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Abstract	

	

Dynamin-related	protein	1	 (Drp1),	 the	main	mammalian	mediator	of	mitochondrial	 fission,	

has	an	especially	important	role	in	neuronal	development,	such	that	its	deletion	gives	rise	to	

pre-	or	perinatal	lethality.	However,	less	is	known	about	the	need	for	Drp1	in	adult	neurons;	

this	 is	 relevant	 because	 inhibition	 of	 Drp1	 could	 prevent	 pre-apoptotic	 mitochondrial	

fragmentation,	and	therefore	be	neuroprotective.	

In	our	mouse	model,	inducible	Drp1	ablation	in	the	forebrain	of	adult	mice	leads	to	swollen,	

perinuclearly	 aggregated	 mitochondria	 and	 to	 impaired	 synaptic	 transmission.	 Of	 note,	

ablated	mice	also	develop	a	complex	and	ultimately	lethal	catabolic	phenotype,	marked	by	

weight	 loss,	 increased	 lipolysis	 and	 elevated	 corticosterone.	 We	 traced	 this	 back	 to	 the	

activation	of	the	integrated	stress	response	in	Drp1-ablated	brain	regions,	culminating	in	the	

ectopic	 induction	of	metabolic	 cytokine	Fgf21.	Fgf21	 is	normally	produced	 in	 liver,	 fat	and	

muscle	tissue	in	response	to	fasting	or	exercise,	and	no	reports	exist	of	it	being	produced	in	

the	 brain.	 This	 “mitokine”	 increases	 insulin	 sensitivity	 and	 stimulates	 corticosterone	

production	 via	 receptors	 in	 the	 hypothalamus,	 thus	 explaining	 essential	 aspects	 of	 the	

catabolic	phenotype.	

This	work	has	implications	not	only	for	mitochondrial	biology	but	also	for	the	understanding	

of	the	central	regulation	of	systemic	metabolism.	

	

	





	

	

	
Index	

	
	 	

IX	

	
	

Index	

PREFACE	 III	

ACKNOWLEDGEMENTS	 V	

ABSTRACT	 VII	

INDEX	 IX	

1.	 INTRODUCTION	 15	

1.1.	 Mitochondria	 15	
1.1.1.	 Structure	 15	
1.1.2.	 Dynamics	 16	
1.1.2.1.	 Mitochondrial	fission	 19	
1.1.2.2.	 Mitochondrial	fusion	 22	
1.1.2.3.	 Cristae	remodeling	 23	

1.1.3.	 Integration	of	mitochondrial	dynamics	in	cellular	functions	 24	
1.1.3.1.	 Apoptosis	 24	
1.1.3.2.	 Mitochondrial	quality	control	and	the	response	to	stress	 25	
1.1.3.3.	 Interaction	with	other	organelles	 27	
Mitochondria	and	the	endoplasmic	reticulum	 28	
Mitochondria	and	lysosomes	 32	
Mitochondria	and	peroxisomes	 32	
Mitochondria	and	lipid	droplets	 33	

1.1.3.4.	 Mitochondrial	motility	 34	
1.1.4.	 Mitochondrial	dynamics	in	neurodegeneration	 35	
1.1.4.1.	 Mitochondrial	dynamics	in	sporadic	and	familial	neurodegenerative	diseases	 36	
Alzheimer’s	disease	 36	
Parkinson’s	Disease	 37	
Huntington’s	Disease	 38	
Amyotrophic	lateral	sclerosis	 39	
Other	diseases	 39	



	

	

	
Index	

	
	 	

X	

1.1.4.2.	 Primary	disorders	of	mitochondrial	dynamics	 40	
Autosomal	dominant	optic	atrophy	 40	
Charcot-Marie-Tooth	Disease	 41	

1.2.	 Central	regulation	of	systemic	metabolism	 42	
1.2.1.	 Systemic	regulation	of	energy	metabolism	 42	
1.2.1.1.	 Hypothalamic	circuits	regulating	feeding	behavior	 42	
Adiposity	signals	 44	
Gastrointestinal	signals	 44	
Nutrient	signals	 46	

1.2.1.2.	 Energy	expenditure	 46	
Basal	metabolic	rate	 47	
Thermogenesis	and	brown	adipose	tissue	 47	
Shivering	thermogenesis	and	exercise	 48	

1.2.1.3.	 Pituitary	adrenal	axis	and	corticosterone	influence	on	metabolism	 48	
1.2.1.4.	 Fgf21	and	the	“mitokine”	concept	 49	
Signaling	 49	
Regulation	of	glucose	metabolism	 51	
Adaptation	to	caloric	restriction	and	starvation	 51	
Thermogenesis	and	effects	on	adipose	tissue	 51	
Neuroendocrine	effects	of	Fgf21	 52	
Non-canonical	mechanisms	of	Fgf21	induction	 53	

1.2.1.5.	 Cellular	nutrient	sensing	 54	
Indicators	and	sensors	of	nutrient	deficiency	 55	
Cellular	measures	to	cope	with	nutrient	stress	 56	
Mitochondrial	dynamics	in	cellular	metabolism	 57	

2.	 AIMS	OF	THE	WORK	 60	

3.	 MANUSCRIPT	 62	

3.1.	 Summary	 63	

3.3.	 Introduction	 64	

3.4.	 Results	 65	
3.4.1.	 Inducible	Drp1	ablation	in	the	adult	mouse	forebrain.	 66	
3.4.2.	 Drp1	ablation	causes	progressive	changes	in	mitochondrial	morphology.	 66	
3.4.3.	 Synaptic	transmission	is	impaired	in	Drp1-deficient	CA1	pyramidal	neurons.	 67	
3.4.4.	 Adult	forebrain	neurons	do	not	degenerate	within	10	weeks	of	Drp1	ablation.	 68	



	

	

	
Index	

	
	 	

XI	

3.5.	 Discussion	 70	

3.6.	 Materials	and	Methods	 72	
3.6.1.	 Mice	 72	
3.6.2.	 Histology	 73	
3.6.3.	 Transmission	electron	microscopy	 73	
3.6.4.	 Electrophysiology	 74	
3.6.5.	 Behavioral	analyses	 74	
3.6.6.	 Western	Blot	 74	
3.6.7.	 Tissue	culture	 74	
3.6.8.	 Quantitative	proteomics	 75	
3.6.9.	 Oxygen	consumption	and	ATP	levels	 76	

3.7.	 Acknowledgements	 76	
3.7.1.	 Authors’	Contributions	 77	

3.8.	 References	 77	

3.9.	 Figure	legends	 84	

4.	 EXPERIMENTAL	PROCEDURES	 105	

4.1.	 Mouse	lines	 105	

4.2.	 Mitochondrial	membrane	potential	measurement	 105	

4.3.	 Oxygraph	measurements	 105	

4.4.	 ER	morphology	evaluation	 106	

4.5.	 Metabolic	Measurements	 106	

4.6.	 Western	blot	 107	

4.7.	 ELISA	 107	

4.8.	 Quantitative	real-time	PCR	 108	

4.9.	 Pharmacological	treatments	 108	

4.10.	 BAT	sympathectomy	 108	

5.	 RESULTS	 110	



	

	

	
Index	

	
	 	

XII	

5.1.	 Drp1	 ablation	 in	 adult	 mouse	 forebrain	 impairs	 mitochondrial	 structure	 and	 respiratory	

activity	 110	

5.2.	 Drp1-ablated	mice	develop	a	catabolic	phenotype	 110	

5.3.	 Metabolic	pathways	that	regulate	fuel	choice	in	Drp1flx/flx	Cre+	mice	 111	

5.4.	 Drp1-ablated	 brain	 regions	 secrete	 metabolic	 cytokine	 Fgf21	 in	 an	 eIF2α-ATF4-mediated	

fashion	 112	

5.5.	 Drp1	ablation	in	neurons	causes	ER	stress	 114	

5.6.	 Pharmacological	inhibition	of	ER	stress	does	not	prevent	Fgf21	expression	 114	

5.7.	 Lack	 of	 mtUPR	 activation	 and	 evidence	 for	 amino	 acid	 deprivation	 and	 iron	 handling	

alterations	in	Drp1flx/flx	Cre+	mice	 115	

5.8.	 Genetic	rescue	 118	

5.9.	 Figures	 119	
Figure	5.1	Mitochondrial	morphology	and	function	in	Drp1-ablated	neurons	 120	
Figure	5.2	Macroscopic	metabolic	alterations	in	Drp1flx/flx	Cre+	mice	 122	
Figure	5.3	Clinical	chemistry	and	hormones	in	Drp1flx/flx	Cre+	mice	 124	
Figure	5.4	Production	of	Fgf21	in	Drp1flx/flx	Cre+	mice	 126	
Figure	5.5	ER	stress	in	Drp1flx/flx	Cre+	mice	 128	
Figure	5.6	Pharmacological	ER	stress	rescue	 130	
Figure	5.7	Integrated	stress	response	in	Drp1flx/flx	Cre+	mice	 132	
Figure	5.8	Genetic	rescue	 134	

6.	 DISCUSSION	 136	

6.1.	 Drp1	deletion	in	forebrain	neurons	activates	the	integrated	stress	response	 137	

6.2.	 Ectopic	Fgf21	expression	in	Drp1flx/flx	Cre+	brains	causes	a	systemic	catabolic	phenotype	 141	

6.3.	 Conclusion	and	perspectives	 147	

7.	 REFERENCES	 149	

8.	 ABBREVIATIONS	 168	



	

	

	
Index	

	
	 	

XIII	

9.	 AUTHORS’	CONTRIBUTIONS	 171	

10.		CURRICULUM	VITAE	 	 	 	 	 	 	 	 	 	170	

	

	



	

	XIV	



	

	

	
Introduction	

	
	 	

XV	

1. Introduction	
	

1.1. Mitochondria	

	

Mitochondria	 are	 the	 result	 of	 the	 engulfment,	 over	 1.5	 billion	 years	 ago,	 of	 an	 α-

proteobacterial	 ancestor	 by	 a	 larger	 host	 cell.	 This	 initiated	 a	 process	 of	 endosymbiosis	

(Margulis,	1975),	whereby	mitochondria	provided	the	host	cell	with	energy	and	metabolites,	

and	 in	exchange	surrendered	control	of	 their	 replication	and	morphology	to	the	host.	This	

was	 achieved	 via	 the	 transfer	 of	 most	 of	 the	 mitochondrion’s	 genetic	 material	 to	 the	

nucleus,	 leaving	 only	 a	 16-kilobase-long	 circular	 chromosome	 within	 the	 organelle.	 The	

mitochondrial	 genome	 (mtDNA)	 codes	 for	 a	 total	 of	 37	 genes,	 of	 which	 13	 are	 protein	

subunits	of	the	respiratory	chain,	22	are	mitochondria-specific	transfer	RNAs	(tRNAs)	and	2	

are	ribosomal	RNAs	(rRNAs).	The	remainder	of	the	estimated	1000	proteins	that	constitute	

the	mitochondrial	 proteome	 (Calvo	et	 al.,	 2016;	 Pagliarini	 et	 al.,	 2008)	 is	 nuclear-encoded	

and	imported	post-translationally	into	the	mitochondria.		

	

1.1.1. Structure	

	

The	standard	depiction	of	a	mitochondrion	is	that	of	a	bean-shaped	organelle,	ranging	in	size	

from	0.5	to	10	µm,	bound	by	two	membranes.	

The	outer	mitochondrial	membrane	 (OMM)	envelops	the	 inner	mitochondrial	membrane	

(IMM),	which	 folds	 to	 form	membrane	 invaginations	 termed	 cristae.	 The	 two	membranes	

define	 two	 distinct	 compartments:	 the	 intermembrane	 space	 (IMS)	 between	 OMM	 and	

IMM;	and	the	matrix,	within	the	IMM.	

The	OMM	serves	as	both	a	barrier	–	albeit	a	poorly	selective	one	–	for	solutes,	metabolites	

and	 larger	 molecules,	 as	 well	 as	 a	 hub	 for	 interorganellar	 communication,	 mediating	

contacts	 between	 mitochondria	 and	 other	 cellular	 compartments	 (i.e.	 the	 endoplasmic	

reticulum,	lysosomes,	peroxisomes,	ribosomes;	see	1.1.3.3).	
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The	 IMM	 can	 further	 be	 subdivided	 in	 three	 specialized	 zones:	 the	 inner	 boundary	

membrane	(IBM),	the	cristae	junctions	(CJ)	and	the	cristae.	

The	IBM	is	the	portion	of	the	 IMM	that	 is	closely	apposed	to	the	OMM;	it	mainly	contains	

protein	complexes	that	are	responsible	for	polypeptide	import.	It	has	also	been	implicated	in	

matrix-cytosol	 energy	 transfer,	 lipid	 transfer	 and	 in	 the	 relaying	 of	 apoptotic	 signals	

(Reichert	and	Neupert,	2002;	Tatsuta	et	al.,	2014).	

The	 IMM	 attachment	 to	 the	 OMM	 is	 interrupted	 by	 the	 cristae,	 deep	 IMM	 invaginations	

protruding	into	the	matrix	space.	The	cristae	are	enriched	in	proteins	and	protein	complexes	

that	 carry	 out	 biosynthetic	 and	 bioenergetic	 roles	 within	 mitochondria,	 foremost	 among	

them	respiratory	complexes	and	supercomplexes	(Cogliati	et	al.,	2013).	

The	cristae	compartment	is	physically	separated	from	the	rest	of	the	intermembrane	space	

and	 the	 IMM	 by	 a	 20-50	 nm-wide	 tightening	 at	 the	 base	 of	 the	 cristae,	 termed	 cristae	

junction	(CJ).	The	architecture	of	the	CJs	is	controlled	by	the	MICOS	complex	(mitochondrial	

contact	site	and	cristae	organizing	system),	a	protein	network	on	the	 IMS	side	of	the	 IMM	

composed	of	six	different	subunits.	Of	these	six,	two	(Mitofilin	and	Mio10)	are	essential	to	

maintain	 cristae	 morphology,	 such	 that	 their	 absence	 leads	 to	 massive	 cristae	

rearrangement	 and	 IMM	 stacking.	 The	 remaining	 four	 subunits	 (Aim5,	 Aim13,	 Aim37,	

Mio27)	are	 important	 for	mtDNA	 inheritance,	 suggesting	 that	 they	 interact	with	nucleoids	

(van	 der	 Laan	 et	 al.,	 2012).	 The	 MICOS	 complex	 interacts	 with	 both	 the	 protein	 import	

machinery	 and	 the	 ER-tethering	 machinery	 (discussed	 in	 1.1.3.3),	 as	 well	 as	 with	 other	

structural	IMM	proteins	like	prohibitins	(van	der	Laan	et	al.,	2012).	

	

1.1.2. Dynamics	

	

This	 classical	 textbook	 presentation	 of	 mitochondria	 as	 static	 organelles	 stems	 primarily	

from	electron	microscopy	(EM)	observations	on	fixed	tissues	(Palade,	1953);	nevertheless,	as	

early	 as	 1914,	 studies	on	 live	 cells	 had	 revealed	 that	mitochondria	 are,	 in	 fact,	 a	 dynamic	

network	that	is	able	to	fuse	and	divide	in	response	to	intra-	and	extracellular	cues	(Lewis	and	

Lewis,	1914).	The	processes	of	mitochondrial	fusion	and	fission	and	of	cristae	remodeling	are	

collectively	 termed	mitochondrial	 dynamics,	 and	 they	 provide	 the	mitochondrial	 network	

with	the	flexibility	to	adapt	to	the	cell’s	metabolic	and	biosynthetic	requirements.	
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Mitochondrial	dynamics	are	controlled	by	a	family	of	large	GTPases	termed	dynamin-related	

proteins	 (DRPs),	which	have	the	ability	 to	remodel	biological	membranes	via	self-assembly	

and	GTP	hydrolysis.	Dynamin-related	protein	1	(Drp1)	is	the	main	effector	of	mitochondrial	

fission,	while	fusion	is	accomplished	by	the	coordinated	action	of	OMM	Mitofusin	1	and	2	

(Mfn1,	 Mfn2)	 and	 IMM	 Optic	 Atrophy	 1	 (OPA1).	 Of	 note,	 Drp1	 also	 plays	 a	 role	 in	

peroxisomal	fragmentation	(Koch	et	al.,	2003;	Li	and	Gould,	2003).	
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Figure	 1.1	 Regulators	 of	 mitochondrial	 morphology.	 Summary	 of	 the	 proteins	 required	 for	 mitochondrial	 fusion	 and	
fission,	and	the	corresponding	translational	and	posttranslational	modifications	(Wai	and	Langer,	2016).	
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1.1.2.1. Mitochondrial	fission	

	

The	 generation	 of	 two	 daughter	 mitochondria	 by	 constriction	 of	 a	 single	 mitochondrial	

tubule	is	termed	mitochondrial	fission,	and	its	main	mediator	is	Dynamin-Related	Protein	1	

(Drp1,	also	known	as	Dnm1l).	

Drp1	structural	studies	have	revealed	4	functional	domains:	

1. A	GTPase	domain	at	the	N-terminus,	harboring	the	enzymatic	activity.	

2. A	middle	domain.	

3. A	 variable	 domain,	 which	 undergoes	 alternative	 splicing	 and	 harbors	 sites	 of	

posttranslational	modification.	

4. A	 GTPase	 effector	 domain	 at	 the	 C-terminus,	 which	 can	 interact	 with	 the	 GTPase	

domain.	

The	middle	domain	and	the	GTPase	effector	domain	harbor	α-helix-containing	stalk	domains	

which	mediate	Drp1	dimerization	(Faelber	et	al.,	2011;	Ford	et	al.,	2011).	

Given	 that	most	of	 a	 cell’s	Drp1	pool	 is	 cytosolic,	 recruitment	mechanisms	are	 in	place	 to	

activate	it	and	to	direct	it	to	mitochondria	in	order	to	mediate	fission	(Labrousse	et	al.,	1999;	

Smirnova	et	al.,	2001).	Mitochondrial	fission	articulates	in	three	steps:	(I)	the	selection	and	

marking	of	 a	prospective	 fission	 site;	 (II)	 the	assembly	of	 the	division	 complex	around	 the	

mitochondrial	 tubule;	 (III)	 the	 GTP-driven	 constriction	 that	 causes	 the	 severing	 of	 the	

mitochondrial	unit	into	two	daughters.	

	

The	 marking	 of	 the	 fission	 site	 initiates	 the	 division	 process	 by	 ensuring	 that	 the	

mitochondrial	 tubule,	normally	300-500	nm	 in	diameter,	constrict	 to	an	extent	compatible	

with	 the	120-nm	Drp1	helix.	 This	 is	 accomplished	by	 the	 ER	wrapping	 around	prospective	

fission	 sites	 on	 mitochondria	 (Friedman	 et	 al.,	 2011)	 in	 a	 process	 termed	 ER-associated	

mitochondrial	 division	 (ERMD).	 Additional	 support	 for	 mitochondrial	 tubule	 constriction	

comes	 from	 actin	 polymerization	 by	 the	 inverted	 formin	 INF2,	 followed	 by	 Myosin	 II	

recruitment	(Hatch	et	al.,	2014;	Korobova	et	al.,	2013);	this	is	further	supported	by	reports	

that	actin	destabilization	prevents	mitochondrial	fission	(Korobova	et	al.,	2013,	2014).	Other	

proteins	 located	 at	 contact	 sites	 between	 the	 ER	 and	 mitochondria	 are	 able	 to	 further	
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facilitate	fission:	such	is	the	case	for	the	ancient	SNARE	Syn17,	which	in	fed	cells	localizes	to	

the	ER-mitochondria	contact	sites	and	facilitates	mitochondrial	division	(Arasaki	et	al.,	2015).	

	

Given	 that	Drp1	does	not	harbor	membrane-interaction	domains,	 it	needs	 to	bind	protein	

adaptors	 on	 the	 OMM	 in	 order	 to	 exert	 its	 effects	 on	 mitochondria.	 In	 yeast,	 Drp1	

recruitment	to	mitochondria	is	accomplished	by	C-terminal-anchored	OMM	protein	Fis1	and	

adaptor	protein	Mdv1,	which	does	not	have	a	mammalian	ortholog.	In	mammals,	four	Drp1-

recruiting	 proteins	 have	 been	 identified	 so	 far:	 mitochondrial	 fission	 factor	 (Mff),	

mitochondrial	 dynamics	 proteins	 of	 49	 and	 51	 kDa	 (MiD49	 and	MiD51,	 also	 known	 as	

Mief1),	and	Fis1.	Of	note,	Fis1	 is	not	strictly	required	for	fission,	but	 its	knockdown	causes	

mitochondrial	 elongation	 and	 its	 overexpression	 fragments	 mitochondria	 (Gomes	 and	

Scorrano,	2008;	James	et	al.,	2003;	Koirala	et	al.,	2013;	Losón	et	al.,	2013;	Shen	et	al.,	2014).	

Mff	 is	 the	 main	 Drp1	 recruiter	 in	 basal	 condition,	 and	 it	 functions	 independently	 of	 Fis1	

(Gandre-Babbe	and	van	der	Bliek,	2008;	Losón	et	al.,	2013;	Otera	et	al.,	2010).	MiD49	and	

MiD51	are	both	able	 to	bind	Drp1,	but	 they	can	either	 sequester	 it	 in	an	 inactive	 form	or	

promote	 its	 nucleation,	 depending	 on	 the	 availability	 of	 co-factors.	 For	 instance,	 MiD51	

stimulates	Drp1	assembly	only	in	the	presence	of	ADP,	when	respiration	is	disrupted	(Palmer	

et	al.,	2011;	Zhao	et	al.,	2011;	Richter	et	al.,	2014).	A	similar	mechanism	is	hypothesized,	but	

has	not	yet	been	identified,	for	MiD49	(Pernas	and	Scorrano,	2015).	

	

Parallel	to	its	recruitment	to	the	OMM,	posttranslational	modifications	are	able	to	regulate	

the	 fission	 capacity	 of	 Drp1:	 namely,	 Drp1	 can	 undergo	 phosphorylation,	 S-nitrosylation,	

ubiquitylation	 and	 SUMOylation	 (SUMO,	 small	 ubiquitin-like	modifier)	 (Oettinghaus	 et	 al.,	

2012;	Wilson	et	al.,	2013).	

Two	 serine	 residues,	 both	 located	 in	 the	 GTPase	 effector	 domain,	 can	 undergo	

phosphorylation.		

Protein	Kinase	A	 (PKA),	when	activated	by	high	 levels	of	cyclic	adenosine	monophosphate	

(cAMP),	 phosphorylates	 Drp1	 on	 Ser637,	 resulting	 in	 the	 inhibition	 of	 its	 fission	 activity	

(Chang	 and	 Blackstone,	 2007;	 Cribbs	 and	 Strack,	 2007),	 possibly	 by	 interfering	 with	 helix	

assembly	 (Cereghetti	 et	 al.,	 2008).	 The	 same	 residue	 can	 also	 be	 phosphorylated	 by	

calcium/calmodulin-dependent	 kinase	 I	 (CaMKI;	 (Han	 et	 al.,	 2008)).	 Conversely,	
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phosphorylated	 Ser637	 can	 be	 targeted	 by	 phosphatase	 calcineurin,	 resulting	 in	 an	

enhancement	 of	 Drp1	 fission	 activity	 (Cereghetti	 et	 al.,	 2008).	 In	 neurons,	 protein	

phosphatase	2A	(PP2A)	is	also	able	to	dephosphorylate	Ser637	(Dickey	and	Strack,	2011).	

Phosphorylation	of	Drp1	in	Ser616	by	the	Cdk1/CyclinB	complex	exerts	the	opposite	effect	

of	 Ser637,	 promoting	 rather	 than	 inhibiting	 mitochondrial	 fission	 (Taguchi	 et	 al.,	 2007).	

Protein	 Kinase	 C	δ 	 (PKCδ)	has	also	been	 reported	 to	 target	Ser616	 for	phosphorylation	 in	

neurons	(Qi	et	al.,	2011),	though	the	relevance	of	this	process	for	physiological	contexts	has	

not	 been	 proved	 (Wilson	 et	 al.,	 2013).	 Nevertheless,	 it	may	 be	 significant	 in	 pathological	

conditions,	such	as	Alzheimer’s	disease	(Wang	et	al.,	2009)	and	in	the	presence	of	oxidative	

stress	(Qi	et	al.,	2011).		

These	two	cases	exemplify	how	the	cell	is	able	to	coordinate	mitochondrial	fission	to	adapt	

to	the	cell’s	needs.	In	the	case	of	Ser637,	mitochondrial	fission	is	inhibited	via	PKA-mediated	

phosphorylation	 when	 the	 cell	 undergoes	 starvation;	 this	 causes	 mitochondrial	 network	

hyperfusion,	which	 protects	mitochondria	 from	macroautophagy	 in	 order	 to	 preserve	 the	

cell’s	 ATP-producing	 abilities	 (Gomes	 et	 al.,	 2011);	 on	 the	 other	 hand,	 elimination	 of	 the	

defective	 portions	 of	 the	 mitochondrial	 network	 may	 be	 achieved	 via	 AMPK-mediated	

phosphorylation	of	Mff	(Toyama	et	al.,	2016).	In	the	case	of	Ser616,	mitochondrial	fission	is	

coordinated	with	cell	division	allowing	 for	even	partitioning	of	 smaller	mitochondrial	units	

into	the	two	daughter	cells	(Taguchi	et	al.,	2007).	

Drp1	 can	 also	 undergo	 S-nitrosylation	 on	 a	 conserved	 cysteine	 residue	 in	 the	 GTPase	

effector	 domain	 (Barsoum	 et	 al.,	 2006;	 Cho	 et	 al.,	 2009).	 This	 leads	 to	 an	 increase	 in	

mitochondrial	 fission,	possibly	by	enhancing	the	effects	of	Drp1-activating	phosphorylation	

(Bossy	et	al.,	2010).	

In	 addition,	 ubiquitylation	 can	modulate	Drp1	 function.	Ubiquitin	 E3	 ligase	MARCH5	 (also	

known	as	MITOL)	can	ubiquitylate	Drp1	and	MiD49,	modulating	mitochondrial	morphology	

in	 a	 pro-	 or	 anti-fusion	 fashion	 in	 a	 manner	 that	 is	 still	 controversial	 (Fang	 et	 al.,	 2013;	

Nagashima	et	al.,	2014;	Xu	et	al.,	2016).	Likewise,	it	is	not	yet	confirmed	whether	Drp1	is	a	

direct	target	of	E3	ligase	parkin	(Wilson	et	al.,	2013)	or	whether	more	complex	mechanisms	

linking	parkin	activity	and	mitochondrial	morphology	are	in	place	(Buhlman	et	al.,	2014).	

Finally,	 SUMO	 can	 be	 covalently	 attached	 to	 Drp1,	 rendering	 it	more	 stable	 at	 the	OMM	

(Harder	 et	 al.,	 2004).	 MAPL	 (also	 known	 as	 MULAN),	 Ubc9	 and	 SUMO1	 have	 all	 been	
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implicated	in	Drp1	SUMOylation	(Braschi	et	al.,	2009;	Figueroa-Romero	et	al.,	2009;	Harder	

et	 al.,	 2004),	 while	 the	 removal	 of	 the	 SUMO	moieties	 is	 performed	 by	 SUMO	 protease	

SenP5	(Zunino	et	al.,	2007).	Of	note,	Drp1	stabilization	by	MAPL-mediated	SUMOylation	has	

recently	 been	 implicated	 as	 an	 apoptosis-promoting	 mechanism	 downstream	 of	 Bax/Bak	

activation,	stabilizing	ER-mitochondria	contacts	that	generate	mitochondrial	constriction	and	

cytochrome	c	release	((Prudent	et	al.,	2015);	see	paragraph	1.1.3.1).	

	

Following	 recruitment	 to	 the	OMM,	Drp1	 self-assembles	 in	 a	GTP-dependent	manner	 into	

helical	 structures	 that	wrap	 around	 ER-marked	mitochondrial	 tubules;	 together	with	 actin	

and	the	ER,	the	assembly	of	the	Drp1	helix	further	constricts	the	mitochondrion	(Lackner	et	

al.,	 2009).	 Finally,	 following	 GTP	 hydrolysis,	 the	 Drp1	 helix	 further	 constricts	 causing	

membrane	severing	and	organelle	division.	Of	note,	 incorporation	of	a	hydrolysis-deficient	

Drp1	mutant	(K38A,	(Naylor	et	al.,	2006))	into	the	helix	acts	in	a	dominant-negative	manner,	

allowing	for	helix	assembly	but	preventing	membrane	scission.	

	

While	Drp1	is	the	primary	actor	of	mitochondrial	division,	there	have	been	reports	of	Drp1-

independent	 mitochondrial	 fragmentation	 during	 apoptosis,	 bacterial	 infection	 or	 with	

specific	mutations	of	α-synuclein	(Guardia-Laguarta	et	al.,	2014;	Ishihara	et	al.,	2009;	Stavru	

et	al.,	2013);	furthermore,	Drp1-deficient	mouse	embryonic	fibroblasts	(MEFs)	are	still	able	

to	 partition	 their	 mitochondria	 during	 cell	 division	 (Pernas	 and	 Scorrano,	 2015).	 This	

suggests	 that	 alternative	 mechanisms	 may	 be	 able	 to	 mediate	 mitochondrial	 fission,	 but	

none	has	been	identified	to	date.	

	

1.1.2.2. Mitochondrial	fusion	

	

Mitochondrial	 fusion	 is	 essential	 to	 maintain	 the	 overall	 health	 of	 the	 mitochondrial	

network;	indeed,	fusion	allows	for	the	dilution	of	toxic	species	such	as	oxygen	radicals,	and	

for	 complementation	 of	 mtDNA	 and	 mitochondrial	 membrane	 potential	 	 (Chan,	 2012).	

Unlike	mitochondrial	 fission,	 which	 exerts	 its	 effects	 on	 the	 OMM	 and	 IMM	 at	 the	 same	

time,	mitochondrial	fusion	involves	two	separate	mechanisms	for	OMM	and	IMM	fusion.	
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OMM	fusion	 is	accomplished	thanks	to	dynamin-related	GTPases	Mitofusin	1	and	2	 (Mfn1	

and	Mfn2;	(Legros	et	al.,	2002;	Santel	and	Fuller,	2001;	Santel	et	al.,	2003)).	Mfn1	and	Mfn2	

have	 64%	 amino	 acid	 identity:	 both	 possess	 a	 GTPase	 domain	 at	 the	 N-terminus,	 a	

transmembrane	domain,	and	two	predicted	heptad	repeats	that	are	postulated	to	mediate	

tethering	 between	 adjacent	 mitochondria	 (Pernas	 and	 Scorrano,	 2015).	 However,	 their	

function	is	only	partially	redundant,	as	Mfn2	in	particular	possesses	some	specialized	roles	in	

ER-mitochondria	 tethering	 and	 mitochondria	 motility	 (Labbé	 et	 al.,	 2014);	 this	 is	 also	

reflected	by	 the	differences	 in	 tissue-specific	expression	of	 the	 two	genes,	and	by	 the	 fact	

that	Mfn1,	but	not	Mfn2,	can	complement	certain	pathogenic	mutations	 in	Mfn2	 (Detmer	

and	Chan,	2007).	

They	 form	homo-	 or	 heterodimers	 in	 trans	 to	 tether	mitochondrial	membranes	 and	 bring	

them	 into	 close	proximity.	 The	exact	mechanisms	of	membrane	 fusion	have	not	 yet	 been	

elucidated,	but	they	are	postulated	to	involve	lipid	mixing:	one	candidate	for	this	process	in	

mammals	is	MitoPLD,	which	converts	cardiolipin	to	phosphatidic	acid	(Choi	et	al.,	2006).	

The	 fusion	 of	 the	 IMM	 is	 controlled	 by	 Opa1,	 which	 undergoes	 alternative	 splicing	 and	

proteolytic	 cleavage	 resulting	 in	 long	 (l-Opa1)	 and	 short	 (s-Opa1)	 isoforms,	with	 the	 latter	

increasing	during	cellular	stress	(processing	explained	in	cristae	remodeling	section,	1.1.2.3).	

L-Opa1	is	N-terminally	anchored	to	the	IMM	and	it	is	sufficient	to	induce	IMM	fusion	and	to	

restore	fusion	in	an	Opa1-deficient	cell	(Song	et	al.,	2009;	Tondera	et	al.,	2009).	On	the	other	

hand,	there	are	reports	that	the	s-Opa1	isoform,	which	is	produced	under	stress	conditions,	

mediates	mitochondrial	fragmentation	(Anand	et	al.,	2014).	

	

1.1.2.3. Cristae	remodeling	

	

Cristae	 can	 display	 different	 morphologies	 with	 regards	 to	 both	 number	 and	 size.	 For	

instance,	treating	cells	with	a	non-glycolytic	substrate	causes	an	 increase	 in	the	number	of	

mitochondrial	 cristae,	 which	 is	 paralleled	 by	 increased	 supercomplexes	 assembly	 and	

respiratory	 capacity	 (Cogliati	 et	 al.,	 2013;	 Rossignol	 et	 al.,	 2004).	 In	 parallel,	 during	

starvation,	 cristae	 width	 decreases	 to	 facilitate	 supercomplex	 assembly	 and	 increase	

respiratory	efficiency	(Cogliati	et	al.,	2013).	
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In	 addition	 to	 its	 role	 in	 regulating	 IMM	 fission,	 Opa1	 controls	 cristae	 morphology	 and	

remodeling	(Wong	et	al.,	2000).	The	two	processes	are	actually	independent,	as	interfering	

with	OMM	fusion	does	not	affect	cristae	shape	(Frezza	et	al.,	2006).	The	Opa1	gene	can	be	

alternatively	 spliced	 to	 generate	 8	 different	 isoforms,	 which	 are	 then	 proteolytically	

processed	 by	 two	 groups	 of	 mitochondrial	 proteases:	 AAA	 proteases	 AFG3L2	 and	

paraplegin,	 and	 metalloprotease	 YME1L;	 the	 resulting	 l-Opa1	 cleavage	 products	 can	 be	

further	 processed	 by	OMA1	 or	 rhomboid-like	 protease	 PARL	 to	 generate	 soluble	 s-Opa1	

(Cipolat	 et	 al.,	 2006).	 The	 current	model	 for	 cristae	 structure	 and	maintenance	holds	 that	

oligomers	 of	 l-Opa1	 line	 the	 length	 of	 cristae,	 where	 they	 tether	 opposite-facing	

membranes.	Cleavage	of	l-Opa1	results	in	a	disruption	of	cristae	structure	and	in	a	widening	

of	the	cristae	junction,	which	can	cause	the	release	of	proteins	from	the	intracristae	space	

(see	apoptosis,	(Pernas	and	Scorrano,	2015)).	S-Opa1	forms	are	believed	to	be	less	important	

for	 cristae	 structure	 at	 the	 steady	 state,	 and	 more	 relevant	 for	 dynamic	 remodeling	 of	

cristae	morphology	following	stressor	challenges	(Pernas	and	Scorrano,	2015).	

	

1.1.3. Integration	of	mitochondrial	dynamics	in	cellular	functions	

	

1.1.3.1. Apoptosis	

	

Apoptosis	 is	 a	 form	of	 cell	 death	 that	 can	 be	 triggered	 by	 external	 or	 intracellular	 stimuli	

(Kroemer	et	al.,	2009).	The	death	stimuli	converge	on	the	OMM,	where	homo-oligomers	of	

Bcl2	 proteins	 BAX	 and	 BAK	 cause	 OMM	 permeabilization	 via	 the	 formation	 of	 pores	

(Antignani	 and	 Youle,	 2006).	 The	 combination	 of	 cristae	 remodeling	 and	 OMM	

permeabilization	leads	to	the	release	of	cytochrome	c	into	the	cytosol,	where	they	form	the	

apoptosome	with	APAF1	and	caspase	9;	this	initiates	the	apoptotic	cascade	(Li	et	al.,	1997).	

Mitochondrial	 fragmentation	 is	 a	mechanistically	 important	 step	 in	 the	apoptotic	 cascade.	

Indeed,	 increased	 resistance	 to	 apoptosis	 has	 been	 observed	 in	 cells	 deficient	 in	

mitochondrial	fission	(Frank	et	al.,	2001);	a	similar	phenotype	is	present	in	Fis1-knockout	or	

in	Mfn1-overexpressing	cells	(Cassidy-Stone	et	al.,	2008;	Estaquier	and	Arnoult,	2007;	Lee	et	

al.,	 2004),	 as	 well	 as	 in	 MAPL-KO	 cells	 (Prudent	 et	 al.,	 2015).	 Conversely,	 mitochondrial	
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fragmentation	 by	 excessive	 fission	 or	 decreased	 fusion	 increases	 sensitivity	 to	 apoptotic	

stimuli	 (Leboucher	et	 al.,	 2012;	 Lee	et	 al.,	 2004).	While	 this	does	not	hold	 true	 for	 all	 cell	

types	 and	 apoptotic	 stimuli,	 the	 general	 consensus	 is	 that	 the	 membrane	 topology	

generated	by	Drp1	wrapping	favors	BAX	insertion	into	the	OMM	(Montessuit	et	al.,	2010).	

Given	that	most	of	a	mitochondrion’s	cytochrome	c	resides	in	the	cristae	compartment,	its	

release	is	contingent	upon	a	widening	of	the	cristae	junctions.	This	is	achieved	via	proteolytic	

cleavage	 of	 l-Opa1	 isoforms	 either	 directly	 by	 pro-apoptotic	 proteins	 (e.g.	 truncated	 Bid,	

(Scorrano	 et	 al.,	 2002))	 or	 by	 stress-activated	 proteases	 (i.e.	 PARL,	 (Cipolat	 et	 al.,	 2006;	

Frezza	et	al.,	2006)).	Conversely,	upregulation	of	Opa1	protects	cells	against	apoptotic	insults	

by	preventing	cytochrome	c	release	(Civiletto	et	al.,	2015;	Cogliati	et	al.,	2013;	Varanita	et	

al.,	2015).	

