
 
 

 

 

 

 

Bayesian geostatistical and mathematical 

models to assess the geographical distribution  

of neglected tropical diseases 

 

 

 

INAUGURALDISSERTATION 

zur 

Erlangung der Würde eines Doktors der Philosophie 

 

vorgelegt der 

Philosophisch-Naturwissenschaftlichen Fakultät 

der Universität Basel 

 

von 

Yingsi Lai 

aus China 

 

Basel, 2016 

 

Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel 

edoc.unibas.ch 

  



 
 

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von Prof. 

Dr. Jürg Utzinger, PD Dr. Penelope Vounatsou, and Asst. Prof. Anna-Sofie Stensgaard. 

 

Basel, den 19. April 2016 

 

Prof. Dr. Jörg Schibler 

Dekan 



ii 
 

Summary 

Neglected tropical diseases (NTDs) are a group of communicable diseases affecting more 

than one billion of the world’s poorest population. Soil-transmitted helminth infections, 

schistosomiasis, and foodborne trematodiasis are among the most important NTDs. Soil-

transmitted helminth infections are caused by a group of parasite nematode worms (i.e., 

Ascaris lumbricoides, Trichuris trichiura, and hookworm) through contact with parasite eggs 

or larvae which thrive in warm and moist soil. They are widely endemic in the tropics and 

sub-tropics and ranked on the top among all NTDs burden, contributing to the global disease 

burden with 5.2 million disability-adjusted life years (DALYs). Schistosomiasis is caused by 

trematode parasites of the genus Schistosoma. It is the second highest in terms of NTD burden 

and responsible for around 3.3 million DALYs worldwide. More than 90% of schistosomiasis 

cases occur in Africa. Clonorchiasis is one of the most important foodborne trematodiasis and 

it is caused by infection with the Chinese liver fluke, Clonorchis sinensis. China accounts for 

around 85% of the global infected people and most cases occur in the southern and the 

northeastern parts of the country. For all the three diseases, preventive chemotherapy is 

advocated by WHO as a key strategy for morbidity control. Furthermore, integrated 

approaches are highly recommended to achieve sustainable control and elimination. Such 

approaches may include preventive chemotherapy in combination with improvement of water, 

sanitation, and hygiene, as well as better information, education, and communication. 

To implement control strategies cost-effectively, high-resolution maps depicting the 

geographical distribution of disease risk are important. These maps provide useful 

information for spatial targeting of control measures and for long-term monitoring and 

surveillance. Geostatistical modeling is the most rigorous inferential approach for high-

resolution risk mapping of NTDs. It is a data-driven approach, which relates georeferenced 

disease data (usually point-referenced) with potential predictors (e.g., environmental and 

socioeconomic factors) that are considered important for disease transmission. Location-

specific random effects can explain geographical variation in the data, assuming that 

neighboring areas have similar infection status due to common disease exposures they receive. 

Geostatistical models are highly parameterized, however Bayesian model formulations 

provide a flexible inferential framework and powerful computational tools such as Markov 

chain Monte Carlo (MCMC) simulation or approximations (e.g., integrated nested Laplace 

approximation (INLA)) are applied for model fit. 

A good coverage and a fine amount of disease data are necessary to capture the spatial 

heterogeneity of the infection risk. Due to lack of large surveys covering the whole study 

region, this PhD thesis is based on historical survey data that are compiled via bibliometric 

searches. Publications however are either report the survey data as point-referenced (with 

geographical information at the survey location) or as areal, aggregated over several locations 
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within an administrative level (e.g., county or district). The areal data can provide useful 

information especially when the spatial coverage of point-referenced data is low. 

Geostatistical model for jointly analysing point-level and areal survey data are not available. 

Furthermore, historical data are generated from studies with different designs between 

locations, including different population age-groups. Geostatistical models that align survey 

data across locations to a common age group do not exist in the field of NTDs. Ignoring the 

age-heterogeneity of the data can lead to biased estimation because models cannot distinguish 

whether risk differences between locations is due to differences in age or to exposures. 

Mathematical models can be used to age-align the surveys, but there is no model formulation 

allowing changes of the shape of the age-prevalence curve over space as a result of the 

varying endemicity. 

The overall goal of the thesis is to develop Bayesian geostatistical and mathematical 

models for analysing georeferenced NTD survey data and to provide tools and knowledge for 

disease control and prevention. 

In Chapter 2 surveys pertaining to soil-transmitted helminth infections in People’s 

Republic of China (P.R. China) were compiled. Bayesian geostatistical models were 

developed and used to estimate the disease risk throughout the country at high spatial 

resolution. Advanced Bayesian variable selection methods were employed to identify the 

most important predictors. Results indicate that the prevalence of soil-transmitted helminth 

infections in P.R. China considerably decreased from 2005 onwards. Yet, some 144 million 

people were estimated to be infected in 2010. High prevalence (>20%) was predicted in large 

areas of Guizhou and the southern part of Hubei and Sichuan provinces for 

Ascaris lumbricoides infection, in large areas of Hainan, the eastern part of Sichuan, and the 

southern part of Yunnan provinces for hookworm infection, as well as in a few small areas of 

south P.R. China for Trichuris trichiura infection. 

In Chapter 3 a systematic review was carried out to identify prevalence surveys to soil-

transmitted helminth infections in South Asia. Bayesian geostatistical models were applied to 

identify important environmental and socioeconomic predictors, and to estimate infection risk 

at high spatial resolution across the study region. Results show that 397 million of South Asia 

population was infected with at least one species of soil-transmitted helminths in 2015. 

A. lumbricoides was the most common infection species. Moderate to high prevalence (>20%) 

of any soil-transmitted helminth infection was predicted in the northeastern part and some 

northern areas of the study region as well as the southern coastal-line areas of India. The 

annual treatment needs for the school-aged population requiring preventive chemotherapy 

was estimated at 187 million doses. The study highlights the need for up-to-date surveys to 

accurately evaluate the disease burden in the region. 

In Chapter 4 georeferenced survey data of C. sinensis infection were obtained via a 

systematic review and additional data were provided by the National Institute of Parasitic 
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Diseases, Chinese Center for Diseases Control and Prevention. Bayesian geostatistical models 

were applied to quantify the relation between infection risk and important predictors, and to 

predict the risk of infection across P.R. China at high spatial resolution. The results show an 

increasing risk of C. sinensis infection over time, particularly from 2005 onwards, which 

urges the Chinese government to pay more attention on the public health importance of the 

diseases. Highly endemic areas (>20%) were concentrated in southern and northeastern parts 

of the country. The provinces with the highest risk of infection and the largest number of 

infected people were Guangdong, Guangxi and Heilongjiang. 

In Chapter 5 a systematic review was conducted to identify relevant surveys pertaining to 

prevalence of Schistosoma infection in sub-Saharan Africa. Bayesian geostatistical meta-

analysis and rigorous variable selection were used to obtain up-to-date risk estimates of 

schistosomiasis at high spatial resolution, based on environmental and socioeconomic 

predictors. The literature search identified Schistosoma haematobium and Schistosoma 

mansoni surveys at 9,318 and 9,140 unique locations, respectively. Results show a decreased 

infection risk from 2000 onwards, yet suggesting that 163 million Africans were infected in 

2012. Mozambique had the highest prevalence of Schistosoma infection among 44 countries 

of sub-Saharan Africa. Annualised treatment needs with praziquantel were estimated at 123 

million doses for school-aged children and 247 million for the entire population. 

In Chapter 6 a Bayesian geostatistical modeling approach was developed to analyse jointly 

areal and point-referenced survey data. We assumed that the point-referenced data arise from 

a binomial distribution and that the aggregated area data follow a Poisson binomial 

distribution which was approximated by a two parameter shifted binomial distribution. 

Results from extensive simulations shows that our proposed model has better predictive 

ability and improves parameter estimation compared to models that treat area data as points, 

located at the centroid of the areas. We applied the new model to obtain high spatial 

resolution estimates of the infection risk of clonorchiasis in an endemic region of P.R. China. 

In Chapter 7 we integrated geostatistical and mathematical transmission models of 

schistosomiasis within a single model formulation to analyse age-heterogenous S. mansoni 

data from Côte d’Ivoire. A series of age-specific risk maps of S. mansoni infection in Côte 

d’Ivoire were produced at high geographical resolution, which allow us to identify the most 

important age groups of the population to treat at a given place. We predicted that the 

infection risk reached the peak at younger ages in high risk areas and at older ages in low risk 

areas. Moreover, a more rapid decline rate of infection risk was observed at older ages in high 

risk areas compared to that in moderate and low risk ones. 

In summary, this PhD thesis contributes to the fields of spatial statistics and of 

epidemiology of NTDs with (i) statistical methodology for modeling spatially-structured 

disease data, having heterogeneous geographical support (i.e., georeferenced at point or area 

level) across the study region and they are collected over different age groups between 
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locations, (ii) applications on soil transmitted helminth infections, schistosomiasis, and 

clonorchiasis in sub-Saharan Africa, South Asia, and P.R. China, to obtain spatially explicit 

estimates of disease risk, number of infected people, and annual treatment needs for 

preventive chemotherapy at different administrative levels, and (iii) large amount of geo-

referenced data on NTD surveys conducted at over 10,750 unique locations that are available 

via the open access Global Neglected Tropical Diseases Database (GNTD). The innovative 

statistical methodology for analysing historical survey data, heterogeneous in space can be 

readily applied to other disease survey data. The up-to-date, model-based, high-resolution risk 

maps and estimates of treatment needs provide useful tools and information for guiding 

disease control and interventions.  
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1.1 Neglected tropical diseases 

Neglected tropical diseases (NTDs) are a diverse group of communicable diseases that 

were historically overlooked but among the most common chronic infections in the world’s 

poorest population (Hotez et al. 2007;Mackey et al. 2014). The 17 core NTDs that WHO 

identified include: dengue and chikungunya and rabies, which are viral infections; Buruli 

ulcer, endemic treponematoses, leprosy, and trachoma, which are bacterial infections; Chagas 

disease, human African trypanosomiasis, and leishmaniases, which are protozoan infections; 

and cysticercosis/taeniasis, dracunculiasis, echinococcosis, foodborne trematodiasis, 

lymphatic filariasis, onchocerciasis, schistosomiasis, and soil-transmitted helminth infections, 

which are helminthial or metazoan infections. They are endemic in 149 countries and 

territories and affect more than one billion people (WHO 2010b). With a few exceptions, 

NTDs are mostly resulted in low mortality but high morbidity conditions (Hotez 2013). It was 

estimated that all NTDs together accounting for 26 million disability-adjusted life years 

(DALYs) in 2010, which is comparable to that of the “big three diseases” (i.e., HIV/AIDS, 

tuberculosis, and malaria, corresponding to 81 million, 49 million, and 83 million DALYs, 

respectively) (Hotez 2015;Murray et al. 2012). 

Control of NTDs is considered as “low-hanging fruit”, as low-cost and highly cost-

effective intervention approaches are available for many of these diseases, and in addition, 

controlling of these diseases has simultaneous and sustainable effects on poverty reduction 

(Hotez et al. 2009;Molyneux 2010). However, many of individuals still have far less access to 

the resources (Mackey et al. 2014). As some of NTDs are co-endemic and share similar 

control strategies, tackling of these diseases through co-implementation, for example, 

conducting integrating drug distribution programs, can be even more effective and affordable 

(Brady, Hooper, & Ottesen 2006;Laxminarayan et al. 2006). 

Preventive chemotherapy is identified as a key strategy for tackling, often jointly, a 

number of NTDs, according to the NTD roadmap published by WHO in 2012 (WHO 2012a). 

The road map also set specific targets for eradication, elimination, and intensified control of 

different NTDs (WHO 2012a). Five public-health strategies to overcoming NTDs were 

highlighted by the WHO report in 2013, which include: (1) preventive chemotherapy, (2) 

innovative and intensified disease-management, (3) vector control and pesticide management, 

(4) safe drinking-water and basic sanitation/hygiene services, and (5) education and veterinary 

public-health services (WHO 2013). These strategies can be more effective when combined 

and delivered locally (WHO 2013). 

In order to cost-effective implementation of control strategies, high-resolution maps 

depicting the geographical distribution of disease risk are important to identify areas with 

highest risk, but they are not yet available for many NTDs. This PhD thesis focuses on risk 

estimates of three important NTDs: soil-transmitted helminth infections, schistosomiasis, and 
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clonorchiasis (one of the most important foodborne trematodiasis), and provides appropriate 

methodologies for the estimation. 

1.1.1 Soil-transmitted helminth infections 

Soil-transmitted helminth infections are caused by a group of parasite nematode worms 

through contact with parasite eggs or larvae that thrive in warm and moist soil of the world’s 

tropical and subtropical countries (Bethony et al. 2006). 

1.1.1.1 Parasites and life cycles 

Three main kinds of worms that infect people are the roundworm (Ascaris lumbricoides), 

the whipworm (Trichuris trichiura), and the hookworms (Necator americanus and 

Ancylostoma duodenale), which vary greatly in shape and size. Adult worms living in the 

intestine produce thousands of eggs every day, which leave the body with faeces and 

contaminate the soil and water systems in areas with no latrine systems or of poor sanitation 

(Figure 1.1-1.3). In soil, eggs develop into infective stages. People get infected with 

A. lumbricoides and T. trichiura by ingesting the infective eggs via intake of food/water or 

putting into the mouths unwashed hands, which are contaminated with eggs. On the other 

hand, people are infected with hookworm by contacting the infective larvae with skin. Inside 

the human body, the three worms travel to their final locations in different ways: after 

ingestion, trichuris eggs develop into larvae and travel directly to the colon, where they 

further develop into adult worms; ascaris larvae penetrate the intestinal mucosa, migrate 

through liver and lungs, re-enter the gastrointestinal tract, and develop into adult worms; after 

skin penetration, hookworm larvae enter the afferent circulation, pass through the lungs, 

migrate into gastrointestinal tract, and turn to egg-laying adults (Bethony et al. 2006). In 

addition, A. duodenale larvae are also infective through oral digestion (Loukas & Prociv 

2001). Soil-transmitted helminths can live in human intestine for several years. As they do not 

reproduce within the host, re-infection occurs only when people re-contact the infective stages 

of worms in environment. 

1.1.1.2 Clinical conditions 

When larvae migrate through skin and viscera, acute manifestations, from temporary skin 

itch to severe pneumonia, can occur (Bethony et al. 2006). With regards to intestinal 

parasitism, only infections with relatively high intensity can lead to evident symptoms, which 

include intestinal manifestations (e.g., diarrhea and abdominal pain), general malaise and 

weakness, malnutrition, and impaired physical growth (WHO 2006). Particularly, very heavy 

infection by A. lumbricoides can lead to severe consequences such as intussusception, 

volvulus, complete obstruction, bowel infarction, intestinal perforation, and peritonitis (Das 

2014;Viliamizar et al. 1996). Heavy T. trichiura infection can result in serious manifestations 

(e.g., chronic dysentery and rectal prolapse) (Bundy & Cooper 1989). The major hookworm-

related pathology is caused by intestinal blood loss, as the worms use their cutting apparatus 
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to attach the intestinal mucosa and submucosa, leading to mechanical and chemical rupture of 

capillaries and arterioles (Hotez et al. 2004). Iron-deficiency anaemia and hypoalbumnemia 

occur when blood loss exceeds the intake and reserves of iron and protein of the host 

(Stoltzfus et al. 1997). Children and women of child-bearing age are at particular risk of 

hookworm infection, as they have reduced iron reserves (Bethony et al. 2006). Sever iron-

deficiency anaemia during pregnancy caused by hookworm disease can result in adverse 

outcomes for both mother and infant (Bundy, Chan, & Savioli 1995). 

 

Figure 1.1: Life cycle of Ascaris lumbricoides (source: CDC) 

 

 

Figure 1.2: Life cycle of Trichuris trichiura (source: CDC) 
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Figure 1.3: Life cycle of hookworm (source: CDC) 

 

1.1.1.3 Epidemiology 

Soil-transmitted helminth infections are widely endemic in tropics and sub-tropics, 

particularly in areas of East Asia and Pacific Islands (included China), sub-Saharan Africa, 

South Asia (included India), Latin America and Caribbean (de Silva et al. 2003) (Figure 1.4). 

It was estimated that in 2010 the global numbers of people infected with A. lumbricoides, 

T. trichuris, hookworm, and any soil-transmitted helminth species were 819 million, 465 

million, 439 million, and 1.45 billion, respectively (Pullan et al. 2014). The overall DALYs 

caused by soil-transmitted helminth infections in 2010 were estimated to 5.2 million, ranked 

the top among all NTDs (Murray et al. 2012). Regarding to each disease, A. lumbricoides, 

T. trichuris, and hookworm infections took into account 1.3 million, 0.6 million, and 3.2 

million DALYs, resplectively (Murray et al. 2012). Populations affected by these diseases are 

often live in poverty, with less access to clean water and sanitation infrastructures, inadequate 

hygiene practices, and low education (Hotez et al. 2007;Steinmann et al. 2010). 

1.1.1.4 Risk factors 

Environmental and climatic conditions are important for transmission of soil-transmitted 

helminth infections. Several factors (e.g., land surface temperature, soil moisture, soil types, 

vegetation, land cover, rainfall, and altitude) influence the development and survival of the 

worms’ free-living infective stages (Brooker et al. 2003;Hohmann et al. 2001;Tchuem 

Tchuenté 2011). For example, warm temperature and adequate moisture in soil can speed up 

the development of eggs/larvae (Brooker, Clements, & Bundy 2006). On the other hand, 

socioeconomic factors (e.g., drinking water sources, sanitation, personal hygiene, education, 

poverty, and clinical features) have equal importance for transmission of the diseases 

(Escobedo, Canete, & Nunez 2008;Hohmann et al. 2001;Knopp et al. 2010;Norhayati, 
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Oothuman, & Fatmah 1998;Pinheiro et al. 2011). With poor sanitation, faeces from infected 

people may easily contaminate the soil; with bad hygiene practice, people can simply get 

infected due to, for example unwashed hands or unclean vegetables. 

 

Figure 1.4: Endemic regions of soil-transmitted helminth infections and proportion of 

children (aged 1-14 years) in each endemic country requiring preventive chemotherapy for the 

diseases, 2011 (sources:WHO 2013). 

 

1.1.1.5 Diagnosis and treatment 

WHO recommended Kato-Katz technique as the standard method for evaluating 

prevalence and intensity of soil-transmitted helminth infections in endemic areas, due to its 

relative simplicity, speed, and low cost (Montressor et al. 1998). On average, 41.7 mg of stool 

on a microscopic slide is examined for the detection and quantification of helminth eggs in a 

single Kato-Katz thick smear (Speich et al. 2014b). However, Kato-Katz method may result 

in low sensitivity if only one single smear is examined, particularly in low transmission 

settings (Booth et al. 2003). By multiple stool sampling, the sensitivity can be increased 

(Knopp et al. 2008). Other commonly used techniques include direct smear microscopy, 

formol-ether concentration (FEC), McMaster, FLOTAC, and Mini-FLOTAC, which also rely 

on visual examination of a small sample of stool to determine the presence and number of 

soil-transmitted helminth eggs (Nikolay, Brooker, & Pullan 2014). A single FLOTAC shows 

higher sensitivity than multiple Kato-Katz thick smears in detecting low-intensity infections, 

thus is considered as an alternative for anthelmintic drug efficacy studies and for monitoring 

and evaluation of deworming programs (Knopp et al. 2009;Knopp et al. 2011). Generally, if 

sources are permitting, combination of different methods are suggested for a more reliable 

evaluation of the prevalence and intensity of infections. In addition, ultrasonography and 

endoscopy are useful in clinical practices for diagnosis of intestinal complications due to 

ascariasis (Umetsu et al. 2014). 
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Benzimidazole drugs albendazole and mebendazole are commonly used for treatment of 

soil-transmitted helminth infections, with an aim to removal of worms from the 

gastrointestinal tract (Bethony et al. 2006). As board-spectrum anthelminthic drugs, they have 

different efficacies on the three types of infections: a single dose of both drugs is effective for 

A. lumbricoides infection; single-dose of albendazole shows high efficacy for hookworm, on 

contrary to that of mebendazole, which appears a low cure rate; a single dose of the two drugs 

is not satisfactory for the treatment of T. trichiura (Keiser & Utzinger 2008;Keiser & 

Utzinger 2010). In this way, several doses of mebendazole are needed for T. trichiura and 

hookworm infections (Keiser & Utzinger 2010). On the other hand, mebendazole is poorly 

absorbed so the therapeutic activity is mainly on the adult worms in gastrointestinal tract, 

while the absorption of albendazole is better especially with fat in the diet, thus it is also used 

for treatment of disorders caused by larvae migration through tissues (Dayan 2003). Mild and 

transient side effects can occur, including diarrhoea, nausea, abdominal discomfort, headache, 

and fatigue (Ray 2015). Although there is no confident evidence showing that albendazole 

and mebendazole are embryotoxic and teratogenic in human, concerns arise with the use of 

them in very young children and pregnancy women, as benzimidazole drugs have been shown 

embryotoxic and teratogenic in some animal species (Acs et al. 2005;Horton 1997). In 

preventive chemotherapy, WHO allows the use of albendazole and mebendazole in pregnant 

women of the second and third trimesters, as well as in lactating women, by considering that 

the benefit of treatment outweighs the risk (WHO 2002b;WHO 2006). 

Levamisole, pyrantel pamoate, and ivermectin are also used for treatment against soil-

transmitted helminth infections. However, a single oral dose of the above drugs has less 

efficacious for T. trichiura infection (Keiser & Utzinger 2010). Oxantel pamoate is a 

pyrimidine derivate developed from pyrantel, with excellent activity against T. trichiura but 

only low efficacy against A. lumbricoides and hookworm (Keiser et al. 2013;Moser et al. 

2016). Therefore, it is necessary to combine oxantel pamoate with a partner drug (e.g., 

albendazole) in order to have a broad treatment of all three types of soil-transmitted helminth 

infections (Speich et al. 2014a;Speich et al. 2015). Although there is no conclusive evidence 

for drug resistance among human soil-transmitted helminth infections, monitoring drug 

efficacy in control programmes is necessary in order to maximize the ability to detect any 

drug resistance cases (Vercruysse et al. 2011). 

1.1.1.6 Control and prevention 

Periodic large-scale preventive chemotherapy is advocated by WHO in infection risk areas 

to control morbidity (WHO 2006). Frequent anthelmintic drug administrations are necessary 

to maximize the benefit of preventive chemotherapy, as reinfections of soil-transmitted 

helminths can happen rapidly after treatment (Jia et al. 2012). Albendazole or mebendazole 

(at a single dosage of 400mg or 500mg, respectively) are recommended for treatment of all 

school-aged children twice each year in high-risk (prevalence≥50%) areas and once each 
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year in moderate-risk (prevalence≥20% and <50%) areas (WHO 2006). Control strategies 

only focusing on school-based deworming may be inadequate, thus extension of treatments 

should be also considered to other populations (e.g., preschool-aged children, women of 

childbearing age, and high occupational exposure adults) or to the whole community 

(Anderson et al. 2013;Karagiannis-Voules et al. 2015a;Lo et al. 2015). 

As re-infections occur rapidly, long-term solutions should be applied. Studies reveal that 

water, sanitation, and hygiene (WASH) interventions, especially the improvement of 

sanitation, appear to significantly reduce odds of infection (Strunz et al. 2014;Ziegelbauer et 

al. 2012). Furthermore, health education shows a positive impact on control of the diseases 

(Al-Delaimy et al. 2014;Gyorkos et al. 2013). In general, in order to achieve a durable 

reduction or elimination of soil-transmitted helminth infections, integrated control approaches 

are required, for example preventive chemotherapy with improvements of WASH and better 

information, education, and communication (IEC) (Jia et al. 2012;Strunz et al. 

2014;Ziegelbauer et al. 2012). 

1.1.2 Schistosomiasis 

Schistosomiasis, also known as bilharizia, is a disease caused by trematode parasites of the 

genus Schistosoma (Gryseels et al. 2006). 

1.1.2.1 Parasites and life cycles 

There are three main species of schistosomes infecting human beings, that is Schistosoma 

haematobium presenting in Africa and the Middle East, Schistosoma mansoni in Africa, the 

Middle East, and South America, and Schistosoma japonica in Asia, primarily the Philippines 

and China (Colley et al. 2014). Besides, there are the other three species of only local 

importance with restricted distributions: Schistosoma mekongi, found along the Mekong River 

and its tributaries in Cambodia and Lao People’s Democratic Republic (Lao PDR), and 

Schistosoma guineensis and Schistosoma intercalatum in parts of West and central Africa 

(Chu et al. 2012;Muth et al. 2010;Tchuem Tchuenté et al. 2003b). Adult schistosomes have a 

cylindrical body with two terminal suckers, a complex tegument, a blind digestive tract, and 

reproductive organs, usually 7-20mm in length (Gryseels et al. 2006). They have separate 

sexes but male and female worms live much of the time as embraced couple (Gryseels et al. 

2006). 

The eggs produced by adult worms are excreted in faeces or urine of infected human and 

shed into environment (Figure 1.5). In freshwater, eggs are hatch into miracidia, which infect 

the intermediate host, freshwater snails. Inside the snails, they further develop into 

multicellular sporocysts through asexual replication and eventually the cercariae. Mature 

cercariae are released into water, penetrate the skin of human host and turn into 

schistosomulae, which further migrate through blood circulation and reach perivesicular (for 

S. haematobium) or mesenteric (for other species) destination (Gryseels et al. 2006). It takes 
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about 5-7 weeks for schistosomulae becoming adults and producing eggs (Colley et al. 2014). 

There are a specific range of suitable snail hosts for each species, for example 

S. haematobium, S. mansoni, and S. japonica are transmitted by Bulinus, Biomphalaria, and 

Oncomelania snails, respectively. 

 

Figure 1.5: Life cycle of schistosomes (source: CDC) 

 

1.1.2.2 Clinical conditions 

Schistosome infections usually cause intestinal and hepatosplenic schistosomiasis, except 

for the infection of S. haematobium, which often leads to urogenital schistosomiasis. The 

earliest symptoms of infection include temporary or sometimes consist of skin rash or prurit, 

which are induced by percutaneous penetration of cercariae, often unrecognized in endemic 

areas (Appleton 1984). Generally, the morbidity of schistosomiasis is predominantly caused 

by host’s immune response to schistosome eggs (Burke et al. 2009). Acute schistosomiasis, 

known as Katayama syndrome, appears between weeks to months after non-immune 

individuals exposed to first schistosome infection or heavy reinfection, typical clinical 

presentations of which include nocturnal fever, cough, myalgia, headache, and abdominal 

tenderness (Ross et al. 2007). 

In general, chronic schistosomiasis is the most common form of the disease and often 

results in chronic anaemia, undernutrition, and children’s growth stunting (King & 

Dangerfield-Cha 2008). Chronic intestinal schistosomiasis frequently presents as non-specific 

abdominal pain, diarrhea, dyspepsia, tenesmus, and anal pain (Elbaz & Esmat 2013). Some 

people can further develop to hepatosplenic disease, with clinical features such as 

splenomegaly, portal hypertension, oesophageal varices, haematemesis, melaena, and ascites 
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(De Cock 1986). One the other hand, urogenital schistosomiasis often appears with a classic 

clinical presentation as haematuria, often with urinary frequency, burning micturition, and 

suprapublic discomfort (Colley et al. 2014). If not properly treated, long-standing urinary 

complications may result in serious sequelae such as chronic bladder ulcers, leucoplakia, 

vesical granuloma, contracted bladder, bladder neck contracture, and stricture ureters, which 

may further lead to lethal consequences from renal failure or bladder cancer (Khalaf, Shokeir, 

& Shalaby 2012). Female genital schistosomiasis not only affects women’s reproductive 

health, but also make them at a higher risk of HIV acquisition (Kjetland, Leutscher, & 

Ndhlovu 2012). 

1.1.2.3 Epidemiology 

It was estimated in 2008 that approximately 240 million people were infected with 

schistosomiasis in 76 endemic countries or territories of Africa, the Americas, the Eastern 

Mediterranean, and eastern Asia (WHO 2010a) (Figure 1.6). More than 90% of all cases 

occur in Africa (Stothard et al. 2009). In addition, due to lack of morbidity control, most of 

severe cases are found in Africa, even though more pathogenic type of schistosomiasis 

appears in Asia (Bruun & Aagaard-Hansen 2008). A global burden caused by schistosomiasis 

in 2010 was estimated to 3.3 million DALYs, ranked the second among all NTDs (Murray et 

al. 2012). 

 

Figure 1.6: Endemic regions of schistosomiasis, 2011 (source: WHO 2013) 

 

Schistosomiasis is an age-related disease, a typical pattern of which shows the prevalence 

and infection intensity increase in young children, reach a peak during school age to early 

adulthood, then decline and become stable at a certain age level (Woolhouse 1991). This 

pattern may be attributed to age-related water contact activities and/or development of 
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acquired resistance (immunity) (Warren 1973;Yang 2003). However, a few researchers 

reported that high prevalence levels may continue during adult life or a second peak may exist 

in older age groups in some endemic populations (Enk et al. 2008;Mutapi, Gryseels, & 

Roddam 2003;Raso et al. 2007). 

1.1.2.4 Risk factors 

Schistosomiasis is a water-associated disease that exposure to contaminated water is a 

determined risk factor for transmission. Environmental factors, such as temperature, 

precipitation, vegetation, and land cover, play an important role on transmission by either 

influencing the intermediate host snail population and the parasite development outside 

human host, or affecting human activities related to water contact. For example, very low 

temperature limits the snail distribution and parasite maturation outside the human host, while 

temperature too high may limit the fecundity and survival of snails (Appleton 1977;McCreesh 

& Booth 2013). High precipitation can either increase the risk of transmission by increasing 

the contact rate of human beings to contaminated water or decrease it by creating for example 

fast-flowing water unsuitable for cercaria or snail survival (McCreesh & Booth 2013). 

Ecological transformations, such as construction of dams and changes of irrigation schemes, 

can influence the distribution of snail species and thus become potential risk factors 

(Steinmann et al. 2006). 

Socioeconomic factors (e.g., education, occupation, and wealth/poverty) influencing the 

behavior of people, are important for schistosomiasis transmission (Gazzinelli et al. 

2006;Huang & Manderson 2005;Ximenes et al. 2003). Particularly, improvement of WASH 

can become a protection factor: water from safe supplies is schistosome-free and hence 

reduces the exposure to contaminated water; improvement of sanitation declines the risk of 

egg contamination with excreta to fresh water bodies; soap use related to better hygiene may 

protect people from infection during human water contact (Grimes et al. 2015;Utzinger et al. 

2003). 

1.1.2.5 Diagnosis and treatment 

The gold standard diagnosis of active schistosomiasis is the detection of eggs in excreta 

(i.e., urine for S. haematobium and stool for other species) via microscopic examination, but 

the sensitivity is low due to large inter- and intra-specimen variations (Lamberton et al. 2014). 

Schistosome eggs are easy to identify on microscopy according to their characteristic shapes 

and sizes (Gray et al. 2011). Kato-Katz thick smear stool examination is recommended by 

WHO for intestinal schistosomiasis, as it is simple, rapid and low cost (Teesdale & Amin 

1976). The sensitivity can be increased by increasing number of stool specimens and slides 

per sample (Raso et al. 2007). Direct thick smear and formalin based techniques for 

sedimentation and concentration are sometimes used for detection of intestinal 

schistosomiasis in endemic areas (Gray et al. 2011). Urine sedimentation, centrifugation and 

filtration are applied to microscopically detection of S. haematobium eggs. In endemic areas, 
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microhaematuria on reagent strips or self-reported blood in urine are rapid ways for indicating 

potential infections, but with low specificity (Gray et al. 2011). On the other hand, PCR 

techniques based on the detection of Schistosoma species DNA in faeces, serum, plasma and 

urine show high sensitivity and specificity, thus may become potential alternatives for 

diagnosis of the disease (Enk, Silva, & Rodrigues 2012;Gomes et al. 2010;Sandoval et al. 

2006;Wichmann et al. 2009). Serological assays detecting antibodies against schistosomal 

antigens show high sensitive, but are unable to distinguish active or past infections (Colley et 

al. 2014). Point-of-care circulating cathodic antigen (POC-CCA) dipstick/cassette test 

overcomes this difficulty and is recommended for the rapid identification of S. mansoni 

infections in large-scale epidemiological surveys (Coulibaly et al. 2013a;Foo et al. 

2015;Mwinzi et al. 2015). Additional new diagnostic techniques, such as a modified version 

of the miracidium hatching test for diagnosis of any schistosome species, or the Mini-

FLOTAC for the detection of S. mansoni or S. japonicum, need further evaluation (Knopp et 

al. 2013). 

Praziquantel is the current drug of choice for schistosomiasis, which is effective for all 

Schistosoma species and considered safe for treatment of children and pregnant women 

(WHO 2002b). A standard dose of 40 mg/kg is recommended for treatment of 

S. haematobium and S. mansoni infections, while 60mg/kg in split doses is recommended for 

treatment of S. japonicum and S. mekongi infections, or treatment in populations with high 

initial egg counts (Colley et al. 2014;Gryseels et al. 2006). Side effects are mild and transient, 

commonly including abdominal pain, headache, nausea, dizziness and fever (Jaoko, Muchemi, 

& Oguya 1996). Since praziquantel has little effect on eggs and immature schistosome worms, 

repeated treatment for several weeks can be more effective in treating the initially resistant 

immature forms after they have matured into drug-susceptible adult worms (King et al. 2011). 

Even though there is no clear evidence for existing of praziquantel resistance, the threat of 

emerging resistance remains, as resistance can be induced in animals under laboratorial 

conditions and a reduced susceptibility of the drug in S. mansoni has been found in some 

endemic foci (Wang, Wang, & Liang 2012). Artemisinin derivatives (e.g., artemether and 

artesunate), active against S. japonicum, S. mansoni, and S. haematobium, mainly target the 

developmental stages of the parasites (Liu et al. 2011). Therefore, artemisinin derivatives in 

combination with praziquantel can increase the cure rates in schistosomiasis treatment (del 

Villar et al. 2012). However, investigations for dosing, formulation, and drug interactions are 

needed before standardizing the combination treatment (Colley et al. 2014). In addition, such 

treatment is not recommended in malaria endemic regions to avoid the potential induction of 

artemisinin resistance in malaria parasites (Gryseels et al. 2006). 

1.1.2.6 Control and prevention 

Large-scale preventive chemotherapy with praziquantel is advocated by WHO for 

morbidity control of schistosomiasis (WHO 2002a;WHO 2006). In high-risk (prevalence≥
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50%) areas, preventive chemotherapy is recommended to all school-aged children once a year, 

while in moderate-risk (prevalence≥10% and <50%) and low-risk (prevalence<10%) areas, 

all school-aged children are recommended to be treated once every two years and twice 

during their primary schooling age, respectively. In high-risk and moderate-risk areas, adults 

considered to be at risk are also recommended for preventive chemotherapy (WHO 2006). In 

addition, inclusion of preschool-aged children to the administration of praziquantel is 

suggested by WHO in ongoing public-health interventions (WHO 2011b). 

Besides preventive chemotherapy, behavioural modification, which reduces both the 

exposure of people to contaminated water and the contamination of snail habitat by human 

excreta with schistsome eggs, may be a possible approach for control of the disease (Colley et 

al. 2014). However, people’s behavior is difficult to change unless in conjunction with other 

interventions, such as health education and improvements of WASH (Grimes et al. 

2015;Lansdown et al. 2002). Increasing access to safe water and adequate sanitation are 

suggested as important and sustainable measures to reduce the risk of schistosome infection 

(Grimes et al. 2014). On the other hand, snail control is considered as an alternative measure 

for interruption of transmission (Lardans & Dissous 1998). The use of molluscicide 

niclosamide is the primary method for chemical snail control, because of its very low toxicity 

for humans and livestock and its ability to kill snails, their eggs, and cercariae at low 

concentrations (King & Bertsch 2015). However, as long-term continued use of mollusciding 

needs high labor cost and may have a negative impact on aquatic life, mollusciding should be 

restricted to areas that aim for schistosomiasis elimination (King & Bertsch 2015;Knopp et al. 

2012;Oliveira & Paumgartten 2000). 

To achieve sustainable control and widespread elimination of schistosomiasis, integrated 

control strategies should be applied, for example preventive chemotherapy in combination 

with behavioural modification, health education, improvements of WASH, and snail control. 

1.1.3 Clonorchiasis 

Clonorchiasis is one of the most important foodborne trematodiasis (Fürst, Keiser, & 

Utzinger 2012). It is caused by infection with the Chinese liver fluke, Clonorchis sinensis 

(Lun et al. 2005). 

1.1.3.1 Parasite and life cycle 

The adult fluke C. sinensis is a leaf-shaped slender digenetic trematode, 15–20 mm long 

and 3–4 mm wide (Hong & Fang 2012). Eggs laid by hermaphroditic adult worms reach the 

intestine with bile fluids and are emitted with the faeces into the water (Qian et al. 2016) 

(Figure 1.7). The first intermediate hosts, freshwater snails, ingest the eggs, which are further 

hatch into miracidiae. Inside the nails, miracidiae subsequently develop to sporocysts, rediae 

and cercariae, through asexual reproduction (Lun et al. 2005). The free-swimming cercariae 

leave the snails and adhere to the second intermediate host, freshwater fish or shrimp, in 
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which cercariae develop into mature metacercariae (Hong & Fang 2012). The definite hosts, 

human beings or other piscivorous mammals, get infected by eating raw or insufficient 

cooked infected fish. Metacercariae reach the human small intestine and further navigate to 

the liver, where they develop into adult flukes and reach the stage of sexual reproduction 

(Rim 1986). The egg productivity of an adult worm in human is estimated at around 4000 per 

day (Kim et al. 2011). Usually after four weeks of infection, eggs can be detected in faeces 

(Hsü & Wang 1938). 

 

Figure 1.7: Life cycle of Clonorchis sinensis (source: CDC) 

 

1.1.3.2 Clinical conditions 

The clinical manifestations of clonorchiasis tend to relate to worm burden but are variable 

and unspecific (Kim et al. 2011;Lun et al. 2005;Rim 1986). People with small infection 

intensity have few or mild symptoms (e.g., abdominal discomfort, diarrhea, and/or malaise), 

while people with moderate to high infection intensity present more pronounced symptoms 

(e.g., fever, chills, anorexia, weight loss, colic, fatigue, and/or abdominal distension) (Lun et 

al. 2005). Typical physical signs of clonorchiasis include jaundice, hepatomegaly, and liver 

tenderness. Chronic infection usually results in complications in liver and biliary systems 

(e.g., cholelithiasis, cholangitis, and cholecystitis) (Qian et al. 2016). Furthermore, C. sinensis 

is classified as a definite carcinogen, as infection can increase the risk of cholangiocarcinoma, 

according to different studies (Bouvard et al. 2009;Fürst et al. 2012;Qian et al. 2012;Shin et 

al. 2010). 
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1.1.3.3 Epidemiology 

 

Figure 1.8: Endemic regions of clonorchiasis (source: WHO 2013) 

 

It was estimated conservatively that around 15 million people were infected with 

C. sinensis in 2004, predominantly in countries of Asia, particularly in China, South Korea, 

northern Vietnam and parts of Russia (Fürst et al. 2012;Qian et al. 2012;Qian et al. 

2016;Qian, Chen, & Yan 2013) (Figure 1.8). China accounts for around 85% of the global 

infected people, corresponding to 12.5 million people infected (Qian et al. 2012). Two major 

endemic regions were identified for human clonorchiasis in China, namely the provinces of 

Guangdong and Guangxi in the south and the provinces of Heilongjiang and Jilin in the north-

east (Lun et al. 2005;Qian et al. 2012;Qian et al. 2016). In South Korea, C. sinensis infection 

is the major intestinal parasitic infection, with an estimation of 1.2 million people infected, 

according to a nationwide survey in 2004 (Kim et al. 2009). High endemic areas were 

reported along the four major rivers (Nakdong-fang, Seomjin-gang, Zoungsan-gang, and 

Guem-gang) in the southern part of the country (Cho et al. 2008). Around one million people 

in Vietnam (mainly the northern part) and 3000 people in the far east of Russia were reported 

to be infected with C. sinensis by a WHO report in 1995, however, there is no updated 

country-level reports for the two countries since then (Chau et al. 2001;Kino et al. 1998;WHO 

1995). 

Clonorchiasis was estimated to attribute to a disease burden of 275 thousand DALYs in 

2005 (Fürst et al. 2012). However, the burden was considered to be largely underestimated 

due to the exclusion of light to moderate infections in the calculation (Qian et al. 2016). In 

general, males show higher prevalence than women and the prevalence increases with age 

(Fang et al. 2008;Qian et al. 2012). 
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1.1.3.4 Risk factors 

Environmental and climatic factors affect the endemicity of C. sinensis infection, mainly 

thought influencing the distribution of the intermediate hosts. For example, temperature and 

climatic change have an impact on the activities, survival and reproduction rate of the 

intermediate hosts, thus are regarded as potential risk factors (Li et al. 1983;Petney et al. 

2013). Factors such as precipitation, land cover/usage, and aquaculture that affect the 

presence, quality, and current of fresh water bodies (reservoirs for intermediate hosts), can 

also be potential risk factors (Keiser & Utzinger 2005). Areas adjacent to water bodies were 

reported to correlate with high infection risk of C. sinensis, however, such situation may be 

changing due to improvement of trade and transportation channels (Keiser & Utzinger 

2005;Sripa et al. 2010). 

One the other hand, socioeconomic factors and consumption of raw freshwater fish are 

important in understanding the epidemiology of clonorchiasis (Phan et al. 2011). 

Consumption of raw fish dishes is a traditional rooted culture practice in some areas of China, 

while in other areas it is considered delicious or highly nutritious by some people (Qian et al. 

2013a;Tang et al. 1963a;Zheng 2009). In addition, lack of self-protection awareness of food 

hygiene influencing people’s behavior of raw-fish-consumption, can be an important risk 

factor (Han et al. 2013). 

1.1.3.5 Diagnosis and treatment 

The gold standard of diagnosis for C. sinensis infection is the detection of eggs in stool 

(Qian et al. 2016). Kato-Katz method is the most widely used technique with the advantages 

of simplicity, low cost and the ability to quantify the infection intensity, but the sensitivity is 

low (Hong et al. 2003;Qian et al. 2016). Direct stool smear and formalin-ether concentration 

technique are sometimes used but also with low sensitivity (Hong et al. 2003;Qian et al. 

2013b). Multiple Kato-Katz thick smears are recommended to increase the accuracy of 

diagnosis (Qian et al. 2013b). On the other hand, immunodiagnostic techniques are employed 

as supplementary methods, among which serodiagnosis by the enzyme-linked immunosorbent 

assay (ELISA) is the most commonly used one (Qu, Chen, & Zeng 1980). However, the main 

limitations of ELISA is its cross-reactivity and inability to differentiate between past and 

active infection (Chen, Hu, & Shen 1988). Other immunodiagnostic techniques such as 

complement fixation, agglutination, and immunoelectrophoresis are seldom used in 

epidemiological studies (Qian et al. 2016). Molecular biological methods such as PCR-

based/coupled technologies and loop-mediated isothermal amplification (LAMP) technique 

have been developed showing high performance and accuracy, however, they are 

inconvenient for large-scale epidemiological surveys due to the need for laboratory facilities, 

trained personnel, and financial supports (Han et al. 2012;Huang et al. 2012). In addition, 

imaging diagnosis is a complementary method for clonorchiasis in clinical practices (Choi & 

Hong 2007). 



1.2 Geographical distribution of disease risk  17 

 

Praziquantel is the only recommended medicine by WHO for treatment of clonorchiasis, 

which is safe, well tolerated and effective (WHO 2013;Yangco et al. 1987). Mild and 

transient adverse effects are sometimes reported, such as dizziness, sleepiness, headache, and 

diarrhea (Hong & Fang 2012). In rare occasions, sever adverse events (e.g., anaphylactic 

reaction) may occur (Lee, Lim, & Hong 2011;Shen et al. 2007). Broad-spectrum anthelmintic 

drugs, such as albendazole and tribendimidine, also show good efficacy in clinical trials when 

against C. sinensis infection or its co-infection with other helminths (Liu et al. 1991;Xu et al. 

2014). 

1.1.3.6 Control and prevention 

The recommended treatment guidelines of clonorchiasis by WHO for preventive 

chemotherapy advocate praziquantel administration for all residents every year in high 

endemic areas (prevalence ≥20%) and for all residents every two years or individuals 

regularly eating raw fish every year in moderate endemic areas (prevalence <20%) (WHO 

2013). In order to maintain control sustainability, a comprehensive control strategy, such as 

preventive chemotherapy in combination with IEC and environmental modification, should be 

considered (Oh et al. 2014;Zhang, Huang F.Y., & Geng Y.J. 2009). Through IEC, residents 

may conscientiously reduce or stop the consumption of raw fish and pay more attention to 

food hygiene (Wu et al. 2012). In addition, by improving sanitation facilities around fish 

ponds, the chance of intermediate hosts becoming infected with C. sinensis will decrease (Wu 

et al. 2012;Zhang et al. 2009). 

 

1.2 Geographical distribution of disease risk 

High-resolution maps depicting the geographical distribution of disease risk assist disease 

control by delivering control interventions at areas of highest risk, monitoring and evaluating 

effectiveness of control programmes. Geostatistical modeling is the most rigorous inferential 

approach for predicting the disease risk at areas without observed data by relating survey data 

with potential predictors (e.g., environmental and socioeconomic factors). In the absence of 

single surveys covering large areas, survey data are compiled from bibliometric searches. 

