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Abstract
Kap-Centric Control of Nuclear Pores Based on Promiscuous Binding to FG

Nucleoporins

by Raphael S. WAGNER

Nuclear pore complexes (NPCs) are remarkable molecular machines that per-

forate the nuclear envelope (NE) in eukaryotic cells and mediate the rapid bidirec-

tional traffic of hundreds of proteins, ribonucleoproteins, and metabolites across

the nuclear envelope. Their enormous structure is composed of multiple copies

of 30 different proteins (Nups) that add up to 60 – 120 MDa of mass depending

on the organism. Each NPC contains a 50 nm-diameter central channel through

which only molecules smaller than ∼40 kDa or ∼5 nm in size can diffuse passively.

The movement of larger molecules is impaired by a permeability barrier generated

by∼200 partly intrinsically disordered phenylalanine-glycine (FG)-rich nucleopor-

ins (FG Nups) that are tethered to the NPC transport channel surface. These FG

Nups interact promiscuously with nuclear transport receptors (NTRs), such as ka-

ryopherins (Kaps; e.g. Kapβ1) or NTF2, that mediate rapid trafficking of cargoes.

Given that the number of FG repeats per FG Nup also varies from 5 to ∼50,

NTR-FG Nup binding involves highly multivalent interactions, which are gener-

ally known to impart a strong avidity that enhances stability and specificity. How-

ever, this is paradoxical in the context of the NPC, because the high submicromolar

Kapβ1-FG domain binding affinities predict slow off rates (given a diffusion-limited

on rate) that contradict the rapid (∼5 ms) in vivo dwell time. As this implies, Kap-FG

binding ought to be sufficiently strong to ensure selectivity but also weak enough

to promote fast translocation through the NPC. Nonetheless, an explanation as to

how promiscuous binding of FG Nups to NTRs is balanced against the mechanistic

control of the FG domain barrier is still lacking.

The purpose of my work was to investigate FG Nup-NTR binding promiscu-

ity and multivalency by measuring the interaction kinetics, binding affinity and in

situ associated conformational changes in Nsp1p FG domains when binding NTF2

and Kapβ1, both separately and together. Experimentally, this was achieved by us-

ing a novel surface plasmon resonance technique to correlate in situ mechanistic

changes (molecular occupancy and conformational changes) with FG Nup-NTR

binding.
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The obtained results show that surface-tethered Nsp1p FG domains form mo-

lecular brushes at physiological conditions. Kapβ1 binding provokes brush exten-

sion while partitioning into a fast and slow kinetic phase, where the latter may form

an integral part of the FG domain barrier. In contrast, NTF2 binding to pristine

Nsp1p layers induced collapse, but not under competing interactions from Kapβ1.

Therefore, promiscuous binding of NTF2 to Kapβ1-preloaded Nsp1p attenuates

NTF2 towards higher off rates and more transient interactions.

My work demonstrates that promiscuous binding of NTRs to FG Nups ought

to influence nucleocytoplasmic transport. This depends on the concentration,

size and binding strength of each NTR. Indeed, some form of hierarchy may ex-

ist between different NTRs such that their relative concentrations may impact NPC

barrier function. This interpretation departs from the conventional view that the

FG Nups alone form the NPC permeability barrier. Rather I conclude that concen-

trating NTRs in the NPC transport channel also contributes to generating crowding-

based selective barrier function of the pore.
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Chapter 1

Introduction

Eukaryotic cells are subdivided into functionally and spatially distinct compart-

ments that provide specialized environments for different tasks. This compart-

mentalization is achieved by intracellular membrane systems. The double lipid

bilayer of the nuclear envelope, comprising the inner nuclear membrane and the

outer nuclear membrane, separates the nucleoplasm containing the genetic ma-

terial from the cytoplasm. This segregates the site of transcription and ribosome

biogenesis in the nucleus from the protein synthesis machinery in the cytoplasm.

Thus, the NE protects the structural and compositional integrity of the genome,

and regulates how genetic information is transmitted to the proteome. Further, it

protects the nucleus from pathogens such as viruses which act to alter the genetic

information. Accordingly, eukaryotic cells employ numerous transport pathways,

that allow for a staggering number of molecules to be shuttled between the nucleus

and the cytoplasm. After transcription, mature mRNA has to overcome the NE in

order to be translated into proteins in the cytoplasm. At the same time, numerous

1



Chapter 1. Introduction 2

transcription factors have to enter the nucleus to initiate and regulate RNA tran-

scription of proteins.

FIGURE 1.1: NPCs are huge molecular assemblies embedded in the NE of euka-
ryotes. They represent the sole gateway between the nucleus and cytoplasm and
mediate all bidirectional traffic of molecules across the NE. Directed transport of
molecules larger than ∼5 nm in size (e.g., ribonucleoporins; RNPs) require recept-
ors while small molecules are able to cross the NPC by free diffusion. With permis-

sion from Daniel Stoffler and Ueli Aebi.

Bidirectional transport across the NE is mediated by huge multiprotein com-

plexes embedded in aqueous pores that perforate the NE [1, 2]. These nuclear pore

complexes (NPCs) constitute large transport channels and represent the sole gate-

ways of macromolecular exchange (Figure 1.1).

The average pore density in vertebrates was shown to be 10 – 20 NPC/µm2 (2000

– 5000 NPCs per nucleus) [3]. In the large nuclei of Xenopus laevis oocytes up to

∼50 NPC/µm2 are found (∼5×107 NPCs per oocyte) [4]. Yeast cells appear to have

an average pore density of ∼12 NPC/µm2 (∼200 per nucleus) [5]. NPCs exhibit a

number of remarkable properties. As a case in point, huge protein complexes up
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to ∼39 nm in diameter are able to cross the NPC with high efficiency while non-

specific molecules are rejected from the pores [6, 7]. In fact, the number of proteins

comprising the NPC represent only a fraction of all proteins that are translocated

through the pore, which makes NPCs highly promiscuous. Moreover, multiple dis-

tinct protein complexes are ferried in parallel through the same pore at high rates

of ∼1000 molecules per NPC per second [8–11]. In other words, NPCs act as trans-

porters and molecular sorting machines at the same time. In order to overcome the

NE, molecules which are larger than ∼5 nm in size need to exhibit specific interac-

tions with the NPC [6]. Yet, rather counterintuitively, specific cargoes accumulate

in their target compartments orders of magnitude faster than passively diffusing

molecules, even at the same size [9, 12].

1.1 Structure and Function of the Nuclear Pore Com-

plex

The NPC consists of approximately 30 different proteins [13], generally termed nuc-

leoporins (Nups), which are broadly conserved among evolutionarily distant euka-

ryotes, i.e., from yeast to vertebrates and plants [13–16]. Each Nup appears in mul-

tiple copies of 8-, 16- or 32-fold in order to assemble into this multiprotein complex,

resulting in a total of ∼500 – 1000 polypeptides forming a mature NPC [14]. These

enormous molecular assemblies have molecular masses that range from ∼66 MDa

in Saccharomyces cerevisiae, to ∼110 – 125 MDa in higher eukaryotes as observed

for Xenopus laevis [2]. Using cryo-electron microscopy, the overall 3D architecture
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of NPCs from isolated Xenopus nuclei show linear dimensions of ∼120 nm outer

diameter, ∼180 nm height [17] and ∼50 nm for the inner channel diameter. These

dimensions closely resembles that of human NPCs as determined in human osteo-

sarcoma U2OS cells [18]. Dictyostelium discoideum show a similar inner and outer

diameter of ∼50 nm and ∼125 nm, but somewhat smaller height of ∼150 nm was

measured [19, 20]. Although overall linear dimensions can vary, their overall archi-

tecture makes them probably the biggest molecular machines in the cell.

Nups can be classified into four different groups which represent the main build-

ing blocks of the pore (summarized in Figure 1.2):

1.) Transmembrane Nups: A set of three different membrane proteins, also

known as “poms”, build a membrane ring anchoring the NPC within the NE pore

[21]. In addition, poms play a role in stabilizing the local curvature of the NE [22].

2.) Scaffold Nups: Defining roughly half of the total weight, scaffold proteins

build the largest structural component of the NPC. Multiple copies of 13 different

Nups form an interlaced structure shaping a symmetric core layer which stabilizes

the NPC [21, 23]. This NPC core scaffold seems to be the main attachment site for

central pore Nups [21].

3.) Cytoplasmic Filament Nups and Nuclear Basket: Located at the cytoplasmic

side of the NPC, eight flexible filamentous structures extend from the outer ring by

∼35 – 50 nm [17, 19, 24]. These proteins are involved in specific interactions and

can serve as docking sites for transport molecules [19, 25]. Cytoplasmic filaments

are composed mainly of two Phenylalanin-Glycine rich nucleoporins (FG Nups),
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Nup42p (vertebrate Nlp1) and Nup159p (vertebrate Nup214) together with Nup82p.

Yeast lack a homolog of the vertebrate Nup358, which is believed to give the cyto-

plasmic filaments more rigid structure in addition to its role in nucleocytoplasmic

transport [26–28]. At the nuclear side of the NPC eight filamentous structures ex-

tend∼50 – 100 nm nm into the nucleoplasm and finally merge into a distal ring, the

nuclear basket comprising three FG Nups, Nup1p, Nup2p (vertebrate Nup50) and

Nup60p (vertebrate Nup153) [20, 28–32].

4.) FG Barrier Nups: Attached to the core scaffold Nups, are multiple copies

of FG Nups that collectively form a selective permeability barrier within the NPC

transport channel. These barrier Nups represent a third of all nucleoporins and

their inactivation impairs nuclear import [33]. In addition, their FG rich domains

(FG domains) are intrinsically disordered [34–38], whereas small structured do-

mains anchor FG Nups to the NPC scaffold [21].
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FIGURE 1.2: The structural components of the NPC. The symmetric core is com-
posed of the outer ring Nups, the inner ring Nups and the linker Nups. Trans-
membrane ring Nups anchor the NPC framework in the NE. The NPC channel is
filled with FG Nups which are flanked by asymmetric cytoplasmic and nuclear FG
Nups which comprise the basket. The outer nuclear membrane and inner nuclear
membrane are depicted in grey. The dominating protein folds of the proteins are

described in the bottom [22]. Reproduced from Grossman, et al. [39].

1.2 Nucleocytoplasmic Transport

Bidirectional transport of cargoes across the NE is achieved by soluble transport

factors that are typically members of the karyopherin-β superfamily (Kaps) and are

either called “importers” or “exporters” according to the cargoes they recognize.

Currently, 19 different Kaps in vertebrate and 14 Kaps in yeast were identified [40]

of which 11 of the vertebrate and 10 of the yeast Kaps mediate nuclear transport.
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1.3 GTP-dependent Transport

An overview of GTP-dependent nucleocytoplasmic transport is shown in Figure 1.3

and explained in more detail below.

FIGURE 1.3: Overview of NCT and its dependency on GTP. Nuclear import of NLS-
cargo is mediated by Kapβ1 via Kapα as adaptor protein. Upon assembly in the
cytoplasm and subsequent translocation, cargo gets released in the nucleoplasm
upon binding RanGTP. Kapα gets recycled by CAS in complex with RanGTP. Nuc-
lear export of NES-cargo is mediated by CRM1 which is in its export competent
state when in complex with RanGTP. Located at the cytoplasmic side, RanGAP
catalyzed GTP hydrolysis which stimulates the disassembly of export complexes.
RanGDP is recycled by the homodimer NTF2 and reloaded with GTP with the help
of nuclear RanGEF which is bound to the chromatin. RanGTP is highly enriched
in the nucleus whereas cytoplasmic Ran predominantly exists in its GDP bound

form.

1.3.1 Import

One of the best characterized import pathway of NLS-cargo involves the heterodi-

meric complex karyopherinα/β (Kapα/β) consisting of Kapβ1 (Kap95p in yeast)

and adapter protein Kapα (Kap60p in yeast). Kapα/β1 binds NLS-cargo via Kapα
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with nanomolar affinity while Kapβ1 binds the N-terminal importin-β (Kapβ) bind-

ing domain (IBB) of Kapα [41]. The NLS-cargo-Kapα-Kapβ1 import complex inter-

acts with FG Nups via Kapβ1 [42] during translocation through the pore. Nuclear

RanGTP (Ras-related nuclear protein, Gsp1p in yeast), a member of the RAS su-

perfamily, binds to Kapβ1 and triggers the release of the NLS-cargo-Kapα complex

into the nucleoplasm. Eventually, Kapβ1-RanGTP shuttles back to the cytoplasm,

where GTP hydrolysis to GDP and subsequent dissociation of RanGDP frees Kapβ1

for another round of import. After Kapβ1 dissociation, the auto-inhibitory IBB do-

main weakens the affinity of Kapα towards NLS-cargo by competing with the NLS

binding pocket. This results in a final release of NLS-cargo into the nucleus [31, 43,

44]. However, Kapα must be returned to the cytoplasmic side. CAS (cellular ap-

optosis susceptibility gene, Cse1p in yeast) was found to be the main mediator of

Kapα export [45]. CAS affinity for Kapα is highly increased when in complex with

RanGTP [45]. On the cytoplasmic side, hydrolysis of RanGTP catalized by RanGAP

(Ran GTPase-activating protein) causes the Kapα-CAS-RanGTP complex to disso-

ciate [27, 45, 46]. In addition to NLS, a different import signal (M9) promotes import

of cargo by transportin (Kapβ2) which directly recognizes M9 without any adapter

molecule, e.g. Kapα.

1.3.2 Export

Most of the nuclear export cargoes contain a nuclear export signal (NES). NES-

cargoes are candidates for CRM1 (Xpo1p)-mediated export. Together with RanGTP,
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a stable NES-cargo-CRM1-RanGTP export complex forms which is able to translo-

cate through NPCs [47]. NES-cargo gets released into the cytoplasm upon RanGAP

mediated hydrolysis of RanGTP.

1.3.3 RanGDP/GTP Recycling

As there are no motors in the NPC, transport of specific molecules through the pore

does not consume energy beyond kBT [48]. Thus, movement of molecules in the

NPC is driven by Brownian motion which is non-directional. However, transport

of cargo across the NE and its dissociation against a concentration gradient gen-

erally consumes RanGTP [49]. Release of cargo in the nucleus is driven by the free

energy of RanGTP binding (∆G ≈ -51 kJ mol−1). On the cytoplasmic side, the ex-

port complex must be disassembled which requires the hydrolysis of RanGTP (∆G

≈ -33 kJ mol−1) catalysed by RanGAP [50]. This step is the only functionally irre-

versible process in the transport cycle. After hydrolysis of GTP in the cytoplasm,

homodimeric NTF2 imports RanGDP back into the nucleus [51] where chromatin

bound RanGEF (guanine exchange factor for Ran GTPase, RCC1) stimulates Ran to

exchange GDP with free GTP. This finally replenishes the pool of RanGTP in the nuc-

leus. Spatially separated RanGAP and RanGEF both increase the GTPase and nucle-

otide exchange activity by about 5×105-fold [50, 52]. This leads to a steep gradient

of RanGTP across the NE and therefore implies directionality of nucleocytoplasmic

transport.
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1.4 FG Nups are Intrinsically Disordered Proteins

Approximately 40% of all eukaryotic proteins are predicted to have at least one

long (>50 residues) disordered region and∼10% of proteins show a high propensity

of being fully disordered [53]. When compared with ordered proteins, intrinsic-

ally disordered proteins (IDPs) are significantly depleted of order-promoting amino

acids (i.e., Ile, Leu, Val, Trp, Tyr, Phe, Cys, Asn) and show substantial enrichment in

disorder-promoting amino acids (i.e., Ala, Arg, Gly, Gln, Ser, Glu, Lys, Pro) [54]. Fur-

ther, they combine low mean hydrophobicity with high net charge, which promotes

disorder in proteins [55].

IDPs exhibit a number of exceptional functional advantages which allows them

to interact with other proteins in a manner not achievable by ordered proteins [56,

57]. A key advantage is the combination of high specificity with low affinity in IDP-

protein interactions. This is a useful property for reversible signal transduction

which favours rapid association and dissociation of the partner without high bind-

ing strength [54]. Compared with ordered proteins interacting in the same affinity

range, IDPs show enhanced association rates due to their flexibility which allows the

encounter complex to evolve into the bound state faster than ordered proteins [58].

Given a diffusion limited association rate, a decrease in the dissociation rate gener-

ally increases the affinity. This is unfavourable for interactions which demand for

high specificity but rapid dissociation at the same time. Intrinsic disorder provides

a solution to this conflict. While ordered proteins have to break all interactions sim-

ultaneously for completed dissociation, IDPs can dissociate from their target in a
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stepwise manner. The resulting smaller energy barriers lead to much greater disso-

ciation rates [58, 59]. In addition, the high flexibility of IDPs also enables them to

bind multiple different partners by changing their conformation [59].

The ability to specifically bind different partners is commonly referred to as

promiscuity (alternately referred to as multispecificity and in immunological liter-

ature as cross-reactivity or degeneracy [60]). Promiscuity is advantageous in signal-

ing and regulation and could explain the high fraction of intrinsic disordered con-

formations involved in the "hubs" of protein-protein interaction networks. These

central hub-proteins bind to a high number of different partners, often in a “one-

to-many” and “many-to-one” fashion [61].

FG Nup FG domain FG Nup relative Number of Repeat

abundance FG repeats motif(s)

Nup159p (454 – 855) 8 25 FG, FxFG

Nup116p (1 – 696) 8 – 32 47 FG, GLFG

Nup42p (1 – 374) 8 30 FG, FxFG

Nup100p (1 – 884) 8 – 32 46 FG, GLFG

Nup59p (1 – 206) 32 4 FG

Nup49p (1 – 417) 16 19 FG, GLFG, FxFG

Nsp1p (3 – 601) 32 35 FxFG, FG

Nup53p (41 – 267) 32 4 FG

Nup57p (1 – 365) 16, 32 – 48 [62] 20 GLFG, FG, FxFG

Nup145p (1 – 367) 16 – 32 13 GLFG, FxFG, FG

Nup60p (387 – 521) 8 1 FxFG

Nup1p (325 – 1049) 8 19 FxFG, FG

Nup2p (206 – 562) 8, 32 [62] 11 FxFG

TABLE 1.1: Relative abundance, FG domain size and number of repeat mo-
tifs of yeast FG Nups. If not stated otherwise, all values are from Peleg, et
al. [63]. A complete list can be found in Cronshaw, et al. [14]. In the case of

multiple FG motifs, the most abundant is marked in bold.
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One third of Nups contain repeating linear FG motifs (i.e., FxFG, GLFG, FG; see

Section 1.1). First described in yeast NPCs [64–66], FG Nups were soon identified to

hold a key role in the NPC gating mechanism. Inactivation of FG Nups by RNA inter-

ference directly impaired nuclear transport function in Drosophila melanogaster,

demonstrating the selective requirement for FG Nups [33]. Further, the shared abil-

ity to directly interact with ∼15 (∼20 in humans) distinct nuclear transport factors

(e.g., Kaps, NTF2) emphasizes FG Nups essential function as promiscuous "hubs"

in nucleocytoplasmic transport [42, 62, 67–70].

FG Nups contain 150 – 700 amino acid long domains which exhibit intrinsic dis-

order at physiological conditions [34–36, 71]. In total, 13 different yeast (11 in ver-

tebrates) FG Nups are known to line the central channel [39, 63] (listed in Table 1.1).

They exist in multiple copies of 8, 16 and 32 [14, 62] and are either symmetrically

distributed or biased to the nuclear or cytoplasmic side of the NPC [21] (Figure 1.4).

Therefore, a total number of ∼200 FG Nup molecules is estimated to populate the

NPC central channel [22]. Together, they contribute about 3500 FG repeats per NPC

[72]which provide the promiscuity needed to interact with multiple distinct trans-

port factors (e.g. CRM1, CAS, Kapβ1 or NTF2) [73].
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FIGURE 1.4: Localization of Nups in the NPC estimated by immunogold electron
microscopy. The relative position of the C-terminus of each protein is superim-
posed on the cryo-EM obtained protein density map of a cross-section of the yeast
NPC. The coordinate system with 10 nm intervals has its origin in the center of the
transport channel (central Z-axis (R) and equatorial plane (Z)). Brown bars indicate
average allowed position ranges (± 8 nm and ± 4.5 nm). Reproduced from Alber,

et al. [74].

1.5 Multivalency in Nucleocytoplasmic Transport

Karyopherins in yeast and humans share similar molecular weights (90 – 150 kDa)

and they all have their isoelectric point (pI) between 4 and 5. In spite of their low

sequence identity of only 10 – 20%, they all contain tandem series of helical HEAT

repeats [75, 76]. Extensive structural studies and simulations revealed up to 10 dif-

ferent binding pockets on Kapβ1 that recognize FG repeats [77] (Section 1.5.1). Al-

though completely different in structure, up to 6 FG binding spots were determ-

ined on NTF2 by NMR and computational studies [78–80] (Section 1.5.2). Therefore,

multivalency likely plays an important role in nucleocytoplasmic transport.

