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Visualizing Count Data Regressions Using

Rootograms

Christian Kleiber
Universität Basel

Achim Zeileis
Universität Innsbruck

Abstract

The rootogram is a graphical tool associated with the work of J. W. Tukey that was
originally used for assessing goodness of fit of univariate distributions. Here we show
that rootograms are also useful for diagnosing and treating issues such as overdispersion
and/or excess zeros in regression models for count data. We also introduce a weighted
version of the rootogram that can be applied out of sample or to (weighted) subsets of
the data, e.g., in finite mixture models. Two empirical illustrations are included, one
from ethology, the other from public health. The former employs a negative binomial
hurdle regression, the latter a two-component finite mixture of negative binomial models.
A further illustration involving underdispersion and an R implementation of our tools are
available in the R package countreg.

Keywords: rootogram, visualization, goodness of fit, count data, Poisson regression, negative
binomial regression, hurdle model, finite mixture.

1. Introduction

The area of count data regression has experienced rapid growth over the last two decades.
More often than not, the standard Poisson model from the generalized linear model (GLM)
toolbox does not suffice in empirical work. Specifically, many data sets are plagued by some
form of overdispersion, often resulting from unobserved heterogeneity that can potentially
be handled by, e.g., models with additional shape parameters such as the negative binomial
distribution or from an excess of zeros for which hurdle and zero-inflation models are available
(Mullahy 1986; Lambert 1992). While various diagnostic tests of dispersion are also available
– see, e.g., Cameron and Trivedi (1990) or Dean (1992) for some popular tests and Cameron
and Trivedi (2013) for an overview – they typically only identify general issues with model fit
and rarely provide clear indications regarding the source of the problems. Suitable graphical
tools can guide the search for more appropriate specifications, thereby supplementing and
enhancing more formal approaches.

If count data regressions are visualized at all, this is currently mainly done in the form of
barplots of observed and expected frequencies; see, e.g., Figures 3.1 and 6.4 in Cameron and
Trivedi (2013) for examples. In the present paper, we explore the use of rootograms for assess-
ing the fit. Rootograms are associated with the work of John W. Tukey on exploratory data
analysis (EDA) and statistical graphics, culminating in Tukey (1977). However, rootograms
do not figure prominently there. Instead, early applications, all confined to continuous data,
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appear in selected contributions to collected volumes and conference proceedings (Tukey 1965,
1972), which were often not easily available prior to the publication of Tukey’s collected works
in the 1980s. Nonetheless, the ideas pertaining to rootograms were known in some circles at
an early stage (Healy 1968), and an early paper popularizing the concept is Wainer (1974).
For further information on the history of statistical graphics we refer to Friendly and Denis
(2001).

The following section introduces a generalized version of the rootogram allowing for weights
that can be applied to new data or (weighted) subsamples of a data set. This is useful for
assessing in-sample fits as well as out-of-sample predictions and also for situations with sur-
vey weights or model-based weights. The latter is required below for an empirical illustration
involving finite mixture models. Several styles of the rootogram, namely standing, hanging,
and suspended versions, are briefly described. We also provide some guidelines for interpre-
tation using simulated data. Section 3 provides two empirical examples. The first presents
a case where a hurdle model adjusts for excess zeros. The second considers overdispersion
remaining after fitting a negative binomial model. It emerges that a finite mixture model
with two negative binomial components provides an improved fit.

All analyses are run in R (R Core Team 2014), and we briefly describe an implementation of
our tools in the R package countreg in an appendix.

2. Rootograms

Given observations yi (i = 1, . . . , n) we want to assess the goodness of fit of some parametric
model F (·;αi), with corresponding density or probability mass function f(·;αi). The param-
eter vector αi could be the same for all observations i = 1, . . . , n (as considered by Friendly
2000, Chapter 2) but is often observation-specific – typically through dependence on some
covariates xi, a leading case being the GLM with αi = g(x>i β) for some monotonic function
g(·). In practice, these parameters are typically unknown and have to be estimated from
data. Hence, in the following we assume that we have fitted parameters α̂i where estimation
may have been carried out on the same observations i = 1, . . . , n (i.e., corresponding to an
in-sample assessment) or on a different data set (i.e., out-of-sample evaluation). The estima-
tion procedure itself may be fully parametric or semiparametric etc. as long as it yields fitted
parameters α̂i for all observations of interest.

