PRIME ORDER BIRATIONAL DIFFEOMORPHISMS OF THE
SPHERE

MARIA FERNANDA ROBAYO

ABsTrRACT. The aim of this paper is to give the classification of conjugacy
classes of elements of prime order in the group of birational diffeomorphisms
of the two-dimensional real sphere. Parametrisations of conjugacy classes by
moduli spaces are presented.

1. INTRODUCTION

Let Pg denote the projective n-space as a scheme over R. A real projective
variety X < P is a scheme over R which may be thought of as a pair (X¢,0),
where X is its complexification, i.e. X¢ := X xgpec r Spec C, and o is an anti-
holomorphic involution on X¢. Let X (C) denote the set of complex points of X
and X (R) := X(C)? (the invariant points under o) the real part of X. Supposing
that X is smooth and X (R) is nonempty, we can endow X (R) with the Euclidian
topology and obtain a manifold of real dimension m = dim¢ X¢ over R.

There are then two kinds of regular morphisms between real algebraic varieties
X, Y studied in the literature (see for example the introductions of [14] and [7]):

(1) A regular morphism X — Y is a rational map defined at all complex points.
The corresponding category is the one of schemes defined over R, together
with regular morphisms of schemes. The group of automorphisms is denoted
by Aut(X), which is in general quite small: The connected component of
the identity is an algebraic group of finite dimension.

(2) The second notion of regular morphisms consists of taking rational maps
X --» Y that are defined only at all real points of X, such maps will
be called morphisms X(R) — Y (R). This gives another category, with
more morphisms where the objects are X (R). The corresponding group of
automorphisms will be denoted by Aut(X (R)) and is the same as the set of
birational diffeomorphisms of the algebraic variety considered.

In most real algebraic geometry texts, the second category, much richer, is in fact
studied.

In [4], I. Biswas and J. Huisman showed that if X and Y are two rational real
compact surfaces, then X(R) and Y (R) are diffeomorphic if and only if X (R)
and Y (R) are isomorphic (which corresponds to saying that there is a birational
diffeomorphism between X and Y). The proof of this result was simplified by
J. Huisman and F. Mangolte in [11], by proving first that Aut(X(R)) acts n-
transitively on X (R) for each n. The same question for geometrically rational
surfaces (i.e. rational over C) were then studied in [7] by J. Blanc and F. Mangolte.

The group Aut(X(R)) is really larger than Aut(X) in general. In particular,
J. Kollar and F. Mangolte showed in [15] that Aut(X (R)) is dense in Diff (X (R)) if
X is a smooth real compact rational surface.

Some other information on the group Aut(X (R)) can be given by looking at its ele-
ments of finite order. In particular, in this text we are interested in elements of prime
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order of Aut(S(R)) up to conjugacy, where S(R) is the standard two-dimensional
sphere (see Section 2). The group Aut(S(R)) is contained in the group Bir(.S) of real
birational transformations of the sphere, which is isomorphic to the real Cremona
group Bir(PZ). This latter group is, of course, contained in the complex Cremona
group Bir(P2). The problem of classification of conjugacy classes of elements of finite
order in Bir(PP%) (which contains the groups Bir(X) described before) have been of
interest for a lot of mathematicians. The first classification was the one of E. Bertini
([3]), who studied involutions. The decomposition into three types of maps, namely
Bertini involutions, Geiser involutions, and Jonquiéres involutions, was correct but
there is some redundancy because the curves of fixed points were not considered. A
modern and complete proof was obtained by L. Bayle and A. Beauville in [1], using
the tools of the minimal model program developed in dimension 2 by Yu. Manin
([16]) and V.I. Iskovskikh ([13]). They obtain parametrisations of the conjugacy
classes by the associated fixed curves. T. de Fernex generalised the classification in
[10] for elements of prime order (except for one case, done in [2] by A. Beauville
and J. Blanc). See also [20] for another approach to the same question. The precise
classification of elements of finite order was then obtained in [5] by J. Blanc, using
the description of finite groups of I. Dolgachev and V.I. Iskovskikh [9]'. Again,
the parametrisations are given by fixed curves (of powers of elements), but also by
actions of the elements on the curves.

In this text, we obtain the results for the analogous problem of classification for
elements of prime order in the group Aut(S(R)). The classification is summarised
in Section 2 (Theorem A), which states that there are eight different families of
conjugacy classes, some with only one element and others with infinitely many
elements. The second main result is concerning the parametrisation of the conjugacy
classes in each family (Theorem B). As Aut(S(R)) < Bir(P2), it is possible to
compare the classification of the birational diffeomorphisms with the complex case
i.e. birational transformations of the complex plane. For instance, there are three
families of involutions on Bir(PZ): Bertini, Geiser, and de Jonqui¢res. Bertini
involutions do not occur in the group Aut(S(R)) because they would come from an
automorphism of a Del Pezzo surface of degree 1 after blowing up at least one real
point of S, which would damage the geometry of the real points; see Proposition 3.4
in Section 3. The Geiser involution of Aut(S(R)) corresponds to real quartics with
one oval. Moreover, the group Aut(S(R)) contains distinct families of conjugacy
classes of involutions of de Jonquiéres type, which are all conjugate in Bir(PZ), in
particular, one family, containing uncountable many elements non conjugate to each
other, corresponds to only one conjugacy class in Bir(IE”?C).

This text is organised as follows. Section 2 contains the compilation of the results
of this text presented in two main statements and examples of birational diffeomor-
phisms of the sphere. In Section 3, it is shown why the study of conjugacy classes
of elements of finite order of the group of birational diffeomorphisms corresponds to
the study of pairs (X, g) consisting of a smooth rational projective surface X and g
an automorphism of X. More precisely, there are two cases to focus on, say, when
X is a Del Pezzo surface whose real Picard group invariant by g is isomorphic to Z,
and when X admits a conic bundle structure and the real Picard group invariant by
g has rank 2. This is a result given by V.I. Iskovskikh ([13]) and in this section, it
is given more specifically what pairs are obtained for the sphere (Proposition 3.6).
In particular, since the sphere admits a structure of conic bundle given by the
projection to one of the affine coordinates, Proposition 3.6 gives that the morphism
of the conic bundle structure for a pair (X, g), when X admits one, factors through

LAlso after [9], there are still open questions on finite subgroups of Bir(ﬂ%) left, some of them
answered in the recent paper [19].
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that projection of the sphere. Section 4 is devoted to the study of pairs (X, g)
when X is a Del Pezzo surface, including the case of the sphere itself. Special
automorphisms of Del Pezzo surfaces of degree 2 and 4 such as Geiser involution
and automorphisms aj, oy that are studied in Subsections 4.4 and 4.3 bring on
two different families of conjugacy classes on the sphere. In Subsection 4.1, the
conjugacy classes of the group of automorphisms of the sphere are investigated
(Proposition 4.3).

Section 5 is dedicated to the study of the birational diffeomorphisms that are
compatible with the conic bundle structure of the sphere, which is a P!-fibration
not locally trivial. It is natural to understand the action of a birational map on the
basis of the fibration and that is done in the first subsection. When the action on
P! is trivial, it is shown in Subsection 5.2 that the complex model of the sphere
is birational to A%, which allows to give an explicit algebraic description of the
birational transformations of the sphere and in the following subsection for birational
diffeomorphisms. In Subsection 5.4, it is proved that two birational maps of the
sphere compatible with the fibration and acting trivially on the basis of it are
conjugate in the group of birational maps of the sphere, if and only if there exist a
birational map between the curves of fixed points of these two maps, which is defined
over R. This result is also proved for the group of birational diffeomorphisms in the
following subsection. In addition, a geometrical characterisation of the birational
diffeomorphisms of order 2 is given according to the orientation when restricted
to S(R). More precisely, it is proved that there is a one-to-one correspondence
between the conjugacy classes of orientation-preserving birational diffeomorphisms
of the sphere compatible with the fibration and acting trivially on the basis and
smooth real projective curves with not real point, which are a 2-1 covering of P! up
to isomorphism. For the case of orientation-reversing, they are in correspondence
with smooth real projective curves with one oval, which are a 2-1 covering of P! up
to isomorphism. In Subsections 5.6 and 5.7, for birational maps and for birational
diffeomorphisms of the sphere of order larger than two which are compatible with
the fibration and acting trivially on the basis, it is shown than they are conjugate
to rotations of the sphere. The last subsection is concerning birational maps and
birational diffeomorphisms of order two compatible with the fibration and with non-
trivial action on the basis. It is constructed a bijection between conjugacy classes of
birational involutions as before and classes on a second cohomology group that is
isomorphic to @per_,Z/2Z. Since the representative of these classes in the group of
birational maps of the sphere are particularly birational diffeomorphisms, this implies
that there are uncountable many conjugacy classes of birational diffeomorphisms of
order two with a non-trivial action on the basis.

In Section 6, the problem that two pairs (X,g), (X’,¢’) may rise the same
conjugacy class in Aut(S(R)) is examined. In Subsection 6.1, Theorem A and B
are proved by putting together all results obtained in Sections 3, 4, 5, and 6.

1.1. Acknowledgements. This article contains the results of my PhD thesis, which
was supported by the Swiss National Science Foundation Grant "Birational Geome-
try" PPOOP2 128422 /1. I thank my advisor Jérémy Blanc for his help and support
during the whole time of my PhD. I am also grateful to Frédéric Mangolte who was
the referee of my thesis and made remarks on this text.

2. REsuLTs

In this section, we state the classification of conjugacy classes of elements of prime
order in the group of birational diffeomorphisms of the sphere and also the moduli
spaces associated to each conjugacy class (Theorem A and Theorem B below). It is
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required first to present some definitions and give some examples that will appear
in the classification.

We denote by S the real projective algebraic surface in P defined by the equation
w? = 22 + y? + 22. Let o denote the standard antiholomorphic involution in ]P’;?:,
oc:(w:z:y:z)— (w:Z:7y:2). Let S(R) denote the real part of S. Note that
S(R) is contained in the affine space where w = 1 and corresponds to the standard
two-dimensional sphere of equation z2 + y* + 22 = 1. The following two groups are
of our interest, the first one is the group of birational transformations of the sphere
and is isomorphic to the real Cremona group, and the second one is the group of
birational diffeomorphisms of the sphere.

Bir(S) :={f:8--+5]| fis birational},

Aut(S(R)) :={f:S--+S| fis birational and f, f~! are defined
at every real point of S}.

Remark 2.1. Bir(S), Aut(S(R)) are groups and Aut(S(R)) < Bir(S).

Our goal is to classify the conjugacy classes of elements of Aut(S(R)) of prime
order.

Remark 2.2. (i) Forgetting the real structure given by o, the surface Sg is iso-
morphic to P{ x PL. Indeed,
Se={(w:x:y:2)ePd| (w+2)(w—2)=(y+iz)(y —iz)},
and the isomorphism is given by
p: Sc — IP(l: X IP%:
(w:x:y:z) — (w+z:y+iz), (w+2:y—ix)) (1)
=((y—iz:w—2),(y+iz:w-2)),
whose inverse is given by
el Pt x P — St
((r:s)(u:v)) > (ru+sv:i(rv—su):rv+ su:ru— sv)
(i) Pic(S) = Z, Pic(Sc) = Z®Z.

We denote by 7 the projection 7: S --+ P! given by n(w: x :y: 2) = (w: 2).
Notice that every fibre of 7 is rational except for 771(1: 1) and 7=1(1 : —1), which
are the union of the lines w = z, x = +iy, and w = —z, x = +iy, respectively.

Let us fix some notation for groups associated to the pair (S, ),

Bir(S, ) :={g € Bir(S) | 3a € Aut(P") such that ar = 7g},
Aut(S(R),7) :={g € Aut(S(R)) | Ja € Aut(P') such that ar = mg}.
Note that Aut(S(R),n) < Bir(S, ), more precisely Aut(S(R),n) = Bir(S,7) n
Aut(S(R)). The group Aut(S(R), ) is the group of birational diffeomorphisms that
preserve the fibration.

There is a natural map ® sending any g € Bir(S, 7) to the associated action on
the basis ®(g) = a € Aut(P!) so that the following diagram commutes:

s-2s 5
N
pt 2. p!

Hence we get the exact sequence:

1 — Bir(S/7) — Bir(S,7) = Aut(P), (2)
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where we have denoted by Bir(S/7) the group:
Bir(S/w) := {g € Bir(S,7) | 7 = mg}.

One can see the group of birational diffeomorphisms that acts trivially on the
basis of the fibration as a subgroup of Bir(S/x), more precisely,

Aut(S(R)/7) = {g € Awt(S(R),7) | m = 7g}.
This latter subgroup has a special description given by the exact sequence
1 — Aut™(S(R)/7) — Aut(S(R)/7w) 2 Z/27 — 1

where Aut™ (S(R)/7) denotes the orientation preserving birational diffeomorphisms
of S and the map Aut(S(R)/7) > Z/2Z admits a section s: Z/27Z — Aut(S(R)/x)
mapping —1 into 7 where 7 is a reflection, say, 7: S — S, (z,y,2) — (z,—y,2) in
the chart w = 1. Then

Aut(S(R)/7) = Autt (S(R)/7) x (7). 3)

Before stating the main results, let us describe some examples.

Example 2.3. Geiser involution of the sphere

The blow-up ¢: X — S of three pairs of conjugate imaginary points in S(C) is a
real Del Pezzo surface X of degree 2, with X (R) isomorphic to S(R). The linear
system of the anticanonical class of X yields double covering of P? ramified over a
smooth real quartic with one oval. The Geiser involution v on X is the involution
which exchanges the two points of any fibre. The birational map (v¢~! on S is a
birational diffeomorphism of S of order 2 that fixes pointwise a non-hyperelliptic
curve of genus 3 with one oval. The birational diffeomorphism obtained will be
called Geiser involution of the sphere.

FEzxzample 2.4. The blow-up €: X — S of two pairs of conjugate imaginary points
in S(C) is a real Del Pezzo surface X of degree 4 (see Subsection 4.3), with X (R)
isomorphic to S(R). In this case, the anticanonical divisor of X is very ample and
then the linear system of | — Kx| gives an embedding into P* as an intersection
of two quadrics. In the coordinates (y1 : y2 : y3 : Y4 : y5) of P4, X is given by the
intersection of

Qu: (p—pE+ Ry —2yiye +y3 + (L =T+ pp — p)y3 + yz = 0,
Q2 pfy; — 2pfyye + (n— 1+ M)ys + pfiys + (1 — I+ pfi — p)ys =0,

for some pu € C\{0, +1} (see Proposition 4.9 in Subsection 4.3).
The automorphisms oy, as on X defined by

ar: (Y12 Y3 Ya:ys) = (Y1 Y2 Y3 s —Ys),
azi(y1:y2:y3:y4:y5)H(y1:yzt—y3:y4:y5)

yield the birational diffeomorphisms ea1e7!, eane™! on S of order 2 that by abuse
of notation we denote again a7 and as. Each fixes pointwise an elliptic curve.

Ezample 2.5. Let 0 € [0,27). The rotation ry € Aut(S) is given by
ro:(w:xz:y:z)— (w:xcosf —ysinf: xsinh + ycosh : z).
This is a rotation that fixes the z-axis and preserves the fibration .
Example 2.6. The reflection v is given by the map
vi(wrz:iy:z)— (w:—z:y:2).

This is a reflection that preserves the fibration 7 and fixes a conic.
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Ezample 2.7. The antipodal involution of the sphere @ is given by
a:(w:x:y:z)—(—w:z:y:2).
This involution has no real fixed points.

With these examples, we are ready to present the main two theorems of this text.
The first one tell us that there are eight families of conjugacy classes (some with
only one element, some with infinitely many) and the second, the moduli space
associated to each family. These two results are proved in Section 6 using all results
obtained in Sections 4 - 6.

Theorem A. Every element of prime order of Aut(S(R)) is conjugate to an element
of one of the following families:

(1) A Geiser involution.

(2) An involution ay or ag given in Example 2.4.

(3) A rotation rg of prime order given in Example 2.5.

(4) The reflection v given in Example 2.6.

(5) The antipodal involution a given in Example 2.7.

(6) An involution in Aut™ (S(R)/m) acting on the fibres of ™ by maps conjugate to
rotations of order 2, and whose set of fixed points on S(C) is a hyperelliptic
curve of genus = 1 with no real points, plus the two isolated points north and
south poles, Py and Pg.

(7) An involution in Aut(S(R)/m)\Aut™ (S(R)/7), acting on the fibres of @ by maps
conjugate to reflections, and whose set of fived points on S(C) is a hyperelliptic
curve of genus = 1 whose set of real points consists of one oval, passing through
PN and Ps.

(8) An involution in Aut(S(R), m)\Aut(S(R)/7) acting by = — —z on the basis
which is not conjugate to (w:x:y:z)— (w: tx:+y: —z).

Theorem B. The eight families presented in Theorem A correspond to distinct sets
of conjugacy classes, parametrised respectively by

(1) Isomorphism classes of smooth non-hyperelliptic real projective curves of genus
3 with one oval.

(2) Isomorphism classes of pairs (X, g), where X is a Del Pezzo surface of degree 4
with X (R) ~ S(R) and g is an automorphism of order 2 that does not preserve
any real conic bundle.

(3) Angles of rotations, up to sign.

(4) One point (only one conjugacy class).

(5) One point (only one conjugacy class).

(6) Smooth real projective hyperelliptic curves I' of genus = 1 with no real point,
together with a 2: 1-covering I' — P, up to isomorphisms compatible with the
fibration and the interval [—1,1].

(7) Smooth real projective hyperelliptic curves T' of genus = 1 with one oval, together
with a morphism T' — P, which is a 2: 1-cover and satisfies ©(I'(R)) = [—1,1],
up to isomorphisms compatible with the fibration and the interval.

(8) An uncountable set, which has a natural surjection to @ 7Z/27.
beR~ o

Remark 2.8. In (7), we can have genus 0 but this corresponds to the reflection v.
In (6) we can also have genus 0, there is in fact a real one-dimensional family of
such maps, all conjugate to the family (8) (see Lemma 6.7).

