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Summary 
 

Cancer is a leading cause of morbidity and mortality worldwide. In 2012 

approximately 14 million new cases were diagnosed and 8.2 million cancer-related 

deaths were recorded. A better understanding of the strategies employed by cancer 

cells to grow and disseminate through the body is still required. Precise 

characterization of the signaling pathways involved in these processes will allow us to 

propose new diagnostic and prognostic markers but also to improve therapeutic 

strategies. 

 

Angiogenesis, the formation of new blood vessels from a pre-existing vasculature, has 

been proposed as a suitable target in order to curtail cancer. In particular, it has been 

proposed that preventing the supply of nutrients and oxygen supply to the tumor 

would starve it to death. However, the clinical outcome of anti-angiogenic therapy has 

been sobering; despite initial therapeutic effects, patients relapse with cancers that 

have developed resistance to the therapy. Tumors treated with bevacizumab, a 

monoclonal antibody targeting the master regulator of angiogenesis, Vascular 

Endothelial Growth Factor-A (VEGF-A), have been found to activate alternative pro-

angiogenic signaling pathways in order to revascularize and resume growth. 

Therefore, it becomes critical to decipher the molecular mechanisms implicated in 

tumor angiogenesis in general but also the mechanisms underlying the development 

of resistance to anti-angiogenic therapies. 

 In my Ph.D. thesis, I first aimed to decipher the mechanisms of resistance to 

anti-angiogenic therapy. In order to overcome revascularization through activation of 

alternative pro-angiogenic signaling pathways, several pan-tyrosine kinase inhibitors 

have been developed. They demonstrated increased efficacy compared with 

bevacizumab. Here, we assessed the efficacy of nintedanib, a multikinase inhibitor 

targeting VEGFRs, FGFRs and PDGFRs in a mouse model of breast cancer. While 

tumors primarily responded to nintedanib treatment and demonstrated decreased 

tumor mass after short-term treatment, prolonged nintedanib treatment was associated 

with tumor regrowth. However, angiogenesis was still repressed in tumors escaping 

therapy and no revascularization was observed. Microarray analysis of FAC-sorted 

tumor cells revealed a metabolic shift towards anaerobic glycolysis. Moreover, 

tumors established metabolic symbiosis as suggested by the alternation between  



	

	highly hypoxic, glycolytic and normoxic areas. Indeed, the inhibition of glycolysis or 

the disruption of metabolic symbiosis by genetically ablating MCT4 expression, a 

protein involved in metabolic symbiosis, efficiently overcame resistance to anti-

angiogenic therapy. 

 

In order to reach blood vessels and to metastasize, epithelial cancer cells have to gain 

motile properties. The first step of the metastatic cascade consists of an epithelial-

mesenchymal transtition (EMT). Epithelial cells undergoing this program lose apico-

basal polarity and their epithelial markers and cell-cell and cell-matrix contacts, yet 

express mesenchymal markers and gain migratory capacity. Moreover, cells 

undergoing an EMT acquire cancer stem cell (CSC) traits. Mesenchymal cells are, for 

example, able to initiate tumor formation in a more efficient way compared to 

epithelial cells. While this feature is expected to rely on increased self-renewal 

capacity in mesenchymal cells, our laboratory identified VEGF-A as a causal agent in 

tumor initiation. By secreting VEGF-A, mesenchymal cells induce a precocious 

angiogenic switch, therefore sustaining tumor growth. 

 In a second project, I aimed to identify the upstream regulator of VEGF-A in 

cells undergoing an EMT. Here, by performing a low throughput siRNA screen for 

transcription factors possessing a binding site on the VEGF-A gene promoter, I could 

identify JunB as the main regulator of VEGF-A expression in mesenchymal cells. 

JunB inhibition in diverse mesenchymal cell lines led to decreased VEGF-A 

expression, suggesting a key role for JunB in EMT-induced angiogenesis and thus 

tumor growth. 

 

In summary, my Ph.D. work provided new insights into tumor angiogenesis as: 

 - I identified a new mechanism of resistance to anti-angiogenic therapy, in 

which tumor cells resumed growth despite lack of blood vessels by switching their 

metabolism towards glycolysis. This work highlighted the use of glycolysis inhibitors 

to overcome anti-angiogenic resistance; 

 - I highlighted a new role for JunB as a regulator of EMT-induced 

angiogenesis and tumor growth. 
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1. General introduction 
 

  1.1. Cancer involves complex gene regulatory networks and heterotypic 

interactions 

 

    1.1.1. What is cancer? 

 

Cancer is a collection of deadly diseases initiated by cells that grow out of control and 

become invasive (Virchow 1859). The first description of cancer, the Edwin Smith 

Papyrus, dates back from 1500 BC (Sudhakar 2009). Cancer can virtually affect all 

tissues. Therefore, more than 200 types of cancers have been described and are now 

referenced by the National Cancer Institute. Cancer is a leading cause of morbidity 

and mortality worldwide. In 2012 approximately 14 million new cases were 

diagnosed and 8.2 million cancer-related deaths were recorded by the World Health 

Agency. Genetic predisposition and environmental factors, such as ultra violets, 

tobacco or infectious agents were shown to be responsible for cancer development 

(Weinberg 2014). 

 Tumors were long considered to be simple masses of homogeneous 

proliferative neoplastic cells. However, cancerous cells are surrounded by several 

non-cancerous cell types and, as organs, tumors reveal high degree of organization 

(Figure 1)	 (Egeblad, Nakasone et al. 2010). In fact, cancer development does not only 

depend on intracellular cancer cell signaling but rather on a collaborative effort 

between tumor cells and the surrounding microenvironment. Through their secretion 

of hormones and growth factors, stromal cells support the growth of tumor cells and, 

as postulated by the stromal progression model, the phenotypic characteristics of the 

microenvironment evolve during tumor progression to support tumor cell growth in 

the most efficient manner (Sleeman, Christofori et al. 2012). As another proof of the 

importance of the microenvironment in cancer progression, the tumor/stroma ratio has 

recently been defined as a novel prognostic marker in triple-negative breast cancer. 

Thus, patients presenting with stroma-rich tumors have 2.92 times higher risk of 

relapse compared with patients with stroma-poor tumors	 (de Kruijf, van Nes et al. 

2011).  
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Figure 1: Tumors reveal a heterotypic composition. 
Far from being simple masses of homogeneous proliferative cancer cells, tumors are composed of 
several cell types. Endothelial cells, stabilized by pericytes, are responsible for the appropriate blood 
supply of the tumor. Immune cells (macrophages, lymphocytes, neutrophils) and fibroblasts secrete 
growth factors and cytokines that induce tumor cell proliferation and migration. Tumor cells 
themselves present a high degree of heterogeneity (cancer stem cells, invasive cancer cells). Proteins 
forming the extracellular matrix also support tumor progression. Only tumors that have disrupted the 
basement membrane and invaded the stroma are referred as cancer. 
 

The role of the different types of stromal cells in tumor progression is very complex. 

However, some examples of their tumor-promoting activities are described below. 

Cancer cells and cancer stem cells: These cells represent the essence of cancer. 

Indeed, they carry the genetic alterations responsible of the disease. Based on their 

morphology, their metabolism or their degree of differentiation, cancer cells present a 

high level of heterogeneity. Cancer stem cells (CSC) are the cells of origin for the 

tumor (Dean, Fojo et al. 2005). They are characterized by their increased ability to 

initiate tumor formation compared with other types of cancer cells. Originally 

identified in leukemia, CSCs have also been described in solid cancers (Bonnet and 

Dick 1997, Al-Hajj, Wicha et al. 2003). Their low-division rate make them 

particularly resistant to conventional cancer therapy and they are, therefore, 

particularly prone to cause relapse (Dean, Fojo et al. 2005). 

Endothelial cells and pericytes: Endothelial cells form blood vessels that, once 

stabilized by pericytes, guarantee tumor adequate access to oxygen and nutrients. 

Endothelial cells also secrete factors that directly affect tumor cell behavior. For 

example, a study performed in our laboratory suggests that endothelial cell secretome 

can induce epithelial-mesenchymal transition (EMT) in human breast cancer cell lines 

(Ferraro, unpublished data). Ghajar and collaborators also demonstrated the ability of 

endothelial cells to promote metastatic tumor cell proliferation or to maintain them in 

a dormant state (Ghajar, Peinado et al. 2013). The implication of endothelial cells in 
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tumor progression will be developed in more details in the third chapter, dedicated to 

tumor angiogenesis. 

Immune cells: Immune cells infiltrates are a major component of most if not all 

tumors (Pages, Galon et al. 2010). They have a dichotomous role in cancer, and are 

therefore able to facilitate or antagonize tumor progression. One could imagine that 

cancer cells essentially express self-antigens. However, due to the mutations they 

carry, they are also antigenic (Gajewski, Schreiber et al. 2013). Cytotoxic T 

lymphocytes and natural killer cells are certainly characterized by tumor-antagonizing 

activities. However, increasing evidence associates macrophages, mast cells, 

neutrophils but also B and T cells to tumor progression. By secreting high levels of 

growth factors, chemokines and cytokines, these cells promote tumor angiogenesis, 

cancer cell proliferation and metastatic spread (Kitamura, Qian et al. 2015). Myeloid 

cells can repress cytotoxic T lymphocytes’ and natural killer cells’ tumor-suppressing 

activities (Coffelt, Lewis et al. 2010, Egeblad, Nakasone et al. 2010, Casazza, Laoui 

et al. 2013, Bonapace, Coissieux et al. 2014, Kuchnio, Moens et al. 2015). 

Cancer-associated fibroblasts: Cancer-associated fibroblasts (CAFs) are the major 

component of the microenvironment. They secrete large amounts of extracellular 

matrix (ECM) and are, therefore, responsible for the formation of the desmoplastic 

stroma characteristic of advanced carcinomas (Kalluri and Zeisberg 2006). 

Furthermore, they have been shown to promote breast cancer progression via the 

secretion of matrix metalloproteinases (MMPs) (Sternlicht, Lochter et al. 1999).  

Extracellular matrix: ECM cannot be only considered as a stable structure supporting 

tumor cells. It is rather a dynamic niche, constantly remodeled during tumor 

progression (Lu, Weaver et al. 2012, Venning, Wullkopf et al. 2015). Increased ECM 

stiffness has been shown to correlate with tumor progression in breast cancer 

(Levental, Yu et al. 2009).	 Moreover, ECM degradation by matrix MMPs has been 

shown to induce angiogenesis through the release of sequestered growth factors	

(Bergers, Brekken et al. 2000). Recently, ECM has been suggested as a highway for 

facilitating tumor cell migration (Oudin, Jonas et al. 2016). 
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    1.1.2. Cancer, a multistep process 

 

In most cases, cancer is a silent killer that develops over years or even decades	 (Hahn 

and Weinberg 2002). Cancer development consists of a multistep process that relies 

on serial acquisition of mutations in proto-oncogenes or tumor suppressor genes. 

Several attempts to identify the oncogene responsible of cancer failed, as no single 

oncogene is sufficient to transform normal human cells (Sager, Tanaka et al. 1983). 

Indeed, the identification of new molecular targets for therapeutic intervention greatly 

depended on the recent development of gene expression profiling and the wide variety 

of omics (transcriptomics, proteomics, metabolomics e.g.). Far from identifying a 

limited number of pathways implicated in tumor development, this array of 

techniques revealed the inherent heterogeneity of signals supporting neoplastic 

transformation. However, some hub genes were shown to be sufficient to transform 

normal cells into malignant ones and support tumor progression. The key concepts in 

which they participate are known as the "hallmarks of cancer". 

 

    1.1.3. The hallmarks of cancer 

 

In two seminal reviews, Hanahan and Weinberg have described the common 

characteristics of cancers (Hanahan and Weinberg 2000, Hanahan and Weinberg 

2011). 

Sustained proliferative factors: Normal tissue architecture and homeostasis rely on a 

precise control of the cell growth-and-division cycle by a diversity of growth factors. 

Cancer cells are able to produce their own growth factors and directly respond to 

these autocrine and/or intracrine stimulations. In order to palliate the lack of growth 

factors, tumors cells can also overexpress the associated receptors. Alternatively, 

tumors cells can attract stromal cells that will in turn support tumor cell proliferation 

by secreting these growth factors. Another possibility for tumor cells to become 

independent of growth factors expression is to constitutively activate downstream 

signaling pathways. This ploy is recurrent in human melanomas, where mitogen-

activated protein kinase (MAPK) signaling is constitutively activated as the result of 

B-Raf mutations (Davies and Samuels 2010). Additionally, MAPK signaling is 

activated in pancreas, lung and colon cancer or in leukemia following K-Ras or N-Ras 
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mutations, respectively. In a similar manner, mutated isoforms of the 

phosphoinositide 3-kinase (PI3K) lead to constitutive activation of the PI3K signaling 

pathway. Loss of negative feedback loop, as observed with loss-of-function mutation 

of PTEN - a negative regulator of PI3K - leads to hyperactivation of the targeted 

signaling pathway (Yuan and Cantley 2008, Jiang and Liu 2009). 

Evasion to growth suppressors: In order to guarantee tissue homeostasis, 

proliferation is inhibited by cell-cell contacts. Cancer cells lose contact inhibition 

mechanisms and, as a result, grow out of control. Moreover, loss of retinoblastoma-

associated (RB) gene or TP53, two tumor-suppressor genes controlling cycle 

proliferation are commonly observed in cancer (Sherr and McCormick 2002).  

Resisting cell death: As a safeguard against cancer, TP53 induces apoptosis in 

response to DNA damages. In tumor cells, loss of TP53 allows abnormal cells to 

survive. 

Replicative immortality: Telomeres protect the extremities of each chromosome. 

During repeated cell divisions, telomeres shorten and lose the ability to protect 

chromosomal extremity from end-to-end fusions. These fusions result in genomic 

instability and cell death. In cancer cells, telomerases extent the telomeric DNA, 

protecting chromosomal ends. Thus, cancer cells display an unlimited replicative 

potential. 

Genome instability and mutation: Selective growth advantages are acquired through 

genetic and epigenetic changes. During the course of tumor development, tumors 

present with increased sensitivity to mutagenic agents and defective DNA-

maintenance machinery. Resulting mutations and deletion/amplification of large 

chromosomal segments lead to a complete loss of genome integrity and a huge growth 

selection advantage (Kinzler and Vogelstein 1997). 

Tumor-promoting inflammation: Inflammation contributes to tumor progression via 

the release of factors capable of inducing mutations in cancer cells - reactive oxygen 

species -, but also to sustain angiogenesis, invasion and metastasis (Grivennikov, 

Greten et al. 2010). 

Reprogrammed energy metabolism: Normal cells rely on oxidative phosphorylation 

when cultured under normoxic conditions but switch to glycolysis under anaerobic 

conditions. The Warburg effect defines the ability of cancer cells to use glycolysis 

even in the presence of oxygen (Warburg 1956, Warburg 1956). The Warburg effect 
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is observed in rapidly dividing cells, such as embryonic tissues and tumors, 

suggesting that it might facilitate the productions of building blocks required to create 

new cells (Vander Heiden, Cantley et al. 2009). The emerging concept of metabolic 

symbiosis suggests that tumor cells can exchange metabolites (Sonveaux, Vegran et 

al. 2008). This observation, based on cooperation between lactate-producing and 

lactate-consuming cells in supporting tumor growth, has been made between different 

tumor cell populations but can also implicate other cell types present in the 

microenvironment (CAFs, immune cells)	 (Semenza 2008, Pavlides, Whitaker-

Menezes et al. 2009).  

Evading immune destruction: Increased propensity of cancer cells to establish 

tumors in immunodeficient mice supposes the implication of the immune system in 

tumor eradication (Kim, Emi et al. 2007). However, it is now clear that cancer cells 

can evade immune system by hindering CTLs or NK cell activity or by recruiting 

immunosuppressive cells, such as regulatory T cells or myeloid-derived suppressor 

cells that are able to repress cytotoxic lymphocytes (Ostrand-Rosenberg and Sinha 

2009, Shields, Kourtis et al. 2010). 

 

The two last hallmarks of cancer, the induction of angiogenesis and the activation of 

invasion and metastasis, are central to the present work and will be described in more 

detail in the following chapters. 

 

  1.2. When cancer turns deadly: the invasion-metastasis cascade 

 

    1.2.1. The metastatic odyssey 

 

The metastatic cascade defines the migration of cancer cells from the primary tumor 

to distant organs that they colonize. Metastases account for 90% of cancer-related 

deaths (Christofori 2006). The kinetic of metastasis and organ-specific colonization 

vary greatly amongst different tumor types suggesting that the ability of neoplastic 

cells to infiltrate a distant organ does not necessarily correlates with their competence 

to colonize this organ (Nguyen, Bos et al. 2009). Isolation of circulating tumor cells in 

the blood of cancer patients implies that tumors shed thousands of cancer cells 

everyday	 (Nagrath, Sequist et al. 2007). However, only a small proportion of these 
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cells (<0.01%) overtly develops as macrometasases (Chambers, Groom et al. 2002). 

This observation suggests that a strong selective pressure applies to cells leaving the 

primary tumor (Vanharanta and Massague 2013). Interestingly, the metastatic cascade 

is not necessarily a late event occurring in slowly developing tumors. Instead, 

metastases have been shown to develop concurrently with the primary tumor	 (Weng, 

Penzner et al. 2012). 

 Cancer cells acquire mutations that render them resistant to apoptosis and 

allow them to grow out of control. As the primary tumor grows, hypoxic areas appear. 

This harsh tumor environment selects for aggressive clones with high metastatic 

propensities (Gupta and Massague 2006). Such clones acquire additional genetic and 

epigenetic alterations and gain proliferative and survival advantage at each 

subsequent round of clonal selection. The different steps of the invasion-metastasis 

cascade, as reviewed by Valastyan and Weinberg, are depicted in Figure 2 and briefly 

described below (Valastyan and Weinberg 2011).  

 

 
Figure 2: The invasion-metastasis cascade. 
After an initial phase of clonal expansion and angiogenesis, cancer cells undergo an epithelial-
mesenchymal transition (EMT) and start to invade locally. Tumor cells enter circulation by 
intravasation. Cells surviving in the blood can attach to the endothelial cells (EC) and extravasate at the 
metastatic site. Following vascularization, micrometastases resume growth and form clinically 
detectable metastases. 
 

Local invasion: Some cancer cells respond to increasing selective pressure by 

undergoing an epithelial-mesenchymal transition (EMT; a process described in more 
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details in the following paragraph). In order to invade, these aggressive cells initiate 

the degradation of the basement membrane. Once the tumor cells have degraded the 

basement membrane, they encounter the stroma. As described earlier, the tumor 

microenvironment further fosters tumor growth and invasiveness. For example, the 

degradation of the ECM by MMPs releases the growth factors that are trapped in the 

ECM and that will, in turn, nurture cancer cell proliferation and migration 

(Kessenbrock, Plaks et al. 2010). Tumor progression is also associated with 

recruitment of blood and lymphatic vessels.  

Intravasation: Once they reach the blood vessels, tumor cells can intravasate and 

enter circulation. For this, they need to cross the pericyte and endothial cell barriers, a 

step greatly facilitated by the leakiness and weak cell-cell interactions encountered in 

tumor blood vessels (Carmeliet and Jain 2011).  

Survival in the circulation: Anchorage is essential for cell survival. Cells that lose 

anchorage to extracellular matrix or neighboring cells experience anoikis, a cell-

detachment-related apoptosis. Cancer cells have developed mechanisms of resistance 

to anoikis that allow them to survive in the circulation	 (Simpson, Anyiwe et al. 2008). 

Furthermore, once in the bloodstream, cancer cells have to protect themselves from 

hemodynamic shear stresses and recognition by the innate immune system. Platelets 

offer them protection against these dangers. 

Arrest at a distant organ site and extravasation: Circulating tumor cells have been 

shown to present affinity for specific organs, a phenomenon called metastatic 

organotropism (Hoshino, Costa-Silva et al. 2015). Breast cancer cells can, for 

example, specifically bind to the lung vasculature, allowing them to particularly home 

to this organ (Paget 1989, Brown and Ruoslahti 2004). Once attached to the 

endothelium, cancer cells can extravasate and finally reach their metastatic niche. 

Metastatic outgrowth: Yet, the effort does not stop there. The rare cells that have 

survived this journey still have to endure exposure to innate immunity and rigorous 

conditions encountered at the metastatic site. Indeed, this new microenvironment 

differs significantly from the primary tumor microenvironment. Therefore, most of 

the cells will stay in a dormant state until favorable conditions are met for their 

proliferation (Psaila and Lyden 2009). Moreover, it is thought that cancer cells have 

to undergo a mesenchymal-epithelial transition (MET) before they can start to 
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proliferate again. Ultimately, cancer cells can resume growth and form clinically 

detectable metastases. 

 

1.2.2. Epithelial-mesenchymal transition 

 

      1.2.2.1. Molecular mechanisms of EMT 

 

In order to reach the blood vessels and metastasize, epithelial cancer cells have to gain 

motile properties. Therefore, the initial step of the metastatic cascade consists of 

undergoing an epithelial-mesenchymal transition (EMT). The EMT process has first 

been described in embryonic development, but is now known to be reactivated in 

wound healing and cancer (Hay 1995). Epithelial cells undergoing this program will 

lose apico-basal polarity, shed their epithelial markers and cell-cell and cell-matrix 

contacts, express mesenchymal markers and gain migratory capacity (Figure 3).  

 

 
 
Figure 3: EMT completely remodels cell phenotype. 
EMT is a reversible process that consist in the transition from an epithelial phenotype - characterized 
by apico-basal polarity, cell-cell and cell-ECM junctions, presence of cortical actin and expression of 
epithelial markers - to a mesenchymal state, defined by front-rear polarity, presence of focal adhesions 
and stress fiber network. This conversion is associated with a loss of epithelial marker expression (E-
cadherin, ZO-1) in favor of mesenchymal marker expression (N-cadherin, vimentin). The colors used 
in the text refer to the different elements depicted on the scheme. 
 

