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“¿Que dejamos atrás cuando cruzamos cada 

frontera? Cada momento parece romperse en dos: 

melancolía por lo que dejamos atrás y el entusiasmo 

de entrar en una nueva tierra.” 

- 

„What do we leave behind when we cross each 

frontier? Each moment seems split in two: melancholy 

for what was left behind and the excitement of 

entering a new land.” 

 

Dr. Ernesto „Che“ Guevara 
Diarios de motocicleta (1952/53) 
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1.1 The thymus in history 

In his book The Wealth of Nations (1) the Scottish economist Adam Smith took first 

attempts to define the basic concepts of supply and demand that rule the trading of 

goods. Interestingly, what he described in the context of competition in modern 

economies is also the inevitable consequence of life, namely the raising scarcity and 

the thereby emerging competition for goods, in this case nutriments and habitats. As 

a consequence of that competition organisms required to acquire survival 

mechanisms that increased their fitness by either adapting to extreme habitats and 

different nutrients, forming multicellular organisms and/or acquiring the ability to 

attack or defend from other life forms. In this context, the immune system can 

therefore be seen as a critical adaptation to competitive living that has co-evolved 

with life itself. Simple defensive mechanisms such as the production of antimicrobial 

peptides, establishment of pathogen-recognition systems (e.g. Toll-like receptors) 

and the formation of the complement system that can be found in bacteria or lower 

animals have been complemented with complex, multi-layered and adaptive defense 

systems such as the ones found in mice and humans today. As a crucial component 

of the adaptive immune system, the thymus is a remarkable example of that 

adaptation because it is not per se a vital organ but a mere module of adaptation to 

increase survival. Or as Henry G. Wright stated it in his 1852 publication in the 

London Journal of Medicine: “The purpose served by the thymus gland, according to 

the foregoing theory, tends to illustrate a physiological circumstance of great interest, 

(…), namely the progressive perfectionation of the framework of man in obedience to 

an all-pervading law.” 

 

1.2 Anatomy of the Thymus 

The murine thymus is a bi-lobulated, encapsulated organ situated in the upper 

anterior thorax adjacent to the heart. The nature of the thymus can be described as 

dualistic as it is comprised of a static stromal structure and a dynamic, largely 

hematopoietic ‘fluid phase’. The stromal structure, which could arguably be called 

the real thymic tissue, as it is stationary and permanent, makes up only a minor 
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number of cells in what is the total thymic cellularity. Within the stromal 

compartment thymic epithelial cells (TEC) play an important role in supporting 

thymopoiesis by providing soluble and cell-bound factors that are required to guide 

developing cells through the distinct steps of thymopoiesis (2, 3). 

The thymus is roughly compartmentalized into two spatially and functionally 

distinct regions, an outer cortex and inner medulla. Developing T cells are mostly 

located in the cortical region making that compartment very dense and rich in cells. 

The prominent stromal cells within the cortex are cortical TEC (cTEC), which are 

very large, sponge-like cells that contain various developing thymocytes within what 

is a single cell’s volume. This micro-unit of cTEC with associated thymocytes is a 

very good representation for the whole cortical structure as the cortex is basically a 

multimeric, sponge-like structure of micro-units structured by stromal cells that 

provide the required signals to T cell progenitor cells that move through it. Other 

abundant cell populations within the cortex are macrophages, which help in clearing 

thymocytes undergoing apoptosis, mesechymal cells and in small numbers 

endothelial cells, through which early T cell progenitors (ETP) enter the thymus (4–

6). In contrast to the cortex, the medulla is a more complex structure composed of a 

number of cell types. As described below, only a small number of the developing 

thymocytes pass the selection processes in the cortex and are able to translate to the 

medulla, which leads to an overall lower cellular density in that compartment. mTEC 

are a prominent cell type within the medullar stroma and, as antigen factories, play 

an important role for the last step of T cell development where potentially auto-

reactive cells are eliminated (3). Various subsets of dendritic cells (DC) within the 

medulla additionally support this process by importing foreign antigens and cross-

presenting antigens picked up from dying cells, which in turn are removed by 

macrophages(7, 8). Moreover, in contrast to the cortex, endothelial cells are very 

prominent within the medulla because they are required for the export of finally 

matured T cells(9). Taken together, the thymus is a complex organ composed of 

many different cell types that ultimately serve the same purpose, namely to produce 

functional and tolerant T cells. 
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1.3 Thymus Organogenesis 

The organogenesis of the murine thymus is a well-structured sequence of 

developmental steps that is initiated with the formation of the thymic primordium 

that develops from the ventral region of the third pharyngeal pouch with 

contribution from the surrounding neural crest cells (NCC) at embryonic day of 

development (E) 9.5(10). As this early structure grows, it starts to pattern into the 

two areas that will eventually give rise to the thymus and the parathyroid, whose 

corresponding areas is characterized by the expression of Glial cells missing 2 

(Gcm2) very early on. The thymic epithelium develops from the endodermal lining 

that commences to express the transcription factor Forkhead box protein N1 (Foxn1) 

at around E10.5. Although Foxn1 is not required for the initial formation of the 

thymic epithelial precursor pool or the first steps of TEC development, it is required 

for the attraction and commitment of hematopoietic precursor cells to the thymus by 

regulating the expression of Dll4, CCL25, and other molecules involved in 

thymopoiesis (further described below) (11). 

 

 

Figure 1.3-1. A current model showing the distinct stages of early thymus organogenesis. Thymus and 
parathyroid develop from a common anlage at the third pharyngeal pouch. Subsequently, influenced by 
various transcription factors, they separate and form distinct organs. TEC development is uniform in 
the initial stages, but starts to diverge later on. Image from Blackburn et al. (10). 

©  2004 Nature  Publishing Group
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pouch to form the thymus/parathyroid rudiment),
based on the model of Hox gene control of axial posi-
tion identity during embryogenesis66. The Hoxa3–
Pax– Eya–Six pathway might also control separation of
the primordia from the pharynx and their subsequent
migration, as separation of the rudiments from the
pharynx does not occur in Pax9 mutants60 and is
delayed in Hoxa3+/–Pax1–/– mutants64.

Following initiation of organogenesis, two processes
must occur: the patterning of the rudiment into thymus-
and parathyroid-specific domains, and the initiation of
TEC differentiation. Insights into these processes have
come from analysis of two transcription factors, Foxn1
and glial cells missing homologue 2 (Gcm2). Gcm2 and
Foxn1 are expressed in complementary domains by the
developing thymus/parathyroid primordium at E11.5,
indicating the existence of prospective-parathyroid and
prospective-thymus regions25. Gcm2 was identified as a
homologue of the Drosophila gene gcm67, and its muta-
tion results in failure of parathyroid development68.
Gcm2 is also expressed in a discrete domain in the
third pouch from E9.5, considerably earlier than
Foxn1 expression is detectable by in situ hybridization
(see later)25. So, establishment of the Gcm2-expression

and early patterning of the thymus/parathyroid rudi-
ment. At present, this consists of five factors: home-
obox A3 (Hoxa3)29,57, paired box gene 1 (Pax1)58, Pax9
(REFS 59,60), eyes absent 1 homologue (Eya1)61 and sine
oculis-related homeobox 1 homologue (Six1)61 (listed
in order of action from early to late) (TABLE 1). This
indicates a cascade that is reminiscent of the Pax–Eya–
Six network that operates cell-autonomously to con-
trol development of the eye in Drosophila62. In mice,
these transcription factors are co-expressed only in the
pharyngeal endoderm (although, with the exception of
Pax1 and Pax9, they are all also expressed in the NCC-
derived mesenchyme), and all have been shown by
mutation studies to be required for thymus organo-
genesis29,58–61,63–65. So, if the Pax–Eya–Six regulatory
network is conserved in vertebrate thymus develop-
ment, these genes must act specifically in the endoderm.
Mechanistically, the phenotypes of these mutants are
consistent with this network controlling the initiation
of thymus organogenesis23. Moreover, as the anterior
boundary of Hoxa3 expression is the third pharyn-
geal pouch, an attractive hypothesis is that this path-
way might control positioning of the initial rudiment
formation (that is, determine the identity of the third

Pax1/
Pax9
Fgf8

p1

p2

*p3

p4
Hoxa3

a  E9.5: positioning

Hoxa3
Eya1
Six1

Hox–Pax–Eya–Six
cascade

b  E11: initiation

p3

NCC

c  E11.5–E12.5: outgrowth
    and patterning

Gcm2

Foxn1

d  E12–E13.5: separation e  E12–birth: differentiation

Pax9

Hoxa3, Hoxb3, Hoxd3

Early — intrinsic Late — thymocyte
dependent

Cortical 
TEC

Medullary 
TEC

Fgfr2-IIIb

Thymocyte

Fgf7/Fgf10

Figure 5 | A new model of thymus organogenesis. a | Embryonic day 9.5 (E9.5): positioning. Paired box gene 1 (Pax1)/Pax9
and fibroblast growth factor 8 (Fgf8; green) are required for pharyngeal pouch formation. Homeobox A3 (Hoxa3; red) is required for
third pouch (p3) axial identity, possibly through the Pax–Eya–Six cascade. b | E11: initiation. Rudiment outgrowth begins at this
stage. The Hox–Pax–Eya–Six cascade is required in the endoderm (yellow); Hoxa3 and Eya1 might also be required in neural crest
cells (NCCs). c | E11.5–E12.5: outgrowth and patterning of the rudiment. Regionalization of the rudiment into thymus- and
parathyroid-specific domains. This patterning actually begins at E10 with the expression of glial cells missing homologue 2 (Gcm2;
red) in the third pouch, controlled at least in part by the Hox–Pax–Eya–Six cascade. High-level expression of forkhead box N1
(Foxn1; blue) begins at E11.25. Lymphoid progenitors (not shown) also begin to arrive at this time, entering the thymus through the
capsule by a chemoattractive mechanism. d | E12–E13.5: separation from the pharynx and migration of the rudiment. Pax9 is
required for separation from the pharynx. Migration might be controlled by Hox3 genes expressed by NCCs. Separation of the
parathyroid from the thymus might be regulated by Gcm2. e | E12–birth: differentiation. Foxn1 is required for the generation of all
thymic epithelial-cell (TEC) subtypes — cortical and medullary. Initial differentiation is thymocyte independent. Final differentiation
requires thymocyte-derived signals, and depends on the Foxn1 amino-terminal domain (Foxn1!). Wnt signalling (through the
regulation of Foxn1!) has been implicated in both autocrine- (TEC–TEC) and paracrine- (TEC–thymocyte) mediated differentiation.
The NCC mesenchyme (not shown) might support growth and differentiation of TECs, possibly through fibroblast growth factors,
whereas a lymphotoxin-receptor-dependent signalling pathway seems to control late-stage differentiation and maintenance of
medullary TECs. Eya1, eyes absent 1 homologue; Six1, sine oculis-related homeobox 1 homologue.
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With the immigration of hematopoietic cells TEC lineage divergence and 

specification is initiated. Interactions of mTEC progenitors with cells of 

hematopoietic origin through the Nuclear Factor κ B pathway induce the 

differentiation and maturation of mTEC (12–15). This contact is initially mediated by 

lymphoid tissue-inducer (LTi) cells and invariant Vγ5+ dendritic epidermal T cell 

(DETC) progenitor cells, but replaced by post-selection thymocytes (described 

below) in the mature thymus. As a consequence of these inductive signals the first 

mTEC start to differentiate and proliferate, thereby forming small medullary islets. 

There is scientific evidence that the initially emerging medullas are derived from 

single cells, meaning that they are each of one clonal origin (16). Although this aspect 

of medulla development is still debated, it is possible that, once these initially small 

medullary islets continue to grow, they start to fuse and form the large and 

multiclonally-derived medullas that are observed in adult mice (further described in 

chapter 3.4). With the onset of large-scale thymopoiesis and the emergence of 

medullary islets, the thymus starts to grow tremendously. This growth is continued 

during the first weeks after birth until the thymus reaches its maximal cellularity at 

around 5-7 weeks of life. Thereafter, the thymus experiences an early onset of 

involution that leads to a reduced T cell output and narrower TCR repertoire with 

age (17). The mechanisms driving this unique form of early organ involution are 

poorly understood, although changes in the neuroendocrine-immune axis are 

suggested by either increases or losses in the production of particular hormones and 

growth factors (18). 

In conclusion, thymus organogenesis is a complex development that is orchestrated 

by the bi-directional interactions of various cell types. This inter-lineage dependency 

is crucial for the initial formation of thymic tissues, and continues to be important in 

the fully-grown organ as defects of specific signaling pathways or single cell types 

can lead to a disturbance of thymic structure and function. Despite the growing 

understanding of TEC biology, TEC development and the precise phenotypic 

characterization of TEC subsets during differentiation remain largely unknown. 
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1.4 T cell Development 

The most important feature of the thymus is its capacity to promote T cell 

development. This process is initiated by the immigration of blood-borne T cell 

progenitor cells, derived from hematopoietic cells in the bone marrow, through the 

engagement of P-selecting expressed on endothelial cells of the thymic vasculature 

(6). At this stage, early thymic progenitor cells (ETP) are not yet committed to the T 

cell fate and have a wide lineage potential, including αβ T cells (the most common T 

cell subset on which the following description of T cell development will focus), γδ T 

cells, B cells, Dendritic cells and NK cells (19–22). The immediate progeny of 

immigrating ETP are called double-negative (DN) cells due to the lack of expression 

of the typical T cell co-receptors CD4 and CD8. These cells can further be 

subcategorized into DN1 cells based on the expression of CD44 in the absence of 

CD25. The further differentiation of DN1 cells and commitment to the T cell fate is 

dependent on the engagement of the Notch ligand Delta like protein 4 (Dll4) 

expressed by cTEC (23). Upon further development, the maturing lymphocytes 

acquire a CD25+ CD44+ phenotype (defined as the DN2 stage) and show a reduced 

potential to give rise to B cells, DCs, and monocytes (24). This progression through 

the early steps of development is accompanied by a migration of differentiating cells 

towards the subcapsular zone of the thymus and the upregulation of the 

recombination activating genes (RAG) 1 and 2, which are critically required for the 

rearrangement the locus encoding the TCR β chain. 
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Figure 1.41-2. Schematic representation of T cell development in the thymus. Blood-borne T cell progenitor 
cells enter the thymus through blood vessels near the cortico-medullary junction. Attracted by signals 
from the cortical stroma, they move to the cortex, committing to a T cell fate, and start to rearrange their 
TCR loci. These first stages of T cell development are characterized by the differential expressions of 
CD25 and CD44 and called DN1-4. Upon successful rearrangement and expression of a functioning pre-
TCR, developing T cells upregulate the expression of co-receptors CD4 and CD8, thereby entering the 
DP stage. On the journey towards the medulla, T cells experience positive selection, meaning that cells 
recognizing antigens bound to MHCs obtain signals for further development, while the others ‘die by 
neglect’. In the medulla, potentially self-reactive T cells get negatively selected upon the strong 
interactions with self-antigens presented by antigen-presenting cells (APCs). The remaining cells leave 
the thymus as MHC restricted and self-tolerant naïve T cells. Image from Klein et al. (25). 

 

The somatic DNA recombination of variable (V), diversity (D) and joining (J) gene 

segments within this locus allows the generation of TCR β chains with different 

antigen-binding capacities (26). Cells at this stage are named DN3 cells and express 

CD25 in absence of CD44. They express the TCR β chain from the newly rearranged 

locus as well as a surrogate TCR α chain (named pTα) that together form the pre-T-



 9 

cell receptor. The pre T-cell receptor is expressed on the cell surface in a complex 

with CD3, a molecule that provides the signaling components of T cell receptors. 

Receptor complexes containing a successfully rearranged TCR β chain are able to 

signal and pass the so-called β chain-selection process, after which the developing 

cells arrest the further rearrangement of the TCR β chain locus, start to heavily 

proliferate and downregulate CD25, thereby entering the DN4 stage. At this stage 

the TCR α chain locus is rearranged and the expression of the TCR co-receptor CD8 

is initiated. Subsequently, these immature (CD8) single positive (ISP) cells commence 

the expression of CD4 and enter the prominent CD4 and CD8 double positive (DP) 

stage. The upregulation of the TCR co-receptors is accompanied by various rounds of 

proliferation that leads to the DP population of approximately 90% of total cellularity 

found in the mature thymus. At this very critical step of T cell development DP cells 

are tested on their ability to recognize peptide-MHC complexes presented on TEC, 

dendritic cells, B cells and possibly additional antigen-presenting cells (APC) (8). 

Only a small fraction of cells (~5%) that express a TCR composed of signaling-

proficient α and β chains are ‘positively selected’ and able to proceed to the final 

developmental steps. An important parameter during positive selection is the 

affinity to the presented antigen and the resulting TCR signaling strength, as 

described by the affinity model of thymocyte selection (8, 27). The vast majority of 

cells baring a TCR that has none or very low affinity to peptide-MHC complexes 

undergo apoptosis in a process termed ‘death by neglect’. Cells with an intermediate 

affinity are properly selected and continue T cell development, whereas thymocytes 

with a TCR that binds with very high affinity are negatively selected, whereby 

potentially auto-reactive cells are removed. Because there is no sharp threshold at 

which thymocytes are positively or negatively select, there is a range at which cells of 

equal affinity to the presented antigen are stochastically selected. Thymocytes at this 

range usually develop into the T regulatory cell (Treg) lineage, which is critically 

required for the establishment of peripheral tolerance (28). 
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Figure 1.4-3. The affinity model of thymocyte selection. Newly generated T cell receptors (TCR) are tested 
during development on their ability to recognize antigens presented by thymic epithelial cells and other 
antigen presenting cells. The affinity model states the four possible outcomes of that testing depend on 
the affinity by which TCR recognize peptide/MHC complexes. Very low affinity (or lack thereof) leads 
to ‘death by neglect’ at which thymocytes undergo apoptosis. Cells baring a TCR with intermediate 
affinity are positively selected and continue to the next steps of T cell development. Intermediate to 
high affinity to presented antigens leads to the generation of regulatory T cells, whereas thymocytes 
with very high affinity are negatively selected and removed due to their potentially auto-reactive 
nature. Because there is no clear affinity threshold at which cells are either diverged to the regulatory T 
cell lineage or negatively selected there is a stochastic overlap at which some cells with same affinities to 
presented antigens can face either fate. Image from Klein et al. (8). 

 

Depending on the class of MHC recognized, the positively selected T cells maintain 

the expression of either the CD4 or CD8 co-receptor and down regulate the other, but 

transiently express activation markers such as CD69 (29). Because positively selected 

T cells may still bare a TCR with high affinity towards ‘self-antigens’ expressed in 

other tissues of the body they move from the cortex to the medulla of the thymus 

where potentially auto-reactive cells are negatively selected. mTEC are professional 

antigen-producing cells that are able to ectopically express a large variety of 

peripheral tissue self-antigens thereby providing a ‘genetic mirror’ of the whole body 

on which T cells can be quality-tested (3, 25, 30). Developing T cells that recognize 

these self-antigens with high affinity could potentially be harmful and are triggered 

to undergoing apoptosis and then removed by a very effective clearing system 

composed of macrophages and other phagocytic cells. T cells that have passed all 

these checkpoints during the course of a 4 week development in the thymus are 

finally ready to leave the thymus and contribute to the immune system, tolerating 

self-antigens, but recognizing and attacking foreign peptides. 
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1.5 Thymic Epithelial Cell Function 

TEC are roughly categorized by their position in the two main compartments of the 

thymus and therefore named cortical and medullar TEC. This simplified 

characterization does not however account for the many, only partially described 

subsets of TEC within each compartment. For instance, only few different types of 

TEC have been described in the cortex and a proper functional differentiation of 

cTEC subsets remains elusive. For that reason it is currently unknown how many of 

the molecules described below are expressed on a single cells or in different TEC 

subsets. 

cTEC play an important role in the commitment of ETP (24). When T cell progenitors 

enter the thymus they have still a broad lineage potential that is only restricted once 

they encounter the ligand of the Notch signaling pathway Delta-like ligand 4 (Dll4) 

expressed by cTEC. This is a critical step in T cell development, because a deficiency 

in Dll4 in cTEC leads to the in situ development of B cells in the thymus instead (31). 

During the early steps of thymopoiesis T cell progenitors move through the cortex 

towards the subcapsular region. The general outward movement is guided by 

CXCL12 expressed on cTEC that is detected by CXCR4 on the developing cells (32). 

