

canonical member of the Polycomb Repressive complex 1 (PRC1)5,12,13. SCML2 is 

associated with the PRC1.2 and 1.4 sub-complexes and with the catalytic subunit 

RING1B which in turn ubiquitinates the histone H2A at K11912,13. SCML2 interacts 

with other Polycomb subunits via its C-terminal SAM domain14, and binds methylated 

histones through its MBT domains15 (Fig. 1a). SCML2 generally represses target gene 

expression in vitro and in vivo13,14, although an alternative role in preventing gene 

silencing through its association with the USP7 deubiquitinase has been described 

during mouse spermatogenesis13,16,17.  

The affected individuals came from two non-consanguineous families of 

Mexican (hereafter, family M) and Italian (I) origins (Fig. 1; Supplementary Note). 

Inheritance modality showed a recessive X-linked neurodevelopmental syndrome, 

with affected males in both families. All patients in the two families shared a clinical 

condition of congenital multiple joint contractures (arthrogryposis), with clenched 
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hands and rocker bottom/club feet. In family M, two miscarriages, two stillborn or 

neonatal deaths and one termination at 24 weeks gestation carried the start codon loss 

mutation p.M1V resulting in loss of SCML2 protein function (Fig. 1b, Supplementary 

Table 1; Supplementary Note). One boy was born alive, but expired within fifteen 

minutes of birth. Brain abnormalities were found in two patients (Supplementary 

Note), consisting of hypoplasia of the vermis with a dilated fourth ventricle and 

partial agenesis of the corpus callosum in one patient, and cerebellar hypoplasia with 

underdevelopment of the cortex in the other. Since the phenotype in family M 

resulted in fetal or neonatal death it is unknown if the affected children would have 

developed further neurological abnormalities. 

 

In the I family, the affected boy carried instead a missense mutation within the 

conserved MBT1 domain of SCML2 (Fig. 1c, Supplementary Note, Supplementary 

Table 2). Variant filtering and prioritization allowed to identify the c.349C>A 

missense substitution (p.Pro117Thr) in SCML2 as the candidate causative event 

underlying the trait in the family I (Fig. 1a, c; Methods; Supplementary Table 2; 

Supplementary Note). The mutation was inherited from the mother and not found in 

the healthy sibling brother (Fig. 1c). In silico modeling based on the solved crystal 

structure of human SCML2 MBT1/MBT2 domains18, suggested that mutation of the 

highly conserved P117 residue (Fig. 1h) results in the disruption of the hydrophobic 

stacking interaction between P117 and F160 (Fig. 1g) likely disruptive of protein 

function.  

The affected child (Fig. 1d) shared a similar phenotype with the affected 

children of family M, including multiple joint contractures, club feet and clenched 

fists. He survived until two years of age, thus allowing further evaluation of the 
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impact of the SCML2 mutation. He presented hypogonadism and an intellectual 

disability. A brain MRI showed no gross brain anatomical abnormalities (Fig. 1f). At 

one month, the child started to manifest frequent tonic fits during the day (Fig. 1e; 

Supplementary Note) which had no correlation with EEG abnormalities and were 

characterized by raising and abduction of upper limbs, eyes staring, and prolonged 

cyanosis (Extended data, video 1). At three months, a hemiclonic status epilepticus 

appeared on the right side corresponding to an ischemic brain lesion on the left 

parieto-temporal lobes. This episode followed a prolonged tonic fit with respiratory 

failure and cyanosis. Tonic fits and apneas increased in frequency and became almost 

ceaseless starting to associate with clusters of massive myoclonus of upper limbs and 

palpebral myoclonus, and did not respond to anticonvulsant therapy. The child died at 

the age of 2 years during one of such prolonged apnea episodes.  

Human and murine SCML2/Scml2 MBT domains share 77% of sequence 

homology (based on HHPRED alignment). To gain insights into the etiology of the 

human epilepsy syndrome, we generated a mouse model of Scml2 targeted 

inactivation. We engineered a pair of targeted Transcriptional Activator Like Effector 

Nucleases (TALENs) (Methods) and generated a 11 base pair (bp) frame shift 

deletion in the Scml2 exon 4 introducing a premature stop codon within the MBT1 

domain (Supplementary Fig. 1). Scml2Y/- (hereafter referred to as Scml2KO) mutant 

males and Scml2+/- heterozygous mutant females were viable although Scml2KO males 

had fertility defects, due to hypogonadism and spermatogenesis defects12,13 

(Supplementary Fig. 1b). By mating wild type males to Scml2+/- females, the mutant 

allele was inherited at the expected mendelian ratio (Scml2Y/- males n=54; Scml2+/- 

females n=49; and not shown). Brain size and anatomy appeared grossly normal in 

Scml2KO males (Supplementary Fig. 2a-e). 
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To analyze Scml2 expression, we generated an antibody against the protein C-

terminus (Methods). In the testis, where Scml2 is normally expressed12,13, we readily 

detected specific immunostaining signal in the nucleus of wild type undifferentiated 

spermatogonia12,13 (Supplementary Fig. 1a). In contrast, no Scml2 signal was detected 

in Scml2KO testis supporting antibody specificity and Scml2 protein impairment in 

mutants (Supplementary Fig. 1b). In the mouse cortex of GAD67::eGFP transgenic 

mice, expressing eGFP in inhibitory interneurons18, Scml2 was mostly expressed in 

eGFP-negative pyramidal excitatory neurons at P0 (Fig. 2a, b, d-f) and at P60 

(Supplementary Fig. 3a-e). Similarly, human SCML2 was expressed in infantile and 

adult cortical neurons (Fig. 2i-o). Moreover, Scml2 was expressed in spinal motor 

neurons and in subsets of dorsal horn sensory neurons (Fig. 2c, g-h and 

Supplementary Fig. 3f-g). 