Mathematical models can be combined with geostatistical models to address data 

heterogeneities between locations. Furthermore, the number of individuals infected and the 

number of people at risk can be estimated by overlapping the high-resolution risk maps with 

gridded population surfaces. Population-adjusted prevalence and treatment needs for 

preventive chemotherapy can be further calculated at different administrative levels. 
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1.2.1. Data 

1.2.1.1 Disease data 

Goereferenced disease data (e.g., prevalence, or number of people infected from a sample 

of people examined) are fundamental for the data-driven geostatistical modeling. To capture 

the heterogeneity of infection risk over the surface, it is necessary to have a good coverage 

and a fine amount of observed data across the study region. Disease data can be obtained from 

systematic review of related literature, or through other sources (e.g., thesis, working papers, 

research reports, or personal communication). Recently, two large databases are available for 

neglected tropical diseases, that is the Global Neglected Tropical Diseases Database (GNTD, 

www.gntd.org) and the Global Atlas of Helminth Infections (GAHI, 

www.thiswormyworld.org). The GNTD database is a georeferenced, open-access global 

database, which is constantly updated and can be utilized by researchers, scientists, disease 

control managers, and policy makers (Hürlimann et al. 2011). Data obtained and extracted 

into the GNTD database follows a standard protocol, according to which detailed information 

for each reference is recorded (e.g., sources, survey description, location information, and 

parasitological data) (Hürlimann et al. 2011). Data compiled from bibliometric searches are 

often heterogeneous in the age groups of the population surveyed across locations and in the 

diagnostic methods used between the studies collecting these data. Furthermore publications 

may either report the actual geographical location of the survey or may provide aggregated 

survey data within areas. The above data characteristics complicate their analysis. 

1.2.1.2 Environmental, climatic and socioeconomic data 

Environmental, climatic and socioeconomic factors play an important role in transmission 

of NTDs, thus they are employed as predictors in geostatistical modeling. The spatial 

distribution of these data is usually obtained from different readily accessible data sources. 

For example, environmental proxies such as land surface temperature (LST), normalized 

difference vegetation index (NDVI), and land cover are accessible from the remote sensing 

source MODIS/Terra (Savtchenko et al. 2004). Geographical climatic zones can be obtained 

from a digital map of Köppen-Geiger climate classification (Kottek et al. 2006). 

Socioeconomic proxies such as human influence index (HII), gross domestic product (GDP), 

and infant mortality rates (IMR) can be accessed from Socioeconomic Data and Applications 

Center (SEDAC, http://sedac.ciesin.columbia.edu). WASH indicators (e.g., proportion of 

households with improved sanitation, proportion of households with improved drinking water 

sources, and proportion of households practicing open defecation) can be obtained from data 

compiled from household surveys conducted by Demographic and Health Surveys (DHS), 

Multiple Cluster Indicator Surveys (MICS), World Health Surveys (WHS) and Living 

Standards Measurement Study (LSMS). 

http://www.thiswormyworld.org/
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1.2.2 Bayesian geostatistical modeling 

Three distinct types of spatial data exist: geostatistical or point-referenced data (data 

observed at a set of locations), areal data (aggregated data available over a set of regions with 

common boarders), and point pattern data (sets of locations in a region with particular event 

occurring) (Banerjee, Carlin, & Gelfand 2014). This PhD thesis is mainly focus on point-

referenced observed data. Geostatistical modeling is the most rigorous inferential approach to 

predict the infection risk of NTDs based on point-referenced data. Environmental, climatic, 

and socioeconomic factors are often employed into the models as explanatory variables 

(predictors). In addition, as neighbouring areas have similar infection status due to common 

disease exposures, location-specific parameters (random effects) are introduced to explain the 

residual spatial variation after accounting for all known explanatory variables (Diggle, Tawn, 

& Moyeed 1998). These random effects are assumed to be latent observations of underlying 

spatial process that follow a zero-mean multivariate Gaussian distribution. If the spatial 

association only depends upon distance between locations (isotropy), the covariance matrix 

can be constructed by parametric functions of distance such as exponential or Matérn 

functions, suggesting a decrease of spatial correlation with an increase of distance (Matérn 

1960). 

The Bayesian approach provides a coherent framework for geostatistical modeling of both 

the observed data and the unknown parameters such as the coefficients of the predictors and 

the spatial process parameters (Banerjee et al. 2014). Inferences are based on posterior 

distributions that are not available analytically in most realistic problems (Gelman et al. 2013). 

Markov chain Monte Carlo (MCMC) methods, such as the Metropolis-Hastings algorithm and 

the Gibbs sampler, are powerful computational tools in Bayesian inference that approximate 

the posterior distributions from samples simulated iteratively from a particular Markov chain, 

whose stationary distribution is the posterior distribution of interest (Gelfand & Smith 

1990;Geman & Geman 1984;Hastings 1970;Metropolis et al. 1953). 

Implementation of MCMC algorithms for geostatistical modeling requires repeated 

inversions of the covariance matrix, whose dimension is large for large spatial datasets, 

leading to heavy computations. The approaches to overcome the above so-called “big n 

problem” can be grouped into two main categories: those that approximate the exact 

likelihood and those that reduce the dimension of the problem (Banerjee et al. 2014). 

Stochastic partial differential equations (SPDE) and integrated nested Laplace approximation 

(INLA) approximate the likelihood by constructing a Gaussian Markov random field (GMRF) 

representation of the latent spatial process and estimate the posterior distribution by a Laplace 

approximation (Lindgren, Rue, & Lindstrom 2011;Rue, Martino, & Chopin 2009). On the 

other hand, Gaussian predictive processes project the spatial process to a lower dimensional 

subspace (Banerjee et al. 2008;Banerjee et al. 2010;Finley et al. 2009). 
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In recent years, Bayesian geostatistical modeling approaches have been widely applied to 

obtain high-resolution infection risk estimates for many NTDs at regional, country and 

continental scales. Examples include mapping leishmaniasis incidence in Brazil (Karagiannis-

Voules et al. 2013), and risk of lymphatic filariasis in Uganda (Stensgaard et al. 2011a), of 

schistosomiasis in East and West Africa (Schur et al. 2011a;Schur et al. 2011b), of soil-

transmitted helminthiasis in sub-Saharan Africa and South America (Chammartin et al. 

2013c;Karagiannis-Voules et al. 2015a), and of trachoma in Southern Sudan (Clements et al. 

2010b). 

1.2.3 Mathematical modeling 

Mathematical models play an important role on understanding the transmission dynamics 

of NTDs, and thus support control and elimination programmes (Basáñez & Anderson 2015). 

Compared to data-driven statistical models, mathematical models are sets of equations or 

computing rules that represent a biological system by a quantitative description of the process 

that drives the dynamical changes (Nouvellet, Cucunubá, & Gourbière 2015). The models can 

be deterministic or stochastic (Basáñez et al. 2012). Maximum likelihood methods and 

Bayesian inference algorithms can be employed for parameter estimation (Anderson, Truscott, 

& Hollingsworth 2014;Gambhir, Singh, & Michael 2015;Raso et al. 2007;Truscott, Turner, & 

Anderson 2015). In recent years, mathematical models have been widely applied for many 

neglected tropical diseases, either to study the factors influencing the persistence of the 

diseases (e.g., dengue (Medeiros et al. 2011) and lymphatic filariasis (Gambhir et al. 2015)), 

or to evaluate different strategies or intervention scenarios for control of the disease (e.g., 

leprosy (Blok et al. 2015), human African trypanosomiasis (Rock et al. 2015), Chagas disease 

(Nouvellet et al. 2015), soil-transmitted helminth infections (Anderson et al. 2014;Anderson 

et al. 2013;Levecke et al. 2015;Truscott, Hollingsworth, & Anderson 2014;Truscott et al. 

2015), lymphatic filariasis (Kastner et al. 2015;Stolk, Stone, & de Vlas 2015), and 

schistosomiasis (French et al. 2010;French et al. 2015;Lamberton et al. 2015;Zhang, Feng, & 

Milner 2007)). In addition, cost-benefit and cost-effectiveness models are used for economic 

and financial evaluation of NTDs (Lee, Bartsch, & Gorham 2015). 

Mathematical models can be also used to describe useful epidemiology quantities such as 

the age-related pattern of the disease risk. Models available for estimating age-prevalence 

curve for example of schistosomiasis include Hairston’s two-stage catalytic models (Hairston 

1965), Holford and Hardy’s immigration-death model (Holford & Hardy 1976), Chan et al’s 

fully age-structured models (Chan et al. 1995), and Yang et al’s semi-stochastic acquired 

immunity model (Yang 2003;Yang, Coutinho, & Massad 1997). These models can be 

combined with geostatistical models to standardise age-heterogeneous survey data and obtain 

age-specific risk estimates, however such formulations are not yet available for NTD data. 
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1.3 Goal and objectives 

1.3.1 Goal 

The overall goal of the thesis is to develop Bayesian geostatistical and mathematical 

models for analysing geo-referenced NTD survey data and to provide tools and knowledge for 

disease control and prevention. 

1.3.2 Specific objectives 

The following specific objectives were linked to this goal: 

(i)  produce population-adjusted risk maps for soil-transmitted helminth and for 

C. sinensis infections at high spatial resolution in P.R. China and estimate the number of 

infected people by province (Chapter 2 and 4); 

(ii)  provide geo-referenced estimates of soil-transmitted helminth infection risk and the 

number of infected by country across South Asia (Chapter 3); 

(iii)  predict the distribution of schistosomiasis infection risk in sub-Saharan Africa, 

evaluate temporal trends and provide spatially explicit estimates of people infected and of 

treatment needs for preventive chemotherapy by country (Chapter 5); 

(iv)  develop Bayesian geostatistical models for analyzing jointly point-referenced and 

areal NTD survey data (Chapter 6); 

(v)  integrate Bayesian geostatistical and mathematical transmission models of 

schistosomiasis within a single model formulation and obtain age-specific estimates of the 

disease risk at high geographical resolution from age-heterogeneous surveys (Chapter 7). 
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Abstract 

Background: Soil-transmitted helminth infections affect tens of millions of individuals in the 

People’s Republic of China (P.R. China). There is a need for high-resolution estimates of at-

risk areas and number of people infected to enhance spatial targeting of control interventions. 

However, such information is not yet available for P.R. China. 

Methods: A geo-referenced database compiling surveys pertaining to soil-transmitted 

helminthiasis, carried out from 2000 onwards in P.R. China, was established. Bayesian 

geostatistical models relating the observed survey data with potential climatic, environmental 

and socioeconomic predictors were developed and used to predict at-risk areas at high spatial 

resolution. Predictors were extracted from remote sensing and other readily accessible open-

source databases. Advanced Bayesian variable selection methods were employed to develop a 

parsimonious model. 

Results: Our results indicate that the prevalence of soil-transmitted helminth infections in P.R. 

China considerably decreased from 2005 onwards. Yet, some 144 million people were 

estimated to be infected in 2010. High prevalence (>20%) of the roundworm 

Ascaris lumbricoides infection was predicted for large areas of Guizhou province, the 

southern part of Hubei and Sichuan provinces, while the northern part and the south-eastern 

coastal-line areas of P.R. China had low prevalence (<5%). High infection prevalence (>20%) 

with hookworm was found in Hainan, the eastern part of Sichuan and the southern part of 

Yunnan provinces. High infection prevalence (>20%) with the whipworm Trichuris trichiura 

was found in a few small areas of south P.R. China. Very low prevalence (<0.1%) of 

hookworm and whipworm infections were predicted for the northern parts of P.R. China. 

Conclusions: We present the first model-based estimates for soil-transmitted helminth 

infections throughout P.R. China at high spatial resolution. Our prediction maps provide 

useful information for the spatial targeting of soil-transmitted helminthiasis control 

interventions and for long-term monitoring and surveillance in the frame of enhanced efforts 

to control and eliminate the public health burden of these parasitic worm infections. 

Keywords: Soil-transmitted helminths, Ascaris lumbricoides, Trichuris trichiura, Hookworm, 

Bayesian geostatistics, People’s Republic of China 
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2.1 Background 

Soil-transmitted helminths are a group of parasitic nematode worms causing human 

infection through contact with parasite eggs (Ascaris lumbricoides and Trichuris trichiura) or 

larvae (hookworm) that thrive in the warm and moist soil of the world’s tropical and 

subtropical countries (Bethony et al. 2006). More than 5 billion people are at risk of soil-

transmitted helminthiasis (Pullan & Brooker 2012). Estimates published in 2003 suggest that 

1,221 million people were infected with A. lumbricoides, 795 million with T. trichiura and 

740 million with hookworms (de Silva et al. 2003). The greatest number of soil-transmitted 

helminth infections at that time occurred in the Americas, the People’s Republic of China 

(P.R. China), East Asia and sub-Saharan Africa (Hotez et al. 2006). Socioeconomic 

development and large-scale control efforts have lowered the number of people infected with 

soil-transmitted helminths in many parts of the world (Bethony et al. 2006). For the year 2010, 

the global burden due to soil-transmitted helminthiasis has been estimated at 5.2 million 

disability-adjusted life years (Murray et al. 2012). 

In P.R. China, there have been two national surveys for parasitic diseases, including soil-

transmitted helminthiasis. Both surveys used the Kato-Katz technique as the diagnostic 

approach, based on a single Kato-Katz thick smear obtained from one stool sample per 

individual. The first national survey was conducted from 1988 to 1992 and the second in 

2001-2004. In the first survey, there were a total of 2,848 study sites with approximately 500 

people examined per site. The survey indicated overall prevalences of 47.0%, 18.8% and 17.2% 

for A. lumbricoides, T. trichiura and hookworm infections, respectively, corresponding to 531 

million, 212 million and 194 million infected people, respectively (Xu et al. 1995). The 

second survey involved 687 study sites and there were 356,629 individuals examined overall. 

Analyses of the data revealed considerably lower prevalences for soil-transmitted helminth 

infections than in the first survey; A. lumbricoides, hookworm and T. trichiura prevalences 

were 12.7%, 6.1% and 4.6%, respectively (Coordinating Office of the National Survey on the 

Important Human Parasitic Diseases 2005). However, interventions were less likely to reach 

marginalized communities in the poorest areas (Zheng et al. 2009) and the diseases re-

emerged whenever control measures were discontinued (Li et al. 2010;Wang et al. 2012). To 

overcome the challenge of parasite infections in P.R. China, in 2005, the Chinese Ministry of 

Health issued the “National Control Program on Important Parasitic Diseases from 2006 to 

2015” with its target to reduce the prevalence of helminth infections by 70% by the year 2015 

(Zheng et al. 2009). The key strategy for control was large-scale administration of 

anthelminthic drugs in high prevalence areas, especially targeting school-aged children and 

people living in rural areas (Li et al. 2010;Zhou, Bergquist, & Tanner 2013). 

Maps depicting the geographical distribution of the disease risk can aid control 

programmes to deliver cost-effective interventions and assist in monitoring and evaluation. 

The Coordinating Office of the National Survey on the Important Human Parasitic Diseases 

(2005) in P.R. China obtained prevalence maps by averaging the data of the second national 
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survey within each province. To our knowledge, high-resolution, model-based maps using 

available national survey data are not available to date in P.R. China. Model-based 

geostatistics predict the disease prevalence at places without observed data by quantifying the 

relation between the disease risk at observed locations with potential predictors such as 

socioeconomic, environmental, climatic and ecological information, the latter often obtained 

via remote sensing. Model-based geostatistics have been used before to map and predict the 

geographical distribution of soil-transmitted helminth infections in Africa (Pullan et al. 

2011;Raso et al. 2006), Asia and Latin America (Chammartin et al. 2013c;Pullan et al. 

2008;Scholte et al. 2013). Model-based geostatistics typically employ regression analysis with 

random effects at the locations of the observed data. The random effects are assumed to be 

latent observations from a zero-mean Gaussian process, which models spatial correlation to 

the data via a spatially structured covariance. Bayesian formulations enable model fit via 

Markov chain Monte Carlo (MCMC) simulation algorithms (Diggle et al. 1998;Gelfand et al. 

1990) or other computational algorithms (e.g. integrated nested Laplace approximations 

(INLA) (Rue et al. 2009)). INLA is a computational approach for Bayesian inference and is 

an alternative to MCMC to overcome computational burden for obtaining the approximated 

posterior marginal distribution for the latent variables, as well as for the hyperparameters 

(Cameletti et al. 2013). 

In this study, we aimed to: (i) identify the most important climatic, environmental and 

socioeconomic determinants of soil-transmitted helminth infections; and (ii) develop model-

based Bayesian geostatistics to assess the geographical distribution and number of people 

infected with soil-transmitted helminths in P.R. China. 

 

2.2 Methods 

2.2.1 Ethical considerations 

The work presented here is based on soil-transmitted helminth survey data derived from 

the second national survey and additional studies identified through an extensive review of 

the literature. All data in our study was extracted from published sources and they are 

aggregated over villages, towns or counties; therefore, do not contain information that is 

identifiable at individual or household level. Hence, there are no specific ethical 

considerations. 

2.2.2 Disease data 

Geo-referenced data on soil-transmitted helminth infections from the second national 

survey conducted in P.R. China from 2001 to 2004 were provided by the National Institute of 

Parasitic Diseases, Chinese Center for Diseases Control and Prevention (IPD, China CDC; 

Shanghai, P.R. China). Moreover, an extensive literature search was undertaken in PubMed 
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and China National Knowledge Internet (CNKI) from January 1, 2000 until April 25, 2013 to 

identify studies reporting village, town and county-level prevalence data of soil-transmitted 

helminth infections in P.R. China. Data were excluded if (i) they were from hospital surveys, 

post-intervention surveys, drug efficacy studies and clinical trials; (ii) reports on disease 

infection among travellers, military personnel, expatriates, mobile populations and other 

displaced or migrating populations; (iii) the geographical coordinates could not be identified; 

and (iv) the diagnostic technique was not reported (Hürlimann et al. 2011). Data were entered 

into the Global Neglected Tropical Diseases (GNTD) database, which is a geo-referenced, 

open-access source (Hürlimann et al. 2011). Geographical coordinates for the survey 

locations were obtained via Google maps, a free web mapping service application and 

technology system. As we focus on recent data pertaining to soil-transmitted helminth 

infections in P.R. China, we only considered surveys carried out from 2000 onwards. 

2.2.3 Climatic, demographic and environmental data 

Climatic, demographic and environmental data were downloaded from different readily 

accessible remote sensing data sources, as shown in Table 2.1. Land surface temperature 

(LST) and normalized difference vegetation index (NDVI) were calculated to annual averages 

and land cover data was summarised to the most frequent category over the period of 2001-

2004. Moreover, land cover data were re-grouped into six categories based on between-class 

similarities: (i) forest; (ii) shrubland and savanna; (iii) grassland; (iv) cropland; (v) urban; and 

(vi) wet areas. Monthly precipitation values were averaged to obtain a long-term average for 

the period 1950-2000. Four climatic zones were considered: (i) equatorial; (ii) arid; (iii) warm; 

and (iv) snow/polar. The following 13 soil types, which may be related to the viability of 

parasites or microorganisms living in the soil, were used: (i) percentage of coarse fragments 

(CFRAG, % >2 mm); (ii) percentage of sand (SDTO, mass %); (iii) percentage of silt (STPC, 

mass %); (iv) percentage of clay (CLPC, mass %); (v) bulk density (BULK, km/dm3); (vi) 

available water capacity (TAWC, cm/m); (vii) base saturation as percentage of ECEsoil 

(BSAT); (viii) pH measured in water (PHAQ); (ix) gypsum content (GYPS, g/kg); (x) organic 

carbon content (TOTC, g/kg); (xi) total  nitrogen (TOTN, g/kg); (xii) FAO texture class 

(PSCL); and (xiii) FAO soil drainage class (DRAIN). Human influence index (HII) was 

included in the analysis to capture direct human influence on ecosystems (Sanderson et al. 

2002). Urban/rural extent was considered as a binary indicator. Gross domestic product (GDP) 

per capita was used as a proxy of people’s socioeconomic status. We obtained GDP per capita 

for each county from the P.R. China Yearbook full-text database in 2008. 

Moderate Resolution Imaging Spectroradiometer (MODIS) Reprojection Tool version 4.1 

(EROS; Sioux Falls, USA) was applied to process MODIS/Terra data. All remotely sensed 

data were aligned over a prediction grid of 5 × 5 km spatial resolution using Visual Fortran 

version 6.0 (Digital Equipment Corporation; Maynard, USA). Data at the survey locations 

were also extracted in Visual Fortran. As the outcome of interest (i.e. infection prevalence 
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with a specific soil-transmitted helminth species) is not available at the resolution of the 

covariates for surveys aggregated over counties, we linked the centroid of those counties with 

the average value of each covariate within the counties. Distances to the nearest water bodies 

were calculated using ArcGIS version 9.3 (ERSI; Redlands, USA). For county-level surveys, 

the distances of all the 5 × 5 km pixel centroids to their nearest water bodies within the county 

were extracted and averaged. The arithmetic mean was used as a summary measure of 

continuous data, while the most frequent category was used to summarise categorical 

variables. 

Table 2.1: Remote sensing data sources
a
. 

Source Data type Data period 
Temporal 

resolution 

Spatial 

resolution 

MODIS/Terra
b
 LST

j
 2001-2012 8 days 1 km 

MODIS/Terra
b
 NDVI

k
 2001-2012 16 days 1 km 

MODIS/Terra
b
 Land cover 2001-2004 Yearly 1 km 

WorldClim
c
 Elevation 2000 - 1 km 

WorldClim
c
 Precipitation 1950-2000 Monthly 1 km 

SWBD
d
 Water bodies 2000 - 30 m 

Köppen-Geiger
e
 Climate zones 1976-2000 - 50 km 

ISRIC
f
 Soil types - - 8 km 

Atlas of the 

Biosphere
g
 

Soil-moisture 1950-1999 - 50 km 

SEDAC
h
 Population data 2000; 2010 - 5 km 

SEDAC
h
 HII

l
 1995-2004 - 1 km 

SEDAC
h
 Urban extents 1990-2000 - 1 km 

China Yearbook
i
 GDP per capita 2008 - County-level 

a
 Land cover data accessed on June 1, 2011 and other data accessed on April 1, 2013. 

b
 Moderate Resolution Imaging Spectroradiometer (MODIS)/Terra , available at: https://lpdaac.usgs.gov/ 

c
 Available at: http://www.worldclim.org/current. 

d
 Shuttle Radar Topography Mission Water Body Data (SWBD), available at: 

http://gis.ess.washington.edu/data/vector/worldshore/index.html. 
e
 World maps of Köppen-Geiger climate classification, available at: http://koeppen-geiger.vu-

wien.ac.at/shifts.htm. 
f
 International Soil Reference and Information Center, available at: http://www.isric.org/data/isric-wise-derived-

soil-properties-5-5-arc-minutes-global-grid-version-12. 
g
 Available at: http://www.sage.wisc.edu/atlas/maps.php?datasetid=23&includerelatedlinks=1&dataset=23. 

h
 Socioeconomic data and applications center, available at: http://sedac.ciesin.org/. 

i
 China yearbook full-text database, available at: http://acad.cnki.net/Kns55/brief/result.aspx?dbPrefix=CYFD. 

j
 Land surface temperature (LST) day and night. 

k
 Normalized difference vegetation index. 

l
 Human influence index. 

 

2.2.4 Statistical analysis 

The survey year was grouped into two categories: before 2005 and from 2005 onwards. 

Land cover, climatic zones, soil texture and soil drainage were included into the model as 

categorical covariates. Continuous variables were standardised to mean 0 and standard 

deviation 1 using the command “std()” in Stata version 10 (Stata Corp. LP; College Station, 

USA). Pearson’s correlation was calculated between continuous variables. One of the two 

http://www.worldclim.org/current
http://gis.ess.washington.edu/data/vector/worldshore/index.html
http://koeppen-geiger.vu-wien.ac.at/shifts.htm
http://koeppen-geiger.vu-wien.ac.at/shifts.htm
http://www.isric.org/data/isric-wise-derived-soil-properties-5-5-arc-minutes-global-grid-version-11.
http://www.isric.org/data/isric-wise-derived-soil-properties-5-5-arc-minutes-global-grid-version-11.
http://www.sage.wisc.edu/atlas/maps.php?datasetid=23&includerelatedlinks=1&dataset=23
http://sedac.ciesin.org/
http://acad.cnki.net/Kns55/brief/result.aspx?dbPrefix=CYFD
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variables, which had correlation coefficient greater than 0.8, was dropped to avoid collinearity 

(Dormann et al. 2013). Preliminary analysis indicated that for this dataset, three categories 

were sufficient to encapsulate for non-linearity of continuous variables, therefore we 

constructed 3-level categorical variables based on their distribution. Subsequent variable 

selection incorporated within the geostatistical model selected the most probable functional 

form (linear vs. categorical). Bivariate and multivariate logistic regressions were carried out 

in Stata version 10. 

Bayesian geostatistical logistic regression models with location-specific random effects 

were fitted to obtain spatially explicit soil-transmitted helminth infection estimates. Let iY , in  

and ip  be the number of positive individuals, the number of those examined and the 

probability of infection at location i  ( i =1, 2,…, L ), respectively. We assume that iY  arises 

from a binominal distribution ~ ( , )i i iY Bn p n , where:  

( )

i 0 1
logit(p )  k

k i i ik
X   


     . k  is the regression coefficient of the k

th
 covariate 

( ) ,k

iX  i  is a location-specific random effect and i  is an exchangeable non-spatial random 

effect. To estimate the parameters, we formulate our model in a Bayesian framework. We 

assumed 1( ,..., )L    followed a zero-mean multivariate normal distribution, ~ (0, )MVN  , 

where Matérn covariance function 2 1( ) ( ) / ( ( )2 ).ij sp ij ijd K d 

        
ijd  is the Euclidean 

distance between locations i  and ,j    is a scaling parameter,   is a smoothing parameter 

fixed to 1 and K  denotes the modified Bessel function of second kind and order  . The 

spatial range 8 /  , is the distance at which spatial correlation becomes negligible (<0.1) 

(Karagiannis-Voules et al. 2013). We assumed that i  follows a zero-mean normal 

distribution 2~ (0, ).i nonspN   A normal prior distribution was assigned to the regression 

coefficients, that is 𝛽0, 𝛽𝑘~𝑁(0,1000) and loggamma priors were adopted for the precision 

parameters, 21/sp sp   and 21/nonsp nonsp   on the log scale, that is 

log(𝜏𝑠𝑝) ~ log 𝑔𝑎𝑚𝑚𝑎(1,0.00005) and log(𝜏𝑛𝑜𝑛𝑠𝑝) ~ log 𝑔𝑎𝑚𝑚𝑎(1,0.00005). 

Furthermore, we assumed the following prior distribution for range parameter 

log(𝜌) ~ log 𝑔𝑎𝑚𝑚𝑎(1,0.01) 

The most widely used computational approach for Bayesian geostatistical model fit is 

MCMC simulation. However, large spatial covariance matrix calculations can increase 

computational time and possibly introduce numerical errors. Hence, we fitted the 

geostatistical model using the stochastic partial differential equations (SPDE)/INLA 

(Lindgren et al. 2011;Rue et al. 2009) approach, readily implemented in the INLA R-package 

(available at: http://www.r-inla.org). Briefly, the spatial process assuming a Matérn 

covariance matrix   can be represented as a Gaussian Markov random field (GMRF) with 

mean zero and a symmetric positive definite precision matrix Q  (defined as the inverse ) 
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(Cameletti et al. 2013). The SPDE approach constructs a GMRF representation of the Matérn 

field on a triangulation (a set of non-intersecting triangles where any two triangles meet in at 

most a common edge or corner) partitioning the domain of the study region (Lindgren et al. 

2011). Subsequently, the INLA algorithm is used to estimate the posterior marginal (or joint) 

distribution of the latent Gaussian process and hyperparameters by Laplace approximation 

(Rue et al. 2009). 

Bayesian variable selection, using normal mixture of inverse Gammas with parameter 

expansion (peNMIG) spike-and-slab priors (Scheipl, Fahrmeir, & Kneib 2012) was applied 

on the model with independent random effect for each location to identify the best set of 

predictors (i.e., climatic, environmental, and socioeconomic). In particular, we assumed a 

normal distribution for the regression coefficients with a hyperparameter for the variance 2

B  

to be a mixture of inverse Gamma distributions, that is 2~ (0, ),k BN   where 

2

0~ ( , ) (1 ) ( , )B k kI IG a b I IG a b       and a , b  are fixed parameters. 0  is some small 

positive constant (Chammartin et al. 2013b) and the indicator kI  has a Bernoulli prior 

distribution ~ ( ),k kI bern   where ~ ( , ).k beta a b   We set ( , ) (5,25),a b    ( , ) (1,1)a b    

and 0 0.00025  . The above prior of mixed inverse Gamma distributions is called a mixed 

spike and slab prior for ,k  as one component of the mixture 0 ( , )IG a b   (when 0kI  ) is a 

narrow spike around zero that strongly shrinks k  to zero, while the other component 

( , )IG a b   (when 1kI  ) is a wide slab that moves k  away from zero. The posterior 

distribution of kI  determines which component of the mixture is predominant contributing to 

the inclusion or exclusion of k . For categorical variables, we applied a peNMIG prior 

developed by Scheipl et al. (Scheipl et al. 2012), which allows to include or exclude blocks of 

coefficients by improving “shrinkage” properties. Let kh  be the regression coefficient for the 

thh  category of the thk  predictor, then ,kh k hk    where k  is assigned a NMIG prior 

described above and ~ ( ,1).hk hkN m  Here (1 )hk hk hkm o o    and ~ (0.5),hko bern  allow to 

shrink | |hk  towards 1. Hence, k  models the overall contribution of the thk  predictor and 

hk  estimates the effects of each element kh  of the predictor (Chammartin et al. 2013b). In 

addition, we introduced another indicator dI  for selection of either a categorical or a linear 

form of a continuous variable. Let 1kd  and 2kd  indicate coefficients of the categorical and 

linear form of thk  predictor, respectively, then 1 2(1 ) ,k d kd d kdI I      where ~ (0.5).dI Be  

MCMC simulation was employed to estimate the model parameters for variable selection in 

OpenBUGS version 3.0.2 (Imperial College and Medical Research Council; London, UK) 

(Lunn et al. 2009). Convergence was assessed by the Gelman and Rubin diagnostic (Gelman 

& Rubin 1992), using the coda library in R (Plummer et al. 2006). In Bayesian variable 
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selection, all models arising from any combination of covariates are fitted and the posterior 

probability for each model to be the true one is calculated. The predictors corresponding to 

the highest joint posterior probability of indicators 1 2( , ,... ,..., )k KI I I I  were subsequently used 

as the best set of predictors to fit the final geostatistical model. 

A 5 × 5 km grid was overlaid to the P.R. China map, resulting in 363,377 pixels. 

Predictions for each soil-transmitted helminth species were obtained via INLA at the 

centroids of the grid’s pixels. An overall soil-transmitted helminth prevalence was calculated 

assuming independence in the risk between any two species, that is, 

,S A T h A T A h T h A T hp p p p p p p p p p p p p             where ,Sp  ,Ap  Tp , and hp  

indicate the predicted prevalence of overall soil-transmitted helminth, A. lumbricoides, 

T. trichiura, and hookworm, respectively, for each pixel. The number of infected individuals 

at pixel level was estimated by multiplying the median of the corresponding posterior 

predictive distribution of the infection prevalence with the population density. 

2.2.5 Model validation 

Our model was fitted on a subset of the data, including approximately 80% of survey 

locations. Validation was performed on the remaining 20% by estimating the mean predictive 

error (ME) between the observed i and predicted prevalence ˆ
i at location i, where 

1
ˆ1/ * ( )i ii

ME N  


   and N is the total number of test locations. In addition, we 

calculated Bayesian credible intervals (BCI) of various probability and the percentage of 

observations included in these intervals. 

 

2.3 Results 

2.3.1 Data summaries 

The final dataset included 1,187 surveys for hookworm infection carried out at 1,067 unique 

locations; 1,157 surveys for A. lumbricoides infection at 1,052 unique locations; and 1,138 

surveys for T. trichiura infection at 1,028 unique locations. The overall prevalence was 9.8%, 

6.6% and 4.1% for A. lumbricoides, hookworm and T. trichiura infection, respectively. 

Details about the number of surveys by location type, study year, diagnostic method and 

infection prevalence are shown in Table 2.2. The geographical distribution of locations and 

observed prevalence for each soil-transmitted helminth species are shown in Figure 2.1. Maps 

of the spatial distribution of environmental/climatic, soil types and socioeconomic covariates 

used in Bayesian variable selection are provided in Additional file. 
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Figure 2.1: Survey locations and observed prevalence across P.R. China. The maps show the 

survey locations and observed prevalence for (A) A. lumbricoides, (B) T. trichiura and (C) 

hookworm. 
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Table 2.2: Overview of the number of soil-transmitted helminth surveys. 

 A. lumbricoides T. trichiura Hookworm 

Number of surveys (percentage) 

Location 

types 

Villages/towns 842 (72.8) 822 (72.2) 838 (70.6) 

Counties 315 (27.2) 316 (27.8) 349 (29.4) 

Study year 

finished 

2000-2004 739 (63.9) 737 (64.8) 775 (65.3) 

2005-2010 418 (36.1) 401 (35.2) 412 (34.7) 

Test 

methods 

Kato-Katz 1124 (97.2) 1112 (97.7) 1151 (97.0) 

Stool sedimentation 3 (0.26) 3 (0.26) 3 (0.25) 

Flotation method
a
 16 (1.4) 16 (1.4) 19 (1.6) 

Ether-concentration
b
 1 (0.09) 1 (0.09) 1 (0.08) 

Other diagnostic method 13 (1.1) 6 (0.53) 13 (1.1) 

Observed 

prevalence 

(%) 

<0.1 126 (10.9) 374 (32.9) 364 (30.7) 

0.1-5.0 513 (44.3) 523 (46.0) 396 (33.4) 

5.1-10.0 152 (13.1) 95 (8.4) 149 (12.6) 

10.1-20.0 158 (13.7) 71 (6.2) 134 (11.3) 

20.1-50.0 155 (13.4) 58 (5.1) 118 (10.0) 

>50.0 53 (4.6) 17 (1.5) 26 (2.2) 

Total 1,157 (100) 1,138 (100) 1,187 (100) 
a
Stool flotation method or McMaster salt flotation method. 

b
Formalin ethyl acetate concentration method. 

 

2.3.2 Spatial statistical modelling and variable selections 

The models with the highest posterior probabilities selected the following covariates: GDP 

per capita, elevation, NDVI, LST at day, LST at night, precipitation, pH measured in water, 

and climatic zones for T. trichiura; GDP per capita, elevation, NDVI, LST at day, LST at 

night, precipitation, bulk density, gypsum content, organic carbon content, climatic zone and 

land cover for hookworm; and GDP per capita, elevation, NDVI, LST at day and climatic 

zone for A. lumbricoides. The corresponding posterior probabilities of the respective models 

were 33.2%, 23.6% and 21.4% for T. trichiura, hookworm and A. lumbricoides, respectively. 

The parameter estimates that arose from the Bayesian geostatistical logistic regression fit 

are shown in Tables 2.3, 2.4 and 2.5. The infection risk of all three soil-transmitted helminth 

species decreased considerably from 2005 onwards. We found significant positive association 

between NDVI and the prevalence of A. lumbricoides. A negative association was found 

between GDP per capita, arid or snow/polar climatic zones and the prevalence of 

A. lumbricoides. High precipitation and LST at night are favourable conditions for the 

presence of hookworm, while high NDVI, LST at day, urban or wet land covers and arid or 

snow/polar climatic zones are less favourable. Elevation, LST at night, NDVI larger than 0.45 

and equatorial climatic zone were associated with a higher odds of T. trichiura infection, 

while LST at day, arid or snow climatic zones were associated with a lower odds of 

T. trichiura infection. 
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2.3.3 Model validation results 

Model validation indicated that the Bayesian geostatistical logistic regression models were 

able to correctly estimate within a 95% BCI 84.2%, 81.5% and 79.3% for T. trichiura, 

hookworm and A. lumbricoides, respectively. A plot of coverage for the full range of credible 

intervals is presented in Additional file. The MEs for hookworm, A. lumbricoides and 

T. trichiura were 0.56%, 1.7%, and 2.0% respectively, suggesting that our model may slightly 

under-estimate the risk of each of the soil-transmitted helminth species. 

Table 2.3: Posterior summaries (median and 95% BCI) of the geostatistical model parameters 

for A. lumbricoides. 

 Estimate
†
 

Year 0.34 (0.32; 0.36)
*
 

GDP per capita (yuan)  

 ≤12,000 1.00 

 12,000-24,000 0.89 (0.68; 1.18) 

 >24,000 0.59 (0.41; 0.86)
*
 

Elevation (m)  

 ≤55 1.00 

 55-400 1.21 (0.89; 1.63) 

 >400 1.54 (0.96; 2.46) 

NDVI  

 ≤0.45 1.00 

 0.45-0.55 2.41 (2.05; 2.84)
*
 

 >0.55 1.30 (1.03; 1.64)
*
 

LST at day (°C)  

 ≤21 1.00 

 21-23 1.07 (0.83; 1.37) 

 >23 1.08 (0.76; 1.54) 

Climatic zones  

 Warm 1.00 

 Equatorial 1.73 (0.42; 7.08) 

 Arid 0.41 (0.18; 0.98)
*
 

 Snow 0.41 (0.20; 0.84)
*
 

Range (km) 243.1 (182.8; 321.4) 

Spatial variance (σ
2
sp) 2.64 (1.97; 3.51) 

Non-spatial variance (σ
2
nonsp) 0.91 (0.77; 1.08) 

†
Regression coefficients are provided as odds ratios. 

*
Significant correlation based on 95% Bayesian credible interval (BCI). 

 

2.3.4 Predictive risk maps of soil-transmitted helminth infections 

Figures 2.2, 2.3 and 2.4 present species-specific predictive risk maps of soil-transmitted 

helminth infections for the period 2005 onwards. High prevalence of A. lumbricoides (>20%) 

was predicted in large areas of Guizhou province and the southern part of Sichuan and Hubei 

provinces. Moderate to high prevalence (5-20%) were predicted for large areas of Hunan, 
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Yunnan, Jiangxi, some southern areas of Gansu and Anhui provinces and Chongqing city. For 

the northern part of P.R. China and the south-eastern coastal-line areas, low prevalences were 

predicted (<5%). The high prediction uncertainty shown in Figure 2.2B is correlated with 

high prevalence areas. High infection prevalence (>20%) with T. trichiura was predicted for a 

few small areas of the southern part of P.R. China. Moderate-to-high prevalence (5-20%) was 

predicted for large areas of Hainan province. High hookworm infection prevalence (>20%) 

was predicted for Hainan, eastern parts of Sichuan and southern parts of Yunnan provinces. 

Low prevalence (0.1-5%) of T. trichiura and hookworm infections were predicted for most 

areas of the southern part of P.R. China, while close to zero prevalence areas were predicted 

for the northern part. 

Table 2.4: Posterior summaries (median and 95% BCI) of the geostatistical model parameters 

for T. trichiura. 

 Estimate
†
 

Year 0.26 (0.24; 0.28)
*
 

GDP per capita 1.02 (0.83; 1.25) 

Elevation 1.80 (1.37; 2.37)
*
 

NDVI  

 ≤0.45 1.00 

 0.45-0.55 2.64 (1.99; 3.52)
*
 

 >0.55 1.59 (1.10; 2.32)
*
 

LST at day 0.62 (0.48; 0.81)
*
 

LST at night 3.61 (2.08; 6.32)
*
 

Precipitation 1.23 (0.79; 1.91) 

pH measured in water  

 ≤5.95 1.00 

 5.95-7.00 1.39 (1.00; 1.95) 

 >7.00 1.49 (0.96; 2.30) 

Climatic zones  

 Warm 1.00 

 Equatorial 6.40 (1.25; 31.49)
*
 

 Arid 0.10 (0.03; 0.36)
*
 

 Snow 0.07 (0.02; 0.22)
*
 

Range (km) 138.8 (104.3; 179.1) 

Spatial variance (σ
2
sp) 4.19 (3.22; 5.08) 

Non-spatial variance (σ
2
nonsp) 1.09 (0.88; 1.37) 

†
Regression coefficients are provided as odds ratios. 

*
Significant correlation based on 95% Bayesian credible interval (BCI). 

 

2.3.5 Estimates of number of people infected 

Figure 2.5 shows the combined soil-transmitted helminth prevalence and the number of 

infected individuals from 2005 onwards. Table 2.6 summarises the population-adjusted 

predicted prevalence and the number of infected individuals, stratified by province. The 

overall population-adjusted predicted prevalence of A. lumbricoides, hookworm and 

T. trichiura infections were, respectively, 6.8%, 3.7% and 1.8%, corresponding to 85.4, 46.6 
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and 22.1 million infected individuals. The overall population-adjusted predicted prevalence 

for combined soil-transmitted helminth infections was 11.4%. 

Table 2.5: Posterior summaries (median and 95% BCI) of the geostatistical model parameters 

for hookworm. 

 Estimate
†
 

Year 0.27 (0.25; 0.29)
*
 

GDP per capita (yuan)  

 ≤12,000 1.00 

 12,000-24,000 1.28 (0.89; 1.85) 

 >24,000 0.89 (0.53; 1.50) 

Elevation (m)  

 ≤55 1.00 

 55-400 1.34 (0.91; 1.98) 

 >400 1.32 (0.73; 2.38) 

NDVI  

 ≤0.45 1.00 

 0.45-0.55 0.44 (0.36; 0.52)
*
 

 >0.55 0.36 (0.27; 0.47)
*
 

LST at day 0.32 (0.23; 0.45)
*
 

LST at night 7.35 (3.88; 14.12)
 *
 

Precipitation 3.17 (1.89; 5.48)
*
 

Bulk density (km/dm
3
)  

 ≤1.29 1.00 

 1.29-1.36 0.82 (0.52; 1.30) 

 >1.36 0.66 (0.37; 1.17) 

Gypsum content (g/kg)  

 ≤0 1.00 

 0-1 1.20 (0.88; 1.63) 

 >1 1.17 (0.73; 1.87) 

Organic carbon content (g/kg)  

 ≤11 1.00 

 11-12.5 0.73 (0.44; 1.20) 

 >12.5 0.81 (0.46; 1.43) 

Climatic zones  

 Warm 1.00 

 Equatorial 1.87 (0.34; 10.13) 

 Arid 0.17 (0.03; 0.83)
*
 

 Snow 0.05 (0.01; 0.21)
*
 

Land cover  

 Croplands 1.00 

 Forests 0.83 (0.57; 1.22) 

 Shrublands and savannas 1.07 (0.67; 1.70) 

 Grasslands 0.63 (0.13; 2.58) 

 Urban 0.35 (0.22; 0.58)
*
 

 Wet areas 0.15 (0.07; 0.32)
*
 

Range (km) 186.1 (126.8; 296.5) 

Spatial variance (σ
2
sp) 5.07 (3.72; 6.63) 

Non-spatial variance (σ
2
nonsp) 0.88 (0.69; 1.22) 

†
Regression coefficients are provided as odds ratios. 

*
Significant correlation based on 95% Bayesian credible interval (BCI). 
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Table 2.6: Population-adjusted predicted prevalence (%) and number of individuals (×10
6
) 

infected with soil-transmitted helminths by province
†
. 