Remark 2.9. All elements in (8) are conjugate in Bir(S¢), this shows a big difference
between the complex and real cases.
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3. SURFACE AUTOMORPHISMS AND PAIRS

In this section, it is shown that to classify conjugacy classes of a birational
diffeomorphism of finite order of the sphere is equivalent to classify birational pairs
(X, g) where g is an automorphisms of finite order of a smooth real projective surface
X obtained from the sphere after blowing up pairs of conjugate imaginary points.
Moreover, Proposition 3.6 gives what pairs (X, g) need to be studied.

We start with some definitions and a classical result due to Comessatti (Theo-
rem 3.3), which states in particular that the sphere S is a minimal real surface.

Definition 3.1. Let X be a smooth real projective surface. We say that X is
manimal if any birational morphism X — Y with Y a smooth real projective surface
is an isomorphism.

Remark 3.2. Any birational morphism between smooth projective algebraic surfaces
is a sequence of contractions of

(i) one real (—1)-curve, or
(ii) two disjoint conjugate imaginary (—1)-curves.

Therefore, a surface is minimal if and only if it does not contain a real (—1)-curve
or two disjoint conjugate imaginary (—1)-curves. Let us cite the following classical
result due to Comessatti [8]:

Theorem 3.3. If X is a minimal rational smooth real surface such that X (R) # ¢,
then X is isomorphic to P%, to S, or to a real Hirzebruch surface F,, with n # 1.
Moreover, X(R) is connected and homeomorphic to the real projective plane, the
sphere, the torus (n even), or the Klein bottle (n odd) respectively.

Proposition 3.4. Let X be a smooth real projective surface with X (R) diffeomorphic
to the sphere. Then X does not contain any real (—1)-curve. In particular, any
birational morphism (: X — Y, where Y is a smooth real projective surface, restricts
to a diffeomorphism ¢: X (R) — Y (R).

Proof. If X contains a real (—1)-curve, then there is a birational morphism which
corresponds to the blow-up of a real point of some smooth real projective surface
whose preimage by such a birational morphism is the real (—1)-curve. Then the
neighbourhood of the real locus of the (—1)-curve in X (R) is topologically a M6bius
strip which implies that X (R) is not orientable and therefore non isomorphic to the
sphere. O

Definition 3.5. Let (X, g) be a pair i.e. X is a smooth real projective surface
and ¢ is a non-trivial automorphism of X of finite order. The pair (X, g) is said
to be minimal if any birational morphism (: X — X’ such that there exist an
automorphism ¢’ of X’ of finite order with ( o g = ¢’ o { is an isomorphism.

Proposition 3.6. Let g € Aut(S(R)) be an element of finite order and let w: S --»
P! be the map given by m(w : x :y: z) = (w: z). Replacing g with a conjugate in
the group Aut(S(R)), one of the following holds:

(a) There exists a birational morphism e: X — S which is the blow-up of 0, 1, 2, or
3 pairs of conjugate imaginary points in S, such that § = e togoe e Aut(X),
Pic(X)? = Z, and X is a Del Pezzo surface.

(b) There exists o € Aut(P) such that am = mg. Moreover, there exists a birational
morphism e: X — S that restricts to a diffeomorphism X (R) — S(R) such
that g = et ogoe e Aut(X), moe: X — P! is a conic bundle on X, and
Pic(X)I = 72.
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Proof. Let g € Aut(S(R)) of finite order, g : S --» S is a birational map with a
finite number of imaginary base points, say p1,p1,- - -,Pn, Pn that belong to S as
proper or infinitely near points. After blowing up all of them and their images under
powers of g (meaning the orbit of the points by g), we obtain a smooth projective
surface X

X' = 2K
a4«
s -2+ 9

where § is an automorphism of X.

Since g is defined at every real point of S, the birational morphism ( restricts to
a diffeomorphism X (R) — S(R). After contracting all sets of disjoint (—1)-curves
which are invariant by ¢ and defined over R, we get a minimal pair (X, §), with
X (R) diffeomorphic to the sphere by the Proposition 3.4, which can be one of the
two following possibilities (see [13, Theorem 1GJ):

(i). Pic(X)9 has rank 1 and X is a Del Pezzo surface.
(ii). Pic(X)9 has rank 2, there is a morphism X 2> P!, X is a conic bundle.

Recall that Pic(X)9 is the part of Pic(X) which is invariant by § € Aut(X).

In the first case, there exists e: X — Z a birational morphism to a minimal
projective smooth real algebraic surface Z. By Proposition 3.4, Z(R) is diffeomorphic
to the sphere and by Theorem 3.3, we have Z ~ S. Then (Kx)? > 0, Kx =
e*(Kg)+E1+E1+++ E.+ E, = (Kx)? = K% — 2r and consequently X is the
blow-up of 0, 2, 4 or 6 points in S and X is a Del Pezzo surface of degree 8, 6, 4 or
2 and this gives statement (a). We study this case in detail in Section 4.

For the second case, we denote by (X, mx,§) the minimal real conic bundle with
rank Pic(X)J = 2. Recall that X (R) ~ S(R) implies that there is no real (—1)-curve
on X. Forgetting the action of § on X, there is a birational morphism X — Z which
is the contraction of disjoint imaginary (—1)-curves in fibres. In this way, we obtain
7z Z — P! a minimal conic bundle with exactly two singular fibres because Z(R)
is diffeomorphic to S(R) again by Proposition 3.4. Now, if we dismiss 7 and keep
contracting, we end up with Z a minimal real surface such that Z(R) ~ Z(R) and
by Theorem 3.3 we have Z ~ S implying that Z is the blow-up of two imaginary
points on S. In this case, the surface Z is unique and is the Del Pezzo surface of
degree 6 that will be described in Subsection 4.2. The explicit conic bundle structure
on Z corresponds to the lift of the projection 7: S --» P! sending (w: z : y : 2) to
(w : z). More precisely, 7z = moe where £: Z — S is the blow-up of two imaginary
conjugate points. O

4. DEL PEZZO SURFACES WITH rk(Pic(X)9) =1

In this section, we study the pairs (X, g) where X is a Del Pezzo surface and g is
an automorphism of X. This corresponds to the first case in Proposition 3.6.

Recall that the complex surface Sc is isomorphic to IP’}C X IP’}C via the isomorphism
¢: Sc — PL x P{ (see Remark 2.2).

We denote by f and f the divisors of the fibres of the two projections i.e.
Pic(Sc) = Zf ® Zf and by abuse of notation we denote again by f and f the

pullback £*(f) and ¢*(f) in X for € : X — S a birational morphism.

4.1. Case: (Kx)? = 8. In this subsection, our interest is to present the group of
real automorphisms of S, Aut(S), and describe the conjugacy classes of it. We call
o the corresponding antiholomorphic involution in ]P’%: X ]P’%: via the isomorphism ¢,
which is given by o(z,y) = (7, T).
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Proposition 4.1. The group Aut(S) corresponds, via @, to the subgroup of the
group of complex automorphisms Aut(PE x PL) generated by v: (z,y) — (y,z) and
by F={(A,A) | Ae PGL(2,C)}. Moreover, Aut(S) = F x (v).

Proof. Using the C-isomorphism S¢ ~ P§ x P, the group Aut(S) is the subgroup
of Aut(P{ x PL) consists of elements that commute with o, i.e. Aut(S) = Aut(P¢ x
PL,0). Let (A, B) € PGL(2,C) x PGL(2,C), (A, B) commutes with o if and only
if (A, B)o(z,y) = 0(A, B)(z,y) = o(Az, By) and hence (Ay, BT) = (By, AT) and
it is equivalent to A = B. If we call v : (x,y) — (y,z), which corresponds to
(w:x:y:2)— (w:—z:y:z) onP3? we see that vo = ov, then Aut(S) =
Aut(PL x PL,o) = F x (). O

Automorphisms in F fix the divisors of fibres f and f while elements of Aut(S)\F
are thus of the form (z,y) — (Ay, Ax) for A € PGL(2,C) i.e. automorphisms
exchanging the divisors of the fibres f and f.

Example 4.2. The following automorphisms, already described in the introduction,
are now presented as automorphisms of ]P’é X IP%: via the isomorphism ¢:

(1) The rotation 7y given in Example 2.5 belongs to Aut(S) and corresponds
to the automorphism (z,y) — (ze™1, yel?) of P& x PL.

(2) The reflection v given in Example 2.6 belongs to Aut(S) and corresponds
to the automorphism v: (z,y) — (y,z) of PL x PL.

(3) The antipodal automorphism of the sphere given in Example 2.7 corresponds

to the automorphism a: (z,y) — (—%, —%) of P{ x P¢.

Proposition 4.3. Fvery element of Aut(S) of prime order is conjugate to a rotation
rg , or to the reflection v, or to the antipodal involution a, which are given in
Example 4.2.

Proof. We work in Aut(Pt x P{) according to Proposition 4.1. If g € F then
g: (z,y) — (Az, Ay) for some A € PGL(2,C) of finite order. Hence, A is conjugate
to [1 e,ig] for some angle 6 and locally we write & — e~ 2. This shows that ¢ is
conjugate in F to (z,y) — (ze 1, yelf).

If g¢ F, then g: (z,y) — (Ay, Azx) for some A € PGL(2,C). Since g has prime
order, g? is the identity so AA = 1 in PGL(2,C). Notice that the action of v on
PGL(2,C) is given by the action of v on J in the first component, i.e. v(A4) = A
and the condition AA = 1 is equivalent to Av(4) = 1.

Let Ag € GL(2,C) be a representative of the element A, then AgAy = [é 9\] for
some A € C*. Since Ay commutes with AgAgy, Ay commutes with Ag. This implies
that A € R. Then we multiply Ay with g € C and assume that A=1or A = —1. In
the first case, there exists B such that B~14¢B = [} {] because H!((v), GL(2,C))
is trivial by Proposition 3 in [18, Chapter X]|. This implies that g is conjugate to v
by (x,y) ~ (Bz, By). In the second case, we want to find B € GL(2, C) such that
B7'AB = [9 ']. This will imply that g is conjugate to the antipodal involution a@
in Example 4.2 by the automorphism (x,y) — (Bx, By) as before.

Let e1 = [(],e2 = [}] be the two standard vectors, and choose a vector v, € C?
such that (vy, Ag?7) is a basis of C2. This is always possible, by taking v; € {ey, e2}.
Indeed, otherwise Ay would be diagonal, so Ay - Ag would have positive coefficients.
We choose then B € GL(2,C) such that Be; = vy, Bes = AUy, and observe that

—Bey = —uv =Agdgn1 = AgBes,
BEQ = Aoﬁ = A()Bel.
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Multiplying by B!, we obtain B~*AgB(e1) = ez and B~1AyB(e3) = —e;p, which
corresponds to -

B'AB=[97']. O
Remark 4.4. The group J corresponds to the orientation-preserving automorphisms
of S denoted by Aut™(S).

In the sequel, we will also need the following result.

Lemma 4.5. Let p = (0 :i:1:0) € S. The group of automorphisms of S
preserving the set {p,p} is denoted by Aut(S, {p,p}) and, via the isomorphism o,
has the following structure

Aut(S, {p,p}) = D x (v, D)

where D is the subgroup of F of diagonal elements, the isomorphism U is defined by
(z,y) — (%, %), and (v, 0y = (Z/27)*. Moreover, every element of prime order
s one of the following:

) a rotation rg, given in Example 4.2, corresponding to one element of D,

) conjugate to U,
) conjugate to v,
) equal to v,

) equal to the map a: (x,y) — (—l —l), which corresponds on the sphere to the

antipodal automorphism.

| | P < P’ | Sc |
(z,y) = (y,2)
v 11 (w:z:y:2) » (W:—z:y:2)
0 @y) = 2 (w:z:y:2z) » (w:—xz:y:—2)
V0 (z,y) — %,% (w:z:y:2) » (w:z:y:—2)
a (2,1) > 1’*l) (wiz:y:z) » (~w:z:y:2)

TABLE 1. List of automorphisms.

Proof. The points p and p correspond, via ¢, to the points (1 : 0)(0 : 1) and
(0:1)(1:0), respectively. Diagonal elements in PGL(2,C) yield a subgroup of F
preserving the points p and p which is D. The elements in F which interchange
the two points are elements (A4, A) in F with A of the form [2}] € PGL(2,C).
Then the subgroup of F which preserve the set {p,p} has the structure D x (0)
with ¥ the automorphism of F defined by the element [9}] and that locally is
described in the statement. As © commutes with v that permutes the points, we
get Aut(S, {p,p}) = D x (v, ).
(a) An element of finite order in D is a rotation ry given in Example 4.2.
(b) If g€ D x {0y = Aut(S, {p,p}) and is not a rotation, then g: (z,y) — (Azx, Ay)
with A = [9}] for some b € C. Since A is conjugate to [{ §] by the diagonal

element [(1) 1/3/5], then g is conjugate to © in Aut(S, {p,p}).

(c) If g € D x (vy = Aut(S, {p, p}) and is not a rotation, then g: (z,y) — (Dy, Dx)
with D = [} 9] for some b € C. Then AA = 1 because g is of prime order
and the action of v on D is exactly the conjugation and the equality AA = 1
is the same as Av(A)=1. Then g is conjugate to v because the group D =
{D € PGL(2,C) | D is diagonal} is isomorphic to C* and H'({v), D) = {1} by
Hilbert’s Theorem 90.
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(d,e) If g € Dx{vv) and is not a rotation, then g = (d, v0) for d € D of finite order and
in this case, d commutes with v0 implying that d has order 1 or 2 since the order
of g is prime. Then g is either v0 and is given by the map (z,y) — (1/y, 1/x)
on P! x P!, which is the map (w:2:y:2)~ (w:2:y:—2z) on S or is given
by the map (x,y) — (—1/y, —1/z) on P! x P! and corresponds, on the sphere,
to the antipodal automorphism (w:z:y:z) — (—w:x:y: 2).

4.2. Case: (Kx)? =6.

O

Proposition 4.6. Let ( : X — S be the blow-up of two imaginary conjugate points
p,D. Then CAut(X)(™1 < Aut(S), so the pair (X, Aut(X)) is not minimal.

Proof. On X there are six (—1)-curves: the
two exceptional divisors E, and Ey and the
four curves corresponding to the strict trans-
forms of the fibres f and f passing through
one point denoted by f,, fz, fp, and fp.

Since fn fp=fpnfpand fon fp=fpn
fp, these two intersection points are real
(see the circles o in Figure 1) and the other
four vertices of the hexagon are imaginary,
so any action of Y can only exchange the
two lines E, and Ey and this implies that
(X, Aut(X)) is not minimal. O

P
5

F1GURE 1. Blow-up of p,p

fp

4.3. Case: (Kx)? = 4. There is ( : X — S the blow-up of four imaginary points
P, D,q,G. We have 16 (—1)-curves in X: the exceptional divisors E,, Ep, E,, and
FEg; the strict transform of the fibres f and f passing through one point that we
denote by fp, f5, fq, f5 fT,, ]TT,, fj, and Tg as in the previous subsection; and the
strict transform of the curves equivalent to f + f (e.g. of bidegree (1,1)) passing
through three of the four points that we denote by fypq, frpg, freg> and fzqg-

These (—1)-curves form the singular fibres of ten conic bundle structures on X

with four singular complex fibres each and

(1) f+f—-Ep—Eq (
2) f+[f-E—Eq (
@) f+f—E—Ep (
4) f+[—E;—E5 (
(5) f+f—E,—Eq (1

The anticanonical divisor of X is —Kx = 2f + 2f — E, - Ep —

are the following:

6) f+[—E—E,

7 f

8) f

9) 2f+f—-FE,—E;—E,— E;

0) f+2f - E,—FE;—E,— E;
E, - Fj.

collect these conic bundles in pairs such that the sum of every pair is —Kx:

Py
Py

Py:={f,f+2f - E, —
P

SRS
::{f+?_ E, — Ey,
Py:={f+f—-E,— Eg,

:={?7 2f+?_ EP -

f"’?_Eq_E@}’
f+f—E;— Eg},
[+ —Ep—Eg},
Ep — Eq — Eg},
Ep — Eq — Eg}.
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Since Kx is invariant under any automorphism of X, then Aut(X) acts on the set
of pairs obtaining the following exact sequence.

0 = Fr — Aut(X) 2> Syms (4)
n n
Fe = Aut(Xc¢) £ Syms

where Fg is naturally a subgroup of F3. An element (ay,...,as) exchanges the two
conic bundles of the pair P; if a; = 1 and preserves each one if a; = 0. We represent
in Figure 2 the picture of the five pairs of conic bundles and with the next one, how
the anti-holomorphic involution o acts on them.

I+ T =By~ By f+T-Ep - E. S+ -y - Bg ! 7
. . . .
. . . . .

f+T—E—Eg f+ T - Bp— By f+T-Ep—E —Kx —f —Kx =T
Py Py Py Py P

S v ||

Py P P3 Py Ps

F1GURE 2. Representation of the five pairs of conic bundles and
the action of ¢ on them.

Remark 4.7. The image of p in the exact sequence (4) is contained in the group
{(2 3),(4 5)) = Syms as a consequence of the action of the antiholomorphic
involution o. (See Figure 2).

Lemma 4.8. Letp,q € IE”}C X I% ~ S¢ be two distinct imaginary non conjugate points
such that the blow-up of p, p, q, q is a Del Pezzo surface. Then up to automorphisms
of the sphere, the points p and q can be chosen to be (1:0)(0:1) and (1:1)(1: p)
for some p € C\{0, £1}, respectively.