Next, we characterized the baseline cortical activity of Scml2KO adult mice by 

in vivo local field potential recordings. We implanted 16-channel linear electrodes in 

the somatosensory cortex (Fig. 3a) and performed multiple recording sessions (n=4 of 

300 seconds each/animal). In all (n=6) Scml2KO mutant animals, baseline cortical 

activity was characterized by variable spontaneous episodes of fast ripple-like 

synchronous activity through all cortical channels, not observed in wild type 

littermates (n=4) (compare Fig. 3b and 3c-e). Moreover, one Scml2KO mutant also 

displayed synchronous infraslow-like activity17 at 0.1Hz (Supplementary Fig. 4a-d). 

Ripple-like and/or infraslow-like syncronous activities are indicators of inter-ictal 

discharges characteristic of epileptic syndromes19,20. 

Scml2KO cortical hyperexcitability could be related to impaired spontaneous 

GABAergic inhibitory currents on excitatory pyramidal neurons. Whole-cell patch 

clamp recordings of excitatory cortical neurons in acute brain slices revealed 
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defective inhibitory transmission, resulting in reduced frequency (Fig. 3f-h), but not 

amplitude or decay time (Fig. 3i-l), of GABAA receptor-mediated miniature inhibitory 

postsynaptic currents (mIPSCs). Inhibitory interneuron and NeuN+ neuron numbers 

were not decreased in mutant Scml2KO;GAD67::eGFP cortex (Supplementary Fig. 2b-

e). However, we detected a significant reduction of perisomatic puncta of Gephyrin, a 

postsynaptic scaffold protein involved in stability of inhibitory synapses21, in 

CamKIIalpha+ AAV1.CMV.TurboRFP.WPRE.rBG (AAV-RFP)-labeled excitatory 

Scml2KO pyramidal neurons (Fig. 4a, b), whereas presynaptic inhibitory VGAT puncta 

were unaffected (Fig. 4c). We also observed a reduction of apposed pairs of 

perisomatic postsynaptic puncta for the inhibitory synapse adhesion protein 

Neuroligin 2 (Nlgn2) (Sudhof, 2008) and presynaptic synaptotagmin 2 (Syt2) puncta 

(Fig. 4b). Moreover, presynaptic Syt2+ puncta were present at inhibitory parvalbumin 

(PV)+ basket cell terminals even in the absence of postsynaptic Nlgn2 (Fig. 4). 

Together with the observed mIPSC frequency reduction (Fig. 3f-h), these data 

indicate a reduction of functional postsynaptic sites at inhibitory synapses without 

affecting synaptic transmission at remaining functional synapses in Scml2KO cortical 

excitatory neurons, which may result in their hyperexcitability (Fig. 3).  

 Since human SCML2 mutations result in multiple muscle spasms and 

contractures, we next analysed Scml2-expressing spinal motor neurons (Fig. 2). 

Similar to excitory cortical neurons, in Scml2KO motor neurons we found a reduction 

of perisomatic Gephyrin as well as glycin receptor GliR1a puncta, whereas apposed 

presynaptic GlyT2 puncta were unaffected (Fig. 4d, f-g) supporting a selective defect 

of the inhibitory postsynapse.  

We next measured susceptibility to pilocarpine-induced seizures22 by 

multiphoton imaging of Scml2KO adult somatosensory cortex, as compared to wild 
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type  (WT) littermates (Fig. 5a). In WT mice, pilocarpine-induced epilepy is triggered 

above 250 mg/kg23. Notably, in Scml2KO mutants prolonged synchronous cortical 

activation was already triggered in response to 100 mg/kg (Fig. 5a), displaying typical 

activity alterations observed in high dose-treated WT mice23. Moreover, in analogy to 

the family I patient, Scml2KO mice failed to recover from pilocarpine-induced seizures 

after treatment with an antiepileptic drug (midazolam) with GABAergic agonist 

activity (Fig. 5b). Thus, Scml2KO mice showed spontaneous ectopic baseline 

hyperactivity (Fig. 3), a feature of epileptic brains, and, in addition, a higher 

susceptibility than wild type brains to pilocarpine-induced seizures.  

We report here a novel neurological syndrome characterized by 

hyperexcitability of  cortical  and spinal neurons, due to mutation of the X-linked 

epigenetic regulator SCML2/Scml2. A series of deletions and duplications of the 

Xp22.13 region were reported in patients with severe neurodevelopmental disorder 

characterized by early-onset seizures, infantile spasms, anti-epileptic drug resistance, 

and motor impairment24,25. The pathogenic potential of the deletions was attributed to 

the involvement of CDKL516, whereas the SCML2 gene was not investigated. Scml2KO 

mutant mice display several critical elements of the human condition, providing a 

fundamental entry point into the syndrome etiology. In particular, mutant mice 

developed morphological and functional alterations of the postsynaptic component of 

inhibitory synapses on excitatory neurons, underlying their increased spontaneous 

excitability and susceptibility to seizures (Figs. 3-5).  

Homeostatic regulation of excitation/inhibition balance is tightly controlled by 

the interaction of integrated synaptic input with cell-autonomous transcriptional 

programs26. Chromatin remodeling factors are crucial for normal transcriptional 

regulation of neuronal development, and their potential role in epileptogenesis has 
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been postulated21. However, to date no chromatin factor has been associated with 

epileptic syndromes, leaving unexplored the possibility of epigenetic deregulation of 

gene expression as a potential primary cause of this disease.  

Recent advances have furthered our understanding of PRC1 function in the 

brain. For example, a SCML2 paralogue, Sex Comb on Midleg Homolog 1 (SCMH1), 

is required to induce ischemic tolerance through its association with the promoter 

regions of two voltage-gated potassium channel genes, whose expression is decreased 

in ischemic-tolerant neurons27. Furthermore, mutations in AUTS2, whose association 

to PRC1 results into transcriptional activation23, were causally linked to autism 

spectrum disorders (ASD)28. Thus, aberrant function of a non-canonical member of 

the PRC1 complex can lead to a neurological syndrome by interfering with normal 

gene expression during brain development. 

A number of genes directly regulated by SCML2 is involved in 

synaptogenesis, such as for instance protocadherin-10 (PCDH10)14. Here, we 

additionally show that Scml2KO excitatory pyramidal and spinal motor neurons display 

a selective reduction of the inhibitory post-synapse proteins Gephyrin and Nlgn2 (Fig. 