 EMT can be induced by a variety of growth factors such as transforming 

growth factor (TGF)-β, hepatocyte growth factor (HGF), epidermal growth factor 
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(EGF), insulin-like growth factor (IGF) and fibroblast growth factor (FGF). They 

trigger upregulation of transcription repressors (Snail, Slug or Zeb1) that bind to the 

E-box elements in the E(pithelial)-cadherin promoter, leading the recruitment of 

histones deacetylases and subsequent repression of E-cadherin expression (Singh and 

Settleman 2010). Decreased E-cadherin expression invariably leads to dissolution of 

adherens junctions and loss of apico-basal polarity. E-cadherin loss is associated with 

increased expression of the neuronal cell adhesion molecule (NCAM) and balanced 

by overexpression of N(eural)-cadherin, a phenomenon called the cadherin switch 

(Cavallaro, Schaffhauser et al. 2002, Lehembre, Yilmaz et al. 2008, Wheelock, 

Shintani et al. 2008). Repression of claudin, occludin, desmoplakin and desmoglobin 

destabilizes tight junctions and desmosomes	 (Huang, Guilford et al. 2012). In order to 

facilitate motility, cells reorganize their cortical actin into stress fibers, allowing them 

to form sensory extensions such as lamellipodia and filopodia	 (Yilmaz and Christofori 

2009, Yilmaz and Christofori 2010). These actin-rich protrusions participate to ECM 

degradation though MMP secretion	(McNiven 2013).  

 TGF-β, a master regulator of EMT, induces phosphorylation of 

TGFβRI/TGFβRII heterotetramers. It leads to the phosphorylation of the downstream 

effectors Smad2 and 3 and their binding to Smad4. This trimeric Smad complex 

associates with Zeb1, Zeb2 or Snail and represses E-cadherin expression. 

 Non-canonical TGF-β signaling involves RHO-like GTPases, PI3K and 

MAPK signalings (Lamouille, Xu et al. 2014). Phosphorylation of SRC homology 2 

domain-containing-transforming A (SHCA) by TGFRβ1 initiates the RAS-RAF-

MEK-ERK signaling pathway (Lee, Pardoux et al. 2007).  Regarding the p38 MAPK 

and JNK pathways, their activation results from the stimulation of TAK1 by a 

TRAF6/TGFβR complex (Sorrentino, Thakur et al. 2008, Yamashita, Fatyol et al. 

2008). 

 Existence of EMT in human cancer and its necessity for tumor metastasis are 

still debated (Bill and Christofori 2015). E-cadherin is commonly inactivated in 

cancer by either somatic mutations or epigenetic silencing (van Roy and Berx 2008). 

However, cancer cells at the metastatic site present with an epithelial phenotype. It 

has been proposed that cancer cells might revert to an epithelial phenotype in order to 

colonize distant organs but this hypothesis still remains to be proven using lineage 

tracing experiments. 
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1.2.2.2. EMT as a source of cancer stem cells 

 

Tumor-initiating cells have been identified in several cancer types. These cells, able 

to self-renew by asymmetric division, resemble normal stem cells and have therefore 

been proposed to be cancer stem cells (CSCs) (Bonnet and Dick 1997, Al-Hajj, Wicha 

et al. 2003). 

 EMT is a transient process and tumor cells are thought to undergo 

mesenchymal-epithelial transition (MET) in order to colonize distant organs. The 

ability of cancer cells to undergo EMT and MET reflects their high degree of 

plasticity. Indeed, it has been showed that cells undergoing an EMT acquire CSC 

traits (Mani, Guo et al. 2008). Mesenchymal cells are able to form mammospheres 

and they initiate tumor formation in a more efficient way compared with epithelial 

cells. Reversely, CSCs isolated from mammary carcinomas express an EMT 

signature. 

 Reinforcing the link between TGF-β-induced EMT and stemness, the EMT-

inducing transcription factor Zeb2 has been implicated in human embryonic stem cell 

maintenance (Chng, Teo et al. 2010). Moreover, isolated human CSCs express a 

TGF-β signature and re-express epithelial markers following TGF-β inhibition 

(Shipitsin, Campbell et al. 2007). 

 We have recently identified VEGF-A as a causal agent in tumor initiation by 

EMT-induced CSCs; by secreting VEGF-A, EMT-induced CSCs induce a precocious 

angiogenic switch that sustains tumor growth (Fantozzi, Gruber et al. 2014). 

 

We have discussed the importance of the metastatic cascade in cancer-related deaths. 

However, one should not forget that without the recruitment of blood vessels to the 

primary tumor, none of the steps described earlier (with the exception of local 

invasion) would take place. Angiogenesis seems to be a rate-limiting step in the 

transformation of proliferating cells into a deadly disease. 
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1.3. Mechanisms of normal and pathological angiogenesis 

 

    1.3.1. The need for angiogenesis 

 

Blood vessels belong to the circulatory system that first appeared 600 millions years 

ago to respond to increasing organism size and to overcome the subsequent time-

distance constraints of diffusion (Monahan-Earley, Dvorak et al. 2013). Indeed, in 

order to survive and proliferate, cells need oxygen and nutrients and have to get rid of 

their metabolic waste. In vertebrates, blood vessels nurture organs by providing them 

with these elements. Blood has an essential role in maintaining body homeostasis: it 

transports substances such as nutrients, oxygen or hormones, regulates heat, but also 

assures a defense role by carrying immune cells and clotting factors. Therefore, blood 

vessel formation is one of the earliest events occurring during embryonic 

development. 

 Angiogenesis, the formation of new blood vessels from a pre-existing 

vasculature, has been implicated in several physiological processes, such as organ 

development and healing (Carmeliet 2005). Abnormal blood vessel development can 

promote cancer, inflammatory diseases, pulmonary hypertension, blinding eye 

diseases, stroke, myocardial infarction, ulceration, neurogeneration and many more 

(Carmeliet and Jain 2011). 

 Moreover, the role of endothelial cells is not limited to organ or tumor 

perfusion. They also play an active role in organ and tumor growth by secreting a 

panoply of growth factors and ECM proteins (Butler, Kobayashi et al. 2010). By 

doing so, they create a vascular niche that supports normal progenitor cell and CSC 

self-renewal and differentiation (Borovski, De Sousa et al. 2011). Further supporting 

a role beyond simple tissue perfusion, tissue-specific gene expression signatures of 

endothelial cells have been reported (Nolan, Ginsberg et al. 2013).  

 

    1.3.2. Strategies to recruit blood vessels 

 

In a developing embryo, vessel formation starts with vasculogenesis. This process 

consists of the differentiation of angioblasts (mesoderm-derived precursors of the 

endothelial cells) into endothelial cells, which will then coalesce to form a vascular 
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plexus. With ongoing organ development and in the adult, a second mechanism takes 

the helm: sprouting angiogenesis.  

 Sprouting angiogenesis also represents the most common mode of vessel 

formation in tumors (Figure 4). When oxygen or nutrients become scarce, tumor cells 

initiate secretion of angiogenesis-promoting molecules, such as VEGF-A. VEGF-A 

binds to VEGFR2 expressed at the surface of endothelial cells. This binding results in 

the activation of endothelial cells. In order to regulate the number of sprouts, 

endothelial cells compete for the tip cell position, a process that rely on the VEGFR-

Dll4-Notch signaling pathways (Jakobsson, Franco et al. 2010). The first cell able to 

express Dll4 and repress Notch activity gets selected as a tip cell. Dll4-mediated 

Notch activation in the neighboring cells inhibits VEGFR2 expression. As a result, 

these cells cannot respond to VEGF-A stimulation anymore and become stalk cells. 

Tip cells polarize and develop filopodia that scan the environment seeking for 

attractant or repellent signals and initiate sprouting (Gerhardt, Golding et al. 2003). 

For this, tip cells loosen their cell-cell junctions and secrete proteases that dissolve the 

basement membrane. While migrating, tip cells pull the sprout, forcing the 

proliferation of stalk cells and the formation of a lumen. Once tip cells encounter 

other blood vessels, sprouting stops. The two sprouts establish contacts, form tight 

junctions via expression of VE-cadherin, and anastomose to allow blood flow (Blum, 

Belting et al. 2008, Dejana, Orsenigo et al. 2009). Finally, vessels need to be 

stabilized. To this end, endothelial cells secrete platelet-derived growth factor 

(PDGF)-β.  PDGF-β binds to PDGFRβ on the pericyte membrane and induces their 

proliferation and recruitment (Abramsson, Lindblom et al. 2003). Tumor vessels are 

known to be tortuous and leaky. Indeed, pericytes are less abundant in tumors and 

they are not as tightly attached to the endothelium than in normal organs (Bergers and 

Song 2005). Tie2, expressed by endothelial cells, and its ligand angiopoietin 1, 

expressed by pericytes, promote the proper attachment of pericytes on the endothelial 

wall (Armulik, Abramsson et al. 2005). TGF-β also sustains blood vessel maturation 

by inducing secretion of ECM by endothelial cells and pericytes (Jain 2003). Once 

stabilized, endothelial cells return to a quiescent state and blood flow is established 

(Geudens and Gerhardt 2011). 
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Other mechanisms of vessel formation exist but their relevance in tumor development 

is not clear yet. When neo-vessel formation is not possible, tumor cells can co-opt 

existing blood vessels to obtain sufficient blood supply. Vascular mimicry consists in 

the trans-differentiation of cancer cells into endothelial-like cells and the subsequent 

formation of tubular structures able to carry blood in the hypoxic parts of the tumor. 

Vascular mimicry is a well-established process in melanoma and has been recently 

identified also in breast cancer (Hendrix, Seftor et al. 2003, Wagenblast, Soto et al. 

2015). Vasculogenesis corresponds to the differentiation of bone marrow-derived 

progenitors into endothelial cells. In a similar manner, CSCs have been shown to 

differentiate into endothelial cells (Wang, Chadalavada et al. 2010). Finally, during 

intussusception a single vessel is split into two daughter vessels via the insertion of a 

tissue pillar into the vessel lumen (Makanya, Hlushchuk et al. 2009). 

 

 
Figure 4: Mechanisms of tumor angiogenesis. 
Upper panel: Sprouting angiogenesis is a multi-step process. Once a tip cell has been selected, it 
secretes MMPs that dissolve the basement membrane. Secretion of pro-angiogenic factors by the tumor 
microenvironment, such as VEGF-A and FGF, promotes the migration of the tip cell and proliferation 
of the stalk cells. Finally, blood vessels have to mature, a process mainly fostered by the secretion of 
PDGF-β. 
Lower panel: Besides sprouting angiogenesis, other modes of neovascularization have been described. 
For example, tumor cells can hijack (co-opt) existing blood vessels to overcome oxygen paucity. 
Tumor cells can also form their own channels for blood transport, a process known as vascular 
mimicry. Vasculogenesis consists of the differentiation of bone marrow-derived progenitor cells into 
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endothelial cells. CSCs can, as well, differentiate into endothelial cells. Finally, intussusception is 
based on the division of one mother vessel into two new daughter vessels. 

 

    1.3.3. VEGF-A plays a crucial role in angiogenesis and tumor progression 

 

      1.3.2.1. The VEGF family  

 

VEGF-A, originally known as vascular permeability factor, belongs to the family of 

homodimeric glycoproteins also including Placental growth factor (PlGF), VEGF-B, 

VEGF-C, VEGF-D and VEGF-E (Figure 5) (Senger, Galli et al. 1983). The VEGF-A 

active form consists of a disulfide-linked homodimer (Pages and Pouyssegur 2005). 

VEGF-A binding to its receptor VEGFR2 activates a plethora of downstream 

signaling pathways, such as MAPK circuits, PI3K, AKT, phospholipase Cγ (PLCγ) 

and small GTPases. These pathways support endothelial cell survival, proliferation 

and migration. VEGF-A can also bind to VEGFR1 (Fong, Rossant et al. 1995), 

however, VEGFR1 tyrosine kinase activity is rather limited, and VEGFR1 is therefore 

considered to be a decoy receptor that represses angiogenesis (Krueger, Liu et al. 

2011). Moreover, a soluble and catalytically inactive isoform of VEGFR1 freely 

diffuses and traps VEGF-A. The critical importance of VEGF signaling for 

embryonic development and for angiogenesis has been demonstrated by mouse 

genetics approaches. For example, the loss of a single VEGF-A allele has led to 

embryonic lethality at days 11-12, while VEGFR2-/- embryos die at days 8.5-9.5. In 

both cases death is associated with vascular defects (Shalaby, Rossant et al. 1995, 

Carmeliet, Ferreira et al. 1996, Ferrara, Carver-Moore et al. 1996). 

 VEGF-B and PlGF also bind to VEGFR1. PlGF has been shown to be 

dispensable for embryonic angiogenesis. However, its contribution to tumor 

angiogenesis remains controversial. Indeed, in the Rip1Tag2 (RT2) transgenic mouse 

model of pancreatic β-cell carcinogenesis PlGF reduces angiogenesis, supporting the 

observation that PlGF inhibition does not repress angiogenesis in various xenograft 

models (Schomber, Kopfstein et al. 2007, Bais, Wu et al. 2010). However, PlGF 

blockade has been associated with vessel normalization and tumor growth inhibition 

in transgenic models of hepatocellular carcinoma (Carmeliet, Moons et al. 2001, Van 

de Veire, Stalmans et al. 2010). The contribution of VEGF-B to angiogenesis is 

essentially limited to cardiac tissues, and VEGF-B expression in the RT2 model does 
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not affect blood vessel density (Albrecht, Kopfstein et al. 2010, Bry, Kivela et al. 

2010). 

 VEGF-C binding to VEGFR3 is critical for embryonic angiogenesis and 

lymphangiogenesis, and this signaling pathway is reactivated during tumor 

angiogenesis and lymphangiogenesis (Tvorogov, Anisimov et al. 2010). In mouse 

models of cancer, this ligand-receptor couple is implicated in lymphangiogenesis-

mediated metastasis (Mandriota, Jussila et al. 2001, Tammela, Zarkada et al. 2008, 

Tammela and Alitalo 2010). Similar to VEGF-C, VEGF-D also signals through 

VEGFR3, and the expression of VEGF-D in RT2 mice induces increased tumor 

lymphangigenesis and lymph node metastasis (Kopfstein, Veikkola et al. 2007). 

 VEGF-E, the final member of the VEGF gene family, is a viral homolog of 

the mammalian VEGFs that signals through VEGFR2 (Lyttle, Fraser et al. 1994). It is 

encoded by orfan viruses (Orf), and infection with Orf viruses results in extensive 

endothelial cell proliferation associated with severe skin hemorrhages (Kiba, Sagara 

et al. 2003). When expressed in transgenic model of pancreatic cancer (RT2 mice) 

VEGF-E leads to the formation of hemangioma-like structures (Fagiani et al., in 

press). 

 VEGF receptors often exert their functions with specific co-receptors, 

neuropilin 1 and 2. Neuropilins are receptors for semaphorins in neurons, yet they can 

also transduce VEGF signaling either on their own or as co-receptors for VEGFR1, 2 

or 3 (Herbert and Stainier 2011). 
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Figure 5: The VEGF family plays a crucial role in angiogenesis. 
The members of the VEGF family present diverse expression patterns, receptor specificity and they are 
involved in varied biological functions. VEGF-A essentially signals through VEGFR2 in endothelial 
cells but its binding to neuropilin1 (NRP1) and VEGFR1 are involved in CSC renewal and survival. 
 

      1.3.2.2. VEGF-A, a pleiotropic growth factor 

  

We have previously discussed the role of paracrine VEGF-A secretion during 

activated angiogenesis, e.g. VEGF-A secreted by tumor cells and targeting endothelial 

cells. Interestingly, autocrine VEGF-A secretion also occurs and is involved in 

completely different functions. Indeed, autocrine VEGF-A released by the 

endothelium maintains endothelial homeostasis (Lee, Chen et al. 2007). But even 

more intriguing is the autocrine VEGF-A signaling occuring in tumor cells (Goel and 

Mercurio 2013). Some tumor cells express VEGFRs on their surface and this 

expression correlates with poor prognosis. Although VEGFR1 is considered to be a 

decoy receptor in endothelial cells, it seems to be implicated in signal transduction 

when expressed by tumor cells. Neuropilins, the receptors for neuronal class 3 

semaphorins and co-receptors for VEGFRs, are also expressed by tumor cells where 

they act as receptors for VEGF-A (Soker, Takashima et al. 1998). VEGF-A has been 

shown to induce survival of neuropilin-expressing breast cancer cells, and VEGF-A-

induced neuropilin1 activation regulates the stemness potential of skin cancers 

(Bachelder, Crago et al. 2001, Beck, Driessens et al. 2011). Both Neuropilin1 and 

VEGFR2 inhibition leads to impaired cancer stem cell renewal. Interestingly, VEGF-
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A and VEGFR1 are upregulated in colon cancer cells undergoing an EMT (Bates, 

Goldsmith et al. 2003). These data correlate with our own observation that EMT-

induced CSCs express high levels of VEGF-A (Fantozzi, Gruber et al. 2014). 

Moreover, prostate cancer cells have been proposed to undergo an EMT when treated 

with recombinant VEGF-A (Mak, Leav et al. 2010). Finally, colon cancer cells 

expressing VEGFR1 present markedly increased migration supporting a role for 

VEGF-A in this process (Fan, Wey et al. 2005). 

 

      1.3.2.3 VEGF-A regulation, a fine-tuned mechanism 

 

In humans, the VEGF-A gene comprises 8 exons separated by 7 introns, encompasses 

14 kb, and is located on chromosome 6 (Arcondeguy, Lacazette et al. 2013). Different 

levels of regulation have been reported for VEGF-A: transcriptional regulation, 

mRNA stability and mRNA translation via IRES sequences (Claffey, Shih et al. 1998, 

Huez, Creancier et al. 1998, Stein, Itin et al. 1998). The VEGF-A gene promoter lacks 

a TATA box, but carries numerous binding sites for transcription factors, including 

AP1, AP2 and Sp1. An alternative transcription initiation site, non responsive to 

hypoxia, has been discovered downstream of the classical start site. VEGF-A 

transcripts can be alternately spliced into isoforms that present diverse functions and 

bioavailabilities: VEGF-A121, 145, 165, 189 and 206 (Ladomery, Harper et al. 2007). 

VEGF-A165 (164 in murine cells) binds to heparin moieties of the extracellular 

matrix and promotes endothelial cell migration. VEGF-A121 (120 in mice), however, 

is a diffusible factor implicated in endothelial cell proliferation. These alternatively 

spliced isoforms also present varying abilities to activate VEGFR2. Angiogenesis 

therefore relies on a fine-tuned expression of the different VEGF-A isoforms. 

Although VEGF-A mRNA is very labile under normoxic conditions, AU-rich 

elements within the 3'-UTR of the VEGF-A mRNA mediate mRNA stability under 

hypoxic conditions. Moreover, under stress conditions, VEGF-A mRNA can be 

translated by a cap-independent mechanism. New long non-coding RNAs (lncRNAs) 

and microRNAs (miRNAs) have also been found to affect VEGF-A regulation 

(Arcondeguy, Lacazette et al. 2013).  

 Hypoxia is lethal for most cells. However, poorly oxygenated cancer cells 

([pO2] < 7 mmHg) have developed strategies to survive in such environment and can, 
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for example, shift from aerobic to anaerobic metabolism (Venning, Wullkopf et al. 

2015). Their adaptability to such environment greatly relies on expression of oxygen 

sensors and hypoxia-inducible factors (Carmeliet and Jain 2011). VEGF-A, the 

master regulator of angiogenesis, is tightly regulated by hypoxia. The VEGF-A 

promoter contains a hypoxia response element (HRE) that is bound by HIF1α and 

HIF2α (Forsythe, Jiang et al. 1996, Blancher, Moore et al. 2000, Pugh and Ratcliffe 

2003). Under normoxic conditions, prolyl hydroxylases mediate HIF1α ubiquitylation 

and degradation. However, when cells encounter hypoxic conditions, HIF1α is 

stabilized and dimerizes with the constitutively expressed HIF1β (also known as 

ARNT). This complex translocates to the nucleus where it induces the transcription of 

several target genes, including VEGF-A. HIF1α- and HIF2α (EPAS)-deficient 

embryos die prematurely due to abnormal vasculature and both proteins have been 

associated with tumor growth and vascularization (Ryan, Lo et al. 1998, Peng, Zhang 

et al. 2000, Harris 2002). 

 NFκB is another transcription factor induced upon tissue hypoxia. Several 

studies support its implication in cancer progression and angiogenesis (Schmidt, 

Textor et al. 2007, Xie, Xia et al. 2010). Inhibition of NFκB has also been associated 

with decreased VEGF-A mRNA expression in breast cancer cells (Shibata, Nagaya et 

al. 2002). Consensus sites for NFκB have been detected in the mouse VEGF-A 

promoter but, so far, no equivalent have been identified in the human VEGF-A 

promoter. However, NFκB has also been proposed to regulate VEGF-A expression 

indirectly, by activating HIF1α or JunB (Schmidt, Textor et al. 2007). 

 JunB belongs to the AP-1 family of transcription factors. These family 

members form homo- or heterodimers able to bind to the AP-1 binding site on the 

VEGF-A promoter. The first evidence for the implication of JunB in angiogenesis 

dates back to the 90's. JunB-deficient embryos present with severe growth delay and 

embryonic lethality due to a deficient feto-maternal circulatory system (Schorpp-

Kistner, Wang et al. 1999). JunB plays a critical role in VEGF-A expression. It has 

been shown to induce VEGF-A expression in response to hypoglycemia as well as to 

regulate tumor progression and angiogenesis (Textor, Sator-Schmitt et al. 2006, 

Schmidt, Textor et al. 2007). JunB also induces cell invasion and angiogenesis in 

renal cell carcinoma via the production of MMPs and C-C motif ligand-2 (CCL2)	

(Kanno, Kamba et al. 2012). Yet, in a recent paper, Braun and collaborators show that 
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stromal expression of JunB is dispensable for tumor growth and angiogenesis in 

mouse models of lung cancer and melanoma (Braun, Strittmatter et al. 2014). 

 Sp1 can be phosphorylated in response to numerous factors, such as HGF, 

EGF, TGF-β1 or Erk (Arcondeguy, Lacazette et al. 2013). Once phosphorylated, Sp1 

binds to the VEGF-A promoter and induces transcription (Novak, Metzger et al. 

2003). Sp1 inhibition correlates with decreased angiogenesis and impaired tumor 

progression in a melanoma model (Ishibashi, Nakagawa et al. 2000). 

 Finally, the transcription factor Stat3 is constitutively activated in a wide 

range of cancers, notably in breast carcinomas. Niu and collaborators have identified 

a Stat3 binding site on the VEGF-A promoter (Niu, Wright et al. 2002). Constitutive 

Stat3 activation promotes VEGF-A transcription, while Stat3 inhibition has been 

associated with decreased promoter activity (Wei, Le et al. 2003). 

 

    1.3.3. Alternative pro-angiogenic signaling pathways 

 

VEGF-A is a master regulator of angiogenesis. However, this complex process relies 

on additional signaling pathways. As previously described, the PDGF-β/PDGFRβ 

axis supports pericyte recruitment and blood vessel maturation. PDGFRβ inhibition 

counteracts with pericyte chemoattraction and results in blood vessel regression and 

tumor growth inhibition (Bergers, Song et al. 2003).  

