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I. SUMMARY 
 
Cardiovascular diseases are a major cause of morbidity and mortality in 

industrialized countries. All forms of myocardial injury first lead to compensatory 

hypertrophy, which eventually progresses to heart failure. The pathophysiologic 

mechanisms underlying this process are not fully understood. Nevertheless, cellular 

remodeling is considered as a prime contributor to the pathogenesis of heart failure. 

The remodeling process involves cardiomyocyte hypertrophy, alterations in gene 

expression and myocyte shape as well as changes in the extracellular matrix. The 

same factors that induce cardiac hypertrophy during early compensatory changes, 

can also lead to apoptosis and secondary detrimental events associated with the 

development of heart failure. In the present thesis I will focus on a three of these 

factors, namely tumor necrosis factor-alpha (TNF-α), insulin-like growth factor (IGF)-I 

and angiotensin II (Ang II). 

 

TNF-α is a pro-inflammatory cytokine produced in the myocardium in response to 

various types of injury. Studies using experimental animals demonstrated the 

important role of TNF-α in the development of heart failure, however the use of TNF-

α blockers in clinical trials did not demonstrate beneficial effects. A frequent 

consequence of catabolic conditions, including chronic heart failure, is muscle mass 

loss. TNF-α is considered to play a major role in muscle catabolism. With evidence 

of beneficial next to detrimental effects in both cardiac and skeletal muscle, the role 

of TNF-α remains controversial.  

IGF-I is involved in maintaining cardiac function in post-infarct events. This growth 

factor has also been shown to induce survival and hypertrophy in many cells, 

including skeletal and cardiac muscle cells. Important modulators of IGF-I activity are 

the IGF-binding proteins (IGFBPs). Interactions between TNF-α and IGF-I have been 

reported. Most of the studies were undertaken in skeletal muscle and showed 

essentially an inhibitory effect of TNF-α either on IGF-I-induced responses or on IGF-

I and/or IGFBPs expression. 

The neurohormone Ang II plays a central role in hypertension and cardiovascular 

diseases, and is also involved in the myocardial remodeling process. Functional 

crosstalk between Ang II and TNF-α exists in cardiac hypertrophy, and is believed to 

promote tissue damage. 
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The present work was undertaken in order to gain more insight into the mechanisms 

of regulation involved in cardiac remodeling and muscle atrophy through multiple 

factor interactions. To this end, we used two cell culture models of cardiac and 

skeletal muscle cells, as well as animal models. 

 

In primary cultures of adult rat cardiomyocytes, we show that TNF-α acts on the IGF-

I system by downregulating mRNA expression of IGFBP-4, by interfering with IGF-I-

induced Akt signaling, and by potentiating IGF-I-induced activation of the ERK1/2 

signaling pathway. The latter effect may present a synergistic role for TNF-α and 

IGF-I in cardiomyocyte hypertrophy. In this model we also show that TNF-α has 

immediate positive effects by increasing cardiomyocyte viability, however longer-term 

incubation resulted in decreased viability and enhanced expression of apoptotic 

markers.  

  

To determine the in vivo relevance of the IGF-I system regulation by factors involved 

in cardiac remodeling, we analyzed the expression pattern of cardiac IGFBPs in two 

animal models of hypertension. We show up-regulation of IGFBP-4 mRNA 

expression in both models, increased IGFBP-5 in salt-fed Dahl salt sensitive rats, 

and decreased IGFBP-3 in Ang II-infused rats. Specific down-regulation of IGFBP-3 

by Ang II may play an important role in pressor-independent cardiac effects of this 

neurohormone.  

 

We also analyzed protein content regulation in the skeletal muscle cellular model. 

Using C2C12 mouse myotubes, we show that TNF-α and IGF-I both enhance protein 

synthesis by activating different signaling pathways. TNF-α acts mainly via PI3K-Akt 

and to a lesser extent via MEK-ERK1/2, while IGF-I acts independently of PI3K. 

Mechanisms which activate protein degradation through the ubiquitin proteasome 

pathway were analyzed by measuring Atrogin-1 mRNA expression. Levels of this 

marker of atrophy were transiently increased by TNF-α via the p38 MAPK signaling 

pathway, and this effect was inhibited by IGF-I.  However, longer-term incubations 

with TNF-α decreased Atrogin-1 mRNA levels suggesting inhibition of protein 

breakdown. 

 

To conclude, this work demonstrates regulation of cardiac IGFBPs expression by 

TNF-α and Ang II at the cellular and tissue level, respectively. In the models studied 

here, we show that factors involved in the remodeling process can modulate IGF-I, 
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which is important for cardiac function maintenance, through regulation of the 

IGFBPs. These mechanisms highlight the important role of multiple factor 

interactions in the development of heart failure. Furthermore, by studying the 

regulation of skeletal muscle protein content, TNF-α proved to increase protein 

synthesis and to inhibit protein degradation mechanisms by decreasing Atrogin-1 

expression. These results propose a novel beneficial role for TNF-α in the prevention 

of muscle wasting. 
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II. INTRODUCTION  
 

II. A. Background 
 
From hypertrophy to heart failure: the remodeling process 

Congestive heart failure (CHF) is a common clinical problem resulting in significant 

morbidity and mortality. Considerable progress has been made in understanding the 

pathophysiologic mechanisms leading to heart failure, however much remains 

unknown [1]. Cellular remodeling is a prime contributor to the pathogenesis of 

various clinical disorders including hypertension and heart failure. This process is a 

complex set of events involving cardiomyocyte hypertrophy, alteration of gene 

expression, of myocyte shape, and extracellular matrix. These changes result in 

thickening of the cardiac wall, followed by chamber dilation and myocardial 

dysfunction [2].  

Myocardial hypertrophy is a common hallmark of the remodeling process and is an 

initial adaptive process to a variety of physiological and pathological conditions 

associated with increased cardiac work. The hypertrophic response initially 

normalizes wall stress and maintains ventricular function. However, decompensated 

CHF occurs when the adaptive process fails. The process of ventricular hypertrophy 

is mediated by a variety of systems including sustained neurohormonal activation, 

mechanical load (stretch or distension), and/or growth factor [2] as well as cytokine 

[1] release. It has recently been established that the same factors that induce cardiac 

hypertrophy can also lead to apoptosis, thus establishing a direct link between early 

compensatory changes and detrimental secondary effects during the development of 

heart failure (reviewed in [1]).  

Fig 1 summarizes three factors involved in the cardiac remodeling process, which will 

be the focus of the present work: tumor necrosis factor-alpha (TNF-α), insulin-like 

growth factor-I (IGF-I) and angiotensin II (Ang II). 
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II. B. Tumor necrosis factor- alpha (TNF-α)  

 
II. B. 1. TNF-α in the progression of heart failure 

TNF-α is a pro-inflammatory cytokine expressed locally in cardiac tissue in response 

to various types of injury and plays an important role in initiating adaptive myocardial 

responses. However, it has the potential to produce cardiac decompensation when 

expressed at high concentration or for long duration (reviewed in [3]). TNF-α has 

pleiotropic biological effects, its plasma levels are elevated in a variety of 

cardiovascular diseases, such as myocardial infarction and cardiopulmonary bypass 

(reviewed in [4]). Moreover, TNF-α can be produced by cardiac myocytes and non-

myocytes in response to hemodynamic pressure overload [5].  

A large number of studies in experimental animals such as administration of TNF-α 

and transgenic overexpression of TNF-α in the heart have shown to replicate the 

heart failure phenotype, including progressive left ventricular dysfunction, fetal gene 

expression and cardiomyopathy [6]. Furthermore, attenuation of TNF-α biological 

Fig 1. Summary of endocrine and autocrine factors involved in cardiac remodeling 
 
Various hormones and cytokines including insulin-like growth factor-I (IGF-I), angiotensin II 
(Ang II), and tumor necrosis factor-alpha (TNF-α) are produced systemically and locally 
upon cardiac injury or pressure overload. These factors act on the myocardium to induce the 
remodeling process. 
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activity abrogates the development of heart failure in model systems. This 

demonstrated the important role of TNF-α in the development of heart failure and 

suggested that anti-cytokine therapy could prove beneficial in the treatment of 

patients with heart failure [7]. However, the use of TNF-α blockers (Etanercept and 

Infliximab) in large multicenter, randomized and placebo-controlled clinical trials in 

patients with CHF did not demonstrate beneficial effects. These studies showed a 

trend toward increase mortality and hospitalization [8]. 

Effects induced by TNF-α in cardiomyocytes are controversial and the mechanisms 

involved remain poorly defined. 

 

II. B. 2. The biology of TNF 

TNF was first identified as a substance with profound antitumor effects in vitro and in 

vivo. It is now clear that TNF has a variety of different biological capacities, such as 

influencing growth, differentiation and/or function of virtually every cell type 

investigated, including cardiac myocytes. TNF is initially synthesized as a 

transmembrane protein of approximately 26 kD. A 17-kD fragment is proteolytically 

cleaved off the plasma membrane by a membrane-bound enzyme, TNF-α 

convertase, to produce the secreted form of TNF. It then rapidly assembles as a 

homotrimer to form the biologically active 51-kD peptide capable of binding TNF 

receptors (Fig 2) (reviewed in [6]). Currently, two isoforms of TNF have been 

identified and share similar inflammatory activies. TNF-α is the smaller and more 

abundant [9].  

TNF receptors (TNFRs) signal as homotrimers and exist either as membrane-bound 

or as truncated soluble forms. Two distinct cell surface receptors mediate the effects 

of TNF, TNFR-1 (p55) and TNFR-2 (p75) (Fig 2). Despite conserved extracellular 

domains, the cytoplasmic domains of the two receptors lack homology, suggesting 

activation of different downstream transduction pathways. Both receptors are found 

in human and rat cardiac myocytes. TNFR-1 is the main receptor subtype in most 

cells, including the heart and its downstream signaling system has been extensively 

studied (reviewed in [9]). 
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II. B. 3. Effects of TNF-α in the heart 

Several recent studies provided evidence for beneficial next to detrimental roles of 

TNF-α. Biological responses exerted by TNF-α in the adult mammalian heart through 

both receptor subtypes have been reported as follows. TNF-α mediates negative 

inotropic effects, apoptosis of cardiac myocytes and cytoprotection via the TNFR-1, 

while only cytoprotective effects are mediated through the TNFR-2 (reviewed in [6]). 

Transgenic mice over-expressing TNF-α in the heart developed ventricular 

hypertrophy and dilation, fibrosis, and overt CHF. In this model, TNF-α induced both 

pro- and anti-apoptotic pathways resulting in an increase of apoptosis primarily in 

non-myocytes. The study concluded that, in vivo, TNF-α by itself does not induce 

myocyte apoptosis [10]. Consistently, a recent study undertaken on samples from 

human infarcted myocardial tissue showed that cardiomyocyte loss in the acute 

stage of myocardial infarction was due to apoptosis but this was not directly triggered 

Fig 2. Proposed schematic of TNF-induced signaling in the adult heart 
 
Secreted TNF binds TNF receptor on different cell types, whereas membrane-bound TNF is 
confined to binding to TNF receptors on adjacent cells. Binding of TNF induces trimerization 
of the receptors with subsequent recruitment of several signaling proteins to the cytoplasmic 
membrane. TNFR1-induced apoptosis occurs via 2 different pathways coupled to distinct 
domains of TNFR1. On the one hand the Fas-associated death domain protein (FADD)-
caspase 8 (casp 8) cascade and on the other hand the neutral sphingomyelinase (NSMase) 
pathway. TNFR2-mediate activation of TRAF2 is closely linked to protection against 
apoptosis via activation of nuclear factor-kappa B (NF-κB). TRAF2 also binds the TNFR1 
through FADD (not shown). [6] 
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by TNF-α[11]. Several lines of evidence among which the direct activation by TNF-α 

of the transcription factor nuclear factor-kappa B (NF-κB), a mediator of anti-

apoptotic pathways, support that TNF-α can activate rapid protective pathways in 

cardiomyocytes [3, 10].  

The emerging idea from these accounts is that TNF-α expression in the acute stage 

in response to stress may be beneficial whereas persistent expression in chronic 

stages, or exposure to excessive amounts of the cytokine, may be harmful to the 

myocardium [12]. 

 

II. B. 4. Effects of TNF-α in skeletal muscle 

Muscle atrophy is a frequent consequence of many catabolic conditions such as 

diabetes, cancer, sepsis and chronic heart failure. TNF-α is considered to play a 

major role in muscle catabolism because circulating levels of TNF-α are markedly 

increased in catabolic states [13-15]. Moreover, enhanced protein degradation and 

muscle loss have been observed in TNF-α-transgenic animals [16, 17] or after 

chronic administration of the cytokine [18]. Apoptosis represents a potential pathway 

by which wasting can occur in chronic diseases [14], however, a large part of the 

protein breakdown process has been attributed to the activation of the ubiquitin-

proteasome pathway (UPP). The latter requires three distinct enzymatic components 

amongst which the muscle specific ubiquitin ligases MuRF1 and Atrogin-1 (reviewed 

in [19]). 

On the other hand, TNF-α was also shown to promote cell growth in primary adult 

human skeletal muscle cells [20] and to transiently induce proliferation and survival in 

C2C12 myoblasts [21]. In this view, the role of TNF-α in muscle cells remains 

controversial. Depending on the conditions (time of exposure, concentrations used 

and stage of differentiation), TNF-α can be a survival factor, promoting proliferation 

and differentiation, or a cytotoxic factor, inducing apoptosis and necrosis [22, 23].  

 

 

II. C. Insulin-like growth factor-I (IGF-I) 
 
II. C. 1. IGF-I in the heart and skeletal muscle 

IGF-I is one of the other factors that increase with the onset of left ventricular 

pressure overload. The IGF axis is directly involved in post-infarct events by 

maintaining cardiac function via induction of adaptive hypertrophy and decreasing 
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apoptotic cell death. Both these effects have been demonstrated in various cell types 

(reviewed in [24]). Administration of IGF-I in patients with CHF showed acutely 

improved cardiac performances and lipid profile as well as increased insulin 

sensitivity [25].  

The important role of IGF-I in cardiac muscle biology also includes stimulation of the 

formation of cardiac myofibrils. This effect has been described in vitro and in vivo 

[26-28]. Besides, in cultured cardiac myocytes IGF-I modulates the expression of 

various genes including those involved in the regulation of intracellular signaling, 

mitochondrial function, cell survival and calcium signaling [29].   

Autocrine IGF-I production has been shown to play a crucial role in muscle growth 

[30]. Indeed, IGF-I is sufficient to induce skeletal muscle hypertrophy [31] as was 

demonstrated by transgenic mice overexpressing IGF-I in skeletal muscle [32, 33]. 

The signaling pathways activated by IGF-I and involved in this process have been 

well described (reviewed in [19]). 

 

II. C. 2. The biology of the IGF-system 

IGF-I and IGF-II are single-chain polypeptides (70 and 67 amino acids, respectively) 

that share homology with each other and with proinsulin. Systemic IGF-I and IGF-II 

levels are determined mainly by production in the liver, but many other cells 

synthesize these growth factors. Among the broad range of physiological actions, the 

IGFs regulate metabolic functions and cell cycle; they induce protein synthesis and 

function as survival factors. Actions of the IGFs are mediated by specific membrane 

receptors with tyrosine kinase activity responsible for intracellular signaling (reviewed 

in [34]). 

IGFs activity is modulated by the IGF binding proteins (IGFBPs). The IGFBPs are a 

family of six proteins, which interact with high affinity with the IGFs. Their affinity for 

the IGFs is 2- to 50-fold greater than the affinity of the IGFs for their receptor. The 

traditional view of the IGFBPs is that they function as carrier proteins for the IGFs in 

the circulation, regulating their turnover and transport towards the tissue. At the 

tissue level, IGFBPs compete with IGF receptors for IGF binding. The significant 

difference in the biochemical characteristics of these proteins accounts for the 

differences in their biological actions. While some members of the IGFBP family have 

been shown to inhibit IGF actions, others potentiate IGF actions [35-39]. Specific 

IGFBP proteases have been identified. These enzymes play a critical role in 

modulating IGF availability at the cellular level [34]. 
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II. D. Interactions between TNF-α and the IGF-I axis 

 
Several studies have reported that cytokines impair the IGF-I axis and have analyzed 

the mechanisms in various in vitro models. For example, TNF-α promotes IGF-I 

receptor resistance in neurons and suppresses the ability of IGF-I to induce survival 

[40]. In rat aortic smooth muscle cells, TNF-α markedly suppresses IGF-I mRNA 

expression and dramatically upregulates IGFBP-3 mRNA levels as wells as secretion 

of the protein [41]. In human skeletal myoblasts, TNF-α blocks basal and IGF-I-

stimulated differentiation [20], and in differentiating C2C12 cells, TNF-α blocks IGFBP-

5 secretion [42]. The in vivo relevance of the latter effect was established in the 

gastrocnemius of rats continuously infused with TNF-α [43]. In the same in vivo 

model, TNF-α decreases IGF-I plasma concentrations and IGF-I mRNA expression 

mainly in muscle tissue including the heart [44].  

These TNF-α-induced mechanisms, which act on the IGF-I system, may play a 

fundamental role in the development of catabolic states such as neurodegeneration, 

cancer-related muscle wasting, or, as assessed in this thesis, in cardiac remodeling 

and cardiac cachexia associated with CHF.  

 

II. E. Angiotensin II (Ang II) 

 
II. E. 1. The renin-angiotensin system (RAS) in hypertension and heart failure 

Ang II plays a central role in hypertension and cardiovascular diseases [2], and has 

been implicated in the development of heart failure in humans after myocardial 

infarction [1]. Ang II is involved in the myocardial remodeling process either through 

mechanical load release or via neurohormonal stimulation. In cultured cardiac 

myocytes, Ang II has been shown to induce hypertrophic responses [1]. 

Production of Ang II is the result of a series of enzymatic activities referred to as the 

renin-angiotensin system (RAS). The RAS plays a central role in cardiovascular 

homeostasis. The generation of renin is the rate limiting step of the entire cascade. 

Angiotensinogen, the renin substrate, may be found either locally (at the endothelial 

level) or systemically. After conversion of angiotensinogen to angiotensin I, the 

angiotensin converting enzyme (ACE) generates Ang II, an octapeptide. Ang II is a 

potent vasoconstrictor with growth-promoting properties. Numerous studies have 

demonstrated that pharmacological inhibition of the ACE improves the outcome in 
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patients with several cardiovascular disorders (hypertension, heart failure, ischemic 

heart disease) [45].  

Ang II signals through two types of G-coupled transmembrane receptors, the AT1R 

and the AT2R. Both receptors are expressed in human heart [1]. Data from in vivo 

studies show that AT1R-blockers reverse myocyte remodeling back toward normal 

and improve outcome [46]. 

 

II. E. 2. Interactions between Ang II and TNF-α  

The importance of interactions between pro-inflammatory cytokines and the RAS in 

the heart has recently become apparent. There is indeed evidence of functionally 

significant crosstalk between the RAS and inflammatory mediators in cardiac 

hypertrophy and failure. Ang II provokes inflammatory responses in the heart through 

NF-κB dependent pathways, whereas TNF-α provokes activation of the RAS in the 

heart through increased ACE activity. Both of these pathways converge on 

overlapping mitogen activated protein kinase (MAPK) signal transduction pathways. 

This type of crosstalk leads to deleterious self-amplifying positive feedback loops that 

promote tissue damage, particularly in the setting of chronic activation (reviewed in 

[47]).  
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III. OBJECTIVES 

 
The previous chapter has highlighted the involvement of TNF-α, a pro-inflammatory 

cytokine, in the cardiac remodeling process and the role of this cytokine in skeletal 

muscle atrophy associated with heart failure. To date, the actions of TNF-α in both 

cardiac myocytes and skeletal muscle cells remain controversial. Beneficial as well 

as detrimental effects have been described, and the mechanisms involved are not 

well defined. 

 

In my introduction, I also emphasized that interactions exist at various levels between 

TNF-α and IGF-I, an important growth factor whose survival and hypertrophic effects 

in both cardiac and skeletal muscle cells have been extensively studied. Numerous 

reports, mainly on skeletal muscle cells, show that TNF-α interferes negatively with 

the IGF-I system. 