	

1.1.3.2. Mitochondrial	quality	control	and	the	response	to	stress	

	

The	 mitochondrial	 proteome	 is	 composed	 of	 both	 nuclear-	 and	 mitochondria-derived	

proteins,	which	need	to	be	perfectly	coordinated	in	order	to	yield	productive	respiratory	and	

biosynthetic	complexes.	Thus,	quality	control	pathways	are	 in	place	to	monitor	respiratory	

efficiency	and	 the	eventual	presence	of	misfolded	proteins	 (Friedman	and	Nunnari,	2014).	

The	 main	 readout	 for	 any	 mitochondrial	 imbalance	 is	 disruption	 of	 the	 electrochemical	

potential	 across	 the	 IMM,	which	 is	 the	 direct	 outcome	 of	 an	 effective	 electron	 transport	

chain.		

	

Alternative	 processing	 of	 Opa1	 is	 one	 of	 the	 switches	 that	 signal	 mitochondrial	 stress.	

Constitutive	Opa1	 processing	 involves	 cleavage	 by	 YME1L,	which	 generates	 both	 l-	 and	 s-

Opa1	 isoforms,	 in	a	regulated	proportion.	Alternative	processing	by	OMA1	is	also	possible,	

but	 OMA1	 undergoes	 constitutive	 degradation	 upon	 mitochondrial	 import	 in	 healthy	

organelles	 (Ehses	 et	 al.,	 2009;	Head	 et	 al.,	 2009).	 A	 decrease	 in	mitochondrial	membrane	

potential	allows	OMA1	to	accumulate	and	to	convert	l-Opa1	isoforms	into	s-Opa1,	resulting	

in	 mitochondrial	 fragmentation	 (Anand	 et	 al.,	 2014).	 Depending	 on	 the	 type	 of	 stress,	 a	

contrary	 response	 of	 mitochondrial	 hyperfusion	 can	 be	 observed;	 this	 is	 hypothesized	 to	
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dilute	the	oxygen	radicals	as	well	as	to	protect	mitochondria	from	degradation	(Gomes	et	al.,	

2011;	Tondera	et	al.,	2009).	

	

	
Figure	1.2	Pathways	and	degrees	of	mitochondrial	quality	control.	Moderate	or	localized	stress	is	first	sensed	and	coped	
with	 by	 mitochondrial	 proteases	 and	 by	 the	 mtUPR	 (1);	 specific	 damaged	 proteins	 can	 be	 ubiquitylated	 and	
retrotranslocated	to	the	cytosol,	where	they	are	degraded	by	the	proteasome	(2);	patches	of	mitochondrial	damage	can	be	
selectively	 removed	and	 targeted	 to	 lysosomes	 (3);	only	 in	 the	presence	of	high	 levels	of	 stress,	entire	mitochondria	are	
targeted	for	degradation	via	mitophagy	(4)	(Sugiura	et	al.,	2014).	

	

One	 recently	 discovered	 line	 of	 defense	 against	 mitochondrial	 stress	 induced	 by	 protein	

imbalance	is	the	mitochondrial	unfolded	protein	response	(mtUPR).	Originally	identified	in	

the	nematode	C.	 elegans,	mtUPR	exploits	 impaired	protein	 import	 into	mitochondria	 as	 a	

switch	 to	 target	 transcription	 factor	 ATFS1	 to	 the	 nucleus,	 where	 it	 upregulates	

mitochondrial	chaperones	and	proteases	(namely,	Hsp60,	Hsp10,	ClpP	and	mtDNAJ;	(Yoneda	

et	al.,	2004;	Zhao	et	al.,	2002).	This	form	of	mtUPR	has	since	been	extensively	studied	in	C.	

elegans	and	in	Drosophila	(Mottis	et	al.,	2014;	Zhao	et	al.,	2002).	Nevertheless,	a	mammalian	

version	 of	 the	 mtUPR	 has	 been	 reported	 in	 cultured	 cells;	 it	 relies	 on	 the	 activation	 of	

transcription	 factor	 CHOP,	 which	 also	 has	 parallel	 roles	 in	 ER-specific	 unfolded	 protein	

response	(see	next	section).	Additionally,	oxidized	OMM	proteins	can	be	ubiquitylated	and	

retrotranslocated	 to	 be	 targeted	 for	 degradation	 in	 a	 process	 termed	 OMMAD	 (outer	

mitochondrial	membrane-associated	degradation);	this	process	depends	on	p97	and	the	26S	

proteasome	(Hemion	et	al.,	2014).	
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Intermediate,	or	localized,	forms	of	stress	will	elicit	the	formation	of	mitochondria-derived	

vesicles	(MDVs,	(Sugiura	et	al.,	2014)),	which	isolate	selected	damaged	cargo	and	convey	it	

to	lysosomes	or	peroxisomes	for	degradation	(discussed	in	detail	in	the	following	section).	

	

Sustained	or	aggressive	forms	of	stress	will	instead	trigger	a	more	terminal	response,	in	the	

form	 of	 mitophagy,	 which	 is	 the	 selective	 targeting	 of	 damaged	 mitochondria	 for	

degradation	and	 recycling	 (Youle	 and	Narendra,	 2011).	Mitophagy	 triggering	also	depends	

on	the	ΔΨm,	and	in	particular	on	the	reliance	of	the	protein	import	machinery	on	an	intact	

membrane	potential.	In	healthy	organelles,	kinase	PINK1	(PTEN-induced	putative	kinase	1)	is	

imported	into	mitochondria,	where	it	is	cleaved	by	mitochondrial	processing	peptidase	MPP	

and	PARL,	and	then	degraded	via	the	N-end	rule	pathway	(Yamano	and	Youle,	2013).	When	

mitochondrial	protein	import	is	impaired,	PINK1	evades	degradation	and	accumulates	on	the	

OMM,	 where	 it	 interacts	 with	 the	 TOM	 import	 machinery.	 There,	 it	 homodimerizes	 and	

autophosphorylates,	becoming	fully	active	(Eiyama	and	Okamoto,	2015)c.		

Parkin	is	an	E3	ubiquitin	ligase	which	is	activated	by	the	combination	of	phosphorylation	by	

PINK1	and	by	binding	of	S65-phosphorylated	ubiquitin	 (also	performed	by	PINK1;	 (Kane	et	

al.,	2014;	Kazlauskaite	et	al.,	2014;	Koyano	et	al.,	2014).	The	targets	of	Parkin	ubiquitylation	

include	Mfn1,	Mfn2,	and	Miro,	which	is	a	mitochondria	transport	factor	(	(Chan	et	al.,	2011;	

Tanaka	et	al.,	2010;	Wang	et	al.,	2011b)	see	1.1.3.4).	This	inhibits	mitochondrial	fusion	and	

transport	 at	 the	 same	 time,	 facilitating	 the	 segregation	 of	 the	 damaged	 mitochondrion	

(Chan,	2012).	Of	note,	Drp1-mediated	mitochondrial	fission,	in	parallel	with	the	inhibition	of	

fusion,	is	essential	for	the	successful	completion	of	mitophagy	(Twig	et	al.,	2008).	

	

1.1.3.3. Interaction	with	other	organelles	

	

Most	cellular	functions	are	compartmentalized	into	membrane-bound	organelles;	however,	

it	 is	 increasingly	 acknowledged	 that	 a	 complex	 interplay	 among	 cellular	 organelles	 exists.	

Mitochondria	 are	 a	 fundamental	 hub	 in	 organellar	 interaction,	 establishing	 physical	 and	

functional	connections	with	the	ER,	lysosomes,	peroxisomes	and	lipid	droplets	(Schrader	et	

al.,	2015).	
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Mitochondria	and	the	endoplasmic	reticulum	

	

The	mitochondria-ER	contact	first	became	apparent	 in	the	1960s,	with	the	first	EM	images	

showing	 that	 certain	 subdomains	 of	 the	 ER,	 termed	 the	MAMs	 (mitochondria-associated	

membranes)	were	 linked	 to	mitochondria	 (Copeland	 and	Dalton,	 1959);	 however,	 hints	 at	

the	actual	structure	of	the	tether	have	only	been	found	in	recent	years.	In	yeast,	a	tethering	

structure	 termed	ERMES	 (ER-mitochondria	 encounter	 structure)	 has	 been	 described,	with	

important	 roles	 in	mitochondrial	 fission	and	 lipid	 transfer	 (Kornmann	et	al.,	 2009).	Also	 in	

yeast,	 the	 EMC	 (ER	 membrane	 protein	 complex)	 has	 been	 found	 to	 participate	 in	 lipid	

transport	(Lahiri	et	al.,	2014).	Finally,	small	GTPase	Arf1,	which	is	canonically	responsible	for	

coatomer	assembly	at	the	Golgi	apparatus,	is	important	for	mitochondria-ER	contacts,	as	its	

deficiency	results	in	mitochondrial	dysfunction	and	protein	aggregation	(Ackema	et	al.,	2014;	

Spang,	 2015).	 Direct	 homologs	 of	 these	 complexes	 have	 not	 yet	 been	 identified	 in	 higher	

eukaryotes;	nevertheless,	other	 tethering	units	have	been	 surfacing	 in	 the	past	 few	years.	

Mfn2	 can	 reside	 in	 the	MAM	 and	 form	 homo-	 or	 heterodimers	with	Mfn1,	 tethering	 the	

MAMs	to	mitochondria	(de	Brito	and	Scorrano,	2008).	A	second	tethering	pair	is	composed	

of	 VAPB	 and	 PTPIP51,	 residing	 respectively	 at	 the	 MAM	 and	 OMM	 (Stoica	 et	 al.,	 2014).	

Finally,	 mitochondrial	 fission	 adaptor	 Fis1	 can	 interact	 with	 MAM	 protein	 Bap31	 in	 the	

course	of	the	apoptotic	signaling	cascade	(Breckenridge	et	al.,	2003;	Iwasawa	et	al.,	2011).	

	

The	MAM	is	the	preferential	site	of	a	number	of	enzymatic	and	cellular	activities	linking	the	

ER	and	mitochondria:	 (I)	 phospholipid	 synthesis	 and	 transfer;	 (II)	 calcium	signaling;	 (III)	 ER	

stress	 response;	 (IV)	 mitochondrial	 fission;	 (V)	 mitophagy;	 (VI)	 apoptosis	 regulation;	 (VII)	

antiviral	response.	For	the	sake	of	this	work,	the	first	three	are	the	most	significant.	

	

(I)	Phospholipid	synthesis	and	transfer	

The	 role	 for	 the	MAMs	 in	 lipid	metabolism	was	 the	 first	 to	 be	 elucidated	 (Vance,	 1990).	

Unlike	other	 cellular	 compartments,	 in	which	 lipid	 transfer	occurs	 via	 vescicular	 transport,	

the	ER	and	mitochondria	are	able	to	directly	exchange	phospholipid	species	and	precursors.	

As	a	result,	phosphatidylserine	(PS)	produced	in	the	ER	is	transferred	to	mitochondria,	where	

it	is	converted	to	phosphatidylethanolamine	(PE)	via	the	PS	decarboxylation	pathway	(Shiao	
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et	 al.,	 1995).	 PE	 can	 then	be	 transferred	back	 to	 the	 ER	or	 further	 processed	 to	 generate	

phosphatidylcholine	(PC)	or	cardiolipin	(CL)	within	the	IMM	(Raturi	and	Simmen,	2013).	

	

(II)	Calcium	signaling	

Calcium	ions	are	highly	concentrated	in	the	extracellular	space	and	within	the	ER,	while	their	

concentration	 is	 4	 orders	 of	 magnitude	 lower	 in	 the	 cytosol	 (de	 la	 Fuente	 et	 al.,	 2013).	

Within	mitochondria,	 calcium	 is	 important	 to	 regulate	 the	enzymatic	 functions	of	 the	TCA	

cycle,	 and	 mitochondrial	 motility	 (Giacomello	 et	 al.,	 2007;	 Rowland	 and	 Voeltz,	 2012).	

Exchanges	of	calcium	between	the	two	organelles	are	facilitated	by	the	MCU	(mitochondrial	

calcium	uniporter),	which	has	a	relatively	low	affinity	for	calcium	(Baughman	et	al.,	2011;	De	

Stefani	et	al.,	2011).	This	is	overcome	by	close	juxtaposition	between	the	MAMs,	enriched	in	

IP3R	 (inositol-1,4,5-tris-phosphate-sensitive	 receptor)	 calcium	 channels,	 and	 the	

mitochondria,	 which	 allows	 for	 the	 ER	 calcium	 efflux	 to	 be	 channeled	 into	 the	 MCU	

(Baughman	et	al.,	2011;	De	Stefani	et	al.,	2011).		

	

(III)	ER	stress	response	

The	 endoplasmic	 reticulum	 is	 the	 subcellular	 compartment	 where	 most	 secreted	 and	

transmembrane	 proteins	 fold	 and	 mature,	 acquiring	 the	 necessary	 post-translational	

modifications	to	perform	their	cellular	functions.	However,	the	total	amount	of	polypeptides	

within	the	ER	can	change	rapidly	as	a	response	to	cellular	signals,	potentially	resulting	in	an	

imbalance	between	ER	folding	capacity	and	protein	load,	which	is	termed	ER	stress	(Ron	and	

Walter,	 2007).	 In	 order	 to	 prevent	 ER	 stress	 from	 permanently	 damaging	 the	 cell,	 three	

different	 responses	 are	 in	 place	 to	 regulate	 the	 balance	 between	 ER	 folding	 capacity	 and	

polypeptide	 load;	 collectively,	 they	are	 termed	 the	UPR	 (unfolded	protein	 response).	By	a	

vast	 generalization,	 the	UPR	 is	 initially	 a	 rectifying	 response,	 tuning	 protein	 synthesis	 and	

chaperone	 production	 to	 restore	 correct	 protein	 folding;	 if,	 however,	 the	 stress	 signal	 is	

prolonged,	then	the	same	pathways	can	induce	cell	death	(Hetz	et	al.,	2015).	All	three	arms	

of	 the	UPR	 rely	 on	 ER-resident	 transmembrane	 proteins	 that	 act	 as	 relays:	with	 their	 ER-

luminal	 domain,	 they	 sense	 unfolded	 polypeptides	 and	 chaperone	 (i.e.	 BiP/GRP78)	

depletion;	 this	 causes	 them	 to	 undergo	 conformational	 or	 post-translational	 changes	 that	

activate	 their	 different	 downstream	 functions.	 These	 relays,	 for	which	 the	 three	 arms	 are	
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named,	 are	 PERK	 (protein	 kinase	 RNA-like	 endoplasmic	 reticulum	 kinase),	 IRE1	

(endoribonuclease	 inositol-requiring	 enzyme	 1-alpha)	 and	 ATF6	 (activating	 transcription	

factor	6).	

	

	
Figure	1.3	ER	stress	intersection	with	the	integrated	stress	response.	In	response	to	ER	stress,	transmembrane	kinase	PERK	
oligomerizes	 and	 auto-phosphorylates,	 becoming	 active.	 P-PERK	 then	 phosphorylates	 eIF2α	 on	 Ser51;	 the	 same	
phosphorylation	can	be	performed	by	GCN2,	PKR	or	HRI.	Phosphorylated	eIF2α	prevents	recycling	of	eIF2	to	its	active	form,	
thus	blocking	translation.	ATF4	translation	 is	 increased	when	eIF2α	 is	phosphorylated,	and	 it	 translocates	to	the	nucleus,	
where	it	transcribes	chaperones,	amino	acid	transporters,	antioxidant	genes	and	CHOP	(Ron	and	Walter,	2007).	

	

The	activation	of	PERK,	which	is	generally	believed	to	be	the	first-line	response	to	ER	stress,	

occurs	via	oligomerization	and	auto-phosphorylation;	active	PERK	then	phosphorylates	the	α	

subunit	of	eukaryotic	 translation	 initiation	 factor	 2α 	 (eIF2α)	 at	 serine	51.	 This	decreases	

the	 overall	 activity	 of	 the	 eIF2	 translational	 initiation	 complex,	 leading	 to	 a	 global	

translational	repression,	with	the	immediate	effect	of	decreasing	protein	load	on	the	ER.	The	

mRNA	encoding	for	ATF4	(activating	transcription	factor	4)	contains	two	inhibitory	upstream	
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open	 reading	 frames	 (uORFs)	 that	 normally	 block	 its	 translation;	 however,	 upon	 eIF2α	

phosphorylation,	 the	 ribosome	 skips	 these	uORFs,	 leading	 to	 translation	of	 the	ATF4	ORF.	

ATF4	is	a	cAMP	response	element	binding	protein	and	acts	as	a	transcription	factor,	leading	

to	the	expression	of	both	anti-	or	pro-apoptotic	genes	(including	CHOP,	GADD34	and	ATF3).	

Notably,	other	stimuli,	like	amino	acid	deficiency,	double-stranded	RNAs	or	heme	deficiency,	

can	also	 lead	 to	eIF2α	phosphorylation	and	ATF4	activation,	which	are	collectively	 termed	

the	integrated	stress	response	(Donnelly	et	al.,	2013;	Wek	et	al.,	2006).		

ATF6	 exists	 as	 an	 inactive	 precursor	 in	 the	 ER	membrane;	 upon	 ER	 stress	 induction,	 it	 is	

translocated	from	the	ER	to	the	Golgi	apparatus,	where	specific	resident	proteases	cleave	it	

twice,	 releasing	 it	 from	 the	membrane.	 This	ATF6f	 (fragment)	 can	 then	 translocate	 to	 the	

nucleus,	 where	 it	 transcribes	 UPR	 target	 genes	 (which	 are	mainly	 responsible	 for	 protein	

folding	and	posttranslational	modifications).	

IRE1	 (inositol-requiring	 protein-1)	 is	 also	 activated	 by	 trans-phosphorylation	 following	

oligomerization.	 Its	activation	gives	 it	 the	ability	to	specifically	cleave	one	particular	mRNA	

(coding	for	XBP-1,	X-box-binding	protein	1),	excising	an	intron	and	leading	to	the	translation	

of	 the	 mature	 and	 more	 stable	 form	 of	 the	 protein.	 XBP-1	 is	 a	 transcription	 factor	 that	

positively	regulates	the	expression	of	genes	related	to	protein	folding,	lipid	synthesis	and	ER-

associated	protein	degradation.	

While	 the	short-term	response	 induced	by	 the	ER	stress	 is	a	general	 repression	of	protein	

synthesis,	the	UPR	is	generally	believed	to	be	a	broader	program	aimed	at	restoring	the	cell’s	

secretion	capacity;	 for	this	reason,	 lipid-synthesizing	pathways	are	also	upregulated	by	the	

UPR,	 with	 the	 aim	 of	 increasing	 ER	 volume	 in	 parallel	 with	 its	 folding	 capacity	 (Ron	 and	

Walter,	2007).	

Another	 aspect	 of	 the	 UPR	 is	 the	 increase	 in	 ER-mitochondria	 contact	 sites;	 the	 resulting	

increase	in	mitochondrial	calcium	concentrations	boosts	the	TCA	cycle	and	makes	more	ATP	

available	for	chaperone-mediated	folding	(Bravo	et	al.,	2012),	to	assist	during	the	rectifying	

phase	 of	 the	UPR.	 Nevertheless,	 sustained	 unfolded	 protein	 stress	will	 result	 in	 excessive	

mitochondrial	calcium	accumulation,	which	triggers	apoptosis	(Chami	et	al.,	2008).	

Conversely,	disrupting	mitochondrial	morphology	and	ER-mitochondria	contacts	by	ablating	

Mfn2	causes	ER	stress	(Debattisti	et	al.,	2014;	Diaz	et	al.,	2015;	Muñoz	et	al.,	2013;	Ngoh	et	

al.,	2012;	Schneeberger	et	al.,	2013),	underlining	that,	 in	the	case	of	ER	and	mitochondria,	
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distress	 in	 one	 organelle	 is	 effectively	 transduced	 to	 the	 other	 to	 coordinate	 cellular	

responses.	

	

Mitochondria	and	lysosomes	

	

Lysosomes	are	single-membrane	organelles	with	 lytic	 function	(Novikoff	et	al.,	1956).	They	

constitute	 the	 final	 step	 of	 the	 endocytic	 pathway	 and	 of	 autophagy,	 in	 which	 cytosolic	

elements	or	entire	organelles	are	engulfed	by	a	phagophore,	fused	to	endosomes	and	then	

conveyed	to	lysosomes	for	degradation	(Noda	and	Inagaki,	2015).	The	selective	autophagic	

degradation	of	mitochondria	is	mitophagy,	and	it	has	been	addressed	in	paragraph	1.1.3.2.	

Mitochondria	 are	 also	 liable	 to	 undergo	 non-selective	 autophagy	 in	 the	 case	 of	 nutrient	

starvation;	 in	 the	 initial	phases	of	 the	response,	hyperfusion	of	 the	mitochondrial	network	

can	prevent	their	autophagic	degradation	((Gomes	et	al.,	2011)	and	see	paragraph	1.1.2.1).	

A	 more	 recent	 form	 of	 communication	 between	 mitochondria	 and	 lysosomes	 (and	 also	

peroxisomes,	see	next	paragraph)	is	the	formation	of	mitochondria-derived	vesicles	(MDVs),	

cargo-selective	single-	or	double-membrane	vesicles	that	bud	off	the	OMM	and	are	targeted	

for	degradation	to	different	organelles	(Sugiura	et	al.,	2014).	Lysosome-targeted	MDVs	are	

TOM20-positive	 and	 enriched	 in	 oxidized	 proteins;	 their	 formation	 is	 PINK1/parkin-

dependent	and	Drp1-independent	(McLelland	et	al.,	2014;	Soubannier	et	al.,	2012).	They	are	

postulated	 to	 act	 as	 a	 first	 line	 of	 defense	 against	 localized	 oxidative	 insults,	 eliminating	

small	 aggregated	 oxidized	 proteins	 before	 the	 terminal	 process	 of	 mitophagy	 can	 be	

initiated	(Sugiura	et	al.,	2014).	

	

Mitochondria	and	peroxisomes	

	

Peroxisomes	are	 single-membrane	organelles	 responsible	 for	 fatty	acid	β-oxidation,	paired	

with	 the	 degradation	 of	 hydrogen	 peroxide	 (Smith	 and	 Aitchison,	 2013).	 For	 both	 these	

functions,	peroxisomes	have	a	close	relationship	with	mitochondria,	which	generate	reactive	

oxygen	 species	 (ROS)	 and	 initiate	 the	 breakdown	 of	 fatty	 acids	 (Schrader	 et	 al.,	 2015).	
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Notably,	mitochondria	and	peroxisomes	also	share	their	fission	machinery	(Koch	et	al.,	2003;	

Li	and	Gould,	2003).	

In	 yeast,	 subpopulations	of	peroxisomes	 localize	 to	 sites	of	ER-mitochondria	 interaction	 in	

response	 to	 certain	 metabolic	 conditions	 (i.e.	 in	 the	 presence	 of	 glucose;	 (Cohen	 et	 al.,	

2014)).	 Interactions	 between	 mitochondria	 and	 peroxisomes	 are	 also	 important	 for	 the	

inheritance	 of	 both	 organelles	 in	 yeast	 (Jourdain	 et	 al.,	 2008).	 Finally,	 again	 in	 yeast,	

mitochondria	have	been	suggested	to	take	part	in	peroxisome	fission,	much	in	the	same	way	

the	ER	aids	mitochondrial	constriction	(Mao	et	al.,	2014).	

While	in	mammals	less	is	known	about	the	nature	and	the	functions	of	physical	interactions	

between	mitochondria	and	peroxisomes,	it	is	clear	that	a	close	functional	coupling	exists	in	

the	context	of	lipids	and	ROS	handling	(Schrader	et	al.,	2015).	Indeed,	altered	lipid	and	ROS	

metabolism	in	peroxisomes	reflects	on	the	redox	balance	within	the	mitochondria	(Walton	

and	Pizzitelli,	2012).	Conversely,	mitochondria	generate	MDVs	that	are	specifically	targeted	

to	peroxisomes	in	a	MAPL-	and	Vps35-dependent	manner	(Braschi	et	al.,	2010;	Neuspiel	et	

al.,	 2008).	Vps35	belongs	 to	 the	 retromer	 complex,	 and	mutations	 in	 this	 gene	have	been	

associated	 to	 Alzheimer’s	 (AD)	 and	 Parkinson’s	 (PD)	 disease	 (Vilariño-Güell	 et	 al.,	 2011;	

Zimprich	et	al.,	2011);	of	note,	PD-derived	mutations	in	Vps35	in	dopaminergic	neurons	have	

important	consequences	on	mitochondrial	morphology	 (Tang	et	al.,	2015),	 suggesting	 that	

its	role	in	quality	control	may	have	effects	also	on	mitochondrial	dynamics.	

	

Mitochondria	and	lipid	droplets	

	

Lipid	 droplets	 are	 dynamic	 organelles	 that	 store	 neutral	 lipids	 (e.g.	 triacylglycerols)	 and	

sterol	 esters	within	 cells	 (Schrader	 et	 al.,	 2015).	 They	 associate,	 and	exchange	 lipids	with,	

most	cellular	organelles	(Dugail,	2014).	

Mitochondria	physically	 interact	with	lipid	droplets,	possibly	by	means	of	perilipin	5	(Wang	

et	al.,	2011a),	and	they	draw	in	fatty	acids	to	use	in	β-oxidation.	Of	note,	it	has	been	recently	

reported	 that	 lipid	 droplet-localized	 fatty	 acids	 are	 transported	 into	 mitochondria	 under	

starvation	conditions;	within	mitochondria,	they	are	oxidized	in	a	manner	that	is	dependent	

on	mitochondrial	 fusion	 (specifically,	on	Mfn1).	 In	 starved	Mfn1-knockout	cells,	 fatty	acids	
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fail	 to	 distribute	 throughout	 mitochondria	 and	 are	 ultimately	 released	 from	 the	 cell	

(Rambold	et	al.,	2015).	

Also	 of	 note	 is	 the	 recent	 observation	 that	 defects	 in	 neuronal	mitochondrial	metabolism	

(i.e.	ROS	challenge	and	Ndufs4	mutation)	result	in	the	accumulation	of	lipid	droplets	rich	in	

oxidized	 lipids	 in	the	surrounding	glial	cells,	which	then	leads	to	neurodegeneration	(Liu	et	

al.,	2015b).	

	

1.1.3.4. Mitochondrial	motility	

	

Aside	 from	continuously	 changing	 its	morphology,	 the	mitochondrial	network	needs	 to	be	

localized	to	different	areas	of	the	cells	in	order	to	accomplish	some	of	its	functions;	neuronal	

mitochondria	are	particularly	affected	by	this	requirement,	due	to	neurons	being	very	large	

(up	to	1	m	long)	and	having	high	energy	requirements	in	specific	cellular	compartments	(i.e.	

pre-	 and	 post-synaptic	 sites).	 Furthermore,	 mitochondria	 that	 are	 stationed	 close	 to	

synapses	are	important	for	local	calcium	buffering	(Lin	and	Sheng,	2015).	

Mitochondria	in	neurons	are	transported	over	long	distances	on	microtubule	tracks,	with	the	

aid	of	specific	motor	proteins	that	exploit	the	polarity	of	microtubules	(Lin	and	Sheng,	2015).	

Live	 cell	 imaging	 has	 revealed	 that	 mitochondria	 can	 undergo	 both	 anterograde	 and	

retrograde	transport,	with	occasional	stalling,	and	they	can	be	tethered	close	to	a	synapse	

(MacAskill	and	Kittler,	2010).	

Anterograde	 mitochondrial	 transport	 depends	 on	 the	 KIF5	 family	 of	 kinesins,	 which	 all	

feature	an	ATPase	motor	domain	at	the	N-terminus	and	a	cargo-binding	C-terminal	domain	

(Hirokawa	 et	 al.,	 1991).	 Retrograde	 transport	 is	 driven	 by	 dynein,	 in	 association	 with	

dynactin	(Pilling	et	al.,	2006).		

Mitochondria	associate	to	both	motor	complexes	via	adaptor	proteins	and	OMM	proteins.	In	

mammals,	 TRAK1	 and	 TRAK2	 (homologous	 to	 Drosophila	 Milton)	 are	 adaptor	 proteins	

bridging	OMM	proteins	Miro1	 and	Miro2	 and	 the	molecular	motors	 (Koutsopoulos	 et	 al.,	

2010).	 Specifically,	 TRAK1	 can	 interact	 with	 both	 kinesin	 and	 dynein,	 while	 TRAK2	

predominantly	binds	the	dynein/dynactin	complex	 (Lin	and	Sheng,	2015).	Miro	 is	an	OMM	

GTPase	with	 two	 EF-hand	 calcium-binding	 domains	 (Fransson	 et	 al.,	 2006).	Other	 adaptor	

proteins	 have	 been	 identified,	 such	 as	 syntabulin,	which	 specifically	 links	mitochondria	 to	
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kinesin	 motors	 (Cai	 et	 al.,	 2005;	 Su	 et	 al.,	 2004),	 and	 FEZ1,	 which	 mediates	 anterograde	

transport	 of	 mitochondria	 during	 NGF-induced	 neurite	 outgrowth	 in	 vitro	 (Fujita	 et	 al.,	

2007).	

Mitochondrial	 localization	 within	 the	 neuritic	 compartment	 is	 activity-dependent:	 high	

synaptic	activity	causes	a	sustained	calcium	entry,	which	is	sensed	by	the	EF-hand	domains	

of	 Miro1	 and	 Miro2;	 this	 causes	 the	 disassembly	 (or	 the	 inactivation)	 of	 the	

Miro/TRAK/molecular	motor	complexes,	arresting	mitochondria	at	sites	where	synapses	are	

active	(Lin	and	Sheng,	2015).	In	addition,	syntaphilin	is	a	mitochondria-docking	protein	that	

immobilizes	 mitochondria	 in	 axons	 in	 instances	 of	 sustained	 neuronal	 activity	 (Chen	 and	

Sheng,	2013).	

Of	 note,	 Miro	 proteins	 have	 also	 been	 shown	 to	 regulate	 mitochondrial	 morphology	 in	

response	 to	 calcium	 increases:	 at	 resting	 calcium	 concentrations,	 Miro	 favors	 fusion	 by	

inhibiting	Drp1	activity;	conversely,	when	calcium	levels	rise,	Drp1-mediated	mitochondrial	

fragmentation	 is	 initiated	 (Saotome	et	 al.,	 2008).	Accordingly,	our	own	previous	work	and	

that	 of	 others	 have	 shown	 that	 Drp1	 ablation	 in	 neurons	 affects	 synaptic	 mitochondrial	

distribution	in	vivo	(Oettinghaus	et	al.,	2016;	Shields	et	al.,	2015;	Verstreken	et	al.,	2005).	

	

1.1.4. Mitochondrial	dynamics	in	neurodegeneration	

	

Given	its	high	energy	demand	and	low	cell	turnover	rate,	the	brain	is	especially	sensitive	to	

disruptions	in	mitochondrial	function	(Schon	and	Przedborski,	2011).	Indeed,	even	for	those	

diseases	 that	 occur	 primarily	 in	 a	 sporadic	 form,	 studying	 the	 fewer	 familial	 cases	 has	

highlighted	 that	 mitochondria	 and	 related	 pathways	 may	 be	 common	 nodes	 in	 the	

pathogenesis	((Schon	and	Przedborski,	2011)	and	references	therein).	

In	addition	 to	 their	 role	 in	 cellular	bioenergetics,	which	accounts	 for	a	 fraction	of	disease-

causing	mutations	 in	 brain,	mitochondria	 in	 a	 neuron	 are	 crucially	 integrated	 in	 the	 cell’s	

physiology	by	means	of	their	network	dynamics:		

(I) Long,	polarized	neurons	 require	 that	mitochondria	be	efficiently	 transported	 to	

pre-	and	post-synaptic	sites	to	produce	ATP	and	to	buffer	calcium;		

(II) ER-mitochondria	 interaction	 is	 crucial	 in	 neurons	 to	 handle	 calcium	waves	 and	

lipid	biosynthesis,	among	others	
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(III) Mitochondrial	 quality	 control	 not	 only	 ensures	 a	 functioning	 ATP-producing	

system,	but	also	prevents	the	accumulation	of	damage,	which	is	more	difficult	for	

postmitotic	cells	to	cope	with	(Schon	and	Przedborski,	2011).	

These	 functions,	 or	 often	 a	 combination	 thereof,	 are	 affected	 in	 a	 number	 of	

neurodegenerative	 conditions	 with	 very	 different	 etiologies.	 This	 is	 in	 addition	 to	 the	

observation	 that	 in	 vitro	 models	 of	 neurodegenerative	 diseases	 present	 with	 a	 very	

fragmented	mitochondrial	 network	 (Cho	 et	 al.,	 2010;	 Costa	 et	 al.,	 2010;	 Lutz	 et	 al.,	 2009;	

Shirendeb	et	al.,	2012;	Song	et	al.,	2011;	Wang	et	al.,	2009).	

On	the	other	hand,	mutations	or	deletion	of	genes	important	for	mitochondrial	morphology	

often	result	in	a	primarily	neurodegenerative	disease,	indicating	that	the	brain	is	the	tissue	

where	mitochondrial	dynamics	are	most	crucial	–	or	where	cells	possess	the	least	plasticity	

to	cope	with	damage	(Burté	et	al.,	2015).		

	

1.1.4.1. Mitochondrial	dynamics	in	sporadic	and	familial	neurodegenerative	diseases	

	

Alzheimer’s	disease	

Alzheimer’s	disease	(AD),	the	most	common	form	of	dementia,	is	characterized	by	cerebral	

cortex	 atrophy	 and	 the	deposition	of	 intracellular	 aggregates	 of	 hyperphosphorylated	Tau	

protein	 (neurofibrillary	 tangles)	 and	 of	 extracellular	 plaques	 of	 amyloid-β 	 peptide	 (Aβ;	

(Vinters,	2015)).	The	pathogenic	mechanism	is	far	from	understood,	with	some	investigators	

bringing	 into	 question	 neuronal	 metabolism	 and	 deeming	 protein	 aggregates	 just	 an	

epiphenomenon	(Demetrius	et	al.,	2014).	Nevertheless,	the	study	of	both	the	sporadic	and	

the	familial	forms	of	the	diseases,	together	with	animal	models,	has	highlighted	alterations	

of	mitochondrial	dynamics	at	different	levels.	

In	autoptic	samples	from	patients	with	sporadic	AD,	as	well	as	in	familial	AD	mouse	models,	

defects	 in	 mitochondrial	 trafficking,	 in	 the	 form	 of	 accumulated	 mitochondria	 and	

multilamellar	bodies	 in	axons,	were	detected	(Du	et	al.,	2010;	Pigino	et	al.,	2009;	Stokin	et	

al.,	2005).	This	is	paralleled	by	altered	levels	of	mitochondria-shaping	proteins	together	with	

fragmented	 or	 perinuclearly	 aggregated	mitochondria	 (Kopeikina	 et	 al.,	 2011;	Manczak	 et	

al.,	2011;	Wang	et	al.,	2009).		
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Aβ ,	one	of	the	possible	toxicity-mediating	peptides,	can	mislocalize	to	mitochondria,	where	

its	aggregation	causes	oxidative	stress	(Lustbader	et	al.,	2004;	Pagani	and	Eckert,	2011).	Of	

note,	AD-associated	genes	Presenilin1	and	2,	which	belong	to	a	multiprotein	complex	 that	

cleaves	the	Aβ	precursor	protein	APP,	are	highly	enriched	in	the	MAM	(Area-Gomez	et	al.,	

2009).	

Tau	 toxicity	 derives	 from	 a	 combination	 of	 its	 hyperphosphorylation	 and	 its	 C-terminal	

cleavage,	which	 result	 in	 its	 aggregation.	Depending	 on	 its	 posttranslational	modifications	

and	 on	 the	 co-expression	 of	 Aβ,	 Tau	 leads	 to	 mitochondrial	 fragmentation	 or	

hyperelongation	 (DuBoff	 et	 al.,	 2012).	Of	note,	 both	 in	Drosophila	 and	 in	mouse	neurons,	

mutant	human	Tau	expression	disrupts	cytoskeletal	dynamics	by	stabilizing	F-actin	 (stable,	

fibrillar	actin).	As	a	result,	Drp1	association	to	the	mitochondria	and	the	subsequent	fission	

are	 impaired,	 leading	 to	 a	 hyperelongated	 mitochondrial	 network;	 inhibition	 of	

mitochondrial	fusion	restored	neuronal	health	in	these	models	(DuBoff	et	al.,	2012).	

	

Parkinson’s	Disease	

	

Parkinson’s	 disease	 (PD)	 is	 a	 neurodegenerative	 disease	 characterized	 by	 tremors	 and	

difficulties	of	movement,	due	to	 loss	of	dopaminergic	neurons	 in	the	substantia	nigra	pars	

compacta.	 Neuropathological	 aspects	 include	 intracellular	 deposition	 of	 Lewy	 bodies,	

composed	of	α-synuclein	and	other	co-aggregating	proteins	(Haelterman	et	al.,	2014).	

Historically,	PD	has	been	linked	to	a	deficiency	in	mitochondrial	complex	I	activity,	due	to	the	

fact	 that	 exposure	 to	 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine	 (MPTP)	 caused	 PD-

mimicking	 syndromes	 in	 drug	 users	 (Langston	 and	 Ballard,	 1983;	 Langston	 et	 al.,	 1983).	

Nevertheless,	studies	have	revealed	a	number	of	different	mitochondria-related	genes	to	be	

mutated	in	the	familial	forms	of	PD.	Among	them,	most	are	related	to	mitochondrial	quality	

control,	 though	 some	 also	 affect	 mitochondrial	 motility;	 therefore,	 PD	 is	 now	 largely	

regarded	as	a	disease	of	mitochondrial	quality	control	(Schon	and	Przedborski,	2011).	