 Besides VEGF-A, FGF2 plays a significant role in angiogenesis by inducing 

endothelial cell migration and proliferation, and FGF2 inhibition has been associated 

with decreased microvessel density and tumor growth in melanoma (Wang and 

Becker 1997, Beenken and Mohammadi 2009). Similarly, FGF1 supports tumor 

angiogenesis and tumor growth (Compagni, Wilgenbus et al. 2000). 

 Recent evidence suggests a high degree of similitude between sprouting 

endothelial cells and axonal growth cones. Indeed, a vast majority of proteins 

implicated in neuronal guidance are also implicated in angiogenesis (Carmeliet and 

Tessier-Lavigne 2005). These are for example netrins, semaphorins, ephrins, 

neuropilins and ROBO receptors.  

 

The pleiotropic role of VEGF-A in both tumor angiogenesis and stem cell 

maintenance makes it a prime target in the fight against cancer. 
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  1.4. Angiogenesis: A good target in cancer therapy?  

 

Cancer is an age-old disease still lacking an effective cure. Conventional 

chemotherapy kills rapidly dividing cancer cells. However, such treatment presents 

relatively limited efficacy mainly due to the presence of CSCs with low-division 

rates; they survive chemotherapy and repopulate the tumor as soon as the treatment 

ceases. Recent decades have seen the development of targeted therapies, i.e. therapies 

specifically interfering with cancer-related genes without harming normal cells. Anti-

angiogenic therapy belongs to this class of therapeutic approaches. 

 In its Canon of Medicine, Avicenna already suggested that “removal of blood 

vessels going to the tumor” might be a good therapeutic strategy to combat cancer. 

Thousand years later, Algire and colleagues highlighted the importance of blood 

vessels in primary tumor growth (Algire and Chalkley 1945). This discovery has been 

confirmed by the work of Judah Folkman in the early 70’s (Folkman 1971). Indeed, 

Folkman suggested that tumors required blood vessels in order to survive and grow 

and proposed that inhibition of blood supply might induce tumor starvation and hence 

its shrinkage. Together with the identification of VEGF-A in the late 80’s, these 

observations led to the development of therapeutic strategies targeting tumor 

angiogenesis (Leung, Cachianes et al. 1989, Ferrara, Hillan et al. 2004).  

 Two strategies can be used to target angiogenesis. The first one consists in 

specifically killing endothelial cells to prune blood vessels. The second, proposed by 

Carmeliet, aims to normalize blood vessels. Tumor angiogenesis is a relatively 

chaotic process that leads to the formation of a leaky, tortous and dilated vasculature. 

Blood flux in these vessels is far from optimal. Therefore, it has been suggested that 

blood vessel normalization could improve tumor irrigation and favor the entrance of 

chemotherapy in the tumor (Carmeliet and Jain 2011). Vessel normalization can be 

achieved by using VEGF-A inhibitors that inhibit excessive vessel sprouting or by 

forcing vessel maturation, for example via inhibition of angiopotein-2 binding to Tie2 

receptors (Thurston, Suri et al. 1999). 
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    1.4.1. From neutralizing antibodies to tyrosine kinase inhibitors 

 

The first approach to inhibit angiogenesis consists in the use of monoclonal 

antibodies. Monoclonal antibodies are produced by hybridomas - that result from the 

fusion between B cells and myelomas. They inhibit the binding of a ligand to its 

receptor, either by trapping the ligand (e.g. bevacizumab) or by binding to the 

receptor (e.g ramucirumab or DC-101). Bevacizumab, a humanized antibody 

neutralizing VEGF-A was rapidly approved in combination with chemotherapy in the 

treatment of several cancer types, including metastatic breast cancer (Miller, Wang et 

al. 2007). It is in the treatment of metastatic colon cancer that bevacizumab revealed 

the greatest efficacy. Indeed, bevacizumab addition to a combination of irinotecan, 

fluorouracil and leucovorin (IFL) extended progression-free survival of 4.4 months 

compared to IFL alone (Hurwitz, Fehrenbacher et al. 2004). At the exception of 

glioblastoma treatment, bevacizumab is always used in combination with 

chemotherapy. It is used in the treatment of clear cell renal cell carcinoma in 

combination with interferon-α and in the treatment of non-small cell lung carcinoma 

in combination with paclitaxel-carboplatin (Sandler, Gray et al. 2006, Escudier, 

Pluzanska et al. 2007). However, it has been withdrawn for the treatment of 

metastatic breast cancer, as it failed to improve patient overall survival (Rose 2011). 

Indeed, after an initial decrease in tumor growth, therapy resistance develops rapidly, 

mainly driven by the activation of alternative pro-angiogenic signaling pathways such 

as IL-17, PDGF/R and FGF/R axes (Compagni, Wilgenbus et al. 2000, Casanovas, 

Hicklin et al. 2005, Ebos, Lee et al. 2007, Bergers and Hanahan 2008, Chung, Wu et 

al. 2013).  

 To circumvent these limitations, tyrosine kinase inhibitors (TKIs) 

simultaneously targeting several pro-angiogenic signaling pathways have been 

developed and are currently approved for clinical use (Ebos and Kerbel 2011). TKIs 

are small molecules able to cross the cell membrane and to bind to the ATP-binding 

pocket of the tyrosine kinase receptors, leading to their inactivation. To quote only the 

best-known examples, sunitinib and sorafenib are currently used in clinics. In contrast 

to bevacizumab, TKIs are not used in combination with chemotherapy, since their 

broad range of signaling targets makes them relatively toxic on their own. Sunitinib - 

an inhibitor of VEGFRs and PDGFRs - increases progression-free survival for 
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patients suffering of gastro-intestinal stromal tumors, but does not improve their 

overall survival (Escudier, Roigas et al. 2009). It also extends progression-free 

survival and overall survival of metastatic renal cell carcinoma patients - a highly 

angiogenic tumor type - and is currently used to treat metastatic neuro-endocrine 

pancreatic cancer (Motzer, Hutson et al. 2007, Motzer, Hutson et al. 2009, Raymond, 

Dahan et al. 2011). Sorafenib inhibits VEGFRs, PDGFRs and Raf kinases and is used 

in the treatment of advanced hepatocellular carcinomas and metastatic renal cell 

carcinomas (Llovet, Ricci et al. 2008, Escudier, Eisen et al. 2009).  

 

    1.4.2. Mechanisms of resistance to anti-angiogenic therapy 

 

As previously described, anti-angiogenic therapy increases progression-free survival. 

However, mainly due to resistance development, it has only a limited effect on overall 

survival. Some patients are immediately refractory to the treatment and do not even 

show a transient benefit. This is the case with pancreatic ductal adenocarcinoma, a 

tumor type which is particularly hypovascularized (Bergers and Hanahan 2008). 

These patients are intrinsically resistant to anti-angiogenic therapy. Others will 

initially respond to the treatment and escape during therapy. This type of resistance is 

referred to as acquired resistance. Most mechanisms of resistance rely on the fine-

tuned interplay between tumor cells, blood vessels and the tumor microenvironment. 

 Several mechanisms of resistance have been described so far, such as 

activation of alternative pro-angiogenic signaling, recruitment of bone marrow-

derived cells, increased pericyte coverage, increased invasiveness, and metabolic 

adaptation (Figure 6). 
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Figure 6: Mechanisms of evasive resistance to anti-angiogenic therapy. 
Tumors initial response to anti-angiogenic therapy is associated with decreased vascularization and 
tumor shrinkage. Tumors can become refractory to anti-angiogenic therapy and resume growth. For 
this, they can activate alternative pro-angiogenic signaling pathways or recruit bone marrow-derived 
cells that secrete pro-angiogenic factors. These two mechanisms are associated with revascularization. 
Alternatively, they can compensate their lack of blood vessel by increasing pericyte recruitment and 
blood vessel maturation. They can also cope with decreased microvessel density by adjusting their 
metabolism. Resistance to anti-angiogenic therapy is associated with increased invasiveness and 
metastatic potential. 
  

Activation of alternative pro-angiogenic signaling pathways 

Advanced breast cancers do not only rely on VEGF-A but also express an array of 

additional angiogenesis-promoting factors. FGF2 expression has been proposed to be 

responsible for the limited response observed in metastatic breast cancers treated with 

bevacizumab. Activation of alternative pro-angiogenic signaling pathways to 

overcome VEGF-A inhibition has originally been proposed by Casanovas and 

collaborators. They observed that RT2 mice treated with DC101, a TKI targeting 

VEGFR2, overexpress a plethora of pro-angiogenic factors, including FGF1, FGF2, 

ephrins and angiopoietin1, allowing the tumor to revascularize (Casanovas, Hicklin et 

al. 2005). Inhibition of FGF signaling reverts resistance development and represses 

vascularization in this pre-clinical model. Similarly, FGF2 expression has been found 

increased in the blood of glioblastoma patients treated with a VEGFR inhibitor 

(Batchelor, Sorensen et al. 2007). 

 

Recruitment of bone marrow-derived cells 

Shojaie and colleagues have observed that CD11b+ Gr1+ monocytes can mediate 

intrinsic resistance to bevacizumab through the secretion of pro-angiogenic factors 

(Shojaei, Wu et al. 2007). In another study, bevacizumab treatment has been shown to 
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promote the recruitment of T helper cells and granulocytes to the tumor. These cells 

support tumor revascularization through the secretion of VEGF-A-independent pro-

angiogenic factors, including Bv8 (Chung, Wu et al. 2013). Similarly, bone marrow-

derived fibrocyte-like cells have recently been proposed to mediate resistance to 

bevacizumab via the production of FGF2 (Mitsuhashi, Goto et al. 2015). 

 

Increased pericyte coverage and vessel maturation 

Mature blood vessels are less sensitive to angiogenesis inhibitors	 (Bergers, Song et al. 

2003). Therefore, it has been proposed that targeting pericytes in combination with 

anti-angiogenic therapy would increase vessel pruning (Sun, Wang et al. 2005). Such 

an inhibition can be achieved by using pan-TKIs such as sunitinib, which is currently 

used in the clinics to inhibit VEGFRs and PDGFRs. 

 

Increased invasiveness 

Whereas several studies have shown that TKIs significantly reduce primary tumor 

growth, invasion and metastasis, others have suggested that they might instead 

promote cell migration and enhance metastatic disease (Padera, Kuo et al. 2008, Ebos, 

Lee et al. 2009, Paez-Ribes, Allen et al. 2009, Lu, Chang et al. 2012, Sennino, 

Ishiguro-Oonuma et al. 2012). For example, work from Ebos and collaborators has 

revealed that despite decreasing primary tumor growth, short-term sunitinib treatment 

accelerates the development of metastases. Interestingly, treatment of recipient mice 

with anti-angiogenic therapies prior to tumor cell inoculation has also resulted in 

significantly enhanced multi-organ metastasis (Ebos, Lee et al. 2009). Anti-

angiogenic therapy affects virtually every step of the metastatic cascade (invasion, 

intravasation, extravasation and colonization of distant tissue). For example, Paez-

Ribes and colleagues have reported an increased invasiveness of pancreatic cancer 

treated with DC101 – a VEGFR2 inhibitor (Paez-Ribes, Allen et al. 2009). Increased 

tumor invasiveness upon anti-angiogenic therapy can be explained by increased 

hypoxia observed in treated tumors. Indeed, establishment of a hostile, hypoxic and 

nutrient-deprived environment has been shown to increase tumor cell invasion 

through an activation of Met receptor signaling (Pennacchietti, Michieli et al. 2003). 

Cooke and collaborators have also observed increased metastatic burden after pericyte 
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depletion, suggesting an increased ability of tumor cells to intra- or extravasate 

(Cooke, LeBleu et al. 2012).  

 
Metabolic adaptation 

More recently, new mechanisms of resistance involving metabolic adaptation 

processes have been reported. For example, by repressing blood flow in the tumor, 

anti-angiogenic therapy has been shown to induce hypoxia. HIF1α stabilization 

induces metabolic reprogramming towards glycolysis that sustains tumor cell 

survival. Such mechanisms have been associated with the use of bevacizumab in 

glioblastoma, as well as in ovarian and breast cancer (Keunen, Johansson et al. 2011, 

Quintieri, Selmy et al. 2014, Curtarello, Zulato et al. 2015). In a similar manner, 

sunitinib and sorafenib cessation has been associated with increased lipid synthesis 

and lipogenesis inhibition repressed tumor regrowth and metastasis (Sounni, Cimino 

et al. 2014). 
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2. Aim of the study 
 

Angiogenesis is a well-known hallmark of cancer. Its main regulator, Vascular 

Endothelial Growth Factor A (VEGF-A), plays a central role in tumor progression 

and has been anticipated to be an appropriate target in cancer therapy. However, 

despite the approval of several anti-angiogenic therapies, clinical results remain 

unsatisfactory. Transient benefits are followed by rapid tumor recurrence, associated 

with increased invasiveness and drug resistance. Therefore a better understanding of 

the regulation of pro-angiogenic signaling pathways during tumor progression and 

alternative strategies developed by the tumors to escape anti-angiogenic therapy is 

urgently required. Gaining insights into these mechanisms will help to open avenues 

for the development of more efficient therapeutic strategies.  

 

During my Ph.D., I addressed two specific aspects of tumor angiogenesis: 

 

- In one project, I deciphered the molecular mechanisms inducing resistance to 

anti-angiogenic therapy in a mouse model of breast cancer; 

 

- In a second project, I aimed at identifying the signaling pathways regulating the 

pro-angiogenic signature acquired during an EMT. 
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3. Results 
 
  3.1. Targeting metabolic symbiosis to overcome resistance to anti-angiogenic 
therapy 
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    3.1.1. Abstract 

 

Despite the approval of several anti-angiogenic therapies, clinical results remain 

unsatisfactory, and transient benefits are followed by rapid tumor recurrence. Here, 

we demonstrate a potent anti-angiogenic efficacy of the multi-kinase inhibitors 

nintedanib and sunitinib in a mouse model of breast cancer. However, after an initial 

regression, tumors resume growth in the absence of active tumor angiogenesis. Gene 

expression profiling of tumor cells reveals a metabolic reprogramming towards 

anaerobic glycolysis. Indeed, combinatorial treatment with a glycolysis inhibitor 

(3PO) efficiently inhibits tumor growth. Moreover, tumors establish metabolic 

symbiosis, illustrated by the differential expression of MCT1 and MCT4, 

monocarboxylate transporters active in lactate exchange in glycolytic tumors. 

Accordingly, genetic ablation of MCT4 expression surmounts the adaptive resistance 

against anti-angiogenic therapy. Hence, targeting metabolic symbiosis may be an 

attractive avenue to avoid resistance development to anti-angiogenic therapy in 

patients. 

 

    3.1.2. Introduction 

 

An imbalance between pro and anti-angiogenic factors inducing the formation of new 

blood vessels from a preexisting vasculature (angiogenesis) has been described as a 

hallmark of cancer (Hanahan and Weinberg 2011). Hence, targeting angiogenesis 

might plausibly reduce intra-tumoral levels of oxygen and nutrients, resulting in 

tumor starvation and thus in reduced tumor growth (Folkman 1971), and anti-

angiogenic therapies were rapidly translated with great expectations from preclinical 

cancer models to clinical practice (Ferrara and Kerbel 2005, Crawford and Ferrara 

2009, Carmeliet and Jain 2011). For example, the discovery of Vascular Endothelial 

Growth Factor (VEGF-A) and its receptors and their identification as a rate-limiting 

factor for normal and pathological angiogenesis has led to the development of 

bevacizumab (Avastin®), a humanized monoclonal antibody targeting VEGF-A 

(Ferrara, Hillan et al. 2004, Ferrara and Kerbel 2005). While some cancer types, such 

as colorectal (Hurwitz, Fehrenbacher et al. 2004), renal cell (Motzer, Hutson et al. 

2007) and pancreatic neuroendocrine carcinoma (PNETs; (Raymond, Dahan et al. 
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2011), have shown encouraging responses to this therapeutic strategy, numerous other 

cancer types, in particular breast cancer, seem to be poorly responsive to anti-

angiogenic regimens. Indeed, metastatic breast cancer patients treated with standard 

chemotherapy plus bevacizumab have only benefited from 1-2 months of progression-

free survival, and the rapid onset of resistance evidently prevented any overall 

survival benefit (Miller, Wang et al. 2007, Kerbel 2009, Rose 2011).  

These data underline the importance of deciphering the molecular mechanisms 

underlying intrinsic or adaptive resistance to anti-angiogenic therapy. When blocking 

the VEGF-A signaling axis in preclinical models, e.g. with bevacizumab, tumors 

escape by activating alternative pro-angiogenic signaling pathways including 

fibroblast growth factors (FGFs), platelet-derived growth factors (PDGFs), 

Bv8/prokineticin, and interleukin-17 (Il-17) (Compagni, Wilgenbus et al. 2000, 

Casanovas, Hicklin et al. 2005, Bergers and Hanahan 2008, Ferrara 2010, Chung, Wu 

et al. 2013). In order to counteract the activation of these alternative pro-angiogenic 

pathways, several multikinase inhibitors and other anti-angiogenic drugs, targeting 

VEGF-dependent and independent pro-angiogenic signaling pathways, are currently 

in clinical use or in clinical trials. For example, sorafenib, a multikinase inhibitor 

targeting RAF, VEGF receptors (VEGFR) 1-3, PDGF receptors (PDGFR) α and β, c-

KIT and FLT-3, is currently used for the treatment of hepatocellular carcinoma, and 

sunitinib, blocking VEGFR1-3, PDGFRα/β, c-KIT and FLT-3, is employed for the 

treatment of renal cancer. Both inhibitors show significant anti-tumor efficacy in 

preclinical tumor models and in cancer patients, however, they also suffer from 

resistance development based on thus far unknown mechanisms (Paez-Ribes, Allen et 

al. 2009, Raymond, Dahan et al. 2011). Transient benefits are rapidly followed by 

tumor recurrence, sometimes associated with drug resistance and heightened tumor 

invasiveness (Bergers and Hanahan 2008, Paez-Ribes, Allen et al. 2009, Ebos and 

Kerbel 2011, Sennino and McDonald 2012, Singh and Ferrara 2012).  

Nintedanib (BIBF-1120) is an even wider-spectrum angiokinase inhibitor 

targeting VEGFR1-3, PDGFα/β, and FGF receptors (FGFR) 1-4, as well as FLT-3 

and SRC family kinases (Hilberg, Roth et al. 2008). Nintedanib has recently shown 

promising results in pre-clinical models of lung cancer, ductal adenocarcinoma of the 

pancreas and PNET (Kutluk Cenik, Ostapoff et al. 2013, Awasthi, Hinz et al. 2014, 

Awasthi, Hinz et al. 2015, Bill, Fagiani et al. 2015). Furthermore, nintedanib has 
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demonstrated excellent tolerance and potent activity in a phase I clinical trial in early 

HER2-negative breast cancer (Quintela-Fandino, Urruticoechea et al. 2014) and in a 

phase III study in combination with chemotherapy in NSCLC leading to its approval 

as a second-line treatment in combination with docetaxel for advanced NSCLC 

(Reck, Kaiser et al. 2014, McCormack 2015). 

We have therefore assessed the effects of nintedanib in mouse models of 

cancer. We report that tumors treated with nintedanib or sunitinib do not revascularize 

during the development of therapy resistance. Instead, the cells located in avascular 

areas escape the lack of oxygen by shifting their metabolism towards a 

hyperglycolytic state and by producing lactate, while the cells localized in the vicinity 

of blood vessels utilize the lactate for oxidative phosphorylation. The data establish 

metabolic symbiosis (Sonveaux, Vegran et al. 2008, Porporato, Dhup et al. 2011) as 

an alternative route to develop resistance to anti-angiogenic therapy in mouse models 

of breast cancer and of insulinoma. Notably, interference with glycolysis or disruption 

of metabolic symbiosis reinstalls nintedanib’s efficacy in repressing tumor growth. 

 

    3.1.3. Results 

 

      3.1.3.1. Py2T tumors develop evasive resistance to anti-angiogenic therapy 

 

Nintedanib is a potent angiogenesis inhibitor that represses endothelial cell 

proliferation and induces their apoptosis (EC50 < 10nM), yet with limited direct 

effects on tumor cells (Hilberg, Roth et al. 2008). A stable murine breast cancer cell 

line (Py2T) established from a breast tumor of an MMTV-PyMT transgenic mouse 

(Waldmeier, Meyer-Schaller et al. 2012) displayed an EC50 of 8 μM in vitro which is 

above the pharmacologically achievable concentration in mice (Hilberg, Roth et al. 

2008, Roth, Heckel et al. 2009) (Figure S1A). To study the tumor suppressive 

efficacy of nintedanib in vivo, Py2T cells were orthotopically implanted into the 

mammary fat pad of immune-competent syngeneic FVB/N female mice. When 

tumors reached a volume of 15-20 mm3, where the angiogenic switch had already 

taken place (Figure S1B), daily treatment with nintedanib was initiated (50 mg/kg, 

p.o.). During the first week of treatment (short term treatment; ST), tumor volumes as 

well as tumor weights in nintedanib-treated animals were significantly reduced 
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(Figure 1A, B). This nintedanib-responsive phase was associated with decreased cell 

proliferation and increased apoptosis (Figure 1C-F). However, after three weeks of 

treatment (long term treatment; LT), tumors escaped this therapeutic effect and 

showed an enhanced tumor growth with increased cell proliferation and reduced 

apoptosis (Figure 1A, C-F). Apparently, Py2T breast cancer cells escaped nintedanib 

treatment despite its broad range of inhibitory activities. 
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Figure 1. Evasive resistance to anti-angiogenic therapy. Py2T murine breast cancer cells were 
implanted into the mammary fat pad of FVB/N mice, and treated with nintedanib (50mg/kg daily p.o.) 
or vehicle control from day 14 after tumor cell implantation.  
(A) Primary tumor growth was monitored by assessing tumor volumes over the time of therapy. Values 
represent mean ± SEM. N=13 mice per group. 
(B) Tumor weights were determined after 7 days of nintedanib short-term (ST) treatment. N=6-8 mice 
per group.   
(C-F) Cell proliferation (C, D) and the incidence of apoptosis (E, F) were quantified by 
immunofluorescence staining for phospho-histone 3 (pH3; red) and cleaved caspase-3 (cCasp3; red), 
respectively, of tumor sections from short-term (ST) and long-term (LT) vehicle or nintedanib-treated 
mice. Representative immunofluorescence microscopy pictures are shown in D and F. DAPI was used 
to visualize cell nuclei. Values represent the number of pH3 positive (C) and cCasp3 positive (E) cells 
per area of each microscopic field of view. N=5-8 mice per group. Mann–Whitney U test. *, P < 0.05; 
***, P < 0.001; ****, P < 0.0001. Scale bars, 50 µm. (See also Figure S1). 
 