To judge the goodness of fit of a model with estimated parameters α̂i to observations yi (i =
1, . . . , n), a natural idea is to assess whether observed frequencies match expected frequencies
from the model. In the case of discrete observations frequencies for the observations themselves
could be considered while somewhat more generally frequencies for intervals of observations
may be used. Tukey’s original work often considered goodness of fit to the normal distribution
on the basis of binned observations, see, e.g., his example involving the heights of 218 volcanos
(Tukey 1972). In this paper, we focus on discrete distributions.

For assessing the goodness of fit in regression models, practitioners routinely check some type
of residuals, i.e., (weighted) deviations of the observations yi from the corresponding predicted
means. However, this focuses on the first moment of the fitted distribution only while for
count data, which are non-negative and typically skewed, further aspects of the distribution
are also of interest. Relevant aspects include the amount of (over-)dispersion, skewness (or
more general aspects of shape), and whether there are excess zeros. Hence, it is natural to
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consider observed and expected values for a range of counts 0, 1, 2, . . . to assess the entire
fitted distribution.

Specifically, in the case of count data with possible outcomes j = 0, 1, 2, . . . , the observed and
expected frequencies for each integer j are given by

obsj =

n∑
i=1

I(yi = j),

expj =

n∑
i=1

f(j; α̂i),

where I(·) is an indicator variable. More generally, one can use a set of breaks b0, b1, b2, . . . that
span (a suitable subset of) the support of y. Here, we additionally also allow for observation-
specific weights wi (i = 1, . . . , n), the observed and expected frequencies are then given by

obsj =
n∑

i=1

wi I(yi ∈ (bj , bj+1]),

expj =
n∑

i=1

wi {F (bj+1; α̂i)− F (bj ; α̂i)}.

The weights are needed for survey data and also for situations with model-based weights. For
example, the latter may represent class membership in mixture models, a case that is relevant
in one of our applications below.

2.1. Styles of rootograms

The rootogram compares observed and expected values graphically by plotting histogram-like
rectangles or bars for the observed frequencies and a curve for the fitted frequencies, all on a
square-root scale. The square roots rather than the untransformed observations are employed
to approximately adjust for scale differences across the j values or intervals. Otherwise,
deviations would only be visible for j’s with large observed/expected frequencies.

Different styles of rootograms have been suggested, see Figure 1:

• Standing: The standing rootogram simply shows rectangles/bars for
√

obsj and a curve
for
√

expj . To assess deviations across the j’s, the expected curve needs to be followed
as the deviations are not aligned.

• Hanging: To align all deviations along the horizontal axis, the rectangles/bars are drawn
from

√
expj to

√
expj −

√
obsj so that they are “hanging” from the curve representing

expected frequencies,
√

expj .

• Suspended: To emphasize mainly the deviations (rather than the observed frequencies),
a third alternative is to draw rectangles/bars for the differences between expected and
observed frequencies,

√
expj −

√
obsj (some authors use

√
obsj −√expj instead).

The basic version, the standing rootogram, is perhaps the least useful among the three: it
simply plots rectangles/bars and a curve representing the model, but the fit is not easily
assessed. The other versions both make use of a horizontal reference line, a detail often
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Figure 1: Styles of rootograms for two Poisson models fitted to 100 artificial observations
from a Poisson (top row) and negative binomial (bottom row) distribution. Top row: The
Poisson model fit (µ̂ = 3.34) captures the true mean (µ = 3) as well as the distributional form
with small deviations only. Bottom row: The Poisson model fit (µ̂ = 3.32) does not capture
the underlying distribution well (µ = 3, θ = 2), leading to clear deviations in the rootogram.

emphasized by Tukey (e.g, Tukey 1972). Here, it highlights the discrepancy between observed
and expected frequencies. In a sense, hanging rootograms emphasize the fitted values and
suspended rootograms the corresponding residuals. We recommend the hanging version as the
default as long as residuals are not of main concern, and hence employ hanging rootograms
below.