4), whose mutations have been associated with an increased risk for autism, 

schizophrenia, and epilepsy29. These findings raise the possibility that SCML2-

dependent epigenetic sub-programs might exist that result in the fine-tuning of the 

number and/or maturation of inhibitory synapses. Epileptic syndromes are highly 

heterogeneous and recent developments in whole exome sequencing techniques have 

led to the identification of many causative genes8. Here we show that SCML2-

dependent epigenetic regulation of gene expression can also influence neuronal 

excitation/inhibition balance eventually resulting in epilepsy. These findings 

underscore the central role of epigenetic regulation in health and disease. Our mouse 
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model provides insights into the neurophysiological consequences of detrimental 

pathological rare mutations affecting SCML2 in humans leading to a previously 

uncharacterized neurodevelopmental syndrome including early-onset infantile 

epilepsy. Moreover, it is conceivable that mutations in SCML2 might be additionally 

involved in other so far unrecognized neurodevelopmental conditions involving 

neuronal hyperexcitability. 
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Figure 1. SCML2 is mutated in a novel human infantile syndrome. a, Schematic 

representations of Homo sapiens (Hs) and Mus musculus (Mm) SCML2 homologue 

proteins with their malignant brain tumor (MBT)1 and MBT2, ring between ring 

fingers (RBR), domain of unknown function (DUF) 3588, and sterile alpha motif 

(SAM) functional domains. In the top diagram are indicated the positions of M1V and 

P117T mutations from the mexican (M) and italian (I) families, respectively, whereas 

in the bottom diagram is shown the position of the frameshift deletion engineered in 

the mouse Scml2 MBT1 introducing a premature stop codon. b-c, Pedigrees, 

segregation analysis, and Sanger sequencing of the two pathogenic SCML2 single 

nucleotide variants identified in the M (b) and I families (c), respectively. d, Picture 

of the patient from family I at 1 year of age. e, EGG/EMG example trace recording 
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during the occurrence of a tonic/clonic seizure. f, Brain MRI images of the patient in 

(d) showing no gross brain anatomical abnormalities at 1 month of age. g, Crystal 

structure of the MBT domains highlighting conserved residues (color coded) and 

showing that the P117 mutated residue in family I normally makes a pairing stack 

with F160. h, P117 mutated residue is conserved among vertebrates and occurs within 

a highly conserved motif. 
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Figure 2. Scml2/SCML2 expression in mouse and human cortical and spinal 

cord neurons a-b, d-f, Anti-Scml2 immunostaining (red signal) of P0 GAD67::eGFP 

murine cortex shows expression mainly in eGFP(green signal)-negative, excitatory, 

cortical neurons. c, g, h Anti-Scml2 (green signal) immunostaining in spinal motor 

neurons (arrowheads), as identified by vesicular acetylcholine transporter (VAChT) 

staining (red signal). i-o, Anti-SCML2 immunostaining (green signal) shows co-

localisation (arrowheads) with NeuN (red signal) in postnatal (6 months) and adult 

(17 years) human cortical samples. DAPI, 4',6-diamidino-2-phenylindole. 
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Figure 3. Abnormal cortical activity and reduced GABAergic transmission on 

excitatory neurons in Scml2KO mice. a-e, In vivo local field potential recorded by a 

multi-channel electrode implanted in sensory cortex (diagram in a) of mildly 

anesthetized wild type (b) and Scml2KO mutant (c-e) mice. Scml2KO mice show 

frequent and syncronous ectopic ripple-like episodes through cortical layers (red 

arrowheads), not present in wild type littermates. f-l, Whole cell recording of 

miniature inhibitory post-synaptic currents (mIPSCs) of somatosensory cortex 

pyramidal neurons (layer 2/3) in acute brain slices. f, Representative traces showing 

reduced mIPSC frequency in Scml2KO mutant (blue) as compared to wild type (WT) 

pyramidal cortical neurons. g, Difference in cumulative probability of mIPSC inter-

event interval (ms) in wild type (wt) (grey line) and Scml2KO mutant (blue line) 
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pyramidal neurons. h, Quantification of mIPSC frequency (Hz) showing a statistically 

significant reduction in Scml2KO mutant (n=9) as compared to wt (n=8) cortical 

pyramidal neurons (*p < 0.05 by unpaired t-test). i, Representative cumulative 

probability of mIPSC amplitude (pA). l, Bar graph of mIPSC amplitude (pA) of wt 

and Scml2KO mutant cortical pyramidal neurons showing non-significant (ns) 

statistical difference between the two groups (p > 0.05 by unpaired t-test). All data are 

shown as mean ± s.e.m. 
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Figure 4 Impairment of inhibitory postsynapses in Scml2KO mice.  a-b, 

Immunostaining showing reduced perisomatic puncta (arrowheads) of Gephyrin in 

CamKIIalpha+ AAV1.CMV.TurboRFP.WPRE.rBG (AAV-RFP)-labeled excitatory 

Scml2KO (b), as compared to wild type (WT) (a), cortical pyramidal neurons. c, 

Immunostaining showing lack (insets) of postsynaptic Neuroligin 2 (Nlgn2) (green) 

apposed to synaptotagmin 2 (Syt2) presynaptic (red) puncta at parvalbumin (PV) 

inhibitory terminals. d-e, Quantification and statistical significance of reduction of 

synaptic Nlgn2/Syt2 pair (d), and (e) Gephyrin, vesicular GABA transporter (VGAT), 

and vescicular glutamate transporter 2 (VGLUT2), in wild type (grey bars) and 

Scml2KO (blue bars) cortical neurons. f-g, Immunostaining showing (f) perisomatic 
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reduction of glycine receptor 1a (GlyR1a) puncta (white signal, arrowheads), and (g) 

lack (arrowhead, insets) of postsynaptic Gephyrin puncta (white signal) apposed to 

presynaptic Glycine transporter 2 (GlyT2) (green) puncta in Scml2KO mutant as 

compared to wild type (WT) spinal motor neurons. h, Quantifications and statistical 