Parkin	 and	 PINK1	 can	 both	 be	 mutated	 in	 recessive	 forms	 of	 familial	 PD,	 leading	 to	

symptoms	 that	are	very	 similar	 to	 those	of	 sporadic	cases	–	 though	with	an	earlier	age	of	

onset	and	possibly	a	different	neuropathological	appearance	of	the	Lewy	bodies	(Pickrell	and	

Youle,	2015).	However,	mouse	models	deficient	in	Parkin	display	a	much	milder	phenotype	
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than	the	human	disease,	sometimes	only	when	challenged	with	additional	stresses	(Pickrell	

and	Youle	2015,	Sterky	2011).	On	the	other	hand,	the	PINK1-deficient	mouse	model	presents	

with	complex	 I	defects,	 impaired	DOPA	release	and	synaptic	plasticity	 (Kitada	et	al.,	2007;	

Morais	et	al.,	2009).	Remarkably,	neurotoxicity	 in	 this	model	 is	attenuated	by	 inhibition	of	

mitochondrial	 fission,	 highlighting	 the	 important	 role	 for	 Drp1	 in	 mitochondrial	 quality	

control	pathways	(Rappold	et	al.,	2014).	

Another	 PD-causing	 gene	 is	α-synuclein,	which	when	mutated	 gives	 rise	 to	 an	 autosomal	

dominant	form	of	the	disease;	despite	extensive	studies,	its	physiological	role	is	still	unclear	

(Schon	 and	 Przedborski,	 2011).	 In	 addition	 to	 its	 aggregation	 phenotype,	 a	 role	 for	 α-

synuclein	 in	 the	MAMs	has	 recently	 been	proposed	 (Guardia-Laguarta	 et	 al.,	 2014,	 2015).	

Indeed,	 a	 fraction	 of	 wild-type	 α-synuclein	 resides	 in	 the	 MAMs;	 mutant	 forms	 of	 α-

synuclein	are	strongly	recruited	to	the	MAMs,	which	results	 in	a	decrease	 in	MAM-related	

activities,	 a	 decrease	 in	 ER-mitochondria	 contacts,	 and	 in	 mitochondrial	 fragmentation	

(Guardia-Laguarta	et	al.,	2014).	

DJ-1	 is	 another	 PD-associated	 gene	 with	 implications	 for	mitochondrial	 quality	 control:	 it	

harbors	antioxidant	enzymatic	 activity	 and	 it	modulates	mitochondrial	dynamics	 in	 a	ROS-

dependent	fashion	(Irrcher	et	al.,	2010).	Furthermore,	its	deletion	modulates	mitochondrial	

membrane	 potential	 by	 reducing	 the	 expression	 of	 uncoupling	 proteins	 Ucp4	 and	 Ucp5,	

reducing	 the	 physiological	 state	 of	 “mild	 uncoupling”	 that	would	 attenuate	mitochondrial	

ROS	 production	 (Guzman	 et	 al.,	 2010;	 Kwok	 et	 al.,	 2010;	 Ramsden	 et	 al.,	 2012),	 again	

underlining	a	role	in	mitochondrial	quality	control.	

Finally,	kinase	LRRK2	can	be	mutated	in	dominant	forms	of	PD.	It	has	been	shown	to	interact	

with	 the	 fusion	 and	 fission	 machinery,	 modulating	 mitochondrial	 morphology	 towards	 a	

fragmented	 phenotype.	 Furthermore,	mutant	 LRRK2	 also	 upregulates	 uncoupling	 proteins	

Ucp2	and	Ucp4	in	vitro	(Ryan	et	al.,	2015).	

	

Huntington’s	Disease	

	

Huntington’s	 disease	 is	 an	 autosomal	 dominant	 disease	 caused	 by	 a	 CAG	 trinucleotide	

expansion	 in	 the	 coding	 region	 of	 the	 huntingtin	 (HTT)	 gene,	 which	 gives	 rise	 to	 a	 poly-

glutamine	stretch	that	makes	the	protein	both	dysfunctional	and	aggregation-prone	(Orr	and	
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Zoghbi,	2007).	It	presents	with	personality	changes	compounded	with	choreic	movements	of	

the	 face	 and	 arms,	 culminating	 in	 dementia.	 On	 the	 neuropathological	 level,	 the	 primary	

finding	 is	 the	 loss	 of	 medium-size	 spiny	 neurons	 in	 the	 striatopallidal	 and	 striatonigral	

pathways,	together	with	caudate	nucleus	and	putamen	atrophy.	

Expression	 of	mutant	HTT	 impairs	mitochondrial	 transport	 in	 vitro	 (Chang	 et	 al.,	 2006)	 as	

well	as	in	mouse	models	(Trushina	et	al.,	2004);	one	hypothesis	is	that	TRAK1	interacts	with	

both	HTT	and	dynactin	due	to	its	close	homology	with	a	native	HTT	interactor	(Stowers	et	al.,	

2002);	this	would	then	impair	mitochondrial	transport.	

Furthermore,	though	the	significance	of	this	finding	is	not	clear,	HTT	interacts	with	IP3Rs	at	

the	MAMs	(Tang	et	al.,	2003).	

Above	 all,	 mutated	 HTT	 impinges	 on	mitochondrial	morphology	 by	 causing	mitochondrial	

fragmentation	and	cristae	remodeling,	in	a	manner	that	is	partially	due	to	direct	interaction	

of	HTT	with	Drp1	(Costa	et	al.,	2010;	Shirendeb	et	al.,	2012;	Song	et	al.,	2011).	

	

Amyotrophic	lateral	sclerosis	

Amyotrophic	lateral	sclerosis	(ALS)	is	a	disease	of	muscle	wasting	due	to	the	loss	of	cortical	

and	spinal	motor	neurons;	 this	 is	usually	due	 to	 the	 formation	of	protein-based	 inclusions	

within	the	neurons	of	the	corticospinal	tract	(Kiernan	et	al.,	2011).	It	is	mostly	sporadic,	with	

a	minority	of	familial-transmission	cases.	

Motor	neurons	being	as	long	as	1	meter,	it	comes	as	no	surprise	that	mitochondrial	defects	

manifest	 with	 trafficking	 impairments	 in	 this	 disease.	 In	 fact,	 both	 anterograde	 and	

retrograde	 transport	 are	 reduced	 in	mouse	models	 of	 ALS	 caused	 by	mutant	 superoxide	

dismutase	1	 (SOD1,	one	of	the	few	known	causative	genes;	(De	Vos	et	al.,	2007;	Shi	et	al.,	

2010)).	 Likewise,	 ALS-related	 genes	 alsin	 and	 TAR	 DNA	 binding	 protein	 43	 (TDP-43)	 also	

impaired	mitochondrial	transport	(Millecamps	et	al.,	2005;	Shan	et	al.,	2010).	

	

Other	diseases	

There	 are	 a	 number	 of	 families	 of	 genetic	 diseases	 for	 which	 a	 role	 for	 mitochondrial	

dynamics	has	been	hypothesized	or	demonstrated.	Most	of	them	are	umbrella	terms	for	a	

plethora	of	different	entities	with	similar	phenotypes	and	a	broad	range	of	genetic	causes.	
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Foremost	 among	 them	 are	 Charcot-Marie-Tooth	 disease,	 Hereditary	 Spastic	 Paraplegias,	

Spinocerebellar	Ataxias	and	Optic	Atrophies.	A	detailed	discussion	of	the	 individual	altered	

processes	 in	 these	 diseases	 is	 beyond	 the	 scope	 of	 this	 work.	 The	most	 notable	 entities,	

which	are	due	to	mutations	in	formal	mitochondrial	morphology-regulating	proteins,	will	be	

addressed	separately	in	the	following	paragraph.	

	

1.1.4.2. Primary	disorders	of	mitochondrial	dynamics	

	

In	 addition	 to	 diseases	 in	 which	 mitochondrial	 dynamics	 are	 affected,	 some	 genetic	

conditions	are	directly	due	to	loss	or	mutation	of	mitochondria-shaping	proteins.	Depending	

on	the	affected	process	and	the	 level	of	 redundancy	of	 the	pathway,	 these	conditions	can	

manifest	with	a	broad	range	of	symptoms	and	affect	different	tissues	(Burté	et	al.,	2015).	

	

Autosomal	dominant	optic	atrophy	

	

Autosomal	dominant	optic	atrophy	(DOA)	is	the	most	common	genetic	disesase	of	the	optic	

nerve	 (Burté	et	al.,	2015).	 It	causes	 loss	of	retinal	ganglion	cells,	which	then	 leads	to	optic	

nerve	degeneration	and	blindness	(Yu-Wai-Man	et	al.,	2011).	

More	than	half	of	the	cases	are	due	to	missense	mutations	or	premature	termination	within	

the	OPA1	gene	(Alexander	et	al.,	2000).	The	disease	has	autosomal	dominant	transmission,	

despite	the	mutations	being	loss	of	function,	due	to	the	effect	of	haploinsufficiency,	i.e.	one	

gene	copy	of	Opa1	is	not	sufficient	to	cope	with	the	requirements	of	the	cell.	It	is	interesting	

to	note	that	Opa1	expression	is	ubiquitous,	but	the	phenotype	is	almost	exclusively	affecting	

the	eye;	some	variant	cases,	termed	DOA+,	can	manifest	with	extraocular	symptoms	such	as	

ataxia,	 peripheral	 neuropathy	 and	myopathy	 (Burté	 et	 al.,	 2015).	 The	 variability	 of	 clinical	

presentations	is	partially	attributed	to	defects	in	Opa1	affecting	mtDNA	integrity,	which	can	

result	in	the	emergence	of	somatic	mtDNA	mutations	and	additional	biochemical	defects	in	

a	sporadic	manner	in	some	tissues	(Burté	et	al.,	2015).	
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One	 specific	 form	 of	 optic	 atrophy,	 which	 is	 alternatively	 termed	 Costeff	 optic	 atrophy	

syndrome	or	type	III	3-methylglutaconic	aciduria,	is	due	to	mutations	in	IMM	protein	OPA3	

(Anikster	et	al.,	2001;	Babbar	and	Sheikh,	2013).	OPA3	mediates	mitochondrial	fission	via	a	

yet	 unidentified	 mechanism	 (Ryu	 et	 al.,	 2010).	 In	 a	 mouse	 model	 carrying	 the	 disease	

mutation,	 defects	 in	 systemic	 lipid	 metabolism	 were	 also	 identified,	 in	 the	 form	 of	

impairment	in	non-shivering	thermogenesis	and	BAT	lipid	accumulation	(Wells	et	al.,	2012).	

	

Charcot-Marie-Tooth	Disease	

Charcot-Marie-Tooth	Disease	(CMT)	encompasses	a	broad	spectrum	of	inherited	peripheral	

neuropathies;	they	are	characterized	by	progressive	degeneration	of	the	peripheral	nerves,	

which	can	be	due	to	demyelination	(CMT1	and	CMT4	subtypes)	or	to	axonal	(CMT2	subtype)	

pathology.	 This	 results	 in	 distal	muscle	weakness	 and	 in	 sensory	 loss,	with	 highly	 variable	

rates	of	progression	depending	on	the	underlying	genetic	cause	(Burté	et	al.,	2015;	Hoyle	et	

al.,	2015).	

One	severe	form	of	axonal	CMT,	CMT2A,	 is	due	to	mutations	 in	the	Mfn2	gene	(Bradbury,	

2004;	 Züchner,	 1993),	 which	 causes	 a	 peripheral	 motor	 neuropathy,	 sometimes	

accompanied	 by	 proprioceptive	 loss;	 other	 rarer	 symptoms	 include	 optic	 atrophy	 and	

subacute	visual	failure	(Burté	et	al.,	2015).	

Another	 form	of	CMT,	CMT4A,	 is	due	to	 loss-of-function	mutations	 in	ganglioside-induced	

differentiation-associated	 protein	 1	 (GDAP1),	 which	 is	 involved	 in	 mitochondrial	 fission	

(Niemann	 et	 al.,	 2005;	 Pedrola	 et	 al.,	 2005;	 Züchner	 and	 Vance,	 1993).	 It	 causes	 a	

neuropathy	with	both	demyelination	and	axonal	pathology	(Detmer	and	Chan,	2007;	Huber	

et	al.,	2013).	Mouse	studies	have	highlighted	that	calcium	homeostasis	and	store-operated	

calcium	release	are	disrupted	in	peripheral	GDAP1-KO	neurons	(Barneo-Muñoz	et	al.,	2015).	
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1.2. Central	regulation	of	systemic	metabolism	

	

An	overview	of	the	regulation	of	systemic	metabolism	by	the	central	nervous	system	is	given	

below.	 Particular	 emphasis	 is	 given	 to	 circulating	 metabolism-altering	 factors	 that	 are	

relevant	to	this	work.	

In	addition,	some	aspects	of	intracellular	nutrient	sensing	are	addressed.	

	

1.2.1. Systemic	regulation	of	energy	metabolism	

	

The	maintenance	of	a	generally	constant	body	mass	 is	achieved	through	a	finely	regulated	

balance	between	food	intake	and	energy	expenditure.	Food	intake	is	regulated	mostly	at	the	

hypothalamic	 level,	 while	 energy	 expenditure	 occurs	 throughout	 the	 body	 via	 different	

mechanisms.	

	

1.2.1.1. Hypothalamic	circuits	regulating	feeding	behavior	

	

The	 hypothalamus	 is	 composed	 of	 distinct	 nuclei	 regulating	 different	 aspects	 of	 body	

homeostasis,	 from	 sleep/arousal	 to	 feeding	 and	 thermoregulation.	 The	 two	 areas	 that	

control	appetite	and	feeding	are:	

(I) The	ventromedial	hypothalamus	(VMH),	which	is	orexigenic;	

(II) The	 ventrolateral	 hypothalamus	 (VLH),	 which	 is	 anorexigenic	 (Anand	 and	

Brobeck,	1951,	1951)	

The	opposing	activities	of	the	VMH	and	the	VLH	are	coordinated	by	two	subpopulations	of	

neurons	in	the	arcuate	nucleus	of	the	hypothalamus	(ARC)	(Horvath	et	al.,	1992):	

(I) AgRP/NPY	 neurons	 produce	 neurotransmitters	 Agouti-Related	 Peptide	 (AgRP)	

and	 Neuropeptide	 Y	 (NPY),	 as	 well	 as	 γ-aminobutirric	 acid	 (GABA),	 and	 their	

stimulation	is	orexigenic;	

(II) POMC	 neurons	 produce	 precursor	 peptide	 proopiomelanocortin,	 which	 is	 then	

processed	 to	 α-Melanocyte-Stimulating	 Hormone	 (α-MSH),	 and	 they	 are	
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anorexigenic	(Aponte	et	al.,	2011;	Betley	et	al.,	2013;	Krashes	et	al.,	2011;	Zhan	et	

al.,	2013).	

Neurons	in	the	ARC	sense	the	body’s	overall	energy	in	the	form	of	circulating	hormones	and	

metabolites	that	 inform	on	the	different	aspects	of	feeding	and	on	the	condition	of	stored	

reserves	(Sandoval	et	al.,	2008).	Additional	layers	of	control,	such	as	stress	signals,	conscious	

control	and	 the	hedonic	aspect	of	 feeding	are	 in	place,	and	 they	are	 integrated	 through	a	

complex	crosstalk	between	the	autonomic	nervous	system,	the	prefrontal	cortex	and	brain	

stem	nuclei	(Sandoval	et	al.,	2008).	

	

	
Figure	 1.4	 Melanocortin	 system	 in	 the	 arcuate	 nucleus	 of	 the	 hypothalamus.	 Orexigenic	 NPY–AgRP	 neurons	 and	
anorexigenic	POMC	neurons	send	projections	 to	 the	paraventricular	nucleus.	NPY–AgRP	neurons	also	 inhibit	neighboring	
POMC	cells.	Leptin	activates	POMC	neurons	to	secrete	α-MSH,	which	binds	to	MC4R	and	promotes	satiety.	Leptin	inhibits	
AgRP	 neurons,	 which	 are	 activated	 by	 ghrelin,	 promoting	 feeding	 and	 silences	 firing	 of	 POMC	 neurons.	 (Nasrallah	 and	
Horvath,	2014)	
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Adiposity	signals	

	

The	CNS	is	informed	on	the	state	of	fat	depots	thanks	to	leptin	and	insulin,	which	circulate	in	

concentrations	that	are	proportional	to	the	body’s	fat	mass	(Sandoval	et	al.,	2008).	Both	are	

able	to	cross	the	blood-brain	barrier	(BBB)	and	reach	their	receptors	in	the	ARC,	where	they	

stimulate	anorexigenic	POMC	neurons	and	inhibit	AgRP/NPY	neurons,	causing	a	decrease	in	

feeding	and	an	increase	in	energy	expenditure	(Cowley	et	al.,	2001).	Accordingly,	leptin	KO	

mice	 display	 an	 obese	 phenotype	 attributable	 to	 hyperphagia	 and	 decreased	 energy	

expenditure	(Thenen	and	Mayer,	1976).	

	

Gastrointestinal	signals	

	

Another	 important	 element	 in	 the	 control	 of	 feeding	 is	 information	 on	 recently	 ingested	

nutrients.	 This	 is	 conveyed	 to	 the	 brain	 by	 circulating	 factors	 released	 from	 the	

gastrointestinal	tract	during	and	after	a	meal	(Sandoval	et	al.,	2008).	

Ghrelin	is	produced	by	specialized	cells	in	the	stomach	mucosa	in	response	to	fasting,	and	it	

stimulates	feeding	via	receptors	in	the	ARC	(Tschöp	et	al.,	2000).	

On	the	other	hand,	other	signals	from	the	gastrointestinal	tract,	like	cholecystokinin,	amylin,	

peptide	YY	and	glucagon-like	peptide-1	(GLP1)	are	satiety	signals	and	therefore	anorexigenic.	

Together	with	gastrointestinal	distension,	these	signals	are	conveyed	via	the	vagus	nerve	to	

the	 Nucleus	 Tractus	 Solitarii	 (NTS),	 which	 induces	 a	 short-term	 decrease	 in	 food	 intake	

(Morton	et	al.,	2014).	
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Figure	1.5	Central	regulation	of	appetite.	The	arcuate	nucleus	of	the	hypothalamus	receives	input	in	the	form	of	circulating	
hormones	(leptin,	ghrelin,	insulin)	and	circulating	nutrients	(amino	acids,	glucose,	lipids).	It	then	integrates	the	signals	and	
communicates	with	higher	nuclei	and	with	the	nucleus	tractus	solitarii,	which	also	receives	input	from	the	gastrointestinal	
system.	(Boron	and	Boulpaep,	2009)	
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Nutrient	signals	

	

Circulating	metabolites	are	also	important	for	the	CNS	to	assess	the	body’s	energy	state.	

For	 instance,	 circulating	 glucose	 levels	 affect	 the	 excitability	 of	 neural	 populations	 in	 the	

ARC,	inhibiting	NPY	neurons	and	activating	POMC	neurons;	as	a	result,	high	blood	glycemia	

promotes	the	activation	of	anorexigenic	POMC	neurons	and	decreases	appetite	(Muroya	et	

al.,	1999).	

Fatty	 acids	are	sensed	by	specific	 subpopulations	of	anorexigenic	neurons,	because	of	 the	

accumulation	 of	 their	 breakdown	metabolites	 malonyl-CoA	 or	 of	 the	 CoA-bound	 form	 of	

long-chain	fatty	acids	(Sandoval	et	al.,	2008).	

Furthermore,	 circulating	 amino	 acids,	 foremost	 among	 them	 branched-chain	 amino	 acid	

leucine,	decrease	the	activity	of	AgRP	neurons	in	the	ARC,	resulting	in	increased	food	intake	

(Sandoval	et	al.,	2008).	

	

1.2.1.2. Energy	expenditure	

	

Energy	expenditure	depends	on	a	number	of	internal	and	external	factors,	as	it	is	geared	to	

shape	energy	balance	in	response	to	variations	in	temperature,	physical	activity,	feeding	and	

hormonal	 conditions	 (Münzberg	 et	 al.,	 2015).	 A	 body’s	 total	 energy	 expenditure	 can	 be	

subdivided	in:	

(I) Basal	metabolic	rate,	which	undergoes	minimal	variations,	as	it	depends	on	basal	

ATP	production	and	proton	leaks	making	the	process	more	or	less	efficient	(Brand	

et	al.,	1999)	

(II) Adaptive	thermogenesis,	which	functions	by	actively	uncoupling	ATP	production	

and	the	proton-motive	force,	generating	energy	dispersion	as	heat.	

(III) Physical	activity,	which	 includes	 both	 voluntary	 activity	 and	 involuntary	muscle	

shivering	as	a	short-term	response	to	cold,	but	normally	has	no	global	impact	on	

long-term	metabolism.		
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Basal	metabolic	rate	

	

The	basal	metabolic	 rate	 includes	cells’	 intrinsic	ATP-producing	ability	and	fuel	preference,	

indicated	 by	 the	 respiratory	 exchange	 ratio	 (RER:	 carbohydrate	 versus	 fat	 oxidation;	

(Bouchard	and	Tremblay,	1990)).	It	can	be	modified	by	thyroid-derived	T3	and	T4,	which	act	

throughout	 the	 body	 on	 nuclear	 TXR	 receptors	 to	 exert	 their	 effects	 on	metabolism.	 For	

instance,	in	liver,	thyroid	hormone	action	increases	gluconeogenesis;	 in	muscle,	proteolysis	

is	induced	to	provide	amino	acids	for	gluconeogenesis	in	the	liver;	in	adipose	tissue,	lipolysis	

is	 induced	 to	 mobilize	 free	 fatty	 acids,	 which	 are	 then	 taken	 up	 by	 the	 liver	 to	 support	

gluconeogenesis.	 Overall,	 this	 is	 an	 energy-consuming	 effort	 that	 increases	 the	 basal	

metabolic	 rate	 (Boron	 and	 Boulpaep,	 2009).	 In	 addition,	 thyroid	 hormones	 increase	 the	

production	and	the	activity	of	the	sodium/potassium	pump,	which	consumes	high	amounts	

of	ATP.	Finally,	they	exert	a	positive	modulation	on	the	effects	of	thermogenic	stimuli	 (see	

below)	(Boron	and	Boulpaep,	2009).	

		

Thermogenesis	and	brown	adipose	tissue	

	

Brown	adipose	tissue	(BAT)	is	a	heat-generating	tissue	where	adaptive	thermogenesis	takes	

place	(Rothwell	and	Stock,	1979).	It	differs	from	white	adipose	tissue	(WAT),	which	is	mainly	

a	reservoir	for	fat,	in	its	mitochondria	content,	to	which	it	owes	its	“brown”	color.	Of	note,	

brown	adipocytes	can	also	develop	within	WAT	depots	in	a	process	known	as	“beiging”	((Wu	

et	 al.,	 2013b);	 further	 discussed	 in	 1.2.1.4).	 In	 rodents,	 the	 main	 BAT	 depot	 is	 the	

intrascapular,	while	 in	 humans	 smaller	 depots	 exist	 in	 the	 supraclavicular,	 paraspinal,	 and	

neck	region	(Cypess	et	al.,	2009;	Zingaretti	et	al.,	2009).	

Noradrenergic	sympathetic	 innervation	 is	 the	main	activator	of	BAT	thermogenesis;	brown	

adipocytes	express	the	β3-adrenoreceptor,	which	is	a	G-protein-coupled	receptor	associated	

with	Gαs	 activity	 and	adenylate	 cyclase;	 its	 activation	 causes	an	 intracellular	 rise	 in	 cAMP	

and	the	activation	of	PKA.	This	directly	activates	 lipolysis	and	proliferation,	and	 in	addition	

boosts	BAT	gene	expression	in	order	to	sustain	the	thermogenic	process	(i.e.	mitochondrial	

biogenesis,	Ucp1	expression;	 (Cannon	and	Nedergaard,	2004)).	The	net	 result	of	 increased	
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Ucp1	 function	 is	 heat	 production,	which	 is	 due	 to	 the	mitochondrial	membrane	 potential	

being	 dissipated	 across	 the	 IMM	 (Cannon	 and	 Nedergaard,	 2004).	 Of	 note,	 both	 glucose,	

taken	 up	 from	 the	 circulation,	 and	 fatty	 acids	 derived	 from	 lipolysis,	 sustain	 BAT	

thermogenesis	(Cannon	and	Nedergaard,	2004;	Labbé	et	al.,	2014).		

	

Shivering	thermogenesis	and	exercise	

	

Mammals	are	also	able	to	react	to	sudden	drops	in	external	temperature	through	shivering	

thermogenesis,	which	expends	energy	by	hyper-activating	muscles	 in	 a	 largely	 involuntary	

manner	(Sandoval	et	al.,	2008).	

	

1.2.1.3. Pituitary	adrenal	axis	and	corticosterone	influence	on	metabolism	

	

Stress,	 relayed	 by	 the	 hypothalamus/pituitary/adrenal	 axis,	 can	 also	 affect	 systemic	

metabolism,	 mostly	 through	 its	 final	 circulating	 product	 cortisol	 (in	 rodents,	 the	

predominant	glucocorticoid	is	cortisol’s	precursor,	corticosterone,	which	differs	from	it	by	an	

hydroxyl	group).	

The	 axis	 is	 controlled	 by	 the	 paraventricular	 nucleus	 (PVN)	 of	 the	 hypothalamus,	 which	

releases	corticotropin-releasing	hormone	(CRH)	according	to	daily	circadian	rhythm	or	as	a	

stress	response	(i.e.	the	fight	or	flight	behavior)	overseen	by	the	amygdala.	CRH	stimulates	

the	 release	 of	 ACTH	 (adrenocorticotropic	 hormone),	 another	 cleavage	 product	 of	 POMC,	

from	the	anterior	portion	of	 the	pituitary	gland.	ACTH	has	receptors	 in	 the	 fasciculata	and	

reticularis	 layers	 of	 the	 adrenal	 glands,	 which	 secrete	 cortisol	 into	 the	 bloodstream.	

Circulating	cortisol,	and	to	a	smaller	extent	also	ACTH,	exert	negative	feedback	on	both	CRH	

and	ACTH	synthesis	in	the	hypothalamus	and	pituitary	(Boron	and	Boulpaep,	2009).	

The	metabolic	 effects	 of	 circulating	 cortisol	 include	 an	 increase	 in	 gluconeogenesis	 in	 the	

liver,	proteolysis	in	the	muscle	to	provide	amino	acids	for	hepatic	glucose	synthesis,	and	fat	

mobilization.	This	 results	 in	a	net	 increase	 in	circulating	glucose,	which	 is	available	 to	 face	

the	 challenge	 that	 prompted	 the	 onset	 of	 the	 “fight	 or	 flight”	 response	 (Boron	 and	

Boulpaep,	2009).	



	

	

	
Introduction	

	
	 	

49	

	

1.2.1.4. Fgf21	and	the	“mitokine”	concept	

	

Fgf21	(Fibroblast	growth	factor)	is	a	recent	addition	(Kharitonenkov	et	al.,	2005)	to	the	array	

of	circulating	metabolic	regulators.	It	belongs	to	the	subfamily	of	hormonal	FGFs,	which	also	

includes	Fgf19,	Fgf15	and	Fgf23.	Of	note,	Fgf21	does	not	affect	food	intake,	but	it	does	exert	

a	powerful	and	multifaceted	effect	on	energy	expenditure.	

	

Signaling	

	

Unlike	other	FGFs,	hormonal	FGFs	require	an	obligate	coreceptor	for	signaling;	in	the	case	of	

Fgf21,	 the	coreceptor	 is	β-Klotho	 (KLB),	 in	preferential	 complex	with	Fgf	 receptor	FGFR1c,	

and	 with	 a	 lower	 affinity	 with	 FGFR2c,	 FGFR3c	 and	 FGFR4	 (Ding	 et	 al.,	 2012;	 Fisher	 and	

Maratos-Flier,	 2015).	 As	 a	 result,	 KLB	 is	 the	main	 determinant	 of	 the	 tissue	 specificity	 of	

Fgf21	action.	In	mice,	KLB	is	expressed	in	WAT	and	BAT,	liver,	both	exocrine	and	endocrine	

pancreas,	 and	 the	 suprachiasmatic	 and	 paraventricular	 nuclei	 (SCN;	 PVN)	 of	 the	

hypothalamus	 (Bookout	 et	 al.,	 2013;	 Johnson	 et	 al.,	 2009;	Wente	 et	 al.,	 2006;	 Xu	 et	 al.,	

2009).	 Upon	 Fgf21	 binding,	 the	 KLB-FGFR1	 complex	 dimerizes	 and	 auto-phosphorylates,	

creating	 a	 docking	 site	 for	 FGFR	 substrate	 2α	 (FRS2α),	 which	 transduces	 the	 signal	 via	

MAPK/ERK	cascades	and	via	PI3K.	The	outcome	of	Fgf21	signaling	is	tissue-	and	cell-specific.	
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Figure	 1.6	 Pleiotropic	 metabolic	 actions	 of	 Fgf21.	 Fgf21	 has	 both	 central	 and	 peripheral	 receptors.	 In	 the	 brain,	 Fgf21	
signaling	 stimulates	 the	 activation	of	 the	hypothalamic-pituitary-adrenal	 axis	 via	 CRH,	 resulting	 in	 corticosterone	 release	
and	liver	gluconeogenesis.	In	the	liver,	Fgf21	stimulates	ketogenesis.	In	BAT,	Fgf21	stimulates	glucose	uptake	and	lipolysis,	
in	coordination	with	brain	Fgf21-mediated	activation	of	the	sympathetic	nervous	system,	and	it	triggers	WAT	browning.	In	
pancreas,	Fgf21	protects	β	cells	and	restores	insulin	synthesis.	(Degirolamo	et	al.,	2016)	
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Regulation	of	glucose	metabolism	

	

The	paradigm	of	Fgf21	 induction	 is	 its	hepatic	upregulation	upon	prolonged	 fasting,	which	

acts	 in	 an	 autocrine	manner	 on	 the	 liver	 stimulating	 fatty	 acid	 oxidation,	 ketogenesis	 and	

gluconeogenesis	 via	 PGC1α	 (Potthoff	 et	 al.,	 2009).	 A	 similar	 response	 is	 observed	 under	

different	 kinds	 of	 nutritional	 stress,	 such	 as	 amino	 acid-deficient,	 methionine-choline-

deficient,	or	ketogenic	diet	(Badman	et	al.,	2007;	Fisher	and	Maratos-Flier,	2015).	

On	the	other	end	of	the	spectrum,	Fgf21	is	also	synthesized	by	the	liver	during	refeeding	or	

overfeeding;	accordingly,	it	is	increased	in	obese	animals	and	humans.	In	this	context,	it	acts	

as	an	insulin	sensitizer	to	enhance	glucose	clearance	from	the	bloodstream	in	a	manner	that	

is	 independent	 of	 hepatic	 insulin	 receptors	 but	 dependent	 on	BAT	 and	on	WAT	browning	

(Inagaki	et	al.,	2007).	

Finally,	 Fgf21	 improves	 glucose	homeostasis	by	 virtue	of	 the	protective	effect	 it	 exerts	on	

pancreatic	β-cells	(Kharitonenkov	et	al.,	2007).	

	

Adaptation	to	caloric	restriction	and	starvation	

	

In	 addition	 to	 the	 response	 to	 a	 short-term	 fast,	 Fgf21	 also	 regulates	body	metabolism	 in	

case	 of	 longer	 stretches	 of	 caloric	 restriction	 (Degirolamo	 et	 al.,	 2016).	 Besides	 the	

aforementioned	effects	on	 lipolysis	 and	ketogenesis,	 Fgf21	 can	also	 lead	 to	a	hibernation-

like	 torpor	 in	 rodents,	 accompanied	 by	 a	 10°C	 drop	 in	 body	 temperature	 (Inagaki	 et	 al.,	

2007).	Accordingly,	Fgf21-overexpressing	mice	display	a	lean	phenotype,	a	smaller	body	size	

–	which	is	due	to	Fgf21-mediated	growth	hormone	resistance	–	and	an	 increased	 lifespan,	

comparable	to	that	obtained	by	caloric	restriction	(Zhang	et	al.,	2012).	

	

Thermogenesis	and	effects	on	adipose	tissue	

	

Both	circulating	and	locally-produced	Fgf21	can	act	on	WAT	and	BAT,	both	of	which	express	

KLB	and	FGFR1c.	
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In	WAT,	Fgf21	induces	genes	involved	in	all	aspects	of	lipid	metabolism,	from	glucose	uptake	

to	 lipogenesis	 and	 lipolysis	 (Owen	 et	 al.,	 2015).	 Its	 signaling	 in	WAT	 is	 dependent	 on	 its	

induction	 of	 adiponectin,	 and	 some	 aspects	 of	 Fgf21	 biology	 are	 lacking	 in	 adiponectin	

knockout	animals	(Lin	et	al.,	2013).	Furthermore,	Fgf21	in	WAT	acts	 in	a	feed-forward	loop	

with	PPARγ ,	whereby	 PPARγ	 activation	 (for	 instance,	 by	 a	 pharmacological	 agonist	 of	 the	

thiazolidinedione	 family)	 stimulates	 Fgf21	 production	 in	WAT,	 and	 in	 turn	 Fgf21	 stabilizes	

PPARγ	by	preventing	 its	SUMOylation	and	 inactivation	(Dutchak	et	al.,	2012).	Finally,	Fgf21	

signaling	induces	browning	of	WAT	by	upregulating	Ucp1	(Fisher	et	al.,	2012),	though	recent	

work	 has	 shown	 that	 this	 aspect	 of	 Fgf21	 biology	 is	 not	 necessary	 for	 its	weight	 loss	 and	

glucose	homeostasis	improvement	(Samms	et	al.,	2015;	Véniant	et	al.,	2015).	

In	BAT,	Fgf21	induces	Ucp1	expression	and	thermogenesis	by	activating	PGC1α,	STAT3	and	

CREB,	 which	 cooperate	 to	 match	 the	 increased	 energy	 consumption	 with	 increased	

mitochondrial	biogenesis	and	respiration	(Labbé	et	al.,	2015).	Additional	effects	of	Fgf21	on	

BAT	are	exerted	via	its	receptors	in	the	CNS	(addressed	below).	

	

Neuroendocrine	effects	of	Fgf21	

	

Early	evidence	of	the	importance	of	the	CNS	Fgf21	receptors	came	from	the	observation	that	

intracerebroventricular	 Fgf21	 administration	was	 sufficient	 to	 induce	weight	 loss	 in	 obese	

mice	 (Sarruf	 et	 al.,	 2010).	 Indeed,	 Fgf21	 crosses	 the	 blood-brain	 barrier	 and	 exerts	 CNS-

specific	 actions	 that	 further	 substantiate	 its	 role	 as	 a	 systemic	mediator	 of	 the	 starvation	

response.	

(I) It	alters	the	circadian	rhythms	and	physical	activity	patterns	in	mice	(Bookout	et	

al.,	2013);	

(II) It	 causes	 temporary	 female	 infertility	 by	 suppressing	 vasopressin-kisspeptin	

signaling	in	the	hypothalamus	(Owen	et	al.,	2013);	

(III) It	activates	the	hypothalamus-pituitary-adrenal	axis	by	upregulating	CRH,	leading	

to	 an	 increase	 in	 circulating	 corticosterone;	 in	 turn,	 corticosterone	 increases	

hepatic	Fgf21	production	 in	a	feed-forward	 loop	 	 (Bookout	et	al.,	2013;	Patel	et	

al.,	2015);	
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(IV) Also	 via	 CRH,	 it	 activates	 the	 sympathetic	 branch	 of	 the	 autonomic	 nervous	

system,	which	mediates	some	of	its	effects	on	BAT	–	namely,	Ucp1	increase	and	

lipolysis	(Owen	et	al.,	2014).	

Of	 note,	 all	 the	 above	 functions	 are	 lost	 upon	 conditional	 KLB	 knockout	 in	 the	

suprachiasmatic	 nucleus	 of	 the	 hypothalamus	 and	 in	 the	 dorsal	 vagal	 complex	 of	 the	

hindbrain	(Bookout	et	al.,	2013;	Owen	et	al.,	2013,	2014;	Patel	et	al.,	2015).	

	

Non-canonical	mechanisms	of	Fgf21	induction	

	

In	addition	to	diet	alterations,	other	physiological	conditions	have	been	shown	to	 increase	

circulating	Fgf21,	such	as	cold	exposure	and	acute	or	chronic	exercise	(Cuevas-Ramos	et	al.,	

2012;	Fisher	et	al.,	2012).	Fgf21	is	also	upregulated	in	systemic	metabolic	disorders,	such	as	

diabetes	 associated	 with	 obesity	 and	 liver	 disease	 (Kim	 and	 Lee,	 2015).	 However,	 the	

remarkable	 aspect	 of	 Fgf21	 biology	 is	 that	 it	 is	 also	 induced	 in	 seemingly	 unrelated	

pathological	conditions	and	in	specific	experimental	models.	

	

	
Figure	 1.7	 Transcriptional	 regulation	 of	 Fgf21.	 Fgf21	 transcription	 is	 controlled	 by	 PPARs,	which	 sense	 free	 fatty	 acids,	
ATF4,	SIRT1	and	PGC1α,	which	monitor	nutritional	status,	and	drugs	(metformin).	In	adipose	tissue,	ATF2	also	transcribes	
Fgf21.	(Degirolamo	et	al.,	2016)	

	

For	 instance,	 muscle	 myopathies	 caused	 by	 primary	 mitochondrial	 defects	 significantly	

upregulate	 Fgf21	 via	 an	 Akt1-	 and/or	 an	 ATF4-mediated	 pathway	 (Crooks	 et	 al.,	 2014;	
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Suomalainen	et	al.,	2011;	Tyynismaa	et	al.,	2010).	Indeed,	Fgf21	is	now	being	proposed	as	a	

biomarker	for	mitochondrial	myopathies	(Suomalainen	et	al.,	2011).	