 

Another important player implicated in the development of heart failure is the 

neurohormone Ang II. Functional crosstalk at the signaling pathway level exists 

between Ang II and TNF-α in cardiac hypertrophy, and is believed to promote tissue 

damage. 

 

The aim of this thesis is to analyze different levels of interplay between IGF-I and 

TNF-α on the one hand, and IGF-I and Ang II on the other hand, in cardiac and 

skeletal muscle.  

 
The objectives are: 

1. To analyze the effects of TNF-α on the expression of IGFBPs and to 

determine if this cytokine modulates specific intracellular signaling pathways induced 

by IGF-I in adult rat cardiomyocytes. Focus is placed on two IGF-I-induced signaling 

cascades, the Akt and the ERK1/2 pathways.  

2. To analyze the expression pattern of cardiac IGFBPs in two in vivo models 

of hypertension, namely Ang II- and salt-induced hypertensive rats. 

3. To examine the effects of TNF-α on protein synthesis and protein 

degradation in comparison to IGF-I-mediated actions. The model used for this 

purpose is the mouse C2C12 myoblast cell line. Our analysis of protein breakdown 

focuses on the UPP, more specifically on the regulation of Atrogin-1 expression.  
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 IV. EXPERIMENTAL PROCEDURES 

 
Detailed experimental procedures are described hereafter for the cell culture models 

as well as for the complementary results, which are presented in addition to the 

manuscripts. For all other procedures, the reader is referred to each of the three 

manuscripts. 

 

IV. A. Primary cell culture of ventricular adult rat 
cardiomyocytes 

 
The protocol was performed in accordance with institutional guidelines for the care of 

experimental animals. Ventricular cardiomyocytes were isolated from 6-week-old 

Sprague-Dawley rats (IFFA Credo, L’Arbresle, France) as follows. Animals were 

anesthetized with 2.5 µl/g sodium pentobarbital (ABBOTT AG, Switzerland), the 

heart rapidly excised and mounted on a Langendorff apparatus. The heart was 

rinsed free of blood with chilled basic buffer (126 mM NaCl, 4.4 mM KCl, 1.0 mM 

MgCl2, 4.0 mM NaHCO3, 10 mM Hepes, 30 mM 2,3-Butanedione Monoxime, 5.5 mM 

glucose, 1.8 mM pyruvate, pH 7.3, bubbled with oxygen) containing 200 µM calcium 

then perfused with basic buffer at 37 °C. After 5 min the perfusate was switched to 

basic buffer containing 1 mg/ml type II collagenase (Worthington, Lakewood, NJ) for 

another 20 min. The ventricules were minced and passed through a 100 µm Nylon 

cell strainer (BD Falcon, Franklin Lakes, NJ) to remove undigested cells and 

connective tissue. This was followed by three consecutive washes with basic buffer 

containing 100 µM, 200 µM and 600 µM calcium, plus 0.4, 0.2 and 0.2 g of bovine 

serum albumin (BSA) respectively. The cardiomyocytes were then seeded at a 

density of 4 x 105 cells per 10 cm diameter dishes (Sarstedt AG, Switzerland) 

previously coated with 20 µg/ml laminin (Sigma-Aldrich, Germany). The culture 

medium consisted of Dulbecco’s modified Eagle’s medium (DMEM) containing 1000 

mg/L glucose (Invitrogen AG, Basel, Switzerland). Cells were treated after isolation 

as detailed in the results section with recombinant mouse TNF-α(� D systems, 

Minneapolis, MN, Des-IGF-I (IBT GmbH, Reutlingen, Germany) or both together. In 

one experiment, cardiomoycytes were cultured for 7 days in DMEM medium 

supplemented with 20% heat-inactivated fetal calf serum (Amimed AG, Basel, 

Switzerland). 
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IV. B. Murine C2C12 myoblast cell line culture 

 
Myoblasts from the muscle derived C2C12 cell line were obtained from American Type 

Culture Collection (Manassas, VA). The seeding density used throughout the 

experiments was 5 x 105 cells per 10 cm diameter dish. Undifferentiated cells were 

grown in DMEM supplemented with 10% inactivated foetal calf serum at 37°C in the 

presence of 5% CO2. This medium will be referred to as growth medium (GM). The 

myoblasts were fused into myotubes by shifting the GM to differentiation medium 

(DM, DMEM supplemented with 2% heat inactivated horse serum). The time point at 

which the differentiation is induced is referred to as day 0 (D0). The medium was 

changed after 48 h  and the differentiation was allowed to continue for 96 h. All the 

experiments were performed at Day 6 (D6). Muscle cells were examined for 

evidence of myotube formation by phase contrast microscopy (Axiovert 40C 

microscope, ZEISS). To preserve the characteristics of the C2C12 cell line, the 

splitting of the cells was done up to a maximum of seven times. Cells were treated as 

detailed in the results section with recombinant mouse TNF-α(� D systems, 

Minneapolis, MN, IGF-I (IBT GmbH, Reutlingen, Germany) or both together, in the 

presence or absence of specific inhibitors (Calbiochem, Merck Bioscience; 

Darmstadt, Germany) LY294002 (20 µM, 30 min pretreatment), PD98059 (20 µM, 1 

h pretreatment) or SB203580 (10 µM, 1 h pretreatment). 

 

IV. C. Immunocytochemistry 
 
C2C12 Cells were grown on laminin coated (20 µg/ml) glass coverslips in 24-well 

plates (Sarstedt AG, Switzerland). Cardiomyocytes were used right after isolation. 

The cells were fixed in 4% formaldehyde (Polysciences Inc., Warrington, PA) and 

permeabilised with 0.1% NP-40 (Fluka, Switzerland). After 10 min incubation with 0.1 

M PBS-glycine, followed either (1) an overnight incubation at room temperature in a 

humid chamber with primary antibody against α-sarcomeric-actin clone 5C5 (Sigma, 

Saint-Louis, Missouri), α-sarcomeric-actinin clone EA-53 (Sigma), muscle actin clone 

HHF35 (DAKO), troponin I (Santa Cruz Biotechnologies, CA) or troponin T (Sigma) 

diluted 1/100 in PBG (PBS containing 0.5% BSA and 0.2% gelatin); or (2) a 5 min 

incubation with rhodamine phalloidin (Molecular Probes) diluted 1/300 in PBG. After 

the reaction with FITC-conjugated (diluted 1/200 in PBG) or Cy3-conjugated (diluted 

1/400 in PBG) secondary antibodies (Jackson ImmunoResearch, West Grove, PA), 
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followed a 5 min incubation with DAPI diluted 1/1000 in PBS. Coverslips were 

mounted on slides with mounting medium (2.4 g Mowiol, 6 g glycerol, 12 ml 0.2 M 

Tris/HCl pH 8.5) containing 2.5% DABCO (Sigma), and observed by fluorescence 

microscopy (Axiophot microscope, ZEISS) or confocal microscopy (Axiovert 100M 

microscope, ZEISS). For fluorescence pictures, images were acquired using the 

AnalySIS software (Soft Imaging System GmbH, Germany) and for confocal pictures, 

using the LSM 510 software (ZEISS). 

 

IV. D. Western blotting 
 
After treatment with growth factors and/or cytokines, cells were lysed in RIPA buffer 

(50 mM Tris-HCl, pH 7.4; 1% NP-40; 150 mM NaCl; 0.25% sodium deoxycholate; 1 

mM Na3V04; 1 mM NaF; 1 mM PMSF plus, Roche Diagnostics; 1 µg/µl pepstatin; 

“Mini-Complete” protease inhibitor cocktail, Roche Diagnostics). Protein 

concentrations were measured with the Micro BCA protein assay kit (PIERCE, 

Switzerland) and equal amounts, 20 µg, were resolved by SDS-PAGE and 

transferred to PVDF membranes (Millipore AG, Switzerland). The membranes were 

blocked with TBST (25 mM Tris, 150 mM NaCl, pH 7.4 containing 0.1% Tween)- milk 

(with 5% nonfat dry milk) and probed either overnight at 4°C with primary antibodies 

against total and phosphorylated Akt, ERK1/2 or p38 MAPK (Cell Signaling 

Technology Inc, Danvers, MA) diluted 1/103 in TBST-5% BSA, or 1 h at room 

temperature with primary antibody against myogenin (Santa Cruz Biotechnologies, 

CA) diluted 1/200 in TBST-milk. After reaction with secondary antibodies (diluted 

1/104 in TBST-milk) conjugated with horseradish peroxidase (Jackson 

ImmunoResearch, West Grove, PA), the bands were visualized using enhanced 

chemiluminescence reagents (Supersignal West Pico, PIERCE, Switzerland) and 

exposure to autoradiographic film. For quantification, the intensity of each 

phosphorylated protein band was normalized to the corresponding total protein band 

by image analysis using the NIH Image 1.62 software. 

 

IV. E. Real-time PCR 

 
Total RNA was isolated from treated and non treated C2C12 myotubes using Tri-

Reagent (Molecular Research Centre, Cincinnati, OH) following the manufacturer’s 

protocol. RNA concentrations and purity were determined by spectrophotometric 
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analyses, then subjected to cDNA synthesis with the reverse transcriptase 

OMNISCRIPT RT kit (Qiagen), using 0.5 µg/µg RNA of random hexamers (Promega) 

and 20 U/tube RNase inhibitor (Promega), according to the manufacturer’s 

instructions. A total RNA of 1 µg was reverse transcribed into cDNA and 2.5 ng 

cDNA was added to each reaction of the real-time PCR. The primers used were 

designed with assistance of the computer program Primer Express (Applied 

Biosystems, Foster City, CA) and synthesized by Microsynth AG (Switzerland). 

Primer sequences for Atrogin-1 and β-tubulin genes are given in Table 1. The real-

time PCR analysis was performed on a Light-Cycler apparatus (Applied Biosystems) 

using a ITaQ Syber Green kit (BioRad, Reinach, Switzerland). The thermocycling 

conditions were as follows: 95°C 2 min, 95°C 15 sec and 60°C 45 sec. Each reaction 

was performed in a final volume of 25 µl containing 5 µl of cDNA sample and 300 nM 

of each primer, in addition to ready-to-use ITaQ Syber Green mix.  After the PCR 

reaction, GeneAmp 5700 SDS software (Applied Biosystems) plotted a profile of 

fluorescence against the cycle number. An arbitrary threshold of fluorescence was 

set within the exponential phase of amplification. The cycle at which the amplification 

of the product exceeded this threshold was determined and used as Ct value for 

calculation. The expression of Atrogin-1 within each sample was quantified relative to 

the β-tubulin gene as a reference. Calculations were performed using the Pfaffl 

method ratio formula [48] displayed in Table 2. 

 

 

Table 1. Primers sequences for Atrogin-1 and β-tubulin genes 

 

 Atrogin1 gene β-tubulin gene 

Primers: 
 

• forward 

 

• reverse 

 

5’-CCATCAGGAGAAGTGGAT 

CTATGTT-3' 

5’-GCTTCCCCCAAAGTGCAG 

TA-3’ 

 

5’-CCGGACAGTGTG 

GCAACCAGATCGG-3’ 

5’-TGGCCAAAAGGAC 

CTGAGCGAACGG-3’ 

Species  Atrogin1/MAFbx rat cDNA β-tubulin mouse cDNA 
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Table 2. Pfaffl method formula and real-time PCR efficiencies of studied genes 

 
 

    ratio formula 
           ( Etarget )

ΔCt target (control-sample) 

                 
( Eref )

ΔCt ref (control-sample) 

   Etarget: Atrogin-1    1.9661 

   Eref: β-tubulin    1.9257 

 

 

IV. F. Statistical analysis 
 

The data presented are the mean ± standard error (S.E.). Statistical analysis was 

performed by t-test and values of P < 0.05 were considered significant. 
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V. CHARACTERIZATION OF THE CELL CULTURE MODELS 
 
The following section presents a morphological description of the two in vitro models 

used in this work. 

 

V. A. Ventricular adult rat cardiomyocytes 
 

The ventricular adult cardiomyocytes (vARCs) are terminally differentiated cells. 

Immunostainings of different contractile structures were performed to characterize 

the model and images were visualized by fluorescence or confocal microscopy.  

Freshly isolated vARCs are shown in Fig 3A with their characteristic rod shape and 

cross striations. DAPI nuclear staining shows the presence of two distinct nuclei in 

each cell (Fig 3C). One of the major characteristics of contractile cells is the repeated 

arrangment of contractile proteins in the myofibrils. Numerous proteins are 

associated with these structures, but the predominant ones are actin and myosin. 

Rhodamine phalloidin was used to stain actin filaments in the vARCs, as shown in 

Fig 3B. Further stainings with specific antibodies against troponin I (Fig 3D), muscle 

actin (Fig 3E) and α-sarcomeric-actin (Fig 3F) were performed which allowed to 

clearly distinguish the repeated contractile structures associated with the myofibrils. 

In long-term culture, vARCs undergo a de-differentiation and re-differentiation 

process. Upon attachment to the substratum, the originally rod-shaped cells flatten 

and spread out. During the first 2 days the preexisting myofibrils are degraded, and 

then new myofibrils start being assembled and grow out into the expanding cell 

periphery. After 4-6 days the vARCs resume rhythmic contractility. In addition, long-

term cultured vARCs reexpress isoforms of proteins normally occurring during fetal 

cardiac development [49]. Fig 4 shows phase contrast images of vARCs cultured 

during 7 days.  

The results presented in this work were performed on freshly isolated vARCs treated 

for a maximum of 24 h. 
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D E 

Fig 3. Morphological characterization of ventricular adult rat cardiomyocytes 
 
Phase contrast microscopy of freshly isolated vARCs show rod-shaped cells and cross striations 
(A), actin filaments are stained by rhodamine phalloidin (B) and DAPI staining shows two nuclei 
per cell (C); A-C: magnification x40. Confocal microscopy of troponin I (D), muscle actin (E) and 
α-sarcomeric-actin (F) immunostainings shown sarcomeric structures in one vARC; D-F: 
magnification x63.  

Fig 4. Ventricular adult rat 
cardiomyocytes in long-term 
culture 
 
Phase contrast microscopy of vARCs 
cultured for 7 days in DMEM 
containing 20% FCS. The cells 
resumed contractility and changed 
shape along time. Magnification x40 

A B C

F 
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V. B. C2C12 murine myoblast cell line 
 
The C2C12 myoblasts can fuse and form myotubes in specific culture conditions (see 

details in section IV.B). In Fig 5B we show that myotubes are formed after myoblasts 

(Fig 5A) were set to differentiate for 6 days. Morphological and biochemical 

characterization of C2C12 differentiation were realized by performing myogenin 

immunoblots and various contractile protein stainings.  

The expression of myogenin is correlated with induction of the differentiation 

process. Fig 5C shows elevated myogenin protein levels in differentiated myotubes 

at D6. DAPI staining shows that many nuclei can be observed in the myotubes, 

providing evidence of cell fusion during the differentiation process (Fig 5E,G). In the 

differentiated C2C12 cells, α-sarcomeric-actin staining is stronger than in proliferating 

cells (Fig 5F). Immunostaining of other contractile proteins of the myotubes, namely 

troponin T (Fig 5H,I) and α-sarcomeric-actinin (Fig 5J,K), shows distinctive cross 

striations. These structures are specific of terminally differentiated striated muscle 

cells. 

In the present work C2C12 analyses were performed solely on differentiated 

myotubes. 
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VI. RESULTS 
 
The results section of this thesis is built in three parts consisting of two manuscripts 

submitted for publication (VI.A and VI.B) and one in preparation (VI.C). Each article 

is preceded by a brief summary and followed by a concise conclusion highlighting the 

major findings. The results from complementary experiments are presented and 

discussed after the first and the third article (section VI.A and VI.C). 

 

VI. A. Effects of TNF-α on the IGF-I axis in adult 

cardiomyocytes 
 

In the first part, we analyze the effects of TNF-α on the IGF-I system, namely 

regulation of the IGFBPs and modulation IGF-I-induced signaling pathways in 

cardiac myocytes.  

 

VI. A. 1. TNF-α downregulates IGFBP-4 mRNA expression 

The article presented hereafter is a study based on the hypothesis that TNF-α 

interferes with the IGF-I axis by regulating the IGFBPs in adult rat cardiomyocytes. 

To verify this, we analyzed the effects of TNF-α on IGFBP-4 and IGFBP-5 mRNA. 

We show that TNF-α decreases IGFBP-4 mRNA levels in a concentration- and time-

dependent manner, but has no effect on IGFBP-5 mRNA expression. We also 

analyzed cell viability as well as protein levels of apoptotic markers, and we show 

that TNF-α has immediate positive effects on cardiomyocyte viability. However, 

longer-term (24 h) incubation with TNF-α resulted in decreased cell viability and was 

accompanied by enhanced expression of apoptotic markers.  
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Abstract 

 

 Tumor necrosis factor-alpha (TNF-α) plays an important role in adaptive 

myocardial responses to injury but also has the potential to produce cardiac 

decompensation. Insulin-like growth factor (IGF)-I on the other hand is fundamental 

to cardiac function because it positively regulates a range of cellular mechanisms 

such as inotropy, myofibrillogenesis and cell survival. The mechanisms behind the 

dual responses to TNF-α in the heart are poorly understood and therefore subject of 

the present study. We hypothesized that TNF-α acts on cardiomyocytes by 

interfering with the IGF-axis, in particular with the IGF binding proteins (IGFBPs), 

proteins that bind the IGFs with high affinity and thereby modulate their activity. After 

3 and 6 h, TNF-α treatment decreased IGFBP-4 mRNA levels, but not those of 

IGFBP-5, and this was associated with increased cell viability. After 24 h, IGFBP-4 

was still significantly lowered, viability and expression of the anti-apoptotic protein 

Bcl-2 were markedly reduced, whereas the pro-apoptotic Bax was increased. IGFBP-

4 is described to consistently inhibit IGF-I, thus our results suggest enhanced IGF-I 

activity in our model. The down-regulation of IGFBP-4 may represent an important 

novel mechanism by which TNF-α exerts its beneficial effects, and could contribute 

to limiting cardiac damage after myocardial injury. 

 

 

Key words:  TNF-α, cardiomyocyte, IGFBP, viability, apoptosis 
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Introduction 

 

  Understanding the development of cardiovascular diseases, one of the major 

causes of morbidity and mortality in industrialized countries, can lead to better 

prevention and therapeutic strategies. All forms of myocardial injury or stress initially 

lead to compensatory cardiac myocyte hypertrophy, accompanied by alterations in 

gene expression, as well as apoptosis and fibrosis. These events mediate the 

decline in myocardial function that occurs with the transition from hypertrophy to 

failure. A multitude of stressors and humoral factors have been associated with 

development of cardiac failure in animal models and humans, amongst which pro-

inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukin-1, 

and interleukin-6 (reviewed in [1]). 

These cytokines are expressed locally in cardiac tissue in response to various 

types of injury and play an important role in initiating adaptive myocardial responses. 

However, they also have the potential to produce cardiac decompensation when 

expressed at high concentration or for long duration (reviewed in [2]). TNF-α, the 

factor that we focus on in our study, has pleiotropic biological effects, its plasma 

levels are elevated in a variety of cardiovascular diseases (reviewed in [3]) and 

moreover, TNF-α can be produced by cardiac myocytes and non-myocytes in 

response to hemodynamic pressure overload [4]. Controversy exists with respect to 

the effects induced by TNF-α in cardiomyocytes, and the mechanisms involved 

remain poorly defined. 

Insulin-like growth factor-I (IGF-I) is one of the other factors that increase with 

the onset of left ventricular pressure overload. The IGF axis is directly involved in 

post-infarct events by maintaining cardiac function via induction of adaptive 

hypertrophy and decreasing apoptotic cell death. Both effects have been 

demonstrated in many other cell types (reviewed in [5]). IGF-I activity is modulated 

by the IGF binding proteins (IGFBPs). The IGFBPs are a family of six proteins, which 

interact with high affinity with the IGFs. Their affinity for the IGFs is 2- to 50-fold 

greater than for the IGF-I receptor. The traditional view of the IGFBPs is that they 

function as carrier proteins for the IGFs in the circulation, regulating their turnover 

and transport towards the tissue. At the tissue level, IGFBPs compete with IGF 

receptors for IGF binding. The significant difference in the biochemical characteristics 

of these proteins accounts for the differences in their biological actions [6-10].  