Proof. Let p = (r1 : s1)(ug : v1) € P& x PL. Applying the automorphism (4, A) € F
where A = [ °1 ~" ] maps p into (1:0)(0: 1) and p into (0 : 1)(1 : 0). Now, we
may assume that p = (1:0)(0: 1) and p=(0:1)(1:0)and g = (A:1)(p: 1)
with A, p € C* because by hypothesis the points are not on the same fibres by any
projection. The automorphism (z,y) — (\z, \y) fixes p and p and sends ¢ into
(1:1)(1:p)and g into (1:f@)(1:1).

Notice that when p = 1 the points ¢ and g are equal; when p = 0 the points p

and g are on the same fibre, as well as the points p and ¢; and finally, when py = —1
there is a diagonal passing through the four points. Hence, the blow-up of p, P, q, q
is not a Del Pezzo surface. (]

Proposition 4.9. (a) The kernel of the sequence (4) is
Fr = {(a1,...,a5) € (F2)® | a1 +as + a3 = 0 and ay + a5 = 0} = (Fy)?,

and 1is generated by the elements v1 = (0,1,1,0,0), v = (1,0,1,0,0), and
v =(0,0,0,1,1) which correspond to the automorphisms of X with coordinates
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in P* given as

Y1 (Y1 Y2 Y3 Yaiys) = (Y1 Y2t —Y3 i Ya: —Ys),
Yo (W1iY2 Y3 iyaiYs) = (Y1 iy i Y3 —Ya i —Ys),
Yoy :y2 Yz ya:ys) = (Y1 Y2 —Ys: —ya: —Ys).

(b) The equation of the surface X is given by the intersection of the following two
quadrics,

Qu: (n—pi+myi —2y1y2 +v5 + (1 — i+ pfi — p)y3 + vi = 0,
Q2: pityy — 2ufiyryz + (1w — 1+ W)y + piys + (1 — I+ pi — p)ys = 0.

Proof. We first prove that Fy is contained in the group {(ay,...,as) € (F2)° | a1 +
as+az = 0 and a4 + a5 = 0}. To do so, we focus on the pairs P, and P5 and observe
that the action of the antiholomorphic involution on those pairs (see Figure 2)
implies that for an automorphism g of X, which is in the kernel, is of the form either
(#,%,%,0,0) or (*,=,%, 1,1), which is the same as the condition a4 + a5 = 0. Hence,
aj + as + az = 0 because over C, the kernel of the map p: Aut(X¢) — Syms is the
set {(a1,...,a5) € (F2)° | Y a; =0} |6, Lemma 9.11].

We show the existence of 7, 71, and 72 and compute the equation of the surface X
using the fact that the anticanonical divisor —K x is very ample and then the linear
system of | — K x| gives an embedding into P* as an intersection of two quadrics.
We study then the following diagram

[—Kx]|
Xc——= p*
7
P:D>4,9 _

e

S

where the vertical map is the blow-up of four imaginary points p, p, ¢, ¢ of S
viewed Sc as P{ x P{ via the isomorphism ¢ given in Remark 2.2. As —Kx =
2f +2f — E, — E; — E, — Eg, the linear system | — K x| corresponds to the curves
of S of bidegree (2,2) viewed on P} x PL ~ S¢ passing through the four blow-up
points.

By Lemma 4.8, we may assume that p = (1:0)(0:1) and ¢ = (1:1)(1 : u) for
some p € C*\{0,+1}, and then p = (0:1)(1:0) and g = (1: @)(1:1).

In coordinates (r : s)(u : v) on P{ x P, a basis of the linear system | — Kx| is
given by:

Iy =sv(r —s)(v—u) (f = Ep) + (F = Ep) + (f = By)
+(f — Eg)

Ty = (vs —ru)(r —s)(v —w) | (f + f = E, — Ey — Eq) + Eq
+(f = Eq) + (f — Eqg)

I's = ur(v— pu)(s —or) (f = Ep) + (f — Bp) + (f — E,)
+(f — Ey)

Ty = (vs — pru)(@(l —pru | (f + f— By — Ep — Ey) + B,

+(pu —m)su + (7 — 1)sv) H(f+f— By~ B, — Eg) + Ep

Ts = (u(i— Dru+ (u—mro | (f+7 — By — B, — Eq) + By
(1 - wysv)u(s - 7ir) +(F ~ By) + (f — By)
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The computation of the actions of 1, 72, and v on Pic(X) with respect to the
basis {T'1, 9, '3, T4, T'5} described above, gives the following elements:

|
=

_p—n T 1-T 2p—p 7 _u-E -
0 Tl p—p1-m (1) ”Ll gg 1OI»L 0 oo 1lp—p 0
0 1 0 0 0 - o0 1 0 0 0
Mi=|1 0o op-pmi-m |, Mao=|0 1 10p-2m+1|,andM=|1 0 Op-mE—wk
o L o0 -1 o 0o —L 01 -1 o L o0 -1 1
W W W
o0 0 0 0 -1 0 0 00 -1 o 0o o0 0 1

By a change of the basis, the matrices My, Ms, and M can be diagonalised and
the map &: S — P* is given by ((r: s), (u:v)) — N -y* where

11 -1-p—p g
0—,% 0 2 -1
N=]11 1 pmi1-g|andy=(Tq,...,T5).
00 0 0 —i
1
o-10 0o o0

With this new basis, the surface X, which is the image of the anticanonical
embedding, is given by the intersection of the two quadrics @1 and @ in the
statement as well as the automorphisms v, 72, and 7. O

Proposition 4.10. The image of the sequence (4), p(Aut(X)) < Syms, is {(2 3)
(4 5)) if |p| =1 and trivial otherwise.

Proof. As already mentioned in Remark 4.7, p(Aut(X)) < {(2 3), (4 5)). We show
that the elements (2 3) and (4 5) do not belong to the image while (2 3)(4 5) does
it if and only if |u| = 1.

We start explaining why there is no automorphism of type (2 3). If there were
an automorphism « exchanging the pair P, with P3 then a would act on P, and Pj

o~ |

<t

either like or like T T

Py Py Py Py

We may assume that the action on the pairs P, and Pj5 is the first since we can
multiply the second one by the element of Fg that corresponds to v, = (0,1,1,0,0).

On the pairs P, and Ps, the action of « is either 1| or } } . And as

before, we may assume that it is the first one by niultil;lying the second one by
v =(0,0,0,1,1). Summarising, we have to study only two cases:

@ ||| ] ] by | ] S

Py Py P Py Ps Py Py P Py Ps

In both cases (a) and (b), f, f are fixed and hence f + f is fixed. In the case (a),
looking at the pair P; we see that f + f — E, — E5, f + f — E, — Eg are fixed, then
E, + E5 and E, + Ej are fixed while the action on pairs P, and P; gives that o
interchanges E, + E, with E, + F5 and Ey + Eg with By + E,. This implies that F,,
E5 are fixed and E,;, F5 are exchanged. So o would come from an automorphism
o' of P! x P! which fixes p,p and interchanges ¢ and §. Let us see that such an o/
does not exist.

The automorphism o’ would be given by (z,y) — (Ax, Ay) where A € PGL(2,C)
with o/ (p) = p, o/(p) = P then o’ : (z,y) — (Az, \y) with A € C under the choice of
the points p = (1:0)(0: 1) and ¢ = (1 : 1)(1 : p) for pu ¢ {0, +1} (Lemma 4.8). Since
o'(q) = q, we have A = 77 and Ay = 1 and hence p? = 1, which gives a contradiction.

In the case (b), « is not even an automorphism of the Picard group because the
matrix corresponding to an action described in (b) with basis {f, f, E,, By, Eq, E}




PRIME ORDER BIRATIONAL DIFFEOMORPHISMS OF THE SPHERE 15

is
10 0 0 0 0
01 0 0 0 0
00 1/2 —1/2 1/2 1/2
00—1/2 1/2 1/2 1/2
00 1/2 1/2 —1/2 1/2
00 1/2 1/2 1/2 —1/2

Therefore, an automorphism that acts as (2 3) does not belong to the image.
Now, we prove that automorphisms of type (4,5) are not in the image and we
proceed in the same way as we did for (2 3). The action of an automorphism

of type (4 5) on the pairs Py and P; is either like i or like | <1

Multiplying by (0,0,0,1,1) we may assume that is the first one. With respect to
the action on the first three pairs P;, P, and, P; we assume that the action on
Py and Pj is the identity since we can multiply by (1, 1,0,0,0) or by (0,1, 1,0,0).
Then, we have two cases to focus on:

Py Ps

@ |- ] e ® |- ]

Py P2 Py Py Ps Py P2 Py Py Ps

e ]

The case (a) corresponds to an automorphism which interchanges f with f and fixes
E,, I, By, and Eg. It would be the lift of an automorphism of S fixing 4 points
which does not exist. On the other hand, the case (b) is not an automorphism of
the Picard group because the matrix corresponding to it is

01 0 0 0 0

10 0 0 0 0

00 1/2 1/2 —1/2 1/2

00 1/2 1/2 1/2 —1/2

00—1/2 1/2 1/2 1/2

00 1/2 —1/2 1/2 1/2

Finally, we check that there is an automorphism which acts as (2 3)(4 5) if

and only if |u| = 1. As before, we can see that automorphisms corresponding to
(2 3)(4 5) are, up to composition with an element of Fg, of the form

- . o<—T—>e } . . o+—T—>e

(@) |- (b)

Py Py Py Py Ps Py Py Py Py Ps

For the case (a), looking at the pairs P; and Ps we see that f and f are exchanged
and then f + f is fixed. The exchange of pairs P» and Py gives that f + f — E, — E,
and f + f — E, — E; are interchanged and so are f + f — E5— Ez and f + f — E5— E,.
This implies that E, + E, with E, + E7 are interchanged and E + E7 with Ep + E,
are interchanged, respectively. So an automorphism of type (2 3)(4 5) for case (a)
comes from an automorphism 6 of P! x P! which interchanges f with f, ¢ with §
and fixes p and p. We want to show that § exists if and only if |u] = 1. So d is
given by § : (z,y) — (Ay, Az) satisfying A[9] = [{], A[§] = [9]. This implies

that A = [93]. Since § interchanges ¢ with g, then [9>] [} ] = [5] = [Xl“] and
(931131 =1[1]=1[7]. Hence, A = 1 and ppr = 1. Therefore this automorphism
exists if |p] = 1.

The case (b) is not possible because the matrix of the action of it on the Picard
group with basis {f, f, E,, By, E,, E7} is

0L 0 0 0 0
10 0 0 0 O
00 1/2 —1/2 1/2 1/2
00—1/2 1/2 1/2 1/2
00 1/2 1/2 —1/2 1/2
00 1/2 1/2 1/2 —1/2

and this shows that it is not an automorphism of the Picard group. O
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Proposition 4.11. If g € Aut(X) and Pic(X)9 has rank one, then g is either
a1 = (1,1,0,1,1) or ag = (1,0,1,1,1) in Fr which are given by

a1:(yl:y2:y3:y4:y5)'—>(y1:y2:y3:y4:—y5),
o (Y1:y2: Y3 yatys) = (Y1 Y2t —Y3:Ys:Ys)

Proof. Let g € Aut(X) of prime order. If g € Fg, g = (a1, ...,as) and the condition
on the rank forces that the first component a; = 1, g is thus either (1,1, 0, #, ) or
(1,0,1, *,%). Moreover, we observe that g must interchange the two conic bundles
in the pairs P; and Ps because otherwise, g(f + f) = f + f € Pic(X)? implying
that the rank of Pic(X)¢ > 1 since f + f is not multiple of —Kx. Then the two
possibilities for g when g € Fg are a; = (1,1,0,1,1) and a2 = (1,0,1,1,1).

Now if g ¢ Fgr, Proposition 4.10 tells us that the action of Aut(X) on the five
pairs is {(2 3)(4 5)). To ask that Pic(X)9 = Z forces that the two conic bundle
structures in the first pair are interchanged for the same reason as before. On the
other hand, the action of (2 3)(4 5) on the pairs P> and P; cannot be of the form

=l
=

(or the one reversing the arrows) because in this case the order of g is 4.

Py P.

In addi‘gion, we observe that if the action of (2 3)(4 5) on the pairs Py and Ps is

e

as in this picture: et | , the divisor f + f is preserved under g and o, then

+ f € Pic(X)9. This implies that rk(Pic(X)?) > 1.
We have then to check the remaining cases,

O Pt ] 3 |1 e

Py Py P3 Py Ps Py P2 Ps Py Ps

@ o SR B = S o= o

Py P

P2 Py

The case (2) can be seen from case (1) conjugating it by the automorphism of
the Picard group interchanging the divisors E, with E; and fixing f, f, E,, and Ej.
Now, the action of the automorphisms of the case (1) on the Picard group Pic(X)
with respect to the basis {f, f, E,, Ep, By, E7} is

-1-10 —-1-1-1

In this case that corresponds to «q, the eigenspace for the eigenvalue 1 is generated
by the two conic bundles of the pair P which are not in Pic(X)? because of the
action of ¢ interchanges them but whose sum is —Kx. Hence, Pic(X)¢9 = Z and
therefore in case (2) as well when g = ay. By Proposition 4.9, a1 = 7172y and
g = 72y which are exactly the maps in the statement.

Finally, for cases (3) and (4), the element g is not even an automorphism of the
Picard group because matrices corresponding to an action described in these cases
with basis {f, f, E,, E5, E,, E5} are

2 1 1 1 1 1 211 1 1 1
12 1 1 1 1 12 1 1 1 1

IR B B IR B ;

—1 -1 3y r s and | -1 -1 33y s , respectively. O
IR B B i

“1-1-5 -5 -3 -3 “1-1-3 -3 -5 -3
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There are automorphisms of Del Pezzo surfaces of degree 4 which are minimal
but preserve a conic bundle structure. These will be needed in the sequel. We give
here a special family of examples.

Lemma 4.12. If |u| = 1, then X admits two automorphisms g1, g2 € Aut(X) of
order 2, acting on the conic bundles like

i | ol B R Al

Py Py Py Py Ps P Py

and having the following properties:

(a) The two automorphisms g1, g2 are conjugate by vo € Aut(X) and satisfy
rk(Pic(X)%) = 2 for i =1,2.

(b) Both g1 and g preserve the two real conic bundles of the pair Py. The action
on one is trivial on the basis, but non-trivial on the other one.

(¢) The fized points of g; on X(C) consists of two isolated real points, and one
smooth rational curve having no real point.

(d) The action of g1,g2 on PE x Pg, via the blow-up X — S and the isomorphism
p:Sc — ]P’(%: X ]P’}C, are respectively given by

s(psv—(1+p)v+p) po(—sv+(1+p)s—1)
(S,’U) -7 w(—sv+(1+p)s—1)7  psv—(1+p)v+p )
—sv+(14+p)s—1 psv—(1+p)v+p
(S,’U) - s(usv—(14+p)v+p)? v(fstr(lJru)sfl)))

on the chart {(1:s),(1:v) | (s,v) € AZ}.

Proof. The existence can be checked by using Proposition 4.10 and the description
of Fg. Using the action on the conic bundles to compute the matrices of g1, go with
respect to the basis {f, f, E,, E5, Eq, Eg}, we respectively get

2 1 1 1 1 1 2 1 1 1 1 1
1 2 1 1 1 1 1 2 1 1 1 1
—1-10 —-1-1-1 d —1-1-10 —-1-1
-1-1-10 —1—1 | an —-1-10 —1-1-1
-1-1-1-1-10 -1-1-1-10 —1
-1-1-1-10 -1 -1-1-1-1-10

Using the fact that the points p,p, q,q on P& x PL are respectively (1 : 0)(0 : 1),
(0:1)(1:0), (1:1)(1:p), (1:m)(1:1)and the above matrices, we obtain the
explicit description of the birational maps of P{ x P, given in (d). Assertion (a)
follows from the description of g1, go; it remains to show (b), (¢). The singular fibres
of the two conic bundles of the pair P; are given in Figure 3, together with the
action of g1, which follows from the description of the matrix above. This shows

) f+f—E,—E; (2) f+f—-E;,— Eq

FIGURE 3. Singular fibres of the two conic bundles, together with
the action of g;.

that the action on the basis is trivial in the first case and not trivial in the second.
The fixed points are then contained in the two fibres of the second fibration that are
fixed, and which are then two smooth rational curves. Looking at the first fibration,
we obtain two fixed points in each smooth fibre, three points in the first two singular
fibres and one in the last two. The only real points in these fibres are f, n f, and
fzn f;, so we obtain on X (C) exactly two isolated real points and one smooth
rational curve with no real point. O
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Lemma 4.13. Let g € Aut(X) of prime order that preserves a real conic bundle
structure and such that tk(Pic(X)9) = 2, in particular, g preserves the pair P;.
Then, one of the following occurs:

(1) there is h € C(g) < Aut(X), the centraliser of g, whose action on Py is the

exchange of the two conic bundle structures. In other words, the following
diagram commutes

gCX *h>gCX
eommf NE
S—" P! = Pl —38

where (1, (3 are the blow-up of four points on S¢ and wy, wo are the morphisms
corresponding to the conic bundle structures for f—&—f—Ep—Eﬁ and f—i—f—Eq—Eq,
respectively.

(2) The map g is equal to g1 or gs given in Lemma 4.12.

Proof. Non trivial automorphisms in Fg preserving the first pair P, are 7, v, and
~v17y. In this case, we are in (1) and can choose h = .

When g ¢ Fg, then g exchanges P> and P3. This plus the fact that g has prime
order implies that g has order 2. On the other hand, the action of g on the pairs

[ Y

P, and Pj5 cannot be like | «1— | , since this would imply that rk(Pic(X)9) > 2

since in this case, g also fixes f +) f. Then, the action of g on the conic bundles is
one of the two given in Lemma 4.12. O

4.4. Case: (Kx)? = 2. The birational morphism ¢: X — S is the blow-up of 3
pairs of conjugate points, say p,D,q,q,r,7 € S. Since X is a Del Pezzo surface of
degree two, the linear system of the anticanonical divisor defines a double covering
| — Kx|: X — P? ramified over a quartic I'. From the fact that X (R) ~ S(R), T
is a real smooth quartic with one oval. We see X as w? = F(z,y,2) in P(2,1,1,1)
and T" the zero set of F.

