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1 Abbreviations 
aa Amino acid 

ADCC Antibody dependent cell cytotoxicity  

AIM2 Absent in melanoma 2 

ALR AIM2-like receptor 

APC Antigen presenting cell 

BCR B cell receptor 

BKPyV BK polyomavirus 

BKPyVAN BKPyV-associated nephropathy 

BKPyVHC BKPyV-associated hemorrhagic cystitis 

CARD Caspase recruitment domain 

CCR5 Chemokine receptor 5  

CLIP Class II-associated invariant chain peptide 

CLR C-type lectin receptors  

CMX001 1-O-hexadecyloxypropyl-cidofovir 

CNI Calcineurin inhibitor 

CTL Cytotoxic T lymphocyte 

DC Dendritic cell 

dsRNA Double-stranded RNA 

EBNA1 EBV nuclear antigen 1 

EBV Epstein- Barr virus 

EGFP Enhanced green-fluorescent protein 

ELISA Enzyme-linked immunosorbent assay 

ELISpot Enzime-linked immunospot 

ER Endoplasmic reticulum 

EVGR Early viral gene region 

GEq  Genome equivalents 

HBV Hepatitis B virus 

HCMV Human cytomegalovirus 

HLA Human leukocyte antigen 

HPV Human papillomavirus 

HPyV Human polyomavirus 



 6

HSCT Hematopoietic stem cell transplantation 

Hsp70 Heat-shock-protein-70 

HSV Herpes simplex virus 1 

ICC Intracytoplasmatic cytokine staining 

IEDB Immune Epitope Database and Analysis Resource 

IFN Interferon 

IFN(x)R IFN (x) receptor 

Ii Invariant chain 

IL Interleukin 

IPS-1 IFN-β promoter stimulator-1 

IS Immunosuppressive drug 

IRF IFN-regulatory factor 

JCPyV JC polyomavirus 

KSHV Kaposi’s sarcoma associated herpesvirus 

KIPyV KI polyomavirus 

KIR Killer-cell immunoglobulin-like receptor 

KTR Kidney transplant recipient 

LANA Latency associated nuclear antigen 

LCMV Lymphocytic choriomeningitis virus 

LTag Large tumor antigen 

LVGR Late viral gene region 

MCC Merkel cell carcinoma 

MCMV Murine cytomegalovirus 

MCPyV Merkel cell polyomavirus 

MHC Major histocompatibility complex 

MICA MHC class I polypeptide-related sequence A 

miRNA Micro-RNA 

MPL-A Monophosphoryl lipid A 

MPyV Murine polyomavirus 

MWPyV Malawi polyomavirus 

MXPyV Mexico polyomavirus 

NCCR Non-coding control region 

NLR NOD-like receptor 

NJPyV New Jersey polyomavirus 

NK Natural killer 

OBD ORI binding domain 
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ORF Open reading frame 

ORI Origin of replication 

PADRE Pan HLA-DR binding epitope peptide 

PAMPs Pathogen-associated molecular patterns 

PBMC Peripheral blood mononuclear cells 

PCNA Proliferating cell nuclear antigen 

PD-1 Programmed death-1 

PD-L1 Programmed death-ligand 1 

PLC Peptide-loading complex 

PMNs Polymorphonuclear leukocytes 

PP2A Protein phosphatase 2A 

PRR Pattern recognition receptors  

PyV Polyomavirus 

Rb Retinoblastoma 

RIG-I Retinoic acid-inducible gene 

RLRs RIG-I like receptor  

RPTEC Renal tubular epithelial cells 

RSV Respiratory syncytial virus 

ssRNA Single-stranded RNA 

sTag Small tumor antigen 

STLPyV Saint Louis polyomavirus 

SV40 Simian virus 40  

TAP Transporter associated with antigen processing 

TCR T cell receptor 

Th T helper 

TLR Toll-like receptors 

TNF Tumor necrosis factor 

Treg Regulatory T cell 

truncTag Truncated tumor antigen 

TSPyV Trichodysplasia spinulosa polyomavirus 

VLPs Virus-like particles 

WUPyV WU polyomavirus 

α-SNAP α-Soluble N-ethylmaleimide-sensitive fusion attachment protein 
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2 Summary 
 
BK polyomavirus (BKPyV) is one of now 13 human polyomavirus (HPyV) species 

detected in humans. BKPyV is only known to infect humans and seroprevalence 

rates of more than 90% have been reported in adult populations around the world. 

Following primary infection, BKPyV persists in the renourinary tract without causing 

any disease as evidenced by urinary shedding in 5% - 10% of healthy 

immunocompetent blood donors.  

In immunocompromised persons, however, BKPyV can cause significant diseases 

whereby uncontrolled high-level replication may lead to organ invasive pathologies in 

kidneys, bladder, lungs, vasculature, and the central nervous system. The most 

consistently found diseases are BKPyV-associated hemorrhagic cystitis (BKPyVHC) 

in 5%-20% allogeneic hematopoietic stem cells transplant patients, and BKPyV-

associated nephropathy (BKPyVAN) in 1%-15% of kidney transplant patients. 

BKPyVHC is highly symptomatic with pain, anemic bleeding, and increased mortality. 

BKPyVAN is asymptomatic except for progressive renal failure and premature return 

to dialysis. Both entities are characterized by high-level viral replication i.e. with urine 

BKPyV loads of 8-10 log10 Geq/mL, plasma BKPyV loads often above 4 log10 

Geq/mL, and an allogeneic constellation between the virus-infected host cell and the 

available T-cell effectors. Despite these similarities, the clinical manifestations are 

strikingly different suggesting relevant, but experimentally undefined differences in 

pathogenesis. Thus, BKPyVHC typically occurs within 4 weeks after allogeneic 

HSCT and is confined to the bladder, and typically without kidney involvement. By 

contrast, BKPyVAN is diagnosed around 3-6 months after kidney transplantation and 

confined to the kidney allograft without causing cystitis. Although high-level BKPyV 

replication should be formally amenable to antiviral drug treatment, no effective and 

BKPyV-specific antiviral therapy is currently available. Therefore, a better 

understanding of the immune alteration in both diseases has been deemed essential 

to identify patients at risk and to develop prophylactic, preemptive and therapeutic 

strategies.  

The currently recommended strategy for BKPyVAN is to screen kidney transplant 

patients for BKPyV replication and to promptly reduce immunosuppressive therapy in 

those with significant replication to facilitate mounting of BKPyV-specific T cell 

responses and thereby preventing progression to disease. This manoeuver has been 

linked to expanding BKPyV-specific T cell responses in the peripheral blood of 

kidney transplant patients. However, this approach may place patients at risk for 
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acute rejection episodes that predispose equally well to premature kidney transplant 

failure. Although the clinical feasibility of reducing immunosuppression and curtailing 

BKPyV replication has been shown to be effective in prospective cohort studies for 

many, but not all of kidney transplant patients, this approach has not been possible in 

allogeneic HSCT patients because of concurrent or imminent graft-versus host 

disease. Thus, there are significant gaps in the current understanding of the BKPyV– 

host interaction in the normal host and in the allogeneic setting, which need to be 

investigated for a more effective and safer management of these significant viral 

complications. 

In this thesis, the interaction of BKPyV and the immune response has been 

approached from two different angles. In the first project, potential mechanisms of 

BKPyV immune evasion were studied. Here, we focused on a small accessory 

protein called agnoprotein encoded as a leader protein in the late viral early region 

(LVGR). Although HPyV genomes overall show a very similar genome organization, 

agnoproteins are only found in the genomes of BKPyV and JCPyV that have a 

kidney tropisms, but not in any of the other 11 presumably non-renotropic HPyVs. 

We hypothesized that agnoprotein could play a role in immune evasion by 

downregulating HLA expression. The effects of agnoprotein were studied on HLA 

class I and II expression in vitro by flow cytometry following transfection of primary 

human renal tubular epithelial cells, which are the viral target of BKPyV-associated 

nephropathy. In addition, transfected human UTA-6 cells were studied as well as 

UTA-6 cells bearing a tetracycline-regulated agnoprotein. As control, the effects were 

compared with the ICP47 protein of Herpes simplex virus-1, which has been 

previously reported to effectively down-regulate HLA class I. Although both viral 

proteins share some similarities at the protein level, our results showed that BKPyV 

agnoprotein did not down-regulate HLA class I or class II molecules. Also, there was 

not inhibitory effect on the increase of HLA-class I or class-II surface expression 

following exposure to interferon-γ. By contrast, ICP47 reduced HLA class I surface 

expression, but not class II. We also evaluated effects of agnoprotein on virus 

epitope-specific T-cell killing by 51Chromium release assay, however no interference 

could be observed. We concluded that agnoprotein did not contribute to these types 

of HLA-dependent immune evasion processes. However, further investigations are 

needed to understand if agnoprotein could contribute to viral immune escape by 

other mechanisms.  

In the second project, we aimed at better characterizing BKPyV-specific CD8 T cell 

immunity targeting epitopes encoded in the early viral gene region (EVGR). Selected 

coding sequences of the BKPyV EVGR were submitted to two web-based computer 



 10

algorithms (SYFPEITHI, IEDB) in order to predict immunodominant 9mer epitopes 

presented by 14 frequent HLA-class I molecules. For an experimental confirmation, 

97 different 9mer epitopes were chemically synthesized and tested in 42 healthy 

individuals.  A total of 39 epitopes could be confirmed by interferon-γ ELISpot assay 

in at least 30% of healthy individuals. Interestingly, most of the 9mer epitopes 

appeared to cluster in short amino acid stretches, and some 9mer could be 

presented by more than one HLA class I allele as expected for immunodominant 

domains.  HLA-specific presentation was demonstrated by 9mer- MHC-I streptamers 

for 21/39 (54%) epitopes. The 9mer dependent T-cell killing by 51Chromium release 

assay and the CD107a surface detection indicated that the 9mer epitopes could be 

recognized by cytotoxic T-cells. Moving to a clinically relevant situation, 13 9mer 

epitopes could be validated in 19 kidney transplant patients protected from, or 

recovering from, BKPyV viremia. The results suggest that, pending further 

corroboration in larger patient populations, novel 9mer epitopes can be identified, 

which are associated with CD8 T cell control of BKPyV replication. Thus the 

identified immunodominant 9mer T-cell epitopes could be further developed for 

clinical assays to better predict the risk and the recovery of BKPyV diseases, help 

guiding immunosuppression reduction, and to develop specific adoptive T-cell 

therapy or vaccine responses to prevent or treat BKPyV-associated diseases.  

 

 



 11

3 Introduction 
 

3.1 Virus-host interaction 
 
Viruses are among the smallest of all self-replicating organisms present in nature, 

being constituted in the most basic cases by a little as a small segment of nucleic 

acid encapsidated in a protein shell. Viruses do not have their own metabolism, 

rather they need to parasitize cells and subvert their intracellular machinery in order 

to replicate and possibly transmit to new potential hosts (Walsh and Mohr 2011). 

Hosts and their cells, on the other hand, have developed defense mechanisms in 

order to protect from virus infection and the associated damage resulting from virus 

replication.  

 

The infection of a specific host cell (cell tropism) depends mainly on the presence of 

the appropriate receptors on the cell surface, to which the virus must attach in order 

to gain entry into the cell.  Upon cell entry, in case of lytic infection, the cellular 

replication machinery is redirected, resulting in viral genome replication, with 

consequent protein synthesis, assembling and packaging into new viral particles, and 

finally exit the cell.  In the case of latent infection, viruses express no or only latency 

associated genes causing hardly or no damage to the host cell. Latent or persistent, 

viruses need to avoid immune recognition; therefore they have evolved mechanisms 

of immune escape, which may involve dedicated immune evasion proteins. As 

disadvantage, no active virus transmission occurs during latency phase. 

Viral evolution, which involves the parallel generation of different viral variants 

constituting a viral swarm called quasispecies, is important for successful spreading 

in a given host and counteracting host cell defenses. Rapid generation of viral mutant 

variants may permit escape from host cell defenses, and more efficient replication 

capacity (viral fitness) (Domingo 2007, Ojosnegros, Perales et al. 2011).  

 

In the next paragraphs, aspects of how viruses and hosts interact are presented as 

well as how the immune system responds to infection, where and why the immune 

system can fail in mounting an efficient response, and how it can overcome these 

challenges. This knowledge is deemed essential for finding better strategies to 

prevent viral replication and disease (Ayres AnnuRevImmunol2012). 

 

 



 12

3.1.1 Host immune response to viruses 
 
Once a virus infects a host, it eventually needs to enter the relevant host cells in 

order to survive, replicate, and produce viral progeny. The host needs to build up an 

effective defense mechanism to protect himself against the devastating effects of 

viral infection, and such protective responses are mediated by the immune system 

(Hirsch 2005). 

 

In humans as a member of the mammalian species, the immune system is organized 

in two main compartments, which act in a cooperative and often sequential way: 

1) The innate immune system, which detects the presence of “non-self” through 

germline-encoded pattern-recognition receptors (PRRs), capable of distinguish 

nonself- molecules from self-molecules (Brubaker, Bonham et al. 2015), and 

consequently initiates mechanisms aiming at eliminate pathogens. Innate immunity 

also activates adaptive immune responses. 

2) The adaptive immune system, which at the first encounter with the “non-self” entity 

acts as a second line of defense, is characterized by antigen-specificity and 

immunological memory. Immunological memory describes the observation that once 

an antigen is encountered for a second or repeated time, the adaptive immune 

response is faster and more effective (Zielinski, Corti et al. 2011). 

 

 

3.1.1.1 Innate immunity 
 
Epithelial barriers on all body surfaces, e.g. on the skin, eyes, in the respiratory or 

gastrointestinal tract, act as a first line of defense to prevent virus entry and spread 

within the host. These barriers together with mechanical and biochemical clearance 

through pH and enzymes are considered part of the unspecific defense.  Once the 

pathogen succeeds in entering through the anatomical barriers, a rapid innate 

immune response may start immediately (Brubaker, Bonham et al. 2015).  

The first innate components include preformed soluble molecules and epithelial 

secretions: lysozyme that is an antimicrobial enzyme able to digest bacterial cell 

walls, defensins which are peptides that can lyse bacterial cell membranes, and the 

complement system, which is constituted by several plasma proteins acting 

hierarchically and sequentially, targeting pathogens for both direct lysis and 

phagocytosis by cells of the innate immune.  

 



 13

The cellular effectors of the innate immune response consist of natural killer (NK) 

cells, macrophages, γ/δ-T lymphocytes, dendritic cells (DCs), polymorphonuclear 

leukocytes (PMNs) such as neutrophils, basophils, and eosinophils. These cells are 

able to recognize viruses as non-self. Typical pathogen structures, viral proteins and 

nucleic acids (named as pathogen-associated molecular patterns-PAMPs) can be 

distinguished from cellular counterparts by cellular PRR, present either in the cell 

cytoplasm or on cellular membranes, where they detect viral components. 

 

3.1.1.1.1 Sensors of “non-self” in the innate immune response 

Most PRRs can be included into one of five families according to their protein domain 

homology: there are Toll-like receptors (TLRs), C-type lectin receptors (CLRs), 

nucleotide binding domain, leucine-rich repeat (LRR)-containing (or NOD-like) 

receptors (NLRs), RIG-I like receptors (RLRs), and the AIM2-like receptors (ALRs)  

(Figure 1). According to cellular localization, they can be divided in two main classes: 

unbound intracellular receptors (NLRs, RLRs, and ALRs) , and membrane-bound 

receptors (TLRs and CLRs) (Kumar, Kawai et al. 2011). TLRs and CLRs are found at 

the cell surface or on endocytic compartments. These receptors detect the presence 

of microbial ligands in the extracellular space and within endosomes. The NLRs, 

RLRs, and ALRs sense the presence of intracellular pathogens. Sensing of PAMPs 

by PRRs leads to the production of chemical messages, proinflammatory cytokines 

and interferons (IFN), that are crucial for initiating and modulating immune 

responses, and aiming at containing the spread of an initial infection  (Takeuchi and 

Akira 2010)(Figure 1). 

 

The RLR family consists of retinoic acid-inducible gene-I (RIG-I) and the melanoma 

differentiation gene 5 (MDA5). These proteins   are composed of two N-terminal 

caspase recruitment domains (CARD), a central DEAD box helicase/ATPase 

domain, and a C-terminal regulatory domain (Kawai and Akira 2006). RIG-I detects 

double-stranded RNA (dsRNA) or single-stranded RNA (ssRNA). These types of 

RNAs are usually not found in the cytoplasm of uninfected cells; rather they are 

typically products of viral replication. Once RIG-I binds viral RNAs, the CARD domain 

triggers signaling cascades by interacting with the N-terminal CARD-containing 

adaptor IFN-β-promoter stimulator 1 (IPS-1), which is located on the mitochondrial 

membrane, and subsequentially activates the transcription factors IRF-3 and NF-kB, 

leading to the synthesis of type 1 IFN and other proinflammatory cytokines. It has 

also been reported that RIG-I can be activated in presence of DNA virus, a template 
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of dsDNA is converted into dsRNA by RNA polymerase III DNA sensor, activating 

RIG-I and subsequently leading to the induction of type I IFNs (Chiu, Macmillan et al. 

2009). 

 

 

 

Figure 1: Summary of pattern recognition receptors and activation of innate immune 

responses. 

 

NOD1 and NOD2 are key members of the NLR family (Saleh 2011). They are 

cytosolic proteins constituted by C-terminal ligand-binding LRRs, a central NACHT 

domain, and a single (NOD1) or two (NOD2) N-terminal CARD domains. They are 

involved in detection of components of bacterial outer membrane. Upon binding, 

interactions via CARD domain trigger NF-kB pathway and production of 

proinflammatory cytokines (Park, Kim et al. 2007).  However, NOD1 and NOD2 can 

also eliminate pathogens independently from NF-kB, by inducing autophagy, which is 

a process in which self-proteins and damaged organelles are degraded in double-

membraned vesicles called autophagosomes (Travassos, Carneiro et al. 2010).  

 

The ALRs family includes AIF2 and IFI16, two receptors having a PYHIN domain for 

protein-protein interactions and a DNA-binding HIN-200 domain, involved in sensing 

cytoplasmic DNA, as viral DNA viruses. Upon detection of DNA, AIF2 promotes the 
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inflammasome formation. This multiprotein complex mediates the start of an innate 

immune response characterized by the secretion of proinflammatory cytokines and a 

rapid form of cell death (pyroptosis) that contributes to inflammation (Lamkanfi and 

Dixit 2014). IFI16 activates inflammasome formation, and interacts with STING 

(stimulator of IFN gene), that by activating IRF3 leads to the production of IFN. 

 

CLRs recognize a wide range of microorganisms, including fungi and bacteria, and 

all share a characteristic C-type lectin-like domain. Dectin-1 is a member of CLRs 

and recognizes mainly fungal antigens, upon binding it promotes ligand uptake by 

phagocytosis and the initiation of a signaling cascade that regulates gene expression 

and cytokine production.  

 

Other important detectors of viruses are among the membrane-bound toll-like 

receptors (TLRs), which sense viral glycoproteins, dsRNA, ssRNA, and the CpG 

sequence in viral DNA (Szabo and Rajnavolgyi 2013). At least 10 TLRs have been 

identified in humans, characterized by an extracellular domain, a transmembrane 

domain, and an intracellular Toll/IL-1R homology (TIR) domain.  

In particular, TLR1 TLR2, TLR4, TLR5 TLR6, and TLR11 are expressed on the cell 

surface, while TLR3, TLR7,TLR9 and TLR10 are localized within cytoplasmic 

compartments, such as endosomes (Matsumoto, Funami et al. 2003, Takeuchi and 

Akira 2010). TLRs can activate different transcriptional responses depending on 

which adaptor set is utilized. Among the TLR family members, TLR3, TLR7, TLR8, 

and TLR9, recognize nucleic acids derived from viruses and TLR9 is the most 

important in sensing viral DNA, as it can detect CpG DNA sequences, which are 

characteristic of viral genomes, in fact it has been shown that TLR9 is involved in 

recognition of DNA viruses, such as hepatitis B virus (HBV), murine cytomegalovirus 

(MCMV) and Epstein- Barr virus (EBV).  

It has been demonstrated the importance of TLR9 also in human polyomaviruses 

(HPyV), in fact a recent report demonstrated the expression of TLR2, 4, 5, 7 and 9 in 

Merkel Cell Carcinoma tumor specimen, but a decreased expression of TLR9 

correlated strongly with Merkel Cell polyomavirus (MCPyV) positivity (Jouhi, Koljonen 

et al. 2015).  In another study it has been shown that Large T antigen of MCPyV was 

the responsible for a decreased TLR9 expression, and the same observation was 

done for BKPyV, although at a lower extent (Shahzad, Shuda et al. 2013).   

Sensing of viral DNA induces trafficking of TLR9 from the endoplasmic reticulum to 

the endolysosome, a subsequent cleavage by proteases present in the 

endolysosome, and recruitment of a complex of proteins including MyD88, an 
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adaptor protein displaying a TIR domain. Its activation can trigger a signaling 

cascade leading to NF-kb translocation into the nucleus and subsequent expression 

of proinflammatory cytokine genes, or another pathway leading to IRF7 

phosphorylation, with consequent upregulation of the expression of type I IFN genes 

(Takeuchi and Akira 2010). 

 

3.1.1.1.2 Effectors of innate immune activation 

Interferons play an important role in the resistance against viral infection by binding 

to a common cell surface receptor on the infected cell as well as on neighbouring 

uninfected cells (Akira and Takeda 2004). Interferon family is constituted by distinct 

proteins grouped into three classes according to their receptor complexes. Type I 

IFNs  includes in humans IFN-α, IFN-β, IFN-ε, IFN-κ, and IFN-ω, type II IFN is 

consists only by IFN -γ, and type III IFN is represented by IFN-λ. Type I IFNs signal 

through heterodimeric receptor complexes. For type I IFN, the receptor is constituted 

by the IFN-α receptor 1 (IFNAR1) and IFNAR2 subunits. Type II IFNs signal through 

heterodimers consisting of IFN-γ receptors 1 (IFNGR1) and 2 (IFNGR2), whereas 

type III IFN signal through interleukin-10 receptor 2 (IL-10R2) and IFN-λ receptor 1 

(IFNLR1) heterodimers. Engagement of both type I and type III IFNs to their 

receptors triggers phosphorylation of Janus kinase 1 (JAK1) and tyrosine kinase 2 

(TYK2), which in turn phosphorylate the receptors and leads to the recruitment and 

activation of signal transducers and activators of transcription 1 and 2 (STAT1 and 

2). A heterodimer constituted by STAT1 and 2 recruits the IFN-regulatory factor 9 

(IRF9) to form the IFN-stimulated gene factor 3 (ISGF3). Binding of type II IFN 

dimers to the IFNGR1/2 leads to phosphorylation of JAK1 and JAK2, and 

consequent recruitment and phosphorylation of STAT1. Phosphorylated STAT1 

homodimers form the IFN-γ activation factor (GAF). Both ISGF3 and GAF translocate 

to the nucleus and permit expression of genes regulated by IFN-stimulated response 

elements (ISRE) and gamma-activated sequence (GAS) promoter elements, 

respectively, resulting in expression of antiviral genes (Schneider, Chevillotte et al. 

2014). 

 

In theory all humans cells can synthesize IFNα/β, however some cells show a better 

ability to produce these cytokines, as the precursors of plasmacytoid dendritic cells 

(DC). As main function, IFN-α and IFN-β interfere with virus replication in 

neighboring, not yet infected cells by activating a set of antiviral functions. This 

includes gene product leading to the destruction of mRNAs and inhibiting the 
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translation of viral proteins. They can induce major histocompatibility complex (MHC) 

class I expression in most cell types, and increase the synthesis of MHC class I 

molecules in newly infected cells, so that they can be more easily recognized by CD8 

cytotoxic T cells (Schneider, Chevillotte et al. 2014). IFNα/β can also activate NK 

cells, and thereby inducing the killing of infected cells during the innate immune 

response (Bogdan 2000, Jost and Altfeld 2013). 

 

IFN-γ is induced upon stimulation of epitope-specific T cells and NK cells, resulting in 

cellular immune responses, activation of macrophages and NK cells, it promotes 

upregulation of Human Leukocyte Antigen (HLA) class I and II expression on B cells 

and macrophages, and at higher levels induce class II on tissue cells to enhance 

antigen presentation. IFN-γ is also considered the key cytokine in the T lymphocyte 

helpers (Th) Th1 immune response, in fact they secrete IFN-γ, which as 

consequence induces more undifferentiated CD4+ lymphocytes to differentiate into 

Th1 cells, in a positive feedback loop way, suppressing Th2 cell differentiation.  

 

The IFN-λ family is the most recently discovered group of IFNs, comprising four 

homologous members. It has been demonstrated that polymorphisms in IFN-λ3 

gene, leading to its reduced expression, are associated to decreased replication of 

CMV and lower rates of clearance of HCV (Egli, Santer et al. 2014). Almost any cell 

type is able to express IFN-λ 1–3 in response to viruses, but it is mainly produced by 

DCs (Egli, Santer et al. 2014). 

 

DCs are professional antigen presenting cells (APC), meaning that they can process 

an antigen and subsequently present it on the cell surface to the T cells. They act as 

a bridge between the innate and the adaptive immune system. Upon encounter with 

pathogen they can induce secretion of cytokines (e.g. IFN-α), which in turn can 

activate eosinophils, macrophages, and natural killer (NK) cells. Following antigen 

uptake and the respective activation, they migrate to lymphoid organs where, after 

maturation, they display major histocompatibility complexes with the digested 

peptides to T cells. The recognition of these MHC-peptide complexes is key to 

triggering the adaptive immune response. A subset of DCs is constituted by 

plasmacytoid DCs. They are present in the bone marrow and all peripheral organs, 

and respond to viral infection with a massive production of type I interferons, 

however, they also can act as antigen presenting cells and control T cell responses. 
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Macrophages can also present antigens, playing a crucial role in starting the immune 

response. Monocytes and macrophages are secretory cells, producing enzymes, 

complement proteins, and regulatory factors such as interleukin-1 (IL-1). Monocytes 

can migrate to tissues and differentiate into DCs, mainly during inflammation 

processes.  

 

NK cells are another key component of innate immunity. They display an antigen-

independent lytic activity. Their effector functions are the result of the balance of 

activating and inhibitory signals provided by killer-cell immunoglobulin-like receptors 

(KIRs) through the interaction with specific HLA class I ligands. 

  

3.1.1.2 Adaptive immunity 
 
d Engagement of such receptors, in the presence of additional signals, activates 

proliferation, differentiation, and the effector phase of the adaptive immune response. 

The specificity of adaptive immune response is the result of genetic mechanisms 

occurring during lymphocyte development in the bone marrow and thymus to 

generate a wide range of variants of the genes encoding the lymphocyte receptors, 

known as somatic recombination of variable (V), joining (J), and in some cases, 

diversity (D) gene segments. The main cellular component of adaptive immunity is 

constituted by lymphocytes, which develop in the thymus (T lymphocytes), or in the 

bone marrow (B lymphocytes) and display by receptors with differentiated structure 

and function.  