Subcapsular cTEC additionally express CCL25 that directs DN2 and DN3 cells to the 

edge of the cortex just below the capsule (33). After rearranging the genomic loci 

encoding the α and β chains of the TCR, T cells are tested on their ability to recognize 

peptide-MHC complexes presented by cTEC. The presentation of antigens is 

probably the main hallmark of thymic epithelial cells. Two of the most important 

steps during thymopoiesis heavily rely on it, positive and negative selection. It is 

therefore not surprising that TEC possess a sophisticated machinery to process and 

present antigens. Proteolytic enzymes cleave proteins into small peptides that are 

then loaded onto MHC class I and II molecules through very well described 

mechanisms (8). It was recently discovered that cTEC form a proteasome composed 

of a unique subunit named β5t that is only found in the thymic epithelium (34). The 

β5t subunit replaces the β5 and β5i subunits usually found in the two β heptameres 

that span the proteolytic core structure of the proteasome. This exchange results in 

the production of peptides with high affinity to the MHCI molecule, which are 
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required for the production of CD8 single positive thymocytes, as a lack in β5t leads 

to significantly lower development of this T cell subset (34). Another protease 

involved in the processing of antigens that are presented to developing thymocytes 

is Cathepsin L (Ctsl). This enzyme cleaves proteins within lysosomes and is not only 

important of the maturation of MHCII molecules (35), but also required for the 

processing of antigens that are needed for CD4 T cell development (36). Similarly, 

the thymus specific serine progease (TSSP) is required for the processing of proteins, 

which are then presented on MHCII (37). Taken together, β5t, Ctsl and TSSP are 

three examples of the sophisticated antigen processing machinery that is present in 

cTEC and that is required for proper selection of thymocytes. There are more 

proteolytic enzymes and enzyme complexes that are required for the processing of 

antigens supporting T cell development, and more research will have to be 

conducted to further enhance the knowledge on this complex machinery. 

 

 

Figure 1.5-1. Antigen presentation on thymic epithelial cells requires unique proteolytic pathways. During 
thymopoiesis T cells are tested on their ability to recognize antigens presented on MHC molecules. Cells 
that present antigens use multiple antigen-processing pathways for the generation of peptides. 
Endogenous proteins are generally presented on MHC class I molecules. Proteasomes in the cytoplasm 
cleave proteins into small peptides, which are then transported to the endoplasmic reticulum where 
they loaded on MHCI molecules. This peptide-MHC complex is then transported to the surface where it 
can be detected by passing thymocytes. The proteasomes may contain different subunits in various cell 
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types that generate peptides with different affinities to MHCI. Endosomes in thymic epithelial cells 
process antigens that are presented on MHCII molecules. Various proteolytic enzymes process proteins 
that are derived from macroautophagosomes or endocytic vesicles, depending on the cell type. Image 
from Klein et al. (8). 

 

After being positively selected thymocytes upregulate the CCR7 receptor and are 

able to sense CCL19 and CCL21 secreted predominantly by mTEC. As a result they 

migrate from the deep cortex into the medulla where they directly engage with 

mTEC and other APC. mTEC are a very special cell type that has the remarkable 

capability to express many tissue restricted antigens (TRA) ectopically in the thymus 

(30, 38). On a population level up to 19’000 genes are expressed by mTEC covering a 

large number of the protein-coding sequences within the genome, however only a 

few hundreds of TRA are expressed by a single cell (40). To achieve this 

extraordinary coverage of the genome a finely regulated transcriptional program is 

implemented in mTEC that involves epigenetic regulatory mechanisms at the DNA 

and histone level (39–42). In addition, the autoimmune regulator (Aire), a 

transcription factor that is specifically expressed in mTEC, regulates the transcription 

of a fraction of TRA (30). Mutations in its gene leading to a loss of function cause the 

severe autoimmune disorder Autoimmune polyendocrinopathy-candidiasis-

ectodermal dystrophy (APECED) in humans (43, 44) and the emergence of auto-

reactive T cells in mice (45). The wide palette of TRA expressed by mTEC is 

ultimately presented to developing T cells on MHCI and MHCII molecules. 

Thymocytes that recognize self-antigens with high affinity undergo apoptosis and 

are removed by a very effective clearing system involving macrophages and other 

phagocytic cells (46). The presentation of TRA by mTEC (together with other APC in 

the medulla) to the developing thymocytes is therefore important to ensure the 

production of self-tolerant T cells. 
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The work presented in this thesis is centered on the development and maturation of 

the epithelial compartment in the murine thymus and consequently its functional 

capacity to promote normal thymopoiesis. Two main aspects have been investigated 

in depth: 

1. The role of the Dicer in thymic epithelial cell development and function 

The endoribonuclease Dicer is critically required for the processing of most miRNA, 

a class of evolutionary conserved non-coding RNA that plays an important role in 

transcriptional regulation. The aim of the present study was to investigate the role of 

Dicer, and hence miRNA in general, in thymic epithelial cell development during 

embryogenesis and its function in maintaining thymopoiesis in the adult mouse. 

Specifically, I wished to investigate: A) the requirement of Dicer for TEC 

development, lineage specification and maintenance; B) the transcriptional changes 

upon a loss of Dicer expression targeted to the thymic epithelia and its consequences 

for thymic function; and C) the competence of T lymphocytes educated by a Dicer-

deficient epithelial scaffold. 

2. The capacity of β5t-expressing progenitor cells to form the cortical and medullar thymic 

epithelial compartments 

Results obtained from a mouse experimental model that allows for conditional 

lineage tracing at early stages of thymic development suggested that most (if not all) 

thymic epithelial cells display hallmarks of having once adopted features 

characteristic of a cortical epithelial phenotype, i.e. the expression of the 

thymoproteasome subunit β5t. I extended these findings to probe: A) the precise 

timepoint of β5t expression during thymic epithelial development; B) the phenotype 

of β5t-expressing progenitor cells; C) the activity of β5t-expressing progenitor cells in 

later stages of thymus development; and D) the regenerative capacity of those cells in 

the post-natal thymus. 

Taken together, these two research programs will provide unprecedented insight 

into the spatio-temporal dynamics of thymic epithelial cell development and 

function. 
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3.1 miRNAs control the maintenance of thymic epithelia and their 

competence for T lineage commitment and thymocyte selection 

3.1.1 Introductory notes 

3.1.1.1 Summary 

Since the discovery of RNA interference (RNAi) in the 1998, interest in the biological 

role of non-coding RNA has continuously grown. In this context, the evolutionary 

conserved class of microRNA (miRNA) has attracted special attention. miRNA are a 

class of small, non-coding RNA and are generated through the post-transcriptional 

processing of miRNA precursor sequences by the RNA-endonuclease-complexes 

Drosha/DGCR8 in the nucleus and then Dicer/AGO2 in the cytoplasm. After 

processing, the ensuing miRNA are then transported and incorporated into the 

RNA-induced silencing complexes (RISC), which execute RNA-interference. miRNA 

have been identified to play an important role in the transcriptional regulation 

during development. Hence, I was interested to investigate the role of Dicer in TEC 

for thymic organogenesis and maintenance of function. Using a conditional cre/lox 

system, Dicer was deleted in thymic epithelia as early as embryonic day of 

development (E) 12.5 using conditional Dicer alleles and the expression of the Cre 

recombinase under the transcriptional control of the Foxn1 locus. This deletion 

resulted in a marked reduction of individual miRNA, which could be detected at E16 

and later developmental stages. Interestingly, the apparent loss of Dicer expression 

did not perturb thymic organogenesis but altered both the postnatal development 

and maintenance of the organ, resulting in a decreased thymic cellularity as early as 

the first week of life. This change was caused by a progressive loss of developing T 

lymphocytes consequent to a partial block in thymus positive selection. This 

limitation suggested a deficiency in the capacity of cTEC to provide an environment 

appropriate for this essential step in thymocyte maturation. In addition, the 

commitment of hematopoietic progenitor cells to a T cell fate was affected and 

paralleled an increased in-situ development of B cells. This deficiency to establish the 

T cell lineage in lieu of B lymphogoiesis correlated with a decreased expression on 

cTEC of Dll4, a Notch ligand critically for the commitment to a T cell fate. On closer 
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examination, further differences in the composition of the thymic epithelial 

compartment could be observed in mice deficient in Dicer expression in their TEC. 

For example, the expansion of the mTEC compartment, a feature typically observed 

in the first weeks of life, was largely absent. Moreover, immature (MHCIIlo) mTEC 

were especially affected suggesting a partial though progressive maturational block 

in mTEC differentiation from a yet to be phenotypically precisely defined TEC 

progenitor (see chapter 3.4). Mature mTEC revealed a higher proliferation rate as 

revealed by increased BrdU incorporation. The apparent dysbalance between 

immature and mature mTEC may reflect a progressive exhaustion of a mTEC-

committed precursor pool or, alternatively, could be the consequence of a failure in 

differentiation accompanied by a compensatory increase in the maintenance of 

mature mTEC by way of proliferation. Mice three weeks and older revealed a lack of 

mTEC characteristic markers in the medullar including cytokeratins 5 and 14 that 

resulted in large supposedly mTEC-free areas in the thymic medullas of these mice. 

In parallel, an extensive loss of TEC density could be observed within the cortical 

scaffold, marking the functional disintegration of the dense cortex. The loss of Dicer 

resulted in a marked transcriptomic change in two-week-old cTEC and mTEC. A 

gene ontology analysis of up- and downregulated transcripts predicted multiple 

cellular processes affected in cTEC and mTEC, including transcription, cell signaling, 

differentiation, adhesion, apoptosis, and the organization of extracellular matrix. In 

spite of the lack of precise miRNA target prediction algorithms it became evident 

that the broad loss of miRNA resulted in a transcriptomic imbalance in TEC that 

affected critical pathways. 

T cell selected in a microenvironment composed of TEC deficient in Dicer expression 

failed to cause overt autoimmunity even in 30-week-old mice. However, the thymic 

generation and export of regulatory T cells during the first weeks of life establish a 

peripheral T cell pool able to keep newly emerging auto-reactive T cells under 

control and thus disease-free. To avoid this protective mechanism and to uncover the 

auto-reactive potential of T cells selected by TEC devoid of Dicer expression, T cells 

were depleted in vivo in two-week-old mutant mice. The screening of these mice 

revealed mononuclear infiltrates in several organs of treated mice once the 
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peripheral T cell pool was re-established. Hence, central T cell tolerance induction 

was defective in these animals. To correlate these findings with a lack in regular 

negative selection against self-antigens, mTEC from 2 week old mutant mice were 

screened for the expression of Aire-dependent and –independent TRA. In the 

absence of miRNA transcripts individual TRA were either decreased or increased, 

thus suggesting a change in the repertoire of self representation by TEC. This 

alteration likely accounted (at least in part) for a defective negative selection of 

autoreactive T cells. 

Taken together these results reveal a critical requirement for Dicer, and therefore 

miRNA, for postnatal TEC development, maintenance and function. We therefore 

hypothesise that a change in normal TRA expression in mTEC at a time of critical 

thymic growth fails to enforce regular central T cell tolerance induction allowing for 

auto-reactive T cells to escape selection and to exit to the periphery where these cells 

may harm peripheral organs. It remains, however, to be defined, which miRNA 

secure regular mTEC function under physiological conditions. This issue will need to 

be investigated using experimental mouse models in which single miRNA (clusters) 

are deleted in TEC, which will only be able once single, potentially functionally 

relevant miRNA can be identified. Unfortunately, current miRNA target prediction 

algorithms fail to precisely identify key miRNA that account for the functionally 

relevant transcriptomic changes observed in cTEC and mTEC upon the loss of Dicer. 

Therefore more work will have to be conducted in order to find the miRNA 

molecules that control key TEC features. 

 

3.1.1.2 Contribution 

The work described above was published in 2012 in the Journal of Immunology 

(PMID:22972926) and reflects a body of work to which several have contributed. I 

was responsible for the analysis of TEC cellularity at distinct developmental stages 

(Figure 1A; Supplementary Figure 1B), for the flowcytometric characterization of the 

distinct TEC subpopulations (Figures 3C,E-F; Supplementary Figures 1C, 3B), for the 

assessment of thymic and splenic T and B cell development (Figures 1E-F, 2A, 4A-B, 
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6A-B; Supplementary Figures 1D, 3C), for the analyses of thymic, adrenal, occular, 

kidney, pancreatic, liver, salivary gland and skin tissue sections (Figures 3A-B lower 

panels, 7A; Supplementary Figures 1A lower panels, 3A lower panels, 3D) and their 

scoring (Figure 7A). I quantified the changes of miRNA expression during 

embryonic development following the ablation of Dicer (Figure 1D). I assisted in the 

preparation of cells for and analysis of gene expression profiles (Figure 5), the 

transplantation of embryonic thymic lobes (Supplementary Figure 3) and the in vivo 

depletion of T cells (Figure 7A). These contributions were considered significant so 

that I was acknowledged as a co-first author of the work published. 
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3.1.2 Abstract 

Thymic epithelial cells provide unique cues for the life-long selection and 

differentiation of a repertoire of functionally diverse T cells. Rendered miRNA 

deficient, these stromal cells in the mouse lose their capacity to instruct the 

commitment of haematopoietic precursors to a T cell fate, to effect thymocyte 

positive selection and to achieve promiscuous gene expression required for central 

tolerance induction. Over time, the microenvironment created by miRNA-deficient 

thymic epithelia assumes the cellular composition and structure of peripheral 

lymphoid tissue where thympoiesis fails to be supported. These findings emphasize 

a global role for miRNA in the maintenance and function of the thymic epithelial cell 

scaffold and establish a novel mechanism how these cells control peripheral tissue 

antigen expression to prompt central immunological tolerance. 

 

3.1.3 Introduction  

The thymus provides a unique stromal microenvironment that instructs the 

differentiation of blood-borne precursors to functionally mature T lymphocytes 

proficient to effect an immune response against microbial pathogens whilst unable to 

elicit an autoimmune reaction (1). The major structural components of the thymus 

are thymic epithelial cells (TEC) that can further be classified as cortical (c) or 

medullary (m) TEC subpopulations based on distinct structural, antigenic and 
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functional features (2,3). The molecular programs that control TEC growth, 

differentiation, and maintenance are, however, only incompletely characterized.  

The most immature T cell precursors differentiate within the thymic cortex where 

they acquire the expression of both CD4 and CD8 (double positive, DP stage of 

development) and eventually express the complete αβ T cell antigen receptor (TCR) 

(4). As their antigen specificity is randomly generated, DP thymocytes are subjected 

to a selection process aimed at testing their suitability for a given individual. Known 

as positive selection, thymocytes with a TCR that recognizes self-peptide/MHC 

complexes on cTEC with sufficient affinity will continue their intrathymic 

maturation and migrate to the medulla. There, thymocytes are exposed to a negative 

selection. This process purges TCR-bearing cells with an affinity for self-

peptide/MHC complexes above a critical threshold and thus prevents self-antigen 

recognition by T cells of extra thymic tissue which may elicit autoimmunity.  

Micro RNA (miRNA) represent an essential class of small (19-25 nucleotides, nt), 

non-coding RNAs indispensible for biological processes including cell fate 

determination, self-renewal, differentiation, proliferation, apoptosis and cellular 

homeostasis (5). Primary miRNA transcripts are processed by nuclear RNAse III 

enzyme Drosha and its co-factor DGCR8 to intermediate miRNAs, which are 

exported to the cytoplasm. There, a second RNAse III enzyme, designated Dicer, 

catalyzes the formation of miRNA duplexes. These short sequences are integrated 

into the RNA-induced silencing complexes (RISC) and control protein synthesis by 

interacting with target messenger RNA either repressing translation or mediating 

RNA cleavage and degradation (6). A single miRNA species may regulate the 

expression of hundreds of proteins, though the repression is usually mild and 

frequently the result of both downregulation of mRNA levels and inhibition of 

translation (7-9). Cell- and tissue-specific miRNA expression patterns have been 

identified, suggesting unique biological roles for specific miRNA. However, the 

precise functions for almost all of the at least 1055 mouse miRNA remain to be 

experimentally verified  (10). To judge the global role of miRNA for the 
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development, function and homeostasis of TEC, we generated mice with a TEC 

targeted Dicer deficiency. 

 

3.1.4 Results 

3.1.4.1 Thymus cellularity and T lymphopoietic activity are decreased in the 

absence of Dicer expression in TEC 

To study the integrated and global role of miRNA in TEC development and function, 

we generated mice that lack dicer1 expression in thymic epithelia. For this purpose, 

mice with a conditional dicer1 allele (Dicerfl/fl, (14)) were crossed to transgenic 

animals expressing the Cre recombinase in all TECs (15). Because Cre expression in 

heterozygote Foxn1-Cre transgenic mice is non-toxic to TECs (Supplemental Fig. 1 

and ref (16)), Dicerfl/fl mice negative for the expression of Cre were used as controls 

and compared to heterozygous Cre-transgenic Dicerfl/fl mice (designated Foxn1-

Cre::Dicerfl/fl). Thymus cellularity was unaffected in fetal and early post-natal Foxn1-

Cre::Dicerfl/fl mice despite a complete deletion of the dicer1 locus and the absence of 

distinct miRNA species in TEC at day 16.5 of gestation (E16.5) (Fig. 1A, 1B, 1D). A 

significant reduction in thymus size and absolute cell number was first observed in 

three week old Foxn1-Cre::Dicerfl/fl mice (Fig. 1A, 1C). In contrast, changes in 

intrathymic T cell differentiation were already apparent in Foxn1-Cre::Dicerfl/fl mice 

as early as the first week of life (Fig. 1E, 1F). While the frequency of double negative 

(DN) cells was increased, CD4-CD8+ single positive (SP) thymocytes with a mature 

phenotype (CD24loCD3hi) were diminished. At 3 weeks and later, the relative 

frequency of double positive (DP) thymocytes was consistently increased though all 

subsequent maturational stages were diminished (Fig. 1E, 1F). By 30 weeks of age, 

DP thymocytes were almost completely absent in Foxn1-Cre::Dicerfl/fl mice . The 

competence of Dicer-deficient TEC to support regular T cell development was thus 

progressively compromised affecting both the generation of DP thymocytes and their 

subsequent maturation to single positive, naïve T cells. 
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Figure 3.1-1. Reduced thymic cellularity and gradual failure of T cell development in Foxn1-Cre::Dicerfl/fl mice. 
(A) Total thymic cell numbers of Dicerfl/fl (black bars) and Foxn1-Cre::Dicerfl/fl (white bars) mice at 
indicated ages (p: post-natal days; w: weeks); *denotes p<0.05; ** p<0.01; *** p<0.001. (B) PCR-based 
detection of the conditional dicer1 locus in purified thymocytes (Thy) and TECs from Dicerfl/fl (cre -) and 
Foxn1-Cre::Dicerfl/fl (cre+) embryos at day 16.5 (E16.5). (C) Macroscopic analysis of single thymus lobes 
from 3 and 30 week old Dicerfl/fl and Foxn1-Cre::Dicerfl/fl mice. (D) Decreased miRNA expression in 
TECs from Foxn1-Cre::Dicerfl/fl mice. TECs (CD45-EpCAM+) were isolated by cell sorting from 
Dicerfl/fl (closed circles) and Foxn1-Cre::Dicerfl/fl (open squares) mice at the indicated ages and were 
subjected to quantitative RT-PCR analysis using primers specific for the indicated mature miRNAs. 
Small nuclear RNA U6 was used as an endogenous control. Data were normalized to the expression of 
miRNA in newborn (P0) Dicerfl/fl mice. (E) Flow cytometric analysis for the cell surface expression of 
CD4 and CD8 on thymocytes isolated from Dicerfl/fl and Foxn1-Cre::Dicerfl/fl mice at indicated ages. 
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Numbers denote the percentage of cells within the given gates in a representative experiment. (F) 
Frequencies of thymocyte subpopulations (left panel) and of mature (i.e. CD3hiCD24lo) CD4 and CD8 
single positive thymocytes (right panel) in Dicerfl/fl (black bars) and Foxn1-Cre::Dicerfl/fl mice (white bars) 
at indicated ages. Data signify the mean ± SD; ns, not significant; *denotes p<0.05; ** p<0.01; *** p<0.001. 
Data are representative of at least two independent experiments for each time point with at least three 
mice per group. 

 

3.1.4.2 Commitment to the T cell lineage requires Dicer expression in cTEC 

We next investigated the nature of the CD4-CD8- thymocytes as these cells were 

already increased in Foxn1-Cre::Dicerfl/fl mice as early as 1 week of age and 

represented more than half of all the thymocytes in 30 week old mutant animals (Fig. 