2.2. Interpreting rootograms

In analyses employing rootograms, one is often interested in detecting patterns such as runs
of positive or negative deviations, which highlight aspects of the model fit that might require
further attention. For example, Figure 1 presents rootograms for a Poisson model fitted
to two simulated data sets from a Poisson (top row) and negative binomial (bottom row)
distribution. Both underlying distributions have mean µ = 3, the negative binomial has a
shape parameter θ = 2 (while the Poisson is formally a negative binomial with θ =∞).

When fitting a Poisson model to the Poisson data, all three versions of the rootogram in the
top row exhibit only small deviations: The standing version shows that the curve representing
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expected frequencies closely tracks the histogram representing observed frequencies, there are
also no clear patterns in the hanging and suspended versions. All this indicates that the
model fits well.

In contrast, when fitting a Poisson model to the negative binomial data in the bottom row
there are substantial departures of the model from the data: in the standing version, the
curve representing expected frequencies does not track the observed frequencies, there are
also discernible patterns in both the hanging and suspended variants. Specifically, for the
latter the rootogram bars form a ‘wave-like’ pattern around the horizontal reference line:
the data exhibit too many small counts, notably zeros, as well as too many large counts for
a Poisson model to provide an adequate fit. In summary, the patterns encountered in the
bottom row of Figure 1 reflect a substantial amount of overdispersion that is not captured by
the fitted Poisson distribution.

The patterns seen in the bottom panel of Figure 1 are theoretically supported by results
presented by Mullahy (1997), who shows that Poisson mixtures exhibit a larger number of
zeros (compared with a Poisson null model) as well as more mass in the upper tails and less
mass in the center of the distribution. Mullahy’s results rely on earlier work of Shaked (1980),
who shows that mixing will generally spread out a distribution (from the exponential family)
towards its tails. The negative binomial distribution is a gamma mixture of the Poisson
distribution, hence these arguments are directly relevant in the case at hand.

While excess zeros are strictly implied by overdispersion (compare Mullahy 1997, Prop. 1),
there also exist situations in practice where the number of zeros is so large that merely
correcting for overdispersion via, e.g., a negative binomial model does not solve the problem.
These tend to exhibit a spike at zero in graphical displays and are often best treated by fitting
a two-part model. We shall encounter an example below.

3. Examples

In this section we present two empirical illustrations. The first revisits a well-known data set
from ethology, for which excess zeros require treatment, the second a somewhat larger data set
from health economics exhibiting a substantial amount of unobserved heterogeneity, for which
finite mixture models are employed. In these illustrations, we select models using information
criteria, notably the BIC, and use rootograms for highlighting deficiencies of fitted models.

3.1. Horseshoe Crab Mating

Brockmann (1996) investigates horseshoe crab mating. The crabs arrive on the beach in pairs
to spawn. Furthermore, unattached males also come to the beach, crowd around the nesting
couples and compete with attached males for fertilizations. These so-called satellite males
form large groups around some couples while ignoring others. Brockmann (1996) shows that
the groupings are not driven by environmental factors but by properties of the nesting female
crabs. Larger females that are in better condition attract more satellites.

Agresti (2013, Chapter 4.3) reanalyzes these data, modeling the number of satellites using
count data regression techniques. The main explanatory variable is the female crab’s carapace
width, but its color and spine condition are also considered in some analyses – with the ordered
factors for color and spine condition often treated as numeric variables. In his analysis, Agresti
(2013) starts out from a Poisson model with the standard log link and then goes on to consider
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Figure 2: Hanging rootograms for crab satellite models (counts 0, . . . , 15).

both Poisson and negative binomial models with both log and identity links. He finds that
among these the negative binomial model fits best but also notes that further refinements
might be possible, e.g., by allowing for zero inflation.