In general, interactions between an m-valent receptor and an n-valent ligand is

considered to be multivalent if the number of binding sites of both m and n are lar-

ger than one [81]. Otherwise the interaction is typically monovalent in nature. The

most notable feature of a multivalent interaction is that the collective binding affin-

ity, also known as avidity, could be collectively much stronger than its monovalent
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counterparts [82]. This is frequently used by nature to accomplish tight binding

[82].

1.5.1 Kapβ1 Crystal Structure and Multivalent Interactions with

FG Nups

Kapβ1 has an overall snail-shaped structure forming a flexible alpha-solenoid as

shown in Figure 1.5A. The all-helical snail-shaped transport factor forms a flex-

ible alpha-solenoid composed of 19 HEAT repeats. Each repeat consists of two

helices which are located anti-parallel to each other and are connected by short

turn residues, and as such are comprising the concave inner and the convex outer

surface of the molecule. Kapβ1 binds the IBB domain of Kapα in the inner groove

while potential binding sites for FG repeats are exposed throughout the solvent ac-

cessible surface from the N-terminal HEAT repeat 3 to the C-terminal HEAT repeat

17. Figure 1.5B shows the structure of an N-terminal Kapβ1 fragment in complex

with two FSFG peptides. Figure 1.6 lists FG binding sites as predicted by simulations

(MD) or sequence alignment. Seven of these binding sites are experimentally con-

firmed [42, 45, 69, 77, 83–85]. Altogether, 10 different potential binding pockets for

FG repeats were determined on the outer surface of Kapβ1. This demonstrates the

potential for multivalent interactions with FG Nups inside the NPC. As predicted,

only a small number of 4 residues is needed to form a FG repeat specific binding

site [77]. Anticipated for the multivalent binding nature of Kapβ1, high affinities to-

wards FG Nups were classically determined to be in the range of KD∼1 – 200nM [83,
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86]. Mutations in HEAT repeats 5 – 7 significantly reduced the interaction by more

than 5 fold and thus verifies the affinity-enhancing effect of multivalency [83].

FIGURE 1.5: (A) Crystal structure of Kapβ1 bound to the IBB domain of Kapα (not
shown; PDB code: 1QGK). The structural hallmark of Kapβ1 are the 19 HEAT re-
peats denoted with numbers starting at the N-terminus. Structure and HEAT re-
peat definition are adapted from Cingolani et al. [41]. (B) Crystal structure of a
N-terminal Kapβ1 fragment (residues 1-442) in complex with Nsp1p-5FF (residues
497-608; PDB code: 1F59). Bound FSFG repeats are shown between HEAT repeat

5 & 6 (FSFG-1) and 6 & 7 (FSFG-2) as determined by Bayliss et al. [42].



Chapter 1. Introduction 16

FIGURE 1.6: Multiple computed and experimentally determined FG repeat binding
sites of Kapβ1. (A) 10 different binding spots are distributed along HEAT repeat 1 –
19. (B) Localization of the FG repeat binding sites 1 – 10 in the context of the whole
molecule (PDB code: 1QGK)[41]. Binding spots which were determined by MD
are labeled with a rectangular. Conserved binding spots are depicted with a black
dot, while experimentally known binding sites are marked with a black slash. Only
weak experimental confirmation exists for the binding spot labeled with an oval

between HEAT repeat 15 & 16.

1.5.2 NTF2 Crystal Structure and Multivalent Interactions with FG

Nups

Although the molecular mass predicted from its sequence is 14 kDa, NTF2 has been

reported to have an apparent mass of 28 kDa in solution, consistent with its exist-

ence as a homodimer at physiological concentrations [87–90]. The individual poly-

peptide chains form an α- and β-barrel where the bent β-sheet is backed by one

longer and two shorter α-helices. The two flat faces of the β-sheet form a extensive

contact zone between two individual monomers (Figure 1.7A) [91]. The C-terminus

together with the hydrophobic residues in the upper portion of NTF2 allows the

binding of two RanGDP molecules simultaneously [92].
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FIGURE 1.7: Crystal structure of homodimeric rat NTF2 and yeast NTF2 N77Y
mutant in complex with FSFG repeat peptides. (A) NTF2 primarily forms a ho-
modimer in solution. The crystal structure of the individual chains are shown in
different colors (PDB code: 1OUN) [93]. The interface is built by the two joining
β-sheets. (B) Crystal structure of two FSFG repeats (orange) in complex with yeast
NTF2 N77Y mutant (PDB code: 1GYB) [70]. The hydrophobic binding pockets are

located around Phe5 (Trp7 in rat NTF2; labeled in red).

Centered around Trp7 in rat NTF2 (Phe5 in yeast NTF2) a hydrophobic patch was

identified that interacts with FG repeats [68, 94]. The importance of this residue

in the interaction with FG Nups was demonstrated in vitro and in vivo using site-

directed mutagenesis, protein-protein interaction studies and functional assays [9,

68, 94]. Structural studies of yeast NTF2 in complex with FSFG peptides confirmed

two binding sites for FG repeats around Phe5 (Figure 1.7B). Interestingly, the hydro-

phobic patch includes residues from both chains and extends over the interface of

the two monomers (“Binding spot #1” in Figure 1.8A). Including binding spot #1, up

to 6 FG repeat binding pockets were determined experimentally or were predicted

by simulation [79]. Listed in Figure 1.8B, binding spots #1,#2 and #4 confirm direct

experimental evidence [70, 78, 80], whereas spot #3 was described by lower resol-

ution experimental data [80]. Binding spots #5 and #6 have yet not been verified
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experimentally. Nevertheless, this indicates that NTF2 exerts multivalent interac-

tions with FG Nups.

FIGURE 1.8: FG repeat binding spot positions on NTF2 as identified by simulation
(MD) [79]. In the top row, a surface representation of the NTF2 dimer is shown with
the corresponding cartoon of secondary structure below. (A) NTF2 dimer derived
from rat NTF2 crystal structure (PDB code: 1OUN) [93]. Only the main binding
spots around Trp7 involves residues from both monomers. (B) Binding spots #1 -
#6 are each indicated on the view from (A) rotated 90° around the vertical axis. (C)

The view from (B) rotated by 90° around the horizontal axis.

1.6 Transport Models

NPCs contain about 2500 – 3500 FG motifs within their transport channel that fol-

lows from the high abundance of FG domains which is estimated to be in the order

of 10 mM [72, 95]. Still, transport efficiency through the pore is remarkably high.

About 100 – 500 parallel translocation events per second add up to an estimated

molecular flux of ∼20 – 80 MDa·NPC−1s−1 [9, 10, 96]. In other words, it takes a little

more than 1 s to transport the equivalent mass of a single NPC through an NPC [9].
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How such high transport rates are accomplished through a pore which is filled with

FG domains remains a central question in the field. The challenge lies in under-

standing the precise mechanism of how the FG Nups overall conformation correl-

ates with function which, to date, is still not fully understood.

This is because it remains a formidable problem to resolve FG Nup structure in-

side the pore. For instance, cryo-electron tomographic reconstructions fail to cap-

ture the FG Nups based on their high flexibility which causes low electron density

readouts [20]. Based on in vitro studies of FG domain organization, several mod-

els exist which describe nuclear transport. Although they differ in details, they

agree that FG Nups form a collective barrier that blocks translocation of inert mo-

lecules and can be overcome with the help of nuclear transport receptors (NTRs;

e.g, Kapβ1) [8].

1.6.1 The Selective Phase Model

A “selective phase” consisting of a sieve-like meshwork of FG domains in the NPC

was first proposed by Ribbeck, et al. [9]. The underlying mechanism is based

on hydrophobic interactions between neighboring FG repeats. Subsequent work

showed that mild apolar solvents (e.g., cyclohexane-1,3-diol) could cause a revers-

ible collapse of the FG domain barrier in cells by perturbing inter-FG repeat inter-

actions [97]. Indeed, Frey, et al. successfully showed macroscopic (up to a few milli-

meters in size) hydrogel formation of highly concentrated (∼1 – 100 mM) FG/FxFG

(Nsp1p residues 2 – 601) , GLFG domains (Nup49p residues 1 – 246 and Nup57p
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residues 1 – 233) and mixtures thereof [98, 99]. Gelation was performed under non-

physiological conditions by dissolving lyophilised FG domains (∼200 mg/ml) in

0.2% TFA [99]. Such FG domain hydrogels were shown to reproduce the permeabil-

ity barrier of the NPC when fully saturated (i.e., every FG repeat is crosslinked) [99,

100].

FIGURE 1.9: The selective phase model. (A) Macroscopic hydrogels form under
non-physiological conditions at high FG domain concentration of ∼1 – 100 mM
[98, 99, 101, 102]. (B) Untersaturated (left) and saturated (right) FG hydrogel. FG
repeats are depicted in blue. (C) The selective phase model proposes that FG do-
mains crosslink to form a three-dimensional meshwork within the NPC. Multi-
valent NTRs are thought to melt through the gel during translocation. A repro-
duced from Frey, et al. [98], B reproduced from Frey et al. [100] and C modified

from Ribbeck, et al. [9].

The model predicts that each mesh in the gel (between 3 – 6 nm) defines the

upper size of molecules which can freely diffuse through the meshwork [99, 100].

By binding FG repeats, Kaps are thought to locally open the FG-FG bonds [98] and

thereby “dissolve” into the meshwork which otherwise poses a physical barrier to

non-specific molecules (Figure 1.9) [9]. However, it remains less clear how such gels

retain their functional properties at the nanoscopic environment in the NPC trans-

port channel when compared to the non-physiological conditions used for their

assembly in vitro [98]. FG domains which successfully formed hydrogels did not
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exhibit any interaction with itself or other FG domains under physiological condi-

tions [38, 103]. In contrast to the selective phase model were Kap binding locally

dissolves the meshwork, multivalent proteins are generally thought to stabilize the

gel formation in such self-assembly processes [104]. Indeed, the presence of Kaps

prevent hydrogel formation of Nup153 FG domains [101].

1.6.2 The Virtual Gating Model

Molecules which enter a confined volume suffer from a decrease in motional free-

dom which costs them energy in form of entropy. This general fact builds the basis

of the “virtual gating” or “Brownian affinity gating” model [13, 105]. Accordingly, an

entropic price has to be paid to place a molecule into the NPC central channel. With

increasing size of the molecule, the entropic penalty rises to pass through the cent-

ral channel. Above a certain size, the probability of a molecule to diffuse through

the central channel is negligible, which makes the NPC effectively impermeable for

larger molecules. Densely packed FG Nups add to the entropic cost, since they oc-

cupy additional space in and around the channel volume. Disordered FG domains

are thought to act as “entropic bristles” [105] - they randomly dither around due to

thermal forces which allows them to explore a large volume around their anchoring

point [106]. Molecules which move on the same timescale are likely to be expelled

of this volume. The entropic barrier can be overcome by binding to FG repeats [13,

105]. In terms of the Gibbs’s free energy the enthalpy gain from binding lowers the

barrier energy (∆G) by counteracting to the decrease in entropy (Figure 1.10). For a

sufficient low energy barrier (∼ kBT), diffusion of macromolecules is possible. This
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accounts for observation that nuclear accumulation of nuclear transport receptors

is orders of magnitude faster than that of similarly sized and passively traversing

molecules [9, 12].

FIGURE 1.10: The virtual gating model. The model suggests that stochastic move-
ments of FG domains (green) at the pores periphery act as an entropic barrier
(∆G� kBT) against non-specific molecules (light turquoise). Binding of NTRs
(dark turquoise) lowers the barrier energy (∆G∼ kBT) due to enthalpy gain and
transport of cargo (light turquoise) through the NPC (blue) is possible. Reproduced

from Rout, et al. [105].

1.6.3 The Polymer Brush Model

End-on surface grafted polymers generally tend to stretch away from their anchor-

ing point when densely packet next to each other [107]. Based on the close proxim-

ity of FG Nups anchored onto the NPC channel wall [13], the polymer brush model

emanates from the notion that such close-packing causes the FG Nups to stretch

their intrinsically disordered FG domain away from their anchoring point, which

resembles a polymer brush.
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Based on mechanical measurements in the nanoscale of surface-grafted Nup153

FG domains, Lim, et al. could show that close-packed FG domains display compres-

sion characteristics resembling those of molecular brushes, but not hydrogels [36,

71]. Reproducing the effect on the NPC barrier in cells, FG domain brush treatment

with hexanediol led to a collapse that was fully reversed after restoring initial buffer

conditions [71].

FIGURE 1.11: The polymer brush model. In absence of Kapβ1, FG domains form
a corona-like barrier (I). NTR-FG binding induces a local collapse (II) where the
NTR-cargo complex is drawn into the pore. After NTR-cargo translocation (III) the
complex gets released upon binding of RanGTP in the nucleus (IV). Reproduced

from Lim, et al. [36].

Binding of Kapβ1 to Nup153 brushes induces a conformational change in the FG

domains which is indicated by a overall collapse of the brush [36]. Upon removal of

bound Kapβ1 the collapse was reversed and the entropic barrier was re-established.

Based on these results, the polymer brush model proposes that FG domains form

a corona-like entropic barrier on both sides which repels non-specific molecules

from entering the pore by exhibiting stochastic fluctuations (Figure 1.11). This bar-

rier can only be overcome by NTRs that are able to bind FG domains. Binding leads

to a collapse of FG domains which causes the NTRs to be drawn into the pore. By

randomly moving from one FG domain to the next, each NTR binding event is ac-

companied by a local collapse inside the pore. In turn, each unbinding causes the
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FG domains to re-extend and therefore restore the barrier function.

By using antibodies against the freely moving end of Nup153 [30], immunogold

electron microscopy on Xenopus laevis NPCs revealed reversible collapse of Nup153

as a function of Kapβ1 binding [36]. At steady-state, Nup153 was predominantly

found in the vicinity of the nuclear basket. Microinjection of 2µM Kapβ1 produced

a striking phenotype that localized at the distal ring. Subsequent injection of 8 µM

RanGTP returned Nup153 to its steady-state distribution (Figure 1.12). This corrob-

orates the polymer brush model which is based on the notion that binding of Kaps

induces conformational changes in FG Nups.

FIGURE 1.12: Reversible collapse of Nup153 in the NPC revealed by immunogold
electron microscopy. Histograms show the position of Nup153 relative to the cent-
ral plane of the NPC (0 nm on the x-axis). The distal ring, the nuclear ring and the
cytoplasmic ring moieties are located between -100 nm and -50 nm, -50 nm and 0
nm, and 0 nm to 60 nm. (A) The free end of Nup153 diffuse in the periphery of the
NPC at steady-state. (B) Upon injection of 2 µM Kapβ1, Nup153 is predominantly
found at the distal ring, indicating a collapse of Nup153 to the anchoring point.
(C) The presence of 8 µM RanGTP reverses collapse of Nup153 which returns to its

initial steady-state distribution. Reproduced from Lim, et al. [36].
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Relaxation times of a random peptide coil are in the range of microseconds

which is orders of magnitudes faster than the millisecond transport rates in NCT

[108]. This dynamic behavior allows for rapid translocation of NTRs while main-

taining the barrier integrity towards non-specific molecules [36]. As a consequence

of the molecular brush model, Kaps are moving close to the wall of the channel,

which is in agreement with observations in cells [109]. Although collapse was meas-

ured at low, non-physiological concentrations in the nanomolar range [36], sub-

sequent experiments on planar brushes revealed that after initial layer collapse,

FG domains can incorporate large amounts of Kapβ1 and extend even further at

physiological concentrations (Chapter 5) [110, 111]. This underlines the conform-

ational sensitivity of close-packed FG domains on NTR occupancy.

1.6.4 Reduction of Dimensionality Model

Inside the cell, the time needed for a diffusing molecule to find its binding partner

is strongly dependent on the molecules size and the space the search process has

to cover during a three-dimensional random walk. This is significantly optimized

when the search process is confined to one- or two-dimensions. This was first pro-

posed by Adam and Delbrück as the principle of reduction of dimensionality (ROD)

[112]. Such a process requires that one binding partner is localized on a large struc-

ture of lower dimensionality, e.g. the NPC channel wall (Figure 1.13). Based on

ROD, Peters, et al. proposed a model of nucleocytoplasmic transport [95, 113, 114].
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FIGURE 1.13: Reduction of Dimensionality Model. NTR-cargo complexes formed
in the cytoplasm (1) or directly at the NPC periphery (2) exhibit a two-dimensional
random walk along the hydrophobic FG domain surface (green). After successful
translocation, cargo dissociates from the FG domains in complex with the NTR (3)
or gets released directly at the periphery (4). A high number of NTRs is occupying
the channel at steady-state, leaving a small central channel for passive diffusion.

Reproduced from Peters, et al. [95].

The model suggests that the majority of all FG domains are collapsed in vivo,

which extends on the notion that FG domains exhibit high conformational sensit-

ivity to ligand binding [36]. Indeed, given the high cellular concentration of Kaps, it

is likely that the FG domains are saturated at steady-state [95, 115]. The high density

of FG domains in a collapsed state composes a coherent FG layer which resembles

a “hydrophobic surface” [116]. Accordingly, Kaps are hypothesized to bind to this

layer due to to their FG domain affinity. But at the same time, their multivalent

nature allows them to retain substantial degree of lateral mobility. After binding,

Kaps are thought to ferry cargo along the walls by random diffusion in two dimen-

sions. As a consequence, diffusion of NTRs through the NPC is substantially shorter.

Nuclear accumulation of FG domain binding NTRs is observed to be 10 – 100 times

faster than that of passively diffusing molecules of similar size. This can be seen as

a consequence of ROD [9, 12]. In agreement with the ROD model, single molecule
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tracking experiments revealed that Kap-facilitated transport occurs along the chan-

nel wall, while passive molecules are confined in the center of the pore [109]. Al-

though many properties of NPC transport can be explained based on experimental

evidence for ROD in artificial systems other than that of NPCs [117, 118], direct ex-

perimental evidence for ROD in vivo is still missing.

1.6.5 The Forest/Two-Gate Model

Patel, et al. and Yamada, et al. could show that FG Nups can be classified into two

separate categories based on their structural and chemical heterogeneity [38, 119].

FG domains with low charge content adopt globular, collapsed coil configurations

(e.g., “shrubs”), whereas others adopt more dynamic, "extended coil" conforma-

tions and are characterized by a high charge distribution. Several FG domains ex-

hibit a bimodal distribution of compact and extended structures along their poly-

peptide chain and accordingly, are termed “trees”. Based on these three conforma-

tional classes, the “forest” model suggests that FG domain organization within the

NPC channel generates distinct transport zones that differ in their physiochemical

properties [119]. The central channel is dominated by sticky globular conforma-

tions located at the free end of FG Nups which form a cohesive meshwork through

hydrophobic interactions (zone 1; Figure 1.14). These cohesive FG domains are

linked to the NPC scaffold via non-cohesive domains which are in a relaxed or ex-

tended conformation reminiscent of a molecular brush (zone 2).

Simulations of an NPC exclusively filled with FG Nups (Nsp1p) of “tree” like con-

formation could reproduce a similar architecture, albeit under the assumption of
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FIGURE 1.14: The Forest/two-gate model. Based on yeast FG Nups properties, the
NPC channel exhibits distinct zones for traffic. Cohesive FG domains (blue) ori-
ented towards the center of the channel form a cohesive meshwork in zone 1. More
extended repulsive FG domains (red) form zone 2. NTR transit is depicted in dark

green (zone 1) and light green (zone 2). Reproduced from Yamada, et al. [119].

minimal tethering effects [120]. In the forest model, transport of small cargo loaded

Kaps or Kaps alone is limited to zone 2. To facilitate transport of larger cargo, e.g.

ribosomal subunits or mRNA, the flexible domains are able to respond with ex-

pansion or contraction which allows transport through zone 1. Passive diffusion

of small molecules takes place in both zones. As proposed in the virtual gate and

polymer brush model, repulsive FG domains on both sides of the NPC form peri-

pheral gates at the entrance to zone 2. This supports a two-gate model of NPC ar-

chitecture where a central diffusion gate is formed by a meshwork of cohesive FG

domains and the two peripheral gates are composed of repulsive FG domains that

can function as entropic bristles. Therefore, this model combines both properties

of the selective phase and the virtual gate/polymer brush model, respectively. The

model is supported by immunogold electron microscopy localization of instantly
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trapped cargoes in cells, where small cargoes are preferentially found at the peri-

phery of the channel and larger mRNA complexes predominantly localized in the

central channel [121]. Spatial information obtained from single molecule traject-

ories in functional NPCs revealed that small passively diffusing molecules exhibit

a high density in the central channel [109]. This findings are at odds with the pro-

posed existence of a peripheral zone allowing passive diffusion.