Proposition 4.14. There exists an exact sequence
11— () —— Aut(X) —= Awt(l') ——=1

where v represents the Geiser involution which exchanges the two points of any fibre
i.e. the involution given by (w,x,y,2) — (—w,z,y, 2).

Proof. We have the following exact sequence
1 —— W) ——= Aut(X) —— Aut(P2T) ——=1 (5)

where Aut(P?,T") denotes the automorphisms of P? which preserves the quartic and
is isomorphic to Aut(T') because the restrictions gives a map from Aut(P?,T) to
Aut(T") which is injective since the only automorphism that preserves the quartic
pointwise is the identity (an automorphism of P? can only fixed 3 points or a point
and a line but not a quartic). To see that the restriction map is surjective, we
compute the canonical divisor of the quartic by adjunction formula getting that
Kr = (Kp2 +T)|r = (—=3L +4L)|r = L|r. Hence, every automorphism of I" extends
to P2. O

Lemma 4.15. (a) Let C be a (—1)-curve in X, then the (—1)-curve v(C) is equal
tov(C)=—-Kx —C.
(b) rk(Pic(X)¥) = 1. In particular, the pair (X,{v)) is minimal.
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Proof. (a) We call € the map defined by | — K x|. Then, ¢(C') is a curve of degree d for
some d. If we call D = e*(e(C')), we have that D = d(—Kx) # C. This implies
that D = C + C' = d(—Kx) for C’ a (—1)-curve, C' = v(C). Intersecting D
with —Kx we have 2 = 2d and hence d = 1. Then v(C) =C" = -Kx — C.

(b) Let C be a (—1)-curve in X, then by item (a) we have C - v(C) = C(—Kx —
C) = 2. Moreover, the fact that Pic(X¢) is generated by the divisors in the
set A := {—Kx,E,,E; E,, Eg, E,, Ez} then, for any divisor D € Pic(X¢),
D =3 a;C; with a; € Z and C; € A. We have D + v(D) = D + a; >, v(C;) =
a;(>,—Kx — C;) = m(—Kx) for some m € Z. O

Lemma 4.16. Let g € Aut(X) of prime order and g # v. Then rk(Pic(X)9) # 1.

Proof. Let g € Aut(X). Since a basis of Pic(X¢) = Z8 is {f, f, Ep, Ep, Ey, Eg, Er, Er},
we get that the action of g on Pic(X) = Pic(X¢)? is an element in GL(4,Z) <
GL(4,C) and is diagonalisable in GL(4,C) for g € Aut(X). If g is an involution in
Aut(X) with rk(Pic(X)9) = 1, the only possibility for the action of g on Pic(X)?
1

in GL(4,C) is given by ( -1 1 ) assuming that the first entry 1 corresponds
to the anticanonical divisor for sorrie basis containing it. On the other hand, since
every element g in Aut(X) commutes with v, then in the same basis, g and v are
conjugate to a diagonal action as the element presented above. This implies that g
and v are the same.

Let g € Aut(X) be of prime order p > 3. We obtain then an element of GL(4,Z)
of order p which fixes Kx. Then, the characteristic polynomial @) € Z[x] vanishes
at 1 and all other roots in C are roots of the polynomial 2P~% + --- + 1, irreducible
over Q. Hence, @ is a multiple of (z —1)(zP~! +---+1) = 2P — 1. This implies that
p <4,s0p=3and then Q = (x — 1)?(2% + = + 1). Therefore Pic(X)9 ~Z2. O

5. CONIC BUNDLE CASE

In this section, we describe the elements in Aut(S(R)) of prime order correspond-
ing to the second case of Proposition 3.6, i.e. that belong to the group Aut(S(R), 7).
Let us recall the following notation:

Bir(S, ) ={g € Bir(S) | Ja € Aut(P') such that ar = 7g},
Aut(S(R), ) ={g € Aut(S(R)) | o € Aut(P') such that ar = 7g},

and that ®: Bir(S,m) — Aut(P!) is the corresponding group homomorphism (see
the exact sequence (2)) whose kernel is denoted by Bir(S/7) and by Aut(S(R)/7)
for the corresponding group homomorphism Aut(S(R),7) — Aut(P!).

5.1. Image of the action on the basis. Recall that 7: S --» P! is the map given
by m(w :z :y:2) = (w: 2). Hence, the natural coordinates on P! are (w : z) or
simply (1 : z) for affine coordinates. With the choice of these coordinates, the group
Aut(P') is naturally isomorphic to PGL(2,R): an element [ 2 Y] € PGL(2,R) acts

as
az+b

cz+d
In the following two lemmas, the image of the map ®: Bir(S, 7) — Aut(P!) in the
sequence (2) is presented and the image of elements of finite order is characterised.

Z =

or (w:z)— (cz+dw:az+bw).

Lemma 5.1. The image of ®: Bir(S,m) — Aut(P!) is the same as the image of
its restriction to Aut(S(R), ).

The corresponding subgroup of Aut(Pl) is given by the following semidirect
product, where the generator of Z/QZ is the automorphism n:z— —2z.

®(Bir(9, 7)) = ®(Aut(S ={[}%];be(-1,1) c R} x Z/2Z (6)
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Proof. Since the sphere S(R) is preserved by elements in Bir(S,7) (respectively
in Aut(S(R), 7)) and is mapped subjectively to the interval [—1,1] < R on the
basis of the fibration. This interval is then invariant on the basis and the group
®(Bir(S, 7)) is contained in the group generated by z +— bzz—:—b17 be(-1,1) c R
and z — —z because those are exactly the automorphisms of P! which fix or

interchanged the points —1 and 1. On the other hand, for each b e (—1,1) c R

the map gp: (z,y, 2) — (m Vbijrlf Y Vbijrlf , biibl) belongs to Aut(S(R), w) and is sent

to [i SJ] and the map 7: (z,y,2) — (z,y, —2) is sent to [*01 (1)], corresponding to
z — —z, which proves Equality (6). O

Lemma 5.2. Let g € Aut(S(R), ) be of finite order. After conjugation in Aut(S(R), ),
the map ®(g) is the identity or equal to [ § 9.

Proof. Elements of the form [} ¢ | with b € (—1,1)\{0} are not of finite order; indeed
the eigenvalues of [} %] are 1 + b, so the element [} 4] is conjugate to [% (1)] in

PGL(2,R) and 1*2 € R* has infinite order because 1+2 # —1. Moreover, [, :ll’] is

conjugate to [§ | by the matrix [} §] with ¢ = L=V1=0%, O
5.2. Algebraic description of Bir(S/7). Extending the scalars from R to C, the
general fibre of 7: S¢ — C, (z,y, z) — z is rational. The group of birational maps
of S¢ preserving any general fibre of 7 is then equal to PGL(2,C(z)). The group
Bir(S/7) can thus be viewed as a subgroup of PGL(2,C(z)).

Definition 5.3.

(i) For each A € GL(2,C(2)), we define A € GL(2,C(2)), as the matrix obtained
by replacing every coeflicient of every entry of A by its conjugate.

(43) In the same way, we define A for any element in PGL(2,C(z)) and we observe
that A does not depend on the representative because if Ay, Ay € PGL(2,C(2))
are in the class of the element A then A; = AA; for some A € C(2)* and then
A = M, implying that A; and A, are both in the class of A.

Lemma 5.4.
(a) The complex surface Sc is birational to AL via ¢: (z,y,2) --» (z — iy, 2).
(b) The group PGL(2,C(2)) acts on A2 via
PGL(2,C(z)) x AZ --» A2 @
a(z) B(z) L a(z)t+B(2)
([s@53] -+ w2) — (585382
and thus also acts on Sc via the conjugation by ~!. -
(¢) For any A € PGL(2,C(z)), the corresponding action of A and T AT on Sc, via 1
and denoted by A and T AT respectively, are conjugate by the anti-holomorphic

involution o (i.e. o: (x,y,2) — (T,7,%) ), where 7 := [ 9 1—()Z2] e PGL(2,C(2)),
which means that the following diagram commutes

Sc — 2> S¢

Vo )

S(c - — > S(c.

In particular, the group Bir(S/m) corresponds, via the action of PGL(2,C(z))
on Sg, to the group

G:={AePGL(2,C(2)) | TAT = A}
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Proof. (a) The map ® is a rational map and its inverse is given by

t2— 2 1 t2 2_1
w_lz(t,z)——e( g O ,z).

2t 2t
(b) Clearly, the identity in PGL(2,C(z)) gives the identity map of A%. Let A =

[:8 ?((z) ] nd A" = [v 8 ?((z))] be elements in PGL(2,C(z)). We compute

a't
, o‘( /tié')Jrﬂ ~ ((ad + By )t +ap + B0’
(A,A(t,z))*—> S 2= 7 7 / REN R
7(%)_,_5 (ya! 4+ 6yt + B + 86

which is the same as

(AA' (t,2)) — (

(aa + By )t + aff’ + 3o B
(yo/ + 69" )t + B + 60"
The action of PGL(2,C(z)) on A2 gives an action on Sc in the following

way: for any element A = [ 2 ] € PGL(2,C(z)) we denote by A & A2 the

action of A on A% given by the map (¢, z) --» (M, z), thus the following

7(2)t+d(2)
diagram gives the action on S¢ that we denote by ' Ay or simply A if no
confusion:
Sc - L A2
\
Al s A2
Y o1 v
Sc <— — A%

(¢) We name o1: (t,2) — (£, z) the anti-holomorphic involution on A%, then via the
birational map ¥ we have

1-—z2
Yoyt = oy =710y (t,2) - ( n ,2) .

Let A € PGL(2,C(z)). We want to show that TA7(0(x,y,2)) = o(A(z,y, 2))
for any (x,vy,2) € Sc which is the same as showing ¥~ (7 A7)(vo(x,y,2)) =
o(p T A(Y(z,y,2))) for any (z,vy,2) € Sc, where the action of A and TAT are
now on AZ. Notice that according to Definition 5.3(i4), the action of A on AZ is
the same as the action of o1 Aoy and in this way, for any (z,y, 2) € Sc we have

VT AT) (Yo (x,y, 2)) = 7 (To1 Ao T) (Yo (2, y, 2))
= " (Yo ) Aoy ™)) (Vo (z,y, 2))
= o Ao (o(x,y,2))) = o(¥T A(¥(x,y, 2))).
The elements in Bir(S/m) correspond to the elements in PGL(2, C(z)) which
commute with 1o ~!, in other words, for A € PGL(2,C(z)) we have that A

belongs to ¥~ 'Bir(S /)¢ if 701 Aoy = A which is equivalent to TAT = A and
hence we get the description of the group § = ¥~ !'Bir(S /7). O

Remark 5.5. The element 7 = [ 9 1*022] € PGL(2,C(2)) belongs to § and corresponds
to the element of Bir(S/m) given by (z,y, z) — (x, —y, z), which is a reflection that
belongs then to Aut(S) < Aut(S(R)).

The group § < PGL(2,C(z)) defined in Lemma 5.4 is the algebraic version of
Bir(S/7), that we will study in the sequel. In the following lemma, we give a more
precise description of elements of this group.
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Lemma 5.6. Each A€ §c PGL(2,C(2)) is equal to [g((g bé(zz))h
mials a,b € C[z] with no common real roots, h = 1—2%. Moreover, the corresponding
matric [%8 bri(zz);l] € GL(2,C(z2)) has a determinant a(z)a(z) — b(2)b(2)h € R[z]
which is positive when 22 > 1.

] for some polyno-

Remark 5.7. Conversely, if A = [géz)) bé(zz))h] € PGL(2,C(2)) for some a,b € C(z)

(and in particular when a,b € C[z]), then A belongs to G, since TAT = A.

Proof. Let A = [‘Zg; 28] € G. The equality 7AT = A gives

0] = e ] e
Hence b(z) = A\é(z), d(2)(1 — 22) = Xa(2), c¢(2)(1 — 22)2 = \b(2), and a(z)(1 —

2?) = Md(2) for some A € C(2)*. From first and third equation we get that
c((1—2%)%? —A)\) = 0 and from second and fourth equation we get that a((1—22)? —

A\) = 0. In both cases, A\ = (1 — 22)? which is equivalent to ﬁ . (ﬁ) =1,
then by Hilbert’s Theorem 90 there is p € C(z)* such that A\ = %(1 — 2?) and

i LuC! 22 . . — —
A= [285 #C(Z)((zl)u )]. Calling again a(z): = a(z)i(z) and b(z): = p(z)é(z) we

_ | a® (=)
get A= |50 |
When a = %, b = I with p,q,7,s € C[z], we can multiply A by ¢gss and we

S
obtain an element in the same class with entries in C[z]. Now, if zg is a common

real root of a and b thus z is also a real root of @ and b which means that we may
divide by z — zp all entries of A and remain in the same class. Then A is of the
desired form. The determinant of the corresponding element of GL(2,C(z)) is then
ad —bb(1 — 2%) = aa + bb(z? — 1) € R[z]. Notice that for 22 > 1, aa + bb(z2 —1) > 0
because aa = 0, bb > 0 implies aa + bb(z? — 1) = 0 and the fact a and b have non
common real roots implies that the inequality is strict. O

Remark 5.8. In the sequel, we will always denote by h the polynomial 1 — 22 € R[z].

Now, we would like to characterise elements in Aut(S(R)/7) and Aut™ (S(R)/x)
inside the group § = ¥ ~'Bir(S/m)v. In order to do this, we need to understand the
birational map v¢: S¢ --» AZ given by (z,y,2) --» (x — iy, 2). The following result
describes the extension of the map, that we again denote by .

Lemma 5.9. v satisfies:
(a) The birational map
1b: S(C =2 Pé X ]P)(l:
liz:y:2z) --» ((1:z-1y),(1:2))
(w:z:y:z) --+ ((w:z—1iy),(w:z2))
has three base-points, namely ¢ = (0:1:1:0), g=(0: —i:1:0), and one
point w, infinitely near q.
(b) Its inverse is
(R Pt x P& --» Sc

2_ 2 . 242
((1:t),(1:2)) --» (lzt e R 1:z)

(2tuv? : 202 — 22u? + u?v?

(w:t),(v:2) --» i(t?0? + 2°u® — u*v?) : 2tzuv)

and has exactly three base-points, namely
(0:1)(0:1),(1:0)(1:1), and (1:0)(1:—1).
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(¢) The map ¥ can be decomposed as the blow-up of q, q, w, followed by the
contraction of the strict transforms of the curves L, M, D < S¢ given respectively

by

L: r=iy,w=—=z
M: x=iy,w=z
D: w=0

This can be described by the diagram in Figure 4, where Py = (1 : 0 : 0 : 1),
Ps=(1:0:0:—1) e S(R) are the north and south poles, where L, M are the
image of L, M by the anti-holomorphic involution and where the strict transforms
of the curves are again denoted by the same names.

L, M, D

S

Ps

Ew

M

P

1.l
Sc Pz x Pg

FIGURE 4. The decomposition of ¢ into blow-ups and blow-downs.

Proof. Parts (a) and (b) follow from a direct calculation. Hence, denoting by
¢: X — Sc the blow-up of g, 7, w, the map 1 is a birational morphism X — P xPg,
which is the blow-up of three points since both S¢ and ]P’(lC X IE”}C have a complex
Picard group of rank 2. Looking at coordinates, one checks that the three curves
are L, M, N, and the remaining part of the picture can be checked by computing
the intersection between the curves. O

Since M U M is the fibre of (1 : 1) € P! by 7 and is singular with only real
point, every element of Bir(S/m) preserves the north pole Py = M n M and either
preserves each of the two curves or interchanges them. This result is proved in the
following lemma, that describes moreover algebraically the distinct possible cases.

Lemma 5.10. Let A = [%((3 ba((zg)h] € § ¢ PGL(2,C(2)), for some polynomials

a,b € C[z] with no common real roots (see Lemma 5.6), and let A € Bir(S/x) be the
corresponding element (see Lemma 5.4).

The map A is defined at the north and south poles Py = M M and Ps = L~ L.
Moreover, the following hold:

(1) Ifa(l) =0, then A exchanges M with M.
)

(2) If a(1) # 0, then A preserves both M and M.
(3) Ifa(—1) =0, then A exchanges L with L.
(4) If a(—1) # 0, then A preserves both L and L.

Remark 5.11. Note that a(1) # 0 (respectively a(—1) # 0) is equivalent to the

fact that the determinant a(2)a(z) + b(z)b(2)h is positive when z = 1 (respectively
z=-1).
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Proof. Recall that A acts on AZ via

t.2) > (a(z)t +b(2)(1— 22)7Z>

b(2)t +a(z)
(see Lemma 5.4).

Suppose first that a(1) # 0. This implies that the determinant a(z)a(z) + (2% —
1)b(2)b(z) is not zero (and in fact positive) when z = 1. Hence, the above birational
map is a local isomorphism near the fixed point (¢,2) = (0,1), and restricts to
an isomorphism of the curve z = 1. After blowing up (0,1), we obtain thus a
local isomorphism in the neighbourhood of the exceptional divisor and of the strict
transform of the curve z = 1. By Lemma 5.9, these maps correspond to respectively
M and M via 1. This shows that A is defined at Py = M n M and preserves each
of the two curves M and M.

If a(—1) # 0, we find similarly that A is defined at Ps = L n L and preserves
each of the two curves L and L.