1E). The screening of these cells for the expression of non-T cell lineage markers 

identified a relative and absolute increase of CD19+ cells (Fig. 2A). Although a 

substantial proportion of these cells expressed high levels of CD93 similar to the 

pattern observed for B cells in the bone marrow of both wild type and mutant mice 

(Fig. 2A) , they did not express IgM. We therefore conclude that these were immature 

thymic B cells that developed in situ, possibly due to changes in the 

microenvironment. Indeed the thymic medulla progressively displayed increased 

numbers of Lyve-1+ lymphatic vessels, PNAd+ high endothelial venules and CR-1+ 

follicular dendritic cells (Fig. 2B), that in aggregate resulted in older animals in a 

histological structure reminiscent of secondary lymphoid tissue.  

Since commitment to a T cell fate is dependent on Dll4 expression by cTEC (17), we 

next tested whether Foxn1-Cre::Dicerfl/fl mice lacked the correct expression of Dll4+. 

The relative frequency and absolute cell number of Dll4+ cTEC was halved in 3 week 

old Foxn1-Cre::Dicerfl/fl mice when compared to controls (Fig. 2C). The relative 

frequency of early thymic progenitors (ETP, defined as Lin-CD25-CD44hic-kit+ cells) 

among thymocytes was in parallel decreased by two-fold when compared to age-

matched controls (0.02±0.011 vs 0.04±0.017; p<0.05, n=4). Thus, Dicer deficient TECs 

created an altered microenvironment reduced in the molecular cues critical for the 

attraction of early thymic progenitors and their commitment to the T cell lineage.  
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Figure 3.1-2. Dicer-deficient TEC create a microenvironment permissive for in-situ B-cell development. (A) Left 
panels: Flow cytometry of CD4-CD8- double negative cells from thymus and bone marrow for the 
expression of CD19, IgM, and CD93. Numbers denote the frequency observed in a representative 
experiment for each of the indicated subpopulations. Right panel: Absolute numbers of thymic CD19+ 
cells in 3 week old Dicerfl/fl (black bars) and Foxn1-Cre::Dicerfl/fl (white bars) mice. * denotes p<0.05. 
Three independent experiments with at least 3 mice per group were performed. (B) 
Immunofluorescence analysis of lymph node and thymus tissue from 30 week old mice for the 
expression of lymphatic vessel endothelial hyaluronan receptor Lyve-1 (identifying lymphatics), 
peripheral lymph node addressin PNAd (staining high endothelial venules) and complement receptor 
CR1 (detecting follicular dendritic cells). Data are representative of at least two separate experiments 
using each two mice each. (C) FACS analysis of Delta-like 4 (Dll4) expression by cTEC (CD45-

MHCII+UEA-1-Ly51+) in 3 week old Dicerfl/fl (red line) and Foxn1-Cre::Dicerfl/fl (blue line) mice (upper 
panel); relative frequency and cellularity of Dll4+ cTEC (lower panels); Data signify the mean ± SD; 
*denotes p<0.05. Two independent experiments with at least 3 mice per group were performed. 

 

3.1.4.3 Dicer-deficient TEC fail to maintain a regular thymic microenvironment  

To further investigate the consequences a TEC-restricted loss of Dicer-dependent 

miRNA expression, control and mutant thymus tissue sections were analyzed for the 

composition and organization of their stroma. In 2 day and 3 week old mice of both 
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groups, histological analyses demonstrated well demarcated medullary islands 

surrounded by a cell-dense cortex (Fig. 1A and Supplemental Fig. 2). In 3 week old 

mutant mice, the cortical TEC network was however, less dense and, in contrary to 

the wild type thymus, mainly composed of cytokeratin (CK)5+CK8+, cTEC (MTS10-). 

The thymic cortex of mutant mice had also changed in as much as its epithelia 

expressed lower amounts of Psmb11 (a.k.a. β5t), a cTEC-specific component of the 

thymoproteasome pivotal for the differentiation of MHC class I restricted CD8 SP 

thymocytes (18) (Fig. 3A, 3B). mTEC (CK5+MTS10+) were reduced in number and 

mostly located at the cortico-medullary junction. In parallel, ERTR7+ fibroblasts had 

accumulated in the presumed medulla where the few remaining mTEC were usually 

less reactive with UEA-1 though Aire+ epithelia and dendritic cells could still be 

detected (Fig. 3A and G.N., G.A.H unpublished observation). 

The small thymus remnant detected in 30 week old Foxn1-Cre::Dicerfl/fl mice had lost 

its typical cortico-medullary organization and the few remaining TEC were now 

arranged in several solitary islands devoid of mTEC contributions (Fig. 3B). Though 

almost all of the epithelia displayed a cortical phenotype (CK8+MTS10-UEA-1-), the 

expression of Psmb11 could not anymore be detected. The loss of Dicer expression 

differentially affected TEC cellularity of Foxn1-Cre::Dicerfl/fl mice, in contrast to 

absolute mTEC, both absolute and relative cTEC numbers of cTEC were increased 

(Fig. 3C), a change that correlated with a higher proliferation rate (Fig. 3D). Thus, a 

lack of Dicer expression in TEC progressively precludes the normal differentiation, 

patterning, maintenance and function of these cells. 

To assess whether miRNAs are specifically required by TEC for MHC expression and 

their differentiation from immature (MCHlo) to mature (MHChi) mTEC, we next 

analyzed TEC for their MHCII expression and mTEC for the detection of the 

autoimmune regulator (Aire). Both cTEC and mTEC from Foxn1-Cre::Dicerfl/fl and 

Dicerfl/fl mice expressed comparable amounts of MHC class I and II molecules (Fig. 

3E). However, the relative frequency of MHCIIloAire- mTEC was reduced and that of 

MHCIIhiAire- and MHCIIhiAire+ mTEC was increased in Foxn1-Cre::Dicerfl/fl mice. 

Thus, miRNAs appear to be required for the regular maintenance of MHCIIlo mTEC 
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but dispensable for their differentiation into MHCIIhiAire+ mTEC, which express an 

array of peripheral tissue-specific antigens (PTA) and are critical for negative 

selection of maturing thymocytes (see below). 
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Figure 3.1-3. Dicer deficient TEC fail to maintain a regular thymic microenvironment. Hematoxilin and eosin 
(HE) staining (top row) and immunofluorescence analysis of thymic tissue sections from 3 week old (A) 
and 30 week old (B) Dicerfl/fl or Foxn1-Cre::Dicerfl/fl mice. For immunohistology, antibodies specific for 
ERTR7 were used to identify fibroblasts, CK8 and Psmb11 for the detection of cTEC, and MTS10, CK5, 
and Aire as well as reactivity with UEA-1 for the identification of mTEC. Original magnification 20x; the 
bottom panels display close-ups in the right upper corner. Data are representative of at least three 
separate experiments with at least two mice each. (C) Flow cytometric analysis of TEC (CD45-

Figure 3
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EpCAM+MHCII+) subpopulations isolated from 2 and 3 week old mice. The relative frequency (left 
panels) and absolute cell numbers (right graph) of cTEC (UEA-1-Ly51+) and mTEC (UEA-1+Ly51-) in 
Dicerfl/fl (black bars) and Foxn1-Cre::Dicerfl/fl (white bars) mice are shown. Data indicate the mean ± SD of 
at least 3 mice per group; *denotes p<0.05; ** p<0.01; *** p<0.001. Data are representative of three 
independent experiments. (D) BrdU incorporation in cTEC and mTEC isolated from 2 week old Dicerfl/fl 

and Foxn1-Cre::Dicerfl/fl mice pulsed for 4 hours. The percentage of TEC incorporating the label (mean ± 
SD, *denotes p<0.05; 3 mice per group) is shown. Data are representative of at least two separate 
experiments. (E) MHC cell surface expression on Dicer deficient TEC. Cortical and medullary thymic 
epithelial cells from Dicerfl/fl (solid lines) and Foxn1-Cre::Dicerfl/fl (dotted lines) mice were stained for the 
cell surface expression of MHC class I (left panels) and MHC class II molecules (right panels) and 
analyzed by flow cytometry. The histograms are representative of two independent experiments with 
three mice per group. (F) Flow cytometric analysis of MHCII and autoimmune regulator (Aire) 
expression in TECs (CD45-EpCAM+) isolated from 2 week old mice. Numbers denote the percentage of 
cells (mean ± SD) within the given quadrant. The plots are representative of two independent 
experiments with three mice per group. 

 

3.1.4.4 Dicer-deficient cTEC fail to impose efficient positive selection  

Given the changes in cTEC we next investigated in Foxn1-Cre::Dicerfl/fl and control 

mice the sequential changes in thymocyte CD3 and CD69 cell surface expressions as 

phenotypic markers of positive selection (19). Under physiological conditions, 

positive selection sets off a transient up-regulation of CD69 among CD3int DP 

thymocytes. In turn, these cells sequentially adopt a CD3hiCD69+ and eventually a 

CD3hiCD69- cell surface phenotype. The relative frequencies of these distinct 

thymocyte populations were undisturbed in 1 week old Foxn1-Cre::Dicerfl/fl mice 

implying thymocyte positive selection to be normal (Fig. 4A). In contrast, 2 week and 

older mutant mice displayed a progressively compromised positive selection as the 

frequencies of their CD3intCD69+ and CD3hiCD69+ DP thymocytes were gradually 

reduced (Fig. 4A) despite an increased frequency of cTEC (Fig. 3C). To detail early 

post-selection steps in DP thymocyte differentiation, we also analyzed changes in 

CD4 and CD8 expression on either CD3intCD69+ or CD3hiCD69+ DP cells (Fig. 4B). 

Although the downregulation of CD8 on CD3intCD69+ cells occurred normally in 1 

and 2 week old Foxn1-Cre::Dicerfl/fl mice, this was impaired in 3 week old mutants 

(Fig. 4B, left panels). Focusing on younger Foxn1-Cre::Dicerfl/fl mice with a seemingly 

undisturbed cortical epithelial microenvironment, we also noticed a gradual defect in 

the progression of CD3hiCD69+ DP thymocytes (via the intermediate CD8hiCD4lo 

stage) to cells with a mature SP CD8 phenotype (Fig. 4B, right panels). Thus, positive 

selection of DP thymocytes is significantly impaired in Foxn1-Cre::Dicerfl/fl mice as 
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early as the second week of life and is preceded by a defect in DP maturational 

progression towards the CD8 SP lineage.  

Since Dicer-deficient mice express an impaired thymoproteasome (Fig. 3A), we next 

investigated the development of MHC class I restricted thymocytes expressing a T 

cell antigen receptor known to depend on Psmb11 expression for its efficient positive 

selection (20). For this purpose, sub-lethally irradiated neonatal Foxn1-Cre::Dicerfl/fl 

and Dicerfl/fl mice were engrafted with day 14 fetal liver cells from OT-I TCR 

transgenic mice. The OT-I TCR (composed of the Vα2 and V β5 chains) recognizes 

ovalbumin and is selected by self-peptides derived from β-catenin and other proteins 

(21). The selection of OT-I TCR transgenic thymocytes was severely compromised in 

chimeric Foxn1-Cre::Dicerfl/fl mice and this resulted in a significant reduction of cells 

with an immediate post-selection phenotype, i.e. CD4hiCD8int and CD4negCD8hi (Fig. 

4C). The partial block in positive selection resulted in parallel in an increase in pre-

selection DP thymocytes and a concomitant reduction in OT-I transgenic T cells 

committed to the CD8 lineage (Fig. 4C, left and middle panel). Moreover, chimeric 

Foxn1-Cre::Dicerfl/fl mice displayed a reduced frequency of mature transgenic SP CD8 

thymocytes expressing high surface Vα2 concentrations (Fig. 4C, right panel). Taken 

together, the absence of Dicer expression in TEC resulted in reduced positive 

thymocyte selection and an altered antigen receptor repertoire.  

To test whether the thymus phenotype in Foxn1-Cre::Dicerfl/fl mice was affected by  

Foxn1-Cre mediated recombination in keratinocytes and consequent systemic 

influences, we transplanted embryonic thymic tissue from both Dicerfl/fl and Foxn1-

Cre::Dicerfl/fl mice under the kidney capsule of a nu/nu recipients. Analysis of the 

grafted tissue 4 weeks after transplantation revealed a phenotype identical to that 

observed in age-matched Foxn1-Cre::Dicerfl/fl mice (Supplemental Fig.3A-C). This 

finding is in keeping with the observation that Foxn1-Cre::Dicerfl/fl mice have a 

normal skin (Supplemental Fig3D). 
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Figure 3.1-4. Dicer expression in TECs is required for efficient thymocyte positive selection. (A) Upper panels: 
Flow cytometric analysis was performed on all thymocytes excluding double negative cells isolated 
from Dicerfl/fl and Foxn1-Cre::Dicerfl/fl mice of indicated ages. Representative plots of CD69 and CD3 
expression analyses of total thymocytes are shown. Lower graph: Changes in the relative frequency of 
CD69+CD3int and CD69+CD3hi thymocytes over time in Foxn1-Cre::Dicerfl/fl mice in comparison to 
Dicerfl/fl animals; ** indicates p<0.01; *** p<0.001. Data are representative of at least two separate 
experiments with three mice per group. (B) Representative plots of CD4 and CD8 expression analyses of 
CD69+CD3int (upper left panels) and CD69+CD3hi thymocytes (upper right panels). Lower left graph: 
Kinetic changes in the relative frequency of the DP and CD4+CD8int phenotypes among CD69+CD3int 

thymocytes in Foxn1-Cre::Dicerfl/fl mice when compared to Dicerfl/fl animals. Lower right graph: Kinetic 
changes in the relative frequency of the DP, SP CD4 and SP CD8 phenotypes among CD69+CD3hi 
thymocytes in Foxn1-Cre::Dicerfl/fl mice when compared to Dicerfl/fl animals. The data in the lower 
graphs shows the mean ± SD; *denotes p<0.05; ** p<0.01; *** p<0.001. The results are representative of 2 
independent experiments with at least 3 mice per group. (C) Flow cytometric analysis of 4 week old 
Dicerfl/fl and Foxn1-Cre::Dicerfl/fl mice reconstituted at birth with OT-1 TCR transgenic fetal liver cells. 
Left panels: CD4 and CD8 expression on OT1 TCR transgenic thymocytes. The dot blot graphs are 
representative of at least three independent experiments. The bar graphs demonstrate the relative 
frequency of OT1 TCR transgenic CD4hiCD8hi, CD4hiCD8int and CD4-CD8hi cells in each gate of left 
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panels (left graph) and the relative frequency of CD4-CD8hi thymocytes expressing high Vα2+ cell 
surface amounts as an indicator of thymocyte positive selection (right graph). Black bars: Dicerfl/fl mice; 
white bars: Foxn1-Cre::Dicerfl/fl mice. The values represent mean ±SD with at least 3 mice per group; ** 
denotes p<0.01; *** p<0.001. Data are representative of at least 2 separate experiments with each three or 
more mice per group. 

 

3.1.4.5 Gene expression analysis in Dicer-deficient TEC uncover miRNA-sensitive 

cellular processes  

Gene expression profiles were established for both cortical and medullary TEC 

subpopulations to identify transcripts that are significantly up- or down-regulated as 

a consequence of Dicer deficiency (Fig. 5A, 5B). For this purpose, Foxn1-Cre::Dicerfl/fl 

and Dicerfl/fl mice were investigated at two weeks of age since the former animals still 

had a relatively intact cTEC cellularity though already displayed functional 

deficiencies. Gene Ontology (GO) analysis of significantly upregulated and 

downregulated transcripts (corrected p<0.05) predicted multiple cellular processes to 

be affected in cortical, medullary and both types of TEC (Fig. 5C, 5D). Specifically, 

transcription, cell signaling, differentiation, adhesion, apoptosis and the organization 

of extracellular matrix were predicted to be altered as a consequence of Dicer 

deficiency in TEC. 
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Figure 3.1-5. Analysis of gene expression changes in Dicer-deficient TEC and its impact on cell signaling. 
Volcano plot analysis of mRNA expression changes in cTEC (A) and mTEC (B) from two week old 
Foxn1-Cre::Dicerfl/fl mice compared to Dicerfl/fl mice. Positive values on the X-axis indicate an up-
regulation of transcripts in mutant TEC presented as fold changes, whereas negative values specify 
down-regulated transcripts shown as fold changes. The Y-axis represents a log scale revealing the 
corrected p-value for a two-way analysis of variance of the differences between samples. The data 
represents two separate biological replicates with at least 10 mice per group. The bar graphs show gene 
ontology pathways significantly affected (corrected p<0.05) in cTEC (C) and mTEC (D), respectively. 

 

3.1.4.6 Dicer-deficiency in TEC alters peripheral T cell phenotype  

The lack of Dicer expression in TEC led to significant phenotypic changes among 

peripheral T cells. Both naïve CD4+ and CD8+ T cells (i.e. CD62LhiCD44-) were 

reduced in Foxn1-Cre::Dicerfl/fl mice at 8 weeks of age whilst the relative frequency of 

memory T cells was two- to three-fold more abundant, a finding likely caused by 

moderate T lymphopenia (Fig. 6A, 6B). Moreover, Foxn1-Cre::Dicerfl/fl mice displayed 

a proportional increase in CD8+ effector (CD44hiCD62Llow/-) and central memory 

(CD44hiCD62Lhi) T cells. In keeping with the degree of lymphopenia, the relative 

frequency of FoxP3+CD4+ regulatory T cells was only modestly increased though 

their cellularity was not significantly different from that of Dicerfl/fl mice (Fig. 6C). 
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Figure 3.1-6. Dicer deficiency in TECs results in altered T cell numbers. (A) Relative frequencies and 
absolute cell numbers (mean ± SD) of splenic CD4 and CD8 T cells in 8 week old Dicerfl/fl (black bars) 
and Foxn1-Cre::Dicerfl/fl mice (white bars); * indicates p<0.05. Data are representative of three separate 
experiments with at least 3 mice per group. (B) Left panels: Representative analysis of CD44 and CD62L 
expression among splenic T cells from 8 week old Dicerfl/fl and Foxn1-Cre::Dicerfl/fl mice. The numbers 
show the relative frequency of a given subpopulation as identified by the drawn gate. Right graphs: 
Absolute numbers (mean ± SD) of T cells from 8 week old Dicerfl/fl (black bars) and Foxn1- 
Cre::Dicerfl/fl mice (white bars) with naïve and memory phenotypes; * indicates p<0.05. Data are 
representative of three separate experiments with at least 3 mice per group. (C) Relative frequency 
(upper graph) and absolute cell numbers (lower graph) of splenic CD4+Foxp3+ T cells in 8 week old 
Dicerfl/fl (black bars) and Foxn1-Cre::Dicerfl/fl mice (white bars); * indicates p<0.05. Data are 
representative of two separate experi- ments with at least 3 mice per group. 

 

3.1.4.7 T cells selected in a thymus with Dicer deficient TEC elicit autoimmunity  

We next examined whether T cells selected by Foxn1-Cre::Dicerfl/fl mice were prone 

to elicit autoimmunity since their selection was altered by thymic 

microenvironmental changes possibly resulting in a T cell repertoire with different 

functional properties. Although Foxn1-Cre::Dicerfl/fl mice were followed and 

regularly analyzed for as long as 45 weeks, spontaneous lymphocytic organ 

infiltrates were not observed at a frequency different to that of control mice 

(unpublished observations). As peripheral tolerance may have been maintained in 

Foxn1-Cre::Dicerfl/fl mice by T cells that had early on developed in a yet largely 

normal though already miRNA-deficient thymic epithelial microenvironment  (22), 

mutant and wild type mice were efficiently T cell depleted at the age of 2 weeks 

using a mixture of anti-CD4, -CD8 and -Thy1.2 antibodies. In the course of 

autologous reconstitution, newly formed T cells were now selected in a thymic 
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microenvironment which in the case of Foxn1-Cre::Dicerfl/fl mice had adopted an 

altered architecture and had lost its capacity for normal TCR selection. Multi-organ 

infiltration developed in Foxn1-Cre::Dicerfl/fl but not control mice over the course of 

28 weeks, variably affecting eyes, pancreas, salivary glands, and liver (Fig. 7A). The 

inflammatory cell infiltrations of the eyes altered the retinal architecture in its entire 

thickness leading to a partial destruction of the photoreceptor outer segment and the 

nuclear layer. 