 

Lymphocyte antigen receptors, in the form of immunoglobulins on B cells and T-cell 

receptors on T cells (Aleman, Rahbin et al.), are the means by which lymphocytes 

detect antigens in their environment. The receptors produced by each lymphocyte 

are characterized by unique antigen specificity, given by the structure of their 

antigen-binding site. The range of different antigen specificities in the antigen 

receptor is due to variation in the amino acid sequence at the antigen-binding site, 

which is constituted by a variable (V) region of the receptor protein chains. In each 

chain the V region is linked to an invariant constant (C) region, which can provide 

effector or signaling functions. In B cells, the rearranged V region is known to 

undergo additional modification, known as somatic hypermutation, occurring when B 

cells encounter the antigen and become activated. 
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3.1.1.2.1 T cells 

 
T lymphocytes mediate cellular immune responses to antigens, recognized by the T 

cell receptor (Aleman, Rahbin et al. 2013), heterodimeric molecule composed of two 

trans-membrane glycoprotein chains, α and β. The extracellular portion of each chain 

consists of two domains displaying a V region and a C region, forming antiparallel β-

sheets. The C region is proximal to the cell membrane, followed by a transmembrane 

region and a short cytoplasmic tail, while the V region is responsible for antigen 

binding. TCR is noncovalently associated with the nonpolymorphic CD3 proteins 

forming the TCR complex, needed in the T cell activation signaling. T cells also 

express on their surface co-receptor molecules, necessary for recognition and 

activation. During development in the thymus, thymocytes express both co-receptors 

CD4 and CD8, then after a positive selection process, cells expressing TCRs with 

potentially useful ligand specificities are identified, and thymocytes resulting from this 

selection ultimately develop into either CD4 or CD8 expressing cells with a lineage 

fate determined by the MHC restriction specificity of their TCR. In particular, cells 

with a MHC class II restricted TCRs differentiate into CD4+ T cells, whereas those 

receiving signals through MHC class I will become CD8+ T cells. Transcription and 

nuclear factors are involved in T cell commitment, the most important for CD4+ 

lineage has been shown to be Th-POK, a zinc finger protein, whereas RUNX 

transcription factors lead the commitment to CD8+, by binding a sequence in the 

gene encoding for Th-POK, inhibiting its expression. Also GATA3, an enhancer-

binding zinc-finger protein, has an important role in CD4 lineage choice, in fact its 

sustained expression blocks the generation of CD8+ cells (Singer, Adoro et al. 2008).  

Once T cells have expressed their receptors and co-receptors, they migrate to the 

periphery and can be activated upon MHC:peptide encounter. T cells require three 

collaborative but distinct signals for efficient activation. The first signal is provided by 

the engagement of the TCR complex to its specific peptide antigen, bound to the 

MHC molecules on the surface of antigen presenting cells (APC) also through co-

receptor molecules, that are CD4 or CD8, expressed at the T cell surface close to the 

TCR molecule. The second step is a co-stimulatory signal provided by engagement 

of T cell surface receptor CD28 with the specific ligands on APC, that are B7.1 and 

B7.2 (CD80, CD86), whereas signaling through the TCR alone without signal two can 

lead to a state of T cell unresponsiveness that is termed anergy or to apoptosis. 

Antigen recognition by TCR ultimately induces the synthesis of transcription factors 

as NFAT (nuclear factor of activated T cells), that activates transcription of IL-2, 

leading to cell proliferation. Further co-stimulatory signals driving proliferation include 
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interaction of CD40 ligand (CD154) with CD40 expressed on APCs.  Upon activation, 

CD8+ and CD4+ T cells can exert their effector functions, meaning cytotoxic activity 

and helper function, respectively.  

 

The cytokines present in the milieu during the activation process lead to CD4+ T cells 

to differentiate into one of several Th, or peripherally derived regulatory T (Treg) cells 

subsets, or even cytotoxic CD4+ cells, for example in presence of IFN and IL-12 

commitment towards Th1 cells is driven, while IL-4 leads to Th2, transforming growth 

factor (TGF)-β, IL-6, IL-21 and IL-23 to Th17, while IL-2 and TGF-β induce Tregs, 

and IL-2 can lead to cytotoxic CD4+ T cells.  Each Th subset is determined by a 

specific gene expression program, under the control of a lineage-defining 

transcription factors, which is T-bet, member of the T‑box family, for Th1 cells, 

GATA3 for Th2 cell, retinoic acid receptor-related orphan receptor-γt (RORγt) for the 

Th17 cell lineage, forkhead box P3 (FOXP3) for Treg cells, and eomesodermin 

(EOMES) for cytotoxic CD4 T cells. The distinct gene expression profile of CD4+ 

subsets is defined by the signature cytokines that they express, their distinct homing 

properties and their specialized effector functions (Swain, McKinstry et al. 2012) 

(Figure 2).  
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Figure 2: Generation of antiviral CD4+ T cells  modified from (Swain, McKinstry et al. 

2012). 

Typically, Th1 cells are involved in the immune response to intracellular pathogens, 

as viruses, through the production of IFN-γ, TNF-α, and IL-2, whereas Th2 cells 

which produce IL-4, IL-5, IL-6, IL-9, IL-10, and IL-13, evoke stronger antibody 

responses and are involved in the immune responses against extracellular 

pathogens and parasites, however Th2 cells are demonstrated to contribute to 

antiviral immunity providing efficient help for the generation of neutralizing antibodies.  



 22

T helper subsets have been identified characterized by proinflammatory IL-17 and IL-

22 production (Th17), mainly involved in autoimmune diseases, and in resistance to 

extracellular bacterial and fungal infections. Their role has been also investigated in 

the context of viral infection, e.g. in case of HBV, respiratory syncytial virus (RSV), 

and human cytomegalovirus (HCMV). Their proinflammatory properties may be 

detrimental or beneficial, it depends on the disease pathogenesis, the tissue damage 

can caused either by direct virus replication or immunopathology. In the first scenario 

Th17 could be of help in the disease prevention and/or resolution (Feng, Yin et al. 

2015, Mangodt, Van Herck et al. 2015, Wunsch, Zhang et al. 2015). 

Recently, another CD4+ helper population named Th9 cells has been identified. They 

secrete IL-9, IL-10 and IL-21, are primed in response to TGF-β and IL-4 and have 

been shown to contribute to inflammation in several autoimmune disease models. 

(Dardalhon, Awasthi et al. 2008). Reports indicate Th9 as major contributors to 

human atopic disease have been linked to the development of asthma and food 

allergies in humans, and to the pathogenesis of inflammatory bowel disease. 

Conversely, it has been observed that the number of Th9 in patients with melanoma 

is reduced compared with healthy individuals, suggesting a protective role (Kaplan, 

Hufford et al. 2015). 

Th22, characterized but the production of IL-22 and TNF-α, have been only recently 

identified (Trifari, Kaplan et al. 2009). They have been observed to play an important 

role in epidermal immunity, remodeling and autoimmune diseases (Eyerich, Eyerich 

et al. 2009), but recent reports have investigated their role in HIV context, in infected 

patients an impairment of Th22 cells was observed, suggesting a possible protective 

role (Kim, Nazli et al. 2012).  

Regulatory T cells (Tregs) include a heterogeneous group of T lymphocytes that are 

critical for the control of potentially dangerous autoreactive T cells in the periphery. 

They play an important role in the immune homeostasis and peripheral self-

tolerance. Tregs may not be proper T helper cells, but it is known that inducible 

Tregs differentiate from the same cell precursor from which Th subsets develop. In 

viral disease they can suppress immunopathology, but also cytotoxic T lymphocytes 

(CTL) responses, promoting viral replication. For example, their role in antiviral 

immunity has been investigated in the context of chronic hepatitis B infection (Peng, 

Li et al. 2008). In this setting the expression of programmed death ligand 1 (PD-L1) 

on Tregs of patients induced an inhibitory signal into effector T cells by the 
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interaction with programmed death-1 (PD-1), correlating with high levels of markers 

of liver injury, thus suggesting a contribution of progression of HBV infection (Feng, 

Cao et al. 2015) (Aubert, Kamphorst et al. 2011). Persistent infection by EBV can 

induce increase of Tregs, as observed in patients suffering from EBV correlated 

nasopharyngeal carcinoma, such cells can suppress the proliferation of autologous 

CD4+CD25- T cells preventing viral clearance (Lau, Cheng et al. 2007), while in 

patients undergoing hematopoietic stem cell transplant and reactivating CMV, Tregs 

do not inhibit pathogen clearance by effector T cells (Velaga, Ukena et al. 2013). 

CD8+ T cells exert their cytotoxic effector function through at least 3 different 

mechanisms. The first one is the production and calcium dependent release of 

specialized lytic granules upon recognition of antigen. These granules are modified 

lysosomes that contain cytotoxic effector proteins. One of these cytotoxic proteins, 

perforin, polymerizes to form trans-membrane pores in target cell membrane, as a 

consequence water and salts pass rapidly into the cell, and without integrity of the 

cell membrane the cell dies rapidly. Other cytotoxic proteins consist of proteases 

called granzymes, which enter the targeted cell through perforin induced pores, and 

upon cleavage of intracellular proteins induce apoptosis. 

The second way of CD8+ T cell elimination of infected cells is via FasL/Fas 

(CD95ligand/ CD95) interactions. Activated CD8+ T cells express at their surface 

FasL which binds to its receptor Fas, that is a member of tumor necrosis factor (TNF) 

receptor superfamily present on the surface of the target cell. The FasL/Fas 

interaction induces the activation of the caspases 2 and 8, which also results in 

apoptosis of the target cell.  

The third cytotoxic mechanism of CD8+ T cells consists in secreting cytokines, 

mainly IFN-γ and TNF-α, contributing to host defense in several ways. IFN-γ directly 

inhibits viral replication and upregulates expression of MHC class I, increasing the 

probability that infected cells will be recognized as target cells. IFN-γ also activates 

macrophages in synergy with TNF-α, recruiting them to sites of infection both as 

effector cells and as APCs.  

 
T cell response after viral clearance is characterized by a contraction and resolution 

phase during which the majority of the effector T cells die. These cells enter the third 

stage, the ‘memory’ phase. Memory T cells are crucial in case of subsequent 

encounter with the antigen.  

In particular T cells in the memory phase can be grouped, according their   effector 

functions, and responsiveness to antigen or cytokines, in effector  memory T cells 
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(TEM ) that after being stimulated migrate to the periphery and exert immediate 

effector function, and central memory T cells (TCM) with  lower effector function, but 

high proliferating potential and differentiation into effector cells upon antigenic 

stimulation. TCM express CCR7 and CD62L, two homing receptors that are also 

present in naïve T cells, but differently from those, TCM show higher sensitivity to 

antigenic stimulation and are less dependent on co-stimulation. Upon TCR 

engagement, TCM produce mainly IL-2, but after proliferation they efficiently 

differentiate into effector cells. TEM loose the expression of CCR7, are 

heterogeneous for CD62L expression, and are characterized by rapid effector 

function. Some CD8 TEM express CD45RA, and are named as TEMRA showing the 

largest amount of cytotoxic granules (Sallusto, Lenig et al. 1999).  

3.1.1.2.2 B cells 

Other essential players in adaptive immunity are B cells, or bone marrow-derived 

lymphocytes. The maturation of B cells occurs in the secondary lymphoid organs, as 

the spleen and lymph nodes, where they can encounter antigens either soluble or 

presented by APCs.  The antigen is recognized through the B cell receptor (BCR), 

composed of membrane-bound immunoglobulin. Immunoglobulins of the same 

antigen specificity are secreted as antibody by terminally differentiated B cells the 

plasma cells. 

 

The antibody molecule can exert two distinct functions: binding specifically to 

molecules from the pathogen that elicited the immune response via the V region, and 

via the C region it can recall other cells and molecules to eliminate the bound 

pathogen. Binding by antibody can neutralize viruses and mark pathogens for 

destruction by phagocytes and complement. Depending on C region, 

immunoglobulins can be classified in IgM, IgD, IgG, IgA, and IgE, which are each 

specialized for activating different effector mechanisms. The V region of an antibody 

generally recognizes only a small region on the surface of a large molecule such as a 

polysaccharide or protein, termed antigenic determinant or epitope. 

 

B cell maturation following antigen recognition can take place in organized lymphoid 

structures called germinal centers. Upon binding, the antigen is endocytosed, 

degraded and presented on the surface to T helper cells. During B and T helper cells 

interaction, CD40 ligand expressed on T cell surface binds to CD40 on B cell surface, 

inducing IL-4 and IL-21 production. Sustained B cell activation leads to B cell 

proliferation, induction of somatic hypermutation, resulting in affinity maturation, and 
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class-switch recombination in the immunoglobulin locus (Harwood and Batista 2010). 

Thus, B cell maturation in germinal centers leads to generation of specific, long-lived 

plasma cells and memory B cells that circulate in the blood or migrate to effector 

sites to confer protective immunity.  B cells can alternatively undergo polyclonal 

activation and differentiate into short-lived plasma cells producing low-specificity 

antibodies, important in the early response towards pathogens (Figure 3). 

 

Viral antigen encounter 

Naïve B cell 

T cell 

Germinal centre 

Long lived 
memory B cell 

Long lived class-
switched plasma cell Short lived plasma cell  

 

Figure 3: B cell differentiation scheme upon antigenic activation. 

 

 

Regarding viral immune response, antibody response is mainly directed towards the 

viral structural proteins. To induce an efficient antiviral response, antibodies have a 

neutralizing ability, as during this activity antibodies can block viral receptors, 

interfering with the uncoating of the genomes in endosomes, or causing aggregation 

of virus particles. However, non-neutralizing antibodies can still activate the 

complement system, that is an enzymes cascade mediating response against 

infection, constituted of numerous effector and regulatory components.  Complement 

activation has three main pathways: the classical, lectin, and alternative pathways. 

Activation of the classical pathway occurs when the fraction C1 binds to antibody or 

directly to activating surfaces. The lectin pathway is triggered by recognition of 

carbohydrate residues, found mainly on microbes, by mannose binding lectin, 

whereas the alternative pathway starts when C3 binds to a suitable activating 

surface. The three pathways converge into a final common pathway and lead to the 

formation of a membrane attack complex, which forms pores on the surface of the 

targeted cell with consequent lysis. 
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Antibodies can also act by opsonization, a process by which the virus is ingested and 

destructed by a phagocyte. An antibody-coated virus can be killed by a cytotoxic 

effector cell also through a non-phagocytic process, characterized by the release of 

the content of cytotoxic granules or by the expression of cell death-inducing 

molecules. Effector cells that mediate antibody dependent cell cytotoxicity (ADCC) 

include NK cells, monocytes, macrophages, neutrophils, eosinophils and dendritic 

cells.  

 

Producing antibodies is not the sole role that B cells have in anti pathogen immune 

response, in fact B cells can regulate CD4+ Th cells by secreting cytokines. 

According to the specific cytokine they can activate different Th subsets and specific 

functions, as for example they can produce IFN-γ and IL-6 supporting Th1 cells, or 

secreting IL-2 supporting Th2 pathway and consequently also the humoral response 

(Shen and Fillatreau 2015). 

 

3.1.1.2.3 Antigen processing and presentation to MHC  

To generate an antigen specific response, lymphocytes need to encounter the 

antigen bound to the MHC molecules for T cell activation, or also in soluble form 

regarding B cell activation.  There are two classes of MHC molecules, MHC class I 

and MHC class II which have different structures and a distinct expression pattern. 

The MHC complex is encoded as a group of genes, which in humans is located on 

chromosome 6. The MHC set of alleles present on chromosome 6, MHC aplotype, is 

inherited by each parent and co-dominantly expressed in each individual. The MHC 

class I gene complex includes three loci A, B and C, as also the class II gene 

complex, DP, DQ and DR. Many alleles of each locus permit thousands of possible 

assortments.  

 

The MHC class I molecules are expressed in all nucleated cells. The expression 

levels depend on the cell differentiation and cell activation. The MHC class I 

molecule consists of a heterodimer of a constant light chain (β 2 microglobulin) which 

has a domain organization similar to that of an immunoglobulin C domain and a 

heavy chain which consists of three domains (alpha1, 2 and 3), the latter being linked 

to a transmembrane helix.  

The structure of MHC class I can be divided in two regions: one region is located 

near the membrane and consists of the β 2 microglobulin and α3 domain spanning 
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the membrane. The second region consists of domains α1 and α2, which form the 

edges of a pocket on the surface of the molecule; this is the site of peptide binding 

(Figure 4). 

 

α2 α1

α3
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α2β2 

β1 

MHC class I MHC class II 

 

 

Figure 4: Schematic representation of MHC class I and II domains (upper panels) and 

the 3D conformation of the peptide binding pockets (lower panels) (adapted from Blum, 

Wearsch , et al. 2013).  

 

The binding of a peptide epitope to the MHC class I complex is stabilized at both 

ends of the cleft by the contacts between the free N- and C- terminus of the peptide 

and the invariant sites present at the edges of all MHC class I molecules (Figure 

5A). The peptide lies in an elongated conformation along the groove with a usual 

length of 8-10 aminoacids. Peptides that can bind to a given MHC allelic variant can 

share similar amino acid residues at two or three defined positions along the peptide 

sequence; as the binding of these side chains anchors the peptide to the MHC 

molecule, such residues are named anchor residues. Both the identity and position 

and of these residues can vary, depending on the particular MHC class I type, 

however most of binding peptides have hydrophobic (or sometimes basic) anchor 

residue at the carboxy terminus (Figure 6).  

 

MHC class II molecules are constitutively expressed in professional APCs, such as B 

lymphocytes, DCs, and macrophages, however MHC class II expression may also be 



 28

induced on other cells upon IFN-γ exposure. The MHC class II molecule consists of 

two trans-membrane glycoprotein chains, α and β. Each chain has two domains, and 

the two chains together form a four-domain complex. The α1 and β1domains, sites of 

major polymorphisms of the molecule, form the groove for the peptide binding, which, 

conversely from MHC class I, have open ends, for this reason peptides binding to 

MHC class II are longer, at least 13 amino acids (Figure 5B). The binding pockets of 

MHC class II are more permissive in the accommodation of amino acid side chains 

therefore it is more difficult to define anchor residues. However MHC class II alleles 

have specific patterns of permissive aa, for example negatively charged aa at the N 

terminus, and hydrophobic at C terminus, peptides are usually cleaved by peptidases 

at 13-17 aa length (Figure 5B and 6). 

 

 

 

 

 

Figure 5: Representation of MHC/peptide complexes. 

The 9mer peptide lays in the groove of MHC class I with the N and C termini tightly fixed in 

the edges, and binding it also with anchor residues (A). The open ends of the MHC class II 

pocket (B) allow peptides to protrude out of the edges, and degradation occurs at 13-17 aa 

length.  The binding is mediated through the core anchor residues. 
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Fig 6 : Peptides binding MHC class I or II molecules.  

Upper panel shows different peptides binding to same MHC class I allele, displaying similar 
anchor residues. Lower panel shows different peptides binding to the same MHC class II 
allele, with different length, but a similar chore 9mer residues pattern (modified from 
Immunobiology : the immune system in health and disease  by Charles A. Janeway, 5th 
edition, chapter 3). 
 

  

Recognition of peptidic epitopes by TCR occurs when they are bound to an MHC 

molecule and presented on the cell surface of an APC. In APCs, different intracellular 

pathways and mechanisms are responsible for generating complexes of MHC class I 

and II molecules with peptide antigens for presentation to T cells (Figure 7). Through 

antigen processing and presentation, T cells are continuously in touch with the intra 

and extracellular milieu and can detect signs of infection or abnormal cell growth. 

 

Usually  MHC class I peptides derive from endogenous proteins marked with 

ubiquitin for destruction by cytoplasmic protein degradation pathways, and then 

presented to CD8+ T cells, while MHC class II molecules are usually associated to 

peptides derived from endocytosis or phagocytosis of proteins and presented to 

CD4+ T cells. However, it is known that APCs can alert naive CD8+ T cells for 

presence of neoplastic cells or infected cells through a mechanism called cross-

presentation. In this way APCs take up antigens from the extracellular milieu and 

process them for presentation by MHC class I molecules to CD8+ T cells (Sigal, 

Crotty et al. 1999). On the other hand, endogenous and viral proteins can generate 

peptide-MHC class II complexes presented to CD4+ T cells, through a mechanism 
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involving autophagy. A MHC II restricted CD8+ T cytotoxic response has even been 

recently observed in the case of monkey vaccination with a cytomegalovirus vector 

expressing antigens from the simian immunodeficiency virus (Hansen, Sacha et al. 

2013). 

 

Once MHC class I molecules are assembled in the endoplasmic reticulum (ER), they 

are stabilised by chaperone proteins, such as calnexin, calreticulin, Erp57, protein 

disulfide isomerase, and tapasin. Transporter associated with antigen presentation 

(TAP), tapasin, MHC class I, ERp57 and calreticulin constitute a complex which is 

called the peptide-loading complex (PLC). The degradation of most cellular proteins 

occurs by the ubiquitin-proteasome pathway. The first consists in the conjugation of 

ubiquitin to the amino group of lysines found in the protein substrate, allowing rapid 

degradation of the protein by the proteasome. This process creates a very large 

number of different peptides, depending on the length and sequence of the protein 

(Rock, York et al. 2004). 

 

Viral infection and consequent production of the immune-modulatory cytokine IFN-γ 

by activated T helper type 1 CD4+ lymphocytes, CD8+ CTLs and NKs, can induce 

expression of several constituents of the proteasome system (the so called 

immunosubunits LMP2 and LMP7), which is then turned into a different proteasome, 

the immunoproteasome, resulting in an enhanced antigen presentation. 

  

Once peptides are generated from the proteasome, tapasin interacts with the 

transport protein TAP which translocates them from the cytoplasm into the ER. 

Peptides transported to the ER are of 8 –16 aa length and therefore may require 

additional trimming in the ER before they can bind to MHC class I molecules. This is 

executed by ER aminopeptidases associated with antigen processing. When 

peptides bind to MHC class I molecules, the chaperones are released and peptide–

MHC class I complexes leave the ER for presentation at the cell surface. In some 

cases, it happens that peptides fail to associate with MHC class I, so they have to be 

transported back to the cytosol for degradation.  

 

After presentation to the cell surface, MHC class I complexes may dissociate and the 

heavy chain can be internalised. Once MHC class I molecules are internalised into 

the endosome, they enter the MHC Class II presentation pathway. Some of the MHC 

class I molecules can be recycled and present endosomal peptides as a part of the 

cross-presentation process. 
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There are two major pathways of antigen processing during cross-presentation, the 

first one is TAP- and proteasome-dependent, the second one is TAP- and 

proteasome-independent. In the proteasome-independent cross-presentation, named 

also vacuolar cross-presentation, acidic lysosomal proteases generate the MHC 

class I ligands in the endocytic pathway. The vacuolar route of MHC class I cross-

presentation is considered to be less effective than proteasome-dependent cross-

presentation (Sigal and Rock 2000, Compeer, Flinsenberg et al. 2012).The TAP and 

proteasome- dependent cross-presentation includes transport of exogenous antigen 

from the endocytic pathway to the cytosol. DCs export the antigenic material very 

efficiently from the endocytic vesicles to the cytosol. Other cell subsets involved in 

cross-presentation are macrophages, endothelial cells, γδT cells, mast cells, and B 

cells, usually elicited by inflammatory conditions (Adiko, Babdor et al. 2015). 

 

Once the complex peptide and MHC class I molecule is on the surface of the APCs, 

it interacts with the T cell receptor on the CD8+ T cell surface. Additionally, the CD8  

molecule itself interacts with the MHC class I molecule, resulting in a very specific 

binding. However, in order to fully activate the T cell and consequently induce an 

epitope specific response, further interactions are needed: the interaction between 

the costimulatory molecules CD80/86 on the APC and CD28 on the surface of the T 

cell, and eventually the production of cytokines by the APCs. 

 

Conversely to peptides binding to MHC class I molecules, those that bind MHC class 

II are usually derived from extracellular proteins, including soluble antigens, antibody- 

or complement-coated immune complexes, or even cellular debris from dying cells. 

Such exogenous proteins are taken up by APCs and transported into the endosomal-

lysosomal compartment. Before encountering the peptides, MHC class II molecules 

are assembled in the ER and stabilised by invariant chain (Ii). The complex of MHC 

class II and Ii is transported through the Golgi into a compartment named as MHC 

class II compartment, where an acidic pH activates proteases cathepsin S and 

cathepsin L resulting in the digestion of Ii, leaving a residual class II-associated Ii 

peptide (CLIP) in the peptide-binding groove of the MHC class II. Finally the CLIP is 

exchanged for the antigenic peptide degraded in the endosomal pathway. MHC class 

II molecules loaded with foreign peptide are then transported to the cell membrane to 

present the antigen to CD4+ T cells. Thereafter, the process of antigen presentation 

by of MHC class II molecules follows a similar pattern as for MHC class I 

presentation, with interaction of TCR, CD4 and further costimulatory signals. 
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Understanding the processes of antigen processing and presentation can provide 

important insights for novel and more effective vaccine design and therapeutic 

strategies harnessing T-cell responses.  

 

 

 
Figure 7. Different antigen-processing pathways for the MHC class I and class II 

molecules. A MHC class I antigen presentation of endogenous antigens. B MHC class II 

antigen presentation of exogenous antigens, and C MHC class I cross presentation of 

exogenous antigens, modified from (Heath and Carbone 2001). 

 

 

3.1.2 Viral strategies to escape host immunity  
 
Viruses are obligate parasites, needing host cells for survival. To replicate into the 

host cell, without being detected and eliminated by the immune system, viruses have 

developed strategies to evade the immune control and even exploit host proteins for 

their own life cycle targeting several mechanisms involving both innate and adaptive 

immunity.  Different mechanisms of subverting the innate immune response have 

been described: 
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First, as pathogens are recognized by host PRRs in APCs through viral PAMPs, one 

strategy is to making inaccessible the viral genome by capping it, this is how 

coronaviruses and Dengue virus subvert RIG-I recognition of their viral RNA.  

 

Second, viruses can interfere with innate signal transduction in order to prevent 

inflammatory cytokines and INF production. For example HCV protease NS3/ NS4A 

cleaves an adaptor protein, MAVS, preventing its downstream signaling, and NS4B 

targets STING (Coccia and Battistini 2015). 

 

Third, APCs can also be targeted through their chemokines receptors, essential to 

migrate in response of chemokine gradients. HIV gp-120 VP3 loop binds to the 

chemokine receptor 5 (CCR5) and allows viral entry in CCR5+cells, including DCs 

(Tamamis and Floudas 2014). Kaposi’s sarcoma associated herpesvirus (KSHV) 

inhibits monocyte differentiation into DCs and reduces DC migration by 

downregulating CCR6 and CCR7 expression on the cell surface by inducing 

cytoskeleton modifications (Cirone, Conte et al. 2012). 

 

Fourth, viruses can modulate cytokine and chemokine production. An example is the 

induction of IL-10 by viruses such as HIV and HCV. The effect is impairment in DC 

maturation and T cell response, leading to viral persistence.  

