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Abstract. The aim of this paper is to give the classification of conjugacy
classes of elements of prime order in the group of birational diffeomorphisms
of the two-dimensional real sphere. Parametrisations of conjugacy classes by
moduli spaces are presented.

1. Introduction

Let PnR denote the projective n-space as a scheme over R. A real projective
variety X Ă PnR is a scheme over R which may be thought of as a pair pXC, σq,
where XC is its complexification, i.e. XC :“ X ˆSpec R Spec C, and σ is an anti-
holomorphic involution on XC. Let XpCq denote the set of complex points of X
and XpRq :“ XpCqσ (the invariant points under σ) the real part of X. Supposing
that X is smooth and XpRq is nonempty, we can endow XpRq with the Euclidian
topology and obtain a manifold of real dimension m “ dimCXC over R.

There are then two kinds of regular morphisms between real algebraic varieties
X, Y studied in the literature (see for example the introductions of [14] and [7]):

(1) A regular morphism X Ñ Y is a rational map defined at all complex points.
The corresponding category is the one of schemes defined over R, together
with regular morphisms of schemes. The group of automorphisms is denoted
by AutpXq, which is in general quite small: The connected component of
the identity is an algebraic group of finite dimension.

(2) The second notion of regular morphisms consists of taking rational maps
X 99K Y that are defined only at all real points of X, such maps will
be called morphisms XpRq Ñ Y pRq. This gives another category, with
more morphisms where the objects are XpRq. The corresponding group of
automorphisms will be denoted by AutpXpRqq and is the same as the set of
birational diffeomorphisms of the algebraic variety considered.

In most real algebraic geometry texts, the second category, much richer, is in fact
studied.

In [4], I. Biswas and J. Huisman showed that if X and Y are two rational real
compact surfaces, then XpRq and Y pRq are diffeomorphic if and only if XpRq
and Y pRq are isomorphic (which corresponds to saying that there is a birational
diffeomorphism between X and Y ). The proof of this result was simplified by
J. Huisman and F. Mangolte in [11], by proving first that AutpXpRqq acts n-
transitively on XpRq for each n. The same question for geometrically rational
surfaces (i.e. rational over C) were then studied in [7] by J. Blanc and F. Mangolte.

The group AutpXpRqq is really larger than AutpXq in general. In particular,
J. Kollár and F. Mangolte showed in [15] that AutpXpRqq is dense in DiffpXpRqq if
X is a smooth real compact rational surface.

Some other information on the group AutpXpRqq can be given by looking at its ele-
ments of finite order. In particular, in this text we are interested in elements of prime
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order of AutpSpRqq up to conjugacy, where SpRq is the standard two-dimensional
sphere (see Section 2). The group AutpSpRqq is contained in the group BirpSq of real
birational transformations of the sphere, which is isomorphic to the real Cremona
group BirpP2

Rq. This latter group is, of course, contained in the complex Cremona
group BirpP2

Cq. The problem of classification of conjugacy classes of elements of finite
order in BirpP2

Cq (which contains the groups BirpXq described before) have been of
interest for a lot of mathematicians. The first classification was the one of E. Bertini
([3]), who studied involutions. The decomposition into three types of maps, namely
Bertini involutions, Geiser involutions, and Jonquières involutions, was correct but
there is some redundancy because the curves of fixed points were not considered. A
modern and complete proof was obtained by L. Bayle and A. Beauville in [1], using
the tools of the minimal model program developed in dimension 2 by Yu. Manin
([16]) and V.I. Iskovskikh ([13]). They obtain parametrisations of the conjugacy
classes by the associated fixed curves. T. de Fernex generalised the classification in
[10] for elements of prime order (except for one case, done in [2] by A. Beauville
and J. Blanc). See also [20] for another approach to the same question. The precise
classification of elements of finite order was then obtained in [5] by J. Blanc, using
the description of finite groups of I. Dolgachev and V.I. Iskovskikh [9]1. Again,
the parametrisations are given by fixed curves (of powers of elements), but also by
actions of the elements on the curves.

In this text, we obtain the results for the analogous problem of classification for
elements of prime order in the group AutpSpRqq. The classification is summarised
in Section 2 (Theorem A), which states that there are eight different families of
conjugacy classes, some with only one element and others with infinitely many
elements. The second main result is concerning the parametrisation of the conjugacy
classes in each family (Theorem B). As AutpSpRqq Ă BirpP2

Cq, it is possible to
compare the classification of the birational diffeomorphisms with the complex case
i.e. birational transformations of the complex plane. For instance, there are three
families of involutions on BirpP2

Cq: Bertini, Geiser, and de Jonquières. Bertini
involutions do not occur in the group AutpSpRqq because they would come from an
automorphism of a Del Pezzo surface of degree 1 after blowing up at least one real
point of S, which would damage the geometry of the real points; see Proposition 3.4
in Section 3. The Geiser involution of AutpSpRqq corresponds to real quartics with
one oval. Moreover, the group AutpSpRqq contains distinct families of conjugacy
classes of involutions of de Jonquières type, which are all conjugate in BirpP2

Cq, in
particular, one family, containing uncountable many elements non conjugate to each
other, corresponds to only one conjugacy class in BirpP2

Cq.
This text is organised as follows. Section 2 contains the compilation of the results

of this text presented in two main statements and examples of birational diffeomor-
phisms of the sphere. In Section 3, it is shown why the study of conjugacy classes
of elements of finite order of the group of birational diffeomorphisms corresponds to
the study of pairs pX, gq consisting of a smooth rational projective surface X and g
an automorphism of X. More precisely, there are two cases to focus on, say, when
X is a Del Pezzo surface whose real Picard group invariant by g is isomorphic to Z,
and when X admits a conic bundle structure and the real Picard group invariant by
g has rank 2. This is a result given by V.I. Iskovskikh ([13]) and in this section, it
is given more specifically what pairs are obtained for the sphere (Proposition 3.6).
In particular, since the sphere admits a structure of conic bundle given by the
projection to one of the affine coordinates, Proposition 3.6 gives that the morphism
of the conic bundle structure for a pair pX, gq, when X admits one, factors through

1Also after [9], there are still open questions on finite subgroups of BirpP2
Cq left, some of them

answered in the recent paper [19].
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that projection of the sphere. Section 4 is devoted to the study of pairs pX, gq
when X is a Del Pezzo surface, including the case of the sphere itself. Special
automorphisms of Del Pezzo surfaces of degree 2 and 4 such as Geiser involution
and automorphisms α1, α2 that are studied in Subsections 4.4 and 4.3 bring on
two different families of conjugacy classes on the sphere. In Subsection 4.1, the
conjugacy classes of the group of automorphisms of the sphere are investigated
(Proposition 4.3).

Section 5 is dedicated to the study of the birational diffeomorphisms that are
compatible with the conic bundle structure of the sphere, which is a P1-fibration
not locally trivial. It is natural to understand the action of a birational map on the
basis of the fibration and that is done in the first subsection. When the action on
P1 is trivial, it is shown in Subsection 5.2 that the complex model of the sphere
is birational to A2

C, which allows to give an explicit algebraic description of the
birational transformations of the sphere and in the following subsection for birational
diffeomorphisms. In Subsection 5.4, it is proved that two birational maps of the
sphere compatible with the fibration and acting trivially on the basis of it are
conjugate in the group of birational maps of the sphere, if and only if there exist a
birational map between the curves of fixed points of these two maps, which is defined
over R. This result is also proved for the group of birational diffeomorphisms in the
following subsection. In addition, a geometrical characterisation of the birational
diffeomorphisms of order 2 is given according to the orientation when restricted
to SpRq. More precisely, it is proved that there is a one-to-one correspondence
between the conjugacy classes of orientation-preserving birational diffeomorphisms
of the sphere compatible with the fibration and acting trivially on the basis and
smooth real projective curves with not real point, which are a 2-1 covering of P1 up
to isomorphism. For the case of orientation-reversing, they are in correspondence
with smooth real projective curves with one oval, which are a 2-1 covering of P1 up
to isomorphism. In Subsections 5.6 and 5.7, for birational maps and for birational
diffeomorphisms of the sphere of order larger than two which are compatible with
the fibration and acting trivially on the basis, it is shown than they are conjugate
to rotations of the sphere. The last subsection is concerning birational maps and
birational diffeomorphisms of order two compatible with the fibration and with non-
trivial action on the basis. It is constructed a bijection between conjugacy classes of
birational involutions as before and classes on a second cohomology group that is
isomorphic to ‘bPRą0

Z{2Z. Since the representative of these classes in the group of
birational maps of the sphere are particularly birational diffeomorphisms, this implies
that there are uncountable many conjugacy classes of birational diffeomorphisms of
order two with a non-trivial action on the basis.

In Section 6, the problem that two pairs pX, gq, pX 1, g1q may rise the same
conjugacy class in AutpSpRqq is examined. In Subsection 6.1, Theorem A and B
are proved by putting together all results obtained in Sections 3, 4, 5, and 6.

1.1. Acknowledgements. This article contains the results of my PhD thesis, which
was supported by the Swiss National Science Foundation Grant "Birational Geome-
try" PP00P2_128422 /1. I thank my advisor Jérémy Blanc for his help and support
during the whole time of my PhD. I am also grateful to Frédéric Mangolte who was
the referee of my thesis and made remarks on this text.

2. Results

In this section, we state the classification of conjugacy classes of elements of prime
order in the group of birational diffeomorphisms of the sphere and also the moduli
spaces associated to each conjugacy class (Theorem A and Theorem B below). It is
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required first to present some definitions and give some examples that will appear
in the classification.

We denote by S the real projective algebraic surface in P3
R defined by the equation

w2 “ x2 ` y2 ` z2. Let σ denote the standard antiholomorphic involution in P3
C,

σ : pw : x : y : zq ÞÑ pw̄ : x̄ : ȳ : z̄q. Let SpRq denote the real part of S. Note that
SpRq is contained in the affine space where w “ 1 and corresponds to the standard
two-dimensional sphere of equation x2 ` y2 ` z2 “ 1. The following two groups are
of our interest, the first one is the group of birational transformations of the sphere
and is isomorphic to the real Cremona group, and the second one is the group of
birational diffeomorphisms of the sphere.

BirpSq :“ tf : S 99K S | f is birationalu,

AutpSpRqq :“ tf : S 99K S | f is birational and f, f´1 are defined
at every real point of Su.

Remark 2.1. BirpSq, AutpSpRqq are groups and AutpSpRqq Ă BirpSq.

Our goal is to classify the conjugacy classes of elements of AutpSpRqq of prime
order.

Remark 2.2. (i) Forgetting the real structure given by σ, the surface SC is iso-
morphic to P1

C ˆ P1
C. Indeed,

SC “ tpw : x : y : zq P P3
C | pw ` zqpw ´ zq “ py ` ixqpy ´ ixqu,

and the isomorphism is given by

ϕ : SC ÝÑ P1
C ˆ P1

C
pw : x : y : zq ÞÝÑ ppw ` z : y ` ixq, pw ` z : y ´ ixqq

“ ppy ´ ix : w ´ zq, py ` ix : w ´ zqq,
(1)

whose inverse is given by

ϕ´1 : P1
C ˆ P1

C ÝÑ SC
ppr : sqpu : vqq ÞÝÑ pru` sv : iprv ´ suq : rv ` su : ru´ svq

(ii) PicpSq “ Z, PicpSCq “ Z‘ Z.

We denote by π the projection π : S 99K P1 given by πpw : x : y : zq “ pw : zq.
Notice that every fibre of π is rational except for π´1p1 : 1q and π´1p1 : ´1q, which
are the union of the lines w “ z, x “ ˘iy, and w “ ´z, x “ ˘iy, respectively.

Let us fix some notation for groups associated to the pair pS, πq,

BirpS, πq :“tg P BirpSq | Dα P AutpP1q such that απ “ πgu,

AutpSpRq, πq :“tg P AutpSpRqq | Dα P AutpP1q such that απ “ πgu.

Note that AutpSpRq, πq Ă BirpS, πq, more precisely AutpSpRq, πq “ BirpS, πq X
AutpSpRqq. The group AutpSpRq, πq is the group of birational diffeomorphisms that
preserve the fibration.

There is a natural map Φ sending any g P BirpS, πq to the associated action on
the basis Φpgq “ α P AutpP1q so that the following diagram commutes:

S

π ��

g // S
π ��

P1 α

»
// P1

Hence we get the exact sequence:

1 Ñ BirpS{πq Ñ BirpS, πq
Φ
ÝÑ AutpP1q, (2)
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where we have denoted by BirpS{πq the group:

BirpS{πq :“ tg P BirpS, πq | π “ πgu.

One can see the group of birational diffeomorphisms that acts trivially on the
basis of the fibration as a subgroup of BirpS{πq, more precisely,

AutpSpRq{πq “ tg P AutpSpRq, πq | π “ πgu.

This latter subgroup has a special description given by the exact sequence

1 Ñ Aut`pSpRq{πq Ñ AutpSpRq{πq o
ÝÑ Z{2ZÑ 1

where Aut`pSpRq{πq denotes the orientation preserving birational diffeomorphisms
of S and the map AutpSpRq{πq o

ÝÑ Z{2Z admits a section s : Z{2ZÑ AutpSpRq{πq
mapping ´1 into τ where τ is a reflection, say, τ : S Ñ S, px, y, zq ÞÑ px,´y, zq in
the chart w “ 1. Then

AutpSpRq{πq – Aut`pSpRq{πq ¸ xτy. (3)

Before stating the main results, let us describe some examples.

Example 2.3. Geiser involution of the sphere
The blow-up ζ : X Ñ S of three pairs of conjugate imaginary points in SpCq is a
real Del Pezzo surface X of degree 2, with XpRq isomorphic to SpRq. The linear
system of the anticanonical class of X yields double covering of P2 ramified over a
smooth real quartic with one oval. The Geiser involution ν on X is the involution
which exchanges the two points of any fibre. The birational map ζνζ´1 on S is a
birational diffeomorphism of S of order 2 that fixes pointwise a non-hyperelliptic
curve of genus 3 with one oval. The birational diffeomorphism obtained will be
called Geiser involution of the sphere.

Example 2.4. The blow-up ε : X Ñ S of two pairs of conjugate imaginary points
in SpCq is a real Del Pezzo surface X of degree 4 (see Subsection 4.3), with XpRq
isomorphic to SpRq. In this case, the anticanonical divisor of X is very ample and
then the linear system of | ´KX | gives an embedding into P4 as an intersection
of two quadrics. In the coordinates py1 : y2 : y3 : y4 : y5q of P4, X is given by the
intersection of

Q1 : pµ´ µµ` µqy2
1 ´ 2y1y2 ` y

2
2 ` p1´ µ` µµ´ µqy

2
3 ` y

2
4 “ 0,

Q2 : µµy2
1 ´ 2µµy1y2 ` pµ´ 1` µqy2

2 ` µµy
2
4 ` p1´ µ` µµ´ µqy

2
5 “ 0,

for some µ P Czt0,˘1u (see Proposition 4.9 in Subsection 4.3).
The automorphisms α1, α2 on X defined by

α1 : py1 : y2 : y3 : y4 : y5q ÞÑ py1 : y2 : y3 : y4 : ´y5q,

α2 : py1 : y2 : y3 : y4 : y5q ÞÑ py1 : y2 : ´y3 : y4 : y5q

yield the birational diffeomorphisms εα1ε
´1, εα2ε

´1 on S of order 2 that by abuse
of notation we denote again α1 and α2. Each fixes pointwise an elliptic curve.

Example 2.5. Let θ P r0, 2πq. The rotation rθ P AutpSq is given by

rθ : pw : x : y : zq ÞÑ pw : x cos θ ´ y sin θ : x sin θ ` y cos θ : zq.

This is a rotation that fixes the z-axis and preserves the fibration π.

Example 2.6. The reflection υ is given by the map

υ : pw : x : y : zq ÞÑ pw : ´x : y : zq.

This is a reflection that preserves the fibration π and fixes a conic.



6 MARIA FERNANDA ROBAYO

Example 2.7. The antipodal involution of the sphere ã is given by

ã : pw : x : y : zq ÞÑ p´w : x : y : zq.

This involution has no real fixed points.

With these examples, we are ready to present the main two theorems of this text.
The first one tell us that there are eight families of conjugacy classes (some with
only one element, some with infinitely many) and the second, the moduli space
associated to each family. These two results are proved in Section 6 using all results
obtained in Sections 4 - 6.

Theorem A. Every element of prime order of AutpSpRqq is conjugate to an element
of one of the following families:
p1q A Geiser involution.
p2q An involution α1 or α2 given in Example 2.4.
p3q A rotation rθ of prime order given in Example 2.5.
p4q The reflection υ given in Example 2.6.
p5q The antipodal involution ã given in Example 2.7.
p6q An involution in Aut`pSpRq{πq acting on the fibres of π by maps conjugate to

rotations of order 2, and whose set of fixed points on SpCq is a hyperelliptic
curve of genus ě 1 with no real points, plus the two isolated points north and
south poles, PN and PS.

p7q An involution in AutpSpRq{πqzAut`pSpRq{πq, acting on the fibres of π by maps
conjugate to reflections, and whose set of fixed points on SpCq is a hyperelliptic
curve of genus ě 1 whose set of real points consists of one oval, passing through
PN and PS.

p8q An involution in AutpSpRq, πqzAutpSpRq{πq acting by z Ñ ´z on the basis
which is not conjugate to pw : x : y : zq ÞÑ pw : ˘x : ˘y : ´zq.

Theorem B. The eight families presented in Theorem A correspond to distinct sets
of conjugacy classes, parametrised respectively by
p1q Isomorphism classes of smooth non-hyperelliptic real projective curves of genus

3 with one oval.
p2q Isomorphism classes of pairs pX, gq, where X is a Del Pezzo surface of degree 4

with XpRq » SpRq and g is an automorphism of order 2 that does not preserve
any real conic bundle.

p3q Angles of rotations, up to sign.
p4q One point (only one conjugacy class).
p5q One point (only one conjugacy class).
p6q Smooth real projective hyperelliptic curves Γ of genus ě 1 with no real point,

together with a 2: 1-covering Γ Ñ P1, up to isomorphisms compatible with the
fibration and the interval r´1, 1s.

p7q Smooth real projective hyperelliptic curves Γ of genus ě 1 with one oval, together
with a morphism Γ Ñ P1, which is a 2: 1-cover and satisfies πpΓpRqq “ r´1, 1s,
up to isomorphisms compatible with the fibration and the interval.

p8q An uncountable set, which has a natural surjection to
À

bPRą0

Z{2Z.

Remark 2.8. In (7), we can have genus 0 but this corresponds to the reflection υ.
In p6q we can also have genus 0, there is in fact a real one-dimensional family of
such maps, all conjugate to the family p8q (see Lemma 6.7).

Remark 2.9. All elements in p8q are conjugate in BirpSCq, this shows a big difference
between the complex and real cases.
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3. Surface automorphisms and pairs

In this section, it is shown that to classify conjugacy classes of a birational
diffeomorphism of finite order of the sphere is equivalent to classify birational pairs
pX, gq where g is an automorphisms of finite order of a smooth real projective surface
X obtained from the sphere after blowing up pairs of conjugate imaginary points.
Moreover, Proposition 3.6 gives what pairs pX, gq need to be studied.

We start with some definitions and a classical result due to Comessatti (Theo-
rem 3.3), which states in particular that the sphere S is a minimal real surface.

Definition 3.1. Let X be a smooth real projective surface. We say that X is
minimal if any birational morphism X Ñ Y with Y a smooth real projective surface
is an isomorphism.

Remark 3.2. Any birational morphism between smooth projective algebraic surfaces
is a sequence of contractions of

(i) one real p´1q-curve, or
(ii) two disjoint conjugate imaginary p´1q-curves.

Therefore, a surface is minimal if and only if it does not contain a real p´1q-curve
or two disjoint conjugate imaginary p´1q-curves. Let us cite the following classical
result due to Comessatti [8]:

Theorem 3.3. If X is a minimal rational smooth real surface such that XpRq ‰ H,
then X is isomorphic to P2

R, to S, or to a real Hirzebruch surface Fn with n ‰ 1.
Moreover, XpRq is connected and homeomorphic to the real projective plane, the
sphere, the torus (n even), or the Klein bottle (n odd) respectively.

Proposition 3.4. Let X be a smooth real projective surface with XpRq diffeomorphic
to the sphere. Then X does not contain any real p´1q-curve. In particular, any
birational morphism ζ : X Ñ Y , where Y is a smooth real projective surface, restricts
to a diffeomorphism ζ : XpRq Ñ Y pRq.

Proof. If X contains a real p´1q-curve, then there is a birational morphism which
corresponds to the blow-up of a real point of some smooth real projective surface
whose preimage by such a birational morphism is the real p´1q-curve. Then the
neighbourhood of the real locus of the p´1q-curve in XpRq is topologically a Möbius
strip which implies that XpRq is not orientable and therefore non isomorphic to the
sphere. �

Definition 3.5. Let pX, gq be a pair i.e. X is a smooth real projective surface
and g is a non-trivial automorphism of X of finite order. The pair pX, gq is said
to be minimal if any birational morphism ζ : X Ñ X 1 such that there exist an
automorphism g1 of X 1 of finite order with ζ ˝ g “ g1 ˝ ζ is an isomorphism.