As thymic expression of self-antigens is critical for the maintenance of self tolerance, 

transcripts for selective single self-antigens were quantified in purified mTEC of 2 

week old Foxn1-Cre::Dicerfl/fl and Dicerfl/fl mice (Fig. 7B, 7C). This time point had 

specifically been chosen since the relative frequency of MHCIIhiAire+ mTEC was 

comparable for both mouse strains (Fig. 3F). A significant decrease in both Aire-

dependent and -independent transcripts was detected with retinal (IRbp), salivary 

gland (Salivary protein 1, Spt1), hepatic (C-reactive protein, CRP) and pancreatic 

(Insulin-2, Ins2; Glutamic acid decarboxylase, Gad1) peripheral tissue antigens (PTA) 

invariably reduced in Dicer-deficient mTEC (Fig. 7B, 7C and 7D). These changes 

correlated with the pattern of tissue infiltrations linking defects in PTA expression to 

organ-specific autoimmune pathologies. 
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Figure 3.1-7. Autoimmunity in aged Foxn1-Cre::Dicerfl/fl mice. (A) Upper panels: H&E staining of eye, liver 
and salivary gland tissue from 32 week old female Dicerfl/fl and Foxn1-Cre::Dicerfl/fl mice that had been T 
cell depleted at 2 weeks of age and allowed to autologously reconstitute their T cell compartment. 
Lower panel: Graphic summary of organ infiltrations in 32 week old Dicerfl/fl and Foxn1-Cre::Dicerfl/fl 

mice following transient T cell depletion at 2 weeks of age (each circle represents an individual mouse). 
Data is representative of two independent experiments with each 5 mice per group. (B) Graphic 
representation of changes in microarray measured expression of 147 Aire-dependent and Aire-
independent peripheral tissue antigens (PTA) in purified mTEC from two week old Foxn1-Cre::Dicerfl/fl 

and Dicerfl/fl mice. (C) RT-PCR analysis for the expression of retinal (IRbp), salivary gland (Spt1), hepatic 
(CRP) and pancreatic (Ins2, Gad1) peripheral tissue antigens in purified mTEC from 2 week old Dicerfl/fl 
(black bars) and Foxn1-Cre::Dicerfl/fl mice (white bars). Gapdh was used as a reference for data 
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normalization. The data is representative of 2 separate experiments and indicate the mean ± SD of at 
least 3 mice per group; ** signifies p<0.01; *** p<0.001. (D) Decreased  Peripheral Tissue Antigen (PTA) 
expression in mTEC as a consequence of Dicer deletion. PTA expression was analyzed in mTEC from 2 
week old Foxn1- Cre::Dicerfl/fl mice using microarray and compared to the expression profile of age-
matched, wild mTEC. 

 

3.1.5 Discussion  

Short, non-coding RNAs typically modulate the regulation of organ development via 

subtle though efficient parallel targeting of multiple components within a regulatory 

network (10,23). Because the molecular targets of most miRNA remain 

experimentally unverified, their role in tissue differentiation and function has largely 

been interrogated via global interference with their biogenesis (5). Here, the 

dependence of TEC differentiation and function on the biological properties of 

miRNA has been investigated in mice where Dicer is ablated after formation of the 

thymus primordium but before the complete patterning of its microenvironment. 

Our results reveal that miRNA are differentially expressed in separate TEC 

subpopulations and that this non-coding species of RNA is essential for the 

maintenance of a regularly composed and correctly functioning thymic 

microenvironment.  

The TEC-targeted, embryonic loss of Dicer results in a sequential emergence of 

structural and functional alterations with defects apparent only after the first week of 

life. The asynchronous appearance of a complex phenotype is likely the result of a 

substantial variation in the decay of individual miRNA following dicer1 gene 

ablation (24) and may also reflect a variable susceptibility of separate TEC 

subpopulations for the loss of specific miRNA.  

The hematopoietic cells settling into the thymus require signals from Dll4 expressed 

by cTEC for their commitment to a T cell fate (17). In the absence of Dicer, fewer 

cTEC express Dll4 which suggest Dll4 as a likely indirect target of miRNA. 

Diminished expression of Dll4 on cTEC correlates with the observed reduction of 

ETPs and a robust B cell differentiation in situ. Since the Notch ligand density is 

important in vitro for the commitment of hematopoietic precursors to a T cell fate 

(25), quantitative signaling differences suffice to explain the in situ B cell 
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development in younger Foxn1-Cre::Dicerfl/fl mice. These findings provide a 

molecular mechanism (i.e. reduced Dll4 expression by cTEC) for the increase in 

intrathymic B-cell development (this report and ref. (26))  

In older mutant animals, the microenvironment is unable to attract uncommitted 

hematopoietic precursors and consequently neither immature B nor T cells can be 

detected. Rather, the cellular composition and organization of the microenvironment 

demonstrates a structure reminiscent of secondary lymphoid tissues where 

lymphocyte homing is directed through PNAd+ venules (27) and new lymphatic 

vessels are established (in the absence of overt inflammation) possibly sprouting 

from pre-existing endothelial cells (28). The increase and persistence of the two 

vascular systems is likely mediated by different mechanisms including the presence 

of B cells, the expression of CCL21 by TEC and dendritic cells, and the stimulation of 

the lymphotoxin beta receptor on endothelial cells of blood and lymph vessels 

(29,30). 

The almost complete attrition of TEC is an intriguing feature of older Foxn1-

Cre::Dicerfl/fl mice. Given that miRNA expression patterns create a cell type-specific 

signature and help to reinforce cell fate specifications, it is conceivable that the pool 

of TEC precursor/stem cells is altered and/or that their differentiation into distinct 

TEC subsets is repressed following the targeted loss of Dicer expression. A reduction 

of MHClo mTEC suggests a defective maintenance of the progenitor pool in the 

absence of miRNA, a finding that is contrasting the higher frequency of p63+ TEC 

reported recently (26). The changes in gene expression in miRNA-deficient TECs 

infer that several pathways essential for cell pluripotency, differentiation and 

survival appear to be affected following the loss of Dicer. Indeed, the continuous 

replacement of immature and mature TEC was severely affected in older Foxn1-

Cre::Dicerfl/fl mice. The loss of miRNA also resulted in the upregulation of multiple 

transcripts of key molecules known to affect TEC development and function. For 

example the correct control of Wnt signaling in TECs is required for thymus 

development since gain of canonical Wnt signaling activity is incompatible with 

regular thymus organogenesis and function (15). Similarly, changes in BMP signaling 
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in TEC affect both embryonic development (31) and thymopoietic function (32). 

Increased TgfβR3 expression in Dicer deficient TECs possibly contributes to the 

enhanced thymic involution via enhanced stimulation of TgfβR2 signaling 

(16),whereas the upregulation of insulin-like growth factor 1 receptor (Igf-1R) may, 

in response to Igf-1, account for increased TEC proliferation (Fig. 3D; and ref. (33)). 

Hence, distinct miRNA may directly control the expression, activation and/or 

availability of signaling elements essential for either TEC differentiation, 

proliferation or function. In keeping with this contention, the single loss of miR-29a 

enhances thymic involution in adult mice though neither thymic architecture nor 

function are affected (26). 

Thymocyte differentiation such as the generation of post-selection thymocytes with a 

CD3hiCD69+CD4-CD8+ is already impaired in young Foxn1-Cre::Dicerfl/fl mice even 

though cellularity, MHC expression and architectural organization of the cTEC 

scaffold has not yet been compromised. This finding infers a previously unnoticed 

(26) qualitative cTEC deficiency in supporting the development of CD8 SP 

thymocytes. Later in life, mutant mice display a defect in positive selection that is 

marked by a partial block in the sequential upregulation of CD69 and CD3 on DP 

thymocytes. This fault points to a previously unrecognized critical element in 

positive selection since neither MHC nor Psmb11 are affected when the deficiency 

becomes first apparent (18,34-37). Though a reduced density of the epithelial 

network is likely to contribute to altered thymocyte development in older mice (26), 

overt TEC-free areas as observed in Kremen1-deficient mice were not sufficient to 

compromise T cell development (38). The continued selection of CD3hiCD69+ 

thymocytes and their differentiation along the SP CD8 lineage is MHC independent 

but requires other, additional cues (39-41). However, only few candidate molecules 

expressed by cTEC including ICAM and IL-7 (42,43) have so far been inferred to play 

a role in positive thymocyte selection, yet their transcripts remained unchanged in 

Dicer-deficient cTEC (unpublished observations). Thus, mice that lack Dicer 

expression in cTEC display significant defects in thymocyte development which 

appear to be unrelated to previously identified mechanisms controlling this multi-

stage process. 



47 

Thymocyte negative selection is likely impaired in Foxn1-Cre::Dicerfl/fl mice since 

their mTEC display a significant deficiency in promiscuous gene expression. The 

molecular signature of this defect implies a common yet undefined mechanism that 

controls some but not all known PTA transcripts. Though the differentiation of Aire+ 

mTEChi was apparently independent of miRNAs, the expression of a significant 

number of Aire dependent PTAs was, however, affected by the lack of Dicer 

expression. It is thus conceivable that miRNAs may act either in concert or 

downstream of Aire to regulate the expression of a subset of Aire-dependent PTAs. 

In parallel, our data likewise reveal that miRNA also control the expression of a 

number of Aire-independent PTA, possibly via a common pathway. As a corollary, 

central tolerance induction is defective and autoimmunity ensues. Because PTA 

expression confined to the perinatal period suffices to induce long-lasting tolerance 

(22), functionally relevant defects in negative selection become only apparent once 

the initially chosen T cell pool is replaced by cells selected in the distorted thymic 

microenvironment of two and more week old Foxn1-Cre::Dicerfl/fl mice. The pattern 

of organ-specific autoimmunity observed in these mice correlates with the altered 

expression profile of tissue-specific self-antigens. It is therefore conceivable that some 

forms of autoimmunity may also occur as a consequence of known or not yet 

described miRNA polymorphisms that either affect the biogenesis of miRNA or 

influence their ability for target repression. 

 

3.1.6 Material and Methods 

Mice 

Mice were kept under specific pathogen free conditions and used according to 

federal and institutional regulations. For developmental staging, the day of the 

vaginal plug was designated as embryonic day (E) 0.5. C57BL/6 mice were obtained 

in-house from the Departmental breeding facility whereas nude (nu/nu) mice were 

obtained from a commercial vendor (Janvier, France). Mice were kept and handled 

according to Cantonal and Federal regulations and permissions. 
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Histology and immunofluorescence 

Frozen thymus tissue sections (8µm) were fixed in gradient ethanol solutions and 

stained with Mayer’s hematoxyline (Réactifs RAL) and eosin (J.T.Baker). For 

immunohistochemistry, acetone-fixed sections (8µm) were stained using antibodies 

specific for cytokeratin (CK) 5 (Covance), CK8 (Progen), CK14 (Covance), MTS10 (a 

gift from R. Boyd, Melbourne, Australia), ERTR7 (provided by W.vanEwijk, Utrecht, 

Netherlands), Psmb11 (MBL), Lyve1 (ReliaTech), CR1 (8C12, Becton-Dickinson), Aire 

(5H12, provided by S. Hamish, Adelaide, Australia), PNAd (MECA-79, Becton-

Dickinson), and reactivity to lectin UEA-1 (Reactolab). Alexa-Fluor conjugated anti-

IgG antibodies (Invitrogen) were used as secondary reagents. Images were acquired 

using a Zeiss LSM510. 

 

Flow cytometry, cell sorting and intracytoplasmic staining 

Haematopoietic cells from thymus and spleen were stained with Abs against CD3 

(KT-3), CD4 (GK1.5, BioLegend), CD8 (53-67, eBioscience), CD19 (ID3), CD25 

(PC61.5, eBioscience), CD44 (IM7, eBioscience), CD62L (MEL-14, Becton-Dickinson), 

CD69 (H1.2F3, Becton-Dickinson), CD93 (aa4.1, eBioscience) and IgM (R33.24.12). For 

intracellular staining, cells were fixed and permeabilized using the 

Cytofix/Cytoperm Kit (Becton-Dickinson) and stained for Foxp3 expression (FJK-16s, 

eBioscience). For the analysis of TEC, thymic lobes were cut into small pieces, and 

then incubated at 37°C for 60 minutes in HBSS containing 2% (w/v) FCS (Perbio), 

100µg/ml Collagenase/Dispase (Roche Diagnostics) and 40ng/ml DNaseI (Roche). 

TECs were enriched using AutoMACS (Miltenyi Biotec) and stained for the 

expression of EpCAM (G8.8, DSHB, University of Iowa), CD45 (30F11, eBioscience), 

MHCI (AF6-88.5, Biolegend), MHCII (AF6-120.1, BioLegend), Ly51 (6C3, BioLegend) 

Dll-4 (gift from Robson MacDonald, University of Lausanne) and UEA-1 (Reactolab). 

For intracellular staining, TECs were marked for cell surface molecules, fixed, 

permeabilized (Cytofix/Cytoperm, Becton-Dickinson) and stained with BrdU or Aire-

specific antibodies. Flow cytometric analysis and cell sorting were performed 

(FACSAria) using FACSDiva (Becton-Dickinson) and FlowJo software (TreeStar). 
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MicroRNA detection and gene expression profiling 

Total RNA was isolated from sorted cells with the miRNeasy Mini Kit (Qiagen). The 

QuantiMir RT Kit (System Biosciences) was utilized to analyze the expression of 

specific miRNA. cDNA was assessed by quantitative real-time PCR with SYBR Green 

(SensiMix, Bioline). Primer sequences are available upon request. Gapdh was used as 

an internal control for miRNA and mRNA analysis respectively. The mRNA 

expression profiles in TEC isolate from 2 week old Foxn1Cre::Dicerfl/fl and Dicerfl/fl 

mice were generated using the GeneChip Gene 1.0 ST Array System (Affymetrix). 

The array data were submitted to the ArrayExpress repository under accession E-

MEXP-3303 (Username:Reviewer_E-MEXP-3303 password:aghiiesx). 

 

Bioinformatic and statistical analysis 

Differential expression analysis for mRNA was carried out using Partek® application 

software (www.partek.com) and visualized with Integromics Biomarker Discovery 

for Tibco Spotfire® (www.integromics.com). The gene expression data were 

normalized using Affymetrix Robust Multi-Array Analysis (RMA) and differential 

expression was obtained by analysis of variance (Two-way ANOVA). P-value 

correction for multiple hypothesis was performed with Benjamini-Hochberg´s false 

discovery rate (FDR) (11). Functional analyses of biological processes were 

determined by Genecodis determining the significantly enriched gene ontology 

terms in the list of gene targets (12,13). 

 

BrdU analysis 

Mice were injected intraperitoneally (i.p.) with 1mg BrdU in phosphate buffered 

saline and TECs were analyzed 4 hours later by flow cytometry (see above). 
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Bone marrow chimeric mice 

Sub-lethally irradiated newborn Foxn1Cre::Dicerfl/fl and Dicerfl/fl mice were injected 

i.p. with OT1 transgenic fetal liver cells (2x106) from E13.5-14.5 old embryos. 

Successfully grafted animals (with an average chimerism of at least 30% for OT1) 

were analyzed 4 weeks later. 

 

T-cell depletion 

Two-week old mice were injected i.p. three times every three days with 200µg anti-

CD4 (GK1.5), 100µg anti-CD8 (53-67) and 50µg anti-Thy1.2 (T24), a dose that 

efficiently deplete peripheral T cells. 

 

Fetal thymus transplants 

Thymic lobes were collected from E15.5 embryos and both lobes from a single 

embryo were placed under the kidney capsule of the recipient nu/nu mice. Four 

weeks later, thymic lobes were removed and analyzed. 

 

Statistical analysis 

Statistical analysis was performed using students t-test (unpaired, two-tailed). 

Probability values were classified into four categories: P>0.05 (not significant), 

0.05≥P>0.01 (*), 0.01≥P>0.001 (**) and P≤0.0001 (***). 
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3.1.8 Supplementary Material 
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Supplemental Figure 1. Heterozygous Foxn1-Cre mice display a regular thymus size, cellular 

architecture and function. (A) Immunofluorescence analysis of thymic tissue sections from 

heterozygous Foxn1Cre transgenic (Foxn1Cre/wt) and wild type (wt/wt) mice using antibodies 

specific for ERTR7 to identify fibroblasts; for CK8 and Psmb11 to detect cTEC; and for MTS10, 

CK5, and Aire as well as reactivity with UEA-1 to recognize mTEC. Data are representative of two 

separate experiments with at least three mice each. (B)  Total thymic cell numbers of wt/wt (black 

bars) and Foxn1-Cre/wt (white bars) mice at 3 weeks of age; ns: not significant. (C) Flow cytomet-

ric analysis of TEC (CD45-EpCAM+MHCII+) subpopulations isolated from thymic tissue of 

Foxn1Cre/wt and wt/wt mice. The relative frequency (right panels) and absolute cell numbers (left 

graph) of cTEC (UEA-1-Ly51+) and mTEC (UEA-1+Ly51-) from wt/wt (black bars) and 

Foxn1Cre/wt mice (white bars) are shown. Data indicate the mean ± SD of at least 3 mice per 

group; *denotes p<0.05; ** p<0.01; *** p<0.001. Data are representative of three independent 

experiments. (D) Flow cytometric analysis of thymocyte development using surface markers CD4 

and CD8 (left panels), and markers for positive selection, CD69 and TCRbeta (right panels). The 

relative frequencies of the indicated populations isolated from wt/wt (lower panels) and 

Foxn1Cre/wt mice (upper panels) are shown. Data indicate the mean ± SD of at least 3 mice per 

group; *denotes p<0.05; ** p<0.01. Data are representative of three independent experiments.
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Supplemental Figure 2. Thymic microenvironment of 2 day old (p2) Foxn1-Cre::Dicerfl/fl mice. 
Immuno- fluorescence analysis of thymic tissue sections from p2 Dicerfl/fl or Foxn1-Cre::Dicerfl/fl mice. 

Antibodies were used to identify fibroblasts (ERTR7), cortical (CK8) and medullary (MTS10, CK5) 

TEC. Original magnification 20x. Data are representative of two separate experiments.
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Supplemental Figure 3. TEC phenotype of Foxn1-Cre::Dicerfl/fl mice is uneffected by Cre-mediated recom-
bination in keratinocytes. Fetal thymic lobes from E15.5 Dicer

fl/fl
 or Foxn1-Cre::Dicer

fl/fl
 embryos were trans-

planted under the kidney capsule of nu/nu recipients and grafts were analyzed 4 weeks later. (A) Immunofluores-

cence analysis of thymic tissue sections using antibodies specific for ERTR7 to identify fibroblasts; for CK8 and 

Psmb11 to detect cTEC; and for MTS10, CK5, and Aire as well as reactivity to UEA-1 to recognize mTEC. Data 

are representative of three separate experiments with at least two mice each. (B) Flow cytometric analysis of TEC 

(CD45-EpCAM+MHCII+) subpopulations isolated from thymic tissue grown under the kdney capsule of a nu/nu 

recipient mice. The relative frequency (left panels) and absolute cell numbers (right graph) of cTEC (UEA-1-

Ly51+) and mTEC (UEA-1+Ly51-) from Dicer
fl/fl

 (black bars) and Foxn1-Cre::Dicer
fl/fl

 (white bars) of the 

indicated grafts are shown. Data show the mean ± SD of at least 3 mice per group; *denotes p<0.05; ** p<0.01; 

*** p<0.001. Data are representative of three independent experiments. (C) Flow cytometric analysis of 

lymphopoiesis in the grafts using surface markers CD4 and CD8 for T lineage development (left panels), markers 

for thymocyte positive selection CD69 and TCRbeta (middle panels) and .the expression of CD93 and IgM to 

identify B cell maturation in situ. The relative frequencies of the respective populations for Dicer
fl/fl

 (lower panels) 

and Foxn1-Cre::Dicer
fl/fl

 grafts (upper panels) are shown. Data indicate the mean ± SD of at least 3 mice per 

group; *denotes p<0.05; ** p<0.01. Data are representative of three independent experiments. (D) Hematoxilin 

and eosin (HE) staining of skin sections from 3 week old  Dicer
fl/fl

 or Foxn1-Cre::Dicer
fl/fl 

mice.
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3.2 Aire-expressing thymic medullary epithelial cells originate from 

β5t-expressing progenitor cells 

3.2.1 Introductory notes 

3.2.1.1 Summary 

Staging TEC development, be it during organogenesis or homeostatic maintenance, 

has proven difficult in the past due to the paucity of appropriate cell markers. To 

overcome this limitation a mouse model was created in which we used the cTEC-

specific expression pattern of the thymoproteasome unit β5t to genetically trace cells. 