 

Many viruses escape from immune control by targeting and inhibiting peculiar 

mechanisms inside the cells of the innate immune system, that are essential for the 

activation of an adaptive immune response, i.e. antigen processing and presentation 

pathway (Klenerman and Hill 2005, Hansen and Bouvier 2009, Boss and Renne 

2010, Noriega, Redmann et al. 2012). Antigen presentation includes different steps 

that can be targeted by viruses (Figure 8). Inhibition of the proteasomal processing 

is mediated by EBV nuclear antigen 1 (EBNA1), because its sequence contains 

repeated motifs of glycine and alanine, which prevent the protein to be degraded. 

Similarly, aa sequence of KHSV latency associated nuclear antigen 1 (LANA1) has a 

sequence rich in glutamine, glutamic acid and aspartic residues which prevents as 

well its proteasomal degradation (Bennett, May et al. 2005).  

 

Another important mechanism in antigen presentation is the transport of the peptide 

across the ER, mediated by the TAP complex and requiring ATP. This step is 

targeted by Herpes Simplex virus 1 (HSV) ICP47 protein, HCMV US6 protein, and 

EBV BNLF2a. ICP47 is a cytoplasmic membrane associated protein, binding TAP on 
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the cytoplasmic side, inhibiting peptide binding and translocation. The domain 

mediating the inhibitory effect is at the N-terminal fragment consisting of 32 residues 

(Beinert, Neumann et al. 1997, Galocha, Hill et al. 1997, Aisenbrey, Sizun et al. 

2006). Differently, US6 binds to TAP at its ER lumen side, while BNLF2a prevents 

binding of peptide and ATP to TAP.  

 

HCMV US3 directly binds to and inhibits tapasin, essential for the expression of 

stable MHC class I molecules on the cell surface, causing MHC class I molecules to 

be retained in the ER. At the same level, Adenovirus E3-19K inhibits the formation of 

the TAP–tapasin complex, impairing its inclusion in the PLC (Cox, Bennink et al. 

1991). Interference with MHC antigen presentation can occur also by inducing 

degradation of MHC molecules, this is the case of HCMV US2 and US11, which 

target MHC class I molecules for ER-associated degradation(van der Wal, Kikkert et 

al. 2002). 

 

KHSV kk5 and kk3 induce rapid endocytosis and degradation of MHC molecules, 

and downregulate the expression of other cell surface receptors, such as IFN-γ 

receptors, and MHC class I polypeptide-related sequence A and B (MICA and B), 

ligands for the NK activating receptors NKG2D, leading to minor control by NK cells 

(Thomas, Boname et al. 2008). HIV-1 protein nef downregulates the expression of 

MHC class I and II molecules, and CD4, optimizing viral particle production (Barouch, 

Faquin et al. 2002). 

 

Adaptive immunity can be targeted also interfering with T cell activation on 

costimulator signals, for example KHSV kk5 can downregulate CD86 expression on 

B cells by inducing their endocytosis and consequent degradation, thereby impairing 

the ability to activate T cells. Interfering with T cell response is another clever 

mechanism of immune evasion. Viruses such as RSV influence the polarization of 

CD4+T cells from Th1 phenotype, able to produce antiviral interleukins, to Th2 or 

Th17 phenotype (Christiaansen, Varga et al. 2015). Herpesviruses HCMV and EBV 

induce Treg response against latently expressed peptides, maintaining viral 

persistence. In particular Tregs increase in the peripheral blood of EBV positive 

patients with nasopharyngeal carcinoma and suppress the proliferation of autologous 

CD4+CD25- T cells (Lau, Cheng et al. 2007). 

 

During viral latency only a minimal set of genes is expressed, including micro RNA 

(miRNA), which contribute to immune evasion,  targeting viral antigens, which could 
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be recognized by the immune system. This is the case for Simian virus 40 (SV40) 

that can express miRNA targeting and therefore repressing the expression of the 

early protein Large T antigen, which usually elicits strong T cell responses (Sullivan, 

Grundhoff et al. 2005) . In BKPyVand JCPyV the early region encodes a pre-miRNA 

that generates two functional miRNAs complementary to the LTag mRNA and 

posttranscriptionally down-regulate LTag expression. The 3’miRNA was found to 

target the mRNA of the cellular stress induced ligand ULBP3, ligand for NKG2D a 

recognition receptor for detection of infected cells, which in NK cells triggers 

cytotoxicity (Bauman, Nachmani et al. 2011). 

 

Investigating on all mechanisms of viral immune escape is a very important tool to 

clarify many immunological pathways, and also necessary to understand how to 

design vaccines able to prime and boost an efficient immune response, and prevent 

viral related diseases. 

 

 

Figure 8: Antigen processing and presentation of peptide:MHC class I and interference 

by viral proteins modified from (Hansen and Bouvier 2009) 
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3.1.3 Vaccines 
 
The first vaccine used in humans, live vaccinia virus, was developed by Jenner more 

than 200 years ago for the control of smallpox. Through the centuries, vaccines have 

been developed and extensively used in order to induce protective immune 

responses against a specific pathogen. Jenner vaccination strategy for smallpox 

consisted in injecting in human an analog non-human specific pathogen. Another 

strategy has been to use killed organisms, and subsequently obtain inactivated viral 

components, as in 1885 Louis Pasteur did for rabie vaccine, growing the virus in 

rabbits, and then weakening it by drying the infected tissues .  

 

Currently, more than 50 different vaccines are licensed by the Food and Drug 

Administration in the United States, and they are either live, inactivated, toxoid or 

biosynthetic,(http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProduct

s/ucm093833.htm), 14 are directed against viral pathogens.  

 

Live attenuated vaccines could be produced against measles, mumps, and 

chickenpox, the advantage of this kind of vaccines is that they are the most similar to 

a natural infection, as a disadvantage it exists the possibility that an attenuated 

microbe could revert to a virulent form and cause disease. Such inconvenience can 

be overcome with the nonliving vaccines, which include Poliovirus vaccine. Nonliving 

vaccines are in principle prepared growing viruses in continuous cell lines cultures, 

then the virus is inactivated by chemicals or disrupted with detergents allowing 

immunization with little or no risk of infection. However some infectious contaminants 

can remain, that was the case of Poliovirus vaccine contaminated with SV40 virus.  

 

Recombinant DNA technology has helped to produce large quantities of purified 

protective viral antigens for use in immunoprophylaxis without risk of infection or 

contamination. With such technique it is possible to express viral proteins in 

eukaryotic cells of yeast, insect, or mammalian origin. An example of recombinant 

vaccine is the HBV one, produced by expressing the hepatitis B surface antigen 

(HBsAg) in yeast cells. The HBsAg assembles into virus-like particles (VLPs), which 

are highly immunogenic, resulting a very efficient vaccine. Another example are the 

HPV vaccines based on VLPs derived from HPV-6, -11, -16, and/or -18 subtypes. 

These vaccines display the L1 recombinant proteins of each subtype, expressed 

either in yeast or in an insect-cell system. The L1 is the major capsid protein and its 

in vitro expression leads to  the assembly of VLPs. Vaccines based on recombinant 
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proteins show several advantages in terms of safety and production costs, with the 

disadvantage of weak or poor immunogenicity when administered alone, requiring 

the use of adjuvants to elicit a more protective and long-lasting immune response.  

 

An alternative and more focused approach to immunization involve the production of 

synthetic peptides representing immunodominant domains or even single epitopes of 

viral antigens, that could elicit humoral, cellular, or both immune responses, 

according to the specific pathogen, in fact protection against extracellular organisms 

is provided mainly by antibodies, whereas for the control of intracellular organisms, 

an effective CTL response is also essential. It is well known that during a natural 

infection, proteasomal degradation and processing of pathogen-derived proteins 

occur, and epitopes will be presented at the surface of APCs, but not all pathogen-

derived proteins and epitopes will induce an effective immune response against the 

pathogen, indeed some epitopes can induce tolerogenic responses or induce 

inflammatory response without effective protection (Gibson, Nikolic et al. 2015). For 

this reason, it is of importance to choose appropriate antigens and epitopes able to 

induce an effective immune response. It is also important that vaccines should be 

effective in the majority of the population exposed to the pathogen, therefore 

epitopes able to induce an effective response in broad range of MHC alleles, or at 

least in the most frequent ones, need to be considered. 

 

Such considerations lead to the idea that a vaccine should contain pathogen-derived 

peptides, which can generate an appropriate, all life long lasting, protective immune 

response in the vast majority of population, therefore an epitope mapping of 

pathogen derived immunogenic proteins should be performed. Numerous 

approaches have been developed to identify peptides derived from pathogens 

proteins that can be recognized by B and T cells, both experimental and predictive 

(Zhao, Zhang et al. 2013). 

 

Among experimental methods to identify B cell epitopes, one of the most frequently 

used techniques is the fusion phage display technology (Smith 1985). It consists in 

cloning the coat protein gene region into a phage, allowing the candidate peptides to 

be expressed at the phage surface and then screened with sera samples or specific 

antibodies. Phages with positive binding are analyzed to determine the specific 

peptides sequences. By phage display technology and by an affinity selection 

technique called Biopanning, it is possible to produce linear peptides mimicking the 
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structure of an epitope (mimotopes) and able to induce the antibody response similar 

to the one elicited by the epitope. 

 

Experimental method to map T cell epitopes have been developed, which utilize 

several different approaches, such as starting from identification of peptides binding 

to HLA molecules on solid-phase, to functional assays based on the identification of 

peptides able to elicitate in vitro an epitope-specific T cell response. The most used 

techniques are enzyme-linked immunospot (ELISpot) assay, allowing to identify T 

cells producing cytokines in response to an antigenic stimulation, intracytoplasmatic 

cytokine staining (ICS) and HLA multimers to be used in flow cytometry, 

lymphoproliferation, and killing assays such as 51Chromium release assays. Such 

methods should be used in combination to identify HLA specific immunodominant 

peptides, as some of these can identify functionally immunogenic peptides but only 

others, such as HLA multimer staining, can identify HLA restricted immune 

responses.  

 

Predictive approaches are based on algorithm-based software and databases: from 

the sequences of peptides or even of a whole protein they can predict which epitopes 

will bind to a specific HLA allele.(e.g. SYFPEITHI, BIMAS)(Schuler, Nastke et al. 

2007), others, such as Immune Epitope Database (Vita, Zarebski et al. 2010) offer 

the user tools to identify T cell epitopes, not only based on HLA-peptide binding, but 

also on antigen processing and presentation parameters, such as proteasomal 

cleavage and TAP transport. 

 

It can occur that bioinformatics databases find putative peptide candidates which are 

virtually able to bind HLA molecules, which may reveal not being immunogenic in 

vitro and in vivo, therefore they need to be coupled with experimental approaches. 

Once epitopes capable of inducing protective immune responses to the chosen 

antigen are identified, further considerations need to be done in order to develop a 

peptide-based vaccine and improve its immunogenicity: 

• Using short peptides, which do not require processing, may not always help 

to obtain a protective long lasting T cell response; it has been demonstrated 

that vaccination with long peptides, which are taken up by APCs, processed 

and presented could induce a more sustained CTL response when compared 

to short peptide vaccination. Moreover longer peptides can contain CD4+ T 

cell epitopes, eliciting a helper cell response, which can enhance also the 

CTL response (Kenter, Welters et al. 2008, Welters, Kenter et al. 2008, 
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Kenter, Welters et al. 2009). Improving CD8+ T cell response can be 

achieved by adding a synthetic non-natural pan HLA-DR binding epitope 

peptide (PADRE), which elicits CD4+ T cell responses and consequently 

enhances CD8+ T cells epitope specific responses (Cong, Mui et al. 2012). 

The inclusion of B epitopes would give a more complete T cell response, and 

in case of extracellular pathogen would be required. 

• Peptide-based vaccines, as also recombinant vaccines, are poorly 

immunogenic in vivo, therefore they require adjuvants, with properties of 

immunostimulants and/or vehicles of the antigen.  

 

Adjuvants defined as immunostimulants act on the immune system enhancing the 

immune responses to antigens. In particular, they can influence cytokine production 

by activating MHC molecules, costimulatory molecules, or through related 

intracellular signaling pathways. They comprise TLR ligands as the monophosphoryl 

lipid A (MPL-A), which triggers TLR4, CpG DNA, acting on TLR9. Adjuvants acting 

as vehicles, such as emulsions, liposomes, virosomes, or virus like particles (VLPs), 

target vaccine antigens to the immune system in a more efficient way and control the 

depot and release of antigens to enhance the specific immune response. Emulsions, 

including Freund's complete and incomplete adjuvants, Montanide/ISA-51 and MF59 

containing squalene, and AS02 (containing  squalene, MPL1 and the saponin extract 

QS-21) create a depot at the injection site, enhancing antigen uptake by prolonged 

exposure of antigen to the APC. The release of antigen needs to be at low-level, so it 

can induce a potent immune response, in fact it is known that when a given antigen 

is used over a wide range of concentrations, intermediate doses induce immunity, 

and low and high doses induce tolerance. 

 

Peptides can be carried also by liposomes, phospholipid bilayer structures forming 

small vesicles. Liposomes can efficiently protect the immunogenic peptide from 

enzymatic degradation, are easily altered to obtain optimum presentation of the 

antigen, and can be efficiently taken up by APCs due to their particulate nature, 

however their limitation is a low entrapment efficiency, which could be overcome by 

conjugating the peptide to the lipids forming the vesicle (Nagata, Toyota et al. 2007). 

Virosomes, differently from liposomes, have integrated in the liposomal bilayer the 

influenza surface antigens neuraminidase and hemagglutinin, this feature enhances 

HLA class I and II presentation and induces an antigen-specific adaptive immune 

response.  
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VLPs are constituted by recombinant viral structural proteins that are self-assembled 

to mimic the conformation of viruses. They  have the ideal size (20–100  nm in 

diameter) to be efficiently taken up APCs, and are able to also stimulated an efficient 

CTL response because recombinant VLP may gain access to the cytosol, 

internalization via endogenous processing pathways, thus activating antigen specific 

CTL by cross-presentation. VLP vaccines for HPV (Gardasil® and Cervarix®) are 

commercially available. 

 

ISCOMs are immunostimulatory complexes including antigen, cholesterol, 

phospholipid and saponin. They favour the endosomal and cytosolic pathways for 

antigen presentation. Also polymers can be used for the delivery of vaccines, as the 

synthetic polylactides, polyglicolic acid, or the natural chitosan.  

 

Currently in the U.S. some vaccines contain adjuvants, it is the case for vaccines that 

prevent hepatitis A, hepatitis B, diphtheria-tetanus-pertussis, Haemophilus influenzae 

type b, HPV, pneumococcus infection which contain aluminium salts, whereas the 

HPV vaccine Cervarix® is carried by VLPs and added with MPL-A. 

 

In summary, virus-host interactions are very complex, viruses have developed 

mechanisms to replicate and expand within the host, and in parallel the host has built 

response mechanisms aiming at clearing the virus from the host cell. Such 

processes include the recognition of the pathogen, its elimination and the elimination 

of infected cells through the mediators of the immune system. To counteract the 

host, viruses target the most important checkpoints in the immune response, and 

exploit the cellular machinery to evade immunity. Knowledge on the most important 

issues in virus-host interaction can help and guide the design and development of 

appropriate tools to monitor, prevent and /or treat virus associated diseases. 
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3.2 Polyomaviruses 
 

3.2.1 General information 
 
Polyomaviruses belong to the Polyomaviridae family, constituted by at least 26 

different members, with a broad range of infected host species, including human, 

monkey, bovines, rabbit, hamster, rat, mouse, and birds species, and recently, the 

International Committee on Taxonomy of Viruses prompted revisions on its taxonomy 

based on host range, genetic repertoire, and DNA sequence identity (Johne, Buck et 

al. 2011) (Figure 9). From the single genus Polyomavirus, the Polyomaviridae family 

has been splitted into three genera: 

• Avipolyomavirus: this genus is constituted by avian polyomaviruses, 

characterized by high pathogenicity, and a consensus sequence in the DNA 

binding domain of the LTag  different to the other genera. Some of the avian 

polyomaviruses have an additional open reading frame (ORF) encoding for a 

late protein, VP4. 

• Wukipolyomavirus: this genus includes the WU polyomavirus (WUPyV), KI 

polyomavirus (KIPyV), human polyomavirus 6 (HPyV6) and 7 (HPyV7). 

These viruses share greater DNA homology than with the other mammalian 

polyomaviruses, especially concerning the late region. 

• Orthopolyomavirus: all remaining mammalian polyomaviruses are included in 

the last genus, as also the human BK polyomavirus (BKPyV), JC 

polyomavirus (JCPyV), Merkel Cell polyomavirus  (MCPyV), and the Simian 

Virus 40 (SV40). 
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Figure 9: Phylogenetic tree of Polyomaviridae family, adapted from (Johne, Buck et al. 2011). 

 

All polyomaviruses share common key features:  

• An icosahedral non-enveloped capsid constituted 72 capsomers 

• A double-stranded DNA, of a size of approximately 5 kbp. 

• A non-coding control region (NCCR) harboring the origin of replication (ORI). 

• Transcription starting from one side of the ORI results in the encoding of early 

non-structural proteins, named tumor (T) antigens.  

• The early viral gene region (EVGR) is transcribed into one major transcript, 

from which the encoded large T antigen (LTag) and the small T antigen 

(sTag) are generated by alternative splicing, while murine PyV (MPyV) and 

hamster PyVs also encode a third viral early protein called middle T antigen. 

In the EVGR of a subset of human and non human PyV (BKPyV, JCPyV, 

MCPyV, SA12, MPyV and SV40) miRNA sequences have been identified, 

complementary to LTag sequence. In BKPyV and JCPyV it has been shown 

to bind the cellular stress induced ligand ULBP3, involved in NK cell mediated 

lysis (Bauman, Nachmani et al. 2011). 
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• From the opposite side of the ORI, transcription of late viral gene region 

(LVGR) generates the encoded structural proteins VP1, VP2 and VP3, 

whereby VP1 being the most abundant component of VLPs. Of note, only the 

LVGR of BKPyV, JCPyV, and SV40 encode also a small non-structural 

protein called agnoprotein upstream of the VP1 ORF. 

3.2.2 Human Polyomaviruses 
 
Human polyomaviruses (HPyV) belong either to the Wukipolyomavirus or to the 

Orthopolyomavirus genera, in particular WUPyV, KIPyV, HPyV6 and HPyV7 are the 

members of Wukipolyomavirus genus, while JCPyV, BKPyV, MCPyV, 

Trichodysplasia spinulosa virus (TSPyV), HPyV9, HPyV10 (with the two variants 

Malawi polyomavirus (MWPyV) and MX polyomavirus (MXPyV)), Saint Louis 

polyomavirus (STLPyV), HPyV12, and New Jersey polyomavirus (NJPyV-2013) all 

belong to the genus Orthopolyomavirus (Table 1). 

 

The first two HPyV to be isolated were JCPyV and BKPyV, named after the initials of 

the patients from whom they were first isolated. JCPyV was isolated from the 

diseased brain tissue of a patient with PML, while BKPyV was isolated in 

cytophatically altered urinary epithelial cells shed by a kidney transplant recipient 

(KTR) (Gardner, Field et al. 1971, Padgett, Rogers et al. 1977). More than 35 years 

later, from 2007, other HPyV have been discovered not by isolation, but using 

different molecular identification techniques.  
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Table 1: Human Polyomaviruses 

 

Name  Year of discovery First source of isolation Reference 

BKPyV 1971 Urinary epithelial cells 
from KTR 

(Gardner, Field et al. 
1971) 

JCPyV 1971 Brain tissue (Padgett, Walker et al. 
1971) 

KIPyV 2007 Airways samples from 
patients with respiratory 
disease 

(Allander, Andreasson et 
al. 2007) 

WUPyV 2007 Airways samples from 
patients with respiratory 
disease 

(Gaynor, Nissen et al. 
2007) 

MCPyV 2008 Merkel cell carcinoma (Gaynor, Nissen et al. 
2007, Feng, Shuda et al. 
2008)  

HPyV6 2010 Skin of healthy subject (Schowalter, Pastrana et 
al. 2010) 

HPyV7 2010 Skin of healthy subject (Schowalter, Pastrana et 
al. 2010) 

TSPyV 2010 Skin of Trychodysplasia 
spinulosa patient 

(van der Meijden, 
Janssens et al. 2010) 

HPyV9 2011 Serum sample from KTR (Scuda, Hofmann et al. 
2011) 

HPyV10 2011 Papillomavirus induced 
anal condylomata  

(Buck, Phan et al. 2012) 

STLPyV 2013 Stool samples from 
diarrhea affected children 

(Lim, Reyes et al. 2013) 

HPyV12 2013 Liver tissue (Korup, Rietscher et al. 
2013) 

NJPyV-2013 2014 Muscle biopsy of a 
pancreatic transplant 
recipient 

(Mishra, Pereira et al. 
2014) 

 

 

• KIPyVV and WUPyV were identified in airways samples from patients with 

respiratory disease at the Karolinska Institute and at the Washington University, 

respectively (Allander, Andreasson et al. 2007, Gaynor, Nissen et al. 2007). 

 

• MCPyV was identified in 2008 in Merkel cell carcinomas (MCC), which is an 

aggressive form of cutaneous cancer (Feng, Shuda et al. 2008). In MCC cells 

infected by MCPyV, mutations, insertions, and deletions within LTag result in the 

expression of truncated LTag before the helicase domain (Duncavage et al., 

2009) and a 57 kb T antigen production.  

 

• TSPyV was identified as etiological agent of Trychodysplasia spinulosa, skin 

disease of severely immunocompromised hosts (van der Meijden, Janssens et al. 

2010). 

• HPyV6 and HPyV7 were first identified in skin swabs of healthy individuals, while 

HPyV9 was first identified in serum of a KTR (Schowalter, Pastrana et al. 2010). 
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• HPyV10 was found in 2012 in condylomas of a patient affected by warts, 

hypogammaglobulinemia, infections, and myelokathexis syndrome (Buck, Phan 

et al. 2012).  

• MWPyV was found in a feaces sample of a healthy child from Malawi (Siebrasse, 

Reyes et al. 2012), then MXPyV was identified in stool samples from children 

with diarrhea in the US (Yu, Greninger et al. 2012). As MWPyV and MXPyV show 

DNA identity of more than 95% with the previously discovered HPyV10, they can 

be considered as variants of HPyV10. 

• STLPyV was identified most recently in stool samples of children 

• HPyV12 in organs of the gastrointestinal tract of patients affected by malignant 

diseases (Korup, Rietscher et al. 2013). 

• HPyV13, the latest member of the HPyV, is also called NJPyV-2013 and has 

been identified in a muscle biopsy of a pancreatic transplant recipient (Mishra, 

Pereira et al. 2014). 

 

HPyV are ubiquitous viruses, infecting a large proportion of the human population. 

Seroprevalence for most of them have been described (Dalianis and Hirsch 2013) 

showing different age-dependent patterns, suggesting that HPyV are transmitted 

independently of one another. 

HPyV infect their host without causing any apparent primary disease, but they 

usually persist latent without causing clinical symptoms, however in case of 

immunosuppression, they can cause severe diseases.  

 

So far, a causative role in human diseases has been demonstrated for JCPyV, 

BKPyV, MCPyV, and TSPyV. JCPyV is mainly known as causative agent of 

progressive multifocal leukoencephalopathy in immunocompromised individuals, also 

related to the immune reconstitution inflammatory syndrome, moreover it is also 

associated to meningitis, granule cell neuronopathy, and rarely to nephropathy in 

KTRs. BKPyV can cause nephropathy in KTRs, hemorrhagic cystitis in hematopoietic 

stem cell transplantation, ureteric stenosis, encephalitis, pneumonia, vasculopathy, 

bladder cancer, and it might play a role in prostate cancer. MCPyV is recognized as 

cause of Merkel Cell Carcinoma, while TSPyV is the cause of Trychodysplasia 

spinulosa. Other HPyV have been found in samples of patients,  as HPyV7 was 

found in samples of lung transplant, but their role in causing diseases has not been 

fully elucidated. 
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3.2.3 BK Polyomavirus (BKPyV) 
 

3.2.3.1 Viral genome and proteins 
 
BKPyV, as all PyV, is a non-enveloped, double stranded DNA virus. The ichosaedral 

virion is about 45 nm in diameter and the capsid consists of 72 capsomers, each 

composed of 5 molecules of the structural protein VP1 linked to one molecule of VP2 

or VP3. The C-terminus of VP1 protein interacts with the neighboring pentamer of 

VP1, stabilizing the capsid. BKPyV virion encapsidates the genome, which is 

organized in a circular DNA molecule (about 5 kbp length) packed around the cellular 

histones H2A, H2B, H3, and H4, forming a minichromosome. The genome, 

containing about 20 nucleosomes, is organized in three distinct functional regions 

typical of all PyV: the NCCR, the early viral gene region (EVGR) and the late viral 

gene region (LVGR) (Imperiale 2007) (Figure 10). 

 

The NCCR contains the ORI, TATA- and TATA-like sequences for both early and 

late viral gene transcription, many DNA- and transcription-binding sites, promoter 

and enhancer elements as well as binding sites for the LTag, and directs the early 

and late transcription of replication. NCCR is divided in blocks defined O143, P68, 

Q39, R63, and S63. 

 

 

 

Fig 10: Genome organization of BKPyV 
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Based on the DNA sequence of the NCCR, BKPyV can be defined as archetype 

strain, most frequently found in urine of both healthy and diseased people. In 

immunocompromised patients with high-level BKPyV replication such as 

nephropathy in renal transplant recipients, the NCCR may have deletions, insertions 

or duplication of the blocks, leading to rearranged NCCR (Randhawa, Zygmunt et al. 

2003, Azzi, De Santis et al. 2006, Olsen, Andresen et al. 2006, Gosert, Rinaldo et al. 

2008). Rearranged variants are most often detected in sera and urine of patients with 

BKPyV associated diseases. These NCCR rearrangements have been shown to 

increase EVGR expression and replicative capacity (Gosert, Rinaldo et al. 2008, 

Bethge, Hachemi et al. 2015). 

 

The BKPyV EVGR is on the proximal side of the ORI and encodes for the regulatory 

proteins LTag (80.5 kDa), sTag (20 kDa), and the truncated tumour antigen 

(truncTag, 17 kDa), expressed by alternative splicing of a single mRNA transcript.  

In BKPyVand JCPyV the EVGR encodes a pre-miRNA that generates two functional 

miRNAs complementary to the LTag mRNA and posttranscriptionally down-regulate 

LTag expression. The 3’miRNA was found to target the mRNA of the cellular stress 

induced ligand ULBP3 (Bauman, Nachmani et al. 2011), recognized by the natural 

killer receptor NKG2D, thus possibly mediating evasion from NK cell mediated 

elimination. 