significance of reduction of Gephyrin, GlyR1a, GlyT2, and VGLUT2 in wild type 

(grey bars) and Scml2KO (blue bars) spinal motor neurons; non-significant, ns= 

p>0.05; ***=p<0.001 paired t-test. All data are shown as mean ± s.e.m. VAChT, 

vesicular acetylcholine transporter. 
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Figure 5 Scml2KO mice display increased seizure susceptibility. a, Wavelet time-

frequency plots representative of in vivo neuronal activity measured by two-photon 

imaging of somatosensory cortex loaded with the fluorescent calcium indicator X-

Rhod1 AM. Comparison of baseline activity and recording 10, 20, 30, and 40 minutes 

after sub-threshold (100mg/kg) intra-peritoneal administration of pilocarpine 

(syringe) in wild type (wt) and Scml2KO mice. Note that Scml2KO, unlike wt, mice 

induce and maintain strong prolonged synchronous (1-2Hz) cortical activation. b, 

Quantification of normalized activity in wt (n = 3) (black bars) and Scml2KO (n = 3) 

(blue bars) pilocarpine-induced somatosensory cortex (ns, non-significant = p > 0.05; 

*=p<0.05). Pilocarpine-induced activity cannot be brought back to baseline by 
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administration of anti-epileptic drug midazolam (M). c, Summary diagram of the 

selective postsynaptic impairment of inhibitory synapses on excitatory cortical 

pyramidal neurons, underlying the SCML2-dependent epilepsy syndrome. 

 

Methods	
  

 

Animals  

The following mouse strain was used: G42 GAD67-GFP (JAX Laboratory, number 

007677). All animal procedures were performed in accordance with the Swiss 

Veterinary Law guidelines and were approved by the Veterinary Department of the 

Canton of Basel-Stadt.  

EEG recording 

All video-EEG recordings were performed by using 21 scalp electrodes, placed 

according to the 10-20 International system. The polygraphic examinations included 

also electromyographic recordings from different muscles. Bipolar and monopolar 

montages of the scalp electrodes were analysed (SystemPlus, Micromed, Mogliano 

Veneto, Italy). 

Brain MRI 

All images were obtained by using a 1.5T Magnetom Vision scanner (Siemens, 

Erlangen, Germany). Nitrous oxide was administered for sedation by an 

anesthesiologist after parental consent. Sleeping child was scanned with a quadrature 

knee coil under constant cardiorespiratory monitoring. The MR imaging protocol 

included coronal and axial SE T1-weighted sequences (TR/TE/excitations = 400/15 
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ms/2), axial SE T2-weighted sequences (TR/TE/excitations = 3800/81–120 ms/1), and 

axial IR sequences (TR/TE/TI = 8416/60/350 ms), acquired with a 4-mm sec- tion 

thickness with no gap.  

 

Whole Exome Sequencing of patients 

Targeted enrichment and massively parallel sequencing were performed on genomic 

DNA extracted from circulating leukocytes of a single affected subject and his parents 

(family I). Exome capture was carried out using Nimblegen SeqCap EZ v.2.0 (Roche) 

or TruSeq v.2 (Illumina) capture kits, and sequenced on a HiSeq2000 platform 

(Illumina). WES data analysis was performed using an in-house implemented 

pipeline. Paired-end reads were aligned to the human genome (UCSC GRCh37/hg19) 

with the Burrows-Wheeler Aligner (BWA V. 0.7.10). Presumed PCR duplicates were 

discarded using Picard tools’ MarkDuplicates (http://broadinstitute.github.io/picard/). 

The Genome Analysis Toolkit (GATK V.3)1 was used for realignment of sequences 

encompassing INDELs and for base quality recalibration. SNPs and small INDELs 

were identified by means of the GATK’s HaplotypeCaller used in gVCF mode, 

followed by family-level joint genotyping and phasing (see 

https://www.broadinstitute.org/gatk/guide/best-practices?bpm=DNAseq).  

Variant call files were annotated with data from numerous databases using in-house 

tools and databases as well as publicly available software and databases (see 

Supplementary Note). Variants in each family were custom filtered based on family 

inheritance patterns, allele frequencies, predicted deleterious effects of variants, and 

other annotation information (see Supplementary Note). Exome sequencing results 

were confirmed by Sanger sequencing.  PCR primers were designed for the variants 
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and purified products sequenced using Big Dye V3.1 chemistry and the Applied 

Biosystems 3730XL Sequence Analysis Instrument. 

 

Scml2 antibody generation 

A custom antibody against the C-terminal domain of SCML2 was generated by 

Eurogentec s.a. (Seraing, Belgium). In brief, a synthetic 16 AA peptide was 

synthetized (Aa 891-905: h- C+ SSKVPRKSGQASKGN –oh) and used to immunize 

rabbits, resulting in polyclonal antisera. The antibody was affinity purified and used 

for immunostaining at a dilution of 1:250. 

 

TALEN-mediated generation of Scml2KO mice and genotyping 

The 11bp frame-shift mutation produced in intron 4 was performed using specific 

TALEN designed to recognize DNA sequences upstream and downstream of the 

deletion point as described in Flemr et al., 20152. In brief, TALENs targeting Scml2 

were assembled using the Golden Gate cloning system for TALEN assembly 

(Addgene TALEN Kit No. 1000000024). The following repeat variable diresidue 

repeats were used to generate individual TALENs: SCML2_FWD_TAL1-ELD NN-

NN-NI-NN-NI-HD-NG-NG-NN-NG-NN-NN-NI-NG-NG-HD-NI-NG-HD-NI, 

SCML2_REV_TAL1-KKR HD-NG-HD-HD-NG-HD- HD-NG-NG-NN-NG-NG-

HD-NI-HD-NN-NG. Each TALEN-encoding plasmid was linearized with NotI and 

transcribed in vitro using the mMESSAGE mMACHINE T7 Kit (Ambion). The 

RNAs were then polyadenylated using the Poly(A) Tailing Kit (Ambion) and purified 

on RNeasy Mini columns (Qiagen). A dilution for microinjection was prepared by 

mixing the two TALEN RNAs in ultrapure water at concentration of 20 ng/ml each. 
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Fertilized oocytes were injected and re-implanted. Progeny was genotyped using the 

following primers: fwd- ggtgtgtgttgcttcggt; rev- cccagtggaggctgaagta. An 

heterozygous female carrying an 11bp frame-shift mutation, resulting in a premature 

STOP codon in exon 4, was selected as founder and used for subsequent crossings.  