Province Population A. lumbricoides T. trichiura 

Prevalence No. of people infected Prevalence No. of people infected 

Anhui 54.9 4.3 (2.9; 6.8) 2.4 (1.6; 3.8) 1.4 (0.77; 2.6) 0.78 (0.42; 1.4) 

Beijing 17.0 0.68 (0.40; 1.3) 0.12 (0.07; 0.22) 0.05 (0.02; 0.23) 0.01 (0.00; 0.04) 

Chongqing 26.7 10.2 (7.9; 12.4) 2.7 (2.1; 3.3) 1.2 (0.78; 1.7) 0.31 (0.21; 0.47) 

Fujian 32.8 1.9 (1.5; 2.7) 0.63 (0.48; 0.89) 2.0 (1.4; 3.2) 0.67 (0.44; 1.0) 

Gansu 25.6 6.6 (3.8; 11.5) 1.7 (0.97; 2.9) 0.30 (0.10; 1.3) 0.08 (0.02; 0.34) 

Guangdong 91.1 3.0 (2.1; 4.4) 2.7 (1.9; 4.0) 2.3 (1.4; 3.5) 2.1 (1.3; 3.2) 

Guangxi 37.6 6.9 (5.1; 9.4) 2.6 (1.9; 3.5) 3.6 (2.3; 5.7) 1.4 (0.86; 2.1) 

Guizhou 31.4 27.9* (19.5; 37.6) 8.7 (6.1; 11.8) 5.2 (2.8; 9.6) 1.6 (0.87; 3.0) 

Hainan 6.7 7.5 (5.0; 10.5) 0.50 (0.33; 0.70) 18.3* (11.9; 25.9) 1.2 (0.80; 1.7) 

Hebei 75.5 1.3 (0.77; 2.1) 0.95 (0.58; 1.6) 0.09 (0.04; 0.20) 0.07 (0.03; 0.15) 

Heilongjiang 42.3 2.1 (0.99; 4.7) 0.90 (0.42; 2.0) 0.02 (0.01; 0.07) 0.01 (0.00; 0.03) 

Henan 84.3 2.2 (1.5; 3.2) 1.8 (1.2; 2.7) 0.62 (0.34; 1.2) 0.52 (0.29; 1.1) 

Hubei 58.2 18.3 (14.4; 22.7) 10.6 (8.4; 13.2) 3.2 (1.7; 6.7) 1.9 (0.98; 3.9) 

Hunan 55.1 17.7 (12.5; 24.9) 9.7 (6.9; 13.7) 1.8 (0.9; 3.6) 0.99 (0.50; 2.0) 

Jiangsu 74.3 1.2 (0.88; 1.8) 0.91 (0.65; 1.3) 0.72 (0.45; 1.5) 0.54 (0.34; 1.1) 

Jiangxi 36.3 11.3 (8.1; 15.7) 4.1 (2.9; 5.7) 3.3 (2.0; 5.8) 1.2 (0.73; 2.1) 

Jilin 29.2 7.2 (4.3; 11.8) 2.1 (1.2; 3.5) 0.02 (0.00; 0.09) 0.01 (0.00; 0.03) 

Liaoning 43.1 3.5 (1.4; 9.1) 1.5 (0.61; 3.9) 0.02 (0.00; 0.08) 0.01 (0.00; 0.03) 

Nei Mongol 29.7 2.2 (1.0; 5.2) 0.65 (0.30; 1.6) 0.01# (0.01; 0.06) 0.00# (0.00; 0.02) 

Ningxia Hui 6.3 3.8 (2.5; 5.4) 0.24 (0.16; 0.34) 0.07 (0.03; 0.26) 0.00# (0.00; 0.02) 

Qinghai 5.0 5.7 (3.4; 9.5) 0.28 (0.17; 0.47) 0.05 (0.01; 0.20) 0.00# (0.00; 0.01) 

Shaanxi 34.2 5.8 (2.6; 12.5) 2.0 (0.89; 4.3) 0.84 (0.30; 2.3) 0.29 (0.10; 0.78) 

Shandong 93.4 5.2 (3.7; 7.3) 4.9 (3.4; 6.9) 2.1 (1.4; 3.3) 2.0 (1.3; 3.1) 

Shanghai 15.0 0.32# (0.21; 0.54) 0.05# (0.03; 0.08) 0.46 (0.27; 0.81) 0.07 (0.04; 0.12) 

Shanxi 35.5 1.7 (0.88; 3.9) 0.59 (0.31; 1.4) 0.14 (0.04; 0.41) 0.05 (0.01; 0.15) 

Sichuan 94.6 14.8 (11.5; 19.3) 14.0* (10.9; 18.2) 3.9 (2.4; 6.9) 3.7* (2.2; 6.5) 

Tianjin 9.8 0.66 (0.32; 1.3) 0.06 (0.03; 0.13) 0.01# (0.00; 0.05) 0.00# (0.00; 0.00) 

Xinjiang Uygur 25.0 2.4 (1.1; 7.1) 0.60 (0.26; 1.8) 0.05 (0.02; 0.15) 0.01 (0.00; 0.04) 

Tibet 2.7 3.3 (1.5; 7.7) 0.09 (0.04; 0.21) 0.47 (0.15; 1.4) 0.01 (0.00; 0.04) 

Yunnan 39.5 13.6 (9.0; 19.4) 5.4 (3.5; 7.7) 3.5 (2.0; 6.5) 1.4 (0.77; 2.6) 

Zhejiang 45.4 0.80 (0.58; 1.2) 0.36 (0.26; 0.54) 0.64 (0.38; 1.1) 0.29 (0.17; 0.50) 

Total 1,257.9 6.8 (6.2; 7.5) 85.4 (77.8; 94.0) 1.8 (1.5; 2.1) 22.1 (18.7; 26.2) 

(Table 2.6 continues in next page) 

 

For A. lumbricoides, the predicted prevalence ranged from 0.32% (Shanghai) to 27.9% 

(Guizhou province). Shanghai had the smallest (0.05 million) and Sichuan province the 

largest number (14.8 million) of infected individuals. For T. trichiura, the predicted 

prevalence ranged from 0.01% (Tianjin) to 18.3% (Hainan province). The smallest number of 

infected individuals were found in Nei Mongol, Ningxia Hui, Qinghai provinces and Tianjin 

(<0.01 million) whereas the largest number, 3.7 million, was predicted for Sichuan province. 

For hookworm, Ningxia Hui and Qinghai province had the lowest predicted prevalence 

(<0.01%), while Hainan province had the highest (22.1%). The provinces of Gansu, Nei 

Mongol, Ningxia Hui, Qinghai, Xinjiang Uygur and Tibet, and the cities of Beijing, Shanghai 

and Tianjin each had less than 10,000 individuals infected with hookworm. Sichuan province 

had the largest predicted number of hookworm infections (14.3 million). 

The predicted combined soil-transmitted helminth prevalence ranged from 0.70% (Tianjin) 

to 40.8% (Hainan province). The number of individuals infected with soil-transmitted 

helminths ranged from 0.07 million (Tianjin) to 29.0 million (Sichuan province). Overall, 

slightly more than one out of ten people in P.R. China is infected with soil-transmitted 

helminths, corresponding to more than 140 million infections in the year 2010. 
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(continued from previous page Table 2.6) 

Province Population 
Hookworm Any soil-transmitted helminth 

Prevalence No. of people infected Prevalence No. of people infected 

Anhui 54.9 4.6 (2.6; 8.1) 2.5 (1.5; 4.4) 10.1 (7.6; 14.2) 5.5 (4.2; 7.8) 

Beijing 17.0 0.02 (0.01; 0.06) 0.00# (0.00; 0.01) 0.77 (0.47; 1.4) 0.13 (0.08; 0.24) 

Chongqing 26.7 10.3 (7.6; 13.5) 2.8 (2.0; 3.6) 20.6 (17.1; 24.0) 5.5 (4.6; 6.4) 

Fujian 32.8 8.6 (6.4; 11.6) 2.8 (2.1; 3.8) 12.3 (10.1; 15.3) 4.0 (3.3; 5.0) 

Gansu 25.6 0.02 (0.00; 0.16) 0.00# (0.00; 0.04) 7.0 (4.1; 11.9) 1.8 (1.0; 3.0) 

Guangdong 91.1 4.3 (2.6; 7.1) 3.9 (2.4; 6.5) 9.0 (7.1; 12.4) 8.2 (6.4; 11.3) 

Guangxi 37.6 7.8 (5.4; 11.8) 2.9 (2.0; 4.4) 17.4 (14.0; 21.8) 6.5 (5.3; 8.2) 

Guizhou 31.4 4.1 (2.1; 7.7) 1.3 (0.65; 2.4) 34.6 (25.9; 43.3) 10.9 (8.1; 13.6) 

Hainan 6.7 22.1* (16.0; 29.7) 1.5 (1.1; 2.0) 40.8* (33.6; 48.6) 2.7 (2.2; 3.3) 

Hebei 75.5 0.12 (0.06; 0.31) 0.09 (0.04; 0.23) 1.5 (0.97; 2.4) 1.1 (0.73; 1.8) 

Heilongjiang 42.3 0.04 (0.01; 0.26) 0.02 (0.00; 0.11) 2.2 (1.1; 4.8) 0.93 (0.44; 2.0) 

Henan 84.3 1.5 (0.83; 2.7) 1.2 (0.70; 2.3) 4.3 (3.2; 5.9) 3.6 (2.7; 4.9) 

Hubei 58.2 5.9 (4.0; 8.9) 3.4 (2.3; 5.2) 24.9 (20.7; 30.1) 14.5 (12.0; 17.5) 

Hunan 55.1 3.5 (2.0; 6.6) 1.9 (1.1; 3.7) 22.1 (16.6; 29.5) 12.2 (9.2; 16.3) 

Jiangsu 74.3 2.2 (1.5; 3.5) 1.6 (1.1; 2.6) 4.1 (3.2; 5.7) 3.1 (2.4; 4.3) 

Jiangxi 36.3 5.0 (3.1; 7.7) 1.8 (1.1; 2.8) 18.6 (14.8; 23.6) 6.8 (5.4; 8.6) 

Jilin 29.2 0.04 (0.01; 0.28) 0.01 (0.00; 0.08) 7.3 (4.3; 11.9) 2.1 (1.3; 3.5) 

Liaoning 43.1 0.03 (0.00; 0.21) 0.01 (0.00; 0.09) 3.5 (1.5; 9.2) 1.5 (0.64; 5.0) 

Nei Mongol 29.7 0.01 (0.00; 0.04) 0.00# (0.00; 0.01) 2.2 (1.0; 5.2) 0.66 (0.31; 1.6) 

Ningxia Hui 6.3 0.00# (0.00; 0.03) 0.00# (0.00; 0.00) 3.9 (2.6; 5.5) 0.25 (0.16; 0.34) 

Qinghai 5.0 0.00# (0.00; 0.03) 0.00# (0.00; 0.00) 5.8 (3.5; 9.6) 0.29 (0.17; 0.48) 

Shaanxi 34.2 0.39 (0.09; 1.9) 0.14 (0.03; 0.66) 7.0 (3.7; 13.4) 2.4 (1.3; 4.6) 

Shandong 93.4 0.78 (0.44; 1.6) 0.73 (0.41; 1.5) 7.9 (6.2; 10.4) 7.4 (5.8; 9.7) 

Shanghai 15.0 0.02 (0.01; 0.05) 0.00# (0.00; 0.01) 0.82 (0.58; 1.2) 0.12 (0.09; 0.18) 

Shanxi 35.5 0.07 (0.02; 0.27) 0.02 (0.01; 0.10) 1.9 (1.1; 4.1) 0.68 (0.37; 1.4) 

Sichuan 94.6 15.1 (10.9; 21.4) 14.3* (10.3; 20.3) 30.6 (26.0; 36.2) 29.0* (24.6; 34.2) 

Tianjin 9.8 0.03 (0.01; 0.13) 0.00# (0.00; 0.01) 0.70# (0.36; 1.3) 0.07# (0.04; 0.13) 

Xinjiang Uygur 25.0 0.01 (0.00; 0.09) 0.00# (0.00; 0.02) 2.5 (1.1; 7.2) 0.62 (0.28; 1.8) 

Tibet 2.7 0.03 (0.01; 0.17) 0.00# (0.00; 0.00) 3.9 (1.9; 8.1) 0.10 (0.05; 0.22) 

Yunnan 39.5 2.7 (1.6; 5.0) 1.1 (0.62; 2.0) 19.0 (13.89; 25.1) 7.5 (5.5; 9.9) 

Zhejiang 45.4 3.0 (1.9; 4.9) 1.4 (0.88; 2.2) 4.4 (3.3; 6.4) 2.0 (1.5; 2.9) 

Total 1,257.9 3.7 (3.2; 4.3) 46.6 (40.7; 53.7) 11.4 (10.8; 12.2) 143.8 (135.9; 153.8) 
†
Estimates based on Gridded population of 2010; calculations based on the median and 95% Bayesian credible 

interval (BIC) of the posterior distribution of the predicted risk from 2005 onwards; 
 *
highest prevalence/ largest 

number of infected individuals among provinces; 
#
lowest prevalence/ smallest number of infected individuals 

among provinces. 

 

2.4 Discussion 

To our knowledge, we present the first model-based, nation-wide predictive infection risk 

maps of soil-transmitted helminths for P.R. China. Previous epidemiological studies 

(Coordinating Office of the National Survey on the Important Human Parasitic Diseases 2005) 

were mainly descriptive, reporting prevalence estimates at specific locations or visualized at 

province level using interpolated risk surface maps. We carried out an extensive literature 

search and collected published georeferenced soil-transmitted helminth prevalence data across 

P.R. China, alongside the ones from the second national survey that had been completed in 

2004. Bayesian geostatistical models were utilised to identify climatic/environmental and 

socioeconomic factors that were significantly associated with infection risk, and hence, the 

number of infected individuals could be calculated at high spatial resolution. We derived 

species-specific risk maps. Additionally, we produced a risk map with any soil-transmitted  
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Figure 2.2: The geographical distribution of A. lumbricoides infection risk in P.R. China. The 

maps show the situation from 2005 onwards based on the median and standard deviation of 

the posterior predictive distribution. Estimates of (A) infection prevalence, (B) prediction 

uncertainty and (C) number of infected individuals. 

 

helminth infection, which is particularly important for the control of soil-transmitted 

helminthiasis, as the same drugs (mainly albendazole and mebendazole) are used against all 

three species (Keiser & Utzinger 2008;WHO 2002a). 

Model validation suggested good predictive ability of our final models. In particular, 

84.2%, 81.5% and 79.3% of survey locations were correctly predicted within a 95% BCI for 

T. trichiura, hookworm and A. lumbricoides, respectively. The combined soil-transmitted 

helminth prevalence (11.4%) is supported by the current surveillance data reported to China  



40                                                   Chapter 2. Soil-transmitted helminth infections, P.R. China  

 
 

 

Figure 2.3: The geographical distribution of T. trichiura infection risk in P.R. China. The 

maps show the situation from 2005 onwards based on the median and standard deviation of 

the posterior predictive distribution. Estimates of (A) infection prevalence, (B) prediction 

uncertainty and (C) number of infected individuals. 

 

CDC that shows infection rates in many areas of P.R. China around 10%. We found that all 

ME were above zero, hence the predictive prevalence slightly under-estimated the true 

prevalence of each of the three soil-transmitted helminth species. The combined soil-

transmitted helminth prevalence estimates assume that the infection of each species is 

independent of each other. However, previous research reported significant associations, 

particularly between A. lumbricoides and T. trichiura (Booth & Bundy 1992;Tchuem 

Tchuenté et al. 2003a). Hence, our assumption may over-estimate the true prevalence of soil- 
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Figure 2.4: The geographical distribution of hookworm infection risk in P.R. China. The 

maps show the situation from 2005 onwards based on the median and standard deviation of 

the posterior predictive distribution. Estimates of (A) infection prevalence, (B) prediction 

uncertainty and (C) number of infected individuals. 

 

transmitted helminths. Unfortunately we do not have co-infection data from P.R. China, and 

thus we are unable to calculate a correction factor. 

Our results indicate that several environmental and climatic predictors are significantly 

associated with soil-transmitted helminth infections. For example, LST at night was 

significantly associated with T. trichiura and hookworm, suggesting that temperature is an 

important driver of transmission. Similar results have been reported by other researchers  
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Figure 2.5: The geographical distribution of soil-transmitted helminth infection risk in P.R. 

China. The maps show the situation from 2005 onwards based on the median and standard 

deviation of the posterior predictive distribution. Estimates of (A) infection prevalence, (B) 

prediction uncertainty and (C) number of infected individuals. 

 

(Pullan & Brooker 2012;Tchuem Tchuenté 2011). Our results suggest that the risk of 

infection with any of the soil-tansmitted helminth species is higher in equatorial or warm 

zones, compared to the arid and snow/polar zones. This is consistent with earlier findings that 

extremely arid environments limit the transmission of soil-transmitted helminths (Pullan & 

Brooker 2012), while equatorial or warm zones provide temperatures and soil moisture that 

are particularly suitable for larval development (Tchuem Tchuenté 2011). However, we found 

a positive association between elevation and T. trichiura infection risk, which contradicts 

earlier reports (Flores et al. 2001;Gunawardena et al. 2011). The reason may be the altitude 
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effect, i.e., the negative correlation between altitude and economy in P.R. China (Zhai S & 

Sun A 2012). The low socioeconomic development in high altitude or mountainous areas 

might result in limited access to healthcare services (Schratz et al. 2010;Yap et al. 2013). 

On the other hand, it is reported that socioeconomic factors are closely related with the 

behaviour of people, which in turn impacts the transmission of soil-transmitted helminths 

(Brooker et al. 2006). Indeed, wealth, inadequate sewage discharge, drinking of unsafe water, 

lack of sanitary infrastructure, personal hygiene habits, recent travel history, low education 

and demographic factors are strongly associated with soil-transmitted helminth infections 

(Escobedo et al. 2008;Hohmann et al. 2001;Knopp et al. 2010;Norhayati et al. 1998;Pinheiro 

et al. 2011). Our results show that GDP per capita has a negative effect on A. lumbricoides 

infection risk. Other socioeconomic proxies such as sanitation level, number of hospital beds 

and percentage of people with access to tap water might be more readily able to explain the 

spatial distribution of infection risk. 

Model-based estimates adjusted for population density indicate that the highest prevalence 

of A. lumbricoides occurred in Guizhou province. T. trichiura and hookworm were most 

prevalent in Hainan province. Although the overall soil-transmitted helminth infection risk 

decreased over the past several years, Hainan province had the highest risk in 2010, followed 

by Guizhou and Sichuan provinces. These results are consistent with the reported data of the 

second national survey on important parasitic diseases (Coordinating Office of the National 

Survey on the Important Human Parasitic Diseases 2005), and hence more effective control 

strategies are needed in these provinces. 

The targets set out by the Chinese Ministry of Health in the “National Control Program on 

Important Parasitic Diseases from 2006 to 2015” are to reduce the prevalence of soil-

transmitted helminth infections by 40% until 2010 and up to 70% until 2015 (Zheng et al. 

2009). The government aims to reach these targets by a series of control strategies, including 

anthelminthic treatment, improvement of sanitation, and better information, education and 

communication (IEC) campaigns (Bergquist & Whittaker 2012). Preventive chemotherapy is 

recommended for populations older than 3 years in areas where the prevalence of soil-

transmitted helminth infection exceeds 50%, while targeted drug treatment is recommended 

for children and rural population in areas where infection prevalences range between 10% and 

50% (Ministry of Health 2006). Our models indicate that the first step of the target, i.e., 

reduction of prevalence by 40% until 2010, has been achieved. Indeed, the prevalence of 

T. trichiura, hookworm and A. lumbricoides dropped from 4.6%, 6.1% and 12.7% in the 

second national survey between 2001 and 2004 (Coordinating Office of the National Survey 

on the Important Human Parasitic Diseases 2005) to 1.8%, 3.7% and 6.8% in 2010, which 

corresponds to respective reductions of 60.9%, 39.3% and 46.5%. The combined soil-

transmitted helminth prevalence dropped from 19.6% to 11.4% in 2010, a reduction of 41.8%. 

These results also suggest that, compared to T. trichiura and A. lumbricoides, more effective 

strategies need to be tailored for hookworm infections. 
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The data of our study stem largely from community-based surveys. However, the 

information extracted from the literature is not disaggregated by age, and hence we were not 

able to obtain age-adjusted predictive risk maps. In addition, more than 96% of observed 

surveys used the Kato-Katz technique (Katz, Chaves, & Pellegrino 1972;Speich et al. 2010). 

We assumed that the diagnostic sensitivity was similar across survey locations. However, the 

sensitivity depends on the intensity of infection, and hence varies in space (Booth et al. 2003). 

The above data limitations are known in geostatistical meta-analyses of historical data 

(Chammartin et al. 2013b) and we are currently developing methods to address them. 

 

Acknowledgements 

We thank two anonymous referees for a series of useful comments and suggestions. This 

study received financial support from the China Scholarship Council (CSC) to YSL, the UBS 

Optimus Foundation (project no. 5879), and the Swiss National Science Foundation 

(PDFMP3_137156). 

  



2.5 Additional file  45 

 

2.5 Additional file 

2.5.1 Spatial distribution of environmental/climatic, soil types and socioeconomic factors 

across P.R. China 

 

 

2.5.2 Model validation results 

 

Percentage of survey locations with observed prevalence included within the Bayesian 

credible interval (BCI) of various probability coverage cut-offs (bar plots) calculated from the 

posterior predicted distribution. Solid lines indicate the corresponding width of BCI.  
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Abstract 

Background: In South Asia, millions of people are infected with soil-transmitted helminthes 

(Ascaris lumbricoides, Trichuris trichiura and hookworm). However, high-resolution risk 

profiles and the estimated number of people infected have yet to be determined. In turn, such 

information will assist control programs to identify priority areas for resources allocation. 

Methodologies: We pursued a systematic review to identify prevalence surveys to soil-

transmitted helminth infections in South Asia. PubMed and ISI Web of Science were searched 

from inception to 15 January 2016, without restriction of language, study design, and survey 

date. We utilized Bayesian geostatistical models to identify environmental and socioeconomic 

predictors, and to estimate infection risk at high spatial resolution across South Asia. 

Principal Findings: A total of 501, 465, and 384 georeferenced surveys were identified for 

A. lumbricoides, hookworm and T. trichiura, respectively. We estimate that 397 million 

people (95% Bayesian credible interval (BCI) 365 to 436 million), approximatedly one-

quarter of the South Asia population, was infected with at least one species of soil-transmitted 

helminths in 2015. A. lumbricoides, was the most predominant species. Moderate to high 

prevalence (>20%) of any soil-transmitted helminth infection was predicted in the 

northeastern part and some northern areas of the study region as well as the southern coastal-

line areas of India. The annual treatment needs for the school-aged population requiring 

preventive chemotherapy was estimated at 187 million doses (95% BCI 167-211 million). 

Conclusions/Significance: Our risk maps provide an overview of the geographic distribution 

of soil-transmitted helminth infections in South Asia and highlight the need for up-to-date 

surveys to accurately evaluate the disease burden in the region. 
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3.1 Introduction 

Soil-transmitted helminths (i.e., Ascaris lumbricoides, Trichuris trichiura, and hookworm) 

are widespread particularly in resource-constrained settings and marginalized populations 

(Bethony et al. 2006). Indeed, soil-transmitted helminth infections are among the most 

prevalent of the neglected tropical diseases (NTDs), and they rank among the top three 

according to global prevalence and population at risk of all NTDs (Hotez et al. 2007). In 2010, 

it was estimated that 819 million people were infected with A. lumbricoides, 465 million with 

T. trichuris, and 439 million with hookworm (Pullan et al. 2014), accounting for a global 

burden of 5.2 million disability-adjusted life years (DALYs), respectively (Murray et al. 

2012). The regions with the highest prevalence of soil-transmitted helminth infections are 

East Asia and Pacific Islands (including China), sub-Saharan Africa, South Asia (including 

India), and Latin America and Caribbean (Bethony et al. 2006;de Silva et al. 2003). 

According to the World Bank, South Asia consists of six mainland countries, namely 

Afghanistan, Bangladesh, Bhutan, India, Nepal, and Pakistan, and two island countries 

Maldives and Sri Lanka (Lobo et al. 2011). Four of these countries (i.e., Bangladesh, India, 

Nepal, and Pakistan), account for 97% of the population in South Asia. Even though regional 

economic growth in South Asia was projected to gradually increase according a World Bank 

report in 2014 (World Bank 2014), there are still a large number of people living in poverty. 

Indeed, in 2010 and 2011, about 950 million people in Bangladesh, India, Nepal, and Pakistan 

lived on less than US$2 per day (World Bank 2016). Moreover, South Asia still has the 

highest rates and largest numbers of malnourished children, which is improving only very 

slowly (World Bank 2005). 

It was estimated that in 2010, there were 298 million, 140 million, and 101million people 

in South Asia infected with A. lumbricoides, hookworm and T. trichuris, respectively, thus 

accounting for more than one-quarter of the world’s soil-transmitted helminth infections 

(Pullan et al. 2014). In 2001, the World Health Assembly set the global target of regular 

deworming of at least 75% of school-aged children at risk of soil-transmitted helminthiasis by 

2010 (WHO 2011a). Periodic large-scale preventive chemotherapy is recommended by the 

World Health Organization (WHO) when prevalence in school-aged children exceeds a pre-

defined threshold (WHO 2006). Interestingly, a school-based national survey in Sri Lanka 

showed that the country had a prevalence of soil-transmitted helminth infections in 2003 

below the WHO’s threshold warranting preventive chemotherapy (Pathmeswaran et al. 2005). 

Data from the WHO Preventive Chemotherapy and Transmission Control (PCT) databank 

showed that before 2010, only Bhutan achieved the target of preventive chemotherapy with 

coverage of at least 75% of school-aged children at risk (WHO 2016). Bangladesh reached 

this target for the first time in 2012 and also in subsequent years, while Nepal reached this 75% 

coverage level only in 2012/2013. For Pakistan, no data are available for drug coverage of 

school-aged children from 2010 onwards. Information is lacking on infection risk of soil-

transmitted helminthes and coverage of preventive chemotherapy in the Maldives. 
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High-resolution, model-based risk maps depicting the geographic distribution of soil-

transmitted helminthiasis can assist disease control programs by helping governments and 

policy makers deliver and monitor preventive chemotherapy and other interventions. Large-

scale risk estimates of soil-transmitted helminth infections have been generated for China, 

Latin America, and sub-Saharan Africa (Chammartin et al. 2013c;Karagiannis-Voules et al. 

2015a;Lai et al. 2013). However, risk maps for soil-transmitted helminthiasis are currently 

lacking for South Asia. Bayesian geostatistical modeling is a powerful approach to produce 

risk maps for NTDs, by relating disease survey data to potential risk factors, thus predicting 

infection risk in areas without observed data (Clements et al. 2010a;Lai et al. 2015;Pullan et 

al. 2011). 

In this paper we present the first comprehensive risk estimates of soil-transmitted 

helminthiasis in four countries of mainland South Asia (i.e., Bangladesh, India, Nepal, and 

Pakistan). Despite considerable efforts, we only obtained very little information on geo-

referenced soil-transmitted helminth infection survey data in Afghanistan and Bhutan, and 

hence, these countries were not included in our Bayesian geostatistical modeling (Allen et al. 

2004;Lobo et al. 2011). 

 

3.2 Methods 

3.2.1 Ethics statement 

The work presented here is facilitated by soil-transmitted helminthiasis survey data 

primarily derived from the peer-reviewed literature. All data in our study were aggregated at 

the unit of villages, towns, or districts, and do not contain information that is identifiable at 

individual or household level. Hence, there were no specific ethics issues that warranted 

attention. 

3.2.2 Soil-transmitted helminth infection data 

A systematic review was undertaken following the PRISMA guidelines (Moher et al. 

2009). We searched PubMed and ISI Web of Science from inception to January 15, 2016 for 

relevant publications that reported data of infection prevalence with any of the three common 

soil-transmitted helminths in Bangladesh, India, Nepal, and Pakistan. The following search 

terms were utilized: helminth* (OR ascari*, OR trichur*, OR hookworm*, OR necator, OR 

ankylostom*, OR ancylostom*, OR geohelminth*, OR nematode*) AND South Asia (OR 

Bangladesh, OR India, OR Nepal, OR Pakistan). The grey literatures (e.g., reports from the 

Ministry of Health or research groups, PhD thesis, or unpublished research through personal 

communication) were also considered. As we tried to identify all potentially relevant studies, 

we set no restriction for language of publication, date of survey, or study design in our search 

strategy. Further criteria were applied to exclude the ones that were not fit for our analysis. 
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With regard to inclusion, exclusion, and extraction of survey data, we followed the 

protocol put forth by Chammartin and colleagues (Chammartin et al. 2013c). In brief, we 

excluded case report, in-vitro studies, non-human studies, and surveys that did not report soil-

transmitted helminth infection prevalence data. We also excluded case-control studies, 

clinical trials, or drug efficacy or intervention studies (except for baseline data or control 

groups), or locations with preventive chemotherapy occurred within one year (if such 

information was mentioned in the corresponding literatures), or studies done in specific 

groups that might not be representative (e.g., travelers, military personnel, expatriates, 

nomads, or displaced or migrating population). 

Data were georeferenced and entered into the open-access Global Neglected Tropical 

Diseases (GNTD) database (Hürlimann et al. 2011). Our final analysis included data derived 

from surveys conducted from 1950 onwards, either school- or community-based, aggregated 

at village or town level, or on administrative divisions of level two or three (district level). 

3.2.3 Climatic, demographic, environmental, and socioeconomic data 

Climatic, demographic, and environmental data were obtained from readily accessible data 

sources, as shown in Table 3.1. Land surface temperature (LST) and normalized difference 

vegetation index (NDVI) were averaged over the period of 2000-2015, while land cover was 

summarized by the most frequent category over the period of 2001-2012. According to 

similar classes, land cover data were further re-grouped into seven categories: (i) grasslands; 

(ii) forests; (iii) scrublands and savannas; (iv) croplands; (v) urban; (vi) wet areas; and (vii) 

barren areas. 

Socioeconomic data such as human influence index (HII), urban extents, and infant 

mortality rates (IMR) were downloaded from the Socioeconomic Data and Applications 

Center (Table 3.1). Geo-referenced water, sanitation, and hygiene (WASH) data for 

Bangladesh, Nepal, and Pakistan were extracted from the most recent Demographic and 

Health Surveys (DHS). For India, WASH information were obtained from the Census of India 

2011, which were aggregated at administrative division of level three, stratified by rural and 

urban areas. The following indicators were extracted: proportion of households practicing 

open defecation, proportion of households with improved sanitation, and proportion of 

households with improved drinking water sources. An overview of WASH sources and data 

summaries of the relevant indicators are given in Table 3.2. 

Visual Fortran version 6.0 (Digital Equipment Corporation; Maynard, United States of 

America) was employed to extract the environmental and socioeconomic data at survey 

locations. We linked the survey locations with missing data to the values at the nearest pixels. 

Surveys aggregated over districts were linked with the average values of the covariates within 

the districts and georeferenced using the corresponding centroids. 
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Table 3.1: Remote sensing data sources
a
. 

Source Data type Data period 
Temporal 

resolution 

Spatial 

resolution 

MODIS/Terra
b
 LST

k
 2000-2015 8 days 1 km 

MODIS/Terra
b
 NDVI

l
 2000-2015 16 days 1 km 

MODIS/Terra
b
 Land cover 2001-2012 Yearly 500 m 

WorldClim
c
 Elevation 2000 - 1 km 

WorldClim
c
 Bioclimatic variables 1950-2000 - 1 km 

SWBD
d
 Water bodies 2000 - 30 m 

Köppen-Geiger
e
 Climate zones 1976-2000 - 50 km 

ISRIC
f
 pH in water - - 10 km 

Atlas of the 

Biosphere
g
 

Soil moisture 1950-1999 - 50 km 

WorldPop
h
 Grid population 2015 - 1 km 

SEDAC
i
 HII

m
 1995-2004 - 1 km 

SEDAC
i
 Urban extents 1990-2000 - 1 km 

SEDAC
i
 IMR

n
 2000 - 4 km 

GADM
j
 

Geographic 

administrative 

boundaries 

2012 - - 

a
Data accessed on 01 January 2016. 

b
Moderate Resolution Imaging Spectroradiometer (MODIS)/Terra , available at: http://modis.gsfc.nasa.gov/. 

c
Available at: http://www.worldclim.org/current. 

d
Shuttle Radar Topography Mission Water Body Data (SWBD), available at: 

 

http://gis.ess.washington.edu/data/vector/worldshore/index.html. 
e
World Maps of Köppen-Geiger climate classification, available at: http://koeppen-geiger.vu-

wien.ac.at/shifts.htm. 
f
International Soil Reference and Information Center, available at: http://www.isric.org/data/isric-wise-derived-

soil-properties-5-5-arc-minutes-global-grid-version-12. 
g
Available at: http://www.sage.wisc.edu/atlas/maps.php?datasetid=23&includerelatedlinks=1&dataset=23. 

h
The WorldPop project, available at: http://www.worldpop.org.uk/. 

i
Socioeconomic data and applications center, available at: http://sedac.ciesin.org/. 

j
Global Administrative Areas database, available at: http://www.gadm.org/. 

k
Land surface temperature (LST) day and night. 

l
Normalized difference vegetation

 
index. 

m
Human influence index. 

n
Infant Mortality Rates. 

3.2.4 Statistical analysis 

Survey years were grouped into three periods (before 1980, 1980 to 1999, and from 2000 

onwards) to study temporal trends. Continuous variables were standardized to mean zero and 

standard deviation (SD) one. Based on exploratory analysis, we converted continuous 

variables into categorical variables based on plotting of disease prevalence with each 

continuous variable to capture the non-linear relations. Pearson’s correlation was used to 

check for continuous variables with a high correlation coefficient (>0.8) to avoid colinearity. 

Bayesian variable selection was applied to identify the best set of predictors using a 

stochastic search approach (Scheipl et al. 2012). For each continuous covariate, a binary 

indicator was included in the model to indicate the exclusion/inclusion probability of the 

corresponding covariate. The priors for the coefficients of the covariates were constructed by  

http://www.worldclim.org/current
http://gis.ess.washington.edu/data/vector/worldshore/index.html
http://koeppen-geiger.vu-wien.ac.at/shifts.htm
http://koeppen-geiger.vu-wien.ac.at/shifts.htm
http://www.isric.org/data/isric-wise-derived-soil-properties-5-5-arc-minutes-global-grid-version-11.
http://www.isric.org/data/isric-wise-derived-soil-properties-5-5-arc-minutes-global-grid-version-11.
http://sedac.ciesin.org/
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Table 3.2: Overview of WASH sources and data summaries of the relevant indicators by 

country. 

Country Bangladesh India Nepal Pakistan 

Sources DHS
a
 

Census of 

India
b
 

DHS
a
 DHS

a
 

Data periord 1999-2011 2011 
2001-

2011 
2006 

Number of locations 1661 2172 800 957 

Type of locations Point 

Aggregated at 

administrative 

division of 

level three 

Point Point 

Mean 

proportion 

(%) 

Urban 

Sanitation
c
 56.82 69.67 43.17 75.50 

Water
d
 99.44 76.70 92.86 95.10 

Defecation
e
 2.26 25.24 19.91 4.74 

Rural 

Sanitation
c
 40.34 31.30 24.06 34.91 

Water
d
 97.77 63.75 80.40 86.25 

Defecation
e
 11.69 63.42 58.34 42.70 

a
Demographic and Health Surveys (DHS), available at: http://dhsprogram.com/. 

b
Census of India 2011, available at: http://censusindia.gov.in/.  

c
Proportion of households with improved sanitation. 

d
Proportion of households with improved drinking water sources. 

e
Proportion of households practicing open defecation. 

 

a narrow spike (i.e., a normal distribution with variance close to zero to shrink the coefficient 

to zero) and a wide slab (i.e., a normal distribution that supports a non-zero coefficient). 

Inverse gamma prior distributions were employed for the variance parameters. We selected 

the covariates with inclusion probabilities (mean posterior distribution of indicators) greater 

than 0.5 for the final geostatistical analysis. Moreover, an adapted version of the above priors 

was used for categorical variables to include or exclude all categories of the variables 

simultaneously (Chammartin et al. 2013b). An additional indicator was introduced for each 

continuous variable to select either its linear or non-linear form, as details are provided 

elsewhere (Lai et al. 2013). The following 23 variables were considered for Bayesian variable 

selection: mean diurnal range, isothermality, temperature annual range, annual precipitation, 

precipitation of driest month, precipitation seasonality, precipitation of warmest quarter, 

precipitation of coldest quarter, elevation, HII, IMR, LST in the daytime, soil moisture, soil 

pH, NDVI, distance to the nearest freshwater bodies, proportion households with improved 

sanitation, proportion of households with improved water sources, proportion of households 

practicing open defecation, survey type (school- or community-based), urban extents, land 

cover, and climatic zones. 

For each soil-transmitted helminth species, Bayesian geostatistical logistic regression 

models with spatial structure random effects were developed to obtain the spatially explicit 

estimates of infection risk (Chammartin et al. 2013a). Similar models were fitted on WASH 

indicators for Bangladesh, Nepal, and Pakistan using urban/rural as a covariate, as survey 

http://censusindia.gov.in/
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locations of these data were not aligned in space with infection prevalence data. Geostatistical 

model predictions estimated the WASH indicators at the disease survey locations. Markov 

chain Monte Carlo (MCMC) simulation was applied to estimate the model parameters in 

Winbugs version 1.4 (Imperial College London and Medical Research Council; London, 

United Kingdom) (Lunn et al. 2009). Two chains were run and convergence was assessed by 

the Brooks-Gelman-Rubin diagnostic (Brooks & Gelman 1998). 

The model was fitted on a random subset of 80% of the survey locations, and it was 

validated on the remaining 20% by calculations of the mean predictive error and the 

percentages of observations included in Bayesian credible intervals (BCI) of various 

probability coverages of the predictive distributions (Lai et al. 2015). A 5 × 5 km grid was 

overlaid to the study region, resulting in 222,555 pixels. Prediction of infection risk for each 

soil-transmitted helminth species was done at the centroids of the grid’s pixels using Bayesian 

kriging (Diggle et al. 1998). We assumed independence of either species of soil-transmitted 

helminth and estimated the prevalence of infected by any species using the formula 𝑝𝑆 =

𝑝𝐴 + 𝑝𝑇 + 𝑝ℎ − 𝑝𝐴 × 𝑝𝑇 − 𝑝𝐴 × 𝑝ℎ − 𝑝𝑇 × 𝑝ℎ + 𝑝𝐴 × 𝑝𝑇 × 𝑝ℎ  where 𝑝𝑆 , 𝑝𝐴 , 𝑝𝑇  and 𝑝ℎ 

indicate the predicted prevalence of any soil-transmitted helminth, A. lumbricoides, 

T. trichiura, and hookworm infections, respectively. Population-adjusted prevalence for each 

country was estimated by overlaying the pixel-based infection risk on gridded population to 

obtain the number of infected individuals at each pixel, which was then summed up within 

country and divided by the country population. The numbers of anthelmintic doses for 

preventive chemotherapy and the numbers of population requiring were estimated at pixel-

level according to WHO control guidelines (WHO 2006) and summarized by country. In 

detail, we calculated the annualized pixel-level numbers of anthelmintic doses for school-aged 

children and for pre-school-aged children as zero at pixels with estimated prevalence <20%, 

as the corresponding population at pixels with estimated prevalence ≥20% and <50%, and as 

the double corresponding population at pixels with estimated prevalence ≥50%. The pixel-

level numbers of school-aged children and pre-schooled-aged children requiring for 

preventive chemotherapy were calculated as zero at pixels with estimated prevalence <20%, 

and as the corresponding population at pixels with estimated prevalence ≥20%. 

3.3 Results 

3.3.1 Data summaries 

We identified 3,394 records by systematically reviewing the peer-reviewed literature and 

an additional 11 records from the grey literature and personal communication. After 

excluding records according to our study protocol, 207 records remained, resulting in 501 

surveys for A. lumbricoides at 430 unique locations, 384 surveys for T. trichiura at 332 

unique locations, and 465 surveys for hookworm at 404 unique locations (Figure 3.1). 

Table 3.3 shows an overview of the soil-transmitted helminth surveys included in the final  
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Figure 3.1: Data selection flow chart. 

 

analysis, stratified by country. Figure 3.2 displays the geographic distribution of locations and 

observed prevalence for each soil-transmitted helminth species. There were only few surveys 

in the southwestern part of Pakistan and the central part of India. 
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Figure 3.2: Survey locations and observed prevalence over the study region for (A) 

A. lumbricoides, (B) T. trichiura and (C) hookworm. 
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Table 3.3: Overview of soil-transmitted helminth surveys. 
Country Bangladesh India Nepal Pakistan Total 

 A. lumbricoides 

Relevant papers 24 128 33 14 199 

Total surveys/locations 131/117 293/255 57/40 20/18 501/430 

Survey type 

(surveys/locations) 

School 8/5 91/83 34/26 10/9 143/123 

Community 123/112 202/172 23/14 10/9 358/307 

Location type 

(surveys/locations) 

Point 107/104 155/134 35/25 9/8 306/271 

District 24/13 138/121 22/15 11/10 195/159 

Period 1957-2012 1963-2013 1995-2015 1976-2012 1957-2015 

Year of Survey 

(surveys/locations) 

<1980 7/5 43/38 0/0 6/6 56/49 

1980-2000 18/9 82/70 12/8 7/7 119/94 

>=2000 106/105 168/155 45/35 7/6 326/301 

Diagnostic 

method (%)a 

KK 2.24 38.17 40.00 0.00 27.46 

Dir 4.48 5.99 26.67 23.08 8.63 

Flot 75.37 18.30 0.00 23.08 31.33 

Concen 8.21 22.40 20.00 23.08 18.44 

NS 9.70 15.14 13.33 30.77 14.14 

Raw prevalence (%) 56.60 16.70 18.60 10.30 19.40 

 T. trichiura 

Relevant papers 21 95 30 9 155 

Total surveys/locations 127/116 193/168 53/38 11/10 384/332 

Survey type 

(surveys/locations) 

School 7/4 88/82 31/24 4/4 130/114 

Community 120/112 105/86 22/14 7/6 254/218 

Location type 

(surveys/locations) 

Point 107/105 102/87 34/25 3/3 246/220 

District 20/11 91/81 19/13 8/7 138/112 

Period 1957-2012 1963-2013 1995-2015 1976-2012 1957-2015 

Year of Survey 

(surveys/locations) 

<1980 7/5 31/26 0/0 2/2 40/33 

1980-2000 14/8 53/42 10/8 4/4 81/62 

>=2000 106/105 109/104 43/33 5/4 263/246 

Diagnostic 

method (%)a 

KK 2.34 43.72 43.64 0.00 28.77 

Dir 3.13 4.65 21.82 33.33 7.34 

Flot 78.91 9.3 0.00 13.33 31.15 

Concen 7.81 25.12 20.00 26.67 18.73 

NS 7.81 17.21 14.55 26.67 14.01 

Raw prevalence (%) 45.40 6.20 16.00 2.60 10.30 

 Hookworm 

Relevant papers 20 104 32 9 165 

Total surveys/locations 128/116 272/238 54/40 11/10 465/404 

Survey type 

(surveys/locations) 

School 7/5 74/66 34/26 4/4 119/101 

Community 121/111 198/172 20/14 7/6 346/303 

Location type 

(surveys/locations) 

Point 107/105 169/147 32/25 2/2 310/279 

District 21/11 103/91 22/15 9/8 155/125 

Period 1957-2012 1962-2013 1995-2015 1978-2012 1957-2015 

Year of Survey 

(surveys/locations) 

<1980 6/5 52/43 0/0 1/1 59/49 

1980-2000 18/9 78/67 10/8 5/5 111/89 

>=2000 104/104 142/133 44/35 5/4 295/276 

Diagnostic 

method (%)a 

KK 1.53 36.70 40.35 0.00 26.57 

Dir 4.58 4.38 24.56 29.41 7.37 

Flot 77.86 21.89 0.00 5.88 34.38 

Concen 7.63 22.90 21.05 23.53 18.50 

NS 8.40 14.14 14.04 41.18 13.19 

Raw prevalence (%) 13.40 17.50 17.10 3.70 16.50 
a
KK: Kato-Katz; Dir: direct smear; Flot: stool flotation; Concen: stool concentration; NS: not stated. 

3.3.2 Variable selection and geostatistical modeling 

The selected variables from Bayesian variable selection are listed in Table 3.4. Maps of 

spatial distributions of the selected variables and the WASH indicators are shown in 

Figures 3.3 and 3.4. In the final geostatistical logistic regression models, the infection risk 
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decreased from 2000 onwards for hookworm, while the infection risk first increased in 1980-

1999 and then decreased from 2000 onwards for A. lumbricoides and T. trichiura (Table 3.4). 

A negative association was identified for the prevalence of A. lumbricoides with LST in the 

daytime, whereas a positive association was found with HII. The model showed a lower 

prevalence of A. lumbricoides in school-aged children compared to that in the community 

population. Negative associations were identified for the T. trichiura infection risk with LST 

in the daytime and precipitation seasonality. A positive association was found for hookworm 

infection risk with proportion of households practicing open defecation, whereas a negative 

association was found with average NDVI.  

  

Figure 3.3: Spatial distributions of the selected variables: (A) normalized differnced 

vegetation index, (B) precipitation seasonality, (C) Land surface temperature in the day time 

and (D) human influence index. 

 

3.3.3 Model Validation 

Model validation indicated that the geostatistical logistic regression models were able to 

correctly estimate (within the 95% BCI) 83.1%, 77.0% and 72.0% of locations for T. trichiura,  

 



3.3 Results  59 

 

  

Figure 3.4: Spatial distribution of the WASH indicators: (A) proportion households with 

improved sanitation, (B) proportion of households with improved water sources and (C) 

proportion of households practicing open defecation. 
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Table 3.4: Posterior summaries (median and 95% Bayesian credible interval) of the 

geostatistical model parameters. 

A. lumbricoides Estimate 

Period (<1980)
a
  

 1980-1999 0.58 (0.46; 0.69)
b
 

 ≥2000 -0.10 (-0.20; 0.01) 

Survey type (school-based)
a
  

 Community-based 0.33 (0.24; 0.43)
b
 

Land surface temperature in the day time (25-30°C)
a
  

 ≤8 -0.04 (-3.09; 2.90) 

 8-20 0.53 (-0.21; 1.21) 

 20-25 -0.05 (-0.70; 0.53) 

 30-35 -0.90 (-1.38; -0.52)
b
 

 >35 -1.14 (-1.73; -0.47)
b
 

Human influence index (≤22)
a
  

 22-32 0.32 (-0.06; 0.79) 

 >32 1.30 (0.65; 2.00)
b
 

Range (km) 115.53 (64.66; 193.98) 

Spatial variance (σ
2
sp) 1.87 (1.30; 2.61) 

Non-spatial variance (σ
2

nonsp) 1.17 (0.81; 1.63) 

T. trichiura Estimate 

Period (<1980)
 a
  

 1980-1999 1.40 (1.25; 1.55)
b
 

 ≥2000 0.37 (0.21; 0.52)
b
 

Precipitation seasonality (bio15, 90-110%)
a
  

 ≤70 -0.46 (-2.15; 0.73) 

 70-90 0.50 (-0.27; 1.32) 

 110-130 -1.31 (-1.90; -0.68)
b
 

 >130 -1.71 (-2.74; -0.59)
b
 

Land surface temperature in the day time (≤26.5°C)
a
  

 26.5-31 -0.09 (-0.72; 0.44) 

 >31 -1.34 (-2.15; -0.62)
b
 

Range (km) 133.87 (57.18; 359.72) 

Spatial variance (σ
2
sp) 2.20 (1.06; 3.48) 

Non-spatial variance (σ
2

nonsp) 1.12 (0.71; 1.88) 

Hookworm Estimate 

Period (<1980)
a
  

 1980-1999 -0.67 (-0.85; -0.48)
b
 

 ≥2000 -0.60 (-0.78; -0.40)
b
 

Normalized differenced vegetation index (≤0.40)
a
  

 0.40-0.53 -0.53 (-0.93; -0.04)
b
 

 >0.53 0.21 (-0.03; 0.65) 

Open defecation (≤15%)
a
  

 15-60 0.42 (0.01; 0.71)
b
 

 >60 0.14 (-0.28; 0.69) 

Range (km) 196.97 (104.62; 326.47) 

Spatial variance (σ
2
sp) 2.35 (1.52; 3.53) 

Non-spatial variance (σ
2

nonsp) 1.00 (0.56; 1.33) 
a
In brackets, baseline values are reported;

 b
important effect based on 95% Bayesian credible interval (BCI). 