To illustrate how rootograms can help in judging the goodness of fit of various count regression
models for this data, we extend the analysis of Agresti (2013) in the following way: we
consider both Poisson and negative binomial regressions (with log link) and hurdle versions
of these (with a logit-type binary part) to allow for excess zeros. The carapace width and a
numeric coding of the color variable are used as regressors in all (sub-)models. To compare
the relative performances of the four models, we employ the Bayesian information criterion
(BIC), yielding: Poisson (BIC = 931.0, df = 3), negative binomial (BIC = 769.5, df = 4),
hurdle Poisson (BIC = 755.1, df = 6), and hurdle negative binomial (BIC = 736.8, df = 7).
These results already suggest that the hurdle negative binomial model fits best. However,
a look at the corresponding hanging rootograms (for counts 0, . . . , 15) in Figure 2 provides
much more insight into the pros and cons of the various models:

• Poisson: The wave-like pattern in the rootogram bars in the top left panel shows that the
counts 1, . . . , 4 are overfitted while 0 and most counts from 6 onwards are underfitted.
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Table 1: Negative binomial hurdle models for crab satellites. Coefficient estimates (and
standard errors in parentheses).

Hurdle NB, model 1 Hurdle NB, model 2
count zero count zero

(Intercept) 0.429 −10.071 1.465 −10.071
(0.941) (2.806) (0.068) (2.806)

width 0.038 0.458 0.458
(0.033) (0.104) (0.104)

color 0.007 −0.509 −0.509
(0.091) (0.224) (0.224)

Log(theta) 1.527 1.495
(0.353) (0.349)

N 173 173
Log-likelihood −350.363 −351.033
AIC 714.726 712.066
BIC 736.799 727.832

This indicates a substantial amount of overdispersion in the data, the clear lack of fit
for 0 could be an additional indication of excess zeros.

• Negative binomial: The rootogram does no longer exhibit the wave-like pattern of the
Poisson model, showing that the overdispersion is accounted for much better in this
model. However, the underfitting of the count 0 and clear overfitting for counts 1
and 2 is typical for data with excess zeros. Note also that the fitted negative binomial
model implies a decreasing probability mass function, which is not in line with the data
structure.

• Hurdle Poisson: The rootogram now shows a perfect fit for the count 0 (by design of the
hurdle model). However, there is still overdispersion in the remaining positive counts
that is again reflected by a wave-like pattern, note also the clear underfitting of the
count 1.

• Hurdle negative binomial: The rootogram shows that this model fits the data quite well.
There are no clear patterns of departure anymore and the deviations between observed
and predicted frequences are very small for most of the counts.

The parameter estimates (standard errors in parentheses) for the negative binomial hurdle
model are reported in the first two columns of Table 1. Interestingly, this reveals that the
female crab’s carapace width and color both clearly affect the probability of having any
satellites (binary zero hurdle part of the model). Specifically, larger crabs are much more
likely to have satellites. However, given that there is at least one satellite neither carapace
width nor color are individually significant (zero-truncated count part of the model). In fact,
both variables could also be omitted from the count part, resulting in the model labeled
‘hurdle NB, model 2’ in Table 1. This improves the fit in terms of both AIC and BIC. As the
fitted models do not differ significantly, the rootogram of the simplified model is essentially
identical to the rootogram of the full hurdle model and is therefore omitted here.
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Figure 3: Predicted effect for the mean number of satellite at increasing carapace width and
mean color.

Additionally, identity (rather than log) links or a zero-inflation (rather than hurdle) specifica-
tion could also be employed but are omitted here for compactness. Both lead to qualitatively
identical insights and similar patterns in the rootograms while neither leads to improvements
over the negative binomial hurdle model. Hence, these are not presented in more detail here.
Instead, we conclude with a comparison of predicted effects for the mean function from several
models. Figure 3 shows the effects on the mean number of satellites for increasing carapace
width at the mean color (= 2.5 in the center of the scale 1, . . . , 4). This shows that, compared
to the identity link model preferred by Agresti (2013), the hurdle model leads to very similar
predictions at average widths while avoiding negative predictions for small widths and at the
same time increasing even more slowly for large widths. This complements the findings from
the rootograms and underlines that the hurdle model fits the data rather well. (The fitted
mean function for the hurdle Poisson model looks virtually identical to that of the hurdle
negative binomial model and is hence omitted from Figure 3.)