IGFBP-4, the smallest IGFBP, is expressed by a wide range of tissues and 

cell types. Its expression is regulated by different mechanisms in a cell-specific 
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manner. Several lines of evidence suggest that IGFBP-4 functions as a purely 

inhibitory protein in vitro and in vivo, and can exert its actions via IGF-dependent but 

possibly also via IGF-independent pathways (reviewed in [11]). IGFBP-5 is the most 

conserved IGFBP across species. Like it is well known for IGFBP-3, circulating 

IGFBP-5 also forms a ternary complex with one IGF molecule and a third protein 

termed acid labile subunit (ALS). IGFBP-5 is considered to be a stimulatory binding 

protein in at least two systems, bone and cultured vascular smooth muscle cells, but 

inhibitory actions have also been reported. The most important regulator of IGFBP-5 

expression and function is IGF-I, however in many situations IGFBP-5 exerts 

biological activities in the absence of IGFs (reviewed in [12]).  

Several studies have reported that cytokines impair the IGF-I axis and 

analyzed the mechanisms in various in vitro models [13, 14]. It has also been 

reported in an in vivo rat model, that intravenous infusion of TNF-α decreases IGF-I 

plasma concentrations and IGF-I mRNA expression mainly in muscle tissue including 

the heart [15]. The purpose of the present study is to test if TNF-α can interfere with 

the IGF-I axis in adult rat cardiomyocytes by regulating IGFBP-4 and IGFBP-5 

expression. Consistent with earlier reports, we show that TNF-α can induce apoptotic 

mechanisms and decrease cell viability in particular after long-term incubation. In 

addition, however, we show that TNF-α has immediate early positive effects on 

cardiomyocyte viability, and we demonstrate that TNF-α decreases IGFBP-4 mRNA 

expression in a concentration- and time-dependent manner. Our data suggest a role 

for IGFBP-4 in mediating part of the beneficial effects of TNF-α. 
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Materials and methods 

 

Cardiomyocyte isolation and culture 

The protocol was performed in accordance with institutional guidelines for the 

care of experimental animals. Ventricular cardiomyocytes were isolated from 6-week-

old Sprague-Dawley rats (IFFA Credo, L’Arbresle, France) using the method 

described by Belke and coworkers [16]. Cells were plated onto 100 mm dishes or 96 

well plates (Sarstedt AG, Switzerland) coated with 20 µg/ml laminin (Sigma-Aldrich, 

Germany). The culture medium consisted of DMEM containing 1000 mg/L glucose 

(Invitrogen AG, Basel, Switzerland) with or without 20% heat-inactivated fetal calf 

serum (Amimed AG, Basel, Switzerland). Treatment with recombinant mouse TNF-

α(R&D Systems, Minneapolis, MN took place immediately after isolation. 

 

RNase protection assay 

Total RNA was isolated from treated and non-treated cardiomyocytes using 

Tri-Reagent (Molecular Research Centre, Cincinnati, OH) and following the 

manufacturer’s protocol. RNA concentrations and purity were determined by 

spectrophotometric analyses. Solution hybridization/ribonuclease (RNase) protection 

assays (RPA) were performed as described previously [17]. Briefly, IGFBP-4, 

IGFBP-5 and 18S [32P]UTP-labeled RNA probes synthesized from DNA templates 

using T7 polymerase were hybridized overnight at 42°C with 10 µg of total RNA. 

Probes and other single-stranded RNA were then digested with RNases. The 

remaining RNase-protected probes were proteinase K-treated, phenol-extracted and 

resolved on denaturing polyacrylamide gels. The autoradiograms were quantified by 

densitometry using ImageQuant software (Molecular Dynamics, Sunnyvale, CA). The 

value of each hybridized probe was normalized to that of 18S as an internal control. 

 

Cell viability assay 

Cell viability was quantified using a colorimetric assay (Cell Proliferation 

Reagent WST-1, Roche Diagnostics AG, Switzerland), which measured 

mitochondrial dehydrogenase activity. The assay was performed following the 

manufacturer’s instructions. 

 

Western immunoblotting 

After treatment, cells were lysed in RIPA buffer, containing 50 mM Tris-HCl, 

pH 7.4, 1% NP-40, 150 mM NaCl, 1 µg/µl pepstatin, 1 mM PMSF plus and “Mini-
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Complete” protease inhibitor cocktail (Roche Diagnostics). Protein concentrations 

were measured with the Micro BCA protein assay kit (PIERCE, Switzerland) and 

equal amounts, 20 µg, were resolved by SDS-PAGE and transferred to PVDF 

membranes (Millipore AG, Switzerland). The membranes were blocked with 5% 

nonfat dry milk in Tris-buffered saline/0.1% Tween (TBST) and probed with primary 

antibodies against Bax NT (Upstate, Lucerna-Chem AG, Switzerland) or Bcl-2 ΔC-21 

(Santa Cruz Biotechnologies, CA) diluted 1/1000 and 1/250, respectively. After 

reaction with secondary antibodies (diluted 1/10000 in TBST) conjugated with 

horseradish peroxidase (Jackson ImmunoResearch, West Grove, PA), bands were 

visualized using enhanced chemiluminescence reagents (Supersignal West Pico, 

PIERCE, Switzerland) and exposure to autoradiographic film.  

 

Statistical analysis 

The data presented are the mean ± S.E. The statistical significance of 

differences between treatments was determined by one- or two-way ANOVA analysis 

of variance. Values of P < 0.05 were considered statistically significant. 
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Results 

 

TNF-α decreases IGFBP-4 but not IGFBP-5 mRNA expression  

Freshly isolated adult cardiomyocytes were incubated for 24 h in the 

presence or absence of 20 ng/ml of TNF-α. RNA was extracted and analyzed by 

RNase protection assays. Fig. 1 shows a representative autoradiogram, which 

demonstrates that the mRNA of IGFBP-4 and IGFBP-5 are both readily detectable in 

adult rat cardiomyocytes under baseline (control) conditions. In the presence of TNF-

α, levels of IGFBP-4 were markedly decreased, while no change in IGFBP-5 mRNA 

expression was observed (n=3). The TNF-α effect was obtained in serum free 

medium as well as in medium containing 20% fetal calf serum. The rest of our 

experiments were carried out in serum free medium. 

  

 

 

 

Concentration and time dependence of TNF-α effects 

The TNF-α-induced down-regulation of IGFBP-4 mRNA expression was 

concentration dependent with a significant decrease of 40% already achieved at 1 

ng/ml. The effect was maintained at higher concentrations of TNF-α (Fig. 2). Multiple 

time course experiments demonstrated that in comparison to cells taken right after 

their isolation from the heart (time point 0), IGFBP-4 mRNA levels decreased during 

the first 3 h in culture medium. This was followed by stabilization at approximately 

50% expression of the levels at time point 0. Incubation with TNF-α caused a 

significant additional reduction in IGFBP-4 mRNA levels (P < 0.01), an effect already 

apparent at 3 h and maintained up to 18 h (Fig. 3), when lowest levels were reached. 

Fig. 1. TNF-α decreases IGFBP-4 but not  
IGFBP-5 mRNA levels.  
 
Ventricular rat cardiomyocytes were treated 
for 24 h with TNF-α (20 ng/ml) in serum free 
(SF) medium or in medium containing 20% 
fetal calf serum (FCS). IGFBP-4, IGFBP-5 
and 18S mRNA analysis was performed by 
RNase protection assay (RPA) and is shown 
in a representative experiment. 

IGFBP-4

18S

Ctrl TNF

SF

Ctrl TNF

20% FCS

IGFBP-5
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At this time point, IGFBP-4 mRNA in TNF-α -treated cells were decreased by 58% (P 

< 0.001). 

 

 

 

 

 

 

 

Fig. 2. Concentration dependence of TNF-α-induced downregulation of IGFBP-4 
mRNA.  
 
Ventricular rat cardiomyocytes were treated for 24 h with increasing concentrations of TNF-
α (1-100 ng/ml). IGFBP-4 mRNA analysis was performed by RPA and quantification of the 
autoradiograms is shown as percentage of untreated control after normalization for 18S 
mRNA. Values represent mean ± S.E. of 3-5 independent experiments. * P < 0.05 vs. 
control. 

Fig. 3. Time-course of TNF-α-induced downregulation of IGFBP-4 mRNA.  
 
Ventricular rat cardiomyocytes were treated with 20 ng/ml TNF-α, and cells were harvested 
at the indicated times between 0 and 18 h. IGFBP-4 mRNA analysis was performed as 
described for Fig. 1 and 2, and is shown as percentage of untreated control at 0 h after 
normalization for 18S mRNA. Values represent the mean ± S.E. of 3-4 independent 
experiments.  
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Effect of TNF-α on cardiomyocyte viability and markers of apoptosis 

In parallel to the IGFBP-4 mRNA expression measurements, viability assays 

were performed under the same conditions. At early time points, 3 and 6 h, TNF-α 

markedly increased cell viability with a maximal effect at 6 h where viability was 

277% higher than in control cells measured at the same time point. An opposite 

effect was observed after 24 h of treatment when TNF-α decreased cardiomyocyte 

viability by 66% (Fig. 4A). At this time point, we also analyzed the expression of two 

apoptotic markers. We show that in the presence of TNF-α, pro-apoptotic Bax 

protein levels were increased whereas anti-apoptotic Bcl-2 protein levels were 

decreased (Fig. 4B). 

 

 

 

 

 

 

 

 

 

 

 

B

Bax (23 kD)

Bcl-2 (26 kD)

Ctrl TNF

A

Fig. 4. Effect of TNF-α on cardiomyocyte viability and apoptotic markers.  
 
(A) Ventricular rat cardiomyocytes were treated with 20 ng/ml TNF-α, cell viability was 
determined by measuring mitochondrial dehydrogenase activity at the indicated times and 
is shown as percentage of untreated control. Values represent mean ± S.E. of quintuplet 
measurements. (B) Cardiac myocytes were treated for 24 h with 20 ng/ml TNF-α. Bax and 
Bcl-2 protein analysis was performed by Western blot and is shown in a representative 
blot. 



 

- 39 - 

Discussion 

 

In the present study, we showed that TNF-α lowers IGFBP-4 mRNA 

expression in adult rat cardiomyocytes from as early as 3 h of treatment up to 24 h. 

Our readout, measured as mitochondrial activity, was cell viability which was 

enhanced by TNF-α treatment at early time points (3 and 6 h) but was decreased 

after 24 h of treatment. Moreover, expression levels of two apoptotic markers, Bax 

and Bcl-2, indicated the activation of apoptotic cascades after 24 h of exposure to 

TNF-α. 

Although IGF-I itself has been attributed a central role in many aspects of 

cardiomyocyte cell biology, our study is the first to report on the gene expression of 

IGFBP-4 and IGFBP-5 in cardiomyocytes, and to describe the specific down-

regulation of IGFBP-4 but not IGFBP-5 by TNF-α. In contrast to TNF-α, incubation 

with angiotensin II did not change the expression of this binding protein in 

cardiomyocytes (data not shown). Since IGFBP-4 is the only binding protein 

described to consistently inhibit IGF-I [11], our finding suggests that IGF-I activity is 

enhanced in response to the cytokine TNF-α. The enhanced cell viability that we 

observed at early time points may therefore be related to the IGFBP-4 lowering effect 

of TNF-α. IGFBP-4 mRNA expression was significantly reduced also after 24 h of 

exposure to TNF-α; nevertheless cell viability was markedly reduced at that time 

point. Thus, a reduction in IGFBP-4 by itself is not sufficient to improve cell viability. 

At those later time points, TNF-α likely reduces viability by additional effects, which 

may include down-regulation of IGF-I, IGF-II and the IGF-I receptor. Indeed, the 

relative expression levels of the IGFs, the IGF-I receptor and IGFBPs together will 

ultimately determine the activation state of IGF signaling pathways that modulate 

cardiomyocyte viability. It remains to be established which other mechanism is 

activated upon long term TNF-α treatment that overrules TNF’s immediate protective 

effects on the IGF system. 

Our finding that TNF-α increases the pro-apoptotic protein Bax and 

decreases the anti-apoptotic Bcl-2 is consistent with reports on neonatal and adult 

cardiomyocytes, which describe that TNF-α induces apoptosis [18, 19]. Activation of 

these apoptotic mechanisms is most likely the cause of the reduced cardiomyocyte 

viability that we measured with sustained TNF-α treatment. These studies, together 

with a range of in vivo reports have initially led to the view that TNF-α may be 

harmful to the heart and contributed to the rationale behind clinical studies targeting 

TNF-α in heart failure patients. However, several recent studies provided evidence 
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for beneficial next to detrimental roles of TNF-α. Transgenic mice over-expressing 

TNF-α in the heart developed ventricular hypertrophy and dilation, fibrosis, and overt 

congestive heart failure. In this model, TNF-α induced both pro- and anti-apoptotic 

pathways resulting in increase of apoptosis primarily in non-myocytes. The study 

concluded that, in vivo, TNF-α by itself does not induce myocyte apoptosis [20]. 

Consistently, a recent study undertaken on samples from human infarcted 

myocardial tissue showed that cardiomyocyte loss in the acute stage of myocardial 

infarction was due to apoptosis but this was not directly triggered by TNF-α[21]. 

Several lines of evidence among which the direct activation by TNF-α of the 

transcription factor nuclear factor-kappa B, a mediator of anti-apoptotic pathways, 

support that TNF-α can activate rapid protective pathways in cardiomyocytes [2, 20]. 

The emerging idea from these accounts, and in line with the data of our present 

study, is that TNF-α expression in the acute stage in response to stress may be 

beneficial whereas persistent expression in chronic stages, or exposure to excessive 

amounts of the cytokine, may be harmful to the myocardium [22]. 

Indeed, whether a cell benefits or suffers following exposure to TNF-α may 

not solely be a function of the time of exposure, but is likely also related to the 

concentrations of TNF-α that it gets exposed to. Several studies have addressed this 

issue:  murine C2C12 skeletal myotubes and rat L6 myotubes both displayed a clear 

dual behavior upon TNF-α treatment, with both studies supporting that TNF-α can 

elicit anabolic as well as catabolic effects. In the first model, low TNF-α 

concentrations decreased both total and myofibrillar protein content, whereas higher 

concentrations increased protein content [23]. The second model showed that 

intermediate concentrations of TNF-α increased total and myofibrillar protein content, 

while lower and higher concentrations decreased protein content [24]. Two cell 

surface receptors with distinct affinities mediate the effects of TNF-α, TNFR-1 and 

TNFR-2. Both receptor subtypes are present in human and rat cardiac myocytes, 

however TNFR-1 is the main receptor subtype [25]. Dual responses to TNF-α have 

been attributed to activation of TNFR-1, whereas the TNFR-2 is believed to mediate 

cardioprotective effects only [26]. Hence, based on the fact that we detected 

detrimental effects, we conclude that the TNFR-1 receptor is most likely activated in 

our cells. The biphasic behavior of the cells with respect to their IGFBP-4 mRNA 

expression in response to increasing concentrations of TNF-α � � � � � � � �  that for 

the beneficial effect both receptors may be involved, but further studies are required 

to prove this.  
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To date, a down-regulation of IGFBPs by TNF-α has only been described in 

skeletal and vascular smooth muscle cells [13, 27, 28]. In 2000, Meadows and 

colleagues reported that in differentiating C2C12 cells TNF-α blocked IGFBP-5 and 

IGF-II secretion, and related this to increased apoptotic cell death. The authors 

concluded that these TNF-α-induced mechanisms play a fundamental role in cancer-

related muscle wasting [27]. Recently, Lang and colleagues confirmed the decrease 

in IGFBP-5 mRNA in TNF-α-treated C2C12 myoblasts and established the in vivo 

relevance of the effect in the gastrocnemius from rats continuously infused with TNF-

α [28]. In vascular smooth muscle cells, TNF-α reduced IGFBP-3 [13]. None of these 

studies, however, has reported an alteration in muscle IGFBP-4 mRNA abundance. 

With our study we provide the first description of IGFBP-4 down-regulation by TNF-α 

in a different muscle cell model, namely that of the adult cardiac myocyte. Our results 

provide support for the existence of a novel pathway through which TNF-α exerts its 

acute protective effects, and may contribute to new strategies aiming to limit or 

prevent cardiac damage in response to injury. 
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VI. A. 2. Key findings and complementary results 

Key findings 

The previous study shows that TNF-α can activate apoptotic mechanisms and 

decreases cell viability in particular after long-term incubation. However, this cytokine 

also has immediate protective effects in adult rat cardiomyocytes. 

 

Interplay between TNF-α and IGF-I signaling pathways 

We have seen that TNF-α can enhance cardiomyocyte viability and that this cytokine 

might also increase IGF-I activity by downregulating IGFBP-4. Considering these 

findings, we propose to further investigate on the specific intracellular mechanisms 

triggered by TNFα and attempt to answer the following question: does TNF-α 

modulate specific signaling pathways induced by IGF-I? Additional experiments were 

performed to determine the effects of TNF-α on selected signaling pathways 

activated by IGF-I, and at the same time determine whether IGF-I also regulates 

pathways activated by TNF-α. These signaling pathways and their downstream 

cellular effects are summarized in Fig 6.  

In many systems, activation of the “protein and lipid kinase” phosphoinositide 3-

kinase (PI3K) and its downstream serine-threonine kinase effector, Akt (or Protein 

Kinase B), provide a potent stimulus for cell proliferation, growth, and survival. Akt is 

described as a downstream effector of the IGF-I receptor (IGF-IR). In the heart, Akt 

plays a key role in cardiomyocyte control of cell size, and regulation of survival and 

metabolism [50] (and reviewed in [24]). We analyzed phosphorylation states of Akt in 

cardiomyocytes. 

Another signaling cascade thought to be an important regulator of cardiac 

hypertrophy is the mitogen-activated protein kinases (MAPK). The MAPK signaling 

cascade is initiated in cardiac myocytes by activation of G-protein coupled receptors, 

receptor tyrosine kinases (including the IGF-IR), and by stress stimuli, among which 

TNF-α. MAPK signaling pathways consist of a sequence of successively acting 

kinases that ultimately result in the dual phosphorylation and activation of terminal 

effector kinases [51] (and reviewed in [52]). We analyzed phosphorylation states of 

the following kinases: extracellular signaling-regulated kinase1/2 (ERK1/2) and p38, 

one of the ″stress responsive″ MAPK which is activated by TNF-α. 
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After isolation, the cardiomyocytes were kept for 3 h in serum free medium at 37°C in 

the presence of 5% CO2 then incubated during 10 min with TNF-α (20 ng/ml), Des-

IGF-I (40 ng/ml) or both together. Des-IGF-I is an analog of human IGF-I with 

reduced binding to the IGFBPs. Protein kinases phosphorylation was analyzed by 

Western blotting. 

In our model we show a tremendous increase of Akt phosphorylation levels in 

response to Des-IGF-I treatment (Fig 7). TNF-α by itself markedly reduced Akt 

phosphorylation by approximately 60% (Fig 7). When the cells were treated with both 

TNF-α and Des-IGF-I, the IGF-I-induced increase dramatically dropped from 66-fold 

increase to 20-fold (Fig 7). TNF-α and Des-IGF-I alone induced phosphorylation of 

ERK1/2 (2- and 3-fold increase, respectively) in the adult cardiomyocytes (Fig 8). 