1.7 Motivation and Aim of the Thesis

The fact that a number of models exist in parallel all trying to explain NCT is mostly

based on the lack of experimental validation in vivo. To date, many of the results

are at least partly based on data obtained from experiments in vitro and in silico.

This allows for different interpretations and opens door for a multiplicity of models.

Performing meaningful experiments on working NPCs in living cells is a challenging

task. Especially since the spatial and temporal dimensions of the processes within

NPCs are at the limits of todays technical possibilities. Other problems include the

determination of structure-function relationship which arise from the disordered

properties of FG domains.

Given the high cellular abundance of NTRs and their affinity to FG domains, it

seems certain that NTR occupancy must be taken into account when studying bar-

rier functionality in NCT, which is not the case for several models proposed (i.e., gel,

brush and virtual gate). Short ms-dwell times of molecules in NCT require a low af-

finity which is a prerequisite for transient interactions. This is conflicting with NPC
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rejection of weakly binding molecules [42, 68]. At steady-state, a high number of

NTRs occupy the NPC simultaneously [115]. This suggests, that FG domains ex-

hibit promiscuous binding which is a general hallmark of IDPs [122]. How the bar-

rier functionality is maintained under constant binding and unbinding of different

NTRs and how the binding of one type of NTR affects the binding of the others is

not known.

The object of this thesis was to

1.) reconcile the apparent paradox of high binding affinities of NTR-FG domain

interactions measured in vitro and rapid transport rates measured in vivo.

2.) investigate the effect of promiscuous binding of FG Nups to multiple NTRs on

the NPC barrier function and kinetics of other molecules.

In order to address these objectives experimentally, I used SPR to investigate

Kapβ1 binding to surface-tethered FG domains of yeast Nsp1p. This was compared

to the binding of NTF2 and NTF2-W7A. In addition, I extended the standard SPR

approach with a novel technique developed by Schoch, et al., which allows for an

estimation of the ligand layer height using non-interacting BSA molecules in situ

[111, 123]. After characterizing the binding of Kapβ1 and NTF2 to FG domain lay-

ers individually, I utilized the property of long-lived Kapβ1 interactions to examine

the binding of NTF2 while FG domains were preloaded with Kapβ1. This was com-

pared to competitive Kapβ1 binding to pristine FG domain layers in a physiological

background of NTF2.
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My results show that a slowly exchanging Kapβ1 phase coexists with a fast phase,

which dominates transport kinetics due to limited binding with pre-occupied FG

Nups at physiological Kapβ1 concentrations. Similarly, NTF2 binding to Kapβ1-

preloaded FG domains is dominated by weak short-lived interactions. These novel

observations suggest that binding promiscuity confers kinetic advantages to NTF2

and reinforces the proposal that Kapβ1 contributes to the integral barrier function

of the NPC.

1.8 Thesis Layout

Chapter 1 introduces the functional architecture of the NPC. The current under-

standing of nucleocytoplasmic transport and its functional components is sum-

marized and followed by a synopsis of prevailing models describing NPC function.

Protein purification and characterization is presented in Chapter 2 together with

Materials and Methods and a succinct derivation of surface plasmon polaritons and

its resonance conditions. Structural characterization of surface-tethered Nsp1p FG

domains are presented in Chapter 3, followed by detailed morphological, equilib-

rium binding and kinetic analysis of Kapβ1 and NTF2 binding to pristine Nsp1p FG

domain brushes in Chapter 4. The impact of promiscuous binding of yeast Nsp1p

on the kinetics of NTF2 is presented in Chapter 5. Finally the thesis is concluded in

Chapter 6.





Chapter 2

Materials and Methods

2.1 Expression and Purification of Proteins

In this Chapter the cloning, expression and purification of the proteins used in the

thesis is specified. All in all, five different proteins were used in this work: Kapβ1,

NTF2, NTF2-W7A and yeast FG domains Nsp1p-5FF and Nsp1p-12FF, respectively.

Except for NTF2-W7A, all proteins were purified on an Äkta protein purification

system (Äkta Purifier 100/10 system, GE Healthcare).

2.1.1 Expression and Purification of Kapβ1

The 876 residues long full-length human Kapβ1 was amplified by PCR and cloned

into a NcoI-BamHI digested pETM-11 expression vector [124]. In addition to the

full-length sequence an N-terminal His6-tag and following TEV-cleaveage site (MKH-

HHHHHPMSDYDIPTTENLYFQGA) was added. His-tagged Kapβ1 was grown at

33
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37 ◦C to OD600 0.6 in E. coli BL21 (DE3) cells and expressed overnight at 30 ◦C in-

duced by 0.5 mM IPTG. Collected cells were lysed by incubation with lysozyme (30

min, 10 mg/400 ml bacterial culture) in buffer (10 mM Tris, pH 7.5/100 mM NaCl/1

mM DTT) which additionally contained Dnase, Pefabloc and protein inhibitors.

The resulting lysates were spun down at 40000 x g for 30 min and the supernatant

was applied onto a Ni column (cOmplete His-tag purification column, Roche) in

buffer (10 mM Tris, pH 7.5/100mM NaCl/1 mM DTT) where recombinant Kapβ1

was eluted using an Imidazole gradient from 10 mM to 500 mM. Fractions con-

taining high concentrations of Kapβ1 were pooled and further purified using size

exclusion (HiPrep 16/60 Sephacryl S-200, GE Healthcare) in buffer (10 mM Tris, pH

7.5/100mM NaCL/1 mM DTT). In cases where the protein concentration was too

low (i.e., < 5 µM) the pooled fractions were further concentrated by 2800 x g (10k,

Amicron ultra-4, Merck Millipore, Inc.). Purified protein was shock-frozen using li-

quid nitrogen and stored at −80 ◦C. Typical stock concentrations of Kapβ1 were 10

– 15 µM.

2.1.2 Expression and Purification of NTF2

The 127 residues long full-length rat NTF2 coding sequence [91]was cloned into the

NdeI and XhoI sites of the T7 expression vector pET15b which adds an N-terminal

His6-tag (MGSSHHHHHHSSGLVPRGSHM) to the wild-type sequence. The con-

struct was transformed into E. coli strain BL21 (DE3) CodonPlus RIL, grown at 37 ◦C

to OD600 0.6 and expressed over night at 30 ◦C induced by 0.5 mM IPTG. Collec-

ted cells were lysed by incubation with lysozyme (1h at 4 ◦C) in buffer (10 mM Tris,
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pH 7.5/100 mM NaCl/1 mM DTT/10mM Imidazole) which additionally contained

Dnase, Pefabloc and protein inhibitors. Lysate was spun down at 40000 x g for 1 h

at 4 ◦C. The supernatant was applied onto a Ni column (cOmplete His-tag purifica-

tion column, Roche) in buffer (10 mM Tris, pH 7.5/100mM NaCl/1 mM DTT) where

recombinant NTF2 was eluted using an Imidazole gradient from 10 mM to 500 mM.

Fractions containing high concentrations of NTF2 were pooled and ran through

size a exclusion column (HiLoad 16/60 Superdex S-75, GE Healthcare) in phosphate

buffered saline (GIBCO PBS, Lifetechnologies). Purified protein was shock-frozen

using liquid nitrogen and stored at −80 ◦C. Typical stock concentrations of NTF2

were ∼250 – 300 µM.

2.1.3 Expression and Purification of W7A-NTF2

Mutant NTF2 where Trp7 was exchanged by Ala was obtained by PCR-based site-

specific mutagenesis as described [125, 126]. The sequence was cloned into the T7

expression vector pET15b, expressed in E. coli BL21 (DE3) and purified using ion-

exchange chromatography and gel filtration as described1 [127].

2.1.4 Expression and Purification of FG domains Nsp1p-5FF and

Nsp1p-12FF

Two different fragments of the yeast Nsp1p FG domain, Nsp1p-5FF (residues 262 –

359; 1 x FG, 4 x FSFG) and Nsp1p-12FF (residues 262 – 492; 1 x FG, 11 x FSFG) were

1Proteins were expressed and purified by Neil J. Marshall in the lab of Murray Stewart, Cambridge.
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cloned via NcoI and HindIII sites into a modified pET30a vector (Novagen) that had

its thrombin protease recognition site changed for TEV protease and Cys-Cys-Trp

added after its initiator Met codon. Both final constructs contained N-terminal 2 x

Cys –, His6 – and S – tags (MCCWHHHHHHSSGLVPRGSGMKETAAAKFERQHMD-

SPDLGTGSENLYFQGA)2. Proteins were expressed in E. coli BL21(DE3) CodonPlus

RIL cells by growing at 37 ◦C to OD600 0.6 and inducing with 0.5 mM IPTG overnight

at 25 ◦C. Cells were lysed in buffer (50 mM NaPi, pH 7.5/200 mM NaCl/10mM Im-

idazole/1% Tween 20/2 mM β-mercaptoethanol) for 1 h at 4 ◦C. Lysate was spun

down at 40000 x g for 1 h at 4 ◦C and was applied onto a Ni column (cOmplete His-

tag purification column, Roche) in buffer (10 mM Tris, pH 7.5/100mM NaCl/1 mM

DTT) and recombinant fragments of Nsp1p were eluted using an Imidazole gradi-

ent from 10 mM to 500 mM. Fractions containing high concentrations of Nsp1p

fragment were pooled and ran through size a exclusion column (HiLoad 16/60 Su-

perdex S-75, GE Healthcare) in PBS. Purified protein was shock-frozen using liquid

nitrogen and stored at −80 ◦C. Typical stock concentrations were ∼100 µM.

2.2 Protein Characterization

2.2.1 Protein Quality

In all cases, the protein quality was assessed by PAGE at 0.1% sodium dodecyl sulfate

(SDS) and concentrations were measured by the absorption at 280 nm (Nanodrop

2000c, Thermo Scientific). Protein extinction coefficients were obtained using the

2Plasmids were a kind gift of Murray Stewart, Cambridge.
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ProtParam program available from the SIB Bioinformatics Resource Portal ExPASy

(http://web.expasy.org/protparam/).

FIGURE 2.1: 12% PAGE (0.1% SDS) of Kapβ1 and 15% PAGE (0.1% SDS) of NTF2,
NTF2-W7A, Nsp1p-12FF and Nsp1p-5FF. Note that NTF2 runs at∼14 kDa which is
close to the calculated monomer weight of 16.7 kDa. In physiological buffer (e.g.,

PBS), NTF2 forms a homodimer with a molecular weight of 33.5 kDa [87].

2.2.2 Dynamic Light Scattering

Dynamic light scattering (DLS) measurements (Zetasizer Nano, Malvern Instru-

ments Ltd, Worcestershire, United Kingdom) were performed with all proteins used

in this work. Proteins were prepared in buffer (PBS/1mM DTT) at a concentration

of ∼0.5 – 1 mg/ml. Prior to DLS measurements, the protein solutions were cent-

rifuged at 16000 x g for 15 min to degas them and precipitate possible dust or ag-

gregate particles. Each measurement was done at 25 ◦C. As input parameters the

refractive index for the proteins was np = 1.45 and for the dispersant (i.e., water)

http://web.expasy.org/protparam/


Chapter 2. Materials and Methods 38

nd = 1.330. The corresponding viscosity was 0.8872 cP (1P = 0.1 Pa·s). The hydro-

dynamic size was then calculated using the manufacturer’s software (Zetasizer Soft-

ware 7.02, Malvern) by fitting the intensity distribution to the correlation curves.

The measured hydrodynamic diameters of the proteins used in this work are given

in Table 2.1.

Protein Hydrodynamic Polydispersity

Diameter dh (nm), ±SD Indexa

Kapβ1 10.2 ± 1.6 0.3

Nsp1p-5FF 8.7 ± 2.5 0.3

Nsp1p-12FF 8.6 ± 2.7 0.1

NTF2 5.6 ± 1.6 0.05
a The polydispersity index ranges from 0 to 1, e.g., fully

monodisperse to maximal polydispersity of the sample.

TABLE 2.1: Dynamic light scattering measurements of
Kapβ1, NTF2, Nsp1p-5FF and Nsp1p-12FF.

The DLS results show that the hydrodynamic diameter dh of NTF2 is only half of

that from Kapβ1. By simply calculating the "protein volume" as d 3
h , Kapβ1 is about

8 times bigger with ∼1000 nm3 when compared with the volume of ∼125 nm3 of

NTF2. Although the Nsp1p-5FF is 133 residues shorter than Nsp1p-12FF the meas-

ured hydrodynamic diameters are indistinguishable. This could be due to the high

polydispersity in the sample of Nsp1p-5FF. Fits and DLS measurement quality of

Kapβ1, NTF2 and both Nsp1p fragments are shown in Figure 2.2.
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FIGURE 2.2: Dynamic light scattering measurements of Kapβ1, both Nsp1p FG-
domain fragments and NTF2. The first-order correlation function and fit (red solid

line) together with the resulting intensity distribution (inset) are shown.

2.3 SPR Theory

Plasmon resonances were first observed in 1902 by Wood [128] when he illumin-

ated a metallic diffraction grating with polymorphic light and observed a pattern

of unusual dark bands in the spectrum of the diffracted light. Although he spec-

ulated about the nature of this anomaly, a clear answer to the phenomenon was

not provided. In 1958 Turbadar measured a sudden drop in the reflectance near

the critical angle of total reflection for p-polarized light on non-opaque aluminum

films [129], but the effect was not linked to surface plasmons at this time. Turbadar’s
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results were explained by Otto in 1968, who demonstrated that the drop of re-

flectivity in the attenuated total reflection (ATR) method is linked to excitations of

surface plasmons [130]. In the same year, by using another configuration of ATR,

Kretschmann and Raether successfully excited surface plasmons [131]. The pion-

eering work of Otto, Kretschmann and Raether led to the development of conveni-

ent methods for the excitation of surface plasmons and their integration into mod-

ern optics.

2.3.1 Surface Plasmon Polaritons

Electromagnetic excitations in the infrared or visible-frequency range that propag-

ate along an interface between a conductor and a dielectric medium, are generally

known as surface plasmon polaritons (SPPs) [132]. They represent bound modes

along the interface in much the same way than that of light guided by an optical

fiber, with a particular characteristic of subwavelength-scale evanescent confine-

ment perpendicular to the interface. The physical properties of SPPs can be de-

duced from the Maxwell’s equations applied to the interface of a conductor and a

dielectric.

FIGURE 2.3: The most basic geometry which is able to sustain SPPs at the interface
composed of a metal and a dielectric (conductor) media.
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The most basic geometry which is able to sustain SPPs is that of a single flat in-

terface formed between a dielectric (e.g. aqueous buffer or air) on top of a metal

(e.g. gold) as illustrated in Figure 2.3. The upper half space (z > 0) is characterized

by a positive real dielectric constant εd , whereas the lower half space (z < 0) is de-

scribed by a dielectric function, which in the case for metals following the Drude

free-electron model is [133]

εm (ω) = ε0

�

1−
ω2

p

ω2− iων

�

(2.1)

where ε0 is the free-space permittivity, ν is the collision frequency andωp is the

well-known plasma frequency

ωp =

√

√ N e 2

ε0me
(2.2)

with N being the concentration of free electrons, and e and me are the electron

charge and mass, respectively. In order to have metallic character, it is required

that the real part of εm , Re[εm (ω)]< 0. This requirement is fulfilled for metals when

ω<ωp . Assuming translational invariance along the direction of propagation, lin-

ear isotropic and non-magnetic media, which commonly constitute optical wave-

guides, a propagating electric wave at the interface, as defined in Figure 2.3, can be

described as

E (x , y , z ) = E (z )e iβ x (2.3)
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where the complex parameter β is called the propagation constant of the travel-

ing wave resembling the component of the local wave in the direction of propaga-

tion. Based on the Helmholtz equation (∇2 E +k 2
0εE = 0) the wave equation for the

system can be written as

∂ E(z )
∂ z 2

+ (k0ε−β 2)E = 0 (2.4)

where k0 =ω/c is the wave vector of the propagating wave in free space. Natur-

ally, a similar equation describes the magnetic field H . Equation 2.4 is the basis for

the general analysis of guided electromagnetic modes in waveguides [134]. Solving

Eq. 2.4 for E and H , and for harmonic time dependence (d /d t =−iω; described in

detail in, e.g., [135]) one obtains two set of self-consistent solutions with different

polarization of the propagating waves. The first set are transverse magnetic (TM or

p) modes, where the only non-zero components are Ex , Ez and Hy . The second set

are the transverse electric (TE or s) modes, where only Hx ,Hz and E y are non-zero

components. For TM modes, the system of equations is

Ex =−i
1

ωε0ε

∂Hy

∂ z
(2.5a)

Ez =−
β

ωε0ε
Hy (2.5b)

with the TM mode wave equation
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∂ 2Hy

∂ z 2
+ (k 2

0ε−β
2)Hy = 0. (2.6)

For TE modes, the equivalent set of equations is

Hx = i
1

ωµ0

∂ E y

∂ z
(2.7a)

Hz =
β

ωµ0
E y (2.7b)

with the corresponding equation for TE modes

∂ 2E y

∂ z 2
+ (k 2

0ε−β
2)E y = 0. (2.8)

For the geometry given in Figure 2.3, the solutions for TM propagating waves

confined to the interface are for z > 0 (i.e., dielectric)

Hy (z ) =Ad e iβ x e −kd z (2.9a)

Ex (z ) = iAd

1

ωε0εd
kd e iβ x e −kd z (2.9b)

Ez (z ) =−Ad

β

ωε0εd
e iβ x e −kd z (2.9c)

and for z < 0 (i.e., metal)
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Hy (z ) =Am e iβ x e km z (2.10a)

Ex (z ) =−iAm

1

ωε0εm
km e iβ x e km z (2.10b)

Ez (z ) =−Am

β

ωε0εm
e iβ x e km z (2.10c)

where

β =
ω

c

√

√ εdεm

εd + εm
(2.11a)

kd =
ω

c

εdp
εm + εd

(2.11b)

km =
ω

c

εmp
εm + εd

. (2.11c)

with ki and Ai (i = d or m for dielectric or metal) describing the components for

the wave vectors perpendicular to the interface and the related modal field amp-

litude, respectively. ω/c = k0 = 2π/λ is the wave vector for light with a free-space

wavelength λ. Additionally, the requirement for continuity at the interface makes

it impossible for TM polarized surface modes to exist [135].

As follows from equations 2.9 and 2.10, the electromagnetic field of a SPP reaches

its maximum at the metal-dielectric interface and exhibits an exponential decay

into both media. Such a decay can be characterized by its characteristic penetration
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FIGURE 2.4: SPPs at the interface between a metal and dielectric material are a
combination of surface charge and electromagnetic wave. Left: Transverse mag-
netic character (the magnetic field H is in y-direction) and generation of surface
charges requires an electric field, E, normal to the interface. Right: The electric
field is enhanced near the surface and is decaying exponentially with distance. The
decay length of the electric field in the dielectric medium, δd, is approximately half

of the wavelength of the light involved [136].

depth (or decay length) δi , which is defined as the distance from the surface where

the field amplitude decreases by a factor of 1/e :

δi =Re[ki ]
−1. (2.12)

Therefore, for a SPP confined at the interface, the characteristic penetration

depth into the dielectric medium is given by

δd =
λ

2π

�

ε2
d

ε′m + εd

�− 1
2

(2.13)

where ε′m is the real part of the dielectric constant of the metal. As an approxim-

ation, the penetration depth into the dielectric is in the range of half the wavelength

λ, which is about ten times larger than the corresponding penetration depth into

the metal. However, in real metals, oscillating electrons always experience damping

which is described by a non-zero imaginary part of the permittivity εm = ε′m + iε′′m .

As a consequence, the propagation constant of SPPs contains a non-zero imaginary
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part,β =β ′+iβ ′′, and therefore, the traveling SPPs are damped with a characteristic

attenuation length given by

δSP P =
1

2Im[β ]
(2.14)

Typically, the propagation length of SPPs along the metal-dielectric interface

ranges between a few micrometers in the visible range and up to 100 µm in the

infrared (e.g. the 1/e propagation length of gold at a wavelength of λ = 760 nm is

about 10 µm).

2.3.2 Excitation of Surface Plasmon Polaritons

As derived before, SPPs are quasi two-dimensional electromagnetic waves at a

metal-dielectric interface with an asymmetric evanescent decay on both sides of

the interface. However, excitation of SPPs by three-dimensional light beams is not

possible since the SPP dispersion relation curve always lies below the light line of

a dielectric or below that of an electromagnetic wave in free-space, which have a

linear dispersion relation ofω= c k0 (Figure 2.5).