Proposition 3.6. Let g P AutpSpRqq be an element of finite order and let π : S 99K
P1 be the map given by πpw : x : y : zq “ pw : zq. Replacing g with a conjugate in
the group AutpSpRqq, one of the following holds:

paq There exists a birational morphism ε : X Ñ S which is the blow-up of 0, 1, 2, or
3 pairs of conjugate imaginary points in S, such that ĝ “ ε´1 ˝ g ˝ ε P AutpXq,
PicpXqĝ – Z, and X is a Del Pezzo surface.

pbq There exists α P AutpP1q such that απ “ πg. Moreover, there exists a birational
morphism ε : X Ñ S that restricts to a diffeomorphism XpRq Ñ SpRq such
that ĝ “ ε´1 ˝ g ˝ ε P AutpXq, π ˝ ε : X Ñ P1 is a conic bundle on X, and
PicpXqĝ – Z2.
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Proof. Let g P AutpSpRqq of finite order, g : S 99K S is a birational map with a
finite number of imaginary base points, say p1, p1, . . . , pn, pn that belong to S as
proper or infinitely near points. After blowing up all of them and their images under
powers of g (meaning the orbit of the points by g), we obtain a smooth projective
surface X̃

X̃

ζ ��

g̃“ζ´1gζ// X̃
ζ ��

S
g // S

where g̃ is an automorphism of X̃.
Since g is defined at every real point of S, the birational morphism ζ restricts to

a diffeomorphism X̃pRq Ñ SpRq. After contracting all sets of disjoint p´1q-curves
which are invariant by g̃ and defined over R, we get a minimal pair pX, ĝq, with
XpRq diffeomorphic to the sphere by the Proposition 3.4, which can be one of the
two following possibilities (see [13, Theorem 1G]):
(i). PicpXqĝ has rank 1 and X is a Del Pezzo surface.
(ii). PicpXqĝ has rank 2, there is a morphism X

πX
ÝÝÑ P1, X is a conic bundle.

Recall that PicpXqĝ is the part of PicpXq which is invariant by ĝ P AutpXq.
In the first case, there exists ε : X Ñ Z a birational morphism to a minimal

projective smooth real algebraic surface Z. By Proposition 3.4, ZpRq is diffeomorphic
to the sphere and by Theorem 3.3, we have Z » S. Then pKXq

2 ą 0, KX “

ε˚pKSq `E1 `E1 ` ¨ ¨ ¨ `Er `Er ñ pKXq
2 “ K2

S ´ 2r and consequently X is the
blow-up of 0, 2, 4 or 6 points in S and X is a Del Pezzo surface of degree 8, 6, 4 or
2 and this gives statement paq. We study this case in detail in Section 4.

For the second case, we denote by pX,πX , ĝq the minimal real conic bundle with
rank PicpXqĝ “ 2. Recall that XpRq » SpRq implies that there is no real p´1q-curve
on X. Forgetting the action of ĝ on X, there is a birational morphism X Ñ Z which
is the contraction of disjoint imaginary p´1q-curves in fibres. In this way, we obtain
πZ : Z Ñ P1 a minimal conic bundle with exactly two singular fibres because ZpRq
is diffeomorphic to SpRq again by Proposition 3.4. Now, if we dismiss π and keep
contracting, we end up with Z̃ a minimal real surface such that Z̃pRq » ZpRq and
by Theorem 3.3 we have Z̃ » S implying that Z is the blow-up of two imaginary
points on S. In this case, the surface Z is unique and is the Del Pezzo surface of
degree 6 that will be described in Subsection 4.2. The explicit conic bundle structure
on Z corresponds to the lift of the projection π : S 99K P1 sending pw : x : y : zq to
pw : zq. More precisely, πZ “ π ˝ ε where ε : Z Ñ S is the blow-up of two imaginary
conjugate points. �

4. Del Pezzo surfaces with rkpPicpXqĝq “ 1

In this section, we study the pairs pX, gq where X is a Del Pezzo surface and g is
an automorphism of X. This corresponds to the first case in Proposition 3.6.

Recall that the complex surface SC is isomorphic to P1
CˆP1

C via the isomorphism
ϕ : SC Ñ P1

C ˆ P1
C (see Remark 2.2).

We denote by f and f the divisors of the fibres of the two projections i.e.
PicpSCq “ Zf ‘ Zf̄ and by abuse of notation we denote again by f and f the
pullback ε˚pfq and ε˚pfq in X for ε : X Ñ S a birational morphism.

4.1. Case: pKXq
2 “ 8. In this subsection, our interest is to present the group of

real automorphisms of S, AutpSq, and describe the conjugacy classes of it. We call
σ the corresponding antiholomorphic involution in P1

C ˆ P1
C via the isomorphism ϕ,

which is given by σpx, yq “ py, xq.



PRIME ORDER BIRATIONAL DIFFEOMORPHISMS OF THE SPHERE 9

Proposition 4.1. The group AutpSq corresponds, via ϕ, to the subgroup of the
group of complex automorphisms AutpP1

C ˆ P1
Cq generated by υ : px, yq ÞÑ py, xq and

by F “ tpA,Aq | A P PGLp2,Cqu. Moreover, AutpSq – F ¸ xυy.

Proof. Using the C-isomorphism SC » P1
C ˆ P1

C, the group AutpSq is the subgroup
of AutpP1

CˆP1
Cq consists of elements that commute with σ, i.e. AutpSq “ AutpP1

Cˆ
P1
C, σq. Let pA,Bq P PGLp2,Cq ˆ PGLp2,Cq, pA,Bq commutes with σ if and only

if pA,Bqσpx, yq “ σpA,Bqpx, yq “ σpAx,Byq and hence pAy,Bxq “
`

By,Ax
˘

and
it is equivalent to A “ B. If we call υ : px, yq ÞÑ py, xq, which corresponds to
pw : x : y : zq ÞÑ pw : ´x : y : zq on P3, we see that υσ “ συ, then AutpSq “
AutpP1

C ˆ P1
C, σq “ F ¸ xυy. �

Automorphisms in F fix the divisors of fibres f and f while elements of AutpSqzF
are thus of the form px, yq ÞÑ pAy,Axq for A P PGLp2,Cq i.e. automorphisms
exchanging the divisors of the fibres f and f .

Example 4.2. The following automorphisms, already described in the introduction,
are now presented as automorphisms of P1

C ˆ P1
C via the isomorphism ϕ:

(1) The rotation rθ given in Example 2.5 belongs to AutpSq and corresponds
to the automorphism px, yq ÞÑ pxe´iθ, yeiθq of P1

C ˆ P1
C.

(2) The reflection υ given in Example 2.6 belongs to AutpSq and corresponds
to the automorphism υ : px, yq ÞÑ py, xq of P1

C ˆ P1
C.

(3) The antipodal automorphism of the sphere given in Example 2.7 corresponds
to the automorphism ã : px, yq ÞÑ

´

´ 1
y ,´

1
x

¯

of P1
C ˆ P1

C.

Proposition 4.3. Every element of AutpSq of prime order is conjugate to a rotation
rθ , or to the reflection υ, or to the antipodal involution ã, which are given in
Example 4.2.

Proof. We work in AutpP1
C ˆ P1

Cq according to Proposition 4.1. If g P F then
g : px, yq ÞÑ pAx, Āyq for some A P PGLp2,Cq of finite order. Hence, A is conjugate
to

“

1
e´iθ

‰

for some angle θ and locally we write x ÞÑ e´iθx. This shows that g is
conjugate in F to px, yq ÞÑ pxe´iθ, yeiθq.

If g R F, then g : px, yq ÞÑ pAy, Āxq for some A P PGLp2,Cq. Since g has prime
order, g2 is the identity so AĀ “ 1 in PGLp2,Cq. Notice that the action of υ on
PGLp2,Cq is given by the action of υ on F in the first component, i.e. υpAq “ Ā
and the condition AĀ “ 1 is equivalent to AυpAq “ 1.

Let A0 P GLp2,Cq be a representative of the element A, then A0A0 “
“

λ 0
0 λ

‰

for
some λ P C˚. Since A0 commutes with A0A0, A0 commutes with A0. This implies
that λ P R. Then we multiply A0 with µ P C and assume that λ “ 1 or λ “ ´1. In
the first case, there exists B such that B´1A0B “ r 1 0

0 1 s because H
1pxυy,GLp2,Cqq

is trivial by Proposition 3 in [18, Chapter X]. This implies that g is conjugate to υ
by px, yq ÞÑ pBx,Byq. In the second case, we want to find B P GLp2,Cq such that
B´1AB “

“

0 ´1
1 0

‰

. This will imply that g is conjugate to the antipodal involution ã
in Example 4.2 by the automorphism px, yq ÞÑ pBx,Byq as before.

Let e1 “ r
1
0 s , e2 “ r

0
1 s be the two standard vectors, and choose a vector v1 P C2

such that pv1, A0v1q is a basis of C2. This is always possible, by taking v1 P te1, e2u.
Indeed, otherwise A0 would be diagonal, so A0 ¨A0 would have positive coefficients.
We choose then B P GLp2,Cq such that Be1 “ v1, Be2 “ A0v1, and observe that

´Be1 “ ´v1 “ A0A0v1 “ A0Be2,
Be2 “ A0v1 “ A0Be1.
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Multiplying by B´1, we obtain B´1A0Bpe1q “ e2 and B´1A0Bpe2q “ ´e1, which
corresponds to

B´1A0B “
“

0 ´1
1 0

‰

. �

Remark 4.4. The group F corresponds to the orientation-preserving automorphisms
of S denoted by Aut`pSq.

In the sequel, we will also need the following result.

Lemma 4.5. Let p “ p0 : i : 1 : 0q P S. The group of automorphisms of S
preserving the set tp, p̄u is denoted by AutpS, tp, p̄uq and, via the isomorphism ϕ,
has the following structure

AutpS, tp, p̄uq – D¸ xυ, υ̃y

where D is the subgroup of F of diagonal elements, the isomorphism υ̃ is defined by
px, yq ÞÑ

´

1
x ,

1
y

¯

, and xυ, υ̃y – pZ{2Zq2. Moreover, every element of prime order
is one of the following:
paq a rotation rθ, given in Example 4.2, corresponding to one element of D,
pbq conjugate to υ̃,
pcq conjugate to υ,
pdq equal to υυ̃,
peq equal to the map ã : px, yq ÞÑ

´

´ 1
y ,´

1
x

¯

, which corresponds on the sphere to the
antipodal automorphism.

P1 ˆ P1 SC

υ
υ̃
υυ̃
ã

px, yq ÞÑ py, xq

px, yq ÞÑ
´

1
x ,

1
y

¯

px, yq ÞÑ
´

1
y ,

1
x

¯

px, yq ÞÑ
´

´ 1
y ,´

1
x

¯

pw : x : y : zq ÞÑ pw : ´x : y : zq
pw : x : y : zq ÞÑ pw : ´x : y : ´zq
pw : x : y : zq ÞÑ pw : x : y : ´zq
pw : x : y : zq ÞÑ p´w : x : y : zq

Table 1. List of automorphisms.

Proof. The points p and p̄ correspond, via ϕ, to the points p1 : 0qp0 : 1q and
p0 : 1qp1 : 0q, respectively. Diagonal elements in PGLp2,Cq yield a subgroup of F
preserving the points p and p̄ which is D. The elements in F which interchange
the two points are elements pA, Āq in F with A of the form r 0 1

a 0 s P PGLp2,Cq.
Then the subgroup of F which preserve the set tp, p̄u has the structure D ¸ xυ̃y
with υ̃ the automorphism of F defined by the element r 0 1

1 0 s and that locally is
described in the statement. As υ̃ commutes with υ that permutes the points, we
get AutpS, tp, p̄uq – D¸ xυ, υ̃y.
paq An element of finite order in D is a rotation rθ given in Example 4.2.
pbq If g P D¸ xυ̃y Ă AutpS, tp, p̄uq and is not a rotation, then g : px, yq ÞÑ pAx, Āyq

with A “ r 0 1
b 0 s for some b P C. Since A is conjugate to r 0 1

1 0 s by the diagonal
element

”

1 0
0 1{

?
b

ı

, then g is conjugate to υ̃ in AutpS, tp, p̄uq.
pcq If g P D¸ xυy Ă AutpS, tp, p̄uq and is not a rotation, then g : px, yq ÞÑ pDy, D̄xq

with D “ r 1 0
0 b s for some b P C. Then AĀ “ 1 because g is of prime order

and the action of υ on D is exactly the conjugation and the equality AĀ “ 1
is the same as AυpAq=1. Then g is conjugate to υ because the group D “

tD P PGLp2,Cq | D is diagonalu is isomorphic to C˚ and H1pxυy,Dq “ t1u by
Hilbert’s Theorem 90.
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(d,e) If g P D¸xυυ̃y and is not a rotation, then g “ pd, υυ̃q for d P D of finite order and
in this case, d commutes with υυ̃ implying that d has order 1 or 2 since the order
of g is prime. Then g is either υυ̃ and is given by the map px, yq ÞÑ p1{y, 1{xq
on P1 ˆ P1, which is the map pw : x : y : zq ÞÑ pw : x : y : ´zq on S or is given
by the map px, yq ÞÑ p´1{y,´1{xq on P1 ˆ P1 and corresponds, on the sphere,
to the antipodal automorphism pw : x : y : zq ÞÑ p´w : x : y : zq. �

4.2. Case: pKXq
2 “ 6.

Proposition 4.6. Let ζ : X Ñ S be the blow-up of two imaginary conjugate points
p, p. Then ζAutpXqζ´1 Ă AutpSq, so the pair pX,AutpXqq is not minimal.

Proof. On X, there are six p´1q-curves: the
two exceptional divisors Ep and Ep and the
four curves corresponding to the strict trans-
forms of the fibres f and f passing through
one point denoted by fp, fp, fp, and fp.
Since fp X fp “ fp X fp and fp X fp “ fp X

fp, these two intersection points are real
(see the circles ˝ in Figure 1) and the other
four vertices of the hexagon are imaginary,
so any action of Y can only exchange the
two lines Ep and Ep and this implies that
pX,AutpXqq is not minimal. �

HH
H
fp ��

�
˝ fp

EpEp

��
�
fp HH

H
˝ fp

?

p, p

‚˝ p
fp

fp

‚ ˝
p

fp

fp

Figure 1. Blow-up of p, p̄

4.3. Case: pKXq
2 “ 4. There is ζ : X Ñ S the blow-up of four imaginary points

p, p, q, q. We have 16 p´1q-curves in X: the exceptional divisors Ep, Ep, Eq, and
Eq; the strict transform of the fibres f and f passing through one point that we
denote by fp, fp, fq, fq, fp, fp, fq, and fq as in the previous subsection; and the
strict transform of the curves equivalent to f ` f (e.g. of bidegree p1, 1q) passing
through three of the four points that we denote by fppq, fppq, fpqq, and fpqq.

These p´1q-curves form the singular fibres of ten conic bundle structures on X
with four singular complex fibres each and are the following:

(1) f ` f ´ Ep ´ Eq
(2) f ` f ´ Ep ´ Eq
(3) f ` f ´ Ep ´ Ep
(4) f ` f ´ Eq ´ Eq
(5) f ` f ´ Ep ´ Eq

(6) f ` f ´ Ep ´ Eq
(7) f
(8) f
(9) 2f ` f ´ Ep ´ Ep ´ Eq ´ Eq
(10) f ` 2f ´ Ep ´ Ep ´ Eq ´ Eq

The anticanonical divisor of X is ´KX “ 2f ` 2f ´ Ep ´ Ep ´ Eq ´ Eq. We
collect these conic bundles in pairs such that the sum of every pair is ´KX :

P1 :“tf ` f ´ Ep ´ Ep, f ` f ´ Eq ´ Equ,

P2 :“tf ` f ´ Ep ´ Eq, f ` f ´ Ep ´ Equ,

P3 :“tf ` f ´ Ep ´ Eq, f ` f ´ Ep ´ Equ,

P4 :“tf, f ` 2f ´ Ep ´ Ep ´ Eq ´ Equ,

P5 :“tf, 2f ` f ´ Ep ´ Ep ´ Eq ´ Equ.
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Since KX is invariant under any automorphism of X, then AutpXq acts on the set
of pairs obtaining the following exact sequence.

0 // FR //

Ď

AutpXq
ρ //

Ď

Sym5

FC // AutpXCq
ρ // Sym5

(4)

where FR is naturally a subgroup of F5
2. An element pa1, . . . , a5q exchanges the two

conic bundles of the pair Pi if ai “ 1 and preserves each one if ai “ 0. We represent
in Figure 2 the picture of the five pairs of conic bundles and with the next one, how
the anti-holomorphic involution σ acts on them.

‚

f ` f ´ Ep ´ Ep

‚

f ` f ´ Eq ´ Eq

P1

‚

f ` f ´ Ep ´ Eq

‚

f ` f ´ Ep ´ Eq

P2

‚

f ` f ´ Ep ´ Eq

‚

f ` f ´ Ep ´ Eq

P3

‚

f

‚

´KX ´ f

P4

‚

f

‚

´KX ´ f

P5

‚

‚

P1

iIi
I

σ

σ

σ σ

σ

σ‚

‚

P2

6?
‚

‚

P3

6?
‚

‚

P4

-�

-�
‚

‚

P5

Figure 2. Representation of the five pairs of conic bundles and
the action of σ on them.

Remark 4.7. The image of ρ in the exact sequence (4) is contained in the group
xp2 3q, p4 5qy Ă Sym5 as a consequence of the action of the antiholomorphic
involution σ. (See Figure 2).

Lemma 4.8. Let p, q P P1
CˆP1

C » SC be two distinct imaginary non conjugate points
such that the blow-up of p, p̄, q, q̄ is a Del Pezzo surface. Then up to automorphisms
of the sphere, the points p and q can be chosen to be p1 : 0qp0 : 1q and p1 : 1qp1 : µq
for some µ P Czt0,˘1u, respectively.

Proof. Let p “ pr1 : s1qpu1 : v1q P P1
C ˆ P1

C. Applying the automorphism pA,Aq P F

where A “
“

v1 ´u1
´s1 r1

‰

maps p into p1 : 0qp0 : 1q and p̄ into p0 : 1qp1 : 0q. Now, we
may assume that p “ p1 : 0qp0 : 1q and p̄ “ p0 : 1qp1 : 0q and q “ pλ : 1qpρ : 1q
with λ, ρ P C˚ because by hypothesis the points are not on the same fibres by any
projection. The automorphism px, yq ÞÑ pλx, λ̄yq fixes p and p̄ and sends q into
p1 : 1qp1 : µq and q̄ into p1 : µ̄qp1 : 1q.

Notice that when µ “ 1 the points q and q̄ are equal; when µ “ 0 the points p
and q̄ are on the same fibre, as well as the points p̄ and q; and finally, when µ “ ´1
there is a diagonal passing through the four points. Hence, the blow-up of p, p̄, q, q̄
is not a Del Pezzo surface. �

Proposition 4.9. paq The kernel of the sequence p4q is

FR “ tpa1, . . . , a5q P pF2q
5 | a1 ` a2 ` a3 “ 0 and a4 ` a5 “ 0u – pF2q

3,

and is generated by the elements γ1 “ p0, 1, 1, 0, 0q, γ2 “ p1, 0, 1, 0, 0q, and
γ “ p0, 0, 0, 1, 1q which correspond to the automorphisms of X with coordinates
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in P4 given as

γ1 : py1 : y2 : y3 : y4 : y5q ÞÑ py1 : y2 : ´y3 : y4 : ´y5q,

γ2 : py1 : y2 : y3 : y4 : y5q ÞÑ py1 : y2 : y3 : ´y4 : ´y5q,

γ : py1 : y2 : y3 : y4 : y5q ÞÑ py1 : y2 : ´y3 : ´y4 : ´y5q.

pbq The equation of the surface X is given by the intersection of the following two
quadrics,

Q1 : pµ´ µµ` µqy2
1 ´ 2y1y2 ` y

2
2 ` p1´ µ` µµ´ µqy

2
3 ` y

2
4 “ 0,

Q2 : µµy2
1 ´ 2µµy1y2 ` pµ´ 1` µqy2

2 ` µµy
2
4 ` p1´ µ` µµ´ µqy

2
5 “ 0.