With this strategy we intended to identify cTEC at very early stages during lineage 

commitment in thymus development. For this reason the sequence for the Cre 

recombinase was placed under the transcriptional control of the Psmb11 locus 

encoding the β5t proteasome subunit. Cre expression was detected only in thymic 

epithelial cells, mostly limited to cTEC, as defined by the expression of EpCAM and 

Ly51 in absence of CD45 and UEA1. Importantly, transcripts for β5t were absent 

from all peripheral organs investigated. Mice homozygous for the knock-in revealed 

a phenotype identical to that observed for conventional knock-out animals, namely a 

specific reduction of post-selection CD4-CD8+ thymocytes, confirming correct 

targeting of the Psmb11 locus. These knock-in mice, designated β5t-Cre, were 

crossed to a ZsGreen reporter line to mark cells that currently or previously had 

expressed β5t. Unexpectedly, we found that all TEC in adult mice expressed ZsGreen 

albeit mRNA specific for β5t and Cre were only detected in cTEC. Hence, cells giving 

rise to the mTEC lineage must have expressed at one point in their development β5t 

as they also express the ZsGreen reporter. We therefore wished to specify the β5t 

expression dynamics during foetal stages. β5t expression was initiated after E11.5 

and almost all TEC expressed the ZsGreen reporter by E12.5. Interestingly, we also 

identified a few ZsGreen-positive cells of this developmental stage that did not 

express the β5t protein. These cells may have expressed the β5t protein not yet at all 

or sufficiently to be detected by immunohistochemistry. Alternatively, these cells 

may again have lost β5t expression and represented a TEC of a development stage 

different from the cTEC lineage. 
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Taken together these observations reveal an unexpected relationship between the 

cortical and medullar thymic epithelial cell lineages, which was previously not 

appreciated. They implied a possible relationship whereby a progenitor expressing 

β5t had the potential to differentiate into the cTEC lineage and maintain β5t protein 

expression or, alternatively, could adopt the mTEC fate, thus suspending β5t protein 

expression but maintaining reporter-positivity. Due to the non-inducible and 

permanent expression of the reporter, the dynamics of this relationship could not be 

further probed. To resolve this issue, another mouse experimental model was 

generated and analyzed (see chapter 3.4). 

 

3.2.1.2 Contribution 

The work described above was a collaborative work between the laboratory of 

Professor Yousuke Takahama in Tokushima (Japan) and our laboratory in Basel 

(Switzerland). Our results were published in 2013 in the Proceedings of the National 

Academy of Sciences of the United States of America (PNAS) (PMID:23720310). 

My contribution to this project was the phenotypic characterization of the thymi in 

β5t-Cre::CAG-STOP-CAG-ZsGreen mouse line by flow cytometry. This included the 

initial analysis of animals in which the targeted Psmb11 locus contained the sequence 

for the Cre recombinase and the neomycin cassette, the latter of which was originally 

required for the generation of these mice. Here we observed an uneven expression of 

the Cre recombinase in TEC, which lead to an inconsistent variability in ZsGreen-

expression on a mouse per mouse basis. Because of this inexplicable phenomenon we 

decided to remove the neomycin cassette by crossing β5t-Cre mice to a transgenic 

mouse line that ubiquitously expressed flippase. The ensuing, neomycin cassette-

deficient, animals expressed Cre more reliably and consistently and were therefore 

used for all experiments in this project. After circumventing this anomaly, I focused 

the analysis on the detection of reporter-positive TEC at various developmental 

stages and on T cell development (to exclude potential functional deficiencies of TEC 

in this transgenic mouse model) (Figure 3 A-B). Finally, although this data was not 

included in the final publication, I analyzed sorted ZsGreen- and + cell populations 
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for the expression of various transcripts to ensure the specificity and reliability of this 

mouse model. All together, my contributions significantly contributed to the 

establishment of the experimental mouse model and the key findings observed in 

that mouse line, and were acknowledged in the final Japanese-Swiss co-publication. 

 

3.2.1.3 Authors and affiliations in the publication 

Izumi Ohigashia,1, Saulius Zuklysb,1, Mie Sakataa, Carlos E. Mayerb, Saule 

Zhanybekovab, Shigeo Muratac, Keiji Tanakad, Georg A. Holländerb,e,2,3, and Yousuke 

Takahamaa,2,3 

 

a Division of Experimental Immunology, Institute for Genome Research, 

University of Tokushima, Tokushima 770-8503, Japan 

b Laboratory of Pediatric Immunology, Department of Biomedicine, University 

of Basel and University Children’s Hospital Basel, 4058 Basel, Switzerland 

c Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-

0033, Japan 

d Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan 

e Department of Paediatrics and the Weatherall Institute of Molecular Medicine, 

University of Oxford, Oxford OX3 9DU, United Kingdom 

 

1 Contributed equally 

 

3.2.2 Abstract 

The thymus provides multiple microenvironments that are essential for the 

development and repertoire selection of T lymphocytes. The thymic cortex induces 

the generation and positive selection of T lymphocytes, whereas the thymic medulla 
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establishes self-tolerance among the positively selected T lymphocytes. Cortical 

thymic epithelial cells (cTECs) and medullary TECs (mTECs) constitute the major 

stromal cells that structurally form and functionally characterize the cortex and the 

medulla, respectively. cTECs and  mTECs are both derived from the endodermal 

epithelium of the third pharyngeal pouch. However, the molecular and cellular 

characteristics of the progenitor cells for the distinct TEC lineages are unclear. Here 

we report the preparation and characterization of mice that express the recombinase 

Cre instead of β5t, a proteasome subunit that is abundant in cTECs and not detected 

in other cell types, including mTECs. By crossing β5t-Cre knock-in mice with loxP-

dependent GFP reporter mice, we found that β5t-Cre–mediated recombination 

occurs specifically in TECs but not in any other cell types in the mouse. Surprisingly, 

in addition to cTECs, β5t-Cre-loxP–mediated GFP expression was detected in almost 

all mTECs. These results indicate that the majority of mTECs, including autoimmune 

regulator-expressing mTECs, are derived from β5t-expressing progenitor cells. 

 

3.2.3 Introduction 

Thymic epithelial cells (TECs) are derived from the endodermal epithelium of the 

third pharyngeal pouch (1-3). Cortical TECs (cTECs) provide a microenvironment 

that induces the generation of T cells and the positive selection of functionally 

competent T cells, whereas medullary TECs (mTECs) essentially contribute to the 

establishment of self-tolerance by the deletion of self-reactive T cells and the 

generation of regulatory T cells (4, 5). The nuclear protein Autoimmune regulator 

(Aire) expressed by a subpopulation of mTECs is essential, especially during the 

perinatal period, for the establishment of self-tolerance in T cells (6, 7). Although the 

importance of the forkhead transcription factor Foxn1 for the development of both 

cTECs and mTECs has been established (2, 8), it remains unknown how the 

endodermal epithelium of the third pharyngeal pouch gives rise to cTECs and 

mTECs. In particular, the molecular and cellular mechanisms underlying the 

separate development of the cTEC and mTEC lineages remain unclear. 
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We previously reported β5t, a proteasome subunit expressed in cTECs (9, 10). β5t is 

pivotal for the positive selection of immunocompetent CD8+ T cells (11, 12). β5t 

mRNA and protein are prominently expressed in cTECs and not detected in other 

cell types, including mTECs (10). To examine whether β5t-expressing cells could 

contribute to the development of cells other than cTECs, we engineered mice in 

which the β5t-encoding genomic sequence was replaced with the sequence that 

encodes the loxP-specific recombinase Cre. Analyzing mice that are crossed to carry 

the β5t-Cre knock-in allele and the loxP-dependent GFP reporter allele, we 

demonstrate that β5t-Cre-loxP–mediated GFP expression is detected in practically all 

cTECs and, surprisingly, in almost all mTECs, including Aire+ mTECs, but not in any 

other cell types in the body. The results indicate that β5t expression is highly specific 

for TECs and that in addition to mature cTECs, β5t is expressed in TEC progenitor 

cells that give rise to mTECs, including Aire+ mTECs. 

 

3.2.4 Results 

3.2.4.1 Generation of β5t-Cre Knock-In Mice. 

We produced β5t-Cre knock-in mice by homologous recombination in embryonic 

stem cells using a gene-targeting vector in that the sole exon sequence encoding the 

β5t gene was replaced with a sequence encoding the codon-improved Cre 

recombinase (Fig. S1). Homologous recombination with the targeting vector was 

confirmed by Southern blot analysis, in which a 5.6-kb BamHI fragment appeared 

after hybridization with a 3′ probe (Fig. S1 A and B) and by PCR analysis of genomic 

DNA through amplification of a recombination-specific 765-bp fragment (Fig. 

S1 A and C). Because the β5t-Cre knock-in allele lacks the sequence encoding β5t 

protein (Fig. S1A), mice homozygous for the β5t-Cre knock-in alleles were deficient 

in functional β5t protein and therefore defective in the generation of CD8+T cells (Fig. 

1A). Identical to previously reported β5t-deficient mice (9, 11), homozygous β5t-Cre 

knock-in mice were defective in the generation of ∼80% of CD4−CD8+ T cell antigen 

receptor (TCR)high mature thymocytes but were comparable to normal mice in the 

generation of CD4−CD8− and CD4+CD8+ immature thymocytes as well as 
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CD4+CD8− TCRhigh mature thymocytes (Fig. 1A). In contrast, mice heterozygous for 

the β5t-Cre knock-in allele showed no alterations or defects in thymocyte cellularity 

(Fig. 1A), in agreement with the normal T-cell development detected in 

β5t+/− heterozygous mice previously produced (9, 11). These results indicate that 

homologous recombination of the genome was successfully engineered to knock in 

the β5t-Cre allele, as designed in Fig. S1A. Because homozygous β5t-Cre knock-in 

mice lacked β5t protein expression and hence were defective in the generation of 

CD8+ T cells, the remainder of this article describes the results obtained from mice 

heterozygous for the β5t-Cre knock-in allele. We first examined the tissue specificity 

of Cre expression in β5t-Cre knock-in mice. In agreement with the highly specific 

expression of β5t gene in cTECs (9, 10), Cre mRNA expression in β5t-Cre knock-in 

mice was specifically detected in cTECs but not in other thymic cell types, including 

mTECs and a population of non-TEC thymic stromal cells (containing fibroblasts and 

endothelial cells) (Fig. 1B). All other tissues tested failed to express Cre mRNA (Fig. 

1B); thus, the specificity of Cre expression in β5t-Cre knock-in mice faithfully 

reproduces the expression specificity of β5t. 
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Figure 3.2-1. β5t-Cre knock-in mice. (A) Numbers (means and SEs, n = 3) of CD4−CD8−, CD4+CD8+, 
CD4+CD8−TCRβhigh, and CD4−CD8+ TCRβhigh thymocytes in 4-wk-old WT (+/+) and β5t-Cre knock-in 
heterozygous (+/Cre) and homozygous (Cre/Cre) mice. *P < 0.005; N.S., not significant. (B) Relative 
mRNA expression of Cre in indicated cells and organs isolated from 4- to 5-wk-old β5t-Cre knock-in 
heterozygous mice. The expression levels (means and SEs, n = 3) of Cre measured by quantitative RT-
PCR were normalized to that of GAPDH and compared with the level measured in total thymic cells. 
(C) Representative flow cytometry profiles of forward scatter intensity and EGFP expression in 
collagenase-digested cells obtained from indicated tissues of 4- to 5-wk-old β5t-Cre knock-in mice and 
β5t-Cre x loxP-EGFP mice. Numbers indicate frequency of EGFP+ cells in total cells. n = 3. 

 

3.2.4.2 β5t-Cre-loxP–Mediated GFP Expression Is Specifically Detected in TECs. 

To trace the developmental potential of β5t-expressing cells in vivo, β5t-Cre knock-in 

mice were crossed with CAG-loxP-stop-loxP-EGFP-transgenic (loxP-EGFP) mice, in 

which EGFP would be ubiquitously expressed under the control of the CAG 

promoter only when the loxP-flanked stop sequences had been excised by Cre 

recombinase (13). In β5t-Cre × loxP-EGFP mice, EGFP reporter expression 

specifically visualizes cells that either express β5t presently or expressed β5t during 
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their development. We initially examined EGFP expression in adult β5t-Cre × loxP-

EGFP mice by flow cytometric analysis of collagenase-digested cells isolated from 

various organs. We found that EGFP+ cells were detected only in the thymus but not 

in any other organs (Fig. 1C). The thymus-specific EGFP expression in β5t-Cre × 

loxP-EGFP mice was confirmed by macroscopic fluorescence observation using a 

transilluminator and by fluorescence microscopy analysis of tissue sections. Within 

collagenase-digested thymic cells, EGFP+ cells were clearly detected in CD326 

[epithelial cell adhesion molecule (EpCAM)]+ TECs but not in CD326− non-TECs, 

indicating that β5t-Cre-loxP–mediated EGFP is specifically expressed in TECs (Fig. 

2A). Immunofluorescence analysis of thymic sections prepared from adult β5t-Venus 

knock-in mice confirmed that only the cortex but not the medulla expressed the 

Venus fluorescence (Fig. 2B). In striking contrast, EGFP expression in the adult 

thymus of β5t-Cre × loxP-EGFP mice was detected throughout the thymus (Fig. 2B). 

Specifically, the EGFP signals not only identified CD249 (Ly51)+ cTECs localized in 

the thymic cortex but also keratin 14 (K14)+ mTECs and keratin 5 (K5)+ mTECs 

localized in the medulla (Fig. 2B). These results indicate that β5t-Cre-loxP–mediated 

EGFP expression is specifically detected in TECs, and surprisingly, in both cTECs 

and mTECs. 
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Figure 3.2-2. β5t-Cre-loxP–mediated GFP expression is detected in mTECs and cTECs. (A) Representative 
flow cytometry profiles of CD326 and EGFP expression in collagenase-digested thymic cells from 6- to 
7-wk-old mice. Thymocytes were depleted from the thymic cells by using magnetic bead–conjugated 
anti-CD45 antibody. Numbers indicate frequency of cells within indicated areas. n = 3. (B) Cryosections 
of the thymus from 6- to 7-wk-old β5t-Venus mice and β5t-Cre × loxP-EGFP mice were analyzed by 
confocal microscopy. Venus expression and EGFP expression are shown in green. Where indicated, the 
sections were also stained for CD249 (Ly51), keratin 14 (K14), or keratin 5 (K5) (red). c, cortex; m, 
medulla. (Scale bar: 75 µm.) Representative results are shown (n = 3). (C and D) Collagenase-digested 
thymic cells from indicated mice were stained with CD326 antibody and propidium iodide (PI) to 
identify CD326+PI− viable TECs (Left). EGFP expression on CD326+ TECs, CD326− non-TEC thymic cells, 
CD326+UEA1+CD205−mTECs, and CD326+UEA1−CD205+ cTECs from 6- to 7-wk-old (C) and 0-d-old (D) 
mice (Center). Numbers in dot plots and histograms indicate frequency within indicated area. 
Frequencies (means and SEs, n = 3) of EGFP+ cells within indicated cell populations (Right). (E) The 
amounts of Cre, β5t, and EGFP mRNAs in EGFP+CD326+UEA1+CD205− mTECs and 
EGFP+CD326+UEA1−CD205+ cTECs obtained from 2- to 3-wk-old β5t-Cre × loxP-EGFP mice were 
measured by quantitative RT-PCR analysis and were normalized to the amount of GAPDH mRNAs. 
Data represent means and SEs of three independent measurements. (F) Flow cytometric analysis of Cre 
expression in CD45−CD326+CD80+CD249− mTECs and CD45−CD326+CD80−CD249+ cTECs from 1-wk-old 
β5t-Cre mice (solid line) or WT mice (dashed line). Data are representative of three independent 
experiments. 
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3.2.4.3 β5t-Cre-loxP–Mediated GFP Expression Is Detected in the Majority of 

mTECs and cTECs. 

The histological analysis (Fig. 2B) indicated that large proportions of mTECs and 

cTECs expressed β5t-Cre-loxP–mediated EGFP. To measure the frequency of β5t-

Cre-loxP–mediated EGFP expression in cTECs and mTECs, collagenase-digested 

thymic cells from β5t-Cre × loxP-EGFP mice were multicolor stained for cell-surface 

markers of cTECs and mTECs. The cells were also stained with propidium iodide to 

distinguish between viable and dead cells. Analyzed by flow cytometry, 

EGFP+ viable cells were detected among TECs (i.e., CD326+ cells) but not CD326− non-

TEC thymic cells from both adult (Fig. 2C) and newborn (Fig. 2D) β5t-Cre × loxP-

EGFP mice but not β5t-Cre mice, confirming our previous results (Fig. 2A). It was 

further found that EGFP expression was detected in the majority of both CD326+Ulex 

europaeus agglutinin 1 (UEA1)+CD205− mTECs and CD326+UEA1−CD205+ cTECs (95 ± 

3% in mTECs and 98 ± 2% in cTECs in adult thymus, n = 3; and 96 ± 1% in mTECs 

and 93 ± 4% in cTECs in newborn thymus, n = 3) (Fig. 2 C andD). These results 

indicate that the majority of mTECs and cTECs in newborn and adult mice exhibit a 

developmental signature that indicates their current or previous expression of β5t. 

Because most cTECs are positive for β5t protein (10), β5t-Cre-loxP–mediated EGFP 

detected in cTECs likely reflects the present expression of β5t in these cells. On the 

other hand, because β5t protein expression is not detected in mTECs (10), the 

detection of EGFP in the majority of mTECs from β5t-Cre × loxP-EGFP mice must 

reflect a previous expression of the β5t gene during development. In keeping with 

this interpretation, mRNA specific for EGFP but for neither Cre nor β5t was robustly 

detected in EGFP+CD326+UEA1+CD205− mTECs isolated from β5t-Cre × loxP-EGFP 

mice, whereas EGFP+CD326+UEA1−CD205+ cTECs isolated from the same mice 

concurrently expressed mRNAs specific for EGFP, Cre, and β5t (Fig. 2E). Moreover, 

Cre protein expression was specifically detected in cTECs but not in mTECs (Fig. 2F). 

These results indicate that the majority of mTECs in newborn and adult mice must 

have previously expressed the β5t gene and that most mTECs must therefore 

originate from cells that express β5t. 
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To independently confirm our results, we crossed the β5t-Cre-knock-in mice to a 

separate reporter mouse strain that carried the CAG-loxP-stop-loxP-Zoanthus green 

(ZsGreen) gene knocked into the Rosa26 locus (14). To ensure that the Cre-mediated 

recombination in mTECs was not an artifactual consequence of the engineered β5t 

locus leaving the neo selection cassette in place, the phosphoglycerate kinase (PGK)-

neo sequence was removed by crossing β5t-Cre mice to Flippase (Flp)-deleter 

animals before breeding to loxP-ZsGreen mice (Fig. S1A). On analysis of the resultant 

β5t-Cre × loxP-ZsGreen mice, we found that ZsGreen was expressed in >99.5% of 

CD326+UEA1−CD249+ cTECs and in >99.5% of CD326+UEA1+CD249− mTECs of the 

adult thymus (Fig. 3A). Moreover, β5t-Cre × loxP-ZsGreen mice displayed normal 

TEC frequencies and a normal distribution of cTECs and mTECs compared with 

control loxP-ZsGreen littermates (Fig. 3A). Both intrathymic T-cell development and 

total thymus cellularity were comparable between β5t-Cre × loxP-ZsGreen mice and 

control loxP-ZsGreen mice (Fig. 3 B and C). Thus, the expression of either Cre or 

ZsGreen did not influence TEC viability and function. Immunofluorescence analysis 

of the thymus tissue sections demonstrated ZsGreen expression that identified most 

β5t protein–expressing cTECs and K14-expressing mTECs to be positive for ZsGreen 

(Fig. 3D). These results confirm that the β5t-Cre-knock-in locus allows faithful 

monitoring of present and past β5t expression and that almost all mTECs are derived 

from cells that previously expressed β5t. 

A small subpopulation (∼5%) of mTECs did not express β5t-Cre-loxP–mediated 

EGFP in β5t-Cre × loxP-EGFP mice (Fig. 2 C and D). However, ZsGreen-negative 

mTECs were barely detectable (<0.5% of total mTECs) in β5t-Cre × loxP-ZsGreen 

mice, indicating that the majority (>99.5%) of mTECs are derived from β5t-

expressing progenitor cells (Fig. 3A). The few EGFP-negative mTECs detected in β5t-

Cre × loxP-EGFP mice may reflect a slightly inefficient detection of fluorescence in 

this particular reporter mouse strain, possibly in part because of the reduced 

brightness and photo-stability of EGFP compared with ZsGreen (15). Indeed, we 

detected comparable amount of EGFP mRNA in EGFP− and EGFP+ mTECs isolated 

from β5t-Cre × loxP-EGFP mice. The expression levels of EGFP and ZsGreen are 

higher in cTECs than in mTECs in both β5t-Cre × loxP-EGFP mice and β5t-Cre × 
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loxP-ZsGreen mice (Figs. 2 and 3). This difference in fluorescence may reflect the 

larger size of cTECs compared with mTECs (16), which in turn accounts for a more 

abundant accumulation of EGFP protein in cTECs than mTECs. 