LTag is multifunctional regulatory protein of 695 amino acid lengths. It can bind a 

wide variety of cellular proteins, its structure includes different functional domains 

that are critical for viral replication, and may be involved also in cell transformation 

(Figure 11A). At the N-terminus there is the J domain, which is a heat-shock-protein-

70 (Hsp70) binding domain. Hsp70 is usually activated upon cellular stress, and 

plays a role in folding and unfolding of proteins. Interaction between the J domain 

and Hsp70 results in stimulation of the ATPase activity of Hsp70. It has been 

demonstrated in SV40, that upon recruitment of Hsp70, complexes involving the 

retinoblastoma (Rb) family proteins p107 and p130 are disrupted. As result the host 

cell enters the S phase and proliferates. (Sullivan and Pipas 2002, Sullivan, Baker et 

al. 2004). Next to the J domain of LTag, there is the Rb binding domain, with a 

conserved LxCxE motif, which acts together with the J domain in preventing pRb 

interaction with cellular E2F, which would have resulted in activation of transcription 

of genes involved in DNA replication activities and cell cycle regulatory activities, in 

particular the transition from G1 phase to S phase(Harris, Christensen et al. 1998). 
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The ORI-binding domain (OBD) of the LTag is located close to the helicase domain, 

which are binding to the ORi-sequence of the PyV genome and promote the 

unwinding of the circular viral DNA for DNA replication. For these processes 

hydrolysis of ATP is required, and a sequence inside the helicase domain has an 

ATPase activity. The ATPase domain has a highly conserved sequence among PyV, 

therefore such sequence has been investigated as a target in the search of anti-

polyomavirus compounds (Seguin, Ireland et al. 2012, Topalis, Andrei et al. 2013).  

At the outside surface of the helicase domain, at residues 351–450 and 533–626, 

there is a domain of interaction with the tumor-suppressor p53. LTag engaging  p53 

interferes with its binding to DNA and prevents host cell apoptosis. Therefore, LTag 

might play a role in oncogenic transformation (Hirsch 2005, Dalianis and Hirsch 

2012, Dalianis and Hirsch 2013, Papadimitriou, Randhawa et al. 2016). 

 

Following the helicase domain, BKPyV LTag contains a C-terminal region that bears 

some homology to the SV40 C-terminal domain, which can be phosphorylated on 

threonine 701 and, resulting in an interference with the degradation of the G1–S-

specific cyclin E1 and MYC, contributes to cellular growth and proliferation.  A C-term 

host range domain has been described in BKPyV LTag. Such domain, in SV40 is 

critical for viral replication in the host (Pipas 1992). 

 

Alternative splicing of LTag mRNA can lead to expression of a truncated protein (136 

aminoacids), lacking the helicase domain, but preserving the Rb binding domain. In 

mice  models, expression of the truncTag induced cellular transformation in the host 

(Abend, Joseph et al. 2009).  

 

Among HPyV, the oncogenic properties of BKPyV, JCPyV and MCPyV have been 

described in vitro and in animal models (Moens, Van Ghelue et al. 2007, Borchert, 

Czech-Sioli et al. 2014, Verhaegen, Mangelberger et al. 2014). For MCPyV, a clear 

association with cancer is described in its natural host. A particular role has been 

attributed to the sTag and possibly a truncated form of LTag has been found to be 

peculiar in Merkel cell carcinoma tumors (Chang and Moore 2012). However, BKPyV 

may increase the risk of developing renal and prostate cancer  (Hirsch 2005, Dalianis 

and Hirsch 2012, Bulut, Ozdemir et al. 2013, Dalianis and Hirsch 2013, 

Papadimitriou, Randhawa et al. 2016). In a study conducted in BKPyV-positive 

prostate cancer patients, stimulation of peripheral blood mononuclear cells (PBMC) 

with LTag derived peptides resulted in expansion of antigen-specific T cells with 

suppressive properties (IL-10-secreting, expressing CD4+CD25++CD127−FoxP3+), 
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leading to the maintenance of a regulatory microenvironment, thus favoring a bad 

prognosis (Sais, Wyler et al. 2012). In another study, Keller et al evaluated if 

preoperative antibody response to BKPyV LTag and VP1 could be associated with 

the risk of biochemical recurrence in patients undergoing prostatectomy for primary 

prostate cancer and demonstrated that seropositivity to BKPyV LTag significantly 

reduced the risk of biochemical recurrence, suggesting serology as a prognostic 

biomarker in prostate cancer. 

 

The sTag of BKPyV contains 172 amino acids and results from an alternative splicing 

of the same EVGR mRNA transcript of LTag. This smaller early regulatory protein 

seems to be involved in viral replication and cellular transformation. Its sequence 

includes a shared domain with LTag, that is the J domain, and a region ranging from 

aa 83 to 172 containing two zinc-binding motifs formed by cysteine residues 

configured as CxCxxC (Cho, Morrone et al. 2007), which is responsible for inhibition 

of serine/threonine protein phosphatase 2A (PP2A), leading to cellular proliferation 

(Mungre, Enderle et al. 1994, Sontag, Sontag et al. 1997, Sontag and Sontag 2006, 

Cho, Morrone et al. 2007) (Yuan, Veldman et al. 2002) (Figure 11B). It has been 

recently shown that mutations in the second domain result in lack of binding with 

PP2A (Cardoso, Diaz et al. 2015).  

 

 
Figure 11: A LTag functional domains. B sTag functional domains 

 

The LVGR of BKPyV is located on the distal side of the ORI, and encodes three 

structural proteins: VP1 (40.1 KDa), VP2 (38.3 KDa), VP3 (26.7 KDa), and a non-

structural protein called agnoprotein (7.4 kDa). The structural proteins VP2 and VP3 

derive from the same transcript, whereas VP1 and agnoprotein are translated in 
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another reading frame from partially overlapping transcripts. VP1 constitutes the 

majority of the BKPyV virion proteins, which is composed by 72 pentameric 

capsomers arranged in an icosahedral structure. Inside the capsid, one molecule of 

either VP2 or VP3 is linked to each VP1 pentamer. VP1 interacts via N-terminus with 

other VP1 molecules within the same pentamer, while the C-terminus interacts with 

other pentamers stabilizing the capsid. It is believed that both VP2 and VP3 are 

important for packing JCPyV and BKPyV genomes into virions as well as for 

uncoating and delivery of viral genome to the host cell nucleus (Shishido-Hara, 

Ichinose et al. 2004, Gasparovic, Gee et al. 2006). 

 

The BKPyV agnoprotein is the least conserved protein among mammalian PyV , and 

in fact, has a corresponding homologue only in JCPyV and SV40 with an aa identity 

of 60% (Rinaldo, Traavik et al. 1998, Gerits and Moens 2012). In BKPyV wild type 

(ww), agnoprotein is a 66 aa phosphoprotein (Rinaldo, Traavik et al. 1998), where 

potential phosphorylation acceptor sites have been mapped to Ser-7, Ser-11, and 

Thr-21 (Sariyer, Akan et al. 2006, Johannessen, Myhre et al. 2008). Replacing Ser-

11 with alanin or aspartic acid leads to lower viral propagation and less protein 

stability (Johannessen, Myhre et al. 2008). In JCPyV it has been shown that 

agnoprotein potentially can enhance virus release by acting as a viroporin (viral 

protein  that interacts with membranes leading to modified cell permeability to ions or 

other small molecules) requirinq the basic Arg-8 and Lys-9 for such activity(Suzuki, 

Orba et al. 2010). 

 

Agnoprotein is located in the cytoplasm and perinuclear area (Rinaldo, Traavik et al. 

1998), and a recent work demonstrated that agnoprotein targets lipid droplets, 

requiring an amphipathic helix encoded in residues 20-42 (Unterstab, Gosert et al. 

2010), however it has been shown that it is also present in the plasma membranes, 

requiring the aa clusters in the N terminus for such localization (Suzuki, Orba et al. 

2010). It has been shown that BKPyV agnoprotein can interact with α-soluble N-

ethylmaleimide-sensitive fusion attachment protein (Johannessen, Walquist et al. 

2011), and in vitro studies demonstrated that such interaction might interfere with the 

secretory pathway (Johannessen, Walquist et al. 2011).  

 

The secondary structure of JCPyV agnoprotein has been studied in more detail, but 

because of the high homology, some of the findings are likely to also apply to the 

BKPyV agnoprotein. This includes an α-helix constituted by hydrophobic residues in 

aa 17  - aa 42, and this sequence has been shown to mediate in vitro agnoprotein 
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oligomerization (Coric, Saribas et al. 2014). This sequence is also found in the 

BKPyV agnoprotein, but no functional proof in cells in vivo is available at this point for 

either viral agnoprotein. 

 

Another potential interaction partner of agnoprotein is the proliferating cell nuclear 

antigen (PCNA). The interaction with agnoprotein inhibits PCNA-dependent DNA 

synthesis in vitro and reduces host cell proliferation. A possible role in switching off 

viral DNA replication to allow assembly of genomes and viral capsid proteins into 

infectious viral particles has been suggested (Gerits, Johannessen et al. 2015). 

 

3.2.3.2 Viral Life Cycle 
 
BKPyV infection begins with the binding of major capsid protein VP1 to the α2,3-

linked sialic acid structures at the host cell surface (e.g. GD1b and GT1b 

gangliosides) whose function is to mediate cellular recognition and cell-to-cell 

interaction (Dugan, Eash et al. 2005, Low, Magnuson et al. 2006, Imperiale 2007, 

Dugan, Gasparovic et al. 2008). Both GD1b and GT1b are present on kidney and 

urinary tract cells, making them the main sites of the viral infection and replication 

(Low, Magnuson et al. 2006, Tsai and Inoue 2010). However, it has been 

demonstrated in an in vivo study, that a BKPyV genotype binds the host cell surface 

through a ganglioside-independent pathway (Pastrana, Ray et al. 2013). Murine 

GM95 cells lacking gangliosides were transduced with BKPyV variants with or 

without supplementation with exogenous gangliosides GT1b or GD1a or GD1b, 

BKPyV genotype IV could efficiently enter the cells and supplementation of 

gangliosides did not affect the process. (Pastrana, Ray et al. 2013). 

 

The next step of cell entry is internalization of the virus via caveolae-mediated 

endocytosis (Dugan, Eash et al. 2006, Jiang, Abend et al. 2009), transport to the ER, 

and subsequent capsid disassembly before it can enter into the nucleus. Once the 

genome enters the nucleus, the EVGR expression begins. LTag starts binding to 

members of Rb family, inducing the cell to enter the S-phase, then upon binding with 

p53 LTag interferes with apoptosis. LTag binds to the ORI and unwinds the viral DNA 

through its helicase activity it promotes DNA replication, by recruiting the host cell 

enzymes needed for viral replication (DNA polymerase, alpha-primase, 

topoisomerase I and replication protein A). 
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After the start of viral DNA replication, LVGR expression dramatically increases as 

LTag promotes LVGR mRNA transcription from multiple genome copies (gene 

dosage effect). As VP1, VP2 and VP3 return from the cytoplasm to the nucleus by 

virtue of the nuclear localization sequences, the assembly of the virions with 

encapsidated viral DNA takes place, leading to nuclear inclusions and enlargement, 

and eventual lysis of the cell (Imperiale 2007, Fanning and Zhao 2009). The viral 

replication capacity is mainly dependent to the NCCR, which offers DNA binding 

sites to host cell transcription factors and regulators in the promoter/enhancer. In 

fact, rearrangement of the NCCR results in variants that may have stronger early 

promoters, produce more LTag and replicate faster in immunodeficient hosts 

(Gosert, Rinaldo et al. 2008). 

 

3.3 BKPyV and clinical impact 

3.3.1 Epidemiology 
 
Primary BKPyV infection occurs at young age (Knowles, Pipkin et al. 2003), and its 

transmission probably involves the respiratory or oral route (Hirsch and Steiger 

2003). The virus persists in the epithelium of the renourinary tract, and it has not 

been clearly determined if BKPyV can remain as a latent infection, without 

replication, or if it there is a persistent low-level viral replication. However, in the 

healthy blood donor population, it has been demonstrated that BKPyV can reactivate 

in 5% - 10% of the population, and urinary shedding has been observed at low viral 

loads, without clinical symptoms (Polo, Perez et al. 2004, Egli, Infanti et al. 2009, 

Kling, Wright et al. 2012). Moreover, a fecal shedding has been observed in 10% of 

healthy adult individuals (Vanchiere, Abudayyeh et al. 2009). 

 

As BKPyV infection is virtually ubiquitous, its overall seroprevalence is high, reaching 

rate of 90% and more in the adolescent human population (Knowles, Pipkin et al. 

2003, Egli, Infanti et al. 2009, Kean, Rao et al. 2009, Kardas, Leboeuf et al. 2015). 

Interestingly, the seroprevalence of BKPyV rates decrease after the 5th decade of life, 

where that of JCPyV still increases indicating different exposure rates during adult 

life (Egli, Infanti et al. 2009, Hirsch, Kardas et al. 2013, Kardas, Leboeuf et al. 2015). 

Recent data confirm this observation in an independent population and demonstrate 

that  cellular immune responses show  a similar pattern (Knowles, Pipkin et al. 2003, 

Kean, Rao et al. 2009).  
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Different BKPyV genotypes can be found among human population. The first BKPyV 

genotyping schema was based on an epitope region of the VP1 gene, recognizing 

four main genotypes I-IV (Jin, Gibson et al. 1993) which are also fully distinct 

serotypes (Pastrana, Brennan et al. 2012, Pastrana, Ray et al. 2013). Additional 

subtypes within genotype I (Ia, Ib1, Ib2, Ic) and genotype IV (IVa, IVb, IVc) could be 

identified by nucleotide sequence analysis of all known genome-full-length isolates 

(Luo, Bueno et al. 2008). 

 

Genotype I is worldwide distributed, genotype IV is mainly detected in East Asia, and 

genotypes II and III are rarely detected (Zhong, Randhawa et al. 2009). In a study 

conducted in Switzerland on 400 healthy individuals, the most common found 

genotype was I, followed by type IV. (Egli, Infanti et al. 2009) 

 

3.3.2 BKPyV-associated diseases 
 
Prevalence and level of BKPyV replication in urine, occasionally observed in the 

healthy population may increase with pregnancy, and immunodeficiency status 

including hematopoietic stem cell and renal transplantation (HSCT and KT). The 

clinical impact of BKPyV is important in immunosuppressed transplant recipients, 

and the main BKPyV-related diseases are BKPyV-associated nephropathy 

(BKPyVAN) in KTRs and BKPyV-associated hemorrhagic cystitis (BKPyVHC) in 

HSCT patients. However, BKPyV can be the ethiological agent for other diseases, 

such as ureteric stenosis, encephalitis, pneumonia, vasculopathy, bladder cancer, 

and it might play a role in prostate cancer.  

 

3.3.2.1 BKPyV-associated hemorrhagic cystitis (BKPyVHC) 
 
Hemorrhagic cystitis is characterized by painful haematuria due to inflammation of 

the urinary bladder mucosa. In HSCT patients, such disease can be caused both by 

chemotherapy, and by viral infections. BKPyVHC occurs about 50 days post-

transplantation and affects up to 15% of HSCT patients. Diagnosis of BKPyVHC 

should be based on evidence of clinical cystitis, hematuria of grade 2 or more, and 

high-level BKPyV replication of > 7log10 copies/mL in urine. In about two-thirds of 

patients with BKPyV-HC, significant BKPyV viremia has been described, which can 

be used as virological marker of progression and remission (Erard, Kim et al. 2005, 

Cesaro, Hirsch et al. 2009, Koskenvuo, Dumoulin et al. 2013, Cesaro, Tridello et al. 

2015). 
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Hirsch and co-workers were the first to propose that the pathogenesis of BKPyV-HC 

might result from a sequence of events (Binet 2000). Accordingly, the first phase 

occurs pre-transplant, during the conditioning regimen, when the use of 

chemotherapy especially involving cyclophosphamide, damages the uroepithelium. 

The regenerating uroepithelial lining in the absence of a functional immune effectors 

provides the appropriate milieu for BKPyV replication (Hirsch and Steiger 2003). The 

immunosuppressive regimen is critical by decreasing the BKPyV-specific cellular 

immunity, providing suitable conditions for extensive high-level viral replication, and 

leading to cytopathic denudation of the uroepithelial mucosa. In fact, patients 

excreting with high urine BKPyV loads (about 107 BKV copies/ml) are significantly 

more likely to develop BKPyVHC as compared with those who excreted less (Azzi, 

Cesaro et al. 1999, Leung, Suen et al. 2001). Post-engraftment invasion of donor 

cells causes significant inflammation causing extensive mucosal damage and 

haemorrhage characteristic of severe BKPyVHC (Binet 2000, Hirsch and Steiger 

2003).  

 

This model would be compatible with the concept of immune reconstitution diseases 

as discussed in detail, since most cases of post-engraftment BKPyVHC occur in 

allogeneic HSCT with graft versus host disease (Hirsch and Steiger 2003, Hirsch 

2005). In a study conducted in a cohort of pediatric HSCT (HLA-haploidentical or 

HLA-matched) patients, the role of BKPyV-specific T cell of the donor in the 

subsequent development of BKPyVHC in the recipient has been evaluated. The 

results suggest that BKPyVHC may be associated to a lower virus-specific T cell 

immunity in the donor (Basso, Algeri et al. 2013). In the light of these data, a 

prolonged and clinically more prominent manifestation of BKPyVHC in the absence 

of prominent BKPyV-specific T-cells could be a relevant factor leading to more 

extensive denudation.  

 

The therapy for BKPyVHC is mainly supportive, consists of bladder irrigation to 

prevent clot formation, hyperhydration to increase diuresis and urosurgical 

intervention (Hirsch 2010). Substitution of platelets and erythrocytes has been used 

as therapeutic approach, with no evident benefit. Some studies report the use of 

cidofovir, a nucleoside analogue of deoxy-cytidine monophosphate, for the treatment 

of BKPyVHC, with controversial results since it seems that more than cidofovir, 

immune suppression and immune reconstitution might play a major role in the 
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resolution of BKPyVHC (Cesaro, Hirsch et al. 2009, Cesaro, Pillon et al. 2013, 

Koskenvuo, Dumoulin et al. 2013, Rascon, Verkauskas et al. 2015). 

 

3.3.2.2 BKPyV-associated nephropathy (BKPyVAN) 
 
In the last 15 years, with the discovery of potent immunosuppressive drugs for the 

anti-rejection therapy in solid organ transplantation, BKPyV has emerged as the most 

challenging infectious cause of renal allograft dysfunction and graft loss (Binet, 

Nickeleit et al. 1999, Drachenberg, Beskow et al. 1999, Howell, Smith et al. 1999, 

Nickeleit, Hirsch et al. 1999, Randhawa, Finkelstein et al. 1999, Binet 2000, Hirsch, 

Brennan et al. 2005). BKPyVAN was initially reported to cause graft loss in 10% to > 

80% of cases (Binet, Nickeleit et al. 1999, Drachenberg, Beskow et al. 1999, 

Randhawa, Finkelstein et al. 1999, Vasudev, Hariharan et al. 2005, Acott and Hirsch 

2007, Comoli and Ginevri 2012), but thanks to the improvements in BKPyV 

monitoring strategies after transplantation and prompt/preemptive therapeutic 

intervention, a positive impact on graft outcome has been obtained (Brennan, Agha 

et al. 2005, Ginevri, Azzi et al. 2007, Schaub, Hirsch et al. 2010, Sood, Senanayake 

et al. 2012) as summarized in (Hirsch, Babel et al. 2014).  

 

BKPyVAN represents a complication associated to high-rate virus replication in the 

grafted kidney leading to cytopathic damage of the renal tubular epithelium in the 

renal allograft. Consequently, the virus spreads into the tissue and bloodstream and 

inflammatory cells infiltrate the interstitium causing tubular atrophy and interstitial 

fibrosis in the allograft with a subsequent worsening of graft function and eventual 

graft loss. However, it has been demonstrated by mathematical modelling of viral 

infection that also urothelial cells are crucial in the pathogenesis of BKPyVAN; results 

suggest that viral replication starts in the renal tubular epithelial cells but is then 

carried to the urothelial cell compartment where more than 90% of urine BKPyV 

loads are generated (Funk 2008). Histopathological data confirm such results, as 

infected urothelial cells are detected in the bladder of patients with PyVAN (Nickeleit, 

Hirsch et al. 1999). Also, in vitro results obtained in primary human urothelial cells 

from bladder show high permissivity to BKPyV infection (Li, Sharma et al. 2013). 

 

3.3.2.2.1 Risk Factors 

In KTRs BKPyV replication can be caused by a post transplant reactivation of the 

virus or by transmission from the allograft donor (Bohl, Storch et al. 2005, Schmitt, 
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Raggub et al. 2014). BKPyV donor serostatus or active replication is therefore one of 

the risk factors for development of BKPyV viremia in the recipient (Bohl, Brennan et 

al. 2008). BKPyV replication and consequent progression to BKPyVAN have been 

correlated to several demographic and clinical parameters (Wiseman 2009, 

Barraclough, Isbel et al. 2011), with a limited predictive value. 

  

BKPyVAN development results from the interaction of multiple risk factors, where 

probably the immunosuppression plays a crucial role (Binet, Nickeleit et al. 1999, 

Hirsch 2002, Hirsch, Knowles et al. 2002, Hirsch, Vincenti et al. 2013, Hirsch, 

Yakhontova et al. 2015). Other risk factors are correlated with the patient (e.g. older 

age, male sex, pre-transplant BKPyV negative serostatus, HLA type) (Ramos, 

Drachenberg et al. 2002, Ginevri, De Santis et al. 2003, Bohl, Storch et al. 2005, 

Bohl, Brennan et al. 2008, Hirsch and Prestele 2010, Barraclough, Isbel et al. 2011, 

Hirsch, Vincenti et al. 2013, Masutani, Ninomiya et al. 2013), with the donor  

(BKVPyV positive serostatus, high number of HLA mismatches) (Bohl, Storch et al. 

2005, Awadallah, Duquesnoy et al. 2006, Sood, Senanayake et al. 2013), or with the 

virus (genotype, NCCR rearrangements, replicative capacity) (Randhawa, Zygmunt 

et al. 2003, Gosert, Rinaldo et al. 2008, Ramos, Drachenberg et al. 2009, Masutani, 

Ninomiya et al. 2013).  

 

The use of triple immunosuppressive therapy including steroids, tacrolimus, 

mycophenolate derivatives appears as major factor associated with uncontrolled viral 

replication and related disease (Hirsch, Knowles et al. 2002, Borni-Duval, Caillard et 

al. 2013, Hirsch, Vincenti et al. 2013). In particular the use of tacrolimus rather than 

cyclosporine has been associated to BKPyV replication (Brennan, Agha et al. 2005, 

Dharnidharka, Cherikh et al. 2009, Hirsch, Vincenti et al. 2013). In a prospective 

multicenter randomized trial for the use of tacrolimus vs cyclosporine in combination 

with mycophenolic acis conducted in 682 de novo kidney transplants suggested a 

dynamic risk factor evolution for BKPyV viremia. In the first 3 months, no difference 

between the two CNI was observed, while at 6 and at 12 months, rate and load of 

viremia were lower in patients randomized to receive cyclosporine, suggesting that 

differences between the CNIs did not play out early after transplant, but after 6 

months, when usually PyVan has already been diagnosed. What seemed to play a 

role in the early onset of replication was high exposure to steroids (Hirsch, Vincenti et 

al. 2013). Conversely, in a prospective study conducted in KTRs receiving 

cyclosporine, or low dose tacrolimus, a lower incidence of BKPyV viremia in the latter 

group has been observed (Geddes, Gunson et al. 2011). 
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Some studies also report that induction agents such as ATG or alemtuzumab could 

be associated to BKPyV infection (Dadhania, Snopkowski et al. 2008, 

Theodoropoulos, Wang et al. 2013). All these results are in agreement that the use 

of potent immunosuppressive drugs facilitate the infection or the reactivation of 

BKPyV, and that in the context of an immunodeficient status, the virus can replicate 

in an uncontrolled manner, and lead to cytophatic damage to the graft causing 

nephropathy and eventually graft loss. 

 

It is known that immunosuppressive drugs exert their function by acting on T cell 

activation at different levels (Figure 12). For example cyclosporine, tacrolimus, and 

sirolimus are also named immunophilin-binding drugs, as they can interact with 

immunophilins (cyclophilins and FK binding proteins-FKBPs) interefering on the last 

signal of T cell activation, inhibiting the production of cytokines as IL-2. In particular, 

cyclosporine engages cyclophilin, while tacrolimus and sirolimus bind other cellular 

protein including FKBP12.  The engagement of cyclosporine and tacrolimus inhibits 

the protein phosphatase calcineurin and prevents it from activating transcription 

factors such as NFATc, which is responsible for activation of cytokine genes during 

the immune response. Upon binding to FKBP12, sirolimus inhibits mammalian target 

of rapamycin (mTOR) and prevents it from activating the translation of mRNA-

encoding proteins needed for cell division, inhibiting T cell division activated by 

growth factors such as IL-2. 

 

Recently, the direct effects of immunosuppressive drugs on the BKPyV immune 

effectors and on the virus replication have been analyzed (Egli, Kohli et al. 2009, 

Hirsch, Yakhontova et al. 2015). In detail, effects of the mTOR inhibitor sirolimus and 

the CNIs cyclosporine and tacrolimus have been analyzed in in primary human renal 

tubular epithelial cells. Sirolimus significantly ihibited BKPyV replication at clinical 

concentration, and such inhibition occurred in the first 24 hours after infection, during 

viral early gene expression, but not during viral late gene expression. Conversely, 

tacrolimus favoured BKPyV replication. The knockdown of FKBP12 by siRNA, 

mimicking its natural binding with tacrolimus, resulted in an increase in BKPyV 

replication. Results demonstrated that sirolimus and tacrolimus have opposite effects 

on viral replication, by acting on the same target. Conversely, cyclosporine inhibited 

viral replication by binding cyclophilin and inhibiting calcineurin (Hirsch, Yakhontova 

et al. 2015). 

 



 58

 

 

Figure 12: Immunosppressive drugs interference mechanisms with the multiple steps 

of T cell activation: Signal 1, TCR complex:MHC-peptide engagement; Signal 2, 

Costimulatory molecules activation; Signal 3; Activation of transcription factors for cytokines 

production. 

 

Egli et al investigated on the direct effects of immunosuppressive drugs on BKPyV 

specific T cell immunity on PBMCs of healthy individuals. Adding tacrolimus at 

clinically relevant concentrations of 3 ng/mL resulted in inhibition of BKPyV specific T 

cell directed against LTag. Sirolimus did not have any inhibitory effect on T cell 

activation, however, adding it during BKPyV specific T cell expansion resulted in a 

decrease in BKPyV specific T cells. The results support the recommendation of 

reducing IS for treating BKPyV replication and disease, and that a switch to mTOR 

inhibitors after BKPyV specific T cell activation could be beneficial (Egli, Kohli et al. 

2009). 