Proof. We first prove that FR is contained in the group tpa1, . . . , a5q P pF2q
5 | a1 `

a2`a3 “ 0 and a4`a5 “ 0u. To do so, we focus on the pairs P4 and P5 and observe
that the action of the antiholomorphic involution on those pairs (see Figure 2)
implies that for an automorphism g of X, which is in the kernel, is of the form either
p˚, ˚, ˚, 0, 0q or p˚, ˚, ˚, 1, 1q, which is the same as the condition a4 ` a5 “ 0. Hence,
a1 ` a2 ` a3 “ 0 because over C, the kernel of the map ρ : AutpXCq Ñ Sym5 is the
set tpa1, . . . , a5q P pF2q

5 |
ř

ai “ 0u [6, Lemma 9.11].
We show the existence of γ, γ1, and γ2 and compute the equation of the surface X

using the fact that the anticanonical divisor ´KX is very ample and then the linear
system of | ´KX | gives an embedding into P4 as an intersection of two quadrics.
We study then the following diagram

X

p,p,q,q
��

� �|´KX |// P4

S
ξ

;;

where the vertical map is the blow-up of four imaginary points p, p, q, q of S
viewed SC as P1

C ˆ P1
C via the isomorphism ϕ given in Remark 2.2. As ´KX “

2f ` 2f ´ Ep ´ Ep ´ Eq ´ Eq, the linear system | ´KX | corresponds to the curves
of S of bidegree p2, 2q viewed on P1

C ˆ P1
C » SC passing through the four blow-up

points.
By Lemma 4.8, we may assume that p “ p1 : 0qp0 : 1q and q “ p1 : 1qp1 : µq for

some µ P C˚zt0,˘1u, and then p̄ “ p0 : 1qp1 : 0q and q̄ “ p1 : µ̄qp1 : 1q.
In coordinates pr : sqpu : vq on P1

C ˆ P1
C, a basis of the linear system | ´KX | is

given by:

Γ1 “ svpr ´ sqpv ´ uq pf ´ Epq ` pf ´ Epq ` pf ´ Eqq

`pf ´ Eqq

Γ2 “ pvs´ µruqpr ´ sqpv ´ uq pf ` f ´ Ep ´ Ep ´ Eqq ` Eq

`pf ´ Eqq ` pf ´ Eqq

Γ3 “ urpv ´ µuqps´ µrq pf ´ Epq ` pf ´ Epq ` pf ´ Eqq

`pf ´ Eqq

Γ4 “ pvs´ µruqpµp1´ µqru pf ` f ´ Ep ´ Ep ´ Eqq ` Eq

`pµ´ µqsu` pµ´ 1qsvq `pf ` f ´ Ep ´ Eq ´ Eqq ` Ep

Γ5 “ pµpµ´ 1qru` pµ´ µqrv pf ` f ´ Ep ´ Eq ´ Eqq ` Eq

`p1´ µqsvqups´ µrq `pf ´ Epq ` pf ´ Eqq
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The computation of the actions of γ1, γ2, and γ on PicpXq with respect to the
basis tΓ1,Γ2,Γ3,Γ4,Γ5u described above, gives the following elements:

M1 “

¨

˚

˝

0 ´µ´µ
µ

1 µ´µ 1´µ

0 1 0 0 0
1 0 0 µ´µ 1´µ

0 1
µ

0 ´1 0

0 0 0 0 ´1

˛

‹

‚

, M2 “

¨

˚

˝

1 2µ´µ
µ

0 0 1´µ

0 ´1 0 0 0
0 1 1 0 µ´2µ`1

0 ´ 1
µ

0 1 ´1

0 0 0 0 ´1

˛

‹

‚

, and M “

¨

˚

˝

0 ´µ´µ
µ

1 µ´µ 0

0 1 0 0 0
1 0 0 µ´µ µ´µ

0 1
µ

0 ´1 1

0 0 0 0 1

˛

‹

‚

.

By a change of the basis, the matrices M1, M2, and M can be diagonalised and
the map ξ : S Ñ P4 is given by ppr : sq, pu : vqq ÞÑ N ¨ yt where

N “

¨

˚

˝

1 1 ´1 ´µ´µ µ

0 ´ 1
µ 0 2 ´1

1 1 1 µ´µ 1´µ
0 0 0 0 ´i
0 ´ 1

µ 0 0 0

˛

‹

‚

and y “ pΓ1, . . . ,Γ5q.

With this new basis, the surface X, which is the image of the anticanonical
embedding, is given by the intersection of the two quadrics Q1 and Q2 in the
statement as well as the automorphisms γ1, γ2, and γ. �

Proposition 4.10. The image of the sequence p4q, ρpAutpXqq Ă Sym5, is xp2 3q
p4 5qy if |µ| “ 1 and trivial otherwise.

Proof. As already mentioned in Remark 4.7, ρpAutpXqq Ă xp2 3q, p4 5qy. We show
that the elements p2 3q and p4 5q do not belong to the image while p2 3qp4 5q does
it if and only if |µ| “ 1.

We start explaining why there is no automorphism of type p2 3q. If there were
an automorphism α exchanging the pair P2 with P3 then α would act on P2 and P3

either like
‚

‚

P2

-

-

�

�
‚

‚

P3

or like
‚

‚

P2

PPPPq��
��1����) PP
PPi ‚

‚

P3

.

We may assume that the action on the pairs P2 and P3 is the first since we can
multiply the second one by the element of FR that corresponds to γ1 “ p0, 1, 1, 0, 0q.

On the pairs P4 and P5, the action of α is either
¨

¨

P4

¨

¨

P5

or
‚

‚

P4

6?
‚

‚

P5

6? . And as

before, we may assume that it is the first one by multiplying the second one by
γ “ p0, 0, 0, 1, 1q. Summarising, we have to study only two cases:

(a)
¨

¨

P1

‚

‚

P2

-

-

�

�
‚

‚

P3

¨

¨

P4

¨

¨

P5

(b)
‚

‚

P1

6?
‚

‚

P2

-

-

�

�
‚

‚

P3

¨

¨

P4

¨

¨

P5

In both cases (a) and (b), f , f are fixed and hence f ` f is fixed. In the case (a),
looking at the pair P1 we see that f ` f ´Ep ´Ep, f ` f ´Eq ´Eq are fixed, then
Ep ` Ep and Eq ` Eq are fixed while the action on pairs P2 and P3 gives that α
interchanges Ep`Eq with Ep`Eq and Ep`Eq with Ep`Eq. This implies that Ep,
Ep are fixed and Eq, Eq are exchanged. So α would come from an automorphism
α1 of P1 ˆ P1 which fixes p, p and interchanges q and q. Let us see that such an α1
does not exist.

The automorphism α1 would be given by px, yq ÞÑ pAx,Ayq where A P PGLp2,Cq
with α1ppq “ p, α1ppq “ p then α1 : px, yq ÞÑ pλx, λyq with λ P C under the choice of
the points p “ p1 : 0qp0 : 1q and q “ p1 : 1qp1 : µq for µ R t0,˘1u (Lemma 4.8). Since
α1pqq “ q, we have λ “ µ and λµ “ 1 and hence µ2 “ 1, which gives a contradiction.

In the case (b), α is not even an automorphism of the Picard group because the
matrix corresponding to an action described in (b) with basis tf, f , Ep, Ep, Eq, Equ



PRIME ORDER BIRATIONAL DIFFEOMORPHISMS OF THE SPHERE 15

is
¨

˚

˝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1{2 ´1{2 1{2 1{2
0 0 ´1{2 1{2 1{2 1{2
0 0 1{2 1{2 ´1{2 1{2
0 0 1{2 1{2 1{2 ´1{2

˛

‹

‚

.

Therefore, an automorphism that acts as p2 3q does not belong to the image.
Now, we prove that automorphisms of type p4, 5q are not in the image and we

proceed in the same way as we did for p2 3q. The action of an automorphism

of type p4 5q on the pairs P4 and P5 is either like
‚

‚

P4

-�

-�
‚

‚

P5

or like
‚

‚

P4

H
HHj
�
�����
�*
HH

HY ‚

‚

P5

.

Multiplying by p0, 0, 0, 1, 1q we may assume that is the first one. With respect to
the action on the first three pairs P1, P2, and, P3 we assume that the action on
P1 and P3 is the identity since we can multiply by p1, 1, 0, 0, 0q or by p0, 1, 1, 0, 0q.
Then, we have two cases to focus on:

(a)
¨

¨

P1

¨

¨

P2

¨

¨

P3

‚

‚

P4

-�

-�
‚

‚

P5

(b)
¨

¨

P1

‚

‚

P2

6?
¨

¨

P3

‚

‚

P4

-�

-�
‚

‚

P5

The case (a) corresponds to an automorphism which interchanges f with f and fixes
Ep, Ep, Eq, and Eq. It would be the lift of an automorphism of S fixing 4 points
which does not exist. On the other hand, the case (b) is not an automorphism of
the Picard group because the matrix corresponding to it is

¨

˚

˝

0 1 0 0 0 0
1 0 0 0 0 0
0 0 1{2 1{2 ´1{2 1{2
0 0 1{2 1{2 1{2 ´1{2
0 0 ´1{2 1{2 1{2 1{2
0 0 1{2 ´1{2 1{2 1{2

˛

‹

‚

.

Finally, we check that there is an automorphism which acts as p2 3qp4 5q if
and only if |µ| “ 1. As before, we can see that automorphisms corresponding to
p2 3qp4 5q are, up to composition with an element of FR, of the form

(a)
¨

¨

P1

‚

‚

P2

-

-

�

�
‚

‚

P3

‚

‚

P4

-�

-�
‚

‚

P5

(b)
‚

‚

P1

6?
‚

‚

P2

-

-

�

�
‚

‚

P3

‚

‚

P4

-�

-�
‚

‚

P5

For the case (a), looking at the pairs P4 and P5 we see that f and f are exchanged
and then f ` f is fixed. The exchange of pairs P2 and P3 gives that f ` f ´Ep´Eq
and f`f´Ep´Eq are interchanged and so are f`f´Ep´Eq and f`f´Ep´Eq.
This implies that Ep`Eq with Ep`Eq are interchanged and Ep`Eq with Ep`Eq
are interchanged, respectively. So an automorphism of type p2 3qp4 5q for case (a)
comes from an automorphism δ of P1 ˆ P1 which interchanges f with f , q with q
and fixes p and p. We want to show that δ exists if and only if |µ| “ 1. So δ is
given by δ : px, yq ÞÑ pAy,Axq satisfying A r 0

1 s “ r
1
0 s, A r 1

0 s “ r
0
1 s . This implies

that A “ r 0 λ
1 0 s . Since δ interchanges q with q, then

“

0 λ
1 0

‰ “

1
µ

‰

“
“

1
µ

‰

“

”

λµ
1

ı

and
r 0 λ

1 0 s r
1
1 s “ r

1
1 s “ r

λ
1 s . Hence, λ “ 1 and µµ “ 1. Therefore this automorphism

exists if |µ| “ 1.
The case (b) is not possible because the matrix of the action of it on the Picard

group with basis tf, f , Ep, Ep, Eq, Equ is
¨

˚

˝

0 1 0 0 0 0
1 0 0 0 0 0
0 0 1{2 ´1{2 1{2 1{2
0 0 ´1{2 1{2 1{2 1{2
0 0 1{2 1{2 ´1{2 1{2
0 0 1{2 1{2 1{2 ´1{2

˛

‹

‚

and this shows that it is not an automorphism of the Picard group. �
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Proposition 4.11. If g P AutpXq and PicpXqg has rank one, then g is either
α1 “ p1, 1, 0, 1, 1q or α2 “ p1, 0, 1, 1, 1q in FR which are given by

α1 : py1 : y2 : y3 : y4 : y5q ÞÑ py1 : y2 : y3 : y4 : ´y5q,

α2 : py1 : y2 : y3 : y4 : y5q ÞÑ py1 : y2 : ´y3 : y4 : y5q.

Proof. Let g P AutpXq of prime order. If g P FR, g “ pa1, . . . , a5q and the condition
on the rank forces that the first component a1 “ 1, g is thus either p1, 1, 0, ˚, ˚q or
p1, 0, 1, ˚, ˚q. Moreover, we observe that g must interchange the two conic bundles
in the pairs P4 and P5 because otherwise, gpf ` f̄q “ f ` f̄ P PicpXqg implying
that the rank of PicpXqg ą 1 since f ` f̄ is not multiple of ´KX . Then the two
possibilities for g when g P FR are α1 “ p1, 1, 0, 1, 1q and α2 “ p1, 0, 1, 1, 1q.

Now if g R FR, Proposition 4.10 tells us that the action of AutpXq on the five
pairs is xp2 3qp4 5qy. To ask that PicpXqg – Z forces that the two conic bundle
structures in the first pair are interchanged for the same reason as before. On the
other hand, the action of p2 3qp4 5q on the pairs P2 and P3 cannot be of the form

‚

‚

P2

PPPPq��
��1

�

�
‚

‚

P3

(or the one reversing the arrows) because in this case the order of g is 4.

In addition, we observe that if the action of p2 3qp4 5q on the pairs P4 and P5 is

as in this picture:
‚

‚

P4

-�

-�
‚

‚

P5

, the divisor f ` f̄ is preserved under g and σ, then

f ` f̄ P PicpXqg. This implies that rkpPicpXqgq ą 1.
We have then to check the remaining cases,

(1) ‚

‚

P1

6?
‚

‚

P2

6?
‚

‚

P3

‚

‚

P4

6?
‚

‚

P5

6?

(2) ‚

‚

P1

6?
‚

‚

P2

‚

‚

P3

6?
‚

‚

P4

6?
‚

‚

P5

6?

(3) ‚

‚

P1

6?
‚

‚

P2

-

-

�

�
‚

‚

P3

‚

‚

P4

HHHj
������
�*
HH

HY ‚

‚

P5

(4) ‚

‚

P1

6?
‚

‚

P2

PPPPq��
��1����) PP
PPi

‚

‚

P3

‚

‚

P4

H
HHj
�

�����
�*
HH

HY ‚

‚

P5

The case (2) can be seen from case (1) conjugating it by the automorphism of
the Picard group interchanging the divisors Eq with Eq̄ and fixing f , f̄ , Ep, and Ep̄.
Now, the action of the automorphisms of the case (1) on the Picard group PicpXq
with respect to the basis tf, f , Ep, Ep, Eq, Equ is

¨

˝

1 2 1 1 1 1
2 1 1 1 1 1
´1 ´1 ´1 ´1 ´1 0
´1 ´1 ´1 ´1 0 ´1
´1 ´1 ´1 0 ´1 ´1
´1 ´1 0 ´1 ´1 ´1

˛

‚.

In this case that corresponds to α1, the eigenspace for the eigenvalue 1 is generated
by the two conic bundles of the pair P3 which are not in PicpXqg because of the
action of σ interchanges them but whose sum is ´KX . Hence, PicpXqg – Z and
therefore in case (2) as well when g “ α2. By Proposition 4.9, α1 “ γ1γ2γ and
α2 “ γ2γ which are exactly the maps in the statement.

Finally, for cases (3) and (4), the element g is not even an automorphism of the
Picard group because matrices corresponding to an action described in these cases
with basis tf, f , Ep, Ep, Eq, Equ are

¨

˚

˚

˝

2 1 1 1 1 1
1 2 1 1 1 1
´1 ´1 ´ 1

2 ´
3
2 ´

1
2 ´

1
2

´1 ´1 ´ 3
2 ´

1
2 ´

1
2 ´

1
2

´1 ´1 ´ 1
2 ´

1
2 ´

3
2 ´

1
2

´1 ´1 ´ 1
2 ´

1
2 ´

1
2 ´

3
2

˛

‹

‹

‚

and

¨

˚

˚

˝

2 1 1 1 1 1
1 2 1 1 1 1
´1 ´1 ´ 3

2 ´
1
2 ´

1
2 ´

1
2

´1 ´1 ´ 1
2 ´

3
2 ´

1
2 ´

1
2

´1 ´1 ´ 1
2 ´

1
2 ´

1
2 ´

3
2

´1 ´1 ´ 1
2 ´

1
2 ´

3
2 ´

1
2

˛

‹

‹

‚

, respectively. �
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There are automorphisms of Del Pezzo surfaces of degree 4 which are minimal
but preserve a conic bundle structure. These will be needed in the sequel. We give
here a special family of examples.

Lemma 4.12. If |µ| “ 1, then X admits two automorphisms g1, g2 P AutpXq of
order 2, acting on the conic bundles like

g1 :
¨

¨

P1

‚

‚

P2

-

-

�

�
‚

‚

P3

‚

‚

P4

HHHj
�����

��*
H

HHY
‚

‚

P5

g2 :
¨

¨

P1

‚

‚

P2

PPPPq��
��1����) PP
PPi

‚

‚

P3

‚

‚

P4

HHHj
�����

��*
H

HHY
‚

‚

P5

and having the following properties:
paq The two automorphisms g1, g2 are conjugate by γ2 P AutpXq and satisfy

rkpPicpXqgiq “ 2 for i “ 1, 2.
pbq Both g1 and g2 preserve the two real conic bundles of the pair P1. The action

on one is trivial on the basis, but non-trivial on the other one.
pcq The fixed points of gi on XpCq consists of two isolated real points, and one

smooth rational curve having no real point.
pdq The action of g1, g2 on P1

C ˆ P1
C, via the blow-up X Ñ S and the isomorphism

ϕ : SC Ñ P1
C ˆ P1

C, are respectively given by

ps, vq 99K
´

spµsv´p1`µqv`µq
µp´sv`p1`µqs´1q ,

µvp´sv`p1`µqs´1q
µsv´p1`µqv`µ

¯

ps, vq 99K
´

´sv`p1`µqs´1
spµsv´p1`µqv`µq ,

µsv´p1`µqv`µ
vp´sv`p1`µqs´1q q

¯

on the chart tp1 : sq, p1 : vq | ps, vq P A2
Cu.

Proof. The existence can be checked by using Proposition 4.10 and the description
of FR. Using the action on the conic bundles to compute the matrices of g1, g2 with
respect to the basis tf, f̄ , Ep, Ep̄, Eq, Eq̄u, we respectively get

¨

˝

2 1 1 1 1 1
1 2 1 1 1 1
´1 ´1 0 ´1 ´1 ´1
´1 ´1 ´1 0 ´1 ´1
´1 ´1 ´1 ´1 ´1 0
´1 ´1 ´1 ´1 0 ´1

˛

‚ and

¨

˝

2 1 1 1 1 1
1 2 1 1 1 1
´1 ´1 ´1 0 ´1 ´1
´1 ´1 0 ´1 ´1 ´1
´1 ´1 ´1 ´1 0 ´1
´1 ´1 ´1 ´1 ´1 0

˛

‚.

Using the fact that the points p, p̄, q, q̄ on P1
C ˆ P1

C are respectively p1 : 0qp0 : 1q,
p0 : 1qp1 : 0q, p1 : 1qp1 : µq, p1 : µ̄qp1 : 1q and the above matrices, we obtain the
explicit description of the birational maps of P1

C ˆ P1
C, given in pdq. Assertion paq

follows from the description of g1, g2; it remains to show pbq, pcq. The singular fibres
of the two conic bundles of the pair P1 are given in Figure 3, together with the
action of g1, which follows from the description of the matrix above. This shows

(1) f ` f ´ Ep ´ Ep

A
A
A
A
A

fp

�
�
�
�
�

fp

A
A
A
A
A

fp

�
�
�
�
�

fp

A
A
A
A
A

Eq

�
�
�
�
�

fppq

A
A
A
A
A

Eq

�
�
�
�
�

fppq

6

?

6

?

(2) f ` f ´ Eq ´ Eq

A
A
A
A
A

fq

�
�
�
�
�

fq

A
A
A
A
A

fq

�
�
�
�
�

fq

A
A
A
A
A

Ep

�
�
�
�
�

fpqq

A
A
A
A
A

Ep

�
�
�
�
�

fpqq

�
�
��@

@
@R@

@
@I �
�
�	-�

� -

Figure 3. Singular fibres of the two conic bundles, together with
the action of g1.

that the action on the basis is trivial in the first case and not trivial in the second.
The fixed points are then contained in the two fibres of the second fibration that are
fixed, and which are then two smooth rational curves. Looking at the first fibration,
we obtain two fixed points in each smooth fibre, three points in the first two singular
fibres and one in the last two. The only real points in these fibres are fp X fp and
fp̄ X fp̄, so we obtain on XpCq exactly two isolated real points and one smooth
rational curve with no real point. �
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Lemma 4.13. Let g P AutpXq of prime order that preserves a real conic bundle
structure and such that rkpPicpXqgq “ 2, in particular, g preserves the pair P1.
Then, one of the following occurs:
p1q there is h P Cpgq Ă AutpXq, the centraliser of g, whose action on P1 is the

exchange of the two conic bundle structures. In other words, the following
diagram commutes

g ýX
ζ1

yy

h //

π1 ��

g ýX

π2 ��
ζ2

%%
S

π // P1 » // P1 S
πoo

where ζ1, ζ2 are the blow-up of four points on SC and π1, π2 are the morphisms
corresponding to the conic bundle structures for f`f̄´Ep´Ep̄ and f`f̄´Eq´Eq̄,
respectively.

p2q The map g is equal to g1 or g2 given in Lemma 4.12.

Proof. Non trivial automorphisms in FR preserving the first pair P1 are γ1, γ, and
γ1γ. In this case, we are in p1q and can choose h “ γ2.