 

In vivo local field potential recordings  

Local field potentials were recorded from light-anesthetized WT and Scml2KO mice 

(fentanyl 0.05 mg/kg, medetomidine 0.5 mg/kg, midazolam 5.0 mg/kg). A 3 mm-

diameter cranial window was performed over the mouse primary somatosensory 

cortex; after removal of the skull flap, the cortical surface was kept moist with a 

cortex buffer, containing: 125 mM NaCl, 5 mM KCl, 10 mM glucose, 10 mM 

HEPES, 2 mM MgSO4 and 2 mM CaCl2. After surgery, a linear multichannel 

electrode (Neuronexus®, 16 electrodes with 50 μm spacing) was implanted in the 

primary somatosensory cortex. In the configuration employed, the most superficial 

electrode laid on the cortical surface (after dura mater removal), while the deepest 

electrode laid at a depth of 750 μm from the cortical surface. Data were collected at 

25 kHz from all electrodes for 300 seconds time windows. Spectral analysis was 

performed in Matlab® on the module of the Hilbert Transform of recorded data, after 

downsampling (1:100).  

 

 

Ex vivo electrophysiological recordings 

Coronal slices of P60 mice were transferred to an interface chamber containing ACSF 

equilibrated with 95% O2/5% CO2 containing the following: 124 mM NaCl, 2.7 mM 



 58 

KCl, 2 mM CaCl2, 1.3 mM MgCl2, 26 mM NaHCO3, 0.4 mM NaH2PO4, 18 mM 

glucose, 4 mM ascorbate. Recordings were performed with ACSF in a recording 

chamber at a temperature of 35°C at a perfusion rate of 1-2 ml/min. Neurons were 

visually identified with infrared video microscopy using an upright microscope 

equipped with a 40X objective (Olympus, Tokyo, Japan).  Patch electrodes (3–5 MΩ) 

were pulled from borosilicate glass tubing. For voltage clamp experiments to record 

miniature inhibitory post-synaptic currents (mIPSCs), patch electrodes were filled 

with a solution containing the following (in mM): 110 CsCl, 30 K-gluconate, 1.1 

EGTA, 10 HEPES, 0.1 CaCl2, 4 Mg-ATP, 0.3 Na-GTP (pH adjusted to 7.3 with 

CsOH, 280 mOsm) and 4 N-(2,6-

Dimethylphenylcarbamoylmethyl)triethylammonium bromide (QX-314; Tocris-

Cookson, Ellisville, MO). To exclude AMPA receptor and NMDA receptor-mediated 

inputs, CNQX (6-cyano-7-nitroquinoxaline-2,3-dione, 10 μM: AMPA receptor 

antagonist) and (R)-CPP (NMDA recetor antagonist) were added to the ACSF. To 

exclude action potential dependent IPSCs, tetrodotoxin (TTX, 1 µM) was added to the 

ACSF. Whole cell patch-clamp recordings were excluded if the access resistance 

exceeded 13 MΩ and changed more than 20% during the recordings. Data were 

recorded with a MultiClamp 700B (Molecular Devices) amplifier, filtered at 0.2 kHz, 

and digitised at 10 kHz. Data were acquired and analysed with Clampex 10.0, 

Clampfit 10.0 (Molecular Devices) and the Mini Analysis Program (Synaptosoft, 

Decatur, GA).  All chemicals for the internal and external solutions were purchased 

from Fluka/Sigma (Buchs, Switzerland). Glutamatergic blockers were purchased from 

Tocris Bioscience (Bristol, UK). TTX was from Latoxan (Valence, France). 
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Viral injections and immunostainings 

In order to visualize cortical pyramidal neurons, we delivered AAV-RFP virus 

(AAV1.CMV.TurboRFP.WPRE.rBG, Penn Vectors, USA) through stereotaxic 

injections in Isofluorane anesthetized adult mice (P60-P90). After 10 days, mice were 

perfused with 4% PFA and sacrificed. Brains were equilibrated in 30% sucrose, 

frozen in OCT and preserved at -80°C. Immunohistochemistry was performed on free 

floating brain sections. Antibodies used were the followings: SCML2 (custom made, 

Eurogentec S.A., Seraing, Belgium), NeuN (Millipore, 1:1000), Gephyrin (Synaptic 

Systems, 1:200), VGAT (Millipore, 1:500), VGluT2 (Milipore, 1:500), GlyR1a 

(1:500), GlyT2 (1:500), VAchT (1:500), Parvalbumin (Swant Inc., 1:250), Syt2 

(Sigma Aldrich, 1:500), Nlgn2, (Santa Cruz, 1:200). Overview imaging for cell 

visualization and count was performed with a confocal laser scanning microscope 

(LSM700, Zeiss) equipped with a 10x objective. Imaging for synapsis visualization 

was carried out using a confocal laser scanning microscope (LSM700, Zeiss) 

equipped with 488  nm and 555  nm laser diodes. Images of Soma were obtained with a 

63× objective.  

 

Calcium imaging recordings 

Craniotomy for calcium imaging was performed on anesthetized WT and Scml2KO 

mice (fentanyl 0.05 mg/kg, medetomidine 0.5 mg/kg, midazolam 5.0 mg/kg). A 3 

mm-diameter cranial window was performed over the mouse primary somatosensory 

cortex; after removal of the skull flap, the cortical surface was kept moist with a 

cortex buffer, containing: 125 mM NaCl, 5 mM KCl, 10 mM glucose, 10 mM 

HEPES, 2 mM MgSO4 and 2 mM CaCl2. After dura mater removal, 3μl of AM X-
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Rhod-1 1 mM (solution in 20% Pluronic F-127 in DMSO) was injected at 400 μm 

from the cortical surface. The skull window was then sealed with a 3mm-diameter 

glass coverslip. A thin iron ring and a metal bar were attached to the skull with a 

mixture of dental cement and Super Glue to allow for head fixation during calcium 

imaging. 