	

Autophagy	is	also	a	sensitive	target	in	skeletal	muscle,	such	that	its	impairment	causes	Fgf21	

expression.	 For	 instance,	 disrupting	 autophagy	 by	 ablating	 Atg7	 (which	 is	 critical	 for	

autophagosome	completion)	 in	either	skeletal	muscle	or	 liver	 resulted	 in	Fgf21	production	

via	 PERK-eIF2α-ATF4	 pathway	 (Kim	 et	 al.,	 2013).	 Likewise,	 mice	 with	 a	 skeletal	 muscle-

specific	 constitutive	 activation	 of	mTORC1,	 which	 prevents	 autophagy,	 express	 Fgf21	 in	 a	

PERK-dependent	manner	(Guridi	et	al.,	2015).	A	similar	effect	is	obtained	when	systemically	

ablating	LAMP1,	a	lysosomal	protein	which	mediates	the	final	stages	of	autophagy	(Yasuda-

Yamahara	et	al.,	2015).	

	

It	 is	 now	 believed	 that	 many	 forms	 of	 mitochondrial	 disruption	 in	 muscle	 yield	 Fgf21	

production.	Drp1	overexpression,	 for	 instance,	 activates	 the	 PKR	branch	of	 the	 integrated	

stress	response	via	the	mitochondrial	UPR,	resulting	in	Fgf21	synthesis	(Touvier	et	al.,	2015).	

Mitochondrial	uncoupling	via	Ucp1	overexpression	in	skeletal	muscle	exerts	a	similar	effect,	

via	a	non-specified	branch	of	the	ISR	(Keipert	et	al.,	2014),	as	does	ablation	of	one	specific	

mitochondrial	aminoacyl-tRNA	synthetase	(for	aspartate,	DARS2;	(Dogan	et	al.,	2014)).	

	

Thus,	 it	 is	 now	 speculated	 that	 mitochondrial	 stress	 in	 skeletal	 muscle	 is	 a	 signal	 for	

generalized	 nutrient	 deficiency,	 and	 is	 conveyed	 systemically	 via	 Fgf21;	 this	 phenomenon	

has	 led	 to	Fgf21	being	 referred	 to	as	a	“mitokine”	 (Kim	et	al.,	2013).	Whether	Fgf21	 is	an	

adaptive	 factor	 in	 this	 response,	or	 just	an	epiphenomenon,	has	not	yet	been	conclusively	

addressed	(Kim	and	Lee,	2015;	Lee,	2015).	

	

1.2.1.5. Cellular	nutrient	sensing	

	

Cells	are	able	to	fine-tune	their	growth	and	metabolic	rate	according	to	nutrient	availability;	

this	 is	 fundamental	 for	 each	 individual	 cell’s	 survival,	 and	 also	 has	 implications	 for	 the	

survival	of	whole	organisms,	which	 rely	on	cells	 in	 specialized	 tissues	 sensing	bioenergetic	

needs	and	availability.	Given	the	wide	range	of	metabolic	processes	that	take	place	within	a	
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cell,	 different	 types	 of	 nutrients	 are	 sensed	 by	 different,	 integrated	 systems	 (Yuan	 et	 al.,	

2013).	

	

Indicators	and	sensors	of	nutrient	deficiency	

	

The	sensor	 for	 cellular	energy	 is	 the	ATP:ADP/AMP	 ratio,	which	controls	 the	activation	of	

AMP-activated	protein	kinase	(AMPK;	(Carling,	2004)).	AMPK	is	a	heterotrimer	composed	of	

a	catalytic	α	subunit	and	two	regulatory	β	and	γ	subunits.	It	monitors	energy	levels	by	direct	

binding	 to	 ATP,	 ADP	 and	 AMP,	with	 different	 outcomes:	 ADP	 and	 AMP,	 the	 latter	with	 a	

stronger	 effect,	 activate	 the	 kinase	 when	 bound;	 conversely,	 ATP	 keeps	 it	 inactive.	

Additional	 layers	 of	 regulation	 come	 from	 phosphorylation	 by	 liver	 kinase	 B1	 (LKB1)	 and	

Calcium-calmodulin-activated	protein	kinase	kinase	β	(CaMKK2β;	Yuan	2013).	AMPK	can	also	

be	activated	in	response	to	general	cellular	stresses	that	impact	energy	production,	such	as	

oxygen	or	glucose	starvation,	metabolic	poisons,	antidiabetic	drugs	and	xenobiotics	(Hardie	

et	al.,	2012).	

	

Another	 form	 of	 nutrient	 stress	 that	 cells	 can	 undergo	 is	 amino	 acid	 deficiency;	 the	

relevance	of	amino	acids	for	the	cell’s	metabolism	is	due	to	their	role	as	building	blocks	not	

only	 for	 proteins,	 but	 also	 as	 precursors	 for	 nucleic	 acids	 and	 ATP	 (Yuan	 et	 al.,	 2013).	 In	

mammals,	mammalian	Target	of	Rapamycin	(mTOR)	is	regulated	by	amino	acids	and	in	turn	

is	a	master	regulator	of	cell	growth.	It	exists	in	two	distinct	complexes,	mTORC1	and	2,	which	

contain	accessory	proteins	Raptor	and	Rictor,	respectively;	of	these,	mTORC1	alone	is	amino	

acid-sensitive	(Sancak	et	al.,	2008).	mTORC1	is	activated	at	the	lysosomes	by	the	combined	

presence	of	amino	acids	and	growth	factors	(relayed	respectively	by	Rag/Rheb	proteins	and	

TSC1/TSC2).	

General	control	non-derepressible	(GCN2)	is	also	a	sensor	for	amino	acid	deprivation,	and	it	

becomes	phosphorylated	and	thus	activated	upon	binding	to	uncharged	tRNAs;	when	active,	

it	phosphorylates	eIF2α,	activating	one	branch	of	the	integrated	stress	response.	
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Cellular	measures	to	cope	with	nutrient	stress	

	

The	activation	of	AMPK	shifts	the	cell’s	metabolism	in	different	ways:		

(I) It	 increases	 substrate	 availability	 by	 promoting	 glucose	 uptake	 (i.e.	 by	

upregulating	its	transporter	GLUT4)	and	fatty	acids	uptake;		

(II) It	 promotes	 glycolysis	 by	 phosphorylating	 and	 activating	 6-phosphofructo-2-

kinase,	 which	 synthesizes	 the	 allosteric	 activator	 of	 glycolysis	 rate-limiting	

enzyme	6-phosphofructo-1-kinase	(Marsin	et	al.,	2000);		

(III) It	promotes	mitochondrial	biogenesis	(see	below);	

(IV) It	 inhibits	 anabolic	 pathways,	 including	 gluconeogenesis,	 fatty	 acid	 synthesis,	

protein	synthesis	and	ribosomal	RNA	biogenesis	(Hardie	et	al.,	2012);	

(V) It	 reduces	 glycogen	 synthesis	 by	 phosphorylating	 and	 inhibiting	 glycogen	

synthase	(Yuan	et	al.,	2013).	

AMPK	also	 inhibits	mTORC1,	 by	phosphorylating	both	Raptor	 and	TSC2,	 favoring	 catabolic	

over	anabolic	processes.	

	

mTORC1	and	GCN2	cooperate	 to	decrease	 global	 translation	 in	amino	acid-deficient	cells.	

Active	mTORC1	–	in	amino	acid-rich	states	–	phosphorylates	eukaryotic	translation	initiation	

factor	4E	(eIF4E)-binding	protein	1	(4E-BP1)	and	S6K1,	which	are	respectively	a	translational	

repressor,	inactivated	by	the	phosphorylation,	and	a	translational	activator,	activated	by	the	

phosphorylation	(Ma	and	Blenis,	2009);	as	a	result,	translation	is	active	in	growth	factor-	and	

amino	acid-rich	conditions.	Conversely,	the	translational	blocks	are	in	place	when	mTORC1	is	

not	active	in	the	absence	of	amino	acids	and	growth	factors.	Given	that	protein	synthesis	is	a	

major	 consumer	 of	 ATP,	 also	 in	 this	 context	 active	 AMPK	 inhibits	 mTORC1	 to	 decrease	

translation	 (Yuan	et	al.,	2013).	Additionally,	AMPK	directly	 inhibits	 translation	by	acting	on	

eukaryotic	Elongation	Factor	2	(eEF2;	(Browne	et	al.,	2004)).	

In	 parallel,	 GCN2	 activation	 of	 eIF2α	 causes	 a	 global	 translational	 repression	 by	 inhibiting	

translation	initiation	((Wek	et	al.,	2006);	see	also	paragraph	1.1.3.3).	

	

Given	 that	 both	 cell	 growth	 and	 energy	 production	 rely	 on	 mitochondrial	 activity,	

mitochondrial	 biogenesis	 is	 induced	 by	 both	 AMPK	 and	 mTORC1	 through	 PGC1α 	
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(peroxisome	 proliferator-activated	 receptor-γ	 co-activator	 1α);	 specifically,	 AMPK	

phosphorylates	 and	 activates	 PGC1α,	 while	 mTORC1	 promotes	 its	 transcriptional	 activity	

(Hardie	et	al.,	2012;	Yuan	et	al.,	2013).	

	

Under	conditions	of	extreme	or	prolonged	nutrient	deprivation,	when	inhibiting	biosynthetic	

pathways	 is	not	 sufficient,	autophagy	 is	 activated	 to	provide	 recycled	macromolecules	 for	

cell	 survival	 (Yuan	 et	 al.,	 2013).	 The	 process	 of	 autophagy	 entails	 the	 formation	 of	 a	

phagophore,	 which	 is	 controlled	 by	 the	 ULK1	 complex	 regulating	 class	 III	

phosphatidylinositol	 3-kinase	 complex	 (including	 Beclin	 1,	 Atg14(L)/barkor,	 Vps15,	 Vps34,	

and	Ambra1)	at	the	ER;	The	Atg12–Atg5–Atg16L1	complex	subsequently	conjugates	LC3	to	

PE	on	the	phagophore,	favoring	its	elongation	and	closure	(Mizushima	and	Komatsu,	2011).	

mTORC1	 inhibition	 relieves	 the	 block	 on	 autophagy	 imposed	 by	 mTOR-mediated	 ULK1	

phosphorylation.	Additionally,	AMPK	activation	directly	activates	ULK1	and	other	autophagy	

mediators	 (Galluzzi	 et	 al.,	 2014),	 in	 addition	 to	 its	 inhibitory	 action	 on	 mTORC1.	 GCN2	

activation	 is	 also	 important	 for	 autophagy,	 likely	 through	 some	 transcriptional	 targets	 of	

ATF4,	though	the	mechanisms	have	not	yet	been	identified	(Galluzzi	et	al.,	2014;	Tallóczy	et	

al.,	2002).	Of	note,	AMPK	activation	also	promotes	mitochondrial	fragmentation	by	acting	on	

MFF,	possibly	to	favor	mitophagic	elimination	of	dysfunctional	mitochondria	–	though	how	

the	fusion/fission	balance	is	regulated	based	on	the	health	of	mitochondria	is	not	yet	clear	

(Toyama	et	al.,	2016).		

	

Mitochondrial	dynamics	in	cellular	metabolism	

	

An	important	role	for	mitochondrial	dynamics	is	emerging	in	the	context	of	cellular	nutrient	

sensing	and	in	the	ensuing	metabolic	response.	As	a	general	principle,	starvation	results	 in	

hyperelongation	 of	 the	 mitochondrial	 network	 to	 maximize	 energy	 production	 efficiency;	

nutrient	excess,	on	the	other	hand,	has	been	reported	to	cause	mitochondrial	fragmentation	

as	 a	 response	 to	 the	 ROS	 production	 that	 occurs	 during	 respiration	 (Cogliati	 et	 al.,	 2013;	

Gomes	et	al.,	2011;	Liesa	and	Shirihai,	2013;	Molina	et	al.,	2009;	Twig	et	al.,	2008).	
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Pancreatic	 β-cells	 gauge	 systemic	 nutrient	 availability	 by	 precisely	 coupling	 nutrient	

oxidation	to	nutrient	availability;	as	a	result,	excess	nutrients	are	oxidized	to	produce	ATP,	

leading	 to	 insulin	 secretion	 (Rutter,	 2001);	 however,	 they	 also	 lead	 to	 increased	 NADH	

production	 and	 oxidative	 stress.	 Indeed,	 in	 cultured	 pancreatic	 β	 cells,	 the	 presence	 of	

excessive	 nutrients	 triggers	 mitochondrial	 fragmentation,	 which	 in	 turn	 renders	 ATP	

production	less	efficient.	In	addition,	mitochondrial	fragmentation	prevents	the	spreading	of	

ROS	generated	from	the	respiratory	chain	(Liesa	and	Shirihai,	2013;	Molina	et	al.,	2009).		

This	 process	 is	 also	 relevant	 in	BAT,	where	 the	excess	 nutrients	 derived	 from	 lipolysis	 are	

converted	to	heat	through	futile	energy	cycling.	On	the	other	hand,	muscle	 is	equipped	to	

produce	ATP	with	high	efficiency,	and	therefore	undergoes	significant	oxidative	stress	upon	

large	 increases	 in	 nutrient	 availability	 (specifically,	 fatty	 acids)	 (Liesa	 and	 Shirihai,	 2013).	

Accordingly,	 muscle-specific	 calcineurin	 ablation,	 which	 causes	 mitochondrial	

hyperelongation	by	inhibiting	Drp1	activity,	resulted	in	protection	from	diet-induced	obesity	

in	mice;	however,	it	also	reduced	muscle	performace	under	exercise	conditions,	underlining	

the	tradeoff	between	ATP	production	and	excess	nutrient	handling	(Pfluger	et	al.,	2015).	

	

Conversely,	 in	 starvation	 conditions,	 ATP	 production	 must	 become	more	 efficient;	 this	 is	

achieved	 through	mitochondrial	 network	 fusion	 and	 cristae	 remodeling,	 which	 favors	 the	

dimerization	of	ATP	synthase	(Cogliati	et	al.,	2013;	Gomes	et	al.,	2011).	

	

While	 it	 is	 clear	 that	 bioenergetics	 affect	 mitochondrial	 dynamics,	 and	 mechanisms	 have	

been	hypothesized	to	explain	the	morphological	changes	occurring	upon	a	metabolic	switch,	

the	opposite	(i.e.	that	mitochondrial	dynamics	directly	affect	bioenergetics)	has	not	yet	been	

convincingly	 proved.	 Nevertheless,	 numerous	 attempts	 at	 manipulating	 mitochondrial	

morphology	 to	 elicit	 changes	 in	 bioenergetics	 have	 highlighted	 that	 the	 plasticity	 of	

mitochondrial	dynamics	 is	 crucial	 to	 the	 successful	 completion	of	 this	metabolic	 response.	

For	 instance,	muscle	Mfn2	ablation,	which	should	mimic	 the	 response	 to	excess	nutrients,	

actually	 exacerbates	 this	 response,	 indicating	 that	 some	 residual	Mfn2	activity	 is	 essential	

for	 cell	 survival	 upon	 nutrient	 overload	 (Sebastián	 et	 al.,	 2012).	 The	 current	 view	 now	

includes	 mitochondrial	 quality	 control	 in	 the	 equation,	 highlighting	 that	 efficient	
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complementation	 (through	 fusion)	and	 turnover	 (through	 fission)	are	 integral	 components	

of	the	cellular	response	to	changes	in	nutrient	availability	(Liesa	and	Shirihai,	2013).	
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2. Aims	of	the	work	

	

Mitochondrial	dynamics	are	increasingly	emerging	as	fundamental	regulators	of	cellular	and	

organismal	processes.	This	is	also	highlighted	by	the	absolute	requirement	for	mitochondrial	

fusion	 and	 fission	 in	 a	 plethora	 of	 developmental	 processes.	 Indeed,	 both	Mitofusins	 and	

Drp1	are	essential	in	early	development,	and	their	ablation	causes	early	embryonic	lethality	

(Chen	et	al.,	2003;	Wakabayashi	et	al.,	2009).	Conditional	deletion	of	both	Mitofusins	in	the	

heart	 also	 causes	 embryonic	 lethality	 due	 to	 Notch-mediated	 inhibition	 of	 myocardial	

differentiation	(Kasahara	et	al.,	2013).	

	

The	 importance	 of	 mitochondrial	 dynamics	 in	 brain	 is	 evidenced	 by	 the	 primarily	

neurological	phenotypes	of	diseases	of	mitochondria-shaping	proteins.	Indeed,	a	single	case	

report	of	a	 sporadic	Drp1	mutation	 in	an	 infant	 indicates	 that	 loss	of	Drp1	 function	 in	 the	

developing	brain	leads	to	severe	impairment	in	brain	development	(Waterham	et	al.,	2007).	

Accordingly,	loss	of	function	of	MFF	in	humans	also	causes	a	severe	neurological	phenotype	

(Koch	et	al.,	2016),	as	does	decrease	in	STAT2,	which	has	been	shown	to	block	mitochondrial	

fission	 (Shahni	et	al.,	2015).	As	 for	mitochondrial	 fusion,	an	axonal	 form	of	Charcot-Marie-

Tooth	disease	and	autosomal	dominant	optic	 atrophy	 result	 from	mutations	 in	MFN2	and	

OPA1,	respectively	((Alexander	et	al.,	2000;	Bradbury,	2004);	see	also	1.1.4.2).	

This	is	reflected	in	studies	on	animal	models,	where	embryonic	knockout	of	Mfn1,	but	not	of	

Mfn2,	 resulted	 in	 early	 postnatal	 lethality	 due	 to	 cerebellar	 defects	 (chen	 2003).	 Two	

separate	attempts	to	ablate	Drp1	in	the	developing	brain	met	with	early	embryonic	lethality,	

due	to	severe	neurodevelopmental	defects	(Ishihara	et	al.,	2009;	Wakabayashi	et	al.,	2009).		

	

Subsequent	 attempts	 to	 ablate	 Drp1	 in	 postnatal	 neurons	 highlighted	 its	 importance	 in	

synapse	 formation	 and	 neuronal	 mitochondrial	 transport	 in	 nigrostriatal	 dopaminergic	

neurons	(Berthet	et	al.,	2014),	in	forebrain	neurons	(Oettinghaus	et	al.,	2016;	Shields	et	al.,	

2015),	and	in	cerebellar	Purkinje	cells	(Kageyama	et	al.,	2012).	Of	note,	neurodegeneration	

did	 not	 consistently	 occur	 in	 these	 models,	 and	 seems	 to	 be	 a	 cell-type-specific	

phenomenon.	It	has	been	postulated	to	be	mediated	by	differential	resistance	to	oxidative	
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stress,	 though	this	was	only	shown	 in	vitro	 (Kageyama	2009);	our	own	 in	vivo	experiments	

did	not	show	an	increase	in	oxidative	stress	upon	Drp1	ablation	(Oettinghaus	et	al.,	2016).	

	

Lately,	a	relevant	role	for	mitochondrial	dynamics	has	emerged	in	the	hypothalamic	circuits	

that	 regulate	 feeding	 and	 energy	 expenditure	 (Nasrallah	 and	 Horvath,	 2014).	 Specifically,	

Mfn1	 and	 Mfn2	 deletion	 in	 AgRP-NPY	 neurons	 protects	 mice	 from	 diet-induced	 obesity	

(Dietrich	et	al.,	2013);	conversely,	Mfn2	ablation	from	POMC	neurons	causes	morbid	obesity	

in	 normal-fed	 mice	 (Schneeberger	 et	 al.,	 2013).	 The	 former	 is	 due	 to	 the	 effect	 of	

mitochondrial	fusion	in	regulating	cellular	ATP	levels,	while	the	latter	is	mainly	attributed	to	

Mfn2’s	role	as	an	ER-mitochondria	tether	(Gao	et	al.,	2014;	Zorzano	and	Claret,	2015).	

	

Within	this	framework,	and	considering	that	our	own	Drp1flx/flx	CaMK2α-CreERT2	mice	also	

displayed	 a	 prominent	 and	 severe	metabolic	 phenotype	 (Oettinghaus	 et	 al.,	 2016),	 in	 this	

work	 we	 sought	 to	 further	 characterize	 the	 role	 of	 forebrain	mitochondrial	 fission	 in	 the	

systemic	regulation	of	metabolism	and	energy	expenditure.	
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3.1. Summary	

	

Well-balanced	mitochondrial	 fission	and	 fusion	processes	are	essential	 for	nervous	 system	

development.	Loss	of	function	of	the	main	mitochondrial	fission	mediator,	dynamin-related	

protein	1	(Drp1),	is	lethal	early	during	embryonic	development	or	around	birth,	but	the	role	

of	mitochondrial	fission	in	adult	neurons	remains	unclear.	

Here	we	show	that	inducible	Drp1	ablation	in	neurons	of	the	adult	mouse	forebrain	results	

in	 progressive,	 neuronal	 subtype-specific	 alterations	 of	 mitochondrial	 morphology	 in	 the	

hippocampus	 that	 are	marginally	 responsive	 to	 antioxidant	 treatment.	 Furthermore,	DRP1	

loss	affects	synaptic	 transmission	and	memory	 function.	While	 these	changes	culminate	 in	

hippocampal	atrophy,	they	are	not	sufficient	to	cause	neuronal	cell	death	within	10	weeks	of	

genetic	Drp1	ablation.	

Collectively,	 our	 in	 vivo	 observations	 clarify	 the	 role	 of	 mitochondrial	 fission	 in	 neurons,	

demonstrating	that	Drp1	ablation	in	adult	forebrain	neurons	compromises	critical	neuronal	

functions	without	causing	overt	neurodegeneration.	

	

Keywords:	autophagy	/	cell	death	/	dynamin-related	protein,	Drp1	/	mitochondrial	dynamics	

/	neurodegeneration	
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3.2. 	

3.3. Introduction	

	

In	addition	to	their	crucial	importance	in	energy	conversion,	mitochondria	serve	many	other	

housekeeping	functions,	including	calcium	buffering,	amino	acid	and	steroid	biosynthesis	as	

well	 as	 fatty	acids	β-oxidation	and	 regulation	of	 cell	death.	During	 the	past	decade,	 it	has	

become	 increasingly	 clear	 that	 processes	 regulating	 mitochondrial	 morphology	 and	

ultrastructure	are	influenced	by	specific	cellular	requirements	upon	which	mitochondria,	in	a	

precisely	regulated	manner,	undergo	fusion	and	division	events	1.	Maintaining	this	balance	is	

especially	 important	 for	 highly	 energy-consuming,	 polarized	 cells	 such	 as	 neurons,	 where	

single	organellar	units	sprouting	from	the	mitochondrial	network	are	transported	along	the	

cytoskeleton	 into	 dendrites	 and	 spines	 to	 meet	 local	 energy	 requirements	 2.	 In	 addition,	

elaborate	 quality	 control	 mechanisms	 also	 rely	 on	 mitochondrial	 dynamics:	 whereas	

defective	 organelles	 are	 sequestered	 by	 fission,	 enabling	 their	 removal	 from	 the	

mitochondrial	 network	 3,4,	 fusion	 supports	 qualitative	 homogeneity	 of	 the	 syncytium	

through	complementation	5.	

	

Mitochondrial	fusion	and	fission	are	mediated	by	large	GTPases	of	the	dynamin	superfamily	
6.	 The	 outer	 mitochondrial	 membrane	 mitofusins	 1	 (MFN1)	 and	 2	 (MFN2)	 tether	

mitochondrial	membranes	by	homo-	or	heterodimer	formation	7,	thereby	initiating	fusion	of	

the	organelles,	 a	 process	 that	 also	 involves	 the	 inner	mitochondrial	membrane-associated	

GTPase	 Optic	 Atrophy	 1	 (Opa1)	 8.	 In	 addition,	 MFN2	 also	 mediates	 contacts	 between	

mitochondria	 and	 endoplasmic	 reticulum	 9.	 The	 only	 known	 mammalian	 mitochondrial	

fission	protein,	Dynamin-Related	Protein	1	(Drp1),	translocates	upon	dephosphorylation	by	

calcineurin	 10	 to	 fission	 sites	 where	 it	 binds	 to	mitochondrial	 fission	 factor	 (Mff)	 11.	 Drp1	

translocation	is	preceded	by	ER	membranes	wrapping	around	mitochondria	to	constrict	the	

organelles	 12,	 thereby	 facilitating	 the	 formation	 of	multimeric	 Drp1	 complexes	 that,	 upon	

GTP	hydrolysis,	further	tighten	to	complete	the	process	of	mitochondrial	fission	13.	
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Genetic	 evidence	 in	mice	 and	 humans	 indicates	 that	mitochondrial	 dynamics	 are	 crucially	

important	 in	 neurons:	 in	 humans,	 a	 sporadic	 dominant	 negative	DRP1	mutation	 caused	 a	

lethal	 syndromic	 defect	 with	 abnormal	 brain	 development	 14;	 similarly,	 constitutive	Drp1	

knockout	 in	 the	mouse	 brain	 leads	 to	 lethal	 neurodevelopmental	 defects	 15,16.	While	 the	

crucial	 role	 of	 Drp1	 during	 brain	 development	 is	 undisputed,	 studies	 on	 Drp1	 function	 in	

postmitotic	 (adult)	 neurons	 are	 scarce;	 likewise,	 Drp1	 ablation	 studies	 in	 primary	 cultures	

have	so	far	failed	to	yield	a	conclusive	picture.	In	vitro,	Drp1	ablation	is	reported	to	lead	to	a	

super-elongated	neuroprotective	17–24	or	an	aggregated	mitochondrial	phenotype	associated	

with	 neurodegeneration15,16,25–27.	 These	 discrepancies	 are	 probably	 due	 to	 different	

experimental	conditions:	neuronal	health	is	indeed	influenced	by	the	onset	and	duration	of	

Drp1	inhibition,	which	varies	considerably	among	the	cited	reports	28,	and	different	types	of	

neuronal	 cultures	 studied	 display	 different	 sensitivity	 to	 Drp1	 inhibition.	 In	 vivo,	 Drp1	

ablation	in	Purkinje	cells	results	in	oxidative	stress	and	neurodegeneration	29	demonstrating	

that	Drp1	is	essential	for	postmitotic	neurons’	health.	In	contrast,	transient	pharmacological	

Drp1	 inhibition	 is	 neuroprotective	 in	 several	 mouse	 ischemia	 models,	 indicating	 that	

temporarily	blocking	mitochondrial	fission	holds	therapeutic	potential	30–32.	

	

To	 elucidate	 the	 consequences	 of	 blocked	 mitochondrial	 fission	 in	 the	 central	 nervous	

system	in	vivo,	we	bypassed	the	critical	role	of	Drp1	during	brain	development	by	generating	

Drp1flx/flx	mice	 15	expressing	 tamoxifen-inducible	Cre	 recombinase	under	 the	control	of	 the	

CaMKIIα	 promoter	 33.	 Upon	 induced	 Drp1	 deletion	 in	 postmitotic	 adult	 mouse	 forebrain	

neurons,	mice	 develop	 progressive,	 neuronal	 subtype-specific	 alterations	 in	mitochondrial	

shape	and	distribution	 in	 the	absence	of	overt	neurodegeneration.	 In	addition,	 respiratory	

capacity,	ATP	content,	 synaptic	 reserve	pool	vesicle	 recruitment	as	well	as	 spatial	working	

memory	 are	 impaired,	 demonstrating	 that	 severely	 dysregulated	 mitochondrial	 dynamics	

can	compromise	critical	neuronal	functions	in	vivo	without	causing	neuronal	cell	death.	

	

3.4. Results	
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3.4.1. Inducible	Drp1	ablation	in	the	adult	mouse	forebrain.	

	

In	order	to	study	the	effect	of	mitochondrial	fission	ablation	in	adult	neurons,	we	generated	

a	model	of	inducible	Drp1	ablation	in	the	forebrain	by	crossing	mice	with	loxP	sites	inserted	

in	 the	 Drp1	 gene	 (Drp1flx/flx)	 15	with	mice	 expressing	 a	 gene	 for	 a	 tamoxifen-inducible	 Cre	

recombinase	 fusion	 protein	 under	 the	 control	 of	 the	 CaMKIIα	 promoter	 (Fig.	 3.1A)	 33,	

limiting	recombination	primarily	to	the	forebrain.	Eight-week	old	offspring	of	these	crossings	

were	injected	with	tamoxifen	on	five	consecutive	days	(Drp1	inducibly	deleted	in	the	brain,	

Drp1iΔb/iΔb),	 resulting	 in	maximum	DRP1	depletion	 in	 the	hippocampus	within	14	days	 (Fig.	

3.1B).	 Immunohistochemical	 DRP	 staining	 in	 Drp1iΔb/iΔb	 animals	 4	 weeks	 post-tamoxifen	

injection	 (p.t.i.)	 confirmed	 that	DRP1	was	 lacking	 specifically	 in	hippocampal	 neurons	 (Fig.	

3.1C)	 and	 crosses	 of	 Drp1iΔb/iΔb	 mice	 with	 a	 reporter	 strain	 further	 confirmed	 the	

recombination	following	tamoxifen	injection	(Suppl.	Fig.1A).	

	

3.4.2. Drp1	ablation	causes	progressive	changes	in	mitochondrial	morphology.	

	

To	characterize	the	consequences	of	inducible	Drp1	ablation,	we	turned	to	an	in	vitro	model	

of	primary	cortical	neurons	isolated	from	Drp1flx/flx	mice	where	we	could	monitor	by	confocal	

microscopy	the	consequences	of	Cre	recombinase-induced	Drp1	ablation	by	co-transfecting	

it	 with	 a	 mitochondria-targeted	 yellow	 fluorescent	 protein	 (mtYFP).	 Starting	 at	 day	 3	

following	in	vitro	recombination	(DIV),	mitochondria	progressively	clustered	and	aggregated	

in	 the	 soma.	 Fewer	 organelles	 were	 found	 within	 the	 neurite	 compartment,	 where	

mitochondria	 also	 appeared	 larger	 in	 comparison	 to	 sham-transfected	 controls	 (Fig.	 3.2).	

Comforted	 by	 these	 results,	 we	 moved	 to	 adult	 hippocampal	 neurons	 in	 vivo	 to	 study	

mitochondrial	 morphology	 by	 immunohistochemistry.	 At	 day	 10	 after	 Drp1	 ablation,	

enlarged	 spherical	 mitochondria	 started	 to	 aggregate	 in	 the	 perikarya	 of	 hippocampal	

neurons.	Whereas	10	days	p.t.i.	enlarged	mitochondria	clustered	in	the	perikarya	of	approx.	

only	 5%	 of	 CA1	 neurons,	 in	 the	 dentate	 gyrus	 (DG)	 and	 CA3	 hippocampal	 neurons,	

mitochondrial	morphology	changes	occurred	earlier	after	Drp1	ablation.	Conversely,	4	weeks	

p.t.i.,	 neuronal	 mitochondrial	 morphology	 was	 heavily	 altered	 in	 all	 three	 neuronal	



	

	

	
Manuscript	

	
	 	

67	

subpopulations,	 mitochondria	 of	 CA3	 pyramidal	 neurons	 appearing	 considerably	 less	

filamentous	 and	 more	 fragmented	 compared	 to	 CA1	 and	 DG	 neurons	 (Fig.	 3.3).	 These	

findings	demonstrate	that	blocking	fission	alters	mitochondrial	morphology	and	distribution	

in	a	neuronal	subtype-specific	manner.	

	

3.4.3. Synaptic	transmission	is	impaired	in	Drp1-deficient	CA1	pyramidal	neurons.	

	

We	next	addressed	whether	the	observed	mitochondrial	morphological	defects	resulted	 in	

any	functional	consequence	by	behavioral	and	electrophysiological	tests.	

Biocytin	filling	indicated	that	dendritic	morphology	of	hippocampal	neurons	was	not	altered	

4	weeks	p.t.i.	 (Fig.	3.4A).	Accordingly,	whole-cell	patch-clamp	recordings	revealed	that	CA1	

pyramidal	 Drp1iΔb/iΔb	 neurons	 display	 normal	 resting	 membrane	 potential	 and	 action	

potential	 (AP)	 peak	 amplitudes	 as	 well	 as	 half-duration	 (Fig.	 3.4B-E).	 When	 we	 explored	

excitatory	synaptic	transmission	by	performing	field	potential	recordings	in	the	hippocampal	

Drp1iΔb/iΔb	CA1	region,	we	observed	that	stimulation	of	the	Schaffer	collaterals	evoked	field	

excitatory	postsynaptic	potentials	(fEPSP)	with	normal	paired-pulse	facilitation	(143%,	n=10;		

t=	 100	 ms)	 was	 similar	 to	 that	 observed	 in	 control	 mice	 (151%,	 n=6,	 p	 =	 0.52),	 again	

indicating	normal	release	probability.	However,	when	synaptic	transmission	was	challenged	

by	 application	 of	 100	 stimuli	 at	 either	 10	 Hz	 or	 100	 Hz,	 frequency-dependent	 fEPSP	

facilitation	was	 significantly	 reduced	 in	Drp1iΔb/iΔb	brain	 slices,	where	 synaptic	 transmission	

also	broke	down	more	rapidly	(Fig.	3.5A-C;	Suppl.	Fig.	3.1D,E).	In	addition,	when	subjected	to	

a	 spontaneous	 alternation	 task	 (a	 behavioral	 assay	 for	 hippocampus-dependent	 working	

memory),	 short-term	 working	 memory	 was	 significantly	 impaired	 in	 Drp1iΔb/iΔb	 mice	

compared	to	their	Drp1flx/flx	littermates	(Fig.	3.5D),	not	because	of	impaired	visual	acuity	and	

olfaction	 (Suppl.	 Fig.	 3.1F,	 G).	 These	 synaptic	 transmission	 deficits	 are	 similar	 to	 those	

observed	 in	 the	 neuromuscular	 junction	 of	 drp1-mutant	 Drosophila	 34,	 which	 were	

attributed	to	a	lack	of	synaptic	ATP.	We	therefore	measured	oxygen	consumption	and	ATP	

levels	 of	 hippocampal	mitochondria,	 and	 found	oxygen	 consumption	 (Fig.	 3.5E)	 as	well	 as	

ATP	content	(Fig.	3.5F)	to	be	reduced	in	Drp1-deficient	samples.	In	addition,	ultrastructural	

analysis	 by	 transmission	 electron	 microscopy	 (TEM)	 revealed	 a	 significant	 reduction	 in	

presynaptic	mitochondria	of	hippocampal	Drp1iΔb/iΔb	neurons	(Fig.	3.5G).	The	combination	of	
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reduced	mitochondrial	 content	 in	presynaptic	 terminals	 and	defective	ATP	production	 can	

explain	the	impaired	synaptic	function	observed	in	Drp1iΔb/iΔb	mice.	

	

Forebrain-specific	neuronal	Drp1	ablation	leads	to	hippocampal	atrophy.	

	

Several	 previous	 studies	 indicate	 that	 Drp1	 ablation	 in	 vitro	 causes	 a	 reduction	 in	 the	

number	 of	 dendrites,	 spines,	 and	 synapses	 (reviewed	 by	 28).	 However,	 as	 no	 substantial	

changes	in	dendritic	morphology	were	observed	early	after	Drp1	ablation	(4	weeks	p.t.i.;	Fig.	

3.4A),	we	performed	Golgi	silver	impregnations	on	Drp1iΔb/iΔb	brain	sections	10	weeks	p.t.i..	

Sholl	 analysis	 revealed	 that	 while	 overall	 dendritic	 tree	 morphometry	 was	 unchanged,	

dendrites	were	shorter	 in	Drp1iΔb/iΔb	mice	 (Fig.	3.6A),	which	was	associated	with	decreased	

hippocampal	 volume	 (Fig.	 3.6B).	 In	 contrast,	 cortical	 or	midbrain	 volumes	 did	 not	 change	

significantly	 (Suppl.	 Fig.	 3.1H).	 To	 test	 whether	 this	 hippocampal	 atrophy	 was	 associated	

with	 loss	 of	 spines,	 we	 quantified	 spine	 numbers	 on	 apical	 dendritic	 trees	 of	 Golgi-

impregnated	pyramidal	 CA1	neurons,	 but	 did	 not	 find	 any	difference	 (Fig.	 3.6C).	 Likewise,	

number	of	 synapses,	as	assessed	by	co-localization	of	 fluorescent	 stains	 for	pre-	 (VGLUT2)	

and	 postsynaptic	 (PSD95)	 markers	 in	 confocal	 z-stacks,	 was	 normal	 (Fig.	 3.6D).	 Thus,	 the	

depletion	of	mitochondria	from	presynaptic	hippocampal	neuron	terminals	can	account	for	

the	observed	synaptic	transmission	impairments	and	the	specific	deficits	 in	spatial	working	

memory	upon	Drp1	 ablation.	Nevertheless,	 the	maintenance	of	normal	 synapse	and	 spine	

numbers	10	weeks	following	Drp1	ablation	indicates	that	mature	hippocampal	neurons	are	

able	to	cope	with	blocked	mitochondrial	fission	with	only	mild	functional	alterations.	

	

3.4.4. Adult	forebrain	neurons	do	not	degenerate	within	10	weeks	of	Drp1	ablation.	

	

We	 next	 verified	 whether	 the	 above-reported	 changes	 caused	 by	 Drp1	 ablation	 in	 the	

hippocampus	 led	 to	 neurodegeneration.	 Hippocampal	 neurons	 were	 qualitatively	 and	

quantitatively	normal	 in	Hematoxylin-Eosin	(H&E)-stained	hippocampal	tissue	sections	(Fig.	

3.7A,B),	 with	 no	 signs	 of	 condensed	 eosinophilic	 neurons,	 chromatinolysis,	 or	 apoptotic	

bodies.	In	addition,	in	situ	TUNEL	did	not	detect	any	evidence	of	increased	cell	death	in	the	

hippocampus	 10	 weeks	 p.t.i.	 (Fig.	 3.7C,D).	 As	 neurons	 are	 believed	 to	 be	 especially	
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dependent	 on	 ATP	 produced	 by	 oxidative	 phosphorylation	 we	wondered	 how	 they	 could	

compensate	 the	 reduced	 ATP	 production	 (Fig.	 3.5F)	 to	 avoid	 neurodegeneration.	