3.2. Demand for Medical Care

Our second example uses cross-sectional data originating from the US National Medical Ex-
penditure Survey (NMES) conducted in 1987 and 1988. The NMES is based upon a rep-
resentative, national probability sample of the civilian non-institutionalized population and
of individuals admitted to long-term care facilities during 1987. The subsample used here
comprises only individuals aged 66 and over, all of whom are covered by Medicare (a public
insurance program providing substantial protection against health-care costs). For R users,
these data are conveniently available from the AER package supplementing Kleiber and Zeileis
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Figure 4: Hanging rootograms for NMES 1988 models.

(2008) under the name NMES1988. They have been explored originally by Deb and Trivedi
(1997) using finite mixtures of count data regressions. Zeileis, Kleiber, and Jackman (2008)
employ the data for illustration of hurdle and zero-inflation models while Cameron and Trivedi
(2013) reinvestigate finite mixtures. Here, we follow the latter approach but employ a slightly
reduced set of regressors to facilitate interpretation while still obtaining reasonably good fits.

Figure 4 displays the rootograms for a single negative binomial regression as well as for
a finite mixture of two negative binomial regressions. For the latter, the mixture model
(upper panel, right) as well as both components (lower panel) are given. The corresponding
parameter estimates (standard errors in parentheses) as well as the sums of the posterior
weights (denoted N) are reported in Table 2.

The single NB regression clearly misfits, especially for the low counts 0, 1, 2, while the mix-
ture NB provides an improved fit. It is possible to study the mixture model in more detail
by decomposing observed and expected frequencies into the individual components and visu-
alizing them separately. To this end, the observed and expected frequencies are computed as
weighted sums using the posterior probabilities for each component. Figure 4 (bottom panels)
highlights nicely that both components fit rather well. It also brings out the different means
and variances in the two components. Specifically, the first component contains a fraction of
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Table 2: Negative binomial regression models (single and 2-component finite mixture) for
NMES 1988 physician office visits. Coefficient estimates (and standard errors in parentheses).

Single Component 1 Component 2

(Intercept) 0.801 −0.961 1.464
(0.062) (0.395) (0.145)

health: poor/average 0.345 0.402 0.286
(0.049) (0.143) (0.061)

health: excellent/average −0.379 −0.219 −0.452
(0.062) (0.162) (0.099)

chronic 0.192 0.272 0.160
(0.012) (0.041) (0.019)

gender: male/female −0.094 −0.160 −0.076
(0.032) (0.095) (0.048)

school 0.030 0.065 0.010
(0.004) (0.020) (0.009)

insurance: yes/no 0.353 1.700 −0.097
(0.044) (0.316) (0.097)

medicaid: yes/no 0.307 0.805 0.171
(0.062) (0.257) (0.080)

Log(theta) 0.159 −0.406 0.899
N 4406 1744.866 2661.134
Log-likelihood −12215.009 −12149.842
AIC 24448.019 24337.684
BIC 24505.535 24459.108

0.396 = 1744.866/4406 of all observations and is characterized by a zero-modal rootogram.
On average, the corresponding individuals have fewer physician office visits but at the same
time a rather high variance. The parameter estimates are mostly larger (in absolute values)
than in the second component, especially for the insurance and medicaid parameters. In con-
trast, the second component is characterized by a unimodal rootogram with comparatively
lighter tails. On average, the corresponding individuals have more physician office visits but
at the same time a smaller variance. The first group may, therefore, be seen as the group of
occasional users, for which the number of visits likely depends on the severity of the issues,
while the second group may be seen as the group of regular users, for which the number of vis-
its often results from the presence of chronic conditions. Indeed, when splitting the patients
into two clusters (with hard assignment to the clusters according to the highest posterior
probability), it can be seen that the second cluster has a lower proportion of persons with
excellent health status (10.1% vs. 7.1%), or without chronic diseases (34.4% vs. 19.8%), and a
higher proportion of insured persons (64.7% vs. 81.7%). Moreover, further unobserved factors
such as the type of diseases and medication might be captured by the two latent components.