Thirty minutes after injection we performed calcium imaging by means of a two-

photon laser scanning microscope equipped with a 16 X water immersion objective 

(0.8 NA) attached to a laser adjusted to 920 nm. During imaging, mice were 

anesthetized with 0.25% isoflurane and sedated with 2.5 mg/kg chlorprothixene. An 

area of 300 × 400 μm was imaged at 300 μm below the pial surface. Images were 

collected at 10 Hz for 200 seconds time windows. For both WT and Scml2KO mice, 

images were collected in baseline conditions, and after 10, 20 and 30 min from 

intraperitoneal injection of Pilocarpine (100 mg/kg).  Time-frequency analysis of the 

data was performed by Wavelet analysis in Igor Pro®. 

Statistics 

All data are presented as mean +/- s.e.m. All statistical analysis were performed in 

Excel or Graphpad Prism 6.0, using unpaired Student’s t-tests. Significance in the 

time-frequency domain (Fig. 5) was assessed by comparing the power integrals in the 

1-3 Hz band among different animals with unpaired T tests or among different 

treatments with paired T tests. 
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Supplementary	
  Information	
  

 

Supplementary  Figure 1  Validation of custom produced antibodies 

demonstrates the loss of native Scml2 protein in Scml2KO mice In order to validate 

the specificity of the rabbit polyclonal custom antibody, we performed 

immunohistochemistry on PFA perfused wild-type and Scml2KO mice testicular 

sections. a, b, Staining displays an identical pattern compared to previously published 

data in the wt tissue, with a strong subnuclear localisation in undifferentiated 

spermatogonia (red arrows). The C-terminus targeting specific antibody shows high 

specificity. Staining in the Scml2KO is negative for Scml2. c, A test without primary 

antibody is shown to demonstrate the endogenous unspecific peroxidase activity of 

sertoli cells. Nuclei were counterstained (light blue). 
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Supplementary Figure 2 Scml2KO mice do not display significant brain 

alterations. a, Mutant Scml2KO mice do not show striking brain abnormalities as 

shown by a comparable size and comparable general anatomy of the brain. 

Quantification of NeuN positive neurons in the cortex as well as Gad67-eGFP 

positive neurons in the cortex and hippocampus show no significant differences 

between Scml2KO mice and littermate controls (n=3-5 per group, unpaired t-test 

p>0.05). 
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Suplementary Figure 3 SCML2 protein is detectable in excitatory neurons of 

adult mouse brain. Immunohistochemistry showing the presence of SCML2 in 

NeuN-positive adult cortical neurons (a-e) and motor neurons (f-i). 

 

Supplementary Figure 4. Example of infra slow electrical activity in Scml2KO 

mouse. a, Spectral analysis of the 16 electrode electrode traces (as in figure 3a-b) for 

a mutant mouse. b, Wavelets transform of the top trace from Fig. 3b c, wavelets 
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transform of the top trace from a. d, Please note the persistent ectopic activity at 0.1 

Hz in b and d (infra slow activity). 
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Supplementary Table 1.  Whole exome sequencing data output (family S). 

Target region coverage, 2x 96.8% 96.2% 

Target region coverage, 10x 93.6% 91.1% 

Target region coverage, 20x 90.3% 82.7% 

Average sequencing depth on target 103.5 53.3 

Variants after pre-filtering (based on depth, quality, and 

MAF) 

 
4687 

Functional family variants, pre filtered, start, stop, 

missense, insertions, deletions, splice, near splice, rare 

 

 

661 

X-linked variants 

Functionally relevant X-linked variants 

 10 

1, SCML2 

 

Supplementary Table 2.  Whole exome sequencing data output (family I). 

Target region coverage, 2x1 99.0% 

Target region coverage, 10x1 96.6% 

Target region coverage, 20x1 92.8% 

Average sequencing depth on target1 99x 

Number of variants with predicted functional 

effect 
11,617 

Novel, clinically associated, and unknown/low 

frequency variants2 
325 
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De novo variants3,4 

Functionally relevant de novo variants5 

3 

1, CACNA1C6 

Autosomal recessive variants7 

Functionally relevant Autosomal recessive 

variants 5 

4 

1, CACNA1C6 

X-linked variants8 

Functionally relevant X-linked variants5 

4 

1, SCML2 

 

 

 

1Referred to Nimblegen SeqCap EZ Library v.2.0 (Roche). 

2MAF <0.1% in dbSNP142 and ExAC V. 0.3 databases, and with frequency <2% in 

our in-house database. 

3Only de novo changes are considered as both parents are unaffected. 

4CACNA1C (chr12:2717781, CCTT>C), GAGE12J (chrX:49179739, A>G, 

rs201649497) and ZNF880 (chr19:52888377, C>G). 

5Filtering retained functionally relevant variants (i.e., nonsynonymous and splice site 

changes, excluding variants predicted as benign by CADD and metaSVM 

algorithms). 

6Heterozygous mutations in this gene cause Brugada Syndrome type 3 (MIM 

611875), and Timothy syndrome (MIM 601005). Sanger sequencing of exon 27 and 

exon 42 of CACNA1C (NM_000719.6) confirmed the presence of p.F1155del and 

p.V1707I variants in heterozygosis. The p.V1707I (rs147896322, MAF<0.01), 

classified as a likely benign variant in dbSNP, has been inherited from mother and has 

also been found in brother of patient I. The p.F1155del variant has not been reported 

before and has a de novo occurrence in patient I. This mutation affects one of two 

conserved contiguous phenylalanine residues in one of the transmembrane domains of 
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the Cav1.2 channel. Patient I did not show signs of Brugada or Timothy syndromes 