 

 

Figure 3.2-3. β5t-Cre-knock-in locus allows faithful monitoring of present and past β5t expression. (A) Flow 
cytometric analysis of CD45− CD326+ MHC class II+ TEC subpopulations from 6-wk-old β5t-Cre × loxP-
ZsGreen and loxP-ZsGreen mice. Relative frequencies (means and SEs, n = 3) of all TECs, 
UEA1−CD249+cTECs, and UEA1+CD249− mTECs are indicated in dot plots. Histograms display 
frequencies (means and SEs, n = 3) of ZsGreen-positive cTECs and mTECs. ***P < 0.001; n.s., not 
significant (comparison between β5t-Cre × loxP-ZsGreen and loxP-ZsGreen cells). (B) Flow cytometric 
analysis of thymocytes for the cell surface expression of CD4 and CD8. The cells were isolated from 6-
wk-old loxP-ZsGreen and β5t-Cre × loxP-ZsGreen mice. Numbers denote frequency of cells within 
indicated gates (means and SEs, n = 3). (C) Total cellularity (means and SEs, n = 3) of the thymus in 5-
wk-old loxP-ZsGreen (black bar) and β5t-Cre x loxP-ZsGreen (white bar) mice. n.s., not significant. (D) 
Immunofluorescence analysis of thymus tissues from 6-wk-old β5t-Cre x loxP-ZsGreen mice for the 
expression of ZsGreen (green), β5t (identifying cTEC, red) and K14 (detecting mTECs, red). Data are 
representative of at least two separate experiments using two mice each. (Scale bar: 50 µm.) c, cortex; m, 
medulla. (E) E11.5 embryos of β5t-Cre × loxP-ZsGreen mice and E12.75 embryos of β5t-Cre × loxP-EGFP 
mice were stained with anti-β5t antibody. ZsGreen or EGFP fluorescence (green) and anti-β5t 
immunofluorescence (red) in the pharyngeal region containing the thymic primordium were measured. 
Where indicated, the sections were additionally stained with anti-CD326 antibody (blue). Shown are 
representative results of three independent experiments. (Scale bar: 50 µm.) (F) E12.75 embryos and 
E16.5 embryonic thymuses of β5t-Cre × loxP-EGFP mice were stained with anti-K5 antibody. Shown are 
representative results (n = 3) of EGFP fluorescence (green) and anti-K5 immunofluorescence (red) of the 
thymic primordium (E12.75) and the thymus (E16.5). (Scale bar: 20 µm.) (G) E14.5 embryonic thymuses 
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of β5t-Cre × loxP-ZsGreen mice were stained with anti-K5 antibody. Representative results of ZsGreen 
fluorescence (green) and anti-K5 immunofluorescence (red) are shown (n = 2). (Scale bar: 20 µm.) 

 

3.2.4.4 β5t-Cre-loxP–Mediated GFP Expression Is Detected in Embryonic mTECs. 

EGFP expression in β5t-Cre × loxP-EGFP mice was detectable in TECs as early as 

embryonic day 12.75 (E12.75) (Fig. 3E), approximately half a day after the first 

detection of β5t protein between E12 and E12.5 (10). Interestingly, β5t protein 

expression was undetectable in a minor fraction of EGFP+ cells localized in the 

central region of the E12.75 thymus (Fig. 3E), indicating that a minor fraction of TECs 

localized in the central region of embryonic thymus previously transcribed β5t but 

have terminated β5t expression before E12.75. Indeed, most TECs in β5t-Cre × loxP-

EGFP mice at E12.75 and E16.5 (Fig. 3F) and in β5t-Cre × loxP-ZsGreen mice at E14.5 

(Fig. 3G) that were localized in the central region of fetal thymus and that highly 

expressed the mTEC-associated marker K5 (17, 18) also expressed EGFP and 

ZsGreen, respectively. These results suggest that embryonic mTECs, identified by 

the abundant expression of K5, are derived from β5t-expressing cells. 

 

3.2.4.5 β5t-Cre-loxP–Mediated GFP Expression Is Detected in the Majority of 

Aire+ mTECs. 

Finally, we examined whether Aire-expressing mTECs were derived from β5t-

expressing progenitor cells. In the adult thymus of β5t-Cre × loxP-EGFP mice, we 

found that most Aire+ mTECs were EGFP+ (Fig. 4A). Flow cytometric analysis 

indicated that 97 ± 1% (n = 3) of Aire+UEA1+ mTECs in the adult thymus were 

EGFP+(Fig. 4B). During ontogeny, Aire expression in mTECs was detectable as early 

as E16 (19, 20). We found that most (99 ± 1% and 93 ± 2%, n = 3) Aire+ mTECs at E16.5 

and at postnatal day 1 were EGFP+ (Fig. 4 C–E). These results indicate that the 

majority of Aire-expressing mTECs are derived from β5t-expressing progenitor cells 

throughout ontogeny, including the perinatal period in which Aire expression is 

important for the establishment of long-lasting self-tolerance in T cells (7). The 

expression of EGFP is evident in most mTECs, including the majority of Aire-
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expressing mTECs, indicating that these cells are derived from progenitor cells that 

express β5t. 

 

 

Figure 3.2-4. β5t-mediated GFP expression is detected in the majority of Aire+ mTECs. Cryosections of the 
thymus from 6- to 7-wk-old (A) and E16.5 (C) β5t-Cre × loxP-EGFP mice were analyzed by confocal 
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microscopy. (Scale bars: A, 7 µm; C, 20 µm.) Representative images of EGFP (green) and Aire (red) are 
shown (n = 3). (B, D, and E) Representative flow cytometry profiles of EGFP expression in 
CD45−CD326+Aire+UEA1+ and CD45−CD326+Aire−UEA1+ cells from indicated mice at 5–6 wk old (B), 
E16.5 (D), and 1 d old (E). Numbers in plots indicate frequency within indicated area. Frequencies of 
EGFP+ cells within CD45−CD326+Aire+UEA1+ and CD45−CD326+Aire−UEA1+ cells are plotted (means and 
SEs, n = 3). 

 

3.2.5 Discussion 

The functional importance of mTECs, particularly Aire-expressing mTECs, in the 

establishment of self-tolerance in T cells has been well characterized (6, 21). 

Molecular signals that regulate the development and proliferation of mTECs, such as 

TNF superfamily receptor signals linked with NF-κB transcription factors, have been 

described (5, 22). It has further been established that both mTECs and cTECs are 

derived during embryogenesis from the endodermal epithelium of the third 

pharyngeal pouch (1). However, developmental pathways from the third pharyngeal 

pouch epithelial cells to functionally mature TECs remain largely unclear. Progenitor 

cells capable of giving rise to both cTECs and mTECs are detected in the embryonic 

thymus (23). These TEC progenitor cells were found to express the transcription 

factor Foxn1 (8) and the cell-surface molecule placenta expressed transcript 1 (Plet-1) 

(24). It was also reported that embryonic TECs that highly express Claudins 3 and 4 

contained the developmental potential to give rise to mTECs but not cTECs (25). 

However, TEC progenitor cells that generate the majority of perinatal and postnatal 

mTECs have not been retrospectively characterized. Our results surprisingly 

demonstrate that almost all mTECs, including the majority of Aire-expressing 

mTECs, in embryonic, neonatal, and adult thymus have transiently expressed β5t 

gene. The expression of β5t-Cre must be transient as Cre and β5t transcripts and 

proteins cannot be detected in mTECs. Thus, our results reveal that the majority of 

mTECs originate from progenitor cells that transiently express β5t. 

mTECs promiscuously express tissue-restricted self-antigens, which contribute to the 

establishment of self-tolerance in T cells. Does the β5t-Cre-loxP–mediated EGFP 

expression in mTECs reflect the promiscuous gene expression in mTECs? Using 

single-cell analysis of mTECs, promiscuous expression of tissue-restricted self-

antigens was measured and found to exhibit expression frequencies between 2% and 
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15% at mRNAs and between 1% and 3% at proteins (26, 27). On the contrary, our 

results show that the β5t-Cre-loxP–mediated EGFP expression is detectable in most 

(>90%) mTECs, including Aire+ mTECs and Aire− mTECs (Fig. 4) as well as 

embryonic mTECs (Fig. 3 F and G). In addition, neither β5t nor Cre is detected in 

EGFP+mTECs (Fig. 2 E and F). Thus, it is unlikely that the β5t-Cre-loxP–mediated 

EGFP expression in mTECs results from the promiscuous expression of β5t, Cre, 

and/or EGFP. Rather, the detection of EGFP in mTECs of β5t-Cre × loxP-EGFP mice 

is likely the consequence of β5t expression in precursor cells leading to the 

development of mTECs. 

β5t-Cre-knock-in mice established in this study constitute a potentially useful tool for 

the study of TEC biology. Foxn1-Cre–expressing mice have been widely used for 

Cre-loxP–mediated TEC-targeted gain-of-function and loss-of-function studies 

(28, 29). However, Foxn1 is additionally expressed in the skin epithelium (30, 31). In 

contrast, our results show that β5t-Cre is specifically expressed in TECs but not in 

any other cell types or any other tissues, including the skin. Thus, the β5t-Cre-knock-

in mice serve as a unique tool for TEC-specific genomic manipulations. 

β5t-Cre-loxP–mediated EGFP expression is already detected during thymus 

organogenesis in early mTECs identified by the expression of K5 (Fig. 3 F and G). It 

was reported that K5high mTECs could be detected in the embryonic thymus of 

Foxn1-deficient mice, suggesting that Foxn1 is not required for the divergence of the 

mTEC lineage from bipotent cTEC/mTEC progenitors (18). It could therefore be 

informative to clarify whether progenitor cells that transiently express β5t may also 

be generated without Foxn1, although the Foxn1 dependence of β5t expression (10) 

does not readily allow the identification of these cells and their progeny. 

Nonetheless, because the cellularity and Aire expression of mTECs in β5t-deficient 

mice are not defective or altered (9, 11), it is conceivable that the transient expression 

of β5t during early mTEC development is dispensable for the divergence of the 

mTEC lineage and the consequent development of phenotypically and functionally 

mature mTECs. 
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The detection of β5t-Cre-loxP–mediated EGFP expression already in embryonic 

mTECs points to an early and transient β5t expression during mTEC development. It 

was previously shown that β5t expression is not detectable in the E11.5 thymus 

primordium (10), which expresses Foxn1 and presumably contains early TEC 

progenitor cells. Our results also demonstrate that the β5t-Cre-loxP–mediated 

reporter expression is not detectable in E11.5 thymus primordia (Fig. 3E). These 

findings suggest that β5t is not expressed in bipotent TEC progenitor cells at E11.5 

and that β5t expression is initiated at the stage of TEC differentiation following the 

initial emergence of common TEC progenitor cells but before the detection of mTEC-

restricted progenitor cells. It is possible that bipotent TEC progenitor cells may begin 

coexpressing a set of cTEC-associated genes, including β5t, and a set of mTEC-

associated genes. Once developmental lineage is determined to be either cTECs or 

mTECs, the expression of lineage-compatible molecules may be secured and the 

expression of molecules specific for another lineage may be eventually terminated. 

Alternatively, it is also possible that bipotent TEC progenitor cells may begin 

expressing a set of cTEC-associated genes, including β5t, rather than a set of mTEC-

associated genes. A developmental program driving the cTEC lineage, or the β5t-

expressing lineage, may thus represent a default pathway for TEC development, 

whereas divergence to the mTEC lineage may require additional signals. It is further 

possible that β5t may be transiently transcribed after commitment to the mTEC 

lineage and then terminated during the subsequent differentiation into mature 

mTECs. Nevertheless, our unexpected observation that β5t is transiently expressed 

during early mTEC development precludes the possibility that mTECs are generated 

independent of cTEC-associated genetic programs including the expression of β5t, 

which is essential for cTEC function. 

In conclusion, this study demonstrates that most mTECs are derived from β5t-

expressing progenitor cells. mTECs play an essential role in the establishment of self-

tolerance in T cells that have been newly generated by cTEC-mediated positive 

selection in the cortex, so that mTECs are important only when cTECs are present 

and functional. It can be thus speculated that the development of mTECs may be 

installed as a secondary consequence to the development of cTECs and that the 
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expression of cTEC-associated β5t during the development of mTECs may reflect the 

cTEC origin of mTECs. These speculations are supported by the recent observation 

that Aire-expressing mTECs can be generated upon transplantation of embryonic 

TECs that express CD205, which is highly expressed by adult cTECs but not mTECs 

(32). Consequently, it would be interesting to establish whether the mechanisms for 

the development of mTECs and cTECs are symmetric or asymmetric. Further 

characterization of TEC progenitors at the clonal level and the molecular 

mechanisms driving the development of the two distinct TEC lineages will enhance 

our understanding of how the thymic microenvironment is differentiated into the 

cortical and medullary compartments and how the separate cortical and medullary 

regions are maintained. 

 

3.2.6 Materials and Methods 

Mice 

β5t-Venus knock-in mice (1), CAG-loxP-stop-loxP-EGFPtransgenic mice (2), and 

Rosa26 knock-in mice that were engineered to contain the CAG-loxP-stop-loxP-

ZsGreen sequence (3) were described previously. Flp-deleter (129S4/SvJaeSor-Gt 

(ROSA)26Sortm1(FLP1)Dym/J) mice were obtained from The Jackson Laboratory. 

For developmental staging, the day of the vaginal plug was designated as E0.5. Mice 

were maintained under specific pathogen-free conditions and experiments were 

carried out under the approval of the Institutional Animal Care and Use Committee 

of the University of Tokushima and according to Swiss cantonal and federal 

regulations and permissions. 

 

Generation of β5t-Cre Knock-In Mice 

β5t-Cre targeting construct was prepared by subcloning cDNA encoding the codon-

improved Cre recombinase (iCre, a gift from Dr. R. Sprengel, Heidelberg, Germany) 

into the targeting vector with β5t homology arms (1) containing a PGK-neo cassette 

in a transcriptionally opposite direction that is flanked by flippase recognition target 
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sites. The linearized vector was electroporated into 129xC57BL/6 ES cells and 

correctly targeted clones were identified by PCR and verified by Southern blotting. 

Chimeric mice were generated using standard techniques and further bred to a 

C57BL/6 background. The genotypes of β5t-Cre mice were determined by PCR 

analysis of tail DNA using the following three primers: β5t 5′ untranslated region 

forward primer, 5′-ATCCCTCACCAGCCAATTCCAAAGCC-3′; β5t coding sequence 

reverse primer, 5′- TGGTGCACAGGAATGACCTTCCGT-3′; and iCre reverse 

primer, 5′- GAGATGTCCTTCACTCTGATTC-3′. The amplified products were 

electrophoresed on 1.0% agarose gel and visualized with ethidium bromide. 

 

Immunohistology 

Tissues were fixed in 4% (g/vol) paraformaldehyde, embedded in optimum cutting 

temperature (OCT) compound (Sakura Finetek), and frozen. Thymuses and embryos 

were sliced into 5-µm-thick and 10-µm-thick sections, respectively. The sections were 

stained using antibodies specific for GFP (Invitrogen), keratin (K) 5 (Covance), K14 

(Covance), CD249 (Ly51, eBioscience), CD326 (EpCAM, BioLegend), β5t (1), and 

Alexa Fluor 647-conjugated anti-Aire antibody (eBioscience). Alexa-Fluor conjugated 

anti-IgG antibodies (Invitrogen) were used as secondary reagents. Images were 

analyzed with a TSC SP2 confocal laser-scanning microscope and Leica Confocal 

software (version 2.6, Leica). 

 

Cell Preparation 

Minced fragments of the thymus and other organs were digested with 0.125% 

collagenase D (Roche) in the presence of 0.01% DNase I (Roche), as described 

previously (4). For the analysis and isolation of TECs, CD45+ cells were depleted 

using magnetic bead–conjugated anti-CD45 antibody (Miltenyi Biotech). 

 

Flow Cytometry 
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Multicolor flow cytometry and cell sorting were performed with FACSAria II (BD 

Bioscience). For the analysis of TECs, cells were stained for the expression of CD326 

(EpCAM, BioLegend), CD205 (eBioscience), CD249 (Ly51, eBioscience), and CD45 

(eBioscience) and for reactivity with UEA1 (Vector Laboratories). For intracellular 

Aire staining, cells were surfacestained for CD45, CD326, and UEA1 reactivity, fixed 

in 2% paraformaldehyde, permeabilized with 0.1% saponin, and stained with Alexa 

Fluor 647-conjugated anti-Aire antibody (eBioscience). For intracellular Cre staining, 

cells were surface-stained for CD45, CD326, CD80, and CD249, fixed in 2% 

paraformaldehyde, permeabilized with 0.1% saponin, and stained with biotinylated 

anti-Cre antibody (Covance) followed by allophycocyanin-conjugated streptavidin. 

For the analysis of thymocytes, cells were stained with allophycocyanin-conjugated 

anti-CD4 antibody (BioLegend) and biotinylated anti-CD8 antibody (BioLegend) 

followed by phycoerythrin-conjugated streptavidin. 

 

Quantitative mRNA Analysis 

Total cellular RNA was reverse-transcribed with oligo-dT primer and SuperScript III 

reverse transcriptase (Invitrogen). Quantitative real-time PCR was performed using 

SYBR Premix Ex Taq (TaKaRa) and a 7900HT Sequence Detection System (Applied 

Biosystems). The primers used were as follows: Cre, 5′-

GACTACCTCCTGTACCTGCA-3′ and 5′-GAGATGTCCTTCACTCTGATTC-3′; 

EGFP, 5′-AGCAAGGGCGAGGAGCTGTT-3′ and 5′-GTAGGTCAGGGTGGTCACGA 

-3′; β5t, 5′-CTCTGTGGCTGGGACCACTC-3′ and 5′-TCCGCTCTCCCGAACGTGG-

3′; and GAPDH, 5′-TTGTCAGCAATGCATCCTGCAC-3′ and 5′-GAAGGCCATGCC 

AGTGAGCTTC-3′. The amplified products were confirmed to be single bands by gel 

electrophoresis and normalized to the amount of GAPDH amplification products. 
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3.3 Embryonic medullary epithelial lineage specification is 

characterized by an early down-regulation of classical cortical 

markers 

3.3.1 Introductory notes 

The work in this chapter is based on the observation that TEC precursors to the 

cortical and the medullar lineage express the putative cTEC marker β5t very early 

during thymic organogenesis. Based on this knowledge I am interested to map early 

TEC differentiation and to characterize more precisely the differentiation of specific 

subpopulations than what is currently known. In aggregate, this work narrows 

down the phenotype of progenitor cells at the point of divergence of both individual 

TEC lineages (i.e. cortical and medullar TEC) early during thymus development. 

 

3.3.2 Introduction 

The murine thymus originates from the endodermal lining of the third pharyngeal 

pouch that develops around embryonic day of development (E) 9.5 (1). This early 

anlage at the third pharyngeal pouch gives rise to the parathyroid and the thymus, 

respectively, which are characterized by the expression of Gcm2 from E9.5 onwards 

and Foxn1 starting on E10.5. While Foxn1 is not required for the generation and 

maintenance of thymic epithelial cell (TEC) precursors or the initial steps of TEC 

differentiation, it is required for the proliferation and maturation of those cells by 

driving the expression of attraction, expansion and maturation molecules that are 

required to drive T cell development in the developing thymus (2–4). As a 

consequence of the early expression of Foxn1 during early thymus organogenesis 

cells of hematopoietic origin migrate to the thymus were they directly engage with 

TEC. This contact has been shown to play an important role in mTEC differentiation 

and is in part mediated by signaling through receptors of the tumor necrosis factor 

receptor superfamily such as Receptor Activator of Nuclear Factor κ B (RANK) (5), 

Lymphotoxin β receptor (6–9), and CD40 (5). In addition, several components of the 

canonical and non-canonical NF- κB signaling pathway including relB (10, 11), NF- 



80 

κB-inducing kinase (Nik) (12, 13), IkB kinase (IKK) α (14) and TRAF6 (15) have been 

shown to play essential roles. Furthermore, RANKL and CD40L-mediated signaling 

initiated by lymphoid tissue-inducer cells (LTi) and invariant Vγ5+ dendritic 

epidermal T cell (DETC) progenitors promote proliferation and maturation of mTEC 

progenitor cells (5, 16–18). These two alternative signaling axes are not only 

important for the initial patterning of the mTEC compartment, but probably remain 

important later during thymus homeostasis because continuous RANK and CD40 

engagement (now mainly provided by post-selection thymocytes) maintain the 

mature medullary epithelial compartment since deficiencies in these molecules 

reveal low numbers of the most mature mTEC (18, 19). 