If a(1) = 0, we write a(z) = ag(z)(1 — z) for some polynomial ag € C[z] and have
b(1) # 0, since a,b have no common real root. We consider 7 = [(1) 1*022] € G, that
corresponds to the reflection (z,y, z) — (x, —y, z) of the sphere S (see Remark 5.5).
Note that this map is defined at the north and south poles, interchanges L with L
and interchanges M with M. It remains to study the map

[ b(1=2%) a(1—22) ] _ [ b(1+2) ap(1—22)
Ar = [ - 5<H2>] - [ b et ] € G« PGL(2,C(2))

and to see that it is equal to [%’ bl(l:/zg) ], where a’ = b- (14 z), b’ = ag € C[z] have
a
no common real root, and such that a/(1) = 2b(1) # 0. This reduces to the previous
case.
The case where a(—1) = 0 is similar. O

Lemma 5.12. Let A = [%((2 ba((zg)h] € § < PGL(2,C(z)), for some polynomials

a,b € C[z] with no common real roots (see Lemma 5.6), and let A € Bir(S/x)
be the corresponding element (see Lemma 5.4). We denote by D(z) = a(z)a(z) —
b(2)b(2)(1 — 22) € R[z] the corresponding determinant.

Let zo € (—1,1) € R, and let T',, = S be the conic given by z = zy. Then, the
following hold:

(a) The map A is a local isomorphism at each point of T, if and only if D(zy) # 0.

(b) The map A contracts the curve I',, onto a real point of T, if and only if
D(z9) = 0. In this case, it has exactly one proper base-point on T, , which is
real.

Proof. Observe that ¢ is a local isomorphism at a general point of I',, by Lemma
5.9. Hence, A contracts I',, or is a local isomorphism at each point of it if and only
if so does A on the curve of A% given by z = zo. Recall that A acts as

¢ 5) > (a(z)t +b(2)(1 — z2)7z) |

b(2)t +a(z)

If D(zp) # 0, we obtain thus a local isomorphism along I',,. If D(zy) = 0, then
a(z0)t+b(20)(1=(20)?
b(zo0)t+a(zo)
at zo implies that the curve I',, is then contracted onto one point, which is thus real.
It has moreover exactly one proper base-point on this curve, which corresponds to

the vanishing of the denominator and numerator of the above fraction. O

) does not depend on t. The fact that a and b cannot both vanish
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5.3. Algebraic description of Aut(S(R)/x). The fact that an element in the
group Aut(S(R)/m) exchanges or not the lines L and L can be checked geometrically,

as the following result shows. This will help to describe algebraically the groups
Aut(S(R)/7) and Autt(S(R)/7) as subgroups of G (Proposition 5.15 below).

Lemma 5.13. Let A€ Aut(S(R)/x), and let L, L, M, M < Sc be the four curves
giwven in Lemma 5.9. Then, one of the following holds:

(a) Ae Autt(S(R)/7) and A preserves each of the four curves L, L, M, M.
(b) Ae Aut(S(R)/m)\Aut*(S(R)/7) and A exchanges L with L and M with M.

Proof. Since M U M is the fibre of (1:1) € P! by , every element of Aut(S(R)/m)
either preserves each of the two curves or interchanges them.

We study the action of A on the lines M and M near the point Py = M n M =
(1:0:0:1), the situation near Ps = L n L is similar. The equation of the sphere
being (w — 2)(w + z) = 2? + y2, the complex tangent plane Tp, Sc is given by
w = z = 0, and contains the two lines M and M, which correspond to = = +iy.

The real tangent plane is contained in the complex tangent plane i.e. Tp, S(R) <
Tp, Sc and the action of A on the lines M and M is the same as the action of its
differential at Py denoted by Dp, A € GL(2,C) which also preserves Tp, S(R) and
is linear. Then Dp, A can be presented as a matrix in GL(2,R).

Matrices in GL(2,C) which preserve the two lines x = =+iy are of the form
[ %, 1] for some a, b € C. Imposing the condition of preserving the real plane is
equivalent to ask for a,b € R. This tell us that if Dp, A is the differential at Py of
a diffeomorphism A which fixes Py and preserves the lines M and M, then Dp A
restricted to Tpy (S(R)) is of the form [ % b] for some a,b € R and is positive
defined because its determinant is a? + b? > 0 and therefore such a diffeomorphism
A is an orientation-preserving one.

On the other hand, matrices in GL(2,C) which interchange the lines M and
M and preserve the real tangent plane are of the form [‘g fa] for some a, b € R.
Then if Dp, A is the differential at Py of a diffeomorphism A which fixes Py and
interchanges the lines M and M, we obtain that Dp, A restricted to Tp, (S(R)) is
of the form [¢ ° | for some a,b € R and its determinant is —(a? + b%) < 0 which
implies that A is an orientation-reversing diffeomorphism. O

Definition 5.14. We denote by R|[z]; the multiplicative submonoid of R[z] defined
as R[z]; :={f € R[z] | f(20) > O for each 2y € R}.

Proposition 5.15. Let H and Hy be the subgroups of G given respectively by
PAut(S(R)/m)yp =t and pAut™ (S(R)/7)v 1.

Then H = Ho x (1), where 7 = [ 9 1—022] = [Q 1] as before, and

30 = {[ 35 |5 abe Clzlaa—vhhe RI], |
Proof. The fact that H = Fy x (1) follows from the fact that 7 corresponds to a
reflection in Aut(S(R)/7)\Aut* (S(R)/7); it remains to describe Ho.

a(z) b(z)h
b(z) a(z) Y
a,b € C[z] with no common real roots (Lemma 5.6), and let D = aa — bbh € R[z]
be the corresponding determinant. We have D(z) > 0 if 22 > 1 (see Lemma 5.6).
We denote by A € Bir(S/n) the corresponding element, given by ¢~ Aq.

Suppose that A € Hy. By Lemmas 5.10 and 5.13, this implies that a(1)a(—1) # 0,
hence D(1) and D(—1) are both positive. Moreover, D(z) # 0 for each 2o € (—1,1)
by Lemma 5.12. This implies that D € R[z].

Conversely, suppose that D € R[z];. By Lemmas 5.10 and 5.12, this implies that
A is defined at each real point of the sphere, hence A € H. The fact that A € Hg is
given by Lemma 5.13. O

Let A € G be some element, that we write as [ ] for some polynomials
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5.4. Involutions in Bir(S/m). Recall that the group of elements of Bir(S, 7) acting
tri-vially on the basis of the fibration is denoted by Bir(S/7). This group is conjugate
to

g= {A = [%(( ; (( )) ] ; a,b e C[z] with no common real roots,
and a(z)a(z) — b(2)b(z)h > 0 for 2* > 1 } < PGL(2,C(z))

by the birational map ¢ (see Lemma 5.4). In this subsection, we study involutions
in Bir(S/m) or equivalently in G up to conjugacy.
We also recall that the action of PGL(2,C(z)) on A% was given in Equation (7)

a(z z a(z) b(z .
by (t,2) --» (%,z) for [ (( ))diz)] A € PGL(2,C(2)). Notice that when

A has order 2, the restriction of A to the P} corresponding to z = 2, for a general
zp € C, is an automorphism of order 2 with two fixed points. We denote by I' 4 the
closure of the set of those fixed points as z varies in C and call it the curve of fixed
points of A or just the curve fixed by A. The corresponding definition for the sphere
is presented below, see Definition 5.20.

The following results will be useful for the proof of the main result of this
subsection in Theorem 5.21, which states that two involutions are conjugate in G if
and only if their respective fixed curves are birational over R.

Lemma 5.16.

(a) If A€ PGL(2,C(z)) is an element of order 2, then A is conjugate to [99] for
some p € C(z)*,

(b) the elements [(1) r ], [(1) ’6’] € PGL(2,C(z)) with p, p' € C(2)* are conjugate in
PGL(2,C(2)) if and only if p/p’ is a square in C(z).

(¢) Let A, B e PGL(2,C(z)) of order 2. Then A and B are conjugate in PGL(2,C(z))
(A ~ B) if and only if there exists a birational map p defined over C

FA *E> FB

| g

Cc = C
where T4, T'p < C? are the curves fized by A and B, respectively.
Proof. (a) Let A =[2%] be an element of order 2 in PGL(2,C(z)). From A? =

[ 9], we get that @ = —d or b = 0 = ¢, but in the second case, a* = d? thus
a=*d. Ifa =dand b= c=0then A =1 and therefore A does not have order
2. This implies that @ = —d in any case so we can write A = [2 % ]. Now A is

conjugate to [0 a +bc] by [ 1% ] when b # 0 or by [ “4] when ¢ # 0. The
case when b = ¢ = 0, we have A [§ ] and is conjugate to [$ 4] by [1 4 ].
We have proved that A is always conjugate to [1 0]

(b) It [1 ) ], [(1) % | are conjugate in PGL(2, C(z)) then the determinants are equal
up to square and then p/p’ is a square. Reciprocadly7 if p/p’ = a® for some
a € C(2)* then [ 5] is conjugate to [0P ] by [L 2]

(¢) If A and B are conjugate elements of order 2 in PGL(2,C(z)), there is an
element ¢ € PGL(2,C(z)) such that the following diagram commutes:

(C2 _ 737 > (C2

/4 /1
C? CL"‘ ~C? ¢ Lﬂ
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Then the existence of the birational map p is given by the restriction of { to
I'4. Conversely, we assume the existence of p: 'y --» I'g. By part (a), the fact
that A and B are of order 2 implies that they are conjugate to an element of
the form [(1) g] and [(1) g] respectively, for some f, g € C(2)*. In this way, the
equations for the curves I'4 and I'p are t2 = f(z) and t? = g(z). Since I'4 and
I'p are birational, this implies that the corresponding fields of rational functions
are isomorphic i.e. C(z)[v/f] = C(2)[y/g]. The isomorphism will send z — z
and \/f — a,/g + b for some a,b € C(z) with a # 0. Since f = g(= t?), we have
[ =KTF)?~ (ay/g+b)? =a’g+2aby/g+b* = f then a’g + b*> — f = —2ab,/g
in C(2)[/g] which implies that 2ab,/g = 0 and therefore b = 0. Hence f = a?g
and then [ 9 g] and [ 9 9] are conjugate by part (b).

U

Lemma 5.17. Let A, B € § < PGL(2,C(2)) be of order two. If A and B are
conjugate in PGL(2,C(z)) then there are elements a, 3 € PGL(2,C(2)) such that
A=aPa™', B= P37 for some P =[{P], peR(2)*

Proof. By Lemma 5.16 we can present A and B as in the statement for the same P
for some p € C(2)*, what remains to show is that we can pick p € R(z)* (equivalently
p =p). Let Ay, 70 € GL(2,C(2)) be elements corresponding to A, T € PGL(2,C(z)).
We can choose Ag so that det(A4g) = p and want to find an element p € C(2)* such

10
The equality TAT = A in PGL(2,C(z)) implies that (19) "1 Ag7o = AAg for some
element \ € C(z)*. Taking the determinant, we obtain det(A4g) = A2det(Ay), which
means that p = A\?p. It suffices to find y with A = % Since A\? = p/p, we obtain
A2 ~X2 =1, and thus )\Xf +1. If A\ = 1 then by Hilbert’s Theorem 90 there is
p € C(2)* such that A = £. The case AX = —1 is not possible in C(z) otherwise A

would be the quotient of two polynomials in C(z), say A = 5 with f, g € C[z]* and

that pu2 = pu? because [0 p] is conjugate to [(1) ng] by [g _01 ]

then % = —1 which is equivalent to ff = —gg. But the leading coefficient of any
element of the set {ff : f e C[z]} = R[2]* is always positive implying that ff
cannot be equal to —gg for any g € C(2)*. O

Proposition 5.18. Let F = [9]] with f € C(2)*,

(a) the centralizer of F' in PGL(2,C(2)), that we denote by C(F'), is the semi-direct
product Jy x /27 where Jy is the image in PGL(2,C(z)) of Ty where

Ty := {[(Z J;b] € GL(2,C(2)) ; a,be C(2),a® — fb® # 0}

and Z/27Z is generated by the element v = [ § % | in PGL(2,C(2)).

(b) The group Ty is isomorphic to the multiplicative group C(I')* where C(T') is the
field of rational functions on T, the hyperelliptic curve T of equation t*> = f(z)
in AZ (the fized curve of the birational map corresponding to the element F ).

(c) H'((v), Jy) = {1}.

Proof. (a) Let A =[2%]ePGL(2,C(z)), from AF = FA we get [Z J;'i] = [feld]
implying that d = A\a, b = Afc, a = A\d, and fc = A\b for some A € C(2)*. If
a # 0 we have a = \?a hence A = +1 and A = [ J;b] or [Z i’;b]. When a = 0,
we get d = 0, and fc = A2 fc implying A = +1 and 4 = [2 ]:)b] or [g _gb]. Then
C(F) = Jrx{[65])-

(b) An element of the field C(T") can be written as a + bt with a, b € C(z) and then
we see that C(z)[+/f] is isomorphic to C(T) by sending a + bt to a +b+/f. Hence
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we define the map from C(z)[v/f]* to Ty given by a + by/f — [¢ f¥] which is
clearly bijective and is a group homomorphism since

(a+b\/f)(c+d\f) = (ac+ fbd) + (ad + be)\/f

corresponds to the product

[a fb] [c fd] _ [ac+fbd f(ad+bc):|
b a d c ad+bc ac+fbd |°

(¢) From the exact sequence
1-CR)* 5T g -1 (8)
we obtain the cohomology exact sequence
H (), Ty) = H' (), Jp) = H* (), C(2)*).

The first cohomology group H'((v),T}) is trivial by Hilbert’s Theorem 90 and
the second cohomology group H?({v),C(z)*) is trivial by Tsen’s Theorem (|18,
Chapter X, Section 7). Then we get that H*((v), J;) = {1}. O

Lemma 5.19. Let A€ § of order 2 and let a € PGL(2,C(2)) such that A = aPa™!
for some P = [‘1) g], p € R(2)*. Then the element pa: = a~'7a belongs to J,
where T = [ 1] for h =1— 2% and J, is defined in Proposition 5.18.

Proof. The fact that A € G implies that p4 € C(P) because

paPpyt = (o 'ra)P(@ 'ra) = o 'r(@Pa Yra
=a (TAT)a =atAa = P.

In order to check that indeed pa belongs to J,, we compute P and a explicitly.
First, we observe that if A is an involution in G then A is of the form [i;—i(;)) _bi(i)(z)]
with a(z) € R(z), b(z) € C(z). In PGL(2,C(z)), this involution is conjugate to the
element P = [(1) _(“25b5h)] by a = [701 fi(,z)(z)]. In this case, p = —(a* — bbh) and
then 4 is explicitly [i"i(lz ) i.a_g’z )] which belongs to J,,. If ¢ is another element in
PGL(2,C(z)) such that o/~ Ao/ = [ 7] then o/~'a € C(P), say § = o'~ *. Then
py =o' 'ra@ = (B )1(ad1) = O(a" @)1 that lies in J, as well. O

Definition 5.20. Let A € Bir(S/m)\{1} be of finite order. For a general zy € R
the birational map given by A fixes the conic I',, corresponding to the preimage of
zo by m. Note that A restricted to I';, (Ar,, : I's, = I's,) is an isomorphism with
exactly two fixed points, which can be two real points or two imaginary conjugate
points. The (closure of) the set of these fixed points, for every z € P!, gives the
curve of fived points that we denote by Fix(.A) and that is a double covering of P!.
Note that some isolated points can also be fixed and not belong to Fix(.A).

Theorem 5.21. Let A, B € Bir(S/w) of order 2. The elements A and B are
conjugate in Bir(S/m) (A ~gir(s/x) B) if and only if there exists a birational map p
defined over R

Fix(4) - £ > Fix(B)

" "y

R = R
with Fix(+) as in the precedent paragraph.
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Proof. If A and B are conjugate in Bir(S/x), then there is an element ¢ € Bir(S/m)
such that (A(™! = B and then the map p is given by the restriction of ¢ to Fix(A)
which is defined over R.

In order to prove the sufficiency, we assume that there is p: Fix(A) --+ Fix(B)
with op = po. Then by Lemma 5.16(c), we obtain that A := 9 Ay~! € G and
B :=yBy~! € G are conjugate in PGL(2,C(z)) and by Lemma 5.17 there are c,
B € PGL(2,C(2)) such that A = aFa™!, B = 3FB3~! and F = ((1) 6), for some
f e R(z)*. Observe that the action of a and § on Sc restrict to birational maps
Fix(F) --» Fix(A) and Fix(F) --» Fix(B), respectively. To sum up, we have the
following diagram (which is not necessarily commutative, since p: Fix(A) --+ Fix(B)
may be not the restriction of Sa~!):

p defined over R

- — >

Fix(4) © ~ _ Fix(F) _

Since we want to show that A ~g B (or equivalently A ~pj.(g/r) B), we
need to find v € G such that yAy™' = B ie. yaFa 'y ! = BFB™! —
B~ lyaF(B~'ya)™t = F, hence B 1ya € C(F). In other words, finding v € §
so that yAy~! = B is equivalent to find £ € C(F) such that Séa~! € G.

The condition B¢a~! € G is the same as 7(S¢a™!)T = B€a~1 which is equivalent
to & = (B~ 'rB)¢(@ tra). We define up := 7173 and /1;‘1 := @ '7a and like this,
we need to find & € C(F) such that & = ppépu,". By Lemma 5.19 pa, pup € J; and

then also p;* € J;. On the other hand, p;'u,' = 1 and ppfiz = 1 and as J; is
abelian, we get pupp," - upp,' = 1 and then by Proposition 5.18(c) there is & € J¢
such that £/ = pppu," — € = paluy’ O

5.5. Involutions in Aut(S(R)/7). In Proposition 5.15, we have described alge-
braically the orientation preserving birational diffeomorphisms as the group
3o = {52 "0 |5 abe Clel aa - bbh e RI21 )

We want to describe involutions in H ~ Hy x (1) where 7 = [{ &].

Lemma 5.22. FEvery involution € Hy is equal to
o= [ s ]
a(z) —ip(2)
for some p € R[z] and q € C[z] with no common real roots and p* — qgh € R[z] .