(see Supplementary Note). 
7CACNA1C (chr12:2717781, CCTT>C de novo; chr12:2788637, G>A, rs147896322), 
PCNT (chr21:47746327, A>G; chr21:47786930, A>G), SCRIB (chr8:144886866, 
G>A; chr8:144892761, C>T) and SYNE1 (chr6:152737729, C>A; chr6:152623079, 
C>G, rs368601212). 
8SCML2 (chrX:18342027, G>T), SHROOM2 (chrX:9900348, C>T, rs200219705), 

STARD8 (chrX:67937855, G>A, rs200219705) and USP26 (chrX:132160047, T>G). 
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Supplementary Note 

 

Additional information on variant annotation and filtering 

Variant call files were annotated with information from the Genetic variant annotation 

and effect prediction toolbox (SnpEff)1, then further annotated with information from 

numerous databases such as ClinVar (www.ncbi.nlm.nih.gov/clinvar/), Polyphen-22, 

FATHMM3, SIFT4, Clinical Genomic Database5, and the National Heart, Lung, and 

Blood Institute’s GO Exome Sequencing Project (ESP) (ESP 2013). Allele counts 

from ExAC (Exome_Aggregation_Consortium 2014) and CADD6 scores were also 

obtained. Called variants were next filtered by applying the following thresholds: 

variants with quality >100 and quality-by-depth score >1.5 were retained; variants 

below these thresholds or resulting from four or more reads having ambiguous 

mapping (this number being greater than 10% of all aligned reads) were discarded. 

Variants identified in each family were custom sorted based on allele frequency, 

family inheritance patterns, predicted deleterious functional effects of variants, and 

other annotations. For the I family, data annotation predicted 11,617 high-quality 

variants having functional impact (i.e., non-synonymous and splice site changes). 

Among them, 325 private and rare changes were retained for further analyses. Only 

changes predicted to be deleterious by Combined Annotation Dependent Depletion 

(CADD) (score >15.0) and Database for Nonsynonymous SNPs’ Functional 

Predictions (dbNSFP) Support Vector Machine (SVM) (radial score >0.0) algorithms  

were retained, and prioritized on the basis of the functional relevance of genes, taking 

into account X-linked, autosomal dominant, and autosomal recessive inheritance 

models. Variant filtering and prioritization allowed to identify the c.349C>A missense 

substitution (p.Pro117Thr) in SCML2 as the only excellent candidate as causative 
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event underlying the trait. 

 

Clinical summary for family I (Italian)  

This boy was the first born child to a unrelated Italian couple. There was no family 

history of miscarriages or infertility. The child was born by TC at 39 weeks of 

gestation, weight at birth was 2.710 kg, Apgar score of 8-8. Before birth a fetal 

echography detected bilateral clubfoot which was confirmed postnatally. At birth the 

child in addition was hypotonic and hyporeactive against  gravity and showed 

arthrogryposis of hands with medially overlapping fingers and clenched fists, 

suggesting a stiff baby syndrome. The club feet were corrected with plaster casts. At 

the age of one month the child started to manifest frequent tonic fits during the day. 

The tonic fits had no correlation with EEG abnormalities and were characterized by 

raising and abduction of his upper limbs and eyes staring. A brain MRI at age 1 

months was normal. In the following months the child swallowed slowly and suck 

with difficulty and sluggishly and had failure to thrive.  When he was uncomfortable 

for any reason and when crying he frequently had tonic fits with apnea and cyanosis.  

At age 3 months following a prolonged episode of apnea and cyanosis, the child 

started to manifest a hemiclonic status epilepticus on the right side which 

corresponded at a control MRI to an ischemic brain lesion on the left parieto-temporal 

lobes. During the  follow-up spontaneous tonic fits or reactive to any uncomfortable 

condition recurred daily together with myoclonus. Tonic fits increased in frequency 

with time and started to associate with clusters of massive myoclonus of upper limbs 

and palpebral myoclonus, and did not respond to any anticonvulsant therapy. 

Moreover, tonic and myoclonic fits together with episodes of trismus, excessive 

salivation, apnea and cyanosis became almost ceaseless preventing feeding and the 
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child needed gastrostomy. Repeated video-EEG monitoring sessions showed that the 

tonic fits had no corresponding EEG correlate and did not record any abnormalities of 

the cardiac rhythm during prolonged apnea. This patient also carried two 

heterozygous variant mutations of Cacna1c (Supplementary Information). However, 

repeated EKGs (electrocardiograms) did not disclose any prolongation of the QT 

interval and, with the exception of an intellectual disability, this patient had no signs 

of Brugada or Timothy syndromes (Venetucci et al., 2012) that is characterized by 

multi-organ dysfunction including arrhythmias, syndactyly, congenital heart disease, 

and immune deficiency. The child died at the age of 2 years during an episode of 

tonic fit and prolonged apnea.  

 

Clinical summary for family M (Mexican)   

Family F009, non-consanguineous-family from Mexico, demonstrated a history of 

apparent X-linked inheritance with a strong maternal family history of perinatal lethal 

disease seen only in males.  The proband in this family was a woman with previous 

history of miscarriage and loss of two male children with the birth of two healthy 

female children.  The first male died approximately fifteen minutes after birth and 

was suggested to have trisomy 18 although no karyotype was performed.  Autopsy 

reported numerous abnormalities including micrognathia, abnormal helices, clenched 

hands, overlapping digits, rocker-bottom feet, microcephaly, dysplasia of the inferior 

olivary nuclei, hypoplasia of the vermis with a dilated fourth ventricle and partial 

agenesis of the corpus callosum.  In addition, there were internal abnormalities 

including undescended testes, accessory spleen, hypoplastic gallbladder and abnormal 

lobulation of the lung. The second son was stillborn with an initial pre-natal 

ultrasound diagnosis of Pena-Shokeir Syndrome.  The phenotype by autopsy included 
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multiple contractures also consistent with arthrogryposis. The third male was 

observed by ultrasound at 19 weeks to have cerebellar hypoplasia, underdevelopment 

of the brain cortex, permanently closed hands, bilateral doriflexion of the foot with 

rocker-bottom.  Autopsy was performed after termination of the pregnancy at 24 

weeks by which confirmed features of arthrogryposis, contracted elbows, clenched 

hands overlapping digits, dorsiflexed ankles and rocker bottom feet.  FFPE sections of 

skeletal muscle were unremarkable and spinal cord anatomy appeared normal with 

anterior horn cells present.  Detailed investigation of the brain was not possible due to 

the nature of the fetal tissue following the termination procedure. No DNA or tissue 

was available for study from the deceased affected males. In this family, we identified 

a novel start loss pathogenic variant p.MET1VAL in SCML2. This start loss 

pathogenic variant was present in the mother in a heterozygous state. We developed a 

custom TaqMan assay to screen for this pathogenic variant. The two additional family 

members that were available for this study (the father and maternal uncle of the 

deceased males) did not have this variant.  