Comparative	mass	spectrometry	analyses	revealed	that	 levels	of	glycolysis-related	proteins	

were	 significantly	 changed,	 the	 rate-limiting	 enzyme	 Hexokinase	 1	 being	 markedly	

upregulated	(4.37	fold;	see	Suppl.	Table	1).	These	results	 indicate	that	neurons	attempt	to	

cope	with	the	metabolic	consequences	of	Drp1	ablation	by	upregulating	glycolysis.	

	

While	Drp1	 ablation	 in	 Purkinje	 cells	 29	 is	 accompanied	by	macroautophagy	 inhibition	 and	

reactive	 oxygen	 species	 (ROS)	 accumulation,	 extensive	 TEM	 analyses	 did	 not	 reveal	

significant	 autophagosome	 accumulation	 in	 brain	 sections	 from	 Drp1iΔb/iΔb	mice;	 of	 note,	

these	consisted	mostly	of	double-membrane	structures	measuring	500	nm	(i.e.	too	small	to	

accommodate	 mitochondria;	 Fig	 S2).	 Accordingly,	 comparative	 mass	 spectrometry	 in	

hippocampal	 neurons	 did	 not	 reveal	 significant	 changes	 in	 autophagy-related	 proteins	

including	 p62	 and	 LC3	 (Suppl.	 Table	 2).	 Moreover,	 levels	 of	 ROS	 (measured	 by	 DHR	 and	

MitoSox	 fluorescence	on	 isolated	mitochondria),	 of	 thiobarbituric	 acid-reactive	 substances	

(TBARS),	 indicators	of	 lipid	peroxidation,	as	well	as	of	oxidized	 (vs.	 total)	glutathione	were	

unchanged	 in	 mouse	 brain	 homogenates	 4	 weeks	 p.t.i.	 (Fig.	 3.8A-D).	 Indeed,	 our	

comparative	 mass	 spectrometry	 analyses	 revealed	 that	 11	 out	 of	 48	 detected	 oxidative	

stress-associated	proteins	were	upregulated	in	Drp1iΔb/iΔb	brains	10	weeks	p.t.i.	(Suppl.	Table	

3).	Ten	of	these	proteins	are	regulated	by	the	transcription	factor	nuclear	factor	erythroid	2	

related	 factor	 (NRF2),	 whose	 inhibitor	 KEAP1	 (Kelch-like	 ECH-associated	 protein	 1)	 was	

significantly	 downregulated	 (fold	 change:	 0.38;	 Q:	 0.002;	 Suppl.	 Table	 3).	 Among	

upregulated	 proteins	 we	 identified	 several	 glutathione	 S-transferases,	 participating	 in	

solubilizing	 peroxidized	 lipids	 and	 xenobiotics,	 and	 the	 multidrug	 resistance	 protein	 1A,	

capable	 of	 removing	 toxic	 components	 from	 the	 cytosol.	 In	 contrast,	 cytosolic	 and	

mitochondrial	 thioredoxins,	 NRF2	 target	 genes	 that	 help	 reducing	 oxidized	 protein,	 were	

downregulated.	These	results	 indicate	that	Drp1	ablation	 in	postmitotic	neurons	 leads	to	a	

moderate	activation	of	cellular	antioxidant	systems,	possibly	explaining	why	ROS	levels	were	

not	 increased,	 but	 testifying	 that	 indeed	 also	 in	 forebrain	 neurons	Drp1	 ablation	 leads	 to	

ROS	 production.	 Since	 in	 Purkinje	 cells	 ROS	 are	 involved	 in	 the	 formation	 of	 enlarged	

spherical	mitochondrial	bodies	(mitobulbs)	29,	we	decided	to	analyze	whether	treatment	of	
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mice	 with	 the	 mitochondrially	 targeted	 antioxidant	 mitoQ	 35	 for	 10	 days	 after	 the	 last	

tamoxifen	 injection	 could	 counteract	 the	 mitochondrial	 morphology	 phenotype.	 MitoQ	

significantly	decreased	mitobulbs	 in	hippocampal	CA1	and	granule	neurons	of	 the	dentate	

gyrus	(Fig.	3.8E).	However,	in	CA3	neurons	transformation	of	mitochondria	into	mitobulbs	is	

already	 complete	 at	 day	 10	 after	 Drp1	 ablation	 (see	 Fig.	 3.3),	 and	 no	 mitoQ	 effect	 was	

observed,	indicating	that	antioxidant	treatment	can	merely	delay	the	formation	of	mitobulbs	

but	is	not	sufficient	to	suppress	it.	

In	conclusion,	unlike	Purkinje	cells,	adult	 forebrains	neurons	respond	to	the	 increased	ROS	

formation	 caused	 by	Drp1	 ablation	 by	 upregulating	 the	 cellular	 antioxidant	 defenses	 that	

partly	neutralize	ROS	accumulation.	

	

3.5. Discussion	

	

Mitochondrial	 fragmentation	 is	 a	 hallmark	 of	 apoptosis	 and	 accordingly	 of	 several	

neurodegenerative	disorders.	Conversely,	the	dynamin-related	GTPase	Drp1	is	indispensable	

for	neuronal	maturation	and	brain	development	15,16	and	for	cerebellar	Purkinje	cell	survival	
29.	Our	data	conversely	demonstrate	that	adult	forebrain	and	hippocampal	neurons	display	

an	increased	functional	reserve	that	allows	them	to	survive	Drp1	ablation.		

In	 order	 to	 bypass	 the	 requirement	 for	 balanced	mitochondrial	 dynamics	 during	 neuronal	

differentiation	 and	 brain	 development	 15,16,	 we	 devised	 a	model	 of	 acute,	 inducible	Drp1	

ablation	 in	 adult	 forebrain	 including	 hippocampal	 neurons.	 Upon	 tamoxifen-induced	Drp1	

ablation	mitochondria	appeared	enlarged	and	perinuclearly	 confined.	These	neurons	were	

unexpectedly	 able	 to	 cope	 well	 with	 Drp1	 ablation:	 changes	 in	 neuronal	 morphology,	

oxidative	stress	and	cell	death	were	negligible,	whereas	the	reduction	in	localized	ATP	supply	

to	presynaptic	terminals	impaired	synaptic	transmission,	resulting	in	early	memory	defects.	

	

The	first	visible	phenotype	of	Drp1iΔb/iΔb	mice,	presenting	as	early	as	4	weeks	after	tamoxifen	

administration,	was	a	defect	in	spatial	working	memory,	which	could	be	traced	back	to	the	

impairment	in	synaptic	transmission	upon	sustained	stimulation.	
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Accordingly,	 and	 in	 line	 with	 the	 fact	 that	 defects	 in	 mitochondrial	 fission	 impair	

mitochondrial	 transport	 in	 neurites,	 presynaptic	 mitochondria	 were	 decreased.	 A	 similar	

electrophysiological	 phenotype	 associated	 with	 abnormal	 mitochondrial	 morphology	 was	

observed	 at	 neuromuscular	 junctions	 of	 drp1	 mutant	 flies	 34.	 While	 that	 phenotype	 has	

primarily	been	attributed	to	ATP-dependent	effects	on	reserve	pool	vesicle	recycling	due	to	

the	 lack	 of	 mitochondria	 at	 synaptic	 boutons	 and	 the	 overall	 reduction	 in	 oxidative	

phosphorylation,	DRP1	may	also	be	directly	involved	in	synaptic	vesicle	formation,	as	shown	

more	 recently	 in	mouse	hippocampal	neurons36.	Resting	electrophysiological	properties	as	

well	as	paired-pulse	 facilitation,	which	were	all	unaffected,	argue	against	a	contribution	of	

calcium	buffering	defects	to	the	overall	phenotype	(recently	reviewed	37).	

	

A	 predictable	 consequence	 of	 inhibiting	 mitochondrial	 fission	 was	 the	 change	 in	

mitochondrial	 network	 morphology,	 with	 predominantly	 enlarged	 spherical	 mitochondria	

that	 clustered	 around	 the	 nucleus.	 Of	 note,	 while	 previous	 reports	 in	 Purkinje	 cells	 29	

attributed	these	“mitobulbs”	to	oxidative	stress	ensuing	from	defects	in	autophagy,	we	did	

not	detect	evidence	suggesting	a	significant	blockage	of	the	latter	in	vivo,	nor	the	presence	

of	oxidative	markers.	Therefore,	our	data	indicate	that	neurons	in	vivo	are	supported	by	the	

brain	milieu	 to	 keep	 autophagy	 at	 a	minimum	 level,	 even	 under	 stress	 conditions.	 This	 is	

consistent	with	reports	that	autophagy	 is	an	extremely	rare	event	 in	neurons	 in	vivo,	even	

after	48	hours	of	starvation	38.	Even	so,	buffering	of	oxygen	radicals	by	mitoQ	administration	

slowed	down	the	formation	of	“mitobulbs”	in	our	mice,	suggesting	that	an	oxidative	stress	

component	is	present	in	Drp1-ablated	neurons,	but	efficiently	managed	by	cellular	defenses.	

A	possible	explanation	for	this	discrepancy	 is	 that	Purkinje	cells	 represent	an	exceptionally	

large	and	extensively	connected	neuronal	 subtype,	which	might	entail	very	high	metabolic	

activity	 and	 associated	 ROS	 production	 (reviewed	 in	 39),	 all	 of	 which	 could	 contribute	 to	

selective	 vulnerability	 of	 this	 neuronal	 subtype	 under	 certain	 stress	 conditions.	 It	 is	

important	to	note	that	Purkinje	cell	death	in	vivo	started	to	occur	already	at	around	week	9	

after	Drp1	 ablation	 29.	On	 the	other	hand,	 in	 line	with	 the	absence	of	oxidative	 stress,	 no	

neurodegeneration	was	observed	upon	10-week-long	Drp1	ablation	in	the	hippocampus,	the	

time	 frame	 when	 Drp1iΔb/iΔb	 animals	 had	 to	 be	 sacrificed	 due	 to	 profound	 systemic-level	

metabolic	 changes	 (manuscript	 in	 preparation).	 Therefore,	 it	 cannot	 be	 excluded	 that	 the	
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impaired	neuronal	mitochondrial	functions	might	culminate	in	hippocampal	neuronal	death	

occurring	3	months	beyond	Drp1	ablation.	

	

Additionally,	 it	 is	 worth	 noting	 that	 murine	 Purkinje	 neuron	 differentiation	 continues	

throughout	 the	 first	 three	weeks	 of	 life	 40,	 the	 time	when	 the	 L7/pcp2	 promoter	 used	 by	

Kageyama	 et	 al.	 starts	 to	 be	 active.	 It	may	 therefore	 be	 speculated	 that	Drp1	 ablation	 in	

these	neurons	may	still	overlap	with	the	final	stages	of	murine	cerebellar	development	and	

thus	also	contribute	to	the	observed	Purkinje	cell	degeneration.	We	can	conversely	exclude	

neurodevelopmental	defects	 caused	by	Drp1	 ablation	 in	our	model,	as	 recombination	was	

induced	at	the	age	of	8	weeks	and	dendritic	tree	morphology	as	well	as	synapse	and	spine	

numbers	were	unaffected.	Of	note,	a	recent	study	reporting	neurodegeneration	upon	Drp1	

ablation	 in	 postmitotic	 dopaminergic	 neurons	 supports	 the	 notion	 that	 sensitivity	 to	Drp1	

ablation	is	neuronal	subtype-dependent	41.	

	

Collectively,	 our	 results	 indicate	 that	 adult	 hippocampal	 neurons	 cope	 with	 profound	

impairment	of	mitochondrial	dynamics	and	function	by	activating	antioxidant	and	metabolic	

compensatory	 mechanisms.	 Predictably,	 certain	 neuronal	 functions,	 such	 as	 synaptic	

transmission,	can	be	affected	due	to	depletion	of	the	organelles	from	presynaptic	terminals,	

culminating	 in	 memory	 deficits.	 Conversely,	 these	 compensatory	 circuits	 are	 sufficient	 to	

maintain	overall	neuronal	morphology,	synapse	and	spine	numbers	and	ultimately	viability	

for	as	long	as	3	months	following	

Drp1	ablation.	Our	data	therefore	indicate	that	forebrain	neurons	can	resist	to	mitochondrial	

dysmorphology	 and	 dysfunction,	 a	 critical	 feature	 to	 protect	 them	 and	 therefore	 the	

cognitive	functions	of	higher	mammals	from	mitochondriotoxic	stimuli.	

	

3.6. Materials	and	Methods	

	

3.6.1. Mice	
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Drp1flx/flx	mice	 15	were	 crossed	 with	 CaMKIIα	 CreERT2	 (Cre+)	 animals,	 obtained	 from	 the	

European	Mouse	Mutant	Archive	 (EMMA	strain	02125)	 33.	At	8	weeks	of	age	 the	 resulting	

Drp1flx/flx	 Cre+	 mice	 were	 injected	 i.p.	 with	 1	 mg	 tamoxifen	 (Sigma;	 10	 mg/ml	 tamoxifen	

dissolved	in	a	9:1	ratio	of	sunflower	seed	oil	to	ethanol)	twice	daily	on	five	consecutive	days	

to	induce	recombination	of	the	Drp1	locus.	To	check	for	recombination,	Drp1flx/flx	Cre+	mice	

were	crossed	with	the	RCE:loxP	reporter	mouse	strain	(Jackson	Laboratories,	strain	032037-

JAX)	 harboring	 the	 R26R	 CAG-boosted	 Egfp	 (RCE)	 allele	 with	 a	 floxed	 STOP	 cassette	

upstream	of	the	Egfp	gene.	

	

3.6.2. Histology	

	

Serial	coronal	cross	sections	of	formalin-fixed,	paraffin-embedded	(FFPE)	mouse	brains	were	

prepared	and	sections	representing	the	coordinates	bregma	(-1.34	mm)	–	(-2.46	mm)	were	

selected	and	stained	for	COX	subunit	1a	(Abcam,	ab14705).	Z-stacks	were	recorded	with	an	

inverted	 Zeiss	Axiovert	 200M	 LSM	510	Meta	 confocal	microscope	with	 a	 100x/1.4	Oil	DIC	

objective	using	Enterprise	405	nm	and	Argon	488	nm	lasers.	Z-stacks	were	projected	onto	a	

single	plane	using	ImageJ.	Synapse	numbers	were	quantified	as	described	previously	42.	Golgi	

staining	 was	 performed	 on	 PBS-perfused,	 unfixed	 brains	 using	 a	 commercial	 kit	 (FD	

Neurotechnologies).	

	

Hippocampal	volume	was	calculated	from	H&E	stained	100-µm-spaced,	serial	coronal	cross	

sections	 applying	 the	 Cavalieri	 principle.	 For	 cortical	 and	 midbrain	 volume,	 only	 sections	

representing	 coordinates	 bregma	 1.1	 mm	 –	 (-1.2	 mm)	 were	 considered,	 using	 corpus	

callosum	as	reference.	TUNEL	staining	was	performed	on	frozen,	PBS-perfused,	fixed	brains	

using	a	commercial	kit	(Roche).	Confocal	images	were	stitched	using	a	Fiji	Plugin	43.	

	

3.6.3. Transmission	electron	microscopy	

	

Semithin	 sections	 of	 osmium-stained	 hippocampi	 were	 prepared	 in	 order	 to	 identify	

hippocampal	 neurons,	 of	which	 ultrathin	 sections	were	 prepared.	 Imaging	was	 done	 on	 a	
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Phillips	 CM100	 transmission	 electron	 microscope.	 Randomly-selected	 TEM	 images	 were	

used	to	quantify	presynaptic	mitochondria	of	hippocampal	synapses.	

	

3.6.4. Electrophysiology	

	

Transverse	 350	 to	 400	 µm-thick	 hippocampal	 brain	 slices	 were	 cut	 in	 a	 sucrose-based	

solution.	 During	 electrophysiological	 recordings,	 slices	 were	 continuously	 superfused	 with	

artificial	 cerebrospinal	 fluid	 maintained	 at	 32-33°C.	 During	 whole-cell	 patch-clamp	

recordings,	 hippocampal	 CA1	 pyramidal	 neurons	 were	 filled	 with	 biocytin	 for	 subsequent	

morphological	 evaluation.	 Field	 excitatory	 postsynaptic	 potentials	 (fEPSP)	 were	 recorded	

with	glass	pipettes	 filled	with	1	M	NaCl	placed	 in	 the	stratum	radiatum	of	 the	CA1	region.	

The	stimulating	electrode	was	placed	~500	µm	away	to	stimulate	Schaffer	collaterals.	Data	

analysis	was	performed	offline	using	customized	scripts	written	in	python	and	Stimfit.	

	

3.6.5. Behavioral	analyses	

	

Visual	performance	was	 tested	 in	 the	Morris	Water	 tank	with	a	visible	platform.	Olfaction	

was	 checked	 using	 the	 cookie	 finding	 test.	 To	 score	 hippocampus-dependent	 working	

memory,	the	spontaneous	alternation	task	was	employed	in	an	8-arm	radial	maze,	based	on	

the	spontaneous	alternation	paradigm	44.	

	

3.6.6. Western	Blot	

	

Proteins	of	brain	lysates	were	separated	on	4-12%	BisTris	SDS-PAGE	gels,	blotted	onto	PVDF	

membranes	 using	 the	 iBlot	 Dry	 Blotting	 System	 (Life	 Technologies),	 and	 probed	 with	 the	

indicated	 primary	 antibodies	 and	 isotype-matched	 secondary	 antibodies	 conjugated	 to	

horseradish	peroxidase.	Signals	were	detected	using	ECL	(GE	Healthcare).	

	

3.6.7. Tissue	culture	
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Cortical	 neurons	 from	 Drp1flx/flx	 mice	 were	 prepared	 from	 E16.5	 embryos	 by	modifying	 a	

previously	described	method	 45.	Prior	 to	plating,	 cells	were	electroporated	using	 the	Neon	

Electroporation	 System	 (Life	 Technologies).	 For	 complete	 protocol,	 please	 refer	 to	 the	

supplementary	information.	

	

3.6.8. Quantitative	proteomics	

	

Brain	 tissue	 samples	 were	 lysed	 in	 2%	 sodium	 deoxycholate	 (DOC),	 100	 mM	 ammonium	

bicarbonate	 buffer,	 reduced	 with	 5	 mM	 TCEP	 and	 alkylated	 with	 10	 mM	 iodoacetamide.	

Proteins	were	 then	 digested	 by	 incubation	with	 sequencing-grade	modified	 trypsin	 (1/50,	

w/w;	 Promega,	 Madison,	 Wisconsin)	 overnight	 at	 37°C.	 The	 digested	 samples	 were	

subsequently	 labeled	with	 isobaric	 tag	 (TMT	6-plex,	 Thermo	Fisher	 Scientific)	 according	 to	

the	 manufacturer’s	 instructions.	 The	 TMT	 labeled	 samples	 were	 re-solubilized	 to	 a	 final	

concentration	of	1	mg/ml	and	separated	on	a	12	cm	pH	3-10	IPG	strip	(GE	Healthcare)	with	a	

3100	OFFGEL	fractionator	(Agilent)	as	previously	described	46.	

	

The	setup		of	 	the		µRPLC-MS		system		was		as	 	described		previously	 	47.	Chromatographic	

separation	of	peptides	was	carried	out	using	an	EASY	nano-LC	1000	system	(Thermo	Fisher	

Scientific),	equipped	with	a	heated	RP-HPLC	column	(75	µm	x	50	cm)	packed	in-house	with	

1.9	µm	C18	resin	(Reprosil-AQ	Pur,	Dr.	Maisch).	Mass	spectrometry	analysis	was	performed	

on	a	dual	pressure	LTQ-Elite	Orbitrap	mass	spectrometer	equipped	with	a	nanoelectrospray	

ion	source	(both	Thermo	Fisher	Scientific).	

	

Using	 the	MASCOT	 algorithm	 (Matrix	 Science,	 Version	 2.4.0),	 the	 resulting	mgf	 files	were	

searched	 against	 a	 decoy	 database	 containing	 normal	 and	 reverse	 sequences	 of	 the	

predicted	SwissProt	entries	of	Mus	musculus	(www.ebi.ac.uk,	release	date	16/05/2012)	and	

commonly	observed	contaminants	(in	total	33,832	sequences	for	Mus	musculus)	generated	

using	 the	 SequenceReverser	 tool	 from	 the	MaxQuant	 software	 (Version	 1.0.13.13).	 Next,	

database	search	results	were	imported	to	the	Scaffold	Q+	software	(version	4.3.3,	Proteome	

Software	Inc.,	Portland,	OR)	and	the	protein	false	identification	rate	was	set	to	1%	based	on	

the	number	of	decoy	hits.	
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Protein	probabilities	were	assigned	by	the	Protein	Prophet	program	48.	Acquired	reporter	ion	

intensities	 in	 the	 experiments	were	 employed	 for	 automated	 quantification	 and	 statically	

analyzed	using	a	modified	version	of	our	in-house	developed	SafeQuant	R	script	47.	In	brief,	

reporter	 ion	 intensities	 were	 corrected	 for	 isotopic	 impurities	 according	 to	 the	

manufacturer’s	 instructions.	 Intensities	 for	 each	 peptide	 and	 protein	 ID	 were	 summed,	

globally	 normalized	 across	 all	 acquisition	 runs	 and	 employed	 for	 ratio	 calculation	 and	

statistical	analysis.	For	complete	mass	spectrometry	materials	and	methods,	please	refer	to	

the	supplementary	information.	

	

3.6.9. Oxygen	consumption	and	ATP	levels	

	

Mitochondria	 were	 isolated	 from	 hippocampus	 as	 previously	 described	 49.	 Oxygen	

consumption	 rate	 was	 measured	 in	 isolated	 mitochondria	 from	 cortex	 and	 hippocampus	

using	 a	 Seahorse	 Bioscience	 XF24Analyzer.	 ATP	 content	 from	 isolated	 mitochondria	 was	

determined	by	a	bioluminescence	assay	(ViaLighTM	HT;	Cambrex	Bio	Science).	
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3.9. Figure	legends	

	

Fig.	3.1	Drp1	ablation	in	postmitotic	forebrain	neurons.	

	

(A)	Drp1flx/flx	and	Drp1flx/flx	CaMKIIα	CreERT2-/+	mice	were	crossed,	resulting	in	a	Mendelian	

distribution	 of	 alleles.	 At	 8	 weeks	 of	 age	 animals	 were	 injected	 with	 tamoxifen	 for	 5	

consecutive	days	to	induce	recombination	of	the	floxed	Drp1	locus.	

(B)	Mice	of	the	indicated	genotype	were	sacrificed	at	indicated	time	points	after	tamoxifen	

injection.	 Hippocampal	 lysates	 were	 separated	 by	 SDS-PAGE	 and	 immunoblotted	 using	

indicated	antibodies.	

(C)	 Immmunohistochemical	 staining	 (NovaRED,	 counterstain	 Hematoxillin)	 for	 Drp1	 was	

performed	on	hippocampal	CA1	FFPE	tissue	sections	of	Drp1iΔb/iΔb	mice	4	weeks	p.t.i..	Arrows	

indicate	unstained	hippocampal	dendrites.	Scale	bar	5	µm.	

	

Fig.	3.2	Mitochondrial	morphology	in	primary	neuronal	cultures	after	Drp1	ablation.	

	

(A)	 Primary	 cortical	 neurons	 isolated	 from	Drp1flx/flx	 E17	 embryos	were	 co-electroporated	

with	 mYFP-	 and	 Cre-expression	 constructs	 prior	 to	 seeding.	 Images	 were	 taken	 at	 the	

indicated	time	points	of	differentiation.	

	

Fig.	3.3	Mitochondrial	morphology	in	the	hippocampus	after	Drp1	ablation.	

	

Mice	of	the	indicated	genotype	were	killed	at	indicated	times	after	tamoxifen	injection.	

Coronal	 sections	 of	 FFPE	 brains	 of	 Drp1iΔb/iΔb	 and	 control	 mice	 were	 immunostained	 for	

cytochrome	c	oxidase	subunit	1.	Images	show	CA1	and	CA3	pyramidal	neurons	and	dentate	

gyrus.	(DG)	granule	cells.	Scale	bar	10	μm.	

	

Fig.	3.4	Electrophysiological	properties	are	not	affected	in	Drp1-ablated	neurons.	

	



	

	

	
Manuscript	

	
	 	

85	

(A)	Acute	hippocampal	slices	of	Drp1iΔb/iΔb	4	weeks	p.t.i.	and	control	animals	were	prepared.	

CA1	 pyramidal	 neurons	 were	 patch-clamped	 and	 infused	 with	 biocytin,	 which	 was	

revealedby	immunofluorescence.	Scale	bar	40	µm.	Note	the	regular	dendritic	morphology.	

(B-D)	One-second-long	current	steps	of	increasing	amplitude	were	injected	to	induce	action	

potentials	in	Drp1iΔb/iΔb	4	weeks	p.t.i.	and	control	CA1	pyramidal	neurons;	maximal	amplitude	

and	half	width	were	plotted.	Data	represent	average	±SEM	of	at	least	7	neurons.	

(E)	 Resting	 membrane	 potential	 of	 Drp1iΔb/iΔb	 4	 weeks	 p.t.i.	 and	 control	 CA1	 pyramidal	

neurons.	Data	represent	average	±SEM	of	at	least	7	neurons.	

	

Fig.	3.5	Impaired	synaptic	transmission	in	Drp1-ablated	neurons.	

	

(A)	Representative	 field	 excitatory	 postsynaptic	 potentials	 (fEPSP)	 before	 and	 after	 10s	 of	

10Hz	 stimulation.	 fEPSPs	 were	 recorded	 in	 the	 CA1	 stratum	 radiatum	 in	 Drp1iΔb/iΔb	 and	

control	hippocampal	slice	cultures	upon	Schaffer	collateral	stimulation.	

(B)	Mean	slope	of	fEPSPs	during	the	time	course	of	a	10s	10Hz	stimulation	was	plotted.	Data	

represent	average	±SEM	of	at	least	6	neurons.	

(C)	Maximal	mean	fEPSP	slope	after	10s	10Hz	stimulation.	Data	represent	average	±SEM	of	

at	least	6	neurons.	

(D)	Drp1iΔb/iΔb	4	weeks	p.t.i.	and	control	animals	were	placed	in	an	8-arm	radial	maze	which	

they	were	 left	 to	systematically	explore.	Correct	alternation	of	arm	visits	was	scored.	Data	

represent	average	±SEM	of	at	least	6	animals.	

(E)	Oxygen	consumption	rate	of	isolated	hippocampal	mitochondria	of	Drp1iΔb/iΔb	and	control	

mice	was	measured	with	a	Seahorse	Bioscience	XF24	Analyzer.	Substances	were	injected	at	

the	 indicated	 time	 points.	 Data	 represent	 average	 ±SEM	 of	 at	 least	 4	 animals	 whose	

hippocampi	were	pooled;	measurements	performed	with	at	least	6	replicates.	

(F)	 ATP	 content	 of	 isolated	 hippocampal	 mitochondria	 of	 Drp1iΔb/iΔb	 and	 control	 mice	 as	

measured	with	a	bioluminescence	assay.	Data	represent	average	±SEM	of	at	least	4	animals	

whose	hippocampi	were	pooled;	measurements	were	performed	with	at	least	8	replicates.	

(G)	 Synapses	 in	 TEM	 images	 of	 Drp1iΔb/iΔb	 4	 weeks	 p.t.i.	 and	 control	 hippocampi	 were	

screened	for	presynaptic	mitochondria.	Data	represent	average	±SEM	of	at	least	4	animals	of	

which	 at	 least	 100	 synapses	 each	 were	 screened.	 TEM	 image	 shows	 a	 representative	
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synaptic	 structure	 with	 a	 presynaptic	 mitochondrion	 (M),	 presynaptic	 vesicles	 (V)	 and	 a	

postsynaptic	dense	area	(PSD).	Scale	bar	150	nm.	Asterisks	denote	p-values	of	an	unpaired,	

two-tailed	Student’s	t-test:	*:p<0.05	

	

Fig.	3.6	Long-term	Drp1	ablation	causes	hippocampal	atrophy.	

	

(A)	Representative	camera	 lucida	drawings	and	Sholl	analysis	of	Golgi-stained	Drp1iΔb/iΔb	10	

weeks	 p.t.i.	 and	 control	 CA1	 pyramidal	 neurons.	 Each	 data	 point	 represents	 number	 of	

intersections	of	 the	dendritic	 tree	with	concentric	perisomatic	rings	of	 increasing	diameter	

(exemplified	by	dashed	circles).	Data	represent	average	±SEM	of	at	least	100	neurons.	

(B)	 Hippocampal	 volume	 was	 recorded	 on	 H&E-stained,	 serial	 coronal	 cross	 sections	 of	

Drp1iΔb/iΔb	animals	 8-weeks	 p.t.i.	 applying	 the	 Cavalieri	 principle.	 For	 cortical	 and	midbrain	

volumes,	 only	 sections	 representing	 the	 coordinates	 bregma	 1.1	 mm	 –	 (-1.2	 mm)	 were	

considered.	Data	represent	average	±SEM	of	at	least	5	animals.	

(C)	Number	of	spines	visualized	by	Golgi	staining	per	μm	dendrite	length	(apical	

dendritic	tree	of	CA1	pyramidal	neurons).	Data	represent	average	±SEM	of	at	least	3	

animals	of	which	1000	spines	were	counted.	

(D)	 Coronal	 cross	 sections	 of	 Drp1iΔb/iΔb	10	weeks	 p.t.i.	 and	 control	 brains	 co-stained	with	

presynaptic	VGLUT2	(green)	and	postsynaptic	marker	PSD95	(red).	A	150µm	x	150µm	x	5µm	

confocal	 image	 stack	 in	 the	 CA1	 stratum	 radiatum	 was	 recorded	 and	 the	 number	 of	

overlapping	puncta	was	determined.	Data	represent	average	±SEM	of	at	 least	5	animals	of	

which	4	stacks	each	were	recorded.	Scale	bar	5	µm.		Asterisks	 denote	 p-values	 of	 an	

unpaired,	two-tailed	Student’s	t-test:	*:p<0.05	

	

Fig.	3.7	Drp1	ablation	does	not	lead	to	hippocampal	neurodegeneration.	

	

(A)	H&E-staining	of	coronal	cross	sections	of	FFPE	 	Δb/iΔb		10	weeks	p.t.i.	and	control	brains	

showing	the	hippocampus	and	a	magnification	of	the	CA1	region.	Scale	bars	1	mm	(left)	and	

50	μm	(right).	

(B)	Neuronal	 nuclei	 in	 the	 CA1	 region	 were	 quantified	manually.	 Data	 represent	 average	

±SEM	of	at	least	5	animals	of	which	at	least	200	nuclei	each	were	counted.	
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(C)	 In	 situ	TUNEL	of	 coronal	 cross	 sections	of	 frozen	Drp1iΔb/iΔb	10	weeks	p.t.i.	 and	 control	

brains	 showing	 hippocampus.	 Positive	 control	 was	 preincubated	 with	 DNAse	 I;	 negative	

control	incubated	without	terminal	deoxynucleotidyl	transferase.	Scale	bar	1	mm.	

	(D)	Neuronal	nuclei	in	the	CA1	region	were	quantified	over	a	250	μm	length.	Data	represent	

average	±SEM	of	at	least	5	animals.	

	

Fig.	 3.8	 The	 antioxidant	mitoQ	 ameliorates	mitochondrial	morphology	 in	 Drp1-deficient	

CA1	and	DG	hippocampal	neurons.	

	

(A+B)	Oxidative	stress	 levels	represented	by	DHR	and	MitoSox	fluorescence	 in	cortical	and	

hippocampal	tissue	homogenates	of	Drp1iΔb/iΔb	4	weeks	p.t.i.	and	control	

mice.	Data	represent	average	±SEM	of	at	least	4	animals	(tissue	pooled)	and	measurements	

were	performed	with	a	minimum	of	4	replicates.	

(C)	TBARS	levels,	reflecting	lipid	peroxidation,	in	Drp1iΔb/iΔb	4	weeks	p.t.i.	and	control	cortical	

and	hippocampal	lysates	measured	by	colorimetric	assay.	Data	represent	average	±SEM	of	at	

least	6	animals.	

(D)	Ratio	of	oxidized	to	total	glutathione	in	hippocampal	 lysates	of	Drp1iΔb/iΔb	4	weeks	p.t.i.	

and	control	mice	measured	by	colorimetric	assay.	Data	represent	average	±SEM	of	at	least	6	

animals.	

(E)	 Drp1iΔb/iΔb	 animals	 treated	 or	 not	 with	 daily	 mitoQ	 injections	 of	 20	 mg/kg	 i.p.	 were	

sacrificed	 10	 days	 p.t.i..	 and	 coronal	 cross	 sections	 of	 FFPE	 brains	 immunostained	 for	

cytochrome	c	oxidase	subunit	1.	Mitobulbs	of	randomly	selected	areas	within	the	indicated	

hippocampal	subregions	were	quantified.	Scale	bar	10	µm.	Data	represent	average	±SEM	of	

at	 least	4	animals.	Asterisks	denote	p-values	of	an	unpaired,	 two-tailed	Student’s	 t-test.	*:	

p<0.05	

	

Supplementary	Fig.1		

(A-C)	 CamK2	 CreERT2	mice	were	 crossed	with	 a	 GFP	 reporter	 strain.	 Following	 tamoxifen	

injections	at	8	weeks	of	age,	coronal	cross	sections	of	FFPE	brains	were	immunostained	for	



	

	

	
Manuscript	

	
	 	

88	

GFP	(red)	and	incubated	with	DAPI	(blue).	Magnification	of	the	hippocampal	CA1(A);	CA3(B)	

and	DG	(C)	region.	Scale	bar	50	µm.		

(D)	 Field	 excitatory	 postsynaptic	 potentials	 (fEPSPs)	 were	 recorded	 in	 the	 CA1	 stratum	

radiatum	 in	 4-week-Drp1-ablated	 and	 control	 hippocampal	 slice	 cultures	 after	 Schaffer	

collateral	stimulation.	Mean	slope	of	fEPSPs	during	the	time	course	of	a	100Hz	stimulation.	

Data	represent	average	±SEM	of	at	least	6	neurons.	

(E)	Maximal	mean	fEPSP	slope	after	100	Hz	stimulation.	Data	represent	average	±SEM	of	at	

least	6	neurons.	

(F)	Visual	performance	of	4-week-Drp1-ablated	and	 control	mice	was	 tested	 in	 the	Morris	

Walter	tank	with	a	visible	platform.	Data	represent	average	±SEM	of	at	least	6	animals.	

(G)	Olfaction	of	4-week-Drp1-ablated	and	control	mice	was	tested	using	the	cookie	finding	

test.	The	time	required	to	find	a	cookie	hidden	inside	the	mouse`s	cage	was	measured.	Data	

represent	average	±SEM	of	at	least	6	animals.	