 

3.3.2.2.2 Diagnosis and monitoring of BKPyV infection 

BKPyVAN represents a complication associated with high-level and extremely rapid 

virus replication in the kidney transplant (Hirsch, Knowles et al. 2002, Hirsch and 
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Steiger 2003). Monitoring of BKPyV viruria, by urine cytology or quantitative PCR for 

viral DNA, and monitoring of BK viremia by quantitative PCR, can identify patients at 

high risk of developing histologically proven PyVAN (Hirsch, Brennan et al. 2005, 

KDIGO 2009, Hirsch and P. 2013). Genetic studies on intrapatient variants in blood 

and urine demonstrated that urine and plasma are separate replication 

compartments, with plasma being directly linked to intragraft replication whereas 

more than 95% of the urine viral loads appear to be generated from replication in the 

urothelial cell layer of the pyelon, ureter and bladder (Funk 2008).  

 

BKPyV reactivation can occur early after kidney transplantation, and the rate of 

patients with viral replication increases in the first 6 months and with a peak at the 

third month. This paradigm of BKPyV replication and disease has been first 

described in the Basel group (Nickeleit, Klimkait et al. 2000, Hirsch, Mohaupt et al. 

2001, Hirsch, Knowles et al. 2002) and confirmed by many studies around the world 

(Ginevri, De Santis et al. 2003, Koukoulaki, Grispou et al. 2009). 

 

Testing for BKPyV viruria provides a window period of 6–12 weeks before viremia 

and nephropathy (Hirsch, Knowles et al. 2002). Viremia detection has a positive 

predictive value of 30–50% for biopsy-proven PyVAN with a window period of 2–6 

weeks (Hirsch, Knowles et al. 2002, Hirsch and Randhawa 2013). The diagnosis of 

biopsy proven PyVAN requires tissue examination, i.e. by renal allograft biopsy 

showing positive immunostaining with cross-reactive antibodies to SV40 LTag, hence 

demonstrating PyV cytopathic changes (PyVAN-A), cytopathic and various degrees 

of inflammation previously called interstitial nephritis (PyVAN-B), and in late stages 

increased tubular atrophy and fibrosis (PyVAN-C)  (Hirsch, Brennan et al. 2005, 

Drachenberg and Papadimitriou 2006, KDIGO 2009, Hirsch and P. 2013).  

 

The focal nature of PyVAN and the possible overlap with other pathologies such as T 

cell mediated rejection can render a histological diagnosis very difficult. In fact, 10%-

30% false-negative needle biopsy results have been estimated from a study 

determining BKPyV loads in urine and plasma and comparing the discordance rate 

between to biopsy cores (Drachenberg, Papadimitriou et al. 2004, Drachenberg, 

Papadimitriou et al. 2004). A similar pattern has been suggested when the clearance 

of histologic BKPyVAN disease has been examined (Menter, Mayr et al. 2013). 

 

Thus, BKPyV viremia is the most predictive assay for the presence of “presumptive” 

PyVAN (Hirsch, Knowles et al. 2002, Hirsch and Steiger 2003, Hirsch, Brennan et al. 
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2005), thus it is recommended by current guidelines as the best assay to guide 

preemptive interventions (Brennan, Agha et al. 2005, Hirsch, Brennan et al. 2005, 

Drachenberg and Papadimitriou 2006, Ginevri, Azzi et al. 2007, Saad, Bresnahan et 

al. 2008, KDIGO 2009, Hirsch and P. 2013). Current guidelines suggest a BKVPyV 

replication screening at least every 3 months during the first 2 years post-transplant, 

and then annually until the fifth year post-transplant. Using this strategy, at least 80–

90% patients at risk for BKPyVAN could be identified before significant functional 

impairment of the renal allograft occurs (KDIGO 2009, Hirsch and Randhawa 2013, 

Hirsch, Babel et al. 2014). In association with viral molecular monitoring, analysis of 

specific immune responses could become instrumental in assisting the surveillance 

and identification of patients at risk for developing BKPyVAN (Ginevri, De Santis et 

al. 2003). 

 

3.3.2.2.3 Immune response to BKPyV 

The host immune response is crucial in limiting primary infection and controlling viral 

replication through both innate and adaptive response. The first line of defense, prior 

to increase in adaptive immune response, is mediated by innate immunity effectors.  

 

3.3.2.2.3.1  Innate Immunity 

In BKPyV infection and related diseases innate immunity has not been deeply 

investigated, but some studies demonstrated the involvement of innate immune 

response effectors in the context of BKPyV infection and related diseases. 

One study by Bohl demonstrated an association between lack of the HLA-C7 allele 

and sustained BKPyV viremia (Bohl, Storch et al. 2005), suggesting a possible role 

for inhibitory and activating killer-cell immunoglobulin-like receptors (KIRs) in the 

control of BKPyV infection, which has been confirmed later by Trydzenskaya 

(Trydzenskaya, Juerchott et al. 2013). Indeed, in samples from KTRs diagnosed with 

BKPyVAN, significantly lower frequencies of the activating receptor KIR3DS1 has 

been found. The protective role of this KIR genotype was demonstrated previously in 

other viral infections.  

 

PRRs play a crucial role in triggering an efficient innate immune response. In KTRs 

with BKPyVAN, it has been demonstrated that TLR3 and RIG-I were upregulated, 

thus probably involved in the antiviral and inflammatory response (Ribeiro, Wornle et 

al. 2012), also affecting the Tumor Necrosis Factor apha (TNF alpha) and TNF 

receptor (TNFR) system (Ribeiro, Merkle et al. 2015). Indeed, it has been 
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demonstrated that BKPyV infection resulted in TNF alpha downregulation, and that 

PRRs TLR3 and RIG-I could induce an increase in TNFR expression. 

Recognition of viruses by PRRs activate signal transduction cascades leading to 

secretion of IFN, which consequently binds to the IFN receptor expressed on the cell 

surface, and stimulates type I or II IFN-mediated signaling pathways. As a result, the 

STATs are phosphorylated and thus dimerize and translocate to the nucleus, where 

occurs the binding to gene promoters and activation of the transcription of interferon 

stimulated genes (ISGs), involved in antiviral responses. A recent study 

demonstrated that expression of BKPyV LTag induces an antiviral state by 

upregulation of ISGs via STAT1 activation. In particular the first 136 aa of the protein, 

mapping until the Rb binding domain, are necessary for this mechanism (Giacobbi, 

Gupta et al. 2015). 

 

Among the key mediators of the innate immune system are also defensins, a family 

of antimicrobial peptides, which have been demonstrated to be involved in anti-

BKPyV innate immune response. An in vitro study showed that human defensin 5 

(HD5) interacts with the virus inducing aggregation of viral particles into very large, 

dense masses, and therefore interfering with viral attachment to host cells (Dugan, 

Maginnis et al. 2008). The ability to mount an efficient innate immune response 

against viruses is thought to also enable and activate effectors of the adaptive 

immune responses. Here, DCs act as a bridge between innate and adaptive 

immunity, uptake, processing and presenting pathogen-derived antigens, thus 

playing a crucial role in antiviral response. Impairments or deficits in DCs could lead 

to an ineffective adaptive immune response. A DCs level deficiency has been 

demonstrated in KTRs with BKPyVAN, but also in patients evaluated before 

transplant, who subsequently develop post-transplant viremia, underlying the 

importance of DCs and therefore of innate immunity in BKPyV infection (Womer, 

Huang et al. 2010). 

 

3.3.2.2.3.2 Adaptive Immunity 

In the control of BKPyV replication the interplay between humoral and cellular 

immunity is very important, with a crucial role for cell-mediated immune response in 

the kidney transplant patient. A study conducted in healthy individuals revealed that 

the majority of the population has BKPyV-specific antibodies (Egli, Infanti et al. 

2009). It has also been demonstrated the presence of BKPyV specific antibodies with 

neutralizing activity in immunoglobulins preparations from healthy individuals, 
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meaning that in principle antibodies could contribute to BKPyV specific immunity 

(Randhawa, Pastrana et al. 2015), even if they cannot prevent cell to cell viral spread 

and are not expected to eradicate established viral infection (Egli, Infanti et al. 2009). 

 

In the context of kidney transplantation many observations on BKPyV specific 

humoral immunity have been done. It has been shown that pre-transplant BKPyV 

seronegativity or low antibody titer correlates with higher risk of viral replication and 

consequent nephropathy (Ginevri, De Santis et al. 2003, Smith and McDonald 2006). 

Furthermore, a low baseline anti-BKPyV IgG titer and a reduced prevalence of IgA in 

patients with increasing viral loads suggests that pre-existing antibodies could have a 

protective role in BKPyV activity (Randhawa, Bohl et al. 2008). In cohorts of patients 

with high rate viruria or viremia, compared to patients without active viral replication, 

the pattern of BKPyV-specific antibodies was parallel to the level and duration of viral 

replication (Bohl, Storch et al. 2005, Hariharan, Cohen et al. 2005, Ginevri, Azzi et al. 

2007, Leuenberger, Andresen et al. 2007, Bohl, Brennan et al. 2008, Bodaghi 2009, 

Schachtner, Muller et al. 2011, Schachtner, Stein et al. 2014). However, it has also 

been shown that presence of BKPyV-specific antibodies does not provide full 

protection from viral replication and consequent disease. In fact even though there is 

a correlation between antibodies titers and viral load, no correlation has been 

observed with viral clearance (Ginevri, Azzi et al. 2007, Bohl, Brennan et al. 2008, 

Bodaghi 2009). 

 

It is important to underline that BKPyV-specific antibodies are mainly detected in 

enzyme-linked immunosorbent assay (ELISA) assays using as source of antigen 

VLPs, which are mainly constituted by VP1 protein. Indeed, when humoral response 

to VP1 has been compared to humoral response to LTag, different results has been 

observed. In fact, in KTR VP1 humoral response correlated with recent viruria and 

viremia, whereas anti-LTag response was associated with emerging BKPyV-specific 

immune controI. (Leuenberger, Andresen et al. 2007, Bodaghi 2009). Furthermore, 

anti-agnoprotein antibodies were evaluated in healthy individuals and KTRs and 

compared to anti-VP1 and-LTag antibodies frequency. In healthy individuals anti-

agno IgG were observed  only in 15% of cases, compared to 41% and 63% of anti-

LTag and anti-VP1 antibodies, respectively. In KTRs results were similar, in fact anti-

agno antibodies were present in 8% of the samples, while anti-LTag and anti-VP1 

antibodies were found in 63% and 80% of samples. In KTRs IgG levels were 

analyzed in patients, without or with low replication, with high active replication, and 

with past high replication. As expected, there was a strong increase of anti-LTag 
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antibodies from patients without replication to active high replication and even more 

in past replication. An increase was was observed also for anti VP1 from no 

replication group to high replication, but no correlation with viral replication was 

observed for anti-agnoprotein  antibodies (Leuenberger, Andresen et al. 2007). 

 

Taken together, available data suggest that markers of humoral immunity are not 

sufficient to give full protection against BKPyV replication, and that a distinction could 

be made between anti-LTag and anti-VP1 antibodies, as the first seems to have a 

more protective role. However, the presence an effective T cell mediated response is 

essential in controlling viral replication. 

 

BKPyV-specific T-cell responses have been investigated in several studies 

conducted mainly in kidney transplant patients, or in other BKPyV related diseases. 

In healthy individuals BKPyV- specific T-cells were identified soon in early studies, 

and also more recently, in healthy individuals, could be identified showing a rather 

low frequency, when compared to antigens derived from other viruses as HCMV or 

EBV (Drummond, Shah et al. 1985, Tong, Miller et al. 2005, Egli 2009, Egli, Kohli et 

al. 2009). 

 

BKPyV-specific T cell responses could be identified either for early and late proteins, 

with a predominance of CD4+ T cells (Zhou, Sharma et al. 2007). A recent studied 

showed that BKPyV-specific T-cells are age-dependent, in particular the authors 

observed a peak in BKPyV-specific T-cells in young individuals, suggesting that 

BKPyV-specific cellular immunity reflects phases of active BKPyV replication after 

primary infection in childhood (Schmidt, Adam et al. 2014). The control of BKPyV 

replication and PyVAN was associated with onset of virus-specific T cell response. In 

particular, Binggeli et al used overlapping 15mer peptides covering the LTag and the 

VP1 in ELISpot assays (Binggeli, Egli et al. 2006) and found that in kidney transplant 

patients, BKPyV-specific T cell responses in patients with decreasing or past BKPyV 

viral loads were significantly higher compared to patients with increasing or persisting 

viral loads (Binggeli, Egli et al. 2007). However, the VP1-specific responses were 

generally stronger compared to the LTag responses, and more likely involved CD4+ 

T-cells. Conversely, the LTag-specific responses contained a higher percentage of 

CD8+ T-cells (Binggeli, Egli et al. 2007). 

 

These results were confirmed in a prospective cohort of 45 pediatric patients, as it 

was observed that kidney recipients during BKPyV reactivation had undetectable 
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levels of virus-specific T-cell responses. Upon immunosuppression reduction, parallel 

to declining viral loads in plasma and urine, the frequency of BKPyV-specific T cells 

increased (Ginevri, Azzi et al. 2007). As sequential blood samples were analyzed, it 

was observed that T-cell responses directed to LTag emerged slightly later than the 

anti-VP1-specific T-cell responses and significantly increased at viral clearance 

(Ginevri, Azzi et al. 2007). Moreover, an early onset of LTag-specific T-cells after 

transplant was demonstrated to be protective from the risk of viruria and viremia, in a 

cohort of KTRs, in fact LTag specific CTL activity was analyzed in patients who did 

not reactivate the virus, viruric, and viremic ones. At 1 month after transplantation a 

higher CTL activity was observed in patients who did not reactivate the virus, 

compared to the ones with viral replication throughout the follow up (Comoli, Basso 

et al. 2009). Similarly, in another cohort of adult patients diagnosed with BKPyVAN, 

T-cell responses towards 20mer peptides derived from the LTag coincided with 

clearance of BKPyV viremia (Prosser, Orentas et al. 2008). Chakera et al. reported 

that a significantly higher BKPyV-specific T-cell response was associated with 

cleared BKPyV viremia in kidney transplant patients compared to those patients with 

active replication or without evidence of reactivation, whereby a heterogeneous 

pattern of responses to the different viral antigens was observed, depending on 

single patients, with no clear immunodominance of a specific viral protein, moreover 

the antigens with higher association to viral clearance were VP1 and LTag (Chakera, 

Bennett et al. 2011). 

 

More recent studies confirmed the previous results, and investigated BKPyV T-cell 

immunity directed to the other viral proteins. The T-cell responses were evaluated 

towards early proteins (sTag, and LTag) and late proteins (VP1, VP2, VP3), in 

patients with a history of BKPyVAN and with BKPyV transient reactivation.  Results 

show that responses could be identified towards all investigated antigens, with a 

slight predominant immunogenicity to VP3, moreover patients with a history of 

BKPyVAN demonstrated significantly higher frequencies of IFN-γ and IL-2 producing 

CD4+ T cells (Mueller, Schachtner et al. 2011). However, the role of VP3 responses 

was later downplayed by the same group, when Schachtner et al showed that 

patients with self-limited viral reactivation developed BKPyV-specific T cell 

responses, and cleared the virus in a short time (median: 1 month). In patients 

diagnosed with BKPyVAN, virus-specific immune response emerged later (median 5 

months) after therapeutic interventions (Schachtner, Stein et al. 2014). Notably, 

immune response towards structural proteins were higher and appeared earlier, 

whearas anti sTag and LTag T cells could be observed in parallel to viral clearance 
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(Schachtner, Muller et al. 2011, Schachtner, Stein et al. 2014). 

 

The combined data suggest a pivotal role of BKPyV-specific cellular immunity in the 

control of viral replication, and has been explored for time points before and after 

kidney transplantation. Patients with decreasing LTag-specific T cells from pre- to 

post-transplantation are at significant higher risk of viral replication, as observed in 

KTRs  with or without viremia (Schachtner, Stein et al. 2015). Decreasing of BKPyV 

specific T cells at 30 days post-transplant had a positive predictive value for early-

onset BK viremia of 81.8% (9/11 patients) and sensitivity of 90% (9/10 patients), 

however detectable pre-transplant BKV-specific T were not a really reliable 

prognostic factor, as it gives a  positive predictive value for early-onset BK viremia of 

58.8% (10/17 patients) and sensitivity of 62.5% (10/16 patients). Such observation 

confirmed all previous data, suggesting that immune response to early proteins 

seems to be more crucial in viral replication control (Binggeli, Egli et al. 2007, 

Ginevri, Azzi et al. 2007, Comoli, Basso et al. 2009).  

 

In most of these studies, BKPyV-specific T-cell immunity has been investigated using 

IFN-γ ELISpot assays (Prosser 2006, Binggeli, Egli et al. 2007, Ginevri, Azzi et al. 

2007, Prosser, Orentas et al. 2008, Chakera, Bennett et al. 2011, Schachtner, Muller 

et al. 2011), which identified IFN-γ producing T cells in response to viral antigenic 

stimuli, but did not give information about subpopulations. Ginevri et al reported data 

with functional 51Chromium release assay, identifying CTL responses, which in most 

of cases corresponded to antigen-specific CD8+ T cells. In particular, they showed 

that cytotoxic responses occurred at viral clearance and were directed mainly against 

LTag (Ginevri, Azzi et al. 2007).  

 

Using flow cytometry analysis, Binggeli et al could determine that VP1 mainly 

induced production of intracellular IFN-γ in CD4+ T cells whereas LTag preferentially 

stimulated CD8+ T cells (Binggeli, Egli et al. 2007). Trydzenskaya observed that 

patients with rapid BKPyV clearance showed higher frequency of multifunctional IFN-

γ/IL-2/TNF-α and IL-2/TNF-α CD4+ T cells and absence of Th17 CD4+ T cells 

(Trydzenskaya, Sattler et al. 2011). In more recent studies approaching antigen-

specific T cell analysis by multiparameter flow cytometry strategy, it has been 

possible to provide information on phenotype and functionality of BKVPyV-specific T 

cells (Weist, Schmueck et al. 2014, Weist, Wehler et al. 2015). They were 

categorized in CD4+ T helper (coexpressing CD137 and CD154) and cytolytic T cells 
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based on expression of CD137, GranzymeB and CD4 or CD8 and endowed with 

IFN-γ/IL-2/TNF-α secretion capacity. The authors show that CD4+ helper cells have 

mainly an effector memory phenotype, while the cytolytic ones were mostly terminally 

differentiated effectors, probably deriving from the helper compartment (Weist, 

Wehler et al. 2015).  

 

Furthermore, an increased number of CD4+ PD-1+ T cells were observed during and 

after viral clearance, marker that has been associated to functional exhaustion and 

chronic viremia in other viral infections, such as CMV infection (Dirks, Egli et al. 

2013). Conversely to previous studies, no significant role was observed for CD8+ T 

cells, probably because of different cell stimulation methods, as lymphocytes were 

stimulated by a mixture of peptides covering the whole sequence of early and late 

proteins, while in previous studies CD8+ T cells were shown to be stimulated mostly 

by LTag. Of note, only one study evaluated the possible role of agnoprotein in 

BKPyV-specific T cell immunity, and results obtained in healthy individuals and KTR 

showed that in both healthy and immunocompromised individuals agnoprotein-

specific T cells were barely detectable. Agnoprotein poor immunogenicity, despite its 

abundant expression demonstrated in KTR biopsies, could suggest a role in possible 

viral escape mechanisms (Leuenberger, Andresen et al. 2007). 

 

In the context of kidney transplantation, immunosuppressive therapy may affect 

virus-specific T cell responses, as such drugs act at diffent levels of T cell activation. 

Such effects have been studied in vivo and in vitro (Egli, Kohli et al. 2009, Weist, 

Wehler et al. 2015). Results show that BKPyV-specific T cells inversely correlated 

with tacrolimus trough levels, and sirolimus affected only antigen-dependent T cell 

expansion (Egli, Kohli et al. 2009). The same effects of CNIs on BKPyV-specific T 

cell activation could be confirmed by Weist et al (Hirsch, Yakhontova et al. 2015, 

Weist, Wehler et al. 2015). 

 

Taken together, all studies focusing on BKPyV-specific immune response after 

transplant demonstrated that size, frequency, and possibly also subtypes of the 

virus-specific T-cell response is inversely correlated with viral replication, and that 

monitoring viral activity and immune response may provide relevant information to 

better determine patients at risk for developing BKPyV viremia and progressing to 

BKPyVAN. In particular, the fact that LTag-specific T cells emerge after viral 

clearance, when the immune system is efficiently limiting virus replication, strongly 

suggests that immune responses directed to BKPyV early proteins play a major 
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protective role from the development of BKPyV-associated diseases, therefore it 

would be of help in the clinical management of KTRs during their post transplant 

follow up, a screening of BKPyV-specific T cell responses in order to identify subsets 

of patients at risk for developing viremia, and  monitoring should be continued until 

the detection of virus-specific T cell response. 

 

3.3.2.2.4 Therapeutic strategies 

3.3.2.2.4.1 Immunosuppression reduction  

Studies focusing on BKPyV-specific immune response after kidney transplantation 

help to monitor the course of viral activity and guide pre-emptive interventions. The 

uncontrolled replication of the virus is allowed by a lack of efficient BKPyV-specific 

immune response, thus the current therapeutic strategy to prevent the progression to 

BKPyVAN is the reduction of the immunosuppressive drug regimen in order to 

restore an effective BKPyV-specific T cell response. 

 

In kidney transplant patients the standard anti-rejection therapy consists usually in 

CNI, MMF, and steroids. Diverse strategies in different steps have been reported for 

IS reduction and/or suspension: 

1. As first step, dose reduction of the CNI by 25–50%, then reduction of the 

antiproliferative drug by 50%, followed by discontinuing the latter (Ginevri, 

Azzi et al. 2007, Schaub, Hirsch et al. 2010, Almeras, Vetromile et al. 2011). 

2. Reduction of the antiproliferative drug by 50% followed by reducing CNI by 

25–50%, followed by discontinuing the antiproliferative drug (Brennan, Agha 

et al. 2005). 

3. Concurrent reduction of dosages of both CNI and mycophenolate mofetil 

(Sood, Senanayake et al. 2012, Knight, Gaber et al. 2013). 

Creatinine levels and BKPyV load are tightly monitored during and after these 

steps, to control the efficacy of the treatment and avoid possible episodes of 

acute rejection. 

Despite preemptive BKPyV viremia-guided multiple steps of IS reduction, a minor 

quote of patients still progress to overt BKPyVAN.  

Similarly, in cases of proven BKPyVAN the first line of therapy is IS reduction. 

However, additional therapeutic strategies have been reported, but results are still 

controversial. 
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3.3.2.2.4.2 Antivirals 

Cidofovir is a nucleoside analog, licensed by The Food & Drug Administration for the 

treatment of cytomegalovirus retinitis. In vitro experiments demonstrated that it can 

inhibit viral replication in BKPyV-infected renal proximal tubular epithelial cells 

(Bernhoff, Gutteberg et al. 2008). In vivo administration of cidofovir gives 

controversial results, since some studies report clinical improvements (Vats, Shapiro 

et al. 2003, Araya, Lew et al. 2008), whereas others report no demonstrable benefit, 

with additional risk of nephrotoxicity (Kuypers, Vandooren et al. 2005, Kuypers, 

Bammens et al. 2009). More recently, a more potent lipid-ester derivative 1-O-

hexadecyloxypropyl-cidofovir (CMX001) able to effectively inhibit in vitro BKPyV 

replication either in human renal tubular cells and in urothelial cells (Randhawa, 

Farasati et al. 2006, Rinaldo, Gosert et al. 2010, Tylden, Hirsch et al. 2015). It has 

been used in sporadic cases of BKPyVAN resulting in stabilization of creatinine 

(Reisman, Habib et al. 2014, Papanicolaou, Lee et al. 2015).  

 

Leflunomide is an immunomodulatory drug capable of mitochondrial dihydroorotate 

dehydrogenase inhibition, leading to pyrimidine depletion and cytostasis, particularly 

in activated lymphocytes. It has been shown to inhibit BKPyV replication in vitro in 

renal tubular cells (Bernhoff, Tylden et al. 2010). It has been administered as a 

replacement for discontinued mycophenolic acid during IS reduction (Halim, Al-Otaibi 

et al. 2014), or in addition to protocols applying at the same time a reduction in IS 

(Elfadawy, Flechner et al. 2013). In some smaller studies, this has been associated 

with clinical improvement (Teschner, Gerke et al. 2009), while in other cases this 

remained without benefits (Krisl, Taber et al. 2012), and in fact additional toxicity 

(Faguer, Hirsch et al. 2007). However, results from randomized controlled trials are 

needed to assess the clinical efficacy of the drug. 

 

Fluoroquinolones have been proposed as inhibitors of BKPyV replication via an 

effect on the helicase activity of LTag but the selectivity index results low in vitro 

(Sharma, Li et al. 2011). No significant improvement has been shown when 

combined to IS reduction, leflunomide, and human intraveneous immunoglobulins 

(IVIG) (Halim, Al-Otaibi et al. 2014). 

 

IVIG have been administered which have been shown to contain BKPyV-neutralizing 

antibodies (Randhawa, Pastrana et al. 2015). Thirty patients with diagnosis of 

BKPyVAN and not responding to 8 weeks IS reduction, nor leflunomide treatment 

were infused with IVIG, viral load significantly decreased after treatment and 90% 
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cleared viremia at 1 year of follow up (Vu, Shah et al. 2015). Larger cohorts and 

controlled studies would be required to verify the efficacy of such treatments. 

3.3.2.2.5 Novel immunotherapeutic strategies 

All therapeutic approaches besides immunosuppression reduction do not seem to 

highly improve graft outcome in presumptive and proven PyVAN, for this reason 

alternative strategies are needed to boost BKPyV-specific immunity. 

 

3.3.2.2.5.1 Adoptive T cell transfer 

It has been extensively demonstrated that regaining BKPyV-specific T-cell immunity 

to prevent PyVAN is essential, thus protocols of virus-specific adoptive T-cell therapy 

could be an effective approach (Comoli, Cioni et al. 2013). In an early study a 

method for in vitro generation of BKPyV-specific T cells has been described. PBMCs 

from BKVPyV seropositive healthy donors and kidney transplant patients were 

stimulated with dendritic cells pulsed with inactivated virus, in the presence of IL-7 

and IL-12. BKPyV-specific T-cells with cytotoxic activity could be obtained, with a 

high frequency of CD3+ /TCRγδ+ cells displaying an MHC-unrestricted cytotoxicity 

(Comoli, Basso et al. 2003). The use of inactivated virus is not easily conducted in 

the context of the requirements for good medical manufacturing practice, which are a 

prerequisite for the permission to use T-cell therapies.  

 

A recent study demonstrated the possibility of expanding BKPyV-specific T-cells for 

possible use in adoptive cell transfer, by stimulating PBMCs from healthy donors and 

transplant patients with monocyte-derived dendritic cells pulsed with overlapping 

peptide pools covering the whole amino acid sequences encoded in VP1, VP2, VP3, 

sTag and LTag in the presence of IL-2. CD4+ and CD8+ T cells could be obtained, 

which responded to restimulation to viral antigens, in particular VP1, LTag and sTag, 

but without a clear immunodominance. Intracellular production of IFN-γ TNF-α and 

IL-2 could be observed, suggesting the contribution of both Th1 and Th2 cells (Blyth, 

Clancy et al. 2011).  