When g R FR, then g exchanges P2 and P3. This plus the fact that g has prime
order implies that g has order 2. On the other hand, the action of g on the pairs

P4 and P5 cannot be like
‚

‚

P4

-�

-�
‚

‚

P5

, since this would imply that rkpPicpXqgq ą 2

since in this case, g also fixes f ` f̄ . Then, the action of g on the conic bundles is
one of the two given in Lemma 4.12. �

4.4. Case: pKXq
2 “ 2. The birational morphism ζ : X Ñ S is the blow-up of 3

pairs of conjugate points, say p, p̄, q, q̄, r, r̄ P S. Since X is a Del Pezzo surface of
degree two, the linear system of the anticanonical divisor defines a double covering
| ´KX | : X Ñ P2 ramified over a quartic Γ. From the fact that XpRq » SpRq, Γ
is a real smooth quartic with one oval. We see X as w2 “ F px, y, zq in Pp2, 1, 1, 1q
and Γ the zero set of F .

Proposition 4.14. There exists an exact sequence

1 // xνy // AutpXq // AutpΓq // 1

where ν represents the Geiser involution which exchanges the two points of any fibre
i.e. the involution given by pw, x, y, zq ÞÑ p´w, x, y, zq.

Proof. We have the following exact sequence

1 // xνy // AutpXq // AutpP2,Γq // 1 (5)

where AutpP2,Γq denotes the automorphisms of P2 which preserves the quartic and
is isomorphic to AutpΓq because the restrictions gives a map from AutpP2,Γq to
AutpΓq which is injective since the only automorphism that preserves the quartic
pointwise is the identity (an automorphism of P2 can only fixed 3 points or a point
and a line but not a quartic). To see that the restriction map is surjective, we
compute the canonical divisor of the quartic by adjunction formula getting that
KΓ “ pKP2 `Γq|Γ “ p´3L` 4Lq|Γ “ L|Γ. Hence, every automorphism of Γ extends
to P2. �

Lemma 4.15. paq Let C be a p´1q-curve in X, then the p´1q-curve νpCq is equal
to νpCq “ ´KX ´ C.

pbq rkpPicpXqνq “ 1. In particular, the pair pX, xνyq is minimal.
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Proof. (a) We call ε the map defined by |´KX |. Then, εpCq is a curve of degree d for
some d. If we call D “ ε˚pεpCqq, we have that D “ dp´KXq ‰ C. This implies
that D “ C ` C 1 “ dp´KXq for C 1 a p´1q-curve, C 1 “ νpCq. Intersecting D
with ´KX we have 2 “ 2d and hence d “ 1. Then νpCq “ C 1 “ ´KX ´ C.

(b) Let C be a p´1q-curve in X, then by item (a) we have C ¨ νpCq “ Cp´KX ´

Cq “ 2. Moreover, the fact that PicpXCq is generated by the divisors in the
set A :“ t´KX , Ep, Ep̄, Eq, Eq̄, Er, Er̄u then, for any divisor D P PicpXCq,
D “

ř

aiCi with ai P Z and Ci P A. We have D ` νpDq “ D ` ai
ř

νpCiq “
aip

ř

´KX ´ Ciq “ mp´KXq for some m P Z. �

Lemma 4.16. Let g P AutpXq of prime order and g ‰ ν. Then rkpPicpXqgq ‰ 1.

Proof. Let g P AutpXq. Since a basis of PicpXCq – Z8 is tf, f̄ , Ep, Ep̄, Eq, Eq̄, Er, Er̄u,
we get that the action of g on PicpXq “ PicpXCq

σ is an element in GLp4,Zq Ă
GLp4,Cq and is diagonalisable in GLp4,Cq for g P AutpXq. If g is an involution in
AutpXq with rkpPicpXqgq “ 1, the only possibility for the action of g on PicpXqg

in GLp4,Cq is given by
ˆ

1
´1

´1
´1

˙

assuming that the first entry 1 corresponds

to the anticanonical divisor for some basis containing it. On the other hand, since
every element g in AutpXq commutes with ν, then in the same basis, g and ν are
conjugate to a diagonal action as the element presented above. This implies that g
and ν are the same.

Let g P AutpXq be of prime order p ě 3. We obtain then an element of GLp4,Zq
of order p which fixes KX . Then, the characteristic polynomial Q P Zrxs vanishes
at 1 and all other roots in C are roots of the polynomial xp´1 ` ¨ ¨ ¨ ` 1, irreducible
over Q. Hence, Q is a multiple of px´ 1qpxp´1`¨ ¨ ¨` 1q “ xp´ 1. This implies that
p ď 4, so p “ 3 and then Q “ px´ 1q2px2 ` x` 1q. Therefore PicpXqg – Z2. �

5. Conic bundle case

In this section, we describe the elements in AutpSpRqq of prime order correspond-
ing to the second case of Proposition 3.6, i.e. that belong to the group AutpSpRq, πq.
Let us recall the following notation:

BirpS, πq “tg P BirpSq | Dα P AutpP1q such that απ “ πgu,

AutpSpRq, πq “tg P AutpSpRqq | Dα P AutpP1q such that απ “ πgu,

and that Φ: BirpS, πq Ñ AutpP1q is the corresponding group homomorphism (see
the exact sequence p2q) whose kernel is denoted by BirpS{πq and by AutpSpRq{πq
for the corresponding group homomorphism AutpSpRq, πq Ñ AutpP1q.

5.1. Image of the action on the basis. Recall that π : S 99K P1 is the map given
by πpw : x : y : zq “ pw : zq. Hence, the natural coordinates on P1 are pw : zq or
simply p1 : zq for affine coordinates. With the choice of these coordinates, the group
AutpP1q is naturally isomorphic to PGLp2,Rq: an element

“

a b
c d

‰

P PGLp2,Rq acts
as

z ÞÑ
az ` b

cz ` d
or pw : zq ÞÑ pcz ` dw : az ` bwq.

In the following two lemmas, the image of the map Φ: BirpS, πq Ñ AutpP1q in the
sequence (2) is presented and the image of elements of finite order is characterised.

Lemma 5.1. The image of Φ: BirpS, πq Ñ AutpP1q is the same as the image of
its restriction to AutpSpRq, πq.

The corresponding subgroup of AutpP1q is given by the following semidirect
product, where the generator of Z{2Z is the automorphism η : z ÞÑ ´z.

ΦpBirpS, πqq “ ΦpAutpSpRq, πqq “
 “

1 b
b 1

‰

; b P p´1, 1q Ă R
(

¸ Z{2Z (6)
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Proof. Since the sphere SpRq is preserved by elements in BirpS, πq (respectively
in AutpSpRq, πq) and is mapped subjectively to the interval r´1, 1s Ă R on the
basis of the fibration. This interval is then invariant on the basis and the group
ΦpBirpS, πqq is contained in the group generated by z ÞÑ z`b

bz`1 , b P p´1, 1q Ă R
and z ÞÑ ´z because those are exactly the automorphisms of P1 which fix or
interchanged the points ´1 and 1. On the other hand, for each b P p´1, 1q Ă R
the map gb :px, y, zq ÞÑ

´

x
?

1´b2

bz`1 , y
?

1´b2

bz`1 ,
z`b
bz`1

¯

belongs to AutpSpRq, πq and is sent

to
“

1 b
b 1

‰

and the map η̃ : px, y, zq ÞÑ px, y,´zq is sent to
“

´1 0
0 1

‰

, corresponding to
z ÞÑ ´z, which proves Equality (6). �

Lemma 5.2. Let g P AutpSpRq, πq be of finite order. After conjugation in AutpSpRq, πq,
the map Φpgq is the identity or equal to

“

1 0
0 ´1

‰

.

Proof. Elements of the form
“

1 b
b 1

‰

with b P p´1, 1qzt0u are not of finite order; indeed

the eigenvalues of
“

1 b
b 1

‰

are 1˘ b, so the element
“

1 b
b 1

‰

is conjugate to
”

1`b
1´b 0

0 1

ı

in

PGLp2,Rq and 1`b
1´b P R

˚ has infinite order because 1`b
1´b ‰ ´1. Moreover,

“

1 ´b
b ´1

‰

is
conjugate to

“

1 0
0 ´1

‰

by the matrix r 1 c
c 1 s with c “

1˘
?

1´b2

b . �

5.2. Algebraic description of BirpS{πq. Extending the scalars from R to C, the
general fibre of π : SC Ñ C, px, y, zq ÞÑ z is rational. The group of birational maps
of SC preserving any general fibre of π is then equal to PGLp2,Cpzqq. The group
BirpS{πq can thus be viewed as a subgroup of PGLp2,Cpzqq.

Definition 5.3.

piq For each A P GLp2,Cpzqq, we define Ā P GLp2,Cpzqq, as the matrix obtained
by replacing every coefficient of every entry of A by its conjugate.

piiq In the same way, we define Ā for any element in PGLp2,Cpzqq and we observe
that Ā does not depend on the representative because if A1, A2 P PGLp2,Cpzqq
are in the class of the element A then A1 “ λA2 for some λ P Cpzq˚ and then
Ā1 “ λ̄Ā2 implying that Ā1 and Ā2 are both in the class of Ā.

Lemma 5.4.

paq The complex surface SC is birational to A2
C via ψ : px, y, zq 99K px´ iy, zq.

pbq The group PGLp2,Cpzqq acts on A2
C via

PGLp2,Cpzqq ˆ A2
C 99K A2

C
´ ”

αpzq βpzq
γpzq δpzq

ı

, pt, zq
¯

99K
´

αpzqt`βpzq
γpzqt`δpzq , z

¯ (7)

and thus also acts on SC via the conjugation by ψ´1.
pcq For any A P PGLp2,Cpzqq, the corresponding action of A and τĀτ on SC, via ψ

and denoted by A and τĀτ respectively, are conjugate by the anti-holomorphic
involution σ pi.e. σ : px, y, zq ÞÑ px̄, ȳ, z̄q q, where τ :“

“

0 1´z2

1 0

‰

P PGLp2,Cpzqq,
which means that the following diagram commutes

SC
σ
��

A // SC
σ
��

SC
τĀτ // SC.

In particular, the group BirpS{πq corresponds, via the action of PGLp2,Cpzqq
on SC, to the group

G :“ tA P PGLp2,Cpzqq | τAτ “ Āu
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Proof. paq The map ψ is a rational map and its inverse is given by

ψ´1 : pt, zq 99K

ˆ

t2 ´ z2 ` 1

2t
, i ¨

t2 ` z2 ´ 1

2t
, z

˙

.

pbq Clearly, the identity in PGLp2,Cpzqq gives the identity map of A2
C. Let A “

”

αpzq βpzq
γpzq δpzq

ı

and A1 “
”

α1pzq β1pzq

γ1pzq δ1pzq

ı

be elements in PGLp2,Cpzqq. We compute

pA,A1pt, zqq ÞÑ

¨

˝

α
´

α1t`β1

γ1t`δ1

¯

` β

γ
´

α1t`β1

γ1t`δ1

¯

` δ
, z

˛

‚“

ˆ

pαα1 ` βγ1qt` αβ1 ` βδ1

pγα1 ` δγ1qt` γβ1 ` δδ1
, z

˙

,

which is the same as

pAA1, pt, zqq ÞÑ

ˆ

pαα1 ` βγ1qt` αβ1 ` βδ1

pγα1 ` δγ1qt` γβ1 ` δδ1
, z

˙

.

The action of PGLp2,Cpzqq on A2
C gives an action on SC in the following

way: for any element A “
”

αpzq βpzq
γpzq δpzq

ı

P PGLp2,Cpzqq we denote by A ýA2
C the

action of A on A2
C given by the map pt, zq 99K

´

αpzqt`βpzq
γpzqt`δpzq , z

¯

, thus the following
diagram gives the action on SC that we denote by ψ´1Aψ or simply A if no
confusion:

SC

A
��

ψ // A2
C

A ýA2
C��

SC A2
C

ψ´1

oo

pcq We name σ1 : pt, zq ÞÑ pt̄, z̄q the anti-holomorphic involution on A2
C, then via the

birational map ψ we have

ψσψ´1 “ σ1τ “ τσ1 : pt, zq 99K

ˆ

1´ z̄2

t̄
, z̄

˙

.

Let A P PGLp2,Cpzqq. We want to show that τĀτpσpx, y, zqq “ σpApx, y, zqq
for any px, y, zq P SC which is the same as showing ψ´1pτĀτqpψσpx, y, zqq “
σpψ´1Apψpx, y, zqqq for any px, y, zq P SC, where the action of A and τĀτ are
now on A2

C. Notice that according to Definition 5.3piiq, the action of Ā on A2
C is

the same as the action of σ1Aσ1 and in this way, for any px, y, zq P SC we have

ψ´1pτĀτqpψσpx, y, zqq “ ψ´1pτσ1Aσ1τqpψσpx, y, zqq

“ ψ´1ppψσψ´1qApψσψ´1qqpψσpx, y, zqq

“ σψ´1Apψσpσpx, y, zqqq “ σpψ´1Apψpx, y, zqqq.

The elements in BirpS{πq correspond to the elements in PGLp2,Cpzqq which
commute with ψσψ´1, in other words, for A P PGLp2,Cpzqq we have that A
belongs to ψ´1BirpS{πqψ if τσ1Aσ1τ “ A which is equivalent to τĀτ “ A and
hence we get the description of the group G “ ψ´1BirpS{πqψ. �

Remark 5.5. The element τ “
“

0 1´z2

1 0

‰

P PGLp2,Cpzqq belongs to G and corresponds
to the element of BirpS{πq given by px, y, zq ÞÑ px,´y, zq, which is a reflection that
belongs then to AutpSq Ă AutpSpRqq.

The group G Ă PGLp2,Cpzqq defined in Lemma 5.4 is the algebraic version of
BirpS{πq, that we will study in the sequel. In the following lemma, we give a more
precise description of elements of this group.
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Lemma 5.6. Each A P G Ă PGLp2,Cpzqq is equal to
”

apzq bpzqh

b̄pzq āpzq

ı

for some polyno-
mials a, b P Crzs with no common real roots, h “ 1´z2. Moreover, the corresponding
matrix

”

apzq bpzqh

b̄pzq āpzq

ı

P GLp2,Cpzqq has a determinant apzqāpzq ´ bpzqb̄pzqh P Rrzs
which is positive when z2 ą 1.

Remark 5.7. Conversely, if A “
”

apzq bpzqh

b̄pzq āpzq

ı

P PGLp2,Cpzqq for some a, b P Cpzq
(and in particular when a, b P Crzs), then A belongs to G, since τAτ “ A.

Proof. Let A “
”

apzq bpzq
cpzq dpzq

ı

P G. The equality τAτ “ Ā gives
”

āpzq b̄pzq

c̄pzq d̄pzq

ı

“
“

0 1´z2

1 0

‰

”

apzq bpzq
cpzq dpzq

ı

“

0 1´z2

1 0

‰

.

Hence bpzq “ λc̄pzq, dpzqp1 ´ z2q “ λāpzq, cpzqp1 ´ z2q2 “ λb̄pzq, and apzqp1 ´
z2q “ λd̄pzq for some λ P Cpzq˚. From first and third equation we get that
cpp1´ z2q2´λλ̄q “ 0 and from second and fourth equation we get that āpp1´ z2q2´

λλ̄q “ 0. In both cases, λλ̄ “ p1´ z2q2 which is equivalent to λ
p1´z2q ¨

´

λ
p1´z2q

¯

“ 1,
then by Hilbert’s Theorem 90 there is µ P Cpzq˚ such that λ “ µ

µ̄ p1 ´ z2q and

A “
”

apzqµ̄ µc̄pzqp1´z2q
cpzqµ̄ āpzqµ

ı

. Calling again apzq : “ apzqµ̄pzq and bpzq : “ µpzqc̄pzq we

get A “
”

apzq bpzqh

b̄pzq āpzq

ı

.
When a “ p

q , b “
r
s with p, q, r, s P Crzs, we can multiply A by qq̄ss̄ and we

obtain an element in the same class with entries in Crzs. Now, if z0 is a common
real root of a and b thus z0 is also a real root of ā and b̄ which means that we may
divide by z ´ z0 all entries of A and remain in the same class. Then A is of the
desired form. The determinant of the corresponding element of GLp2,Cpzqq is then
aā´ bb̄p1´ z2q “ aā` bb̄pz2´ 1q P Rrzs. Notice that for z2 ą 1, aā` bb̄pz2´ 1q ą 0
because aā ě 0, bb̄ ě 0 implies aā` bb̄pz2 ´ 1q ě 0 and the fact a and b have non
common real roots implies that the inequality is strict. �

Remark 5.8. In the sequel, we will always denote by h the polynomial 1´ z2 P Rrzs.

Now, we would like to characterise elements in AutpSpRq{πq and Aut`pSpRq{πq
inside the group G “ ψ´1BirpS{πqψ. In order to do this, we need to understand the
birational map ψ : SC 99K A2

C given by px, y, zq 99K px´ iy, zq. The following result
describes the extension of the map, that we again denote by ψ.

Lemma 5.9. ψ satisfies:
paq The birational map

ψ : SC 99K P1
C ˆ P1

C
p1 : x : y : zq 99K pp1 : x´ iyq, p1 : zqq
pw : x : y : zq 99K ppw : x´ iyq, pw : zqq

has three base-points, namely q “ p0 : i : 1 : 0q, q̄ “ p0 : ´i : 1 : 0q, and one
point ω, infinitely near q.

pbq Its inverse is

ψ´1 : P1
C ˆ P1

C 99K SC

pp1 : tq, p1 : zqq 99K
´

1 : t
2
´z2`1

2t : i ¨ t
2
`z2´1

2t : z
¯

ppu : tq, pv : zqq 99K
p2tuv2 : t2v2 ´ z2u2 ` u2v2 :

ipt2v2 ` z2u2 ´ u2v2q : 2tzuvq

and has exactly three base-points, namely

p0 : 1qp0 : 1q, p1 : 0qp1 : 1q, and p1 : 0qp1 : ´1q.
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pcq The map ψ can be decomposed as the blow-up of q, q̄, ω, followed by the
contraction of the strict transforms of the curves L,M , D Ă SC given respectively
by

L : x “ iy, w “ ´z
M : x “ iy, w “ z
D : w “ 0

This can be described by the diagram in Figure 4, where PN “ p1 : 0 : 0 : 1q,
PS “ p1 : 0 : 0 : ´1q P SpRq are the north and south poles, where L, M are the
image of L, M by the anti-holomorphic involution and where the strict transforms
of the curves are again denoted by the same names.

SC

‚
L

qPS

,
,
,
,
,

D

˝

˝
M

ML

‚q PN

�
�	
q, q

H
HH
Eq
‚
ω

�
��
M�

�
�
�
�

D
P̋S

P̋N

ML

��
�
L HH

H
Eq

��� ω

HH
H
Eq
�
�Eω

D

��
�

M

ML

˝PS

P̋N

�
��
L H

HH
Eq
�
�
�
�

A
A
A
A
AU

L,M,D

P1
C ˆ P1

C

ac L

PS

M

d‚Eωac
PN

Eq Eq
-ψ

Figure 4. The decomposition of ψ into blow-ups and blow-downs.

Proof. Parts paq and pbq follow from a direct calculation. Hence, denoting by
ζ : X Ñ SC the blow-up of q, q̄, ω, the map ψζ is a birational morphism X Ñ P1

CˆP1
C,

which is the blow-up of three points since both SC and P1
C ˆ P1

C have a complex
Picard group of rank 2. Looking at coordinates, one checks that the three curves
are L,M,N , and the remaining part of the picture can be checked by computing
the intersection between the curves. �

Since M YM is the fibre of p1 : 1q P P1 by π and is singular with only real
point, every element of BirpS{πq preserves the north pole PN “M XM and either
preserves each of the two curves or interchanges them. This result is proved in the
following lemma, that describes moreover algebraically the distinct possible cases.

Lemma 5.10. Let A “

”

apzq bpzqh

b̄pzq āpzq

ı

P G Ă PGLp2,Cpzqq, for some polynomials
a, b P Crzs with no common real roots psee Lemma 5.6q, and let A P BirpS{πq be the
corresponding element psee Lemma 5.4q.

The map A is defined at the north and south poles PN “M XM and PS “ LXL.
Moreover, the following hold:
p1q If ap1q “ 0, then A exchanges M with M .
p2q If ap1q ‰ 0, then A preserves both M and M .
p3q If ap´1q “ 0, then A exchanges L with L.
p4q If ap´1q ‰ 0, then A preserves both L and L.

Remark 5.11. Note that ap1q ‰ 0 (respectively ap´1q ‰ 0) is equivalent to the
fact that the determinant apzqapzq ` bpzqbpzqh is positive when z “ 1 (respectively
z “ ´1).



24 MARIA FERNANDA ROBAYO

Proof. Recall that A acts on A2
C via

pt, zq 99K

ˆ

apzqt` bpzqp1´ z2q

bpzqt` apzq
, z

˙

(see Lemma 5.4).
Suppose first that ap1q ‰ 0. This implies that the determinant apzqapzq ` pz2 ´

1qbpzqbpzq is not zero (and in fact positive) when z “ 1. Hence, the above birational
map is a local isomorphism near the fixed point pt, zq “ p0, 1q, and restricts to
an isomorphism of the curve z “ 1. After blowing up p0, 1q, we obtain thus a
local isomorphism in the neighbourhood of the exceptional divisor and of the strict
transform of the curve z “ 1. By Lemma 5.9, these maps correspond to respectively
M and M via ψ. This shows that A is defined at PN “M XM and preserves each
of the two curves M and M .