This increase was potentiated 10-fold when cells were co-incubated with TNF-α and 

Des-IGF-I (Fig 8). Like for the activation of Akt, opposite effects of TNF-α and Des-

IGF-I were obtained with respect to the phosphorylation of p38 MAPK. TNF-α 

Fig 6. Intracellular signaling pathways induced by IGF-I and TNF-α   
 
IGF-I binds to its receptor (IGF-IR) on the cellular surface and activates the receptor 
substrate (IRS)-1. The PI3K-Akt and ras-raf-MEK1/2-ERK1/2 signaling cascades are 
then activated. Akt induces glucose transport in the cell as well as protein and glycogen 
synthesis. Akt also inhibits apoptosis, and regulates gene transcription. TNF-α binds to 
its receptor (TNFα-R) and through the receptor-associated factor (TRAF) activates 
mitogen-activated ERK activating kinase (MEK1/2) and p38 MAPK. Both ERK1/2 and 
p38 MAPK are gene transcription regulators. 
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induced a 2.5-fold increase in phosphorylation, while IGF-I decreased p38 MAPK 

phosphorylation by 50% (Fig 9). When cardiomyocytes were incubated with both 

compounds, Des-IGF-I inhibited the TNF-α-induced increase, thus lowering the 

phosphorylation to control levels (Fig 9). 
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Fig 7. TNF-α  interferes with IGF-I-
induced Akt phosphorylation in 
adult cardiomyocytes 
 
Adult rat cardiomyocytes were 
incubated with TNF-α (20 ng/ml), 
Des-IGF-I (40 ng/ml) or both together 
for 10 min. Cells were collected, 
phosphorylated as well as total Akt 
protein levels were analyzed by 
Western blot and are shown in a 
reprensentative experiment (A).  2-4 
independent experiments were 
performed and results are expressed 
as percentage of untreated control 
(B). Values represent the mean ± 
S.E. *, significantly different from 
control, P < 0.05; **, significantly 
different from control, P < 0.01. 
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Fig 8. TNF-α and IGF-I potentiate 
ERK1/2 phosphorylation in adult 
cardiomyocytes 
 
Adult rat cardiomyocytes were 
harvested after 10 min incubation 
with TNF-α (20 ng/ml), Des-IGF-I (40 
ng/ml) or both. Protein levels of both 
phosphorylated and total ERK1/2 
were measured as described in Fig 7 
and shown in a representative 
experiment (A). Results of 3-5 
independent experiments are shown 
(B) and expressed as percentage of 
untreated control. Values represent 
the mean ± S.E. *, significantly 
different from control, P < 0.05; **, 
significantly different from control, P 
< 0.01. 

Fig 9. IGF-I inhibits TNF-α-induced 
phosphorylation of p38 MAPK in adult 
cardiomyocytes 
 
Adult rat cardiomyocytes were treated as 
described in Fig 7 and 8. Protein levels of 
both phosphorylated and total p38 MAPK 
were measured by Western blot and shown 
in a representative experiment (A). 2-3 
independent experiments were performed 
and results are expressed as percentage of 
untreated control (B). Values represent the 
mean ± S.E. *, significantly different from 
control, P < 0.05; **, significantly different 
from control, P < 0.01. 
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Altogether, these results show that: 

- TNF-α interferes with the IGF-I Akt survival, metabolic and hypertrohic 

pathway 

-   IGF-I antagonises the TNF-α p38 MAPK stress activated pathway 

-   TNF-α and IGF-I have additional effects on ERK1/2 activation 

 

Our data demonstrate that extensive crosstalk exists between TNF-α and IGF-I 

signaling in adult rat cardiomyocytes.  

On the one hand, TNF-α and IGF-I antagonize each other in the Akt and p38 MAPK 

pathways. With Akt being a pro-survival and metabolic pathway [50], and p38 having 

inverse effects [52], these results may explain the opposed effects of IGF-I and TNF-

α on cardiomyocyte survival: TNF-α triggers apoptosis [53, 54] whereas IGF-I inhibits 

it [55, 56].  

On the other hand, TNF-α enhances the IGF-I-induced activation of the ERK1/2 

pathway. This signaling cascade has been shown to promote cardiac hypertrophy in 

vivo, as demonstrated by transgenic mice with cardiac restricted overexpression of 

MEK1/2. Indeed, these animals were characterized by concentric hypertrophy, 

hyperdynamic function and resistance to apoptosis [51]. This effect was confirmed in 

a later in vivo study, and the same group showed that activation of the Raf/MEK/ERK 

pathway plays a major role in hypertrophic cardiac growth (via the initiation of protein 

synthesis) in adult cardiomyocytes [57]. Hence, our results suggest a potential 

beneficial role for IGF-I and TNF-α when expressed together in the cellular 

environment of cardiac myocytes. Studies in neonatal cardiomyocytes, have shown 

that TNF-α induces hypertrophic responses through activation of two different 

signaling pathways, including Akt [58, 59]. This shows differential regulation of the 

same cellular function by TNF-α throughout development. 

 

VI. A. 3. Adult cardiac myocytes: KEY FINDINGS 

Taken together with our previous observation that TNF-α reduces the inhibitory 

IGFBP-4, our data on the TNF-α-induced increase in phosphorylation of ERK1/2 

MAPK (in the presence of IGF-I) support that TNF-α may have an important 

cardioprotective function in adult cardiomyocytes.  

 

 



 

- 50 - 

VI. B. In vivo cardiac IGFBPs regulation by hypertension 
 

Our previous findings have provided evidence of specific regulation of IGFBP-4 in 

cardiomyocytes by a factor involved in the progression of heart failure, namely TNF-

α. Our next step was to investigate on the in vivo relevance of IGFBP regulation 

during the cardiac remodeling process. In the second part of the results, we 

emphasize on hypertension and its effects on cardiac IGFBPs expression in two 

animal models. 

 
The following article describes mRNA expression of IGFBP-3, -4 and -5 in left 

ventricle of two different models of hypertension, namely in rats infused with Ang II 

through osmotic minipumps and in salt-fed Dahl salt-sensitive (DSS) rats. Ang II 

infusion decreased IGFBP-3 and increased IGFBP-4 mRNA levels, whereas IGFBP-

5 remained unchanged. Hypertensive DSS rats had higher IGFBP-4 and IGFBP-5 

mRNA levels compared to normotensive Dahl resistant rats. Salt-induced 

hypertension, however did not cause any change in IGFBP-3 mRNA levels. The 

increase in IGFBP-4 transcripts in both models suggests a pressure-dependent 

response, whereas the Ang II-induced IGFBP-3 decrease is most likely mediated by 

pressure-independent mechanisms.  
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Abstract 

Insulin-like growth factor (IGF)-I is an important endocrine/autocrine mediator of 

cardiac hypertrophy. A family of highly specific IGF binding proteins (IGFBPs) 

modulates the biological activity of IGF-I, but to date the regulation and function of 

these binding proteins has not been assessed during the process of remodeling that 

follows hypertension-induced increases in workload. In this study we have measured 

left ventricular mRNA levels of IGFBP-3, -4 and –5 in two different models of 

hypertension, namely in rats infused with angiotensin II (Ang II) through osmotic 

minipumps and in salt-fed Dahl salt-sensitive (DSS) rats. Control groups consisted of 

vehicle-infused rats and Dahl salt-resistant (DSR) rats, respectively. Ang II infusion 

significantly decreased cardiac IGFBP-3 mRNA by 57, 52, and 36% at three, 7, and 

14 days, respectively. Gene expression of IGFBP-4 was increased by 78% at day 

three and then decreased to levels that were still 26 and 24% above those of controls 

at 7 and 14 days, respectively. Cardiac IGFBP-5 mRNA was not affected in this 

model, but was modulated by infusion of IGF-I. In the Dahl model, hypertensive DSS 

rats had 42% higher IGFBP-4 and 33% higher IGFBP-5 mRNA levels compared with 

normotensive DSR rats after four weeks of high salt diet, but no changes in IGFBP-3 

gene expression were observed. The increase in IGFBP-4 transcripts in both models 

suggests that this response is due to increased pressure, and additional experiments 

with primary cardiomyocyte cultures confirmed that the mechanism does not involve 

direct Ang II actions at the cellular level. As IGFBP-4 is known as an inhibitory 

binding protein, our findings suggest that the increase serves to limit excessive IGF 

action in the remodeling heart. IGFBP-3 was decreased in hypertensive Ang II-rats 

but not in hypertensive Dahl rats, suggesting that the effect is mediated by a pressor-

independent mechanism of Ang II. Consistently, in cultured cardiac endothelial cells 

Ang II specifically reduced IGFBP-3 mRNA. In conclusion, the distinct regulatory 

patterns of cardiac IGFBPs support an important role for these proteins in modulating 

IGF-I action during cardiac remodeling in low and high Ang II models of pressure-

overload. 
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Introduction 

A substantial body of evidence supports that insulin-like growth factor (IGF)-I 

has an important function during compensatory adaptive responses to pressure 

overload as well as during cardiac remodeling that leads to heart failure.1 It is 

induced in the heart in response to increased work load,2-4 or in the border region of 

the injury caused by infarct.5-8 Together with systemic IGF, this locally produced IGF-

I increases cardiac mass in the case of hypertension,4 or diminishes apoptosis that 

occurs after infarct.9 In fact, in vitro and in vivo studies show that IGF-I increases 

myofibril formation, but this without re-expression of fetal cardiac proteins that usually 

occurs in hypertrophy.10-12 Recent studies have furthermore shown that cardiac 

restricted IGF-I expression prevents senescencing of cardiac precursor cells,13 or 

that IGF-I injection activates resident cardiac progenitor cells to restore cardiac tissue 

in rat and dog,14,15 thus adding more mechanisms by which the peptide may 

potentially maintain cardiac mass and function. Finally, in a therapeutic setting, 

cardiac IGF-I injection together with embryonic stem cells enhanced their cellular 

engraftment and differentiation after myocardial infarct,16 and IGF-I delivery with 

nanofibers was recently shown to improve cell therapy with transplanted 

cardiomyocytes.17 

Evidence that autocrine production of IGF-I is important came from studies with 

mice in which IGF-I was deleted in the liver, the organ responsible for production of 

circulating IGF-I. The deletion had only minor consequences for organ weight or total 

body size.18,19 Most of the recent data that support a beneficial function for IGF-I in 

cardiac pathophysiology was obtained in mice that over-express the gene under 

control of cardiac-specific promotors. That circulating IGF-I is important as well is 

supported by our previous studies in which we showed that a rise in the circulating 

hormone increases cardiac mass, and in several other rat models in which IGF-I or 

growth hormone (GH) treatment was associated with improved cardiac function.4,20-25 

GH treatment of heart failure patients has been reported to increase cardiac mass, a 

response most likely mediated by IGF-I, systemically and locally induced in cardiac 

tissue.26-28 Despite encouraging results obtained with animal models,24 trials with GH 

and IGF-I in heart failure patients gave equivocal results with respect to cardiac 

function.29 This lack of clinical benefit has in part been explained by other groups as 

a lack of responsiveness to GH: sub-grouping of the patients analyzed showed that 

those patients that increased their circulating IGF-I by more than 77 ng/L in response 

to the GH treatment indeed improved their ejection fraction.27 The general negative 

outcome of these clinical studies underscores the necessity for studies aimed at 

getting a better understanding of cardiac mechanisms of action of IGF-I. In addition, 
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several recent experimental studies suggested that long-term activation of IGF or 

signaling pathways downstream of IGF can even lead to maladaptive hypertrophy,30-

32 and the mechanisms that cause this transition from postive to negative 

consequences of IGF-action are poorly understood. 

Important regulators of IGF-I activity are the highly specific IGF binding proteins 

(IGFBPs), a family of at least six proteins that bind IGF-I with high affinity.33-35 

IGFBPs affect IGF function by competing with IGF receptors for IGF binding. Their 

expression is tightly regulated in a time and tissue-specific fashion, and they can 

inhibit or potentiate IGF activity depending on the tissue studied and conditions used. 

The biologically active IGF-I is either the free IGF-I or IGFBP binary complexes, 

which can cross the endothelium or are formed after IGF-I has passed through the 

endothelium.36 Although IGF-I itself has been attributed a central role in cardiac 

biology, nothing is known about the cardiac expression and regulation of the IGFBPs 

in the heart during the adaptative and successive maladaptive remodeling that 

occurs after cardiac injury. We hypothesize that changes in the IGFBPs occur during 

remodeling which result in inadequately regulated IGF activity. As a first step towards 

a better understanding of the role played by the IGFBPs during the remodeling 

process in cardiac tissue, we measured cardiac transcripts encoding for the IGFBPs 

in normotensive Dahl salt-resistant (DSR) and hypertensive salt-sensitive (DSS) rats 

and in angiotensin (Ang) II-infused rats. Ang II, besides its well-known effects on 

arterial pressure, exerts mitogenic and growth promoting effects on cardiac myocytes 

and non-myocyte elements. Our study shows that (1) cardiac IGFBP-4 transcripts 

are increased in response to Ang II and salt-induced hypertension, and (2) cardiac 

IGFBP-5 transcripts are increased in salt-induced hypertension, but not in Ang II-

induced hypertension, however, transcript levels are regulated by IGF-I, and (3) 

IGFBP-3 is significantly decreased only in response to Ang II infusion. 
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Materials and Methods 

Animals 

 Osmotic minipumps (Alzet model 2001, ALZA Corp., Palo Alto, CA) were 

implanted in male Sprague-Dawley rats (IFFA CREDO, L’Arbresle, France), to infuse 

diluent (controls) or Ang II at a rate of 500 ng/kg/min.4 IGF-I was infused via 

minipumps at a rate of 1.4 mg/kg/d. Rats were pair-fed as described previously.37 All 

procedures were performed in accordance with institutional guidelines for the care of 

experimental animals. 

 Three, 7 or 14 days after implantation of the osmotic pumps, rats were 

anesthetized, aortic blood was withdrawn, mixed with EDTA in prechilled glass tubes, 

and immediately placed in ice. Plasma samples were stored at -80°C until measured 

for IGF-I content by radioimmuno assay (RIA). Tissues were removed, weighed, 

snap frozen in liquid nitrogen and stored at -80°C until processed. Dahl salt-sensitive 

(DSS) and salt-resistant (DSR) rats (Harlan) were fed a high salt diet (8% NaCl) for 4 

weeks, starting at 8 to 9 weeks of age. 

 

Cardiomyocyte and Endothelial Cell Culture 

Ventricular cardiomyocytes were isolated from 6-week-old Sprague-Dawley rats 

using methods as described.38 After a 2 h pre-plating step, cells were distributed on 

100 mm gelatin-coated dishes and treated with 1 µmol/L Ang II (Sigma in serum-free 

M199 medium (Invitrogen AG, Basel, Switzerland). In some experiments, additional 

dishes were incubated with tumor necrosis factor (TNF)-α at 10 ng/mL for 

comparison. Rat heart endothelial cells (RHEC) were separated from other cardiac 

cell types by centrifugation and differential plating, cultured in Dulbecco’s modified 

Eagle’s medium (DMEM, Invitrogen AG) containing 20% fetal bovine serum 

(Invitrogen AG), and used for the experiments between passage 2 and 5. Cells were 

kept for at least 5 h in serum-free DMEM, in some experiments pre-treated with 1 

µmol/L Losartan for 30 min, and then treated with Ang II in the serum-free DMEM for 

up to 24 h. All cultures and incubations were performed at 37°C in an atmosphere of 

5% CO2. 

 

Plasma IGF-I Radioimmuno Assay 

 Plasma samples were extracted with acid-ethanol to separate IGF binding 

proteins (IGFBPs) from IGF-I and assayed for IGF-I immunoreactivity as described39 

using a polyclonal anti-IGF-I rabbit antiserum provided through the National Hormone 

and Pituitary Program of the NIH-NIDDK. Standard curves were generated using 
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human recombinant IGF-I, kindly provided by Dr. H.P. Guler, Ciba-Geigy Corp., 

Summit, NJ. 

 

Northern Blot Analysis 

 Total RNA was prepared from frozen left ventricular muscle, or isolated 

cardiomyocytes and endothelial cells using Tri-Reagent (Molecular Research Center, 

Cincinnati, OH) and assessed for purity by measuring absorptions at 260 and 280 

nm. Total RNA (20 µg) was separated by electrophoresis in a 1% agarose-

formaldehyde gel, transferred to Hybond C membrane (Amersham Pharmacia 

Biotech, NJ), and cross-linked to the membrane by ultraviolet irradiation. RNA 

loading and transfer efficiencies were verified by methylene blue staining of 

membranes. RNA was hybridized with cDNA probes for glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH), IGFBP-3,40 IGFBP-4, IGFBP-5 ,41 ANF, or SM-α-actin 

using Quickhyb (Stratagene, La Jolla, CA). The amounts of hybridized probes for the 

IGFBPs were quantified by phosphorimager (Molecular Dynamics) and normalized 

for loading using the corresponding GAPDH values. GAPDH was not regulated by 

Ang II or IGF-I. 

 

Real-Time PCR 

RNA isolated from endothelial cells was analyzed by real-time PCR using 

routine procedures. Briefly, 1 µg RNA was reverse transcribed using the 

OMNISCRIPT-RT kit (Qiagen), 0.5 µg/µg RNA of random hexameres (Promega), 

and 20 U RNase inhibitor (Promega). Each PCR reaction contained 2.5 ng cDNA, 

300 nM of each primer and ready-to-use ITaQ Syber Green mix (BioRad) in a final 

volume of 25 µl. The primers used were designed with assistance of the computer 

program Primer Express (Applied Biosystems) and synthesized by Microsynth AG 

(Switzerland). Primer sequences for IGFBP-3 were: Fwd:  5’- GTC TCC TGG AAA 

CAC CAC TGA GT -3’, Rev:  5’- GGA GTG GAT GGA ACT TGG AAT C -3’. Real-

time PCR was performed on a Light-Cycler from Applied Biosystems with cycles of 

15 sec at 95°C and 45 sec at 60°C. After the PCR reaction, the software GeneAmp 

5700 SDS (Applied Biosystems) plotted a profile of fluorescence against the cycle 

number. An arbitrary threshold of fluorescence was set within the exponential phase 

of amplification and the cycle at which the amplification of the product exceeded this 

threshold was determined and used as Ct value for calculation. The expression of 

mRNA levels of the IGFBPs was quantified relative to β-tubulin using mathematical 

methods published by Pfaffl.42 
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Statistical Analysis 

 All data represent mean ± SEM of at least six rats per experimental group in 

the Ang II-infusion model, and 4 rats per group in the Dahl model. Results were 

analyzed using Student's t test when results from two experimental groups were 

compared or analysis of variance (ANOVA) when data from three or more groups 

were studied. For data analyzed by ANOVA, pair-wise comparisons were made by 

the Tukey’s test; P < 0.05 was considered statistically significant. 

 

 

Results 

Time Course of Cardiac IGFBP mRNA Levels in Response to Ang II Infusion 

 Sprague Dawley rats were treated with Ang II (500 ng/kg/min) for three, 7, and 

14 days by infusion via osmotic minipumps. Ang II raised systolic blood pressures as 

reported previously4 and caused increases in cardiac to body weight ratios of 20, 21, 

and 32% above controls at three, 7, and 14 days, respectively (P < 0.001 at all 

timepoints). Figure 1 shows Northern blot analysis of total RNA purified from the left 

ventricle of control and Ang II-treated rats at 7 days. Hybridization with probes specific 

for atrial natriuretic factor (ANF) and smooth muscle (SM)-α-actin showed that the 

expression of these two markers of hypertrophy was significantly increased (Figure 

1A). After Ang II infusion for 7 days, 13- and 1.7-fold increases were measured for 

ANF and SM-α-actin, respectively (P < 0.001 for both). Figure 1B shows 

representative autoradiograms after hybridization of RNA from the left ventricle of 

control and Ang II-treated rats with probes specific for IGFBP-3, -4, and –5. A 

decrease in IGFBP-3 an increase in IGFBP-4, and no change in IGFBP-5 mRNAs are 

visible. We quantified the signals obtained for multiple rats that were sacrificed after 

three, 7 and 14 days of continuous Ang II infusion, using a phosphorimager (Figure 2). 

Figure 2A shows that at all time points, IGFBP-3 mRNA levels were decreased 

significantly compared to those of vehicle-infused controls (-57, -52, and –36%, P < 

0.01, 0.01, and 0.05, for the three time-points, respectively). IGFBP-4 mRNA, on the 

other hand, was 78% higher in Ang II-infused rats than in controls at three days (P < 

0.01, Figure 2B). This effect of Ang II infusion became significantly less pronounced, 

but was still higher than in controls at 7 (+26%) and 14 days (+24%, Figure 2B). With 

respect to IGFBP-5, Ang II slightly increased its mRNA at 7 days (+24%, Figure 2B), 

but at none of the time points did the difference between controls and Ang II-infused 

rats reach significance (Figure 2C). 