 

 

A. lumbricoides and hookworm, respectively. The mean errors for T. trichiura, 

A. lumbricoides and hookworm were 3.9%, 4.7%, and 5.0% respectively, suggesting our 

models may under-estimate the infection risk of the three species.  
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3.3.4 Predictive risk maps 

Figures 3.5A-C and Figures 3.5D-F present the species-specific predictive risk maps and the 

corresponding prediction uncertainty, respectively. A predictive infection risk map of any 

soil-transmitted helminth species and the associated prediction error are shown in 

Figures 3.6A and 3.6B. Moderate to high prevalence (>20%) of A. lumbricoides was mainly 

predicted in eastern areas of Bangladesh and some northern areas of Pakistan and India. Low 

prevalence (<5%) was predicted in areas of southern Pakistan and central India. Most of the 

study region had low prevalence (<5%) of T. trichiura infection, while the eastern areas of 

Bangladesh are characterized by moderate to high prevalence (>20%). Moderate to high 

hookworm prevalence (>20%) was predicted in some areas of southern and northern India. 

3.3.5 Estimates of population-adjusted prevalence and number of people infected 

Table 3.5 summarizes the population-adjusted predicted prevalence and estimated number of 

individuals infected with soil-transmitted helminths, stratified by country. Figure 3.6C shows 

the estimated number of individuals infected with any soil-transmitted helminth in South Asia. 

In the whole study region, the overall population-adjusted predicted prevalence of 

A. lumbricoides, T. trichiura, and hookworm were 15.0% (95% BCI: 12.8-17.4%), 4.9% (4.1-

6.1%), and 8.8% (7.2-10.4%), respectively, corresponding to 245 million (95% BCI: 210-285 

million), 81 million (67-100 million), and 145 million (117-171 million) infected individuals. 

The overall population-adjusted predicted prevalence of infected with any soil-transmitted 

helminth species was 24.2% (22.3-26.6%), which is equivalent to 397 million (365-436 

million) infected individuals. The annual treatment needs for school-aged children requiring 

preventive chemotherapy with albendazole or mebendazole was estimated at 187 million 

(167-211 million) doses. 

Bangladesh showed the highest population-adjusted predicted prevalence of 

A. lumbricoides (23.2%; 19.8-27.2%), T. trichiura (19.1%; 15.9-22.9%), and any soil-

transmitted helminth species (39.4%; 35.9-43.4%). Nepal had the highest predicted 

prevalence of hookworm infection (12.4%; 9.2-16.2%) and the second highest of any soil-

transmitted helminth infection in the region. India had the largest numbers of individuals 

estimated to be infected with A. lumbricoides (176 million; 148-211 million), T. trichiura (40 

million; 31-53 million), hookworm (114 million; 91-136 million), and any soil-transmitted 

helminth (285 million; 257-319 million). 

3.4 Discussion 

We pursued a systematic review to collect available georeferenced data pertaining to 

prevalence of soil-transmitted helminth infections in South Asia, used Bayesian variable 

selection to identified important predictors, and developed Bayesian geostatistical logistic 

regression models for spatially explicit estimates of infection risk. To our knowledge, we 

present the first model-based, high-resolution infection risk estimates of the three soil- 
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Figure 3.5: Species-specific model-based predictive risk maps from 2000 onwards. Predictive 

prevalence based on the median of the posterior predictive distribution of infection risk for 

(A) A. lumbricoides, (B) T. trichiura and (C) hookworm. Prediction uncertainty based on the 

standard deviation of the posterior predictive distribution of infection risk for (D) 

A. lumbricoides, (E) T. trichiura and (F) hookworm. 
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Figure 3.6: Model-based predictive risk map of any soil-transmitted helminth species from 

2000 onwards. (A) Predictive prevalence based on the median of the posterior predictive 

distribution of infection risk. (B) Prediction uncertainty based on the standard deviation of the 

posterior predictive distribution of infection risk. (C) Number of infected based on the 

predictive prevalence and gridded population of 2015. 
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Table 3.5: Population-adjusted predicted prevalence (%) and number of individuals (×10
6
) 

infected by soil-transmitted helminths by country
a
. 

Countries Bangladesh India Nepal Pakistan Total 

Population 157.35 1258.49 32.67 188.82 1637.33 

Population of school-aged children 31.35 243.54 7.46 41.45 323.8 

Population of pre-school-aged children 11.99 95.00 2.57 19.72 129.28 

A. lumbricoides Prevalence 
23.22 (19.75; 

27.19) 

13.98 

(11.79; 

16.73) 

17.34 

(13.41; 

21.88) 

13.75 

(10.68; 

17.28) 

14.97 (12.84; 

17.42) 

No. of entire 

population 

infected 

36.53 (31.08; 

42.78) 

175.92 

(148.34; 

210.59) 

5.67 (4.38; 

7.15) 

25.97 

(20.16; 

32.64) 

245.19 

(210.21; 

285.25) 

No. of school-

aged children 

infected 

5.94 (4.95; 

7.12) 

27.01 

(22.59; 

32.84) 

1.02 (0.79; 

1.34) 

4.49 (3.39; 

5.86) 

38.49 (32.90; 

45.9) 

T. trichiura Prevalence 19.06 (15.89; 

22.91) 

3.20 (2.47; 

4.23) 

7.50 (5.40; 

10.64) 

4.14 (2.58; 

5.90) 

4.94 (4.09; 

6.09) 

No. of entire 

population 

infected 

29.99 (25.00; 

36.04) 

40.29 

(31.04; 

53.23) 

2.45 (1.76; 

3.48) 

7.82 (4.87; 

11.14) 

80.86 (66.91; 

99.65) 

No. of school-

aged children 

infected 

5.97 (4.98; 

7.18) 

7.80 (6.01; 

10.30) 

0.56 (0.40; 

0.79) 

1.72 (1.07; 

2.45) 

16.10 (13.33; 

19.84) 

Hookworm Prevalence 
9.48 (7.22; 

12.03) 

9.06 (7.20; 

10.83) 

12.38 

(9.15; 

16.22) 

6.03 (4.01; 

9.07) 

8.84 (7.17; 

10.44) 

No. of entire 

population 

infected 

14.92 (11.37; 

18.92) 

113.97 

(90.66; 

136.32) 

4.04 (2.99; 

5.30) 

11.38 

(7.57; 

17.13) 

144.68 

(117.45; 

170.96) 

No. of school-

aged children 

infected 

2.97 (2.26; 

3.77) 

22.06 

(17.55; 

26.38) 

0.92 (0.68; 

1.21) 

2.50 (1.66; 

3.76) 

28.50 (23.19; 

33.71) 

Any soil-transmitted 

helminth 

Prevalence 
39.39 (35.88; 

43.38) 

22.66 

(20.43; 

25.34) 

30.83 

(26.62; 

35.10) 

21.22 

(18.40; 

24.78) 

24.23 (22.29; 

26.63) 

No. of entire 

population 

infected 

61.98 (56.46; 

68.26) 

285.15 

(257.05; 

318.94) 

10.07 

(8.70; 

11.47) 

40.07 

(34.75; 

46.78) 

396.73 

(364.88; 

436.02) 

No. of school-

aged children 

infected 

11.48 (10.41; 

12.71) 

49.32 

(44.29; 

55.65) 

2.10 (1.81; 

2.42) 

7.71 (6.63; 

9.12) 

70.52 (64.96; 

77.76) 

School-aged children 

requiring preventive 

chemotherapy (×10
6
) 

Model-based 

estimate 
21.63 (19.89; 

23.4) 

100.23 

(88.3; 

113.04) 

4.41 (3.86; 

4.92) 

16.18 

(13.53; 

19.27) 

142.46 

(129.69; 

156.36) 

WHO estimate
b
 31.71 157.27 7.53 21.32 217.83 

Pre-school-aged 

children requiring 

preventive 

chemotherapy (×10
6
) 

Model-based 

estimate 
8.27 (7.61; 

8.95) 

39.1 (34.44; 

44.09) 

1.52 (1.33; 

1.70) 

7.7 (6.43; 

9.17) 

56.6 (51.52; 

62.09) 

WHO estimate
b
 

14.90 63.12 2.88 9.12 90.02 

Number of anthelmintic doses for school-

aged children (×10
6
) 

31.95 (28.74; 

35.39) 

129.65 

(112.27; 

149.63) 

5.88 (4.89; 

6.76) 

20.08 

(16.24; 

24.69) 

187.29 

(167.23; 

210.56) 

Number of anthelmintic doses for pre-

school-aged children (×10
6
) 

12.22 (10.99; 

13.53) 

50.58 

(43.79; 

58.37) 

2.03 (1.69; 

2.33) 

9.55 (7.72; 

11.74) 

74.26 (66.38; 

83.39) 

a
Estimates are based on Gridded population of 2015; calculations are using on the median and 95% 

BIC of the posterior predictive distribution of the infection risk from 2000 onwards; 
b
Obtained from 

WHO, PCT databank (http://www.who.int/neglected_diseases/preventive_chemotherapy/sth/en/) for 

the year 2014 (WHO 2016). 
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transmitted helminth species as well as a risk map of any soil-transmitted helminth infection 

in South Asia. The latter map is particularly important in terms of disease control as 

preventive chemotherapy with albendazole or mebendazole is based on the overall prevalence 

of any soil-transmitted helminth, usually estimated for school-aged population (Keiser & 

Utzinger 2008;WHO 2002a). 

Our estimates suggest that in 2015, approximately 15.0% (95% BCI: 12.8-17.4%), 4.9% 

(4.1-6.1%), and 8.8% (7.2-10.4%) of the population in South Asia are infected with 

A. lumbricoides, T. trichiura, and hookworm infection, respectively, corresponding to 245 

million (210-285 million), 81 million (67-100 million), and 145 million (117-171 million) 

people for the three species, respectively. We estimated lower numbers of infection for 

A. lumbricoides and T. trichuris while similar number of infection for hookworm, compared 

to the previous estimates in 2010 by Pullan and colleagues (Pullan et al. 2014). Of note, the 

later estimates were obtained by direct empirical approaches based on aggregated prevalence 

data at administrative level two or higher (Pullan et al. 2014), while our estimates are based 

on a rigorous Bayesian geostatistical model. We estimate that the number of school-aged 

children requiring preventive chemotherapy is 142 million (130-156 million) doses, which is 

lower than the 218 million doses estimated by WHO in 2014 (WHO 2016). 

Our final models had reasonable predictive ability, as revealed by model suggesting that 

they were able to correctly predict 83.1%, 77.0%, and 72.0% of locations for T. trichiura, 

A. lumbricoides, and hookworm, respectively. However, as mean errors for all three species 

were larger than zero, our models may under-estimate the true prevalence of each species. We 

estimated a prevalence of any soil-transmitted helminth infection by assuming independence 

of the three species, which might over-estimate the reported prevalence as some researchers 

suggested a positive association between A. lumbricoides and T. trichiura (Booth & Bundy 

1992;Tchuem Tchuenté et al. 2003a). However, it is difficult to adjust the calculation by 

adding a correction factor due to lack of co-infection data in South Asia (de Silva & Hall 

2010). Our compiled survey data must be treated with caution, as sampling efforts and 

diagnostic approaches were not uniform. For example, more than 25% of the survey 

employed the widely-used Kato-Katz technique, while almost 15% had missing diagnostic 

information. As it was difficult to assess the quality of the diagnostic approach in a given 

survey and the number of surveys with detailed diagnostic information was rather low, we 

analyzed the data regardless of the diagnostic method and assumed common sensitivity and 

specificity across all surveys, which obviously might bias predictions (Booth et al. 

2003;Nikolay et al. 2014). 

We identified several climatic and environmental factors that were associated with soil-

transmitted helminth infection, such as LST in the day time, precipitation seasonality, and 

NDVI. This finding is consistent with other reports emphasizing that environmental 

conditions play an important role in transmission (Appleton & Gouws 1996;Brooker et al. 

2003;Tchuem Tchuenté 2011). A similar relationship was found between LST in the daytime 
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and T. trichiura infection risk in China (Lai et al. 2013). Socioeconomic factors impact the 

transmission of soil-transmitted helminths, mainly via influencing the behavior of people 

(Brooker et al. 2006). We found that HII was positively related to the infection risk of 

A. lumbricoides, indicating that direct human influence on ecosystems may have an effect on 

helminth transmission. Improvements of WASH are considered as interventions for 

sustainable control of soil-transmitted helminthiasis (Campbell et al. 2014). A systematic 

review and meta-analysis compiling results from individual-level studies showed a significant 

relation between WASH and soil-transmitted helminth infection risk (Strunz et al. 2014). Our 

results show that higher proportion of households practicing open defecation had a positive 

effect on hookworm infection risk, which is consistent with previous results (Freeman et al. 

2015). However, the Bayesian variable selection did not identify important WASH indicators 

for either A. lumbricoides and T. trichiura. The effect of WASH can differ between genders, 

or sub-groups with exposure-related behavior patterns, thus our data that aggregated within 

villages or areas may be difficult to detect those variations (Freeman et al. 2013;Karagiannis-

Voules et al. 2015b;Lai et al. 2015). In addition, a slight bias in prediction of the WASH 

indicators might exist, as each country implemented their own survey with different 

methodologies and in different years. 

We included all publicly available point-specific survey data pertaining to soil-transmitted 

helminth infections in South Asia, as obtained through a systematic review of PubMed and 

ISI Web of Science. However, a considerable large amount of data which could not be 

accessed; indeed, approximately 40% of our survey data were aggregated at district level, and 

were not available at survey locations even after contacting the authors. To avoid data scarcity, 

we treated the data as point-specific data by setting the centroids of districts at the survey 

locations. This approach may lead to bias in the estimates of spatial parameters because we 

ignored within-district variation. We encourage researchers to share data disaggregated at the 

survey locations, to support secondary analyses for estimates of disease burden at high 

geographic resolution. Our study identified the areas with sparse data and thus it can help in 

the planning of future surveys. Furthermore, national surveys after large-scale deworming are 

important for monitoring and assessing control interventions and for avoiding overtreatment 

of population if the treatment estimates are relied on historic data. On the other hand, even 

though we excluded data from intervention studies or locations with preventive chemotherapy 

occurred within one year, if such information was mentioned in the corresponding literatures, 

we cannot obtain detailed geographic information of large preventive chemotherapy 

programmes in the whole study region. In addition, it is noted that India has implemented 

mass drug administration for lymphatic filariasis with almost 100% geographical coverage, 

and Bangladesh and Nepal are also with high rates of coverage (Lobo et al. 2011). Therefore 

we assumed that the effect of preventive chemotherapy for lymphatic filariasis is similar for 

the study region. 
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We estimated low-to-moderate (<50%) prevalence of hookworm infection in the 

northeastern part of Maharashtra State in India. Pullan and Brooker (Pullan & Brooker 2012) 

put forth very low risk of hookworm in these areas (prevalence <0.1%), however, their 

estimates are not supported by observed survey data in several villages of Nagpur district, 

which show prevalence of hookworm higher than 15% (Kulkarni et al. 1978). On the other 

hand, our models might over-estimate the risk of soil-transmitted helminth infection in the 

very high mountainous areas of the northern part of the study region, where the prediction 

uncertainty was high. Due to lack of survey data in these areas, further surveys are needed in 

order to have more precise estimates. Never the less, the predictions of the northern very high 

mountainous areas do not influence much the population-adjusted predicted prevalence as the 

population density and the estimated number of infected people in those areas are quite low 

(Figure 3.5C). As few survey data were available in the southwestern part of Pakistan, risk 

estimates in this region should be interpreted cautiously. 

Our results reveal that any soil-transmitted helminth infection prevalence was higher than 

20% in all the four countries subjected to detailed Bayesian-based geostatistical risk profiling, 

thus more efforts are needed to focus on control and intervention activities inside these 

countries. Furthermore, with the exception of Bangladesh, more effective strategies should be 

tailored for A. lumbricoides and hookworm infections compared to T. trichiura infection, the 

predicted prevalence of which was low (<5%) in most areas of the study region. We found 

that the infection risk in community population was higher than that of school-aged children 

for A. lumbricoides, and negligible difference between school-aged population and the entire 

community in the other two species. These findings support suggestions of other researchers 

that control strategies focusing on school-based deworming needs to be reassessed and extend 

treatments to other populations (e.g., preschool-aged children, women of childbearing age, 

and high occupational exposure adults) or to the whole community should be considered 

(Anderson et al. 2013;Karagiannis-Voules et al. 2015a;Lo et al. 2015). 

We do not provide estimates for Afghanistan, Bhutan, and the island countries of 

Maldives and Sri Lanka. In fact, only very sparse georeferenced data were revealed by our 

system review for Afghanistan, Bhutan, and Maldives, and thus, it is difficult to infer reliable 

estimates. Even though surveys on soil-transmitted helminthiasis were carried out in Bhutan 

in 1985, 1986, 1989, and 2003, data with precise survey locations were not available (Allen et 

al. 2004). To our knowledge, Bhutan has had a school deworming program in place since 

19888, but detailed reports on school deworming are not available (Allen et al. 2004). The 

survey conducted in 2003 observed an overall prevalence of 16.5% for soil-transmitted 

helminth infection in five schools of the Western region, which suggested a continuation of 

deworming in the country (Allen et al. 2004). On the other hand, we did not include Sri Lanka 

for further analysis because data disaggregated at village/school level were not publicly 

available after 2000. Sri Lanka launched a major 10-year deworming program between 1994 

and 2005 and it is considered as a country where preventive chemotherapy on soil-transmitted 
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helminth infections is not necessary any longer according to the observed low prevalence 

from a national survey conducted in 2003 (Pathmeswaran et al. 2005). However, a school-

based cross-sectional survey conducted in 2009 reported that the prevalence bounced back 

after cessation of preventive chemotherapy to above 20% in four districts of plantation sector 

(Kandy, Kegalle, Nuwara Eliya and Ratnapuram), suggesting that effective sustainable 

control activities should be undertaken in the this sector in order to maintain a low prevalence 

(Gunawardena et al. 2011). 

In conclusion, we present the first model-based, high-resolution risk estimates of soil-

transmitted helminth infections in four countries of South Asia, using data obtained from a 

systematic review and applying Bayesian geostatistical modeling for prediction based on 

environmental and socioeconomic predictors. The risk maps provide an overview of the 

geographic distribution of the diseases and highlight the need for up-to-date surveys to 

accurately evaluate the disease burden in the region. 
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Abstract 

Background: Clonorchiasis, one of the most important food-borne trematodiasis, affects 

millions of people in the People’s Republic of China (P.R. China). Spatially explicit risk 

estimates of Clonorchis sinensis infection are needed in order to target control interventions. 

Methods: Georeferenced survey data pertaining to infection prevalence of C. sinensis in P.R. 

China from 2000 onwards were obtained via a systematic review. Additional data were 

provided by the National Institute of Parasitic Diseases, Chinese Center for Diseases Control 

and Prevention. Bayesian geostatistical models were applied to quantify the relation between 

infection risk and important predictors, and to predict the risk of infection across P.R. China 

at high spatial resolution. 

Principal Findings: We observed that the risk of C. sinensis infection increased over time, 

particularly from 2005 onwards. We estimate that around 14.8 million (95% Bayesian 

credible interval 13.8-15.8 million) people in P.R. China were infected with C. sinensis in 

2010. Highly endemic areas (≥ 20%) were concentrated in southern and northeastern parts of 

the country. The provinces with the highest risk of infection and the largest number of 

infected people were Guangdong, Guangxi and Heilongjiang. 

Conclusions/Significance: Our results provide spatially relevant information for guiding 

clonorchiasis control intervention in P.R. China. The trend toward higher risk of C. sinensis 

infection in the recent past urges the Chinese government to pay more attention on the public 

health importance of clonorchiasis and to target interventions to high-risk areas. 
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4.1 Introduction 

Clonorchiasis is an important food-borne trematodiasis in Asia, caused by chronic 

infection with Clonochis sinensis (Lun et al. 2005;Qian et al. 2016). Symptoms of 

clonochiasis are related to worm burden; ranging from no or mild non-specific symptoms to 

liver and biliary disorders (Kim et al. 2011;Rim 1986). C. sinensis is classified as a 

carcinogen (Bouvard et al. 2009), as infection increases the risk of cholangiocarcinoma (Qian 

et al. 2012). Conservative estimates suggest that around 15 million people were infected with 

C. sinensis in 2004, over 85% of whom were concentrated in the People’s Republic of China 

(P.R. China) (Coordinating Office of the National Survey on the Important Human Parasitic 

Diseases 2005;Fang et al. 2008;Qian et al. 2012). It has also been estimated that, in 2005, 

clonorchiasis caused a disease burden of 275,000 disability-adjusted life years (DALYs), 

though light and moderate infections were excluded from the calculation (Fürst et al. 2012). 

Therefore, two national surveys have been conducted for clonorchiasis in P.R. China; the 

first national survey done in 1988-1992 and the second national survey in 2001-2004. Of note, 

the two surveys used an insensitive diagnostic approach with only one stool sample subjected 

to a single Kato-Katz thick smear. The first survey covered 30 provinces/autonomous 

regions/municipalities (P/A/M) with around 1.5 million people screened and found an overall 

prevalence of 0.37% (Yu et al. 1994). Data from the second survey, which took place in 31 

P/A/M and screened around 350,000 people, showed an overall prevalence of 0.58% 

(Coordinating Office of the National Survey on the Important Human Parasitic Diseases 

2005). Another dataset in the second national survey is a survey pertaining to clonorchiasis 

conducted in 27 endemic P/A/M using triplicate Kato-Katz thick smears from single stool 

sample. The overall prevalence was 2.4%, corresponding to 12.5 million infected people 

(Fang et al. 2008). Two main endemic settings were identified namely the provinces of 

Guangdong and Guangxi in the south and the provinces of Heilongjiang and Jilin in the north-

east (Lun et al. 2005;Qian et al. 2012;Qian et al. 2016). In the latter setting, the prevalence 

was especially high in Korean (minority) communities. In general, males showed higher 

infection prevalence than females and the prevalence increases with age (Fang et al. 

2008;Qian et al. 2012). 

The life cycle of C. sinensis involves specific snails as first intermediate hosts, freshwater 

fish or shrimp as the second intermediate host, and humans or other piscivorous mammals as 

definitive hosts, who become infected through consumption of raw or insufficiently cooked 

infected fish (Keiser & Utzinger 2009;Lun et al. 2005;Qian et al. 2016;Sripa et al. 2010). 

Behavioral, environmental, and socioeconomic factors that influence the transmission of 

C. sinensis or the distribution of the intermediate hosts affect the endemicity of clonorchiasis. 

For example, temperature, rainfall, land cover/usage, and climate change that affect the 

activities and survival of intermediate hosts, are considered as potential risk factors (Keiser & 

Utzinger 2005;Petney et al. 2013). Socioeconomic factors and consumption of raw freshwater 

fish are particular important in understanding the epidemiology of clonorchiasis (Phan et al. 
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2011). Consumption of raw fish dishes is a deeply rooted cultural practice in some areas of 

P.R. China, while in other areas it has become popular in recent years, partially explained by 

food that is considered delicious or highly nutritious (Lun et al. 2005;Qian et al. 2013a;Qian 

et al. 2016;Tang et al. 1963b). 

Treatment with praziquantel is one of the most important measures for the management of 

clonorchiasis, focusing on infected individuals or entire at-risk groups through preventive 

chemotherapy (Choi et al. 2010;WHO 2013). Furthermore, information, education, and 

communication (IEC), combined with preventive chemotherapy, is suggested for maintaining 

control sustainability (Oh et al. 2014). Elimination of raw or insufficient cooked fish or 

shrimp is an effective way for prevention of infection, but this strategy is difficult to be 

implemented due to deeply rooted traditions and misconceptions of people (Lun et al. 2005). 

Environmental modification is an additional way of controlling clonorchiasis by removing 

unimproved lavatories built adjacent to fish ponds in endemic areas, thus preventing water 

contamination by feces (Lun et al. 2005;Zhang et al. 2009). 

Maps displaying the risk where a specific disease occurs are useful to guide prevention 

and control interventions. To our knowledge, only a province-level prevalence map of 

C. sinensis infection is available for P.R. China, while high-resolution, model-based risk 

estimates based on up-to-date survey data are currently lacking (Lun et al. 2005). Bayesian 

geostatistical modeling is a rigorous inferential approach to put forth risk maps. The utility of 

this approach has been demonstrated for a host of neglected tropical diseases, such as 

leishmaniasis, lymphatic filariasis, schistosomiasis, soil-transmitted helminthiasis, and 

trachoma (Chammartin et al. 2013c;Clements et al. 2010c;Karagiannis-Voules et al. 

2013;Karagiannis-Voules et al. 2015a;Lai et al. 2013;Lai et al. 2015;Stensgaard et al. 2011b). 

The approach relies on the qualification of the relation between disease risk at observed 

locations and potential risk factors (e.g., environmental and socioeconomic factors), thus 

predicting infection risk in areas without observed data (Lai et al. 2015). Random effects are 

usually introduced to the regression equation to capture the spatial correlation between 

locations via a spatially structured Gaussian process (Lai et al. 2013). 

Here, we compiled available survey data on clonorchiasis in P.R. China, identified 

important climatic, environmental and socioeconomic determinants, and developed Bayesian 

geostatistical models to estimate the risk of C. sinensis infection at high spatial resolution 

throughout the country. 
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4.2 Methods 

4.2.1 Ethics statement 

This work is based on clonorchiasis survey data extracted from the peer-reviewed 

literature and national surveys. All data were aggregated and do not contain any information 

at individual-level or household level. Hence there are no specific ethical issues that 

warranted attention. 

4.2.2 Disease data 

A systematic review was undertaken in PubMed, ISI Web of Science, China National 

Knowledge Internet (CNKI), and Wanfang Data from 2000 until 10 January 2016 to identify 

studies reporting school, village, town, and county-level prevalence data of clonorchiasis in 

P.R. China. The search terms were “clonorchi*” (OR “liver fluke*”) AND “China” for 

Pubmed and ISI Web of Science, and “huazhigaoxichong” (OR “ganxichong”) for CNKI and 

Wanfang. Government reports and other grey literature (e.g., MSc and PhD thesis, working 

reports from research groups) were also considered. There were no restrictions on language or 

study design. The dataset at county-level of clonorchiasis conducted in 27 endemic P/A/M in 

the second national survey were provided by the National Institute of Parasitic Diseases, 

Chinese Center for Diseases Control and Prevention (NIPD, China CDC; Shanghai, P.R. 

China). 

Titles and abstracts of articles were screened to identify potentially relevant publications. 

Full text articles were obtained from seemingly relevant pieces that were screened for 

C. sinensis infection prevalence data. Data were excluded if they stemmed from hospital-

based surveys, case-control studies, clinical trials, drug efficacy studies, or intervention 

studies (except for baseline or control group data). Studies on clearly defined populations 

(e.g., travellers, military personnel, expatriates, nomads, or displaced or migrating 

populations) that are not representative of the general population were also excluded. We 

further excluded data based on direct smear or serum diagnostics due to the known low 

sensitivity or the unability to differentiate between past and active infection, respectively. All 

valuable data were georeferenced and entered into the open-access Global Neglected Tropical 

Diseases (GNTDs) database (Hürlimann et al. 2011). 

4.2.3 Environmental, socioeconomic, and demographic Data 

Environmental, socioeconomic, and demographic data were obtained from different 

accessible remote sensing data sources (Table 4.1). Land cover data were re-grouped to the 

following five categories: (i) forests, (ii) scrublands and grass, (iii) croplands, (iv) urban, and 

(v) wet areas. They were summarized by the most frequent category for each pixel over the 

period 2001-2004. Land surface temperature (LST) and normalized difference vegetation 

index (NDVI) were averaged annually. Climate zone data were grouped to four categories: (i) 

equatorial, (ii) arid, (iii) warm temperate, and (iv) snow with polar. We used human influence 
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index (HII), urban extents, and gross domestic product (GDP) per capita as socioeconomic 

proxies. The latter was obtained from the P.R. China yearbook full-text database at county-

level for the year 2008 and georeferenced for the purpose of our study. Details about data 

processing are provided in Lai et al. (Lai et al. 2013). We georeferenced surveys reporting 

aggregated data at county level by the county centroid and linked them to the average values 

of our covariates within the specific county. 

Table 4.1: Remote sensing data sources
a
. 

Source Data type Data period Temporal 

resolution 

Spatial 

resolution 

MODIS/Terra
b
 LST

j
 2001-2015 8 days 1 km 

MODIS/Terra
b
 NDVI

k
 2001-2015 16 days 1 km 

MODIS/Terra
b
 Land cover 2001-2004 Yearly 1 km 

WorldClim
c
 Elevation 2000 - 1 km 

WorldClim
c
 Precipitation 1950-2000 Monthly 1 km 

SWBD
d
 Water bodies 2000 - 30 m 

Köppen-Geiger
e
 Climate zones 1976-2000 - 50 km 

ISRIC
f
 Soil pH - - 10 km 

Atlas of the 

Biosphere
g
 

Soil-moisture 1950-1999 - 50 km 

SEDAC
h
 Population data 2010 - 5 km 

SEDAC
h
 HII

l
 1995-2004 - 1 km 

SEDAC
h
 Urban extents 1990-2000 - 1 km 

China Yearbook
i
 GDP per capita 2008 - County-level 

a
Land cover data accessed on 01 June 2011 and other data accessed on 01 January 2016. 

b
Moderate Resolution Imaging Spectroradiometer (MODIS)/Terra , available at: https://lpdaac.usgs.gov/ 

c
Available at: http://www.worldclim.org/current. 

d
Shuttle Radar Topography Mission Water Body Data (SWBD), available at: 

http://gis.ess.washington.edu/data/vector/worldshore/index.html. 
e
World maps of Köppen-Geiger climate classification, available at: http://koeppen-geiger.vu-

wien.ac.at/shifts.htm. 
f
International Soil Reference and Information Center, available at: http://www.isric.org/data/isric-wise-derived-

soil-properties-5-5-arc-minutes-global-grid-version-12. 
g
Available at: http://www.sage.wisc.edu/atlas/maps.php?datasetid=23&includerelatedlinks=1&dataset=23. 

h
Socioeconomic data and applications center, available at: http://sedac.ciesin.org/. 

i
China yearbook full-text database, available at: http://acad.cnki.net/Kns55/brief/result.aspx?dbPrefix=CYFD. 

j
Land surface temperature (LST) day and night. 

k
Normalized difference vegetation index. 

l
Human influence index. 

4.2.4 Statistical analysis 

We grouped survey years into two categories (before 2005 and from 2005 onwards). We 

standardized continuous variables to mean zero and standard deviation one (SD=1). We 

calculated Pearson’s correlation between continuous variables and dropped one variable 

http://www.worldclim.org/current
http://gis.ess.washington.edu/data/vector/worldshore/index.html
http://koeppen-geiger.vu-wien.ac.at/shifts.htm
http://koeppen-geiger.vu-wien.ac.at/shifts.htm
http://www.isric.org/data/isric-wise-derived-soil-properties-5-5-arc-minutes-global-grid-version-11.
http://www.isric.org/data/isric-wise-derived-soil-properties-5-5-arc-minutes-global-grid-version-11.
http://www.sage.wisc.edu/atlas/maps.php?datasetid=23&includerelatedlinks=1&dataset=23
http://sedac.ciesin.org/
http://acad.cnki.net/Kns55/brief/result.aspx?dbPrefix=CYFD
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among pairs with correlation coefficient greater than 0.8 to avoid collinearity. Furthermore, 

continuous variables were converted to categorical ones based on their tertiles. 

We carried out Bayesian variable selection to identify the most important predictors using 

spike-and-slab prior distributions for the regression coefficients. Methodological details have 

been described elsewhere (Lai et al. 2013). Through the variable selection, we also identified 

the best functional form (i.e., linear or categories) for continuous variables. 

We developed Bayesian geostatistical logistic regression models with location-specific 

random effects to obtain spatially explicit C. sinensis risk estimates. We assumed that the 

number of positive individuals iY  arises from a binominal distribution ~ ( , )i i iY Bn p n , where 

in  and ip  are the number of individuals examined and the probability of infection at location 

i  ( i =1, 2,…, L ), respectively. We modelled the covariates on the logit scale, that is 

( )

i 0 1
logit(p )  k

k i ik
X  


    , where k  is the regression coefficient of the k

th
 covariate 

( )k

iX . We assumed that location-specific random effects 𝜀 = (𝜀1, … , 𝜀𝐿)𝑇 followed a 

multivariate normal distribution 𝜀~𝑀𝑉𝑁(0, Σ) , with exponential correlation function 

2 exp( )ij sp ijd    , where 𝑑𝑖𝑗  is the Euclidean distance between locations, and   is the 

parameter corresponding to the correlation decay. We estimated the spatial range as the 

minimum distance with spatial correlation less than 0.1 by −log (0.1)/𝜌. We formulated the 

model in a Bayesian framework and applied Markov Chain Monte Carlo (MCMC) simulation 

to estimate the model parameters in Winbugs version 1.4 (Imperial College London and 

Medical Research Council; London, United Kingdom) (Lunn et al. 2009). We assessed the 

convergence using the Brooks-Gelman-Rubin diagnostic (Brooks & Gelman 1998). 

We fitted the model on a random subset of 80% survey locations and used the remaining 

20% for model validation. Mean error and the percentage of observations covered by 95% 

Bayesian credible interval (BCI) of posterior predicted prevalence were calculated to access 

the model performance. Bayesian kriging was employed to predict the C. sinensis infection 

risk at the centroids of pixels from a 5 × 5 km grid over P.R. China (Diggle et al. 1998). 

Population-adjusted prevalence for each province was calculated by summing the pixel-level 

predicted number of infected individuals (estimated by the pixel-level predicted infection risk 

overlaid on gridded population) within each province and dividing by the population of the 

province. 

 

4.3 Results 

4.3.2 Data summaries 

A data selection flow chart for the systematic review is presented in Figure 4.1. We identified 

7,575 records through literature search and obtained one additional report provided by NIPD, 
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China CDC (Shanghai, P.R. China). According to our inclusion and exclusion criteria, we 

obtained 143 records for the final analysis, resulting in 691 surveys for C. sinensis at 633 

unique locations published from 2000 onwards. A summary of our survey data, stratified by 

province, is provided in Table 4.2. The geographic distribution of locations and observed 

C. sinensis prevalence are shown in Figure 4.2. We obtained data from most provinces, except 

Iner Mongolia, Ningxia, Qinghai, and Tibet. We collected more than 50 surveys in 

Guangdong, Guangxi, Hunan, and Jiangsu provinces. Over 45% of surveys were conducted 

from 2005 onwards. Around 90% of surveys used the Kato-Katz technique for diagnosis, 

while 0.14% surveys had no information on the diagnostic technique employed. The overall 

raw prevalence, calculated as the total number of infected divided by the total number of 

people examined from all observed surveys, was 9.7%. 

 

Figure 4.1: Data selection flow chart. 
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Table 4.2: Overview of clonorchiasis survey data in China. 

Province 
Relevant 

papers 
Totala 

Raw 

prevalence 

(%) 

Location typea 

Period 

Year of Surveya Diagnostic method (%)b 

Point County 
2000-

2004 
>2005 KK Digest Conc Sendi 

NS/ 

missing 

Anhui 3 12/12 0.65 1/1 11/11 2001-2014 11/11 1/1 100.00 0.00 0.00 0.00 0.00 

Beijing 1 3/3 0.00 0/0 3/3 2004-2004 3/3 0/0 100.00 0.00 0.00 0.00 0.00 

Chongqing 4 17/17 0.37 6/6 11/11 2002-2009 15/15 2/2 94.12 0.00 0.00 0.00 0.00 

Fujian 5 18/18 0.27 17/17 1/1 2002-2011 16/16 2/2 100 0.00 0.00 0.00 0.00 

Gansu 1 3/3 0.00 0/0 3/3 2004-2004 3/3 0/0 100 0.00 0.00 0.00 0.00 

Guangdong 53 
211/1

86 
14.64 164/145 47/41 2000-2015 46/35 165/151 94.31 0.47 0.00 0.00 0.47 

Guangxi 17 60/57 17.27 37/34 23/23 2000-2014 24/23 36/34 88.33 0.00 0.00 3.33 0.00 

Guizhou 2 4/4 0.04 1/1 3/3 2004-2013 3/3 1/1 100.00 0.00 0.00 0.00 0.00 

Hainan 4 10/10 0.30 7/7 3/3 2002-2004 10/10 0/0 100.00 0.00 0.00 0.00 0.00 

Hebei 1 3/3 0.02 0/0 3/3 2004-2004 3/3 0/0 100.00 0.00 0.00 0.00 0.00 

Heilongjiang 10 34/32 36.24 11/11 23/21 2001-2012 30/29 4/3 67.65 0.00 2.94 29.41 0.00 

Henan 3 21/21 0.10 3/3 18/18 2000-2011 20/20 1/1 100.00 0.00 0.00 0.00 0.00 

Hubei 4 37/37 1.98 3/3 34/34 2000-2004 37/37 0/0 16.22 0.00 83.78 0.00 0.00 

Hunan 8 65/60 22.78 52/47 13/13 2002-2012 25/25 40/35 100.00 0.00 0.00 0.00 0.00 

Jiangsu 14 53/39 0.60 28/25 25/14 2000-2014 26/21 27/18 100.00 0.00 0.00 0.00 0.00 

Jiangxi 3 9/9 0.08 6/6 3/3 2002-2004 9/9 0/0 100.00 0.00 0.00 0.00 0.00 

Jilin 7 25/23 14.75 15/13 10/10 2002-2012 12/11 13/12 100.00 0.00 0.00 0.00 0.00 

Liaoning 3 13/13 0.77 4/4 9/9 2004-2007 9/9 4/4 100.00 0.00 0.00 0.00 0.00 

Iner 

Mongolia 
0 0/0 - 0/0 0/0 - 0/0 0/0 - - - - - 

Ningxia 0 0/0 - 0/0 0/0 - 0/0 0/0 - - - - - 

Qinghai 0 0/0 - 0/0 0/0 - 0/0 0/0 - - - - - 

Shaanxi 1 3/3 0.00 0/0 3/3 2004-2004 3/3 0/0 100.00 0.00 0.00 0.00 0.00 

Shando-ng 10 36/34 0.06 13/13 23/21 2000-2012 22/20 14/14 88.89 0.00 2.78 0.00 0.00 

Shanghai 1 3/3 0.00 0/0 3/3 2004-2004 3/3 0/0 100.00 0.00 0.00 0.00 0.00 

Shanxi 1 3/3 0.00 0/0 3/3 2004-2004 3/3 0/0 100.00 0.00 0.00 0.00 0.00 

Sichuan 4 24/22 0.11 2/2 22/20 2003-2012 18/16 6/6 100.00 0.00 0.00 0.00 0.00 

Tianjin 2 8/5 0.18 0/0 8/5 2004-2004 8/5 0/0 100.00 0.00 0.00 0.00 0.00 

Xinjiang 

Uygur 
1 4/4 0.03 0/0 4/4 2004-2004 4/4 0/0 100.00 0.00 0.00 0.00 0.00 

Tibet 0 0/0 - 0/0 0/0 - 0/0 0/0 - - - - - 

Yunnan 2 9/9 0.00 6/6 3/3 2004-2004 9/9 0/0 100.00 0.00 0.00 0.00 0.00 

Zhejiang 1 3/3 0.00 0/0 3/3 2004-2004 3/3 0/0 100.00 0.00 0.00 0.00 0.00 

Total 143 
691/6

33 
9.69 376/344 315/289 2000-2015 375/363 316/288 90.45 0.14 4.78 1.74 0.14 

a
Presented as surveys/points. 

b
KK: Kato-Katz; Digest: sodium hydroxide (NaOH) digestion, Conc: stool concentration; Sendi: stool 

sendimentation; NS/missing: not stated or missing. 

 

4.3.2 Variable selection, geostatistical modeling, and model validation 

We considered a total of 13 variables (i.e., land cover, urban extents, precipitation, GDP per 

capita, HII, soil moisture, elevation, LST in the daytime, LST at night, NDVI, distance to the 

nearest open water bodies, PH in water, and climate zones) for Bayesian variable selection. 

Elevation, NDVI, distance to the nearest open water bodies, and land cover were selected for 

the final Bayesian geostatistical logistic regression model. 

The parameter estimates arising from the geostatistical model fit are shown in Table 4.3. 

The infection risk of C. sinensis increased from 2005 onwards. Elevation had a negative effect 

on infection risk. People living at distance between 2.5 and 7.0 km from the nearest open 

water bodies had a lower risk compared to those living in close proximity (<2.5 km). The risk 

of C. sinensis infection was lower in areas covered by forest, shrub, and grass compared to 

crop. Furthermore, NDVI was positively correlated with the risk of C. sinensis infection. 
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Table 4.3: Posterior summaries (median and 95% Bayesian credible interval) of the 

geostatistical model parameters for clonorchiasis. 

Variable Estimate  

Year  

 2000-2004 1.00 

 >=2005 0.43 (0.38; 0.48)
a
 

Elevation -1.34 (-1.97; -0.83)
a
 

NDVI 0.61 (0.41; 0.81)
a
 

Distance to the nearest open 

water bodies (km) 

 

 <=2.5 1.00 

 2.5 - 7.0 -0.46 (-0.72; -0.22)
a
 

 >7.0 0.05 (-0.38; 0.46) 

Land cover  

 Crop 1.00 

 Forest -0.91 (-1.37; -0.42)
a
 

 Shrub and grass -0.57 (-1.07; -0.16)
a
 

 Urban 0.06 (-0.36; 0.48) 

 Wet 0.24 (-0.39; 0.98) 

Spatial range (km) 259.80 (199.70; 373.01) 

𝝈𝒔𝒑
𝟐  13.64 (9.90; 20.51) 

a
Significant correlation based on 95% Bayesian credible interval. 

 

Model validation indicated that the Bayesian geostatistical logistic regression models were 

able to correctly estimate (within a 95% BCI) 71.7% of locations for C. sinensis. The mean 

error was -0.07%, suggesting that our model may slightly over-estimate the infection risk of 

C. sinensis. 

4.3.3 Predictive risk maps and estimates of number of people infected 

Figure 4.2A shows the model-based predicted risk map of C. sinensis for P.R. China. High 

prevalence (≥20%) was estimated in some areas of southern and northeast parts of Guangdong 

province, southwest and north parts of Guangxi province, southwest part of Hunan province, 

west bordering region of Heilongjiang and Jilin provinces, and eastern part of Heilongjiang 

province. Most regions of northwestern China and eastern costal-line areas had zero to very 

low prevalence (<0.01%). The prediction uncertainty is shown in Fig 4.2C. 

Table 4.4 reports the population-adjusted predicted prevalence and the number of 

individuals infected with C. sinensis in P.R. China, stratified by province, based on gridded 

population of 2010. The overall population-adjusted predicted prevalence of clonorchiasis 

was 1.18% (95% BCI: 1.10%-1.25%) in 2010, corresponding to 14.8 million (95% BCI: 13.8-

15.8 million) infected individuals. The three provinces with the highest infection risk were 

Heilongjiang (7.21%, 95% BCI: 5.95-8.84%), Guangdong (6.96%, 95% BCI: 6.62-7.27%) 

and Guangxi (5.52%, 95% BCI: 4.97-6.06%) provinces. Provinces with very low risk 

estimates (median predicted prevalence < 0.01%) are Gansu, Ningxia, Qinghai, Shanghai, 

Shanxi, Tibet, and Yunnan. Guangdong, Heilongjiang, and Guangxi were the top three  
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Figure 4.2: Model-based prediction risk maps of C. sinensis infection from 2005 onwards. (A) 

Predictive prevalence based on the median of the posterior predictive distribution of infection 

risk. (B) Survey locations and observed prevalence over P.R. China. (C) Prediction 

uncertainty based on the standard deviation of the posterior predictive distribution of infection 

risk. 

 

provinces with the highest number of people infected: 6.34 million (95% BCI: 6.03-6.62 

million), 3.05 million (2.52-3.74 million) and 2.08 million (1.87-2.28 million), respectively. 

 

4.4 Discussion 

To our knowledge, we present the first model-based, high-resolution estimates of 

C. sinensis infection risk in P.R. China. Risk maps were produced through Bayesian 

geostatistical modeling of clonorchiasis survey data from 2000 onwards, readily adjusting for 

environmental/climatic predictors. Our methodology is based on a rigorous approach for 

spatially explicit estimation of neglected tropical diseases (Karagiannis-Voules et al. 2015a).  
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Table 4.4: Population-adjusted predicted prevalence and estimated number of infected 

individuals per province of in 2010
a
. 