If ap´1q ‰ 0, we find similarly that A is defined at PS “ L X L and preserves
each of the two curves L and L.

If ap1q “ 0, we write apzq “ a0pzqp1´ zq for some polynomial a0 P Crzs and have
bp1q ‰ 0, since a, b have no common real root. We consider τ “

“

0 1´z2

1 0

‰

P G, that
corresponds to the reflection px, y, zq ÞÑ px,´y, zq of the sphere S (see Remark 5.5).
Note that this map is defined at the north and south poles, interchanges L with L
and interchanges M with M . It remains to study the map

Aτ “
”

bp1´z2q ap1´z2q

a bp1´z2q

ı

“

”

bp1`zq a0p1´z
2
q

a0 bp1`zq

ı

P G Ă PGLp2,Cpzqq

and to see that it is equal to
”

a1 b1p1´z2q

b1 a1

ı

, where a1 “ b ¨ p1` zq, b1 “ a0 P Crzs have
no common real root, and such that a1p1q “ 2bp1q ‰ 0. This reduces to the previous
case.

The case where ap´1q “ 0 is similar. �

Lemma 5.12. Let A “

”

apzq bpzqh

b̄pzq āpzq

ı

P G Ă PGLp2,Cpzqq, for some polynomials
a, b P Crzs with no common real roots psee Lemma 5.6q, and let A P BirpS{πq
be the corresponding element psee Lemma 5.4q. We denote by Dpzq “ apzqāpzq ´
bpzqb̄pzqp1´ z2q P Rrzs the corresponding determinant.

Let z0 P p´1, 1q Ă R, and let Γz0 Ă S be the conic given by z “ z0. Then, the
following hold:

paq The map A is a local isomorphism at each point of Γz0 if and only if Dpz0q ‰ 0.
pbq The map A contracts the curve Γz0 onto a real point of Γz0 if and only if

Dpz0q “ 0. In this case, it has exactly one proper base-point on Γz0 , which is
real.

Proof. Observe that ψ is a local isomorphism at a general point of Γz0 by Lemma
5.9. Hence, A contracts Γz0 or is a local isomorphism at each point of it if and only
if so does A on the curve of A2

C given by z “ z0. Recall that A acts as

pt, zq 99K

ˆ

apzqt` bpzqp1´ z2q

bpzqt` apzq
, z

˙

.

If Dpz0q ‰ 0, we obtain thus a local isomorphism along Γz0 . If Dpz0q “ 0, then
apz0qt`bpz0qp1´pz0q

2
q

bpz0qt`apz0q
does not depend on t. The fact that a and b cannot both vanish

at z0 implies that the curve Γz0 is then contracted onto one point, which is thus real.
It has moreover exactly one proper base-point on this curve, which corresponds to
the vanishing of the denominator and numerator of the above fraction. �



PRIME ORDER BIRATIONAL DIFFEOMORPHISMS OF THE SPHERE 25

5.3. Algebraic description of AutpSpRq{πq. The fact that an element in the
group AutpSpRq{πq exchanges or not the lines L and L can be checked geometrically,
as the following result shows. This will help to describe algebraically the groups
AutpSpRq{πq and Aut`pSpRq{πq as subgroups of G (Proposition 5.15 below).

Lemma 5.13. Let A P AutpSpRq{πq, and let L,L,M,M Ă SC be the four curves
given in Lemma 5.9. Then, one of the following holds:
paq A P Aut`pSpRq{πq and A preserves each of the four curves L,L,M,M .
pbq A P AutpSpRq{πqzAut`pSpRq{πq and A exchanges L with L and M with M .

Proof. Since M YM is the fibre of p1 : 1q P P1 by π, every element of AutpSpRq{πq
either preserves each of the two curves or interchanges them.

We study the action of A on the lines M and M near the point PN “M XM “

p1 : 0 : 0 : 1q, the situation near PS “ LX L is similar. The equation of the sphere
being pw ´ zqpw ` zq “ x2 ` y2, the complex tangent plane TPNSC is given by
w “ z “ 0, and contains the two lines M and M , which correspond to x “ ˘iy.

The real tangent plane is contained in the complex tangent plane i.e. TPNSpRq Ă
TPNSC and the action of A on the lines M and M is the same as the action of its
differential at PN denoted by DPNA P GLp2,Cq which also preserves TPNSpRq and
is linear. Then DPNA can be presented as a matrix in GLp2,Rq.

Matrices in GLp2,Cq which preserve the two lines x “ ˘iy are of the form
“

a b
´b a

‰

for some a, b P C. Imposing the condition of preserving the real plane is
equivalent to ask for a, b P R. This tell us that if DPNA is the differential at PN of
a diffeomorphism A which fixes PN and preserves the lines M and M , then DPNA
restricted to TPN pSpRqq is of the form

“

a b
´b a

‰

for some a, b P R and is positive
defined because its determinant is a2 ` b2 ą 0 and therefore such a diffeomorphism
A is an orientation-preserving one.

On the other hand, matrices in GLp2,Cq which interchange the lines M and
M and preserve the real tangent plane are of the form

“

a b
b ´a

‰

for some a, b P R.
Then if DPNA is the differential at PN of a diffeomorphism A which fixes PN and
interchanges the lines M and M , we obtain that DPNA restricted to TPN pSpRqq is
of the form

“

a b
b ´a

‰

for some a, b P R and its determinant is ´pa2 ` b2q ă 0 which
implies that A is an orientation-reversing diffeomorphism. �

Definition 5.14. We denote by Rrzs` the multiplicative submonoid of Rrzs defined
as Rrzs` :“ tf P Rrzs | fpz0q ą 0 for each z0 P Ru.
Proposition 5.15. Let H and H0 be the subgroups of G given respectively by
ψAutpSpRq{πqψ´1 and ψAut`pSpRq{πqψ´1.

Then H “ H0 ¸ xτy, where τ “
“

0 1´z2

1 0

‰

“ r 0 h
1 0 s as before, and

H0 “

!”

apzq bpzqh

b̄pzq āpzq

ı

; a, b P Crzs, aā´ bb̄h P Rrzs`
)

.

Proof. The fact that H “ H0 ¸ xτy follows from the fact that τ corresponds to a
reflection in AutpSpRq{πqzAut`pSpRq{πq; it remains to describe H0.

Let A P G be some element, that we write as
”

apzq bpzqh

b̄pzq āpzq

ı

for some polynomials

a, b P Crzs with no common real roots (Lemma 5.6), and let D “ aā´ bb̄h P Rrzs
be the corresponding determinant. We have Dpzq ą 0 if z2 ą 1 (see Lemma 5.6).
We denote by A P BirpS{πq the corresponding element, given by ψ´1Aψ.

Suppose that A P H0. By Lemmas 5.10 and 5.13, this implies that ap1qap´1q ‰ 0,
hence Dp1q and Dp´1q are both positive. Moreover, Dpzq ‰ 0 for each z0 P p´1, 1q
by Lemma 5.12. This implies that D P Rrzs`.

Conversely, suppose that D P Rrzs`. By Lemmas 5.10 and 5.12, this implies that
A is defined at each real point of the sphere, hence A P H. The fact that A P H0 is
given by Lemma 5.13. �
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5.4. Involutions in BirpS{πq. Recall that the group of elements of BirpS, πq acting
tri-vially on the basis of the fibration is denoted by BirpS{πq. This group is conjugate
to

G “
!

A “
”

apzq bpzqh

b̄pzq āpzq

ı

; a, b P Crzs with no common real roots,

and apzqāpzq ´ bpzqb̄pzqh ą 0 for z2 ą 1
(

Ă PGLp2,Cpzqq

by the birational map ψ (see Lemma 5.4). In this subsection, we study involutions
in BirpS{πq or equivalently in G up to conjugacy.

We also recall that the action of PGLp2,Cpzqq on A2
C was given in Equation (7)

by pt, zq 99K
´

apzqt`bpzq
cpzqt`dpzq , z

¯

for
”

apzq bpzq
cpzq dpzq

ı

“ A P PGLp2,Cpzqq. Notice that when
A has order 2, the restriction of A to the P1

C corresponding to z “ z0, for a general
z0 P C, is an automorphism of order 2 with two fixed points. We denote by ΓA the
closure of the set of those fixed points as z varies in C and call it the curve of fixed
points of A or just the curve fixed by A. The corresponding definition for the sphere
is presented below, see Definition 5.20.

The following results will be useful for the proof of the main result of this
subsection in Theorem 5.21, which states that two involutions are conjugate in G if
and only if their respective fixed curves are birational over R.

Lemma 5.16.
paq If A P PGLp2,Cpzqq is an element of order 2, then A is conjugate to

“

0 p
1 0

‰

for
some p P Cpzq˚,

pbq the elements
“

0 p
1 0

‰

,
“

0 p1

1 0

‰

P PGLp2,Cpzqq with p, p1 P Cpzq˚ are conjugate in
PGLp2,Cpzqq if and only if p{p1 is a square in Cpzq.

pcq Let A, B P PGLp2,Cpzqq of order 2. Then A and B are conjugate in PGLp2,Cpzqq
pA „ Bq if and only if there exists a birational map ρ defined over C

ΓA
π ��

ρ // ΓB
π ��

C “ C

where ΓA, ΓB Ă C2 are the curves fixed by A and B, respectively.

Proof. paq Let A “
“

a b
c d

‰

be an element of order 2 in PGLp2,Cpzqq. From A2 “

r 1 0
0 1 s, we get that a “ ´d or b “ 0 “ c, but in the second case, a2 “ d2 thus
a “ ˘d. If a “ d and b “ c “ 0 then A “ I and therefore A does not have order
2. This implies that a “ ´d in any case so we can write A “

“

a b
c ´a

‰

. Now A is
conjugate to

“

0 a2`bc
1 0

‰

by
“

´a ´b
1 0

‰

when b ‰ 0 or by r´c a0 1 s when c ‰ 0. The
case when b “ c “ 0, we have A “

“

1 0
0 ´1

‰

and is conjugate to r 0 1
1 0 s by

“

1 1
1 ´1

‰

.
We have proved that A is always conjugate to

“

0 p
1 0

‰

.
pbq If

“

0 p
1 0

‰

,
“

0 p1

1 0

‰

are conjugate in PGLp2,Cpzqq then the determinants are equal
up to square and then p{p1 is a square. Reciprocally, if p{p1 “ a2 for some
a P Cpzq˚ then

“

0 p
1 0

‰

is conjugate to
“

0 p1

1 0

‰

by
“

1 0
0 a

‰

.
pcq If A and B are conjugate elements of order 2 in PGLp2,Cpzqq, there is an

element ζ P PGLp2,Cpzqq such that the following diagram commutes:

C2 B //

��

C2

π

��
C2 ζ

==

π

��

A // C2 ζ

==

π

��
C

“
// C

C
“ <<

“ // C
“

<<
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Then the existence of the birational map ρ is given by the restriction of ζ to
ΓA. Conversely, we assume the existence of ρ : ΓA 99K ΓB . By part (a), the fact
that A and B are of order 2 implies that they are conjugate to an element of
the form

“

0 f
1 0

‰

and
“

0 g
1 0

‰

respectively, for some f, g P Cpzq˚. In this way, the
equations for the curves ΓA and ΓB are t2 “ fpzq and t2 “ gpzq. Since ΓA and
ΓB are birational, this implies that the corresponding fields of rational functions
are isomorphic i.e. Cpzqr

?
f s – Cpzqr?gs. The isomorphism will send z ÞÑ z

and
?
f ÞÑ a

?
g` b for some a, b P Cpzq with a ‰ 0. Since f “ gp“ t2q, we have

f “ p
?
fq2 ÞÑ pa

?
g` bq2 “ a2g` 2ab

?
g` b2 “ f then a2g` b2´ f “ ´2ab

?
g

in Cpzqr?gs which implies that 2ab
?
g “ 0 and therefore b “ 0. Hence f “ a2g

and then
“

0 f
1 0

‰

and
“

0 g
1 0

‰

are conjugate by part (b).
�

Lemma 5.17. Let A, B P G Ă PGLp2,Cpzqq be of order two. If A and B are
conjugate in PGLp2,Cpzqq then there are elements α, β P PGLp2,Cpzqq such that
A “ αPα´1, B “ βPβ´1 for some P “

“

0 p
1 0

‰

, p P Rpzq˚

Proof. By Lemma 5.16 we can present A and B as in the statement for the same P
for some p P Cpzq˚, what remains to show is that we can pick p P Rpzq˚ (equivalently
p “ p̄). Let A0, τ0 P GLp2,Cpzqq be elements corresponding to A, τ P PGLp2,Cpzqq.
We can choose A0 so that detpA0q “ p and want to find an element µ P Cpzq˚ such
that pµ2 “ pµ2 because

“

0 p
1 0

‰

is conjugate to
”

0 pµ2

1 0

ı

by
“

µ 0
0 ´1

‰

.
The equality τAτ “ Ā in PGLp2,Cpzqq implies that pτ0q´1A0τ0 “ λĀ0 for some

element λ P Cpzq˚. Taking the determinant, we obtain detpA0q “ λ2detpA0q, which
means that p “ λ2p. It suffices to find µ with λ “ µ

µ . Since λ2 “ p{p, we obtain

λ2 ¨ λ
2
“ 1, and thus λλ “ ˘1. If λλ “ 1 then by Hilbert’s Theorem 90 there is

µ P Cpzq˚ such that λ “ µ
µ . The case λλ “ ´1 is not possible in Cpzq otherwise λ

would be the quotient of two polynomials in Cpzq, say λ “ f
g with f, g P Crzs˚ and

then ff̄
gḡ “ ´1 which is equivalent to ff̄ “ ´gḡ. But the leading coefficient of any

element of the set tff̄ : f P Crzsu Ă Rrzs˚ is always positive implying that ff̄
cannot be equal to ´gḡ for any g P Cpzq˚. �

Proposition 5.18. Let F “
“

0 f
1 0

‰

with f P Cpzq˚,
paq the centralizer of F in PGLp2,Cpzqq, that we denote by CpF q, is the semi-direct

product Jf ¸ Z{2Z where Jf is the image in PGLp2,Cpzqq of Tf where

Tf :“
 “

a fb
b a

‰

P GLp2,Cpzqq ; a, b P Cpzq, a2 ´ fb2 ‰ 0
(

and Z{2Z is generated by the element ν “
“

1 0
0 ´1

‰

in PGLp2,Cpzqq.
pbq The group Tf is isomorphic to the multiplicative group CpΓq˚ where CpΓq is the

field of rational functions on Γ, the hyperelliptic curve Γ of equation t2 “ fpzq
in A2

C (the fixed curve of the birational map corresponding to the element F ).
pcq H1pxνy, Jf q “ t1u.

Proof. paq Let A “
“

a b
c d

‰

P PGLp2,Cpzqq, from AF “ FA we get
”

b fa
d fc

ı

“
“

fc fd
a b

‰

implying that d “ λa, b “ λfc, a “ λd, and fc “ λb for some λ P Cpzq˚. If
a ‰ 0 we have a “ λ2a hence λ “ ˘1 and A “

“

a fb
b a

‰

or
”

a ´fb
b ´a

ı

. When a “ 0,

we get d “ 0, and fc “ λ2fc implying λ “ ˘1 and A “
“

0 fb
b 0

‰

or
“

0 ´fb
b 0

‰

. Then
CpF q “ Jf ¸

@“

1 0
0 ´1

‰D

.
pbq An element of the field CpΓq can be written as a` bt with a, b P Cpzq and then

we see that Cpzqr
?
f s is isomorphic to CpΓq by sending a` bt to a` b

?
f . Hence
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we define the map from Cpzqr
?
f s˚ to Tf given by a` b

?
f ÞÑ

“

a fb
b a

‰

which is
clearly bijective and is a group homomorphism since

pa` b
a

fqpc` d
a

fq “ pac` fbdq ` pad` bcq
a

f

corresponds to the product
“

a fb
b a

‰ “

c fd
d c

‰

“

”

ac`fbd fpad`bcq
ad`bc ac`fbd

ı

.

pcq From the exact sequence

1 Ñ Cpzq˚ i
ÝÑ Tf

p
ÝÑ Jf Ñ 1 (8)

we obtain the cohomology exact sequence

H1pxνy, Tf q Ñ H1pxνy, Jf q Ñ H2pxνy,Cpzq˚q.

The first cohomology group H1pxνy, Tf q is trivial by Hilbert’s Theorem 90 and
the second cohomology group H2pxνy,Cpzq˚q is trivial by Tsen’s Theorem ([18,
Chapter X, Section 7]). Then we get that H1pxνy, Jf q “ t1u. �

Lemma 5.19. Let A P G of order 2 and let α P PGLp2,Cpzqq such that A “ αPα´1

for some P “
“

0 p
1 0

‰

, p P Rpzq˚. Then the element µA : “ α´1τᾱ belongs to Jp
where τ “ r 0 h

1 0 s for h “ 1´ z2 and Jp is defined in Proposition 5.18.

Proof. The fact that A P G implies that µA P CpP q because

µAPµ
´1
A “ pα´1ταqP pα´1ταq “ α´1τpαPα´1qτα

“ α´1pτAτqα “ α´1Aα “ P.

In order to check that indeed µA belongs to Jp, we compute P and α explicitly.
First, we observe that if A is an involution in G then A is of the form

”

i¨apzq bpzqh

b̄pzq ´i¨apzq

ı

with apzq P Rpzq, bpzq P Cpzq. In PGLp2,Cpzqq, this involution is conjugate to the
element P “

”

0 ´pa2´bb̄hq
1 0

ı

by α “
”

0 bpzqh
´1 ´i¨apzq

ı

. In this case, p “ ´pa2 ´ bb̄hq and

then µA is explicitly
”

i¨apzq ´p
´1 i¨apzq

ı

which belongs to Jp. If α1 is another element in

PGLp2,Cpzqq such that α1´1Aα1 “
“

0 p
1 0

‰

then α1´1α P CpP q, say θ “ α1´1α. Then
µ1A “ α1´1τᾱ1 “ pθα´1qτpαθ´1q “ θpα´1ταqθ´1 that lies in Jp as well. �

Definition 5.20. Let A P BirpS{πqzt1u be of finite order. For a general z0 P R
the birational map given by A fixes the conic Γz0 corresponding to the preimage of
z0 by π. Note that A restricted to Γz0 (AΓz0

: Γz0 Ñ Γz0) is an isomorphism with
exactly two fixed points, which can be two real points or two imaginary conjugate
points. The (closure of) the set of these fixed points, for every z P P1, gives the
curve of fixed points that we denote by FixpAq and that is a double covering of P1.
Note that some isolated points can also be fixed and not belong to FixpAq.

Theorem 5.21. Let A, B P BirpS{πq of order 2. The elements A and B are
conjugate in BirpS{πq pA „BirpS{πq Bq if and only if there exists a birational map ρ
defined over R

FixpAq
π
��

ρ // FixpBq
π
��

R “ R
with Fixp¨q as in the precedent paragraph.
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Proof. If A and B are conjugate in BirpS{πq, then there is an element ζ P BirpS{πq
such that ζAζ´1 “ B and then the map ρ is given by the restriction of ζ to FixpAq
which is defined over R.

In order to prove the sufficiency, we assume that there is ρ : FixpAq 99K FixpBq
with σρ “ ρσ. Then by Lemma 5.16(c), we obtain that A :“ ψAψ´1 P G and
B :“ ψBψ´1 P G are conjugate in PGLp2,Cpzqq and by Lemma 5.17 there are α,
β P PGLp2,Cpzqq such that A “ αFα´1, B “ βFβ´1 and F “

`

0 f
1 0

˘

, for some
f P Rpzq˚. Observe that the action of α and β on SC restrict to birational maps
FixpF q 99K FixpAq and FixpF q 99K FixpBq, respectively. To sum up, we have the
following diagram (which is not necessarily commutative, since ρ : FixpAq 99K FixpBq
may be not the restriction of βα´1):

FixpAq

ρ defined over R

%%

α´1

11
π
��

FixpF q

β --αqq

π
��

FixpBq

π
��

β´1

mm

C “ C “ C

.