 

- 58 - 

In conclusion, these experiments show that Ang II infusion in Sprague Dawley 

rats increases IGFBP-4 in particular at early timepoints after start of the infusion, and 

that it decreases IGFBP-3 at all timepoints. To assess by which mechanisms these 

changes are caused, we performed the following experiments with IGF-I infusion and 

cultured cardiac cells. 
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Figure 1: Northern blot analysis of total RNA isolated from the left ventricle of control 
and Ang II-treated rats.  
 
(A) After hybridization with specific probes, signals for smooth muscle (SM)-α-actin and atrial 
natriuretic factor (ANF) were normalized for GAPDH, and the mean of the ratios obtained from 
6 rats per experimental group are shown. (B) Example of a Northern blot hybridized with 
randomly transcribed probes specific for IGFBP-3, -4, and -5 mRNA. ** P < 0.001 vs control 
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Figure 2: Time course of cardiac 
IGFBP mRNA levels in response 
to Ang II infusion 
 

Changes in IGFBP-3 (A), IGFBP-4 
(B), and IGFBP-5 (C) in the left 
ventricle of rats infused with Ang II 
for three, 7 and 14 days. Northern 
blots were prepared and hybridized 
as described in the materials and 
methods section, radioactive 
signals for the binding proteins 
were quantified using a 
phosphorimager, and normalized 
by determining the ratio with 
GAPDH. * P < 0.05 vs control, ** P 
< 0.01 vs control, ## P < 0.01 vs 
Ang II at day 3. 
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Effect of IGF-I Treatment on the Ang II-Induced Changes in IGFBP mRNA 

 In the present study, plasma IGF-I levels in Ang II-infused Sprague Dawley rats 

were reduced after three and 7 days of treatment compared to pair-fed controls, 

consistent with our previously published data (data not shown).39 We examined 

whether circulating levels of IGF-I regulate cardiac expression of the IGFBPs. To this 

end, we re-established near-to-normal plasma levels of IGF-I or increased plasma 

IGF-I to above normal by infusing rats with IGF-I in the presence or absence of Ang II. 

The combined infusion of Ang II and IGF-I increased plasma IGF-I levels 2.2-fold at 

three days and 2.0-fold at 7 days compared to animals infused with Ang II alone. 

Compared with control rats that received no Ang II, IGF-I infusion resulted in IGF-I 

concentrations that were 1.4 and 1.3 times higher at three and 7 days, respectively 

(data not shown). Thus, in the co-infused rats, IGF-I levels were re-established to 

slightly above normal. 

Despite these increases in circulating IGF-I, the lower IGFBP-3 and higher 

IGFBP-4 mRNA levels in the left ventricle of Ang II-infused rats were not reversed. 

This was true at three (data not shown) and 7 days of infusion (Figure 3, P < 0.01 for 

IGFBP-3; P < 0.05 for IGFBP-4, both vs control, P = NS vs Ang II). IGF-I infusion by 

itself, in the absence of Ang II, raised the IGF-I levels 2.3-fold above controls, but this 

still did not change cardiac IGFBP-3 or -4 mRNA expression (Figure 3). Taken 

together, these data support that cardiac IGFBP-3 and -4 mRNA levels are not 

affected by circulating IGF-I levels. In contrast, IGF-I infusion markedly increased 

cardiac mRNA expression of IGFBP-5 1.3-fold above controls (P < 0.01) in the 

absence of Ang II. When IGF-I was co-infused with Ang II, IGFBP-5 mRNA levels 

were 1.5-fold of control levels (P < 0.05) and 1.4-fold of the levels measured in rats 

infused with Ang II alone (P = 0.09, Figure 3). The increase induced by IGF-I alone 

was significantly stronger than that induced by Ang II and IGF-I co-infusion (P < 0.05). 

Taken together, we show that IGFBP-3 and -4 mRNA levels are not modulated by 

circulating IGF-I, but that cardiac IGFBP-5 transcript levels depend strongly on this 

growth factor. 
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Ang II Does Not Change IGFBP-4 mRNA Expression in Cultured Cardiac Cells, 

But it Decreases IGFBP-3 in Cardiac Endothelial Cells 
Previous studies in vascular smooth muscle and endothelial cells have reported that 

Ang II, via its cognate cell surface receptors, can modulate IGFBP levels.43 To assess 

whether such direct effects occur in cardiac cells, we treated cardiomyocytes and endothelial 

cells isolated from adult rat hearts with Ang II up to 24 h. No change in IGFBP-4 was 

observed under these conditions in multiple experiments in the cardiomyocytes (Figure 4A). 

For comparison, the same Northern blot revealed that tumor necrosis factor-α causes a 

marked decrease in IGFBP-4 (Figure 4A, and Murigande et al., submitted manuscript). With 

respect to IGFBP-3, we established in preliminary experiments that its mRNA was at least 

600 times higher in cardiac endothelial cells than in the myocytes, and therefore we 

performed real-time PCR analysis of total RNA isolated from those cells primarily. Figure 4B 

demonstrates that Ang II causes a concentration-dependent decrease in IGFBP-3 mRNA. 

This decrease was not obtained in the presence of the angiotensin receptor AT1 antagonist 

Losartan, compared with cells incubated with Losartan alone (Figure 4B). Incubation with this 

inhibitor by itself caused a reduction in IGFBP-3 mRNA, consistent with the partial agonistic 
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Figure 3: Effect of IGF-I infusion on the expression of IGFBP-3, -4, and -5 mRNA in Ang II-infused 
and control rats.  
 
Changes in IGFBP-3, IGFBP-4 and IGFBP-5 mRNA in the left ventricle of rats infused with Ang II or 
IGF-I or co-infused with both during 7 days were analyzed by Northern blot as described for Figure 2.  
* P < 0.05 vs control, ** P < 0.01 vs control. N≥5 per experimental group. 
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properties that have been reported for this compound. IGFBP-4 and –5 mRNAs were not 

changed after Ang II incubations (data not shown). 

 
 

 
 
 
 
 
 
 
 

 

Salt-Induced Hypertension Increases Left Ventricular IGFBP-4 and –5 mRNA, 

and Does Not Change IGFBP-3 mRNA 

 To test whether the changes in expression of the cardiac IGFBPs are a more 

general phenomenon in pressure-induced hypertrophy we used a second model of 

hypertension, namely that induced by a high salt diet in Dahl salt-sensitive (DSS) rats, 

a model with low circulating Ang II levels. After four weeks of high salt diet, the blood 

pressure of these rats was increased to 200 mm Hg. Salt-resistant (DSR) control rats 

were fed the same diet and did not increase their blood pressure. Left ventricular 

weight normalized for body weight was 20% higher in DSS compared with DSR rats 

(Figure 5A) and associated with a significant increase in ANF expression (Figure 5B). 

Additional controls consisted of DSS rats fed a low salt (LS) diet. These developed 

moderate or no hypertension at all, and correspondingly ANF levels were not affected 

(Figure 5C). IGFBP-3 mRNA was not different between hypertensive DSS rats and 

normotensive DSR control rats. IGFBP-4 and -5 mRNA were 1.4- (P < 0.01) and 1.3-

fold (P < 0.05) higher in DSS rats than in DSR controls (Figure 6). These effects were 
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Figure 4: Effect of Ang II on mRNA expression of IGFBP-4 in cardiomyocytes and IGFBP-3 in 
cardiac endothelial cells.  
 
Cells were isolated from rat hearts as described in the materials and methods section and incubated 
with Ang II (0-100 nmol/L) up to 24 h in serum-free medium. (A) IGFBP-4 mRNA levels were determined 
by Northern blot analysis in two different experiments and shown in a representative blot. (B) IGFBP-3 
mRNA levels were determined by real-time PCR and values from 3 independent experiments are 
shown. ** P < 0.01 vs control 
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not due to strain differences, because IGFBP-4 and IGFBP-5 mRNA levels were 

similar in DSR rats on a low or high salt (HS) diet and in DSS rats fed a low salt diet 

for 4 weeks (data not shown). Thus, levels were only increased in DSS rats on a HS 

diet. 
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Figure 5: LV weight quantification and ANF mRNA expression in salt-induced hypertensive rats 
compared to salt resistant rats 

 

After 4 weeks of high salt (HS) diet, (A) left ventricular (LV) weight was normalized to body weight for 
Dahl salt resistant (DSR) rats and Dahl salt sensitive (DSS) rats, and (B) ANF mRNA expression was 
analyzed by Northern blot as described in Figure 2. ** P < 0.01 vs control. N=4 per experimental group. 
(C) the effect on ANF mRNA exprssion of HS diet compared to low salt diet (LS) in DSS rats is shown.  
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Figure 6: Cardiac 
IGFBP mRNA levels in 
salt-induced 
hypertension 
 
Changes in IGFBP-3, 
IGFBP-4 and IGFBP-5 
mRNA in the left 
ventricle of DSR and 
DSS rats were analyzed 
by Northern blot as 
described for Figure 2 
and are shown from 4 
rats per experimental 
group. * P < 0.05 vs 
control, ** P < 0.01 vs 
control.  
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Discussion 
We analyzed mRNA levels of IGFBP-3, -4, and -5 in cardiac tissue of normotensive and 

hypertensive rats. In both models of hypertension tested in our study, cardiac IGFBP-4 mRNA 

was higher in the hypertensive rats than in the normotensive controls. Cardiac IGFBP-3 

mRNA was decreased in Ang II-treated rats only; it remained unchanged in salt-fed salt-

sensitive rats. Finally, IGFBP-5 mRNA was significantly increased under conditions of salt-

induced hypertension, but not affected in the Ang II infusion model. These differential 

changes in IGFBP mRNA levels may importantly contribute to the distinct remodeling process 

that takes place in the heart in response to hypertension of different etiologies, because each 

can affect the activity of IGF-I in a cell specific manner. In particular, the specific down-

regulation of IGFBP-3 may play an important role in the pathology of conditions characterized 

by high Ang II levels, such as heart failure. We further analyzed mechanisms involved in the 

observed changes. 

 

Regulation of Cardiac IGFBPs by IGF-I 
A range of factors has been described to modulate expression of the IGFBPs in smooth 

and striated muscle cells, including IGF-I itself (for review, see33,34,44,45). Increases in cardiac 

IGF-I and marked decreases in circulating IGF-I have been reported in the Ang II infusion 

model,4,39 and either one of these effects could be responsible for the changes in the IGFBPs 

measured in the present study. Increasing circulating IGF-I levels by infusion via osmotic 

minipumps did not affect IGFBP-3 or -4 mRNA indicating that systemic IGF-I does not 

regulate cardiac IGFBP-3 and -4 gene expression. The infused IGF-I reached the cardiac 

tissue and was effective, as a marked induction of IGFBP-5 mRNA was achieved in the same 

hearts. 

 

Blood Pressure and Cardiac IGFBP-4 
Pressure-overload is known to cause the release of autocrine/paracrine factors amongst 

which growth factors that contribute to the compensatory hypertrophic response. We have 

previously published that cardiac IGF-I is increased after Ang II infusion due to the elevated 

blood pressure of these rats,4 and our present study demonstrates that this is accompanied 

by an increase in IGFBP-4 mRNA. Hypertensive salt-sensitive Dahl rats also had higher 

IGFBP-4 mRNA levels than controls, providing support that indeed pressure overload causes 

enhanced gene expression of IGFBP-4. It is of note that, although the Dahl model of 

hypertension is sometimes referred to as a “low Ang II model of hypertension”, cardiac Ang II 

may originate from pressure-induced local cardiac production, supported by the existence of 

a local functioning renin-angiotensin system.46-48 The increase in IGFBP-4 gene transcription 

could therefore be a secondary cellular response to autocrine/paracrine Ang II in the Dahl 

model, and on the other hand a direct response to high circulating Ang II in the infusion 

model. We tested for potential direct regulatory effects of Ang II on IGFBP-4 gene expression 

in cardiomyocytes in cell culture experiments, but no such effects were detected up to 24 h 
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after start of the treatment, supporting our conclusion that the increase in IGFBP-4 mRNA is a 

pressure-related effect, and that the mechanism does not involve Ang II as an intermediate 

autocrine/paracrine signal. 

 A similar up-regulation of IGFBP-4 mRNA has been reported in the past in the 

thoracic aorta of rats that had undergone abdominal aortic coarctation, a high renin model of 

hypertension, and the authors concluded that the effect was pressure-related because it was 

not observed in the normotensive abdominal aorta.49 The conclusion that Ang II itself was not 

involved in this regulation was supported by a later study by the same investigators with 

cultured vascular smooth muscle cells, in which Ang II decreased IGFBP-4 transcription 

rather than increasing it.43 Taken together, we conclude that pressure regulates IGFBP-4 

mRNA levels via an Ang II-independent mechanism. 

 To our best knowledge, our report is the first to provide data on the regulation of 

IGFBP-4 gene expression in vivo in cardiac muscle. Multiple studies have reported that an 

increase in IGFBP-4 mRNA results consistently in an inhibition of the effects of IGF-I (for 

review, see44). In fact, IGFBP-4 is an inhibitor of IGF-mediated actions in all systems tested to 

date, including the arterial wall where IGFBP-4 is the most abundant IGFBP.43,50-53 Therefore, 

the enhanced expression of IGFBP-4 measured in our study in response to increased 

afterload may limit excessive IGF-I activity in cardiac tissue. The contrary explanation, namely 

that the increased IGFBP-4 may enhance IGF-I action, can however not be excluded based 

on the data obtained with our in vivo models. Such an interpretation would be supported by 

the observation that IGFBP-4 null mice had 10-15% lower body weight at birth than their wild-

type littermates. The absence of IGFBP-4 was in that model explained to diminish IGF 

storage capacity54,55 and conversely, increased expression of IGFBP-4 in our models of 

hypertension may provide a locally stored source of IGF-I that can readily be made available 

when needed. Active IGF-I would get released after proteolysis of IGFBP-4 protein by 

pregnancy associated plasma protein A (PAPP-A). PAPP-A provides a post-translational 

mechanism of regulation of IGFBP-4 abundance, thereby adding an important level at which 

IGF-I action can be regulated.50,56,57 PAPP-A is expressed in vascular smooth muscle cells of 

aortic tissue, and future determination of its expression in cardiac tissue should assess its 

role under conditions of hypertension and hypertrophy. 

 

Regulation of Cardiac IGFBP-5 by Blood Pressure and IGF-I 
Cardiac IGFBP-5 expression was significantly higher in hypertensive DSS rats than in 

DSR controls, but no changes were evident in Ang II-induced hypertension. Strain differences 

other than salt-sensitivity did not account for these changes because the increase was also 

observed when hypertensive DSS rats were compared with DSS rats that had been on a low 

salt diet for four weeks. Plasma IGF-I levels directly affect cardiac IGFBP-5 gene expression, 

because IGF-I infusion in Ang II-treated or control rats increased IGFBP-5 mRNA levels 

significantly. In addition, IGF-I of local cardiac origin might modulate IGFBP-5 mRNA levels in 

our model. A small increase in IGFBP-5 at 7 days of Ang II infusion occurs despite low 
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systemic IGF-I and may reflect a response to the concomitant increase in cardiac IGF-I. The 

absence of significant increases in IGFBP-5 in the Ang II-infusion model may be due to the 

fact that simultaneous low systemic IGF-I is fully blunting a potential response to local 

pressure-induced IGF-I production. In DSS rats, circulating IGF-I levels were similar to those 

of control DSR rats, and the actual trigger for the increase in cardiac IGFBP-5 could be the 

increase in cardiac IGF-I. Consistent with this interpretation, earlier studies showed that IGF-I 

enhances secretion of IGFBP-5 in various types of muscle cells.58-60 An induction of cardiac 

IGFBP-5 has also been reported to follow with a short delay the increases in IGF-I and IGF-II 

induced by a brief coronary occlusion in the pig heart.61 By infusing IGF-II in absence or 

presence of IGFBP-5, the same group demonstrated that IGFBP-5 inhibits the 

cardioprotection afforded by IGF-II.61,62 Thus, the action of IGFBP-5 in the heart may be 

similar to that of IGFBP-4, namely to limit the effects of the IGFs. It should be mentioned, 

however, that a stimulatory role for IGFBP-5 on IGF actions has been reported in a range of 

studies, in particular in smooth63-65 and skeletal muscle models,66-72 where it may be involved 

in differentiation and regeneration. In conclusion, the distinct regulation of IGFBP-5 in two 

models of hypertension indicates a role for this binding protein during the remodeling in 

cardiac muscle, and future cell culture studies should determine its biological effects in 

cardiac cells. Since nutritional status affects IGF-I levels and IGF-I is reduced in cardiac 

cachexia,73,74 our finding that IGFBP-5 is regulated by IGF-I levels is particularly relevant for 

the cardiac remodeling in those conditions. 

 

Regulation of IGFBP-3 by Ang II 

The hypertrophy induced by Ang II is in part due to the elevated pressure, but it 

also consists of a pressure-independent component. A significant decrease in IGFBP-

3 was observed after Ang II infusion but not in hypertensive Dahl rats, and is therefore 

probably not directly related to the elevated blood pressure, but may contribute to the 

pressure-independent part of the response to Ang II at the cellular level. We have 

analyzed the relative mRNA levels of IGFBP-3 in cardiomyocytes and endothelial cells 

by real time PCR, which revealed that the latter cell type has at least 600 times higher 

expression of this IGFBP than cardiomyocytes (data not shown). Incubation of cardiac 

endothelial cells with Ang II reduced IGFBP-3 mRNA significantly in a concentration-

dependent manner, indicating that the decrease measured in vivo is taking place in 

the endothelial cells of the heart. The lower IGFBP-3 may have autocrine/paracrine 

consequences for neighbouring endothelial cells, fibrobasts or myocytes. It has been 

suggested that IGFBP-3 produced by bovine aortic endothelial cells inhibits the growth 

of endothelial cells, in particular when the cells reach confluency, when IGFBP-3 

synthesis is increased.75 We have previously reported growth inhibitory effects of 

IGFBP-3 also in rat aortic vascular smooth muscle cells: TNF-α increased 
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transcription and secretion of IGFBP-3, and incubation with recombinant IGFBP-3 

blocked proliferation of these cells.76 Inversely, our group also published that the 

growth stimulatory effect of estradiol is mediated by a reduction in expression of 

IGFBP-3.77 These studies, together with our novel data on cardiac endothelial cells, 

suggest that the Ang II-induced reduction in IGFBP-3 in the heart may be a stimulus 

for angiogenesis. Very little data exists with respect to the effect of IGFBP-3 on 

cardiomyocytes: IGFBP-3 blocked IGF-I-induced protein accumulation and 

hypertrophy in cultured adult rat or rabbit cardiac myocytes,78,79 both studies 

supporting that low IGFBP-3 is beneficial to the cardiomyocyte. Notably, specific 

down-regulation of inhibitory IGFBP-3 may also contribute to the high level of cardiac 

fibrosis observed in Ang II-induced hypertrophy. Consistently, long term enhanced 

IGF-activity by over-expression of IGF-I in transgenic mice resulted in excessive 

fibrosis and diminished cardiac function.30 IGFBP-3 has been detected in the human 

heart.80 

 

In conclusion, the vast differences in abundance and tissue distribution, and the 

complexity of regulation of the expression of the IGFBPs would indicate that these 

proteins serve diverse functions in the heart. IGF-I is generally believed to be 

protective in the heart, but excessive IGF-I activity risks to result in fibrosis or 

downregulation of the molecules necessary for causing its protective effects, such as 

its own receptor, Akt or PI3 kinase,32 and therefore an adequate control by the IGFBPs 

is crucial. Our findings could have implications for understanding the pathophysiology 

of hypertension-induced hypertrophy and more knowledge on underlying mechanisms 

and the cellular effects of the IGFBPs alone, or together with IGF-I, should help to 

design future approaches in which the use of IGFBPs or IGF/BP complexes may 

belong to the potential novel therapeutic strategies. 
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Key findings 

With the previous study, we show that differential regulation of cardiac IGFBPs exists 

in low and high Ang II models of pressure-overload. Our data suggest that up-

regulation of IGFBP-4 in both models is due to pressor-dependent mechanisms. 