Therefore, SPP excitation can only be achieved by applying special phase-

matching techniques. One of the most frequently used technique to excite SPPs is

the so-called Kretschmann configuration in the ATR method [131]. This approach

includes a high-refractive index prism with refractive index np attached to a metal-

dielectric waveguide comprising a thin metal layer with permittivity εm and a semi-

infinite dielectric with refractive index nd , where nd < np (Figure 2.6). In the ATR
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FIGURE 2.5: Dispersion relation of SPPs and electromagnetic waves in free-space.
The momentum mismatch problem that has to be overcome for successful coup-
ling of light and SPP modes is shown. SPP modes always have a greater momentum

(ħhkSP) than that of free space photons (ħhk0).

regime, a part of an incident light beam gets reflected back into the prism at the

metal / prism interface and a part propagates along the interface while decaying

exponentially into the direction normal to the interface, and as such is constitut-

ing an evanescent wave. For sufficiently thin layers (< 100 nm for visible and near

infrared light) the evanescent wave can penetrate the metal film and couple with

SPPs bound at the low-refractive index /metal interface. The propagation constant

βSP P0 as defined in equation 2.11a of a SPP propagation along the thin metal film

is influenced by the presence of the dielectric material, i.e., the prism on the other

side. Therefore, the resulting propagation constant is altered as βSP P =βSP P0+∆β ,

where ∆β accounts for the influence of the prism. For efficient coupling to occur,

the propagation constant βSP P0 has to match that of the evanescent wave β E W . In

terms of effective index, the coupling condition can be expressed as:

n E W
e f = np sinΘ = nSP P

e f =Re

�√

√ εdεm

εd + εm

�

+∆nSP P
e f (2.15)

where n E W
e f represents the effective index for the evanescent wave, nSP P

e f is the
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effective index of the SPP and∆nSP P
e f =Re[∆βλ/2π]. Equation 2.15 shows, that only

a single angle of incident for a given wavelength matches the criteria that satisfies

coupling to surface plasmon polaritons (e.g. for light with λ = 760 nm and a BK7

glass prism, Θ ≈ 66.5° [137]).

FIGURE 2.6: Kretschman geometry of the attenuated total reflection method for
excitation of surface plasmon polaritons. A high refractive index prism (np) re-
flects incident light at the prism metal interface. A part of the light propagates
along the interface while decaying exponentially perpendicular to the interface.
For thin metal layers this evanescent wave can penetrate the layer and couple
to SPPs bound at the metal-low-index dielectric interface. Only a single incident
angle Θ for a given wavelength matches the criteria (Equation 2.15) that satisfies

coupling.

2.4 Application of SPR

2.4.1 SPR Based Biosensors

Optical sensors are devices which, by optical means, convert a measured quantity of

the object of interest to another quantity which is typically encoded into a property

of a light wave. In SPR based sensors, SPPs excited at the interface between a metal

film and a dielectric medium (superstrate) depend on the refractive index of the
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superstrate (see Eq. 2.15 in previous Section). A subsequent change in refractive

index will change the coupling condition for SPP resonance to occur, which can

be observed as a change in characteristics of the optical wave interacting with the

SPP. In prism based coupling (e.g. Kretschman configuration; Figure 2.6) incident

light gets totally reflected at the high-index prism /metal interface. SPP excitation

manifests itself in a minimum of the reflected light intensity which is associated

with the transfer of energy from the incident light wave into a surface plasmon and

its subsequent dissipation into the metal film. This "dip" in the reflected intensity

can be observed at a given angle which is dependent on the refractive index of the

low-index dielectric media (e.g., air or water; Figure 2.7).

FIGURE 2.7: Polarized reflectivity as a function of angle of incidence calculated for
two differnet wavelengths. The Fresnel model (solid line) and its Lorentzian ap-
proximation (dashed line) describe the reflectivity on a BK7 glass, gold film, water
configuration (gold film thickness of 48 nm for wavelength 650 nm, and 50 nm for

wavelength of 850 nm). Reproduced from [137].

Therefore, refractive index changes in a dielectric media within the penetration

depth of the evanescent SPP field perpendicular to the interface can be detected
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by optical means. For example, optical tracking of the typical angle where the min-

imum of reflected light intensity occurs. Such a device can be utilized for affin-

ity biosensing where SPR based sensing devices incorporate biorecognition ele-

ments (e.g. antibody) that are able to interact with single or multiple selected ana-

lytes. These SPPs based optical sensors will only be sensitive to molecular processes

(binding, adsorption, etc.) within the decay length of the evanescent field (e.g. 350

nm). In other words, binding of proteins onto the metal surface or changes in the

sensing volume above the metal surface (e.g., buffer or protein solutions) can be

detected as a function of time.

A typical SPR setup and experiment is depicted in Figure 2.8 and Figure 2.9, re-

spectively. Here, the refractive index change is monitored over time. A glass slide

with a thin gold layer of ∼50 nm thickness (sensor chip) is interfaced with a high-

index prism on the sensor glass side. A flow-cell (FC) is used to change the solutions

which are in contact with the gold surface of the sensor chip. This system allows for

constant flow or quick changes of protein solutions (e.g., injections).

Subsequent changes on the gold surface (e.g. binding of analytes) is detected by

a shift of the intensity minimum of the reflected light as a function of time. A typical

SPR experiment consists of four steps: i) immobilization of the ligand (e.g. antibod-

ies) onto the sensor surface, ii) injection of analytes (association) which bind to the

ligand until they reach steady-state equilibrium (iii), and subsequent washing with

buffer that causes the bound analytes to dissociate from the surface (see Figure 2.9).

A final regeneration step can be applied to remove all bound analytes from the sur-

face. From such an experiment, kinetic information (association, dissociation) and
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FIGURE 2.8: Basic components of an instrument for SPR biosensing. A glass slide
with a thin gold coating is mounted on a high-index prism (Kretschman configura-
tion). Polarized light passes through the prism and gets reflected at the prism/gold
interface. Subsequent changes of the refractive index in the detection volume
above the sensor surface cause a shift of the intensity minimum of the reflected
light due to coupling to SPPs (e.g., I to II). The SPR signal (angle of intensity min-
imum shift) is proportional to the mass of bound ligand and analyte. A flow cell
allows constant flow or rapid exchange of solutions above the gold surface. The

SPR signal is recorded as a function of time.

thermodynamic information (equilibrium binding) about the ligand-analyte inter-

action can be obtained. Since the SPR signal is sensitive to changes not only on

the sensor surface but also in the detection volume above the surface, a common

way to correct for the bulk response is the use of a second SPR sensor separately

addressed via a second FC. The analyte solution then is injected in both FCs simul-

taneously. While the analyte is binding to the ligand functionalized FC1, the second

sensor surface in FC2 is passivated and rejects all analyte. By subtracting the signal

of FC2 from FC1, a bulk-response corrected signal can be obtained. In this way the

binding signal of analyte and ligand is isolated from the total response that includes

bulk contributions.

In this work, SPR (Biacore T100, GEHealthcare) response is measured in re-

sponse units (RU). The SPR response is proportional to the amount of molecules
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adsorbed onto the sensor surface. The relation was shown to be 0.10° ± 0.01° =

1 ng/mm2 for proteins immobilized in a 100-nm dextran hydrogel layer, which is

equivalent to 1000 RU = 1 ng/mm2 [138, 139]. However, this relation has to be re-

fined when small molecules are directly bound to the sensor surface. This is be-

cause the given mass-response relation overestimates the protein mass due to the

higher evanescent field strength at the gold surface as compared to the dextran

layer, which is considerably thicker. For an estimated evanescent field decay length

of 350 nm, a more suitable relation of 1300 RU = 1ng/mm2 can be derived for a

typical adlayer of 20 nm height [111].

FIGURE 2.9: A typical SPR experiment, showing the relative optical response (RU)
versus time. At the beginning, the surface is functionalized with a ligand and RU is
set to zero. Upon start of analyte injection of constant bulk concentration at t= 250
s, the SPR signal increases due to analyte binding at the surface (association). At t=
600 s the system reaches equilibrium according to mass-action law. Dissociation of
bound analyte is achieved by flushing the flow-cell with buffer starting at t= 850 s.
To correct for bulk solution response, all solutions are simultaneously injected onto

a passivated reference surface while monitoring both surfaces simultaneously.

2.4.2 Equilibrium Binding Analysis

The binding of two proteins A and B (e.g., ligand and analyte) in its most simple

form is given by the bimolecular reaction
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A+B
kon−−*)−−
koff

AB (2.16)

where kon is the association rate and koff the dissociation rate constant. The re-

action is in equilibrium when the concentrations do not change.

d[AB]
dt

= kon [A][B]−koff [AB] = 0 (2.17)

The association is a second order reaction (dependent on both concentrations

[A] and [B]), whereas dissociation follows a first order reaction. Equilibrium is

reached according to the mass action law [140]when

kon [A][B] = koff [AB] (2.18)

Rearranging gives the well known definition of the equilibrium dissociation con-

stant

KD =
koff

kon
=
[A][B]
[AB]

(2.19)

Here, the concentration of analyte B�A because of the constant flow above the

sensor surface. Therefore the concentration of B does not change over time (d[B]/dt

= 0) and is held constant at a given concentration c. Accordingly, Eq. 2.17 changes

to
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d[AB]
dt

= kon ([AB]max− [AB])c−koff [AB] (2.20)

where [AB]max− [AB] is the concentration of free ligands [A] and [AB]max is the con-

centration of [AB] when all ligands are saturated. This reduces the binding model

to a so called pseudo first order reaction. By assigning the SPR response Rmax to the

concentration of [AB]max and Rt is the signal of [AB] complexes formed at time t, the

SPR binding signal change over time is given by

d[R]
dt
= kon (Rmax−Rt)c−koff Rt (2.21)

for the association and

d[R]
dt
=−koff Rt (2.22)

for the dissocation of ligand-analyte complexes on the surface. Accordingly, the

equilibrium response Req (dR/dt= 0) is given by the Langmuir absorption isotherm

Req(c) =
Rmax× c

KD+ c
(2.23)

Note that at Req/Rmax = 0.5 half of the binding sites are occupied and KD = c.

Here, for the determination of the apparent equilibrium binding constants of

different transport receptors (NTF2, NTF2-W7A and Kapβ1) the SPR response, Req,i,
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at steady state as a function of bulk transport receptor concentration c was fitted

with a Langmuir absorption isotherm of k components with k = 1 or 2:

Req(c) =
∑

k

Rmax,k× c

KDk+ c
(2.24)

where Rmax,k represents the maximum surface binding capacity for binding spe-

cies with KDk. In all cases of close-packed FG domains, the experimental data

points for Kapβ1, NTF2 and NTF2-W7A binding were best fit by a two-component

Langmuir isotherm.

2.4.3 Kinetic Analysis of Multivalent Interactions

The concept of surface heterogeneity introduced by Svitel, et al. [141] was used

to estimate the binding kinetics of NTF2, W7A-NTF2 and Kapβ1 interacting with

Nsp1p FG-domains. To do so, a discrete set Pi (ko n ,i , ko f f ,i ) of total N =Mko f f
×Mko n

(i.e., 36 x 36) binding states was used to model the experimentally measured kinetic-

binding curves as

st o t a l (c , t ) =
N
∑

i=1

Pi (ko f f ,i , ko n ,i )si (ko f f ,i , ko n ,i , c , t )∆ko f f∆ko n (2.25)

where c is the analyte bulk concentration and t is time. The factor Pi (ko f f ,i , ko n ,i )

describes the fractional abundance (i.e. “weight”) of the kinetic binding species i

which has a theoretical binding response given by si (ko f f ,i , ko n ,i , c , t ). The binding

states can be represented on a grid of (ko f f ,i , ko n ,i )-pairs
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where each grid-point visualizes the weighting Pi (ko f f ,i , ko n ,i ) in the 3rd dimen-

sion using a contour plot of colors. In this case, for each grid point a full sensogram

si (ko f f ,i , ko n ,i , c , t ) was constructed according to the experimental parameters, e.g.

c = 0 for the dissociation phase. To do so, a kinetic model for NTF2 (and W7A-NTF2)

binding was used to calculate a sensogram for each pair of (ko f f ,i , ko n ,i ) assuming

pseudo first order kinetics.

L+Ds

kon,i−−*)−−
koff,i

LDs (2.26)

Here, L are the free binding sites, Ds is the NTF2 dimer concentration in solution

and LD are binding sites occupied with dimeric NTF2 molecules. For the binding

of Kapβ1, the model was further extended to mimic the experimentally observed

multilayer formation

L+As

kon,i−−*)−−
koff,i

LA1+ As

kon,i−−*)−−
koff,i

LA2+ As

kon,i−−*)−−
koff,i

· · ·
kon,i−−*)−−
koff,i

LAn (2.27)

with L representing the free binding sites, As is the Kapβ1 concentration in solu-

tion and LAn are the binding sites occupied by n Kapβ1 molecules. In both cases,

the free ligand concentration, L, was modeled as binding sites per surface area given
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by the size of the transport factor (e.g. 5 x 5 nm2 for NTF2/W7A-NTF2 and 10 x 10

nm2 for Kapβ1) because, in this case, the actual distance between FG repeats bind-

ing sites was much smaller than the dimension of an individual transport factor.

This gave a total number of 4×1010 surface sites per mm2 for NTF2/W7A-NTF2 and

1×1010 surface sites per mm2 for Kapβ1. For the latter, each binding site can accom-

modate up to 3 Kapβ1 molecules, corresponding to the formation of multilayers.

A set of ordinary differential equations describing the kinetic models were solved

using the Matlab function ode15s. For Kapβ1, the sensogram was calculated by

linearly superimposing LA1+2×LA2+3×LA3. The concentration of occupied sites

LAn as a fraction of the total binding sites L was compared to the number of layers

obtained by dividing the experimental sensogram by 2897 RU for NTF2/W7A-NTF2

and 2223 RU for Kapβ1 [111]. An optimal parsimonious distribution of koff and kon

describing the experimentally obtained sensogram was obtained by solving the fol-

lowing minimization problem, which was stabilized using Tikhonov regularization

in the standard-form:

pλ = argmin
�

‖ Ap−b ‖2
2 +λ

2 ‖ I (p−p∗) ‖2
2

	

(2.28)

where A= [s1, s1, ...si, ...sN ] is a matrix of Nd a t×N elements (with N =Mko f f
×Mko n

and Nd a t the number of experimental data points) which contains all calculated

sensograms si (ko f f ,i , ko n ,i , c , t ), p is a vector with N elements and contains the set

of discrete binding states and b is a vector of Nd a t experimental data points. The

regularized Tikhonov solution pλ was computed using the Matlab package Regular-

ization Tools by Per Christian Hansen [142] where I stands for the identity matrix
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and p∗ for a null vector. To stabilize the solution in a KD range of applied concen-

trations the I diagonal elements were modified by setting KD/cma x for cma x > KD

and cmi n/KD for KD < cmi n , where cma x is the highest and cmi n the lowest applied

bulk concentration in the experimental data set b (c , t ). An active set method intro-

duced by Landi and Zama [143] was applied to the Tikhonov regularized solution

pλ in order to obtain nonnegative solutions using the conjugate gradient algorithm

in the Matlab package Regularization Tools [142].

2.4.4 Mass Transport Limitation

Mass transport effects will influence the kinetics of binding when the reaction rate

is fast compared to the rate of transport [144]

konRT

km
≥ 1 (2.29)

where RT is the immobilized receptor concentration in M ·m and km is the mass

transport coefficient and kon is the on-rate of the reaction. Since in my case, the

ligand is smaller than the analyte, and so it is the packing of the analyte that actually

limits its surface concentration. In the laminar flow conditions that apply in Biacore

experiments, km can be calculated as [145]

km = 0.98
�

D

h

�
2
3
�

f

0.3A

�

1
3

= 10.22µm/s (2.30)
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where D is the analyses’ diffusion coefficient of 70 µm2s−1 (i.e., Kapβ1) [115], f is

the volumetric flow rate through the flow cell of 10 µl/min, h and A are the flow-

cells’ height and area of 40 µ and 1.5 mm2, respectively. For kon = 104 M−1s−1 and

RT = 1.66×10−11 M ·m at maximum Kapβ1 grafting density g = 10 nm (i.e. one

monolayer) we arrive at a ratio of 0.016 < 1. Hence, mass effects should not be

limiting in the association under these conditions. Accordingly, a kon of 105 M−1s−1

results in a ratio of 0.16< 1. For kon = 106 M−1s−1, mass transport effects might start

to influence the kinetics measure as the ratio is 1.6 > 1. NTF2 even has a higher

diffusion coefficient than that given for Kapβ1 [115]. This considerations support

the notion that the effect of mass transport limitation for both, NTF2 and Kapβ1,

may start to affect kinetic results for kon ≥ 106 M−1s−1.

2.4.5 Definition of Grafting Distance and NTR Layers

The estimation of the next-neighbor distance, g, between surface bound molecules

is straight forward once the mass adsorbed per unit area (for a square lattice) is

known for a given molecular weight Mw:

g(nm) =

√

√1300 ·Mw ·1021

NA ·∆RU
(2.31)

where Mw is the molecular weight of the protein (e.g. Kapβ1), NA is Avogadro’s

constant and∆RU is the SPR response shift upon binding of the protein. This dis-

tance, g, can be smaller than the average diameter, dh, of a single Kapβ1 (ca. 10 nm)
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or NTF2(-W7A) (ca. 5 nm) molecule because Eq. 2.31 projects all bound molecules

to a single plane. The number of layers is calculated using

Number of layers=
dh

2

g2
(2.32)

In this case, 1 layer of Kapβ1 corresponds to ∼1000 Da/nm2 and 1 layer of NTF2

or W7A-NTF2 corresponds to ∼1340 Da/nm2. Dimensionless SPR response units

(RUs) are converted using the relation of 1300 RU = 1 ng/mm2 [123].

2.4.6 Definition of Stoichiometric Ratio

From the definition of grafting distance, g, as described before in Section 2.4.5, it

follows that the number of proteins (e.g. NTF2) per unit area is given by 1/g2. Ac-

cordingly, a stoichiometric ratio based on mass coverage between NTRs binding to

surface grafted FG domains is given by

Stoichiometric ratio=
gNTR

2

gNup
2

(2.33)

where gNTR stands for the grafting distance of Kapβ1, NTF2 or W7A-NTF2 and

gNup for the grafting distance of the FG domain (e.g. Nsp1p-12FF). For example, a

grafting distance gNTF2=5 nm corresponds to a mass of 4 NTF2 molecules per 100

nm2. On the same area, a mass of 16 Nups with gNup = 2.5 nm can be bound. This

gives a ratio of 0.25 or a mass based stoichiometry of 1 NTF2 per 4 FG Nups. The
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NTRs grafting distance can be smaller than its hydrodynamic diameter, which ac-

cording to Eq. 2.31 in Section 2.4.5 accounts for multi-layer formation. SPR re-

sponse units (RUs) are converted using the relation of 1300 RU = 1 ng/mm2 [123].

2.4.7 Determination of the FG Domain Layer Height

As described in Schoch, et al. [123], the SPR response of non-interacting BSA mo-

lecules injected simultaneously into a passivated reference- and nucleoporin-

functionalized flow-cell allows estimation of the layer-height of the nucleoporins

grafted on the sensor surface (Figure 2.10).

In this case, densely grafted PUT (HS−(CH2)11−(OCH2CH2)3−OH, Nanoscience)

was used to passivate the gold sensor surface, which results in a small passivation

layer with known height of 2 nm as measured by ellipsometry [146]. Here, 1% (w/v)

BSA was injected and the SPR response (RU) was recorded which was used to es-

timate a layer-height h as

h=
ld

2
ln
�

RrefmBSA

RBSAmref

�

+dref (2.34)

where ld = 350 nm is the specific decay length of the evanescent field, RBSA and

Rref stand for the SPR response of BSA injected into the FG domain functionalized

SPR flow-cell and PUT-passivated reference flow-cell, respectively. mBSA and mref

are calibration constants accounting for differences in SPR sensitivity between the

flow-cells and dref = 2nm is the corresponding thickness of the PUT passivation

layer.
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FIGURE 2.10: Measuring conformational changes of surface-tethered FG domains
by SPR. R1 (Rref in Eq. 2.34) and R2 (RBSA in Eq. 2.34) derive from the presence of
non-interacting BSA probes (red) in the PUT passivated cell 1 (C17H36O4S) and FG
domain functionalized cell 2 (Nsp1p-12FF), respecively, and are used to estimate
the layer height d2 (h in Eq. 2.34). Changes in layer height due to NTR binding
(green) are obtained by subtracting the initial layer height from following height

measurements. Reproduced from Schoch, et al. [111].
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Conformational Characterization of

Surface-Tethered FG Domains

3.1 Introduction

Numerous studies about the molecular composition of NPCs show that the central

channel wall provides anchoring points for a variety of multiple FG repeat contain-

ing proteins (FG Nups) [39, 67]. NPC transport mechanism is based on the inter-

action between soluble nuclear transport receptors (NTRs) and the FG repeat rich

domains of FG Nups (FG domains) [42, 68, 70]. To understand nucleocytoplasmic

transport in detail, knowledge about the conformational organization of FG Nups

is essential. FG domains were shown to be intrinsically disordered at physiological

conditions [119]. Because of their lack of secondary structure, it remains a challenge

to reveal their conformational organization within the NPC environment [20]. To

63
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address this problem, fragments of yeast FG domains were grafted on a solid sup-

port and their collective conformational properties were investigated by means of

SPR.