Since we want to show that A „G B (or equivalently A „BirpS{πq B), we
need to find γ P G such that γAγ´1 “ B i.e. γαFα´1γ´1 “ βFβ´1 ðñ

β´1γαF pβ´1γαq´1 “ F , hence β´1γα P CpF q. In other words, finding γ P G

so that γAγ´1 “ B is equivalent to find ξ P CpF q such that βξα´1 P G.
The condition βξα´1 P G is the same as τpβξα´1qτ “ βξα´1 which is equivalent

to ξ “ pβ´1τβqξpα´1ταq. We define µB :“ β´1τβ and µ´1
A :“ α´1τα and like this,

we need to find ξ P CpF q such that ξ “ µB ξ̄µ
´1
A . By Lemma 5.19 µA, µB P Jf and

then also µ´1
A P Jf . On the other hand, µ´1

A µ´1
A “ 1 and µBµB “ 1 and as Jf is

abelian, we get µBµ´1
A ¨ µBµ

´1
A “ 1 and then by Proposition 5.18(c) there is ξ P Jf

such that ξ{ξ̄ “ µBµ
´1
A ùñ ξ “ µAξ̄µ

´1
A . �

5.5. Involutions in AutpSpRq{πq. In Proposition 5.15, we have described alge-
braically the orientation preserving birational diffeomorphisms as the group

H0 “

!”

apzq bpzqh

b̄pzq āpzq

ı

; a, b P Crzs, aā´ bb̄h P Rrzs`
)

.

We want to describe involutions in H » H0 ¸ xτy where τ “ r 0 h
1 0 s.

Lemma 5.22. Every involution ι P H0 is equal to

ι “
”

i¨ppzq qpzqh
q̄pzq ´i¨ppzq

ı

for some p P Rrzs and q P Crzs with no common real roots and p2 ´ qq̄h P Rrzs`.

Proof. All such elements are indeed involutions, as one easily calculates. From the
proof of the first statement of Lemma 5.16, we see that the trace of any involution
in PGLp2,Cpzqq vanishes. Since in H0 the diagonal entries are conjugate, they are
strictly imaginary, from which the claim follows. �

Fibrewise, the maps in H0 look like rotations, the maps in HzH0 like reflections:

Lemma 5.23. The restriction of an involution ι P H0 to a fibre is conjugate, inside
the group of automorphisms of the circle, to a rotation by π. For an element in
HzH0, the restriction is conjugate to a reflection.

Proof. A fibre is a subvariety of the real points of S and isomorphic to a circle
S1, which in turn is isomorphic to P1pRq. Therefore ι restricts on each fibre to an
automorphism of P1pRq, that is, an element of PGLp2,Rq. The first statement of
Lemma 5.16 applies equally when the field R instead of Cpzq is used, which tells us



30 MARIA FERNANDA ROBAYO

that the automorphism is conjugate to an element of the form
“

0 ˘p
1 0

‰

, with p ą 0
in R. The sign is negative for H0 and positive for HzH0, and depends on whether
the element is orientation-preserving or -reversing. With q “ ?p, the element is

equal to
”

0 ˘q

q´1 0

ı

, which is conjugate to
“

0 ˘1
1 0

‰

via
“

1 0
0 p

‰

. These elements describe
a rotation and a reflection, as claimed. �

Recall that Rrzs` :“ tf P Rrzs | fpz0q ą 0 for each z0 P Ru. We will need the
following description.

Lemma 5.24. Rrzs` “ tpp̄ | p P Crzs, p has no real rootu

Proof. Since fpzq ą 0 for every z P R, f has complex roots which can be sorted as
pairs of complex conjugate roots. Then f can be factorised in Cpzq as factors of the
form pz ´ αqpz ´ ᾱq which already have the form pαp̄α with pα “ z ´ α for every
complex root α of f . We then construct p1 as the product p1 “ pα1 ¨pα2 ¨ ¨ ¨ pαk where
k is the number of pairs of complex conjugate roots and in this way, f “ λ ¨ p1 ¨ p1 for
some real positive constant λ. Thus we define p “

?
λp1 and the result follows. �

Proposition 5.25. Let A P H be an element of order 2. Then the curve FixpAq,
which is a double covering of P1, has the following properties:
paq If A P H0, then FixpAq has no real point p0 ovalq;
pbq if A P HzH0, then FixpAq has one oval and πpFixpAqpRqq “ r´1, 1s.

Proof. Let A P H be an element of order two. By Lemma 5.22, A is of the form
”

i¨ppzq qpzqh
q̄pzq ´i¨ppzq

ı

where p P Rrzs, q P Crzs and p, q have no common real roots. The
curve of fixed points is given by q̄pzqt2 ´ 2ippzqt ` qpzqh “ 0 whose discriminant
(with respect to t) is ´4pp2 ` qq̄hq and corresponds to minus the determinant of the
matrix.

If A P H0, then the determinant is positive, so FixpAq does not have any real
point.

If A P HzH0, then the determinant is negative (because it is p1´ z2q times the
positive determinant). Hence, we get 2 real points for each z0 P p´1, 1q. �

According to Proposition 5.25, for an involution which is also a diffeomorphism
its curve of fixed points is birational to a smooth real hyperelliptic curve with no
oval or just one. In the first case, there is no real point on the fixed curve and 1
and ´1 are not ramification points. This involution is an orientation preserving
diffeomorphism with two isolated fixed points. In the second case, the only two
ramification points are 1 and ´1, the oval is sent by π : S Ñ A1 onto the real interval
r´1, 1s and this involution is an orientation reversing diffeomorphism. Both possible
cases for the curve of fixed points are illustrated in Figure 5. Now, we would like to
prove the converse, i.e. for any hyperelliptic curve with one or no oval (equation of
the form t2 “ p1´ z2qp or t2 “ ´p for some p P Rrzs` with no real roots) we want
to associate an element γ of H which realises the curve as Fixpγq. We need first to
prove the following lemmas.

Lemma 5.26. Let f P Rrzs be a polynomial of degree two such that f P Rrzs` then
there exist a P Rrzs and a positive real number c such that fpzq “ apzq2 ` cpz2 ´ 1q.

Proof. Since f P Rrzs`, then f is factorised as fpzq “ pz ´ αqpz ´ ᾱq “ z2 ´ pα`
ᾱqz`αᾱ for α a complex number and making α “ b`id, we rewrite f as fpzq “ z2´

2bz`pb2`d2q. Then if we write apzq2 “ fpzq´cpz2´1q “ p1´cqz2´2bz`b2`d2`c,
we want to show that there exist some value of c ą 0 such that the right side is
indeed a square with respect to z. So we want the discriminant of such an expression
to be zero. This is 4b2 ´ 4p1 ´ cqpb2 ` d2 ` cq “ 4pc2 ` pb2 ` d2 ´ 1qc ´ d2q “ 0
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Figure 5. Possible appearances of the fixed curve of elements
in AutpSpRq{πq.

which implies that c is a positive solution of ppcq :“ c2 ` pb2 ` d2 ´ 1qc´ d2 so we
compute the discriminant of this quadratic expression with respect to c and want
it to be larger than zero i.e. ∆c :“ pb2 ` d2 ´ 1q2 ` 4d2 ą 0 but this is always the
case. Now, since the leading coefficient of apzq2 has to be larger than zero, implies
that c ă 1 so we just check that the discriminant which depends on c has a root
between 0 and 1 which is true because pp0q “ ´d2 ă 0 and pp1q “ b2 ą 0. What
remains is to check the case b “ 0 i.e. α “ id. In this case, fpzq “ z2 ` d2 so we
just take c “ 1 and a “

?
d2 ` 1. �

Lemma 5.27. Let V be the set

V “ ta2 ` P ¨ pz2 ´ 1q | a P Rrzs, P P Rrzs`u.

paq If f, g P V X Rrzs`, then f ¨ g P V X Rrzs`,
pbq Rrzs` Ă V .

Proof. paq Let f, g P V XRrzs` then f “ a2`P ¨ pz2´ 1q and g “ b2`Q ¨ pz2´ 1q
for a, b P Rrzs and P,Q P Rrzs`. We have then

f ¨ g “pa2 ` P ¨ pz2 ´ 1qqpb2 `Q ¨ pz2 ´ 1qq

“pabq2 ` pz2 ´ 1qra2Q` P pb2 `Q ¨ pz2 ´ 1qqs

and a2Q` P pb2 `Q ¨ pz2 ´ 1qq P Rrzs` because a2, Q, P , and b2 `Q ¨ pz2 ´ 1q
are all in Rrzs`. Therefore, f ¨ g P V X Rrzs`.

pbq Let f P Rrzs` then f can be presented as a product of quadratic polynomials.
Since every quadratic factor is also in Rrzs`, thus it suffices to prove the Lemma
in the case where f is quadratic and this was already proved in Lemma 5.26. �

Lemma 5.28. The elements in AutpSpRq{πq realise all smooth real hyperelliptic
curves with at most one oval. More precisely,
paq for a real smooth hyperelliptic curve with one oval of the form t2 “ p1´ z2qββ̄

for some β P Cpzq with no real roots there is an orientation reversing birational
diffeomorphism whose fixed curve is this curve,

pbq for a real smooth hyperelliptic curve with no oval of the form t2 “ ´ββ̄ for
some β P Cpzq with no real roots there is an orientation preserving birational
diffeomorphism whose fixed curve is this one.

Proof. Given the hyperelliptic curve t2 “ p1´ z2qββ̄ for some β P Cpzq with no real
roots, the element α “

”

0 βpzqh

β̄pzq 0

ı

is an involution in HzH0 whose fixed curve is

t2 “ p1´ z2qββ̄. In the other case, when t2 “ ´ββ̄ where β has no real roots, we
have ββ̄ P Rrzs` Ă V by Lemma 5.27 and then there are a P Rrzs and P P Rrzs`
such that ββ̄ “ a2 ` P pz2 ´ 1q. Lemma 5.24 implies that P “ bb̄ for some b P Crzs
then the element α “

”

iapzq bpzqh

b̄pzq ´iapzq

ı

is an involution in H0 whose fixed curve is

t2 “ ´ββ̄. �
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Lemma 5.29. Let a, b, c, d P Crzs and let Apzq “
”

apzq bpzq
cpzq dpzq

ı

P GLp2,Cpzqq. Let
z0 P C be a simple root of ad´ bc P Crzs, such that Apz0q has rank 1.

Then, the birational map of P1 ˆ A1 given by

prt : us, zq 99K prapzqt` bpzqu : cpzqt` dpzqus, zq

has exactly one base-point on the line z “ z0, and no infinitely near base-point to
this one.

Proof. Making the change of variable z ÞÑ z ´ z0, we can assume that z0 “ 0.
Replacing Apzq with αApzqβ, where α, β P GLp2,Cq, we can moreover assume that
Ap0q “ r 0 0

1 0 s, so we can write Apzq “
”

zapzq zbpzq
1`zcpzq zdpzq

ı

, for some a, b, c, d P Crzs (which
are not the same as before but we keep the same letters to simplify the notation).
Since z0 is a simple root of the determinant, we have bp0q ‰ 0. The corresponding
birational map of P1 ˆ A1 is then

prt : us, zq 99K przpapzqt` bpzquq : t` zpcpzqt` dpzquqs, zq

and has a unique proper base-point on the line z “ 0, which is the point pr0 : 1s, 0q.
The blow-up of this point is locally given by

π : A2 Ñ P1 ˆ A1

pt, vq ÞÑ prt : 1s, tvq

And the lift of our birational is then locally given by

pt, vq 99K

ˆ

vpapvtqt` bpvtqq

cpvtqtv ` dpvtqv ` 1
,
tpcpvtqtv ` dpvtqv ` 1q

apvtqt` bpvtq

˙

.

The curves E,E1 corresponding respectively to the exceptional divisor and the fibre
z “ z0 are now given by t “ 0 and v “ 0 respectively, and exchanged by the lift:

p0, vq 99K
´

vbp0q
1`dp0qv , 0

¯

pt, 0q 99K
´

0, t
ap0qt`bp0q

¯

This implies that both, our map and its inverse, have a simple base-point at p0, 0q. �

Theorem 5.30. Let g, g1 P AutpSpRq{πq of order 2. Then g and g1 are conjugate
in BirpS{πq if and only if they are conjugate in AutpSpRq{πq.

Proof. Let g and g1 be conjugate in BirpS{πq, then there is α P BirpS{πq such that
αgα´1 “ g1. We want to show that g and g1 are conjugate in AutpSpRq{πq. By
Proposition 5.25, the curve of fixed points of an element in AutpSpRq{πq either
contains no real point or only one oval.

If α P BirpS{πqzAutpSpRq{πq, there is a real point r P SpRq where α is not
defined, and this point is not PS or PN (Lemma 5.10). The element α blows up this
point and contracts the conic Γzr passing through r which is a fibre of the conic
bundle structure of S. Then αpΓzr q “ q for some q P SpRq.

Note that q is fixed by g. Indeed, otherwise gpqq “ q1 ‰ q and as g preserves the
fibration, gpΓzr q “ Γzr , then αpgpΓzr qq ‰ g1pαpΓzr qq. Since q is a real point fixed by
g and distinct from PS and PN , the curve Fixpgq contains real points. We may then
assume that g is equal to

”

0 bpzqh

b̄pzq 0

ı

(Lemma 5.28). The centraliser of g contains
the following subgroup

Cpgq “
!”

apzq λbpzqh

λb̄pzq apzq

ı

; a, λ P Rrzs and a2 ´ λ2bb̄h ‰ 0
)

Ă G.

We want to prove now that Cpgq contains, in particular, an element β “
”

apzq bpzqh

b̄pzq apzq

ı

such that Dpzq “ apzq2 ´ bpzqb̄pzqp1 ´ z2q has only one zero exactly at z “ zr on
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the interval p´1, 1q. The reason of the existence of such a β is that it is possible
to find a polynomial apzq with values ap´1q “ 0 and apzrq “

a

bpzrqb̄pzrqp1´ z2
r q

and satisfying that Dpzq ą 0 on p´8,´1q Y pzr,8q and Dpzq ă 0 on the interval
p´1, zrq. Notice that bpzqb̄pzqp1´z2q ą 0 for z P p´1, 1q and the condition Dpzq ą 0
for z2 ą 1 is already fulfilled (see Lemma 5.6). We use the function fpzq “ zm

with m sufficiently large and apply a suitable linear change of coordinates, namely
apzq “

a

bpzrqb̄pzrqp1´ z2
r q ¨ f

´

z`1
zr`1

¯

to get the polynomial apzq with the required
conditions. See Figure 6.

-

6

´1 1zr

apzq

a

bpzqb̄pzqp1 ´ z2q

Figure 6. Conditions for the polynomial apzq

With β P Cpgq as before, i.e. the element with the only root of its determinant
at z “ zr, Lemma 5.29 implies that the birational map that β defines has exactly
one real base-point and no infinitely near base-point to this one. Then replacing α
by β´1α, one gets one base-point less. Then the claim follows by induction. �

Proposition 5.31. There are bijective correspondences

"

conjugacy classes of involutions
in Aut`pSpRq{πq

*

1:1
ÐÝÝÑ

$

’

’

&

’

’

%

smooth real projective
curves Γ with no real point

with π : Γ Ñ P1 a 2 : 1-covering,
up to π-isomorphism

,

/

/

.

/

/

-

"

conjugacy classes of involutions
in AutpSpRq{πqzAut`pSpRq{πq

*

1:1
ÐÝÝÑ

$

’

’

&

’

’

%

smooth real projective
curves Γ with one oval

with π : Γ Ñ P1 a 2 : 1-covering,
up to π-isomorphism

,

/

/

.

/

/

-

Remark 5.32. By a π-isomorphism we mean an isomorphism γ : Γ Ñ Γ1 such that
πγ “ π.

Proof. Let g, g1 P AutpSpRq{πq be of order 2. If g and g1 are conjugate in AutpSpRq{πq
then by Theorem 5.21, Fixpgq and Fixpg1q are birational over R by some π-isomorphism.
Proposition 5.25 tell us that Fixpgq and Fixpg1q are a double covering of P1 with
no real point (when g, g1 are orientation-preserving birational diffeomorphisms) or
with one oval (when g, g1 are orientation-reversing birational diffeomorphisms), and
Lemma 5.28 shows that all such curves are obtained. Given a π-isomorphism between
two smooth real hyperelliptic curves with no oval (respectively one), Theorem 5.21
implies that g and g1 are conjugate in BirpS{πq and Theorem 5.30 that g and g1 are
indeed conjugate in AutpSpRq{πq. �

5.6. Elements in BirpS{πq of finite order larger than two. The goal of this
subsection is to show that any element in BirpS{πq of finite order larger than two
which preserves the fibration is conjugate to a rotation. We start by observing that
any rotation ρθ P BirpS{πq is given by the map

ρθ : S ÝÑ S
px, y, zq ÞÝÑ px cos θ ´ y sin θ, x sin θ ` y cos θ, zq
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which via ψ (Lemma 5.4) corresponds in A2 to the map pt, zq ÞÑ pte´iθ, zq and is
equivalent to the action of the element

”

e´iθ 0
0 1

ı

“

”

e´ipθ{2q 0
0 eipθ{2q

ı

“

”

1 0
0 eiθ

ı

“ Rθ P

G. With this observation and the following remark, the result is presented in Lemma
5.34.

Remark 5.33.
(i) Let A P PGLp2,Cpzqq an element of finite order larger than 2. Then A is

diagonalisable.
(ii) Two diagonal elements r 1 0

0 a s and r 1 0
0 b s are conjugate in PGLp2,Cpzqq if and

only if a “ b˘1.

Lemma 5.34. Let A P G of order n ‰ 2. Then A is conjugate to a rotation

Rθ “

„

1 0
0 eiθ



in G for some angle θ.

Proof. Since A is an element of finite order n ‰ 2 then by Remark 5.33, A is
diagonalisable in PGLp2,Cpzqq so there is an element α P PGLp2,Cpzqq so that
A “ α

“

1 0
0 µ

‰

α´1 for some µ P Cpzq˚ an element of order n, i.e. µ is a root of unity
that we can write as µ “ eiθ for some angle θ.

We define J :“ r 1 0
0 s sα

´1 and we want to find s P Cpzq such that J P G and
JAJ´1 “ Rθ. This latter condition is fulfilled by the form of J . To ask for J P G is
the same as J satisfies the relation τJτ “ J̄ which is equivalent to τ r 1 0

0 s sα
´1τ “

r 1 0
0 s̄ sα

´1. Multiplying to the right by ᾱ we get τ r 1 0
0 s sα

´1τα´1 “ r 1 0
0 s̄ s. We call

ρ :“ α´1τα and we rewrite the last equation in terms of ρ obtaining:

τ r 1 0
0 s s ρ̄ “ r

1 0
0 s̄ s (9)

where ρ̄ “ ρ´1 because ρρ̄ “ pᾱ´1ταqpα´1τᾱq “ 1.
On the other hand, the fact that A P G i.e. τAτ “ Ā which is the same

as τα
“

1 0
0 µ

‰

α´1τ “ ᾱ
“

1 0
0 µ̄

‰

ᾱ´1 is equivalent to ρ
“

1 0
0 µ

‰

“
“

µ 0
0 1

‰

ρ and gives the
condition on ρ to be of the form ρ “ r 0 λ

1 0 s for some λ P Cpzq˚. Moreover, ρρ̄ “ 1

implies that λ P Rpzq˚ because r 0 λ
1 0 s

“

0 λ̄
1 0

‰

“
“

λ 0
0 λ̄

‰

“ r 1 0
0 1 s. With this information

about ρ, finding s P Cpzq˚ satisfying the equation (9) is equivalent to find s satisfying
the equation

λ “ p1´ z2qss̄ (10)
Note that we already know that λ

1´z2 P Rpzq
˚, but not every element of Rpzq˚

can be written as ss̄. What follows is to describe ρ in terms of entries of α and τ in
order to find candidates for the value of s satisfying the previous equation. Let us
present α “

“

a b
c d

‰

, then the relation ρ “ ᾱ´1τα explicitly will be
“

0 λ
1 0

‰

“
“

d̄ ´b̄
´c̄ ā

‰

”

0 1´z2

1 0

ı

“

a b
c d

‰

and this gives two equations

´ab̄` p1´ z2qcd̄ “ 0 and paā´ p1´ z2qcc̄qλ “ ´bb̄` p1´ z2qdd̄ (11)

When a ‰ 0, b̄ “ p1´ z2q cd̄a and plugging it in the second equation in (11) we get

λraā´ p1´ z2qcc̄s “ p1´ z2qraā´ p1´ z2qcc̄spdd̄{aāq

hence λ “ p1´ z2q dd̄aā . In the case a “ 0, equations (11) imply that d “ 0 and that

λ “
1

1´ z2

bb̄

cc̄

Then, we may choose s “ d
a when a ‰ 0 or s “ 1

1´z2
b
c otherwise and in this way

there exist J P G such that JAJ´1 “ Rθ. �
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5.7. Elements in AutpSpRq{πq of finite order larger than two. We can check
that Lemma 5.34 also holds in the subgroup AutpSpRq{πq, via ψ:

Lemma 5.35. Let A P H of order n ‰ 2. Then A is conjugate to a rotation

Rθ “

„

1 0
0 eiθ



in H for some angle θ.