Provinces Population 

(×10
6
) 

Prevalence (95% 

BCI
b
) (%) 

No. infected (95% BCI
b
) 

(×10
3
) 

Anhui 54.89 0.66 (0.51; 0.89) 363.67 (279.09; 489.63) 

Beijing 16.99 0.02 (0.00; 0.11) 2.64 (0.20; 17.98) 

Chongqing 26.72 0.13 (0.09; 0.20) 35.96 (23.52; 52.15) 

Fujian 32.8 0.09 (0.05; 0.17) 29.33 (17.08; 56.51) 

Gansu 25.6 0.00 (0.00; 0.00) 0.10 (0.01; 0.88) 

Guangdong 91.06 6.96 (6.62; 7.27) 6341.38 (6030.46; 6622.18) 

Guangxi 37.62 5.52 (4.97; 6.06) 2077.94 (1867.98; 2280.70) 

Guizhou 31.37 0.05 (0.02; 0.08) 15.33 (7.58; 26.67) 

Hainan 6.68 0.46 (0.26; 0.71) 30.42 (17.05; 47.62) 

Hebei 75.52 0.04 (0.02; 0.09) 32.20 (13.77; 67.43) 

Heilongjiang 42.28 7.21 (5.95; 8.84) 3050.57 (2515.22; 3737.51) 

Henan 84.3 0.11 (0.07; 0.16) 91.32 (60.46; 138.85) 

Hubei 58.21 2.26 (1.90; 2.66) 1313.52 (1103.91; 1548.28) 

Hunan 55.14 0.61 (0.51; 0.75) 333.64 (283.77; 410.98) 

Jiangsu 74.3 0.19 (0.15; 0.24) 144.31 (113.62; 177.60) 

Jiangxi 36.26 0.15 (0.09; 0.25) 54.72 (31.76; 91.40) 

Jilin 29.19 2.07 (1.76; 2.43) 605.43 (514.64; 707.94) 

Liaoning 43.09 0.32 (0.24; 0.45) 139.05 (104.56; 194.56) 

Iner Mongolia 29.73 0.08 (0.05; 0.12) 24.09 (14.87; 37.06) 

Ningxia 6.27 0.00 (0.00; 0.00) 0.03 (0.01; 0.18) 

Qinghai 4.96 0.00 (0.00; 0.00) 0.00 (0.00; 0.01) 

Shaanxi 34.26 0.01 (0.00; 0.03) 2.32 (0.26; 11.53) 

Shandong 93.37 0.04 (0.03; 0.07) 41.06 (24.86; 65.24) 

Shanghai 14.95 0.00 (0.00; 0.04) 0.36 (0.01; 5.34) 

Shanxi 35.45 0.00 (0.00; 0.02) 1.38 (0.22; 5.39) 

Sichuan 94.63 0.04 (0.02; 0.06) 34.48 (20.55; 57.33) 

Tianjin 9.76 0.03 (0.02; 0.06) 2.97 (1.58; 5.41) 

Xinjiang Uygur 24.97 0.01 (0.00; 0.06) 3.58 (1.10; 14.62) 

Tibet 2.68 0.00 (0.00; 0.00) 0.00 (0.00; 0.00) 

Yunnan 39.49 0.00 (0.00; 0.01) 1.31 (0.30; 4.24) 

Zhejiang 45.35 0.02 (0.00; 0.08) 8.31 (1.04; 36.06) 

Total 1257.89 1.18 (1.10; 1.25) 14844.08 (13796.77; 15767.23) 
a
Estimates based on gridded population of 2010; calculations based on the median and 95% Bayesian credible 

interval of the posterior distribution of the predictive risk from 2005 onwards. 
b
Bayesian credible interval. 

 

Surveys pertaining to prevalence of C. sinensis in P.R. China were obtained through a 

systematic review in both Chinese and worldwide scientific databases to obtain published 

work from 2000 onwards. Additional data were provided by the NIPD, China CDC. 

We estimated that 14.8 million (95% BCI: 13.8-15.8 million; 1.18%) people in P.R. China 

were infected with C. sinensis in 2010, which is slightly higher than the previous estimates of 

12.5 million people for the year 2004, based on empirical analysis of data from a large survey 
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of clonorchiasis conducted from 2002-2004 in 27 endemic P/A/M. The mean error for the 

model validation was slightly smaller than zero, suggesting that our model might somewhat 

over-estimate the true prevalence of clonorchiasis. The overall raw prevalence of the observed 

data was 9.7%. This can be an over-estimation of the overall prevalence as many surveys 

from literatures are likely to be conducted in places with relatively high infection risk 

(preferential sampling). Our population-adjusted, model-based estimates is much lower 

(1.18%, 95% BCI: 1.10-1.25%) and it should reflect the actual situation because it takes into 

account the distribution of the population and of the disease risk across the country. Our 

model may overestimate the overall infection risk for Heilongjiang province due to the lack of 

observed data in the north part of the province. 

We found an increase of infection risk of C. sinensis from 2005 onwards, which may be 

due to several reasons, such as higher consumption of raw fish, lack of self-protection 

awareness of food hygiene, low health education, and rapid growth of aquaculture (Han et al. 

2013;Keiser & Utzinger 2005). Consumption of raw freshwater fish is related with C. sinensis 

infection risk, however (June et al. 2013;Phan et al. 2011), such information is unavailable for 

P.R. China. 

Elevation is one of the most important predictors in our model. Different elevation levels 

correspond to different environmental/climatic conditions that can influence the distribution 

of intermediate host snails. Our results show a positive effect of NDVI with the prevalence of 

C. sinensis. We found that distance to nearest water bodies was significantly related to 

infection risk. Traditionally, areas adjacent to water bodies were reported to have a higher 

prevalence of C. sinensis, however, due to improvement of trade and transportation channels, 

this situation may be changing, which may explain our result showing a non-linear 

relationship between distance to nearest water bodies and infection risk (Keiser & Utzinger 

2005;Qian et al. 2016). Furthermore, our analysis supports earlier observations, suggesting an 

association between land cover and infection risk (Keiser & Utzinger 2005;Petney et al. 2013). 

Interestingly, the risk of infection with other neglected tropical diseases, such as soil-

transmitted helminthiasis and schistosomiasis, has declined in P.R. China over the past 10-15 

years due to socioeconomic development and long-term efforts on control and prevention 

(Yang et al. 2014). However, clonorchiasis, the major food-borne trematodiasis in P.R. China, 

shows an increasing temporal trend, which urges the Chinese government to pay more 

attention to this disease. Our risk estimates indicate several high endemic areas in P.R. China, 

where control strategies should be focused, such as the western areas of Pearl River delta 

region and the northeastern part of Heyuan city in Guangdong province, Nanning city, the 

northern part of Liuzhou city, and the northwestern part of Guilin city in Guangxi province, 

the western part of Qiyang city in Hunan province, Jiamusi city, the southern part of Daqing 

city, and the eastern part of Hegang city in Heilongjiang Province, and the northeastern part 

of Baicheng city and the northern part of Songyuan city in Jilin province. In China the city 

corresponds to an administrative division of level two. 
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The recommended treatment guidelines of clonorchiasis by WHO advocate praziquantel 

administration for all residents every year in high endemic areas (prevalence ≥20%) and for 

all residents every two years or individuals regularly eating raw fish every year in moderate 

endemic areas (prevalence <20%) (WHO 2013). As re-infection or super-infection is common 

in heavy endemic areas, repeated preventive chemotherapy is necessary to interrupt 

transmission (Choi et al. 2010). On the other hand, to maintain control sustainability, a 

comprehensive control strategy must be implemented, including IEC, preventive 

chemotherapy, and improvement of environment sanitation (Oh et al. 2014;Zhang et al. 

2009). Through IEC, residents may conscientiously reduce or stop consumption of raw fish. 

Furthermore, by removing unimproved lavatories around fish ponds, the likelihood of fish 

becoming infected with cercariae declines (Wu et al. 2012). A successful example of 

comprehensive control strategies is Shangdong province, where clonorchiasis was endemic, 

but after rigorous implementation of comprehensive control programs for more than 10 years, 

the disease has been well controlled (Liu et al. 2010). 

The Chinese Ministry of Health set a goal to halve the prevalence for clonorchiasis 

(compared to that observed in the second national survey in 2001-2004) in highly endemic 

areas by 2015 using integrated control measures (Ministry of Health 2006). In practice, 

control measures are carried out in endemic villages or counties with available survey data. 

However, large-scale control activities are lacking in most endemic provinces, as control 

plans are difficult to make when the epidemiology is only known at provincial level (Qian et 

al. 2013). Our high-resolution infection risk estimates provide important information for 

targeted control. 

Approximately half of our survey data were aggregated at county-level. To avoid data 

sparsity, we included these data in the analysis using the centroids of the counties as survey 

locations. As the actual observed survey locations were not known, we assumed a uniform 

distribution of the infection risk within these counties. To assess the effect of this assumption 

on our estimates, we simulated data over a number of hypothetical survey locations within the 

counties and compared predictions based on approaches using the county aggregated data 

together with the data at individual georeferenced survey locations and using the data at 

individual georeferenced survey locations only (excluded the county aggregated data). The 

former approach gave substantially better disease risk prediction compared to the later one. 

In conclusion, we present the first model-based, high-resolution risk estimates of 

C. sinensis infection risk in P.R. China, and identified areas of high priority for control. Our 

findings show an increased trend of infection risk from 2005 onwards, suggesting that the 

government should put more efforts on control activities of clonorchiasis in P.R. China. 
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Summary 

Background: Schistosomiasis affects more than 200 million individuals, mostly in sub-

Saharan Africa, but empirical estimates of the disease burden in this region are unavailable. 

We used geostatistical modelling to produce high-resolution risk estimates of infection with 

Schistosoma spp and of the number of doses of praziquantel treatment needed to prevent 

morbidity at different administrative levels in 44 countries. 

Methods: We did a systematic review to identify surveys including schistosomiasis 

prevalence data in sub-Saharan Africa via PubMed, ISI Web of Science, and African Journals 

Online, from inception to May 2, 2014, with no restriction of language, survey date, or study 

design. We used Bayesian geostatistical meta-analysis and rigorous variable selection to 

predict infection risk over a grid of 1,155,818 pixels at 5 × 5 km, on the basis of 

environmental and socioeconomic predictors and to calculate the number of doses of 

praziquantel needed for prevention of morbidity. 

Findings: The literature search identified Schistosoma haematobium and Schistosoma 

mansoni surveys done in, respectively, 9,318 and 9,140 unique locations. Infection risk 

decreased from 2000 onwards, yet estimates suggest that 163 million (95% Bayesian credible 

interval (BCI) 155 million to 172 million; 18.5%, 17.6–19.5) of the sub-Saharan African 

population was infected in 2012. Mozambique had the highest prevalence of schistosomiasis 

in school-aged children (52.8%, 95% BCI 48.7–57.8). Low-risk countries (prevalence among 

school-aged children lower than 10%) included Burundi, Equatorial Guinea, Eritrea, and 

Rwanda. The numbers of doses of praziquantel needed per year were estimated to be 123 

million (95% BCI 121 million to 125 million) for school-aged children and 247 million (239 

million to 256 million) for the entire population. 

Interpretation: Our results will inform policy makers about the number of treatments needed 

at different levels and will guide the spatial targeting of schistosomiasis control interventions. 
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5.1 Introduction 

Schistosomiasis is a chronic disease that affects around 240 million people worldwide, 

leading to a burden of 3.3 million disability-adjusted life-years (DALYs) (Murray et al. 

2012;WHO 2010a). More than 90% of all cases occur in Africa (Stothard et al. 2009). The 

two main schistosome species that infect human beings in Africa are Schistosoma mansoni, 

which causes intestinal and hepatic schistosomiasis, and Schistosoma haematobium, which 

causes urogenital schistosomiasis (Colley et al. 2014). Schistosoma intercalatum and 

Schistosoma guineensis have limited distribution and are rarely reported (Chu et al. 

2012;Tchuem Tchuenté et al. 2003b). 

Successful schistosomiasis control programmes have been implemented in north Africa 

(i.e., Egypt, Libya, Morocco, and Tunisia) (Amarir et al. 2011;Rollinson et al. 2013;WHO 

2009;WHO/EMRO 2007), but in many countries of sub-Saharan Africa schistosomiasis is 

still far from being under control, let alone eliminated. Although schistosomiasis-endemic 

countries are encouraged to treat at least 75% of school-aged children at risk of morbidity 

(Savioli et al. 2009), less than 14% of people needing preventive chemotherapy were treated 

in 2012 (WHO 2014). Control programmes emphasising preventive chemotherapy supported 

by the Schistosomiasis Control Initiative, have been set up in several countries, including 

Burkina Faso, Mali, Niger, Tanzania, Uganda, and Zambia, where prevalence and intensity of 

infection with Schistosoma spp have been reduced substantially (Fenwick et al. 2009;Garba et 

al. 2009). Other countries (e.g., Angola, Benin, Cameroon, Central African Republic, 

Madagascar, and Senegal) have launched large-scale control programmes, facilitated by 

donated praziquantel (WHO 2014), but, for various reasons, including ineffective coverage of 

drug distribution and rapid reinfection owing to interruption of preventive chemotherapy, the 

reduction in disease risk has been lower than expected (Gray et al. 2010). Whenever resources 

allow, integrated control activities, incorporating preventive therapy with praziquantel, 

transmission reduction through environmental modification, health education and promotion, 

and improved water and sanitation, are being recommended (Gray et al. 2010;Utzinger et al. 

2003;WHO 2010b). 

Risk maps depicting the geographical distribution of schistosomiasis assist disease control 

by helping to focus control interventions in the areas of highest risk. Bayesian geostatistical 

modeling enables prediction of disease risk in areas without observed data by relating survey 

data to potential predictors (Chammartin et al. 2013c). Such models have been used for small-

scale and large-scale schistosomiasis risk profiling (Clements et al. 2006;Clements et al. 

2008a;Clements et al. 2010a;Clements et al. 2008b;Ekpo et al. 2013;Hodges et al. 

2012;Koroma et al. 2010;Raso et al. 2005;Soares Magalhães et al. 2011). Schur and 

colleagues (Schur et al. 2011a;Schur et al. 2011b) presented prevalence maps for Schistosoma 

spp infection in east and west Africa in 2011. Their estimates, however, were based mainly on 

data recorded before large-scale preventive chemotherapy control programmes had started 

and, therefore, do not reflect the current situation. Additionally, high-resolution estimates of 
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the disease in central and southern Africa are unavailable. We aimed to systematically review 

survey data and produce high-resolution risk estimates of Schistosoma spp infection and to 

estimate the number of doses of praziquantel that would be needed for prevention of 

morbidity at country and district levels for the whole sub-Saharan Africa region. 

 

5.2 Methods 

5.2.1 Search strategy and selection criteria 

We did a systematic review following the PRISMA guidelines (Moher et al. 2009). We 

searched for relevant publications pertaining to prevalence of Schistosoma spp infection in 

sub-Saharan Africa, in PubMed, ISI Web of Science, and African Journals Online, from 

inception to May 2, 2014. We applied the search string “schisto* (OR mansoni, OR bilhar*, 

OR haema*) AND sub-Saharan Africa (OR Angola, OR Benin, OR Botswana, OR Burkina 

Faso, OR Burundi, OR Cameroon, OR Central African Republic, OR Chad, OR Congo*, OR 

Côte d’Ivoire, OR Cote d’Ivoire, OR Ivory Coast, OR Djibouti, OR Eritrea, OR Ethiopia, OR 

Gabon, OR Gambia, OR Ghana, OR Guinea*, OR Kenya, OR Lesotho, OR Liberia, OR 

Madagascar, OR Malawi, OR Mali, OR Mauritania, OR Mozambique, OR Namibia, OR 

Niger, OR Nigeria, OR Rwanda, OR Senegal, OR Sierra Leone, OR Somalia, OR South 

Africa, OR Sudan, OR Swaziland, OR Tanzania, OR Togo, OR Tunisia, OR Uganda, OR 

Zambia, OR Zimbabwe)”. Government reports and other grey literature (eg, PhD theses, 

working papers from research groups, or unpublished research reports obtained through 

personal communication) were also considered. We set no parameters for language, survey 

date, or study design. 

We initially screened titles and abstracts to identify potentially relevant articles. We 

excluded case reports, in-vitro studies, non-human studies, or those that did not report on 

schistosomiasis. Quality control for each country was done by rechecking 15% of randomly 

selected papers deemed irrelevant. If any misclassifications were identified, the selection for 

the whole country was rechecked. Full-text reports for potentially relevant papers were 

obtained and screened. At this stage we additionally excluded studies without prevalence data, 

those done in specific groups of patients (e.g., with specified diseases) or clearly defined 

population groups (i.e., travellers, military personnel, expatriates, nomads, and displaced or 

migrating populations) not representative of the general population, studies that used either 

indirect diagnostic techniques (because such tests cannot distinguish between active and 

cleared infection) or direct stool smear (because of low diagnostic sensitivity), reports of case-

control studies, clinical trials, drug efficacy, intervention studies (except for baseline data or 

control groups), studies that reported on species other than S. haematobium and S. mansoni, 

and surveys done before 1950, that were not community based or school based, or were done 

in places where population deworming had been done within 1 year, or study findings 
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reported aggregated within regions (i.e., administrative division of level one). We reviewed 

the reference lists of full-text articles for further possible data sources. Duplicates were 

removed. If important information was missing (e.g., survey year, location names or 

coordinates, numbers of individuals assessed and positive, etc) or if surveys were aggregated, 

we contacted the authors for clarification. 

5.2.2 Ethics committee approval 

This study was based on surveys of Schistosoma spp infection derived from the peer-

reviewed literature and other sources that included statements of ethics approval in the 

original reports. Because the data are aggregated and do not contain identifiable individual-

level or household-level information, no specific ethics approval was needed for this study. 

5.2.3 Data extraction 

From the screened references we obtained information, such as number of people assessed, 

number of positive cases (disease prevalence), age group, diagnostic approach, year of survey 

and name of study setting or coordinates of survey location. Data were georeferenced and 

entered into the Global Neglected Tropical Diseases database (Hürlimann et al. 2011) for 44 

countries: Angola, Benin, Botswana, Burkina Faso, Burundi, Cameroon, Central African 

Republic, Chad, Congo, Côte d’Ivoire, Democratic Republic of the Congo, Djibouti, 

Equatorial Guinea, Eritrea, Ethiopia, Gabon, Ghana, Guinea, Guinea-Bissau, Kenya, Lesotho, 

Liberia, Madagascar, Malawi, Mali, Mauritania, Mozambique, Namibia, Niger, Nigeria, 

Rwanda, Senegal, Sierra Leone, Somalia, South Africa, South Sudan, Sudan, Swaziland, 

Tanzania, The Gambia, Togo, Uganda, Zambia, and Zimbabwe. All information and 

coordinates of locations were checked and approved for each record by personnel working at 

the Global Neglected Tropical Diseases database (http://www.gntd.org) and who had not been 

involved in data extraction for this study. 

5.2.4 Environmental, socioeconomic, and population data 

We obtained environmental and demographic data from different readily accessible remote 

sensing sources (Appendix). We used socioeconomic predictors, such as the Human Influence 

Index, urban extents, gross domestic product, and infant mortality rates, which were obtained 

from the Socioeconomic Data and Applications Center (http://sedac.ciesin.columbia.edu). 

Additionally, we included the proportion of households with improved sanitation and the 

proportion of households with improved drinking water sources, that were estimated from 

predictions based on geostatistical models fitted with data collected during household surveys 

done by Demographic and Health Surveys, Multiple Cluster Indicator Surveys, World Health 

Surveys, and the Living Standards Measurement Study (Appendix). The 2012 population was 

projected from that of 2010 by taking into account the country-specific annual population 

growth rate obtained from the United Nations World Population Prospects (United Nations 

2016). 
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5.2.5 Statistical analysis 

We grouped survey years into three categories—before 1980, 1980–99, and from 2000 

onwards—to assess temporal trends. Survey type (school-based or community-based) was 

included in geostatistical model as a covariate. Plots of disease prevalence with each 

continuous variable indicated non-linear relations that could best be captured by converting 

continuous variables to categorical variables based on tertiles. Mean prevalence for each 

country was calculated as the mean of prevalence values reported in observed surveys 

identified within the country. 

We did a meta-analysis by developing Bayesian geostatistical logistic regression models 

that related survey data on Schistosoma spp infection with potential environmental and 

socioeconomic predictors. Spatially structured random effects were introduced into the 

models. Spatial correlation was assumed to follow a Matérn function—i.e., decreasing 

correlation with increasing distance between two locations. To overcome computational 

burden due to large spatial correlation matrices, we fitted the models with the integrated 

nested Laplace approximations (INLA) package in R (version 3.0.1) (Lindgren et al. 

2011;Rue et al. 2009). Further details of our model fitting approach are provided in the 

Appendix. Separate geostatistical models were fitted for the mainland of sub-Saharan Africa 

and for Madagascar because correlation with distance does not have the same meaning 

between locations separated by land and by sea. 

We used Bayesian variable selection to identify the best set of predictors (Scheipl et al. 

2012). Furthermore, we grouped the continuous variables with Pearson’s correlation 

coefficient values greater than 0.8 and selected a maximum of one predictor from each of the 

highly correlated variable groups. We also identified the best functional form (i.e., continuous 

or categorical) for each continuous covariate (Appendix). Prediction of risk of infection with 

S. haematobium or S. mansoni was done with the INLA package over a grid of 1,155,818 

pixels across sub-Saharan Africa at 5 × 5 km spatial resolution. We estimated population-

adjusted prevalence for school-aged children (age 5–14 years) and communities (no age 

restriction) by overlaying the pixel-based disease risk predictions on the population to obtain 

the number of infected individuals, and recalculated the prevalence for different 

administrative levels. We assumed independence between the two Schistosoma spp. To 

predict the combined prevalence, we used the formula 𝑝𝑠 = 𝑝ℎ + 𝑝𝑚 − 𝑝ℎ × 𝑝𝑚, where 𝑝𝑠 is 

the predicted prevalence of schistosomiasis, 𝑝ℎ the predicted prevalence of S. haematobium, 

and 𝑝𝑚  the predicted prevalence of S. mansoni. To assess the effect of co-infection, we 

assumed that the probability of being infected with one species (𝐴) given that the other 

species ( 𝐴 ) is present, increased by 𝑎% , that is 𝑃(𝐴|𝐵) = (1 + 𝑎%)𝑃(𝐴) , where P is 

probability. Thus, with use of probability laws, 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐵)𝑃(𝐴|𝐵), 

we estimated the probabilities of being infected by either species for 𝑎 = 25, 𝑎 = 50, and 

𝑎 = 75. 
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A random subset of 80% of survey locations was used to create the training set for model 

fit, and the remaining 20% of locations were used as the test set for validation. The mean error 

and proportion of observations included in Bayesian credible intervals (BCI) for various 

probability coverages of predictions at the test locations were calculated to assess model 

performance. We used the calculation 𝑀𝐸 = 1/𝑁 ∑ (𝜋𝑖 − �̂�𝑖)𝑖=1 , where 𝜋  indicates the 

observed prevalence, �̂� the median of the posterior distribution of the predictive prevalence at 

test location 𝑖, and 𝑁 the total number of test locations. Thus, positive values of mean error 

suggest that the model under-estimates the observed prevalence. 

We estimated the numbers of doses of praziquantel needed for prevention of morbidity at 

pixel level, according to the approach of Schur and colleagues (Schur, Vounatsou, & Utzinger 

2012) and WHO schistosomiasis control guidelines (WHO 2002a;WHO 2006). The numbers 

of school-aged children living in areas with low, moderate, and high prevalence were 

calculated per pixel and summarised by country. 

5.2.6 Role of the funding sources 

The funders of the study had no role in study design, data collection, data analysis, data 

interpretation, or writing of the report. Y-SL and PV (corresponding author) had full access to 

all the data in the study and had final responsibility for the decision to submit for publication. 

 

5.3 Results 

Of 9,319 references identified in published articles and 78 from other sources, 1,274 were 

suitable for inclusion in the meta-analysis (Figure 5.1). The 78 references from other sources 

contributed 29.4% of surveys used for S. haematobium and 29.1% for S. mansoni. Data were 

available for S. haematobium from all countries except Djibouti and for both Schistosoma spp 

from all countries except from Lesotho. We identified none or very few surveys done after 

2000 in Botswana, Central African Republic, Chad, Congo, Equatorial Guinea, Guinea-

Bissau, Liberia, Madagascar, Namibia, Somalia, and The Gambia (Appendix). Diagnostic 

methods used and incomplete information that could affect assessment of the observed 

prevalence, are provided in the Appendix. 8,052 (72.8%) of the surveys of S. mansoni used 

the WHO-recommended Kato-Katz technique for diagnosis; 973 (8.8%) did not specify the 

diagnostic approach taken. 4,428 (37.6%) and 3,486 (29.6%) of surveys of S. haematobium 

used, respectively, urine filtration and reagent strips for diagnosis; 1,401 (11.9%) surveys did 

not specify the diagnostic technique. The mean prevalence values calculated from survey data 

were 24.7% for S. haematobium and 14.8% for S. mansoni. 

We considered 35 variables for Bayesian modeling (Appendix). In the final geostatistical 

logistic regression model, the infection risks for the two Schistosoma spp were lower in the 

entire community than that in school-aged children from 1980 onwards, and decreased 

substantially from 2000 onwards (Table 5.1). The prevalence of S. haematobium in the  
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Figure 5.1: Data search and selection. GNTD=Global Neglected Tropical Diseases Database. 

*After duplicates removed. 

school-aged population was lower in the period from 2000 onwards than in the two preceding 

periods. Prevalence of S. mansoni in school-aged children increased in the 1980s and 1990s, 

after which it declined. Distance to the nearest body of fresh water had a negative effect on 

risk of infection with either species (Table 5.1). Positive associations were identified between 
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the prevalence of S. haematobium and land surface temperature in the daytime and at night 

and normalised difference vegetation index, whereas a negative association was found with 

precipitation during the coldest quarter of the year (Table 5.1). For S. mansoni prevalence was 

lower in areas with barren land and those with large variation in precipitation. Positive 

associations were found with average rainfall during the driest month, areas with wet land 

cover, mean temperature of the driest quarter, soil moisture, and areas with high infant 

mortality, whereas negative associations were found with land surface temperature in the 

daytime and pH measured in water (Table 5.1). The parameter estimates for Madagascar are 

shown in the Appendix. 

Table 5.1: Posterior summaries (median and 95% BCI) of the geostatistical model 

parameters
†
. 

S. haematobium Estimate 

Period (<1980)#  

 1980-1999 -0.14 (-0.20; -0.08)* 

 ≥2000 -0.60 (-0.66; -0.54)* 

Survey type (school-based)#  

 Community-based -0.49 (-0.54; -0.43)* 

Period×survey type (<1980×school-based)#  

 1980-1999×community -0.12 (-0.19; -0.06)* 

 ≥2000×community 0.15 (0.08; 0.23)* 

Mean diurnal temperature range 0.17 (-0.08; 0.41) 

Annual precipitation (≤650 mm)#  

 650-1150 0.02 (-0.33; 0.37) 

 >1150 -0.07 (-0.50; 0.36) 

Precipitation of warmest quarter 0.14 (-0.02; 0.31) 

Precipitation of driest quarter (≤0 mm)#  

 0-30 0.15 (-0.09; 0.39) 

 >30 -0.35 (-0.75; 0.05) 

Precipitation of coldest quarter (≤3 mm)#  

 3-200 -0.22 (-0.49; 0.04) 

 >200 -0.67 (-1.04; -0.30)* 

Land surface temperature at night 0.38 (0.25; 0.51)* 

Land surface temperature at day 0.21 (0.06; 0.36)* 

Normalized differenced vegetation index 0.20 (0.08; 0.32)* 

Gross domestic product (≤1 million US$ per 0.25º grid cell)#  

 1-3 0.10 (-0.06; 0.25) 

 >3 -0.12 (-0.35; 0.11) 

Infant mortality rate (≤830 per 10,000 live births)#  

 ≤830 0.00 

 830-1150 -0.12 (-0.40; 0.16) 

 >1150 0.11 (-0.27; 0.48) 

Soil moisture (≤0.5 mm)#  

 0.5-30 0.15 (-0.16; 0.46) 

 >30 -0.17 (-0.61; 0.27) 

pH measured in water (≤6)#  

 6-7 0.14 (-0.08; 0.35) 

 >7 -0.28 (-0.80; 0.24) 

Distance to water bodies (≤6 km)#  

 6-25 -0.20 (-0.31; -0.08)* 

 >25 -0.33 (-0.51; -0.15)* 

Improved sanitation (≤7.5%)#  

 7.5-25 0.11 (-0.01; 0.24) 

 >25 0.02 (-0.15; 0.18) 

Climatic zone (Equatorial)#  

 Arid -0.22 (-0.59; 0.15) 

 Warm 0.15 (-0.32; 0.62) 

(Continues in next page) 
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(Continued from previous page) 

S. haematobium Estimate 

Land cover (grass)#  

 Forest -0.16 (-0.37; 0.06) 

 Shrub -0.01 (-0.20; 0.18) 

 Crop -0.04 (-0.23; 0.16) 

 Urban -0.21 (-0.45; 0.04) 

 Wet 0.16 (-0.15; 0.47) 

 Barren -0.37 (-0.82; 0.07) 

Range (km) 142.23 (120.67; 161.44) 

Spatial variance (σ2
sp) 4.24 (3.64; 4.84) 

Non-spatial variance (σ2
nonsp) 1.85 (1.75; 1.94) 

S. mansoni Estimate 

Period (<1980)#  

 1980-1999 0.76 (0.68; 0.83)* 

 ≥2000 0.21 (0.13; 0.29)* 

Survey type (school-based)  

 Community-based 0.00 (-0.07; 0.06) 

Period×survey type (<1980×school-based)#  

 1980-1999×community -0.75 (-0.83; -0.68)* 

 ≥2000×community -0.99 (-1.08; -0.90)* 

Mean temperature of driest quarter 0.53 (0.29; 0.76)* 

Temperature annual range 0.75 (0.35; 1.14)* 

Precipitation of driest month (≤0 mm)#  

 0-12 0.93 (0.47; 1.39)* 

 >12 0.53 (-0.05; 1.12) 

Precipitation of coldest quarter (≤15 mm)#  

 15-285 0.04 (-0.38; 0.47) 

 >285 -0.23 (-0.70; 0.23) 

Precipitation seasonality -0.60 (-1.04; -0.17)* 

Precipitation of warmest quarter -0.10 (-0.30; 0.10) 

pH measured in water -0.32 (-0.61; -0.03)* 

Distance to water bodies -0.32 (-0.46; -0.18)* 

Elevation (≤300 m)  

 300-900 0.23 (-0.06; 0.53) 

 >900 -0.11 (-0.61; 0.38) 

Infant mortality rate (≤800 per 10,000 live births)#  

 800-1120 0.61 (0.26; 0.95)* 

 >1120 0.63 (0.16; 1.10)* 

Land surface temperature at day (≤28 ℃)#  

 28-34 -0.28 (-0.48; -0.08)* 

 >34 -0.33 (-0.65; -0.02)* 

Soil moisture (≤0.5 mm)#  

 0.5-50 0.78 (0.26; 1.29)* 

 >50 0.76 (0.05; 1.47)* 

Improved water sources (≤6 %)#  

 6-25 0.06 (-0.12; 0.23) 

 >25 0.18 (-0.03; 0.38) 

Land cover (grass)#  

 Forest -0.11 (-0.37; 0.15) 

 Shrub -0.03 (-0.34; 0.27) 

 Crop 0.11 (-0.10; 0.32) 

 Urban -0.20 (-0.52; 0.12) 

 Wet 0.50 (0.25; 0.75)* 

 Barren -1.44 (-2.54; -0.38)* 

Range (km) 130.22 (114.21; 147.03) 

Spatial variance (σ2
sp) 7.70 (6.64; 8.85) 

Non-spatial variance (σ2
nonsp) 1.79 (1.68; 1.89) 

†
Results based on surveys in mainland sub-Saharan Africa; 

*
important effect based on 95% Bayesian credible interval (BCI); 

#
in brackets, baseline values are reported. 

 

Model validation suggested that the Bayesian geostatistical logistic regression models 

were able to correctly estimate 76.8% and 71.9% of locations within the 95% BCI for 
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S. mansoni and S. haematobium, respectively (Appendix). The mean error for S. mansoni was 

2.1% and for S. haematobium was 2.7%, which suggest that our models might have slightly 

underestimated the risk for both species. 

The model-based maps of predicted prevalence are shown in Figures 5.2–5.4. In 2012, the 

population-adjusted prevalence values for S. haematobium and S. mansoni in school-aged 

children in sub-Saharan Africa were 17.4% (95% BCI 16.4–18.5) and 8.0% (7.4–8.6), 

(Table 5.2), and 14.6% (13.7–15.5) and 4.6% (4.2–5.1), respectively, in the entire population 

(Appendix). 24.0% (95% BCI 23.0–25.1) school-aged children and 18.5% (17.6–19.5) of the 

entire population were infected with either Schistosoma species. Mozambique had the highest 

predicted prevalence of schistosomiasis among school-aged children (Table 5.2). The lowest 

prevalence values (less than 10%) in school-aged children were found in Burundi, Equatorial 

Guinea, Eritrea, Lesotho, and Rwanda. Additionally, the population-adjusted prevalence for 

1980–99 was 29.6% (95% BCI 28.5–30.7) in school-aged children and 22.0% (21.1–23.0) in 

the entire population, which suggests notable reductions over time. 

In our estimation of the effect of co-infection, we calculated that the probability of being 

infected by either species in school-aged children was 23.6% (95% BCI 22.7–24.7), 23.3% 

(22.4–24.4), and 22.9% (22.0–24.0), for 𝑎 = 25 , 𝑎 = 50 , and 𝑎 = 75 , respectively. The 

independent assumption, therefore, has very little effect on the overall infection risk. At the 

pixel level, we were able to classify the numbers of school-aged children living in low (less 

than 10%), moderate (10–50%), and high (more than 50%) prevalence areas, and the number 

of doses of praziquantel needed for prevention of morbidity (Table 5.3, Appendix). In sub-

Saharan Africa, 44.1 million (95% BCI 41.4 million to 47.3 million) school-aged children 

were living in areas with the highest risk of schistosomiasis. The numbers of doses of 

praziquentel needed for prevention of morbidity in sub-Saharan Africa were estimated to be 

122.8 million for school-aged children and 247.5 million for the entire population, which are 

close to WHO estimates (Table 5.3, Appendix). 

 

5.4 Discussion 

We were able to calculate model-based, high-resolution schistosomiasis risk estimates for 

sub-Saharan Africa, overall and by Schistosoma spp, by doing a systematic review, compiling 

georeferenced survey data, and using advanced Bayesian geostatistical modeling based on 

multiple environmental and socioeconomic predictors. This method and our findings will be 

important for prioritising and targeting interventions for morbidity control and, ultimately, 

elimination (WHO 2002a;WHO 2010b). 
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Table 5.2: Population-adjusted prevalence and number of school-aged children infected with 

Schistosoma spp in 2012*. 

Country Population 
S. haematobium S. mansoni Schistosomiasis 

Prevalence Number infected Prevalence Number infected Prevalence Number infected 

Angola 6441 24.8 (15.1–39.3) 1595 (972–2531) 4.2 (1.9–15.0) 273 (123–964) 28.5 (18.4–43.7) 1835 (1187–2815) 

Benin 2431 32.3 (24.1–40.7) 785 (587–990) 5.0 (2.4–10.7) 122 (59–260) 35.9 (26.9–43.9) 872 (653–1067) 

Botswana 437 11.6 (3.9–25.5) 51 (17–111) 5.7 (2.8–12.5) 25 (12–55) 17.3 (8.1–32.0) 75 (35–140) 

Burkina Faso 4727 26.4 (23.1–30.4) 
1248 (1091–

1435) 
1.7 (1.1–2.8) 80 (53–132) 27.9 (24.4–31.8) 1318 (1153–1503) 

Burundi 2650 0.1 (0.0–0.6) 3 (1–16) 6.6 (4.5–10.2) 174 (121–271) 6.7 (4.7–10.3) 178 (124–273) 

Cameroon 5952 8.8 (7.3–10.4) 522 (436–618) 5.9 (4.5–7.9) 350 (271–468) 13.8 (12.0–16.1) 820 (715–958) 

Central African 

Republic 
1115 9.7 (6.6–14.0) 109 (73–156) 14.4 (6.2–30.4) 161 (70–339) 22.6 (14.7–38.8) 252 (164–432) 

Chad 3637 26.4 (17.6–36.3) 959 (641–1319) 7.3 (3.7–15.1) 264 (136–550) 31.8 (22.7–42.1) 1158 (826–1530) 

Congo 856 12.3 (7.7–19.9) 105 (66–170) 6.8 (2.0–17.5) 59 (17–150) 18.8 (12.4–28.5) 161 (106–244) 

Côte d’Ivoire 5032 9.0 (7.2–11.2) 451 (361–565) 9.1 (7.5–11.2) 456 (377–564) 17.4 (15.0–20.2) 875 (756–1015) 

DR Congo 17 758 13.4 (9.6–19.0) 
2376 (1697–

3381) 
20.5 (16.2–25.7) 

3647 (2885–

4571) 
31.4 (26.7–37.8) 

5584 (4739–

6719) 

Djibouti 269 8.6 (1.0–60.3) 23 (3–162) 18.6 (2.1–74.9) 50 (6–201) 33.2 (6.2–81.6) 89 (17–219) 

Equatorial Guinea 179 1.4 (0.3–5.8) 3 (1–10) 2.6 (0.3–14.0) 5 (1–25) 4.5 (1.2–15.7) 8 (2–28) 

Eritrea 1608 2.2 (0.8–5.0) 35 (13–81) 6.8 (3.9–10.7) 109 (63–172) 8.8 (5.6–13.4) 142 (90–215) 

Ethiopia 26 497 8.3 (4.6–14.1) 
2206 (1227–

3724) 
8.9 (7.4–10.8) 

2358 (1970–

2869) 
16.5 (12.7–21.6) 4383 (3371–5732) 

Gabon 368 15.3 (6.3–36.6) 56 (23–135) 4.0 (0.7–15.0) 15 (3–55) 20.2 (9.3–43.3) 74 (34–159) 

Ghana 5634 22.3 (19.4–26.5) 
1256 (1095–

1491) 
1.3 (0.7–2.3) 71 (37–130) 23.3 (20.5–27.3) 1312 (1152–1537) 

Guinea 2877 12.3 (8.3–17.1) 354 (239–491) 14.6 (9.9–20.5) 421 (286–590) 24.4 (19.0–30.7) 703 (545–884) 

Guinea-Bissau 369 23.7 (14.7–38.2) 88 (54–141) 1.5 (0.2–11.6) 6 (1–43) 25.7 (15.7–40.0) 95 (58–148) 

Kenya 11 110 10.2 (7.0–14.6) 1131 (773–1624) 5.9 (4.8–7.5) 661 (531–831) 15.5 (12.3–19.8) 1721 (1367–2200) 

Lesotho 523 4.4 (0.6–23.8) 23 (3–125) 2.3 (0.1–19.3) 12 (0–101) 8.3 (1.5–32.0) 43 (8–167) 

Liberia 1004 16.7 (9.7–26.5) 167 (98–266) 9.0 (5.4–16.0) 90 (55–160) 24.5 (16.4–35.9) 246 (165–360) 

Madagascar 5841 6.6 (5.5–14.3) 387 (323–833) 8.1 (6.9–9.5) 474 (403–558) 14.6 (12.8–21.4) 851 (749–1252) 

Malawi 4240 24.1 (19.9–28.8) 1021 (845–1221) 7.3 (4.9–10.5) 308 (208–446) 29.8 (25.5–35.4) 1265 (1081–1500) 

Mali 4084 29.4 (26.6–32.5) 
1201 (1084–

1328) 
7.8 (6.2–9.5) 318 (252–390) 34.2 (31.3–37.1) 1399 (1279–1517) 

Mauritania 969 24.6 (19.0–34.0) 238 (184–330) 1.8 (0.6–6.7) 18 (6–65) 26.5 (20.2–35.9) 256 (196–348) 

Mozambique 6722 47.1 (42.4–51.9) 
3167 (2853–

3490) 
10.5 (7.5–14.7) 708 (506–991) 52.8 (48.7–57.8) 3552 (3272–3885) 

Namibia 584 7.6 (4.4–15.4) 44 (26–90) 2.9 (1.3–8.2) 17 (8–48) 10.5 (6.4–18.4) 61 (37–107) 

Niger 5109 18.9 (16.2–21.7) 968 (828–1108) 0.4 (0.2–0.8) 20 (12–43) 19.3 (16.5–22.1) 984 (842–1127) 

Nigeria 43 088 22.0 (19.9–24.6) 
9470 (8566–

10592) 
4.4 (3.2–6.0) 

1879 (1395–
2587) 

25.2 (23.0–27.8) 
10846 (9918–

11998) 

Rwanda 3301 0.1 (0.0–0.2) 2 (1–6) 3.8 (2.2–5.8) 125 (74–192) 3.9 (2.3–5.9) 127 (76–194) 

Senegal 3490 18.3 (16.2–21.3) 639 (566–743) 2.2 (1.5–4.1) 78 (52–143) 20.3 (17.9–23.5) 708 (626–820) 

Sierra Leone 1708 21.6 (15.9–28.4) 369 (271–486) 18.4 (13.7–24.7) 314 (234–422) 35.0 (28.9–42.1) 597 (493–719) 

Somalia 2657 22.8 (16.9–30.0) 607 (450–797) 2.3 (0.7–6.7) 62 (19–177) 24.9 (18.8–31.8) 661 (499–846) 

South Africa 9689 16.1 (12.2–20.7) 
1561 (1181–

2006) 
8.6 (5.3–14.0) 837 (511–1353) 22.6 (17.9–28.9) 2186 (1734–2798) 

South Sudan 2813 18.5 (10.9–29.4) 521 (308–826) 14.4 (9.2–22.5) 405 (260–633) 30.6 (22.3–41.7) 860 (627–1174) 

Sudan 9456 20.7 (16.1–24.9) 
1955 (1520–

2358) 
12.1 (9.3–16.0) 1141 (876–1511) 31.0 (25.7–35.2) 2935 (2435–3332) 

Swaziland 326 18.4 (9.3–35.3) 60 (30–115) 11.2 (2.8–39.6) 37 (9–129) 29.1 (15.1–52.7) 95 (49–172) 

Tanzania 12 953 19.9 (17.0–23.3) 
2572 (2207–

3017) 
7.1 (5.2–9.7) 923 (668–1263) 25.9 (22.8–29.7) 

3349 (2955–
3848) 

The Gambia 565 16.8 (10.4–32.3) 95 (59–183) 7.5 (1.9–23..8) 42 (11–135) 24.5 (15.1–43.0) 138 (85–243) 

Togo 1457 20.6 (18.8–22.6) 300 (274–330) 2.2 (1.8–2.8) 32 (26–41) 22.4 (20.7–24.5) 326 (301–357) 

Uganda 10 223 4.3 (1.7–11.1) 436 (175–1135) 10.3 (8.8–12.1) 1057 (901–1238) 14.2 (11.3–20.5) 1455 (1157–2096) 

Zambia 4059 23.1 (19.2–28.0) 936 (781–1138) 5.0 (2.9–8.9) 204 (119–360) 27.2 (22.5–32.2) 1105 (912–1308) 

Zimbabwe 3816 25.2 (22.4–28.2) 960 (856–1075) 7.6 (6.4–9.1) 290 (246–347) 30.5 (27.9–33.5) 1163 (1066–1280) 

Total† 238 626 17.4 (16.4–18.5) 
41 418 (39 153–

44 107) 
8.0 (7.4–8.6) 

19 029 (17 671–
20 612) 

24.0 (23.0–25.1) 
57 236 (54 881–

59 931) 

Numbers are thousands. DR Congo=Democratic Republic of the Congo. *Estimates are based on gridded population estimates of children 

aged 5–14 years in 2012; calculations are based on the median and 95% Bayesian credible interval of the posterior predictive distribution of 

the risk from 2000 onwards. †District level estimates for each country can be obtained from the authors upon request. 
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Figure 5.2: Prevalence of Schistosoma haematobium infection in school-aged children in sub-

Saharan Africa, from 2000 onwards (A) Predictive prevalence based on the median of the 

posterior predictive distribution. (B) Observed prevalence over the whole study period. (C) 

Prediction uncertainty based on the SD of the posterior predictive distribution. 
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Figure 5.3: Prevalence of Schistosoma mansoni infection in school-aged children in sub-

Saharan Africa, from 2000 onwards (A) Predictive prevalence based on the median of the 

posterior predictive distribution. (B) Observed prevalence over the whole study period. (C) 

Prediction uncertainty based on the SD of the posterior predictive distribution. 
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Figure 5.4: Prevalence of Schistosoma spp infection in school-aged children in sub-Saharan 

Africa, from 2000 onwards (A) Predictive prevalence based on the median of the posterior 

predictive distribution. (B) Prediction uncertainty based on the SD of the posterior predictive 

distribution. (C) Number of infected school-aged children, based on the predictive prevalence 

and gridded population estimates of school-aged children in 2012. 
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Table 5.3: Estimated number of school-aged children at risk of schistosomiasis and number 

of praziquantel doses needed for prevention of morbidity in school-aged children and the 

entire population in 2012*. 