(H)	 Cortical	 and	 midbrain	 volumes	 were	 recorded	 on	 H&E-stained,	 serial	 coronal	 cross	

sections	 of	 8-week-Drp1-ablated	 animals	 applying	 the	 Cavalieri	 principle.	 Only	 sections	

representing	the	coordinates	bregma	1.1	mm	–	(-1.2	mm)	were	considered.	Data	represent	

average	±SEM	of	at	least	5	animals.	
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Supplementary	Fig.2		

(A)	Intraneuronal	autophagosome-like	structures	in	TEM	images	of	hippocampal	neurons	of	

Drp1iΔb/iΔb	mice	at	4	weeks	p.t.i.	were	quantified.	Data	represent	average	±SEM	of	at	least	4	

animals	 of	which	 at	 least	 100	 neurons	 each	were	 screened.	 Representative	 examples	 are	

shown.	Scale	bar	500	nm	
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Table	S1	Levels	of	glycolytic	proteins	

Protein	 Gene	 FC	 Q-Value	

Fructose-bisphosphate	aldolase	A		 Aldoa	 0.55	 0.0084	*	

Brain	protein	44	(mitochondrial	pyruvate	carrier)	 Brp44	 0.71	 0.0344	*	

Phosphoglycerate	mutase	1		 Pgam1	 0.80	 0.0468	*	

L-lactate	dehydrogenase	A	chain		 Ldha	 0.81	 0.1861	

Triosephosphate	isomerase		 Tpi1	PE	 0.82	 0.1000	

6-phosphofructokinase,	liver	type		 Pfkl	 0.85	 0.2662	

Phosphoglycerate	kinase	1		 Pgk1	 0.85	 0.3055	

6-phosphofructokinase	type	C		 Pfkp	 0.89	 0.2499	

Glucose-6-phosphate	isomerase		 Gpi	 0.89	 0.2568	

Alpha-enolase		 Eno1	 0.91	 0.2470	

Glyceraldehyde-3-phosphate	dehydrogenase		 Gapdh	 0.99	 0.8268	

Pyruvate	kinase	isozymes	M1/M2		 Pkm2	 1.00	 0.7776	

L-lactate	dehydrogenase	B	chain		 Ldhb	 1.04	 0.7919	

Solute	carrier	family	2,	facilitated	glucose	transporter	member	3		 Slc2a3	 1.08	 0.2199	

Enolase-phosphatase	E1		 Enoph1	 1.10	 0.4551	

6-phosphofructokinase,	muscle	type		 Pfkm	 1.10	 0.6907	

Bisphosphoglycerate	mutase		 Bpgm	 1.12	 0.9618	

Gamma-enolase		 Eno2	 1.17	 0.3132	

Phosphoglycerate	mutase	2		 Pgam2	 1.21	 0.5752	

Glucose	transporter	1	(GLUT1		 Slc2a1	 1.37	 0.0439	*	

Hexokinase-1		 Hk1	 4.37	 0.0016	*	

Fold	 change	 (FC)	 value	 describes	 Drp1flx/flx	 Cre+	 vs	 Drp1flx/flx	 protein	 levels	 in	 mixed	 cortical	 /hippocampal	 homogenates	 analyzed	 by	
quantitative	mass	spectrometry.	Q<0.05:*	
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Table	S2	Levels	of	autophagy	related	proteins	in	Drp1	ablated	brain	homogenates	

Protein	 Gene	 FC	 Q-Value	

Cysteine	protease	ATG4C		 Atg4c	 0.60	 0.0966	

Ragulator	complex	protein	LAMTOR3		 Lamtor3	 0.83	 0.5414	

Rapamycin-insensitive	companion	of	mTOR		 Rictor	 0.86	 0.0617	

Autophagy-related	protein	9A		 Atg9a	 0.87	 0.1119	

Hamartin		 Tsc1	 0.93	 0.8762	

Autophagy-related	protein	2	homolog	A		 Atg2a	 0.94	 0.2891	

Tuberin		 Tsc2	 0.97	 0.8646	

Autophagy-related	protein		 Atg13	 1.03	 0.5822	

Sequestosome	/	p62	 Sqstm1	 1.04	 0.8268	

Cysteine	protease	ATG4B		 Atg4b	 1.07	 0.4169	

Serine/threonine-protein	kinase	mTOR		 Mtor	 1.08	 0.3113	

Ubiquitin-like	modifier-activating	enzyme	ATG7		 Atg7	 1.09	 0.3400	

Autophagy-related	protein	2	homolog	B		 Atg2b	 1.09	 0.4264	

Microtubule-associated	proteins	1A/1B	light	chain	3A		 Map1lc3a	 1.09	 0.1735	

GTP-binding	protein	Rheb		 Rheb	 1.11	 0.5684	

Microtubule-associated	proteins	1A/1B	light	chain	3B	 Map1lc3b	 1.12	 0.2273	

Regulatory-associated	protein	of	mTOR		 Rptor	 1.13	 0.3207	

Ubiquitin-like-conjugating	enzyme	ATG3		 Atg3	 1.16	 0.0729	

Beclin-1		 Becn1	 1.17	 0.0741	

Ubiquitin-like	protein	ATG12		 Atg12	 1.20	 0.1165	

Autophagy-related	protein	16-1		 Atg16l1	 1.23	 0.0892	

Autophagy	protein	5		 Atg5	 1.33	 0.0117	*	

Fold	 change	 (FC)	 value	 describes	 Drp1flx/flx	 Cre+	 vs	 Drp1flx/flx	 protein	 levels	 in	 mixed	 cortical	 /hippocampal	 homogenates	 analyzed	 by	
quantitative	mass	spectrometry.	Q<0.05:*	
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Table	S3	Levels	of	oxidative	stress	related	proteins	in	Drp1	ablated	brain	homogenates	

Protein	 Gene	 FC	 Q-Value	

Kelch-like	ECH-associated	protein	1		 Keap1	 0.38	 0.0023	***	

Thioredoxin,	mitochondrial		 Txn2	 0.67	 0.0134	*	

Thioredoxin-dependent	peroxide	reductase,	mitochondrial		 Prdx3	 0.77	 0.0297	*	

Thioredoxin		 Txn	 0.77	 0.0286	*	

Thioredoxin	reductase	2,	mitochondrial		 Txnrd2	 0.77	 0.0964	

Multidrug	resistance-associated	protein	1		 Abcc1	 0.80	 0.5612	

Microsomal	glutathione	S-transferase	3		 Mgst3	 0.80	 0.6265	

6-phosphogluconate	dehydrogenase,	decarboxylating		 Pgd	 0.84	 0.0531	

Sulfiredoxin-1		 Srxn1	 0.85	 0.1128	

Phospholipid	hydroperoxide	glutathione	peroxidase,	mitochondrial		 Gpx4	 0.85	 0.1769	

Flavin	reductase	(NADPH)		 Blvrb	 0.86	 0.3307	

Superoxide	dismutase	[Mn],	mitochondrial		 Sod2	 0.94	 0.5272	

Glutathione	S-transferase	A2		 Gsta2	 0.94	 0.2818	

UTP--glucose-1-phosphate	uridylyltransferase		 Ugp2	 0.98	 0.9543	

Thioredoxin	reductase	1,	cytoplasmic		 Txnrd1	 0.99	 0.9485	

Thioredoxin	reductase	1,	cytoplasmic		 Txnrd1	 0.99	 0.9485	

Peroxiredoxin-2		 Prdx2	 0.99	 0.5531	

Heme	oxygenase	2		 Hmox2	 1.01	 0.7210	

Sequestosome-1		 Sqstm1	 1.04	 0.8268	

Glutathione	S-transferase	A4		 Gsta4	 1.04	 0.4437	

4-trimethylaminobutyraldehyde	dehydrogenase		 Aldh9a1	 1.07	 0.3152	

Peroxiredoxin-1		 Prdx1	 1.10	 0.5576	

Glutathione	synthetase		 Gss	 1.11	 0.1446	

Glutamate--cysteine	ligase	regulatory	subunit		 Gclm	 1.12	 0.1312	

Glutathione	peroxidase	1		 Gpx1	 1.12	 0.6620	

Retinal	dehydrogenase	1		 Aldh1a1	 1.12	 0.2235	

Glutathione	reductase,	mitochondrial		 Gsr	 1.13	 0.5022	

Transketolase		 Tkt	 1.14	 0.1258	

Glutathione	S-transferase	P	1		 Gstp1	 1.14	 0.2150	

NAD(P)H	dehydrogenase	[quinone]	1		 Nqo1	 1.15	 0.1912	

Pirin		 Pir	 1.16	 0.3966	

Superoxide	dismutase	[Cu-Zn]		 Sod1	 1.18	 0.1725	

Glucose-6-phosphate	1-dehydrogenase	X		 G6pdx	 1.21	 0.0806	

Glutathione	S-transferase	kappa	1		 Gstk1	 1.26	 0.0532	

Fatty	aldehyde	dehydrogenase		 Aldh3a2	 1.27	 0.0375	*	

Catalase		 Cat	 1.29	 0.0514	

Glutathione	S-transferase	Mu	2		 Gstm2	 1.31	 0.1557	

Glutamate--cysteine	ligase	catalytic	subunit		 Gclc	 1.32	 0.0200	*	

Glutathione	S-transferase	Mu	5		 Gstm5	 1.36	 0.0139	*	

Glutathione	S-transferase	theta-1		 Gstt1	 1.38	 0.0724		

Multidrug	resistance	protein	1A		 Abcb1a	 1.39	 0.0216	*	

Epoxide	hydrolase	1		 Ephx1	 1.39	 0.0081	**	

Glutathione	S-transferase	Mu	7		 Gstm7	 1.40	 0.0324	*	

Beta-glucuronidase		 Gusb	 1.42	 0.0552	*	

Peroxiredoxin-4		 Prdx4	 1.44	 0.0132	*	

Ferritin	heavy	chain		 Fth1	 1.48	 0.0409	*	
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Glutathione	S-transferase	omega-1		 Gsto1	 1.51	 0.0067	**	

Glutathione	S-transferase	Mu	1		 Gstm1	 2.00	 0.0120	*	

Fold	 change	 (FC)	 value	 describes	 Drp1flx/flx	 Cre+	 vs	 Drp1flx/flx	 protein	 levels	 in	 mixed	 cortical	 /hippocampal	 homogenates	 analyzed	 by	
quantitative	mass	spectrometry.	Bold	print	indicates	target	genes	of	Nrf2.	Note	that	the	Nrf2	inhibitor	Keap1	is	down	regulated.	Q<0.05:*;	
Q<0.01:**;	Q<0.005:***	
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4. Experimental	procedures	

	

	

For	 mouse	 lines,	 Western	 blot	 analysis,	 electron	 microscopy,	 immunohistochemistry	 and	

proteomics	please	refer	to	the	Materials	and	Methods	paragraph	in	the	Manuscript	section	

(3.5).	

	

4.1. Mouse	lines	

	

Drp1flx/flx	CaMK2α::CreERT2	have	been	described	in	Oettinghaus	et	al.,	2016.	Fgf21flx/flx	mice	

were	 purchased	 from	 Jackson	 Labs	 (strain	 number	 022361)	 and	 bred	 to	 Drp1flx/flx	

CaMK2α::CreERT2	for	at	least	two	generations	before	experiments.	

	

4.2. Mitochondrial	membrane	potential	measurement	

	

Mitochondria	 were	 isolated	 from	 freshly	 harvested	 hippocampus	 of	 Drp1flx/flx	 Cre+	 and	

control	 mice	 4	 weeks	 PTI,	 with	 the	 protocol	 described	 in	 Oettinghaus	 et	 al.,	 2016	

(Manuscript	section).	 Isolated	mitochondria	were	loaded	with	TMRM	and	R123	fluorescent	

dyes	 for	mitochondrial	membrane	potential	according	to	manufacturers’	 instructions,	 then	

imaged	on	a	VictorX5	multi-label	plate	reader	(PerkinElmer).	

	

4.3. Oxygraph	measurements	

	

Mitochondria	 were	 isolated	 from	 freshly-harvested	 hippocampi	 with	 a	 magnetic	 beads	

isolation	 kit	 (Miltenyi	Biotec),	 according	 to	manufacturer’s	 instructions.	 100	µg	of	 isolated	

mitochondria	(as	measured	by		total	mitochondrial	protein)	were	used.	

The	activity	of	 the	 individual	mitochondrial	 complexes	was	analyzed	using	an	Oxygraph-2k	

high-resolution	respirometer	(Oroboros	Instruments),	as	described	in	(Haegler	et	al.,	2015).	
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Briefly,	complexes	I	and	III	were	analyzed	using:	

- L-glutamate/malate	(10	and	5	mM,	respectively)	as	substrates		

- ADP	(2	mM)	

- Oligomycin	(1	µM)	to	inhibit	complex	V	

- FCCP (carbonyl	cyanide	p-(trifluoromethoxyl)-phenyl-hydrazone,	10	µM)	to	stimulate	

maximal	electron	transport	chain	activity	

- Rotenone	(0.5	μM)	as	inhibitor	of	complex	I	

- Duroquinol	(500	μM)	to	reduce	complex	III	

Complexes	II	and	IV	were	analyzed	using:		

- Succinate	 (10	 mM)	 as	 substrate	 in	 the	 presence	 of	 rotenone	 (0.5	 μM)	 to	 block	

complex	I	

- ADP	(2	mM)	

- Oligomycin	(1	µM)	to	inhibit	complex	V	

- FCCP (carbonyl	cyanide	p-(trifluoromethoxyl)-phenyl-hydrazone,	10	µM)	to	stimulate	

maximal	electron	transport	chain	activity	

- Complex	III	inhibitor	antimycin	A	(2.5	μM)	

- N,N,N’,N’-tetramethyl-p-phenylenediamine	 (TMPD)/ascorbate	 (0.5	 mM	 and	 2	 mM,	

respectively)	to	investigate	complex	IV	activity	

- 	

4.4. ER	morphology	evaluation	

	

Morphological	 analysis	 of	 ER	 and	 mitochondria	 was	 performed	 using	 Fiji.	 Minimal	

mitochondrial	radial	diameter	was	calculated	using	a	rotating	calipers	algorithm;	roundness	

of	the	ER	was	calculated	using	the	standard	Fiji	shape	descriptors.	

	

4.5. Metabolic	Measurements	

	

CLAMS	(Columbus	Instruments)	were	used	to	measure	metabolic	parameters;	Drp1flx/flx	Cre+	

and	control	mice	were	monitored	for	72	h	following	a	48-h	acclimation	period.		
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An	EcoMRI-100	qNMR	(EchoMRI	Medical	Systems)	was	used	 to	monitor	body	composition	

(i.e.	lean	versus	fat	mass)	in	mice.	

For	 the	 glucose/pyruvate	 tolerance	 test,	 mice	 9	 weeks	 PTI	 were	 starved	 overnight	 and	

injected	i.p.	with	2g/kg	glucose.	Blood	glucose	was	monitored	from	the	tail	vein	using	Accu	

Check	 Aviva	 test	 strips	 (Roche).	 For	 the	 insulin	 tolerance	 test,	 mice	 9	 weeks	 PTI	 were	

injected	i.p.	with	7.5	U/kg	 insulin	(Actrapid	Human	Insulin	A10AB01	100U/ml)	and	tail	vein	

blood	glucose	concentration	was	monitored.	

	

4.6. Western	blot	

	

Western	blot	was	performed	as	 indicated	 in	Oettinghaus	et	al.,	2016	(Manuscript	section).	

Antibodies	 used	 were	 Drp1	 (BD	 Biosciences,	 611112),	 ATF4	 (Santa	 Cruz,	 sc-200),	 Bip	 (BD	

Biosciences,	610978),	eIF2α	total	(Cell	Signaling,	5324),	eIF2α	P51	(Cell	Signaling	3398),	Akt1	

(Cell	 Signaling,	 9272),	 Akt1-P	 S473	 (Cell	 Signaling,	 4060),	 actin	 (Thermo	 Scientific;	 MA1-

91399),	Ucp1	(Abcam,	ab10983),	Hsp60	(ADI-SPA-807-E,	Enzo).	

Secondary	 antibodies	 were	 anti	 mouse-HRP	 (GE	 Healthcare;	 NA931)	 and	 anti	 rabbit	 (GE	

Healthcare;	 NA934);	 signal	 was	 detected	 with	 Amersham	 ECL	 Prime	 Western	 Blotting	

Detection	Reagent	(GE	Healthcare;	RPN2232)	in	conjunction	with	Amersham	Hyperfilm	(GE	

Healthcare;	28-9068-44)	or	the	C300	chemiluminescence	imager	(Azure).	

	

4.7. ELISA	

	

ELISA	 were	 performed	 on	 either	 serum	 or	 plasma	 samples,	 according	 to	 manufacturer’s	

instructions.	For	metabolic	hormones,	blood	was	collected	in	the	morning	between	9-10	AM	

by	tail	vein	or	heart	puncture.	

The	 following	 assays	 were	 used:	 serum	 Corticosterone:	 (Arbor	 Assays;	 K014-H1),	 T4	

(Callbiotech;	 t4044T-100),	 Leptin	 (BioVendor,	 RD291001200R),	 active	 Ghrelin	 (Millipore,	

EZRGRA-90K),	 Fgf21	 (BioVendor;	 RD291108200R),	 CRH	 (MBS727471,	 mybiosource),	 ACTH	

(M046006,	 MD	 Biosciences),	 Insulin	 (90080,	 Crystal	 Chem),	 L-amino	 acids	 (MAK002-1KT,	

Sigma).	
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4.8. Quantitative	real-time	PCR	

	

Organs	 were	 collected	 from	 PBS-perfused	 mice	 and	 RNA	 was	 isolated	 using	 Qiagen	 kits	

(RNeasy	 Lipid	 Tissue	 Kit	 for	 adipose	 tissue;	 74804,	 RNeasy	 Fibrous	 Tissue	 kit	 for	 muscle;	

74704;	RNeasy	kit	for	other	organs	74104).	Reverse-Transcription	was	performed	using	the	

High-Capacity	cDNA	Reverse	Transcription	Kit	 (Invitrogen;	4368814).	Quantitative	real-time	

PCR	was	 performed	 using	 TaqMan	 assays	 (Life	 Technologies)	 on	 a	 7900HT	 Real-Time	 PCR	

System	 (Applied	 Biosystems).	 The	 following	 Taqman	 assays	 were	 used:	 Fgf21	

(Mm00840165_g1),	 18S	 (Mm03928990_g1),	 CHOP	 (Mm01135937_g1),	 PPARα	

(m00440939_m1),	 PPARδ	 (Mm00803184_m1),	 PGC-1α	 (Mm01208835_m1),	 PGC-1β	

(Mm00504720_m1),	 ATF4	 (Mm00515325_g1),	 Akt1	 (Mm01331626_m1),	 PI3K	

(Mm00803160_m1),	Yme1l1	 (Mm00496843_m1),	 Clpp	 (Mm00489940_m1),	 Hsp10	

(Mm00434083_m1).	Cross-threshold	(Ct)	values	were	normalized	to	18S	Ct	values.	

	

4.9. Pharmacological	treatments	

	

When	 indicated,	 mice	 were	 fed	 0.4%-TUDCA-supplemented	 chow	 starting	 after	 the	 last	

tamoxifen	injection	for	the	entire	time	of	the	experiment.	

GSK2606414	was	dissolved	in	vehicle	(0.5%	hydroxypropylmethyl	cellulose	+	0.1%	Tween-80	

in	water	at	pH	4.0)	and	was	administered	by	oral	gavage,	twice	a	day	for	5	consecutive	days,	

at	a	concentration	of	50	mg/kg;	control	mice	received	only	vehicle	with	the	same	treatment	

schedule	(Moreno	et	al.,	2013).	

	

4.10. BAT	sympathectomy	

	

Adult	 mice	 (>20g	 body	 weight)	 were	 weighed	 preoperatively	 and	 anesthetized	 with	

ketamine	 and	 xylazine	 (ketamine,	 138mg/kg;	 xylazine,	 6,9mg/kg)).	 Sufficient	 narcosis	 was	

verified	by	testing	missing	pain	reflexes.	The	completely	anesthetized	mouse	was	shaved	in	

the	dorsal	neck	on	an	area	of	approx.	1	cm2	and	the	area	disinfected.		
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The	 skin	 of	 the	 disinfected	 neck	 area	 was	 incised	 in	 anterior-to-posterior	 direction	 on	 a	

length	of	1	–	1.5	cm,	and	rinsed	with	sterile	saline.	The	brown	adipose	tissue	(BAT)	is	located	

right	beneath	a	layer	of	white	adipose	tissue	(WAT).	In	order	to	be	able	to	sever	all	5	BAT-

innervating	nerves,	the	WAT	layer	was	slightly	lifted	with	a	forceps,	until	the	5-tiered	nerve	

bundle	was	exposed,	of	which	all	5	branches	were	cut,	taking	care	to	avoid	Sulzer’s	vein.		

After	denervation,	the	tissues	were	repositioned;	the	cutis	was	then	stitched	with	U-sutures.		

The	operated	mouse	was	placed	on	a	warm	pad	to	avoid	postoperative	body	temperature	

drop.	Postoperatively,	mice	 received	a	 subcutaneous	 injection	of	0.5	ml	Ringer	 solution	 to	

compensate	for	intraoperative	fluid	losses,	as	well	as	preventive	analgesia	(0.05	mg/kg	body	

weight	buprenorphine).	

For	 the	half	sympathectomy,	only	 the	nerve	bundle	 innervating	the	right	BAT	was	cut.	For	

sham-operated	mice,	the	entire	procedure	was	reproduced	up	to	the	exposure	of	the	nerve	

bundle,	after	which	tissues	were	repositioned	and	the	mouse	sutured.	

To	verify	 the	 success	of	 the	 surgery,	half-sympathectomized	mice	were	kept	at	4°C	 for	48	

hours	to	stimulate	Ucp1	expression,	then	immediately	sacrificed.	
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5. Results	
	

5.1. Drp1	 ablation	 in	 adult	mouse	 forebrain	 impairs	mitochondrial	 structure	 and	

respiratory	activity	

	

In	our	inducible	mouse	model,	tamoxifen	injection	(1	mg,	two	times	a	day,	for	5	consecutive	

days)	 at	 8	weeks	 after	 birth	 causes	 the	 ablation	 of	 the	Drp1	 gene	 only	 in	 neurons	 of	 the	

forebrain	 (Drp1flx/flx	CaMKIIα::CreERT2;	hereafter,	Drp1flx/flx	Cre+)	 (Figure	5.1	A).	 In	 line	with	

Drp1’s	role	as	a	fission	mediator,	 its	ablation	led	to	a	marked	enlargement	of	hippocampal	

mitochondria,	 which	 appeared	 rounded	 and	 clustered	 around	 neuronal	 nuclei	 already	 4	

weeks	post	tamoxifen	injection	(PTI;	Figure	5.1	B).	This	was	also	confirmed	by	ultrastructural	

analyses,	which	 showed	 that	mitochondria	 of	Drp1-ablated	 neurons	were	 larger,	 rounded	

and	 mostly	 devoid	 of	 cristae	 (Figure	 5.1	 C-E).	 The	 disorganized	 internal	 structure	

notwithstanding,	 mitochondrial	 membrane	 potential,	 as	 measured	 by	 two	 separate	

fluorescent	probes,	TMRM	and	R123	(Tetramethylrhodamine	methylesther	and	Rhodamine	

123),	was	preserved	in	mitochondria	from	hippocampus	4	weeks	PTI	(Figure	5.1	F).	

In	 line	with	 the	disorganized	 state	of	 the	cristae,	 the	activity	of	 the	 respiratory	complexes	

was	also	compromised;	specifically,	the	activity	of	complex	II	was	decreased	already	 in	the	

early	stages	of	the	phenotype	(4	weeks	PTI;	Figure	5.1	G-H),	while	all	complexes	–	I	through	

IV	–	showed	some	degree	of	impairment	at	the	end	stages	of	the	phenotype	(10	weeks	PTI;	

Figure	5.1	I-J).	

	

5.2. Drp1-ablated	mice	develop	a	catabolic	phenotype	

	

Shortly	 after	 developing	 mild	 memory	 defects	 as	 early	 as	 4	 weeks	 PTI	 (see	 manuscript	

section,	3.3.3;	(Oettinghaus	et	al.,	2016)),	Drp1-ablated	mice	experienced	a	progressive	drop	

in	body	weight	(Figure	5.2	B)	and	died	between	9	and	12	weeks	PTI	(Figure	5.2	A).	This	was	

accompanied	by	a	significant	drop	in	body	temperature	in	the	days	preceding	death	(Figure	
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5.2	C),	and	by	a	decrease,	already	4	weeks	PTI,	of	cold	tolerance,	as	indicated	by	the	inability	

to	maintain	a	physiological	body	temperature	after	4	hours	at	4°C	(Figure	5.2	D).	

Further	analyses	performed	in	CLAMS	metabolic	cages	showed	that	Drp1flx/flx	Cre+	mice	have	

a	 lower	 respiratory	exchange	 ratio	 (RER;	Figure	5.2	E),	which	 is	 the	 ratio	of	 the	volume	of	

CO2	produced	to	the	volume	of	O2	consumed.	Complete	oxidation	of	glucose	would	yield	6	

CO2	molecules	for	6	O2	molecules	consumed;	thus,	the	RER	of	an	organism	consuming	only	

glucose	 would	 be	 1.	 Conversely,	 full	 oxidation	 of	 fatty	 acid	 chains	 requires	 more	 oxygen	

molecules	than	 it	 releases	CO2,	and	therefore	β-oxidation	 lowers	the	RER.	 In	this	case,	 the	

lowering	of	the	RER	in	Drp1flx/flx	Cre+	mice	indicates	that	they	have	an	increased	preference	

for	 lipid	β-oxidation	as	fuel	source.	Accordingly,	total	body	fat	mass,	assessed	by	EchoMRI,	

was	decreased	 in	Drp1flx/flx	Cre+	mice	 (Figure	5.2	 F).	 The	 loss	of	 stored	 lipids	 could	also	be	

appreciated	 on	 the	 histological	 level,	 where	 white	 adipose	 tissue	 (WAT)	 presented	 with	

depleted	 fat	 vacuoles,	 and	 brown	 adipose	 tissue	 (BAT)	 ranged	 from	 smaller	 vacuoles	 to	

completely	 devoid	 of	 lipid	 droplets	 in	 Drp1flx/flx	 Cre+	 mice	 (Figure	 5.2	 G-H).	 Finally,	 we	

detected	increased	BAT	activity,	reflected	by	a	trend	of	increased	Ucp1	expression	10	weeks	

PTI	(Figure	5.2	I-J).	

	

5.3. Metabolic	pathways	that	regulate	fuel	choice	in	Drp1flx/flx	Cre+	mice	

	

In	order	to	elucidate	whether	the	partial	switch	in	fuel	utilization	was	due	to	a	compromised	

ability	to	metabolize	glucose,	we	performed	a	glucose	tolerance	test,	injecting	2g/kg	glucose	

and	measuring	 its	 clearance	 from	 the	 circulation	 at	 8	 weeks	 PTI.	While	 absolute	 glucose	

levels	were	decreased	in	Drp1flx/flx	Cre+	mice,	both	before	and	throughout	the	challenge,	the	

rate	and	kinetics	of	glucose	clearance	were	comparable	 (Figure	5.3	A).	Likewise,	an	 insulin	

tolerance	test	did	not	highlight	any	differences	in	insulin	sensitivity	(0.75	U/kg;	Figure	5.3	B).	

Finally,	 a	 pyruvate	 tolerance	 test	 (2g/kg	 challenge)	 revealed	 a	 non-significant	 trend	 of	

increase	 in	 hepatic	 gluconeogenesis	 (Figure	 5.3	 C).	 These	 data,	 together	 with	 the	

observation	 that	 steady-state	 insulin	 levels	 were	 comparable	 between	 Drp1flx/flx	 and	

Drp1flx/flx	Cre+	mice	(Figure	5.3	D)	rule	out	a	prominent	role	for	glucose	dysmetabolism	as	a	

cause	for	the	fuel	switch.	
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We	then	focused	on	the	regulation	of	feeding,	hypothesizing	that	diminished	nutrient	intake	

could	 alter	 fuel	 choice.	 However,	 we	 found	 food	 consumption	 to	 actually	 increase	 in	

Drp1flx/flx	Cre+	mice	 at	 7	 weeks	 PTI;	 only	 at	 the	 pre-terminal	 stages	 of	 the	 phenotype	 did	

Drp1flx/flx	Cre+	mice	decrease	 their	 food	 intake	 (Figure	5.3	E).	Accordingly,	at	10	weeks	PTI,	

satiety	hormone	leptin	was	within	normal	ranges,	while	active	ghrelin,	which	signals	hunger,	

showed	a	non-significant	trend	of	increase	in	Drp1flx/flx	Cre+	mice	(Figure	5.3	F-G).	

Finally,	we	focused	our	attention	on	hormone	systems	that	regulate	metabolism	and	energy	

expenditure.	Thyroid	hormone	T4	was	decreased	in	Drp1flx/flx	Cre+	mice,	but	only	at	10	weeks	

PTI,	which	makes	it	unlikely	that	a	thyroid	deficiency	underlies	the	early	alterations	in	energy	

metabolism	 that	 we	 report	 (Figure	 5.3	 H).	 However,	 corticosterone,	 the	 main	 circulating	

glucocorticoid	in	rodents,	was	consistently	and	significantly	increased	in	Drp1flx/flx	Cre+	mice	

from	6	weeks	PTI	(Figure	5.3	I);	possibly	due	to	negative	feedback,	corticosterone-inducing	

hormones	ACTH	and	CRH	were	not	significantly	increased	in	Drp1flx/flx	Cre+	mice	at	10	weeks	

PTI	(Figure	5.3	J-K).	

	

5.4. Drp1-ablated	brain	regions	secrete	metabolic	cytokine	Fgf21	in	an	eIF2α-ATF4-

mediated	fashion	

	

A	 plausible	 link	 between	 increased	 corticosterone	 and	 mitochondrial	 defects	 is	 Fgf21,	 a	

circulating	 cytokine	 that	 is	 canonically	 produced	 by	 the	 liver	 and	 WAT	 in	 response	 to	

starvation	 ((Fisher	 and	Maratos-Flier,	 2015);	 see	 intro	 paragraph	 1.2.1.4).	 Of	 note,	 recent	

work	has	shown	that	disrupting	mitochondrial	function	in	muscle	can	lead	to	ectopic	Fgf21	

secretion	(Suomalainen	et	al.,	2011;	Tyynismaa	et	al.,	2010);	furthermore,	Fgf21	exerts	some	

of	its	functions	by	acting	on	the	CNS	to	induce	CRH	synthesis	and	corticosterone	production,	

in	 addition	 to	 the	 activation	 of	 the	 sympathetic	 branch	 of	 the	 autonomic	 nervous	 system	

(Bookout	et	al.,	2013;	Owen	et	al.,	2014).	

Indeed,	ELISA	showed	a	very	modest,	but	significant	increase	in	circulating	Fgf21	in	Drp1flx/flx	

Cre+	mice	(Figure	5.4	A).	Though	no	expression	of	Fgf21	has	ever	been	reported	in	the	brain	

(Suomalainen	et	al.,	2011),	we	tested	by	qRT-PCR	whether	the	mitochondrial	defect	induced	

by	Drp1	ablation	could	be	the	driver	for	Fgf21	production	in	Drp1flx/flx	Cre+	mice.	Indeed,	we	

found	that	the	hippocampus	and	cortex	of	Drp1flx/flx	Cre+	mice	express	Fgf21	mRNA	from	the	
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early	stages	of	the	phenotype;	conversely,	no	change	in	Fgf21	expression	was	detected	in	its	

canonical	source	organs	(muscle,	liver	and	WAT),	nor	in	the	cerebellum,	where	the	CaMKIIα	

promoter	is	not	active	(Figure	5.4	B).	

Having	ascertained	the	source	of	the	circulating	Fgf21,	we	set	out	to	identify	the	mechanism	

mediating	 its	 transcription;	 among	 the	 transcription	 factors	 known	 to	 control	 Fgf21	

expression,	only	ATF4	was	upregulated	 in	Drp1-ablated	brains	 (Figure	5.4	C).	Western	Blot	

analyses	 further	 confirmed	 that	 AKT1,	 one	 of	 the	 candidate	 activators	 of	 Fgf21	 synthesis,	

was	not	phosphorylated	(Figure	5.4	D-E).	

ATF4	 is	 a	 transcription	 factor	 and	 a	 crucial	 node	 in	 the	 integrated	 stress	 response,	which	

responds	to	different	forms	of	stress	via	a	decrease	in	global	translation	and	the	activation	of	

specific	 transcriptional	 programs	 aimed	 at	 damage	 control	 (Donnelly	 2013).	 Eukaryotic	

translation	initiation	factor	2α	(eIF2α)	phosphorylation	is	the	checkpoint	upstream	of	ATF4	

that	regulates	its	expression:	phosphorylated	eIF2α	hampers	binding	of	the	ribosome	to	the	

translation	 initiation	 complex,	 inhibiting	 translation	 of	 most	 mRNAs;	 however,	 ATF4	 and	

other	 stress	 response	 mRNAs	 possess	 upstream	 open	 reading	 frames	 (uORFs)	 that	 allow	

them	to	be	preferentially	translated	only	when	eIF2α	is	phosphorylated.	

Through	 Western	 Blot	 analysis,	 we	 confirmed	 both	 the	 ATF4	 increase	 and	 the	

phosphorylation	of	eIF2α	in	the	hippocampi	of	Drp1flx/flx	Cre+	mice	(Figure	5.4	F-H);	the	same	

pattern	was	observed	for	the	cortex	(data	not	shown).	Furthermore,	canonical	ATF4	target	

gene	 CHOP	 underwent	 an	 upregulation	 similar	 to	 that	 of	 Fgf21	 in	 the	 hippocampus	 and	

cortex	of	Drp1flx/flx	Cre+	mice	(Figure	5.4	I).	

	

Four	different	eIF2α	kinases	are	known,	reflecting	different	stress	conditions	that	trigger	the	

ISR.	 PERK	 responds	 to	 ER	 stress,	 in	 the	 form	 of	 misfolded	 proteins.	 General	 Control	

Nonderepressible	 2	 (GCN2)	 is	 a	 sensor	 for	 amino	 acid	 deficiency,	 and	 it	 is	 activated	 by	

uncharged	tRNAs.	PKR	is	activated	by	double-stranded	RNAs,	and	it	signals	viral	infections;	of	

note,	 it	has	also	been	 reported	 to	 transduce	 the	mitochondrial	unfolded	protein	 response	

(Rath	et	al.,	2012).		Finally,	HRI	becomes	activated	in	the	absence	of	heme	(Donnelly	et	al.,	

2013).	
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All	four	kinases	phosphorylate	eIF2α	on	the	same	residue,	Ser51,	and	antibodies	that	detect	

the	activation	of	the	upstream	kinases	did	not	prove	to	be	sensitive	enough	to	be	used	on	

brain	 tissue,	 even	 after	 phospho-protein	 enrichment	 (data	 not	 shown);	 therefore,	 the	

detection	of	 the	arm(s)	of	 the	 ISR	 that	are	 responsible	 for	eIF2α	phosphorylation	must	be	

achieved	through	the	identification	of	the	upstream	stress	that	triggers	the	cascade.	

	

5.5. Drp1	ablation	in	neurons	causes	ER	stress	

	

Given	the	close	physical	and	functional	connection	that	mitochondria	share	with	the	ER,	we	

first	 focused	 on	 this	 organelle.	 Evaluation	 of	 EM	 images	 from	 hippocampus	 4	 weeks	 PTI	

revealed	that	the	rough	ER	(rER)	 in	Drp1flx/flx	Cre+	brains	 is	round	and	swollen,	much	unlike	

the	flat	rER	cisternae	in	their	Drp1flx/flx	counterparts	(Figure	5.5	A-B).	

In	addition,	ER	stress	marker	Bip/GRP78	was	upregulated	in	Drp1flx/flx	Cre+	mice	as	early	as	4	

weeks	 PTI,	 and	 remained	 increased	 in	 the	 later	 stages	 of	 the	 phenotype	 (Figure	 5.5	 C-D).	

Taken	 together,	 these	data	 indicate	 that	 throughout	 the	phenotype	a	 response	against	ER	

stress	is	active	in	Drp1flx/flx	Cre+	brains.	

	

5.6. Pharmacological	inhibition	of	ER	stress	does	not	prevent	Fgf21	expression	

	

In	 order	 to	 verify	 the	 contribution	 of	 ER	 stress	 to	 the	 cascade	 that	 results	 in	 Fgf21	

expression,	 we	 treated	 the	 mice	 with	 orally-bioavailable	 chemical	 chaperone	

tauroursodeoxycholic	 acid	 (TUDCA,	 0.4%-supplemented	 chow,	 from	 tamoxifen	 injection	

throughout	 the	phenotype;	 (Lo	et	 al.,	 2013)).	However,	while	 TUDCA	 treatment	did	 lower	

Bip	and	P-eIF2α	levels	in	both	genotypes,	confirming	its	brain	localization	and	activity,	eIF2α	

phosphorylation	 remained	 higher	 in	 TUDCA-treated	 Drp1flx/flx	 Cre+	 mice	 compared	 to	

Drp1flx/flx	 (Figure	 5.6	 A-C).	 Furthermore,	 weight	 monitoring	 showed	 no	 improvement	 of	

TUDCA-treated	 Drp1flx/flx	 Cre+	 mice	 (Figure	 5.6	 D).	 Accordingly,	 Fgf21	 mRNA	 expression	

remained	elevated	in	TUDCA-treated	brains,	as	did	that	of	ATF4	target	gene	CHOP,	though	to	

a	lesser	extent	than	Fgf21	(Figure	5.6	E-F).	
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Given	that	TUDCA	is	a	chemical	with	a	broad	spectrum	of	activity,	and	that	it	can	also	have	

antioxidant	 effects,	 we	 chose	 to	 repeat	 the	 rescue	 experiment	 with	 a	 targeted	 PERK	

inhibitor,	GSK2606414	(hereafter,	GSK),	which	has	been	reported	to	decrease	ER	stress	in	a	

mouse	 model	 of	 prion	 disease	 (Moreno	 et	 al.,	 2013).	 In	 addition,	 as	 sustained	 systemic	

inhibition	 of	 the	 ER	 stress	 response	 can	 have	 repercussions	 on	 normal	 physiology,	 we	

treated	mice	7	weeks	PTI	for	5	consecutive	days	(50	mg/kg,	every	12	hours).	Nevertheless,	

weight	 monitoring	 again	 showed	 a	 strong	 negative	 effect	 of	 GSK	 treatment	 on	 mouse	

viability,	with	a	10%	loss	over	less	than	a	week	(Figure	5.6	G).	Indeed,	while	GSK	treatment	

did	 slightly	decrease	eIF2α	 phosphorylation	and	ATF4	 (Figure	5.6	H-K),	 it	 failed	 to	prevent	

the	 increase	 in	Fgf21	and	CHOP	mRNA	(Figure	5.6	L-M),	 indicating	 that	 the	 ISR	pathway	 is	

still	active	in	Drp1flx/flx	Cre+	brains	in	the	presence	of	PERK	inhibitor	GSK.	

Overall,	while	ER	stress	certainly	is	present	in	Drp1flx/flx	Cre+	brains,	its	inhibition	alone	is	not	

sufficient	to	prevent	Fgf21	expression	and	phenotype	onset,	suggesting	that	one	or	more	of	

the	other	ISR	branches	may	be	contributing	to	the	cellular	response	to	Drp1	ablation.	

	

5.7. Lack	 of	mtUPR	 activation	 and	 evidence	 for	 amino	 acid	 deprivation	 and	 iron	

handling	alterations	in	Drp1flx/flx	Cre+	mice	

	

Considering	the	effect	of	Drp1	ablation	on	mitochondrial	energy	production	(Figure	5.1	F-H)	

and	internal	structure	(Figure	5.1	C-E),	it	is	conceivable	that	mitochondrial	translation	would	

be	impaired,	resulting	in	the	accumulation	of	unfolded	proteins	and	activation	of	the	mtUPR.	

mtUPR	 is	 a	 recently-discovered,	mitochondria-specific	 response	 to	 proteotoxic	 stress,	 the	

relevance	 of	which	 has	 so	 far	 only	 been	 demonstrated	 in	 vitro	 in	mammals;	 of	 note,	 the	

central	 regulator	of	mammalian	mtUPR	 is	 transcription	 factor	CHOP	 ((Mottis	 et	 al.,	 2014);	

see	1.1.3.2).	However,	 this	was	not	the	case:	at	10	weeks	PTI,	protein	 levels	of	Hsp60	and	

mRNA	levels	of	Hsp10,	ClpP	and	Yme1l	were	unchanged	between	Drp1flx/flx	and	Drp1flx/flx	Cre+	

brains	(Figure	5.7	A-C).	
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Table	5.1	mtUPR-related	genes	from	proteomics,	10	weeks	PTI.	Asterisks	denote	q	values	as	follows.	*:	p<0.05;	**:	p<0.01;	
***:	p<0.001.	