Moreover, specific down-regulation of IGFBP-3 by Ang II occurs, whereas, IGFBP-5 

expression is not influenced by Ang II. The former effect may play an important role 

in pressor-independent cardiac effects of Ang II. 
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VI. C. Protein content regulation by TNF-α in skeletal 

myocytes 
 
Progressive loss of muscle mass is a frequent consequence of heart failure. In this 

regard, we investigated the mechanisms regulating hypertrophy and atrophy in 

skeletal myocytes. One might wonder whether muscle atrophy is simply the converse 

of hypertrophy. There is indeed a distinct set of genes, which are inversely regulated 

by hypertrophy and atrophy [60], however, unique mechanisms are induced during 

skeletal muscle atrophy (reviewed in [19]). In the third and last part of the results, we 

focus on the effects of TNF-α on protein synthesis (PS) and protein degradation (PD) 

in skeletal muscle cells.  
 

VI. C. 1. TNF-α and IGF-I increase protein synthesis through different 

pathways 

The following article examines the signaling pathways activated by TNF-α and their 

effect on total protein content in comparison to IGF-I, a factor known to enhance 

protein synthesis. For this purpose, we used C2C12 mouse myotubes. We measured 

an increase in PS after 4 and 24 h of treatment with TNF-α or IGF-I. This effect was 

concentration dependent and required de novo protein synthesis. In the case of TNF-

α, activation of gene transcription was also required. The use of specific pathway 

inhibitors showed that TNF-α induces PS mainly via PI3K-Akt and to a lesser extent 

also via MEK-ERK1/2, whereas IGF-I acts most likely in a PI3K independent manner.  
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Tumor necrosis factor-α and insulin-like growth 

factor-I increase protein synthesis in differentiated 

C2C12 myotubes in a PI3-kinase-dependent and -

independent manner, respectively 

 

 

 

Isabelle Plaisance, Christian Morandi, Claire Murigande, Marijke Brink 



 

- 79 - 

ABSTRACT 

 

Tumor necrosis factor (TNF)-α is generally associated with maladaptive processes in 

heart and skeletal muscle pathologies. However, TNF-α can also promote beneficial 

effects. Since its role and mechanisms of action remain poorly defined in muscle 

cells, we examined the signalling pathways activated by TNF-α and their effects on 

total protein content in comparison to insulin-like growth factor (IGF)-I, a hormone 

known to promote hypertrophy. A significant and concentration-dependent increase 

in protein synthesis (PS) was observed after 24 h treatment with TNF-α or IGF-I. 

DNA staining excluded a change in the number of cells, but the WST-1 assay 

measured a marked increase of C2C12 myotube viability induced either by TNF-α or 

IGF-I. After LY294002 (LY, a PI3-K inhibitor) pre-treatment, PS was still highly 

increased by IGF-I, whereas the action of TNF-α or insulin (used as a control) was 

completely abolished. Consistently, enhancement of cell viability induced by IGF-I 

was not modified by LY, but totally blocked when TNF-α was the stimulator. Strong 

increases in phosphorylation of Akt and the downstream effectors mTOR, GSK3 and 

p70S6K occurred after IGF-I and TNF-α stimulations. LY pre-treatment did not 

change the pattern of any of the IGF-I-induced phosphorylation events, while it 

completely inhibited TNF-α-induced phosphorylations. As confirmed by a kinase 

activity assay, after LY pre-treatment, Akt was still highly activated by IGF-I, whereas 

TNF-α-induced Akt activity was fully abrogated. In conclusion, our results provide 

evidence for two novel pathways, a TNF-α/PI3-K-dependent and an IGF-I/PI3-K-

independent pathway, that both play an essential role in the stimulation of protein 

synthesis and metabolic activity in differentiated myotubes. 
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INTRODUCTION 
 

Skeletal muscle is the largest pool of protein in the body. Maintenance of its 

mass requires a precise balance between protein synthesis and degradation. 

Therefore, small changes in one of these mechanisms, if sustained, can have a 

significant impact on muscle mass of the whole organism (Mitch and Goldberg, 1996; 

Heszele and Price, 2004). Regulation of muscle catabolism or anabolism involves 

complex interactions among several mediators, including growth factors and 

cytokines. 

Insulin-like growth factor-I (IGF-I) has long been recognized as an anabolic 

growth factor responsible for normal growth and development (for review, see: Florini 

et al, 1996). In skeletal muscle, IGF-I has been shown to be sufficient to induce 

hypertrophy either by autocrine or by paracrine mechanisms (Yakar et al, 1999; 

Musaro et al, 2001; Shansky et al, 2006). The positive actions of IGF-I on protein 

synthesis (Dardevet et al, 1996; Bark et al, 1998; Shen et al, 2005) as well as on 

proliferation and differentiation of myoblasts or satellite cells are very well 

documented (for review, see: Florini et al, 1996; for review, see: Butler et al, 1998; 

for review see: Glass 2003; Foulstone et al, 2004; Jacquemin et al, 2004; Zorzano et 

al, 2003) . It was also proposed that IGF-I participates in regenerative processes. In 

this setting, its administration in skeletal muscle of patients with muscle diseases 

improved recovery of muscle mass (Furling et al, 1999, Rabinovsky et al, 2003). 

Finally, IGF-I promotes survival by diverse mechanisms: blocking of pro-apopototic 

pathways (Lawlor and Rotwein, 2000; Datta et al, 2002;), antagonizing some specific 

elements of the ubiquitin proteasome system (for review see: Glass, 2003; 2005; 

Sacheck et al, 2004), and supressing proteolysis (Salvesen and Duckett, 2002; 

Downward et al, 2004; Du et al, 2004; Stitt et al, 2004).  

Tumor necrosis factor-α (TNF-α) is a pro-inflammatory cytokine with 

pleiotropic biological effects and mediates diverse pathological processes. It is 

considered to play a major role in muscle catabolism for diverse reasons. Elevated 

circulating levels of the cytokine are generally associated with catabolic states 

(Argiles et al, 1997; Eid et al, 2001). TNF-α has been shown to enhance protein 

degradation, and muscle wasting has been observed after chronic administration of 

the cytokine (Tracey et al, 1990; Garcia-Martinez et al, 1993 A; Llovera et al, 1993) 

or in TNF-α-transgenic animals (Kubota et al, 1997). The cytokine was also 

described to inhibit differentiation by inducing apopotosis in myoblasts (Langen et al, 

2001; Foulstone et al, 2001; Stewart et al, 2004) and in differentiated myotubes (Li et 
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al, 2000; Tolosa et al, 2005). Finally, in vivo and in vitro studies have demonstrated 

that TNF-α can up-regulate a muscle specific ubiquitin ligase (Li et al, 2000; 2005) or 

stimulate proteolysis in skeletal muscle through activation of the ubiquitin-

proteasome-pathway (Garcia-Martinez et al, 1993 B; 1994; Llovera et al, 1997; Li et 

al, 2000). 

 However, the role of this cytokine in muscle cells remains controversial and 

poorly understood. It has been reported that TNF-α can increase protein synthesis 

(PS) (Hiraoka et al, 2001) or cause resistance to hypoxic stress (Yokoyama et al, 

1997; Nakamura et al, 1998; Nakano et al, 1998) in cultured cardiomyocytes, while 

its involvement in chronic heart failure and cardiovascular diseases is well described 

(Meldrum et al, 1998; for review see: Mann, 2003). Similarly, in muscle cells, its 

action depends on cell type and conditions, but range from survival and proliferation 

(Mustapha et al, 2000; Tantini et al, 2002; Foulstone et al, 2004) to cytotoxicity, 

apoptosis and necrosis (Li et al, 2000; Tolosa et al, 2005). 

The purpose of the present study is to provide a better understanding for the 

role and  mechanisms of action of TNF-α in skeletal muscle cells. We have used 

differentiated myotubes to analyze the TNF-α-induced signalling pathways and their 

effects on PS , in comparison to IGF-I, a hormone known to promote hypertrophy. To 

further characterize interactions between these potentially hypertrophic and atrophic 

signalling molecules, we also examined the effect of combinations of IGF-I and TNF-

α on the phosphorylation state of the relevant signalling molecules and the final 

outcome at the level of PS. We show that TNF-α and IGF-I both increase PS and 

metabolic activity (in a viability assay) of differentiated myotubes. The TNF-α-

induced protein synthesis involved mainly PI3-kinase, while IGF-I-induced PS did not 

implicate this kinase. Our results suggest the existence of a new IGF-I-mediated 

pathway that plays a central role in the hypertrophic function of this growth factor in 

skeletal muscle cells. Furthermore, our findings also argue for a beneficial action of 

TNF-α on myotubes metabolism. 
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MATERIALS AND METHODS 
 

Materials 

Cells were treated as detailed in the results section with recombinant mouse 

TNF-α, (10 ng/ml, R&D Systems, Minneapolis, MN), IGF-I (20 ng/ml, IBT GmbH, 

Reutlingen, Germany) or both together, in the presence or absence of the specific 

inhibitors LY294002 (20 µM, 30 min pretreatment), PD98059 (20 µM, 1 h 

pretreatment) or SB203580 (10 µM, 1 h pretreatment). All inhibitors were from 

Calbiochem, Merck Bioscience; Darmstadt, Germany. Most of the antibodies used 

for the study (anti-phospho-Thr202/Tyr204-Erk1/2; anti-Erk1/2; anti-phospho-Ser473 

Akt; anti-phopho-Thr308 Akt; anti-Akt; anti-phospho-Ser9/21 GSK3; anti-GSK3; anti-

phospho-Ser2481 mTOR; anti-mTOR; anti-Thr389 p70S6K; anti-phospho-

Thr421/Ser424 p70S6k; anti-p70S6K) were purchased from Cell Signaling 

Technology and diluted at 1/1000, except anti-actin from Sigma diluted at 1/500. 

 

The C2C12 model 

Myoblasts from the muscle-derived C2C12 cell line were obtained from 

American Type Culture Collection (Manassas, VA). The seeding density used 

throughout the experiments was 104 cells/cm2 diameter. Undifferentiated cells were 

grown in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% 

heat-inactivated foetal calf serum at 37°C in the presence of 5% CO2. This medium 

will be referred to as growth medium (GM). The myoblasts were fused into myotubes 

by shifting the GM to differentiation medium (DM, DMEM supplemented with 2% 

heat-inactivated horse serum). The DM medium was changed after 48 h (at Day 2), 

and the differentiation was allowed to continue for 96 more hours. All experiments 

were performed at Day 6 (6 days after the beginning of differentiation). To preserve 

the characteristics of the C2C12 cell line, the splitting of the cells was done up to a 

maximum of seven times. 

 

Protein synthesis 

A constant number of myoblasts (2 x 104 cells) were seeded into each well of 

24-well polystyrene plates and grown as described in the paragraph above. In order 

to determine the rate of protein synthesis, cells were incubated with IGF-I, TNF-α, or 

both together in the presence of radio-labelled 3H-phenylalanine (Amersham 

Biosciences) at a final activity of 1 µCi/ml for 4 h or 24 h. The reaction was stopped 

by washing the cell culture twice with ice cold PBS, then the cells were fixed with 
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10% TCA (Trichloro acetic acid) and dried with chilled ethanol (95%). The cells were 

solubilized by incubation with 0.2 mol/l NaOH (0.5 ml/well) for 45 min under constant 

agitation. The resulting lysates were mixed with liquid scintillation and counted in a β-

counter. 

 

Protein degradation 
3H-Phenylalanine (1 µCi/ml) was incubated with the cells for 48 h during the 

last two of the regular 6 days of differentiation. Then, cells were chased with excess 

unlabeled phenylalanine, followed by exposure to the hormones for 24 h. Protein 

degradation was measured by counting in a β-counter the 3H-Phenylalanine release 

from pre-labelled cells into the culture supernatant during the 24 h of incubation with 

hormones. 

 

Cell viability/metabolic assay and DNA staining 

Cell viability was quantified using a colorimetric assay (Cell Proliferation 

Reagent WST-1, Roche Diagnostics AG, Switzerland), which measures 

mitochondrial dehydrogenase activity. The assay was performed following the 

manufacturer’s instructions. After reading optical density at 450 nm, cells were rinsed 

with PBS and fixed with 4% formaldehyde. After washing, cells were incubated in 

crystal violet solution for 30 min at room temperature, then extensively rinsed and 

lysed in 1% SDS solution under constant agitation for 1 h. Optical density was read 

at 595 nm. 

 

Western blotting 

After treatment, cells were washed in PBS containing 1 mM orthovanadate, 

and lysed in RIPA buffer, containing 50 mM Tris-HCl, pH 7.4, 1% NP-40, 150 mM 

NaCl, 1 µg/µl pepstatin, and 1 mM PMSF plus and “Mini-Complete” protease inhibitor 

cocktail (Roche Diagnostics). For analysis of phosphorylated proteins, the lysis buffer 

also contained 1 mM NaF and 1 mM orthovanadate. Protein concentrations were 

measured with the Micro BCA protein assay kit (PIERCE, Switzerland) and equal 

amounts, 15 µg, were resolved by SDS-PAGE and transferred to PVDF membranes 

(Millipore AG, Switzerland). The membranes were blocked with 5% nonfat dry milk in 

Tris-buffered saline/0.1% Tween (TBST) and probed overnight with primary 

antibodies in TBST supplemented with 5% bovine serum albumin (BSA). After 

reaction with secondary antibodies (diluted 1/10000 in TBST) conjugated with 

horseradish peroxidase (Jackson ImmunoResearch, West Grove, PA), bands were 
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visualized using enhanced chemiluminescence reagents (Supersignal West Pico, 

PIERCE, Switzerland) and exposure to autoradiographic film. Membranes were first 

probed with anti-phosphopeptide antibodies. To verify the loading, membranes were 

stripped, then reprobed with the corresponding antibodies that recognize the same 

protein independently of phosphorylation state, or with actin in the case of the kinase 

assay. For quantification, the intensity of each phosphorylated protein band was 

normalized to the corresponding total protein band by image analysis using the NIH 

Image 1.62 software. 

 

Measurement of Akt activity 

This was achieved using the Akt kinase kit (Cell Signalling) according to the 

manufacturer’s instructions. Briefly, cytosolic extracts were prepared, and Akt was 

immunoprecipitated by overnight incubation with an Akt mouse monoclonal antibody 

immobilized on agarose hydrazide beads. Beads were harvested by centrifugation 

and washed with Akt lysis buffer, before resuspending them in a kinase buffer 

containing 200 µM ATP and 1 µg of GSK3 fusion protein. The reaction was 

performed at 37°C for 30 min and stopped by addition of SDS sample buffer. Beads 

were pelleted by micro-centrifugation, and the supernatants boiled for 5 min before 

SDS/PAGE and Western Blotting with phospho-(GSK-3α/β) antibody. Detection of 

the phosphorylated protein was performed using routine procedures described above 

under “Western blotting”. 

 

Statistics 

Data are expressed as means ± standard deviation (SD). All comparisons 

were made versus the appropriate control condition of the respective treatment and 

time of the experiment. Comparisons versus controls were made using the repeated 

measures one-way analysis of variance (ANOVA) design versus control (Dunnet’s 

post hoc analysis; Prism v. 4.0; Graph Pad software). The significance level was set 

at P < 0.05 or P < 0.01 as indicated. 
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RESULTS 
 
TNF-α and IGF-I increase protein synthesis in C2C12 myotubes 

To investigate the effects of IGF-I and TNF-α on protein synthesis (PS) in 

myotubes, we induced differentiation in C2C12 cells and then incubated the 

myotubes for different time periods with each factor alone or the two factors together 

in the presence of 3H-phenylalanine. Four hours of treatment with IGF-I induced a 

significant increase in PS of 12±0.09% above untreated controls (P < 0.01). TNF-α 

had a similar effect and increased PS by 11±0.06% over controls (Fig 1A). Increases 

in 3H-phenylalanine incorporation were more pronounced after longer exposures (24 

h) to the stimulators: IGF-I and TNF-α caused increases of 43±7.8% and 22±4.6% 

over controls (P < 0.01 for both), respectively (Fig 1B). At both time points, treatment 

with the two hormones together had an additive effect, suggesting that IGF-I and 

TNF-α use two different mechanisms to stimulate protein synthesis. Solely IGF-I 

affected the rate of protein degradation and decreased it by 15.7±2.2% (P < 0.05; Fig 

1C).  

 

 

 

 
 

 

 

 

 

C

Figure 1. TNF-α and IGF-I increase protein content in differentiated myotubes 

 
At Day 6 post-differentiation, cells were treated with IGF-I (20 ng/ml), TNF-α (10 ng/ml) or both 
together for 4 h (A), or for 24 h (B). Protein synthesis (PS) was measured as the incorporation 
of 3H-phenylalanine, according to procedures described in the materials and methods. Protein 
degradation was measured as the release of pre-incorporated 3H-phenylalanine from the cells 
after 24 h of treatment with the hormones (C). Results are expressed as the percentage 
change in 3H-phenylalanine incorporation or release compared to the control cells (white 
column, set at 100%) ± standard deviation (SD). Results represent data from multiple 
experiments using independent preparations of C2C12 (n ≥ 3), and duplicate measurements 
were obtained in each experiment. The SD is calculated from the average values obtained in 
the independent experiments. *P < 0.05 and **P < 0.01 vs. control. 
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TNF-α and IGF-I increase protein synthesis in a concentration-dependent 

manner 

The concentration-dependence of the effects of TNF-α and IGF-I on PS was 

assessed at 24 h. A significant increase in PS was already observed with 6.6 ng/ml 

of IGF-I (25.7±1.6% compared to control values, P < 0.01) and reached its maximum 

at a concentration of 200 ng/ml (64.3±6.1% vs. control). A concentration of 20 ng/ml, 

which was used in all further experiments, resulted in a 43% increase in 3H-

phenylalanine incorporation (P < 0.01; Fig 2A). Very low concentrations of TNF-α 

(0.5 ng/ml) enhanced significantly the incorporation of radioactive label by 14.6±3.5% 

compared to untreated cells (P < 0.05), and the effect reached a plateau at 5 ng/ml 

(22.8±4.2%, P < 0.01 vs. control). Higher concentrations of TNF-α did not increase 

PS any further (Fig 2B). 

 

 

 

 

 

 

 

TNF-α and IGF-I enhance metabolic activity of differentiated myotubes 

It is currently accepted that TNF-α plays a major role in muscle catabolism. 

The cytokine appears to be associated with diverse pathological processes, including 

the induction of apoptosis in cardiac (Krown et al, 1996, Meldrum et al, 1998) and 

skeletal muscle myocytes (Tolosa et al, 2005). In apparent contradiction to those 

previous reports our results indicate that this cytokine increases the protein content 

Figure 2. TNF-α and IGF-I increase protein synthesis in a concentration-dependent 
manner in C2C12 myotubes 
 
C2C12 myotubes were incubated for 24 h with increasing concentrations of IGF-I (A) or 
TNF-α (B). At each concentration, PS was measured as the incorporation of 3H-
phenylalanine as described for Fig 1. Results are expressed as the percentage change 
(±SD) in 3H-phenylalanine incorporation compared with the control cells, which were set at 
100%, *P < 0.05 and **P < 0.01 vs. control. 
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of myotubes. To test for potential effects of TNF-α on cellular viability, WST-1 assays 

were performed on the C2C12 myotubes. Figure 3 shows that IGF-I and TNF-α both 

enhance dehydrogenase activity in C2C12 myotubes by 27±1.4 and 26±1.5%, 

respectively (P < 0.01 for both), indicating that TNF-α increases rather than 

decreases viability in our cells, and on the other hand confirming the well-established 

protective role of IGF-I on viability. The WST-1 assay is often used to measure 

proliferation because in many cases enhanced dehydrogenase activity is directly 

proportional to increase of the cell number. To test this possibility, staining of DNA 

with crystal violet was performed and indicated that neither TNF-α nor IGF-I 

increased the number of C2C12 cells (data not shown). Interestingly, the magnitude 

of enhancement in metabolic activity was identical for IGF-I and TNF-α (Fig 3), this in 

contrast to the effects of either factor on PS, where the response to IGF-I was 2-fold 

stronger than that of TNF-α (Fig 1).  