Country 
School-aged children at 

low risk† 

School-aged 

children at 

moderate risk‡ 

School-aged 

children at 

high risk§ 

Doses needed for 

school-aged children 

Doses needed for entire 

population 

Model-based estimate 
WHO 

estimate 
**  

Model-based estimate 
WHO 

estimate
** 

Angola 2214 (1490–3577) 2591 (1775–3205) 1421 (707–2797) 3557 (3005–4346) 2755 7260 (5197–10276) 4984 

Benin 559 (342–893) 1124 (952–1303) 736 (448–1020) 1491 (1293–1665) 1281 3479 (2678–4208) 2398 

Botswana 253 (156–348) 128 (69–184) 49 (17–127) 201 (170–254) 143 410 (257–729) 167 

Burkina Faso 1538 (1262–1837) 2226 (2006–2436) 963 (744–1214) 2588 (2446–2750) 1749 5310 (4691–6046) 2196 

Burundi 2176 (1907–2343) 417 (264–631) 62 (25–132) 994 (952–1068) 395 1311 (1146–1605) 907 

Cameroon 4063 (3759–4299) 1303 (1084–1584) 572 (427–780) 2589 (2486–2714) 3555 4337 (3908–4873) 9923 

Central African 
Republic 

555 (343–727) 358 (258–484) 189 (99–408) 560 (489–700) 521 1173 (866–1767) 875 

Chad 1218 (822–1675) 1421 (1195–1626) 979 (577–1469) 2104 (1821–2406) 1754 4288 (3299–5361) 3470 

Congo 422 (249–582) 335 (202–481) 87 (38–205) 402 (355–478) 287 755 (564–1085) 326 

Côte d’Ivoire 2740 (2334–3088) 1802 (1510–2090) 494 (384–652) 2308 (2207–2434) 2396 4135 (3734–4678) 3880 

DR Congo 6337 (4926–7592) 6688 (5887–7509) 4747 (3748–6073) 10200 (9515–11054) 9895 22019 (19254–25517) 18027 

Djibouti 48 (3–233) 103 (17–201) 65 (4–244) 159 (99–255) NA 451 (135–1016) NA 

Equatorial 

Guinea 
158 (114–176) 19 (3–50) 2 (0–21) 64 (60–80) 27 78 (62–152) 52 

Eritrea 1260 (1112–1385) 262 (180–362) 84 (37–153) 635 (591–694) 344 934 (754–1184) 514 

Ethiopia 15 612 (12 948–17 822) 8118 (6613–9590) 2732 (1804–4097) 12003 (11191–13092) 11677 
20302 (17334–

24507) 
22 092 

Gabon 191 (88–289) 118 (58–192) 49 (14–162) 177 (144–249) 163 365 (216–720) 321 

Ghana 2441 (2050–2820) 2265 (1982–2539) 918 (717–1189) 2868 (2728–3054) 3110 6164 (5527–7026) 6632 

Guinea 1415 (1108–1660) 879 (707–1070) 577 (386–784) 1489 (1358–1633) 1219 3097 (2562–3702) 2062 

Guinea-Bissau 139 (67–221) 155 (107–200) 67 (34–136) 195 (165–240) 127 403 (280–605) 180 

Kenya 6861 (5896–7729) 3138 (2524–3836) 1068 (756–1587) 4947 (4654–5347) 5657 8630 (7375–10578) 11762 

Lesotho 401 (173–510) 105 (12–233) 14 (0–142) 202 (177–302) NA 292 (184–778) NA 

Liberia 388 (223–585) 435 (300–545) 167 (90–306) 520 (454–617) 403 1057 (793–1469) 1040 

Madagascar 3759 (3352–3990) 1524 (1326–1831) 530 (431–966) 2559 (2477–2831) 2750 4244 (3926–5564) 6454 

Malawi 1356 (1017–1650) 1892 (1665–2078) 987 (771–1302) 2388 (2237–2589) 2922 5067 (4468–5870) 6782 

Mali 1223 (1054–1386) 1638 (1460–1825) 1228 (1039–1411) 2452 (2343–2560) 2340 5569 (5088–6017) 5669 

Mauritania 421 (246–514) 337 (286–465) 206 (140–313) 519 (470–596) 297 1096 (892–1509) 662 

Mozambique 1081 (771–1402) 2075 (1801–2367) 
3564 (3159–

3988) 
4955 (4727–5203) 5074 

12 916 (11 988–

13889) 
13 456 

Namibia 435 (348–489) 112 (68–178) 36 (13–86) 238 (218–275) 190 380 (292–617) 453 

Niger 2793 (2528–3040) 1607 (1386–1875) 702 (502–912) 2437 (2315–2575) 2876 4216 (3751–4716) 5733 

Nigeria 17936 (16300–19459) 
16947 (15731–

18163) 
8154 (6970–

9661) 
22624 (21827–

23603) 
22537 

45491 (42357–
49466) 

60622 

Rwanda 2965 (2815–3125) 299 (155–428) 30 (2–99) 1172 (1134–1228) 445 1330 (1207–1524) 757 

Senegal 1823 (1499–1995) 1160 (1010–1470) 499 (411–616) 1693 (1626–1784) 1866 3065 (2808–3449) 4180 

Sierra Leone 456 (313–666) 726 (545–884) 507 (358–710) 1031 (938–1144) 583 2513 (2089–3061) 1440 

Somalia 1282 (971–1551) 820 (634–1044) 548 (365–779) 1390 (1259–1549) 285 2733 (2253–3337) 517 

South Africa 5027 (3987–5913) 2885 (2364–3520) 1757 (1280–2404) 4883 (4514–5359) 2458 
12225 (10056–

15242) 
5249 

South Sudan 998 (637–1369) 1080 (898–1237) 719 (441–1098) 1596 (1411–1849) NA 3600 (2827–4653) NA 

Sudan 3270 (2722–3981) 3700 (3274–4069) 2477 (1872–2968) 5422 (4999–5759) 2238 12407 (1722–13824) 5815 

Swaziland 93 (21–190) 156 (94–196) 67 (21–176) 181 (143–246) 155 423 (253–734) 307 

Tanzania 5309 (4511–6049) 5079 (4541–5551) 2562 (2094–3126) 6870 (6528–7272) 5985 14077 (12645–15778) 10135 

The Gambia 178 (53–353) 292 (158–415) 75 (31–243) 290 (245–396) 168 554 (382–1007) 184 

Togo 638 (563–701) 600 (534–675) 218 (175–259) 731 (705–758) 888 1451 (1341–1562) 1750 

Uganda 6597 (5275–7334) 2766 (2134–3646) 856 (625–1469) 4442 (4207–4973) 3963 6911 (6099–8735) 8625 

Zambia 1423 (1133–1787) 1805 (1587–2025) 818 (572–1097) 2200 (2028–2380) 2244 4386 (3736–5069) 4626 

Zimbabwe 1126 (936–1322) 1779 (1618–1942) 902 (787–1088) 2173 (2091–2280) 1495 4947 (4576–5467) 3060 

Total 
111180 (106851–

115307) 
83472 (80721–

86037) 
44124 (41413–

47251) 
122811 (120883–

125019) 
109217 

247477 (239365–
256262) 

238284 

Numbers are thousands. DR Congo=Democratic Republic of the Congo. NA=not applicable. *Pixel-level risk estimates are used in the 

calculations; calculations are based on the median and 95% Bayesian credible interval of the posterior predictive distribution of the risk from 

2000 onwards. †Prevalence <10%. ‡Prevalence 10–50%. §Prevalence >50%. **WHO estimate were obtained from reference (WHO 2015) 
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Our analysis suggests that, in 2012, around 163 million people in sub-Saharan Africa were 

infected with one of two Schistosoma spp, 57 million (35%) of whom were school-aged 

children. Our estimated number of doses needed each year for the entire population (247.5 

million) was close to the 238 million estimated by WHO. However, at the national level, for 

several countries, the estimates differed substantially. For example, we estimated that lower 

numbers of doses would be needed for Cameroon, Kenya, and Malawi, but higher numbers 

for Somalia, South Africa, and Sudan than the numbers suggested by WHO. By contrast with 

the WHO estimates, our results are based on risk profiles that take into account within-

country variation and temporal trends (Schur et al. 2012) and on population estimates at the 

pixel level projected in 2012 from the 2010 WorldPop data (United Nations 2016). WHO 

collected population data from national offices of statistics, national plans of action for 

neglected tropical disease control, and from UN population estimates (WHO 2012b). Our 

analysis allowed us to estimate treatment needs at different administrative levels, which 

provides important information to guide the distribution of praziquantel within countries. The 

amount of praziquantel donated by WHO is projected to increase every year, from 27 million 

doses in 2012, to 44 million in 2013, 75 million in 2014, 100 million in 2015, and up to 250 

million in 2016. At its peak, the donation will be sufficient to treat all school-aged children at 

risk of schistosomiasis. Of note, our mean survey-derived prevalence by country might differ 

from our population adjusted estimates (owing to the predictive distribution of all pixels 

across the country) because observed data from non-national surveys might not be 

representative of the country. 

Besides preventive chemotherapy, other measures to fight schistosomiasis should be used, 

such as snail control and behavioural modification. The use of molluscicides, mainly 

niclosamide, is the primary method for chemical snail control. Although niclosamide is used 

in low concentrations and is non-toxic to people, it might have a negative effect on aquatic life 

(Colley et al. 2014). Its use should, therefore, be restricted to areas most likely to achieve 

schistosomiasis elimination (Knopp et al. 2012). Behavioural modification in conjunction 

with improvements in water sources and sanitation is another possible approach, although 

provision of safe water for washing, bathing, and recreation, while effective, is expensive 

(Colley et al. 2014;Grimes et al. 2014). 

Our Bayesian geostatistical models identified several environmental predictors that are 

related to increased risk of Schistosoma spp infection, such as bodies of water (exposure to 

contaminated water is an important risk factor), temperature, and precipitation for both 

species, and land cover for S. mansoni. Negative disease risks were found for substantial 

distance from the nearest body of water and barren land cover. Temperature and precipitation 

affected transmission in more complex ways, by affecting the intermediate host snail 

population and human activities related to water contact. Low temperature limits snail 

distribution and cercaria maturation (McCreesh & Booth 2013), and high temperature might 

negatively affect fecundity and survival of adult snails (Appleton 1977). High rainfall might 
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increase the risk of transmission, but might also decrease it, for example by creating fast-

flowing water unsuitable for cercaria or snail survival (McCreesh & Booth 2013). 

Various socioeconomic factors (e.g., wealth or poverty, education, and occupation) affect 

the behaviour of people (Gazzinelli et al. 2006;Huang & Manderson 2005;Ximenes et al. 

2003) and, therefore, their exposure to disease. Improved water sources and sanitation are 

particularly important in schistosomiasis prevention of morbidity and in sustaining the 

benefits of chemotherapy (Aagaard-Hansen, Mwanga, & Bruun 2009;Asaolu & Ofoezie 

2003;Steinmann et al. 2006;Utzinger et al. 2003). We found that areas with high infant 

mortality, which might reflect low socioeconomic status, generally had high risk of 

S. mansoni infection. We did not, however, find significant correlations between disease risk 

and improved water sources or sanitation. Socioeconomic factors are more likely to be 

associated with small-scale variation in disease risk, in contrast to climatic factors, which lead 

to large-scale variations. Our survey data, however, are aggregated at cluster level and 

variation within clusters, where socioeconomic or behavioural factors are most likely to have 

effects, cannot be estimated. 

WHO produced a global distribution map of schistosomiasis and country-specific disease 

risk estimates for 2009 (WHO 2011c) and Schur and colleagues presented model-based 

Schistosoma spp prevalence estimates for east and west Africa in 2010 (Schur et al. 

2011a;Schur et al. 2011b). Our analysis includes notably more data from later surveys and our 

findings suggest that the disease risk is lower than was estimated previously. For example, for 

countries in east and west Africa we identified 5,940 and 4,961 surveys for S. mansoni and 

S. haematobium, respectively, that were done after 2000, compared with 941 and 857 surveys 

included in the analysis of Schur and colleagues (Schur et al. 2011a;Schur et al. 2011b). 

Additionally, we included survey data obtained after 2000 from countries that had not been 

represented in previous analyses, such as Benin, Burundi, Eritrea, Guinea, Rwanda, Sierra 

Leone, and Togo. 

Clements and colleagues produced model-based geostatistical maps of S. haematobium 

risk in Burkina Faso, Mali, Niger, and northwest Tanzania (Clements et al. 2006;Clements et 

al. 2008a), and of S. mansoni for the Great Lakes region of east Africa (Clements et al. 2010a). 

Our findings support their results. Our estimates also confirm previously model-based maps 

for Sierra Leone and Ghana (Hodges et al. 2012;Koroma et al. 2010;Soares Magalhães et al. 

2011). Compared with S. haematobium risk maps modeled for Nigeria by Ekpo and 

colleagues (Ekpo et al. 2013), although we obtained similar patterns overall in Nigeria, we 

estimated higher risks in some southern areas and lower risks around the Lake Chad basin. 

These differences could be due to the larger number of surveys on which our analysis was 

based. Indeed, we identified surveys done in 1,210 unique locations for Nigeria, in 927 of 

which the surveys were done after 2000, compared with 368 unique locations in the study of 
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Ekpo and colleagues (Ekpo et al. 2013). Survey data from countries bordering Nigeria might 

have provided additional information in our analysis. 

Although we tried to collect all available survey data on Schistosoma spp infection in sub-

Saharan Africa, there are some large surveys with location-specific data to which we were 

unable to get access, such as the national schistosomiasis survey done in Mozambique in 

2005–07 (Augusto et al. 2009). Most of the survey data we obtained for Mozambique were 

collected before 1980, but our estimated risk maps have similar patterns to those in the 

distribution maps of the 2005–07 national survey (Augusto et al. 2009), with high 

S. haematobium prevalence in the northern part and low S. mansoni prevalence in most of the 

country. We identified no published data for the northwest of South Sudan on S. haematobium 

prevalence. The Global Atlas of Helminth Infection website (http://www.thiswormyworld.org) 

reports unpublished survey data from the areas with low observed prevalence, but these are 

not available in an open-access format and, hence, we could not include them in our analysis. 

Our predictions for this region indicate a low to moderate risk of S. haematobium infection 

(less than 25%). 

For countries or regions with scarce or old survey data, our estimates should be interpreted 

cautiously. For example, few surveys are available for western Democratic Republic of the 

Congo, which might explain the high uncertainty in the estimates of that region. The infection 

risk around the Lake Chad basin of Nigeria could be underestimated because very few 

surveys have been done since 2000 due to insurgency and insecurity. We could find no 

location-specific surveys for Lesotho or any S. haematobium surveys for Djibouti. 

Additionally, we identified no or very few surveys done after 2000 in Botswana, Central 

African Republic, Chad, Congo, Equatorial Guinea, Gabon, Guinea-Bissau, Madagascar, 

Namibia, and Somalia. National surveys in those countries would be helpful to understand the 

current disease situation more clearly. We do not have enough data to estimate when the 

prevalence decline started after 2000 and, therefore, we did not use more refined time-frames 

to estimate the temporal trends. This limitation might have led to overestimation of the 

infection risk in some areas. 

We extracted data from sources that clearly indicated study designs and conduct of 

surveys and adhered to exclusion criteria to remove data that were potential sources of bias. 

For example, we excluded studies done in populations or subgroups not representative of the 

general population. Data are, however, obtained from studies with different designs, different 

diagnostic methods, and covering different age groups. Additionally, the distribution of the 

surveys varies across time periods and the survey locations might over-represent endemic 

areas. Statistical models can address some differences in data characteristics (Diggle, Menezes, 

& Su 2010;Wang et al. 2008), but there is a need to do national surveys repeatedly for 

monitoring and assessment of control interventions. In many countries in Africa, malaria 

control programmes do national surveys to assess interventions, but many neglected tropical 

disease programmes lack the resources to collect representative data and might unnecessarily 



104                                                                Chapter 5. Schistosomiasis, sub-Saharan Africa 

 
 

overtreat populations by relying on historical data. An important risk of overtreatment is 

resistance leading to reduced drug efficacy (Wang et al. 2012). Our climatic, environmental, 

and socioeconomic predictors were extracted from well known sources and widely used 

databases (Appendix) and, therefore, we are confident that the data quality is good. 

To estimate schistosomiasis prevalence we assumed independence of S. haematobium and 

S. mansoni infection risk. This approach is supported by Chammartin and colleagues 

(Chammartin et al. 2014b), who analysed data from a 2012 national survey in Côte d’Ivoire 

and reported that species co-infection is less likely to occur other than simply by chance. By 

contrast, Meurs and colleagues (Meurs et al. 2012) reported high co-infection in some villages 

of Senegal. Although in areas with high species co-infection risk we might have 

overestimated the schistosomiasis prevalence, our calculations of co-infection risk for a range 

of values quantifying species dependence showed that the independence assumption has very 

little effect on the overall infection risk. 

As assessment of the quality of different diagnostic approaches and procedures is difficult, 

and to avoid discarding surveys with incomplete information about the diagnostic method, we 

assumed similar diagnostic sensitivity and specificity across surveys, which might have led to 

bias and could explain some of the regional variation in predicted prevalence (Booth et al. 

2003). Moreover, most of survey data were aggregated across different age groups. 

Nevertheless, we distinguished between community-based and school-based surveys and, 

therefore, were able to calculate risk estimates for the entire population and school-aged 

children, respectively. Our geostatistical model assumed a stationary spatial process across 

sub-Saharan Africa, but predictors might affect the disease risk differently in regions with 

different ecological, socioeconomic, and health system profiles. Treatment coverage data are 

available from WHO yearly from 2006 onwards, aggregated at the country level. 

Unfortunately the survey data are not high-resolution temporally and do not allow estimation 

of the annual schistosomiasis risk that can be related to the treatment coverage we have 

already discussed. 

Geostatistical modeling enabled us to estimate the geographical distribution of 

Schistosoma spp infection risk across sub-Saharan Africa, by prevalence, number of infected 

individuals, and doses needed for prevention of morbidity. Our overall estimate for number of 

doses of praziquantel needed per year is similar to that reported by WHO, but at the national 

level these estimates differed substantially for several countries. Nevertheless, our estimates 

provide information that will help national control programmes and international donors to 

support schistosomiasis control activities in Africa. 
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5.5 Appendix 

5.5.1 Remote sensing data sources 

Source Data type Data period 
Temporal 

resolution 

Spatial 

resolution 

MODIS/Terra
b
 LST

l
 2000-2012 8 days 1 km 

MODIS/Terra
b
 NDVI

m
 2000-2012 16 days 1 km 

MODIS/Terra
b
 Land cover 2001-2004 Yearly 1 km 

WorldClim
c
 Elevation 2000 - 1 km 

WorldClim
c
 Bioclimatic variables 1950-2000 - 1 km 

SWBD
d
 Water bodies 2000 - 30 m 

Köppen-Geiger
e
 Climate zones 1976-2000 - 50 km 

ISRIC
f
 pH in water - - 10 km 

Atlas of the 

Biosphere
g
 

Soil moisture 1950-1999 - 50 km 

WorldPop
h
 

Age and sex specific 

grid population 
2010 - 1 km 

SEDAC
i
 HII

n
 1995-2004 - 1 km 

SEDAC
i
 Urban extents 1990-2000 - 1 km 

SEDAC
i
 GDP

o
 1990, 2025 - 25 km 

SEDAC
i
 IMR

p
 2000 - 4 km 

DHS, MICS, 

WHS, and 

LSMS
j
 

Sanitation 1991-2013 - 
Household 

surveys 

DHS, MICS, 

WHS, and 

LSMS
j
 

Drinking-water sources 1991-2013 - 
Household 

surveys 

GADM
k
 

Geographical 

administrative 

boundaries 

2012 - - 

a
 Land cover data accessed in June 2011 and other data asccessed in November 2013. 

b
 Moderate Resolution Imaging Spectroradiometer (MODIS)/Terra, available at: http://modis.gsfc.nasa.gov/. 

c 
Available at: http://www.worldclim.org/current. 

d 
Shuttle Radar Topography Mission Water Body Data (SWBD), available at: 

 

http://gis.ess.washington.edu/data/vector/worldshore/index.html. 
e 
World Maps of Köppen-Geiger climate classification, available at: http://koeppen-geiger.vu-

wien.ac.at/shifts.htm. 
f 
International Soil Reference and Information Center, available at: http://www.isric.org/data/isric-wise-derived-

soil-properties-5-5-arc-minutes-global-grid-version-12. 
g 
Available at: http://www.sage.wisc.edu/atlas/maps.php?datasetid=23&includerelatedlinks=1&dataset=23. 

h 
The WorldPop project, available at: http://www.worldpop.org.uk/. 

i 
Socioeconomic data and applications center, available at: http://sedac.ciesin.org/. 

j 
Demographic and Health Surveys (DHS), available at: http://dhsprogram.com/; Multiple Cluster Indicator 

Surveys (MICS), available at: http://www.childinfo.org/mics_available.html; World Health Surveys (WHS), 

available at: http://www.who.int/healthinfo/survey/en/; and Living Standards Measurement Study (LSMS), 

available at: http://iresearch.worldbank.org/lsms/lsmssurveyFinder.htm. 
k 
Global Administrative Areas database, available at: http://www.gadm.org/. 

l 
Land surface temperature (LST) day and night. 

m 
Normalized difference vegetation

 
index. 

n 
Human influence index. 

o 
Gross domestic product. 

p 
Infant mortality rates. 

http://www.worldclim.org/current
http://gis.ess.washington.edu/data/vector/worldshore/index.html
http://koeppen-geiger.vu-wien.ac.at/shifts.htm
http://koeppen-geiger.vu-wien.ac.at/shifts.htm
http://www.isric.org/data/isric-wise-derived-soil-properties-5-5-arc-minutes-global-grid-version-11.
http://www.isric.org/data/isric-wise-derived-soil-properties-5-5-arc-minutes-global-grid-version-11.
http://www.sage.wisc.edu/atlas/maps.php?datasetid=23&includerelatedlinks=1&dataset=23
http://sedac.ciesin.org/


5.5 Appendix  107 

 

5.5.2 Processing of environmental and socioeconomic data 

Land surface temperature (LST) and normalized difference vegetation index (NDVI) were 

averaged over the period of 2000-2012. Land cover was summarised by the most frequent 

category within the pixel that the point belonged over the period of 2001-2004. We combined 

similar land cover classes and re-grouped them into seven categories: (i) grasslands; (ii) 

forests; (iii) scrublands and savannas; (iv) croplands; (v) urban; (vi) wet areas; and (vii) 

barren areas. As data for infant mortality rates (IMR) of South Sudan is missing from the 

socioeconomic data and applications center (SEDAC), we replaced it with the average IMR of 

the country in 2000 obtained from the World Bank (http://data.worldbank.org/). We compiled 

all available household data from Demographic and Health Surveys (DHS), Multiple Cluster 

Indicator Surveys (MICS), World Health Surveys (WHS), and Living Standards Measurement 

Study (LSMS), and extracted geo-referenced water and sanitation (WASH) indicators, such as 

proportion of households with improved drinking-water sources and sanitation adhering to 

definitions utilised by the WHO/UNICEF Joint Monitoring Programme (JMP) 

(http://www.wssinfo.org/definitions-methods/watsan-categories/). Overall, we obtained 

WASH indicators at around 38,000 locations across Africa covering the period of 1991-2013. 

Bayesian geostatistical logistic regression models considering urban/rural as a covariate were 

fitted on the WASH indicators and model-based predictions were obtained on a 5 × 5 km grid 

over Africa. Environmental and socioeconomic data at the survey locations were extracted 

using Visual Fortran version 6.0 (Digital Equipment Corporation; Maynard, USA). As the 

outcome of interest (i.e. infection prevalence) is not available at the resolution of the 

covariates for surveys aggregated over administration divisions of level two or three, we 

linked the centroid of those divisions with the average value of each covariate within the 

divisions. 

5.5.3 Geostatistical model fitting 

Bayesian geostatistical logistic regression models were fitted to obtain spatially explicit 

Schistosoma infection estimates by introducing location-specific random effects. Let iY , in  

and ip  be the number of positive individuals, the number of examined individuals and the 

probability of infection at location i  ( i  = 1, 2,…, L ), respectively. iY  was assumed to be 

generated by a binominal distribution ~ ( , )i i iY Bn p n . In particular, logit( ) T

i i i ip X      , 

where iX  and   are the vector of covariates and coefficients, respectively. i  and i  

indicate location-specific spatial and exchangeable random effects, respectively. We assumed 

1( ,..., )T

L   is arising from a zero-mean multivariate normal distribution ~ (0, )MVN   

with a Matérn covariance matrix 
2 1( ) ( ) / ( ( )2 )ij sp ij ijd K d 

       . ijd  is the Euclidean 

distance between locations i  and j ,   is a scaling parameter,   is a smoothing parameter 

fixed to 1, and K  denotes the modified Bessel function of second kind and order  . The 
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spatial range 8 /   is regarded as the distance that spatial correlation becomes negligible 

(<0.1). We assumed i  is arising from a zero-mean normal distribution 
2~ (0, )i nonspN  . A 

Bayesian inferential framework was adopted to estimate the parameters as well as 

hyperparameters. For regression coefficients, non-informative normal distribution priors 

0 , ~ (0,1000)k N   are used. The priors used for hyper parameters sp
 and   were 

log( ) ~ log (0,100)sp normal
 and log( ) ~ log (0,100)normal   respectively, where 2 2 21/ (4 )sp sp    

and 
 

8 /  . To assess model sensitivity to the prior specification, we tried alternative 

prior distributions for sp  and   such as log( ) ~ log (0,10)sp normal  and 

log( ) ~ log (0,10)normal . The model estimates were almost the same. Model fitting was 

undertaken in INLA by using the homonymous R-package (available at www.r-inla.org). 

5.5.4 Bayesian variable selection 

We proposed normal mixture of inverse gammas priors for coefficients of continuous 

covariates, which is constructed by two components: a narrow spike that shrinks coefficients 

to zero and a wide slab that moves coefficients away from zero. The covariates are selected if 

the wide slab component is predominant in the posterior distribution (i.e., posterior median of 

slab component is greater than 0.5). For categorical variables, we used an adapted version of 

the above prior to allow simultaneously inclusion or exclusion of all coefficients related to the 

variable. Furthermore, the variable selection procedure enabled to select a maximum of one 

predictor from each of the highly correlated variable groups and to identify the best functional 

form (i.e., continuous or categorical) of each continuous covariate. The following paragraphs 

show the details. 

Highly correlated predictors were grouped together into G  groups. Variable selection was 

carried out using a Bayesian logistic regression model with exchangeable random effects, that 

is, where 2iT  and 3iT  are indicator variables corresponding to the second and third categories 

of survey year, respectively, and i  is an exchangeable random effect as described above. We 

introduced ( )gj
I  as the indicator for the 

thj  predictor in group .g  For groups with more than 

one predictor, we assumed that ( ) ( ) ( )1 1
( ,..., , )g g gJ J
I I I

  follows a multinomial distribution with 

( ) 1gJ   categories ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1
( ,..., , ) ~ ( ,..., , ,1)g g g g g gJ J J J
I I I multi   

 
, where 

( )gJ  is the total 

number of predictors, ( ) 1gJ
I


 indicates the absence of any predictor in group .g  We assume 

that the probabilities related to the indicators of the predictors follow a Dirichlet distribution, 

that is ( ) ( ) ( )1 1
( ,..., , ) ~ (1,...,1,1)g g gJ J

dirch  


. Thus, for each group, a maximum of one 

predictor can be selected. For groups with just one predictor, we assumed ( ) ( )~ ( )g gj j
I bern  , 

where ( ) ~ (1,1)gj
beta . 
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We proposed a normal mixture of inverse Gammas (NMIG) prior for ( )gj
 , that is 

( ) ( )

2~ (0, )g gj j
N  , where ( ) ( ) ( )

2

0~ ( , ) (1 ) ( , )g g g
B B B Bj j j

I IG a b I IG a b       and ( , ) (5,25)
B B

a b    

are fixed parameters of non-informative inverse-gamma distribution and 0 0.00025   is a 

small positive constant. The above prior for ( )gj
  is called a mixed spike and slab prior as one 

component of the mixture 0 ( , )
B B

IG a b   (when ( ) 0gj
I  ) is a narrow spike around zero that 

strongly shrinks ( )gj
  to zero, while the other component ( , )

B B
IG a b   (when ( ) 1gj

I  ) is a 

wide slab that moves ( )gj
  away from zero. For coefficients of categorical variables, normal 

mixture of inverse Gammas with parameter expansion (peNMIG) priors were applied, which 

allows simultaneous including or excluding a block of coefficients by improving “shrinkage” 

properties. Let ( )gj h
  be the regression coefficient for the thh  category of the 

thj  predictor in 

group ,g  ( ) ( ) ( )g g gj h j j h
    where ( )gj

  follows a NMIG prior described above and 

( ) ( )~ ( ,1)g gj h j h
N m  with prior mean ( )gj h

m  either 1 or -1 in equal probability, allowing to shrink 

( )| |gj h
  towards 1. In this way, ( )gj

  models the overall contribution of the 
thj  predictor in 

group ,g  and ( )gj h
  estimates the effects of each category for the predictors (Chammartin et al. 

2013b). To select either categorical or linear form of a continuous variable, we introduced 

another indicator dI . Let ( ) 1gj d
  and ( ) 2gj d

  indicate coefficients of the categorical and linear 

form of the 
thj  predictor in group ,g  respectively. Then for continuous predictor 

( )g

jiX , we 

have ( ) ( ) ( )

( ) ( ) ( )

1 2
(1 )g g g

g g g

ji d ji d jij j d j d
X I Z I R     , where 

( )g

jiZ  and 
( )g

jiR are categorical and linear 

form of the predictor, respectively, and the prior ~ (0.5)dI bern . Fitting was undertaken 

through Markov chain Monte Carlo (MCMC) simulation in OpenBUGS version 3.0.2 

(Imperial College and Medical Research Council; London, UK). We assessed convergence by 

the Gelman and Rubin diagnostic(Gelman & Rubin 1992), using the coda library in R 

(Plummer et al. 2006). 

  



110                                                                Chapter 5. Schistosomiasis, sub-Saharan Africa 

 
 

5.5.5 Overview of survey data in sub-Saharan Africa 

Country 

Schistosoma haematobium 

Relevant 

papers 

Total Mean 

prevalence 

(%) 

Survey type 

Period 

Year of Survey 

Survey/ 

location 

Survey/location Survey/location 

School Community <1980 1980-2000 >=2000 

Angola 13 120/94 34.2 22/22 98/72 1952-2012 118/93 0/0 2/1 

Benin 8 39/38 38.8 30/29 9/9 1952-2012 2/2 11/11 26/25 

Botswana 2 24/22 0.9 9/8 15/14 1965-1983 15/15 9/8 0/0 

Buikina Faso 22 482/286 31.8 293/190 189/96 1950-2008 182/102 115/108 185/94 

Burundi 1 22/22 0.0 22/22 0/0 2007-2007 0/0 0/0 22/22 

Cameroon 33 898/784 14.6 765/698 133/86 1950-2011 33/23 505/467 360/345 

Central African 

Repbulic 
3 32/31 12.2 0/0 32/31 1950-1971 32/31 0/0 0/0 

Chad 4 18/18 19.8 12/12 6/6 1950-1993 6/6 12/12 0/0 

Congo 12 97/68 25.3 70/50 27/18 1962-1992 27/22 70/55 0/0 

Côte d’Ivoire 24 360/255 16.8 260/162 100/93 1970-2013 39/35 183/109 138/123 

DR Congo 11 133/99 20.8 103/81 30/18 1950-2010 38/23 86/67 9/9 

Djibouti 0 - - 0 0 - 0 0 0 

Equatorial Guinea 3 3/3 0.0 0/0 3/3 1987-1988 0/0 3/3 0/0 

Eritrea 2 48/46 0.0 46/45 2/1 1952-2002 8/7 0/0 40/40 

Ethiopia 21 114/71 17.7 62/39 52/32 1952-2011 35/31 71/40 8/8 

Gabon 9 19/10 29.8 9/4 10/6 1966-2013 6/4 7/4 6/4 

Ghana 28 303/271 26.9 234/221 69/50 1950-2010 72/57 55/53 176/173 

Guinea 5 69/57 15.2 58/48 11/9 1995-2011 0/0 33/29 36/28 

Guinea-Bissau 2 21/20 46.5 0/0 21/20 1950-1983 20/19 1/1 0/0 

Kenya 64 649/511 19.5 535/437 114/74 1970-2013 78/70 179/136 392/338 

Lesotho 0 - - 0 0 - 0 0 0 

Liberia 8 126/80 21.6 12/3 114/77 1968-1987 17/15 109/72 0/0 

Madagascar 13 270/241 17.4 43/27 227/214 1952-2002 223/209 42/34 5/4 

Malawi 16 123/114 37.5 103/98 20/16 1952-2012 6/6 70/66 47/45 

Mali 34 978/600 32.0 54/50 924/550 1950-2008 22/19 916/554 40/37 

Mauritania 11 118/86 35.3 82/60 36/26 1960-2011 63/51 29/26 26/20 

Mozambique 11 144/142 67.8 11/11 133/131 1953-2008 131/131 4/4 9/7 

Namibia 4 38/32 13.0 10/7 28/25 1965-1987 23/22 15/13 0/0 

Niger 57 789/561 34.0 574/420 215/141 1950-2010 17/16 577/402 195/172 

Nigeria 188 1488/1210 21.8 1074/914 414/296 1952-2012 75/46 379/269 1034/927 

Rwanda 1 30/30 0 30/30 0/0 2008-2008 0/0 0/0 30/30 

Senegal 53 660/544 25.7 354/315 306/229 1958-2009 35/32 257/222 368/325 

Sierra Leone 8 64/58 27.1 11/10 53/48 1950-2010 10/10 41/36 13/12 

Somalia 9 68/59 46.1 9/5 59/54 1952-1987 42/37 26/24 0/0 

South Africa 29 193/151 39.3 179/143 14/8 1955-2010 117/104 61/34 15/13 

Sudan & South 

Sudan 
26 520/294 9.4 221/134 299/160 1958-2013 9/7 185/170 326/119 

Swaziland 3 6/6 8.1 5/5 1/1 1967-2010 1/1 0/0 5/5 

Tanzania 113 642/535 29.8 513/444 129/91 1950-2013 130/106 300/253 212/196 

The Gambia 6 88/45 35.2 0/0 88/45 1953-1983 85/42 3/3 0/0 

Togo 10 1197/1125 20.4 1137/1084 60/41 1952-2009 42/40 61/59 1094/1052 

Uganda 6 94/62 3.2 76/48 18/14 1957-2009 16/13 2/2 76/50 

Zambia 32 222/203 26.6 194/182 28/21 1969-2011 43/38 71/68 108/104 

Zimbabwe 49 468/434 32.1 412/394 56/40 1953-2011 18/15 219/213 231/212 

Total 917 11777/9318 24.7 7634/6452 4143/2866 1950-2013 1836/1500 4707/3627 5234/4540 

(Continues in next page) 

  



5.5 Appendix  111 

 

(Continued from previous page) 

Country 

Schistosoma mansoni 

Relevant 

papers 

Total Mean 

prevalence 

(%) 

Survey type 

Period 

Year of Survey 

Survey/ 

location 

Survey/location Survey/location 

School Community <1980 1980-2000 >=2000 

Angola 2 18/18 0.8 0/0 18/18 1956-1965 18/18 0/0 0/0 

Benin 7 46/37 10.6 26/25 20/12 1987-2012 0/0 10/10 36/27 

Botswana 5 35/27 29.3 14/9 21/18 1965-2001 17/16 17/12 1/1 

Buikina Faso 11 224/121 5.7 192/99 32/22 1973-2008 31/21 5/5 188/95 

Burundi 10 109/59 15.5 66/34 43/25 1952-2007 1/1 86/37 22/22 

Cameroon 22 825/757 6.9 762/706 63/51 1962-2011 13/11 467/453 345/332 

Central African 

Repbulic 
2 2/2 30.3 0/0 2/2 1950-1971 2/2 0/0 0/0 

Chad 3 7/6 12.1 0/0 7/6 1967-2006 6/5 0/0 1/1 

Congo 1 2/2 0.0 0/0 2/2 1965-1965 2/2 0/0 0/0 

Côte d’Ivoire 37 646/521 30.6 547/432 99/89 1972-2013 21/20 133/115 492/424 

DR Congo 25 202/159 32.7 112/91 90/68 1950-2011 40/29 147/117 15/15 

Djibouti 1 1/1 74.3 0/0 1/1 1998-1998 0/0 1/1 0/0 

Equatorial Guinea 2 3/2 6.2 0/0 3/2 1987-1989 0/0 3/2 0/0 

Eritrea 4 50/47 8.4 47/45 3/2 1952-2002 9/8 1/1 40/40 

Ethiopia 92 659/511 20.5 302/239 357/272 1952-2013 177/144 384/335 98/85 

Gabon 1 1/1 0.0 0/0 1/1 1992-1992 0/0 1/1 0/0 

Ghana 8 97/96 3.4 85/85 12/11 1956-2008 10/9 9/9 78/78 

Guinea 5 67/57 35.0 57/48 10/9 1995-2011 0/0 31/29 36/28 

Guinea-Bissau 1 1/1 0.7 0/0 1/1 1983-1983 0/0 1/1 0/0 

Kenya 62 1440/1088 19.1 1385/1051 55/37 1967-2013 60/55 160/108 1220/957 

Lesotho 0 - - 0 0 - 0 0 0 

Liberia 6 101/73 16.8 10/4 91/69 1978-1987 12/12 89/67 0/0 

Madagascar 23 550/473 15.9 165/114 385/359 1951-2012 378/358 171/126 1/1 

Malawi 8 54/54 11.5 44/44 10/10 1977-2012 3/3 21/21 30/30 

Mali 24 923/587 15.1 77/73 846/514 1974-2006 16/16 838/517 69/66 

Mauritania 4 35/23 10.2 35/23 0/0 1994-2011 0/0 20/17 15/9 

Mozambique 7 135/132 8.6 1/1 134/131 1953-2004 131/131 0/0 4/1 

Namibia 4 38/32 34.6 10/7 28/25 1965-1987 23/22 15/13 0/0 

Niger 11 231/204 2.5 182/164 49/40 1982-2010 0/0 69/63 162/150 

Nigeria 56 852/784 2.2 731/685 121/99 1959-2011 21/18 81/73 750/700 

Rwanda 3 33/33 3.8 32/32 1/1 1951-2008 1/1 0/0 32/32 

Senegal 34 189/158 20.5 33/29 156/129 1961-2012 5/5 129/109 55/50 

Sierra Leone 10 112/106 17.1 68/65 44/41 1984-2011 0/0 30/26 82/81 

Somalia 3 10/9 0 4/3 6/6 1952-1986 8/7 2/2 0/0 

South Africa 21 114/89 23.6 99/81 15/8 1955-2005 103/78 10/10 1/1 

Sudan & South 

Sudan 
30 348/291 23.8 149/133 199/158 1971-2010 47/34 178/166 123/96 

Swaziland 1 1/1 15.2 1/1 0/0 1967-1967 1/1 0/0 0/0 

Tanzania 66 317/273 19.5 220/200 97/73 1954-2012 80/62 87/73 150/150 

The Gambia 2 5/5 28.8 0/0 5/5 1956-1992 4/4 1/1 0/0 

Togo 9 1195/1121 3.5 1138/1082 57/39 1976-2009 36/34 65/61 1094/1052 

Uganda 54 815/645 23.6 631/513 184/132 1957-2012 22/19 71/54 722/607 

Zambia 22 138/126 9.8 119/114 19/12 1969-2011 16/15 25/23 97/92 

Zimbabwe 31 430/408 10.9 389/376 41/32 1964-2010 17/14 196/194 217/204 

Total 701 11061/9140 14.8 7733/6608 3328/2532 1950-2013 1331/1175 3554/2852 6176/5427 
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5.5.6 Location type, diagnostic methods, and incomplete information for schistosomiasis 

survey data in sub-Saharan Africa 

Country 

Schistosoma haematobium 

Location type## Diagnostic method* (%) Missing information*** 

Point District# Sedi Filtr Cen RS NS Study year 
Number of 

examined 

Angola 106/86 14/8 24.2 0.7 75.2 0.0 0.0 21 (17.5%) 42 (35.0%) 

Benin 36/35 3/3 0.0 74.4 14.0 0.0 11.6 13 (33.3%) 0 (0.0%) 

Botswana 24/22 0/0 57.7 0.0 34.6 0.0 7.7 0 (0.0%) 0 (0.0%) 

Buikina Faso 481/286 1/0 0.6 16.7 25.1 19.1 38.5 14 (2.9%) 31 (6.4%) 

Burundi 22/22 0/0 0.0 100.0 0.0 0.0 0.0 0 (0.0%) 0 (0.0%) 

Cameroon 890/776 8/8 1.5 46.0 5.7 43.5 3.2 3 (0.3%) 54 (6.0%) 

Central African Repbulic 7/6 25/25 0.0 0.0 75.8 3.0 21.2 2 (6.3%) 0 (0.0%) 

Chad 18/18 0/0 2.5 10.0 42.5 2.5 42.5 0 (0.0%) 0 (0.0%) 

Congo 95/66 2/2 0.0 26.1 25.2 48.7 0.0 2 (2.1%) 1 (1.0%) 

Côte d'Ivoire 360/255 0/0 0.0 29.6 8.5 59.5 2.5 2 (0.6%) 4 (1.1%) 

DR Congo 133/99 0/0 5.2 0.0 24.9 67.1 2.9 4 (3.0%) 5 (3.8%) 

Djibouti 0 0 0.0 0.0 0.0 0.0 0.0 0 0 

Equatorial Guinea 3/3 0/0 0.0 100.0 0.0 0.0 0.0 1 (33.3%) 0 (0.0%) 

Eritrea 48/46 0/0 0.0 83.3 16.7 0.0 0.0 0 (0.0%) 0 (0.0%) 

Ethiopia 107/64 7/7 5.7 19.7 34.4 31.2 9.0 9 (7.9%) 15 (13.2%) 

Gabon 18/10 1/0 0.0 100.0 0.0 0.0 0.0 5 (26.3%) 3 (15.8%) 

Ghana 277/248 26/23 6.3 56.6 27.5 6.0 3.6 41 (13.5%) 17 (5.6%) 

Guinea 69/57 0/0 15.7 33.7 42.7 1.1 6.7 0 (0.0%) 0 (0.0%) 

Guinea-Bissau 21/20 0/0 56.1 0.0 41.5 0.0 2.4 0 (0.0%) 0 (0.0%) 

Kenya 643/508 6/3 0.6 38.5 30.1 10.5 20.4 39 (6.0%) 36 (5.5%) 

Lesotho 0 0 0.0 0.0 0.0 0.0 0.0 0 0 

Liberia 125/79 1/1 0.0 54.5 23.9 0.0 21.6 0 (0.0%) 50 (39.7%) 

Madagascar 270/241 0/0 0.7 17.4 0.0 1.4 80.6 14 (5.2%) 8 (3.0%) 

Malawi 116/108 7/6 0.0 34.1 22.0 43.4 0.6 5 (4.1%) 7 (5.7%) 

Mali 976/599 2/1 0.2 93.4 0.3 0.4 5.7 142 (14.5%) 121 (12.4%) 

Mauritania 118/86 0/0 0.0 43.4 10.3 36.0 10.3 11 (9.3%) 0 (0.0%) 

Mozambique 105/103 39/39 83.5 15.8 0.6 0.0 0.0 1 (0.7%) 0 (0.0%) 

Namibia 38/32 0/0 60.5 0.0 0.0 0.0 39.5 0 (0.0%) 9 (23.7%) 

Niger 782/554 7/7 0.6 79.3 0.0 11.1 9.0 18 (2.3%) 45 (5.7%) 

Nigeria 1432/1163 56/47 11.8 10.8 16.0 51.6 9.9 225 (15.1%) 128 (8.6%) 

Rwanda 0/0 30/30 0.0 96.8 0.0 0.0 3.2 0 (0.0%) 0 (0.0%) 

Senegal 648/532 12/12 0.4 43.8 15.8 36.6 3.5 107 (16.2%) 42 (6.4%) 

Sierra Leone 63/57 1/1 14.9 1.4 33.8 1.4 48.7 8 (12.5%) 35 (54.7%) 

Somalia 68/59 0/0 68.8 2.6 27.3 0.0 1.3 2 (2.9%) 25 (36.8%) 

South Africa 178/139 15/12 18.0 21.9 11.8 22.8 25.4 19 (9.8%) 81 (42.0%) 

Sudan & South Sudan 515/290 5/4 20.0 9.1 18.4 0.2 52.4 30 (5.8%) 76 (14.6%) 

Swaziland 6/6 0/0 0.0 0.0 71.4 0.0 28.6 0 (0.0%) 0 (0.0%) 

Tanzania 617/518 25/17 0.6 55.2 23.3 16.2 4.9 43 (6.7%) 22 (3.4%) 

The Gambia 88/45 0/0 0.0 14.6 77.1 1.0 7.3 2 (2.3%) 1 (1.1%) 

Togo 1175/1105 22/20 0.0 7.9 0.4 91.0 0.7 6 (0.5%) 5 (0.4%) 

Uganda 94/62 0/0 2.0 89.8 3.1 0.0 5.1 3 (3.2%) 2 (2.1%) 

Zambia 210/193 12/10 7.1 47.5 25.1 18.6 1.7 43 (19.4%) 6 (2.7%) 

Zimbabwe 451/424 17/10 30.1 48.5 8.7 10.0 2.6 53 (11.3%) 166 (35.5%) 

Total 11433/9022 344/296 6.8 37.6 14.1 29.6 11.9 888 (7.5%) 1037 (8.8%) 

(Continues in next page) 
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Country 

Schistosoma  mansoni 

Location type## Diagnostic method** (%) Missing information*** 

Point District# KK Sedi Filtr Cen Con Othe NS Study year 
Number of 

examined 

Angola 15/15 3/3 5.0 0.0 0.0 0.0 95.0 0.0 0.0 0 (0.0%) 10 (55.6%) 

Benin 46/37 0/0 95.7 0.0 0.0 0.0 4.3 0.0 0.0 10 (21.7%) 4 (8.7%) 

Botswana 35/27 0/0 5.6 38.9 0.0 0.0 41.7 2.8 11.1 0 (0.0%) 4 (11.4%) 

Buikina Faso 224/121 0/0 17.8 0.0 0.0 0.0 6.6 0.0 75.6 13 (5.8%) 13 (5.8%) 

Burundi 109/59 0/0 98.7 0.0 0.0 0.0 0.7 0.7 0.0 6 (5.5%) 49 (45.0%) 

Cameroon 821/755 4/2 43.3 1.6 0.0 0.0 1.1 51.3 2.9 1 (0.1%) 32 (3.9%) 

Central African 
Repbulic 

2/2 0/0 0.0 0.0 0.0 0.0 6.3 0.0 93.8 0 (0.0%) 0 (0.0%) 

Chad 7/6 0/0 25.0 62.5 0.0 0.0 0.0 0.0 12.5 0 (0.0%) 0 (0.0%) 

Congo 2/2 0/0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0 (0.0%) 0 (0.0%) 

Côte d'Ivoire 644/521 2/0 97.2 0.0 0.0 0.2 2.3 0.2 0.2 3 (0.5%) 16 (2.5%) 

DR Congo 202/159 0/0 75.3 0.8 2.6 0.0 6.0 0.4 15.0 16 (7.9%) 16 (7.9%) 

Djibouti 1/1 0/0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0 (0.0%) 0 (0.0%) 

Equatorial Guinea 3/2 0/0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 2 (66.7%) 0 (0.0%) 

Eritrea 50/47 0/0 80.0 18.0 0.0 0.0 2.0 0.0 0.0 1 (2.0%) 1 (2.0%) 

Ethiopia 649/502 10/9 53.2 8.5 0.0 0.9 34.9 0.6 1.9 55 (8.3%) 116 (17.6%) 

Gabon 1/1 0/0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0 (0.0%) 0 (0.0%) 

Ghana 96/95 1/1 79.1 18.1 0.0 1.0 0.0 1.9 0.0 10 (10.3%) 0 (0.0%) 

Guinea 67/57 0/0 98.8 0.0 0.0 0.0 0.0 0.0 1.2 0 (0.0%) 0 (0.0%) 

Guinea-Bissau 1/1 0/0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0 (0.0%) 0 (0.0%) 

Kenya 1432/1082 8/6 92.6 2.8 0.0 0.0 3.1 0.1 1.4 33 (2.3%) 19 (1.3%) 

Lesotho 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 

Liberia 100/72 1/1 1.9 24.1 0.0 0.0 68.5 0.0 5.6 0 (0.0%) 28 (27.7%) 

Madagascar 550/473 0/0 13.4 0.3 0.0 0.0 29.6 0.6 56.0 9 (1.6%) 10 (1.8%) 

Malawi 52/52 2/2 78.2 2.3 0.0 0.0 0.0 18.4 1.2 3 (5.6%) 1 (1.9%) 

Mali 884/549 39/38 89.0 0.0 0.0 0.0 0.0 0.3 10.7 96 (10.4%) 84 (9.1%) 

Mauritania 35/23 0/0 71.4 0.0 0.0 0.0 0.0 26.5 2.0 0 (0.0%) 0 (0.0%) 

Mozambique 96/93 39/39 10.1 10.8 2.0 0.0 77.0 0.0 0.0 0 (0.0%) 0 (0.0%) 

Namibia 38/32 0/0 0.0 0.0 26.3 0.0 73.7 0.0 0.0 0 (0.0%) 9 (23.7%) 

Niger 231/204 0/0 75.8 0.0 0.0 0.0 17.5 1.2 5.6 1 (0.4%) 30 (13.0%) 

Nigeria 840/772 12/12 81.8 4.9 0.0 0.3 6.2 1.5 5.3 55 (6.5%) 36 (4.2%) 

Rwanda 1/1 32/32 97.0 0.0 0.0 0.0 0.0 0.0 3.0 0 (0.0%) 3 (9.1%) 

Senegal 189/158 0/0 83.2 0.0 0.0 0.0 0.5 1.4 15.0 4 (2.1%) 1 (0.5%) 

Sierra Leone 95/89 17/17 82.2 0.0 0.0 2.5 0.9 0.9 13.6 13 (11.6%) 20 (17.9%) 

Somalia 10/9 0/0 0.0 50.0 0.0 0.0 30.0 20.0 0.0 0 (0.0%) 0 (0.0%) 

South Africa 105/81 9/8 2.9 0.0 11.0 14.7 25.7 27.9 17.7 16 (14.0%) 27 (23.7%) 

Sudan & South 

Sudan 
343/287 5/4 64.1 0.5 0.0 0.0 0.0 0.0 35.3 34 (9.8%) 65 (18.7%) 

Swaziland 1/1 0/0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0 (0.0%) 0 (0.0%) 

Tanzania 308/265 9/8 68.7 10.0 0.3 1.3 7.4 4.2 8.2 26 (8.2%) 3 (0.9%) 

The Gambia 5/5 0/0 20.0 80.0 0.0 0.0 0.0 0.0 0.0 0 (0.0%) 0 (0.0%) 

Togo 1174/1102 21/19 99.1 0.3 0.0 0.0 0.4 0.1 0.1 1 (0.1%) 0 (0.0%) 

Uganda 809/643 6/2 94.6 0.7 0.0 0.7 1.1 1.7 1.2 58 (7.1%) 17 (2.1%) 

Zambia 136/124 2/2 64.2 9.1 0.0 0.0 15.2 5.5 6.1 14 (10.1%) 3 (2.2%) 

Zimbabwe 422/403 8/5 52.6 36.2 0.0 7.7 0.7 0.9 1.8 25 (5.8%) 164 (38.1%) 

Total 10831/8930 230/210 72.8 4.2 0.3 0.7 8.3 5.0 8.8 505 (4.6%) 781 (7.1%) 

*Sedi: urine sedimentation; Filtr: urine filtration; Cen: urine centrifugation; RS: reagent strip; NS: not 

stated;**KK: Kato-Katz; Sedi: stool sedimentation; Filtr: stool filtration; Cen: stool centrifugation; Con: stool 

concentration; Othe: including FLOTAC, Faust's method and stool flotation; NS: not stated;***listed as number 

of surveys (percentage); 
##

listed as number of survey/number of unique location; 
#
administrative divisions of 

level two or three. 
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5.5.7 Variable selection using peNMIG spike-and-slab priors
#
 

#
Results are based on surveys in mainland sub-Saharan Africa; 

†
a maxiumum of one variable can be selected in 

each highly correlated group. 