Proof. Let A P H of finite order different from 2, then by Lemma 5.34, there is
α P G such that αAα´1 “ Rθ. Let A “ ψ´1Aψ. By abuse of notation, the element
ψ´1αψ P BirpS{πq will be called α as well. If α P BirpS{πqzAutpSpRq{πq, there is
a real point r P SpRq where α is not defined. The element α blows up this point
and contracts the conic Γzr passing through r which is a fibre of the conic bundle
structure of S. Then αpΓzr q “ q for some q P SpRq, which is sent by Rθ to a different
real point (Rθ only fixes PN and PS). As A preserves the fibration, ApΓzr q “ Γzr ,
then αpApΓzr qq ‰ RθpαpΓzr qq �

5.8. Involutions in BirpS, πqzBirpS{πq. Since we want now to study conjugacy
classes of elements in BirpS, πqzBirpS{πq whose square is the identity, we observe
that thanks to Lemma 5.2, we can think about elements of finite order in BirpS, πq
as the semi-direct product between elements of finite order in BirpS{πq and Z{2Z
where Z{2Z is generated by η : SC Ñ SC sending z to ´z. The action of η on
BirpS{πq is given by the map:

η : PGLp2,Cpzqq ÝÑ PGLp2,Cpzqq
”

apzq bpzq
cpzq dpzq

ı

ÞÝÑ

”

ap´zq bp´zq
cp´zq dp´zq

ı (12)

Let α “ pα0, ηq P BirpS, πq then α2 “ pα0ηpα0q, 1q P BirpS{πq and ηpα0q “

α0p´zq which means that all entries of α0 in Cpzq are changed by the C-field
automorphism of Cpzq sending z to ´z. We are then interested in the case α0ηpα0q

is the identity.
Recall that in Lemma 5.4(c), we identified BirpS{πq with the group

G “ tA P PGLp2,Cpzqq | τAτ “ Āu

where τ “
“

0 1´z2

1 0

‰

. We denote by T the following group,

T :“ tA P GLp2,Cpzqq | A “ τĀτ´1u Ă GLp2,Cpzqq

whose image under the canonical projection corresponds to G. We have the following
exact sequence where p denotes the canonical projection:

1 Ñ Rpzq˚ Ñ T
p
ÝÑ GÑ 1

Hence we obtain the cohomology exact sequence

H1pxηy, T q
p
ÝÑ H1pxηy,Gq

δ
ÝÑ H2pxηy,Rpzq˚q (13)

where xηy » Z{2Z and the action of η is described in (12).
The next lemma tells us that H1pxηy, T q is trivial. Once that is done, the study of

the map δ will show that conjugacy classes of α P BirpS, πqzBirpS{πq with α2 “ id
are parametrised by particular elements in Rpz2q.

Lemma 5.36. Let T :“
 

A P GLp2,Cpzqq ; A “ τAτ´1
(

with τ as before. Then
the group T can be presented more precisely as

T “
 “

a hb
b a

‰

; a, b P Cpzq, aā´ hbb̄ ‰ 0
(

and H1pxηy, T q “ t1u.
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Proof. The group T is isomorphic to the multiplicative group of the non-commuta-
tive field K :“ Cpzq `Cpzqξ where ξ2 “ h and apzqξ “ ξapzq for any a P Cpzq. The
isomorphism is defined by sending an element A “

”

apzq hbpzq

bpzq apzq

ı

P T to the element
apzq ` bpzqξ P Cpzq ` Cpzqξ. Indeed, we have that the product in K,

pa` bξqpc` dξq “ ac` bξdξ ` adξ ` bξc “ ac` bd̄h` pad` bc̄qξ

corresponds in T to the product
“

a hb
b a

‰ “

c hd
d c

‰

“

”

ac`bd̄h hpad`bc̄q

ād̄`b̄c āc̄`b̄dh

ı

.

The corresponding action of xηy » Z{2Z on Cpzq`Cpzqξ is given by the extension
of the field automorphism z ÞÑ ´z of Cpzq˚ toK˚, to be more precise, apzq`bpzqξ ÞÑ
ap´zq ` bp´zqξ.

Let g : xηy Ñ K˚ be a cocycle such that gp1q “ 1 and gpηq “ A for some A P K˚
such that AηpAq “ 1. Let C P K such that B “ C ` AηpCq ‰ 0, such a C exists
because we may choose C “ A when A ‰ ´1, otherwise there are many choices of
C satisfying C ´ ηpCq ‰ 0, e.g. C “ z. We have thus ηpBq “ ηpCq ` ηpAqC and
hence AηpBq “ AηpCq ` AηpAqC “ AηpCq ` C “ B i.e. A “ BηpBq´1 and this
means that A is a coboundary. �

The following Lemma will be useful to compute H2pxηy,Rpzq˚q.

Lemma 5.37. Let G be a group with two elements acting on an abelian group M
and let ξ be the non trivial element of G.
paq Any class rcs P H2pG,Mq admits a normalised 2-cocycle c1 i.e. it is the class of

c : G2 ÑM such that cpg, 1q “ cp1, gq “ 1 for every g P G.
pbq Let c : G2 ÑM is a normalised 2-cocycle and define ρpcq “ cpξ, ξq PM . Then

ρ induces an isomorphism of groups

H2pG,Mq
–
ÝÑMG{tmξpmq | m PMu.

Lemma 5.38. For the exact cohomology sequence p13q,

H2pxηy,Rpzq˚q » Rpz2q˚{tfηpfq | f P Rpzq˚u

“ xr´1s, trz2 ` bs : b ą 0uy » t˘1u ‘

˜

à

bPRą0

Z{2Z

¸

.

Proof. Let pRpzq˚qη denote the elements of Rpzq˚ which are invariant with respect
to the action of η described above. We call N the map N : Rpzq˚ Ñ pRpzq˚qη given
by Npppzqq “ ppzqηpppzqq “ ppzqpp´zq. Then by Lemma 5.37, H2pZ{2Z,Rpzq˚q is
isomorphic to cokerpNq that we need to compute. First, we prove that pRpzq˚qη “
Rpz2q˚. The inclusion Rpz2q˚ Ă pRpzq˚qη is clear. Reciprocally, if gpzq P pRpzq˚qη,
gpzq “ ppzq

qpzq with p, q P Rrzs that we can assume having non common factors. Thus

from ppzq
qpzq “

pp´zq
qp´zq follows that ppzqqp´zq “ pp´zqqpzq and then roots of both sides

need to coincide. This implies that if a is a real root of ppzq, it has to be a root
of pp´zq and therefore z2 ´ a2 divides ppzq. For a complex root α of ppzq, using
the same argument we obtain that pz ´ αqpz ´ ᾱqpz ` αqpz ` ᾱq divides ppzq. By
induction on the number of roots of p and q, we obtain Rpzqη “ Rpz2q.

In order to compute cokerpNq we look at the image by N of generators of Rpzq˚
and compare with generators of Rpz2q˚. Generators of Rpzq˚ are a P R˚, pz ´ bq
with b P R, and pz ´ αqpz ´ ᾱq with α P CzR and they are mapped by N to a2,
b2 ´ z2, and pz2 ´ α2qpz2 ´ ᾱ2q while generators of Rpz2q˚ are c P R, pz2 ´ dq with
d P R, and pz2 ´ βqpz2 ´ β̄q with β P CzR (notice that β is always a square). Hence,
cokerpNq » Rpz2q˚{ImpNq “ xr´1s, trz2 ` bs : b ą 0uy Ă Rpz2q˚{ImpNq.

To see the structure of H2pxηy,Rpzq˚q, we see that r´1s ¨ r´1s “ 1 and for any
b ą 0, rz2 ` bsrz2 ` bs “ 1 because pz2 ` bqpz2 ` bq “ pz2 ` bqηpz2 ` bq “ 1 in
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Rpz2q˚{tfηpfq | f P Rpzq˚u. However, rz2 ` bsrz2 ` cs ‰ 1 for b, c ą 0 and b ‰ c
and r´1srz2 ` bs “ ´pz2 ` bq ‰ 1 for b ą 0. �

Proposition 5.39. The connecting map H1pxηy,Gq
δ
ÝÑ H2pxηy,Rpzq˚q for the exact

cohomology sequence p13q corresponds to the map

δ : H1pxηy,Gq ÝÑ xr´1s, trz2 ` bs : b ą 0uy » H2pxηy,Rpzq˚q
"

class of Ã P G;

ÃηpÃq “ 1

*

ÞÝÑ

"

class of µ P Rpz2q;

AηpAq “
“

µ 0
0 µ

‰ and ppAq “ Ã

*

and it is bijective.

Proof. In order to study how the connecting map δ is defined, we use the Snake
Lemma (see e. g. [17], Lemma 1.3.1) that in our case works as follows. Consider the
following diagram, in which Z2 stands for xηy:

C1
pZ2,Rpzq˚q{B1

pZ2,Rpzq˚q

BR ��

i1 // C1
pZ2,T q{B

1
pZ2,T q

BT ��

p1 // C1
pZ2,Gq{B

1
pZ2,Gq

BG ��

// 1

1 // Z2
pZ2,Rpzq˚q

i2 // Z2
pZ2,T q

p2 // Z2
pZ2,Gq

Notice that δ is the same as the map kerpBGq
δ
ÝÑ cokerpBRq. Let rps P H1pxηy,Gq,

then p is a map p : xηy Ñ G defined by sending 1 to 1 and η to Ã for some Ã P G

satisfying ÃηpÃq “ 1. Since p1 is surjective, there is rrs P C1pxηy, T q{B1pxηy, T q,
this is r : xηy Ñ T so that 1 ÞÑ 1 and η ÞÑ A where A P T is a representative
of the element Ã. There is q P Z2pxηy,Rpzq˚q such that i2pqq “ BT prrsq because
p2pBT prrsqq “ BGpp1prrsqq and p2pBT prrsqq “ BGprpsq “ 1 since rps P ker BG then
BT prrsq P ker p2 “ Im i2. Then δ is defined by sending rps to rqs satisfying i2prqsq “
BT prrsq. More explicitly, BT prrsq is the normalised cocycle

BT prrsq : xηy ˆ xηy ÝÑ T
pg1, g2q ÞÝÑ rpg1qg1prpg2qqprpg1g2qq

´1

p1, 1q ÞÝÑ 1
p1, ηq ÞÝÑ 1
pη, 1q ÞÝÑ 1
pη, ηq ÞÝÑ AηpAq

Thus, AηpAq “
“

µ 0
0 µ

‰

with i2prqsqpη, ηq “ µ P Rpz2q˚. Summing up, δ corresponds
to the map

δ : H1pxηy,Gq ÝÑ H2pxηy,Rpzq˚q
"

Ã P G;

ÃηpÃq “ 1

*

ÞÝÑ

"

µ P Rpz2q;
AηpAq “ r µ 0

0 µ s
and ppAq “ Ã

*

.

Let us see that the map δ is surjective: the element
“

i 0
0 ´i

‰

is mapped by δ to

the class r´1s. When c P Rą0, the element
”

ipz´i
?
cq 0

0 ´ipz`i
?
cq

ı

is sent by δ to
the class rz2 ` cs. Given any finite product of classes γ “ pz2 ` c1q ¨ ¨ ¨ pz

2 ` ckq
in H2pxηy,Rpzq˚q with ci ą 0 for 1 ď i ď k, the diagonal elements of the form
”

apzq 0
0 āpzq

ı

where

apzq “

#

ipz ´ i
?
c1qpz ´ i

?
c2q ¨ ¨ ¨ pz ´ i

?
ckq, if k is odd

pz ´ i
?
c1qpz ´ i

?
c2q ¨ ¨ ¨ pz ´ i

?
ckq, if k is even

is mapped to γ. This proves the surjectivity of the application δ.
In order to prove injectivity, we will show that any class Ã “

”

apzq hbpzq

b̄pzq āpzq

ı

in

H1pZ{2Z,Gq is equivalent to a diagonal element D of the form
”

xpzq 0
0 x̄pzq

ı

. In other
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words, we want to show that we can find an element α “
”

cpzq hdpzq

d̄pzq c̄pzq

ı

in G such that

ηpαqAα´1 “ D where A is the representative of Ã in T . This leads to the following
equation

c̄pzqpd̄p´zqapzq ` c̄p´zqb̄pzqq ´ d̄pzqphd̄p´zqbpzq ` c̄p´zqāpzqq “ 0

which is equivalent to

c̄pzq

d̄pzq
“
āpzq c̄p´zq

d̄p´zq
` hbpzq

b̄pzq c̄p´zq
d̄p´zq

` apzq
(14)

We call Ψ the following automorphism of P1
Cpzq defined by

Ψ: P1
Cpzq ÝÑ P1

Cpzq
prpzq : spzqq ÞÝÑ pāpzqrpzq ` hbpzqspzq : b̄pzqrpzq ` apzqspzqq

.

The equation (14) can be seen as fpzq “ Ψpfp´zqq for fpzq “ c̄pzq

d̄pzq
. In this way,

finding cpzq and dpzq satisfying the equation (14) is equivalent to find fixed points of
rΨ where rΨpfpzqq :“ Ψpfp´zqq. First we notice that the automorphism Ψ is a linear
automorphism given by the element

”

āpzq hbpzq

b̄pzq apzq

ı

in PGLp2,Cpzqq that we denote by Â
since it comes from A by interchanging the elements of the mean diagonal, this implies
that rΨ has order two because rΨ˝ rΨ “ id is equivalent to ÂηpÂq “ 1 which is satisfied
because A is a class in H1pxηy,Gq. On the other hand, the element Â is equivalent to
ˆ̂
A “

”

0 ´ det Â
b̄pzq2 0

ı

since B´1ÂηpBq “
ˆ̂
A for B “

”

1 āpzq{b̄pzq
0 1

ı

. Hence, the existence

of fixed points for the automorphism associated to ˆ̂
A gives the existence of fixed

points for the automorphism rΨ. Then we look explicitly for elements u, v P Cpzq
such that pupzq : vpzqq “ ˆ̂

Apup´zq : vp´zqq “ p´ det Âvp´zq : b̄pzq2up´zqq in P1
Cpzq

i.e. upzqup´zqb̄pzq2 “ ´vpzqvp´zqdet Â and then upzq
vpzq

up´zq
vp´zq “ ´

det Â
b̄pzq2

. The right

side of this last equation belongs to Cpz2q because det Â “ detA which belongs to
Rpz2q and b̄pzq2 P Cpz2q condition imposed by the fact that A is a class in H1pxηy,Gq.
Existence of u and v comes from the next Lemma. �

Lemma 5.40. Any element f P Cpz2q can be written as the product gpzqgp´zq for
some element g P Cpzq. In other words,

Cpz2q “ tgpzqgp´zq : gpzq P Cpzqu.

Proof. Clearly, for g P Cpzq it follows that gpzqgp´zq P Cpz2q. Reciprocally, let
f P Cpz2q. Thus f “ ppzq

qpzq with p, q P Crz2s. We can write p in terms of roots as
ppzq “ αpz2 ´ α1q ¨ ¨ ¨ pz

2 ´ αsq where α, αi P C, 1 ď i ď s. Any factor of p can be
decomposed as a product of the form ´pz ´

?
αiqp´z ´

?
αiq for any root αi. We

can then write p as the product g1pzqg1p´zq where

g1pzq “

#?
αpz ´

?
a1q ¨ ¨ ¨ pz ´

?
arqpz ´

?
α1q ¨ ¨ ¨ pz ´

?
αsq, if s is even

i
?
αpz ´

?
a1q ¨ ¨ ¨ pz ´

?
arqpz ´

?
α1q ¨ ¨ ¨ pz ´

?
αsq, if s is odd.

In the same way, qpzq “ g2pzqg2pzq and therefore, f can be presented as the product
g1pzq
g2pzq

¨
g1p´zq
g2p´zq

. �

Corollary 5.41 (from Proposition 5.39). The conjugacy classes of elements α “
pα0, ηq P BirpS, πqzBirpS{πq such that α0ηpα0q is the identity are parametrised by
the classes of polynomials xr´1s, trz2 ` bs : b ą 0uy » H2pxηy,Rpzq˚q.
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Proof. The cohomology group H1pxηy,Gq corresponds precisely to the set of conju-
gacy classes of involutions in BirpS, πqzBirpS{πq, that is, classes of elements pα0, ηq
as in the statement. Therefore Proposition 5.39 directly implies the corollary. �

Corollary 5.42. The set of conjugacy classes of involutions in AutpSpRq, πqz
AutpSpRq{πq surjects naturally to the set of conjugacy classes of involutions in
BirpS, πqzBirpS{πq.

Proof. Let pA, ηq be an involution in BirpS, πqzBirpS{πq. The proof of Proposition
5.39 shows that pA, ηq is conjugate to an element pÃ, ηq where Ã is, via ψ, an
element of the form

”

apzq 0
0 āpzq

ı

, and a P Crzs has no real roots. Since in that
case aā P Rrzs`, Proposition 5.15 tells us that such an element corresponds to
one of AutpSpRq{πq. Hence the birational diffeomorphism pÃ, ηq P AutpSpRq, πqz
AutpSpRq{πq is conjugate in BirpS, πq to pA, ηq, and therefore every conjugation class
of BirpS, πqzBirpS{πq contains a conjugation class of AutpSpRq, πqzAutpSpRq{πq.

�

6. Connection between families

In this section, we collect all our results, and use the fixed points and the
classification of the possible Sarkisov links given by Iskovskikh in [12] to give the
proofs of Theorem A and Theorem B (Section 2).

We start with some definitions, which come from the equivariant Sarkisov program.

Definition 6.1. Let X be a smooth projective real rational surface with XpRq »
SpRq, let g P AutpXq be an automorphism of finite order and let µ : X Ñ Y be a
morphism.

The triple pX, g, µq is said to be a Mori fibration when one of the following holds

piq rkpPicpXqgq “ 1, Y is a point and X is a Del Pezzo surface;
piiq rkpPicpXqgq “ 2, Y “ P1 and the map µ is a conic bundle.

Remark 6.2. In the second case, we can do as in Proposition 3.6 and find a birational
morphism ε : X Ñ S that restricts to a diffeomorphism XpRq Ñ SpRq, such
that πε “ αµ, for some α P AutpP1

Rq. This conjugates g to an element εgε´1 P

AutpSpRq, πq. The possible choices for ε just replace εgε´1 with a conjugate in the
group AutpSpRq, πq.

Definition 6.3. Let µ : X Ñ Y and µ1 : X 1 Ñ Y 1, g P AutpXq, g1 P AutpX 1q be two
Mori-fibrations. An isomorphism of Mori fibrations is an isomorphism ρ : X Ñ X 1,
such that g1ρ “ ρg and µ1ρ “ αµ for some isomorphism α : Y Ñ Y 1.

Definition 6.4. A Sarkisov link between two Mori fibrations µ : X Ñ Y and
µ1 : X 1 Ñ Y 1, g P AutpXq, g1 P AutpX 1q is a birational map ζ : X 99K X 1 such that
g1ζ “ ζg and is of one of the following four types,

piq Links of type I. These are commutative diagrams of the form

X

µ
��

ζ // X 1

µ1��
Y “ tpu Y 1 “ P1ρoo

where ζ´1 : X 1 Ñ X is a birational morphism, which is the blow-up of either
a g-orbit of real points or imaginary conjugate points of X, and where ρ is
the contraction of Y 1 “ P1 to the point p.
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piiq Links of type II. These are commutative diagrams of the form

X

ζ

''

µ
��

Z
β1
//

β
oo X 1

µ1��
Y

»

ρ
// Y 1

where β : Z Ñ X (respectively β1 : Z Ñ X 1) is a birational morphism, which is
the blow-up of either a g-orbit (respectively g1-orbit) of real points or imaginary
conjugate points of X (respectively of X 1), and where ρ is an isomorphism
between Y and Y 1.

piiiq Links of type III. (These are the inverse of the links of type I). These are
commutative diagrams of the form

X

µ ��

ζ // X 1

µ1��
Y “ P1 ρ // Y 1 “ tpu

where ζ : X Ñ X 1 is a birational morphism, which is the blow-up of either a
g1-orbit of real points or imaginary conjugate points of X 1, and where ρ is the
contraction of Y “ P1 to the point p.

pivq Links of type IV. These are commutative diagrams of the form

X
µ ��

ζ

»
// X 1

µ1��
Y “ P1 Y 1 “ P1

where ζ : X Ñ X 1 is an isomorphism and µ, µ1 ˝ ζ are conic bundles on X 1
with distinct fibres.

The following result is given in [12, Theorem 2.5]

Theorem 6.5. Let pX, g, µq and pX 1, g1, µ1q be two Mori-fibrations. Every bira-
tional map ρ : X 99K X 1 such that g1ρ “ ρg decomposes into elementary links and
isomorphisms of conic bundles.

Looking at the classification of links of [12], we obtain the following lemma with
the links that could be possible to have in our classification problem.

Lemma 6.6. Let pX, g, µq and pX 1, g1, µ1q be two Mori-fibrations, and let ρ : X 99K
Y be a birational map which restricts to a diffeomorphism XpRq Ñ Y pRq. Then, ρ
decomposes into elementary links that blow up only imaginary points and contract
only imaginary curves, and are of the following type:
paq Links of type II between conic bundles, which correspond therefore to a conjuga-

tion in AutpSpRq, πq.
pbq Links of type II of the form X 99K X, where X is either the sphere S or a Del

Pezzo surface of degree 4. Moreover, the two elements of AutpXq corresponding
to this link are conjugate in AutpXq.

pcq Link of type I and III between the sphere S and the Del Pezzo surface of degree
6 obtained by blowing up two conjugate points on S. These are possible for only
a few of elements, given in Lemma 4.5.

pdq Links of type IV on Del Pezzo surfaces of degree 2 or 4, obtained by blowing up
pairs of conjugate points in S.