 

 

 

IGF-I-induced protein synthesis requires only translational mechanisms, 

whereas TNF-α uses both transcriptional and translational mechanisms 

Cellular protein content can increase directly via activation of the translational 

machinery or indirectly via stimulation of gene transcription. In the C2C12 model, 

TNF-α has been reported to influence mRNA expression of IGF-I (Fernandez-

Celemin et al, 2002; Frost et al, 2003) and of diverse cytokines or cytokine receptors 

(Alvarez et al, 2002). To test whether the effects of TNF-α on protein synthesis 

Figure 3. TNF-α and IGF-I enhance metabolic 
activity of C2C12 myotubes 
 
C2C12 myotubes were cultured in 96-well plates and 
incubated 24 h with IGF-I (20 ng/ml), TNF-α (10 
ng/ml) or both together. WST-1 reagent was added 
during the two last hours of treatment. Cell viability 
was assessed by measurement of optical density 
(OD) at 450 nm, resulting from mitochondrial 
dehyrogenase activity. Crystal violet stains were 
performed and the reading of OD at 595 nm allowed 
the calculation of OD450/OD595 ratios. Results are 
expressed as the percentage change (±SD) of the 
OD450/OD595 ratio obtained for treated cells 
compared to the ratio obtained in control cells, which 
was set at 100 %. Results represent multiple 
experiments using independent preparations of 
C2C12 (n ≥ 3), and measurements in each 
experiment were performed in sextuplet. SD is 
calculated from the average value obtained for the 
independent experiments. **P < 0.01 vs. control. 
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depend on translational and/or transcriptional mechanisms, experiments with the 

protein synthesis inhibitor cycloheximide (CHX, 10 ng/ml) and the transcriptional 

inhibitor actinomycin D (0.5 µM) were performed (Fig 4). IGF-I, well known for its 

immediate effects on the translational machinery, served as a control in these 

experiments. Myotubes pre-treated with CHX for 30 min were incubated with IGF-I or 

TNF-α for 4 h. CHX abrogated completely the IGF-I- and TNF-α-induced PS, 

confirming that the effects observed for both hormones were mediated via 

translational mechanisms and not due to a none specific internalisation of the radio-

labelled amino acid. Similarly, the transcription inhibitor actinomycin D was added to 

cultured C2C12 myotubes to assess the potential role of gene transcription in the 

IGF-I- and TNF-α-induced responses. IGF-I-induced PS was not modified by 30 min 

of actinomycin D pre-treatment, whereas the response to TNF-α was diminished (Fig 

4). These findings indicate that gene transcription is not required to increase PS 

during IGF-I treatment, while TNF-α-induced PS involves both transcriptional and 

translational mechanisms. 

 

 

 

 

 

 

Figure 4. The TNF-α-induced increase in protein synthesis requires transcription and 
translation 
 
C2C12 myotubes were pretreated with cycloheximide (CHX, 10 ng/ml) or actinomycin D 
(ActD, 0.5 µM) for 30 min before addition of IGF-I (20 ng/ml), TNF-α (10 ng/ml), or both 
together with the radiolabel for 4 h. PS was measured as the incorporation of 3H-
phenylalanine. An arbitrary value of 100% was assigned to untreated control cells, and results 
are expressed as the percentage change (± SD) in 3H-phenylalanine incorporation above 
control. Data shown are representative of three independent experiments. Errors bars signify 
the SD calculated from the average values obtained for the independent experiments. *P < 
0.05 and **P < 0.01 vs. control. 
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Analysis of signalling pathways whereby TNF-α and IGF-I change PS in myotubes 

Binding of IGF-I to its receptor is known to trigger several signalling events, the most 

important of which are activation of the MAP kinase (MAPK) Erk1/2 via MEK, and activation 

of Akt/PKB via PI3-kinase (PI3-K). The latter is followed by phosphorylation of an array of 

substrates involved in PS, including the mammalian target of rapamycin mTOR, p70S6K, 

and glycogene synthase kinase 3 (GSK3), (Cantley et al, 2002). TNF-α, on the other hand, 

is known to trigger the stress-activated MAPK p38 and SAPK-JNK, as well as other death 

receptor signalling pathways that lead to apoptosis in various cells. 

To analyze by which signalling pathways IGF-I and TNF-α increase PS, three 

inhibitors were used: PD98059 (PD, 20 µM) as an inhibitor of MEK, LY294002 (LY, 20 µM) 

as a specific blocker of PI3-K, and Rapamycin (Rap, 20 ng/ml) to inhibit mTOR. First, we 

assessed the effects of these inhibitors on basal protein synthesis. Treatment with PD, LY or 

Rap for 24 h decreased PS to 81±2.8%, 37±6.7% and 54±3.8% of untreated controls, 

respectively (P < 0.01 for all). These results indicate a strong impact of PI3-K and its 

downstream actor mTOR, as well as a more modest impact of the MEK/Erk1/2 pathway on 

baseline PS (Fig 5A). 

We next investigated the effects of these pharmacological reagents on the IGF-I- and 

TNF-α-induced increases in PS. After PD pre-treatment, TNF-α-induced PS was reduced 

from 22±4.6% to 11±3.2%, while IGF-I-induced PS remained unchanged (43±7.8% increase 

vs. control compared to 45±6.1% vs. PD), implying that MEK mediates part of the TNF-α- 

but not the IGF-I-induced PS (Fig 5B). Moreover, the data support that other pathways must 

be involved in the induction of PS for both factors. LY treatment completely abolished TNF-

α-induced PS, implying that this response fully depends on PI3-K, and suggesting that 

crosstalk exists between the MEK and PI3-K pathways induced by TNF-α in differentiated 

myotubes. In contrast, in the presence of LY, IGF-I was still markedly increasing 3H-

phenylalanine incorporation by 73.5±10.5% (vs. LY, P < 0.01). In fact, this increase was 

stronger than that induced by IGF-I in the absence of LY (Fig 5B). Similar results were 

obtained after pre-incubation with the alternative PI3-kinase inhibitor Wortmannin (100 nM), 

followed by 4 h of stimulation with IGF-I (data not shown). These results strongly support the 

lack of involvement of PI3-K in mediating IGF-I action in our model. Rap pre-incubation 

lowered the IGF-I-induced 3H-phenylalanine incorporation from 43±7.8% to 25±10.8% (vs. 

Rap alone, P < 0.01), indicating that mTOR mediates part of the IGF-I-evoked response. 

Since LY had no effect at all on IGF-I-induced-PS, the Rap-inhibited part of the pathway 

must also be independent of PI3-K. TNF-α-induced 3H-phenylalanine incorporation 

remained unchanged after Rap pre-incubation (Fig 5B). 
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Figure 5. Effect of PD, LY and Rap on basal and on TNF-α- or IGF-I-induced protein synthesis in 
C2C12 myotubes 
 
(A) C2C12 myotubes were incubated with vehicle (DMSO) or PD (10 µM, column with horizontal lines), 
LY (20 µM, hatched column) or Rap (20 ng/ml, double hatched column) for 24 h, and protein synthesis 
assessed by measuring 3H-phenylalanine incorporation. (B) After pre-treatment with the inhibitors (30 
min for LY and Rap, and 1h for PD), IGF-I (20 ng/ml) or/and TNF-α (10 ng/ml) were added to the culture 
medium for 24 h. PS was measured as described before. Results are expressed as percentage change 
(±SD) in 3H-phenylalanine incorporation compared with the control (white columns), which was set at 
100 %. Results represent multiple experiments with independent preparations of C2C12 (n ≥ 3), and 
each experiment was performed in duplicate. SD is calculated from the average value obtained in the 
independent experiments. *P < 0.05, **P < 0.001 vs. control. 
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Analysis of the signalling pathways by which TNF-α and IGF-I change 

metabolic activity in C2C12 myotubes 

To investigate which pathways are involved in the TNF-α and IGF-I-induced 

increases in metabolic activity, WST assays were performed after PD, LY or Rap 

pre-treatment. Under control conditions, all pharmacological reagents significantly 

reduced cell viability (data not shown). PD pre-treatment did not diminish IGF-I or 

TNF-α-increased cell viability. The significantly enhanced viability induced by TNF-α 

in myotubes was fully abrogated by LY. As a marked contrast, the effect of IGF-I on 

viability became even more pronounced: an increase of 75±12.3% was obtained in 

the presence of LY, compared to a 27±1.4% increase in the absence of LY (P < 

0.01). Rap pre-incubations enhanced metabolic activity in C2C12 myotubes (Fig 6). 

Similar to our data on protein synthesis, these results indicate that TNF-α increases 

C2C12 viability via PI3-K, while IGF-I acts in a PI3-K-independent manner. 

 

 

 

 

 

 

 

Figure 6. Effect of PD, LY and Rap on TNF-α- or IGF-I-induced increases in metabolic activity 
in C2C12 myotubes 
 
C2C12 were treated with inhibitors and hormones for 24 h as described for Fig 5B. WST-1 reagent 
was added during the two last hours of treatment, and cell viability was assessed as indicated for 
Fig 3. Results represent multiple experiments with independent preparations of C2C12 (n ≥ 3), and 
for each experiment, sextuplet measurements were performed. SD is calculated from the average 
values obtained of the independent experiments. **P < 0.01 vs. control. 
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Effect of inhibitors on IGF-I- and TNF-α-induced phosphorylation 

Very few authors have described a lack of involvement of PI3-K in IGF-I-

mediated effects. Similarly few papers have related the actions of TNF-α to PI3-K 

activity. Therefore, our next experiments were aimed at further clarifying the 

signalling pathways mediating these actions of TNF-α and IGF-I. We used phospho-

specific antibodies on Western blots to analyze the phosphorylation state of kinases 

known to be involved in translational mechanisms (MEK, Akt/PKB, mTOR, GSK3, 

p70S6K). In time course experiments we determined that IGF-I-stimulated 

phosphorylation reached a maximum at 10 min and remained elevated during 1 h, 

while TNF-α-stimulated phosphorylation was most efficient at 30 min (data not 

shown). Therefore, 10 min of treatment was used for IGF-I and 30 min for TNF-α, 

respectively, to analyse the effects of the inhibitors PD, LY, and Rap on TNF-α and 

IGF-I-induced phosphorylations. IGF-I increased markedly the phosphorylation of 

Akt/PKB, GSK3, mTOR, p70S6K and Erk1/2. TNF-α had similar but less pronounced 

effects (Fig 7). PD blunted the IGF-I- and TNF-α-induced phosphorylation of Erk1/2 

(Fig 7A), while the phosphorylation state of all other kinases was unchanged (data 

not shown). Taken together with the results on PS, this confirms that the MEK/Erk1/2 

pathway contributes to the TNF-α but not to the IGF-I-induced PS. Interestingly, IGF-

I was still able to induce phosphorylation of Akt and its downstream mediators in the 

presence of LY, whereas the same inhibitor completely abolished all TNF-α-induced 

phosphorylations (Fig 7B). This finding is consistent with our data on PS, and 

strengthened the idea that IGF-I activates Akt and PS in a PI3-K independent 

manner, whereas the effect of TNF-α seems to be mediated via the PI3-K/Akt 

pathway. Rap fully blocked the TNF-α- and nearly completely the IGF-I-induced 

increase in phosphorylation of p70S6K (Fig 7C). No modification of the signals for 

the other kinases (Erk1/2, Akt/PKB, GSK3, mTOR) was noticed (data not shown). In 

conclusion these observations further support a central role of PI3-K in the TNF-α-

induced PS, while IGF-I acts in a PI3-K independent manner. 
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Figure 7. Effect of PD, LY and Rap on TNF-α- and IGF-I-induced phosphorylation of 
cellular kinases 
 
Differentiated C2C12 were pre-treated with vehicle (DMSO) or with the pharmacological 
inhibitors (A: with PD, B: with LY and C: with Rap) as described for Fig. 5, followed by addition 
of IGF-I (I, 20 ng/ml) for 10 min, TNF-α (T, 10 ng/ml) for 30 min or both together (T+I) for 30 
min. Cells were harvested and protein lysates were subjected to SDS/PAGE/immunoblotting. 
Immunoblots were analyzed for total and phosphorylated protein kinases as indicated. Results 
are representative of at least three independent experiments using independent preparations 
of C2C12. 
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LY inhibits insulin-induced Akt phosphorylation and protein synthesis 

Insulin stimulates protein synthesis in skeletal muscle cells (Biolo et al; 1995) 

and cell lines (Kimball et al, 1998, Williamson et al, 2005, Shen et al, 2005), an effect 

reported to involve PI3-K (Scott et al, 1998). Therefore, we used insulin as a control 

to verify the lack of involvement of PI3-K in the IGF-induced effects. As shown in Fig 

8, insulin induced strong phosphorylation of Akt at its two sites, Ser473 and Thr308 (Fig 

8A), and increased PS by 35±1.2% compared to untreated cells (P < 0.01; Fig 8B). 

Consistent with previously published data (Scott et al, 1998; Shen et al, 2005), PI3-K 

inhibition by LY completely abolished all insulin-induced effects. In the same 

experiment, we reproduced the results of Figs 6 and 7: TNF-α-induced PS and Akt 

phosphorylation were again blocked by LY, whereas all IGF-I actions were 

unchanged (Fig 8). 

 

LY blocks TNF-α- but not IGF-I-induced-Akt activation 

TNF-α and IGF-I both seem to mediate their effect on PS to a large extent via 

Akt, even if our data indicate that the upstream signalling pathways implicated in its 

stimulation differ between them. In Fig 7B we showed that TNF-α-induced Akt 

phosphorylation completely disappeared when C2C12 myotubes were pre-incubated 

with LY, whereas IGF-I-induced Akt phosphorylation was still strong. To ensure that 

Akt phosphorylation at Ser473 and Thr308 is associated with enhanced Akt activity and 

to verify the effect of LY pre-treatment on TNF-α or IGF-I-induced Akt activation, the 

kinase activity was analyzed by the means of a kinase assay. As seen in Figure 9, 

TNF-α and IGF-I strongly increased Akt activity, with a more pronounced effect for 

IGF-I. The enhancement of Akt activity, measured by assessing the phosphorylation 

state of a down-stream fusion protein, was fully abrogated by LY pre-treatment for 

TNF-α. In contrast, in the presence of LY, the phosphorylation activity of Akt was still 

high after IGF-I stimulation.  
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Figure 8. Effect of LY on insulin-induced protein synthesis and Akt phosphorylation 
 
(A): Cells were pre-treated 30 min with LY (20 µM), before addition of IGF-I (I, 20 ng/ml) for 
10 min, TNF-α (T, 10 ng/ml) for 30 min, or insulin (Ins, 15 ng/ml) for 10 min. Cell extracts 
were prepared and analyzed for total and phosphorylated Akt as for Fig 7. Result is 
representative of three experiments with independent preparations of C2C12. (B): C2C12 
were pre-treated with LY for 30 min (hatched columns) or vehicle (DMSO, gray columns) 
before addition of IGF-I (20 ng/ml), TNF-α (10 ng/ml), or insulin (15 ng/ml) for 24 h. Protein 
synthesis was measured as for Fig 1. Results represent multiple experiments with 
independent preparations of C2C12 (n ≥ 3), and each experiment was performed in 
triplicate. SD is calculated from the average values of the independent experiments. *P < 
0.05, **P < 0.001 vs. control. 
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Figure 9. Effect of LY on IGF-I- and TNF-α-induced Akt activity 
 
(A): C2C12 myotubes were pre-treated with LY (20 µM) for 30 min (hatched columns) or 
vehicle (DMSO, gray columns) before the addition of IGF-I (I, 20 ng/ml) or TNF-α (T, 10 
ng/ml). Cytosolic extracts were prepared and PKB activation was determined by measuring 
phosphorylation of a GSK3 fusion protein as described in the experimental section. The 
membranes were reprobed with anti-actin to control loading. (B): The signals for 
phosphorylated GSK3 fusion protein were normalized with the corresponding signals for actin. 
Results are expressed in percentage of change of the phosphorylation of GSK3 fusion protein 
(± SD) compared to the control (set at 100%). Results are representative of three independent 
experiments using independent preparations of C2C12. SD is calculated from the average 
value obtained for the independent experiments.**P < 0.01 vs. control. 
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DISCUSSION 

 

Our results provide evidence for two novel pathways, a TNF-α/PI3-K-

dependent and an IGF-I/PI3-K-independent pathway, that both play an essential role 

in the stimulation of protein synthesis and metabolic activity in differentiated 

myotubes. Our findings are interesting for different reasons that will be discussed 

hereafter. 

 

The role of TNF-α in muscle protein metabolism is controversial 

A large body of evidence associates elevated circulating levels of TNF-α with 

skeletal muscle pathology (for review see Reid and Li, 2001; Argiles et al 1997). In 

vivo studies have described a loss of muscle mass and enhancement of protein 

breakdown when animals were treated with the cytokine (Garcia-Martinez et al, 1993 

A) or expressed the TNF-α transgene (Cheng et al, 1992). However, beside these 

negative effects, other authors have indicated that the cytokine is involved in 

regeneration of skeletal myocytes after stress injury (Zador et al, 2001), or is 

expressed in regenerating muscle fibers during myopathy (De Bleecker et al, 1999; 

Kuru et al, 2003). In line with the emerging idea that TNF-α can be beneficial in 

skeletal muscle cells, here we show that TNF-α dose-dependently increases protein 

content in differentiated myotubes. This conclusion is supported by multiple 

experiments showing that TNF-α treatment significantly increases 3H-phenylalanine 

incorporation and that it does not affect protein breakdown. These observations 

corroborate those that related stimulatory effects of TNF-α on protein synthesis 

(Langen et al., 2001; El Naggar et al, 2004; Foulstone et al, 2004), but are opposed 

to those where increases in protein degradation (Li et al, 1998) or decreases in PS 

(Frost et al, 1997) by the cytokine were observed. Similar to in vivo studies, results 

obtained with TNF-α on in vitro preparations are controversial. Several lines of 

evidence support that effects of TNF-α apparently depend on concentration, time of 

exposure as well as the type and state of the cell that is examined, including 

influences of culture conditions and the differentiation state of the cells (for review 

see: Argilés et al, 2000). In this context, recent studies have reported, even in the 

same cell line, opposite effects of the cytokine on protein content as a function of its 

concentration (Alvarez et al, 2001; El Naggar et al, 2004), or of culture conditions (Li 

et al, 1998; Langen et al, 2001). TNF-α mediates its actions through two cell surface 

receptors with distinct affinities: TNFR-1 and TNFR-2. Both receptors are expressed 

in skeletal muscle cells and in particular in C2C12 cells (Alvarez et al, 2002; 
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Fernandez-Celemin et al, 2002). TNFR-1 contains a death domain in its cytoplasmic 

tail that is important to induce apoptosis. Its stimulation also results in activation of 

the nuclear factor κB (NFκB) transcription factor that is involved in the regulation of 

pro- and anti-apoptotic genes (Liu et al, 1996; for review see: Liu, 2005). TNFR-2 

does not contain a death domain in its cytoplasmic tail (for review see: MacEwan, 

2002). Because most of the research efforts from many laboratories is devoted to 

TNFR-1, the function of the TNFR-2 is poorly understood. However, this receptor 

described to mediate in majority protective pathways (Rothe et al, 1995; for review 

see: Mann, 2002). Extensive crosstalk between pro- and anti-apoptotic pathways 

mediated by TNF-α could explain the large variety of cellular responses to this 

cytokine. 

 

TNF-α uses both transcriptional and translational mechanisms to increase PS  

TNF-α-induced PS was partially blocked by actinomycin D, supporting that 

TNF-α uses in part transcriptional mechanisms to exert its effect. One of the most 

important transcription factors rapidly stimulated by TNF-α is NFκB, which leads to 

transcription of a range of genes. Since NFκB was shown to promote survival in 

muscle cells (Mustapha et al, 2000. Catani et al, 2004; Ma et al, 2006), the 

actinomycin D-inhibited part of TNF-α-induced PS could be related to this pathway. 