  

Variables Schistosoma haematobium Schistosoma mansoni 

Group1
†
   

 Annual mean temperature - - 

 Max temperature of warmest month - - 

 Min temperature of coldest month - - 

 Mean temperature of wettest quarter - - 

 Mean temperature of driest quarter - Selected 

 Mean temperature of warmest quarter - - 

 Mean temperature of coldest quarter - - 

 LST at night Selected - 

Group 2
†
   

 Mean diurnal temperature range Selected - 

 Isothermality - - 

 Temperature seasonality - - 

 Temperature annual range - Selected 

Group 3
†
   

 Annual precipitation Selected - 

 Precipitation of wettest month - - 

 Precipitation of wettest quarter - - 

Group 4
†
   

 Precipitation of driest month - Selected 

 Precipitation of driest quarter Selected - 

Variables moderately correlated - - 

 Precipitation seasonality - Selected 

 Precipitation of warmest quarter Selected Selected 

 Precipitation of coldest quarter Selected Selected 

 LST in the day time Selected Selected 

 NDVI Selected - 

 Land cover Selected Selected 

 Elevation - Selected 

 Water distance Selected Selected 

 Climatic zones Selected - 

 pH measured in water Selected Selected 

 Soil moisture Selected Selected 

 Human influence index (HII) - - 

 Urban extents - - 

 Gross domestic product (GDP) Selected - 

 Infant mortality rates (IMR) Selected Selected 

 Proportion of improved sanitation Selected - 

 
Proportion of improved drinking-water 

sources 
- Selected 

 Survey type Selected Selected 
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5.5.8 Posterior summaries of the geostatistical model parameters for Madagascar 

Schistosoma haematobium Estimate (95% BCI) 

Survey type (school-based)†  

 Community-based -0.56 (-0.68; -0.44)‡ 

Isothermality 0.22 (-0.42; 0.85) 

Annual precipitation  (≤1000 mm)†  

 1001-1500 1.62 (0.04; 3.13)‡ 

 >1500 1.39 (-0.39; 3.10) 

Temperature seasonality 0.34 (-0.64; 1.24) 

Max temperature of warmest month 0.40 (-0.20; 0.98) 

Precipitation seasonality 1.53 (0.92; 2.17)‡ 

Climatic zone (Equatorial)†  

 Arid 0.75 (-0.58; 2.02) 

 Warm -1.88 (-3.48; -0.31)‡ 

Land cover (Grass)†  

 Forest 1.50 (0.40; 2.62)‡ 

 Shrub -0.05 (-1.28; 1.19) 

 Urban -6.99 (-33.16; 15.71) 

 Wet 1.54 (-0.85; 3.95) 

Range (km) 89.94 (35.61; 201.56) 

Spatial variance 2.16 (1.02; 4.35) 

Non-spatial variance 1.86 (1.15; 2.94) 

Schistosoma mansoni Estimate (95% BCI) 

Survey type (school-based)†  

 Community-based 0.28 (0.17; 0.39)‡ 

Mean Temperature of Coldest Quarter -0.22 (-0.84; 0.40) 

Precipitation of coldest quarter (≤28 mm)†  

 29-100 0.09 (-0.85; 0.68) 

 >100 0.53 (-0.69; 1.74) 

Land surface temperature in the day time 0.49 (-0.03; 1.02) 

Land surface temperature at night (≤15.0 ℃)†  

 15.1-17.3 0.27 (-0.44; 0.97) 

 >17.3 -0.39 (-1.34; 0.57) 

pH measured in water (≤5.15)†  

 5.16-5.35 0.95 (0.13; 1.78)‡ 

 >5.35 1.45 (0.27; 2.63)‡ 

Normalized differenced vegetation index 

(≤0.43)† 

 

 0.44-0.60 -0.66 (-1.22; -0.11)‡ 

 >0.60 -0.69 (-1.68; 0.30) 

Climatic zone (Equatorial)†  

 Arid -0.81 (-2.53; 0.88) 

 Warm 0.66 (-0.20; 1.52) 

Range (km) 143.11 (119.31; 172.59) 

Spatial variance 3.20 (2.00; 5.20) 

Non-spatial variance 2.13 (1.72; 2.63) 

BCI=Bayesian credible interval. †baseline values are reported in brackets. ‡Important effect based on 95% BCI. 

  



116                                                                Chapter 5. Schistosomiasis, sub-Saharan Africa 

 
 

5.5.9 Proportion of locations included in the Bayesian credible interval (BCI) of various 

probability coverage cut-offs (Bar plots) calculated from the posterior predicted 

distribution, and the corresponding width of BCI (Solid lines) 

 

 

5.5.10 Population-adjusted prevalence (%) and number of individuals from the entire 

population (×10
3
) infected with Schistosoma in 2012

* 

Country Population 
S. haematobium S. mansoni Schistosomiasis 

Prevalence Number infected Prevalence Number infected Prevalence Number infected 

Angola 
20163 21.1 (13.6; 33.6) 

4262 (2747; 
6769) 2.4 (1.0; 7.4) 487 (201; 1493) 23.5 (14.9; 36.4) 4739 (2995; 7331) 

Benin 
8772 28.3 (20.6; 37.9) 

2478 (1807; 

3324) 2.5 (1.0; 5.5) 220 (88; 483) 30.0 (22.4; 39.4) 2630 (1969; 3453) 

Botswana 2016 9.4 (3.1; 24.6) 189 (62; 495) 2.8 (1.2; 6.9) 57 (24; 139) 12.4 (5.9; 27.7) 251 (118; 558) 

Burkina Faso 
17347 22.6 (19.4; 26.7) 

3912 (3361; 
4634) 0.8 (0.5; 1.4) 136 (82; 248) 23.3 (20.0; 27.5) 4042 (3473; 4764) 

Burundi 8822 0.1 (0.0; 0.4) 7 (1; 39) 3.3 (2.3; 5.0) 290 (200; 445) 3.4 (2.3; 5.2) 302 (207; 457) 

Cameroon 
20335 7.3 (6.2; 8.8) 

1484 (1259; 
1779) 3.0 (2.3; 4.2) 615 (460; 848) 9.9 (8.6; 11.8) 2016 (1743; 2393) 

Central African 
Republic 4434 7.7 (5.0; 11.4) 341 (222; 504) 8.8 (3.8; 21.6) 388 (166; 956) 15.8 (10.2; 28.5) 701 (454; 1265) 

Chad 
11752 22.0 (14.6; 31.7) 

2585 (1711; 
3726) 4.1 (1.5; 9.5) 479 (178; 1119) 25.4 (17.9; 34.8) 2989 (2103; 4094) 

Congo 3830 9.0 (5.3; 16.8) 344 (202; 645) 3.4 (1.0; 10.8) 129 (39; 415) 12.6 (7.5; 21.5) 483 (287; 824) 

Côte d’Ivoire 
19967 6.7 (5.4; 8.5) 

1337 (1068; 
1690) 5.0 (4.0; 6.6) 994 (808; 1313) 11.5 (9.9; 13.6) 2297 (1971; 2713) 

(Continues in next page) 
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Country Population 
S. haematobium S. mansoni Schistosomiasis 

Prevalence Number infected Prevalence Number infected Prevalence Number infected 

DR Congo 
68273 10.9 (7.9; 15.5) 

7467 (5367; 

10563) 12.8 (9.4; 17.0) 

8768 (6422; 

11574) 22.7 (18.6; 28.0) 

15530 (12688; 

19130) 

Djibouti 951 7.6 (1.0; 47.8) 72 (9; 455) 10.7 (1.3; 60.7) 101 (13; 578) 24.0 (5.1; 66.2) 228 (48; 630) 

Equatorial Guinea 721 1.0 (0.2; 3.8) 7 (1; 27) 1.1 (0.1; 10.3) 8 (1; 74) 2.5 (0.6; 11.7) 18 (5; 85) 

Eritrea 5526 1.6 (0.6; 4.0) 87 (32; 223) 3.4 (1.7; 6.2) 189 (96; 340) 5.0 (3.1; 9.0) 275 (172; 497) 

Ethiopia 
86962 6.7 (3.6; 11.3) 

5835 (3101; 
9827) 4.7 (3.8; 6.1) 

4077 (3305; 
5273) 11.1 (7.9; 15.5) 

9626 (6905; 
13505) 

Gabon 1542 12.1 (4.6; 35.6) 186 (71; 549) 2.0 (0.4; 8.3) 30 (6; 127) 14.3 (6.0; 37.4) 220 (92; 576) 

Ghana 
24375 18.1 (15.5; 21.3) 

4415 (3777; 
5203) 0.5 (0.2; 1.0) 120 (58; 252) 18.5 (15.9; 21.8) 4515 (3875; 5308) 

Guinea 10079 9.7 (6.6; 13.7) 981 (664; 1384) 9.0 (5.9; 13.4) 907 (595; 1350) 17.5 (13.4; 23.1) 1765 (1355; 2328) 

Guinea-Bissau 1523 18.0 (9.4; 39.8) 274 (143; 607) 0.6 (0.1; 7.0) 10 (1; 107) 19.0 (10.3; 41.1) 290 (157; 625) 

Kenya 
42146 8.2 (5.5; 12.3) 

3439 (2334; 
5173) 3.2 (2.5; 4.2) 

1355 (1056; 
1790) 11.3 (8.5; 15.1) 4772 (3585; 6346) 

Lesotho 2179 3.4 (0.3; 20.7) 74 (6; 452) 1.3 (0.0; 16.1) 28 (1; 351) 6.0 (0.8; 27.1) 131 (16; 590) 

Liberia 3841 13.3 (7.7; 27.8) 511 (297; 1066) 4.5 (2.5; 9.1) 174 (95; 350) 17.5 (11.3; 31.8) 671 (432; 1220) 

Madagascar 
21150 5.3 (4.1; 12.6) 1127 (868; 2667) 9.2 (7.8; 11.1) 

1946 (1660; 
2350) 14.4 (12.5; 20.9) 3040 (2648; 4427) 

Malawi 
15490 21.0 (17.1; 25.6) 

3246 (2645; 
3962) 3.7 (2.4; 5.9) 574 (365; 918) 24.1 (19.9; 29.1) 3729 (3083; 4511) 

Mali 
16116 26.0 (23.1; 29.4) 

4198 (3724; 
4731) 4.3 (3.4; 5.6) 692 (550; 909) 28.9 (26.0; 32.1) 4653 (4184; 5170) 

Mauritania 3627 20.1 (15.4; 30.6) 730 (557; 1110) 0.9 (0.3; 3.5) 32 (12; 126) 21.0 (16.1; 31.4) 762 (583; 1137) 

Mozambique 
23667 43.4 (39.0; 48.1) 

10283 (9228; 
11395) 5.9 (4.0; 8.6) 1399 (958; 2037) 46.9 (42.5; 51.5) 

11108 (10069; 
12179) 

Namibia 2403 6.3 (3.2; 14.2) 152 (78; 342) 1.5 (0.7; 4.8) 35 (17; 115) 8.0 (4.4; 15.9) 191 (106; 383) 

Niger 
16427 15.0 (12.8; 17.5) 

2463 (2102; 
2868) 0.2 (0.1; 0.4) 27 (15; 68) 15.2 (12.9; 17.6) 2491 (2119; 2890) 

Nigeria 
165415 18.0 (16.0; 20.5) 

29733 (26488; 
33858) 2.1 (1.5; 3.1) 

3511 (2508; 
5165) 19.6 (17.6; 22.1) 

32421 (29058; 
36554) 

Rwanda 11014 0.0 (0.0; 0.1) 4 (1; 15) 1.7 (1.0; 3.1) 191 (109; 339) 1.8 (1.0; 3.1) 196 (113; 342) 

Senegal 
12681 14.1 (12.1; 16.7) 

1788 (1538; 

2122) 1.1 (0.6; 2.2) 134 (82; 282) 15.1 (13.1; 17.7) 1913 (1661; 2249) 

Sierra Leone 5714 19.6 (14.1; 25.6) 1122 (805; 1463) 11.0 (8.2; 15.0) 630 (468; 860) 27.5 (22.3; 33.9) 1574 (1272; 1934) 

Somalia 
9478 21.2 (15.4; 28.8) 

2007 (1459; 
2734) 1.3 (0.4; 4.0) 126 (34; 380) 22.4 (16.5; 29.4) 2120 (1562; 2790) 

South Africa 
50110 12.4 (9.1; 17.3) 

6202 (4583; 
8658) 4.7 (2.6; 8.1) 

2339 (1320; 
4043) 16.4 (12.6; 20.8) 

8204 (6331; 
10412) 

South Sudan 10567 15.4 (8.5; 24.6) 1629 (899; 2599) 8.8 (4.9; 13.9) 926 (519; 1464) 23.4 (15.3; 31.8) 2468 (1618; 3356) 

Sudan 
34188 16.9 (13.3; 21.3) 

5787 (4557; 
7294) 7.5 (5.3; 10.3) 

2553 (1829; 
3517) 23.7 (19.7; 28.1) 8110 (6737; 9610) 

Swaziland 1216 15.5 (7.5; 31.9) 189 (91; 388) 6.4 (1.2; 27.3) 77 (14; 332) 22.6 (11.1; 41.8) 275 (136; 509) 

Tanzania 
46549 16.7 (14.2; 20.3) 

7787 (6599; 
9427) 4.4 (3.1; 6.6) 

2040 (1433; 
3073) 20.6 (17.8; 24.1) 

9608 (8280; 
11221) 

The Gambia 1754 14.4 (8.5; 28.7) 252 (150; 503) 3.2 (0.9; 12.4) 57 (15; 218) 18.0 (11.1; 32.8) 316 (194; 575) 

Togo 5863 15.8 (14.3; 17.6) 924 (837; 1031) 0.9 (0.7; 1.2) 52 (41; 72) 16.5 (15.0; 18.3) 970 (881; 1075) 

Uganda 
34841 3.7 (1.1; 9.6) 1278 (389; 3344) 5.7 (4.8; 6.8) 

1986 (1670; 
2381) 9.1 (6.5; 14.8) 3186 (2258; 5148) 

Zambia 
13916 19.8 (15.8; 24.8) 

2756 (2199; 

3452) 2.6 (1.4; 5.3) 356 (197; 741) 22.1 (17.8; 27.1) 3081 (2475; 3773) 

Zimbabwe 
13200 21.2 (19.1; 24.2) 

2799 (2517; 
3188) 3.8 (3.2; 4.7) 505 (420; 621) 24.1 (22.0; 27.0) 3175 (2906; 3563) 

Total† 
880941 14.6 (13.7; 15.5) 

128190 (120475; 
136466) 4.6 (4.2; 5.1) 

40763 (37236; 
45100) 18.5 (17.6; 19.5) 

162988 (155254; 
172211) 

*Estimates are based on gridded population estimates in 2012; calculations are based on the median and 95% Bayesian credible interval of 

the posterior predictive distribution of the risk from 2000 onwards.   
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5.5.11 Bar plots with 95% Bayesian credible intervals for (A) population-adjusted 

prevalence, (B) number of infected individuals, and (C) praziquantel treatment needs in 

2012 by each country of sub-Saharan Africa for school-aged children (5-14 years) 

 

 

5.5.12 Bar plots with 95% Bayesian credible intervals for (A) population-adjusted 

prevalence, (B) number of infected individuals, and (C) praziquantel treatment needs in 

2012 by each country of sub-Saharan Africa for entire population. 
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Summary 

Efforts for control and elimination of neglected diseases require maps of the geographical 

distribution of disease risk and spatially explicit estimates of the treatment needs. 

Geostatistical meta-analyses are often carried out on survey data compiled from bibliometric 

searches. These data often consists of combined point-referenced and areal aggregated 

surveys. In this paper, we developed a Bayesian geostatistical joint modeling approach that 

can analyse together areal and point-referenced survey data. We assumed that the point-

referenced data arise from a binomial distribution and that the aggregated area data follow a 

Poisson binomial distribution which is approximated by a two parameter shifted binomial 

distribution. Results from simulated data shows that our proposed formulation has better 

predictive ability and provides more precise estimates of the model parameters compared to 

models that discard the area data or include them as points at the centroids of the areas. We 

have applied the new models to map the clonorchiasis risk in an endemic region in P.R. China. 

Keywords: Poisson binomial, Bayesian geostatistical joint modeling, areal data, point-

referenced data 
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6.1 Introduction 

Neglected tropical diseases (NTDs) are a diverse group of communicable diseases 

prevalent widely in the world’s poorest countries or regions of tropics and sub-tropics and 

affect more than one billion people (Hotez et al. 2007;Mackey et al. 2014;WHO 2010b). They 

had received little attention in the past, but over the last years there are a lot of efforts from 

national governments in endemic countries, global health initiatives, funding agencies, and 

philanthropists to control and potentially elimination of them (WHO 2013). Control efforts of 

the disease require maps of the geographical distribution of the infection risk and estimates of 

the number of infected people to help control programs to identify the high risk areas and 

assess the number of treatment needs. Geostatistical modeling applied on disease survey data 

is the most rigorous and commonly used approach for risk mapping of NTDs (Lai et al. 2015). 

These data are often extracted from published sources (peer reviewed publications and 

relevant reports) via bibliometric searches because single surveys covering large areas are not 

available. Publications may provide geographical information of the survey location or report 

survey data aggregated over an administrative level such as county or district. Therefore the 

analysis data consist of both geographical data types, point-referenced and areal data. 

Geostatistical analyses either ignore the areal data or treat them as point data, geo-referenced 

at the centroid of the area (Lai et al. 2013;Pullan et al. 2011). However, the areal data can 

provide useful disease information, especially when the spatial coverage of point-referenced 

data is low. Analyses treating the areal data as point referenced at the centroid of the area may 

improve model predictive ability but bias the estimates of the model parameters, particularly 

the spatial variation, since a uniform distribution of disease risk is considered within the area. 

In the statistical literature the problem of combining areal and point data is known as the 

change of support problem (Jodar et al. 2015). Kriging is one of the approaches that has been 

proposed to address change of support problem for obtaining point estimates from both point 

and areal data arising from Gaussian, Poisson or binomial distributions (Goovaerts 

2008a;Goovaerts 2008b;Velasco-Forero et al. 2009;Webster et al. 1994). In particular, 

Goovaerts employed binomial kriging to map breast-cancer incidence rates over a region of 

Michigan by geostatistical interpolation of observed individual-level and areal-level disease 

data (Goovaerts 2010). However, these methods are mainly based on interpolation of 

observed data that cannot take into account predictors (i.e., environmental and socioeconomic 

factors) which can play an important role on disease transmission and therefore improve 

predictions. Gelfand et al provided a unifying approach including fully Bayesian kriging for 

change of support problems, where areal data can be sensibly viewed as averages over point 

data and risk predictors can be incorporated into the geostatistical models (Gelfand, Zhu, & 

Carlin 2001). Smith and Cowles developed a Bayesian geostatistical model that combined 

point-level data with areal data by assuming that the latter was derived from an average of all 

point measurements within the area and formed a joint distribution framework of spatial 

random effects by defining an adjusted covariance function (Smith & Cowles 2007). They 
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further adopted a reparameterized and marginalized posterior sampling (RAMPS) algorithm 

to enhance the efficiency of MCMC sampling for model fit (Cowles, Yan, & Smith 

2009;Smith, Yan, & Cowels 2008). Such models can be fitted for responses arising from 

Gaussian distributions and not survey risk data that are typically binomially distributed.  

The goal of this research is to develop Bayesian geostatistical models that can jointly 

analyse both point-referenced and areal survey data that originally arise from binomial 

distributions and underlying the same spatial process. We view the total number of screened 

individuals within the area as a sum of independent Bernoulli variables that each one arises 

from a certain location and has a location-specific Bernoulli probability. We further assume 

that the total number of infected within the area follows a Poisson binomial distribution 

(Wang 1993). The probability density function of the Poisson binomial distribution is rather 

complicated and several approaches have been used to approximate it (Butler & Stephens 

1993;Fernandez & Williams 2010;Pekoz et al. 2009;Pekoz et al. 2010). Approximations 

developed by Butler and Stephens, or Fernandez and Williams are relatively complex and 

difficult applicable in practical settings (Butler & Stephens 1993;Fernandez & Williams 

2010), while approximations such as Gaussian, Poisson and binomial distributions are simple 

but can lead to large approximation errors (Pekoz et al. 2009). Instead, we employ the shifted 

binomial approximation with two parameters to match the first two moments of the non-

identical location probabilities which has relatively low approximation error and can be easily 

applied (Pekoz et al. 2009). We applied the proposed models on simulated and real survey 

data of human clonorchiasis from P.R. China. In Section 6.2, we describe the disease survey 

data. In Section 6.3, we present the Bayesian geostatistical joint modeling framework. 

Simulation results are given in Section 6.4 and the results of the real application are shown in 

Section 6.5. 

 

6.2 Data 

The survey data which motivated this work are related to food-borne trematodiasis which is 

among the 17 core NTDs (Hotez et al. 2007). Clonorchiasis, caused by infection with 

Clonochis sinensis in human, is one of the most important food-borne trematodiasis in Asia 

(Qian et al. 2016). China accounts for over 85% of worldwide infected cases and the highest 

endemic regions include the neighboring provinces of Guangdong and Guangxi (Qian et al. 

2012). We obtained clonorchiasis data from the open-access Global Neglected Tropical 

Diseases (GNTD) database (Hürlimann et al. 2011), which includes all available survey data 

that can be extracted from literature searches. Our data cover surveys carried out during the 

period of 2000-2015 in Guangdong and Guangxi provinces and includes 111 surveys at 100 

unique villages (i.e., point locations) and 70 surveys with aggregated data within 49 counties 

(i.e., areas). Figure 6.1 shows the distribution of survey locations and areas and display the 
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observed prevalence data. The coverage of point-referenced data over the study region is low, 

as large areas of western and central parts have no point-survey data (Figure 6.1A). 

In addition, over the study region, elevation data were obtained from the WorldClim 

(http://www.worldclim.org/current) at 1 × 1 km spatial resolution and population density data 

of the year 2010 were downloaded from the Socioeconomic Data and Applications Center 

(http://sedac.ciesin.org/) at 5 × 5 km. 

 

Figure 6.1: Geographical distribution of observed clonorchiasis survey data in Guangdong 

and Goangxi Provinces in P.R. China. (A) Point-referenced data and (B) Aggregated data at 

county-level (areal data). 

 

6.3 Bayesian geostatistical modeling 

6.3.1 Model specification 

We assumed a number of latent points within the areas representing the survey locations. 

Surveys are more likely to be conducted in places with high population density, therefore we 

sampled the latent points according to their population density. We overlay a regular grid over 

the study region at 5 × 5 km spatial resolution. Let 𝑚𝑘 indicates the number of latent points 

that sampled from the regular grid based on the population density in area 𝑘. We define 𝑝𝑖 to 
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be the probability of infection at location 𝑖, where 𝑖 is either location of point-referenced data 

or point sampled from areas with survey data (i.e. 𝑖 ∈ 𝐿 ∪ 𝐴, where 𝐿 and 𝐴 contain only of 

the locations of the observed point-referenced data and of the sampled points within the areas 

with survey data, respectively). 

Let 𝑦𝑖  and 𝑛𝑖  be the number of positive and the number of screened individuals, 

respectively, at location 𝑖 , from the point-referenced data. We assume that 𝑦𝑖  follows a 

binomial distribution, that is, 𝑦𝑖~𝐵𝑖𝑛(𝑝𝑖, 𝑛𝑖) for 𝑖 ∈ 𝐿. We define 𝑌𝑘, and 𝑁𝑘 to be the number 

of positive and the number of screened individuals, respectively within area 𝑘. We assume 

that 𝑌𝑘  follows a Poisson binomial distribution. Within each survey area, the numbers of 

screened people at the sampled points are considered to be the same. We apply a shifted 

binomial distribution with two parameters to approximate Poisson binomial distribution. 

According to formulations provided by Peköz (Pekoz et al. 2009), 𝑌𝑘~𝐵𝑖𝑛(𝑃𝑘
′ , 𝑁𝑘

′ ), where 

𝑃𝑘
′ = ∑ 𝑝𝑖/𝑚𝑘𝑖∈𝐴𝑘

 and 𝑁𝑘
′ = [(∑ 𝑝𝑖 × ∑ 𝑝𝑖/ ∑ 𝑝𝑖

2) × 𝑁𝑘/𝑖∈𝐴𝑘
𝑚𝑘]𝑖∈𝐴𝑘𝑖∈𝐴𝑘

. Here 𝐴𝑘  contains 

only the points sampled from the regular grid in survey area 𝑘 and [ ] indicates the function 

of round. 

Following a standard Bayesian geostatistical model formulation, we model predictors on 

the logit scale of the infection probability 𝑝𝑖 , that is, logit(𝑝𝑖) = 𝛽0 + ∑ 𝛽𝑠𝑋𝑖
(𝑠)

+ 𝑤𝑖𝑠=1 , 

where 𝛽0 is the intercept, 𝑋𝑖
(𝑠)

 is the predictor 𝑠, 𝛽𝑠 is the corresponding regression coefficient, 

and 𝑤𝑖 is the location-specific random effect, respectively. We assume 𝒘~𝑀𝑉𝑁(0, ∑) with 

an exponential covariance function Σ𝑖𝑗 = 𝜎2exp (−𝜌𝑑𝑖𝑗), where 𝑑𝑖𝑗 is the Euclidean distance 

between locations 𝑖 and 𝑗, and 𝜌 corresponds to the rate of correlation decay. 

6.3.2 Model implementation 

Non-informative normal prior distributions were adopted for the regression coefficients 

(i.e., 𝛽0, 𝛽𝑠~𝑁(0,100)) and gamma priors were assigned to the precision parameter (i.e., 

𝜏2~𝐺(0.01,0.01) , where 𝜏2 = 1/𝜎2 ) as well as the correlation decay parameter (i.e., 

𝜌~𝐺(0.01,0.01) ). The models were fitted using Markov chain Monte Carlo (MCMC) 

simulation in Winbugs version 1.4 (Imperial College London and Medical Research Council; 

London, UK) (Lunn et al. 2009). Two chains were run and convergence was assessed using 

the Brooks-Gelman-Rubin diagnostic (Brooks & Gelman 1998). 

 

6.4 Simulation study 

We carried out a simulation study to assess the parameter estimation and predictive ability 

of the proposed models compared to models which ignore or treat the areal data as points, 

referenced at the centroids of the areas. Furthermore, we assessed the sensitivity of the 

proposed model on the number of sampled points selected within the areas. 
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6.4.1 Simulation data 

We generated 30 datasets following closely the structure of the survey data in our 

clonorchiasis application, which consists of surveys at 100 unique locations and 49 areas. In 

each area, we sampled 12 points (according to the population density of the study region) that 

represent the unobserved locations of the surveys. We generated a Gaussian process process 

w = (w1,…,wS)
T

 over the S=688 locations (i.e., 100+12×49), setting 𝜎2 = 2 and 5   and 

considered a single covariate 𝑿  that corresponds to the elevation predictor of our actual 

application. We assumed equal number of screened individuals at each location (𝑛𝑖 = 500, 

𝑖 = 1, … , 𝑆 ) and simulated the number of infected ones from a binomial distribution 

𝑦𝑖~𝐵𝑖𝑛(𝑝𝑖, 𝑛𝑖) , where 𝑝𝑖 = logit−1(𝛽0 + 𝛽1𝑋𝑖 + 𝑤𝑖) , setting 𝛽0 = −2  and 𝛽1 = −2 . The 

number of infected and the total number of screened individuals at each area k  were 

calculated as explained in Section 6.3, that is 𝑌𝑘 = ∑ 𝑦𝑖𝑖∈𝐴𝑘
 and 𝑁𝑘 = ∑ 𝑛𝑖𝑖∈𝐴𝑘

. Simulations 

were carried out in R version 3.2.2 (R Foundation for Statistical Computing; Vienna, Austria). 

6.4.2 Model validation 

We fitted 6 models (A-F) that all use the point-referenced data at the 100 locations. Models 

A-C are standard geostatistical models. Model A includes the 12 points sampled within each 

area. Model B treats the areas as points, located at the corresponding centroid. Model C 

discards the area data and fits only the point-referenced ones. Models D-F are the proposed 

models considering 𝑚𝑘 = 2, 5 and 8, respectively. We randomly selected 20% of the point-

referenced and of sampled within areas points for model validation. The remaining data were 

used for model fit. The mean absolute error (MAE) and predictive log score were employed 

for model validation (Gneiting & Raftery 2007). Lower mean absolute error and higher log 

score suggest a model with better predictive ability. For each model parameter, we calculated 

the MAE and the proportion of datasets having the true parameter value within the 95% 

Bayesian credible interval (BCI) of the posterior distribution of the parameter (termed as 

proportion of inclusion). The proportion of datasets having all the true values of parameter 

within the 95% BCIs of their posterior distributions as well as the average width of 95% BCIs 

were calculated to assess the overall model performance in estimating the parameters. 

6.4.3 Results 

The mean absolute error and log score show similar patterns regarding to predictive ability of 

the six models (Figure 6.2). For visualising better the differences between the models in 

Figure 6.2A and 6.2C, we connected datasets of the same model with lines. As expected, the 

full model (Model A) has the best predictive performance (highest log score and lowest 

MAE). In contrast, Model C which fits only the point-referenced data, has the worst 

predictive ability (lowest log score and highest MAE). Our proposed joint models (D-F), 

show that the higher the number of points  mk  sampled within the areas, the higher the 

model’s predictive ability. However, the differences in the validation measures between  
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Figure 6.2: Predictive performance of models fitted on the 30 simulated datasets. (A) and (C) 

present the mean absolute error and log score for each dataset, respectively. (B) and (D) 

depict the distribution of the mean absolute error and log score over all datasets by each 

model. 

 

Model E (𝑚𝑘 = 5) and F (𝑚𝑘 = 8) are small. Model B which treats areas as points located at 

their centroids shows similar predictive ability with the joint Model D that has 𝑚𝑘 = 2. 

Table 6.1 presents the evaluation results of parameter estimation from the six models. The 

regression coefficient 𝛽1 and the spatial correlation decay parameter 𝜌 were estimated best by 

Model A (highest proportion of inclusion, smallest mean width of the 95% BCI and smallest 

MAE), followed by Models F and E. Model C shows high proportion of inclusion, but the 

mean width of 95% BCI and MAE are both very large, suggesting that estimation uncertainty 

is high. The spatial precision parameter 𝜏2 (=1/σ2) was estimated well by the Models A, F 

and E. Model B presents the lowest proportion of inclusion and highest MAE. 

 

6.5 Application 

Following the results of the simulation study, we fitted our proposed joint formulation on our 

clonorchiasis survey data, considering 8 points sampled within each area. Figure 6.3A and B 

show the predictive risk map of clonorchiasis and the corresponding prediction uncertainty. 

The model suggests that the high infection risk areas are concentrated in the western part of 

Pearl River Delta of Guangdong, in central Guangxi as well as in some small areas of 

northern Guangxi. Table 6.2 presents the posterior summaries of the model parameters. 

Results show that elevation has an important negative effect on the disease risk. 
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Table 6.1: Evaluation of the parameters estimates of the six models fitted on the simulation 

datasets. 

*Calculated as the mean (over all simulated datasets)  of the absolute difference between the true value of 

parameters and samples drawn from the posterior distribution  of the corresponding parameter. 

 

Table 6.2: Posterior summaries of the parameters obtained by fitting the join model on the 

clonorciasis survey data. 

Parameter Median (95% BCI
*
) 

β0 -6.27 (-6.69, -5.88) 

β1 (i.e., Elevation) -1.11 (-2.40, -0.06) 

ρ 2.66 (1.82, 3.65) 

τ
2
 (1/σ

2
) 0.057 (0.036, 0.087) 

*
BCI indicates a Bayesian credible interval 

 

6.6 Discussion 

In this paper, we developed a Bayesian geostatistical joint modeling approach that can analyse 

together areal and point-referenced survey data. We assumed that the point-referenced data  

 β0 β1 ρ τ
2
 (1/σ

2
) All 

 
Proportion of datasets with 95% Bayesian credible intervals of estimated 

parameters including the true values of the parameters 

Model A 90 93.33 90 96.67 73.33 

Model B 46.67 63.33 70 36.67 6.67 

Model C 86.67 86.67 90 100 70 

Model D 63.33 40 80 73.33 20 

Model E 80 70 83.33 100 43.33 

Model F 83.33 86.67 83.33 100 60 

 Mean width of 95% Bayesian credible intervals of estimated parameters 

Model A 0.6 0.56 2.48 0.22  

Model B 0.55 1.08 7.01 0.46  

Model C 1.07 2.1 9.11 0.49  

Model D 0.5 0.99 6.13 0.37  

Model E 0.58 1.08 3.99 0.32  

Model F 0.6 1.19 3.35 0.31  

 Mean absolute error* 

Model A 0.2 0.16 0.82 0.07  

Model B 0.31 0.5 2.67 0.27  

Model C 0.36 0.63 2.73 0.14  

Model D 0.22 0.59 2.16 0.14  

Model E 0.22 0.47 1.42 0.09  

Model F 0.23 0.4 1.18 0.08  
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Figure 6.3: Infection risk estimates based on the chlonorciasis survey data. Median (A) and 

standard deviation (B) of the posterior predictive distribution of clonorchiasis risk. 

 

arise from a binomial distribution and that the aggregated area data follow a Poisson binomial 

distribution that was approximated by a two parameter shifted binomial distribution. Results 

from simulated data shows that our proposed formulation has better predictive ability and 

provides more precise estimates of the model parameters compared to models that discard the 

area data or include them as points at the centroids of the areas. We have applied the new 

models to map the clonorchiasis risk in an endemic region in P.R. China, however our 

approach can be readily implemented to disease mapping of any survey data that have 

different spatial supports (i.e., points and areas). 

Our geostatistical joint model introduces latent points within the areas and it tries to capture 

the variation of the risk within the areas using the disease risk-predictors relation that is 

estimated from the point-referenced data. As we have seen from the simulations, the number 

of latent points influences the performance of the model. However, the performance is not 

linear to the number of points because the improvement of performance between 5 and 8 

latent points is smaller than that between 2 and 5 points. When using small number of latent 

points (i.e., 2), the predictive ability of the model is similar to the one treating areal as single 

point data, but the precision of the spatial parameter estimates in the join model is better. 
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Surveys often are conducted at locations with more residents, therefore it is sensible to select 

the locations of the latent points in the areas according to the population density. 

The computational burden during the model fit and prediction increases with the number of 

latent points especially because the time required to inverse the correlation matrix of the 

Gaussian process increases in cubic order with the size of the matrix. Predictive process 

approximations of the Gaussian process (Banerjee et al. 2008;Banerjee et al. 2010;Finley et al. 

2009) or approximate likelihood approaches for large geostatistical data can be applied to 

speed computations (Banerjee et al. 2014). 

In conclusion, our Bayesian geostatistical joint modeling approach can be applied for 

analysing together areal and point-referenced survey data. This approach improves both the 

predictive ability and model parameter estimates compared to geostatistical regression models 

fitting only point-referenced data or treating areal data as single points. Considering larger 

number of latent points within the areas increases the model performance but also leads to 

high computational burden. 
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Abstract 

Background: Geostatistical model-based estimates of schistosomiasis risk are often based on 

survey data extracted through bibliometric searches due to the lack of single disease surveys 

covering large areas. These data are aggregated over age ranges that differ from one location 

to another. Infection risk is age-related however existing geostatistical models ignore the age-

heterogeneity of the data leading to potentially biased estimates. 

Methods: We integrated geostatistical and mathematical transmission models of 

schistosomiasis within a single model formulation and obtained age-specific estimates of the 

disease risk at high geographical resolution using Schistosoma masoni data from Côte 

d’Ivoire. Models took into account age-structured, water contact patterns or other 

characteristics of acquired immunity. 

Results: A series of age-specific risk maps of S. mansoni infection in Côte d’Ivoire were 

produced. We predicted that the infection risk peaks at younger ages in high risk areas and at 

older ages in low risk areas. Furthermore, a more rapid decline rate of infection risk was 

observed at older ages in high risk areas compared to that in moderate and low risk areas. 

Conclusions: We provide models that allow estimation of age-specific infection risk and of 

age-prevalence curves at high geographical resolution using compilations of age-

heterogeneous survey data. The models can identify the most important age groups of the 

population to treat at a given place and evaluate interventions at population level from 

imperfect data. 

Keywords: Bayesian geostatistics, Schistosoma mansoni, age-heterogeneous surveys, age-

prevalence curve, immigration-death model, acquired immunity 
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7.1 Background 

Schistosomiasis, one of the most prevalent neglected tropical diseases, affects more than 

200 million people and causes a global burden of 3.3 million disability-adjusted life years 

(DALYs) (Murray et al. 2012;WHO 2010a). Schistosoma masoni is one of the two main 

species affecting African people (Colley et al. 2014). In Côte d’Ivoire, very high prevalence 

of S. mansoni was found in the western part while many other areas of the country remain at 

low risk (Lai et al. 2015;Yapi et al. 2014). The prevalence of schistosomiasis has an age-

distinctive profile (French et al. 2010). A well-known pattern is that the prevalence rises in 

young children, reaches a peak during school age to early adulthood, then declines and 

becomes stable at a certain age level (Woolhouse 1991). This pattern may be explained by the 

age-related water contact activities and/or the development of the acquired resistance 

(immunity) (Warren 1973;Yang 2003). 

Mathematical modeling can be used to estimate the age-prevalence curve of the disease 

based on observed prevalence data across a range of age groups. Hairston developed two-

stage catalytic models to analyse age-prevalence data of schistosomiasis by extending the 

catalytic models introduced by Muench (Hairston 1965;Muench 1959). These models assume 

constant rates at which parasites are acquired or lost, respectively. Holford and Hardy 

employed an age-dependent immigration-death model to Schistosoma infection assuming that 

the worm immigration rate decreases monotonically with age according to Makeham's 

function (Holford & Hardy 1976). Chan et al adapted mathematical models with fully age-

structured partial differential equations to model the transmission of human schistosomiasis 

(Chan et al. 1995). These models have been extended by other researchers to capture 

intervention effects (French et al. 2010;French et al. 2015;Zhang et al. 2007). Yang et al also 

proposed a semi-stochastic model to analyse the effect of acquired immunity on the 

relationship between prevalence and age, by introducing a fixed period of time after which 

human hosts build an immune response from the first infection (Yang 2003;Yang et al. 1997). 

Maximum likelihood was usually applied to estimate the model’s parameters, however this 

approach has several shortcomings, such as not all the parameters can be estimated 

simultaneously and no confidence intervals can be calculated for the predicted age-specific 

prevalence. Raso et al developed a Bayesian formulation for Holford and Hardy's 

immigration-death model, which can draw inference for all parameters via Markov chain 

Monte Carlo (MCMC) simulation as well as obtain credible intervals of predicted age-specific 

prevalence of S. mansoni (Raso et al. 2007). 

Over the last years, international efforts for control and elimination of schistosomiasis 

have been intensified. Georeferenced disease risk estimates and maps aid control programs by 

indicating appropriate interventions within a region based on its endemicity and WHO 

recommendations (Lai et al. 2015). Lai et al obtained high spatial resolution maps of 

schistosomiasis across sub-Saharan Africa using Bayesian geostatistical models and historical 

schistosomiasis survey data extracted from the open access global neglected tropical diseases 
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(GNTD) database (Hürlimann et al. 2011;Lai et al. 2015). Geostatistical models are widely 

used to predict disease risk at areas without observed data by relating survey data to potential 

predictors (e.g., environmental, climatic, and/or socioeconomic information) taking into 

account geographical dependence (Chammartin et al. 2013c). Historical data are compilations 

of age-heterogeneous survey data identified from peer reviewed literature and published 

reports and they are used in geostatistical modeling due to the lack of single disease surveys 

covering large areas. The age-heterogeneity can bias the estimation of the relation between 

the disease risk and its predictors. Mathematical models can be used to age-align the surveys, 

however there is no model formulation which allows changes of the shape of the age 

prevalence curve over space as a result of the varying endemicity. 

In this work, we extended the Holford and Hardy's immigration-death model to allow 

geographical dependence of the age-prevalence curve and developed Bayesian geostatistical 

models that incorporate the immigration-death model to age-standardise the surveys data and 

obtain age-specific risk estimation. We implemented these models on age-heterogeneous 

S. mansoni survey data across Côte d’Ivoire. For the same purpose, we also proposed a 

Bayesian geostatistical acquired immunity model by combining Bayesian geostatistical model 

with an adaptation of Yang et al’s semi-stochastic model that takes into accounting the effect 

of acquired immunity on transmission. The performance of the models in fitting the data and 

in their predictive ability was assessed. 

 

7.1 Methods 

7.2.1 Data sources and data process 

Cross-sectional age-specific S. mansoni infection surveys were extracted from the GNTD 

database (Hürlimann et al. 2011) for Côte d’Ivoire. A summary of the data sources derived 

from GNTD database as well as the diagnostic techniques are listed in Table 7.1. For each 

survey, we group individuals into age classes according to their ages: when individuals were 

younger than 20 years old, we considered each year of age to a separate class, while when 

individuals were equal or older than 20 years, we grouped every five years of age into a 

different class. We represented the 5-year age group by their mean age, weighted by the 

proportion of examined individuals in each year of age. We assumed that the disease 

prevalence becomes constant in older ages and grouped all individuals above 65 years in one 

category to overcome data scarcity for older individuals. We allocated survey data from 

individuals above 65 years in the last age class of 65. The survey year was treated as a binary 

indicator with a cut of at 2005. 