      3.1.3.2. Evasive resistance is not associated with tumor revascularization 

 

We next investigated whether angiogenesis had been reactivated in LT treated Py2T 

tumors, thereby escaping nintedanib treatment. Intriguingly, microvessel density was 

found decreased both after ST and LT nintedanib regimen, indicating a potent and 

stable anti-angiogenic effect of nintedanib, even in a phase of drug-refractory 

exponential tumor growth (Figure 2A, B; Figure S2A). The numbers of blood vessels 

became more variable following LT nintedanib treatment, potentially indicating an 

initiation of revascularization. However, immunofluorescence co-staining for CD31 

and cleaved Caspase 3 (cCasp3) revealed increased apoptosis in endothelial cells after 

ST and LT nintedanib treatment, demonstrating the sustained anti-angiogenic efficacy 

of nintedanib even after LT treatment (Figure 2C, D). This therapy-resistant tumor 

growth was not specific for the multi-kinase inhibitor nintedanib; in a head-to-head 

comparison, Py2T tumors treated with nintedanib and sunitinib displayed comparable 

tumor growth and reduced microvessel densities after LT treatment (Figure S2B-D).  

We next assessed whether Py2T tumors compensate for the lack of blood 

vessels with increased pericyte coverage. Pericytes promote the maturation and 

stabilization of blood vessels through PDGFR signaling and thus influence the 

responsiveness to anti-angiogenic therapy (Hellstrom, Kalen et al. 1999). 

Interestingly, despite its inhibitory activity on PDGFR signaling, nintedanib did not 

affect the pericyte coverage of blood vessels resisting nintedanib treatment (Figure 

2E; Figure S2E). Nintedanib also did not affect the functionality of the remaining 

blood vessels as determined by the injection of fluorescence-labeled lectin (Figure 2F; 

Figure S2F). Consistent with decreased tumor perfusion, pimonidazole staining 

revealed a significant increase in tumor hypoxia not only in the ST-treated, 
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nintedanib-responsive tumors but also in the LT-treated, nintedanib-resistant tumors 

(Figure 2G, H). These data demonstrate a potent anti-angiogenic activity of 

nintedanib and suggest a new mechanism of therapy resistance by which tumors 

escape anti-angiogenic therapy in the absence of any revascularization. 
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Figure 2. Lack of tumor revascularization during resistance against nintedanib therapy. 
(A, B) Microvessel densities (A) and CD31-positive area fractions (B) were quantified in Py2T tumors 
from mice treated for 1 week (ST) or 3 weeks (LT) with vehicle or nintedanib.  
(C) Endothelial cell apoptosis (CD31, green; cCasp3, red) is shown on representative 
immunofluorescence picture of a tumor from a 1 week (ST) nintedanib-treated mouse. DAPI was used 
to visualize cell nuclei. Scale bars, 20 μm. 
(D) Quantification of endothelial cell apoptosis by immunofluorescence co-staining for cCasp3 and 
CD31 in tumors from ST and LT vehicle or nintedanib-treated mice.  
(E) Quantification of the percentage of CD31-positive blood vessels that were in contact with NG2-
positive perivascular cells in Py2T tumors from ST and LT vehicle or nintedanib-treated mice.  
(F) The functionality of blood vessels was assessed by i.v. injection of FITC-Lectin into Py2T tumor-
bearing mice following ST or LT vehicle or nintedanib-treatment. Patent, perfused blood vessels were 
identified by immunofluorescence staining for CD31 and detection of FITC-Lectin and quantified by 
counting CD31 and lectin double-positive blood vessels. 
(G) Hypoxic areas were identified and quantified by immunofluorescence staining for pimonidazole 
adducts in Py2T tumors from ST and LT vehicle or nintedanib-treated mice.  
(H) Representative pictures of the immunofluorescence co-staining for pimonidazole adducts (red) and 
CD31 (green) on histological sections of tumors from ST and LT vehicle or nintedanib-treated mice. 
DAPI staining visualizes cell nuclei. Scale bars, 100 μm.  
N = 6-8 mice per group. Mann–Whitney U test. n. s., non significant; **, P < 0.01; ***, P < 0.001; 
****, P < 0.0001. (See also Figure S2). 
 

      3.1.3.3. Tumor cells become hyperglycolytic to survive hypoxia 

 

To investigate the molecular mechanisms underlying the resistance against nintedanib 

treatment, we isolated by flow cytometry endothelial and tumor cells from nintedanib-

treated and untreated tumors at different time points of resistance development. To 

facilitate the isolation of tumor cells, Py2T cells were transduced with a retroviral 

construct expressing a truncated, non-functional form of murine CD8α (Misteli, 

Wolff et al. 2010). A CD45-CD8+ population could only be identified in Py2T-CD8α+ 

tumors and not in wild-type Py2T tumors (Figure S3A). After ST (1 week) and LT (3 

weeks) treatment with nintedanib, CD45-CD8α+ tumor cells and CD45-CD8α-

CD31+podoplanin- endothelial cells were sorted by flow cytometry (Figure S3B-D), 

and changes in gene expression were assessed by DNA oligonucleotide microarray 

analysis. Surprisingly, endothelial cell gene expression profiles between ST and LT 

nintedanib-treated tumors did not markedly differ, mainly reflecting endothelial cells 

undergoing apoptosis (data not shown).  

In contrast, gene expression analysis of isolated tumor cells revealed a marked 

difference between untreated and treated groups. The genes resulting from the 

comparison between LT nintedanib-treated and untreated tumor cells were subjected 

to KEGG-pathway analysis which showed an enrichment of metabolic pathways, in 

particular glycolysis (Figure 3A). Gene Set Enrichment Analysis (GSEA) 

(Subramanian, Tamayo et al. 2005) also showed an enrichment of glycolysis gene 
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expression, especially when comparing the gene expression profiles of LT vs. 

untreated tumor cells, yet also when comparing ST vs. untreated tumor cells (Figure 

3B). Glycolysis gene-enrichment also became evident when the gene expression 

profiles associated with a core set of glycolytic enzymes were visualized using a heat 

map. Indeed, hierarchical clustering correctly interrelated the three different treatment 

conditions (Figure 3C). Quantitative RT-PCR analysis confirmed the upregulated 

expression of most of the glycolytic enzymes upon ST and LT nintedanib treatment, 

while the expression of genes implicated in mitochondrial biogenesis and oxidative 

phosphorylation were unaffected (Figure 3D, E).  

Because nintedanib-treated tumors exhibited enhanced hypoxia compared to 

size-matched vehicle-treated tumors (Figure 2G, H), we hypothesized that hypoxia 

could be a determinant of tumor cell heterogeneity and a direct inducer of the 

glycolytic shift. As expected, when compared with normoxic cultures, Py2T cells 

cultured for 3 days in hypoxic conditions (1% O2) exhibited a significantly increased 

expression of nine out of ten glycolysis-related transcripts analyzed (Figure S3E).  

Together, the data suggest a metabolic adaptation to anti-angiogenic therapy, 

in which hypoxic tumor cells shift to a hyperglycolytic state to survive and proliferate 

at reduced oxygen and nutrient supply.  
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Figure 3. Tumor cells become hyperglycolytic during nintedanib treatment. 
(A) Differential gene expression between flow cytometry-isolated LT nintedanib and untreated tumor 
cells was assessed by Affymetrix microarray analysis. The list of differentially expressed genes was 
subjected to KEGG pathway analysis.  
(B) Gene set enrichment analysis (GSEA) between gene expression profiles of either ST or LT 
nintedanib and untreated tumor cells. Shown are the normalized enrichment score (NES) and the FDR 
q-value. 
(C) A set of core glycolysis enzymes was used to perform hierarchical clustering of gene expression 
profiles derived from LT and ST nintedanib and untreated controls. 
(D, E) Expression of different glycolysis and mitochondrial activity-related transcripts in ST (D) and 
LT (E) nintedanib-treated tumors analyzed by quantitative RT-PCR is shown. Data are normalized to 
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untreated tumors. Shown are mean ± SEM. N = 4 mice per group. Mann–Whitney U test. n. s.: non 
significant; *, P < 0.05; **, P < 0.01. (See also Figure S3). 

 

      3.1.3.4. Therapy resistance establishes metabolic symbiosis  

 

Considering the highly glycolytic phenotype of nintedanib-treated tumor cells, we 

analyzed lactate production in Py2T tumors. Total lactate production was not 

increased in nintedanib-treated tumors compared to vehicle-treated tumors (Figure 

S4A), possibly explained by a fast metabolic utilization of lactate. The alternation 

between highly hypoxic and normoxic areas in nintedanib-treated tumors (Figure 2H), 

together with comparable levels of lactate between nintedanib and vehicle-treated 

tumors, suggested the establishment of lactate-based metabolic symbiosis (Sonveaux, 

Vegran et al. 2008). In such symbiosis, hypoxic glycolytic cells use glucose to 

produce high levels of lactate that is rapidly exported through monocarboxylate 

transporter 4 (MCT4), mainly a lactate exporter. Oxidative cells located in perfused 

areas express MCT1, mainly a lactate importer, allowing them to take up lactate and 

directly fuel their Krebs cycle. These cells do not rely on glycolysis, and glucose can 

bypass them and diffuse to hypoxic areas, where it is taken up by glycolytic cells 

expressing high levels of hypoxia-induced Glut1 to produce lactate (Sonveaux, 

Vegran et al. 2008).  

We assessed the establishment of metabolic symbiosis during the development 

of resistance against nintedanib-mediated anti-angiogenic therapy in the Py2T 

transplantation model of breast cancer. Immunofluorescence staining for MCT1 and 

MCT4 demonstrated a diffuse baseline expression of MCT1 that remained unchanged 

during nintedanib treatment, whereas MCT4 was highly expressed in non-

vascularized areas of LT nintedanib-treated tumors and to a lesser extent in ST-treated 

tumors (Figure 4A; Figure S4B-D). Similar results were observed in sunitinib-treated 

tumors (Figure S4E). To assess the generality of our findings, we analyzed 

microvessel densities and MCT4 expression in tumors of Rip1Tag2 transgenic mice 

that have been treated with nintedanib (Bill, Fagiani et al. 2015). The Rip1Tag2 

transgenic mouse model of pancreatic neuroendocrine carcinoma is highly sensitive to 

anti-angiogenic therapies and has been instrumental for compound testing and 

subsequent successful translation to the treatment of patients with pancreatic 

neuroendocrine tumors (PNETs) (Tuveson and Hanahan 2011). With Rip1Tag2 mice, 
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nintedanib treatment was initiated at 10 weeks of age, which prolonged median 

survival from 24 days in control-treated animals to 55 days in nintedanib-treated 

animals. Comparable to the Py2T breast cancer model, Rip1Tag2 mice also developed 

resistance to nintedanib therapy and did not display any revascularization in therapy-

refractory tumors (Figure S4F), and MCT4 expression was also only found in tumors 

after prolonged nintedanib treatment (Figure S4G). 

To further assess the establishment of metabolic symbiosis in nintedanib 

therapy-resistant tumors we assessed by immunofluorescence microscopy analysis	 the 

expression and localization of markers for hypoxia (pimonidazole), glucose uptake 

(Glut1), lactate export (MCT4), mitochondrial biogenesis and oxidative 

phosphorylation (PGC1α, COX IV) (Wu, Puigserver et al. 1999, LeBleu, O'Connell 

et al. 2014). Notably, the mean shortest distance between MCT4-expressing cells and 

the nearest blood vessel was increased in LT tumors, although not with statistical 

significance (Figure 4B), indicating the expression of MCT4 in hypoxic areas. Indeed, 

the expression of hypoxia-induced glucose transporter 1 (Glut1) correlated with the 

expression of hypoxia-induced MCT4 and with the hypoxia-marker pimonidazole in 

the hypoxic areas of nintedanib LT tumors (Figure 4C-G and S4H-I). The expression 

of MCT4 co-localized with pimonidazole as well (Figure 4H, I and S4J). On the other 

hand, the expression of PGC1α and COXIV did not specifically localize with 

vascularized or non-vascularized areas, yet increased in ST and LT nintedanib-treated 

tumors (Figure S4K, N). Curiously, the co-expression of MCT4 with PGC1α and 

COX IV was decreased and unchanged, respectively, in ST nintedanib-treated tumors, 

yet it was unchanged with PGC1α and increased with COX IV comparing LT vehicle 

and nintedanib-treated tumors (Figure S4L, M, O, P). These results suggest a first 

wave of tumor hypoxia and glycolysis followed by a homeostasis of metabolic 

symbiosis between anaerobic glycolysis and aerobic oxidative phosphorylation during 

prolonged anti-angiogenic therapy. 
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Figure 4. Tumors establish metabolic symbiosis to overcome nintedanib treatment. 
(A) Representative pictures of combinatorial immunofluorescence staining for MCT1, MCT4 and 
CD31 on histological sections of tumors from mice treated with either vehicle or nintedanib (50 
mg/kg/day) are shown, as indicated. DAPI was used to visualize cell nuclei. Scale bars, 100 µm. 
(B) Quantification of the closest distance separating blood vessels from MCT4+ areas by 
immunofluorescence co-staining for MCT4 and CD31 on Py2T tumors from ST and LT vehicle or 
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nintedanib-treated mice. Note that in ST vehicle-treated tumors MCT4 was not significantly expressed 
and thus the distance to blood vessels could not be determined.  
(C, D) Quantification of the Glut1+ area fraction (C) and the MCT4+ area fraction within Glut1+ areas 
(D) by immunofluorescence co-staining for MCT4 and Glut1 on Py2T tumors from ST and LT vehicle 
or nintedanib-treated mice.  
(E) Representative microphotographs of immunofluorescence co-staining for MCT4 and Glut1 on 
histological sections of tumors from ST and LT vehicle or nintedanib-treated mice. DAPI is used to 
visualize cell nuclei. Scale bars, 100 µm.  
(F) Quantification of the hypoxic (pimonidazole+) area fraction within Glut1+ areas by 
immunofluorescence co-staining for pimonidazole and Glut1 on Py2T tumors from ST and LT vehicle 
or nintedanib-treated mice.  
(G) Representative microphotographs of immunofluorescence co-staining for pimonidazole and Glut1 
on histological sections of tumors from ST and LT vehicle or nintedanib-treated mice. DAPI was used 
to visualize cell nuclei. Scale bars, 100 μm.  
(H) Quantification of the MCT4+ area fraction within pimonidazole+ areas by immunofluorescence 
co-staining for MCT4 and pimonidazole on Py2T tumors from ST and LT vehicle or nintedanib-treated 
mice.  
(I) Representative microphotographs of immunofluorescence co-staining for MCT4 and pimonidazole 
on histological sections of tumors from ST and LT vehicle or nintedanib-treated mice. DAPI is used to 
visualize cell nuclei. Scale bars, 100 μm.  
(J) Representative microphotographs of immunofluorescence co-staining for PGC1α and CD31 on 
histological sections of tumors from ST and LT vehicle or nintedanib-treated mice. DAPI is used to 
visualize cell nuclei. Scale bars, 50 μm.  
N = 4 mice per group. Mann–Whitney U test. n.s., non significant; *, P < 0.05; **, P < 0.01. (See also 
Figure S4). 

 

      3.1.3.5. Targeting glycolysis or metabolic symbiosis delays resistance 

development 

 

The small molecule 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) inhibits the 

glycolytic activator phosphofructokinase-2/fructose-2,6-bisphosphatase 3 (PFKFB3) 

in endothelial cells (Schoors, De Bock et al. 2014). Its combined activity as a 

glycolysis and endothelial cell inhibitor made it a prime compound to overcome 

glycolysis-induced resistance to anti-angiogenic therapy (Rivera and Bergers 2014). 

While single treatment with nintedanib significantly repressed tumor growth in Py2T-

transplanted mice, single treatment with 3PO only marginally delayed it (Figure 5A, 

B). Notably, the combined treatment with nintedanib and 3PO showed an additive 

effect on tumor growth inhibition. This combined effect was not mediated by an 

additive anti-angiogenic effect, since the microvessel densities between the nintedanib 

single and the nintedanib plus 3PO combination treatments were not significantly 

altered (Figure 5C). Consistent with its ability to normalize blood vessels single 

treatment with 3PO significantly increased pericyte coverage and thus vessel 

functionality, possibly explaining the limited repression of tumor growth despite the 
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significant decrease in microvessel density (Figure 5D) (Schoors, De Bock et al. 

2014). This effect was abrogated upon combined 3PO and nintedanib treatment.  

To determine the early effects of 3PO treatment on nintedanib-treated tumors, 

Py2T transplanted mice were first treated with nintedanib for eight days and then 

subjected to treatment with 3PO and nintedanib for subsequent five days. While 

nintedanib significantly repressed tumor growth upon short-term treatment, 3PO 

treatment did not add further tumor repression (Figure S5A, B). However, the extent 

of tumor hypoxia and the rate of tumor cell apoptosis specifically in the hypoxic 

tumor areas significantly increased upon combined nintedanib/3PO treatment (Figure 

S5C-E). Collectively, these results suggest that the inhibition of glycolysis is one 

avenue of overcoming resistance to anti-angiogenic therapy with multi-kinase 

inhibitors. 

To determine whether the inhibition of metabolic symbiosis could overcome 

the development of resistance against anti-angiogenic therapy, we generated Py2T 

cell lines that were devoid of MCT4 by CRISPR/Cas9-mediated knockout of the 

Slc16a3 gene (MCT4 is known as Solute carrier 16 a3; Slc16a3). Two stable cell 

clones (CRISPR MCT4 #1 and #2), which showed targeted recombination in the 

Slc16a3 gene and did not express MCT4 protein anymore were used for further 

experimentation (Figure S5F). The loss of MCT4 expression in these clones 

significantly repressed tumor growth as compared to wild type cells under treatment 

with nintedanib treatment leading to an additive effect in repressing tumor growth 

kinetics and final tumor weights (Figure 5E, F). These results were confirmed by 

shRNA-mediated ablation of MCT4 expression (shMCT4) in Py2T cells (Figure 

S5G). The loss of MCT4 expression in shMCT4 cell lines significantly retarded tumor 

growth kinetics and final tumor weights under treatment with nintedanib as compared 

to shCtrl cells (Figure S5G, H, I). However, after a first delay, shMCT4 tumors 

resumed growth. Immunofluorescence staining for CD31 did not reveal any increase 

in microvessel density in nintedanib-treated shMCT4 tumors, excluding an escape 

route by revascularization (Figure S5J). Instead, we observed an increase of MCT4 

expression both at the protein and mRNA level in nintedanib-treated shMCT4 tumors 

(Figure S5K, L), suggesting that cells with poor shRNA-mediated knockdown 

efficiency developed a selective growth advantage and elicited tumor recurrence. 
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Figure 5. Targeting glycolysis or metabolic symbiosis in combination with nintedanib treatment 
delays tumor growth. 
(A, B) Primary tumor growth over time (A) and tumor weights at the experimental end point (B) of 
mice treated with either vehicle or nintedanib (50 mg/kg/day) in combination with 3PO (70 mg/kg/day) 
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or solvent are shown. 3PO treatment was initiated 8 days after the initiation of nintedanib treatment and 
then continued as combinatorial treatment (long-term treatment). In (A), data are displayed as mean 
tumor volumes ± SEM.  
(C) Quantification of microvessel densities by immunofluorescence staining for CD31 on histological 
tumor sections from long-term nintedanib and 3PO-treated mice. Values represent the number of 
counts per each area of microscopic field of view and means are displayed. N = 6-8 mice per group.  
(D) Pericyte coverage was assessed by immunofluorescence staining for CD31 and NG2 on 
histological tumor sections from long-term nintedanib and 3PO-treated mice. Values represent the 
percentage of NG2+ blood vessels and means are displayed. N = 4-5 mice per group.  
(E, F) Primary tumor growth over time (E) and tumor weights at the experimental end point (F) of 
mice injected with Py2T WT or Py2T CRISPR MCT4 #1 and #2 cells and treated with either vehicle 
control or nintedanib (50 mg/kg/day) are shown. Nintedanib treatment was initiated 19 days after 
tumor cell injection, once the tumors were palpable. Mice injected with CRISPR MCT4 #1 cells 
presented a delayed tumor onset and were therefore treated once the tumors became palpable (days 27-
38). In (E), data are displayed as mean tumor volumes ± SEM. N = 4-7 mice per group.  
Mann–Whitney U test. n.s., non significant; *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 
0.0001. (See also Figure S5). 
 

      3.1.3.6. Hypoxia-induced glycolysis is reverted by 3PO and loss of MCT4 

 

The results presented above beg the question whether in Py2T tumor cells hypoxia-

induced glycolysis is directly affected by treatment with nintedanib and 3PO or the 

loss of MCT4 expression. Thus, we performed extracellular flux analysis by 

‘Seahorse’ methodology to determine the oxygen consumption rate (OCR) as a 

measure of oxidative phosphorylation and the extracellular acidification rate (ECAR) 

as a measure of glycolysis. As expected, under hypoxic conditions, Py2T cells 

exhibited increased ECAR (glycolysis) and decreased OCR (oxidative 

phosphorylation) as compared to normoxic conditions (Figure 6A, B). When directly 

quantified, hypoxic cells had reduced ATP-coupled OCR, increased ECAR, 

unchanged glycolytic capacity, and decreased glycolytic reserve as compared to cells 

cultured under normoxia (Figure 6C-F). To determine any effects of therapeutic 

treatments on the rates of glycolysis and oxidative phosphorylation, the ratios 

between ECAR and OCR were determined in wild type or MCT4 knockout Py2T 

cells cultured under normoxia or hypoxia and treated with solvent, nintedanib or 3PO. 