3.2 Materials and Methods

Two Nsp1p FG domain fragments of different length (Nsp1p-5FF and Nsp1p-12FF)

were chosen for this experiment (see Figure 3.1). Nsp1p is predominantly anchored

to the central channel framework of the NPC with a copy number of 32 [62, 74]. Both

proteins have their N- or C-terminal end modified with 2 additional Cysteines. This

allows to tether these proteins to a gold surface via gold-sulfur interactions forming

a semi-covalent bond [147]. Because gold is not able to form stable bonds between

other amino acid residues, surface tethered FG domains share the same overall

orientation (i.e., N-terminal end attached to the surface and a freely moving C-

terminus). This type of oriented surface grafting allows to create conditions which

closely resemble the NPC transport channel interior, i.e., FG Nups are densely

anchored to a surface while exposing an intrinsically disordered domain. For the

determination of the overall conformational organization of surface grafted FG do-

mains, the average layer height was measured at various grafting distances using

SPR with non-interacting BSA molecules.
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FIGURE 3.1: Both yeast FG domain fragments used in this study, Nsp1p-5FF and
Nsp1p-12FF, contain regularly spaced FSFG repeats shown in red. FG repeats are
depicted in blue. The linker regions between FG motifs have a length of typically
15 residues. Residue numbers in bold correspond to full-length Nsp1p. The frag-
ments each contain a 52-residue 2xCys-/6xHis-/S-tag at their N-termini, shown in
dark blue. The structured C-terminal domains of the full-length protein are depic-

ted in light blue.

3.2.1 Preparation of SPR Gold Sensor Surfaces

SPR gold sensor surfaces (Biacore SIA Kit,GE Healthcare) were stored under low-

pressure Argon atmosphere. Before they were used, a step-wise cleaning procedure

made sure that the surface were of high quality without any contaminants. First,

the sensors were immersed in Aceton (≥99.8%, Merck Millipore) and were sub-

sequently sonicated for 15 min (35kHz/160W, Sonorex RK100, Bandelin Electronics,

Berlin). This procedure was repeated with Isopropanol (≥99.8%, Merck Millipore)

and Ethanol (≥99.8%, Fluka Analytical, Sigma Aldrich). At the end of the third son-

ication step, the sensors were carefully dried in an N2 stream and put into an UV-

ozone oven (Model 42A-220; Jelight, USA) for 30 min. In a last step, the sensors were

again immersed in Ethanol and sonicated for 15 min. After cleaning, N2 dried gold

sensors were immediately mounted into the SPR system, following manufacturers

guidelines.
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3.2.2 Preparation and Immobilization of FG Domains

Nsp1p fragments were used immediately after thawing because they were already

stored in PBS buffer. Solution trapped gas forms small bubbles which results in dis-

advantageous SPR signal changes. To prevent this, the protein solutions were cent-

rifuged for 15 min at 16000 x g and room-temperature (RT) using a table-top centri-

fuge (Eppendorf). Running buffer (PBS) for the SPR experiment (Biacore T100, GE

Healthcare) was filtered through a 0.22 µm membrane ("rapid"-filtermax, Techno

Plastic Products AG) and degased for 1 h at RT. 1 mM PUT was diluted 1:10 in PBS

from a 10 mM stock solution of PUT in ≥99.8% Ethanol. 1% (w/v) BSA (≥99.8%,

Sigma Aldrich) was dissolved in PBS while gently stirring for at least 15 min. 0.2

M NaOH in PBS (pH ∼13) was filtered using a 200 nm filter (Filtropur S, Sarstedt).

BSA, PUT and NaOH solutions were degased using a table-top centrifuge at 16000

x g and RT. Prior to the start of the protein injection sequence, the liquid handling

system of the SPR machine was flushed with filtered and degased running buffer.

The following immobilization procedure was applied on the SPR machine:

Cycle 0: Equilibration of the system with running buffer (PBS) at 25°C.

Cycle 1: Immobilization of the FG domains (e.g. Nsp1p-5FF) in flow-cells (FCs) 3 and

4.

Cycle 2: Passivation of FCs 1 and 2 with 1 mM PUT.

Cycle 3: A single short PUT injection in all four FCs to ensure that no gold is exposed.

Cycle 4: Injection of 0.2 M NaOH to remove all non-covalently bound molecules in all

four FCs.
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Cycle 5: Five subsequent injections of 1% (w/v) BSA in PBS for stabilization purpose

followed by three injections of BSA to determine the layer height of the im-

mobilized proteins.

Different FG domain grafting densities were achieved by varying the contact

time and FG domain bulk concentration in cycle 1. The detailed immobilization

procedure and subsequent height measurement are described in Figure 3.2.

FIGURE 3.2: Immobilization procedure of FG domains. (A) After FG domain injec-
tion, the remaining exposed surface was blocked with PUT. The FG domain layer
height was measured using BSA after subsequent washing and stabilization (see
Section 2.4.7). To calculate a grafting distance, the SPR shift, Rbound, was determ-
ined as described in Section 2.4.5. (B) FG domain immobilization at different con-
centrations and injection times. Low concentrations gave smaller SPR responses

(higher grafting distance).

3.2.3 Evaluation of Grafting Distance and Layer Height

The grafting distance and layer height were calculated as described in Chapter 2.

Briefly, after FG domain injection, subsequent blocking with PUT and washing with
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NaOH, the immobilized amount of FG domains was determined by the shift in SPR

response (Rbound; Figure 3.2A). This was used to calculate the grafting distance, g

(Section 2.4.5). Here, the used conversion of 1300 RU = 1 ng/mm2 [123] relates the

SPR shift with the surface adsorbed mass. Rbound was measured immediately before

the triple injection of BSA which was used to determine the layer height (Section

2.4.7). This allows to directly relate the layer height with grafting distance as they

are measured almost simultaneously.

3.3 FG Domains Form a Brush-Like Layer as a Func-

tion of Grafting Distance

FG domain grafting distances of∼2.5 – 25 nm could be achieved by varying protein

concentration and contact time for immobilization. The typical grafting distance

determined for 1mM PUT was measured to be∼0.5 nm. Figure 3.3 shows individual

BSA injections on either FG domain functionalized or PUT passivated gold surfaces.

After a single BSA injection, the SPR response quickly reaches the baseline again.

This indicates, that innate non-interacting BSA molecules neither bind FG domains

nor PUT, which is an important prerequisite for reliable height measurements [123].

The obtained results in Figure 3.4 show that for a decrease in the distance between

neighbouring FG domains, the layer height shows a steep increase beyond a certain

grafting distance. For convenience, the analysis considers two regimes based on the

grafting distance: 1), close-packed, where g < rh; and 2), sparse, where g > rh. Here
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FIGURE 3.3: 1% (w/v) BSA injections on FG domain functionalized or PUT passiv-
ated surfaces. The SPR signal returns to baseline after injection on all different mo-
lecules grafted on the surface. This is an important prerequisite for reliable height

measurements [123].

FIGURE 3.4: FG domain layer height, h, as a function of grafting distance, g, as ob-
tained for FG domain fragments Nsp1p-5FF and Nsp1p-12FF. Color-coded dashed
vertical lines correspond to the measured hydrodynamic radii (rh) of the FG do-
mains. Flory-Huggins fits (Equation 3.1) predict polyelectrolyte brush behavior

(dashed lines).

rh is the hydrodynamic radius of the FG domains as determined in in Section 2.2.2.

The scaling behavior of disordered polyelectrolytes at high surface densities can be

described by Flory-Huggins and exclusion theory [148]:

h = A
�

1

g 2

�n

(3.1)
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where h is the height of the polyelectrolyte layer with a grafting distance g. A and

n are fitting parameters. The dashed lines in Figure 3.4 represent an adequate fit of

the obtained data to Equation 3.1. Therefore, close-packing of FG domains res-

ults in molecular brush formation, consistent with the scaling behavior of intrins-

ically disordered proteins. By definition, surface-tethered polymeric chains tend to

stretch away from their anchoring sites due to lateral crowding when g< 2 rh as de-

picted in Figure 3.5 [107]. Nevertheless, this does not exclude the existence of intra-

and inter FG domain interactions, which depend on the intrinsic physicochemical

properties of each proteinaceous polymer (e.g., hydrophobicity and charge distri-

bution; see Table 3.1).

FIGURE 3.5: Cartoon of a "molecular brush" for g < 2rh ("close-packed") and
"mushroom" for g> 2rh ("sparse") grafting.

Protein
Net

charge
% charged
residuesa

Sub-fragment,
residues

Charged/
Hydrophobic

% length FG
domain

Conformationb

Nsp1p-5FF
(150 aa)

(pI = 8.51)
+3 27.6 262 – 359 1.08 16 repulsive

Nsp1p-12FF
(283 aa)

(pI = 8.75)
+5 32.5 262 – 492 1.27 38 repulsive

a Fraction of charged residues (i.e., R, K, D, E) at pH 7.2.
b Fragments are considered repulsive if the ratio of charged and hydrophobic residues is� 0.5.

TABLE 3.1: Intrinsic properties of FG domains used in this work.
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For Nsp1p-5FF, the maximum layer height measured for a grafting distance g <

4.5 nm is ∼14 nm, which is smaller than ∼20 nm obtained for Nsp1p-12FF at sim-

ilar density. This is consistent with their difference in number of residues. Table

3.2 summarises the measured layer height properties compared with the hydro-

dynamic radius and number of residues for both proteins. The results presented

here are in agreement with previous experiments on close-packed vertebrate FxFG

domains that report molecular brush-formation [110, 111].

Protein Residues rh (nm) ga (nm) hmax (nm) ρFG (FG/ nm3)

Nsp1p-5FF 150 4.4 ± 1.2 < 4 14 0.08 ± 0.01

Nsp1p-12FF 283 4.3 ± 1.3 < 4.5 20 0.08 ± 0.02
a Denotes the highest grafting distance where FG domain brushes were still observed.

TABLE 3.2: Hydrodynamic radius rh, typical grafting distance g, maximum
layer height hmax and FG volume densityρFG of surface-grafted Nsp1p-5FF

and Nsp1p-12FF.

An average FG repeat volume density,ρFG, can be calculated using the measured

grafting distance, g, and average layer height, h. Here, the FG volume density is

defined as

ρFG =
#FG

g 2h
(3.2)

where #FG is the total number of FG repeats of a single FG domain (i.e, 5 for

Nsp1p-5FF and 12 for Nsp1p-12FF). Equation 3.2 assumes that the FG repeats are

evenly distributed in the layer. FG volume densities are listed in Table 3.2.

The surface layers of Nsp1p-5FF and Nsp1p-12FF exhibit the same FG repeat

volume density of 0.08 FGs/nm3, which is equivalent to a FG repeat concentration
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of ∼130 mM inside the layer. These FG repeat densities are in agreement with the

estimate of 0.08 FGs/nm3 within the transport channel of yeast NPCs, that contain

about 3500 FG repeats per NPC [149]. Similar FG repeat densities were reported for

full-length Nsp1p FG domain brushes using QCM [150] as well as for macroscopic,

in vitro-assembled FG domain hydrogels [100].

3.4 Discussion

An estimation of the anchoring distance between individual FG Nups in the NPC

can be made using the dimensions of yeast NPCs derived by analysis of large pro-

teomic datasets [74]. Accordingly, yeast NPCs resemble an hourglass shape with

a typical peripheral diameter of ∼98 nm, a central diameter of ∼38 nm and ∼37

nm in height. Using these dimensions the NPC channel surface exposes an area of

about 15000 nm2. Based on their copy numbers, an estimated 200 – 350 FG Nups

are filling the channel volume and therefore have to be anchored at the surface [63].

This results in an average grafting distance of 6.5 – 8.7 nm. When compared to the

average hydrodynamic radius of FG domains of ∼6 nm [63], the criteria for brush

formation (g < 2 rh) is fulfilled. Therefore, the FG domains overlapping exclusion

volume cause them to stretch away from their anchoring point towards the cent-

ral channel. By definition, the extended FG domains are now in a polymer-brush

conformation [107]. In real NPCs however, distances between anchoring points are

probably much smaller because the FG domain anchoring sites are not homogen-

eously distributed but rather concentrated at different regions.
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The results presented here, demonstrate that close-packing of surface-grafted

Nsp1p FG domains leads to the formation molecular brushes. This is in agreement

with polymer-brush theory [107, 148] and earlier work on vertebrate FG Nups [36,

71, 110, 111]. A critical parameter identified here for brush-formation is grafting

distance. For g� rh, the measured layer heights do not resemble a brush-like layer

but rather single chains which adopt "mushroom"-like conformations on the sur-

face (Figure 3.5). Once a brush is formed, the average layer height increases as the

grafting distance decreases. On planar gold surfaces, FG brushes occur at pack-

ing densities substantially lower than those present within NPC transport channels.

However, it is unclear how the effect of confinement within a cylindrical geometry

will influence the observed effects.

Closely anchored FG domains in the NPC interior display collective functional

characteristics in vivo [151] which are in contrast to the in-solution properties of

non-grafted FG domains. The data presented here supports the notion, that sur-

face tethering and its implications on FG domain organization is an essential factor

of NPC functionality [63]. It suggests that FG domains in brush-like conformation

compose a cloud-like steric barrier in the NPC channel which is able to repel non-

specific molecules [36, 71]. Figure 3.6 models an FG Nup crowded NPC which forms

a barrier against non-specific molecules. Nevertheless, this model does not include

any NTRs and therefore, may represent a "ground-state" of the FG domain barrier,

if for instance, NTRs could be completely removed from the NPC.

In addition to the polymer-brush configuration, other models predict a differ-

ent structural organization of FG domains. An model first proposed by Ribbeck



Chapter 3. Conformational Characterization of Surface-Tethered FG Domains 74

and Görlich suggests that FG domains could form a sieve-like meshwork within the

NPC [9]. As they stated, the driving force of such a self-assembly could be based on

hydrophobic interactions between neighboring FG repeats. Further, it was shown

that in vitro cross-linked FG-/FxFG (Nsp1p) and GLFG domains indeed can form

macroscopic hydrogels [98]. It is not clear, however, how hydrogel formation can

take place in vivo based on the requirements for gelation in vitro [98, 100].

Because of their intrinsic disordered nature, in vivo studies of FG domain organ-

ization within the NPC remains a challenge. Here, to investigate close-packed FG

domains, they were grafted on a solid support and their conformation was observed

by SPR. The obtained results show that

1. close-packed Nsp1p forms a molecular-brush on planar gold surfaces.

2. This brush exhibits a similar FG repeat volume density as estimated for the

NPC transport channel in vivo, and

3. the grafting distance can be tuned to the same range as expected for FG Nups

anchored in the NPC in vivo.

Therefore, this experimental setup has potential to act as a minimal model sys-

tem which allows to study the interactions of soluble transport factors with densely

grafted FG domains in situ.
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FIGURE 3.6: Model of FG domain organization within the NPC in its "ground-state"
(i.e., no NTRs are in the pore). The FG Nups are anchored at the channel wall while
disordered FG repeat rich domains stretch towards the central axis due to steric
repulsion. This creates a barrier within the NPC channel which is able to repel

non-specific molecules (red and yellow) [106]. NE: nuclear envelope.





Chapter 4

Karyopherin-centric Control of FG

Nup Barrier Function

4.1 Introduction

FG Nups are considered to function as permeability barriers against non-specific

cargoes based on their innate conformational flexibility and in vitro barrier form-

ing properties that range from stimuli responsive molecular brushes [36, 71] to

supramolecular hydrogel meshworks [98–101]. Based on these material character-

istics classic FG-centric barrier models explain how non-specific macromolecules

¦5 nm in diameter and lacking FG binding are rejected by the FG Nup barrier [6] (see

Chapter 3). However, a satisfactory explanation as to how FG domain barriers can

regulate selective Kap-cargo transport and reject non-specific cargoes at the same

time remains unaccounted for. NPCs are crowded with ∼100 Kapβ1 molecules at

77
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steady-state and Kap-FG binding involves highly multivalent interactions which are

generally known to impact a strong avidity that leads to the formation of long-lived

complexes [82]. This is paradoxical in the context of the NPC [152], because high

submicromolar Kapβ1-FG domain binding affinities [83, 86, 153] predict slow off

rates (given a diffusion-limited on rate) that contradict the rapid (∼5 ms) in vivo

dwell time [154]. As this implies, Kap-FG binding ought to be sufficiently strong to

ensure selectivity but also weak enough to promote fast translocation through the

NPC. Nonetheless, an explanation as to how Kap-FG binding kinetics is balanced

against the mechanistic control of the FG domain barrier is still lacking. Numerous

Kapβ1 and NTF2 molecules interact with the FG Nups at steady state given their

essential roles in maintaining import and Ran cycles, respectively [115, 155].

In Chapter 3 it was shown, that yeast Nsp1p exhibits characteristic behavior of

intrinsically disordered proteins when densely grafted on a surface in vitro. Pre-

vious studies on surface grafted FxFG domains of Nup153 and Nup62 support

this view [36, 110, 111]. These surface-tethered polypeptides start to stretch away

from their anchoring site as a function of their grafting distance. At grafting dis-

tances smaller than their hydrodynamic diameter, these FG domains form molecu-

lar brushes [71, 111].

Here, SPR was used to resolve the multivalent interaction kinetics, equilibrium

affinities and associated conformational changes in close-packed FG domain layers

when binding to NTF2 or Kapβ1.
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4.2 Materials and Methods

FG domain, BSA and PUT solutions were prepared as described in Chapter 3. Trans-

port factors Kapβ1 and NTF2-W7A were dialysed against PBS using 3500 Da MWCO

dialysis bags for 3 h at RT while stirring. Wild-type NTF2 was already stored in PBS

and therefore was directly used after thawing. Absorbance at 280 nm was meas-

ured to determine the concentration of the proteins. Different concentration series

of Kapβ1, NTF2 and NTF2-W7A were prepared by careful mixing with an appropri-

ate amount of filtered (0.22 µm) PBS. The dilution series of NTF2 and NTF2-W7A

were used in a concentration range between low nM up to∼300 µM. For Kapβ1 the

concentrations typically range from low nM up to ∼15 µM. All samples were de-

gased using a table-top centrifuge at 16000 x g for 15 min at RT. The running buffer

(PBS) was filtered through a 0.22 µm membrane and degased for 1 h at RT.

4.2.1 SPR Procedure

The SPR sensor surface was prepared and functionalized as described in Chapter 3.

Briefly, FG domains were tethered in flow-cells (FCs) 3 and 4 while FCs 1 and 2 were

passivated with PUT. All FCs were further blocked with PUT and washed with 0.2

M NaOH. After FG domain immobilization and PUT passivation, BSA was used to

measure the initial layer height, h0, before injection of either Kapβ1, NTF2 or NTF2-

W7A. The measurement temperature was kept constant at 25°C. The sample com-

partment was cooled to 4°C. After successful functionalization of the SPR sensor

surfaces (i.e., FCs 1 – 4), nuclear transport receptors (analytes) were simultaneously
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injected into all FCs in increasing concentration while the SPR signal change was

constantly monitored with an acquisition rate of 10 Hz (Figure 4.1). A typical injec-

tion i consists of an association phase, were the surface is constantly in contact with

a fixed concentration of analyte (e.g. Kapβ1 or NTF2). In all cases, SPR response

levels at equilibrium response (Req,i) within 600 s of association. Subsequent injec-

tion of running buffer (PBS) starts the dissociation phase of bound analytes. The

remaining fraction of bound analytes Rbound,i was typically determined after 480 s

of dissociation (i.e., analytes with koff > 1.5×10−3 s−1 are completely washed from

the surface). This is immediately followed by a triple injection of BSA to measure

FG domain brush conformational changes induced by analyte binding. After the

last NTR injection and subsequent BSA height measurement, the surfaces were re-

generated with two short 0.2 M NaOH injections.