 

So far, no cases of BKPyV-specific adoptive T cell transfer have been published for 

kidney transplant patients, but there have been clinical studies in HSCT patients 

(Papadopoulou, Gerdemann et al. 2014) where T cells for adoptive T cell transfer 

were generated from PBMCs of  HSCT donors specific for 12 immunogenic antigens 

of EBV, Adenovirus, CMV, HHV-6 and BKPyV (VP1 and LTag). From 48 clinical 

grade T cells preparation obtained after peptidic stimulation including CD8+ and 
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CD4+ T cells, 14 had activity against all five stimulating viruses (pentavalent), 9 

recognized four viruses (tetravalent), 12 were trivalent, 11 were divalent, 1 was 

monovalent, and 1 failed to recognize any of the targeted viruses. Only 28 of 48 were 

BKPyV specific. Cells were infused and resulted to be safe and effective in those 

patients showing viral reactivations (Papadopoulou, Gerdemann et al. 2014). 

 

There are some unique data for a young HSCT recipient affected by JCPyV-related 

PML successfully treated with JCPyV-specific T cells obtained by stimulating PBMCs 

from the HSCT donor with a pool of 15mer peptides spanning the whole sequence of 

JCPyV VP1 and the LTag (Balduzzi, Lucchini et al. 2011), which had been 

characterized earlier in the Binggeli study in kidney transplant patients (Binggeli, Egli 

et al. 2007) and another study on JCPyV-specific responses in HIV-AIDS patients 

with and without PML (Khanna, Wolbers et al. 2009). This expansion method could 

be extended to BKPyV and might be used in clinical practice. 

 

Another promising method that could be part of the strategy aiming at obtaining 

antigen-specific T cells for adoptive transfer is streptamer staining and selection. This 

method derives from HLA-peptide multimers technology, consisting of multimers of 

HLA molecules bound to HLA-restricted peptides and labeled to fluorophores, which 

target and allows the detection of HLA-matched antigen-specific T cells. In this way, 

epitope-specific T cells can be identified and sorted, but cannot be administered for 

adoptive T cell transfer, as markers remain on the cell surface after staining and 

therefore could compromise the effector function of the stained T cells. The novelty 

of streptamers consists in the possibility of reverting the binding of the multimer to 

the cell thanks to a Strep-tag / Strep-Tactin technology. After the selection of epitope-

specific T cells, by adding biotin, the interaction of Strep-tag with Strep-Tactin can be 

disrupted and purified epitope-specific T cells are free of any marker on their surface, 

possibly with preserved effector functions.  

 

3.3.2.2.5.2 Epitope mapping and vaccine development 

In the perspective of using epitope-specific T cells for adoptive transfer, it would be 

necessary to identify immunogenic, possibly immunodominant, HLA-restricted 

epitopes deriving from viral proteins. For this purpose, epitope mapping would be 

useful. T cell epitope mapping can be performed with different techniques, at 

different levels, predictive and experimental. Predictive approaches include the use 

of computer algorithms predicting the processing and/or binding of aminoacidic 



 71

sequences to defined HLA alleles. Then, putative epitopes can be tested 

experimentally with solid phase binding assays, ELISpot assays, killing assays and 

also multimer staining. 

 

Identification of immunodominant epitopes would be of great interest also in the 

context of peptide vaccine development to prime and/or boost BKPyV-specific 

immunity in order to prevent BKPyV-related diseases. Different studies investigated 

BKPyV-specific T cell immunity identifying immunogenic epitopes within VP1 and 

LTag sequences, either for HLA class I and II alleles (Table 2). Most of studies 

focused on the highly frequent HLA-A*02 allele, while it would be of interest to 

identify immunodominant epitopes through the majority of frequent alleles.  

 

In the first BKPyV report on selective epitopes by Krimskaya et al, an immunogenic 

epitope within VP1 sequence was identified. Candidate peptides selected by 

algorithm predictions were experimentally verified by 51Chromium release assay and 

ICC in splenocytes obtained from humanized HLA-A*02 mice. Moreover, HLA 

restriction was tested in PBMCs samples obtained from 10 healthy individuals (HI) 

and 1 KTR and stimulated in vitro with VP1 peptides.  By tetramer and CD107 

staining they could identify an HLA-A*02 9mer epitope starting at aa position 108 in 

VP1 sequence (p108), able to elicit cytotoxic T cell response in 3/10 HI and in the 

KTR (Krymskaya, Sharma et al. 2005). The same group confirmed the p108 epitope 

and another epitope at position VP1 144 (p144) in a larger cohort of HI, and 

observed that such epitopes were cross-reactive with JCPyV (Sharma, Zhou et al. 

2006). They later could determine that such epitopes were able to elicit CD4+ 

cytotoxic T cell responses characterized by secretion of multiple cytokines, in 

particular IFN-γ and TNFα- (Zhou, Sharma et al. 2007). 

 

VP1-derived p108 epitope was  confirmed to be immunodominant also by other 

investigators,  through computer prediction and experimental confirmation with 
51Chromium release assay and tetramer staining, Chen at al could identify a cytotoxic 

T cell response in 50% of HI samples, and identified another HLA-A*02 

immunodominant 9mer epitope in 80% of HD (p44). In samples from PyVAN patients 

the response was more frequently found towards p108 than p44, suggesting a 

different pattern of response in patients (Chen, Trofe et al. 2006).  

 

Other groups reported epitopes within the LTag sequence. The first study identified 

an immunodominant epitope specific for HLA-B*07 and –B*08 at N-terminus of the 
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protein, as a 15mer sequence starting at position 25, also containing a 9mer epitope 

at position 27. They could also find HLA class II 15mer epitopes restricted for HLA-

DRB1*0901 at aa position 154, 139 and 140, and for HLA-DRB1*0301 at position 15. 

Such epitopes were conserved in JCPyV (Li, Melenhorst et al. 2006). Randhawa et 

al identified other LTag epitopes in HLA-A*02 HI and KTR. Candidate epitopes 

selected by algorithm prediction were tested in vitro in ELISpot assay and 9mer 

epitopes at position 362 was found to elicit IFN-γ production in 83% of the tested HI 

and in 71% KTR. Epitopes at position 406 and 410 were also frequently identified in 

HLA-A*02 HI and KTR (Randhawa, Popescu et al. 2006) and further confirmed by 

other studies (Zhou, Sharma et al. 2007, Schneidawind, Schmitt et al. 2010). 

Provenzano et al characterized in healthy donor samples the immune response to 

HLA-A*02 specific LTag 9mer epitope starting at position 579, previously identified 

by Zhou et al. They could find that the epitope elicited an increase in IFN-γ 

expression and secretion, moreover it could elicit CTL response by CD8+ CD45RA+ 

T cells (Provenzano, Bracci et al. 2006).  

 

Another study focused on other frequent HLA Class I alleles, in particular HLA-A*01, 

A*03, and A*24 (Ramaswami, Popescu et al. 2009). The authors could identify 

numerous immunogenic epitopes after computer prediction, in vitro binding and 

ELISpot assay using PBMCs cultured in presence of a mix of overlapping peptides 

spanning the whole LTag sequence. A 9mer epitope at position 506 was found in 

100% of HI and 67% of HLA-A*03 KTRs. Other epitopes were found with a minor 

frequence (Ramaswami, Popescu et al. 2009). Unfortunately, other tests would be 

required to confirm HLA restriction. Thereafter, the same group identified a 15mer 

epitope able to elicit a T cell response mediated by class II, in different HLA-DRB1 

alleles. It is located in the helicase domain of LTag, at position 313 (Ramaswami, 

Popescu et al. 2011). A recent study characterized the phenotype of epitope-specific 

T cells, in particular to VP1 p44 and p108, and LTag p579 and p410. They observed 

the immunodominance of VP1 p108, a low frequency of p579 responses and none 

for p410. Epitope-specific T cells showed an effector memory phenotype by FACS 

analysis, not proliferating. They produced IL-2, IFN-γ, TNF-α and expressed low 

levels of CD107a (van Aalderen, Remmerswaal et al. 2013). All these studies 

suggest an immunodominance for VP1 epitope p108 in HLA-A*02 individuals, which 

could be confirmed by several studies and techniques, whereas this was not the 

case for the BKPyV LTag (Table 2). 

 

Epitope specific T cell responses should be analyzed in KTR and correlated with the 
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status of BKPyV-related disease, to understand which are more associated to viral 

clearance or protection from viremia, and studies investigating BKPyV VP1 and LTag 

epitopes restricted to other frequent HLA types would be required in order to 

characterize the pattern of BKPyV immune response in the majority of the 

population. Targeting several HLA types would be of great interest in the context of 

immunotherapy, giving the possibility of preventing and/or treating diseases in as 

many people as possible, either by adoptive T-cell therapy and vaccine 

administration. A very recent paper investigated BKPyV T-cell epitopes by next 

generation sequencing of the whole viral genome in samples from viremic transplant 

recipients. The authors found low levels of variants in epitopes sequences, which 

may suggest that despite conservation, BKPyV variants may encode peptides that 

can escape the immune response and emerge in case of selection pressure given by 

an eventual immunotherapy (Sahoo, Tan et al. 2015).
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 Table 2: Published BKPyV specific epitopes  

 

Reference BKVPyV 
protein 

aa start 
position aa sequence HLA restriction Studied 

population Frequency Experimental 
Methods 

(Krymskaya, 
Sharma et al. 
2005) 

VP1 108 LLMWEAVTV HLA-A*02 
Humanized 
mice 
10 HI, 1 KTRs 

30% HI 
100% KTR 

-51Cr release assay 
-ICC 
-tetramer staining 
-CD107 assay (Sharma, Zhou 

et al. 2006) 

VP1 44 AITEVECFL HLA-A*02 11 HI 73% 

VP1 108 LLMWEAVTV HLA-A*02 25 HI 20% 

(Chen, Trofe et 
al. 2006) 

VP1 44 AITEVECFL HLA-A*02 
10 HI 
10 KTRs with 
PyVAN 

80% HI 
100% KTR -51Cr release assay 

-tetramer staining 

VP1 108 LLMWEAVTV HLA-A*02 
10 HI, 
10 KTRs with 
PyVAN 

50%HI 
100% KTR 

(Zhou, Sharma 
et al. 2007) 

VP1 108 LLMWEAVTV HLA-A*02 13 HI not described 

-ICC 
-CD107 assay 
 

LTag 362 MLTERFNHIL HLA-A*02 13 HI not described 

LTag 406 VIFDFLHCI HLA-A*02 13 HI not described 

LTag 579 LLLIWFRPV HLA-A*02 13 HI not described 

(Randhawa, 
Popescu et al. 
2006) 

LTag 362 MLTERFNHIL HLA -A*02 6 HI, 7 KTRs 
83%HI, 71% 
KTRs 

IFN-γ ELISpot assay 
LTag 406 VIFDFLHCI HLA-A*02 6 HI, 7 KTRs 50%HI, 29% 

KTRs 

LTag 410 FLHCIVFNV HLA-A*02 6 HI, 7 KTRs 
50%HI, 29% 
KTRs 

LTag 579 LLLIWFRPV HLA-A*02 6 HI, 7 KTRs 0% HI, 14% 
KTRs 

(Provenzano, 
Bracci et al. 
2006) 

LTag 579 LLLIWFRPV HLA-A*02 5 HI 100% IFN-γ, 
80% 51Cr 

HLA binding assay 
IFN-γ gene expression 
-51Cr release assay 
Tetramer staining 
 
 

LTag 406 VIFDFLHCI HLA-A*02 5 HI 80% IFN-γ, 
100% 51Cr 

LTag 410 FLHCIVFNV HLA-A*02 5 HI 
80% IFN-
γ,50% 51Cr 

LTag 398 CLLPKMDSV HLA-A*02 5 HI 80% IFN-γ, 

LTag 216 KLCTFSFLI HLA-A*02 5 HI 25% IFN-γ, 

LTag 472 VVFEDVKGT HLA-A*02 5 HI 25% IFN-γ, 

LTag 558 SLQNSEFLL HLA-A*02 5 HI 25% IFN-γ, 

LTag 157 TLACFAVYT HLA-A*02 5 HI 
25% IFN-
γ,50% 51Cr 

Li 2006 

LTag 27 LPLMRKAYLRKCK HLA-B*07, 
HLA -B*08 

17 HI not described 

ICC, CSFE based 
cytotoxicity assay 

LTag 15 TLYKKMEQDVKVAHQ HLA-DRB1*0301 17 HI not described 

LTag 139 IYLRKSLQNSEFLLE HLA-DRB1*0901 17 HI not described 

LTag 140 KSLQNSEFLLEKRIL HLA-DRB1*0901 17 HI not described 

LTag 154 TFSRMKYNICMGKCI HLA-DRB1*0901 17 HI not described 

(Ramaswami, 
Popescu et al. 
2009, 
Randhawa, 
Viscidi et al. 
2009) 

LTag 506 SVKVNLEKK HLA-A*03 3 HI, 6 KTRs 100% HI, 67% 
KTRs 

HLA peptide binding 
assay 
IFN-γ ELISpot assay 

(Ramaswami, 
Popescu et al. 
2011) 

LTag 313 PYHFKYHEKHFANAI restriction none or 
unknown 

27 HI 33% IFN-γ ELISpot assay 
ICC 

(Schneidawind, 
Schmitt et al. 
2010) 

VP1 108 LLMWEAVTV HLA-A*02 
25 HI 
7 HSCT HC 

75%HSCT 
HC, 
28% HI 

IFN-γ and GranzimeB 
ELISpot assay 
Tetramer staining 

(van Aalderen, 
Remmerswaal et 
al. 2013) 

VP1 108 LLMWEAVTV 
HLA-A*02 

15 HI 
47% 

Tetramer staining 
 

VP1 44 AITEVECFL HLA-A*02 15 HI 
40% 
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4 Aims 
 

With this study we sought to explore BKPyV-specific immune responses, focusing 

on: 

 

1. Evaluation of BKPyV agnoprotein role in immune escape mechanisms, as 

downregulation of MHC class I and II molecules. 

2. Identification and characterization of immunodominant 9mer-epitope T cell 

responses within BKPyV EVGR proteome 

 

Providing new insight in BKPyV immunity has the ultimate goal of applying such new 

knowledge to clinical practice, giving insights for novel therapeutic approaches for  

preventing and/or treating BKPyV associated diseases. 
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5 Results  
 
  

5.1 Comparing Effects of BK Virus Agnoprotein and Herpes 
Simplex-1 ICP47 on     MHC-I and MHC-II Expression 

 
  

Agnoprotein of BKPyV is abundantly expressed in the late viral life cycle, and 

localizes mainly to the cytoplasm and perinuclear area, it colocalizes with lipid 

droplets (Rinaldo, Traavik et al. 1998, Leuenberger, Andresen et al. 2007, Unterstab, 

Gosert et al. 2010). Among all HPyV, an ORF encoding an agnoprotein has been 

found only for BKPyV and JCPyV, and several studies have been investigating its 

function, which at present still remains to be defined. 

  

Potential cellular interaction partners have been proposed following a yeast-2-hybrid 

screening in order to come a step closer to cellular pathways that agnoprotein might 

target. Thus, it has been shown that BKPyV agnoprotein can interact with α-SNAP, 

protein involved in the intra-cellular trafficking and fusing of vesicles in the  cell 

membranes, leading in vitro to interference in the cell surface secretion pathway 

(Johannessen, Walquist et al. 2011). The possible involvement of agnoprotein in 

vesicle transport is supported by the observation that agnoprotein co-localizes with 

lipid droplets (Unterstab, Gosert et al. 2010), since other proteins detected in lipid 

droplets have been linked to intracellular vesicle transport. (Guo, Walther et al. 

2008). Agnoprotein has also been demonstrated to interact with PCNA, leading to 

inhibition of PCNA-dependent DNA synthesis in vitro and consequent reduction of 

cell proliferation (Gerits, Johannessen et al. 2015).  

 

Despite abundantly expressed, also in vivo in florid biopsies of of kidney transplant 

patients diagnosed with PyVAN, agnoprotein seems to be immunologically ignored. 

Both, humoral and cellular responses have been investigated towards this protein, 

but with very low or even absent results. Moreover, differently from LTag and VP1, 

the rare agnoprotein-specific T cell responses did not correlate with the course of 

viral replication in patients (Leuenberger, Andresen et al. 2007).  

 

The observations that agnoprotein could negatively influence vescicular transport 
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and cell proliferation, together with the absence of antigen specific immune 

responses could suggest a role for agnoprotein in immune evasion mechanisms, 

maybe involving antigen processing and presentation pathways. In this context, it is 

of interest to note that histopathology studies reported a decreased HLA class II 

expression of BKPyV-infected renal tubular epithelial cells compared to the levels 

found in biopsies showing acute cellular rejection (Nickeleit, Hirsch et al. 2000). 

Together, these data suggested the hypothesis that maybe a component of BKPyV 

genome could negatively influence HLA class II expression. 

 

This hypothesis is in line with some considerations regarding the virus-host 

interaction, that can be derived from the BKPyV and JCPyV biology and 

epidemiology. BKPyV and JCPyV are viruses successfully adapted to the human 

host, as evidenced by the fact, that the vast majority of the general human population 

is infected, yet without any significant clinical manifestations. However, BKPyV and 

JCPyV are not perfectly controlled in the human host, since there is evidence of 

asymptomatic persistent and/or intermittent replication in healthy individuals (Egli, 

Infanti et al. 2009). Indeed, signs of disease are almost exclusively found in special 

patient groups that are immunocompromised (Hirsch 2005, Hirsch, Kardas et al. 

2013, Hirsch, Babel et al. 2014). Persistence is peculiar to viruses having strategies 

of immune evasion such as members of the Herpesviridae, as EBV, CMV, KHSV and 

HSV. In BKPyV and JCPyV, a possible mechanism for immune evasion and down-

regulation of viral gene expression has been proposed, as a miRNA has been 

identified in the LVGR, capable of targeting the mRNA of the cellular stress induced 

ligand ULBP3, with the effect of down-regulating LTag mRNA expression, known to 

induce an important cell response  (Bauman, Nachmani et al. 2011). Taken together, 

it seems a biologically plausible hypothesis to postulate that BKPyV has evolved one 

or more mechanisms of immune escape, and that agnoprotein could play a role in 

such processes. 

 

Several viral proteins have been described able to down-modulate cell surface HLA 

molecules expression in order to hide from immune system recognition. Notably, the 

immediate early protein ICP47 (pICP47) from HSV is small viral protein of only 88 aa, 

similarly small as the BKPyV agnoprotein. The pICP47 has been reported to 

downregulate HLA class I antigen presentation by specifically binding to TAP, and 

thereby impairing the presentation of HLA-peptide complexes. The functional domain 

of HSV-pICP47 appears to map to the aa 2-35 of the N-terminus. Strikingly, the 

secondary structure of HSV-pICP47 is predicted to contain an amphipathic helix 
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structure (Galocha, Hill et al. 1997, Aisenbrey, Sizun et al. 2006). Given these 

similarities between HCV-pICP47 and the BKPyV agnoprotein, we hypothesized that 

the BKPyV agnoprotein might have a similar immunomodulatory role in BKPyV 

immune evasion. Therefore, an experimental system was set up to test this 

hypothesis in vitro. We investigated effects of agnoprotein expression on HLA class I 

and II (HLA-ABC and –DR) surface expression in transiently and stably transfected 

cells.  

 

The levels of HLA class I and class II expression of primary human renal tubular 

epithelial cells (RPTEC) were quantified by flow cytometry in the presence or 

absence of agno expression. In a second approach, UTA-6 cells co-transfected with 

plasmids constitutively expressing agnoprotein and the enhanced green-fluorescent 

protein (EGFP), as well as in UTA-6 cells bearing tetracycline regulated agnoprotein. 

As a control, the HSV-pICP47 was transfected and its effect on HLA expression was 

compared. Finally, as the ultimate goal of antigen presentation via MHC class I is the 

induction of CTL activity, we evaluated the influence of agnoprotein expression on 

antigen specific CTL on UTA-6 cells expressing tetracycline regulated agnoprotein. 
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In our experimental model HLA class I and II expression were not affected by 

agnoprotein. This has been demonstrated both inducing constitutive and tetracycline 

regulated agnoprotein expression, also when IFN-γ was added to the cells to mimick 

an inflammatory context and upregulation of HLA molecules. Conversely, as 

expected, pICP47 expression specifically decreased HLA class I but not II 

expression.  

 

Possible effects of heterogeneous expression of agnoprotein in cell cultures could be 

excluded as we obtained the same negative results in UTA-6 cell clones, wich 

expressed agno in a tightly regulated manner. Finally, CTL activity upon activation by 

viral antigen presentation was not affected by agnoprotein expression.  

 

None of our results could indeed demonstrate a role for agnoprotein in interfering 

with antigen processing and presentation pathways, and consequent CTL activity. 

Our hypothesis was based on previous studies in which immunological ignorance 

towards agnoprotein was observed (Leuenberger, Andresen et al. 2007). 

Agnoprotein was also demonstrated to be involved in vescicular transport to the 

surface, and HLA molecules loaded with peptides are transported from the 

endoplasmic reticulum to the cell surface for immune display (Johannessen, Walquist 

et al. 2011). Moreover, in earlier studies PyVAN biopsies were compared to T-cell 

mediated rejection biopsies in KTRs, and HLA class II was observed to be 

downregulated in BKPyV infected cells. In a recent study BKPyVAN biopsies were 

compared with T cell mediated rejection for expression of TAP1 and HLA class I ββββ-2 

–microglobulin and no difference has been observed, suggesting that BKPyV does 

not seem to be involved in this kind of potential immune evasion mechanism 

(Buettner, Xu et al. 2012). 

 

However, many other checkpoints in the immune system can be targeted by viruses, 

starting from interfering with viral recognition by innate immunity then impairing 

recruitment of immune response effectors by modulating production of chemokines, 

and also targeting adaptive responses by co-stimulation inhibition or induction of 

Treg responses. For this reason, further approaches to investigate a role of 

agnoprotein in immune evasion need to be explored. 
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5.2 Characterization of Immunodominant BK Polyomavirus 
9mer-Epitope T-cell Responses 

 
BKPyV is an ubiquitous virus infecting up to 90% of the human population, mainly 

during childhood, without any clinical symptoms (Knowles, Pipkin et al. 2003, Egli, 

Infanti et al. 2009, Schmidt, Adam et al. 2014). Disease manifestations appear 

almost exclusively in immunosuppressed individuals, specifically in transplanted 

patients receiving IS therapy anti rejection, in which uncontrolled high-level BKPyV 

viruria and viremia have been identified as markers of progression to disease 

(Hirsch, Knowles et al. 2002). Despite a number of antiviral therapy have been 

proposed, the current strategies to manage BKPyV replication and disease is 

immune suppressive therapy reduction, leading to a restauration of T cell immunity 

(Hirsch, Brennan et al. 2005, KDIGO 2009, Hirsch and Randhawa 2013). In fact, by 

reducing immunosuppression, parallel to decrease of viral replication, a significant 

increase of BKPyV-specific T cell immunity has been observed (Comoli, Azzi et al. 

2004, Binggeli, Egli et al. 2007, Ginevri, Azzi et al. 2007, Schachtner, Muller et al. 

2011). Thus, an effective virus specific T cell response seems to be crucial in the 

control of viral replication. 

 

In previous studies T cell responses have been investigated to BKPyV antigens, 

overlapping 15mer peptide pools encoded in the EVGR and LVGR have been used 

as stimulus (Binggeli, Egli et al. 2006, Binggeli, Egli et al. 2007, Ginevri, Azzi et al. 

2007, Schachtner, Muller et al. 2011, Weist, Schmueck et al. 2014), and it has been 

observed that responses to LVGR, and in particular to VP1, are prominent compared 

to EVGR and mainly characterized by CD4+ T cells producing IFN-γ (Binggeli, Egli et 

al. 2006, Binggeli, Egli et al. 2007, Ginevri, Azzi et al. 2007, Weist, Schmueck et al. 

2014) . 

 

The CD8+ T cell responses could be observed (Krymskaya, Sharma et al. 2005, 

Binggeli, Egli et al. 2006, Provenzano, Bracci et al. 2006, Binggeli, Egli et al. 2007, 

Ginevri, Azzi et al. 2007, Schachtner, Stein et al. 2015), their characterization 

demonstrated that  they were directed mostly  to the EVGR protein LTag and that 

they strongly correlated with viral resolution, suggesting a protective function. 