These experiments revealed that nintedanib did not affect the ratio between ECAR 

and OCR (Figure 6G), while 3PO reduced this ratio, i.e. it decreased glycolysis and 

increased oxidative phosphorylation, under hypoxic but not under normoxic 

conditions (Figure 6H). The genetic ablation of MCT4 expression also reduced 

ECAR/OCR only under hypoxic growth conditions (Figure 6I), which also resulted 

into increased tumor cell apoptosis and cell cycle arrest (Figure 6J, K).  
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Taken together, the data show that anti-angiogenic resistance can occur via the 

establishment of metabolic symbiosis and that interfering with metabolic symbiosis 

can overcome resistance to anti-angiogenic therapy with multi-kinase inhibitors. 
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Figure 6. Glycolysis induced by hypoxia can be reverted by treatment with 3PO or the loss of 
MCT4. 
(A, B) Shown are the measurements of representative oxygen consumption rates (A; OCR) and 
extracellular acidification rates (B; ECAR) of Py2T cells cultured in normoxic or hypoxic conditions. 
N = 5.  
(C-F) Quantification of ATP-coupled respiration (C), glycolysis (D), glycolytic capacity (E) and 
glycolytic reserve (F) of Py2T cells cultured under normoxic or hypoxic conditions. See Supplemental 
Experimental Procedures for details). Data are displayed as mean ± SD. N = 5 (glycolytic reserve: 
N=4). Statistical significance was calculated using 2-way ANOVA test.  
(G-H) ECAR/OCR ratio of Py2T cells cultured under normoxic or hypoxic conditions and treated with 
DMSO, 0.5 μM or 1 μM nintedanib (G) or 5	 μM 3PO (H). Data are displayed as mean ± SD. N = 4. 2-
way ANOVA test.  
(I) ECAR/OCR ratio of Py2T WT cells or Py2T CRISPR MCT4#1 and #2 cells cultured under 
normoxic or hypoxic conditions. Data are displayed as mean ± SD. N = 4. 2-way ANOVA test.  
(J) The percentages of apoptotic Py2T WT cells or Py2T CRISPR MCT4 #1 and #2 cells cultured 
under normoxic or hypoxic conditions were assessed using flow cytometry analysis of Annexin V-
expressing cells. Data are displayed as mean ± SD. N = 3. 1-way ANOVA test.  
(K) Cell cycle analysis for Py2T WT cells or Py2T CRISPR MCT4 clones #1 and #2 cultured under 
normoxic or hypoxic conditions was performed using EdU staining. Data are displayed as mean ± SD. 
N = 3. 2-way ANOVA test.  
n.s., non significant; *, P < 0.05; **, P < 0.01. 
 

3.1.4. Methods 

 

Mice 

FVB/N mice were kept and bred under specific pathogen-free (SPF) conditions. The 

generation and characterization of Rip1Tag2 transgenic mice has been described 

elsewhere (Hanahan 1985). All experiments were performed following the rules and 

legislations of the Cantonal Veterinary Office, Basel-Stadt, Switzerland and the Swiss 

Federal Veterinary Office (SFVO) under licence numbers 1878, 1907 and 1908. 

 

Cell lines and orthotopic tumor cell transplantation 

Py2T murine breast cancer cells were cultured as previously described	 (Waldmeier, 

Meyer-Schaller et al. 2012). 5x105 cells were orthotopically injected into the 

mammary gland number 9 of 7-11 weeks old female FVB/N mice under 

isoflurane/oxygen anesthesia. Tumor length (l) and width (w) were assessed 3 times 

per week using a vernier caliper and tumor volume (V) was calculated using the 

formula V=0.543*l*w2. 

 

Therapy studies, RNA isolation, Quantitative RT-PCR, Immunofluorescence 

microscopy analysis, Flow cytometry, Microarray analysis and Bioinformatical 

analysis 

See Supplemental Experimental Procedures 
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Establishment of CRISPR MCT4 cell lines 

Subconfluent Py2T cells were transfected with 2 μg of MCT4 CRISPR/Cas9 KO 

plasmid and 2 μg of MCT4 HDR plasmid (Santa Cruz, sc-429828 and sc-

429828HDR, respectively). Successfully transfected cells were selected by puromycin 

treatment (5 µg/ml) and FACS-sorted based on their RFP expression. Single clones 

were derived and validated using PCR primers flanking the sequences targeted by the 

gRNAs, subsequent sequencing and Western blot analysis. Prior to in vivo 

experiments, the RFP and puromycin resistance cassettes were removed using 

infection with adenovirus expressing Cre recombinase (Ad-Cre). 

 

Extracellular metabolic flux analysis 

For details see Supplemental Information. 

 

Statistical analysis 

Data analysis and graph generation was performed using GraphPad Prism 6 

(GraphPad Prism Software Inc.). 

 

    3.1.5. Discussion 

 

In this and in the accompanying reports by Hanahan and colleagues (Allen et al.) and 

Casanovas and colleagues (Jimenez-Valerio et al.), we report the intriguing finding 

that a glycolytic shift underlies the development of resistance to anti-angiogenic 

therapy with multi-kinase inhibitors. Notably, in response to the efficient repression 

of tumor angiogenesis, tumors compartmentalize into hypoxic regions at a distance 

from blood perfusion and into normoxic regions in the vicinity of mature and 

functional blood vessels. The hypoxic tumor cells exhibit high glucose uptake by the 

hypoxia-induced expression of Glut1 and they efficiently generate and export lactate 

by the hypoxia-induced expression of the lactate exporter MCT4. Conversely, the 

normoxic tumor cells take up the lactate produced by the hypoxic tumor cells and 

oxygen from nearby blood vessels and fuel both into oxidative phosphorylation 

(Figure 7). Such aspect of metabolic intra-tumoral heterogeneity is portrayed by the 

concept of metabolic symbiosis (Sonveaux, Vegran et al. 2008).  
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Here, we have analyzed the efficacy of the angiokinase inhibitors nintedanib 

and sunitinib in a preclinical mouse model of breast cancer and in the Rip1Tag2 

transgenic mouse model of pancreatic neuroendocrine cancer. Treatment of Py2T 

tumor-bearing mice and of Rip1Tag2 mice with the angiogenesis inhibitors has lead 

to a significant therapeutic response, characterized by increased tumor and endothelial 

cell apoptosis, decreased tumor cell proliferation and reduced tumor size. However, 

despite the potent anti-angiogenic efficacies, the treated tumors rapidly escape 

therapy. Evasive resistance to anti-angiogenic therapy has previously been reported to 

rely partially on the redundancy of pro-angiogenic growth factors leading to tumor 

revascularization (Bergers and Hanahan 2008, Ferrara 2010, Chung, Wu et al. 2013). 

Intriguingly, the nintedanib and sunitinib-resistant tumors do not show any evidence 

of revascularization. Rather, with the reduction in tumor perfusion, hypoxia is 

increased in resistant tumors, and microarray gene expression analysis reveals a 

metabolic shift to glycolysis in the resistant tumor cells. Indeed, glycolysis and 

glucose transport-related genes are well known targets of hypoxia-induced cellular 

adaptations (Harris 2002), and glycolysis induction has been recently described in 

response to VEGF-inhibitors (Kumar, Wigfield et al. 2013, Curtarello, Zulato et al. 

2014).  

The tumor cells’ shift to glycolysis as a mechanism underlying resistance 

against anti-angiogenic therapy offers the opportunity of defeating therapy-resistance 

by interfering with glycolysis. Indeed, in this and in the accompanying reports (Allen 

et al; Jimenez-Valerio et al.), combination therapy involving angiokinase inhibitors 

with 3PO (our work), a glycolytic flux inhibitor (Clem, Telang et al. 2008, Schoors, 

De Bock et al. 2014), or with rapamycin, an mTOR and glycolysis inhibitor 

(presented in the accompanying papers), surmounts resistance to treatment. However, 

combination treatment of nintedanib with 2-deoxyglucose, a competitive inhibitor of 

the production of glucose-6-phosphate from glucose (Wick, Drury et al. 1955), did 

not delay tumor growth, most likely due the fact that we have been unable to supply 

the very high concentrations of 2-deoxyglucose in tumors that would be 

pharmacologically active (data not shown). Dichloroacetate (DCA), a drug inhibiting 

pyruvate dehydrogenase kinase and thus promoting glucose oxidation over glycolysis 

by increasing the pyruvate flux into mitochondria (Michelakis, Sutendra et al. 2010), 

also has not shown any effect on tumor growth (data not shown). Hence, the 
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pharmacological targeting of glycolysis in the context of anti-angiogenic therapy may 

be more complex than anticipated.  

Along these lines, despite a clear hypoxia-response pattern to nintedanib 

therapy, high-throughput metabolomic analysis of tumor lysates from treated mice has 

failed to show any significant differences in central carbon metabolism between 

nintedanib LT and untreated tumors (data available upon request). However, 

according to the hypothesis of a metabolic symbiosis and based on our detailed in situ 

analysis of the expression of markers of glycolysis and oxidative phosphorylation, the 

metabolomic analysis of tumors ex vivo may be obscured by the concomitant presence 

of cells using hypoxia/glycolysis or oxidative phosphorylation in the same tumor. We 

have thus directly analyzed the hypoxia-induced metabolic shift between glycolysis 

and oxidative phosphorylation in cultured tumor cells by ‘Seahorse’ technology and 

have found that inhibition of glycolysis by 3PO as well as the genetic ablation of 

MCT4 expression repress hypoxia-induced glycolysis and induce cell cycle arrest and 

apoptosis.  

Regions with higher oxygen partial pressure metabolize lactate produced in 

hypoxic areas and thus increase the diffusion capacity of oxygen and glucose. Indeed, 

increased expression of MCT4 has been correlated with poor prognosis in melanoma 

and breast cancer (Ho, de Moura et al. 2012, Doyen, Trastour et al. 2014). 

Accordingly, the genetic ablation of MCT4 expression in Py2T tumors treated with 

nintedanib show significantly delayed tumor growth. Our data therefore suggest that 

i) despite the broad range activities of the multi-kinase inhibitors nintedanib and 

sunitinib, tumors can still escape treatment; ii) nintedanib and sunitinib resistance 

does not occur via tumor revascularization but is induced by a metabolic shift towards 

glycolysis and the establishment of metabolic symbiosis; iii) nintedanib and sunitinib 

treatment should be used in combination with glycolysis/metabolic symbiosis 

inhibitors for long-term efficacy (Figure 7). Along these lines, it has been recently 

reported that the genetic disruption of MCT1 or MCT4 represses breast tumor growth 

(Morais-Santos, Granja et al. 2015) and sensitizes glycolytic tumor cells to treatment 

with phenformin, an inhibitor of mitochondrial complex I (Marchiq and Pouyssegur 

2015). However, complicating things, a recent investigation of metabolic changes in 

tumors after cessation of sunitinb or sorafenib therapy has revealed a metabolic shift 
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to lipid synthesis, and blockade of lipidogenesis has inhibited tumor regrowth 

(Sounni, Cimino et al. 2014). 

In conclusion, the data presented here and in the accompanying reports 

underscore the variety of evasive responses to anti-angiogenic and likely to other 

targeted therapies. The establishment of metabolic symbiosis adds not only another 

level of complexity but also a number of novel drugable targets to the design of 

combinatorial therapies. The results also emphasize the importance of intra-tumoral 

heterogeneity as therapy response, in particular with regard to oxygen and nutrient 

availability. Such heterogeneity likely masks critical adaptation mechanisms when 

performing cross-sectional analysis without spatial resolution.  

 

 
 
Figure 7. Targeting metabolic symbiosis overcomes resistance to anti-angiogenic therapy. Anti-
angiogenic therapy induces hypoxia and reduces the supply of nutrients. As a result, tumor cells shift 
their metabolism towards a hyperglycolytic state and establish metabolic symbiosis: tumor cells in 
hypoxic areas upregulate glycolysis, increase lactate production and export lactate via MCT4. On the 
other hand, lactate is taken up by tumor cells in more oxygenated regions of the tumor and is directly 
fueling the citric acid cycle and thus oxidative phosphorylation. As a consequence, tumor cells in 
normoxic tumor regions reduce glucose consumption, which increases its diffusion distance. Ablating 
MCT4 expression (MCT4 KO or shMCT4) or inhibition of glycolysis (3PO) disrupts this homeostatic 
interplay and decreases tumor growth. 
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    3.1.6. Supplemental information 
 

Supplemental Figures 
 

 
 
Figure S1. Related to Figure 1. Nintedanib treatment of Py2T cells in vitro.  
(A) The inhibitory effect of increasing concentrations of nintedanib after 72 hours of treatment on 
Py2T tumor cell numbers has been determined by using an MTT assay in vitro. Data are shown as 
mean cell number normalized to control cells ± SD from three independent experiments.  
(B) Representative immunofluorescence microphograph showing CD31-positive blood vessels in a 
tumor with a volume of 15 mm3 representing the time point at which treatments were generally 
initiated. DAPI was used to visualize cell nuclei. Scale bar, 50 μm.  
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Figure S2. Related to Figure 2. Nintedanib and sunitinib treatments demonstrate potent anti-
angiogenic effects.  
(A) Representative images of immunofluoresecence stainings of tumor sections from ST and LT 
vehicle or nintedanib-treated mice with antibodies against CD31 are shown (C; green). DAPI was used 
to visualize cell nuclei. Scale bars, 50μm. 
(B-D) Py2T tumor-bearing mice were treated with nintendanib or sunitinib during 21 days, and mice 
were sacrificed at day 35 post tumor cell injection. Microvessel densities (B) and CD31-positive area 
fractions per field of view (C) determined by immunofluorescence staining are shown. Tumor weights 
at the experimental end point are depicted in (D). N = 3-6 mice per group. Statistical significance was 
calculated using Mann–Whitney U test. n. s., non significant; *, P < 0.05; **, P < 0.01; ***, P < 0.001; 
****, P < 0.0001. 
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(E) Blood vessel (CD31, red) coverage by perivascular cells (NG2, green) is shown on representative 
immunofluorescence pictures of tumors from ST and LT vehicle or nintedanib-treated mice. DAPI 
staining visualizes cell nuclei. Scale bars, 100μm.  
(F) Blood vessel (CD31, red) perfusion (lectin, green) is shown on representative immunofluorescence 
pictures of tumors from ST and LT vehicle or nintedanib-treated mice. DAPI was used to visualize cell 
nuclei. Scale bars, 100μm. 
 
 

 
 
Figure S3. Related to Figure 3. Flow cytometry cell sorting strategy. 
(A) Representative flow cytometric analysis of a wild-type Py2T tumor confirming the absence of a 
CD8α-positive CD45-negative cell population. Relative frequencies of gated populations are shown.  
(B) Schematic representation of the experimental setup. Py2T-CD8α cells were orthotopically injected 
into the mammary fat pad of FVB/N female mice. Two weeks later, after the angiogenic switch had 
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occurred, nintedanib (50 mg/kg/day) treatment was initiated. One (ST) or three weeks (LT) after 
nintedanib initiation, corresponding ST and resistant LT-treated tumors, respectively, were harvested 
for cell isolation by flow cytometry.  
(C) Schematic representation of the flow cytometry sorting strategy. Cells from dissociated tumors 
were separated by flow cytometry: tumor cells were identified by gating on the CD45-CD8α+ 
population, whereas endothelial cells were identified by gating on CD45-CD8α-CD31+podoplanin- 
blood vessel endothelial cells. 
(D) Representative results of cell sorting by flow cytometry. Cells were first gated for forward scatter 
(FSC) and sideward scatter (SSC), and propidium iodide-positive (PI) dead cells and cell doublets were 
excluded. Then, tumor cells were sorted by gating on the CD45-CD8α+ population, whereas endothelial 
cells were sorted by gating on CD45-CD8α-CD31+podoplanin- blood vessel endothelial cells. 
(E) Expression of different glycolysis genes in Py2T cells cultured in hypoxic conditions analyzed by 
quantitative RT-PCR. Data are normalized to cells cultured in normoxic conditions. Shown are means 
± SEM. N = 4. Statistical significance was calculated using Student t test. *, P < 0.05; **, P < 0.01; 
***, P < 0.001; ****, P < 0.0001. 
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Figure S4. Related to Figure 4. Nintedanib treatment leads to the establishment of metabolic 
symbiosis. 
(A) Lactate levels have been quantified in lysates of tumors from LT vehicle or nintedanib-treated 
mice, and are shown as mean ± SEM. N = 5 mice per group.  
(B, C) Quantification of MCT1 (B) and MCT4 (C) expression by immunofluorescence staining on 
histological tumor sections from ST and LT vehicle or nintedanib-treated mice is shown. Mean MCT4 
positive area fractions per each field of view are shown.  N = 4 mice per group.  
(D) Single channels corresponding to the MCT4/MCT1 costaining presented in Figure 4A. Veh., 
vehicle; Nint., nintedanib. Scale bars, 100 μm. 
(E) MCT4 expression in tumors derived from LT vehicle, nintedanib or sunitinib-treated mice was 
assessed by immunofluorescence staining. Values represent the MCT4-positive area fraction per each 
field of view. N = 5-6 mice per group.  
(F, G) Shown are microvessel densities (F) and representative immunofluorescence stainings for 
MCT4 (G) in tumors of Rip1Tag2 transgenic mice treated for 3 weeks (LT) with nintedanib. DAPI was 
used to visualize cell nuclei. N = 8-9 mice per group. Scale bars, 100 μm.  
(H-J) Single channels corresponding to MCT4/Glut1, pimonidazole/Glut1 and pimonidazole/MCT4 
costainings presented in Figure 4E, 4G and 4I, respectively. Pimo., pimonidazole; Veh., vehicle; Nint., 
nintedanib. Scale bars, 100 μm. 
(K) Mitochondrial biogenesis was identified and quantified by immunofluorescence staining for 
PGC1α in Py2T tumors from ST and LT vehicle or nintedanib-treated mice. N = 4 mice per group.  
(L, M) Quantification of MCT4 expression in PGC1α+ area (L) by immunofluorescence staining on 
histological tumor sections from ST and LT vehicle or nintedanib-treated mice is shown together with 
some representative pictures (M). N = 4 mice per group. Scale bars, 50 μm. 
(N) COX IV+ cell number was assessed by immunofluorescence staining on histological tumor 
sections from ST and LT vehicle or nintedanib-treated. N = 4 mice per group.  
(O, P) Quantification of MCT4 expression in COX IV+ area (O) by immunofluorescence staining on 
histological tumor sections from ST and LT vehicle or nintedanib-treated mice is shown together with 
some representative pictures (P). N = 4 mice per group. Scale bars, 50 μm. 
Statistical significance was calculated using Mann–Whitney U test. n.s., non significant; *, P < 0.05; 
**, P < 0.01; ***, P < 0.001; ****, P < 0.0001. 
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Figure S5. Related to Figure 5. Targeting glycolysis and metabolic symbiosis overcomes anti-
angiogenic resistance.  
(A, B) Primary tumor growth over time (A) and tumor weights at the experimental end point (B) of 
mice treated with either vehicle or nintedanib (50 mg/kg/day) in combination with 3PO (70 mg/kg/day) 
or solvent are shown. The mice were treated with 3PO 8 days after the initiation of nintedanib 
treatment and were analyzed 5 days later to determine early effects of 3PO therapy (short-term 
nintedanib and 3PO-treated mice). In (A), data are displayed as mean tumor volumes ± SEM.  
(C) Hypoxic areas were identified and quantified by immunofluorescence staining for pimonidazole 
adducts in Py2T tumors treated as described in (A). Values represent the pimonidazole+ area fraction 
for each microscopic field of view and means are displayed.  
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(D, E) Quantification of total (D) and hypoxia- or normoxia-related (E) apoptosis by 
immunofluorescence co-staining for cCasp3 and pimonidazole in tumors from short-term nintedanib 
and 3PO-treated mice. 
N = 4 mice per group.  
(F) Representative western blot analysis of MCT4 expression in Py2T WT cells or Py2T CRISPR 
MCT4 Clones #1 and #2 cultured for 72h under normoxic or hypoxic condition. 
(G) The efficiency of shRNA-mediated knockdown of MCT4 expression was determined by measuring 
the MCT4 mRNA levels of shCtrl or shMCT4 Py2T cells cultured in hypoxic or normoxic conditions 
by quantitative RT-PCR. Data are normalized to shCtrl Py2T cells cultured in normoxic conditions.  
(H, I) Primary tumor growth (H) and terminal tumor weights (I) of mice following orthotopic injection 
of Py2T shCtrl or Py2T shMCT4 #2 and #5 cell lines treated with either vehicle or nintedanib (50 
mg/kg/day) have been quantified. The time points for animal sacrifice were chosen for all three cell 
lines individually such that all the tumors of the corresponding vehicle-treated groups were size 
matched.  In (B), mean ± SEM is depicted.  
(J) Quantification of microvessel densities by immunofluorescence staining for CD31 on Py2T 
shMCT4 tumors from LT vehicle or nintedanib-treated mice. N = 6 mice per group.  
(K) Quantification of MCT4 expression by immunofluorescence staining on histological sections from 
shCtrl or shMCT4 Py2T tumors treated either with nintedanib or vehicle is shown. Data displayed 
represents mean values per each field of view.  N = 6 mice per group.  
(L) MCT4 mRNA expression levels were analyzed by quantitative RT-PCR in shCtrl or shMCT4 Py2T 
tumors treated with either nintedanib or vehicle, and values are displayed as mean ± SEM. Data are 
normalized to shCtrl vehicle-treated tumors.  N = 3 mice per group.  
Statistical significance was calculated using Mann–Whitney U test. n. s., non significant; *, P < 0.05; 
**, P < 0.01; ****, P < 0.0001. 
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Supplemental Experimental Procedures 

 

Therapy studies  

Treatment of Py2T tumor-bearing mice was initiated when tumors reached a 

measurable size (15-20mm3) to allow a thorough stratification into experimental 

groups with similar mean tumor volumes. Nintedanib (kindly provided by Boehringer 

Ingelheim) was formulated in 0.5% natrosol hydroxyethylcellulose (Boehringer 

Ingelheim) and administered daily at 50 mg/kg body weight (BW) by oral gavage. 

Rip1Tag2 transgenic mice were treated with the same regimen from 10 weeks of age 

onwards (Bill, Fagiani et al. 2015). Sunitinib L-malate (LC Laboratories) was 

administered at 40 mg/kg in carboxymethylcellulose daily by oral gavage as described 

(Paez-Ribes, Allen et al. 2009). 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO; 

Axon Medchem, 2175) was dissolved in a 10% EtOH, 40% PEG, 50% PBS solution 

and administered at 70 mg/kg daily by intraperitoneal (i.p) injection. Treatment was 

initiated at day 8 of nintedanib treatment.  

Animals of the experimental arms were euthanized by CO2 (or cervical dislocation for 

hypoxia studies), either time- or size-matched to the control treatment. Primary 

tumors were dissected and processed for further analyses.  