 

Analysis of SCML2 in atypical Crisponi syndrome patients 

 

Some clinical features of the syndrome resembled patients with Crisponi syndrome 

(CS), related to mutations in CRFL1, a neonatal disorder with muscle contractions 

simulating tetanic spasm, camptodactyly, hyperthermia, as well as feeding and 

respiratory difficulties and sudden death7. Considering these clinical overlapping 

features, we performed sequencing analysis of the 14 coding exons (including splice 

sites) of SCML2 in 8 male patients with atypical CS and negative for mutations in 

CRFL1. No mutations in SCML2 were identified in these patients (data not shown).  
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Abstract 

 

We investigated the role of histone methyltransferase Ezh2 in tangential migration of 

mouse precerebellar pontine nuclei, the main relay between neocortex and 

cerebellum. By counteracting the sonic hedgehog pathway, Ezh2 represses Netrin1 in 

dorsal hindbrain, which allows normal pontine neuron migration. In Ezh2 mutants, 

ectopic Netrin1 derepression results in abnormal migration and supernumerary nuclei 

integrating in brain circuitry. Moreover, intrinsic topographic organization of pontine 

nuclei according to rostrocaudal progenitor origin is maintained throughout migration 

and correlates with patterned cortical input. Ezh2 maintains spatially restricted Hox 

expression, which, in turn, regulates differential expression of the repulsive receptor 

Unc5b in migrating neurons; together, they generate subsets with distinct 

responsiveness to environmental Netrin1. Thus, Ezh2-dependent epigenetic regulation 

of intrinsic and extrinsic transcriptional programs controls topographic neuronal 

guidance and connectivity in the cortico-ponto-cerebellar pathway.  
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Conclusion	
  and	
  outlook	
  

 

The regulatory mechanisms establishing and modulating the epigenome at a system 

level represent a remarkable  example of complexity and importance in nearly all 

biological processes. It is therefore not surprising that genetic mutations 

compromising the function of key epigenetic regulators result in a disruption of 

properly ordered neuronal migration, or insults to the brain severe enough to 

precipitate epilepsy produce major changes. The epigenetic of epilepsy and 

homeostatic synaptic scaling is at the very beginning of its long way. Aberrant 

patterns of epigenetic modification could, and most likely do, affect gene expression 

and play an important role into disease pathogenesis or with the inability to cope with 

sustained increased levels of excitation, both at a micro-circuit level and within long 

range circuitries, such as talamo-cortical or cortico-spinal projections. These 

disregulated mechanisms could therefore be important in the maintenance of the 

chronic status epilepticus. Affected genes are likely to be involved in normal neuronal 

homeostasis, excitability, cell survival, and inflammatory processes (Henshall)1. 

There is in fact evidence to support each of the major epigenetic processes as being 

possibly involved in epilepsy. Research has also shown that these are causally 

important in some cases, contributing to both beneficial adaptive changes to reduce 

excitability as well as maladaptive pathogenic changes. As extensively discuss in the 

introductory chapter of this work, it is of note that a number of genetic disorders that 

arise because of mutations in genes encoding epigenetic proteins have clinical 

phenotypes that include epilepsy. Remarkable for the analogy to our work, is the 

recent discovery that Auts2 is able to reverse PRC1 activity, turning this classically 

believed repressive complex into an activator of transcription. In testis, Scml2 has 
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shown a similar potential by its association with Usp7. Together in fact this complex 

counteracts the ubiquitilation of histone 2A at lysine 119. Much work still has to be 

done to understand SCML2 function in the brain. Nevertheless, our work on 

excitability, plus the discovery that L3MBTL1 is responsible for homeostatic synaptic 

downscaling in excitatory neurons (Mao and Futai, Proceedings of the Society for 

Neuroscience, SfN 2015 Abstract), and together with the discovery that several genes, 

including SCML2 and L3MBTL1, are found mutated in glioblastoma, provide a solid 

ground for future discoveries. It indeed seems that Polycomb protein role in 

epileptogenesis has been surprisingly ignored, althought leads exist now since several 

years on their involvement in such processes. Given the broad function of this class of 

epigenetic regulators, changes in their expression and function in epilepsy cannot be 

always assumed to relate to their role in epigenetic processes1. Notably, several 

neurological disorders related to errors or failure of genetic imprinting feature high 

rates of epilepsy, including Angelman syndrome, making the possible role of these 

proteins as fascinating as hard to be fully understood. 

Most importantly, a key open question remains unsolved and should be the very next 

one to be tackled: to which extent do altered epigenetic states causally lead to 

impaired inhibition excitation balance, rather than being a pure consequence, at the 

cellular level, of a disregulated circuit disorder? Or in other words, can we 

experimentally separate the causal versus the neuroprotective components of 

epigenetic adaptation to neuronal excitability? 

Unraveling the combinatorial complexity of the altered brain epigenome in epilepsyis 

a task of enormous complexity. These challenges are not unique to epilepsy and must 

be determined in the field of neuroepigenetics2, along with the potential to realize 

therapeutic manipulation of epigenetics for brain disorders, such as epilepsy. 



 107 

References 

1. Henshall, D. C. & Kobow, K. Epigenetics and Epilepsy. Cold Spring Harb 
Perspect Med (2015). doi:10.1101/cshperspect.a022731 

2. Sweatt, J. D. Perspective. Neuron 80, 624–632 (2013). 
 