In addition, up-regulation of mRNA of anti-inflammatory cytokines like IL-15 after 

TNF-α treatment was recently mentioned by Alvarez et al (2002). The decrease of 

muscle wasting associated with cachexia in tumor-bearing animals was partially 

reverted by this cytokine (Carbo et al, 2000). Therefore, regulation of expression of 

diverse genes by TNF-α can lead to beneficial effects. 

CHX fully abrogated the effect of TNF-α on PS, proving that the increased of 

radioactivity is a consequence of the incorporation of the radio-labelled amino acid 

into peptides. We also provided evidence that the mechanism involves the PI3-K/Akt 

pathway. This conclusion is supported by data showing that 1) TNF-α-induced 

increases in PS were completely abolished by LY or Wortmannin, 2) TNF-α-

increased phosphorylation of Akt and Akt-downstream effector molecules was fully 

blocked by LY pre-incubation, and 3) TNF-α-induced Akt activation was abrogated in 

the presence of this PI3-K inhibitor. These findings are in line with previous studies 

indicating that TNF-α increases PS or protein content in neonatal cardiac myocytes 

(Hiraoka et al, 2001) or in differentiated myotubes (El Naggar et al, 2004). However, 

while the effect of TNF-α was mediated via the PI3-K/Akt pathway in cardiac 

myocytes (Hiraoka et al, 2001), its effect was described to involve Erk1/2 and not 
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PI3-K in L6 myotubes (El Naggar et al, 2004). The PI3-K/Akt pathway was also 

reported to be activated after TNF-α stimulation in fibroblasts (Kim et al, 1999), 

retinal cells (Fontaine et al, 2002) or in a murine sarcoma cell line, the WEHI-164 

cells (O’Toole et al, 2001). In addition, we provided evidence for the involvement of 

MEK in TNF-α-induced PS, since its inhibition with PD reduced partially TNF-α 

effects. Full inhibition with LY, however, supports that PI3-K is dominant over MEK. 

 

 

Effect of TNF-α on cell viability 

Interestingly, we also demonstrated that TNF-α does not reduce viability in 

C2C12 myotubes. Two results supported this: 1) Optical density reading for crystal 

violet staining did not decrease indicating that the number of cells was not reduced 

after TNF-α-treatment, and 2) the cytokine increased mitochondrial dehydrogenase 

activity. To date, most of the published data indicated an induction of apoptosis after 

TNF-α treatment in myoblasts (Langen et al, 2001; Foulstone et al, 2001; Stewart et 

al, 2004) or in differentiated myotubes (Li et al, 2000; Tolosa et al, 2005). A few 

papers have on the other hand mentioned that the cytokine does not induce 

apoptosis in primary human skeletal cell culture (Fousltone et al, 2004) or in neonatal 

cardiomyocytes (Mustapha et al, 2000; Hiraoka et al, 2001). In our work, we provide 

the first evidence that TNF-α enhances metabolic activity in differentiated myotubes. 

Interestingly, the degree of this enhancement was comparable to that induced by 

IGF-I. Similarly to the effect of TNF-α on PS, this action was mediated through the 

PI3-K pathway. 

 

IGF-I can induce protein synthesis and metabolic activity in a PI3-K-

independent manner 

The stimulatory action of IGF-I on protein synthesis in muscle cells has been 

well documented and an important role for PI3-K in this effect has been 

demonstrated in cardiac (Seimi et al, 2004) as well as skeletal muscle preparations 

(Dardevet et al1996; Shen et al, 2005). Our findings for IGF-I are therefore 

surprising, because we showed that PI3-K is not involved in its effects on PS and 

metabolic activity. Very few other papers, and generally they were on myoblast 

cultures, have described IGF-I-actions that are not mediated through PI3-K. Only 

Rousse et al (1998) and Czifra et al (2006) have reported that IGF-I could evoke 

responses that are PI3-K independent in muscle cells. The first group described that 

in a C2 myoblast cell line IGF-I induced IGFBP-5 expression in a manner that is not 
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sensitive to LY or Wortmannin. The second article demonstrated the lack of 

involvement of the MAPK and PI3-K systems, but reported a central role of PKCδ in 

mediating mitogenic actions of IGF-I in a primary human skeletal muscle and in 

C2C12 myoblasts. IGF-I mediated protection from apoptosis independent of PI3-

K/Akt pathway was already described in a rhabdomiosarcoma cell line (Thiammaiah 

et al, 2003). 

To our best knowledge, our study demonstrates for the first time that IGF-I is 

able to enhance PS and metabolic activity in skeletal myotubes without the 

involvement of PI3-K, and we support this conclusion with the following results. PI3-K 

inhibition by LY did not affect any of the IGF-I-evoked cellular responses: Akt and its 

downstream effectors mTOR, GSK3 and p70S6K were all still phosphorylated after 

IGF stimulation in the presence of LY, and consistently, protein synthesis and 

metabolic activity were not affected either. The lack of blockade of LY on all actions 

of IGF-I is not due to a defect of the pharmacological reagent because Wortmannin, 

the alternative inhibitor of PI3-K, also failed to inhibit IGF-I effects (data not shown). 

Furthermore, insulin, known to share common signalling pathways and effects with 

IGF-I including IRS and PI3-K activation (Kimball et al, 1998), increased Akt 

phosphorylation and PS in C2C12 myotubes and this response was fully abolished 

by LY. 

Using an activity assay, strong phosphorylation of a GSK3 fusion protein by 

Akt was observed after IGF-I stimulation in the presence of LY, confirming that the 

lack of effect of LY on phosphorylation is indeed associated with a lack of effect on 

the kinase activity. Since Akt is still highly activated by IGF-I in the presence of LY, 

we assume that Akt is the kinase that mediates the IGF-I-evoked increase in PS and 

viability that we measured, although strictly spoken this remains to be proven by 

using Akt inhibitors. Although most previously published data have implied PI3-K in 

the growth factor-dependent activation of Akt (Franke et al, 1997; Coffer et al, 1998; 

Downward et al, 1998), other pathways, independent of PI3-K have been mentioned 

(Konishi et al, 1996; Sable et al, 1997; Filippa et al, 1999), some of them implicating 

PKA (Sable et al, 1997; Filippa et al, 1999). 

 

TNF-α and IGF-I act synergistically 

Treatment with combinations of TNF-α and IGF-I always consistently induced 

higher increases in PS compared to the responses obtained with each factor alone 

(43 and 22% increases over control for IGF-I and TNF-α, respectively, compared to a 

65% increase when they were co-incubated). This observation is in contradiction with 
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other studies that demonstrated an inhibition of the effects of IGF-I by TNF-α. TNF-α 

has been shown to diminish IGF-I expression in myoblasts (Fernandez-Celemin et al, 

2002, Frost 2003) or to inhibit IGF-I-induced differentiation in primary skeletal human 

myoblasts (Foulstone et al, 2004). Even in the same cell line that we used, TNF-α 

was reported to impair signals and biological activity downstream of the IGF-IR 

(Broussard et al, 2003) and to inhibit IGF-I (Grzelkowska-Kowalczyk et al, 2006) or 

insulin-induced PS (Williamson et al, 2005). However, all these studies were 

performed in myoblasts, and in some of them, TNF-α was added during the 

differentiation process, whereas all our treatments were performed on differentiated 

myotubes. These different conditions (treatment, culture conditions and state of the 

cells) may explain in part the difference between our results and the previous 

studies. 

The fact that TNF-α and IGF-I have additive effects on protein synthesis 

suggests that IGF-I and TNF-α use two different mechanisms to stimulate protein 

synthesis, and our results support this. The hypothetic signalling pathways and 

interactions involved in TNF-α or IGF-I-induced protein synthesis in C2C12 

myotubes are presented in Figure 10. Akt causes  in the phosphorylation of diverse 

substrates mainly involved in PS: mTOR, which consequently activates p70S6K and 

promotes liberation of the eukaryotic initiation factor 4 (eIF)4E (Kimball et al, 1998), 

and GSK3, which phosphorylation activates the eukaryotic initiation factor 2B (eIF)2B 

(Cross et al, 1995). Rap blocked around 50% of the response to IGF-I, which implies 

that mTOR/p70S6K mediates partially the IGF-I-induced PS. Since Rap did not 

change the GSK3 phosphorylation state (data not shown), Akt/GSK3 is the other 

pathway that could mediate a part of the IGF-I-induced protein synthesis (Fig 10A). 

Rap did not modify the TNF-α-induced effect, indicating that mTOR and p70S6K are 

not implicated in TNF-α-induced PS. Therefore, we conclude that TNF-α enhances 

PS in differentiated myotubes mainly via GSK3. PD blocked partially TNF-α-induced 

PS. The molecular mechanisms by which MAPK regulate PS remain poorly 

understood, but MAPK can phosphorylate eIF4 through Mnk1 (Ishida et al, 2003) and 

regulate protein synthesis (Fig 10B). 

In summary, our results provide evidence for two novel pathways: a TNF-

α/PI3K-dependent and an IGF/PI3K-independent pathway. Both play an essential 

role in the stimulation of protein synthesis in muscle cells. This study underlines the 

complexity of TNF-α’s mechanism of action. This cytokine activates many signaling 

cascades, and cross talk between these cascades induces a large variety of cellular 

responses. In our study we have shown that TNF-α can, either by itself or together 
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with other factors, enhance beneficial survival pathways in skeletal myotubes: it 

increases PS and metabolism and improves the IGF-I-evoked responses. A better 

understanding of these mechanisms could help to design new strategies against 

muscle wasting that occurs during pathologies such as heart failure, where changes 

in hormonal and cytokine levels are generally observed. 
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Figure 10. Diagram showing the hypothetic signalling pathways and connections 
involved in TNF-α or IGF-I-induced protein synthesis in C2C12 myotubes 
 
Our results suggest that two pathways are implicated in the IGF-I-induced PS: the Akt/mTOR 
and the Akt/GSK3 pathways (A). The response to TNF-α may also involve two signalling 
pathways: the Akt/GSK3 pathway and the MEK/Erk1/Mnk1 system (B). 
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VI. C. 2. Key findings and complementary results 

Key findings 

The previous study shows that both TNF-α and IGF-I increase the protein content of 

cultured skeletal muscle myotubes, and we demonstrate that TNF-α acts via PI3K, 

whereas IGF-I acts via a different kinase that remains to be identified. 

 

IGF-I inhibits the transient up-regulation of Atrogin-1 mRNA expression 

induced by TNF-α  

The positive effect of TNF-α on PS was surprising because this cytokine is generally 

thought to cause atrophy. However, one should keep in mind that the final cellular 

response is due to the balance between PS and PD. Therefore additional 

experiments were performed to determine the effects of TNF-α on protein 

degradation mediated by the UPP, in particular on Atrogin-1 gene expression, and 

the signaling pathways involved. IGF-I was used as a reference because it is known 

to downregulate Atrogin-1 expression.  

Atrogin-1, also called MAFbx (for muscle atrophy F-box protein), is a ubiquitin ligase, 

an enzyme that binds and mediates ubiquitination of specific substrates. Atrogin-1 is 

considered a marker of atrophy because the corresponding gene has been shown to 

be upregulated in multiples models of skeletal muscle atrophy [61-63] (and reviewed 

in [19]). Fig 10 depicts the regulation of Atrogin-1 gene expression by IGF-I and by 

insulin [64], and shows its role in muscle protein degradation. This enzyme presents 

a major interest for three principal reasons. Firstly, its enzymatic activity seems to be 

required for muscle atrophy; secondly, it is expressed specifically in muscle skeletal 

and cardiac muscle cells; thirdly, it does not seem to be required for normal muscle 

growth and function [65].  
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We hypothesized that TNF-α increases Atrogin-1 expression and that IGF-I can 

reverse this effect, hence providing protection to muscle cells against protein 

degradation observed in pathologic conditions. To test this hypothesis we compared 

the effects of TNF-α alone or in combination with IGF-I on Atrogin-1 mRNA 

expression. C2C12 myotubes were depleted of serum during 3 h, then incubated with 

TNF-α (10 ng/ml) or IGF-I (20 ng/ml) for various periods of time in the presence or 

absence of LY, PD or SB. Atrogin-1/MAFbx mRNA levels were measured by real-

time PCR. 

After 2 h of incubation, TNF-α induced a transient increase in Atrogin-1 gene 

expression of 1.7-fold, and subsequently decreased Atrogin-1 mRNA levels around 

50% of the control value at 4 and 24 hours (Fig 11). When IGF-I was added together 

with TNF-α to the cells, the Atrogin-1 mRNA up-regulation was significantly reduced 

compared to TNF-α alone, indicating that IGF-I prevents TNF-α-induced Atrogin-1 

mRNA increase. IGF-I by itself decreased Atrogin-1 mRNA levels by approximately 

50% at all time points (Fig 11).  

Fig 10. Atrogin-1 gene expression regulation by IGF-I and insulin in muscle cells 
 
The ubiquitin ligase Atrogin-1 binds and mediates specific ubiquitination of muscle proteins. 
The polyubiquitinated (Ubn) proteins are then degraded by the proteasome. IGF-I and 
insulin activate the PI3K-Akt signaling pathway with subsequent inhibition of the FOXO 
transcription factor. This leads to inhibition of Atrogin-1 gene expression. Modified from [61]. 

Modified from M, Chacon Heszele and R, Price. 2004Modified from M, Chacon Heszele and R, Price. 2004
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We then examined the pathways involved in the responses by using three specific 

inhibitors: LY (blocker of PI3K), PD (blocker of MEK1/2) and SB (blocker of p38 

MAPK). First, as a control we assessed the effect of these inhibitors on basal 

Atrogin-1 gene expression. All the pharmacological agents increased Atrogin-1 

mRNA level, in particular LY and PD (3.5-fold and 2.7-fold increase respectively) (Fig 

12). This result indicates an inhibitory role for PI3K and MEK1/2 on Atrogin-1 gene 

expression. SB pretreatment blunted the TNF-α-induced increase of Atrogin-1 

mRNA, while LY and PD had no effect (Fig 13). Fig 13 shows again that IGF-I 

inhibits the increase of Atrogin-1 mRNA induced by TNF-α, but none of the inhibitors 

used was able to block this effect. In all cases, when IGF-I was added to TNF-α, 

IGF-I significantly reduced atrogin-1 mRNA level (Fig 13). 

 

Fig 11. IGF-I prevents TNF-α-induced Atrogin-1 expression in C2C12 myotubes 
 
C2C12 myotubes were treated with IGF-I (20 ng/ml) or TNF-α (10 ng/ml) or both for 2 h, 4 h 
or 24 h. At each point, cells were collected, total RNA was extracted and RT-PCR was 
performed. Atrogin-1 mRNA regulation was analysed by quantitative real-time PCR. Results 
are expressed as percentage of change in Atrogin-1 mRNA expression compared to the 
control at each time point (white columns). Values represent the mean ± S.E. of 3 
independent experiments. *, significantly different from control, P < 0.05; **, significantly 
different from control, P < 0.01; ##, significantly different from TNF-α, P < 0.01. 
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Fig 12. LY, PD and SB increased 
basal Atrogin-1 expression in 
C2C12 myotubes 
 
C2C12 myotubes were incubated 
with DMSO (vehicle control) LY (20 
µM for 1h30 min, hatched column) 
PD (10 µM for 3h, column with 
horizontal lines), or SB (10 µM, for 
3h, column with vertical lines) and 
real time PCR was assessed after 
total RNA extraction and RT-PCR. 
Results are expressed as 
percentage of change in Atrogin-1 
mRNA expression compared to the 
control (white column). Values 
represent the mean ± S.E. of 3 
independent experiments.**, 
significantly different from control, 
P < 0.01. 

** 

** 

** 

## 

## 
## 

## 

* 

* * 

Fig 13. TNF-α  and IGF-I regulate Atrogin-1 gene expression 
 
C2C12 myotubes were pretreated with the inhibitors (LY, 20 µM, 30 min, hatched 
columns or PD, 10 µM, 1 h, columns with horizontal bars or SB, 10 µM, 1 h, columns 
with vertical lines) then the hormones were added for 2h (IGF-I, 20 ng/ml or TNF-α, 10 
ng/ml). Cells were collected, total RNA was extracted and RT-PCR was performed. 
Atrogin-1 mRNA expression was analysed by quantitative real-time PCR. Results are 
expressed as percentage of change in Atrogin-1 mRNA expression compared to the 
control (white columns). Values represent the mean ± S.E. of 3 independent 
experiments. *, significantly different from control, P < 0.05; ##, significantly different from 
TNF-α, P < 0.01. 
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Altogether these results show that: 

- TNF-α upregulates Atrogin-1 mRNA levels, via the p38 MAPK signaling 

pathway 

- This effect is blocked by IGF-I in a PI3K, MEK-ERK1/2, p38 MAPK 

independent manner 

 

Our data indicate that in cultured skeletal myotubes, TNF-α transiently (2 h) activates 

protein degradation mechanisms in a p38 MAPK dependent manner and that this 

effect can be inhibited by IGF-I. Surprisingly, the marked effect of IGF-I is not 

mediated by PI3K, which is well described as the IGF-I-induced mechanism 

downregulating Atrogin-1 gene expression in cardiac [19, 66] and skeletal muscle 

cells [60, 62] (and reviewed in [19]). The IGF-I-induced activation of the UPP in the 

presence of TNF-α involves a signaling pathway that still remains to be identified. 

At later time points (4 and 24 h) however, TNF-α decreases Atrogin-1 mRNA levels 

suggesting inhibition of protein breakdown. This was again an astonishing result, 

given the fact that TNF-α levels are increased in catabolic conditions leading to 

muscle mass loss [13-15]. Involvement of the UPP in skeletal muscle atrophy has 

been well established, nonetheless control of apoptosis is also involved in the 

regulation of musle protein degradation [67]. The latter mechanism may also be 

induced by TNF-α in our model. 

 

VI. C. 3. C2C12 skeletal myocytes: KEY FINDINGS 

The TNF-α-induced inhibition of protein breakdown mechanisms complements in a 

consistent way our previous observation that TNF-α increases protein content at 4 

and 24 h. Our in vitro results therefore suggest that TNF-α may have a beneficial role 

in preventing muscle wasting. 

Furthermore, the “classical” PI3K-Akt pathway is not involved in both responses to 

IGF-I that we measured in our model, namely the increase in PS and the inhibition of 

TNF-α-induced Atrogin-1 expression. 
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 VII. FINAL CONCLUSIONS  
 
In the present thesis, we have shown different effects mediated by factors involved in 

the cardiac remodeling process, namely TNF-α and Ang II. These factors were 

shown to (1) modulate the IGF-I system, at the level of the binding proteins and 

specific signaling cascades, and (2) to have combined effects with IGF-I or opposite 

effects to IGF-I.  

 

  - Our study provides the first description of regulation of cardiac IGFBPs by Ang II in 

an in vivo model of hypertrophy. At this point, further studies are required to 

determine the physiological significance of the increase in IGFBP-4 and reduction of 

IGFBP-3 by Ang II in cardiac tissue. 

  - Our study in cardiac cells showed dual effects of TNF-α: cell viability was 

decreased and expression of apoptotic markers was enhanced by TNF-α in the long-

term. However, our findings also suggest a beneficial role for TNF-α in 

cardiomyocytes through its down-regulation of IGFBP-4 and enhancement of IGF-I-

induced ERK signaling. 

  - We also demonstrate that TNF-α is beneficial in skeletal muscle cells through its 

induced increase in metabolic activity and protein synthesis. Furthermore TNF-α acts 

synergistically with IGF-I on protein synthesis. In the same model, TNF-α showed a 

transient increase at 2 h in activation of protein degradation mechanisms, but after 4 

h this effect was reversed as shown by reduced Atrogin-1 expression. The latter 

findings suggest a harmful effect of TNF-α only at short time, which can be 

counteracted by IGF-I, while in the long-term TNF-α may play a beneficial role in the 

prevention of muscle wasting. 

 

In conclusion, at the cellular level fine-tuning is required to integrate all these signals 

and determine the cell fate: hypertrophy and survival or death and atrophy. 

These mechanisms may play a fundamental role in regulating the cardiac remodeling 

process as well as muscle atrophy, in heart failure. 
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