 

RNA isolation 

RNA of sorted endothelial cells was isolated using the Absolutely RNA Nanoprep Kit 

(Stratagene) following the manufacturer’s recommendations. RNA of sorted tumor 

cells was isolated using TRIzol® LS reagent (Ambion®) and RNA Easy Micro Kit 

(Qiagen). To isolate RNA from whole tumors, previously snap frozen tissues were 

homogenized in Tri Reagent (Sigma-Aldrich) using a POLYTRON® (Kinematica) 

and isolated following the manufacturer’s recommendations. 

 

Quantitative RT-PCR 

RNA was reverse transcribed using M-MLV reverse transcriptase (Promega) and 

quantitative PCR was performed using SYBR-green PCR MasterMix (Applied 

Biosystems) in a StepOne Plus PCR machine (Applied Biosystems). Fold change 

expression was determined by the comparative Ct method (∆∆Ct) normalized to 60S 

Ribosomal protein L19 expression. Primers for quantitative PCR are listed in Table 
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S1.  

 

Lactate assay 

Lactate concentration was determined on tumor lysate by using the L-Lactate Assay 

Kit from Abcam (ab65331) following the manufacturer’s recommendations.  

 

Immunoblotting  

Immunoblotting has been performed as previously described (Zumsteg et al., 2012). 

The following antibodies were used: MCT4 (Santa Cruz Biotechnology, sc-50329, 

1:200) and actin (Santa Cruz Biotechnology, sc-1616, 1:1000). 

 

Lentiviral infection 

Lentiviral plasmids containing short-hairpin RNAs #1-5 (shRNA) against mouse 

MCT4 were purchased from Sigma-Aldrich (Mission Non-Targeting shRNA control 

vector: SHC002; shMCT4 #1: TRCN0000079653, shMCT4 #2: TRCN0000079654, 

shMCT4 #3: TRCN0000079655, shMCT4 #4: TRCN0000079656, shMCT4 #5 

TRCN0000079657). In order to produce lentiviral particles, HEK293T cells were 

transfected with the shRNA containing plasmids, the helper vectors pMDL and pREV 

and the envelope encoding plasmid pVSV using FugeneHD. Virus containing 

supernatant was conditioned for 2 days, filtered through a 0.45 µm filter, gently 

mixed with Lenti-X Concentrator (Clontech), and followed by an overnight 

incubation at 4°C and subsequent centrifugation the next day. The virus-containing 

pellet was resuspended in fresh complete DMEM medium, 8 ng/ml polybrene was 

added and Py2T cells were infected. Successfully transfected cells were selected by 

puromycin treatment (5 µg/ml). Knockdown efficiency was determined by measuring 

hypoxia-induced (96h, 1% O2) MCT4 mRNA expression by quantitative RT-PCR. 

 

Hypoxia and vessel functionality 

To assess functional blood vessel perfusion, 100 µg of fluorescein-labeled 

Lycopersicon esculentum (tomato) lectin (Vector Laboratories, GL-1171) was 

injected into the tail vein. Two minutes later, mice were terminally anaesthetized and 

five minutes later perfused via the left cardiac ventricle first with cold 4% PFA and 

subsequently with cold PBS.  
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To identify hypoxic tumor areas, 60 mg/kg pimonidazole-HCl (Hypoxyprobe Omni 

Kits, Hypoxyprobe, Inc.) dissolved in PBS was injected i.p. 1 hour before euthanizing 

the animals by cervical dislocation.  

 

Immunofluorescence microscopy analysis 

Tumors were fixed in 4% PFA for 2 hours followed by overnight incubation in 20% 

sucrose to cryopreserve the tissue, both at 4°C. Then, tumors were snap frozen in 

Tissue-Tek OCT compound (Thermo Scientific) and stored at -80°C. Eight µm thick 

tumor sections were cut, dried for 30 minutes, rehydrated with PBS, permeabilized 

with 0.2% Triton X-100 for 20 minutes and blocked with 5% normal goat serum 

(NGS; Sigma-Aldrich) for 1 hour. As an exception, when performing stainings with 

anti-cCasp3 antibodies, blocking was performed using 20% NGS. When using a goat 

primary antibody, sections were blocked with 5% bovine serum albumin. 

Subsequently, primary and secondary antibodies were diluted in blocking solution and 

incubated overnight at 4°C and 1 hour at room temperature, respectively. Images were 

acquired with a Leica DMI 4000 microscope. 

 

Antibodies used: rabbit anti-cleaved Caspase-3 (cCasp3; Cell Signaling, 9664, 1:50), 

rat anti-CD31 (BD Pharmingen, 550274, 1:50), rabbit anti-NG2 (Chemicon, AB5320, 

1:100), rabbit anti-phospho Histone H3 (pH3; Millipore, 06-570, 1:200), rabbit anti-

pimonidazole (Hypoxyprobe, 1:25), mouse anti-pimonidazole-FITC (Hypoxyprobe, 

1:25), goat anti-MCT1 (Santa Cruz, sc-14917, 1:50), rabbit anti-MCT4 (Santa Cruz, 

sc-50329, 1:50), goat anti-MCT4 (Santa Cruz, sc-14930, 1:50), goat anti-Glut1 (Santa 

Cruz, sc-1605, 1:50), rabbit anti-CoxIV (Cell Signaling, 4850, 1:100) and rabbit anti-

PGC1α (Millipore, AB3242, 1:300).  Primary antibody binding was detected by 

incubating the histological sections with secondary antibodies directed against the 

respective species of the primary antibodies for 1 hour at room temperature, diluted 

1:200 in blocking solution. Secondary antibodies were fluorescently tagged with 

Alexa 488, Alexa 568 or Alexa 633 (Molecular probes). Subsequently, nuclei were 

stained with 4′,6-Diamidin-2-phenylindol (DAPI; Sigma-Aldrich; 1:10,000) followed 

by mounting the slides with Dako mounting medium (Dako).  
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Flow cytometry 

Freshly dissected Py2T primary tumors were immediately minced into small pieces 

and digested for 30 minutes at 37°C on a bacterial shaker in DMEM (Sigma-Aldrich) 

supplemented with Nu-Serum Growth Medium Supplement (6%; Corning), DNase I 

(200 µg/ml; Roche), Dispase II (1.2mg/ml; Roche) and Collagenase D (1.2 mg/ml; 

Roche). To achieve a single cell suspension, the digested tissue was first passed 

through a 70 µm and subsequently through a 40 µm cell strainer (Corning). Cells were 

washed in FACS-buffer (5% fetal bovine serum in PBS; Sigma-Aldrich). Fc-receptors 

were blocked with an antibody against CD16/CD32 (BioLegend, 101302, 1:100) 

diluted in FACS-buffer for 30 minutes at 4°C. Then, cells were incubated for 45 

minutes on ice with the following antibodies: hamster anti-mouse podoplanin 

(Hybridoma supernatant clone 8.1.1, 1:10), anti-CD8α-FITC (BioLegend, 100705, 

1:150), anti-CD31-APC (BioLegend, 102409, 1:200), anti-CD45-APC-Cy7 

(BioLegend, 103116, 1:500). Staining for podoplanin was achieved by subsequently 

incubating the cells for 30 minutes on ice with an anti-hamster PE-labeled secondary 

antibody (eBioscience, 12-4112-83, 1:200). Immediately before sorting with a 

FACSAriaII (BD Bioscience), cells were filtered through a 40 µm mesh and 

propidium iodide (PI) was added to exclude dead cells. Tumor cells were sorted into 

FACS-buffer by gating on CD8α+/CD45- cells (Figure S3D). Endothelial cells were 

directly sorted into the lysis buffer of the Absolutely RNA Nanoprep Kit (Stratagene) 

by gating on CD31+/CD45-/Podoplanin- cells (Figure S3D).  

 

Annexin V staining 

Py2T WT cells or Py2T CRISPR MCT4 clones #1 and #2 were cultured for 3 days 

under normoxic or hypoxic conditions. Both floating and attached cells were collected 

and washed in PBS. 1.106 cells were resuspended in 1X binding buffer and stained 

using Cy5 AnnexinV (BD Pharmingen, # 559934, dilution 1/20) and 2 μg/ml DAPI 

for 20 min in the dark. 50,000 cells/sample were analyzed by flow cytometry (FACS 

Canto, Becton Dickinson). 

 

EdU staining 

Py2T WT cells or Py2T CRISPR MCT4 clones #1 and #2 were cultured for 3 days 

under normoxic or hypoxic conditions. Cells were incubated with 10 μM EdU for 30 
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min. After trypsinization 1.106 cells were stained using EdU-Flow cytometry 488 Kit 

(Base-Click, BCK-FC488) following manufacturer’s instruction. Prior to FACS 

acquisition cells were incubated 2h at 37°C in presence of 10 μg/ml RNAse (Roche, 

11119915001) and 50 μg/ml propidium iodide (Sigma-Aldrich, 81845). 50,000 

cells/sample were analyzed by flow cytometry (FACS Canto, Becton Dickinson). 

 

Extracellular metabolic flux analysis 

For analysis of the OCR (in pmol/min) and ECAR (in mpH/min), the Seahorse XFe-

96 metabolic extracellular flux analyzer was used (Seahorse Bioscience, North 

Billerica, MA, USA).  Py2T WT cells or Py2T CRISPR MCT4 clones #1 and #2 were 

plated at a density of 2,500 cells per well and expanded for 48 hours under normoxic 

(21% O2) or hypoxic (1% O2) conditions. Cells were treated with nintedanib for 48h 

or with 3PO for 3h. Prior to performing the metabolic assays, medium was exchanged 

for serum-free unbuffered RPMI-1640 medium (Sigma-Aldrich). Perturbation 

profiling of mitochondrial respiratory parameters was performed by the addition of 

oligomycin (1 μM), Carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) 

(2 μM) and rotenone (1 μM) and measuring changes in OCR. Glycolytic parameters 

were assessed independently in parallel wells by the sequential addition of glucose 

(10 mM), oligomycin (1 μM) and 2-deoxyglucose (2-DG, 50 mM, all Sigma-Aldrich) 

to cells maintained in glucose-free unbuffered RPMI-1640 medium (Sigma-Aldrich). 

Metabolic parameters were calculated following the manufacturer’s recommandation. 

Additionally, OCR and ECAR were assessed under hypoxic conditions (1% O2) 

using the Seahorse XFe-96 metabolic extracellular flux analyzer placed in a Hypoxia 

Workstation (SCI-tive, Ruskinn Technology, Bridgend, UK). Unbuffered medium (± 

glucose) was equilibrated to hypoxia overnight and layered onto) Py2T WT cells or 

Py2T CRISPR MCT4 clones #1 and #2 plated as described above. Metabolic 

parameters were assessed as per under normoxic conditions and there were additional 

control wells where 1 M sodium sulfite was injected into calibrant fluid to provide a 

'zero' oxygen reference parameter for the software algorithm to calculate OCR. 

The different parameters have been calculated as follows: ATP-coupled respiration 

=		[OCR(basal-non corrected basal OCR)] -	[OCR(oligomycin)]; glycolysis = 

[ECAR(glucose)] – [ECAR(basal-non corrected basal ECAR)]; glycolytic capacity = 
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[ECAR(oligomycin)] – [ECAR(basal-non corrected basal ECAR)]; glycolytic reserve 

=	[ECAR(oligomycin)] – [ECAR(glucose)]. 

 

Microarray analysis 

Total RNA preparations of flow cytometry-sorted tumor and endothelial cells were 

analyzed using an Agilent 2100 bioanalyzer. Target synthesis was performed using 

the following suite of kits provided by Nugen (San Carlos, USA): WT-Ovation Pico 

(Cat# 3300), WT-Ovation Exon (Cat# 2000) and FL-Ovation Biotin V2 (Cat# 4200). 

The hybridization cocktail (200μl) containing fragmented biotin-labeled target DNA 

at a final concentration of 25ng/μl was transferred into Affymetrix GeneChip 

MoGene-1_0-st-v1 (Affymetrix) and incubated at 45°C on a rotator in a hybridization 

oven 640 (Affymetrix) for 17 h at 60 rpm. The arrays were washed and stained on a 

Fluidics Station 450 (Affymetrix) by using the Hybridization Wash and Stain Kit 

(Affymetrix, Cat# 900720) and the Fluidics Procedure FS450_0001. The GeneChips 

were processed with an Affymetrix GeneChip® Scanner 3000 7G (Affymetrix). DAT 

image files of the microarrays were generated using Affymetrix GeneChip Command 

Console (AGCC, version 0.0.0.676, Affymetrix). 

 

Bioinformatical analysis 

All microarray data were preprocessed and analyzed using R (software environment 

for statistical computing and graphics) version 3.1.0 (2014-04-10) and packages 

provided by the Bioconductor package library. Raw Affymetrix CEL files were 

subjected to background correction and normalization using the Robust Multichip 

Average (RMA) algorithm (rma method, oligo package). Differential gene expression 

was determined using the limma package (Smyth, Michaud et al. 2005) with and 

without a p-value cutoff of 0.05 and a range of fold-change values (FC = 1.2 to 1.7). 

The results of differential gene expression were used to conduct pathway enrichment 

analysis provided by The Database for Annotation, Visualization and Integrated 

Discovery (DAVID) v6.7 (Huang da et al., 2009), with a particular focus on pathways 

defined in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. 

The background-corrected and normalized gene expression datasets associated with 

the placebo-treated (UT), 1 week-treated (ST), and 3 week-treated (LT) samples were 

subjected to Gene Set Enrichment Analysis (GSEA) using GSEA V2.1.0. Three sets 
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of analyses were conducted: ST versus UT, LT versus UT and ST versus LT. In all 

cases the default run-time arguments were used except for the “Permute” parameter 

that was set to “gene_set” (in order to accommodate less than 7 samples per class). In 

addition, analyses were conducted against the “MoGene_1_0_st.chip” microarray 

annotation and the following gene set libraries: “c2.cp.kegg.v4.0.symbols.gmt” and 

“c2.cp.reactome.v4.0.symbols.gmt” (Mootha, Lindgren et al. 2003, Subramanian, 

Tamayo et al. 2005). 

Heat maps were generated using the heatmap.2 method provided by the gplots 

package. Boxplots were generated using the default boxplot method provided in R 

and based on the median background corrected and normalized expression value for 

each gene with respect to all samples within each sample class (UT, ST and LT). 

Additional statistical analyses were also carried out using GraphPad Prism 6 

(GraphPad Prism Software Inc.). 

The microarray data has been deposited on Gene Expression Omnibus platform under 

the accession number GSE78698. 
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Primers for qRT-PCR 
 
Name Sequence (5’ - 3') 

Glut1 (Slc2a1) gaccctgcacctcattgg 
gatgctcagataggacatccaag 

Hexokinase 2 (Hk2) gctgaaggaagccattcg 
tcccaactgtgtcatttaccac 

Phosphofructokinase, platelet (Pfkp) gctatcggtgtcctgacca 
actttggcccccgtgtag 

Aldolase A (Aldoa) aaggaagaggttcctctaaagacc 
aatgcggtgagcgatgtc 

Triosephosphate isomerase 1 (Tpi1) ttcgagcaaaccaaggtcat 
ccggagcttctcgtgtactt 

Phosphoglycerate kinase 1 (Pgk1) gaagtcgagaatgcctgtgc 
ccggctcagctttaacctt 

Enolase 2 (Eno2) aacagcgttacttaggcaaagg 
ccaccacggagatacctgag 

Lactate dehydrogenase A (Ldha) ggcactgacgcagacaag 
tgatcacctcgtaggcactg 

Pyruvate dehydrogenase kinase 1 (Pdk1) gttgaaacgtcccgtgct 
gcgtgatatgggcaatcc 

β-actin (Actb) ctaaggccaaccgtgaaaag 
accagaggcatacagggaca 

Peroxisome proliferator-activated receptor 
gamma coactivator 1 alpha (Pgc1a) 

tgaggaccagcctctttgccca 
cgctacaccacttcaatccaccc  

Cytochrome c oxidase subunit IV isoform 1 
(Cox4i1) 

tacttcggtgtgccttcga 
tgacatgggccacatcag  

Monocarboxylate transporter 4 (Scl16a3)  gctcacctcctcccttgtg 
ctcttcctcttcccgatgc 

60 ribosomal protein L19 (Rpl19) ctcgttgccggaaaaaca  
tcatccaggtcaccttctca  
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  3.2. Deciphering the EMT-induced pro-angiogenic signature 

 

    3.2.1. Abstract 

 

Vascular Endothelial Growth Factor A (VEGF-A) plays a central role in tumor 

progression. Besides its role in promoting angiogenesis, several autocrine functions 

have been revealed in tumor cells, improving their survival, migration, invasion and 

transmigration abilities. We have recently shown that murine breast cancer cells 

undergoing an epithelial-mesenchymal transition (EMT) and displaying hallmarks of 

cancer stem cells exhibit a pro-angiogenic signature, notably by up-regulating the 

expression of VEGF-A. Indeed, our data demonstrate that VEGF-A is required for 

EMT-induced angiogenesis in the early events of tumor initiation, a major hallmark of 

cancer stem cells. However, how the EMT program can induce VEGF-A expression 

in the absence of hypoxia has remained elusive. By conducting RNA interference 

studies we could identify JunB as the main upstream regulator of this EMT-induced 

pro-angiogenic signaling. Indeed, JunB is upregulated during EMT and its siRNA-

mediated knockdown decreases VEGF-A production. These data provide important 

new insights into the molecular mechanisms leading to the secretion of VEGF-A upon 

EMT reprogramming and may open new avenues for the design of therapeutic 

strategies. 

 

    3.2.2. Introduction 

 

Metastases represent the main cause of lethality in cancer patients (Gupta and 

Massague 2006). Epithelial-mesenchymal transtition (EMT) is the initial step of the 

invasion-metastasis cascade (Valastyan and Weinberg 2011). This program - integral 

in embryonic development - is reactivated during tumor progression (Thiery, Acloque 

et al. 2009). During this process, epithelial cells, characterized by apico-basal 

polarity, cell-cell contacts and expression of epithelial markers, such as E-cadherin or 

ZO-1, loose expression of epithelial markers in favor of mesenchymal markers, such 

as N-cadherin and vimentin, disassemble their cell-cell and cell-matrix contacts and 

gain migratory capacity (Thiery and Sleeman 2006, Lamouille, Xu et al. 2014). 
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Associated secretion of proteases allows mesenchymal cells to remodel the 

surrounding microenvironment and invade locally (Saxena and Christofori 2013). 

 EMT and its reverse process (MET) illustrate the intrinsic plasticity of cancer 

cells. This complex process is accompanied with dedifferentiation, an essential 

criteria for cancer cells allowing them to initiate tumors de novo at the metastatic site. 

It has been suggested that metastatic cancer cells could present cancer stem cell 

(CSC) traits	 (Brabletz, Jung et al. 2005). Confirming this hypothesis, Mani and 

colleagues demonstrated that normal and neoplastic cells undergoing an EMT express 

stem cells markers and are able to initiate tumors more efficiently than epithelial cells 

(Mani, Guo et al. 2008). Our laboratory and others have recently reported that EMT-

induced stem cells express pro-angiogenic markers, notably VEGF-A	 (Beck, 

Driessens et al. 2011, Lee, Lee et al. 2011, Fantozzi, Gruber et al. 2014). This pro-

angiogenic signature allows them to recruit blood vessels and significantly increases 

tumor initiation, independently of CSCs-specific features, such as asymmetric cell 

division and self-renewal abilities. However, the molecular mechanisms inducing 

VEGF-A expression in mesenchymal cells have remained elusive. 

 Here, we have identified JunB as the main regulator of VEGF-A in 

mesenchymal cells. Notably, the JunB-mediated induction of VEGF-A expression 

occurs independent of hypoxia and the activities of HIF1α, a known strong inducer of 

VEGF-A under hypoxia (Forsythe, Jiang et al. 1996). In fact, though HIF1α is 

expressed in cells undergoing an EMT, it is not recruited into cell nuclei and its target 

genes are not upregulated in mesenchymal cells compared with epithelial cells. 

However, by performing a siRNA-mediated screen for few transcription factors 

known to induce VEGF-A mRNA expression in other systems, we have observed that 

JunB downregulation significantly decreases VEGF-A mRNA expression. 

Furthermore, JunB nuclear expression is increased during an EMT. These findings are 

validated in several EMT systems both at the mRNA and protein levels. We therefore 

propose a new role for JunB as a regulator of EMT-induced pro-angiogenic signaling.  
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    3.2.3. Results 

 

      3.2.3.1. VEGF-A secreted by mesenchymal cell increases endothelial cell 

survival 

 

To assess the angiogenic signature in mesenchymal versus epithelial cells, 4 different 

EMT systems were employed. MTFlECad cells are breast cancer cells isolated from a 

tumor of a MMTV-Neu mouse carrying floxed alleles of the E-cadherin gene. After 

Cre-recombinase-mediated recombination and subsequent loss of E-cadherin these 

cells become stably mesenchymal (MTΔECad)	 (Lehembre, Yilmaz et al. 2008). Py2T 

breast cancer cells were isolated from MMTV-PyMT mice (Waldmeier, Meyer-

Schaller et al. 2012). These cells become mesenchymal in response to TGF-β 

treatment. 4T1 cells, though exhibiting an aggressive phenotype, can be used as an 

additional EMT model as they express epithelial markers (E-cadherin, miR-200) and 

gain mesenchymal properties when treated with TGF-β (Dykxhoorn, Wu et al. 2009, 

Wendt, Schiemann et al. 2013). The last cell line employed in this work is the E9 

subclone of NMuMG cells	 (Maeda, Johnson et al. 2005). These cells express E-

cadherin and are, as suggested by their name, derived from a normal murine 

mammary gland. Like the Py2T or 4T1 cells, NMuMG cell undergo reversible EMT 

when subjected to TGF-β treatment.  

Endothelial cells (HUVECs, human umbilical vein endothelial cells) were first 

cultured with conditioned medium from either epithelial (MTFlECad) or 

mesenchymal (MTΔECad) cells. HUVECs did not proliferate and had rather 

difficulties to survive in these growth factors-depleted media (Figure 1A). However, 

the number of HUVECs was found to decrease strongly when cultured in MTFlEcad 

(epithelial) conditioned medium compared with HUVECs cultured in MTΔECad 

(mesenchymal) conditioned suggesting that mesenchymal cells might secrete factors 

important for endothlial cell survival (Figure 1A). This hypothesis was further 

confirmed when we assessed the Akt phosphorylation of HUVECs cultured in 

epithelial or mesenchymal cell conditioned media. Indeed, Akt and its 

phosphorylation status are well-known survival markers (Brunet, Bonni et al. 1999, 

Fujio and Walsh 1999). HUVECs cultured in mesenchymal cell-conditioned medium 
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showed increased AKT phosphorylation compared with cells cultured in epithelial 

cell-conditioned medium (Figure 1B).  