If the two elements of AutpSpRq, πq corresponding to the link are not conju-
gate, then X is a Del Pezzo surface of degree 4 and the two automorphisms are
g1, g2 P AutpXq described in Lemma 4.12.
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Proof. It follows from Proposition 3.4 that X, X 1 do not contain any real p´1q-curve.
Moreover, the map ρ has no real base-points implying that the first Sarkisov link
obtained in the decomposition does not have real base-points (the base-points of
the link are taken among the base-points of the map, see the proof of [12, Theorem
2.5]). Proceeding by induction on the number of links provided by Theorem 6.5, we
obtain that ρ decomposes into Sarkisov links that do not blow up any real point or
contract any real curve. In particular, the surfaces obtained are all diffeomorphic to
the sphere and with K2

X P 2Z.
It remains to study links X 99K X 1, between two Mori-fibrations µ : X Ñ Y and

µ1 : X 1 Ñ Y 1, g P AutpXq, g1 P AutpX 1q, such that XpRq » X 1pRq » SpRq, with
pKXq

2, pKX1q
2 P 2Z, and which do not blow up any point. In the case where Y is a

point, we can moreover assume that pKXq
2 ­“ 6, by Proposition 4.6 (and similarly

pKX1q
2 ­“ 6 if Y 1 is a point). Looking at the list of [12, Theorem 2.6], we get the

following possibilities.

(1) Links of type I and III (Y is a point and Y 1 “ P1 or vice versa). Looking at
[12, Theorem 2.6, case piq], one gets only one possibility, which is the blow-up
of two imaginary conjugate points on the sphere S. Up to automorphism,
these points can be taken to be the two base-points of π : S 99K P1, and the
automorphisms that preserve the union of these two points are described in
Lemma 4.5.

(2) Links of type II (Y “ Y 1 “ P1 or Y “ Y 1 is a point).
In the first case, when Y “ Y 1 “ P1, the link corresponds to conjugation

in the group AutpSpRq, πq (see Remark 6.2).
In the second case, the list of [12, Theorem 2.6, case piiq] yields the

following three possibilities:
piq (Case pKXq

2 “ 8, pbq) A birational map SpRq 99K SpRq that blows up
3 pairs of conjugate points and contract 3 pairs of conjugate curves.
It corresponds to the Geiser involution on the blow-up of the 6 points.

piiq (Case pKXq
2 “ 8, pdq) A birational map SpRq 99K SpRq that blows up

2 pairs of conjugate points and contract 2 pairs of conjugate curves.
piiiq (Case pKXq

2 “ 4, pbq) A birational map XpRq 99K XpRq that blows
up 2 pairs of conjugate points on a Del Pezzo surface X of degree 4
and contract 2 pairs of conjugate curves. It corresponds to the Geiser
involution on the blow-up of the 4 points.

In each case we get a link X 99K X, where X is either the sphere S or a Del
Pezzo surface of degree 4. It remains to see that the two automorphisms of
prime order of AutpXq produced by this link are conjugate by an element
of AutpXq. If the link corresponds to a Geiser involution, this is because
the Geiser involution commutes with all automorphism of the surface (see
Proposition 4.14). In the other case, the orbit blown up consists of two
pairs of conjugate points on SpCq, so the automorphism is an element of
order 2 in AutpSq, so conjugate to a rotation, a reflection or the antipodal
involution (Proposition 4.3). By looking at the fixed points, we observe that
two elements of order 2 in AutpSq are conjugate in AutpSq if and only if
they are conjugate in AutpSpRqq.

(3) Links of type IV. (X » X 1 is a surface which admits two different conic
bundle structures, and the link consists of changing the structure). It follows
from [12, Theorem 2.6, case pivq] that pKXq

2 P t2, 4, 8u. The case 8 is not
possible since PicpSq – Z. If pKXq

2 “ 2, the link is given by the Geiser
involution (by [12, Theorem 2.6]), which commutes with all automorphisms.
Hence, the two automorphisms of AutpSpRq, πq provided by the links are
conjugate. This is the same if pKXq

2 “ 4 and if there is an element of
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AutpSq which commutes with the automorphism. By Lemma 4.13, the
only remaining case is when the two automorphisms are g1, g2 given in
Lemma 4.12. �

Lemma 6.6 shows that the automorphisms g1, g2 given in Lemma 4.12 are quite
special. The following result describes the situation.

Lemma 6.7. p1q Let X be a Del Pezzo surface of degree 4 with µ P Czt˘1u,
|µ| “ 1 psee Lemma 4.8q, and g1, g2 P AutpXq be the automorphisms given
in Lemma 4.12. The action on the two conic bundles invariant yields two
involutions

g11pµq P AutpSpRq{πq, g12pµq P AutpSpRq, πqzAutpSpRq{πq

given by

g11pµq : pt, zq 99K
´

´2iµt`p1`µqp1´z2q
µp2i`p1`µqtq , z

¯

g12pµq : pt, zq 99K
´

p1´z2qpitp1`µq´2q
´2µt´ip1`µqp1´z2q ,´z

¯

pusing the map ψ : SC 99K A2
C of Lemma 5.4q

p2q Taking another surface given by µ1 P Czt˘1u, |µ1| “ 1, the following are equiva-
lent:
(a) g11pµq and g11pµ1q are conjugate in AutpSpRq, πq;
(b) g12pµq and g12pµ1q are conjugate in AutpSpRq, πq;
(c) µ1 “ µ˘1.

p3q Let g P AutpSpRq{πq be an element of order 2, such that Fixpgq is a rational
curve with no real point. Then, g is conjugate in AutpSpRq, πq to g11pµq for
some µ P Czt˘1u, |µ| “ 1.

Proof. Let g P AutpSpRq{πq be an element of order 2, such that Fixpgq is a rational
curve with no real point. The element g belongs to Aut`pSpRq{πq, and the map
π restricts to a double covering πg : Fixpgq Ñ P1 (Proposition 5.25). Since the
curve is rational, by the Riemann-Hurwitz formula the double covering is ramified
over two points q, q̄ P P1pCq. These two points determine the curve Fixpgq, up to
isomorphisms above P1pCq, i.e. isomorphisms ρ : Fixpgq Ñ Fixpg1q with πg1ρ “ πg.
Hence, by Theorems 5.21 and 5.30, the conjugacy class of g in AutpSpRq{πq is given
by the set tq, q̄u.

We will use this observation to show that g is conjugate to one of the auto-
morphisms g1, g2 P AutpXq, where X is a Del Pezzo surface of degree 4, given in
Lemma 4.12.

We use the map ψ : SC 99K A2
C, px, y, zq 99K px ´ iy, zq given in Lemma 5.4 to

compute the action of g1, g2 on A2
C. Note that ψϕ´1 : P1

C ˆ P1
C 99K A2

C is locally
given by

pp1 : sq, p1 : vqq 99K

ˆ

´2is

sv ` 1
,

1´ sv

1` sv

˙

,

and its inverse is pt, zq 99K ppz ` 1 : itq, pt : ipz ´ 1qqq. Using the explicit description
of Lemma 4.12, the actions of g1, g2 are then respectively given by

g11pµq : pt, zq 99K

ˆ

´2iµt` p1` µqp1´ z2q

µp2i` p1` µqtq
, z

˙

g12pµq : pt, zq 99K

ˆ

p1´ z2qpitp1` µq ´ 2q

´2µt´ ip1` µqp1´ z2q
,´z

˙

These correspond to involutions g11pµq P AutpSpRq{πq and g12pµq P AutpSpRq, πqz
AutpSpRq{πq, which are conjugate by an element which is in the group AutpSpRqqz
AutpSpRq, πq (see Lemma 4.12).
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In order to show that there exists µ such that g is conjugate to g11pµq in
AutpSpRq, πq, we need to compute the ramification points of Fixpg11pµqq. The
curve of fixed points of g11pµq is given by

µp1` µqt2 ` 4iµt´ p1´ z2qp1` µq “ 0

so its discriminant with respect to t is equal to

´4µpµ` 1q2 ¨

˜

z2 ´

ˆ

µ´ 1

µ` 1

˙2
¸

,

and the two points correspond then to z “ ˘
µ´1
µ`1 . We conjugate g with an

automorphism of the form

gb :px, y, zq ÞÑ

ˆ

x

?
1´ b2

bz ` 1
, y

?
1´ b2

bz ` 1
,
z ` b

bz ` 1

˙

for some b P p´1, 1q (see Lemma 5.1), and claim that we can send the points q, q̄
onto ˘µ´1

µ`1 for some µ P Czt˘1u with |µ| “ 1. To see this, we make the change
of coordinates z “ 1´z1

1`z1 , z
1 “ 1´z

1`z , so that the map gb acts as z1 ÞÑ z1 1´b1`b and the
points z “ ˘µ´1

µ`1 correspond to z1 “ µ˘1. The claim follows then from the fact that
the map b ÞÑ 1´b

1`b yields a bijection p´1, 1q Ñ Rą0. Hence g is conjugate to g11pµq
for some µ.

Let us show that g11pµq is conjugate to g11pµ
1q in AutpSpRq, πq if and only if

µ1 “ µ˘1. First, observe that 1{µ´1
1{µ`1 “

1´µ
1`µ , so the pair of points are the same for

µ and µ´1. Hence, g11pµq is conjugate to g11pµ1q in AutpSpRq, πq. Second, if g11pµ1q
is conjugate to g11pµq, there exists an element of AutpSpRq, πq whose action on P1

sends
!

˘
µ´1
µ`1

)

onto
!

˘
µ1´1
µ1`1

)

. But the action is generated by the maps z ÞÑ z`b
bz`1 ,

b P p´1, 1q and by z Ñ ´z (Lemma 5.1). Making the same change of coordinates as
before, we obtain that µ1 “ µ˘1.

To finish the proof, it remains to see that two elements g12pµq and g12pµ
1q are

conjugate in AutpSpRq, πq if and only if µ1 “ µ˘1. The element g12pµq corresponds
to an element of H2pxηy,Rpzq˚q that we can compute using Proposition 5.39. To do
this, we need to write the corresponding element of H1pxηy,Gq. Composing g12pµq
with pt, zq Ñ pt,´zq, we obtain the element of Ã “ G given by

”

´ip1`µqp1´z2q 2p1´z2q

2µ ip1`µqp1´z2q

ı

.

In order to get an element of T Ă GLp2,Cpzqq (see Lemma 5.36), we divide each
element of the matrix with ν, with ν P C, |ν| “ 1, ν2 “ µ, and get

“

a hb
b a

‰

P T Ă GLp2,Cpzqq,

with a “ ´ ip1`µqp1´z2q
ν , b “ 2

ν (indeed, a “ ip1`1{µqp1´z2q
1{ν “

ip1`µqp1´z2q
ν ). Obser-

ving that a “ ´a and that a, b are invariant by z ÞÑ ´z, the corresponding element
of H2pxηy,Rpzq˚q can be computed (using Proposition 5.39) by

“

a hb
b a

‰2
“

”

a2`bbh 0

0 a2`bbh

ı

and corresponds therefore to

a2
` bbh “ p1´ z2

q

˜

z2
´

ˆ

1´ µ

1` µ

˙2
¸

p1` µq2

µ
.

Writing µ “ cospθq` i sinpθq we obtain p1`µq2

µ “ 2pcospθq`1q,
´

1´µ
1`µ

¯2

“
cospθq´1
cospθq`1 “

cos2pθq´1
pcospθq`1q2 P Ră0, so the corresponding element of H2pxηy,Rpzq˚q is the class of
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z2 `
1´cospθq
cospθq`1 . Denoting by s : p0, πq Y pπ, 2πq Ñ Rą0 the map spθq “ 1´cospθq

cospθq`1 , we
observe that spθq “ spθ1q if and only if θ1 P tθ, 2π ´ θu. This gives the result. �

6.1. Proof of theorems A and B. We can now finish by giving the proof of the
main theorems.

Proof of Theorem A. Let g P AutpSpRqq be of prime order. By Proposition 3.6, one
of the two following possibilities holds
paq There exists a birational morphism ε : X Ñ S which is the blow-up of 0, 1, 2,

or 3 pairs of conjugate imaginary points in S, such that ĝ “ ε´1gε P AutpXq,
PicpXqĝ – Z, and X is a Del Pezzo surface.

pbq There exists α P AutpP1q such that απ “ πg. Moreover, there exists a birational
morphism ε : X Ñ S that restricts to a diffeomorphism XpRq Ñ SpRq such that
ĝ “ ε´1gε P AutpXq, πε : X Ñ P1 is a conic bundle on X, and PicpXqĝ – Z2.

In particular, we have a Mori fibration in the sense of Definition 6.1.
In the case paq, X is a Del Pezzo surface with possible degree 8, 6, 4, or 2. If

pKXq
2 “ 8, X » S and g P AutpSq. By Proposition 4.3, g is conjugate to one of the

cases (3), (4), or (5) of the statement. If X is a Del Pezzo surface of degree 6, X
comes from S by blowing up a pair of conjugate imaginary points and Proposition 4.6
tell us that ĝ comes from an automorphism of S, having the same cases as before.
If X is a Del Pezzo surface of degree 4, X comes from S by blowing up two pairs
of conjugate imaginary points and by Proposition 4.11 g is conjugate to α1 or α2

giving in case (2). If X is a Del Pezzo surface of degree 2, X comes from S by
blowing up three pairs of conjugate imaginary points and Lemma 4.15 asserts that
the Geiser involution ν is such that PicpXqν has rank 1 and Lemma 4.16 that there
is no other such automorphism of X. We get then case (1).

We look now at case pbq, where rkpPicpXqĝq “ 2. In this case, g is conjugate to
an element of AutpSpRq, πq by some birational morphism ε : X Ñ S that restricts
to a diffeomorphism XpRq Ñ SpRq (see Remark 6.2) that we call g again for
simplicity. Since the order of g is finite, by Lemma 5.2 the image of g under the
map Φ: BirpS, πq Ñ AutpP1q is the identity or η : z ÞÑ ´z, after conjugation by an
element of AutpSpRq, πq.

‚ If Φpgq is the identity, then g P AutpSpRq{πq. When g has order larger than
2, by Lemma 5.35 g is conjugate to a rotation, case (3).
If g has order 2, then g is an element in Aut`pSpRq{πq when g is an
orientation-preserving birational diffeomorphism or an element that belongs
to AutpSpRq{πqzAut`pSpRq{πq otherwise. Proposition 5.25 implies in the
first case, that Fixpgq is a double covering of P1 with no real points and in
the second case, that Fixpgq is a double covering of P1 with real points one
oval and ramification points PN and PS . Lemma 5.10 implies that PN and
PS are fixed in both cases. By Lemma 5.23, the action of g on the fibres of π
is either by rotations of order 2 when g is in Aut`pSpRq{πq or by reflections
when g is in AutpSpRq{πqzAut`pSpRq{πq. We get thus cases (6) and (7) in
the statement, except if the curve Fixpgq is rational. It remains to see that
if Fixpgq is rational, g is conjugate to another case. If g P AutpSpRq{πqz
Aut`pSpRq{πq, then the curve Fixpgq is isomorphic to P1

R and g is conjugate
to the reflection υ : pw : x : y : zq ÞÑ pw : ´x : y : zq by Theorems 5.21
and 5.30. If g P AutpSpRq{πq, then g is conjugate to an automorphism of
the last family by Lemma 6.7.

‚ If Φpgq “ η, then g “ g1η̃ with Φpη̃q “ η (Lemma 5.2) and g1 P AutpSpRq{πq.
Since the order of g is prime, g is of order 2 in AutpSpRq, πqzAutpSpRq{πq
giving the case (8) in the statement, or one of the automorphisms pw : x :
y : zq ÞÑ pw : ˘x : ˘y : ´zq. �
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Proof of Theorem B. All the cases are disjoint because of the fixed curves and order,
except maybe in case (2) where the curve of fixed points of αi has genus 1 because
elements in cases (6) and (7) may a have curve of fixed points of the same genus.
However, αi is not conjugate to an automorphism of a conic bundle since there is
no sequence of links coming from it to a Mori fibration preserving a conic bundle
(Lemma 6.6). On the other hand, αi is conjugate to another element if and only if
the conjugation is by an isomorphism of the surface X; this is again a consequence of
Lemma 6.6. We proved that conjugacy classes in (2) are disjoint and parametrised
by isomorphism classes of pairs pX, gq, where X is a Del Pezzo surface of degree 4
with XpRq » SpRq and g is an automorphism of order 2 that does not preserve any
real conic bundle (Proposition 4.11).

It remains to show the parametrisation of the families p1q and p3q ´ p8q.
For (1), the curves of fixed points in SpCq are not rational and invariant under

conjugation in BirpSq and then in AutpSpRqq. We obtain a map from the set of
conjugacy classes associated to each family to the set of isomorphism classes of the
set of fixed curves. The surjectivity is given by the correspondence

"

Smooth real quartics
with one oval

*

Ø

"

Del Pezzo surfaces of degree 2
diffeomorphic to the sphere

*

Concerning injectivity, if two quartics are isomorphic, then the surfaces are isomor-
phic. This is because the canonical divisor of the quartic is the class of a line (see
proof Proposition 4.14). Then every isomorphism extends to P2 and then, it yields
an isomorphism of Del Pezzo surfaces of degree 2.

For (6) and (7), the elements are conjugate in AutpSpRqq if and only if they are
conjugate in AutpSpRqq, because it is not possible to use other links that links of
type II (see the description of links given in Lemma 6.6). We can thus consider
the fixed locus, which is not only a non-rational curve, but also a curve endow
with a 2: 1-covering. Moreover, the elements of AutpSpRq, πq preserve the interval.
Conversely, let Γ Ñ P1, Γ1 Ñ P1 be 2 : 1-coverings of P1 and assume that there
exists an isomorphism α : P1 Ñ P1 such that the following diagram commutes:

Γ

π ��

ρ

„
// Γ1

π ��
P1 α

»
// P1

and that α preserves r´1, 1s then α is in the group given in Lemma 5.1, then there
exist ξ P AutpSpRq, πq such that we replace ρ with ξρξ´1 and may assume that
α “ id. Then the corresponding elements are conjugate by Proposition 5.31.

For (4) and (5), the parametrisation is trivial since there is only one element in
each family.

For (3), if two rotations are equal up to sign, they are conjugate by υ or the
identity. It remains to see that if rθ is conjugate to rθ1 by ρ P AutpSpRqq then
θ “ ˘θ1 pmod 2πq. We may assume that the order is ě 5, (since otherwise we
always have θ “ ˘θ pmod 2πq). We decompose ρ into elementary links and use
Lemma 6.6 to see that ρ is a product of maps of the following type:

dP6

��

II // dP6

��
S

» // S

where the vertical arrows are blow-ups of two imaginary fixed points, fixed by g and
the image. Hence, we may assume that the points are p0 : ˘i : 1 : 0q and then we
stay in AutpSpRq, πq (Lemma 4.5). In AutpSpRq{πq ¸ xτy Ă PGLp2,Cq ¸ xτy the
elements are

`“

1 0
0 eiθ

‰

, 1
˘

(see Subsection 5.6), and two are conjugate only if θ “ ˘θ1.
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For (8), by Corollary 5.42, conjugacy classes of elements in AutpSpRq, πqz
AutpSpRq{πq surjects naturally to the set of conjugacy classes of elements in
BirpS, πqzBirps{πq which is uncountable. These correspond to the conjugacy classes
of BirpS, πq, we may then have a priori more conjugacy classes in AutpSpRq, πq. It
remains to prove that two such elements are conjugate in AutpSpRq, πq if and only
if they are conjugate in AutpSpRqq. For this, we write ρ P AutpSpRqq an element
that conjugates one involution to another, and decompose it into elementary links.
If all links are of type II, then ρ P AutpSpRq, πq. If some links of type I or III are
used, then by Lemma 6.6 these pass through the sphere and the Del Pezzo of degree
6, which is impossible here, since elements of the last family are not conjugate
to pw : x : y : zq ÞÑ pw : ˘x : ˘y : ´zq by hypothesis. The last part is when ρ
decomposes into links of type II and IV. The links of type IV provide two fibrations
of the same surface, which lead to two different elements of AutpSpRq, πq. If the
two elements are conjugate in this latter group, the result is clear. The only case
where this is not true is by Lemma 6.6 the case given by the automorphisms g1, g2

on special Del Pezzo surfaces of degree 4 given by |µ| “ 1 (Lemma 4.12). But in
this case, we conjugate an element of AutpSpRq, πqzAutpSpRq{πq to an element of
AutpSpRq{πq, and when we come back we did not change the conjugacy class in
AutpSpRq, πq (Lemma 6.7). This ends the proof of the Theorem B. �
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