4.2.2 Data Export and Analysis

Raw data was extracted from the SPR manufacturers software (Biacore T100 Con-

trol Software, Version 2.0.2, GE Healthcare Bio-Sciences AB, Uppsala, Sweden) and

prepared for further analysis. BSA height analysis as well as equilibrium and kin-

etic analysis was done in a semi-automated way using Igor Pro (WaveMetrics, Inc.;

Version 6.35) and Matlab (MATLAB and Statistics Toolbox Release 2013b, The Math-

Works, Inc., Natick, Massachusetts, United States).
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FIGURE 4.1: Kapβ1 (A) or NTF2/W7A-NTF2 (B) were injected on FG domain func-
tionalized and PUT passivated reference surfaces (left top and bottom, respect-
ively). A typical injection of analyte consisted of an association (red) and disso-
ciation (blue) phase followed by BSA injections (green). Req,i corresponds to the
position where the SPR equilibrium binding response for analyte bulk concentra-
tion ci was measured in respect to the baseline (i.e., response at t = 0 s). Rbound,i

represents the SPR response for bound analyte after 480 s of dissociation (ci = 0).
Three consecutive BSA injections were used to measure the average layer height
at layer occupancy Rbound,i. The BSA signal (green) returns to baseline indicating
a lack of binding Nsp1p FG-domains, which is a prerequisite for reliable height

measurements.

4.3 NTR Binding to Surface Tethered FG Domains

4.3.1 FG Domain Layer Response upon NTR Binding

To investigate how different NTRs bind FG domains, the binding of Kapβ1 and

NTF2 to Nsp1p FG domains was investigated. In addition, an NTF2 mutant (NTF2-

W7A) was used as a control. In this mutant, the primary physiological interaction

between NTF2 and FG repeats is impaired [68] (see Figure 1.8). The dependence

of FG domain layer height on NTR binding was monitored by BSA injections that

follow increasing titrates of Kapβ1, NTF2 or NTF2-W7A. The layer height was meas-

ured after a dissociation phase of 480 s and is related to the material bound given
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by Rbound,i (see Figure 4.1). Therefore, the BSA signal measured for Rbound,i generally

underestimates the height at equilibrium binding Req,i.

4.3.1.1 Close-Packed FG Domain Layer Response upon Binding of Kapβ1

Subsequent changes in the layer height of close-packed Nsp1p-12FF due to Kapβ1

binding was monitored. For this experiment, 20 Kapβ1 concentrations were pre-

pared for titration by successively diluting a stock solution of Kapβ1 of 10 – 12 µM.

Accordingly, the lowest applied Kapβ1 concentration was ∼10 pM.

Figure 4.2 summarizes the obtained results for Kapβ1 binding Nsp1p-12FF

brushes. The results are described in four ways. First, the relative layer height, hi/h0,

where h0 stands for the initial layer height, is shown as a function of injected Kapβ1

bulk concentration (Figure 4.2A). Second, hi/h0 is shown as a function of surface

density of bound Kapβ1 (ρKapβ1), which is related to the estimated number of bound

Kapβ1 layers (Figure 4.2B). Third, the relative layer height is shown as a function of

an average quasi stoichiometry, given as bound Kapβ1 mass per bound FG domain

mass projected onto a unit area (Figure 4.2C; see Section 2.4.6). And fourth, the

change in the total protein mass density∆νtotal as a function of relative layer height

change∆hi/h0, where∆hi =hi−h0 (Figure 4.2D). The total volume density includes

both, FG domain and Kapβ1 mass, which occupy a volume defined by the layer

height.

Based on the characterization of vertebrate FG domains binding Kapβ1 in Kapi-

nos, et al. [110], brush response can be categorized into three different conform-

ational responses: compaction (I), where∆νtotal increases while∆hi/h0 decreases.
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This describes a collapse of the layer during Kapβ1 binding. Compact extension

(II) is characterized by an increasing ∆νtotal and ∆hi/h0. The layer responds in an

extension, but it cannot compensate for the gain in mass due to successive Kapβ1

binding, and therefore the overall mass volume density increases. Porous extension

(III) is defined by a decrease in∆νtotal, while∆hi/h0 increases.

FIGURE 4.2: Non-monotonic response of Nsp1p-12FF FG domains to Kapβ1 bind-
ing. (A) The relative layer height, hi/h0, as a function of the bulk concentration
of injected Kapβ1. Up to 50% layer-extension upon binding Kapβ1 was observed.
(B) More than 3 layers of Kapβ1 occupy the Nsp1p FG-domain layer at ∼15 µM
Kapβ1 bulk concentration. 1 layer of Kapβ1 corresponds to a surface density of
ρKapβ1 = 1000Da/nm2. (C) A stoichiometric ratio describing the fraction of Kapβ1
mass coverage per Nsp1p mass coverage on a unit area. I.e., at highest concen-
tration were the ratio ∼0.5, the total mass of five Kapβ1 molecules is found on the
same area covering the mass of 10 FG domains. (D) Corresponding changes in total
protein density (ρKapβ1 and FG domains;∆νtotal) plotted as a function of the relat-
ive layer extension,∆hi/h0. The three characteristic responses are compaction (I),
compact extension (II), and porous extension (III). A sliding average for A,B and C

is shown as grey dashed line. Error bars are ±SD.

On close-packed Nsp1p-12FF, brush collapse was observed below 100 nM

Kapβ1, followed by a layer extension, reaching about 150% of the initial height at
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the highest Kapβ1 occupancy. Thus, a Kapβ1-saturated layer of Nsp1p-12FF had

a final height of 25 – 30 nm. The obtained height at saturation indicated that the

Nsp1p brush was fully occupied by approximately 3 Kapβ1 layers (see Section 2.4.5)

based on the ∼10 nm hydrodynamic diameter of Kapβ1 and a bound surface dens-

ity, ρKapβ1, of 3330 Da/nm2. This was comparable to how Kapβ1 binds FxFG do-

mains of Nup214, Nup62 and Nup153 [110]. These proteins generally show a non-

monotonic layer height response, which is represented by a early layer collapse at

low Kapβ1 concentrations, followed by a recovery phase, where the initial height

was reached again at low µM Kapβ1 concentrations (e.g., 1 µM for Nsp1p-12FF).

For higher occupancy, the layer exhibits compact extension. Recalling that 480 s of

dissociation time had elapsed before each height measurement, it was striking that

the layer remained in an extended conformation with a high occupation of Kapβ1.

Interestingly, the quasi stoichiometric ratio reveals an excess of FG domains even at

highest applied Kapβ1 bulk concentrations, where Kapβ1/Nsp1p-12FF is about 0.5.

Given the low grafting distance of close-packed Nsp1p-12FF and the high abund-

ance of FG repeats, it is likely that several FG domains interact with a single Kapβ1

molecule and vice versa, a property inherent of intrinsically disordered proteins in

protein-protein interaction networks [156].

4.3.1.2 Close-Packed FG Domain Layer Response upon Binding of NTF2 and

NTF2-W7A

To compare the results obtained for Kapβ1 with other NTRs, the interaction of the

RanGDP importer NTF2 with Nsp1p-12FF was investigated. To establish how NTF2
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binds Nsp1p FG domains specifically, the binding of wild-type protein was com-

pared with that of NTF2-W7A. Analogous to Kapβ1 FG domain interaction studies,

the dependence of close-packed Nsp1p FG domain layer height on binding was

monitored by BSA injections that follow increasing titrates of either wild-type or

mutant NTF2. 20 consecutive NTF2 and NTF2-W7A concentrations were prepared

as described before for Kapβ1. The maximum bulk concentration of NTF2 was∼270

µM and ∼300 µM for NTF2-W7A, respectively.

Figure 4.3A shows that at low bulk concentrations of NTF2, any change in layer

height is negligible. However, at approximately 1 µM of wild-type NTF2 in bulk

solution, the layer height starts to decrease and reaches ∼85% of its initial value at

the highest NTF2 concentration of∼270µM. Such a pronounced reduction was not

observed with the W7A mutant. At physiological relevant concentrations (∼20 µM)

[157], the relative change in the remaining layer height after 480 s of dissociation

is about ∼10% (2 nm) for NTF2 binding Nsp1p-12FF, whereas the mutant does not

produce any significant change. Previous studies showed that mutation of Trp7 in

NTF2 to Ala reduces the affinity towards FG domains of Nsp1p substantially and

impairs the nuclear import of NTF2 and RanGDP [68, 70]. Indeed, no change in

layer height was observed even at high bulk concentrations of NTF2-W7A (up to

∼300µM). Whereas up to 3000 RU of wild-type NTF2 was bound (corresponding to

∼ 1 layer, where 1 layer of NTF2 = 1340 Da/nm2), NTF2-W7A only bound up to 100

Da/nm2 or an equivalent of about 0.05 layers at the highest injected bulk concen-

tration (Figure 4.3B). This results provide direct evidence that the observed collapse
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is a function of NTF2 binding. To obtain an estimate of the number of NTF2 mo-

lecules bound per Nsp1p FG domain, these data are re-plotted in Figure 4.3C in

terms of the average ratio between NTF2 and Nsp1p-12FF mass per unit area. Al-

though NTF2 and the W7A mutant were present in very high concentrations, each

Nsp1p-12FF fragment bound only up to∼0.4 NTF2 molecules after 480 s of dissoci-

ation (may change for higher loading). Interestingly, an onset of layer height reduc-

tion is already observed for less than 0.1 NTF2 per grafted Nsp1p-12FF fragment.

However, although the stoichiometric ratios between Kapβ1 and Nsp1p-12FF are

comparable with those obtained for NTF2 binding Nsp1p-12FF, the layer height re-

sponse is opposite and shows extension rather than collapse.

4.3.2 Equilibrium Binding Analysis

SPR binding equilibrium analysis was performed on Kapβ1, NTF2 and NTF2-W7A

interacting with close-packed Nsp1p FG domains. To do so, the SPR equilibrium

binding response, Req,i, was measured at the end of every consecutive analyte in-

jection as defined in Figure 4.1. Equilibrium dissociation constants (KDs) were ob-

tained by Langmuir isotherm analysis (see Section 2.4.2).

Equilibrium analysis of Kapβ1 binding to Nsp1p FG domains was only possible

with a two-component Langmuir isotherm. A high affinity species with a KD1 = 336

± 63 nM represents tight Kapβ1 binding at high FG repeat density in close-packed

Nsp1p FG domain layers whereas moderately binding species at KD2 = 5.61 ± 1.98

µM is consistent with reduced binding due to pre-occupancy of Kapβ1 and a lim-

ited access to FG repeats within the layer (Figure 4.4A). A clear reduction in binding
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FIGURE 4.3: Conformational response of Nsp1p-12FF FG domains upon binding
NTF2 and NTF2-W7A. (A) The relative layer height, hi/h0, as a function of the bulk
concentration of injected NTF2/NTF2-W7A. NTF2 binding induces layer collapse
of∼10% at physiological concentration (∼20µM)). In contrast, NTF2-W7A binding
did not cause a layer collapse, even at highest injected concentration of∼300 µM).
(B) About 1 layer of NTF2 is bound at highest injected concentration, were 1 layer of
NTF2 corresponds to a surface density of ρNTF2 = 1340Da/nm2. NTF2-W7A bound
only up to 100 Da/nm2 (0.05 layers). (C) A stoichiometric ratio describing the frac-
tion of NTF2 mass coverage per Nsp1p-12FF mass coverage on a unit area. I.e., at
highest concentration at a the ratio of ∼0.4, the total mass of four NTF2 molecules
is found on the same area covering the mass of 10 FG domains. (D) Corresponding
changes in total protein density (ρNTF2/ρNTF2−W7A and FG domains; ∆νtotal) plot-
ted as a function of the relative layer extension, ∆hi/h0. The three characteristic
responses are compaction (I),compact extension (II), and porous extension (III). A
sliding average for A,B and C is shown as grey dashed line. Error bars correspond

to ±SD.

of NTF2-W7A compared to wild-type NTF2 was measured (Figure 4.4B). Similar to

Kapβ1, NTF2 binding could not properly be described by a single-component Lang-

muir isotherm of the equilibrium binding response Req,i over the complete range of

injected bulk concentrations. However, a two-component isotherm provides an ap-

propriate fit, giving dissociation constants of KD1 = 2.1 ± 0.5 µM and KD2 = 114 ±

23 µM for wild-type binding and KD1 = 18.8 ± 3.0 µM and KD2 = 356 ± 44 µM for
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binding of NTF2-W7A. Being two orders of magnitude weaker, the second KD indic-

ates that a non-negligible fraction of NTF2 binds to the Nsp1p FG domains much

more weakly than the known primary physiological interaction [68, 157].

FIGURE 4.4: Equilibrium binding of Kapβ1 (A), wild-type NTF2 and NTF2-W7A (B)
to Nsp1p-12FF normalized by the maximum binding capacity (fraction of satura-
tion) as a function of injected bulk concentration up to 30 µM (inset up to ∼300
µM). NTF2 binding to sparse (gNTF2� rh,NTF2) Nsp1p-12FF is shown in (B). Grey
dashed lines represent individual two-component Langmuir isotherm fits. Solid
lines represent the average isotherm for Kapβ1, NTF2 and NTF2-W7A, respectively.

In spite of KD1 for mutant NTF2-W7A binding to Nsp1p-12FF being about an

order of magnitude weaker than the corresponding value for the wild-type protein,
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the remaining low affinity species (KD2 = 356 µM) indicates the existence of mul-

tiple and/or less specific binding spots of NTF2 to FG repeats that are consistent

with NMR [80] and computational [78, 79] studies. For instance, electrostatic in-

teractions between the positively charged Nsp1p-12FF (theoretical pI = 8.75) and

negatively charged NTF2 (theoretical pI = 6.13) at pH 7.2 may attribute to species

having such weak binding affinities.

Interestingly, the affinity of NTF2 binding to sparse Nsp1p-FF12 is reduced when

compared to binding to brushes (Figure 4.4B; KD1 = 7.2 ± 1.4 µM; KD2 = 280 ± 41

µM). In the sparse regime, only a single FG Nup is able to bind to one or several

NTF2 molecules. In order to saturate all binding pockets on NTF2, the FG Nup has

to “wrap” around NTF2. This is unfavorable due to the loss in entropy. In the brush

regime, several FG Nups can easily bind to a single NTF2 without losing much of

their entropy. This could explain the difference in the obtained KDs.

Regardless, at least two KDs are needed to describe the equilibrium binding be-

ing consistent with the anticipated multivalent interactions between NTF2, NTF2-

W7A and Kapβ1 and close-packed or sparse Nsp1p FG domains as summarized in

Figure 4.5. Control experiments performed on shorter Nsp1p-5FF fragments res-

ulted in dissociation constants for NTF2 binding to Nsp1p-5FF and Nsp1p-12FF

being indistinguishable, which indicates that neither the number of FG repeats nor

the additional FG-spacer regions in Nsp1p-12FF compared to Nsp1p-5FF influence

the overall affinity (see Figure 4.5).
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FIGURE 4.5: Overview of obtained equilibrium binding constants of NTF2, NTF2-
W7A and Kapβ1 interacting with Nsp1p FG domain fragments. No significant
difference is observed for NTF2 binding both Nsp1p fragments, Nsp1p-5FF and
Nsp1p-12FF, respectively. Obtained KDs are shown in a boxplot representation
where the box represents the first and third quartiles. The median is given by the
band inside the box. Whiskers represent the 9th and the 91th percentile. Individual

KDs are indicated as red dots.

4.3.3 Multivalent Kinetic Analysis

Although equilibrium binding analysis provides thermodynamic information (on

the stability of the NTR-FG domain complex), the transition states between bound

and unbound forms of NTRs depends on kinetics. However, this is not straightfor-

ward because the binding of Kapβ1 or NTF2 to FG domains involves multivalent

interactions.

To obtain kinetic information, the SPR signal of each binding experiment was
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analyzed using the method of Svitel et al. [141, 158] to obtain a parsimonious distri-

bution of association and dissociation constants (kon, koff) that describe the pseudo-

first order kinetics of Kapβ1, NTF2 and NTF2-W7A binding Nsp1p FG domains. In

general, this method circumvents difficulties associated with analyzing heterogen-

eous interfacial interactions that are often encountered in multivalent systems [81,

155, 159]. In the context of this study, NTR binding depends on the FG domain sur-

face density and the number of NTR molecules already bound. Here, kon describes

how quickly a NTR molecule locates and binds to FG repeats within an FG domain

layer, whereas koff correlates to NTR-FG domain binding strength and stability. In

context of nucleocytoplasmic transport, a high off-rate (low affinity) would be be-

neficial to achieve fast transport rates.

To avoid the necessity of modeling the interaction of every single possible FG

binding site on the different NTRs (e.g., molecular dynamics simulations suggest

6 potential sites on NTF2 or 10 on Kapβ1 [77, 79]; Figure 1.8), this approach uses

a simplified two-dimensional lattice of 10 x 10 nm2 Kapβ1- and 5 x 5 nm2 NTF2-

“binding spots” describing the FG repeat containing surface based on the average

size of a Kapβ1 molecule or NTF2-dimer with Stokes radius of 5 and 2.5 nm, respect-

ively [9, 111].

4.3.3.1 Kapβ1 Binding Kinetics

The Kinetics of Kapβ1 binding to Nsp1p FG domains is modeled by
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L+As

kon,i−−*)−−
koff,i

LA1+ As

kon,i−−*)−−
koff,i

LA2+ As

kon,i−−*)−−
koff,i

· · ·
kon,i−−*)−−
koff,i

LAn (4.1)

where L denotes the empty surface sites, As is the analyte concentration in solu-

tion, and LA1 to LAn correspond to surface sites where n represents the number of

analytes that can bind per surface site. Here, n= 3 based on the measured number

of layers Kapβ1. For n > 1, Equation 4.1 imposes a sequential binding constraint

that mimics the multilayered Kapβ1-FG domain binding characteristics observed

experimentally (Figure 4.2B).

FIGURE 4.6: Kinetic analysis of Kapβ1-FG domain binding. Representative fit (red)
to an SPR sensogram (black) for Kapβ1 binding to close-packed Nsp1p-12FF. NTR
binding is converted into respective number of layers, n. The residual of the fit
is included below the experimental sensogram. Note that fitting errors may arise
from structural changes that occur in the FG-domain layer as NTR binding pro-

gresses (e.g., layer collapse or extension).

Fitting the SPR sensograms with this method (Figure 4.6), a distribution of kon

and koff values is obtained for Kapβ1 binding Nsp1p-12FF (Figure 4.7A). At low

Kapβ1 concentrations, a high avidity slow-phase (∗) commenced at kon = 1.2×104

M−1s−1, koff = 1.3×10−5 s−1, resulting from a long-lived half-life of t1/2 ≈ 15 h (where

t1/2 = ln(2)/koff). Increasing the concentration towards 10 µM Kapβ1 led to a steady
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reduction in kon to ∼60 M−1s−1 (◦), giving rise to lower avidity interactions (increas-

ing KD) that coincided with the emergence of a low avidity fast phase (Î) having a

fast kon (∼1.6×105 M−1s−1) and a fast koff (between 0.1 – 1.6 s−1) where now t1/2 =

430 ms – 7 s.

These results were consistent with Kapβ1-binding to human FG domains ob-

served previously [110], and were indicative of an overall reduction in avidity result-

ing from: (i) a reduction of available FG-repeats, (ii) poor penetration due to Kapβ1

occupancy and crowding, (iii) a reduced mobility of flexible FG chains due to Kapβ1

binding [59], and (iv) steric repulsion due to FG chain extension. In this respect, the

co-existence of both slow (low koff) and fast phases (high koff) at µM Kapβ1 concen-

trations indicated that the quantity and/or accessibility of FG repeats was reduced

as Kapβ1 accumulated in the layer.

The distribution of kon and koff specifies a broad range of KD values. Except for

the low KDs around ∼10 – 50 nM, the maxima in the distribution of the histograms

on the top of each map correlate well with KD1 ∼ 100 – 300 nM from equilibrium

analysis (Figure 4.7A; Figure 4.4A). In addition, distributions between 1 – 8 µM de-

scribe a low affinity fraction of Kapβ1 binding to FG domain layers and are in agree-

ment with the second, low KD2 from equilibrium analysis. Nevertheless, the ob-

served high KD values have contributions from both slow and fast binding species

with short or long half-lives, respectively. In kinetic terms, a high fraction of Kapβ1

interacting with an already saturated FG domain layer is in the fast phase (Figure

4.7B). This is because Kapβ1 can only bind a smaller number of free FG repeats (high
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FIGURE 4.7: Kinetic analysis of Kapβ1 binding Nsp1p-12FF. (A) two-dimensional
interaction maps of kinetic on- and off-rates (kon, koff) are shown in relation to
equilibrium binding constant KD. The fractional abundance of different kinetic
states is indicated by the color intensity and the sum over all values in a given axis is
shown as accompanying histograms (top and right panels). Different kinetic spe-
cies are labeled with ∗ (“high-affinity slow-phase”), Î (“mid-affinity fast-phase”)
and ◦ (“low-affinity fast-phase”). The fraction of each distribution in the histo-
grams are given in percent of the total sum and their main values are depicted in
bold, where values for koff are s−1 and for kon M−1s−1, respectively. (B) State dia-
grams separating slow (dark; low koff) and fast (light; high koff) kinetic phases of
Kapβ1 binding. Moderate to fast kon into a largely vacant FG-domain layer and
slow koff due to stable multivalent interactions results in high-affinity binding (∗).
Two low-affinity phases emerge due to FG-domain layer saturation, a fast phase,
characterized by high (koff, kon) pairs due to limited binding at the layer periphery
(Î), and a slow phase characterized by low (koff, kon) pairs due to slow penetration

into a preoccupied layer (◦).
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koff) confined at the surface of the layer (high kon). This leads to binding and unbind-

ing with much higher attempt frequencies. The fraction of interactions that lead

into the slow phase can be estimated from kon(slow)/kon(fast) (i.e., 10/106), which

corresponds to 0.001% at high Kapβ1 concentrations. Nevertheless, this does not

prevent the existence of a slow phase at highest Kapβ1 concentrations, nor that of

a fast phase at low Kapβ1 concentrations. Simply, at high concentrations, the slow

phase becomes less accessible due to hindered penetration into a saturated layer,

which on the other hand enhances the fast phase. These findings are summarized

in Figure 4.7B.