Christian Kleiber, Achim Zeileis 11

4. Conclusions

Various flavors of rootograms are discussed as graphical diagnostic tools for visualizing com-
plex regression models for count data, such as two-part hurdle models or finite mixture mod-
els. They combine exploratory data analysis with model-based inference by bringing out
discrepancies between observed and fitted distributions (see also Gelman 2004, for a Bayesian
framework employing posterior predictive checks). Unlike other model-based graphics that
often focus on effects on the mean of the fitted distribution (e.g., effect displays, Fox 2003; Fox
and Hong 2009), rootograms capture deviations across the support of the entire distribution
and hence can help diagnosing misfit regarding scatter and/or shape. This is particularly
relevant for count data models, which are often affected by problems such as overdispersion
and/or excess zeros.

We have presented two examples involving excess zeros and unobserved heterogeneity and,
guided by features of rootograms corresponding to various fitted models, settled on a hurdle
and a finite mixture model, respectively. A further example involving the less frequent case
of underdispersion is available from the R package countreg (Zeileis and Kleiber 2014). See
the TakeoverBids data there and the appendix below for more information on the package.

Computational Details

Our results were obtained using R 3.1.2 (R Core Team 2014) with the packages countreg 0.1-2
(Zeileis and Kleiber 2014; Zeileis et al. 2008), MASS 7.3-35 (Ripley 2014; Venables and Ripley
2002), and flexmix 2.3-12 (Leisch 2004; Grün and Leisch 2008). See help("CrabSatellites",
package = "countreg") and help("FLXMRnegbin", package = "countreg") for more de-
tails and replication code.
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A. R Implementation

For an overview of count data regression models in R we refer to Zeileis et al. (2008), where
R implementations of hurdle and zero-inflation models are described in some detail. The
corresponding fitting functions have now been moved to the countreg package, a new package
that is currently under development by the authors of the present paper. First versions are
already available from http://R-Forge.R-project.org/projects/countreg/.

The current implementation of rootograms in countreg provides a generic function
rootogram(object, ...) along with several methods for different types of models/data.
The methods all proceed in the same way: They first compute the observed and expected
frequencies, obsj and expj respectively (see Section 2), and then call the default method that
computes all required coordinates for drawing the rootograms. The latter has the following
arguments:

rootogram(object, fitted, breaks = NULL,

style = c("hanging", "standing", "suspended"),

scale = c("sqrt", "raw"), plot = TRUE,

width = NULL, xlab = NULL, ylab = NULL, main = NULL, ...)

http://R-Forge.R-project.org/projects/countreg/
http://www.jstatsoft.org/v27/i08/
http://R-Forge.R-project.org/projects/countreg/
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The arguments object and fitted need to provide the tables/vectors of observed and fitted
frequencies. (The first argument is called object rather than observed for consistency with
the generic function that only takes one required object argument and ....) The breaks need
to be specified if a continuous distribution is employed while for a discrete distribution one may
want to set the width of the bars to leave small gaps between the bars (as in our examples).
Additionally, one of three styles can be specified: "hanging" (default), "standing", or
"suspended". The object returned is then a ‘data.frame’ with all the coordinates needed
for plotting, and this is also drawn directly by default (plot = TRUE) along with the specified
graphical arguments (xlab, ylab, main, ...). By default, the base graphics plot() method
is used for drawing rootograms. In addition, there is also an autoplot() method for drawing
rootograms using the ggplot2 package (Wickham 2009).

Above we used methods for objects of classes ‘glm’ and ‘hurdle’. There are further meth-
ods available, currently for univariate distributions fitted via fitdistr() (to objects of class
‘numeric’, Venables and Ripley 2002), zero-inflated models (objects of class ‘zeroinfl’, Zeileis
et al. 2008), zero-truncated models (objects of class ‘zerotrunc’, as fitted by the zerotrunc()
function in countreg), generalized additive models (objects of class ‘gam’, Wood 2006), and
for selected count distributions falling within the framework of generalized additive mod-
els for location, scale and shape (objects of class ‘gamlss’, Rigby and Stasinopoulos 2005;
Stasinopoulos and Rigby 2007).
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