In	order	to	gain	a	better	insight	in	the	cellular	processes	taking	place	in	Drp1flx/flx	Cre+	brains,	

we	performed	 total	 proteomics	 analysis	on	pooled	hippocampi	 and	 cortices	 from	mice	10	

weeks	 PTI.	 Analysis	 of	mtUPR-associated	 proteins	 confirmed	 that	 no	mtUPR	 is	 in	 place	 in	

Drp1flx/flx	 Cre+	 mice	 10	 weeks	 PTI,	 with	 two	 out	 of	 four	 genes	 being	 even	 significantly	

decreased	(Table	5.1).		

	

We	then	evaluated	the	role	of	amino	acid	deprivation	in	ISR	activation;	mitochondria	are	an	

important	biosynthetic	hub	 for	de	novo	amino	acid	production,	which	may	be	affected	by	

Drp1	ablation	 and	 the	ensuing	energy	defects.	Additionally,	 though	neurons	preferentially	

oxidize	 glucose	 to	 produce	 ATP,	 they	 may	 turn	 to	 alternative	 fuel	 sources	 when	 under	

energetic	 stress.	Total	amino	acid	content	 revealed	 that	while	 the	hippocampus	showed	a	

moderate	 decrease	 in	 amino	 acids,	 they	 were	 significantly	 increased	 in	 the	 cortex	 of	

Drp1flx/flx	Cre+	mice	(Figure	5.7	D).		

In	addition,	among	 the	significantly	different	hits	 in	our	proteomics	analysis,	we	 identified	

aminoacyl-tRNA	 synthetases	 as	 enriched,	with	 a	 remarkable	 distribution:	 80%	 of	 cytosolic	

aminoacyl-tRNA	 synthetases	 were	 significantly	 upregulated	 in	 Drp1flx/flx	 Cre+	 brains,	 while	

their	mitochondrial	counterparts	were	mostly	downregulated	(Figure	5.7	E).	While	this	is	not	

conclusive	evidence	that	amino	acid	deprivation	is	occurring	in	Drp1flx/flx	Cre+	brains,	it	does	

suggest	that	alterations	in	amino	acid	metabolism	occur	upon	Drp1	ablation.	

	

Finally,	 we	 considered	 heme	metabolism,	 as	 a	 large	 fraction	 of	 the	 biosynthetic	 pathway	

that	 produces	 heme	 resides	 within	 mitochondria,	 and	 it	 exploits	 the	 mitochondrial	

ID	 Protein	 Gene	 FC	 Q-Value	

Q64433	 10	kDa	heat	shock	protein,	mitochondrial	(Hsp10)	 Hspe1	 0.98	 0.6229	

P63038	 60	kDa	heat	shock	protein,	mitochondrial	(Hsp60)	 Hspd1	 0.85	 0.0185	*	

Q9JHS4	
ATP-dependent	Clp	protease	ATP-binding	subunit	clpX-like,	

mitochondrial	(ClpP)	
Clpx	 0.85	 0.0422	*	

Q99M87	 DnaJ	homolog	subfamily	A	member	3,	mitochondrial	 Dnaja3	 0.91	 0.2022	
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membrane	 potential	 to	 carry	 iron	 atoms	 across	 the	 IMM.	 Indeed,	 coproporphyrinogen-III	

oxidase	 and	 ferrochelatase,	 two	 mitochondria-localized	 components	 of	 the	 heme	

biosynthetic	pathway,	were	downregulated,	as	was	frataxin	(Table	5.2).		

	

ID	 Protein	 Gene	 FC	 Q-Value	

P10518	 Delta-aminolevulinic	acid	dehydratase	 Alad	 1.00	 0.5238	

P22315	 Ferrochelatase,	mitochondrial	 Fech	 0.78	 0.0071	**	

O35943	 Frataxin,	mitochondrial	 Fxn	 0.85	 0.0125	*	

P36552	
Oxygen-dependent	 coproporphyrinogen-III	 oxidase,	

mitochondrial	
Cpox	 0.77	 0.0148	*	

P22907	 Porphobilinogen	deaminase	 Hmbs	 1.06	 0.1691	

P51175	 Protoporphyrinogen	oxidase	 Ppox	 0.91	 0.1215	

Q8CAK1	 Putative	transferase	CAF17	homolog,	mitochondrial	 Iba57	 0.90	 0.0887	

Q9CQN6	 Transmembrane	protein	14C	 Tmem14c	 1.05	 0.4674	

P70697	 Uroporphyrinogen	decarboxylase	 Urod	 0.85	 0.1122	

P51163	 Uroporphyrinogen-III	synthase	 Uros	 0.85	 0.1815	

Table	5.2	Heme-related	genes	from	proteomics,	10	weeks	PTI.	Asterisks	denote	q	values	as	follows.	*:	p<0.05;	**:	p<0.01;	
***:	p<0.001.	

Of	note,	iron	storage	protein	ferritin	H	was	significantly	upregulated	in	Drp1flx/flx	Cre+	brains	

(Table	5.3).	

	

ID	 Protein	 Gene	 FC	 Q-Value	

P09528	 Ferritin	heavy	chain	 Fth1	 1.27	 0.0409	*	

P29391	 Ferritin	light	chain	1	 Ftl1	 1.04	 0.2494	

O35943	 Frataxin,	mitochondrial	 Fxn	 0.85	 0.0125	*	

Table	5.3	Iron	storage-related	genes	from	proteomics,	10	weeks	PTI.	Asterisks	denote	q	values	as	follows.	*:	p<0.05;	**:	
p<0.01;	***:	p<0.001.	

	

Therefore,	we	conclude	that	a	combination	of	impaired	amino	acid	and	iron	metabolism,	in	

addition	to	ER	stress,	may	contribute	to	the	activation	of	the	 integrated	stress	response	 in	

Drp1flx/flx	Cre+	mice.	
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5.8. Genetic	rescue	

	

Given	the	complexity	of	 the	catabolic	phenotype	caused	by	Drp1	ablation	 in	 the	brain,	we	

sought	to	verify	whether	Fgf21	was	indeed	the	only	mediator	of	the	spectrum	of	metabolic	

alterations	 we	 observed.	 To	 this	 end,	 we	 crossed	 Drp1flx/flx	 Cre+	 mice	 to	 Fgf21flx/flx	 mice,	

generating	triple	transgenic	mice	where	recombination	of	both	Fgf21	and	Drp1	was	driven	

by	tamoxifen-inducible	Cre,	expressed	under	the	control	of	the	CaMKIIα	promoter	(Drp1flx/flx,	

Fgf21flx/flx,	CaMKIIα::CreERT2,	hereafter	Drp1flx/flx	Fgf21flx/flx	Cre+).	As	for	double	transgenics,	

Drp1flx/flx	 Fgf21flx/flx	 Cre+	mice	 were	 injected	 with	 tamoxifen	 8	 weeks	 after	 birth,	 and	 their	

progress	monitored.	

Survival	 analysis	 revealed	 no	 significant	 change	 in	 viability	 between	 double	 and	 triple	

transgenics	 (Figure	 5.8	 A).	 On	 the	 other	 hand,	 body	 weight	 was	moderately	 improved	 in	

Drp1flx/flx	Fgf21flx/flx	Cre+	mice	compared	to	Drp1flx/flx	Cre+	mice	(Figure	5.8	B).	

qRT-PCR	 analysis	 in	 brain	 showed	 a	 significant	 decrease	 of	 Fgf21	 in	 the	 hippocampi	 of	

Drp1flx/flx	Fgf21flx/flx	Cre+	mice;	there	was,	however,	some	residual	expression,	which	may	still	

be	able	to	drive	the	phenotype	(Figure	5.8	C).	Of	note,	CHOP	expression	was	not	affected	by	

the	deletion	of	Fgf21	in	the	triple	transgenics	(Figure	5.8	D).	
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5.9. Figures	
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Figure	5.1	Mitochondrial	morphology	and	function	in	Drp1-ablated	neurons	

	

(A)	 Tamoxifen-induced	 Drp1	 ablation.	 Lysates	 of	 hippocampus	 and	 cortex	 from	 Drp1flx/flx	

and	Drp1flx/flx	Cre+	mice	were	separated	by	SDS-PAGE	and	immunoblotted	with	the	indicated	

antibodies.	

(B)	Mitochondrial	morphology	after	Drp1	ablation.	Representative	images	of	CA1	pyramidal	

neurons	 from	 of	 Drp1flx/flx	 and	 Drp1flx/flx	 Cre+	 mice	 4	 weeks	 PTI	 immunostained	 for	

cytochrome	c	oxidase	subunit	1	(green)	and	with	DAPI	(blue).	Scale	bar:	10	μm.	

(C)	 Mitochondrial	 ultrastructure	 after	 Drp1	 ablation.	 Representative	 TEM	 images	 of	

mitochondria	of	hippocampal	neurons	of	Drp1flx/flx	and	Drp1flx/flx	Cre+	mice	4	weeks	PTI.	“N”	

indicates	the	nucleus	and	“M”	indicates	mitochondria.	Scale	bar:	1	μm.	

(D)	Smallest	radial	diameter.	Mitochondria	from	TEM	images	of	Drp1flx/flx	and	Drp1flx/flx	Cre+	

mice	 4	weeks	 PTI	 were	measured.	 Data	 represent	 average	 ±SEM	 of	 at	 least	 4	 animals	 of	

which	at	least	100	mitochondria	were	measured.	

(E)	Mitochondria	with	abnormal	cristae.	TEM	images	from	Drp1flx/flx	and	Drp1flx/flx	Cre+	mice	

4	weeks	PTI	were	evaluated	for	abnormal	mitochondria.	Data	represent	average	±SEM	of	at	

least	4	animals	of	which	at	least	100	mitochondria	were	scored.	

(F)	Mitochondrial	membrane	potential.	Fluorescence	intensity	of	mitochondrial	membrane	

potential	 probes	 TMRM	 and	 R123,	 in	 mitochondria	 isolated	 from	 hippocampus	 from	

Drp1flx/flx	and	Drp1flx/flx	Cre+	mice	4	weeks	PTI.	Please	note	the	double	Y	axis;	kFU:	thousands	

of	fluorescence	units.	Data	represent	average	±SEM	of	4	animals.	

(G-J)	Respiratory	complexes	activity.	Isolated	mitochondria	from	Drp1flx/flx	and	Drp1flx/flx	Cre+	

mice	4	and	10	weeks	PTI	were	assayed	for	oxygen	consumption	upon	sequential	addition	of	

the	 indicated	 substrates.	 Mal/Glut	 –	 Malate	 and	 Glutamate;	 Oligo	 –	 Oligomycin;	 Rot	 –	

Rotenone;	Duro	–	Duroquinone;	Succ/Rot	–	Succinate	and	Rotenone;	AntiA	–	Antimycin	A;	

Asc	–	Ascorbate.	For	concentrations,	please	refer	to	the	Experimental	Procedures	section.	

Asterisks	 denote	 p	 values	 of	 an	 unpaired,	 two-tailed	 Student’s	 t	 test;	 in	 case	 of	 multiple	

comparisons,	 one-way	 ANOVA	 followed	 by	 Dunnett’s	 or	 Sidak’s	 post	 hoc	 method	 was	

applied.	*:	p<0.05;	**:	p<0.01;	***:	p<0.001.	
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Figure	5.1	
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Figure	5.2	Macroscopic	metabolic	alterations	in	Drp1flx/flx	Cre+	mice	

	

(A)	 Mouse	 viability	 after	 Drp1	 ablation.	 Kaplan-Meier	 plot	 of	 Drp1flx/flx	and	 Drp1flx/flx	Cre+	

mice.	At	least	15	mice	per	group	were	monitored.	

(B)	 Body	weight	monitoring	 after	 Drp1	 ablation.	 Sex-sorted	body	weight	of	Drp1flx/flx	and	

Drp1flx/flx	Cre+	mice	at	the	indicated	time	points.	Data	represent	average	±SEM	of	at	 least	6	

animals.	

(C)	Body	 temperature	monitoring	after	Drp1	ablation.	Body	temperature	of	Drp1flx/flx	Cre+	

mice	plotted	as	a	function	of	time	before	death.	Data	represent	average	±SEM	of	at	least	8	

animals.	

(D)	 Cold	 resistance	 test.	Body	temperature	of	Drp1flx/flx	and	Drp1flx/flx	Cre+	mice	before	and	

after	4	hours	at	4°C.	Data	represent	average	±SEM	of	at	least	6	animals.	

(E)	Respiratory	exchange	 ratio.	Drp1flx/flx	and	Drp1flx/flx	Cre+	mice	were	tested	for	metabolic	

parameters	in	CLAMS	cages	4	weeks	PTI.	Data	represent	average	±SEM	of	at	least	8	animals.	

(F)	Body	 fat	percentage.	Drp1flx/flx	and	Drp1flx/flx	Cre+	mice	4	weeks	PTI	were	tested	for	lean	

and	fat	mass	in	an	EchoMRI.	Data	represent	average	±SEM	of	at	least	8	animals.	

(G-H)	 Histology	 of	WAT	 (G)	 and	 BAT	 (H).	H&E	 staining	of	 FFPE	white	 and	brown	adipose	

tissue	 sections	 of	 Drp1flx/flx	 and	 Drp1flx/flx	 Cre+	 mice	 was	 performed	 10	 weeks	 PTI.	 White	

adipose	 tissue	 was	 classified	 by	 cell	 size	 and	 brown	 adipose	 tissue	 by	 vacuole	 size	 in	 a	

blinded	fashion.	Chi-square	test	for	trend	analysis	was	performed.	WAT,	p	=	0.0075;	BAT,	p	=	

0.0249.	

(I)	BAT	activation.	Lysates	of	BAT	from	Drp1flx/flx	and	Drp1flx/flx	Cre+	mice	10	weeks	PTI	were	

separated	by	SDS-PAGE	and	immunoblotted	with	the	indicated	antibodies.	

(J)	 UCP1	 quantification.	 Relative	 intensity	 of	UCP1	 and	 actin	 bands	were	measured.	 Data	

represent	average	±SEM	of	at	least	5	animals.	

Asterisks	 denote	 p	 values	 of	 an	 unpaired,	 two-tailed	 Student’s	 t	 test;	 in	 case	 of	 multiple	

comparisons,	 one-way	 ANOVA	 followed	 by	 Dunnett’s	 or	 Sidak’s	 post	 hoc	 method	 was	

applied.	*:	p<0.05;	**:	p<0.01;	***:	p<0.001.	
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	Figure	5.2	



	

	

	
Results	

	
	 	

124	

Figure	5.3	Clinical	chemistry	and	hormones	in	Drp1flx/flx	Cre+	mice	

	

(A)	 Glucose	 tolerance	 test.	 Drp1flx/flx	 and	 Drp1flx/flx	 Cre+	 mice	 10	 weeks	 PTI	 were	 starved	

overnight	and	 injected	with	2	g/kg	glucose,	and	 their	glucose	 levels	were	measured	 in	 tail	

vein	blood	at	the	indicated	time	points.	Data	represent	average	±SEM	of	at	least	7	animals.	

(B)	 Insulin	 tolerance	 test.	 Drp1flx/flx	 and	 Drp1flx/flx	 Cre+	 mice	 10	 weeks	 PTI	 were	 starved	

overnight	and	injected	with	7.5	U/kg	glucose,	and	their	glucose	levels	were	measured	in	tail	

vein	blood	at	the	indicated	time	points.	Data	represent	average	±SEM	of	at	least	5	animals.	

(C)	 Pyruvate	 tolerance	 test.	 Drp1flx/flx	 and	 Drp1flx/flx	 Cre+	 mice	 9	 weeks	 PTI	 were	 starved	

overnight	and	injected	with	2	g/kg	pyruvate,	and	their	glucose	levels	were	measured	in	tail	

vein	blood	at	the	indicated	time	points.	Data	represent	average	±SEM	of	at	least	5	animals.	

(D)	Plasma	insulin.	ELISA	measurement	of	plasma	insulin	levels	in	Drp1flx/flx	and	Drp1flx/flx	Cre+	

mice	 10	 weeks	 PTI.	 Positive	 control	 represents	 Drp1flx/flx	 mice	 starved	 overnight.	 Data	

represent	average	±SEM	of	at	least	7	animals.	

(E)	 Food	 intake	monitoring.	 Drp1flx/flx	and	Drp1flx/flx	Cre+	mice	were	housed	 in	 single	 cages	

and	 their	 food	 intake	 monitored	 at	 the	 indicated	 time	 point.	 Food	 consumption	 was	

normalized	to	body	weight.	Data	represent	average	±SEM	of	at	least	4	animals.	

(F-G)	 Plasma	 leptin	 (F)	 and	 ghrelin	 (G).	 ELISA	measurement	 of	 plasma	 leptin	 and	 ghrelin	

levels	 in	Drp1flx/flx	and	Drp1flx/flx	Cre+	mice	10	weeks	PTI.	Data	represent	average	±SEM	of	at	

least	4	animals.	

(H-I)	 Serum	 T4	 (H)	 and	 corticosterone	 (I).	 ELISA	 measurement	 of	 serum	 T4	 and	

corticosterone	 levels	 in	Drp1flx/flx	and	Drp1flx/flx	Cre+	mice	at	 the	 indicated	 time	points.	Data	

represent	average	±SEM	of	at	least	4	animals.	

(J-K)	Plasma	CRH	 (J)	 and	ACTH	 (K).	ELISA	measurement	of	plasma	CRH	and	ACTH	levels	 in	

Drp1flx/flx	and	Drp1flx/flx	Cre+	mice	10	weeks	PTI.	Data	 represent	 average	±SEM	of	 at	 least	 4	

animals.	

Asterisks	 denote	 p	 values	 of	 an	 unpaired,	 two-tailed	 Student’s	 t	 test;	 in	 case	 of	 multiple	

comparisons,	 one-way	 ANOVA	 followed	 by	 Dunnett’s	 or	 Sidak’s	 post	 hoc	 method	 was	

applied.	*:	p<0.05;	**:	p<0.01;	***:	p<0.001.	
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Figure	5.3	
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Figure	5.4	Production	of	Fgf21	in	Drp1flx/flx	Cre+	mice	

	

(A)	Plasma	Fgf21.	ELISA	measurement	of	plasma	Fgf21	levels	 in	Drp1flx/flx	and	Drp1flx/flx	Cre+	

mice	at	the	indicated	time	points.	Data	represent	average	±SEM	of	at	least	3	animals.	

(B)	Fgf21	expression	in	different	organs.	qRT-PCR	analysis	was	performed	on	the	indicated	

organs	and	brain	areas	to	assay	for	Fgf21	expression	at	the	 indicated	time	points.	Fgf21	ct	

values	were	normalized	against	18S	rRNA	ct	values.	Data	represent	average	±SEM	of	at	least	

4	animals.	

(C)	Transcription	factor	expression	in	the	hippocampus.	qRT-PCR	analysis	was	performed	on	

hippocampi	 from	Drp1flx/flx	and	Drp1flx/flx	Cre+	mice	 10	weeks	 PTI	 to	 assay	 for	 transcription	

factor	 expression.	 mRNA	 ct	 values	 were	 normalized	 against	 18S	 rRNA	 ct	 values.	 Data	

represent	average	±SEM	of	at	least	4	animals.	

(D)	AKT	activation.	Lysates	of	hippocampus	from	Drp1flx/flx	and	Drp1flx/flx	Cre+	mice	10	weeks	

PTI	were	separated	by	SDS-PAGE	and	immunoblotted	with	the	indicated	antibodies.	

(E)	 Phospho-AKT	 quantification.	 Relative	 intensity	of	AKT	P473	and	 total	AKT	bands	were	

measured.	Data	represent	average	±SEM	of	at	least	4	animals.	

(F)	 Integrated	 stress	 response	 activation.	 Lysates	 of	 hippocampus	 from	 Drp1flx/flx	 and	

Drp1flx/flx	Cre+	mice	 4	 and	 10	weeks	 PTI	were	 separated	 by	 SDS-PAGE	 and	 immunoblotted	

with	the	indicated	antibodies.	

(G-H)	Phospho-eIF2α 	(G)	and	ATF4	(H)	quantification.	Relative	intensity	of	P-eIF2α	and	total	

eIF2α	 bands	 and	 of	 ATF4	 and	 actin	 bands,	 respectively,	 were	 measured.	 Data	 represent	

average	±SEM	of	at	least	4	animals.	

(I)	CHOP	expression	in	brain.	qRT-PCR	analysis	was	performed	on	the	indicated	brain	areas	

to	assay	for	CHOP	expression	at	the	indicated	time	points.	Fgf21	ct	values	were	normalized	

against	18S	rRNA	ct	values.	Data	represent	average	±SEM	of	at	least	4	animals.	

Asterisks	 denote	 p	 values	 of	 an	 unpaired,	 two-tailed	 Student’s	 t	 test;	 in	 case	 of	 multiple	

comparisons,	 one-way	 ANOVA	 followed	 by	 Dunnett’s	 or	 Sidak’s	 post	 hoc	 method	 was	

applied.	*:	p<0.05;	**:	p<0.01;	***:	p<0.001.	
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Figure	5.4	
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Figure	5.5	ER	stress	in	Drp1flx/flx	Cre+	mice	

	

(A)	ER	ultrastructure	after	Drp1	ablation.	Representative	TEM	images	of	ER	of	hippocampal	

neurons	of	Drp1flx/flx	and	Drp1flx/flx	Cre+	mice	4	weeks	PTI.	“N”	indicates	the	nucleus	and	“M”	

indicates	mitochondria.	Arrows	indicate	ER.	Scale	bar:	1	μm.	

(B)	ER	circularity.	Evaluation	of	the	circularity	of	ER	structures	in	hippocampi	of	Drp1flx/flx	and	

Drp1flx/flx	Cre+	mice	based	on	 the	 formula	 (4π	 *	Area)/Perimeter2	.	Data	 represent	 average	

±SEM	of	at	least	4	animals	of	which	rER	structures	of	at	least	50	neurons	were	measured.	

(C)	 ER	 stress	 activation.	 Lysates	of	hippocampus	 from	Drp1flx/flx	and	Drp1flx/flx	Cre+	mice	10	

weeks	PTI	were	separated	by	SDS-PAGE	and	immunoblotted	with	the	indicated	antibodies.	

(D)	 Bip	 quantification.	 Relative	 intensity	 of	 Bip	 and	 actin	 bands	 were	 measured.	 Data	

represent	average	±SEM	of	at	least	4	animals.	

Asterisks	 denote	 p	 values	 of	 an	 unpaired,	 two-tailed	 Student’s	 t	 test;	 in	 case	 of	 multiple	

comparisons,	 one-way	 ANOVA	 followed	 by	 Dunnett’s	 or	 Sidak’s	 post	 hoc	 method	 was	

applied.	*:	p<0.05;	**:	p<0.01;	***:	p<0.001.	
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Figure	5.5	
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Figure	5.6	Pharmacological	ER	stress	rescue	

	

(A)	 ER	 stress	 response	 activation	 after	 TUDCA	 treatment.	 Lysates	 of	 hippocampus	 from	
Drp1flx/flx	 and	 Drp1flx/flx	 Cre+	 mice	 10	 weeks	 PTI	 with	 or	 without	 TUDCA	 treatment	 were	
separated	by	SDS-PAGE	and	immunoblotted	with	the	indicated	antibodies.	
(B)	 Bip	 quantification.	 Relative	 intensity	 of	 Bip	 and	 actin	 bands	 were	 measured.	 Data	
represent	average	±SEM	of	at	least	4	animals.	
(C)	Weight	monitoring	during	TUDCA	treatment.	Percent	change	of	body	weight	is	plotted	
as	a	function	of	time	for	Drp1flx/flx	and	Drp1flx/flx	Cre+	mice	with	or	without	TUDCA	treatment.	
Data	represent	average	±SEM	of	at	least	5	animals.	
(D)	Phospho-eIF2α 	quantification.	Relative	intensity	of	P-eIF2α	and	total	eIF2α	bands	were	
measured.	Data	represent	average	±SEM	of	at	least	4	animals.	
(E)	 Fgf21	 expression	 after	 TUDCA	 treatment.	 qRT-PCR	 analysis	 was	 performed	 on	
hippocampus	 from	 Drp1flx/flx	and	 Drp1flx/flx	Cre+	mice	with	 or	 without	 TUDCA	 treatment	 to	
assay	for	Fgf21	expression	10	weeks	PTI.	Fgf21	ct	values	were	normalized	against	18S	rRNA	
ct	values.	Data	represent	average	±SEM	of	at	least	4	animals.	
(F)	 CHOP	 expression	 after	 TUDCA	 treatment.	 qRT-PCR	 analysis	 was	 performed	 on	
hippocampus	 from	 Drp1flx/flx	and	 Drp1flx/flx	Cre+	mice	with	 or	 without	 TUDCA	 treatment	 to	
assay	for	CHOP	expression	10	weeks	PTI.	CHOP	ct	values	were	normalized	against	18S	rRNA	
ct	values.	Data	represent	average	±SEM	of	at	least	4	animals.	
(G)	Weight	monitoring	during	GSK	treatment.	Percent	change	of	body	weight	after	5-days	
GSK	treatment	in	Drp1flx/flx	and	Drp1flx/flx	Cre+	mice.	Data	represent	average	±SEM	of	at	least	
5	animals.	
(H)	 ER	 stress	 response	 activation	 after	 GSK	 treatment.	 Lysates	 of	 hippocampus	 from	
Drp1flx/flx	Cre+	mice	7	weeks	PTI	with	or	without	GSK	treatment	were	separated	by	SDS-PAGE	
and	immunoblotted	with	the	indicated	antibodies.	
(I-K)	Bip	(I),	P-eIF2α 	(J)	and	ATF4	(K)	quantification.	Relative	intensity	of	Bip,	ATF4	and	actin	
bands,	and	of	P-eIF2α	and	total	eIF2α,	respectively,	were	measured.	Data	represent	average	
±SEM	of	at	least	4	animals.	
(L)	Fgf21	expression	after	GSK	treatment.	qRT-PCR	analysis	was	performed	on	hippocampus	
from	 Drp1flx/flx	 and	 Drp1flx/flx	 Cre+	 mice	 with	 or	 without	 GSK	 treatment	 to	 assay	 for	 Fgf21	
expression.	 Fgf21	 ct	 values	 were	 normalized	 against	 18S	 rRNA	 ct	 values.	 Data	 represent	
average	±SEM	of	at	least	4	animals.	
(M)	 CHOP	 expression	 after	 GSK	 treatment.	 qRT-PCR	 analysis	 was	 performed	 on	
hippocampus	from	Drp1flx/flx	and	Drp1flx/flx	Cre+	mice	with	or	without	GSK	treatment	to	assay	
for	 CHOP	 expression.	 CHOP	 ct	 values	 were	 normalized	 against	 18S	 rRNA	 ct	 values.	 Data	
represent	average	±SEM	of	at	least	4	animals.	
Asterisks	 denote	 p	 values	 of	 an	 unpaired,	 two-tailed	 Student’s	 t	 test;	 in	 case	 of	 multiple	
comparisons,	 one-way	 ANOVA	 followed	 by	 Dunnett’s	 or	 Sidak’s	 post	 hoc	 method	 was	
applied.	*:	p<0.05;	**:	p<0.01;	***:	p<0.001.	
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	Figure	5.6	
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Figure	5.7	Integrated	stress	response	in	Drp1flx/flx	Cre+	mice	

	

(A)	 mtUPR	 activation.	 Lysates	 of	 hippocampus	 from	 Drp1flx/flx	 and	 Drp1flx/flx	 Cre+	 mice	 10	

weeks	PTI	were	separated	by	SDS-PAGE	and	immunoblotted	with	the	indicated	antibodies.	

(B)	Hsp60	quantification.	Relative	intensity	of	Hsp60	and	actin	bands	were	measured.	Data	

represent	average	±SEM	of	at	least	4	animals.	

(C)	mtUPR	proteases	expression	 in	 the	hippocampus.	qRT-PCR	analysis	was	performed	on	

hippocampi	from	Drp1flx/flx	and	Drp1flx/flx	Cre+	mice	10	weeks	PTI	to	assay	for	the	expression	

of	 mtUPR	 proteases.	 mRNA	 ct	 values	 were	 normalized	 against	 18S	 rRNA	 ct	 values.	 Data	

represent	average	±SEM	of	at	least	4	animals.	

(D)	 Free	 amino	 acids.	 Free	 L-amino	 acids	 in	 lysates	 from	 the	 indicated	 brain	 areas	 from	

Drp1flx/flx	and	Drp1flx/flx	Cre+	mice	10	weeks	PTI.	Data	 represent	 average	±SEM	of	 at	 least	 5	

animals.	

(E)	 Aminoacyl	 tRNA	 synthetases.	 Fold	 change	 (Drp1flx/flx	 Cre+	 /	 Drp1flx/flx)	 values	 from	

cytosolic	and	mitochondrial	aminoacyl	tRNA	synthetases	are	plotted	as	a	function	of	their	q-

value	in	the	proteomics	screen.	

Asterisks	 denote	 p	 values	 of	 an	 unpaired,	 two-tailed	 Student’s	 t	 test;	 in	 case	 of	 multiple	

comparisons,	 one-way	 ANOVA	 followed	 by	 Dunnett’s	 or	 Sidak’s	 post	 hoc	 method	 was	

applied.	*:	p<0.05;	**:	p<0.01;	***:	p<0.001.	
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Figure	5.7	
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Figure	5.8	Genetic	rescue	

	

(A)	Mouse	viability	after	Drp1	and	Fgf21	ablation.	Kaplan-Meier	plot	of	Drp1flx/flx	Fgf21flx/flx	

and	Drp1flx/flx	Fgf21flx/flx	Cre+	mice.	At	least	10	mice	per	group	were	monitored.	

(B)	 Body	 weight	 monitoring	 after	 Drp1	 and	 Fgf21	 ablation.	 Body	 weight	 of	 Drp1flx/flx	

Fgf21flx/flx	and	Drp1flx/flx	Fgf21flx/flx	Cre+	mice	are	plotted	as	a	function	of	time	after	tamoxifen	

injection.	Data	represent	average	±SEM	of	at	least	6	animals.	

(C)	Fgf21	expression	after	GSK	treatment.	qRT-PCR	analysis	was	performed	on	hippocampus	

from	Drp1flx/flx	Fgf21flx/flx	and	Drp1flx/flx	Fgf21flx/flx	Cre+	mice	with	or	without	GSK	treatment	to	

assay	for	Fgf21	expression.	Fgf21	ct	values	were	normalized	against	18S	rRNA	ct	values.	Data	

represent	average	±SEM	of	at	least	4	animals.	

(D)	 CHOP	 expression	 after	 GSK	 treatment.	 qRT-PCR	 analysis	 was	 performed	 on	

hippocampus	from	Drp1flx/flx	Fgf21flx/flx	and	Drp1flx/flx	Fgf21flx/flx	Cre+	mice	with	or	without	GSK	

treatment	to	assay	for	CHOP	expression.	CHOP	ct	values	were	normalized	against	18S	rRNA	

ct	values.	Data	represent	average	±SEM	of	at	least	4	animals.	

Asterisks	 denote	 p	 values	 of	 an	 unpaired,	 two-tailed	 Student’s	 t	 test;	 in	 case	 of	 multiple	

comparisons,	 one-way	 ANOVA	 followed	 by	 Dunnett’s	 or	 Sidak’s	 post	 hoc	 method	 was	

applied.	*:	p<0.05;	**:	p<0.01;	***:	p<0.001.	
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Figure	5.8	
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6. Discussion	
	

This	work	 stems	 from	our	group’s	published	observation	 that	 conditional	Drp1	ablation	 in	

adult	 neurons	 leads	 to	 defects	 in	 neuronal	 function	 and	 long-term	 potentiation	

establishment,	culminating	in	behavioral	alterations	(Oettinghaus	et	al.,	2016).	We	then	set	

out	 to	 complete	 the	 characterization	 of	 the	 neuronal	 phenotype	 of	 Drp1	 ablation,	 and	

examined	 the	 systemic	 consequences	 of	 the	 disruption	 of	 mitochondrial	 fission	 in	 adult	

neurons.	Remarkably,	we	found	that	Drp1	deletion	triggers	the	activation	of	a	 likely	multi-

branched	response	that	culminates	in	ectopic	Fgf21	expression	in	the	brain.	Paracrine	action	

of	Fgf21	on	its	hypothalamic	receptor	then	initiates	an	uncoordinated	catabolic	switch	in	the	

systemic	metabolism	of	the	animals,	which	results	in	lethality	(Figure	6.1).	

	
Figure	 6.1	Graphical	 abstract.	 Left,	Drp1	ablation	 in	neurons	activates	a	 combination	of	 ISR	branches,	 resulting	 in	Fgf21	
transcription	 by	 Atf4.	 Right,	 Fgf21	 exerts	 a	 paracrine	 action	 on	 its	 hypothalamic	 receptors,	 stimulating	 corticosterone	
production	 and	 sympathetic	 nervous	 system	 activation.	 The	 combination	 of	 these	 stimuli	 shifts	 systemic	 metabolism	
towards	energy	expenditure,	resulting	in	lethality.	SNS:	Sympathetic	Nervous	System.	
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6.1. Drp1	deletion	in	forebrain	neurons	activates	the	integrated	stress	response	

	

In	 accordance	with	 our	 published	 findings	 (Oettinghaus	 et	 al.,	 2016),	mitochondria	 in	 the	

hippocampi	 of	 Drp1-ablated	mice	 are	 spherical	 and	 grossly	 enlarged.	 This	 is	 paralleled	 by	

disruption	of	the	cristae	structure,	which	likely	affects	respiratory	complex	assembly	(Figure	

5.1).		

It	is	interesting	to	note	that	despite	massive	structural	defects,	Drp1-deficient	mitochondria	

are	still	able	to	maintain	their	membrane	potential	(Figure	5.1	F).	One	possible	explanation	is	

based	 on	 the	 observation	 that,	 according	 to	 our	 proteomics	 screen,	 Drp1flx/flx	 Cre+	 brains	

strongly	upregulate	mitochondrial	uncoupler	Ucp5	(fold	change	1.55,	q	value	0.021).	Little	is	

known	 about	 this	 brain-specific	 uncoupling	 protein:	 recent	 work	 has	 shown	 that	 it	 is	

upregulated	 upon	 oxidative	 insults	 in	 dopaminergic	 neurons	 (Ho	 et	 al.,	 2005),	 and,	

counterintuitively,	 its	 increase	 protects	 MPTP-treated	 neurons	 from	 mitochondrial	

membrane	 potential	 loss	 (Kwok	 et	 al.,	 2010).	 Whether	 Ucp5	 can	 regulate	 mitochondrial	

membrane	potential	 by	modulating	 the	proton	 leak,	 or	whether	 other	mechanisms	 are	 in	

place	 to	explain	 its	activity,	 is	not	yet	clear	 (Cardoso	et	al.,	2014).	On	the	other	hand,	 it	 is	

also	 possible	 that	 the	 mitochondrial	 purification	 protocol	 used	 for	 membrane	 potential	

measurement,	which	is	based	on	sequential	centrifugation	steps,	is	biased	towards	smaller,	

healthier	mitochondria,	 and	 therefore	excludes	 the	extreme	cases	 that	are	 represented	 in	

the	EM	images	(Figure	5.1	C).	

Nevertheless,	the	decreased	activity	of	all	respiratory	complexes	at	10	weeks	PTI	is	a	strong	

hint	 that	 in	 the	 later	 stages	 of	 the	 phenotype	mitochondrial	membrane	 potential	 is	 likely	

impaired,	though	we	lack	an	accurate	measurement	at	this	time	point.	

	

Within	this	framework,	it	is	surprising	that	no	signs	of	mtUPR	activation	were	detectable	at	

10	 weeks	 PTI;	 nevertheless,	 as	 the	mtUPR	 is	 a	 first-line,	 rectifying	 response	 to	misfolded	

proteins,	 it	 is	 possible	 that	 analysis	 of	 earlier	 time	 points	 (2-4	 weeks	 PTI)	 would	 yield	 a	

different	pattern	of	upregulation	of	stress	markers.		

	

Predictably,	 biosynthetic	 activities	 that	 reside	 within	 mitochondria	 show	 some	 degree	 of	

impairment	 in	 Drp1-ablated	 neurons.	 Proteins	 that	 are	 responsible	 for	 iron	 utilization	 in	
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heme	 biosynthesis	 –	 e.g.	 ferrochelatase,	which	 catalyzes	 the	 final	 step	 of	 heme	 assembly	

(Richardson	 et	 al.,	 2010),	 and	 frataxin,	 which	 has	 been	 proposed	 as	 a	 metabolic	 switch	

between	Fe-S	cluster	and	heme	biosynthetic	pathways	(Becker	et	al.,	2002;	Richardson	et	al.,	

2010)	 –	 are	 downregulated;	 conversely,	 iron	 storage	 protein	 ferritin	 is	 upregulated	 in	 the	

cytosol	(Table	5.2	and	5.3).	

In	 light	 of	 the	 fact	 that	 mitochondrial	 iron	 import	 is	 mediated	 by	 specialized	 channel	

mitoferrin	in	a	manner	that	is	membrane-potential-dependent	(Lill	et	al.,	2006;	Shaw	et	al.,	

2006;	Zhang	et	al.,	2005),	a	possible	 scenario	 is	 that	 iron	would	accumulate	 in	 the	cytosol	

because	 it	 is	 unable	 to	 cross	 the	 IMM;	 conversely,	 within	 mitochondria,	 iron-related	

biosynthetic	processes	would	be	halted.	Of	note,	 lack	of	heme	and	Fe-S	prosthetic	groups	

would	negatively	affect	a	plethora	of	respiratory	complex	subunits,	in	which	these	cofactors	

are	 fundamental	 for	 electron	 transfer.	 Indeed,	 proteomics	 results	 show	 a	 drastic	

downregulation	of	both	β	subunits	of	hemoglobin	(0.22	and	0.28	fold,	q	value	0.026),	which	

may	further	corroborate	the	heme	deficiency	hypothesis.	