The characterization of early TEC differentiation has been challenging due to the lack 

of appropriate markers. Recently it has been shown that both cortical and medullar 

TEC emerge from cells that express the classical cTEC markers CD205 and β5t (20, 

21). This fits with the previous observations whereby embryonic TEC development, 

when characterized by flow cytometry through the detection of CD205 (a.k.a. 

DEC205, Ly75) and CD40, appeared to pass through a stage of CD205-expression 

(22). The analysis with those markers allowed for the subdivision of developing TEC 

into very immature TEC (CD40- CD205-), cTEC-like progenitor cells (CD40-/lo 

CD205+) and mature mTEC (CD40+ CD205-). Nonetheless, early TEC differentiation 

is still incompletely characterized resulting therefore only in a very coarse “road 

map” of development. Especially intermediate stages of cells committing to the 

medullary TEC lineage have so far not properly been captured as only very few 

markers are currently known to determine individual developmental and 

maturational mTEC stages. Among the reagents in use for this purpose is the Fucose-

binding lectin Ulex europaeus agglutinin 1 (UEA1), which is commonly known as a 

marker for cells that have fully committed to the medullar epithelial lineage. 

Expression of the autoimmune regulator (Aire) in the adult mouse is a feature 

characteristic of very mature mTEC. Curiously, the expressional dynamics of the 

available mTEC markers are only poorly understood during embryonic mTEC 

specification. 
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To contribute to a more detailed description of the individual developmental stages 

in TEC lineage differentiation, I investigated the dynamics of CD205 and CD40 

expression during embryonic mTEC development in combining with various other 

markers that have so far been mainly used to characterize adult TEC in cortex and 

medulla. A special focus was given to characterize the progenitor population from 

which both thymic epithelial lineages emerge. 

 

3.3.3 Results 

3.3.3.1 Dynamic phenotypic change of TEC during embryonic mTEC differentiation 

I set out to characterize early TEC differentiation through the means of flow 

cytometry, as this technique offers the advantage to measure the relative expression 

of several markers on a per-cell basis and in parallel offers the possibility to perform 

quantitative analyses at the population level. Investigations to analyze TEC 

phenotypes at time points earlier than E15.5 used C57Bl/6 mice and required owing 

to the low TEC cellularity the pooling of individual lobes. Mice expressing the green 

fluorescent protein under the transcriptional control of the Aire promoter 

(designated Aire-GFP) were time-mated and analyzed at embryonic day (E) 15.5, 

16.5 or 17.5. 

At E14.5, the thymus contained a high proportion of TEC (~38%) (Figure 1A). This 

proportion continuously diminished reaching a frequency of 4% in embryos at E17.5 

and of ~0.2% in 5 week old mice (Chapter 2, Figure 3A). This decrease in relative TEC 

cellularity in the course of intrauterine and early postnatal development was 

paralleled by a massive increase in the absolute (and hence also relative) number of 

cells of hematopoietic origin (i.e. CD45+) (Figure 1A). To investigate thymic epithelial 

development during these dynamic changes, we examined TEC for the expression of 

CD40 and CD205 (Figure 1B, upper panel). At E14.5 most TEC revealed a CD40-/lo 

CD205+ immature phenotype compatible with a presumed cTEC identity and in 

accordance with previous reports (22). During E15.5-17.5, TEC begun to upregulate 

CD40 and to downregulate CD205 cell surface expression resulting in a phenotype 
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commonly associated with mature mTEC in the adult mouse. In parallel with this 

maturational change, fewer TEC displayed the immature CD40- CD205- and CD40- 

CD205+ phenotypes. The growth of distinct medullary islets becomes clearly visible 

between E14.5 and E17.5 when TEC with medullary phenotype can be first detected. 

To investigate early mTEC differentiation we further analyzed TEC for their 

reactivity with UEA1, a fucose binding lectin reactive during development and with 

most adult mTEC, and the expression of CD40. The combined use of these markers 

allowed to characterize mTEC into several, distinct subpopulations. Importantly, the 

absolute and relative number of UEA1+ cells expanded during thymus 

organogenesis parallel with the increase in mTEC cellularity (Figure 1B, lower panels). 

Differentiation and proliferation of mTEC during embryonic development are 

known to be dependent on signals originating from the hematopoietic compartment 

(5, 6, 9); conversely thymocyte differentiation requires signals from TEC. This bi-

directional dependence has been termed ‘thymic cross-talk’ and concerns signals 

mediated by both cell-surface and soluble molecules (23, 24). It is therefore not 

surprising that physical TEC::thymocyte-complexes have been identified of the adult 

thymus that persist after enzymatic digestion (25, 26). Imaging by ImageStreamX 

(Imaris), a newer technology combining multi-channel flow cytometry and high-

resolution microscopy, indeed confirms the existence of these multi-cellular 

complexes and reveals large, single cTEC (CD45- EpCAM+ MHCII+ UEA1-) that 

contain more than 10 thymocytes (CD45+ EpCAM- CD4+) (data not shown). These 

complexes are therefore positive for EpCAM and CD45 expression, two mutually 

exclusive markers as they stain in the mouse exclusively epithelial and hematopoietic 

cells, respectively. As specific cell aggregates have not yet been investigated in the 

embryonic thymus we studied their presence, phenotype and composition 

throughout foetal life. We found that CD45+ TEC, comparing to the EpCAM+ CD45- 

population (Figure 1B), expressed higher levels of CD40 and lower levels of CD205, 

and therefore resembled developing TEC directed towards the mTEC lineage (Figure 

1C, upper panels). Moreover the proportion of TEC expressing the mTEC-associated 

lectin UEA1 was significantly higher in those associated with thymocytes and 
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increased during development (Figure 1C, lower panels). These findings suggest that 

developing mTEC engage tightly with thymocytes during differentiation. 

 

    

Figure 3.3-1. Dynamic surface phenotypic changes of thymic epithelial cells during embryonic TEC 
differentiation. (A) Flow cytometric analysis of total thymic cell at E14.5 (pooled analysis of approx. 70 
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C57Bl/6 embryos), and E15.5, E16.5 and E17.5 (representative plots of single Aire-GFP embryos) for the 
expression of CD45 and EpCAM. (B) Analysis of mice described in (A) for the detection of CD40, CD205 
and UEA1 in CD45- EpCAM+ thymic epithelial cells. (C) Comparative analysis to (B) for CD45+ 
EpCAM+ TEC-thymocyte complexes. 

 

3.3.3.2 Embryonic transcription of the Aire locus is initiated during commitment 

to mTEC lineage 

The expression of the autoimmune regulator (Aire) facilitates the expression of 

tissue-restricted antigens (TRA) that represent a large portion of the genetic self (27). 

The precise time point at which point Aire expression is initiated during TEC 

differentiation in the embryonic thymus has not yet been determined. We used a 

mouse model (named Aire-GFP) to investigate the emergence of Aire positive mTEC 

in which the fluorochrome GFP is knocked expressed under the transcriptional 

control of the Aire locus and therefore under the transcriptional control of the native 

Aire promoter (27). At E15.5 and E17.5, most Aire-GFP expressing TEC belonged to 

the  mTEC with a CD40int/hi CD205lo UEA1+ phenotype but typically could not be 

detected  among CD40-/lo CD205+ UEA1- TEC (Figure 2A). Further, the expression 

level of Aire-GFP, as measured by geometric mean fluorescence intensity (gMFI), 

increased in mTEC subpopulations that displayed higher UEA1 reactivity but lost 

their CD205 expression. These phenotypic changes indicated that the expression of 

the Aire surrogate GFP correlated with advanced maturation along the mTEC 

lineage (Figure 2B). Since Aire protein expression is uniquely expressed among TEC 

in medullary epithelia GFP+ cells had also lost the phenotypic markers characteristic 

of cTEC. The acquisition of typical mTEC features was also associated with a 

downregulation or overt lack of other markers typically identifying immature TEC 

apparent at E14.5 when cells with an intermediate expression of CD40 and UEA1 

began to downregulate CD205 and β5t, two typical features of the cTEC lienage. 

These two markers were found to be mostly absent in the more mature population 

marked as CD40int and UEA1hi (Figure 3). In aggregate, these results suggest a 

gradual transcriptional change in cells that enter the mTEC lineage (i.e. CD40int 

UEA1int). 
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Figure 3.3-2 Transcription of Aire-GFP is initiated during early embryonic mTEC differentiation. (A) Aire-GFP 
mice were time-mated and collected 15 (left panels) and 17 days (right panels) after detection of vaginal 
plug that marks E0.5. Flow cytometric analysis was performed for the detection of CD40, CD205 and 
UEA1 in Aire-GFP+ TEC (CD45- EpCAM+). (B) Analysis of Aire-GFP expression levles detected as the 
geometric mean fluorescence intensity (gMFI) in the E17.5 embryos described in (A). Columns represent 
the corresponding gates shown in (A) (right panels upper and lower plots). (C) Detection of CD205 and 
intracellular β5t by flow cytometry in E14.5 C57Bl/6 TEC (CD45- EpCAM+), subdivided into groups 
determined by the expression of CD40 and UEA1. All plots show the results of single mice 
representative for that age. 

 

3.3.4 Discussion 

The phenotypic dynamics during embryonic TEC development and lineage 

specification are still only partially characterized. Recent publications have shown 

that the majority of TEC are derived in the embryo from progenitor cells that express 

the classical cTEC markers β5t and CD205 (20, 21). The results presented here expand 

these findings employing now the prototypical mTEC markers UEA1 and Aire, and 

specify a developmental stage (and hence cellular phenotype) where the cTEC and 
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mTEC lineage diverge. Stages of embryonic mTEC development have classically 

been subdivided based on the cell-surface detection of CD40 and CD205 into three 

consecutive populations, CD40- CD205-, CD40-/lo CD205+, and CD40int/hi CD205-, 

but failed to identify the point at which the two distinct lineages diverge. Using these 

two markers together with β5t, UEA1 and Aire we were able to further subdivide 

embryonic TEC differentiation into 7 stages (Figure 3). Stage I is characterized by the 

lack of expression of characteristic features of cortical (CD205) and medullary TEC 

(CD40, UEA1 and Aire). As this stage simultaneously expresses EpCAM and β5t, I 

conclude that most of these cells are TEC that have committed to a cortical fate. The 

transition to stage II is defined by the acquisition of CD205 positivity, a feature in 

keeping with the observation that almost all TEC originate form CD205+ precursors 

(21). Most, if not all, TEC are derived from cells that have originally adopted a cTEC-

like phenotype (as obviated by β5t expression) though some maintain for a time a bi-

lineage (20). Whether this population also encompasses cells with a unique cTEC 

developmental fate will only become established once single cell grafting 

experiments have been achieved that allow a clonal analysis of these cells. From 

stage III on all cells display at least low expression levels of CD40, a receptor 

triggering the canonical NF-κB pathway that is especially required for mTEC 

maturation. The emerging responsiveness to signals through this pathway renders 

cells increasingly susceptible to adopt a medullar fate. Additionally, RANK and 

LTβR could be upregulated together with CD40, as they have also been implicated in 

mTEC maturation, but this co-expression still needs to be experimentally proven. 

Intermediate levels of CD40 mark cells at stage IV, which probably represents the 

last population lacking the mTEC markers UEA1 and Aire. From stages III and IV 

onwards, TEC are more complexed with CD45+ cells. With the notion that these cells 

provide the required ligands (i.e. CD40L and RANKL) for mTEC-progenitors to 

expand and mature, it seems plausible that the close physical contact between 

developing thymocytes and mTEC identifies the earliest point of mTEC 

differentiation. However, this relationship has only recently been observed and 

needs further investigation, including the identification of the CD45+ cells associated 

with stage IV cells, time point of emergence of this aggregates during embryonic 



87 

development, and validation (possibly by imaging flow cytometry) that these are 

real cell aggregates and not artifacts resulting from the TEC isolation protocol. 

Indeed, the phenotypic changes observed from stage V on TEC strongly suggests 

that these cells have irreversibly committed to the medullar lineage. The 

downregulation of strict cTEC markers CD205 and β5t, and the concomitant 

upregulation of UEA1 and, in some cells, Aire certainly supports this argument. 

Lastly, stages VI and VII appear to mark the final differentiation stages in the path 

leading to a mature mTEC phenotype, as they have been shown to express the mTEC 

lineage-associated genes Claudin-3, Claudin-4, RANK, Cathepsin-S and Aire (22). 

Taken together, the results presented here reveal a complex developmental program 

of mTEC during thymus organogenesis at mid to late gestation. Further analyses will 

have to identify the transcriptional identity of each of these subpopulations. With a 

clear phenotype of the TEC progenitor cells it will be possible to investigate whether 

corresponding cells can be found in the adult mouse, where it is currently unknown 

if TEC progenitor cells to both lineages are present at all. Of special interest are the 

cells at stage IV, which characterize the point of TEC lineage divergence. The 

CD40lo/int character of these cells could potentially render them susceptible to 

CD40L, Rank and LTβ signals provided by hematopoietic cells and required to 

establish a regular thymic medulla. But which TEC subsets exactly participate in this 

initial engagement and why other cells stay within the cTEC lineage remains unclear. 

Analyses by imaging flow cytometry using markers identifying LTi and Vγ5 cells 

will help to identify the precise hematopoietic cell type that is aggregated with 

developing mTEC. Apart from CD40, alternative receptors of the canonical and non-

canonical NF-κB pathway might be important in this process including RANK and 

LTβR, whose expression levels within each of the seven developmental stages of TEC 

still have to be assessed. Cells at stage IV are of special interest because they may 

contain a high number of mTEC progenitors. A close phenotypic characterization of 

this population could potentially reveal the identity of mTEC progenitor cells that as 

of now remains elusive. Once this cell type is identified, it will be interesting to 

investigate adult thymi for their presence, and if present, to test their regenerative 

potential in the adult mouse. This could potentially lead to treatments where genetic 
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defects in the tolerance-inducing mTEC compartment can be repaired and 

autoimmune diseases permanently cured. 

 

 

Figure 3.3-3 Overview of TEC markers expressed in the seven stages of embryonic mTEC differentiation. 
Description of mTEC differentiation stages contained within individual gates of the flowcytometric 
plots described in Figures 1 and 2 (upper panels). Table showing the expression of 5 markers in each of 
the seven mTEC differentiation stages. 

 

3.3.5 Materials & Methods 

Mice 

C57Bl/6 mice were obtained from Janvier Laboratories. Aire GFP-mice have been 

previously described (27). Developmental staging was determined by the detection 

of a vaginal plug at 0.5 days post conception (dpc). All mice were kept in specific-

pathogen-free conditions and in according to institutional and cantonal guidelines. 
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Flow Cytometry 

Cells were isolated by exposing embryonic thymic lobes to CollagenaseD and DNase 

I for 30 min and then incubated with antibodies specific for CD45 (30F11; 

eBioscience), EpCAM (G8.8; DSHB, University of Iowa), CD40 (HM 40-3, 

BioLegend), CD205 (NLDC-145, BioLegend) and UEA-1 (Reactolab). For intracellular 

staining, cells were fixed, permeabilized (Cytofix/Cytoperm Kit, BD Biosciences) and 

labelled for the expression of Psmb11 (MBL). Stained samples were acquired on a 

FACSAria II flow cytometer and the data was analyzed using the FlowJo (Treestar) 

software. 
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3.4 Spatio-temporal contribution of single β5t+ cortical epithelial 

precursors to the thymus medulla 

3.4.1 Introductory notes 

3.4.1.1 Summary 

Based on the previous results made with the β5t-Cre mouse and the analysis of the 

phenotypic dynamics during embryonic development we were interested in 

investigating whether the activity of β5t+ mTEC progenitors is limited during early 

thymus organogenesis, or alternatively, can also be observed during later stages of 

development. We therefore created a new experimental mouse model in which the 

reverse tetracycline transactivator (rtTA) gene was expressed under the 

transcriptional control of the Psmb11 locus. These mice were then crossed to animals 

transgenic for the Cre recombinase (and Luciferase) whose expression is under the 

control of a Tetracycline Response Element (TRE) (named LC1). Double mutant mice 

were then bred with ZsGreen reporter mice to gain a tissue (i.e. TEC)-specific, 

inducible reporter system (designated 3xtgβ5t). In a first series of experiments, 3xtgβ5t 

embryos were exposed to Doxycycline (Dox) from the 7th day post-conception (dpc) 

to birth exposing the mothers to the drug in the drinking water. 80% of cTEC and 

mTEC of treated newborn mice were ZsGreen positive indicating that progenitors to 

both TEC compartments had successfully recombined the stop cassette in front of the 

ZsGreen reporter allowing the cells to be labeled. Labelled TEC could be detected at 

high frequency and in absence of Dox for at least 40 days after birth, demonstrating 

the maintenance of the epithelial stroma over long period of time with cells derived 

from a β5t-positive precursor. The slightly lower recombination frequency of 80% 

when compared to 99% of β5t-Cre::ZsGreen mice identified however a limitation in 

labeling efficiency in utero. Nonetheless, these experiments demonstrated the 

specificity of labeling because expression of ZsGreen in cells other than TEC coud 

not be observed in these mice. I next investigated mice in which thymic 

morphogenesis had changed to a maintenance stage with an established cortico-

medullary distinction. For this purpose, 5 week old mice were chosen and treated 

with Dox for 24 hours. The frequency of ZsGreen+ cTEC was approximately 5% 
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within 2 days after drug treatment and its frequency increased to 8-10% after one 

week, a value that remained unchanged for the following 20 weeks. Though lower 

than expected, the percentage of ZsGreen+ TEC persisted unchanged for at least 20 

weeks after drug treatment. The consistent presence of ZsGreen+ cTEC weeks after 

Dox treatment and the established half-life of cTEC of this age of typically 1-2 weeks, 

would strongly argue that labeled cells represented a long-lived and stable 

population. In immunohistochemial analyses of thymic cross-sections, cTEC and 

mTEC were distributed throughout the entire thymus at all time points investigated. 

The lack of ZsGreen+ cTEC and mTEC cell clusters even at 20 weeks after induction 

of recombination suggested that none of these labeled cells participated in 

maintaining their respective compartment in a large scale. Taken together, these 

results implied that the genetic labeling of TEC through β5t did not preferentially 

label TEC progenitors of either compartment. In contrast to the frequency of labeled 

cTEC, only 1-2% of the mTEC in 5-week-old 3xtgβ5t mice expressed ZsGreen 2 days 

after Dox treatment. This low percentage only marginally increased with time to 2-

3%, a frequency that persisted at least for 20 weeks following drug treatment. The 

detection of reporter-positive mTEC shortly after treatment was of surprise because 

β5t protein detection in adult mice is restricted to the cortex. Since mTEC 

promiscuously express almost all protein-coding genes for the purpose of efficient 

thymus negative selection of self-reactive T cells, we tested whether the expression of 

β5t could be part of the promiscuous gene expression program. Consequently, 

labeling of mTEC would result from the cells’ unique ability to express an almost 

complete range of tissue-restricted antigens (TRA). Labeled mTEC displayed in 

comparison to unlabeled mTEC higher levels of MHCII and Aire expression, which 

identifies them as mature. Transcript analysis in wildtype MHCIIlo and MHCIIhi 

mTEC revealed that β5t is expressed in parallel with Aire together with Aire. 

MHCIIlo and Aire-deficient mTEC revealed markedly reduced espression in contrast 

to MHChi mTEC. Hence β5t is expressed as part of the Aire-dependent promiscuous 

TRA expression program. Single cell transcriptomic analyses confirmed these results 

revealing 4 out of 174 mTEC to contain β5t transcripts and a general transcriptomic 

landscape that resembled the one of mature mTEC. Taken together, these results 
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showed that mTEC responded to Dox because they expressed β5t as part of their 

pGE program. 