 We then aimed to identify the factors secreted by the mesenchymal cells that 

increased HUVEC survival. RNA-sequencing data performed on MTFlECad and 

MTΔECad revealed an increased expression of several growth factors and cytokines 

known to induce angiogenesis (data not shown). Amongst them, Vascular Endothelial 

Growth Factor-A (VEGF-A) caught our attention. Indeed, this prototypic pro-

angiogenic factor induces endothelial cell survival through activaction of the 

PI3K/AKT signaling pathways and has been shown to prevent serum-starvation-

induced apoptosis in HUVECs (Gerber, Dixit et al. 1998, Gerber, McMurtrey et al. 

1998). VEGF-A mRNA and protein levels were increased in MTΔECad and Py2T LT 

cells, and to a lesser extent in NMuMG LT cells, suggesting a more crucial role of 

VEGF-A in cancer-related EMT (Figure 1C and 1D). To further test whether 

mesenchymal cell-derived VEGF-A was responsible of endothelial cell survival, 

VEGF-A was either stably overexpressed in epithelial cells (MTFlECad) or stably 

down-regulated in mesenchymal cells (MTΔECad). Conditioned medium prepared 

from these different cell lines was then used to culture endothelial cells and their 

survival was assessed by cell counting. Confirming our hypothesis, overexpression of 

VEGF-A in epithelial cells led to increased endothelial cell survival. Further, shRNA-

mediated knockdown of VEGF-A expression in mesenchymal cells led to decreased 

endothelial cell survival (Figure 1E).  

 Altogether, these data suggest that mesenchymal cell-secreted VEGF-A leads 

to increased endothelial cell survival. 
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Figure 1: Mesenchymal cells increase endothelial cell survival through VEGF-A secretion. 
(A) HUVECs were cultured in DMEM, epithelial (MTFlECad) or mesenchymal (MTΔECad) tumor 
cell conditioned medium and the number of viable cells was quantified at different time points using 
Neubauer chamber and Trypan blue exclusion. Mean values of 3 different experiments are plotted with 
the SD. Statistical significances were calculated by unpaired Student’s t-test. * = p < 0.05. 
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(B) Survival of HUVECs cultured in DMEM, epithelial (MTFlECad) or mesenchymal (MTΔECad) 
tumor cell conditioned medium was assessed by immunoblotting against p-Akt. Total Akt and actin 
were used as loading controls. 
(C-D) Quantification of VEGF-A mRNA level by RT-qPCR (C) and protein concentration by ELISA 
(D) on several epithelial (MTFlECad, Py2T and NMuMG) and mesenchymal (MTΔECad, Py2T LT 
and NMuMG LT) cell lines. Mean values of 3 different experiments are plotted with the SD. Statistical 
significances were calculated by unpaired Student’s t-test. n. s., non significant; ** = p < 0.01. 
(E) HUVEC cells were cultured in conditioned media of VEGF-A overexpressing (VEGF-A) or 
control retrovirus-infected MTFlECad cells, or in conditioned media of MT∆ECad cells expressing 
different VEGF-A-targeting (shVA) or control shRNAs. After 5 days of culture viable cell number was 
quantified using Neubauer chamber and Trypan blue exclusion. M-199 supplemented culture medium 
(as described in Methods) together with DMEM containing diverse recombinant mouse VEGF-A 
(rmVEGF-A) concentrations were used as positive controls, while DMEM was used as a negative 
control. Cell numbers are represented as % of HUVECs treated with 10 ng/ml recombinant VEGF-A. 
Mean values of 4 different experiments are plotted with the SEM. Statistical significances were 
calculated by paired Student’s t-test. * = p < 0.05; ** = p < 0.01. This graph corresponds to 
Supplemental Figure S8 in (Fantozzi, Gruber et al. 2014). 
 

      3.2.3.2. VEGF-A expression is not induced by an hypoxic signature 

 

We next asked how EMT reprogramming could lead to VEGF-A secretion. Hypoxia 

and its master transcription regulator, HIF1α, are well-known inducers of VEGF-A 

expression	 (Forsythe, Jiang et al. 1996). While so far unproven, the common 

hypothesis in the field suggests that mesenchymal cells can express HIF1α in 

normoxic conditions (Goel and Mercurio 2013). Indeed, recent reports describe 

normoxic expression of HIF1α (Cao, Eble et al. 2013). Further, in the context of 

TGF-β-induced EMT, other laboratories have demonstrated the ability of TGF-β to 

induce HIF1α stability and DNA binding. McMahon and colleagues recently 

described the TGF-β1-mediated inhibition of PHD2 and subsequent HIF1α stability	

(McMahon, Charbonneau et al. 2006). HIF2α possesses a high homology with HIF1α 

and can also bind to the HRE motif in the VEGF-A gene promoter therefore inducing 

VEGF-A transcription (Carroll and Ashcroft 2006, Holmquist-Mengelbier, Fredlund 

et al. 2006, Keith, Johnson et al. 2012). HIF2α has recently been described as a 

regulator of angiogenesis in mesenchymal glioblastoma	 (Mathew, Skuli et al. 2014). 

Hence, we considered HIF2α as a second potential regulator of VEGF-A transcription 

in mesenchymal cells. 

 However, we found that TGF-β-induced EMT did not affect HIF1α and 

HIF2α expression in either 4T1 or in Py2T cells (Figure 2A). As transcription factor 

activity does not only depend on their expression but also rely on their recruitment to 

the nucleus we additionally analyzed their subcellular localization. Neither HIF1α nor 
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HIF2α were recruited to the nucleus during EMT. Furthermore, expression of known 

target genes of HIF1α and HIF2α, such as Slc2a1 (Glut1) (Figure 2D) or Ca9 (Figure 

2E) remained either unchanged or decreased during EMT, thus definitively ruling out 

HIF1α and HIF2α  activation during an EMT (Keith, Johnson et al. 2012). 

 NFκB is another transcription factor regulated during hypoxia	 (Koong, Chen 

et al. 1994). While absent on the human VEGF-A promoter, consensus sites for NFκB 

are located 90 and 185 bp upstream of the transcription initiation site in mouse 

VEGF-A promoter	 (Shima, Kuroki et al. 1996). Immunofluorescence staining for the 

p65 subunit of NFκB did not reveal any increase in protein expression or nuclear 

recruitment during EMT (Figure 2F). This observation suggests that NFκB is also not 

responsible for EMT-induced VEGF-A expression. 

 We then measured VEGF-A mRNA expression in cells undergoing an EMT in 

either normoxic or hypoxic condition. We observed that EMT and hypoxia have 

additive effects on VEGF-A expression (Figure 2G). Again, these results suggest that 

two distinct signaling pathways regulate VEGF-A expression in EMT and hypoxia. 

 Taken together, these data indicate that HIF1α, HIF2α and NFκB are not 

induced during EMT and rule out the implication of hypoxia-related proteins in EMT-

mediated VEGF-A expression.  
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Figure 2: The EMT reprogramming does not induce a hypoxic signature. 
(A) HIF1α and HIF2 α protein expression were assessed by immunoblotting in Py2T and 4T1 cell lines 
after 3 days or LT TGF-β treatment in comparison with untreated cells. Cells cultured under hypoxic 
conditions served as positive control and tubulin was used as loading control. 
(B-C) HIF1α (B) and HIF2α (C) protein concentration and subcellular localization were assessed by 
immunofluorescence. DAPI was used to visualize cell nuclei. Scale bars, 20 µm. 
(D-E) Slc2a1 (D) and CA9 (E) mRNA expression were quantified by quantitative RT-qPCR in several 
epithelial (MTFlECad, Py2T and NMuMG) and mesenchymal (MTΔECad, Py2T LT and NMuMG LT) 
cell lines. Mean values of 3 different experiments are plotted with the SD. Statistical significances were 
calculated by unpaired Student’s t-test. n. s., non significant; ** = p < 0.01. 
(F) p65/Rela protein concentration and subcellular localization were assessed by immunofluorescence. 
DAPI was used to visualize cell nuclei. Scale bars, 20 µm. 
(G) Quantification of VEGF-A mRNA level by RT-qPCR on epithelial (MTFlECad, Py2T) and 
mesenchymal (MTΔECad, Py2T treated for 2 days with TGF-β) cell lines subjected to normoxic or 
hypoxic culture conditions. Mean values of 5 different experiments are plotted with the SD. Statistical 
significances were calculated by 2-ways ANOVA-test. n. s., non significant; * = p < 0.05; ** = p < 
0.01. 
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      3.2.3.3. A siRNA-screen identified JunB as the main regulator of VEGF-A in 

mesenchymal cells 

 

In order to identify the regulators of VEGF-A expression in mesenchymal cells we 

performed a low throughput siRNA-screen targeting six transcription factors 

possessing a binding site on the VEGF-A gene promoter and already known as VEGF-

A regulators in other systems, namely HIF1α, HIF2α (Epas1), Rela (NFκB p65 

subunit), Sp1, Stat3 and JunB (Jung, Isaacs et al. 2003, Schafer, Cramer et al. 2003, 

Schmidt, Textor et al. 2007). While siRNA-mediated knockdown of HIF1α and Rela 

decreased VEGF-A mRNA expression in MTΔECad cells, knockdown of JunB 

induced the strongest repression of VEGF-A expression (Figure 3A). This observation 

was also confirmed in Py2T LT cells where only JunB downregulation was found to 

significantly decrease VEGF-A mRNA levels (Figure 3B). In order to rule out the 

possibility of off target effects, we performed JunB knockdown using four different 

siRNAs. Three of these JunB targeting siRNA significantly repressed VEGF-A 

mRNA expression in mesenchymal cells (Figure 3C). VEGF-A protein levels were 

also measured using an ELISA. In three of the mesenchymal cell lines siRNA-

mediated knockdown of JunB slightly decreased VEGF-A protein expression (Figure 

3D). Unlike HIF1α, HIF2α and NFκB, JunB protein was expressed in the cell nuclei, 

and its expression was increased in mesenchymal cells, suggesting its increased 

transcriptional activity (Figure 3E). Using immunoblotting, both JunB protein levels 

and phosphorylation were shown to be increased in mesenchymal cancer cells (Figure 

3F). When injected in the mammary fat pad of immunodeficient female mice (RG), 

MTΔECad cells retained a strong nuclear expression, suggesting the importance of 

JunB in tumorigenesis (Figure 3G). We finally assessed the ability of JunB to directly 

bind to the Activated Protein-1 (AP-1) binding site and mediate VEGF-A transcription 

in Py2T LT cells. For this, we used VEGF-A-promoter luciferase reporter constructs 

presenting either a wild type VEGF-A promoter or a VEGF-A promoter with mutated 

AP-1 and/or HRE (Hypoxia Response Element) binding sites	 (Schmidt, Textor et al. 

2007). As expected, VEGF-A promoter activity was increased when Py2T LT cells 

were cultured under hypoxic condition and this transcriptional activity was repressed 

in cells expressed a mutated HRE binding site. However, we could not demonstrate 

the direct binding of JunB on the VEGF-A promoter. Indeed, VEGF-A promoter 
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activity was not repressed when the AP1 binding site was mutated. Similar data were 

obtained in MTΔECad and NMuMG LT cells (data not shown). 

 Together, our data indicate that JunB regulates VEGF-A expression in 

mesenchymal cells, but its direct binding on the VEGF-A promoter remains to be 

shown. 
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Figure 3:  JunB induces VEGF-A expression in mesenchymal cells. 
(A-B) VEGF-A mRNA expression was assessed by RT-qPCR after siRNA-mediated knockdown of 
HIF1a, Epas1, Rela, Sp1, Stat3 and JunB in MTΔECad (A) and Py2T LT (B) cells. Mean values of 3 
different experiments are plotted with the SD. Statistical significances were calculated by 1-way 
ANOVA-test. *, p = 0.05; ** = p < 0.01; *** = p < 0.001. 
(C) VEGF-A mRNA expression was assessed by RT-qPCR after siRNA-mediated knockdown of JunB 
in MTΔECad and Py2T LT cells. A, Ambion; D, Dharmacon, A6, A7 and A8, Ambion siRNA s68566, 
s68567 and s68568, respectively. Mean values of 3 different experiments are plotted with the SD. 
Statistical significances were calculated by 1-way ANOVA-test. *, p = 0.05; *** = p < 0.001; **** = p 
< 0.0001. 
(D) Intracellular VEGF-A protein level was measured using in ELISA following JunB siRNA-
mediated knockdown in MTΔECad, Py2T LT and NMuMG LT cells. Mean values of 3 different 
experiments are plotted with the SD. Statistical significances were calculated by unpaired Student's t-
test. n. s., non significant; *, p = 0.05. 
(E) JunB protein concentration and localization were assessed by immunofluorescence in MTFlECad, 
MTΔECad, Py2T, Py2T LT, NMuMG and NMuMG LT cells. DAPI was used to visualize cell nuclei. 
Due to lower JunB expression in MTFlECad and MTΔECad different settings were used for this EMT 
system. JunB expression in these cells should therefore not be compared with the other EMT systems 
analyzed here. Scale bars, 30 µm. 
(F) JunB protein expression and phosphorylation were measured by Western blot in MTFlECad, 
MTΔECad, Py2T and Py2T LT cells. Actin was used as loading control. 
(G) MTFlECad and MTΔECad cells were injected in the fat pad of immunodeficient mice and JunB 
protein expression (brown) was assessed by immunohistochemistry. Scale bar, 50 µm and 10 µm for 
the high magnification inserts. 
(H) VEGF-A transcription in Py2T LT cells was measured using a wild type VEGF-A promoter 
luciferase reporter or VEGF-A promoter luciferase reporter constructs with a mutated form of the AP-1 
and/or HRE binding sites. VA-Luc, VEGF-A-Luciferase; m, mutated. Mean values of 3 different 
experiments are plotted with the SD. Statistical significances were calculated by 2-ways ANOVA-test. 
* = p < 0.05; ** = p < 0.01; *** = p < 0.001. 
 

      3.2.3.4. Other members of the AP-1 complex can modulate VEGF-A  

 

JunB belongs to the AP-1 family of transcription factors. These proteins always act as 

homo- or heterodimers (Eferl and Wagner 2003). Therefore, in order to next identify 

JunB partners in mesenchymal cells we assessed the ability of the other AP-1 family 

members to induce VEGF-A mRNA expression. For this, we downregulated their 

expression by siRNA-mediated knockdown either alone or in combination with JunB-

targeting siRNA. In MTΔECad cells only Jun knockdown was able to reduce VEGF-

A mRNA level in a similar manner to the JunB knockdown (Figure 4A). In Py2T 

cells, both Jun and JunD siRNAs were able to decrease VEGF-A expression (Figure 

4B). Moreover, Jun and JunD inhibition in combination with JunB targeting siRNA 

had an additive effect on VEGF-A mRNA expression, suggesting that Jun and JunB 

might dimerize in mesenchymal cells. 

 Together, these results identify Jun as an alternative regulator of VEGF-A 

expression in mesenchymal cells and suggest the implication of a Jun/JunB 

heterodimer in this process. 
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Figure 4: Jun knockdown decreases VEGF-A expression. 
(A-B) VEGF-A mRNA expression in MTΔECad (A) and Py2T LT (B) cells was quantified by RT-
qPCR after siRNA-mediated knockdown of the different members of the AP-1 family either alone or in 
combination with JunB. Mean values of 3 different experiments are plotted with the SD. Statistical 
significances were calculated by 2-ways ANOVA-test. * = p < 0.05. 
 

 3.2.3.5. Different branches of the MAPK signaling induce VEGF-A expression 

 

Transcriptional, translational but also post-translational regulation of the AP-1 family 

members relies on Mitogen-Activated Protein Kinases (MAPK) signaling pathways. 

Depending on the cellular system and the AP-1 members analyzed, p38, Jnk or Erk 

signaling can be implicated (Karin 1995, Eferl and Wagner 2003). In order to gain 

insight into the upstream regulation of JunB-mediated VEGF-A expression, we 

studied the effect of MAPK signaling inhibition on VEGF-A mRNA expression. p38, 

Erk and Jnk signaling all play an important role in EMT and are know to be activated 

in our cellular systems (Waldmeier, Meyer-Schaller et al. 2012, Lamouille, Xu et al. 

2014). MTΔECad and Py2T LT cells were treated with various concentrations of 

SB203580, PD98059 and SP600125 in order to pharmacologically inhibit p38, Erk 

and Jnk signaling pathways, respectively (Cuenda, Rouse et al. 1995).   

 SB203580 demonstrated a strong inhibition of MAPKAPK2 phosphorylation - 

a known substrate of p38 MAPK - with doses as low as 1 µM in both cell lines 

(Figure 5A)	 (Xu, Chen et al. 2006). PD98059 inhibited Erk phosphorylation at 10 µM 

(Figure 5B). As highlighted by MTT assay, pharmacological inhibition of the Jnk 

signaling pathway using SP600125 induced cell death in MTΔECad and Py2T LT 

cells (Figure 5C). Thus, we decided to inhibit Jnk by using siRNA-mediated 

knockdown. We achieved an efficient knockdown with no visible toxic effect (Figure 
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5D). We then quantified VEGF-A mRNA expression in response to inhibition of the 

different MAPK signaling pathways. While Erk and Jnk inhibition decreased VEGF-

A expression in MTΔECad cells, in Py2T LT cells, VEGF-A levels were reduced 

following p38 inhibition (Figure 5E-F). In order to avoid compensatory mechanisms, 

we also performed combined inhibition of the signaling pathways. The additive 

effects observed when we inhibited several pathways together suggests redundancy of 

these pathways in VEGF-A regulation and possible compensation or cooperation 

mechanisms occurring when inhibiting each one of them individually (Figure 5E-F). 

Altogether our data suggest that VEGF-A expression is mediated by Erk and Jnk 

signaling pathways in MTΔECad cells, while p38 seems to play a more important role 

in a TGF-β-induced EMT model. 

 

 

 



Deciphering the EMT-induced pro-angiogenic signature                                                          Results 

	

 

81 
	

 
 

Figure 5: MAPK signaling pathways act in concert to regulate VEGF-A expression. 
(A) SB203580 efficacy in MTΔECad and Py2T LT cells was assessed using Western blot against 
phospho-MAPKAPK2, a direct downstream target of p38. Total MAPKAPK2 and Actin served as 
loading controls. 
(B) Western blot against phospho-Erk was performed to evaluate PD98059 efficacy in MTΔECad and 
Py2T LT cells. Total Erk and Actin served as loading controls. 
(C) SP600125 toxicity on MTΔECad and Py2T LT cells was determined using MTT assay. Mean 
values of 3 different experiments are plotted with the SD. Values were normalized to DMSO control. 
(D) Mapk8 knockdown efficiency in MTΔECad and Py2T LT cells was quantified by RT-qPCR. Mean 
values of 3 different experiments are plotted with the SD. Statistical significances were calculated by 
unpaired Student's t-test. ****, p = 0.0001. 
(E-F) VEGF-A mRNA expression after inhibition of the different branches of the MAPK signaling in 
MTΔECad (E) and Py2T LT (F) cells was assessed by RT-qPCR. -, inhibitor or siRNA was not added; 
+, inhibitor or siRNA was added; ++, double volume of DMSO was added. PD98059 and SB203580 
were used at a concentration of 10 µM. Mean values of 3 different experiments are plotted with the SD. 
Statistical significances were calculated by 1-way ANOVA-test. * = p < 0.05; ** = p < 0.01; *** = p < 
0.001; ****, p = 0.0001. 

 

      3.2.3.6. JunB expression protects cells against apoptosis 
 

JunB seems to play a more complex role in cancer cells than primarily anticipated. 

Indeed, while it did not affect survival of NMuMG LT cells it decreased 

mesenchymal cancer cell survival (Figure 6A). Cleaved-caspase3 staining revealed 

increased apoptosis in cells presenting an efficient knockdown of JunB (Figure 6B).  

 All together these findings indicate an important role of Junb in protecting 

cancer cells against apoptosis during an EMT. 
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Figure 6: JunB downregulation leads to cell apoptosis 
(A) Cell number was determined 4 days after transfection with either a non-targeting siRNA (siCtrl) or 
a siRNA against JunB. Mean values of 3 different experiments are plotted with the SD. Statistical 
significances were calculated by unpaired Student’s t-test. n. s., non significant; *, p <0.05. 
(B) One day after siRNA transfection, cells were stained for JunB and cleaved caspase 3 to assess the 
effect of JunB inhibition on apoptosis. Due to lower JunB expression in MTΔECad cells different 
settings were used for this cell line. JunB expression in these cells should therefore not be compared 
with JunB expression in Py2T LT cells. DAPI was used to visualize cell nuclei. Scale bar, 30 µm.  
	

    3.2.4. Methods 

 

Chemicals 

Unless otherwise mentioned, all chemical compounds were purchased from Sigma-

Aldrich. 

 

Cell culture 

MTFlECad, MTΔECad, Py2T, 4T1 and NMuMG/E9 cells were cultured in 

Dulbecco's modified Eagle's medium (DMEM, D5671, Sigma-Aldrich) supplemented 

with 10% FBS (F7524, Sigma-Aldrich), 2 mM L-glutamine (G7513, Sigma-Aldrich), 

100U penicillin and 0.1 mg/ml streptomycin (P4333, Sigma-Aldrich). In order to 

induce EMT, cells were treated with 2 ng/ml TGF-β1 (240-B, R&D systems). 

HUVEC cells were cultured in M-199 medium (M4530, Sigma-Aldrich) 

supplemented with 40 µg/ml bovine pituitary gland extract (13028-014, 

Thermofischer Scientific), 80 U/ml Heparin (H3393, Sigma-Aldrich), 20% FCS, 2 

mM glutamine, 100U penicillin and 0.1 mg/ml streptomycin. Recombinant mouse 

VEGF-A was purchased from R&D (493-MV-005). All the cells were cultured at 

37°C with 5% CO2 in humid incubator except for hypoxia experiments where cells 

were grown in 1% O2. 
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Cell growth quantification 

1x104 cells were plated in triplicates in 24-well plates and quantified at different time 

points by using Neubauer chamber and Trypan blue exclusion. 

 

MTT assay 

Five hundred cells were plated in triplicates in a 96-well plate and allowed to attach 

overnight. On the following day the indicated concentrations of SP600125 (tlrl-sp60, 

InvivoGen) were added to the cells. Three days later, an MTT assay was performed as 

follows: medium was replaced by fresh complete medium containing 0.5 mg/ml MTT 

(CellTiter 96® Non-Radioactive Cell Proliferation Assay, G4000, Promega). Cells 

were incubated for 1h at 37°C. MTT-containing medium was then replaced by 100 µl 

of a solution of 95% isopropanol/5% formic acid. 100 µl of 10% SDS were added to 

each well. After 5 minutes incubation at 37°C, solution was mixed by pipetting and 

transferred in a new 96-well plate. Absorbance was measured at 570 nm. A second 

reading at 620 nm was used for normalization. 