However, because most of the studies used 15mer peptide pools to evaluate BKPyV 

specific responses, the distinct contribution of CD8+T cells remained undefined. We 
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decided to better characterize BKPyV-specific CD8+ T cell responses specific for 

9mer epitopes. Complementary to current research, we focused on the BKPyV 

EVGR region. We interrogated the responses in seropositive healthy individuals and 

attempted confirmation by independent techniques including streptamers, CD107a, 

and cytotoxic killing assays. The results were then taken to a cohort of pediatric 

kidney transplant patients for an independent assessment. 
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Supplementary Table 1: Characteristics of 42 healthy individuals 
 

 

Healthy 
Individual   Gender 

Age 
(years)  HLA-A  HLA-B  

HI-1 m 52 2 11 55 51 
HI-2 f 41 1 29 8 35 
HI-3 f 59 23 28 44 44 
HI-4 f 40 3 24 7 35 
HI-5 f 53 3 28 40 41 
HI-6 m  61 1 28 13 35 
HI-7 f  48 24 24 18 62 
HI-8 m  60 3 28 35 35 
HI-9 f  60 3 26 7 27 
HI-10 f  48 3 2 7 44 
HI-11 m  52 2 1 8 12 
HI-12 f  33 3 26 7 39 
HI-13 f  51 26 32 40 44 
HI-14 f  57 1 1 5 51 
HI-15 f  50 2 24 35 39 
HI-16 f  33 3 24 7 65 
HI-17 m  33 29 24 55 44 
HI-18 m  44 2 11 7 62 
HI-19 f  29 1 3 8 35 
HI-20 f  36 3 2 7 62 
HI-21 m  32 2 30 13 35 
HI-22 f  37 2 24 62 39 
HI-23 f  24 2 19 63 60 
HI-24 m  38 3 11 7 62 
HI-25 f  31 2 32 40 44 
HI-26 f  53 3 3 7 51 
HI-27 nd nd 3 24 7 15 
HI-28 nd nd 3 32 27 40 
HI-29 nd nd 1 3 7 15 
HI-30 nd nd 3 32 7 13 
HI-31 nd nd 32 33 44 51 
HI-32 nd nd 2 2 13 15 
HI-33 f  28 24 29 44 49 
HI-34 f  50 2 2 7 15 
HI-35 f  27 2 32 15 44 
HI-36 f  21 2 2 35 39 
HI-37 m  46 2 24 51 55 
HI-38 f  34 2 24 39 62 
HI-39 f  52 2 2 13 39 
HI-40 nd nd 3 11 7 40 
HI-41 f  48 1 24 7 55 

HI-42 m 55 3 32 8 15 
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HI, healthy individual; m, male; f, female; nd, not determined 
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Table S3: HLA allele frequencies in worldwide populations*  

     

*Data were retrieved from http://www.allelefrequencies.net  

     

     

A*01:01   A*02:01 

Population Frequenc

y (%) 

  Population Frequen

cy (%) 

Ireland South 44,8    Argentina Gran Chaco 

Western Toba Pilaga  

60,0 

England North West 38,6    Mexico Mestizo  56,1 

Ireland Northern 36,4    Greece pop 8  51,8 

USA Caucasian 

Bethesda 

28,7    Argentina Gran Chaco 

Eastern Toba  

46,4 

Belgium 29,2    Philippines Ivatan  48,0 

Italy North pop 3 26,9    Austria  48,0 

Sudan Central 

Shaigiya Mixed 

27,8    Italy North pop 3  53,8 

France Southeast 27,7    England North West  50,7 

Austria 27,0    Italy Bergamo  46,5 

Greece pop 8 25,3    Ireland Northern  46,8 

Romania 23,0    Belgium  50,0 

USA Philadelphia 

Caucasian 

21,5    USA Caucasian Bethesda  47,8 

Saudi Arabia Guraiat 

and Hail 

21,6    USA Philadelphia Caucasian  40,7 

Tunisia 21,0    Romania  43,7 

India Delhi pop 2 20,0    Ireland South  43,6 

Mexico Mestizo 14,6    Brazil Belo Horizonte 

Caucasian  

43,2 

Cuba Caucasian 15,7    Argentina Gran Chaco 

Mataco Wichi  

40,9 

Brazil Belo Horizonte 

Caucasian 

13,7    Oman  39,8 

Argentina Rosario 

Toba 

15,1    France Southeast  38,5 

USA African 

American Bethesda 

14,8    Brazil Terena  38,3 

Oman 14,4    Argentina Rosario Toba  34,9 

Cuba Mulatto 14,3    Taiwan Taroko  36,4 
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Chile Santiago Mixed 11,0    Saudi Arabia Guraiat and 

Hail  

33,3 

Sudan Mixed 10,0    Cuba Caucasian  34,3 

South Africa Natal 

Zulu 

8,0    Cuba Mulatto  31,0 

Indonesia Java 

Western 

5,1    Tunisia  32,0 

Ghana Ga-Adangbe 4,6    Sudan Mixed  33,0 

Hong Kong Chinese 2,1    Chile Santiago Mixed  30,0 

Taiwan Minnan pop 1 1,0    Taiwan Saisiat  21,6 

Singapore Chinese 0,7    Ghana Ga-Adangbe  19,1 

       Singapore Chinese  19,5 

       Sudan East Rashaida  18,5 

       Taiwan Minnan pop 1  17,6 

       USA African American 

Bethesda  

16,8 

       Taiwan Thao  13,3 

       Taiwan Atayal  13,2 

       Indonesia Java Western  12,7 

       Hong Kong Chinese  11,9 

       Sudan Central Shaigiya 

Mixed  

11,1 

       Taiwan Hakka  10,9 

       Taiwan Pazeh  10,9 

       Taiwan Bunun  7,9 

       Taiwan Paiwan  7,8 

       Taiwan Siraya  7,8 

       Taiwan Rukai  6,0 

       Taiwan Tsou  5,9 

       Taiwan Ami  5,1 

       South Africa Natal Zulu  5,0 

       Taiwan Puyuma  4,0 

       Taiwan Tao  4,0 

       India Delhi pop 2  3,3 

 

 

 

 

 

 

 

 

 

 



 106

A*03:01   A*11:01 

Population Frequenc

y (%) 

  Population Frequenc

y (%) 

 Belgium  30,2    Taiwan Tao  62,0 

 Austria  28,0    Taiwan Hakka  60,0 

 Ireland Northern  26,3    Taiwan Minnan pop 1  54,9 

 England North West  25,5    Taiwan Pazeh  50,9 

 France Southeast  23,8    Hong Kong Chinese  48,8 

 USA African American 

Bethesda  

23,8    Singapore Chinese  47,7 

 Romania  21,8    Taiwan Thao  43,3 

 Ireland South  21,6    Taiwan Siraya  33,3 

 USA Philadelphia 

Caucasian  

21,5    Indonesia Java Western  30,1 

 USA Caucasian 

Bethesda  

20,6    Taiwan Saisiat  21,6 

 Italy North pop 3  19,2    Taiwan Tsou  21,6 

 Ghana Ga-Adangbe  19,1    Oman  21,2 

 Brazil Belo Horizonte 

Caucasian  

17,9    India Delhi pop 2  18,9 

 Cuba Mulatto  16,7    Taiwan Bunun  18,8 

 Cuba Caucasian  15,7    Romania  15,8 

 Greece pop 8  15,7    Italy North pop 3  15,4 

 Saudi Arabia Guraiat 

and Hail  

14,1    Taiwan Atayal  15,1 

 India Delhi pop 2  13,3    Ireland Northern  15,0 

 Chile Santiago Mixed  13,0    Taiwan Taroko  14,5 

 Tunisia  13,0    Philippines Ivatan  14,0 

 South Africa Natal Zulu  12,0    USA Caucasian 

Bethesda  

14,0 

 Sudan Mixed  9,5    England North West  13,1 

 Oman  9,3    USA Philadelphia 

Caucasian  

12,6 

 Mexico Mestizo  4,9    Greece pop 8  12,1 

 Indonesia Java Western  4,7    Ireland South  11,2 

 Argentina Rosario Toba  3,5    Cuba Caucasian  10,0 

 Hong Kong Chinese  1,6    Belgium  9,4 

 Singapore Chinese  1,3    Tunisia  9,0 

       France Southeast  8,5 

       Taiwan Rukai  8,0 

       Mexico Mestizo  7,3 

       Austria  6,5 

       Saudi Arabia Guraiat 

and Hail  

5,6 
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       Taiwan Ami  5,1 

       Brazil Belo Horizonte 

Caucasian  

4,2 

       Taiwan Puyuma  4,0 

       Taiwan Paiwan  3,9 

       Sudan Mixed  3,5 

       Sudan Central Shaigiya 

Mixed  

2,7 

       Chile Santiago Mixed  2,0 

       Argentina Rosario Toba  1,2 

 

 

 

 

 

 

 

 

A*24:02   A*32:01 

Population Frequency 

(%) 

  Population Frequency 

(%) 

 Taiwan Tsou  98,0    Oman  18,6 

 Taiwan Paiwan  96,1    Greece pop 8  16,9 

 Taiwan Rukai  96,0    Sudan East Rashaida  14,8 

 Taiwan Thao  90,0    Sudan Central 

Shaigiya Mixed  

13,9 

 Taiwan Puyuma  88,0    France Southeast  13,8 

 Taiwan Saisiat  86,3    Italy Bergamo  11,9 

 Taiwan Ami  84,7    Sudan Mixed  11,0 

 Taiwan Bunun  84,2    Scotland Orkney  10,0 

 Taiwan Atayal  82,1    Romania  9,8 

 Taiwan Siraya  78,4    Ireland South  8,8 

 Taiwan Tao  78,0    USA Philadelphia 

Caucasian  

7,4 

 Taiwan Taroko  72,7    Belgium  7,3 

 Taiwan Pazeh  58,2    Cuba Caucasian  7,1 

 Philippines Ivatan  58,0    Cuba Mulatto  7,1 

 Taiwan Minnan pop 1  34,3    Morocco Settat 

Chaouya  

6,8 

 Indonesia Java Western  25,8    Ireland Northern  6,1 

 Taiwan Hakka  25,5    India Delhi pop 2  5,6 

 Romania  23,8    Austria  5,5 

 Greece pop 8  21,7    England North West  5,4 

 USA Caucasian Bethesda  20,6    South Africa Natal 5,0 
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Zulu  

 Argentina Gran Chaco 

Mataco Wichi  

20,5    Mexico Mestizo  4,9 

 France Southeast  20,0    Saudi Arabia Guraiat 

and Hail  

4,7 

 USA Philadelphia 

Caucasian  

20,0    USA Caucasian 

Bethesda  

4,4 

 Austria  20,0    Italy North pop 3  3,8 

 Sudan East Rashaida  18,5    Brazil Belo Horizonte 

Caucasian  

3,2 

 Chile Santiago Mixed  16,0    USA African American 

Bethesda  

3,0 

 Brazil Terena  15,0    Tunisia  3,0 

 England North West  13,8    Cameroon Bakola 

Pygmy  

2,0 

 Ireland South  13,2    Singapore Chinese  1,3 

 Tunisia  13,0    Argentina Rosario 

Toba  

1,2 

 Belgium  12,5    Chile Santiago Mixed  1,0 

 Saudi Arabia Guraiat and 

Hail  

11,7    Taiwan Minnan pop 1  1,0 

 Italy North pop 3  11,5    Hong Kong Chinese  0,7 

 Sudan Mixed  9,5       

 Argentina Gran Chaco 

Eastern Toba  

9,5       

 USA African American 

Bethesda  

8,9       

 Argentina Rosario Toba  5,8       

 Sudan Central Shaigiya 

Mixed  

2,7       

 India Delhi pop 2  2,2       
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B*07:02   B*08:01 

Population Frequenc

y (%) 

  Population Frequenc

y (%) 

Ireland South 33,6    Ireland South  35,2 

Ireland Northern 31,4    England North West  29,9 

USA Caucasian Bethesda 28,7    Ireland Northern  29,8 

England North West 27,5    Belgium  23,5 

Austria 22,5    USA Caucasian 

Bethesda  

22,5 

USA Philadelphia 

Caucasian 

20,7    Oman  21,2 

Saudi Arabia Guraiat and 

Hail 

16,6    Austria  21,0 

USA African American 

Bethesda 

16,0    Scotland Orkney  17,6 

Cuba Caucasian 15,7    France Southeast  16,9 

Ghana Ga-Adangbe 13,7    Serbia pop 2  15,7 

France Southeast 13,8    Saudi Arabia pop 5  15,2 

Italy North pop 3 13,3    Romania  14,1 

Brazil Belo Horizonte 

Caucasian 

11,6    South Africa Natal Zulu  14,0 

Chile Santiago Mixed 12,0    Brazil Belo Horizonte 

Caucasian  

13,7 

Cuba Mulatto 11,9    USA Philadelphia 

Caucasian  

13,3 

Mexico Mestizo 9,8    Saudi Arabia Guraiat 

and Hail  

13,2 

South Africa Natal Zulu 9,0    USA African American 

Bethesda  

12,8 

Greece pop 8 8,4    Morocco Settat Chaouya  12,4 

Serbia pop 2 7,8    Cuba Caucasian  11,4 

Romania 7,2    Italy Bergamo  9,9 

India Delhi pop 2 6,6    Cuba Mulatto  9,5 

Sudan Mixed 4,5    Tunisia  9,0 

Oman 3,4    Sudan Mixed  7,5 

Tunisia 3,0    Greece pop 8  7,2 

Argentina Rosario Toba 2,3    Mexico Mestizo  4,9 

Singapore Chinese 2,0    Chile Santiago Mixed  4,0 

Indonesia Java Western 1,7    Argentina Rosario Toba  3,5 

Hong Kong Chinese 0,4    India Delhi pop 2  3,3 

       Cameroon Bakola 

Pygmy  

2,0 

       Taiwan Siraya  2,0 

       Taiwan Hakka  1,8 

       Hong Kong Chinese  0,5 
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B*35:01   B*39:01 

Population Freque

ncy (%) 

  Population Freque

ncy (%) 

 Italy North pop 3  26,7    Taiwan Saisiat  82,4 

 Romania  19,3    Taiwan Tsou  43,1 

 Cuba Mulatto  19,1    Taiwan Taroko  40,0 

 Serbia pop 2  17,6    Taiwan Atayal  35,8 

 Oman  15,3    Taiwan Bunun  28,7 

 Mexico Mestizo  14,6    Taiwan Thao  26,7 

 Greece pop 8  14,5    Taiwan Rukai  26,0 

 Austria  13,0    Taiwan Ami  19,4 

 Argentina Rosario Toba  12,8    Taiwan Puyuma  10,0 

 USA Caucasian 

Bethesda  

12,4    Taiwan Paiwan  7,8 

 Ghana Ga-Adangbe  12,2    Sudan East Rashaida  7,4 

 USA Philadelphia 

Caucasian  

11,1    Taiwan Hakka  7,3 

 USA African American 

Bethesda  

10,6    Argentina Gran Chaco 

Western Toba Pilaga  

7,1 

 Ireland Northern  10,2    Philippines Ivatan  6,0 

 Tunisia  10,0    Singapore Chinese  4,7 

 France Southeast  9,2    Romania  4,6 

 Brazil Belo Horizonte 

Caucasian  

8,4    Morocco Settat Chaouya  4,2 

 Sudan Mixed  8,0    Taiwan Minnan pop 1  3,9 

 South Africa Natal Zulu  8,0    France Southeast  3,8 

 India Delhi pop 2  7,7    USA Caucasian Bethesda  3,8 

 Ireland South  6,8    Taiwan Pazeh  3,6 

 England North West  6,4    Argentina Gran Chaco 

Eastern Toba  

3,5 

 Taiwan Siraya  5,9    Serbia pop 2  2,9 

 Cuba Caucasian  5,7    Hong Kong Chinese  2,8 

 Singapore Chinese  4,0    Greece pop 8  2,4 

 Taiwan Pazeh  3,6    Cuba Mulatto  2,4 

 Hong Kong Chinese  3,2    Ireland South  2,0 

 Chile Santiago Mixed  3,0    Taiwan Siraya  2,0 

 Saudi Arabia Guraiat 

and Hail  

2,4    Ireland Northern  1,8 

 Argentina Gran Chaco 

Mataco Wichi  

2,2    Brazil Terena  1,7 

 Taiwan Minnan pop 1  2,0    Austria  1,5 

 Taiwan Paiwan  2,0    England North West  1,3 

 Taiwan Hakka  1,8    India Delhi pop 2  1,1 
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       USA Philadelphia Caucasian  0,7 

       Saudi Arabia Guraiat and 

Hail  

0,5 

 

 

 

 

 

 

B*40:01   B*44:02 

Population Frequenc

y (%) 

  Population Frequenc

y (%) 

 Taiwan Atayal  60,4    Scotland Orkney  26,5 

 Taiwan Paiwan  58,8    Ireland South  24,8 

 Taiwan Taroko  58,2    Ireland Northern  24,6 

 Taiwan Ami  55,1    England North West  19,1 

 Taiwan Saisiat  54,9    USA Philadelphia 

Caucasian  

16,3 

 Taiwan Thao  46,7    USA Caucasian 

Bethesda  

16,2 

 Taiwan Hakka  40,0    France Southeast  15,4 

 Taiwan Pazeh  40,0    Austria  15,0 

 Taiwan Bunun  39,6    Belgium  11,2 

 Taiwan Tsou  35,3    Serbia pop 2  10,8 

 Taiwan Minnan pop 1  34,3    Cuba Caucasian  10,0 

 Taiwan Rukai  34,0    Romania  8,6 

 Philippines Ivatan  30,0    Brazil Belo Horizonte 

Caucasian  

8,4 

 Singapore Chinese  28,2    Greece pop 8  7,2 

 Hong Kong Chinese  28,0    Morocco Settat Chaouya  6,8 

 Taiwan Puyuma  26,0    Italy North pop 3  6,7 

 Taiwan Siraya  25,5    Chile Santiago Mixed  6,0 

 USA Caucasian Bethesda  12,4    USA African American 

Bethesda  

4,2 

 Belgium  12,2    Sudan East Rashaida  3,7 

 Cuba Mulatto  11,9    Cuba Mulatto  2,4 

 England North West  11,4    Sudan Mixed  1,5 

 USA Caucasian  11,0    India Delhi pop 2  1,1 

 Ireland Northern  10,2    Saudi Arabia Guraiat 

and Hail  

0,5 

 India Jalpaiguri Toto  10,0    Hong Kong Chinese  0,4 

 USA Philadelphia 

Caucasian  

8,1       

 Indonesia Java Western  7,2       

 Japan Hyogo  6,3       
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 Austria  6,0       

 Taiwan Tao  6,0       

 Scotland Orkney  5,9       

 Brazil Belo Horizonte 

Caucasian  

5,3       

 Ireland South  5,2       

 France Southeast  4,6       

 Romania  4,6       

 Cuba Caucasian  4,3       

 USA African American 

Bethesda  

4,2       

 India Delhi pop 2  3,3       

 Serbia pop 2  2,9       

 Morocco Settat Chaouya  2,8       

 Chile Santiago Mixed  2,0       

 Sudan Mixed  1,5       

 United Arab Emirates 

pop 2  

1,1       

 Saudi Arabia Guraiat and 

Hail  

0,5       
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B*51:01 

Population Frequency 

(%) 

 Italy North pop 3  46,6 

 Oman  33,1 

 Greece pop 8  30,1 

 Saudi Arabia Guraiat and Hail  26,3 

 Serbia pop 2  23,5 

 Romania  20,4 

 Argentina Rosario Toba  18,6 

 Singapore Chinese  15,4 

 Brazil Belo Horizonte 

Caucasian  

14,7 

 Tunisia  14,0 

 Cuba Caucasian  12,9 

 India Delhi pop 2  12,1 

 Sudan Mixed  11,5 

 France Southeast  11,5 

 Austria  10,0 

 Mexico Mestizo  9,8 

 Cuba Mulatto  9,5 

 England North West  9,4 

 Hong Kong Chinese  8,6 

 USA Philadelphia Caucasian  7,4 

 Argentina Gran Chaco 

Western Toba Pilaga  

7,1 

 Chile Santiago Mixed  7,0 

 Indonesia Java Western  6,4 

 Argentina Gran Chaco Eastern 

Toba  

6,0 

 USA Caucasian Bethesda  5,4 

 USA African American 

Bethesda  

5,3 

 Ireland Northern  5,2 

 Ghana Ga-Adangbe  3,8 

 Ireland South  3,6 

 Taiwan Siraya  2,0 

 Brazil Terena  1,7 
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Table S4: Previously published BKPyV EVGR 9mer epitopes predicted in our study 

 

 

 

 

Epitope Amino acid sequence HLA type            Reference 

127 LPLMRKAYL    B*07, B*08 
     (Li, Melenhorst et 

al. 2006) 
133 AYLRKCKEF   A*24   (2) 

256 RTLACFAVY   A*03 
  (Ramaswami, Popescu 

et al. 2009) 
259 ACFAVYTTK   A*03 (2) 

272 ILYKKLMEK A*03 (2) 

316 KLCTFSFLI A*02 
(Provenzano, Bracci et al. 

2006) 
322 FLICKGVNK A*03 (2) 

327 GVNKEYLLY A*03 (2) 

442 PYHTIEESI A*24 (2) 

462 MLTERFNHI A*02 
(Randhawa, Popescu et 

al. 2006) 
506 VIFDFLHCI A*02 (3) 

510 FLHCIVFNV A*02 (3) 

514 IVFNVPKRR A*03 (2) 

679 LLLIWFRPV A*02 (3) 
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Table S5: BKPyV 9mer responses in IFN-γγγγ ELISpot assay - additional 24 epitopes 

 

 

A*01 A*02 A*03 A*11 A*24 A*32 B*07 B*08 B*35 B*39 B*40 B*44 B*51
N=11 N=1 N=8 N=2 N=2 N=4 N=1 N=5 N=2 N=1 N=3 N=1 N=2 N=1

221
224

225
226
227

228
229

232
236

239
240

536
540

542
546

553
629
631

633
635

637
639

641
645

HLA-A HLA-B
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1-14 % positive 
responders 

15-29 % positive 
responders 

30-49 % positive 
responders 
≥50% positive 

responders 
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SUPPLEMENTAL MATERIALS AND METHODS 
 
 

Assessment of BKPyV viruria and viremia in pediatric KTRs 

BKPyV viruria and viremia were measured at predefined time points (1, 3, 6, 9, 12, 

18, 24 months after transplantation and yearly thereafter) by the Transplantation & 

Clinical Virology laboratory in Basel using a quantitative real-time polymerase chain 

reaction (PCR) as previously described (Hirsch, Knowles et al. 2002, Dumoulin and 

Hirsch 2011). BKPyV viruria was defined by a urine viral load of  ≥2500 genome 

equivalents (GEq)/mL, high-level BKPyV viruria by  ≥7 log10 GEq/mL and BKPyV 

viremia by  ≥1000 GEq/mL. Based on protection and recovery from BKPyV viruria 

and viremia, PBMCs samples of 19 KTRs were selected and analysed (Table S2). 

 

BKPyV IgG ELISA  

BKPyV VP1-derived virus-like particles were used as antigen to detect BKPyV IgG 

as described (Egli, Infanti et al. 2009, Kardas, Sadeghi et al. 2014). Each serum 

sample was serially diluted 1:100, 1:200 and 1:400 and the optical density (OD) was 

measured at 492nm. The OD492nm values were normalized to the OD492nm of an 

internal reference serum, sera with a normalized OD492nm>0.100 at the 1:200 dilution 

were defined as IgG positive.  

 
 
Isolation of peripheral blood mononuclear cells from whole blood 

PBMCs from anticoagulated blood or from buffy coat preparations were diluted 1:2 in 

D-PBS w/o Ca2+ and Mg2+, and overlaid on Ficoll (Lymphoprep, Axis-Shield PoC AS, 

Oslo, Norway). After centrifugation (room temperature, 800g; 25 minutes (min)), 

PBMCs were recovered, and washed twice i.e. resuspended in D-PBS w/o Ca2+ and 

Mg2, and centrifuged (RT, 300g, 10min). The cells were counted and resuspended in 
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culture medium RPMI-1640 supplemented with 5% Human Serum AB and 2mM of L-

Ala-Glutamine (all Sigma-Aldrich Chemie GmbH Buchs SG, Switzerland) or 

cryopreserved in culture medium containing 10% DMSO and stored in liquid 

nitrogen. 

 

In vitro expansion of T-cells 

Freshly isolated or thawed PBMCs were seeded at a concentration of 2x106/ml in 

culture medium in 24 well-plate after the number of viable cells was counted using 

Trypan Blue exclusion. PBMCs were stimulated with LPP or 15mP (200ng/ml), and 

incubated for 9-14 days at 37°C 5% CO 2 before phenotypic and functional assays 

were carried out. Recombinant human IL-2 (20U/ml, Peprotech, Rocky Hill, NJ, USA) 

and recombinant IL-7 (5ng/ml, Peprotech) were added once a week. 

PBMCs obtained from cryopreserved samples from pediatric KTRs were first thawed 

and resuspended in pre-warmed culture medium. The number of viable cells was 

counted using Trypan Blue solution. The cells were resuspended at the 

concentration of 2x106/ml in culture medium, seeded in 24 well-plate and incubated 

with 200ng/ml 15mP at 37°C 5%CO 2. Recombinant IL-2 (20U/ml) and recombinant 

IL-7 (5ng/ml) were added at day 3, before performing phenotypical and functional 

assays at day 7. 

 
 
ELISpot assay  

PDVF multiscreen filter 96 well plates (MSIPS4W10, Millipore Bedford, MA) were 

coated with 100µl of anti-IFN-γ mAb 1-D1K (Mabtech, Nacka, Sweden) at 10µg/ml 

and incubated overnight at 4°C. After three washing  steps using PBS, freshly 

isolated or thawed PBMCs (2.5x105/well) or expanded T cells (1x105/well) were 

seeded in presence of 2µg/ml of BKPyV-specific peptide pools, checkerboard 

subpools, or single peptides. Cells without added peptide were used as negative 
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control, whereas cells treated with Staphylococcus enterotoxin B (SEB) (2µg/ml; 

Sigma, Saint Louis, Missouri, USA) or Phytohemagglutinin-L (PHA) (2µg/ml; Roche 

Diagnostics GmbH, Mannheim, Germany) served as positive control. After incubation 

for 20-24 hours (h) at 37°C, the plates were washed  five times with PBS 0.05% 

Tween-20 and anti-IFNγ mAb 7-B6-1-Biotin (Mabtech) was added at 1µg/ml for 3h at 

RT. After washing, Streptavidin ALP (Mabtech) was added at 1µg/ml for 1h at RT. 

The plates were washed five times with PBS 0.05% Tween-20 and tap water before 

incubation with SigmaFast BCIP/NBT (Sigma-Aldrich Chemie GmbH Buchs SG, 

Switzerland) for 20min at RT in the dark. Plates were rinsed with water, dried and 

spots counted with an ELISpot reader (Cellular Technology Ltd Europe, Bonn, 

Germany). ELISpot data are averaged duplicate or triplicate wells with background 

wells subtracted. Response >background plus 2 standard deviations were counted 

as reactive.  

 
MHC-streptamer staining 

The presence of BKPyV-specific T-cells was investigated using MHC-streptamers 

obtained from custom service (IBA GmbH, Göttingen, Germany). Peptide-loaded 

MHC molecules were incubated with PE- or APC-coupled StrepTactin for 45 minutes 

on ice before being incubated with 2-10x105 cells for 45 minutes on ice. After 

washing with immunostaining IS buffer (IBA), cells were incubated with CD8-PE-Cy7 

antibody (BD Biosciences, San Jose, CA, USA) for 15min on ice, washed with IS 

buffer and acquired on a flow cytometer (FACSCanto; BD Biosciences) using the 

FACSDiva software. Gating was performed on live cells using forward scatter and 

side scatter profiles, and doublets were excluded. Data are reported as percentage 

of specific populations after subtracting the  negative control (PE or APC-coupled 

StrepTactin alone). 
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CSFE proliferation assay 

PBMCs were resuspended at a concentration of 5x106/ml in PBS containing 5µM 

carboxyfluorescein diacetate succinimidyl ester (CFSE; eBioscience, Vienna, 

Austria). After 15min incubation at RT on a shaker, cells were washed twice with 

culture medium and resuspended in fresh medium for BKPyV-specific T-cell 

expansion described above. Cells were stained with specific MHC-streptamers and 

CD8 as described above and their CFSE content was analysed by flow cytometry. 

 

CD107a degranulation assay 

Expanded T-cells were resuspended in fresh medium (2x106/ml) and seeded in a 96-

well plate (2x105 cells per well). The BKPyV 9mer-peptide of interest was added to 

the cultures (1µg/ml) for 5h-stimulation at 37°C. Phorbol 12-myrist ate 13-acetate 

(PMA; 100ng/ml; Sigma) and ionomycin (1µg/ml; Sigma) were used as positive 

control, and a BKPyV 9mer-peptide of another HLA specificity was used as negative 

control. PE-Cy7-labelled CD107a antibody (BD Biosciences) or PE-Cy7-labelled 

isotype control (BD Biosciences) was added during the whole period of stimulation, 

whereas monensin (0.3µl per well; BD Biosciences) and brefeldin A (10µg/ml; Sigma) 

were added for the last 4h only. Cells were then labeled for specific MHC-

streptamers and CD8 as described above and analysed by flow cytometry. 