Proof. All such elements are indeed involutions, as one easily calculates. From the
proof of the first statement of Lemma 5.16, we see that the trace of any involution
in PGL(2,C(z)) vanishes. Since in Hy the diagonal entries are conjugate, they are
strictly imaginary, from which the claim follows. O

Fibrewise, the maps in Hy look like rotations, the maps in H\H like reflections:

Lemma 5.23. The restriction of an involution « € Hy to a fibre is conjugate, inside
the group of automorphisms of the circle, to a rotation by w. For an element in
F\Ho, the restriction is conjugate to a reflection.

Proof. A fibre is a subvariety of the real points of S and isomorphic to a circle
St which in turn is isomorphic to P*(R). Therefore ¢ restricts on each fibre to an
automorphism of P*(R), that is, an element of PGL(2,R). The first statement of
Lemma 5.16 applies equally when the field R instead of C(z) is used, which tells us
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that the automorphism is conjugate to an element of the form [(1) ig’ ], with p > 0
in R. The sign is negative for Hy and positive for H\Hy, and depends on whether
the element is orientation-preserving or -reversing. With ¢ = /p, the element is

ig ], which is conjugate to [ %} ] via [ §9]. These elements describe

a rotation and a reflection, as claimed. O

equal to [q91

Recall that R[z]4+ := {f € R[z] | f(20) > 0 for each zyp € R}. We will need the
following description.

Lemma 5.24. R[z]; = {pp | p € C|[z], p has no real root}

Proof. Since f(z) > 0 for every z € R, f has complex roots which can be sorted as
pairs of complex conjugate roots. Then f can be factorised in C(z) as factors of the
form (z — a)(z — @) which already have the form p,p, with p, = z — a for every
complex root v of f. We then construct p’ as the product p’ = po, *Pas, -+ Doy, Where
k is the number of pairs of complex conjugate roots and in this way, f = A-p’-p’ for
some real positive constant X\. Thus we define p = v/Ap’ and the result follows. [0

Proposition 5.25. Let A € H be an element of order 2. Then the curve Fix(A),
which is a double covering of P', has the following properties:

(a) If A e Hy, then Fix(A) has no real point (0 oval);
(b) if Ae H\Ho, then Fix(A) has one oval and w(Fix(A)(R)) = [-1,1].

Proof. Let A € H be an element of order two. By Lemma 5.22, A is of the form
[i-p(Z) a(2)h

a(z) —ip(z
curve of fixed points is given by g(2)t? — 2ip(2)t + ¢(2)h = 0 whose discriminant
(with respect to t) is —4(p? + q@h) and corresponds to minus the determinant of the
matrix.

If A € Hy, then the determinant is positive, so Fix(A4) does not have any real
point.

If A e 3\Ho, then the determinant is negative (because it is (1 — 22) times the
positive determinant). Hence, we get 2 real points for each zg € (—1,1). O

)] where p € R[z], ¢ € C[z] and p, ¢ have no common real roots. The

According to Proposition 5.25, for an involution which is also a diffeomorphism
its curve of fixed points is birational to a smooth real hyperelliptic curve with no
oval or just one. In the first case, there is no real point on the fixed curve and 1
and —1 are not ramification points. This involution is an orientation preserving
diffeomorphism with two isolated fixed points. In the second case, the only two
ramification points are 1 and —1, the oval is sent by 7: S — A! onto the real interval
[—1,1] and this involution is an orientation reversing diffeomorphism. Both possible
cases for the curve of fixed points are illustrated in Figure 5. Now, we would like to
prove the converse, i.e. for any hyperelliptic curve with one or no oval (equation of
the form 2 = (1 — 2%)p or t> = —p for some p € R[z]; with no real roots) we want
to associate an element 7 of H which realises the curve as Fix(y). We need first to
prove the following lemmas.

Lemma 5.26. Let f € R[z] be a polynomial of degree two such that f € R[z]y then
there exist a € R[z] and a positive real number ¢ such that f(z) = a(2)? + c¢(2? — 1).

Proof. Since f € R[z], then f is factorised as f(z2) = (z —a)(z — &) = 22 — (a +
&)z +aa for a a complex number and making o = b+id, we rewrite f as f(z) = 22—
20z+ (b2 +d?). Then if we write a(2)? = f(2)—c(22—1) = (1—c)22 —2bz+b*+d* +c,
we want to show that there exist some value of ¢ > 0 such that the right side is

indeed a square with respect to z. So we want the discriminant of such an expression
to be zero. This is 46> —4(1 —c)(b®* + d®* +¢) = 4>+ (V> + d*> — 1)c —d?) = 0
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g’fo %\}CO

FIGURE 5. Possible appearances of the fixed curve of elements
in Aut(S(R)/m).

which implies that c is a positive solution of p(c) := ¢ + (b*> + d? — 1)c — d? so we
compute the discriminant of this quadratic expression with respect to ¢ and want
it to be larger than zero i.e. A, := (b + d* — 1)? + 4d? > 0 but this is always the
case. Now, since the leading coefficient of a(z)? has to be larger than zero, implies
that ¢ < 1 so we just check that the discriminant which depends on ¢ has a root
between 0 and 1 which is true because p(0) = —d? < 0 and p(1) = b? > 0. What
remains is to check the case b = 0 i.e. a = id. In this case, f(z) = 22 + d? so we
just take c =1 and a = v/d? + 1. O

Lemma 5.27. Let V be the set
V={a>+P-(2*>-1) | aeR[z],PeR[z],}.

(@) I f,g€ V A R[], then f g€ V R[],
(b) R[z]+ < V.

Proof. (a) Let f,ge VAR[z]y then f =a?+P-(22—1)and g =b>+ Q- (22— 1)
for a,b e R[z] and P,Q € R[z],. We have then

frg=(@+P-(z"=1))(t* + Q- (z* - 1))
=(ab)? + (2> = D[a*Q + P’ + Q - (2* = 1))]

and a?Q + P(b?> + Q - (2 — 1)) € R[2]+ because a?, Q, P, and b* + Q - (22 — 1)
are all in R[z];. Therefore, f-ge V nR[z];.

(b) Let f € R[z]; then f can be presented as a product of quadratic polynomials.
Since every quadratic factor is also in R[z],, thus it suffices to prove the Lemma
in the case where f is quadratic and this was already proved in Lemma 5.26. [

Lemma 5.28. The elements in Aut(S(R)/7) realise all smooth real hyperelliptic
curves with at most one oval. More precisely,

(a) for a real smooth hyperelliptic curve with one oval of the form t*> = (1 — 22)33
for some B € C(z) with no real roots there is an orientation reversing birational
diffeomorphism whose fized curve is this curve,

(b) for a real smooth hyperelliptic curve with no oval of the form t*> = —Bf for
some 8 € C(z) with no real roots there is an orientation preserving birational
diffeomorphism whose fived curve is this one.

Proof. Given the hyperelliptic curve t? = (1 — 2%)383 for some 8 € C(z) with no real

roots, the element o = [ B?z) A (S)h] is an involution in H\Hy whose fixed curve is
t?2 = (1 — 22)BB. In the other case, when t> = — 3 where 8 has no real roots, we

have 3 € R[z]4 < V by Lemma 5.27 and then there are a € R[z] and P € R[z]
such that 88 = a® + P(2%? — 1). Lemma 5.24 implies that P = bb for some b € C[z]

then the element o = [ig((;)) fsz:)] is an involution in Hy whose fixed curve is

t2 = —pBp. O
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Lemma 5.29. Let a,b,c,d € C[z] and let A(z) = [‘Z((g b(j] € GL(2,C(z)). Let
zo € C be a simple root of ad — bc € C[z], such that A(zo) has rank 1.

Then, the birational map of P x Al given by

([t : u],2) --» ([a(2)t + b(2)u : c(2)t + d(2)u], z)
has exactly one base-point on the line z = zy, and no infinitely near base-point to
this one.

Proof. Making the change of variable z — z — 23, we can assume that zy = 0.
Replacing A(z) with aA(z)3, where «, 8 € GL(2,C), we can moreover assume that

A(0) = [9 3], so we can write A(z) = [liz(cz()z) zggz)] for some a, b, ¢, d € C[z] (which

are not the same as before but we keep the same letters to simplify the notation).
Since zg is a simple root of the determinant, we have b(0) # 0. The corresponding
birational map of P! x A! is then

([t : u],2) --» ([z(a(2)t + b(2)u) : t + z(c(2)t + d(2)u)], 2)
and has a unique proper base-point on the line z = 0, which is the point ([0 : 1],0).
The blow-up of this point is locally given by
. A? - Pl xAl
(t,v) — ([t:1],tv)
And the lift of our birational is then locally given by
(t0) - v(a(vt)t + b(vt))  tle(vt)tv + d(vt)v + 1)
’ c(vt)tv + d(vt)v + 1’ a(vt)t + b(vt) '
The curves E, E’ corresponding respectively to the exceptional divisor and the fibre
z = zp are now given by t = 0 and v = 0 respectively, and exchanged by the lift:

vb(0
00) — (285.0)

(t.0) -=> (0, zerem

This implies that both, our map and its inverse, have a simple base-point at (0,0). O

Theorem 5.30. Let g, ¢’ € Aut(S(R)/x) of order 2. Then g and g’ are conjugate
in Bir(S/m) if and only if they are conjugate in Aut(S(R)/x).

Proof. Let g and ¢’ be conjugate in Bir(S/7), then there is o € Bir(S/m) such that
aga~! = ¢'. We want to show that g and ¢’ are conjugate in Aut(S(R)/7). By
Proposition 5.25, the curve of fixed points of an element in Aut(S(R)/7) either
contains no real point or only one oval.

If o € Bir(S/m)\Aut(S(R)/x), there is a real point r € S(R) where « is not
defined, and this point is not Ps or Py (Lemma 5.10). The element a blows up this
point and contracts the conic I',  passing through r which is a fibre of the conic
bundle structure of S. Then «(T',, ) = ¢ for some g € S(R).

Note that ¢ is fixed by g. Indeed, otherwise g(q) = ¢’ # ¢ and as g preserves the
fibration, g(T',,) =T, , then a(g(T,)) # ¢'(«(T',.)). Since ¢ is a real point fixed by
¢ and distinct from Pg and Py, the curve Fix(g) contains real points. We may then

assume that g is equal to [—(OZ) b(z)h] (Lemma 5.28). The centraliser of g contains

the following subgroup

C(g) = {[;b((zz) /\Z((z)h] : a, ) € R[z] and a® — A\?bbh # O} cG.

We want to prove now that C(g) contains, in particular, an element 8 = [a(z) b(z)h]

b(z) a(z)
such that D(z) = a(z)? — b(2)b(2)(1 — 2?) has only one zero exactly at z = z, on
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the interval (—1,1). The reason of the existence of such a § is that it is possible
to find a polynomial a(z) with values a(—1) = 0 and a(z,) = 4/b(z,)b(2,)(1 — 22)
and satisfying that D(z) > 0 on (—o0,—1) U (2,00) and D(z) < 0 on the interval
(—1, 2,). Notice that b(2)b(z)(1—22) > 0 for z € (—1,1) and the condition D(z) > 0
for 22 > 1 is already fulfilled (see Lemma 5.6). We use the function f(z) = 2™
with m sufficiently large and apply a suitable linear change of coordinates, namely

a(z) = \/b(z)b(z.) (1 — 22) - f (;;11) to get the polynomial a(z) with the required

conditions. See Figure 6.

a(z)

Vo(2)b(2)(1 = 22)

|

I
i a

FiGuRrE 6. Conditions for the polynomial a(z)

With 5 € C(g) as before, i.e. the element with the only root of its determinant
at z = z,, Lemma 5.29 implies that the birational map that § defines has exactly
one real base-point and no infinitely near base-point to this one. Then replacing a
by S~ 'a, one gets one base-point less. Then the claim follows by induction. O

Proposition 5.31. There are bijective correspondences

smooth real projective
conjugacy classes of involutions 1:1 curves I' with no real point

{ in Aut™ (S(R) /) } with 7: T — P! a 2 : 1-covering,

up to m-isomorphism

smooth real projective
conjugacy classes of involutions 1:1 curves I' with one oval

{ in Aut(S(R)/7)\Aut™ (S(R)/7) } 7Y with 7: T > P! a2: 1-covering,

up to w-isomorphism

Remark 5.32. By a m-isomorphism we mean an isomorphism +v: I' — IV such that
™ = T.

Proof. Let g,¢’ € Aut(S(R)/7) be of order 2. If g and ¢’ are conjugate in Aut(S(R)/x)
then by Theorem 5.21, Fix(g) and Fix(g’) are birational over R by some m-isomorphism.
Proposition 5.25 tell us that Fix(g) and Fix(g’) are a double covering of P! with
no real point (when g, ¢’ are orientation-preserving birational diffeomorphisms) or
with one oval (when g, ¢’ are orientation-reversing birational diffeomorphisms), and
Lemma 5.28 shows that all such curves are obtained. Given a m-isomorphism between
two smooth real hyperelliptic curves with no oval (respectively one), Theorem 5.21
implies that g and ¢’ are conjugate in Bir(S/7) and Theorem 5.30 that g and ¢’ are
indeed conjugate in Aut(S(R)/x). O

5.6. Elements in Bir(S/7) of finite order larger than two. The goal of this
subsection is to show that any element in Bir(S/7) of finite order larger than two
which preserves the fibration is conjugate to a rotation. We start by observing that
any rotation pg € Bir(S/m) is given by the map

0" S — S
(r,y,2) > (xzcosh —ysinb,xsind + ycosb,z)



34 MARIA FERNANDA ROBAYO

which via ¢ (Lemma 5.4) corresponds in A? to the map (t,z) — (te™%, 2) and is
equivalent to the action of the element e;m ? = [efigm) ei(g/z) ] = [é e?e] =Rye

G. With this observation and the following remark, the result is presented in Lemma
5.34.

Remark 5.33.

(i) Let A € PGL(2,C(2)) an element of finite order larger than 2. Then A is
diagonalisable.

(ii) Two diagonal elements [§ 0] and [} 9] are conjugate in PGL(2, C(z)) if and
only if a = bT1.

Lemma 5.34. Let A€ G of order n # 2. Then A is conjugate to a rotation
1 0
Ry = [ 0 ¢if ]

Proof. Since A is an element of finite order n # 2 then by Remark 5.33, A is
diagonalisable in PGL(2,C(z)) so there is an element oo € PGL(2,C(z)) so that
A=oalgn]a? for some p e C(z)* an element of order n, i.e. p is a root of unity
that we can write as y = € for some angle 6.

We define J := [} %]a~! and we want to find s € C(z) such that J € § and
JAJ~' = Ry. This latter condition is fulfilled by the form of J. To ask for J € G is
the same as J satisfies the relation 7.J7 = J which is equivalent to 7[§ 2] a~!7 =
[§ 9@, Multiplying to the right by & we get 7[§ ]a~lra! = [ 2]. We call
p:=a ‘ra and we rewrite the last equation in terms of p obtaining:

Tlo31p=15¢] )

m G for some angle 6.

where p = p~! because pp = (a"'7a)(a"ra) = 1.

On the other hand, the fact that A € G i.e. 7AT = A which is the same
as Ta [(1) 2] a lt = a [é 2] a~! is equivalent to p [(1] 2] = [‘5 (1)] p and gives the
condition on p to be of the form p = [9 3] for some A € C(z)*. Moreover, pp =1
implies that A € R(2)* because [93][98] =[5 %] = [§¢]. With this information
about p, finding s € C(z)* satisfying the equation (9) is equivalent to find s satisfying

the equation

A= (1-2%)s5 (10)
Note that we already know that 2 € R(z)*, but not every element of R(z)*

can be written as s5. What follows is to describe p in terms of entries of o and 7 in
order to find candidates for the value of s satisfying the previous equation. Let us
present o = [‘c‘ 2], then the relation p = &~ '7a explicitly will be

R R Il [
and this gives two equations
—ab+ (1 —2%cd=0and (aa— (1 —2%)ce)\ = —bb+ (1 — 2%)dd (11)
When a # 0, b = (1 — 22)%Z and plugging it in the second equation in (11) we get
Maa — (1 — 2%)ce] = (1 — 2%)[aa — (1 — 2%)cc](dd/aa)
hence A\ = (1 — zQ)Z—g. In the case a = 0, equations (11) imply that d = 0 and that
A= 1 —122%

Then, we may choose s = g when a # 0 or s = 1f22% otherwise and in this way

there exist J € G such that JAJ ! = Ry. O
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5.7. Elements in Aut(S(R)/7) of finite order larger than two. We can check
that Lemma 5.34 also holds in the subgroup Aut(S(R)/x), via t:

Lemma 5.35. Let Ae H of order n # 2. Then A is conjugate to a rotation
1 0
Ry = [ 0 eif ]

Proof. Let A € H of finite order different from 2, then by Lemma 5.34, there is
a € G such that ada™t = Ry. Let A = ¢y~ Asp. By abuse of notation, the element
Y~ Lo € Bir(S/m) will be called a as well. If o € Bir(S/7)\Aut(S(R)/x), there is
a real point r € S(R) where « is not defined. The element « blows up this point
and contracts the conic I', passing through r which is a fibre of the conic bundle
structure of S. Then a(T',.) = ¢ for some g € S(R), which is sent by Ry to a different
real point (Ry only fixes Py and Pg). As A preserves the fibration, A(I', ) =T,
then a(A(T;,)) # Ro(a(T,,)) O

in H for some angle 6.