4.3.3.2 Multivalent NTF2 and NTF2-W7A Binding Kinetics

NTF2 and NTF2-W7A are multivalent entities with up to 6 putative FG repeat bind-

ing sites [79] (Figure 1.8). For the determination of binding kinetics, the same ap-

proach was used as described before for Kapβ1. With a Stokes radius of 2.5 nm [9],

the average size of an NTF2 dimer is substantially lower than that of Kapβ1. There-

fore, the NTF2-binding spot distribution was modeled by a 5 x 5 nm2 lattice describ-

ing the FG repeat containing surface. NTF2 occupancy does not exceed ∼1 layer at

highest concentrations applied in this experiment (∼10 x higher than physiologic-

ally relevant; Figure 4.3B). Therefore, the kinetic model is described by

L+Ds

kon,i−−*)−−
koff,i

LDs (4.2)
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were L are the free binding sites, Ds is the NTF2 dimer concentration in solution

and LDs are binding sites occupied with dimeric NTF2 molecules.

Global multivalent kinetic analysis of NTF2 and NTF2-W7A binding Nsp1p-12FF

is summarized in Figure 4.9 by a two-dimensional distribution of derived kinetic

constants kon and koff. NTF2 binding is characterized by a broad spread of obtained

KDs that spans over four orders of magnitude with distinct peaks at∼2µM and∼100

µM and shoulders ranging into the nM and mM range, respectively.

FIGURE 4.8: Kinetic analysis of NTF2/NTF2-W7A binding close-packed Nsp1p FG
domains. Representative fits (red) to SPR sensograms (black) for NTF2/NTF2-W7A
binding to close-packed Nsp1p-12FF. NTR binding is converted into respective
number of layers, n. The residuals of the fits are included below the curves. Note
that fitting errors may arise from structural changes that occur in the FG-domain

layer as NTR binding progresses (e.g., layer collapse).

Overall, three distinctive kinetic species can be identified from the NTF2 binding

data in Figure 4.9A: i) a “high-affinity slow-phase” (◦) with low kon (∼500 M−1s−1) and
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low koff (∼3.5×10−5 s−1) resulting in a half-time of t1/2 ≈ 5.5 h; ii) a “mid-affinity fast-

phase” (Î) with high kon (∼10×105 M−1s−1) and high koff (∼1.7 s−1) which equals a

t1/2 of 400 ms; and iii) a “low-affinity fast-phase” (∗) consisting of a high but reduced

kon (∼5100 M−1s−1) and a similar high koff compared to the “mid-affinity fast-phase”.

Overall, these data indicate a bimodal distribution of koff that is consistent with the

presence of two major complexes with different stabilities (Figure 4.9B). Although

high µM to mM affinities are rare for typical protein-protein interactions this has

been proposed for Kaps binding individual FG cores [160]. Except for the low KD

range around 100 – 200 nM, the obtained distribution of KD from multivalent bind-

ing kinetic analysis is in good agreement with the KDs obtained from equilibrium

binding analysis (Figure 4.4B). The control experiment using NTF2-W7A showed a

significant reduction of binding to Nsp1p FG domains. The mutation of Trp7 clearly

results in the formation of only a single complex with fast koff and substantially re-

duced binding that is underscored by the absence of a high-affinity slow-phase.

Nevertheless, NTF2-W7A may still bind to FG domains via a number of other pu-

tative sites [79, 80] that give rise to binding affinities of around 16 µM and 300 µM,

which are in good agreement with Langmuir isotherm analysis (Figure 4.4B). Over-

all, the NTF2-W7A data validates that the primary FG repeat binding site located

around Trp7 is required to form a high-affinity slow-phase for wild-type NTF2 when

binding close-packed Nsp1p FG domains and that this is accompanied with a re-

duction in layer height (Figure 4.3).



Chapter 4. Kap-centric Control of Nuclear Pore Function 98

FIGURE 4.9: Kinetic analysis of NTF2/NTF2-W7A binding close-packed Nsp1p FG
domains. (A) Two-dimensional interaction maps of kinetic on- and off-rates (kon,
koff) for NTF2 (blue) and mutant (red) are shown with their derived equilibrium
binding constant, KD. The fractional abundance of different kinetic states is indic-
ated by the color intensity and the sum over all values in a given axis is shown as
accompanying histograms (top and right panels). The fraction of each distribution
in the histograms are given in percent of the total sum and their main values are
depicted in bold. Values for koff are s−1 and for kon M−1s−1, respectively. Different
kinetic species are labeled with ◦ (“high-avidity slow-phase”), ∗ (“mid-avidity fast-
phase”) andÎ (“low-avidity fast-phase”). (B) State diagrams separating slow (dark;
low koff ) and fast (light; high koff ) kinetic phases of NTF2 binding. Moderate to fast
kon into a largely vacant FG-domain layer and slow koff due to stable multivalent
interactions results in high-affinity binding (◦). At higher NTF2 concentrations, the
binding is dominated by a fast-phase (∗, Î) while the minor, slow-phase popula-

tion (◦) remains constant.
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4.4 Discussion

4.4.1 Close-packed FG domain response upon NTR binding

The results obtained on Nsp1p demonstrate that NTF2 and Kapβ1 bind FG domains

very differently, although both transport factors seem to pass through NPCs simul-

taneously and with similar passage dwell times [96, 154]. The Nsp1p brush under-

goes a collapse transition that correlates to an increase in the occupancy of bound

NTF2. At physiological relevant concentrations (∼20µM), the relative change in the

remaining layer height after 480 s of dissociation is about ∼10% (2 nm) for NTF2

binding Nsp1p-12FF. At maximum injected concentration of ∼250 µM NTF2, the

extent of collapse is ∼15% of the initial layer height with a bound content corres-

ponding to effectively one monolayer of NTF2. Binding of NTF2-W7A did not in-

duce a layer height change, even at high concentrations up to ∼350 µM. This con-

firms, that the measured collapse for wild-type NTF2 and Kapβ1 binding is related

to protein-FG domain interaction, whereas other effects such as osmotic pressure

do not influence the measurement in the given sensitivity of the method. Oppos-

ite to the constant NTF2 dependend layer collapse, Kapβ1-binding induces a non-

monotonic response in FxFG domains that is characterized by a collapse at low

nM concentrations and subsequent layer extension at higher, more physiological

Kapβ1 concentrations. The layer height of close-packed Nsp1p FG domains in-

creases substantially with increasing occupancy up to∼3 and more Kapβ1 layers. In

agreement with the results obtained here, densely grafted full-length FG domains
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of Nsp1p exhibit a layer height increase for increasing Kapβ1 occupancy [150]. Fur-

ther, when incubated with low nM-range concentrations of Kapβ1, Lim, et al. ob-

served a reversible collapse of densely grafted FxFG domains of Nup153 forming a

molecular brush [36]. This trend was also observed for Nup62 when Kapβ1 is injec-

ted at low concentrations in the range of 10 – 100 nM [111].

In general, grafted polymers and the properties of polymer brushes are well-

established. In physical terms, the polymer brush height is determined by the bal-

ance between the stretching entropy of the polymers (favors compaction) and ex-

cluded volume interaction between the polymers (favors extension) [161]. Trans-

port factor binding disturbs the entropy-enthalpy balance and the brush responds

by altering the arrangement of the FG domain chains that generates a change in

brush height.

Whereas Kapβ1 promotes a substantial extension, NTF2 binding results in a de-

crease in brush height. This phenomenon has been explored theoretically by Op-

ferman, et al. [161, 162], who predict that nanoparticle binding to polymer brushes

induces conformational changes that depend largely on the size of the nanoparticle

and the interaction energy with the polymer. Then, brush height originates from

competition between the binding energy of nanoparticles to the polymer, favoring

compaction, and the confinement entropy of the polymers, promoting extension.

Kapβ1 has a higher affinity for FG repeats than NTF2, and its binding may favor layer

extension because of its relatively large volume, which impacts on the entropy of the

FG chains. Conversely, NTF2 binding favors collapse over extension because of its

smaller size, although extension may be possible at higher (but non-physiological)
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concentrations. By contrast, NTF2-W7A did not collapse the brush because it only

binds very weakly to Nsp1p. Overall, the obtained data provides strong experi-

mental validation of the mechanism proposed by Opferman, et al. (Figure 4.10).

FIGURE 4.10: Experimental data of Nsp1p-12FF layer height change compared with
theoretical and simulation data on polymer-nanoparticle interaction obtained by
Opferman, et al. [161]. (A) Simulated polymer layer height, h/h0, as a function
of volume fraction of nanoparticles in solution, c, for different binding strengths.
χ < 0 and εb > 0 correspond to attractive polymer-nanoparticle interactions in con-
text of theory (unfilled symbols, dashed line) and simulation (filled symbols), re-
spectively. The volume of each nanoparticle is 96 nm3. Increasing c leads to a de-
crease in h/h0 followed by an onset of re-extension. The magnitude of layer col-
lapse correlates with binding strength, i.e, more pronounced collapse is obtained
for higher affinity. (B) Nsp1p-12FF relative layer height as a function of NTR (i.e.,
NTF2 or NTF2-W7A) volume fraction in solution. The volume of a single wild-type
and mutant NTF2 is assumed to be d3

h = 125 nm3, where dh is the hydrodynamic
diameter [9]. For high affinity binding (i.e., wild-type binding; high εb) the layer
collapses with increasing NTF2 volume fraction, whereas for low affinity NTF2-
W7A binding (low εb) no significant layer collapse could be measured. This is in
good agreement with theory and simulation. (A) reproduced from Opferman, et

al. [161].

4.4.2 Relevance of FG Domain Kapβ1 Occupancy for the NPC

The results obtained here show that more than 2 layers of long-lived Kapβ1 occupy

the FG domain brush at physiological concentrations. Indeed, high Kapβ1 occu-

pancy has been observed in cells where ∼100 Kapβ1 molecules populate the NPC
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at steady state [115, 155]. The obtained binding data shows that a major fraction of

Kapβ1 is penetrating the FG domain layer and forms stable, long-lived complexes

at steady state. This is reflected in the low KD values (i.e.,∼100 nM) in combination

with slow dissociation (i.e., koff ∼ 10−5 s−1). Although such strong binding might

ensure biochemical selectivity, it cannot account for the rapid ∼6 ms NPC trans-

location times in vivo [154]. This implies that only slow transport would exist if

the entire transport channel volume would be filled with close-packed FG domains

forming a homogeneous distribution of accessible FG repeats (e.g., meshwork).

More importantly, the results presented here reveal that at physiological con-

centrations, a low-affinity fraction of Kapβ1 (KD >1 µM) coexists with high-affinity

Kapβ1 occupying the layer. Low-affinity species experience hindered penetration

into the fully-occupied FG domain layer and thus are limited to interact with the

surface of the layer. The limited access to FG repeats at the surface promotes a fast

phase of Kapβ1 at physiological concentration. Indeed, kinetic analysis reveals that

over time, only 0.001% of the total Kapβ1-FG domain interactions contribute to the

slow-phase.

In a scenario of NPCs pre-occupied with Kapβ1, newly entering Kapβ1 molecules

only find a few available FG repeats and therefore interact only transiently with the

FG domains. This implies that these Kapβ1 molecules would remain in the fast

phase. A similar situation can be expected if non-specific proteins from cell lys-

ate are able to bind and occupy the FG domains [152]. In accordance with the-

ory [163], the results show that optimal Kap-FG domain interaction strength can

be tuned by saturating the FG domains with Kapβ1. With their fast off rates (koff
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∼1 s−1) and short half-lives (<100 ms), these species would dominate fast transport

through the NPC at physiological Kap concentrations. Nevertheless, this would re-

quire an unobstructed path to support transport by the fast phase, such as a single

central channel that would be surrounded by the peripheries of Kap-occupied FG

domain layers, as recently shown by single-molecule fluorescence detection [109,

164].

4.4.3 Kapβ1 as an Integral Component of the NPC Barrier

FG-centric barrier models (e.g., brush, meshwork) explain the NPC function based

on FG domains alone. However, the findings presented here demonstrate that at

physiological concentrations, a high affinity fraction of bound Kapβ1 molecules ex-

hibits long-lived interactions with close-packed FG domains and thus, likely form

an essential component of the NPC barrier. This represents a shift in paradigm with

respect to FG-centric barrier models because it highlights the role of interacting FG

domains and Kaps rather than FG domains alone. Here, FG domains appear to act

as a flexible velcro-like scaffold with its conformation modulated by Kap occupancy,

as illustrated by attractive nanoparticles that penetrate the molecular brush and

provoke a morphological response [161, 162]. In addition, Kap occupancy could

play a key role in regulating NPC barrier conformation, transport selectivity, and

efficiency.

A Kap-centric model based on the obtained results is depicted in Figure 4.11.

It describes the spatiotemporal organization of Kapβ1 within the FG domains in

the NPC transport channel. At physiological Kapβ1 concentrations, NPC function
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is defined by a majority of slow-phase Kapβ1 molecules that exhibit persistent in-

teractions with close-packed FxFG domains that extend into the central channel

and towards the NPC periphery. Together, Kaps and engorged FG domains form

a flexible inner layer which surrounds a narrow aqueous channel along the NPC

axis. This defines the passive size limit while remaining selective towards fast-phase

Kapβ1 molecules that bind weakly enough to diffuse along the periphery of the FG

domains, e.g., by a reduction of dimensionality [95, 113, 118]. This dynamic and

reversible system provides a feedback mechanism that reinstates slow Kap species

if local vacancies occur. This guarantees a self-healing mechanism for FG domain

conformation [111], and normalizes transport selectivity and speed control. The

proposed molecular view agrees with high Kapβ1 density detected along the NPC

walls due to FG domain binding and further highlights the interactions that de-

scribe NPC transport pathways as “self-regulated viscous channels” [109, 164]. De-

pendent on Kap-Kap competition, numerous translocation times were observed

at high Kap concentrations inside NPCs exposing limited FG repeats, and further,

translocation was only efficient at sufficiently high enough concentrations of Kapβ1

[165]. Indeed, the results obtained in this work predict that a continuum of different

transport rates can exist depending on local NPC Kap concentrations.
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FIGURE 4.11: Kap-centric control in NPCs. Kapβ1 is an integral constituent of
the NPC at physiological steady-state conditions. Selective barrier functional-
ity against nonspecific cargoes is provided by slow-phase Kapβ1 molecules (dark
green) that saturate and engorge peripheral FG domains. Fast-phase Kapβ1 mo-
lecules (light green) promote fast transport through a narrow central channel due
to the limited availability of FG repeats. Kapβ1 reduction leads to barrier contrac-
tion and a decrease in selectivity because of a widening of the aqueous channel.
The availability of free FG repeats slows down the transport of Kapβ1 molecules,
which eventually repopulate the FG domains to reinstate normal Kap occupancy
and, thereafter, selectivity and speed control. NPCs devoid of Kapβ1 are likely non-

physiological.





Chapter 5

Promiscuous Binding of FG Domains

to NTRs

5.1 Introduction

The properties of NTF2 and Kapβ1 binding to pristine FG domain layers separately

were investigated in Chapter 4. Based on the obtained results, the main conclusion

states that Kapβ1 constitutes an integral constituent of the NPC barrier, a function-

ality which is often assigned only to the FG domains. Additionally, Kapβ1 was hypo-

thesized to play a key role in regulating both mechanistic and kinetic aspects of NPC

barrier functionality. Indeed, up to 100 immobile Kapβ1 molecules were identified

per NPC [115, 155]. In contrast, only ∼6 tightly bound NTF2 molecules were found

per NPC. Such steady-state NPCs likely harbor a high number of different transport

107
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factors (e.g., Kapβ1 and NTF2) which are simultaneously crossing the nuclear en-

velope [50, 115]. How such promiscuous interactions of many different multivalent

NTRs binding FG domains influence each other is not known.

To address this question, NTF2 binding was investigated in the presence of

Kapβ1 on close-packed FxFG domains of Nsp1p. Generally, as SPR is sensitive to

any change in refractive index, it is not feasible to distinguish between different

types of molecules interacting simultaneously with the ligand. This describes an

inherent problem of SPR: “the good news is that everything has an SPR signal, and

the bad news is that everything has an SPR signal” [166]. Therefore it is a major

challenge to decouple the binding response of two analytes binding the same lig-

and simultaneously. In the case of NTF2 and Kapβ1 binding, this restriction could

be overcome using the additional information from the BSA height measurements

and the fact that slow-phase Kapβ1 exhibits a t1/2 of several hours (see Chapter 4).

5.2 Materials and Methods

5.2.1 Kapβ1-FG Domain Binding in Constant NTF2 Background

SPR sensor functionalization with Nsp1p-12FF was done as described in Chapter

3. Kapβ1 was dialysed against PBS using 3500 MWCO dialysis bags for 3 h at RT

while stirring. NTF2 was already stored in PBS, and therefore, was directly used

after thawing. Absorbance at 280 nm was measured to determine protein concen-

tration. After dialysis, Kapβ1 was concentrated at 2800 x g (10k, Amicron ultra-4,
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Merck Millipore, Inc.) to a concentration of ∼ 30 µM. Concentrated Kapβ1 was di-

luted 1:1 with 40 µM NTF2 in PBS. This mixture was the starting point of a dilution

series with 20 µM NTF2 in PBS. Therefore, the resulting series of different Kapβ1

concentrations was in a constant background of 20 µM NTF2. 1% (w/v) BSA was

prepared by dissolving lyophilized BSA in 20 µM NTF2 in PBS. To have a constant

NTF2 background, ∼300 ml running buffer of 20 µM NTF2 in PBS was prepared

by diluting concentrated NTF2 with previously filtered and degased PBS. Simultan-

eously, Kapβ1 and BSA were prepared using only PBS as described in Chapter 4.

Subsequent binding of Kapβ1 on Nsp1p-12FF with and without NTF2 in the back-

ground and the resulting FG domain layer height changes were measured using BSA

injections as described in Chapter 2 and 4.

5.2.2 Decoupling NTF2 and Kapβ1 SPR response

In this experiment, the proteins (i.e., NTF2, Kapβ1, Nsp1p-12FF and BSA) and PBS

as running buffer were prepared as described in Chapter 4. The SPRs microfluidic

system is restricted to three modes of flow-cell (FC) addressing: i) injection in a

single FC (i.e., 1,2,3 or 4), ii) simultaneous injections in all four FCs 1 – 4, and iii)

simultaneous injection in FCs 1 and 2, and FCs 3 and 4. Here, FG domains were

sequentially immobilized in FCs 2 and 4 at high concentrations to achieve close-

packing (i.e., Nsp1p-12FF forms a molecular brush). The gold surface in FCs 1 and

3 was passivated using PUT (Figure 5.1A).

After sensor surface preparation and functionalization, the experiment con-

sisted of two main cycles.
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FIGURE 5.1: SPR procedure of promiscuous binding experiments. (A) FG domains
were sequentially immobilized in FCs 2 and 4, whereas FCs 1 and 3 underwent PUT
passivation (I). Kapβ1 was injected in all four FCs with increasing concentrations
up to ∼15 µM (II). BSA injections in all flow-cells following Kapβ1 injections was
used to measure the layer height. After the last injection of Kapβ1, a dissociation
phase of 2230 s was applied to remove all weakly bound (i.e., fast-phase) Kapβ1.
NTF2 was injected with increasing concentration in FCs 3 and 4 up to ∼270 µM,
while FCs 1 and 2 were washed with PBS (running buffer; blank). The SPR response
was continuously monitored in all four FCs. (B) Model based on the previous res-
ults describing NTR occupancy and layer characteristics during the experimental

procedure.
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First, Kapβ1 was injected in all four FCs with increasing concentrations up to

∼15 µM. This resulted in Kapβ1-FG domain binding in FCs 2 and 4. BSA injections

in all FCs following Kapβ1 injections was used to measure the layer height change

of Nsp1p-12FF. After the last injection of Kapβ1 (i.e., the highest concentration of

Kapβ1), a dissociation phase of 2230 s was applied to remove all fast-phase (i.e.,

weakly bound) Kapβ1 (Figure 5.1A).