 

Cytotoxicity assay 

Specific cytotoxic activity of expanded T-cells was assessed by 51Cr-release assay of 

autologous PHA-stimulated blasts obtained by culturing PBMCs in the presence of 

PHA (4µg/ml) for 3-6 days. PHA-blasts were loaded for 1h at 37°C with 200 µCi 51Cr 

(Sodium Chromate Hartmann Analytic, Braunschweig, Germany), then pulsed for 1h 

with 2 µg/ml of 9mer candidate peptides or an unrelated peptide (the melanoma 

related peptide MAGE-4, kindly provided by Dr Paul Zajac, Department Biomedicine, 
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University of Basel, Switzerland) used as negative control. Effector T-cells were 

incubated with 2x103 target cells at different effector:target (E:T) cell ratios for 4h at 

37°C 5%CO 2. Then 50µl of the supernatant was transferred to a lumaplate (Perkin 

Elmer, Waltham, Massachusetts, USA) and dried. Counts per minutes (cpm) were 

counted in a β-counter (TopCount, Perking Elmer). Killing data are the average of 

duplicate wells and calculated as percentage of lysis according to following formula: 

(Sample cpm-Spontaneous Release cpm)/(Maximum Release cpm/Spontaneous 

Release cpm)X100, where Spontaneous Release corresponds to 51Cr release by 

target cells alone and Maximum Release corresponds to 51Cr release by target cells 

mechanically lysed. Data were considered reliable when Minimum release was less 

than 50% of Maximum Release. 
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By SYFPEITHI and IEBD epitope prediction alghoritms, we obtained 20 topscoring 

9mer epitopes encoded in the BKPyV EVGR for each of 14 HLA-A and -B types 

prevalent in Europe and North America, which showed to cluster across several HLA 

types. From these clusters, 73 predicted 9mer epitopes, including epitopes identified 

in previous studies, were selected. Additional 24 candidate epitopes locating out of 

the clusters were also included, for a total of 97 epitopes. Corresponding peptides 

were synthesized and used for experimental epitope mapping, with also longer 

peptides corresponding to clusters where 9mer epitopes overlapped. 

 

BKPyV-specific T cells were expanded from PBMCs samples by stimulation with a 

pool of 15mer overlapping peptides spanning the whole LTag (15mP) sequence, 

then tested in a IFN-γ ELISpot assay re-stimulating cells with the 15mP and subpools 

of 9mer peptides according to a checkerboard matrix approach. Positive responses 

were confirmed by re-challenge with single 9mer peptides. Our current approach of 

cell expansion was successful and we could elicit BKPyV-specific responses. Out of 

97 candidates, we could confirm 39 epitopes present in at least 30% of BKPyV 

healthy participants with different HLA distribution. The overall results indicated that 

BKPyV EVGR-specific 9mer T cell responses were heterogeneous in terms of 

frequency and strength. For some HLA types, positive responses were found with 

higher frequency and directed towards multiple epitopes; for example, in HLA-A*03, -

A*11, -B*07, -B*35, -B*39, -B*44 or -B*51 positive individuals, more than one epitope 

could be identified in >50% of healthy individuals. 

 

In line with the predicted clusters, some areas appeared to be more immunogenic 

than others. The area including 9m383 to 9m393 was highly immunogenic in  

individuals with HLA-A*02, -A*11,-B*35 and -B*39, and also the domain from 9m119 

to 9m133 appeared to be highly immunogenic in multiple HLA types. 

Since ELISpot assays are functional responses, but cannot attribute the HLA-

specificity of the IFN-γ inducing 9mer epitopes, MHC streptamer staining has been 

performed, and we could determine HLA specificity in 21 of 39 epitopes, with 

restriction for specific HLA alleles in some cases, while other epitopes could be 

presented by different HLA class I types, mainly belonging to the same cross reactive 

epitope groups, which are known to share epitopes specificities.  

 

Furthermore our results demonstrate that with our expansion protocol we could 

obtain in healthy individuals functional epitope-specific CTL responses, as 



 122

demonstrated in killing assay and CD107 staining, and that such cells were actively 

proliferating, dividing approximately once every 1–2 days. With this successful 

method it could be possible to confirm our results in and independent cohort of 19 

pediatric KTRs who were protected or recovered from BKPyV viremia. Thirteen 

epitopes could be validated in these 19 KTRs, in fact 10 of the 9mer responses found 

in HI could be detected also in patients, and additional 3 epitopes were found 

independently only in KTRs, may be the result of a persistent exposure to the virus 

concomitant with the stronger immune responses characterizing children (Schmidt, 

Adam et al. 2014).  

 

The identified epitopes could be used for monitoring virus specific T cell responses in 

KTRs in combination with BKPyV replication screening, in order to identify patients at 

risk for BKPyVAN progression, and consequently guide therapeutic interventions. As 

the observed epitope-specific CD8+ T cells were functional and highly proliferating, 

the identified epitopes could be used also in the perspective of adoptive T cell 

transfer or vaccine development. 

 

In the context of kidney transplantation, it has been previously demonstrated that a 

risk factor for BKPyV viremia is constituted by a high number of HLA mismatches 

between the recipient and the donor, and also specific HLA types in the recipients 

(Awadallah, Randhawa et al. 2004, Bohl, Storch et al. 2005, Awadallah, Duquesnoy 

et al. 2006, Masutani, Ninomiya et al. 2013), therefore we evaluated the potential 

association of BKPyV replication with single HLA-A and –B alleles in 118 consecutive 

KTRs, with 38 experienced viremia. We could observe heterogeneous distribution of 

viremic patients among HLA types, with a significant lower rate of viremic patients in 

HLA-A*01 patients (p<0.005), furthermore single mismatches were correlated to 

viremia, but no clear association could be observed in any of the analyzed HLA. 

Unfortunately, the studied cohort could be to small to obtain significant results about 

HLA types and risk of infection, therefore similar analysis should be performed in 

larger cohort of patients. 
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6 DISCUSSION 
 
 
BKPyV infection can cause disease almost exclusively in immunodeficient patients 

(Hirsch and Steiger 2003, Rinaldo, Tylden et al. 2013), while in immunocompetent 

individuals it can persist lifelong after primary infection and can be asymptomatically 

shed in urines (Knowles, Pipkin et al. 2003, Egli, Infanti et al. 2009, Schmidt, Adam 

et al. 2014). Viral persistence could be explained by an immune control operating in 

healthy individuals, able to prevent viral mediated damage, but not to the extent to 

fully eliminate the virus from the body. In this context there could be the possibility of 

a viral component acting to subvert immune control, with mechanisms of immune 

evasion. 

  

Many viruses, in particular those characterized by persistence in the host, target 

different steps of immune system, from viral recognition to adaptive immune 

responses, in order to get advantages over the host cell. Several studies have 

investigated on the immune response to BKPyV trying to identify which effectors 

could play a major role in the control of viral replication and prevention of disease, 

identifying T cells, as critical effectors in the control of virus (Binggeli, Egli et al. 2006, 

Binggeli, Egli et al. 2007, Ginevri, Basso et al. 2007, Comoli, Basso et al. 2009, 

Schachtner, Muller et al. 2011), therefore a possible targeted checkpoint by BKPyV 

could be antigen processing and presentation, idea supported by the observation 

that in biopsies from KTRs with BKPyVAN diagnosis HLA-DR expression seemed 

lower compared to T-cell mediated rejection (Nickeleit, Hirsch et al. 2000). 

 

One of the peculiar features of BKPyV among all HPyV, shared only by JCPyV, is the 

expression of agnoprotein, a small viral protein of 66 aa demonstrated to be 

expressed in BKPyV-infected cells, also in patients diagnosed with BKPyVAN, but 

the only among all BKPyV proteins not able to elicit an immune response 

(Leuenberger, Andresen et al. 2007), suggesting a possible role in immune escape 

mechanisms, idea that could be supported by the observation that agnoprotein could 

be involved in vesicular transport (Johannessen, Walquist et al. 2011), and the fact 

that agnoprotein shared a similar structure with a HSV protein, pICP47, known to 

inhibit HLA-peptide  complex presentation to the APC surface by binding TAP 

(Galocha, Hill et al. 1997, Aisenbrey, Sizun et al. 2006). For all these reasons, we 
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have compared the effects of agnoprotein and ICP47 on HLA class I and II 

expression in transfected cells expressing the two proteins constitutively or under 

tetracycline regulation. 

 

The results showed that BKPyV agnoprotein expression had no inhibitory effect on 

HLA class I and II expression in our in transiently transfected cells, even by 

simulating an inflammatory milieu, obtained by adding IFN-� with a consequent 

upregulation of HLA expression. Conversely, ICP47 specifically downmodulated HLA 

class I on the cell surface, whereas no inhibition was observed, as expected, on 

class II expression.  Our results obtained in transiently transfected cells can have 

some limitations, in terms of efficiency of transfection and durability of protein 

expression, to overcome this problem, we created stable clones expressing 

agnoprotein or ICP47 under the tight control of tetracycline, confirming the previous 

results, thus we could more robustly demonstrated that agnoprotein did not interfere 

with the quantity of HLA molecules on the cell surface.  

 

To exclude the involvement of agnoprotein on CTL function upon peptide 

presentation and consequent T cell activation, we evaluated if agnoprotein 

expression could interfere with antigen specific CTL activity using as antigen a well-

characterized, immunodominant HLA-A*02 restricted 9-mer peptide from the CMV-

pp65 antigen, but no impairment in killing activity could be observed when 

agnoprotein was expressed.  

 

From all our results we can conclude that agnoprotein does not seem involved in 

antigen processing and presentation pathway as it could have been hypothesized by 

previous studies results demonstrating its low immunogenicity and its involvement in 

transport of vescicles to the cell surface. Our results do not confirm the clinical 

pathology data of BKPyVAN biopsies which suggested that HLA class II might be 

reduced in interstitial nephritis due to the virus (Nickeleit, Hirsch et al. 2000).  

Conversely, our results would be in agreement with a recent study, where the 

expression of the HLA class I antigen presentation machinery components was 

investigated in BKPyVAN biopsies compared to T cell mediated rejection biopsies, 

and it resulted that infection with BKPyV did not have any effect, thus excluding 

BKPyV inhibitory role in this immune mechanism (Buettner, Xu et al. 2012). 

 

As the immune response to viruses is the result of many complex processes, against 

which viruses have evolved immune escape strategies, we cannot exclude that 
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agnoprotein could have a function targeting a different mechanism, therefore its 

function needs to be furtherly investigated also at the light of a recent finding that 

agnoprotein could have an inhibitory effect on cell proliferation, as it has been 

observed that one of its potential cellular partners is PCNA, and their interaction 

results in host cell proliferation, suggesting also possible role in switching off viral 

DNA replication to allow the assembly of genomes and viral capsid proteins into 

infectious viral particles (Gerits, Johannessen et al. 2015). 

 

Futhermore, it has to be considered that BKPyV could be implicated in immune 

evasion mechanisms through the expression of a miRNA located in the EVGR, which 

was found to target the cell stress induced ligand ULBP3 (Bauman, Nachmani et al. 

2011), dowregulating killing of infected cells by NK cells, and inhibiting the 

expression of the early protein LTag.  

 

LTag, is multifunctional regulatory protein of 695 amino acid lengths located in the 

EVGR, its expression is critical for viral replication, it may be involved also in cell 

transformation, and it has been clearly demonstrated that immune responses 

towards such protein are crucial in the control of viral replication, in fact in KTRs with 

active BKPyV replication LTag-specific T cell responses are barely detectable, and 

emerge after viral clearance (Binggeli, Egli et al. 2006, Binggeli, Egli et al. 2007, 

Ginevri, Azzi et al. 2007, Schachtner, Muller et al. 2011), in particular with an 

important CTL contribution. However, in most of studies T cell responses were 

measured by overlapping 15mer peptide pools, raising mixed CD4+ and CD8+ T cell 

responses, so there is the need to understand the specific role of CD8+ T cells in 

BKPyV replication control. 

 

Identifying and characterizing T cell responses specific for the early viral region is 

clinical interest, as in a previous study it has been shown that the decline of cellular 

immunity early after transplantation could identify patients at increased risk of BKPyV 

viremia, however the fact that no or low T cell responses could be found in almost 

half of patients gave to the results a very low positive predictive value for individual 

patients (Schachtner, Stein et al. 2015), needing a more efficient method for 

monitoring BKPyV specific T cell responses. 

 

In the second part of the project we could identify and characterize immunodominant 

9mer-epitope T cell responses within BKPyV EVGR approaching techniques of 
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predictive and experimental epitope mapping in healthy individuals, thereafter we 

could transpose our methods to validate epitopes in a cohort of 19 pediatric KTRs. 

By in silico analysis of T cell epitopes within EVGR, we could identify 97 

immunogenic 9mer sequences inside hotspot clusters and gaps for each of the 14 

most frequent HLA-A and –B types present in Europe and USA. Predicted 

sequences were similarly clustered across different alleles, suggesting that maybe 

those sequences could correspond to domains in which the virus would be 

particularly susceptible to immune control and selection pressure. However, low 

levels of variants in epitopes sequences could be observed also in a recent paper in 

which T cell epitopes were studied by next generation sequence of the viral genome 

from viremic patients, such observation may suggest that despite conservation, 

BKPyV variants may encode peptides that can escape the immune response and 

emerge in case of selection pressure given by an eventual immunotherapy (Sahoo, 

Tan et al. 2015). 

 

Our protocol was successful in expanding EVGR specific T cells, the obtained CD8+ 

T cells showed a specificity towards predicted immunodominant clusters, and 

demonstrated to be highly proliferating, as shown by CSFE dye dilution, streptamer 

staining, CD107a staining and functional CTL activity by 51Chromium release assay.  

This approach seemed therefore to overcome the problem of low frequency of 

BKPyV CD8+ T cell responses to overlapping 15mer peptides.  

 

From 97 candidate, 39 epitopes could elicit specific IFN-γ secretion in at least 30% of 

the studied healthy individuals by ELISpot assay, however these responses could not 

be attributed specifically to certain HLA types, therefore we have performed 

streptamer staining, with the result of 21 epitopes which could be unambiguously 

presented by the tested HLA types, some of them resulted restricted for a specific 

allele, whereas others could be presented by different HLA alleles, often within the 

same cross reactive epitope group.  

 

Results obtained in healthy individuals could be translated to the clinically relevant 

situation in pediatric KTRs. Ten of the 9mer epitopes identified in healthy participants 

were confirmed in KTRs, and 3 more epitopes were found only in KTRs, showing 

differences that could be due to the low frequency of specific T cells in healthy 

individuals, compared to the higher frequency in patients which were more 

persistently exposed to the virus. Discrepancies maybe also due to the fact that 

KTRs are susceptible to many infections, with consequent presentation to T cells of 
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peptides derived from different viruses, some presenting cross-reactive epitopes 

(Welsh, Selin et al, 2004). 

 

Comparing our results to previous studies, we could give a more complete panel of 

immunodominant epitopes across the most frequent HLA alleles, whereas most of 

the published sequences were studied in HLA-A*02 individuals (Li, Melenhorst et al. 

2006, Provenzano, Bracci et al. 2006, Randhawa, Popescu et al. 2006). With our 

methods we could anyway confirm most of the published sequences, as HLA-A*02–

restricted epitopes 9m679 and 9m316 or the HLA-B*07– and HLA-B*08–restricted 

9m127, supporting our methods and the potential immunodominance of the epitopes. 

In particular, these immunodominant 9mer T cell epitopes could be included in to 

BKPyV T cell immunity monitoring in kidney transplant patients to identify population 

at risk and help guiding immunosuppression reduction. They can be also used to 

stimulate T cells for adoptive T cell therapy, as with streptamer technology epitopes 

specific T cells can be sorted and used in clinical settings (Freimuller, Stemberger et 

al. 2015), or eventually included in a peptide based vaccine, to prevent virus related 

diseases. The evaluation of the impact of recipient HLA types and mismatches 

between the donor and the recipient in kidney transplant context did not allow us to 

draw any clear conclusion, although a significant lower presence of viremia in HLA-

A*01 patients could be observed, the sample size for such analysis may be not large 

enough. 

 

The study has some limitations, that can underestimate the range of detection of 

immunodominants epitopes, as the use of cryopreserved rather than fresh samples 

for KTRs, moreover we could observe that not all responses identified by ELISpot 

could be linked to at least one particular HLA type by streptamer staining, maybe due 

to low T cell frequencies, or perhaps such responses should be attributed to HLA 

types not included in the streptamer screening. Nevertheless, our results are 

encouraging to take this approach to larger clinical cohorts and relevant prospective 

study settings. 

 

In conclusion, our results gave new insight on different interesting aspects of BKPyV 

specific immunity. On one side, we investigated on BKPyV agnoprotein, whose 

function has been unresolved despite many studies, and we could exclude its 

involvement in antigen presentation inhibition, despite many observations were 

concordantly going to this direction. In the second study, we could identify and 

characterize a large panel of immunodominant epitopes, useful for monitoring BKPyV 



 128

specific immune responses in KTRs and possibly used in clinical protocols, or even 

in vaccine design, all aiming at preventing viral related diseases. 
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8 GLOSSARY 
 

 
Adjuvant: agent which improves the immunostimulation by enhancing antigen 

presentation and/or by providing co-stimulation signals. 

 

Antibodies: proteins of the immunoglobulin family, either present on the surface of B 

cells, or secreted in response to antigen stimulation, and binding specifically to 

epitopes. 

 

Antibody affinity: tendency of an antibody to bind to a specific epitope at the 

surface of an antigen, reflecting the strength of the interaction.  

 

Antibody avidity: sum of the epitope specific affinities for a given antigen. 

 

Affinity maturation: somatic hypermutation and affinity-based selection of antigen-

specific B cells leading antibodies production with increased affinity. 

 

Antigen: any molecule that can be recognized by the immune system. 

 

Antigen presenting cell: cell that intakes antigens by endo- or phagocytosis 

mechanisms, then processes them into small peptides, and presents them at their 

surface through MHC molecules to activate T cells.  

 

Autophagy: self-degradative process that is important for balancing sources of 

energy at critical times in response to nutrient stress. Autophagy has an important 

role in removing misfolded or aggregated proteins, clearing damaged organelles, 

such as mitochondria, endoplasmic reticulum and peroxisomes, as well as 

eliminating intracellular pathogens. 

 

B cell receptor (BCR): Transmembrane receptor of B cells recognizing an epitope;  

 

Capsid: protein shell which surrounds and protects the viral genome. It consists of 

multiple protein sub-units called capsomers. 
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Caspases: group of enzymes involved in the apoptotic process. All caspases are 

produced in cells as catalytically inactive zymogenes and must undergo proteolytic 

activation during apoptosis. Activation of effector caspases is carried out by an 

initiator caspases. Once activated, the effector caspases are responsible for the 

proteolytic cleavage of cellular targets, which ultimately leads to cell death. 

 

Chemokine: group of small cytokines involved in immune and inflammatory 

processes. Chemokines are involved in the development of dendritic, B and T cells, 

and lymphoid cell trafficking.  

 

Cluster of differentiation (CD): identifies cell surface molecules for 

immunophenotyping of cells. 

 

Complement system cascade: enzymes cascade mediating the immune response 

against infection, constituted of several effector and regulatory components.  

Complement activation has three main pathways: the classical, lectin, and alternative 

pathways. Activation of the classical pathway occurs when the fraction C1 binds to 

antibody or directly to activating surfaces. The lectin pathway is triggered by 

recognition of carbohydrate residues found mainly on bacteria by mannose binding 

lectin, whereas the alternative pathway starts when C3 binds to a suitable activating 

surface. The three pathways converge into a final common pathway and lead to the 

formation of a membrane attack complex (MAC), which forms pores on the surface of 

the targeted cell with consequent lysis. 

 

Costimulatory molecules: molecules expressed at the surface of antigen 

presenting cells upon activation and deliver stimulatory signals to T and B cells. 

 

Cytokines: a superfamily of soluble protein mediators and communicators released 

from cells by specific stimuli. They modulate the differentiation and division of 

hematopoietic cells and the activation of lymphocytes and phagocytes. They can be 

mediators of inflammation. In general they exert more than one function. 

 

Cyclosporine: 11 aa cyclic peptide which, bindinding to cyclophilin, inhibits 

calcineurin phosphatase and T cell activation. 

Dendritic Cells (DCs): specialized antigen-processing and presenting cells, 

endowed with a high phagocytic capability when immature, and acquiring high 
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cytokine producing capacity as mature cells. DCs regulate T cell responses both in 

homeostatic and inflammatory conditions. A subset of DCs is constituted by 

Plasmacytoid DCs. They are present in the bone marrow and all peripheral organs, 

and respond to viral infection with a massive production of type I interferons, 

however, they also can act as antigen presenting cells and control T cell responses. 

Envelope: lipoprotein membrane which can surround viruses, derived from the 

plasma membrane of the host cell. 

 

Epitope: antigenic determinant of a molecule that binds a cognate T or B cell 

receptor, triggering the activation of adaptive immune response.  

 

Germinal center: dynamic structure that develops in spleen/nodes in response to an 

antigenic stimulation. It  includes a monoclonal population of antigen-specific B cells 

that proliferate and differentiate thanks to the interaction with follicular dendritic cells 

and Th cells. Immunoglobulin class switch recombination, affinity maturation, B cell 

selection and differentiation into plasma cells or memory B cells essentially occur in 

germinal centers. 

 

Granzymes: serine proteases found in granules of CTLs, which may enter target 

cells via perforin pores to activate enzyme involved in DNA degradation and 

apoptosis.  

 

Immunodominance: highly immunogenicity of an epitope, resulting in a 

predominant immune response towards it.  An epitope is likely to be immunodominat 

when binds the presenting MHC molecule with high affinity, if the MHC-peptide 

complex is abundantly expressed on the antigen presenting cell, and if there is a high 

frequency of specific precursor effector cells. Immune response against different 

epitopes can be in competion with each other, during persistent infections the 

immunodominant epitope induces the most significant response, excluding the 

others. 

 

Immunological memory: the ability to remember an encountered antigen leading to 

a quicker, and more potent immune response on the subsequent encounters with 

that antigen. 
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Infection: the process in which an infectious agent enters the host. Most infections 

are followed by replication of the microbe in the host. 

Infectious disease: clinical manifestation of damage caused by a host-microbe 

interaction. 

Inflammasomes: molecular complexes activated upon cellular infection or stress 

leading to the maturation of proinflammatory cytokines such as interleukin-1β to  start 

the innate immune defenses. 

 

Isotype switching: 

Switch of immunoglobulin expression and production from IgM to IgG, IgA or IgE, 

occurring during B cell differentiation through DNA recombination 

Macrophages: phagocytic cells resident in lymphoid and non-lymphoid tissues. 

Macrophages display a broad range of pathogen recognition receptors making them 

efficient at phagocytosis and production of inflammatory cytokines.  

Major Histocompatibility complex (MHC): large group of genes dresponsible for 

antigen presentation to T cells. In humans is also known as Human Leukocyte 

Antigen (HLA).  

 

MHC restriction: Recognition of antigen by particular MHC molecules. 

 

MicroRNA: piece of about 21-23 bases length of single-stranded RNA binding to a  

complementary mRNA, leading to a decrease in the production of the corresponding 

protein. 

 

Monocytes Monocytes are immune effector cells, displaying chemokine receptors 

and pathogen recognition receptors that mediate migration from blood to tissues 

during infection. They produce inflammatory cytokines and take up cells and toxic 

molecules. They can also differentiate into inflammatory DCs or macrophages during 

inflammation. 

 

Natural killer (NK) cells: Lymphocytes of the innate immune system displaying 

different inhibitory and activating cell surface receptors which balance their activation 

and ability to kill target cells and produce cytokines. 
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Non-self: any antigen that is not normally present in that individual. 

 

Open reading frame:  continuous stretch of codons that potentially code for a 

protein or peptide.  

 

Opsonization: process in which particles, microorganisms, and immune complexes 

are coated with molecules which allow them to bind receptors on phagocytes,  

enhancing their uptake. 

 

Paratope: region of a B or T cell receptor that recognizes and binds a cognate 

epitope 

 

Pathogen: organism able to cause disease in a susceptible host 

 

Phagosome: membrane bound intrecellular vescicle which contain phagocytosed 

material. 

 

Peptide:  Short chain of linked amino acids.  

 

Perforin: Pore-forming molecule related to terminal complement fraction C9, which 

polyimerize on the target cells to form channels. 

Persistent infection: infection in which the host response cannot completely clear 

the microbe. During persistent infection the microbe can be  produced in the cell with 

no or minimal cytopathic effect thereby enabling long-term infection. Persistent 

infections may have silent stages, but can also evolve into overt disease, depending 

on the balance between host and microbe. 

Polymorphonuclear leukocytes (PMNs): also known as granulocytes, as they are 

leukocytes characterized by the presence of cytoplasmic granules. They include 

neutrophils, basophils, and eosinophils.  

Neutrophils are professional phagocytes. They ingest microorganisms, then release 

proteins (e.g. defensis, proteolytic enzymes) contained in their granules to eliminate 

them.  

Basophils are characterized by granules containing histamine, heparin, peroxidase, 

important in the inflammatory response. 
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Eosinophils have granules rich in cationic proteins, they produce toxic oxygen 

radicals. They are antigen presenting cells, and express both hematopoietic and 

inflammatory cytokines. 

 

Proteasome : multisubunit enzyme complex essential in degradation of proteins and 

generation of peptides. It is also important in the regulation of proteins that control 

cell-cycle progression and apoptosis. 

Reactivation: Active viral replication after a period of latency.  

Recombinant: Produced by genetic engineering. 

 

Repertoire: the sum of antigen receptors produced by the immune system of an 

indivividual . 

 

Self (antigen): any antigen normally present in that individual. 

 

Sirolimus: triene macrolide binding to FKBP12, inhibiting mammalian target of 

rapamycin and IL-2 driven T cell proliferation. 

 

Somatic hypermutation: process that introduces random mutation in the variable 

region of the B cell receptor locus during B cell proliferation at an extremely high rate.  

 

Somatic recombination: rearrangement of variable (V), diversity (D) and joining 

(J) gene segments in T and B cell receptors, generating the repertoire of specificities 

of the adaptive immune response. 

 

Tacrolimus: macrolide antibiotic binding to FKBP12, inhibiting calcineurin 

phosphatase and T cell activation. 

 

T cell receptor: Transmembrance protein expressed on mature T cell, which 

specifically recognize MHC-peptide complexes. The receptor consists of a 

heterodimer responsible for antigen-MHC binding and a cluster of associated 

membrane-bound polypeptides, the CD3 complex.  

 

Tolerance: acquisition of non-responsiveness to a molecule recognized by the 

immune system. 
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Viral replication: process resulting in the production of new viruses. It involves 

multiple steps, starting from virus attachment to the host cell surface by binding 

specific receptors, then penetration into the cell, uncoating of the viral genome to 

permit transcription, then virion assembly consisting in bringing together the new 

nucleic acid and the structural proteins, and finally the release out of the infected cell. 

Viremia: presence of viral genome in the blood. 

Viruria: presence of viral genome in the urines. 

Virus: the smallest of all self-replicating organisms present in nature, being 

constituted in the most basic cases by a little as a small segment of nucleic acid 

encapsidated in a protein shell. Viruses do not have their own metabolism, rather 

they need to parasitize cells and subvert their intracellular machinery in order to 

replicate and possibly transmit to new potential hosts. 
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