 

Viral infections 

shRNA-mediated knockdown was performed using the following lentiviral 

constructs: Mission Non-Targeting shRNA control vector: SHC002; shVEGF-A #1: 

TRCN0000066818, #4: TRCN0000304451, #5: TRCN0000310985, #8: 

TRCN0000316047 (Sigma-Aldrich). VEGF-A overexpression was achieved using the 

retroviral pAMFG-mVEGF-A_IRES_CD8 expression vector kindly provided by Dr. 

Andrea Banfi (University of Basel). Plat-E or HEK293T cells were transfected using 

Fugene HD transfection reagent (E2311, Promega) together with the packaging vector 

pR8.92 and the envelope encoding plasmids pVSV for the HEK293T cells. On the 

next day virus containing supernatant was filtered and added to the target cells 

following addition of 8 µg/ml polybrene. Cells were centrifuged for 90 min and 

medium was replaced after 3 hours of incubation at 37°C.  

 

Immunoblotting 

For phospho-protein studies, cells were treated with 2 mmol/L sodium orthovanadate 

20 min prior to cell lysis. After 2 PBS washes, cells were lyzed directly on the plate in 

HNIG buffer (50 mmol/L HEPES, pH 7.5, 150 mmol/L NaCl, 10% glycerol, 1% 
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Triton X-100, 1.5 mmol/L MgCl, 1 mmol/L EDTA, 10 mmol/L sodium PPi, 2 

mmol/L sodium orthovanadate, 100 mmol/L NaF, 1 mmol/L 

phenylmethylsulfonylfluoride) containing protease inhibitor cocktail (P2714, Sigma-

Aldrich) for 30 min. Lysates were cleared by centrifugation and protein concentration 

was determined by Bradford assay (500-0006, Biorad). Equal amounts of protein 

were diluted in loading buffer (10% glycerol, 2% SDS, 65 mM Tris, 0.01 mg/ml 

Bromphenolblue, 1% betamercaptoethanol) resolved by SDS-PAGE and blotted on 

polyvinylidene difluoride (PVDF) membranes (IPVH00010, Millipore) by wet 

transfer. Membranes were then blocked with 5% milk in Tris-buffered saline with 

0.05% Tween 20 for 1h and incubated overnight at 4°C with the primary antibodies 

listed in Table 1 (diluted in 5% bovine serum albumin, Sigma-Aldrich). HRP 

conjugated antibodies (Jackson Immunoresearch Laboratories) were diluted in 5% 

milk in Tris-buffered saline with 0.05% Tween 20 (1:5000) and incubated for 1h at 

room temperature. Signal was detected using Immobilon Western Chemiluminescent 

HRP Substrate (WBKLS0500, Millipore) and a Fusion FX imaging system (Vilber 

Lourmat). 

 

Table 1: List of antibodies used for immunobloting 

Protein Catalog # Manufacturer Specie Dilution 

JunB sc-8051 Santa Cruz Mouse 1:1000 

phospho-JunB 

Thr102/104 
8053 Cell Signaling Rabbit 1:1000 

Erk M7927 Sigma Rabbit 1:5000 

phopsho-Erk M8159 Sigma Mouse 1:5000 

MAPKAPK2 3042P Cell Signaling Rabbit 1:1000 

phospho-

MAPKAPK2 
3007P Cell Signaling Rabbit 1:1000 

HIF1α NB 100-449 Novus Biologicals Rabbit 1:2000 

HIF2α NB 100-122 Novus Biologicals Rabbit 1:2000 

α -tubulin T-9026 Sigma-Aldrich Mouse 1:5000 

Actin sc-1616 Santa Cruz Goat 1:1000 
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RNA interference 

Gene down-regulation was achieved using the different siRNAs presented in Table 2 

(20 nM) and the following protocol: 3.5x104 cells were plated in a 6-well plate. 

Reverse transfection was immediately performed using 4 µl (MTΔECad) or 8 µl 

(Py2T LT cells) Lipofectamine RNAiMax (1668-019, Invitrogen) diluted in 

OptiMEM (11058, Gibco). Two days later, transfection was repeated and cells were 

analyzed after 2 further days in culture. 

 

Table 2: List of siRNAs used 

Gene Gene ID Catalog # Manufacturer 

Junb 16477 

s68566 

s68567 

s68568 

Silencer Select 
Ambion 

Hif1a 15251 s67531 
Epas1 13819 s65526 

Sp1 20683 s74195 

Stat3 20848 s74452 
Rela 19697 s72857 
Jun 16476 s68564 

Jund 16478 s201553 

Fos 14281 
s66198/s66199 

1:1 mix 

Fosb 14282 s201359 

Fosl1 14283 s66205 

Fosl2 14284 s66208 

Atf2 11909 
s62683/s62685 

1:1 mix 

Atf3 11910 s62686 

Atf5 107503 s98868 

Mapk8 26419 s77120 

Non-targeting - 4390847 

JunB 16477 L-041158-00-0005 ON-Target Plus siRNA 

Dharmacon Non-targeting - D-001810-10-20 
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Drug treatment 

3.5x104 cells were plated in 6-well plates and allowed to attach overnight. On the next 

day, cells were treated with the indicated concentrations of SB203580 (tlrl-sb20, 

InvivoGen), PD98059 (tlrl-pd98, InvivoGen). Cells were harvested to assess drug 

efficiency and response of downstream targets after 1h or 72h of treatment, 

respectively. 

 

Enzyme-linked immunesorbent assay 

5x104 cells were plated in 6 cm dishes in duplicates. Three days later medium was 

replaced and conditioned overnight. On the measurement day, conditioned medium 

was harvested and cleared by centrifugation. Cells were washed twice with cold PBS 

and lysed following the protocol described for immunoblotting. VEGF-A 

concentration was quantified in cell culture supernatants and lysates using the 

Quantikine ELISA kit (MMV00, R&D) following the manufacturer’s protocol. 

Optical density of each sample was determined in duplicate by using the microplate 

reader Spectra MAX 340 (Bucher Biotec AG) set to 450 nm wavelength. In parallel, 

cells from the second dish were trypsinized and counted in order to normalize the 

VEGF-A concentration to cell number for each cell line. 

 

Luciferase assay 

1x104 MTΔECad or Py2T cells and 1.5x104 MTFlECad, Py2T LT, NMuMG/E9 or 

NMuMG/E9 LT cells were plated in triplicates in a 24-well plate. To increase 

transfection efficiency cells were reverse transfected using 500 ng Vegfa-luciferase 

WT or mutated constructs (kindly provided by Dr Marina Schorpp-Kistner, DKFZ 

Heidelberg), 10 ng Renilla encoding plasmids and 0.75 µl Lipofectamine 3000 

(L3000015, Thermofischer Scientific). After 3 days, cells were lysed directly in the 

plate using 1x passive lysis buffer (E194, Promega) and lysates were analyzed using 

the Dual-Luciferase Reporter Assay System (E1960, Promega) and a Berthold 

Luminometer LB960. Measured luciferase values were normalized to internal Renilla 

control. 
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Orthotopic transplantation 

Two hundred MTFlECad or MTΔECad cells were injected in the ninth mammary fat 

pad of 7-10 weeks old BALB/c Rag2−/−;common γ receptor−/− female mice (kindly 

provided by Antonius Rolink, University of Basel). 

 

Immunostainings 

For immunohistochemistry staining, tumors were fixed at 4°C in 4% phosphate-

buffered paraformaldehyde (PFA) overnight. Following ethanol/xylene dehydration, 

tumors were embedded in paraffin. Five µm thick sections were stained as follows: 

after deparaffinization, antigen retrieval was performed using "Retriever 2100" (EMS) 

with 10 mM citrate buffer pH 6.0. Sections were then quenched in 3% H2O2 for 15 

min and blocked for 1h in 5% goat serum at room temperature. JunB antibody (sc-

8051, Santa Cruz, 1:50 in blocking solution) was incubated overnight at 4°C. 

Biotinylated secondary antibody (1:200) was incubated for 1h at room temperature. 

AEC substrate was then added for 5 min (ABC kit, PK6100, Vector Laboratories). 

Sections were finally counterstained and mounted using CytoSeal XYL (8312-16E, 

Thermo Scientific). Images were acquired using Axioskop2 plus microscope 

equipped with an AxioCam MRc camera (Zeiss). 

 

Immunofluorescence staining of cultured cells 

Cells were grown on microscopy glass slides (80841, Ibidi) and fixed with 4% PFA at 

room temperature for 15 min. Following 5 min permeabilization with 0.5% NP40, 

blocking step was performed using 3% BSA in PBS-Triton (0.01%) during 30 min. 

Primary antibody diluted in 3% BSA in PBS-Triton (see dilutions in Table 3) were 

incubated for 1.5 h at room temperature. Finally, Alexa-Fluor-coupled antibodies 

(Invitrogen) were diluted 1:300 in 3% BSA in PBS-Triton and incubated for 1h at 

room temperature. 6-diamidino-2-phenylindol (Dapi; D9542, Sigma-Aldrich; 1:5000 

for 7 min) was used to visualize nuclei and mounting was performed using Dako 

fluorescence mounting medium (S3023, Dako). Images were taken with Leica DMI 

4000 microscope (Leica Microsystems) and data was analyzed using ImageJ software. 
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Table 3: Antibodies used for immunohistochemistry/immunofluorescence staining 

Protein Catalog # Manufacturer Specie Dilution 

JunB sc-8051 Santa Cruz Mouse 1:75 

Cleaved Caspase 3 9664 Cell Signaling Rabbit 1:50 

p65 (NFΚB) sc-372X Santa Cruz Rabbit 1:300 

HIF1α NB 100-449 Novus Biologicals Rabbit 1:100 

HIF2α NB 100-122 Novus Biologicals Rabbit 1:100 

 

RNA extraction, reverse transcription and qPCR 

Total RNA was isolated using TriReagent (T9424, Sigma-Aldrich) and reverse 

transcribed using Moloney Murine Leukemia Virus Reverse Transcriptase (ImProm-

II Reverse Transcriptase, M314C 28692233, Promega). Transcripts listed in Table 4 

were then quantified by Real Time quantitative PCR (Step One Plus, Applied 

Biosystems) using SYBR-green PCR MasterMix (4909155, Invitrogen). Ribosomal 

protein L19 primers were used for normalization. Fold induction was calculated using 

the comparative Ct method (ΔΔCt).  

 

Table 4: Primers used (5' -> 3') 

Gene Forward Reverse 

Vegfa actggaccctggctttactg tctgctctccttctgtcgtg 
Junb accacggagggagagaaaag agttggcagctgtgcgtaa 

Hif1a gcactagacaaagttcacctgaga cgctatccacatcaaagcaa 
Epas1 ccccagggaacactacacc caagggattctccaaggatg 

Sp1 gctatagcaaacaccccaggt tccacctgctgtctcatcat 

Stat3 caagggattctccaaggatg gttcctggcaccttggatt 

Rela cccagaccgcagtatccat gctccaggtctcgcttctt 

Jun ccagaagatggtgtggtgttt ctgaccctctccccttgc 

Jund gagtgagattctgtttcaaaacgtc tgggtgcagtcacgtttactt 

Fos cgggtttcaacgccgacta ttggcactagagacggacaga 

Fosb gttcgcagagagcggaac gccttttcctcttcaagctg 

Fosl1 cccagtacagtccccctca tcctcctctgggctgatct 

Fosl2 acgccgagtcctactccag caggcatatctacccggaac 
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Atf2 tttggtccagcacgtaatga atcttgttggcgttggagtc 

Atf3 gctggagtcagttaccgtcaa cgcctccttttcctctcat 

Atf5 ctcccaattgttggtgcag ccaggagtgacatggctgt 

Mapk8 aactgttccccgatgtgct tctcttgcctgactggcttt 

Rpl19 ctcgttgccggaaaaaca tcatccaggtcaccttctca 
 

Statistical analysis 

Statistical analysis and graphs were generated using the GraphPad Prism software 

(GraphPad Software Inc, San Diego, CA). n. s., non significant; *, p ≤ 0.05;  **, p ≤ 

0.01; ***, p ≤ 0.001;  ****, p ≤ 0.0001. 

 
    3.2.5. Discussion 

 

Angiogenesis and EMT play a central role in tumor progression. We recently 

demonstrated that EMT reprogramming induces the secretion of pro-angiogenic 

factors, such as VEGF-A (Fantozzi, Gruber et al. 2014). Furthermore, we associated 

this pro-angiogenic signature with tumor initiation. Our study revealed that 

mesenchymal cell-derived VEGF-A actively induced angiogenesis in vivo, hence 

increasing the tumorigenic potential of these cells. However, the molecular 

mechanisms regulating secretion of VEGF-A during EMT remained elusive.  

Here, we show that mesenchymal cell-derived VEGF-A is sufficient to induce 

endothelial cell survival, through Akt signaling activation. EMT is proposed to induce 

a "hypoxic" signature (Goel and Mercurio 2013). Indeed, TGF-β is known to stabilize 

HIF1α in normoxic conditions (McMahon, Charbonneau et al. 2006). However, even 

though HIF1α knockdown decreased VEGF-A mRNA expression in MTΔECad cells, 

our data did not support activation of such a hypoxic signature in our EMT systems. 

Indeed, HIF1α was not recruited to the nucleus during EMT. Interestingly, Villa and 

colleagues recently described a new mechanism of action for HIF1α (Villa, Chiu et 

al. 2014). They demonstrated that HIF1α activates the Notch pathway though a non-

transcriptional mechanism. The possibility for HIF1α to regulate VEGF-A expression 

through a non-transcriptional and non-canonical mechanism cannot be excluded in 

our models. However, we also did not observe increased HIF1α protein expression in 

mesenchymal versus epithelial cells. In a similar manner, HIF2α and NFκB - two 
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other hypoxia-related factors that can bind the VEGF-A promoter - were shown by 

other laboratories to be essential for EMT and breast cancer metastases (Huber, 

Azoitei et al. 2004, Helczynska, Larsson et al. 2008). However, these signaling 

pathways were not found activated in our systems. 

Instead, by performing a small siRNA screen we have identified JunB as the 

main regulator of VEGF-A expression in mesenchymal cells. Moreover, we show its 

increased expression and phosphorylation in mesenchymal cells. Until recent years 

JunB has been considered a tumor suppressor gene with low if any transcriptional 

activity on AP-1-responsive genes. Compared to Jun, JunB is thought to present 

reduced DNA-binding activity and lack phosphorylation sites. It has been long 

thought to dimerize with Jun in order to decrease Jun transcriptional activity and 

therefore repress its pro-tumorigenic potential (Deng and Karin 1993). However, its 

role in tumor progression is currently being reevaluated. Indeed, recent publications 

implicated JunB in EMT, angiogenesis and tumor metastases (Schmidt, Textor et al. 

2007, Gurzov, Bakiri et al. 2008, Gervasi, Bianchi-Smiraglia et al. 2012, Kanno, 

Kamba et al. 2012). Therefore, JunB seems to play a more complex role in cancer 

progression and cell biology than primarily anticipated and it is now proposed as a 

new target in cancer therapy (Gurzov, Bakiri et al. 2008). 

JunB can form homo- or heterodimers with other members of the AP-1 family. 

Our data reveals that Jun inhibition also leads to decreased VEGF-A mRNA 

expression and that combining Jun and JunB inhibition enhance VEGF-A gene 

repression. This implies that Jun might dimerize with JunB in order to induce VEGF-

A expression. Co-immunoprecipitation experiment should be performed to test this 

hypothesis. 

We finally have observed that siRNA-mediated inhibition of JunB led to 

apoptosis in cancer cells. EMT has been described as the "ultimate survival 

mechanism for cancer cells" (Tiwari, Gheldof et al. 2012). It would not be surprising, 

if JunB plays a central role in this process. Interestingly, JunB is already known to 

protect pancreatic β-cells against apoptosis by activating the Unfolded Protein 

Response element Xpb1, a gene also implicated in EMT and in VEGF-A expression 

(Gurzov, Ortis et al. 2008, Ghosh, Lipson et al. 2010, Cunha, Gurzov et al. 2014, Li, 

Chen et al. 2015). Junb phosphorylation by JNK has been implicated in tissue 



Deciphering the EMT-induced pro-angiogenic signature                                                          Results 

	

 

91 
	

regeneration in Zebrafish (Ishida, Nakajima et al. 2010). In this case, and as suggested 

by our data, JunB phosphorylation is required for cell survival and proliferation.   

  

In conclusion, we demonstrate that i) EMT-induced VEGF-A expression is not 

due to the activation of hypoxic pathways and that ii) JunB is responsible for VEGF-

A expression in mesenchymal cells (Figure 7).  

 

 
 
Figure 7: JunB mediates VEGF-A expression during EMT 
We have recently shown that EMT program is associated with a pro-angiogenic signature, notably 
through the expression of VEGF-A. VEGF-A induces angiogenesis in vivo and increases the 
tumorigenic potential of mesenchymal cells. Here, we have identified JunB as a main regulator of 
VEGF-A expression in mesenchymal cells. 

 

Some additional experiments remain to be performed to better characterize the 

implication of JunB in EMT-induced VEGF-A expression. For example, we have not 

been able to prove the direct binding of JunB to the VEGF-A promoter. JunB might 

bind to an alternative binding site (enhancer e.g.) or might not directly induce VEGF-

A gene transcription. Therefore, we are currently optimizing a chromatin 

immunoprecipitation (ChIP) for JunB in mesenchymal cells. This experiment will 

allow us to assess the direct binding of JunB on the VEGF-A promoter. Furthermore, 

by overlapping the ChIP-sequencing data with RNA-sequencing data from an EMT 

time course we will be able to decipher the global role of JunB in EMT progression. 

It will also be interesting to assess whether JunB inhibition in vivo represses 

VEGF-A expression and would result in delayed tumor onset. I have already 

generated doxycyclin-inducible shJunB cell lines for this purpose. However, this 

experiment may be hampered by the pro-apoptotic effect of JunB inhibition.	 Finally, 

despite its expression in human breast carcinomas, the role of JunB in human breast 

cancer progression and metastasis still has to be determined (Kharman-Biz, Gao et al. 

2013). 

EMT Angiogenesis Tumorigenicity

JUNB ↑

VEGF-A ↑
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4. General discussion and outlook 
 

Over forty years have passed since the concept of anti-angiogenic therapy has been 

suggested for the first time. During these decades the work of several generations of 

scientists transformed this idea into clinical reality. However, anti-angiogenic therapy, 

proposed as the ultimate treatment that would "resist to resistance", offered only 

limited benefits to the patients, due to the development of therapy resistance (Kerbel 

1997).  

 During my Ph.D., I have studied different aspects of angiogenesis, from the 

molecular mechanisms inducing VEGF-A secretion to those leading to the 

development of resistance against anti-angiogenic therapy. The work presented here, 

together with other projects to which I contributed, has demonstrated the importance 

of angiogenesis not only during tumor growth but also during tumor initiation and 

metastasis. In order to profit by anti-angiogenic therapy, one should continue 

deciphering the molecular basis of the angiogenic process. 

Development of multikinase inhibitors, such as nintedanib, hold great promise 

in overcoming resistance to anti-angiogenic therapy. However, despite their potent 

and stable inhibition of tumor vascularization, tumors are still able to escape therapy. 

Our observations that tumor cells can adapt their metabolism to survive into nutrient-

deprived environment has led us to propose anti-angiogenic/anti-glycolytic treatment 

combination. Even though MCT4 KO has evoked a striking decrease in tumor volume 

in combination with anti-angiogenic therapy, tumor progression is still not completely 

halted. However, one should not forget that metabolic symbiosis does not only occur 

between tumors cells and that the tumor microenvironment can also be incriminated. 

Therefore, pharmaceutical approaches using MCT4 inhibitors that will target all 

different tumor compartments should give better results. 

Here, I have restricted my analysis to the primary tumor. However, in many 

breast cancer patients anti-angiogenic therapy is used as a neo-adjuvant therapy, i.e. 

patients receive it after removal of the primary tumor in order to control metastatic 

outgrowth. Interestingly, only few data support the use of anti-angiogenic therapy in 

such settings and most data suggest that anti-angiogenic therapy might increase 

metastatic spread. Therefore, it will be interesting to study the response of the 
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(pre)metastatic lesions to anti-angiogenics. Would they also become glycolytic? 

Would they also grow despite a lack of blood vessels? 

Our observation that EMT-induced cancer stem cells induce angiogenesis 

raises questions regarding the stem cell niche (Fantozzi, Gruber et al. 2014). It is well 

established that CSCs reside in close vicinity of the blood vessels, but for still 

unknown reasons. Are stem cells only able to survive in the close vicinity of the blood 

vessels or are they simply localized next to the blood vessels because they foster their 

recruitment? 

My data suggest the implication of JunB in EMT-induced angiogenesis. While 

originally proposed to be a tumor-suppressor gene, more and more data support a 

critical role of JunB in tumor progression. Its involvement in EMT and in tumor 

angiogenesis makes it a prime target to combat cancer. Interestingly, we have 

observed that JunB inhibition selectively kills tumor cells without harming normal 

mammary gland cells. However, one question still remains: how does JunB induce 

VEGF-A expression? Luciferase reporter assays have failed to prove the direct 

binding of JunB on the AP1 promoter. Does it bind to another site, lying for example 

within an enhancer? Does JunB indirectly induce VEGF-A expression? 

My Ph.D. work underlies the importance of tumor heterogeneity and 

interactions occurring between the different cell types within a tumor. Indeed, VEGF-

A secretion could not support tumor initiation, if endothelial cells would not respond 

to this growth factor by sprouting. Furthermore, EMT would probably be 

meaningless, if blood vessels are not present to carry tumor cells to their final 

destination. Besides these heterotypic interactions, our project about anti-angiogenic 

resistance reveals the importance of symbiosis between different tumor cell types. In 

such a situation, exchange of metabolites between tumor cells running on different 

metabolic needs allows them to survive and proliferate. 

The specific interactions established between tumors cells and their 

microenvironment reveal a high specificity between individual patients that may in 

addition evolve during tumor progression. These observations underline the 

increasing need for personalized therapies. Several additional generations of 

researchers will probably be required in order to fully understand the complexity of 

tumor angiogenesis and to be able to find the perfect combination therapy that 

definitively cures cancer. 
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