5.8. Involutions in Bir(S, 7)\Bir(S/7). Since we want now to study conjugacy
classes of elements in Bir(S, 7)\Bir(S/m) whose square is the identity, we observe
that thanks to Lemma 5.2, we can think about elements of finite order in Bir(S, 7)
as the semi-direct product between elements of finite order in Bir(S/7) and Z/2Z
where Z/27 is generated by n: S¢ — Sc sending z to —z. The action of 7 on

Bir(S/7) is given by the map:
n: PGL(2,C(z)) — PGL(2,C(z))
[a<z> b<z>] . [aez) b(,z)] (12)

c(z) d(z) c(—z) d(—=z)

Let a = (ag,n) € Bir(S,m) then o? = (an(a),1) € Bir(S/7) and n(ag) =
ap(—z) which means that all entries of ag in C(z) are changed by the C-field
automorphism of C(z) sending z to —z. We are then interested in the case agn(ag)

is the identity.
Recall that in Lemma 5.4(c), we identified Bir(S/7) with the group

G ={AePGL(2,C(2)) | TAT = A}
where 7 = [(1) 1—022]. We denote by T the following group,
T:={AeGL(2,C(2)) | A=7Ar71} c GL(2,C(2))

whose image under the canonical projection corresponds to §. We have the following
exact sequence where p denotes the canonical projection:

1%R(z)*HTL9H1
Hence we obtain the cohomology exact sequence
5
H' (O, T) B H (1), §) = H>((n), R(2)%) (13)
where (n) ~ Z/2Z and the action of 7 is described in (12).
The next lemma tells us that H!((n), T) is trivial. Once that is done, the study of

the map § will show that conjugacy classes of o € Bir(S, m)\Bir(S/r) with o? = id
are parametrised by particular elements in R(z?).

Lemma 5.36. Let T := {A€ GL(2,C(z)) ; A= 7Ar'} with 7 as before. Then
the group T can be presented more precisely as

T= {[% hab] : a,be C(2),aa — hbb # 0}
and H*({n),T) = {1}.
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Proof. The group T is isomorphic to the multiplicative group of the non-commuta-
tive field K := C(z) + C(2)¢ where £€2 = h and a(z)¢ = £a(z) for any a € C(z). The
%E;) };7((;))] e T to the element
a(z) + b(z)€ € C(z) + C(z)&. Indeed, we have that the product in K,

(a + b€)(c + d€) = ac + béd€ + adé + béc = ac + bdh + (ad + be)¢

isomorphism is defined by sending an element A = [

corresponds in 7' to the product [b g adibe acebdn

The corresponding action of (n) ~ Z/2Z on C(z) +C(2)¢ is given by the extension
of the field automorphism z — —z of C(2)* to K*, to be more precise, a(z)+b(z)& —
a(—z) + b(—=)¢&.

Let g: (ny = K* be a cocycle such that g(1) = 1 and g(n) = A for some A € K*
such that An(A) = 1. Let C € K such that B = C + An(C) # 0, such a C exists
because we may choose C = A when A # —1, otherwise there are many choices of
C satistfying C —n(C) # 0, e.g. C = z. We have thus n(B) = n(C) + n(A)C and
hence An(B) = An(C) + An(A)C = An(C) + C = B ie. A = Bn(B)~! and this
means that A is a coboundary. U

a hb] [2 hd] _ [ac+bcih h(ad+bé)]

The following Lemma will be useful to compute H?({n), R(2)*).

Lemma 5.37. Let G be a group with two elements acting on an abelian group M

and let € be the non trivial element of G.

(a) Any class [c] € H?(G, M) admits a normalised 2-cocycle ¢’ i.e. it is the class of
c: G* > M such that ¢(g,1) = c¢(1,g) = 1 for every g€ G.

(b) Let c: G* — M is a normalised 2-cocycle and define p(c) = c(£,€) € M. Then
p induces an isomorphism of groups

H?(G, M) 2> MC [{mé(m) | m e M}.
Lemma 5.38. For the exact cohomology sequence (13),

H?((n), R(2)*) =~ R(2*)*/{fn(f) | feR(2)*}
— ([~1{[2 4] :b> 0} =~ {£1} @ ( P Z/Qz> ,

beR~ ¢

Proof. Let (R(2)*)" denote the elements of R(z)* which are invariant with respect
to the action of i described above. We call N the map N: R(z)* — (R(z2)*)" given
by N(p(2)) = p(2)n(p(z)) = p(2)p(—2). Then by Lemma 5.37, H*(Z/2Z,R(2)*) is
isomorphic to coker(N) that we need to compute. First, we prove that (R(z)*)" =
R(22)*. The inclusion R(z?)* < (R(z)*)" is clear. Reciprocally, if g(z) € (R(2)*)",

9(=) = 55
p(2)

from £55 = Zg:g follows that p(z)q(—z) = p(—2)q(z) and then roots of both sides

with p, ¢ € R[z] that we can assume having non common factors. Thus

need to coincide. This implies that if a is a real root of p(z), it has to be a root
of p(—z) and therefore 22 — a? divides p(z). For a complex root a of p(z), using
the same argument we obtain that (z — a)(z — @)(z + a)(z + @) divides p(z). By
induction on the number of roots of p and ¢, we obtain R(2)7 = R(2?).

In order to compute coker(N) we look at the image by N of generators of R(z)*
and compare with generators of R(z2)*. Generators of R(z)* are a € R*, (2 — b)
with b € R, and (z — a)(z — @) with a € C\R and they are mapped by N to a?,
b2 — 22, and (22 — a?)(2% — a?) while generators of R(22)* are c € R, (2% — d) with
de R, and (22 — B)(2% — B) with 8 € C\R (notice that 3 is always a square). Hence,
coker(N) =~ R(2%)*/Im(N) = ([-1],{[22 + b] : b > 0}) = R(2?)*/Im(N).

To see the structure of H?((n), R(2)*), we see that [—1]-[—1] = 1 and for any
b >0, [22+b][22 + b] = 1 because (22 +b)(2® +b) = (22 +b)n(z> +b) =1 in
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R(z2)*/{fn(f) | f € R(z)*}. However, [2% +b][2% + ] # 1 for b,c > 0 and b # ¢
and [—1][2% + b] = — (22 +b) # 1 for b > 0. O

Proposition 5.39. The connecting map H'({(n), ) LR H?((n),R(2)*) for the exact
cohomology sequence (13) corresponds to the map

g H1(<}7Zi9) — <[—1;> {[22f+ 0] RZE >)0}> ~ H*((n), R(2)*)
class of A€ G; class of p € R(2?); -
LT b { L e s -

and it is bijective.

Proof. In order to study how the connecting map ¢ is defined, we use the Snake
Lemma (see e.g. [17], Lemma 1.3.1) that in our case works as follows. Consider the
following diagram, in which Zs stands for (n):

CH(Z2,R(2)*)/B (Z2,R(2)*) G C'(22.T)/B"(Z2,T) B C(22,9)/B"(22,9) —>1

Or \L or l/ 69 \L
i2 2

1 ——————— Z3(Za,R(2)*) ———————— Z%(Z, T) ———————> Z%(Z»,9)

Notice that J is the same as the map ker(dg) LN coker(dg). Let [p] € H'((n),9),
then p is a map p: (n) — G defined by sending 1 to 1 and 7 to A for some A€ G
satisfying An(A) = 1. Since p; is surjective, there is [r] € C'((n),T)/B'((n), T),
this is r: (n) — T so that 1 — 1 and n — A where A € T is a representative
of the element A. There is ¢ € Z2((n), R(2)*) such that is(¢) = 7r([r]) because
02(r([7]) = d5(p1([7])) and pa(@r([r])) = g([p]) = 1 since [p] € kerdg then
or([r]) € ker pa = Im is. Then § is defined by sending [p] to [¢] satisfying i2([q]) =
or([r]). More explicitly, é7([r]) is the normalised cocycle

or(lrh): G xmy — T

(91,92) > 7(91)91(r(92))(r(9192))~
1,1) — 1

1

(Ly)  +=— 1
(n,1) — 1
(mm) > An(A)

Thus, An(A) = [4 2] with i2([q])(n,n) = p € R(2?)*. Summing up, § corresponds
to the map

§:  H'(m,9)  — H*((),R(2)%)
Aeg;

{An(§)9=1} - { An(4) = ER(? and p(A):“i}'

Let us see that the map ¢ is surjective: the element [6 o

the class [—1]. When ¢ € R.q, the element [i(zfoi\/g) 4(2?&\/5)] is sent by 4 to

the class [22 + ¢]. Given any finite product of classes v = (22 4+ ¢1) - (2% + ¢)
in H2((n),R(2)*) with ¢; > 0 for 1 < i < k, the diagonal elements of the form
a(z) 0
0 a(z)

] is mapped by ¢ to

where

a(z) = i(z —iy/c1)(z —iy/e2) - - (2 —i/eg), if kis odd
(z —iy/er)(z —iy/c2) - -~ (2 —iy/ex), if kis even
is mapped to . This proves the surjectivity of the application d.

In order to prove injectivity, we will show that any class A = [%8 };b((zz))] in
HY(Z/2Z, ) is equivalent to a diagonal element D of the form [x(oz) i(oz)]. In other
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words, we want to show that we can find an element o = [2—8 hai(;;)] in G such that

n(a)Aa~' = D where A is the representative of A in T. This leads to the following
equation

&(2)(d(=2)a(2) + e(—2)b(2)) — d(2)(hd(—2)b(2) + e(—2)a(z)) = 0

which is equivalent to

o) alx)55 + hb(2)
d(z) b(z) 3%72 + a(z) (14)

We call ¥ the following automorphism of IP’}C(Z) defined by

. 1 1
0 PL., — L.

(r(z): s(z)) = (a(z2)r(z) + hb(2)s(z): b(2)r(z) + a(2)s(z))

The equation (14) can be seen as f(z) = ¥(f(—2)) for f(z) = dE ; In this way,

finding ¢(z) and d(z) satisfying the equation (14) is equivalent to find fixed points of
U where U(f(z)) := U(f(—=z)). First we notice that the automorphism ¥ is a linear

automorphism given by the element [aEz; hb((z)) ] in PGL(2, C(z)) that we denote by A

since it comes from A by mterchangmg the elements of the mean diagonal, this implies
that U has order two because WoW = id is equivalent to An(A) = 1 which is satisfied

because A is a class in H'({(n), §). On the other hand, the element A is equivalent to

A= [5(2)2 _dgtA] since B_lA’ﬂ(B) — Afor B = [(1) a(z){i’(z)]. Hence, the existence

of fixed points for the automorphism associated to A gives the existence of fixed
points for the automorphism ¥. Then we look explicitly for elements u,v € C(2)

such that (u(z): v(z)) = A(u(—2): v(—z)) = (—det Av(—2): b(2)?u(—2)) in ]P’}C(Z)

ie. u(z)u(—2)b(z)? = —v(z)v(—2z)det A and then Zgzg vE 2 ‘gg)‘é. The right
side of this last equation belongs to C(2?) because det A = det A which belongs to
R(22) and b(z)? € C(2?) condition imposed by the fact that A is a class in H!({(n), §).

Existence of v and v comes from the next Lemma. O

Lemma 5.40. Any element f € C(22) can be written as the product g(z)g(—z) for
some element g € C(z). In other words,

C(2*) = {g(2)g(~2) : g(2) € C(2)}-

Proof. Clearly, for g € C(2) it follows that g(z)g(—2) € C(z?). Reciprocally, let
feC(z?). Thus f = 28 with p,q € C[22]. We can write p in terms of roots as
p(2) = a(2? —a1) - (22 — a,) where a,a; € C, 1 < i < s. Any factor of p can be
decomposed as a product of the form —(z — \/a;)(—z — /o) for any root a;. We
can then write p as the product g;(2)g1(—2) where

(2) = Vo(z —/ar) - (2 = y/ap)(z — Jor) - -+ (2 — yJag), if s is even
I TV ivale — an) - (2 — i) (z — Jan) -+ (= — /@), if s is odd.
In the same way, q(2) = g2(2)g2(z) and therefore, f can be presented as the product

91(2) | g91(=2)
2 9D U

Corollary 5.41 (from Proposition 5.39). The conjugacy classes of elements o =
(ao,m) € Bir(S,7)\Bir(S/m) such that agn(ag) is the identity are parametrised by
the classes of polynomials {[—1],{[2% +b] : b > 0}) ~ H2((n),R(2)*).
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Proof. The cohomology group H'({(n),§) corresponds precisely to the set of conju-
gacy classes of involutions in Bir(S, 7)\Bir(S/7), that is, classes of elements (g, n)
as in the statement. Therefore Proposition 5.39 directly implies the corollary. [

Corollary 5.42. The set of conjugacy classes of involutions in Aut(S(R),m)\
Aut(S(R)/7m) surjects naturally to the set of conjugacy classes of involutions in

Bir(S, 7)\Bir(S/x).
Proof. Let (A,7n) be an involution in Bir(S, 7)\Bir(S/m). The proof of Proposition

5.39 shows that (A,7) is conjugate to an element (A,7) where A is, via ¢, an
a(OZ) (i(()z
case aa € R[z],, Proposition 5.15 tells us that such an element corresponds to
one of Aut(S(R)/7). Hence the birational diffeomorphism (A4,7) € Aut(S(R), 7)\
Aut(S(R)/7) is conjugate in Bir(.S, ) to (4, n), and therefore every conjugation class
of Bir(S, 7)\Bir(S/m) contains a conjugation class of Aut(S(R),7)\Aut(S(R)/7).

O

element of the form [ )], and a € C[z] has no real roots. Since in that

6. CONNECTION BETWEEN FAMILIES

In this section, we collect all our results, and use the fixed points and the
classification of the possible Sarkisov links given by Iskovskikh in [12] to give the
proofs of Theorem A and Theorem B (Section 2).

We start with some definitions, which come from the equivariant Sarkisov program.

Definition 6.1. Let X be a smooth projective real rational surface with X (R) ~
S(R), let g € Aut(X) be an automorphism of finite order and let u: X — Y be a
morphism.

The triple (X, g, ut) is said to be a Mori fibration when one of the following holds

(1) rk(Pic(X)9) =1, Y is a point and X is a Del Pezzo surface;
(ii) 1k(Pic(X)9) =2, Y = P! and the map p is a conic bundle.

Remark 6.2. In the second case, we can do as in Proposition 3.6 and find a birational
morphism ¢: X — S that restricts to a diffeomorphism X(R) — S(R), such
that me = au, for some a € Aut(P}). This conjugates g to an element ege™! €
Aut(S(R), 7). The possible choices for € just replace ege~! with a conjugate in the
group Aut(S(R), ).

Definition 6.3. Let u: X > Y and p/: X' > Y’, g€ Aut(X), ¢’ € Aut(X’) be two
Mori-fibrations. An isomorphism of Mori fibrations is an isomorphism p: X — X',
such that ¢’p = pg and p'p = ap for some isomorphism a: Y — Y.

Definition 6.4. A Sarkisov link between two Mori fibrations p: X — Y and
w: X' —>Y' ge Aut(X), g € Aut(X') is a birational map ¢: X --» X’ such that
g'¢ = (g and is of one of the following four types,

(i) Links of type I. These are commutative diagrams of the form

X——S_sx

A

Y = {p} <"~V =P

where ¢7!: X’ — X is a birational morphism, which is the blow-up of either
a g-orbit of real points or imaginary conjugate points of X, and where p is
the contraction of Y/ = P! to the point p.
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(#4) Links of type I11. These are commutative diagrams of the form

where 8: Z — X (respectively 5': Z — X') is a birational morphism, which is
the blow-up of either a g-orbit (respectively g’-orbit) of real points or imaginary
conjugate points of X (respectively of X’), and where p is an isomorphism
between Y and Y.

(#it) Links of type TII. (These are the inverse of the links of type I). These are
commutative diagrams of the form

¢

X——>sX

A o

Y =P Y = {p}

where ¢: X — X' is a birational morphism, which is the blow-up of either a
g'-orbit of real points or imaginary conjugate points of X', and where p is the
contraction of Y = P! to the point p.

(iv) Links of type IV. These are commutative diagrams of the form

¢

X— X
2 I
Y = P! Y' =P!
where (: X — X’ is an isomorphism and p, ' o { are conic bundles on X’
with distinct fibres.

The following result is given in [12, Theorem 2.5]

Theorem 6.5. Let (X,g,u) and (X', ¢, 1) be two Mori-fibrations. Every bira-
tional map p: X --+ X' such that ¢'p = pg decomposes into elementary links and
isomorphisms of conic bundles.

Looking at the classification of links of [12], we obtain the following lemma with
the links that could be possible to have in our classification problem.

Lemma 6.6. Let (X,g,u) and (X', ¢, ') be two Mori-fibrations, and let p: X --»

Y be a birational map which restricts to a diffeomorphism X (R) — Y (R). Then, p

decomposes into elementary links that blow up only imaginary points and contract

only imaginary curves, and are of the following type:

(a) Links of type II between conic bundles, which correspond therefore to a conjuga-
tion in Aut(S(R), ).

(b) Links of type 11 of the form X --» X, where X is either the sphere S or a Del
Pezzo surface of degree 4. Moreover, the two elements of Aut(X) corresponding
to this link are conjugate in Aut(X).

(¢) Link of type I and 111 between the sphere S and the Del Pezzo surface of degree
6 obtained by blowing up two conjugate points on S. These are possible for only
a few of elements, given in Lemma 4.5.

(d) Links of type IV on Del Pezzo surfaces of degree 2 or 4, obtained by blowing up
pairs of conjugate points in S.

If the two elements of Aut(S(R), ) corresponding to the link are not conju-
gate, then X is a Del Pezzo surface of degree 4 and the two automorphisms are
91, g2 € Aut(X) described in Lemma 4.12.
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Proof. Tt follows from Proposition 3.4 that X, X’ do not contain any real (—1)-curve.
Moreover, the map p has no real base-points implying that the first Sarkisov link
obtained in the decomposition does not have real base-points (the base-points of
the link are taken among the base-points of the map, see the proof of [12, Theorem
2.5]). Proceeding by induction on the number of links provided by Theorem 6.5, we
obtain that p decomposes into Sarkisov links that do not blow up any real point or
contract any real curve. In particular, the surfaces obtained are all diffeomorphic to
the sphere and with K% € 2Z.

It remains to study links X --» X’ between two Mori-fibrations u: X — Y and
X' =Y ge Aut(X), ¢ € Aut(X’), such that X(R) ~ X'(R) ~ S(R), with
(Kx)?, (Kx)? € 2Z, and which do not blow up any point. In the case where Y is a
point, we can moreover assume that (Kx)? # 6, by Proposition 4.6 (and similarly
(Kx/)? # 6 if Y’ is a point). Looking at the list of [12, Theorem 2.6], we get the
following possibilities.