	

Amino	acid	metabolism	is	also	 likely	to	be	affected	by	Drp1	ablation:	on	one	hand,	energy	

defects	would	impair	de	novo	synthesis;	on	the	other	hand,	amino	acids	may	be	needed	as	

alternative	fuel	sources	–	within	the	neurons	themselves	or	in	the	surrounding	glia.	Indeed,	

while	signs	of	global	defects	in	amino	acid	metabolism	throughout	the	brain	are	present,	it	is	

interesting	to	note	that	the	cortex	is	able	to	maintain	an	elevated	amino	acid	pool,	while	the	

hippocampus	 is	depleted	 (Figure	5.7	D);	of	note,	 amino	acid	 levels	of	Drp1flx/flx	 cortex	and	

hippocampus	 are	 also	 different.	 Remarkably,	 one	 specific	 area	 of	 the	 cortex,	 the	 anterior	

piriform	cortex,	is	the	only	known	sensor	for	amino	acid	limitation	in	the	brain,	and	it	acts	in	

a	GCN2-dependent	manner	to	regulate	feeding	behavior	and	increase	de	novo	biosynthesis	

(Hao	et	al.,	2005).	This	phenomenon	 raises	 the	 interesting	possibility	 that,	 throughout	 the	

brain,	different	responses	are	enacted	upon	Drp1	ablation.	Indeed,	this	aligns	with	existing	

studies	 that	 report	 different	 degrees	 of	 sensitivity	 to	 Drp1	 deletion	 in	 different	 neuronal	

subpopulations	(Berthet	et	al.,	2014;	Kageyama	et	al.,	2012;	Oettinghaus	et	al.,	2016;	Shields	

et	al.,	2015).	
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Further	 insight	 into	 the	 biosynthetic	 state	 of	 Drp1-ablated	 brains	 would	 come	 from	 a	

shotgun	metabolomics	 approach	 (currently	 ongoing),	 eventually	 complemented	by	 carbon	

tracing,	which	would	allow	for	the	identification	of	metabolites	and	synthesis	intermediates,	

and	define	a	 clearer	picture	of	 active	metabolic	networks	 (see	 for	 instance	 (Nilsson	et	 al.,	

2014)).	

	

In	 addition	 to	 the	 disruption	 of	 their	 resident	 activities,	 Drp1-ablated	 mitochondria	 also	

affect	 neighboring	 organelles,	 foremost	 among	 them	 the	 ER.	 In	 fact,	 it	 is	 likely	 that	 the	

marked	 enlargement	 of	 Drp1-deficient	 mitochondria	 prevents,	 or	 at	 least	 diminishes,	 its	

physical	association	to	the	MAMs	within	the	ER.	This	could	result	 in	functional	uncoupling,	

e.g.	loss	of	coordinated	calcium	handling	or	of	lipid	transport.	The	electrophysiological	work-

up	(Figure	3.4	C-D)	argues	against	a	significant	alteration	of	calcium	regulation.	On	the	other	

hand,	defects	in	lipid	metabolism	would	explain	the	circular	ER	morphology	we	observed	4	

weeks	 PTI	 (Figure	 5.1	 C).	 Compellingly,	 two	 proteins	 of	 the	 prohibitin	 family	 that	 were	

significantly	 upregulated	 in	 our	 proteomics	 screen,	 Erlin-1	 and	 Erlin-2	 (1.6	 and	 2.2	 fold	

respectively,	q	values	0.047	and	0.007),	are	highly	enriched	in	ER-resident	lipid	rafts	and	at	

MAMs	(Browman	et	al.,	2006).	Furthermore,	there	are	reports	of	direct	PERK	activation	by	

ER	membrane	lipid	saturation,	irrespective	of	protein	synthesis	status	(Volmer	et	al.,	2013).	

This	is	of	special	interest	in	our	model,	where	we	were	unable	to	verify	the	activation	of	the	

IRE1	and	the	ATF6	branch	of	ER	stress	(data	not	shown).	

Compounded	 with	 previous	 reports	 of	 mitochondrial	 dynamics	 being	 tightly	 linked	 to	 ER	

stress,	 these	data	confirm	that,	 like	Mfn2	 (Debattisti	2014,	Diaz	2015,	Schneeberger	2013,	

Munoz	2013,	Ngoh	2012),	also	Drp1	deficiency	results	in	ER	stress.	However,	aside	from	few	

reports	 indicating	 a	 possible	 alternative	 localization	 and	 membrane	 tubulation	 activity	 of	

Drp1	to	the	ER	(Pitts	et	al.,	1999;	Yoon	et	al.,	1998),	there	 is	 little	mechanistic	evidence	of	

how	 Drp1	 deficiency	 would	 mediate	 ER	 stress.	 Analysis	 of	 mitochondrial	 and	 ER	 lipid	

content,	 in	 combination	 with	 published	 FRET	 sensors	 that	 evaluate	 ER-mitochondria	

apposition	(Csordás	et	al.,	2010),	would	certainly	be	of	interest	in	this	regard.		

	

In	spite	of	evidence	supporting	the	activation	of	different	branches	of	the	integrated	stress	

response,	the	specific	detection	of	the	eIF2α-phosphorylating	kinase	 in	our	model	was	not	
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technically	 feasible.	 This	 is	 due	 in	 part	 to	 the	 inabundance	 of	 these	 proteins	 and	 the	

asynchronous	 nature	 of	 their	 activation,	 and	 in	 part	 to	 the	 poor	 performance	 of	 existing	

antisera	(Prof.	David	Ron,	Cambridge,	UK,	personal	communication).	Nevertheless,	although	

we	 lack	 a	 full	 understanding	 of	 the	 combination	 of	 signals	 that	 trigger	 eIF2α	

phosphorylation,	 our	 data	 do	 show	 that	 the	 integrated	 stress	 response	 is	 activated	 in	

Drp1flx/flx	 Cre+	 brains,	 already	 in	 the	 early	 stages	 of	 the	 phenotype.	 Of	 note,	 it	 could	 be	

argued	 that	 the	 observed	 upregulation	 of	 cytosolic	 aminoacyl	 tRNA	 synthetases	 is	 a	

consequence,	 rather	 than	 a	 cause,	 of	 ISR	 activation,	 as	 these	 genes	 are	 transcriptional	

targets	of	ATF4	(Han	et	al.,	2013).	Nevertheless,	the	consensus	in	the	field	is	that	ATF4	does	

not	 always	 transcribe	 the	 full	 range	 of	 its	 target	 genes,	 but	 rather	 functions	 in	 a	

combinatorial	manner	with	other	transcription	factors,	which	determine	the	scope	and	the	

nature	of	the	response	(Kilberg	et	al.,	2009).	

One	 single	 attempt	 at	 a	 pharmacological	 rescue	 with	 recently	 published	 small-molecule	

inhibitor	 of	 P-eIF2α	 ISRIB	 (Sidrauski	 et	 al.,	 2013)	 failed	 to	 decrease	ATF4	 in	Drp1flx/flx	 Cre+	

brains	 (data	 not	 shown);	 thus,	 a	 better	 dose	 titration	 needs	 to	 be	 performed	 to	 ensure	

sufficient	bioavailability	in	the	brain	during	a	long-term	treatment.		

	

ATF4	 is	 a	 transcription	 factor	 that	 binds	 to	 conserved	 CCAAT-enhancer	 binding	 protein-

activating	 transcription	 factor	 response	 elements	 (CARE)	 to	 mediate	 expression	 of	 target	

genes.	 It	does	not,	however,	act	 independently,	but	 it	 is	always	found	in	combination	with	

other	 transcription	 factors	 (e.g.	 members	 of	 the	 C/EBP	 family,	 ATF3);	 thus,	 the	 general	

consensus	is	that	the	combination	of	binding	sites	and	of	the	respective	transcription	factors	

will	 determine	whether	 a	 gene	 is	 expressed	 in	 response	 to	 certain	ATF4-inducing	 stresses	

(Kilberg	et	al.,	2009).	In	our	mouse	model,	Chromatin	ImmunoPrecipitation	(ChIP)	would	be	

instrumental	 not	 only	 in	 confirming	 ATF4	 presence	 on	 the	 Fgf21	 promoter,	 but	 also	 to	

identify	other	co-regulated	genes	that	could	constitute	a	specific	signature	of	mitochondrial	

dysfunction	due	to	fission	deletion.	

	

Overall,	though	the	data	show	a	marked	and	early-onset	ER	stress	response	in	Drp1flx/flx	Cre+	

brains,	 the	 failure	 of	 two	 separate	 rescue	 approaches	 to	 significantly	 reduce	 the	 ISR	

response	 raises	 the	 possibility	 that	 more	 than	 one	 branch,	 or	 alternatively	 different	
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combinations	of	branches	in	different	brain	regions,	are	responsible	for	the	activation	of	the	

integrated	stress	response	via	eIF2α	phosphorylation.	

	

6.2. Ectopic	 Fgf21	 expression	 in	 Drp1flx/flx	 Cre+	brains	 causes	 a	 systemic	 catabolic	

phenotype	

	

One	remarkable	 finding	of	 this	work	 is	 that	Drp1	ablation	causes	the	 forebrain	to	produce	

metabolic	cytokine	Fibroblast	Growth	Factor	21	(Fgf21).	Of	note,	there	is	one	report	of	glial	

cells	expressing	Fgf21	when	in	culture,	and	also	of	steady-state	protein	expression	of	Fgf21	

in	untreated	rodent	brain	(Mäkelä	et	al.,	2014);	we	were,	however,	unable	to	reproduce	this	

finding	in	the	brains	of	untreated	mice	(data	not	shown).	Even	so,	the	general	consensus	is	

that	 the	 brain	 does	 not	 canonically	 express	 relevant	 levels	 of	 Fgf21	 (Fisher	 and	Maratos-

Flier,	2015;	Suomalainen	et	al.,	2011).	This	raises	a	number	of	interesting	possibilities,	both	

for	 the	 understanding	 of	 Fgf21	 physiology	 and	 for	 the	 potential	 diagnostic	 applications	 of	

such	a	finding.	

	

While	the	spectrum	of	systemic	actions	of	Fgf21	is	still	being	dissected	(Fisher	and	Maratos-

Flier,	2015),	a	prominent	 role	 for	 the	CNS	 in	 the	coordination	of	Fgf21	action	 is	emerging.	

Indeed,	 hypothalamic	 coreceptor	 KLB	 is	 indispensable	 for	 Fgf21	 action,	 and	

intracerebroventricular	(icv)	injection	of	Fgf21	is	sufficient	to	induce	all	associated	metabolic	

alterations	 (Bookout	 et	 al.,	 2013;	 Owen	 et	 al.,	 2014).	 In	 contrast,	 in	 our	model,	 localized	

Fgf21	production	 in	 the	brain	does	not	 recapitulate	all	 the	canonical	 features	of	 increased	

Fgf21	signaling:	specifically,	while	corticosterone	production	and	lipolysis	do	occur,	there	is	

no	comparable	change	 in	glucose	clearance	or	 in	 insulin	 sensitivity	 (Figure	5.3	A-C),	nor	 in	

ketone	bodies	generation	(data	not	shown).		

	

The	apparent	disagreement	with	the	icv	injection	experiments	can	be	explained	by	the	fact	

that,	 in	 our	 model,	 Fgf21	 production	 is	 very	 localized,	 and	 its	 presence	 in	 the	 general	

circulation,	 though	 statistically	 significant,	 is	 likely	 negligible,	 since	 it	 is	 one	 order	 of	

magnitude	lower	than	the	canonical	starvation-induced	Fgf21	increase	(Figure	5.4	A).	On	the	

other	 hand,	 icv-injected	 Fgf21	 would	 still	 be	 able	 to	 access	 the	 general	 circulation,	 as	 it	
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crosses	the	blood-brain	barrier,	and	the	administered	dose	was	several	orders	of	magnitude	

greater	than	our	detected	circulating	Fgf21	(in	the	range	of	µgrams/day;	(Douris	et	al.,	2015;	

Owen	et	al.,	2014)).		

	

Of	note,	published	work,	as	well	as	our	own	experiments	(data	not	shown),	indicate	that	the	

CamK2α	 promoter	 that	 drives	 Cre	 expression	 in	 our	 model	 is	 active	 also	 in	 the	

suprachiasmatic	and	paraventricular	nuclei	of	the	hypothalamus	(Bookout	et	al.,	2013;	Owen	

et	 al.,	 2014).	 This	would	 imply	 that	 autocrine	 signaling,	 in	 addition	 to	 paracrine	 action	 of	

hippocampus-	and	cortex-produced	Fgf21,	is	in	place.	

	

Ours	is	the	first	report	of	Fgf21	expression	having	deleterious	effects	in	mice,	aside	from	the	

observation	that	Fgf21	administration	can	lead	to	bone	loss	(Kolumam	et	al.,	2015;	Wu	et	al.,	

2013a).	The	general	agreement	in	the	field	is	actually	that	Fgf21	administration	improves	a	

number	 of	 metabolic	 parameters	 (Degirolamo	 et	 al.,	 2016;	 Kharitonenkov	 and	 DiMarchi,	

2015);	 constitutive	 overexpression	 of	 Fgf21	 is	 even	 associated	 to	 a	 lean	 phenotype	 and	

increased	 longevity	 (Zhang	 et	 al.,	 2012).	 In	 light	 of	 our	 results,	 we	 postulate	 that	 the	

concerted	 action	 of	 the	 central	 and	 peripheral	 Fgf21	 target	 organs	 is	 critical	 for	 the	

metabolism-enhancing	effects	of	Fgf21.	We	believe	that,	in	our	model,	exclusively	activating	

the	 CNS-controlled	 component	 of	 Fgf21	 signaling	 results	 in	 excessive	 catabolism	 and	

lethality.	 Further	 analysis	 of	 organ-specific	 signaling	 pathways	 would	 be	 required	 to	

demonstrate	that	Fgf21-dependent	cascades	are	active	in	the	CNS	but	not	in	the	periphery.	

However,	 to	 conclusively	 demonstrate	 the	 separation	 of	 central	 and	 peripheral	 Fgf21	

signaling,	organ-specific	KLB	knockout	mice	would	be	required.	

	

Two	 aspects	 of	 Fgf21	 physiology	 that	 do	 become	 activated	 in	 our	 model	 system	 are	

corticosterone	 production	 and	 sympathetic	 nervous	 system	 activation,	 both	 through	 CRH	

induction	in	the	paraventricular	nucleus	(Owen	et	al.,	2014).	The	former	results	in	sustained	

high	levels	of	circulating	corticosterone,	while	the	latter	conveys	the	lipolysis	signal	from	the	

CNS	to	the	BAT.	Though	we	could	not	detect	a	statistically	significant	increase	in	circulating	

CRH	in	our	mice	(Figure	5.3	J),	possibly	due	to	negative	feedback	by	corticosterone,	we	did	
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see	 a	 trend	 of	 increase;	 these	 results	 could	 be	 corroborated	 by	 qRT-PCR	 analysis	 on	

hypothalamus	from	Drp1flx/flx	Cre+	mice.	

	

It	is	unclear	how	a	state	of	continuously	high	corticosterone	does	not	result	in	a	Cushing-like	

phenotype	 in	 our	 mice,	 considering	 that,	 normally,	 pharmacological	 Cushing	 induction	 is	

already	 visible	 over	 a	 3-week	 pharmacological	 treatment	 (Cassano	 et	 al.,	 2012).	 As	 no	

Cushing-like	symptoms	were	observed	in	the	Fgf21-overexpressing	mice	either	(Zhang	et	al.,	

2012),	one	could	speculate	that	Fgf21	is	able	to	compensate	the	effects	of	corticosterone;	of	

course	one	alternative	interpretation	in	the	constitutive	overexpressing	mouse	is	that	Fgf21	

expression	 from	 birth	 triggers	 an	 adaptation	 to	 glucocorticoids	 (this	 aspect	 was	 not	

examined	in	the	original	paper).	

	

Nevertheless,	the	mixed	results	 from	the	genetic	rescue	(Figure	5.8),	conditionally	ablating	

Fgf21	in	the	same	cells	where	Drp1	was	ablated,	suggest	an	additional	layer	of	complexity	in	

the	 phenotype.	 Indeed,	 tamoxifen-injected	 Drp1flx/flx	 Fgf21flx/flx	 Cre+	 mice	 have	 decreased,	

but	 not	 completely	 abolished,	 Fgf21	 expression	 (Figure	 5.8	 C),	 which	makes	 it	 difficult	 to	

conclusively	prove	a	 causal	 role	 for	 Fgf21	 in	mediating	 the	phenotype.	As	 it	 is,	we	 cannot	

mechanistically	 dissect	 whether	 the	 improved	 weight	 profile	 but	 unchanged	 lethality	 in	

triple	transgenic	mice	is	due	to	residual	Fgf21	activity	or	to	the	fact	that	other	processes,	and	

not	Fgf21	alone,	are	causally	involved	in	the	phenotype.	

	

There	 are	 two	 possible	 explanations	 for	 the	 incomplete	 deletion	 of	 Fgf21	 in	 Drp1flx/flx	

Fgf21flx/flx	Cre+	mice:		

(I) That	Cre	activation	by	tamoxifen	was	not	sufficient	to	recombine	the	Fgf21	locus	

in	 all	 cells	 in	 which	 Drp1	 recombination	 occurred.	 The	 confirmation	 of	 this	

hypothesis	 would	 be	 rather	 laborious,	 as	 one	 could	 not	 accurately	 distinguish	

between	 the	 un-recombined	 neuronal	 Fgf21	 locus	 and	 the	 surrounding	 un-

recombined	glia.	A	longer	tamoxifen	treatment	might	be	effective	to	allow	for	full	

recombination	in	this	case.	

(II) That	the	source	of	Fgf21	is	not	only	neurons,	where	the	Cre	is	expressed,	but	also	

the	surrounding	glia,	sensing	energetic	distress	 in	neurons.	 Intriguingly,	 the	one	
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report	indicating	Fgf21	expression	in	the	brain	then	claims	that	glial	cells	in	vitro	

produce	Fgf21.	In	situ	hybridization	setup	is	currently	ongoing	to	verify	whether	

Fgf21	mRNA	can	be	detected	as	colocalizing	with	astrocytic,	neuronal,	microglial	

or	oligodendroglial	markers.	One	alternative,	complementary	approach	would	be	

to	 perform	 single-cell	 RNA-sequencing	 on	 a	 cell	 suspension	 from	Drp1flx/flx	 Cre+	

brains	 (and	 eventually	 on	 triple	 transgenics;	 see	 for	 instance	 (Darmanis	 et	 al.,	

2015;	 Johnson	 et	 al.,	 2015));	 in	 addition	 to	 revealing	 the	 source	 of	 Fgf21,	 this	

experiment	 would	 also	 yield	 further	 insight	 into	 which	 cellular	 responses	 are	

activated	 in	 which	 cell	 type.	 Such	 a	 mechanistic	 dissection	 of	 neuron-glia	

crosstalk	would	undoubtedly	shed	some	light	on	the	largely	controversial	topic	of	

intercellular	metabolism	within	the	CNS	(Magistretti	and	Allaman,	2015).	

	

There	is,	naturally,	the	additional	possibility	that	Fgf21	deletion	is	not	sufficient	to	rescue	the	

phenotype	 of	 Drp1flx/flx	 Cre+	 mice	 because	 it	 is	 not	 the	 main	 mediator	 of	 the	 systemic	

metabolic	 shift.	 While	 the	 evidence	 of	 corticosterone	 production	 and	 BAT	 lipolysis	 is	

compelling,	discrete	aspects	of	the	phenotype	could	have	other	explanations.		

	

For	 instance,	other	proteins	and	polypeptides	have	been	associated	 to	BAT	activation	and	

systemic	 metabolic	 effects,	 foremost	 among	 them	 irisin	 (Boström	 et	 al.,	 2012)	 and	

mitochondria-derived	peptide	MOTS-C	 (Lee	et	 al.,	 2015).	While	 they	did	not	 appear	 to	be	

present	 in	 our	 proteomics	 panel,	 further	 confirmation	 of	 their	 absence	 in	 Drp1flx/flx	 Cre+	

brains	would	strengthen	the	case	for	Fgf21,	as	would	a	full	Fgf21	ablation	in	all	cells.	

	

It	 could	 be	 argued	 that	 sympathetic	 nervous	 system-induced	 lipolysis	 and	 corticosterone	

could	 recapitulate	most	 of	 the	 observed	 phenotype.	 An	 accurate	 approach	 to	 dissect	 the	

relative	contribution	of	each	process	to	the	phenotype	would	be	to	target	them	individually.	

First,	 sympathetic	 nervous	 system	activity	 can	be	 systemically	 attenuated	with	β-blockers,	

which	have	a	well-known	pharmacology	and	are	compatible	with	a	long-term	treatment.	It	is	

important	 to	 note	 that	 broad-range	 β-blockers	 would	 have	 to	 be	 employed,	 in	 order	 to	

target	 canonical	β1	 and	β2	 adrenoreceptors	 in	 addition	 to	β3,	which	 is	 expressed	 in	 BAT	

(Kajimura	and	Saito,	2014).	
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Second,	 corticosterone	 synthesis	 can	 be	 blocked	 by	 ketoconazole	 or	 other	 inhibitors	 of	

steroidogenesis,	which	are	currently	used	as	a	treatment	for	Cushing’s	syndrome	(Daniel	and	

Newell-Price,	2015).	

Third,	 the	 sympathetic	 connection	between	 the	brain	and	BAT,	mediating	 lipolysis,	 can	be	

surgically	ablated	(sympathectomy).	This	approach	is	currently	ongoing,	with	the	technique	

established	 (Figure	 6.2	 A-B)	 and	 the	 first	 mouse	 cohort	 operated	 and	 under	 monitoring	

(Figure	6.2	C).	For	the	other	two	approaches,	animal	permission	is	pending.	

	

While	the	ongoing	experiments	will	confirm	the	relative	contribution	of	secondary	factors	to	

the	overall	phenotype,	our	data	convincingly	pinpoint	Fgf21	as	a	marker	 for	mitochondrial	

dynamics	dysfunction	in	the	brain.	An	interesting	follow-up	project	would	be	the	systematic	

investigation	 of	 Fgf21	 expression	 in	 diseases	 of	 primary	 mitochondrial	 morphology	

dysfunction	(See	chapter	1.1.4.2),	as	well	as	in	conditions	in	which	mitochondrial	dynamics	

are	affected	as	a	downstream	effect	of	an	unrelated	pathogenic	mutation	(Chapter	1.1.4.1);	

for	instance,	a	tauopathy	mouse	model	overexpressing	the	pathological	P301L-mutated	Tau	

protein	has	been	reported	to	show	increased	ISR	activation	(Radford	et	al.,	2015).	
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Figure	6.2	Sympathectomy	model.	 (A)	Surgery	rationale.	 In	untreated	mice,	there	are	two	nerve	bundles	connecting	the	
brain	to	the	BAT;	a	half	sympathectomy	allows	one	to	verify	the	extent	of	denervation;	a	full	sympathectomy	completely	
ablates	 BAT	 sympathetic	 innervation	 and	 the	 ensuing	 UCP1-mediated	 thermogenesis.	 (B)	 UCP1	 protein	 levels	 after	 half	
sympathectomy.	The	two	samples	are	derived	from	the	same	mouse,	which	has	undergone	a	half	sympathectomy	and	then	
has	been	placed	at	4°C	 for	48	hours	 to	 induce	thermogenesis.	 (C)	Full	 sympathectomy	monitoring.	A	cohort	of	mice	was	
fully	denervated	(or	sham	operated),	and	monitoring	is	still	ongoing.	%	body	weight	is	plotted	as	a	function	of	time.	
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6.3. Conclusion	and	perspectives	

	

Our	data	show	that	 irreversible	Drp1	ablation,	even	when	confined	to	adult	neurons,	gives	

rise	to	a	stress	response	that	culminates	in	the	death	of	the	animal.	This	piece	of	information	

complements	 a	 body	 of	work	 indicating	Drp1	 blockage	 as	 an	 effective	way	 of	 delaying	 or	

preventing	apoptosis	in	case	of	acute	stress	in	the	CNS	(Estaquier	and	Arnoult,	2007;	Frank	

et	al.,	2001;	Lee	et	al.,	2004;	Li	et	al.,	2015;	Liu	et	al.,	2015a;	Xie	et	al.,	2013),	and	it	poses	the	

caveat	 that	 such	 blockage	 needs	 to	 be	 reversible	 and	 short-term.	 Previous	 work	 had	

primarily	 exploited	 pharmacological	 Drp1	 inhibitor	 mdivi-1	 (Cassidy-Stone	 et	 al.,	 2008);	

whereas	the	results	of	these	studies	were	encouraging,	mdivi-1	suffers	from	a	number	of	off-

target	effects	which	effectively	preclude	its	use	as	a	therapeutic	agent	in	vivo.	In	fact,	mdivi-

1	 inhibits	 mitochondrial	 respiration	 even	 in	 the	 absence	 of	 Drp1,	 and	 it	 affects	 cell	

membrane	potential	and	ion	currents	(Qian	et	al.,	2014;	So	et	al.,	2012).	As	such,	while	still	a	

valuable	research	tool,	mdivi-1	will	need	to	be	vastly	improved	before	it	can	be	considered	

as	a	therapeutic	strategy	(Qian	et	al.,	2013).		

	

One	 promising	 alternative	 to	 pharmacological	 Drp1	 inhibition	 is	 a	 newly-discovered	 Drp1	

peptide	inhibitor,	P110,	which	interferes	with	Drp1	binding	to	its	receptor	Fis1,	and	has	been	

shown	 to	 prevent	 mitochondrial	 fission	 in	 a	 cell	 model	 of	 PD	 (Qi	 et	 al.,	 2013);	 further	

research	will	need	to	confirm	whether	 lack	of	activity	of	P110	on	Mff-driven	mitochondrial	

fission,	which	is	the	most	prevalent,	will	affect	its	potential	uses.	

	

Another	potential	target	that	has	recently	emerged	as	a	regulator	of	mitochondrial	fission	is	

its	 upstream	 phosphatase,	 calcineurin;	 indeed,	 systemic	 and	 skeletal	 muscle-specific	

deletion	of	calcineurin	results	 in	a	hyperelongated	mitochondrial	phenotype	(Pfluger	et	al.,	

2015).	 This	 raises	 the	 possibility	 that	 one	 could	 act	 on	 Drp1	 by	 inhibiting	 its	 activator	

calcineurin,	rather	than	on	Drp1	itself.	

Of	 special	 relevance	 to	 this	 work	 is	 the	 observation	 that	 calcineurin	 ablation	 leads	 to		

resistance	 to	 diet-induced	 obesity	 and	 ensuing	 comorbidities	 (Pfluger	 et	 al.,	 2015).	
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Remarkably,	 though	 the	 authors	 state	 that	 neuron-derived	 orphan	 receptor	 1	 (NOR-1)	

elevation	 is	 responsible	 for	 the	 systemic	metabolic	effects	of	 calcineurin	deletion,	without	

any	mechanistic	confirmation,	Fgf21	mRNA	is	also	upregulated	in	their	microarray	analysis.		

	

An	interesting	issue	that	emerges	from	our	work	is	that	Fgf21,	which	has	so	far	been	touted	

as	 a	 universally	 positive	 metabolism-enhancing	 agent,	 can	 actually	 be	 lethal	 when	 its	

bioavailability	 is	 altered.	 This	 hypothesis,	 if	 corroborated	 by	 further	 experiments,	 will	

undoubtedly	 need	 to	 inform	 therapy	 design,	 given	 that	 Fgf21-mimicking	 compounds	 are	

being	 explored	 as	 pharmacological	 treatments	 for	 type-2	 diabetes	 and	 obesity,	 with	

promising	results	(Fisher	and	Maratos-Flier,	2015;	Gaich	et	al.,	2013).		

	

In	conclusion,	our	work	highlights	a	novel	link	between	mitochondrial	fission	and	Fgf21,	and	

opens	up	new	avenues	of	research	into	the	influence	of	neuronal	mitochondrial	morphology	

in	the	central	regulation	of	systemic	metabolism.	
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8. Abbreviations	
	

Abbreviation	 Meaning	 Abbreviation	 Meaning	

4EBP	 Eukaryotic	initiation	factor	
4E	binding	protein	

LAMP	 Lysosomal-Associated	
Membrane	Protein	

α -MSH α	Melanocyte-Stimulating-
Hormone 

LC3	 Microtubule-associated	
protein	1A/1B-light	chain	3	

Aβ 	 Amyloid	β	 LRRK2	 Leucine-rich	repeat	kinase	2	
ACTH	 Adrenocorticotropic	

Hormone	
MAM	 Mitochondria-Associated	

Membrane	
AD	 Alzheimer's	Disease	 MAPL	 Mitochondria-Associated	

Protein	Ligase	
ADOA	 Autosomal	Dominant	Optic	

Atrophy	
MDV	 Mitochondria-Derived	

Vesicle	
ADP	 Adenosine	Di-Phosphate	 MFF	 Mitochondria	Fission	Factor	
AFG3L2	 AFG3-Like	AAA	ATPase	2	 MFN	 Mitofusin	
AgRP	 Agouti-Related	Peptide	 MICOS	 Mitochondrial	Contact	Site	
ALS	 Amyotrophic	Lateral	

Sclerosis	
MiD(49/51)	 Mitochondrial	Division	

AMP	 Adenosine	Mono-Phosphate	 Miro	 Mitochondrial	RHO	GTPase	
AMPK	 5'	AMP-activated	protein	

kinase	
MitoPLD	 Mitochondrial	

PhosphoLipase	D	
APP	 Amyloid	Precursor	Protein	 MPTP	 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine	
ARC	 Arcuate	nucleus	 mtDNA	 Mitochondrial	DNA	
ATF(3/4)	 Activating	Transcription	

Factor	
mTORC	 mammalian	Target	Of	

Rapamycin	Complex	
ATG	 Autophagy-related	Gene	 mtUPR	 mitochondrial	UPR	
ATP	 Adenosine	Tri-Phosphate	 NPY	 NeuroPeptide	Y	
BAT	 Brown	Adipose	Tissue	 NTS	 Nucleus	Tractus	Solitarii	
BBB	 Blood-Brain	Barrier	 OMM	 Outer	Mitochondrial	

Membrane	
Bip	 Binding	Immunoglobulin	

Protein	
OMMAD	 Outer	Mitochondrial	

Membrane-Associated	
Degradation	

BW	 Body	Weight	 OPA(1/3)	 Optic	Atrophy	
C/EBP	 CCAAT/enhancer	binding	

protein	
PARL	 Presenilins-

Associated	Rhomboid-Like	
protein	

CaMK	 Ca2+/calmodulin-dependent	
protein	kinase	

PC	 PhosphatidylCholine	

cAMP	 cyclic	Adenosine	Mono-
Phosphate	

PD	 Parkinson's	Disease	
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CDK1	 Cyclin-Dependent	Kinase	 PERK	 Protein	kinase	RNA-like	
Endoplasmic	
Reticulum	Kinase	

ChIP	 Chromatin	
ImmunoPrecipitation	

PGC1α 	 Peroxisome	proliferator-
activated	receptor	γ	
Coactivator	gene	

CHOP	 CCAAT-enhancer-binding	
protein	homologous	protein	

PINK1	 Phosphatase	and	Tensin	
Homolog-Induced	putative	
Kinase		

CJ	 Cristae	Junction	 PKA	 Protein	Kinase	A	
CL	 CardioLipin	 PKC	 Protein	Kinase	C	
CMT	 Charcot-Marie-Tooth	 POMC	 ProOpioMelanoCortin	
CNS	 Central	Nervous	System	 PP2A	 Protein	Phosphatase	2A	
CoA	 Coenzyme	A	 PPAR	 Peroxisome	Proliferator-

Activated	Receptor	
CREB	 cAMP	response	element-

binding	protein	
PS	 PhosphatidylSerine	

CRH	 Corticotropin	Releasing	
Hormone	

PTI	 Post	Tamoxifen	Injection	

CT	 Cycle	Threshold	 PTPIP51	 Protein	tyrosine	
phosphatase	interacting	
protein	51		

DARS	 Aspartate	tRNA	ligase	 PVN	 ParaVentricular	Nucleus	
DOPA	 L-3,4-

dihydroxyphenylalanine	
qRT-PCR	 quantitative	Real	Time	

Polymerase	Chain	Reaction	
DRP(1)	 Dynamin-Related	Protein	 R123	 Rhodamine	123	
EchoMRI	 Echo	Magnetic	Resonance	

Imaging	
rER	 rough	Endoplasmic	

Reticulum	
EEF	 Eukaryotic	translation	

Elongation	Factor	2	
ROS	 Reactive	Oxygen	Species	

eIF(2A/4E)	 Eukaryotic	translation	
Initiation	Factor	

rRNA	 ribosomal	RNA	

ELISA	 Enzyme-Linked	
ImmunoSorbent	Assay	

S6K1	 p70	ribosomal	protein	S6	
Kinase	1	

EM	 Electron	Microscopy	 SCN	 SupraChiasmatic	Nucleus	
EMC	 Endoplasmic	

reticulum	Membrane	protein	
Complex	

SDS	PAGE	 Sodium	Dodecyl	Phosphate	
Poly	Acrylamide	Gel	
Electrophoresis	

ER	 Endoplasmic	Reticulum	 SenP5	 Sentrin-specific	Protease	5	
ERMES	 ER–Mitochondria	Encounter	

Structure	
SNARE	 SNAP	(Soluble	NSF	

Attachment	Protein)	
Receptor	

FCCP	 Carbonyl	cyanide-4-
(trifluoromethoxy)phenylhyd
razone	

SOD1	 SuperOxide	Dismutase	1	

FFPE	 Formalin-Fixed	Paraffin-
Embedded	

STAT	 Signal	Transducer	and	
Activator	of	Transcription	
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FGF	 Fibroblast	Growth	Factor	 SUMO	 Small	Ubiquitin-like	Modifier	

FRS2α 	 Fibroblast	growth	factor	
receptor	substrate	2	

TCA	 TriCarboxylic	Acid	

GABA	 γ-AminoButyric	Acid TDP43	 TAR	DNA-binding	Protein	43	
GADD34	 Growth	Arrest	and	DNA	

Damage-inducible	protein	34	
TEM	 Transmission	Electron	

Microscopy	
GCN	 General	control	

NonDerepressible	
TFAM	 Transcription	Factor	A,	

Mitochondrial	
GDAP1	 Ganglioside	Induced	

Differentiation	Associated	
Protein	1	

TMRM	 Tetramethylrhodamine,	
methyl	ester	

GLP1	 Glucagon-Like	Peptide	1	 TRAK	 Trafficking	Kinesin	Protein	
GLUT	 Glucose	Transporter	type	4	 tRNA	 transfer	RNA	
GRP78	 Glucose-Related	Protein	78	 TSC	 Tuberous	Sclerosis	Complex	
H&E	 Hematoxylin	and	Eosin	 TUDCA	 Tauroursodeoxycholic	acid		
HRI	 Heme-Regulated	eIF2α	

kinase	
TXR	 Thyroid	X	Receptor	

HSP	 Heat	Shock	Protein	 UBC1	 Ubiquitin-conjugating	
enzyme	E2	

HTT	 Huntingtin	 UCP	 Uncoupling	Protein	
IBM	 Inner	Boundary	Membrane	 uORF	 upstream	Open	Reading	

Frame	
ICV	 IntraCerebroVentricular	 UPR	 Unfolded	Protein	Response	
IMM	 Inner	Mitochondrial	

Membrane	
VAPB	 VAMP	(Vesicle-Associated	

Membrane	Protein)-
Associated	Protein	B	

IMS	 InterMembrane	Space	 VLH	 VentroLateral	Hypothalamus	
IP3R	 Inositol	trisphosphate	

receptor	
VMH	 VentroMedial	Hypothalamus	

IRE	 Inositol-Requiring	Enzyme	 VPS35	 Vacuolar	Protein	Sorting	35	
ISR	 Integrated	Stress	Response	 WAT	 White	Adipose	Tissue	
kFU	 kilo	Fluorescence	Units	 XBP1	 X-box	Binding	Protein	1	
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9. Authors’	Contributions	
	

The	presented	 results	were	obtained	 through	collaborative	work	performed	by	 the	author	

and	Dr.	Björn	Oettinghaus.		

	

Specifically,	the	experiments	shown	in	figures	3	to	6	are	the	result	of	joint	work	between	the	

author	 and	 Dr.	 Oettinghaus,	 with	 equal	 contributions	 as	 far	 as	 sample	 preparation	 and	

processing,	as	well	as	experiment	planning,	are	concerned.	Data	represented	in	figures	7	and	

8,	 and	 the	 sympathectomy	 model,	 were	 the	 exclusive	 responsibility	 of	 the	 author,	 with	

minor	technical	help	from	Dr.	Oettinghaus.		

	

Work	described	in	figures	1	and	2	was	for	the	most	part	performed	by	Dr.	Oettinghaus,	with	

minor	technical	help	from	the	author.		

	

Measurements	of	mitochondrial	membrane	potential	were	obtained	 in	Prof.	Anne	Eckert’s	

laboratory	by	Karen	Schmitt	and	Amandine	Grimm	(UPKBS,	Basel).	

	

The	 author	 significantly	 contributed	 to	 project	 design	 and	 manuscript	 preparation;	 in	

addition,	the	author	was	solely	responsible	for	obtaining	the	relevant	permissions	for	animal	

experiments	from	the	Veterinary	Office.	
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