Environmental and socioeconomic data obtained from remote sensing sources and other 

sources are shown in Table 7.2. In addition, gridded population of 2010 was obtained from 

WorldPop (http://www.worldpop.org.uk).  
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Table 7.1: Summary of S. mansoni survey data sources. 

First author 

& 

publication 

date 

Places of 

surveys 

Year of 

surveys 

Number of 

villages/schools 

Age 

range 

Diagnostics 

(Kato-Katz) 

Samples 

per stool 

Stool 

Specimens 

Yapi et al, 

2005  

The savannah 

zone in the 

north & the 

forest zone in 

the west 

1997-

1999 
45 villages 2-87 1 1 

Raso et al, 

2005  

Mountainous 

region of Man 

2001-

2002 
55 schools 1-20 1 1 

Raso et al, 

2004 

The village of 

Zouatta II 
2002 1 village 0-91 1 3 

Rohner et al, 

2010  

15-20 km south 

of Toumodi 

2006-

2007 
5 villages 5-17 2 1 

Coulibaly et 

al, 2012  
Azaguié 2010 

4 villages (11 

schools) 
8-12 3 3 

Coulibaly et 

al, 2013  

Villages of 

Azaguié 

Makouguié and 

Azaguié 

M’Bromé 

2011 2 villages 0-82 2 2 

Becker et al, 

2011 
Léléblé 2009 1 village 0-75 2 1 

Fürst et al, 

2012 
Taabo 2010 13 villages 18-87 2 1 

Yapi et al, 

2014  

Across the 

country 

2011-

2012 
92 schools 5-16 2 1 

 

7.2.2 Geostatistical model 

We assumed that 𝑌𝑖𝑗 the number of positive individuals at location 𝑖 and age class 𝑗, arises 

from a binomial distribution 𝑌𝑖𝑗~𝐵𝑖𝑛(𝑃𝑖𝑗, 𝑁𝑖𝑗), where 𝑁𝑖𝑗 and 𝑃𝑖𝑗 are the number of examined 

individuals and the probability of infection, respectively. We modelled the 𝑃𝑖𝑗  on the logit 

scale logit(𝑃𝑖𝑗  ) =  logit(𝑘𝑖𝑗 ) + 𝑤𝑗 , where 𝑘𝑖𝑗  is the infection risk explained by observed 

climatic, environmental, and socioeconomic factors that influence the distribution of worms 

within an individual of age class 𝑗, and 𝑤𝑗 is the location-specific random effect introducing 

spatial correlation due to unknown spatially structure factors. We assumed a Gaussian process 

for 𝑤:  𝑤~𝑀𝑉𝑁(0, Σ𝑤), with a covariance function Σ𝑤𝑖𝑣 = 𝜎𝑤
2 exp (−𝜌𝑤𝑑𝑖𝑣), where 𝑑𝑖𝑣 is the 

Euclidean distance between locations 𝑖 and 𝑣, and 𝜌𝑤 corresponds to the rate of correlation 

decay of 𝑤. 

7.2.3 Immigration-death model 

According to Holford and Hardy’s immigration-dealth model (Holford & Hardy 

1976), 𝑘𝑖𝑗 = (1 − exp (−𝑀𝑖𝑗))2, under the assumption that the number of worms of either sex 

in an individual of age class 𝑗 at location 𝑖 follows a Poisson distribution with parameter 𝑀𝑖𝑗, 
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Table 7.2: Environmental and socioeconomic data sources
a
. 

Variable Source Data period 
Temporal 

resolution 

Spatial 

resolution 

LST
b
 on day time MODIS/Terra

e
 2000-2012 8 days 1 km 

LST at night MODIS/Terra 2000-2012 8 days 1 km 

NDVI
c 

MODIS/Terra 2000-2012 16 days 1 km 

Land cover MODIS/Terra 2001-2004 Yearly 1 km 

Elevation WorldClim
f
 2000 - 1 km 

Precipitation WorldClim 1950-2000 - 1 km 

Precipitation 

Seasonality 
WorldClim 1950-2000 - 1 km 

Distance to water 

bodies 

Calculation from 

locations to the nearst 

water bodies (SWBD
g
) 

2000 - 30 m 

Soil moisture Atlas of the Biosphere
h
 1950-1999 - 50 km 

HII
d
 SEDAC

i
 1995-2004 - 1 km 

Proportion of 

improved 

sanitation 

Bayesian kriging of 

DHS, MICS, WHS, and 

LSMS
j
 

1991-2012 - 5 km 

Proportion of 

improved 

drinking-water 

sources 

Bayesian kriging of 

DHS, MICS, WHS, and 

LSMS 

1991-2012 - 5 km 

a
Land cover data accessed in June 2011 and other data asccessed in December 2015. 

b
Land surface temperature. 

c
Normalized difference vegetation index. 

d
Human influence index. 

e
Moderate Resolution Imaging Spectroradiometer (MODIS)/Terra, available at: http://modis.gsfc.nasa.gov/. 

f
Available at: http://www.worldclim.org/current. 

g
Shuttle Radar Topography Mission Water Body Data (SWBD), available at:  

http://gis.ess.washington.edu/data/vector/worldshore/index.html. 
h
Available at: http://nelson.wisc.edu/sage/data-and-models/atlas/data.php?incdataset=Soil%20Moisture. 

i
Socioeconomic data and applications center, available at: http://sedac.ciesin.org/. 

j
Demographic and Health Surveys (DHS), available at: http://dhsprogram.com/; Multiple Cluster Indicator 

Surveys (MICS), available at: http://www.childinfo.org/mics_available.html; World Health Surveys (WHS), 

available at: http://www.who.int/healthinfo/survey/en/; and Living Standards Measurement Study (LSMS), 

available at: http://iresearch.worldbank.org/lsms/lsmssurveyFinder.htm. 

 

where 𝑀𝑖𝑗 is determined by both the worm immigration rate 𝜆𝑖(𝜏) at location 𝑖 and age 𝜏 (in 

years) and the worm death rate 𝛿, i.e. 𝑀𝑖𝑗 = ∫ 𝜆𝑖(𝜏)exp (−𝛿𝑎𝑖𝑗)
𝑎𝑖𝑗

0
exp (𝛿𝜏)𝑑𝜏,. Here 𝑎𝑖𝑗 is the 

weighted mean age of age class 𝑗 at location 𝑖. 𝛿 is assumed constant across all locations and 

age classes. We considered a Makeham’s function to model the age-dependent immigration 

rate, 𝜆𝑖(𝜏) at location 𝑖 , that is 𝜆𝑖(𝜏) = 𝐴𝜏𝑟1 exp(−𝑏𝑖𝜏
𝑟2) + 𝑐𝑖, where 𝐴, 𝑏𝑖, 𝑐𝑖 are larger than 

zero, and 𝑟1 and 𝑟2 are two fixed parameters that affect the shape of the function. Holford and 

Hardy adopted 𝑟1 = 0 and 𝑟2 = 1 following the assumption that the water contact activities of 

an individual decreases with age (Holford & Hardy 1976). 𝑐𝑖  is regarded as the baseline 

immigration rate. We assumed a common 𝐴 across all locations and 𝑏𝑖  was considered to 

location-specific, modelled on the log scale by a Gaussian process log (𝑏)~𝑀𝑉𝑁(𝑚𝑏, Σ𝑏), 

http://www.worldclim.org/current
http://gis.ess.washington.edu/data/vector/worldshore/index.html
http://sedac.ciesin.org/
http://iresearch.worldbank.org/lsms/lsmssurveyFinder.htm
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where Σ𝑏𝑖𝑣 = 𝜎𝑏
2exp (−𝜌𝑏𝑑𝑖𝑣) , 𝜌𝑏  corresponds to the rate of correlation decay of log (𝑏) . 

Environmental, climatic, and/or socioeconomic factors may have an important effect on 

Schistosoma transmission, therefore, we assumed that the baseline immigration rate 𝑐𝑖  is 

determined by the factors mentioned above, that is 𝑐𝑖 = exp (𝛽0 + 𝛽𝑡𝑇𝑖 + ∑ 𝛽𝑠𝑠=1 𝑋𝑖
(𝑠)

) 

(Model 1), where 𝑇𝑖 is the category of survey year, 𝑋𝑖
(𝑠)

 is the 𝑠𝑡ℎ covariate, 𝛽0 is the intercept, 

and 𝛽𝑡 and 𝛽𝑠 are the corresponding coefficients, respectively. Besides Model 1, we explored 

an alternative formulations assuming that the average of immigration is determined by 

environmental, climatic, and/or socioeconomic factors, that is  
1

65
∫ 𝜆𝑖(𝜏)𝑑𝜏 = exp (𝛽0 +

65

0

𝛽𝑡𝑇𝑖 + ∑ 𝛽𝑠𝑠=1 𝑋𝑖
(𝑠)

) , giving 𝑐𝑖 = exp (𝛽0 + 𝛽𝑡𝑇𝑖 + ∑ 𝛽𝑠𝑠=1 𝑋𝑖
(𝑠)

) − ∫ 𝐴𝜏𝑟1exp (−𝑏𝑖𝜏
𝑟2)𝑑𝜏

65

0
 

(Model 2). Here we took an upper age limit of 65 years old due to sparse observed data for 

older individuals. 

7.2.4 Acquired immunity model 

Evidence indicates a protective resistance to reinfection of schistosomiasis (Colley et al. 

2014), although it can take several years to develop (Fitzsimmons et al. 2012), and the 

acquired immunity is partial protective (Warren 1973). Yang et al modelled the acquired 

immunity by a semi-stochastic model assuming that human host builds up a partially effective 

and everlasting immune response after elapsing a fixed period of years from the first infection 

(Yang 2003). It is a semi-stochastic model as the distribution of worms among human 

population is treated stochastically while the demographic structure of human population is 

treated deterministic (Yang et al. 1997). 

We employed the Yang et al’s model to assess its ability to fit the age-prevalence curve 

compared to immigration-death model and defined 𝜆𝑖
0 and 𝜆𝑖

′  the transmission rates among 

non-immune and immune individuals, at location 𝑖, respectively (Yang 2003). The model 

assumes that the transmission rates depend only on immunity and are constant across ages. 

We assumed that 𝜆𝑖
0 is location-dependent and determined by environmental, climatic, and/or 

socioeconomic factors, that is 𝜆𝑖
0 = exp (𝛽0 + 𝛽𝑡𝑇𝑖 + ∑ 𝛽𝑠𝑠=1 𝑋𝑖

(𝑠)
). As the acquired immunity 

is partially protective, we considered that the transmission rate among immune individuals is  

given by 𝜆𝑖
′ = 𝜃𝑖𝜆𝑖

0, where 𝜃𝑖 is location specific and 0 < 𝜃𝑖 < 1, modelled on the logit scale 

by a Gaussian process 𝑙𝑜𝑔𝑖𝑡(𝜃𝑖)~𝑀𝑉𝑁(𝑚𝜃, Σ𝜃), where Σ𝜃𝑖𝑣 = 𝜎𝜃
2exp (−𝑑𝑖𝑣𝜌𝜃). Following 

the formulation of Yang et al’s model, 𝑘𝑖𝑗  can be written as follows: 

𝑘𝑖𝑗 = {
1 − exp (−𝜆𝑖

0(1 − exp (−𝛿𝑎𝑖𝑗))/𝛿),                                                          for 𝑎𝑖𝑗 ≤ 𝐿

1 − exp (−𝜆𝑖
0(𝑎𝑖𝑗 − 𝐿 + (1 − exp (−𝛿𝐿))/𝛿)) − ∫ 𝑓1(𝜏)𝑓2(𝜏)𝑑𝜏, for 𝑎𝑖𝑗 > 𝐿

𝑎𝑖𝑗

0

, 

(Model 3), where 𝑓1(𝜏) = 𝜆𝑖
0(1 − exp (−𝛿(𝑎𝑖𝑗 − 𝜏)))exp (−𝜆𝑖

0𝜏) , and 𝑓2(𝜏) = exp (−𝜆𝑖
0/

𝛿(exp (−𝛿(𝑎𝑖𝑗 − 𝜏 − 𝐿)) − exp (−𝛿(𝑎𝑖𝑗 − 𝜏)) + 𝜆𝑖
′/𝜆𝑖

0(1 − exp (−𝛿(𝑎𝑖𝑗 − 𝜏 − 𝐿))))) . 𝐿 

corresponds to the fixed period of years from the first infection until the building up of the 

acquired immunity. 
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7.2.5 Practical implementation 

We formulate a Bayesian framework for the above models to estimate the parameters as 

well as hyperparameters. To define the best value for 𝑟1 and 𝑟2 in Model 1, we considered a 

range of fixed values, 𝑟1 = 0,1,1.5,2 and 𝑟2 = 0.5,1,2 and chose the combination that fitted 

the model best. The deviance information criterion (DIC) showed that the optimal 

combination was  𝑟1 = 0 and 𝑟2 = 1 (Spiegelhalter et al. 2002). The prior distributions for 

model’s parameters were adopted as follows: 𝛽0, 𝛽𝑡, 𝛽𝑠~𝑁(0,1), 𝜎𝑤
2 , 𝜎𝑏

2, 𝜎𝜃
2~𝐼𝐺(2.01,0.99), 

𝜌𝑤, 𝜌𝑏 , 𝜌𝜃~𝐺(0.01,0.01) , 𝑚𝑏 , 𝑚𝜃~𝑁(0,1) , 𝛿~𝑁(0,1)𝐼(0, ) , 𝐿~𝑁(0,0.01)𝐼(0,15) . For 

Model 1,  𝐴~𝑁(0,1) , while for Model 2, 𝐴~𝑢𝑛𝑖𝑓(0, min (𝐹𝑖)) , where 𝐹𝑖 = 65exp (𝛽0 +

𝛽𝑡𝑇𝑖 + ∑ 𝛽𝑠𝑠=1 𝑋𝑖
(𝑠)

)𝑏𝑖/(1 − exp (−65𝑏𝑖)) , to make sure 𝑐𝑖 > 0 . MCMC simulation was 

employed to estimate the model parameters in Openbugs version 3.0.2 (Imperial College 

London and Medical Research Council; London, United Kingdom) (Lunn et al. 2009). Two 

chain samplers were run and convergence was assessed by Brooks-Gelman-Rubin diagnostic 

(Brooks & Gelman 1998). Bayesian variable selection was used to select the most important 

covariates present in Table 7.2 (Lai et al. 2013;Scheipl et al. 2012). 

7.2.6 Validation and prediction 

We randomly selected a subset of approximately 90% of locations for model fitting 

(training set) and subsequently assessed the model performance on the remaining 10% (test 

set). We selected the best model of the three according to the DIC and log score (Gneiting & 

Raftery 2007;Spiegelhalter et al. 2002) (i.e. the model with the lowest DIC and the highest log 

score measure). Mean error and the percentage of observations included in Bayesian credible 

intervals (BCI) of various probability coverages of predictions at the test locations were also 

calculated to evaluate the performance of the best model. Bayesian kriging was done to 

predict the S. mansoni infection risk for ages ranging from 1 to 65 years at the centroids of the 

pixels of a 5 × 5 km grid. We fitted the training set and produced the predictive age-

prevalence curves for the test locations. We calculated the median and 95% BCI of the 

posterior distribution of the population-adjusted mean predictive distribution of the 

prevalence of all pixels for each age. We also grouped the pixels into low, moderate and high 

risk groups according to the peak of the median predictive distribution of the prevalence in 

each pixel across all ages. Low, moderate, and high risk groups were defined as peak 

prevalence less than 10%, between 10% and 50%, and higher than 50%, respectively, and the 

age of peak prevalence in each risk group was calculated. 
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7.3 Results 

7.3.1 Data description 

The age-heterogeneous data derived mainly from 9 references (Table 7.1), that included 

218 surveys at 215 locations. 46% of surveys were carried out between 1997 and 2004 and 

the rest were from 2005 onwards. The diagnostic technique was Kato-Katz for all surveys, but 

with different numbers of stool specimens and samples per stool. Figure 7.1A shows the 

locations and overall observed prevalence at each location. 74.4% of surveys were carried out 

among young individuals (children and adolescents) with age bellow 20 years, 5.1% of 

surveys included adults (equal or older than 20 years), while the remaining 20.5% of the 

surveys included both children and adults (Figure 7.1B). Elevation and normalized difference 

vegetation index (NDVI) were selected during the variable selection process. 

 

Figure 7.1: Survey locations of observed survey data of S. mansoni across Côte d’Ivoire. (A) 

Overall observed prevalence and locations with indexes for test set; and (B) locations of 

surveys carried out among both children and adults (with minimum age younger than 20 and 

maximum age equal to or older than 20), among only adults (with minimum age equal to or 

older than 20) and among young individuals (with maximum age younger than 20). 

 

7.3.2 Model selection and parameter summaries 

Table 7.3 lists the posterior summaries of the three Bayesian geostatistical models. Large 

spatial variations of infection risk (  𝜎𝑤
2 ) and small spatial decay ( 𝜌𝑤 ) parameters were 

estimated from all the three models. Model 2 had the lowest DIC and the largest log score (i.e. 

best model). The best model estimated a decrease of the average transmission rate from 2005 

onwards. Elevation had a negative effect while NDVI had a positive effect on transmission. 

The model may under-estimate the infection risk as the mean error is larger than zero. It was 

also able to correctly predict the age-specific infection risk (within the 95% BCI) at the 74.2% 

of the test locations. 
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Table 7.3: Posterior summaries of the parameters of the three models. 

Parameters 
Model 1 Model 2 Model 3 

Posterior estimate (median & 95% Bayesian credible interval) 

Year 
<2005 0 0 0 

≥2005 -0.44 (-0.79; -0.29) -0.19 (-0.29; -0.09) -0.39 (-0.7; -0.1) 

Elevation -0.13 (-0.20; -0.06) -0.09 (-0.13; -0.03) -0.57 (-0.72; -0.48) 

NDVI -0.07 (-0.15; 0.05) 0.07 (0.01; 0.11) 0.1 (0.04; 0.16) 

w  0.72 (0.69; 0.85) 0.71 (0.69; 0.80) 0.73 (0.69; 0.89) 
2

w  19.46 (14.09; 27.89) 16.70 (12.11; 22.53) 24.59 (19.26; 32.34) 

  0.15 (0.13; 0.17) 0.16 (0.14; 0.19) 0.05 (0.03; 0.06) 

bm  -1.63 (-1.99; -1.30) -1.81 (-2.70; -1.13) - 

b  4.71 (1.55; 13.21) 86.00 (17.78; 307.00) - 
2

b  4.05 (2.04; 11.83) 4.64 (2.02; 10.37) - 

A  0.74 (0.70; 0.85) 0.72 (0.63; 0.80) - 

m
 - - 0.02 (-0.23; 0.71) 

  - - 12.07 (3.37; 76.96) 
2

  - - 0.43 (0.23; 1.29) 

L  - - 7.66 (6.66; 8.39) 

Model validation  

DIC 3990 3706 4053 

Log score -308.68 -293.78 -300.75 

 

7.3.3 Age-specific risk prediction 

Figure 7.2 presents a series of predictive age-specific risk maps of S. mansoni infection 

from age 2 to 65 in Côte d’Ivoire. All the maps show that the western part and some small 

areas in southern and eastern parts have higher risk of S. mansoni infection compared to other 

parts of the country. In high risk areas, the infection risk increased significantly with age until 

around 15 to 17 years old and then decreased subsequently and became stable at older ages 

(after 45). Other areas with lower infection risk also show a similar trend (i.e., an initial 

increase and then decrease after a certain age), but the changes were minor. The prediction 

uncertainties of age-specific infection risk (Figure 7.3) show an increase with age. High 

uncertainties were mainly in the western and southern parts of the country. 

The geographical distribution of the 21 test survey locations is shown in Figure 7.1A. The 

predictive age-prevalence curves and the corresponding observed data are depicted in  
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Figure 7.2: The geographical distribution of age-specific S. mansoni prevalence in Côte 

d’Ivoire. The maps show the risk estimates from 2005 onwards based on the median of the 

posterior predictive distribution of infection risk. 
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Figure 7.3: The geographical distribution of age-specific prediction uncertainty of S. mansoni 

infection risk in Côte d’Ivoire. The maps are based on the standard deviation of the posterior 

predictive distribution of infection risk from 2005 onwards. 
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Figure 7.4 for each one of the 21 test locations. Thirteen out of the 21 locations had observed 

data only in school-aged children, while 4 out of the 21 locations (i.e., Location 5, 19, 20 and 

21) had observed data within full age range. At Location 5, very low prevalence was observed 

in young children while low to moderate prevalence was observed in older ages. The median 

of the predictive distribution of the age-prevalence curve shows a slow increase until twenties, 

then a slow decrease and maintained stable at older ages. At Location 19, most of the 

observed prevalence was very low and the median of the predictive age-prevalence curve 

 

Figure 7.4: The predictive age-prevalence curves of S. mansoni at test locations. Purple dots, 

blue lines and light blue areas indicate observed data, median and 95% Bayesian credible 

interval of posterior predictive prevalence, respectively. 
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shows a very low and stable prevalence with age. At Location 20, the observed prevalence 

first increased with age, reached a peak at around 15 and then decreased, where the predictive 

age-prevalence curve shows a very similar pattern. At Location 21, the observed prevalence 

increased with age until around 20, then it remained between 10% and 40%, and dropped 

down to around zero after the age of 60 years. The median of the predictive distribution of the 

age-prevalence curve shows an increase until the age of 20 and it is maintained stable with 

prevalence around 10% afterwards. For all predictive age-prevalence curves, the widths of the 

95% BCIs increase with age. 

Figure 7.5A shows the age-specific, population-adjusted mean predictive prevalence curve 

of S. mansoni over Côte d’Ivoire. The mean prevalence increased with age, reached the peak 

at around 20 years and decreased slowly afterwards. In high risk areas, the mean prevalence 

reached the peak at around 16 to 17, and for moderate risk areas, the peak moved to around 18 

to 19, years. In low risk areas, the peak was reached after 20 years and the prevalence became 

quite stable with just a very slow decrease afterwards (Figure 7.5B). 

 

Figure 7.5: Age-population-adjusted mean predictive prevalence curves of S. mansoni in 

Côte d’Ivoir. (A) For the whole country and (B) for high, moderate and low risk areas. Solid 

lines and light-color areas indicate the median and 95% Bayesian credible interval of 

posterior distribution of population-adjusted mean predictive prevalence, respectively. 

 

7.4 Discussion 

In this study, we integrated geostatistical and mathematical transmission models of 

schistosomiasis within a single model formulation and obtained the first age-specific 

estimates of the disease risk at high geographical resolution from age-heterogeneous surveys. 

Previous researchers studying age-prevalence patterns of schistosomiasis have mainly 

focussed on fitting transmission models for a single survey and the results were difficult to 
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extend to other areas as the conditions of transmission were different (Chan et al. 

1995;Hairston 1965;Holford & Hardy 1976;Muench 1959;Raso et al. 2007;Yang 2003). We 

assumed that the transmission of S. mansoni is determined by potential factors (e.g., 

environmental, climatic, and/or socioeconomic) and embedded modified transmission models 

into Bayesian gestatistical model to address age-heterogeneity. Three models were developed 

using S. mansoni survey data from Côte d’Ivoire based on age-structured, water contact 

patterns or characteristics of acquired immunity, and the best one was selected according to 

the model performance. We assumed that the water contact or acquired immunity patterns 

were similar in geographically close locations and introduced the spatial specific parameters, 

thus were able to predict the age-prevalence curves at locations without any survey data or 

without survey data of full age range. 

We predicted that the infection risk peaks at younger ages in high risk areas and at older 

ages in low risk areas (Figure 7.5B). This is consistent with the “peak shift” pattern, i.e., the 

peak age of infection shifts towards younger ages in areas of high transmission (Woolhouse 

1998). Furthermore, Figure 7.5B shows a more rapid decline rate of infection risk at older 

ages in high risk areas compared to that in moderate and low risk areas, which confirms the 

observations of other researchers (Butterworth et al. 1988). WHO recommends that mass drug 

administration for schistosomiasis should be implemented to all school-aged children in 

endemic areas, with treatment frequency according to the prevalence levels in school surveys; 

while access to praziquantel for passive case treatment is recommended for community-based 

interventions (WHO 2002a). In moderate and low risk areas, as the infection risk declines 

quite slowly after the peak age and then remains stable, mass drug administration that 

focusses only at school-aged children may not have a sufficient impact on the community-

wide parasite transmission (Anderson et al. 2013;Lelo et al. 2014), thus hard to achieve 

transmission elimination. 

We estimated a decrease of transmission from 2005 onwards, which may be attributed to 

the control programmes of schistosomiasis in Côte d’Ivoire in recent years (Rollinson et al. 

2013). We found a negative effect of elevation on transmission, that is consistent with 

previous studies showing a low infection risk in high elevation areas in Côte d’Ivoire (Assare 

et al. 2015;Beck-Worner et al. 2007;Raso et al. 2005). We assumed a linear relation between 

the climatic predictors (elevation and NDVI) and the infection risk. However this assumption 

may not hold, as environmental factors influence transmission in a more complex way by 

affecting the snail habitat, the human activities, and cercaria maturation (Liang et al. 2007). 

Furthermore, many other factors may have a more important and direct effect on transmission, 

the distribution of which we cannot obtain, such as the infected snail density. These may 

partly explain the large spatial variation of the predictive infection risk. 

The majority (74.4%) of the surveys were carried out in young individuals while only one 

fifth of the surveys included population of full age range. The small number of older age 

individuals may also contribute to the high prediction uncertainties in older ages and explain 
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partly the large spatial variation of the predictive infection risk. A systematic review of 

surveys pertaining schistosomiasis prevalence data in sub-Saharan Africa (Lai et al. 2015) 

shows that the age distribution in the observed survey data from Côte d’Ivoire reflects that 

observed in many countries of the sub-continent. We suggest therefore more community-

based surveys to be carried out in the future covering a full range of ages in order to better 

understand and predict more precisely the age-prevalence patterns across different areas in the 

countries. Moreover, evidence suggest that deworming that only focusses on school-aged 

children may not be sufficient for S. mansoni elimination (Lelo et al. 2014;Lo et al. 2015). 

Our best model (Model 2) considered a location-specific, age-dependent worm 

immigration rate, the average of which was assumed to be determined by environmental, 

climatic, and/or socioeconomic predictors. As the function for the age-dependent worm 

immigration rate is based on the assumption that the water contact activities decrease with age 

(Holford & Hardy 1976), this model emphasized the effect of water contact on the age-

prevalence pattern of S. mansoni. Many researchers emphasized that development of acquired 

immunity can be a better interpretation for the “peak shift” pattern or the rapid decline rate of 

infection in high risk areas (Butterworth et al. 1988;Woolhouse 1998). In our study, however, 

the Model 3 that addressed the important effect of acquired immunity on age-prevalence 

pattern did not improve the fit of the data. Development of a Bayesian geostatistical model 

embedded both water contact and acquired immunity patterns may take into account both 

effects on age-prevalence pattern. However, such model may be too complex and 

computationally expensive. 

Our models assumed a unique peak of prevalence in age-prevalence pattern of S. mansoni. 

However, a few researchers reported a second peak of prevalence or intensity may exist in 

older age groups, probably due to an increase of water contact activities resulting from 

occupational change or a decay of acquire immunity (Mutapi et al. 2003;Raso et al. 2007). 

The second peak might be captured by modifying the age-dependent immigration rate 

function in Model 1 and Model 2, or by addressing the lasting of acquired immunity for a 

certain duration instead of lifelong (Chan et al. 1996). Model 1 and Model 2 assumed that the 

distribution of the number of worms of either sex within an individual follows a Poisson 

distribution and that the exposure to infection is homogeneous for all individuals in the same 

age class (Holford & Hardy 1976). However, heterogeneity in exposure exists for 

schistosomes and leads to an overdispersed distribution in host population, that is, the 

majority of hosts are uninfected or lightly infected while a minority of them have heavy 

infections (Anderson & May 1985;French et al. 2010). The distribution of worms in such 

situations is usually assumed to be negative binomial determined by an aggregation parameter 

and mean worm burden) (Chan et al. 1995). The aggregation parameter can differ across 

different levels of infection intensity and across different locations (French et al. 2010). 

Without knowing both the observed infection intensity and prevalence, it is difficult to 

estimate the aggregation parameter, thus we use Poisson distribution instead in our models. 
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Our S. mansoni data extracted from different surveys that used the Kato-Katz diagnostic 

technique. However, the numbers of stool specimen and sample per stool differ among 

surveys. Even though it is known that the sensitivity of Kato-Katz is affected both by the 

number of specimens and the level of infection (Carneiro et al. 2012;Lamberton et al. 2014), 

it is difficult to take into account the diagnostic sensitivity into the modeling because many of 

the surveys report aggregated data and do not provide details on the number of sampling 

efforts. 

 

7.5 Conclusion 

We developed Bayesian geostatistical models to analyse age-heterogeneous S. mansoni 

prevalence data in Côte d’Ivoire. Age-specific infection risk was estimated and age-

prevalence curves were predicted across the country. These estimates are important for 

planning control programmes in areas of different endemicity, targeting different age groups. 

The models can be applied to other Schistosoma species, such as S. haematobium and 

S. japonicum. 
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The work of this PhD thesis contributes to the fields of spatial statistics and of 

epidemiology of NTDs with (i) statistical methodology for modeling spatially-structured 

disease data, having heterogeneous geographical support (i.e., georeferenced at point or area 

level) across the study region and they are collected over different age groups between 

locations, (ii) applications on soil transmitted helminth infections, schistosomiasis, and 

clonorchiasis in sub-Saharan Africa, South Asia, and P.R. China, to obtain spatially explicit 

estimates of disease risk, number of infected people, and annual treatment needs for 

preventive chemotherapy at different administrative levels, and (iii) large amount of geo-

referenced data on NTD surveys conducted at over 10,750 unique locations that are available 

via the open access GNTD database. Six manuscripts were produced and included in the 

thesis as chapters, where the detailed methodologies, results and discussions are presented. 

This section highlights the main contributions of this research and the significance of the 

findings, discusses the limitations of the methods, and proposes extensions of the work. 

 

8.1 Significance 

8.1.1 Spatial statistics: methodology for survey data heterogeneous in space 

Estimates of disease risk at high spatial resolution over large geographical areas are often 

rely on historical data that are extracted from publications due to the lack of single surveys 

covering the whole study regions. These data are either reported at the survey location (point-

referenced) or they are aggregated over several locations within an administrative level such 

as county or district (areal data). Spatial analyses often discard the areal data or treat them as 

point referenced at the centroid of the area. However the areal data can provide useful 

information especially when the spatial coverage of point-referenced data is low. Furthermore, 

treating areal data as point-referenced may improve model prediction ability but bias the 

estimates of the model parameters, particularly the spatial variation, since a uniform 

distribution of disease risk is considered within the area. Smith and Cowles (2007) developed 

a Bayesian geostatistical model that combined point-reference data with areal data by 

assuming that the latter was derived from the average of all point measurements within the 

area and formed a joint distribution framework of spatial random effects by defining an 

adjusted covariance function (Smith & Cowles 2007). However, such model only fits 

responses arising from a Gaussian distribution and not survey data that are typically 

binomially distributed. 

In Chapter 6 we developed a Bayesian geostatistical joint modeling approach that analyses 

together the areal and point-referenced data arising from a binomial distribution. As the actual 

survey locations cannot be identified for the areal data, we assumed a number of latent points 

within the areas that represent the survey locations of the area. The responses at these points 

were assumed to arise from a binomial distribution and share the same spatial process as the 
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available point-referenced data in the study. In addition, we assumed that the sum of the 

binomial responses at the latent points follow a Poisson binomial distribution which was 

approximated by a shifted binomial distribution with two parameters (Pekoz et al. 2009;Wang 

1993). Our modeling approach shows a better prediction performance and improved 

parameter estimation on simulated data compared to that of previous approaches. We have 

applied the methodology to estimate the clonorchiasis risk in an endemic region in P.R. China, 

however our approach can be readily applied to analyse any other neglected tropical disease 

survey data. 

Historical disease survey data are often aggregated over heterogeneous age groups 

between survey locations. Geostatistical analyses of NTDs ignore age-heterogeneity and treat 

data as if they come from a common age group. This approach can lead to biased estimation 

because models cannot distinguish whether different risk between locations is due to 

differences in age or to exposures. Mathematical models can be used to age-align the surveys, 

but there is no model formulation allowing changes of the shape of the age-prevalence curve 

over space as a result of the varying endemicity. 

In Chapter 7 we integrated geostatistical and mathematical transmission models within a 

single model formulation to analyse age-heterogenous survey data of S. mansoni in Côte 

d’Ivoire. Firstly, Holford and Hardy’s immigration-death model and Yang et al’s semi-

stochastic model were extended to allow geographical dependence of age-prevalence curve. 

The former model estimates the age-prevalence curve based on water contact patterns, while 

the later one is based on characteristics of acquired immunity (Holford & Hardy 1976;Yang et 

al. 1997). These models were further incorporated into Bayesian geostatistical modeling to 

age-standardise the surveys data. The assessment of model performance in fitting the data and 

in prediction showed that the best model was the one adopted a location-specific age-

dependent worm immigration rate derived from Holford and Hardy’s immigration-death 

model, where the average of the immigration rate was assumed to be determined by the risk 

predictors such as climatic and environmental factors. 

8.1.2 Epidemiology: implications for disease control 

This thesis contributes to the field of spatial epidemiology of NTDs by introducing 

innovative statistical methods, tools and knowledge for disease control, monitoring and 

evaluation. 

In particular, we conducted the first, to our knowledge, geostatistical analyses combining 

point-referenced and areal survey data to make use of all possible available data and improve 

model-based disease risk mapping (Chapter 6). Furthermore we have introduced 

mathematical transmission models within geostatistical modeling of neglected diseases and 

for first time we produced age-specific risk maps from historical schistosomiasis data and 

showed how the age of the peak prevalence changes in space according to the disease 

endemicity (Chapter 7). 
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Results of the thesis were translated to high-resolution risk maps, number of infected 

people and treatment requirements for preventive chemotherapy of different NTDs across 

different regions. These tools and knowledge were either not available or were based on 

simplified calculations that ignored the variation of the diseases in space. The risk maps are 

important for guiding disease control and interventions, by informing policy-makers about the 

priority areas to target control measures and allocate resources. In addition, the maps, 

providing the baseline estimates of the disease risk, are useful for accessing the effectiveness 

of control interventions in the future. We obtained both, species-specific and overall risk 

maps of soil-transmitted helminth and of schistosome infections. The latter are particularly 

important for morbidity control as similar drugs are used against different species (Keiser & 

Utzinger 2008;WHO 2002a). 

In Chapter 2, our results show that the prevalence of soil-transmitted helminth infections 

in P.R. China considerably decreased from 2005 onwards, yet, some 144 million people were 

estimated to be infected in 2010. The Chinese Ministry of Health set the target to reduce the 

prevalence of soil-transmitted helminth infections by 40% until 2010 and up to 70% until 

2015 (Zheng et al. 2009). The government aims to reach these targets by a series of control 

strategies, including preventive chemotherapy, improvement of sanitation, and information, 

education and communication (IEC) campaigns (Bergquist & Whittaker 2012). Our models 

indicate that the first step of the target, i.e. an overall reduction of prevalence by 40% until 

2010, has been achieved. On the other hand, we identified provinces such as Hainan, Guizhou, 

and Sichuan with very high disease prevalence, requiring more effective control strategies. 

In Chapter 3 our risk maps depict the geographical distribution of soil-transmitted 

helminth infections in South Asia, highlighting the need for up-to-date surveys to accurately 

evaluate the disease burden for this region. The model-based results revealed that in 2015, all 

four countries in the study region (i.e., Bangladesh, India, Nepal, and Pakistan) had soil-

transmitted helminth infection prevalence higher than 20%. Furthermore, our findings show 

that the infection risk of community-based surveys was higher than that of school-based 

surveys for A. lumbricoides. Negligible differences were found between school-aged 

population and the entire community for the other two species. These results support 

suggestions of other researchers that control strategies focusing on school-based deworming 

needs to be reassessed and treatments should be extended to other populations (e.g., 

preschool-aged children, women of childbearing age, and high occupational exposure adults) 

or to the whole community (Anderson et al. 2013;Karagiannis-Voules et al. 2015a;Lo et al. 

2015). 

In Chapter 4 our geostatistical analyses suggest the areas mainly in the southern and 

northeastern parts of P.R. China that control interventions for C. sinensis infection should be 

concentrated. Around 14.8 million people in the country were infected with C. sinensis in 
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2010 and an increased trend of the infection risk over time was estimated, urging the Chinese 

government to pay more attention to the public health importance of this disease. 

Chapter 5 provides up-to-date, spatially explicit estimates of schistosomiasis risk and of 

the number of infected people across sub-Saharan Africa. Infection risk decreased from 2000 

onwards, yet estimates suggest that around 163 million people in sub-Saharan Africa were 

infected with at least one of Schistosoma species in 2012, 57 million of whom were school-

aged children. Mozambique had the highest prevalence of Schistosoma infection in school-

aged children (52.8%), while low-risk countries (prevalence among school-aged children 

<10%) included Burundi, Equatorial Guinea, Eritrea and Rwanda. Annualised treatment 

needs with praziquantel were estimated at 123 million doses for school-aged children and 247 

million for the entire population, which are similar to the ones reported by WHO. However, 

we obtained different estimates for a number of countries. The amount of praziquantel in the 

WHO donation is planned to increase every year: from 27 million in 2012 to 44 million in 

2013, 75 million in 2014, 100 million in 2015, and up to 250 million in 2016 and subsequent 

years. Our results indicate that when the donation reaches the full scale, the praziquantel will 

be sufficient to treat all the population at risk of schistosomiasis in sub-Saharan Africa. 

Furthermore, our analysis allowed us to estimate treatment needs at different administrative 

levels, providing important information for the control programmes to guide the distribution 

of praziquantel within countries. 

8.1.3 Contribution towards a global database of NTDs 

Burden estimation of NTDs at high spatial resolution requires availability of 

georeferenced survey data. The open-access GTND database (Hürlimann et al. 2011) that was 

initiated by the EU-CONTRAST project (2006-2010) compiles and geo-references all 

available survey data on NTDs across the world. This thesis has extended the database with 

data on soil-transmitted helminth infections and food-borne trematodiasis covering the 

regions of South Asia and P.R. China. In addition, we updated the schistosomiasis data in 

Africa with the most recent surveys. These data were identified through systematic reviews 

and searches of published and “grey” (e.g., theses, working papers from research groups, or 

unpublished research reports through personal communication) literature, extracted, geo-

located, and entered into the database. We have contributed to the GNTD database with a total 

of survey data collected at over 10,750 unique locations In particularly, we extracted survey 

data at 8,414 unique locations for schistosomiasis in sub-Saharan Africa, 1,610 unique 

locations for soil-transmitted helminth infections in South Asia and P.R. China, and 726 

unique locations for food-borne trematodiasis in P.R. China. These data are available for 

utilization by other researchers, scientists, disease control managers, and policy makers. On 

the other hand, the georeferenced surveys, showing the geographical distribution and 

coverage of the available disease data, provided important information for planning of future 

surveys. 
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8.2 Limitations 

The statistical analyses of this work rely on historical data compiled from studies that may 

differ in the design, diagnostic methods, and age groups of the population covered. As it was 

difficult to assess the quality of different diagnostic techniques/procedures in most of the 

surveys and in order to avoid discarding surveys with incomplete information about the 

diagnostic method, we analyzed the data regardless of the diagnostic method and assumed 

common sensitivity and specificity across all surveys. However, the sensitivity depends on the 

intensity of infection and the diagnostic approaches, and hence varies in space (Booth et al. 

2003;Nikolay et al. 2014). The age-heterogeneity of the survey data across locations 

motivated the methodological work of Chapter 7, however due to time constraints the 

methodology could not be implemented to geostatistical analyses other than those involving 

the schistosomiasis data from Côte d’Ivoire. 

Survey locations from historical data may over-represent endemic areas, as many surveys 

are likely to be conducted in places with relatively high infection risk (preferential sampling). 

Ignoring preferential sampling could lead to over-estimation of the infection risk in low risk 

areas (Diggle et al. 2010). On the other hand, we introduced temporal trend as a time 

covariate into the models, assuming that the risk varies uniformly across time, thus ignored 

the variation of the spatial process over time. Spatio-temporal models can be applied for joint 

analyses of space and time components for risk profiling (Chammartin et al. 2014a). 

However, the distribution of surveys from historical data varies across different time periods, 

which makes it difficult for such models to produce reliable spatio-temporal estimates. 

We estimated prevalence of any soil-transmitted helminth infection and schistosomiasis 

by assuming independence of the respective species. Previous researchers suggested a 

positive association between A. lumbricoides and T. trichiura, hence, our assumption may 

over-estimate the true prevalence of soil-transmitted helminthes (Booth & Bundy 

1992;Tchuem Tchuenté et al. 2003a). However, it is difficult to adjust the calculation by 

adding a correction factor due to lack of co-infection data in the study regions (de Silva & 

Hall 2010). Our independence assumption of Schistosoma species is supported by a study 

which analysed data from a national survey in Côte d’Ivoire in 2012 and reported that species 

co-infection is less likely to occur than simply by chance (Chammartin et al. 2014b). In 

contrast, another study reported high co-infection of S. haematobium and S. mansoni in some 

villages of Senegal (Meurs et al. 2012). Although we might over-estimate the schistosomiasis 

prevalence in areas with high species co-infection risk, our results showed that the 

independence assumption has very little impact on the overall infection risk in sub-Saharan 

Africa, when we calculated the coinfection risk for a range of values quantifying species 

dependence (Chapter 5). 
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We assumed that the regression coefficients are constant across the study region. However, 

the relationships between the predictors and the disease risk might vary in space, as a result of 

a geographical variation in the effect (e.g., across eco-regions) or some unmeasured factors 

(e.g., intervention levels and health-system performance) that can differ in space 

(Karagiannis-Voules et al. 2015a). A model with spatially varying coefficients can take into 

account the varying effects (Gelfand et al. 2003;Giardina et al. 2014). Furthermore we 

considered a stationary, and isotropic spatial process across the study regions, assuming that 

spatial association depends only upon distance and  not on location as well as direction in 

space (Ecker & Gelfand 2003). We have not used models in the thesis that have spatially 

varying effects or address non-stationarity because these models are computationally very 

intensive especially when modeling data over large areas (Banerjee et al. 2004;Schmidt & 

O'Hagan 2003;Vounatsou et al. 2009). 

 

8.3 Extension of the work 

Our geostatistical analyses and models can be extended to other NTDs and regions, with 

priority the estimation of the soil transmitted helminthiasis risk in Southeast Asia, Central 

America, and Caribbean, and of the schistosomiasis risk in endemic regions of Northern 

South America, Carribean, the Eastern Mediterranean, and Eastern and Southeast Asia. These 

estimates together with the already accomplished risk maps by Chammartin et al (2013c), 

Karagiannis-Voules et al (2015a), Scholte et al (2014), and our work (Lai et al 2013, 2015 

and Chapter 2, 3 and 5) will complete the model-based risk mapping of soil-transmitted 

helminth infections and schistosomiasis at global scale. In addition, the high-resolution risk 

maps we produced can be further used for estimation of disease burden maps. 

As some NTDs share similar control strategies, tackling of these diseases through co-

implementation (e.g., conducting integrating drug distribution, improving WASH, and 

enhancing IEC) in highly co-endemic areas can be very effective and affordable (Brady et al. 

2006;Laxminarayan et al. 2006). Co-endemic risk maps of diseases will support planning for 

co-implementation, thus, are important for disease control and prevention. The most readily 

extension is to estimate the geographical distribution of co-endemic risk of soil-transmitted 

helminth infections and schistosomiasis in sub-Saharan Africa, as risk estimates of both 

diseases are already available (i.e., Chapter 5 and Karagiannis-Voules et al 2015a). 

Our Bayesian geostatistical and mathematical modeling approach for analysing age-

heterogeneous survey data of schistosomiasis can be further developed to obtain age-specific 

risk maps of other NTDs (e.g, soil-transmitted helminth infections), by defining appropriate 

transmission models of the corresponding disease. The predictive ability of the models may 

be improved if intensity data are incorporated into the analyses, however, such models may 

not be easy to use for large-scale risk mapping if intensity data are not available. 
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Over the last years a lot of attention has been raised for control, elimination, and 

eradication of NTDs, which were historically overlooked although they affect more than one 

billion of people living in the world’s poorest areas. Accessing the geographical distribution 

of these diseases at high spatial resolution is important for disease control, by targeting 

control interventions at areas of highest risk and evaluating effectiveness of control 

programmes. This PhD thesis focuses on three important NTDs, namely soil-transmitted 

helminth infections, schistosomiasis, and clonorchiasis. Systematic reviews were carried out 

to collect available disease survey data at different regions, geo-reference and enter them into 

the open-access GNTD database. Data-driven Bayesian geostatistical models were applied to 

estimate the disease risk based on a suite of important environmental and socioeconomic 

predictors. Advanced models were developed to address inherent data characteristics, i.e., 

data with age heterogeneity and data with heterogeneous geographical support. Up-to-date, 

model-based, high-resolution risk maps, the number of infected people, and the annual 

treatment needs for preventive chemotherapy were estimated for soil-transmitted helminth 

infections in P.R. China and South Asia, clonorchiasis in P.R. China, and schistosomiasis in 

sub-Saharan Africa. Our work contributes to the fields of spatial statistics and of 

epidemiology of NTDs with both innovative statistical methodology for the spatial analysis of 

heterogeneous survey data across space and with tools and knowledge for disease control, 

monitoring and evaluation. 
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