Second, NTF2 was injected with increasing concentration in FCs 3 and 4, while

FCs 1 and 2 were washed with buffer.

The SPR response was continuously monitored in all four FCs (Figure 5.1A). Fig-

ure 5.1B shows the procedure of NTF2 binding on Kapβ1 preloaded Nsp1p-12FF

layers in FC 4 while only buffer is injected in FC 2. Here, PUT passivated reference

FCs 1 and 3 were used to correct for bulk refractive index changes in FCs 2 and 4, re-

spectively. To decouple the signal of NTF2 from Kapβ1, the slow dissociation phase

of Kapβ1 (see Figure 5.1A) was fitted using a sum of exponential functions describ-

ing the dissociation of n= 3 different kinetic species (see Chapter 4) forming binary

complexes on the surface, modeled by

s(t) =
∑

n

Ane−kd,n·t (5.1)

where s(t) is the total experimental SPR signal of Kapβ1, t is time, An the indi-

vidual binding response at t = 0 of each species and kd,n is the apparent kinetic dis-

sociation rate of species n (Figure 5.2A). BSA injections were not included in the fit

by using a mask in the fitting procedure. In a next step, the dissociation of Kapβ1
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was fitted while NTF2 was injected with increasing concentration. The fit was ap-

plied only until NTF2 injections showed a significant change in the SPR response

(Figure 5.2B) and the apparent dissociation rates resulting from the first fit were

fixed and only the individual magnitudes An were fitted. Finally, the obtained fit for

the dissociation of Kapβ1 was subtracted from the total SPR binding signal leaving

only the decoupled sensogram for NTF2 binding (Figure 5.2C).

FIGURE 5.2: (A) Dissociation of Kapβ1 and fit. (B) The dissociation of Kapβ1 was
fitted for the first few injections (up to the dashed vertical line) where no significant
change in SPR response was measured due to the low concentration of injected
NTF2. (C) NTF2 binding was isolated by subtracting the fit in (B) from the SPR

sensogram of (B).

The resulting sensogram was used for further analysis (e.g., equilibrium bind-

ing or kinetic analysis) analog to the uncorrected sensograms for NTF2/NTF2-W7A
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and Kapβ1 binding pristine FG-domain layers. Final injections of 0.2 M NaOH was

used on a Kapβ1 filled FG domain layer in order to remove all non-covalently bound

material. Indeed, in Figure 5.3 it is shown that this washing step removed all bound

Kapβ1 and restored the initial layer height. This indicates that Kapβ1 does not bind

the gold surface of the SPR sensor chip and the measured long-lived species are

therefore based on non-covalent interactions with FG domains (i.e., no thiol-gold

bonds).

FIGURE 5.3: Bound Kapβ1 in an Nsp1p-12FF layer could be removed by washing
twice with short injections (30 s) of 0.2 M NaOH in PBS (pH ∼13). This shows that
Kapβ1 is not covalently attached to the gold layer. Top: SPR response reaching
baseline after regeneration. Bottom: After regeneration, the layer height is restored

to its initial value.
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5.3 Promiscuous Binding of Close-Packed FG Domains

to NTF2 and Kapβ1

5.3.1 Kapβ1-FG Domain Binding in a Physiological Background of

NTF2

The layer height change was measured using the BSA method while Kapβ1 was se-

quentially injected with increasing concentration on Nsp1p-12FF layers. As repor-

ted before in Chapter 4, the Nsp1p-12FF layer extends by up to 50% of its initial

height as a function of Kapβ1 occupancy. In a second experiment, Kapβ1 was again

injected with increasing concentration on a pristine Nsp1p-12FF layer. Although

in this case, the Kapβ1 binding was measured in a background of 20 µM NTF2

(i.e., physiological concentration [157]). This experiment was designed to investig-

ate the layer height change upon binding NTF2 and Kapβ1 simultaneously. Figure

5.4 shows the layer height change due to Kapβ1 binding Nsp1p-12FF in absence

of NTF2 or in a constant background of 20 µM NTF2. The obtained data indicates

that there is no detectable difference in the Kapβ1 dependent layer height change

when measured alone or in a constant background of physiological NTF2 concen-

trations.

Previous experiments on pristine Nsp1p-12FF layers showed that Kapβ1 binding

leads to extension, while NTF2 drives layer collapse (see Chapter 4). To this end,

Figure 5.4 shows that the effect of NTF2 binding is dominated by Kapβ1 as the layer
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expands even in the presence of NTF2.This dominance is well reflected by the dif-

ferent affinities of the two proteins.

FIGURE 5.4: Kapβ1-FG domain binding in physiological NTF2 background. The
Nsp1p-12FF layer expansion upon binding Kapβ1 in an NTF2 background of 20
µM does not significantly differ from binding Kapβ1 in buffer only. It seems likely
that the effect of NTF2 induced layer collapse is dominated by Kapβ1 extension.

Error bars are ±SD.

5.3.2 NTF2 Binding to Kapβ1 preloaded FG Domains

Several different types of Kaps are thought to simultaneously bind the FG Nups

within individual NPCs [50]. To examine the effect of high Kapβ1 occupancy on

NTF2-FG domain binding, Nsp1p-12FF layers were preloaded with Kapβ1 prior to

sequential NTF2 injections combined with measuring the total change of mass on

the surface (Figure 5.1A). In general, decoupling of the SPR signal for two differ-

ent analytes simultaneously interacting with the surface is not feasible. However,

I reasoned that decoupling under the current these circumstances could be pos-

sible given that the majority of Nsp1p-bound Kapβ1 was far longer-lived (∼90%

with koff < 10−3 s−1; Figure 4.7A) than NTF2 (∼30% koff < 10−3 s−1; Figure 4.9A). Ini-

tially, Kapβ1 was sequentially injected with increasing concentration up to∼15 µM
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(i.e., physiological) in all four SPR FCs (FCs 1 – 4) where two of the surfaces (FCs 2

and 4) were exposing close-packed Nsp1p-12FF and two reference cells underwent

PUT passivation (FCs 1 and 3). A subsequent dissociation phase of 2230 s was ap-

plied to ensure that all fast species (koff > 0.01 s−1) would be removed. Remarkably,

80% of Kapβ1 (koff < 0.0001 s−1) exhibited long-lived binding, which corresponds to

about 2.5 layers of slow-phase Kapβ1 remaining in complex with the Nsp1p-12FF.

As shown in Chapter 5, this resulted in an extension of the layer of up to 50% of its

initial height (Figure 5.5A).

FIGURE 5.5: Layer height change upon NTF2 binding Kapβ1 preloaded Nsp1p-
12FF. (A) The relative layer height is plotted for every BSA injection after Kapβ1 in-
jections (green) (II), NTF2 (red) or blank (blue) (III) injections, as described in Fig-
ure 5.1 and main text. (B) The difference in layer height between NTF2 and blank
injections on Kapβ1 preloaded Nsp1p-12FF layer (normalized by the initial layer
height h0) is shown as a function of NTF2 concentration for three experiments. Er-

ror bars are ±SD.

In a third step, NTF2 was sequentially injected into one Kapβ1 preloaded SPR

flow-cell (i.e., FC 4) at the same concentrations used for previous experiments

(Figure 5.1A) while the change of mass was continuously monitored in all cells.

Unexpectedly, no significant differences were detected when comparing between
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changes in total layer height owing to the intrinsic dissociation of Kapβ1 (FC3, in

the absence of NTF2) and in the presence of promiscuous binding to NTF2 (Figure

5.5B; see also Figure 5.4). Assuming that NTF2 binding did facilitate Kapβ1 dissoci-

ation (i.e. “washing-out” of bound Kapβ1), one would anticipate a marked reduc-

tion in layer height given that NTF2 drives layer collapse (see Figure 4.3). These res-

ults therefore show that NTF2 binding does not significantly impact the structural

integrity of Nsp1p FG domain layers preloaded with Kapβ1, consistent with there

being no significant competition between already bound Kapβ1 and the NTF2 ad-

ded. This observation allows NTF2 binding to be decoupled from the total SPR sig-

nal by subtracting the intrinsic slow-phase dissociation of Kapβ1 from FC3 (Figure

5.2). The ensuing multivalent binding of NTF2 was subsequently analyzed from the

resulting sensogram in the same manner as described for the binding to a pristine

Nsp1p layer in Chapter 4. Equilibrium binding analysis revealed a shift in affinity

of NTF2 towards weaker binding to Nsp1p-12FF layers. As seen for NTF2 binding

pristine FG domain layers, the equilibrium binding response could only be fitted

satisfyingly using a two-component Langmuir isotherm (Figure 5.6). With a KD1 =

4.68 ± 0.55 µM, the strong binding population of NTF2 binding Kapβ1 preloaded

Nsp1p-12FF layers has a more than two times weaker affinity than that of NTF2

binding empty layers with a KD1= 2.1± 0.5 µM (Figure 4.4B). A similar trend could

be observed for NTF2 binding to sparse Nsp1p-12FF and NTF-W7A binding close-

packed Nsp1p-12FF. This trends of decreasing avidity can be correlated with the

multivalent nature of the interaction which is either reduced by mutation of a ma-

jor binding site (i.e., NTF2-W7A) or by the number of available free binding sites on

the surface (i.e., high Kapβ1 occupancy or “mushroom” conformation).
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FIGURE 5.6: Equilibrium binding analysis of NTF2 binding Kapβ1 preloaded
Nsp1p-12FF layers. The SPR equilibrium response as a function of injected bulk
concentration was normalized by the maximum binding capacity (fraction of sat-
uration). Grey dashed lines are individual two-component Langmuir isotherm fits.
The isotherm recalculated from the average KD1 and KD2 is shown as solid line.

Global analysis of NTF2 binding to promiscuous Nsp1p-12FF layers in the pres-

ence of Kapβ1 (Figure 5.7A) indicates that its kinetic properties are significantly dif-

ferent compared to NTF2 binding pristine Nsp1p FG-domain layers alone. When

Kapβ1 is absent, NTF2 binding exhibits a high-affinity slow-phase species with low

koff and KD1 <1µM. In marked contrast, the presence of preloaded Kapβ1 in Nsp1p

FG-domain layers shifts NTF2 binding towards weaker binding that is dominated

by species with high koff (Figure 5.7A). This result indicates that there is an overall

trend towards faster and more transient interactions of NTF2 when Kapβ1 is present

in the Nsp1p FG-domain layer (Figure 5.7B).
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FIGURE 5.7: Kinetic analysis of NTF2 binding Kapβ1 preloaded Nsp1p-12FF and
mechanistic model. (A) Representative fits (red) to SPR sensograms (black) for
NTF2 binding to Kapβ1-preloaded Nsp1p-12FF. NTR binding is converted into re-
spective number of layers, n. The residuals of the fits are included below the curves.
(B) Two-dimensional interaction maps of kinetic on- and off-rates (kon, koff) for
NTF2 (blue) and NTF2 on Kapβ1-preloaded FG domain layer (red) are shown with
their derived equilibrium binding constant, KD. The fractional abundance of dif-
ferent kinetic states is indicated by the color intensity and the sum over all values in
a given axis is shown as accompanying histograms (top and right panels). The frac-
tion of each distribution in the histograms are given in percent of the total sum and
their main values are depicted in bold. Values for koff are s−1 and for kon M−1s−1 , re-
spectively. Different kinetic species are labeled with ◦ (“high-avidity slow-phase”),
Î (“mid-avidity fast- phase”) and ∗ (“low-avidity fast-phase”). (C) State diagrams
separating slow (dark; low koff) and fast (light; high koff) kinetic phases of NTF2
binding. At physiological Kapβ1 concentrations and resulting layer occupancy,

NTF2 interactions are shifted towards more transient, fast-phase interactions.
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5.4 Discussion

Preloading Nsp1p brushes with Kapβ1 had a dramatic influence on the binding of

NTF2. Binding Kapβ1 to Nsp1p will reduce its flexibility (so Nsp1p becomes in-

creasingly rigid [36, 150]) and also reduce the availability of free FG repeats. Con-

sequently, the avidity of NTF2 will be weakened by the extent to which Kapβ1 is

bound. Because Kapβ1 binds more strongly to Nsp1p than NTF2, its occupancy

is higher, forcing the layer to extend and resulting in NTF2 molecules finding it

harder to penetrate the Kapβ1-dominated volume (Figure 5.7C). Under these con-

ditions, kinetic analysis indicates that the two stronger, specific, interaction modes

identified with NTF2 alone are altered in a similar way as observed with the W7A

mutant. The strongest mode is essentially eliminated, whereas the affinity of the

weaker mode is reduced and the weakest, probably non-specific, binding was not

altered greatly. The reduced Nsp1p chain flexibility may increase the entropic cost

of binding two Nsp1p chains to a single NTF2 dimer and so inhibit formation of the

strongest binding mode. Similarly, the entropic penalty associated with binding a

single chain would also increase, resulting in decreased affinity and so an increase

in the bound NTF2 population having high off-rates (80%; Figure 5.7B). In terms of

mechanics, promiscuous binding to Kapβ1 may be essential to maintain NPC bar-

rier functionality to counterbalance against FG domain collapse caused by NTF2.

The results presented in Chapter 4 suggest that Kapβ1 forms an integral con-

stituent of the NPC barrier, which is often assigned to the FG domains alone, and

that Kapβ1 contributes to modulating both mechanistic and kinetic aspects of NPC
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barrier functionality. Here, the stronger and longer-lived FG domain-binding inter-

actions exhibited by Kapβ1 compared to those of NTF2 provides further support for

such a Kap-centric barrier mechanism [111]. Promiscuous binding to Kapβ1 may

be essential to maintain NPC barrier function by increasing the rigidity of the FG

domain layer [36, 150] and to strengthen the barrier against molecules that bind

non-specifically [118, 152]. As illustrated in Figure 5.8, the presence of slow-phase

Kapβ1 would hinder and limit how far NTF2 penetrates into the FG layer thereby

counterbalancing NTF2-mediated FG domain collapse. Consequently, decreasing

the effective concentration or occupancy of Kapβ1 at the NPC would generate a

less effective barrier (i.e., more open, less selective) due to the conformational re-

sponse of the FG chains [111] facilitated by NTF2-binding inducing brush collapse.

In terms of transport kinetics, the presence of pre-bound Kapβ1 molecules implies

that facilitated diffusion of NTF2 would proceed along the peripheral regions of the

engorged FG domains due to faster interaction kinetics (high koff) with the reduced

number of FG repeats i.e., such as by reduction of dimensionality [113, 118]. Over-

lapping with the NPC size-exclusion limit of∼5 nm [6], the hydrodynamic diameter

of ∼5 nm [9] potentially allows NTF2 dimers to diffuse across the barrier without

binding FG repeats. Although this is possible, kinetic measurements performed

in Xenopus laevis show that NTF2 traverses about 50 times more efficient than a

similar sized GFP molecule (29 kDa), indicating the importance of NTF2-FG repeat

interactions [12, 167].

In the cell, the rate at which RanGDP is returned to the nucleus must match the
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rate of Kap-based nucleocytoplasmic transport because each transport cycle con-

sumes RanGTP. If NTF2 translocation rates were slower than karyopherin transport,

there would eventually be insufficient nuclear RanGTP to maintain the transport

pathways. The Kap-centric model predicts the rapid NTF2-mediated Ran import

needed to maintain the Ran cycle is promoted by binding promiscuity in the NPCs.

Indeed, studies show that the immobile fraction of Kapβ1 (∼100 molecules/pore)

is substantially larger than that of NTF2 (∼6 molecules/pore) [115]. This argues for

a relatively unobstructed central channel surrounded by Kapβ1-filled FG domains

through which NTF2 would traverse in a manner spatially and temporally contigu-

ous with the fast Kapβ1 phase, consistent with single molecule fluorescence local-

ization data for Kapβ1 and NTF2 [109]. Consistent with the Kap-centric hypothesis,

in vitro nuclear protein import assays show increased transport rates with increas-

ing Kapβ1 concentrations [165], albeit precisely how Kapβ1 influences the promis-

cuous binding of FG domains to other Kaps or transport factors in vivo remains

unexplored.

As the main nucleocytoplasmic transport hub, a formidable challenge lies in de-

coupling the synchrony of diverse signaling pathways that converge on the NPCs

[50]. Clearly the pore channel is crowded [115], and knowing the effective local con-

centrations of each transport factor in and around the NPC is essential [168], but it is

crucial to establish whether different transport factors bind preferentially to the FG

Nups. In terms of binding promiscuity, this would essentially demarcate not only

spatial pathways [169], but also temporal ones. Regardless, promiscuous binding

and the likely influence of Kapβ1 binding on the off-rate of other transport factors
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make important contributions that need to be included when formulating precise

biophysical models of nucleocytoplasmic transport.

FIGURE 5.8: Kap-centric barrier model showing how different transport factors
may share contiguous spatial and temporal routes through the NPC central chan-
nel. Strong binding Kapβ1 molecules (dark green) occupy the FG Nups and form
integral constituents of the barrier mechanism. This crowding restricts NTF2 (or-
ange) and a smaller fraction of Kapβ1 (light green) to bind a limited number of
FG repeats at the FG Nup periphery that promotes facilitated diffusion through a
largely unobstructed narrow central channel. This ∼5 nm wide central channel is

also used by passively diffusing molecules (light red) that are crossing the pore.





Chapter 6

Conclusion

In this thesis, I studied the interaction of two NTRs, Kapβ1 and NTF2, with surface-

grafted Nsp1p FG domains of the yeast NPC. Surface grafted Nsp1p represents a

minimal model system to study the FG Nup barrier functionality of the NPC in vitro.

In addition to well established SPR experiments, I used a novel technique de-

veloped by Schoch, et al. [123] that allows measurements of surface-grafted protein

layer heights (e.g., molecular brushes) using non-interacting BSA molecules. To ac-

count for the NTR-FG domain binding and stimuli-responsive brush behavior, the

kinetic analysis was extended to describe multivalency and the surface heterogen-

eity of the FG domain layer [158]. Finally, I investigated the effect of promiscuous

binding of FG domains to Kapβ1 and NTF2 by taking advantage of the long-lived

property of Kapβ1.

To conclude my thesis, the obtained results show that

125
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1.) Surface tethering of FG domains is essential in the context of the NPC, as

it defines the pore boundary, establishes FG domain orientation, and enforces a

limit on Kap occupancy (and how far FG domains can extend). In the close-packed

regime, Nsp1p exhibits molecular brush behavior and can incorporate up to three

or more layers of Kapβ1 molecules at physiological Kapβ1 concentrations, albeit

with varying degrees of extensibility.

2.) Multivalent Kaps may serve as integral, regulatory constituents of the NPC by

balancing mechanistic with kinetic control over the NPC barrier mechanism. Here,

the role of multivalency is twofold: first, it allows for a slow phase of Kapβ1 to pen-

etrate and drive the extension of FG domains (i.e., the barrier) due to high binding

avidity; and second, it promotes a fast transient phase of Kapβ1 that proceeds with

reduced avidity along the peripheral regions of the FG domains.

3.) In contrast to Kapβ1, NTF2 binding induced collapse instead of extension,

which experimentally validates theory and simulations predicting that binding-

induced conformational changes in polymer brushes depend on nanoparticle size

and interaction energy [161, 162]. Further, the results suggest a dominating role of

Kaps in modulating the barrier mechanism which is reflected in the unaltered layer

response when binding Kapβ1 in a physiological background of NTF2.

4.) Promiscuous binding of FG Nups to NTRs ought to influence nucleocyto-

plasmic transport. This depends on the concentration, size and binding strength of

each NTR. Indeed, some form of hierarchy may exist between different NTRs such

that their relative concentrations may impact NPC barrier function. Here, NTF2



Chapter 6. Conclusion 127

kinetics was significantly influenced by the presence of Kapβ1 which was indicated

by an increase of transiently interacting NTF2.

This interpretation departs from the conventional view that the FG domains

alone form the NPC permeability barrier. Rather the results suggest that these do-

mains contribute to a crowding-based barrier function by concentrating transport

receptors in the pore. As the main nucleocytoplasmic transport hub, a formid-

able challenge lies in decoupling the diverse pathways that converge on NPCs [50].

Clearly the pore channel is crowded [115], and knowing the effective local concen-

trations of each transport receptor in and around the NPC is essential [168]. Irre-

spective of the precise mechanisms involved, promiscuous binding and the influ-

ence of Kapβ1 binding on the off-rate of other NTRs clearly make contributions that

need to be included when formulating more precise models of nucleocytoplasmic

transport.
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