(1) Links of type I and III (Y is a point and Y’ = P! or vice versa). Looking at
[12, Theorem 2.6, case (4)], one gets only one possibility, which is the blow-up
of two imaginary conjugate points on the sphere S. Up to automorphism,
these points can be taken to be the two base-points of 7: S --» P!, and the
automorphisms that preserve the union of these two points are described in
Lemma 4.5.

(2) Links of type Il (Y =Y’ =P or Y =Y’ is a point).

In the first case, when Y = Y’ = P!, the link corresponds to conjugation
in the group Aut(S(R), ) (see Remark 6.2).
In the second case, the list of [12, Theorem 2.6, case (ii)] yields the
following three possibilities:
(i) (Case (Kx)? =8, (b)) A birational map S(R) --» S(R) that blows up
3 pairs of conjugate points and contract 3 pairs of conjugate curves.
It corresponds to the Geiser involution on the blow-up of the 6 points.
(ii) (Case (Kx)? =8, (d)) A birational map S(R) --» S(R) that blows up
2 pairs of conjugate points and contract 2 pairs of conjugate curves.
(iii) (Case (Kx)? =4, (b)) A birational map X (R) --» X (R) that blows
up 2 pairs of conjugate points on a Del Pezzo surface X of degree 4
and contract 2 pairs of conjugate curves. It corresponds to the Geiser
involution on the blow-up of the 4 points.
In each case we get a link X --+ X, where X is either the sphere .S or a Del
Pezzo surface of degree 4. It remains to see that the two automorphisms of
prime order of Aut(X) produced by this link are conjugate by an element
of Aut(X). If the link corresponds to a Geiser involution, this is because
the Geiser involution commutes with all automorphism of the surface (see
Proposition 4.14). In the other case, the orbit blown up consists of two
pairs of conjugate points on S(C), so the automorphism is an element of
order 2 in Aut(S), so conjugate to a rotation, a reflection or the antipodal
involution (Proposition 4.3). By looking at the fixed points, we observe that
two elements of order 2 in Aut(S) are conjugate in Aut(S) if and only if
they are conjugate in Aut(S(R)).

(3) Links of type IV. (X ~ X’ is a surface which admits two different conic
bundle structures, and the link consists of changing the structure). It follows
from [12, Theorem 2.6, case (iv)] that (Kx)? € {2,4,8}. The case 8 is not
possible since Pic(S) =~ Z. If (Kx)? = 2, the link is given by the Geiser
involution (by [12, Theorem 2.6]), which commutes with all automorphisms.
Hence, the two automorphisms of Aut(S(R),7) provided by the links are
conjugate. This is the same if (Kx)? = 4 and if there is an element of
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Aut(S) which commutes with the automorphism. By Lemma 4.13, the
only remaining case is when the two automorphisms are g1, g2 given in
Lemma 4.12. (|

Lemma 6.6 shows that the automorphisms g1, g2 given in Lemma 4.12 are quite
special. The following result describes the situation.

Lemma 6.7. (1) Let X be a Del Pezzo surface of degree 4 with p € C\{x1},
|| = 1 (see Lemma 4.8), and g1,g2 € Aut(X) be the automorphisms given
in Lemma 4.12. The action on the two conic bundles invariant yields two
involutions

g1(n) € Aut(S(R)/m), gh(n) € Aut(S(R), m)\Aut(S(R)/m)
given by

—2ip — 22
Gl : (h2) (s 2
—22)(i —
gé (,U) : (ta Z) - (Elzut_)lglt_f_l}j)—é)_zi)) ) _Z>

(using the map 1: Sc --» AL of Lemma 5.4)

(2) Taking another surface given by u' € C\{x1},|p'| = 1, the following are equiva-
lent:
(a) g1(p) and g} (1) are conjugate in Aut(S(R),n);
(b) gh(p) and gh(') are conjugate in Aut(S(R),w);
(c) p' = p*t.

(3) Let g € Aut(S(R)/m) be an element of order 2, such that Fix(g) is a rational
curve with no real point. Then, g is conjugate in Aut(S(R),w) to ¢} (u) for
some p e C\{£1}, |u| = 1.

Proof. Let g € Aut(S(R)/m) be an element of order 2, such that Fix(g) is a rational
curve with no real point. The element g belongs to Aut™ (S(R)/7), and the map
7 restricts to a double covering ,: Fix(g) — P! (Proposition 5.25). Since the
curve is rational, by the Riemann-Hurwitz formula the double covering is ramified
over two points ¢, 7 € P1(C). These two points determine the curve Fix(g), up to
isomorphisms above P!(C), i.e. isomorphisms p: Fix(g) — Fix(¢’) with 7y p = 7.
Hence, by Theorems 5.21 and 5.30, the conjugacy class of g in Aut(S(R)/7) is given
by the set {q, }.

We will use this observation to show that g is conjugate to one of the auto-
morphisms g1, g2 € Aut(X), where X is a Del Pezzo surface of degree 4, given in
Lemma 4.12.

We use the map ¢: S¢ --» A%, (z,9,2) --» (z — iy, 2) given in Lemma 5.4 to
compute the action of g1, go on A%. Note that ¥p~1: P& x PL --» AZ is locally
given by

—2is 1—sv
((:s), (L)) - (sv+ 1’1 +5v)

and its inverse is (¢,2) --» ((z + 1 :1it), (¢ : i(z — 1))). Using the explicit description
of Lemma 4.12, the actions of g1, g2 are then respectively given by

Lo L 2ipt+ (L p)(1 = 27)

e L, (A=2A)G0+p) —2)
i (02) - (GRS
These correspond to involutions gj (i) € Aut(S(R)/7) and g5(p) € Aut(S(R),7)\
Aut(S(R)/7), which are conjugate by an element which is in the group Aut(S(R))\
Aut(S(R), 7) (see Lemma 4.12).
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In order to show that there exists p such that g is conjugate to ¢f(u) in
Aut(S(R), ), we need to compute the ramification points of Fix(g} (,u)) The
curve of fixed points of ¢} (i) is given by

w1+ p)t? +dipt — (1 — 21 +p) =0

so its discriminant with respect to ¢ is equal to

—Ap(p+1)%- <z2 - (Z:LDQ) )

and the two points correspond then to z = iﬁﬁ
automorphism of the form

gb:(xayvz) e (.’E

for some b € (—1,1) (see Lemma 5.1), and claim that we can send the points ¢, g
onto +4+ + for some ,u € (C\{+1} with |p| = 1. To see this, we make the change

1—
1+z” 1+ )

points z = +’L;} correspond to 2z’ = pt1. The claim follows then from the fact that

We conjugate g with an

VI=0b2 1-0? z-i—b)

bz+1"7 bz+1"bz+1

of coordlnates z = 7= so that the map g;, acts as 2’/ — 2’ 1+b b and the

the map b — 1T—b yields a bijection (—1,1) — R~(. Hence g is conjugate to gj(u)
for some .

Let us show that ¢} (u) is conjugate to ¢i(u') in Aut(S(R),n) if and only if
1/p—1 _ 1—p

T = T 50 the pair of points are the same for

wand p~t. Hence, ¢f(p) is conjugate to ¢4 (1') in Aut(S(R), 7). Second, if ¢ (1)
is conjugate to ¢} (), there exists an element of Aut(S(R), ) whose action on P*

sends {i%} onto {+“,+1 lf;ibl,
be (—1,1) and by z > —z (Lemma 5.1). Making the same change of coordinates as
before, we obtain that p/ = p*?

To finish the proof, it remains to see that two elements g5(u) and gh(u') are
conjugate in Aut(S(R), «) if and only if i/ = p*!. The element g4(u) corresponds
to an element of H2({n), R(z)*) that we can compute using Proposition 5.39. To do
this, we need to write the corresponding element of H'({n),§). Composing g4 (i)
with (¢, z) — (¢, —z), we obtain the element of A = G given by

[—i(1+u)(1—22) 2(1—22) ]
24 i(1+p)(1-2%) |~
In order to get an element of T' < GL(2,C(z)) (see Lemma 5.36), we divide each
element of the matrix with v, with v € C, |v| = 1, v? = u, and get

[47] e T < GL(2,C(2)),

u' = ptl. First, observe that
—1

But the action is generated by the maps z —

with @ = —i+m(0=2") 5 _ 2 (indeed, @ = i(1+1/w(1-2%) _ i(1+/t)(1—22)) Obser-
v ’ v ’ 1/v v .
ving that @ = —a and that a,b are invariant by z — —z, the corresponding element

of H%({(n), R(2)*) can be computed (using Proposition 5.39) by

[ghb]zz a?+bbh 0
b a 0  a®+bbh

and corresponds therefore to

a® 4+ bbh = (1 — 2°) <z2—(i;Z) ) (1—;@ )

s _ 3 o . . (14+p)? ) 2 _ cos(B)—1 _
Writing p = cos(6) +isin(f) we obtain T“ = 2(cos(0) +1), (1+u) = cos(BTT =
cos?(0)—1

(cos(0)+1)2

€ R_g, so the corresponding element of H?((n), R(z)*) is the class of
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2% + i;szgj(ﬂ Denoting by s: (0,7) u (m,27) — R~ the map s(f) = i;szgj(fi, we

observe that s(0) = s(#’) if and only if 8’ € {6, 2 — 0}. This gives the result. O

6.1. Proof of theorems A and B. We can now finish by giving the proof of the
main theorems.

Proof of Theorem A. Let g € Aut(S(R)) be of prime order. By Proposition 3.6, one
of the two following possibilities holds

(a) There exists a birational morphism ¢: X — S which is the blow-up of 0, 1, 2,
or 3 pairs of conjugate imaginary points in S, such that § = e 1ge € Aut(X),
Pic(X)? =~ Z, and X is a Del Pezzo surface.

(b) There exists o € Aut(P!) such that ar = mg. Moreover, there exists a birational
morphism €: X — S that restricts to a diffeomorphism X (R) — S(R) such that
G =¢c"1ge e Aut(X), me: X — P! is a conic bundle on X, and Pic(X)9 =~ Z2.

In particular, we have a Mori fibration in the sense of Definition 6.1.

In the case (a), X is a Del Pezzo surface with possible degree 8,6,4, or 2. If
(Kx)? =8, X ~ S and g € Aut(S). By Proposition 4.3, g is conjugate to one of the
cases (3), (4), or (5) of the statement. If X is a Del Pezzo surface of degree 6, X
comes from S by blowing up a pair of conjugate imaginary points and Proposition 4.6
tell us that g comes from an automorphism of S, having the same cases as before.
If X is a Del Pezzo surface of degree 4, X comes from S by blowing up two pairs
of conjugate imaginary points and by Proposition 4.11 g is conjugate to a; or as
giving in case (2). If X is a Del Pezzo surface of degree 2, X comes from S by
blowing up three pairs of conjugate imaginary points and Lemma 4.15 asserts that
the Geiser involution v is such that Pic(X)" has rank 1 and Lemma 4.16 that there
is no other such automorphism of X. We get then case (1).

We look now at case (b), where rk(Pic(X)?) = 2. In this case, g is conjugate to
an element of Aut(S(R), ) by some birational morphism €: X — S that restricts
to a diffeomorphism X(R) — S(R) (see Remark 6.2) that we call g again for
simplicity. Since the order of g is finite, by Lemma 5.2 the image of g under the
map ®: Bir(S,7) — Aut(P!) is the identity or n: z — —z, after conjugation by an
element of Aut(S(R), ).

o If ®(g) is the identity, then g € Aut(S(R)/7). When g has order larger than

2, by Lemma 5.35 ¢ is conjugate to a rotation, case (3).
If g has order 2, then g is an element in Aut™(S(R)/m) when g is an
orientation-preserving birational diffeomorphism or an element that belongs
to Aut(S(R)/7)\Aut™ (S(R)/7) otherwise. Proposition 5.25 implies in the
first case, that Fix(g) is a double covering of P! with no real points and in
the second case, that Fix(g) is a double covering of P! with real points one
oval and ramification points Py and Pg. Lemma 5.10 implies that Py and
Pg are fixed in both cases. By Lemma 5.23, the action of g on the fibres of 7
is either by rotations of order 2 when g is in Aut™ (S(R)/7) or by reflections
when ¢ is in Aut(S(R)/7)\Aut™ (S(R)/7). We get thus cases (6) and (7) in
the statement, except if the curve Fix(g) is rational. It remains to see that
if Fix(g) is rational, ¢ is conjugate to another case. If g € Aut(S(R)/7)\
Aut™ (S(R)/), then the curve Fix(g) is isomorphic to P4 and g is conjugate
to the reflection v: (w:z:y:2) — (w: —x:y: z) by Theorems 5.21
and 5.30. If g € Aut(S(R)/7), then g is conjugate to an automorphism of
the last family by Lemma 6.7.

o If &(g) = n, then g = ¢’ with ®(77) = n (Lemma 5.2) and ¢’ € Aut(S(R)/x).
Since the order of g is prime, g is of order 2 in Aut(S(R), 7)\Aut(S(R)/7)
giving the case (8) in the statement, or one of the automorphisms (w : x :
y:z)— (w:tx:ty:—2). O
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Proof of Theorem B. All the cases are disjoint because of the fixed curves and order,
except maybe in case (2) where the curve of fixed points of «; has genus 1 because
elements in cases (6) and (7) may a have curve of fixed points of the same genus.
However, «; is not conjugate to an automorphism of a conic bundle since there is
no sequence of links coming from it to a Mori fibration preserving a conic bundle
(Lemma 6.6). On the other hand, «; is conjugate to another element if and only if
the conjugation is by an isomorphism of the surface X; this is again a consequence of
Lemma 6.6. We proved that conjugacy classes in (2) are disjoint and parametrised
by isomorphism classes of pairs (X, g), where X is a Del Pezzo surface of degree 4
with X (R) ~ S(R) and g is an automorphism of order 2 that does not preserve any
real conic bundle (Proposition 4.11).

It remains to show the parametrisation of the families (1) and (3) — (8).

For (1), the curves of fixed points in S(C) are not rational and invariant under
conjugation in Bir(S) and then in Aut(S(R)). We obtain a map from the set of
conjugacy classes associated to each family to the set of isomorphism classes of the
set of fixed curves. The surjectivity is given by the correspondence

Smooth real quartics - Del Pezzo surfaces of degree 2
with one oval diffeomorphic to the sphere

Concerning injectivity, if two quartics are isomorphic, then the surfaces are isomor-
phic. This is because the canonical divisor of the quartic is the class of a line (see
proof Proposition 4.14). Then every isomorphism extends to P? and then, it yields
an isomorphism of Del Pezzo surfaces of degree 2.

For (6) and (7), the elements are conjugate in Aut(S(R)) if and only if they are
conjugate in Aut(S(R)), because it is not possible to use other links that links of
type II (see the description of links given in Lemma 6.6). We can thus consider
the fixed locus, which is not only a non-rational curve, but also a curve endow
with a 2: 1-covering. Moreover, the elements of Aut(S(R), ) preserve the interval.
Conversely, let I' — P!, I" — P! be 2 : 1-coverings of P! and assume that there
exists an isomorphism «: P' — P! such that the following diagram commutes:

r -1

AT,

]Pal % Pl

and that o preserves [—1,1] then « is in the group given in Lemma 5.1, then there
exist € € Aut(S(R), ) such that we replace p with £p€~! and may assume that
« = id. Then the corresponding elements are conjugate by Proposition 5.31.

For (4) and (5), the parametrisation is trivial since there is only one element in
each family.

For (3), if two rotations are equal up to sign, they are conjugate by v or the
identity. It remains to see that if ry is conjugate to ror by p € Aut(S(R)) then
0 = £60’ (mod 27). We may assume that the order is > 5, (since otherwise we
always have § = +6 (mod 27)). We decompose p into elementary links and use
Lemma 6.6 to see that p is a product of maps of the following type:

II

dP(; - — > dPG
o
S —— - 9

where the vertical arrows are blow-ups of two imaginary fixed points, fixed by g and
the image. Hence, we may assume that the points are (0: £i: 1:0) and then we
stay in Aut(S(R),n) (Lemma 4.5). In Aut(S(R)/7) x (7) < PGL(2,C) x (1) the
elements are ([(1) e(i)g] , 1) (see Subsection 5.6), and two are conjugate only if § = +6’.
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For (8), by Corollary 5.42, conjugacy classes of elements in Aut(S(R),n)\
Aut(S(R)/7) surjects naturally to the set of conjugacy classes of elements in
Bir(.S, m)\Bir(s/m) which is uncountable. These correspond to the conjugacy classes
of Bir(S, 7), we may then have a priori more conjugacy classes in Aut(S(R),n). It
remains to prove that two such elements are conjugate in Aut(S(R), w) if and only
if they are conjugate in Aut(S(R)). For this, we write p € Aut(S(R)) an element
that conjugates one involution to another, and decompose it into elementary links.
If all links are of type II, then p € Aut(S(R), 7). If some links of type I or III are
used, then by Lemma 6.6 these pass through the sphere and the Del Pezzo of degree
6, which is impossible here, since elements of the last family are not conjugate
to(w:xz:y:2z)— (w:xx: ty: —2z) by hypothesis. The last part is when p
decomposes into links of type II and IV. The links of type IV provide two fibrations
of the same surface, which lead to two different elements of Aut(S(R), ). If the
two elements are conjugate in this latter group, the result is clear. The only case
where this is not true is by Lemma 6.6 the case given by the automorphisms g;, g2
on special Del Pezzo surfaces of degree 4 given by |u| = 1 (Lemma 4.12). But in
this case, we conjugate an element of Aut(S(R), w)\Aut(S(R)/7) to an element of
Aut(S(R)/7), and when we come back we did not change the conjugacy class in
Aut(S(R),7) (Lemma 6.7). This ends the proof of the Theorem B. O
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