In adult mice with a fully mature thymic architecture, only low recombination 

efficiency could beachieved for cTEC and mTEC in mice treated with Dox. This 

result was unlikely caused by a lack of β5t progeny contributing to more mature 

epithelia. Rather, changes in pharmacodynamics of Dox distribution could account 

for this finding. I therefore investigated on e week old mutant mice as the thymic 

architecture is still being established. For this purpose, mice were treated with a 

single i.p. injection of Dox and analysed at different time points thereafter. At least 

half of all cTEC were labeled in these animals 2 days after Dox treatment and this 

significant frequency persisted for at least 20 weeks. In contrast, only 2% of all mTEC 

expressed ZsGreen 2 days after Dox treatment, a frequency that was similar to that in 

5-week-old mice. However, the frequency of ZsGreen+ cells continuously increased 

in mutant mice that had been treated at one week of ate reaching a maximum of up 

to 50% 8 weeks after treatment. This increase paralleled the general growth of the 

mTEC compartment and suggested that β5t+ cells were contributing to the postnatal 

expansion of the medulla. BrdU incorporation experiments showed that ZsGreen+ 

mTEC at 2 days after the initial Dox exposure incorporated lower amounts of BrdU 

comparing to ZsGreen- cells, possibly due to the fact that those cells were 

recombined as a result of expressing β5t as part of their Aire-controlled promiscuous 

gene expression program and which is known to occur in mature and less 

proliferating cells. Investigating mice at 10 days after Dox treatment I noticed that 

ZsGreen+ mTEC incorporated significantly more BrdU when compared to ZsGreen- 

mTEC. This difference likely reflected the cell’s active expansion and hence 

contribution to the medulla. Though, ZsGreen+ mTEC 2 days after Dox treatment 

were regularly distributed throughout the medulla , labeled cells 2 weeks after drug 

exposure had formed clusters along the cortical-medullary junction (CMJ). These 

aggregates were clonal in origin as they expressed only a single fluorochrome when 

the ZsGreen was replaced by the confetti locus. This construct contains four different 

fluorescent proteins (CFP, GFP, YFP and RFP) but cells express upon Cre-mediated 

removal of a stop cassette only a single “color” in their progeny. The results obtained 
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in 3xtgβ5t mice treated at one week of age with a single Dox dose demonstrated the 

contribution of β5t+ progenitor cells to the medulla, which resulted in a progressive 

increase of their progeny over time. To reveal the developmental potential of cTEC 

that labeled early after Dox treatment, we isolated ZsGreen+ cTEC and mTEC from 9 

day old mice that had been treated with Dox 2 days earlier. Reaggregation of these 

cells with wild-type C57Bl/6 mouse thymic stroma taken from E14.5 embryos, so 

called reaggregate thymic organ cultures (RTOC), were cultured for 24 hours in vitro 

and then transplanted under the kidney capsule of athymic nude mice. Five weeks 

later, the grafts were analysed. RTOC incorporating ZsGreen+ cTEC contained 

reporter-positive cell clusters both in the cortex (as expected) and in the medulla, 

although in the latter compartment at variable frequency. ZsGreen+ mTEC expressed 

CK14 and Aire and were therefore displayed characteristic features of mature mTEC. 

In comparison, RTOC formed with ZsGreen+ mTEC had generated only very few 

ZsGreen+ cells that were located in rare clusters, similarly to the ones observed in 

RTOC containing ZsGreen+ cTEC. 

Taken together, we found that β5t+ TEC progenitor cells actively contribute to the 

formation of the medulla during embryonic and postnatal thymus development. 

Moreover, we localize the postnatal medullar growth zones and therefore by proxy 

the position of the mTEC progenitor to the CMJ. Lastly, we show that the progenitor 

cell can be transplanted with sorted cTEC, suggesting a progenitor-progeny 

relationship between a β5t+ precursor and mTEC that are devoid of this 

characteristic cortical marker. A precise phenotype that unequivocally identifies this 

cortical progenitor awaits further studies. Moreover, future future analyses will have 

to show whether these cells are quiescent or even absent in the adult mouse, an 

aspect that could be of interest in the context of Regenerative Medicine. 

 

3.4.1.2 Contribution 

The work described above reflects a body of work to which several have contributed. 

Together with a colleague I was responsible for the planning of the experiments and 

the treatment of mice. Moreover, I analyzed TEC in 3xtgβ5t mice by flow cytometry 
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(Figures 1B-C, 2A, 3A, 3E, 4A-C, Supplementary Figure 1B-C, 3), sorted TEC 

subpopulations and tested those cells for the expression of various transcripts 

(Figure 5A, Supplementary Figure 4A). Further addition I isolated TEC from 3xtgβ5t 

mice and C57Bl/6 embryonic mice, generated the RTOC and assisted in the 

transplantation of said RTOC under the kidney capsule of nude mice. Finally I 

conducted the immunohistological and microscopic (Figures 5B-C, Supplementary 

Figure 1A, 4B) analysis of the ensuing ectopic thymi. These contributions were 

considered significant so that I was acknowledged as a co-first author of the 

manuscript that has now been submitted for publication. 
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3.4.2 Abstract 

Intrathymic T cell development is critically dependent on cortical and medullary 

thymic epithelial cells (TEC). Both epithelial subsets originate during early thymus 

organogenesis from progenitor cells that express the thymoproteasome subunit β5t, a 

typical feature of cortical TEC. Using in vivo lineage fate mapping, we demonstrate 

that β5t+ TEC progenitors give rise to the medullary TEC compartment early in life 

but significantly limit their contribution once the medulla has completely formed. 

Lineage- tracing studies at single cell resolution demonstrate for young mice that the 

post-natal medulla is expanded from individual β5t+ cortical progenitors located at 

the cortico-medullary junction. These results therefore not only define a 

developmental window during which the expansion of medulla is efficiently enabled 

by progenitors resident in the thymic cortex, but also reveal the spatio-temporal 

dynamics that control the growth of the thymic medulla. 

 

3.4.3 Introduction 

The thymus provides the physiological microenvironment for the development of T 

lymphocytes and is therefore essential for the immune system's ability to distinguish 

between vital self and injurious non-self. Essential for this competence are thymic 

epithelial cells (TEC), which classify into separate cortical (c) and medullary (m) 

lineages with specific molecular, structural and functional characteristics (1). cTEC 

attract blood-borne precursor cells, commit them to a T cell fate and foster their 

differentiation to a developmental stage at which individual immature T cells 

(designated thymocytes) express the T cell antigen receptor (TCR). Because the TCR 

specificity is generated pseudo-randomly during thymocyte development, its utility 

for a given individual will need to be assessed. cTEC positively select thymocytes 

that express a TCR with intermediate affinity for the peptide/MHC complexes on 
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their surface for survival and further maturation (2). In contrast, mTEC - in 

collaboration with cTEC, dendritic and other hematopoietic cells situated in the 

thymic medulla - mediate negative selection through apoptosis, thus removing 

thymocytes that recognize self-antigens with high affinity (3–5). The selection of 

thymocytes by both cTEC and mTEC depends on their collective ability to 

promiscuously express transcripts encoding almost all ubiquitously and tissue-

restricted proteins (6) thus enabling these cells to instruct a functional yet self-

tolerant T cell repertoire. 

Both TEC lineages are derived in the embryo from a common epithelial 

stem/progenitor population (7–10). Its further differentiation initially leads to a cell 

stage that simultaneously expresses markers characteristic for either cortical and 

medullary TEC lineages (11, 12). This finding contests a developmental model in 

which bi-potent stem/precursor cells lacking cortical or medullary hallmarks 

segregate synchronously into the two different TEC lineages (13). An overlap in the 

expression of lineage-specific marks is also observed in transgenic lineage tracing 

studies (14) where the vast majority of mTEC derive from progenitor cells expressing 

the cTEC prototypical marker Psmb11, which is encoded by the β5t locus. 

Experimental evidence further suggests that epithelial cells with a bi-potent, self-

renewing capacity persist after birth and can give rise to both TEC lineages (15–17). 

Whether these cells concertedly and unremittingly contribute to both TEC 

subpopulations, or, alternatively, whether one lineage is maintained after a specific 

point in time independent of the other owing to lineage-restricted precursors 

remains unresolved. It is certainly conceivable that TEC stem/precursor cells display 

a developmental behaviour alike that observed in other epithelial organs where bi-

potent cells initially establish a multi-lineage epithelial structure that is later 

maintained by lineage-specific, uni-potent progenitors (18). Lineage-restricted 

progenitors within the medullary and cortical compartments have indeed been 

identified using different experimental approaches including in vivo cell lineage 

studies (15, 19–22) although neither their proportion nor functional importance have 

so far been defined. 
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The precise precursor-product relationships between each TEC lineage are still 

incompletely understood. To resolve this issue, we have developed a novel in vivo 

lineage-tracing model that allows the marking of β5t+ cTEC in an inducible fashion 

and thus can assess the cells’ developmental potential at distinct postnatal stages. 

Here we report that β5t+ cTEC at the cortico-medullary junction of one-week old 

mice serve as an efficient progenitor for the mTEC lineage. Contributions from these 

precursors to the medulla are multi-clonal for individual medullary islands. 

However, once the medulla has reached its normal cellularity in the postnatal 

thymus, the differentiation potential of β5t+ precursors to mTEC lineage is markedly 

restricted. 

 

3.4.4 Results 

3.4.4.1 Adult cortical and medullary thymic epithelia are derived from embryonic 

β5t expressing precursors  

Given the unexpected finding that embryonic TEC precursors for both the cortical 

and medullary lineages express β5t (14), we set out to further identify these cells and 

their developmental potential throughout the life course of the mouse. For this 

purpose, we created a new mouse line (designated β5t-rtTA) that expresses the 

reverse tetracycline transactivator (rtTA) under the transcriptional control of the β5t 

locus (psmb11; Figure 1A). Correctly targeted mice were crossed to animals 

transgenic for LC1 and the conditional ZsGreen reporter (23, 24). Treatment of these 

triple transgenic mice (designated 3xtgβ5t) with doxycyline (dox) produces dox/rtTA 

complexes that bind to the tetracycline response element (TRE) upstream of the LC1 

transcription unit and consequently drive the expression of Cre. As a result, the stop 

cassette in the reporter construct is removed and the transcription of the fluorescent 

protein ZsGreen is enabled identifying β5t-expressing TEC and their progeny 

(Figure 1A, lower panel). 

Treating 3xtgβ5t mice from embryonic day 7.5 (E7.5) until birth with dox resulted in 

the expression of ZsGreen in the vast majority of cortical (i.e. EpCAM+ Ly51+ UEA1- 
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CD45-) and medullary TEC (EpCAM+ Ly51- UEA1+ CD45-) (Figure 1B and 1C). The 

frequency of labelled epithelia was comparable for both anatomical compartments 

and remained largely unchanged during the first 40 days of postnatal life, which 

includes a phase of significant organ growth. ZsGreen expression was, however, not 

detected in haematopoietic and non-epithelial stromal cells of treated 3xtgβ5t mice 

(Figure 1B) and, likewise, labelling was absent from TEC of untreated triple 

transgenic mice excluding transgene ‘leakiness’ as an explanation for these results 

(Figure S1). In aggregate, these findings suggested the existence of a collective of β5t-

positive precursors in fetal mice from which both cTEC and mTEC originate, 

extending previous results (14). 

 

 

Figure 3.4-1. Tissue and time controlled expression of the reporter ZsGreen in thymic epithelial cells. (A) 
Description of the targeting strategy to achieve rtTA expression under the transcriptional control of the 
β5t locus and a cartoon depicting the design of β5t promoter driven TEC specific labeling in the triple 
transgenic mice designated 3xtgβ5t. (B, C) Flow cyctometric and immunofluorescent analyses of thymic 
tissue isolated from mice treated with Dox from embryonic day (E) 7.5 until birth. (B) The left panel 
depicts the flowcytometric analyses of epithelial (EpCAM+CD45-), haematopoietic (EpCAM-CD45+) and 
non-epithelial stromal (EpCAM-CD45-) cells 2 days after treatment. The ZsGreen expression is shown in 
the middle panels for each of the separate cell populations identified in the left panel. The right panel 
demonstrates immunofluorescence analysis of ZsGreen expression in combination with CK8 (blue) and 
CK14 (red). The data shown is representative of 2 independent experiments. (C) Flow cytometric 
analysis of cTEC (EpCAM+Ly51+UEA1-CD45-) and mTEC (EpCAM+Ly51-UEA1+CD45-) for expression of 
MHCII and ZsGreen 2 days and 4 weeks after treatment (left panels). Frequencies of ZsGreen positive 
cTEC and mTEC detected at indicated days after Dox treatment are displayed in the right panel. The 
graph is representative of 2 independent experiments with at least 3 mice per time point. *p<0.05. 
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3.4.4.2 Time controlled and tissue specific labelling of adult cTEC in triple 

transgenic mice 

We next determined whether a comparable precursor-progeny relationship exists for 

the postnatal thymus. For this purpose, 5-week old 3xtgβ5t mice were treated with 

dox for 24 hours and ZsGreen expression in TEC was subsequently followed for as 

long as 20 weeks. Under these conditions, fluorescently labelled cTEC could be 

detected as early as 48 hours after initial drug exposure and were dispersed 

throughout the cortex (Figure 2A and 2B). Both cTEC with low and high MHCII 

expression (MHClo and MHChi, respectively) remained labelled and were uniformly 

dispersed throughout the cortex for at least 140 days after completion of dox 

treatment. We conclude from these lineage-tracing studies that the drug-mediated 

recombination had likely also occurred in precursors from which mature cTEC 

derive over time. Alternatively, a relatively small but discernable population of 

labelled cells (approx. 10%) may either had an extended half life and/or were 

generated by self-duplication of existing, differentiated ZsGreen+ cTEC dispersed 

throughout the cortex without any input from stem cells as described for other organ 

systems (25–27). 

The labelling efficiency of adult cTEC was increased with longer exposure to the 

drug (Figure S1C) but did not reach the high efficiency of dox-induced 

recombination observed in the thymus of fetal 3xtgβ5t mice (Figure 1C). This lower 

recombination efficiency could in part be explained by the decreased promoter 

activity of the β5t locus measured in older animals (accompanying paper by 

Ohigashi et al.). Further, we investigated whether a restricted transcription of the 

LC1 transgene was responsible for the observed ZsGreen expression and found that 

mice transgenic for the tetO-Cre transcriptional unit (β5t-rtTA::tetO-

Cre1Jaw/J::ZsGreen, designated 3xtgtetO-Cre) in lieu of LC1 transgene demonstrated a 

higher labelling efficiency (Figures S1A and S1B). Thus, the extent with which triple 

transgenic cTEC could be labelled was dependent on the length of dox exposure, age 

of the mouse, and the specific Cre transcriptional unit used. Despite their higher 

labelling efficiency, 3xtgtetO-Cre mice were considered unsuitable for our further 
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studies owing to their high background of spontaneous Cre-mediated recombination 

(Figure S1A and 1B). 

 

 

Figure 3.4-2. Lineage tracing of cortical thymic epithelial cells in adult mice. (A) Frequency and time course 
analyses of ZsGreen expression in cTEC of treated 3xtgβ5t mice. 5-week old 3xtgβ5t mice were i.p. injected 
twice within 24hr with Dox (2mg) and given Dox (2mg/ml) supplemented drinking water in that time. 
The frequency of labeled cTEC was measured at the indicated time points. Left panel: flow cytometric 
analyses of cTEC (EpCAM+Ly51+UEA1-CD45-) for expression of MHCII and ZsGreen; Right panel: 
relative frequency of ZsGreen+ cTEC over the course of 140 days. *p<0.05, **p<0.01, ***p<0.001. (B) 
Immunohistology of the thymic tissue at 2, 70 and 140 days after Dox treatment of 5-week old 3xtgβ5t 
mice. Tissue sections were stained with anti-β5t antibodies (red) and analysed for the expression of 
ZsGreen (green). 

 

3.4.4.3 Aire-controlled promiscuous expression of the β5t locus labels mTEC in 

triple transgenic mice 

Dox-treatement of adult 3xtgβ5t mice initially resulted in the ZsGreen labelling of 

mostly MHChi mTEC at a very low frequency (1-2%; Figure 3A and Figure S2). Over 

the course of a few days, the rate of labeled MHClo increased and labeled mTECs 

with both an MHClo and MHChi phenotype persisted for at least 140 days. In 

comparison to cTEC, the labelling rate was at least 3-7 fold reduced for each of the 

individual time points tested (Figure 2A and Figure S1B), thus revealing a significant 

difference in the extent by which mTEC had expressed or continued to transcribe the 

β5t locus. 
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At the population level, β5t transcripts were detected in wild type mice by RNA-Seq 

in all mTEC subpopulations (Figure 3B). At single cell resolution, 4 of 174 wild type 

MHChi mTEC transcribed more than one β5t mRNA copy per cell (6.4 on average). 

Those cells displayed a gene expression profile typical of mature mTEC (Figure 3C) 

and transcribed Aire-dependent and Aire-independent tissue restricted antigens 

(TRA) comparable in number to that of other mature mTEC (Figure 3D). Moreover, 

the relative frequency of ZsGreen+ Aire+ MHChi mTEC was significantly increased in 

3xtgβ5t mice 2 days after dox exposure when compared to ZsGreen- cells with the 

same phenotype (51.9±4.1 vs 20.7±3.5, Figure 3E). These findings suggested that the 

early detection of labeled mTEC was primarily the result of promiscuous gene 

expression. 

Given the relatively short half-life of 7-8 days for mTEC of the Aire-expressing 

lineage (28), ZsGreen+ mTEC labelled as a consequence of Aire expression were 

progressively replaced in dox-treated adult 3xtgβ5t by cells with an MHClow 

phenotype (Figure 3A). Their frequency increased by up top 16-fold over the course 

of the experiment at the expense of labeled MHChi mTEC (Figure 3A) demonstrating 

a dynamic change in the contribution of each of these individual mTEC 

subpopulations to the group of ZsGreen+ mTEC. The relative frequency of labeled 

mTEC persisted even at later time points (Figure 3A) when MHClow mTEC 

contributions were more noticeable. These results therefore suggested that TEC other 

than relatively short lived cells promiscuously expressing β5t were successfully 

labeled after Dox exposure, persisted and contributed, albeit at a low rate, to both the 

MHClo and MHChi ZsGreen+ mTEC populations.  
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Figure 3.4-3. Promiscuous gene expression contributes to ZsGreen expression in medullary MHCIIhi thymic 
epithelial cells in adult 3xtgβ5t mice (A) Flow cytometric analysis of MHCII and ZsGreen expression (left 
panel) and relative frequency (right panel) of ZsGreen+ mTEC (EpCAM+Ly51-UEA1+CD45-) of 3xtgβ5t 
mice treated at 5 weeks of age with 2 injections of Dox  (2mg) within 24hrs and given Dox (2mg/ml) 
supplemented drinking water during that time. ***p<0.001 (B) Expression of β5t (Psmb11) measured by 
RNAseq of 4 week old wild-type MHCIIhi mTEC, MHCIIlo mTEC and MHCIIhi Aire-deficient mTEC. (C) 
Promiscuous expression of Psmb11 in single mature mTEC. Mature mTEC positive for Psmb11 (> 1 
copy, triangles) express Aire and show expression of mTEC and cTEC marker genes that is similar to 
that observed in Psmb11 negative cells (circles). (D) Analysis of gene expression in single Aire-
expressing mTEC. No significant difference in the number of Aire-regulated genes or TRA was detected 
between Psmb11 positive and negative cells (Mann-Whitney U test). (E) Flow cytometric analysis for the 
expression of MHCII and Aire in ZsGreen- and ZsGreen+ mTEC of 3xtgβ5t mice 48 hours after Dox 
treatment. 

 

3.4.4.4 Postnatal β5t+ cTEC marked early in Dox-treated 3xtgβ5t mice contribute to 

mTEC lineage  

To test the precursor potential of postnatal β5t+ TEC and probe their competence to 

give rise to the mTEC lineage, we extended our experiments to the analysis of 1-

week old 3xtgβ5t mice in which the cellularity of the thymic medulla exponentially 

increases (29). A single dox injection in these young mice resulted in a high and 
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consistent labeling of cTEC (Figure 4A). Since previous studies had estimated the 

turn-over of cTEC and mTEC to be 7 to 14 days in young mice (29, 30), the recovery 

of a significant percentage of ZsGreen+ cTEC as late as 240 days after recombination 

suggested that precursors must have likely been labeled that gave rise to mature 

ZsGreen+ cTEC at the end of the experimental observation (Figure 4A, right panel). 

In contrast to the cTEC lineage in 1-week old 3xtgβ5t mice (but similar to mTEC in 

adult mutant animals), only very few mTEC expressed ZsGreen 2 days after Dox 

treatment (Figure 4B, left panels). The majority of these mTEC had an MHChi 

phenotype and likely expressed the label owing to β5t transcription as part of the 

cells’ promiscuous gene expression program. However, both the frequency of all 

labeled mTEC as well as that of MHClo ZsGreen+ mTEC increased progressively over 

time to reach a plateau at 8 weeks after dox treatment when equal relative numbers 

of MHClo ZsGreen+ and MHChi ZsGreen+ cells were present that jointly constituted 

one third of the mTEC population (Figure 4B, right panel). The expansion kinetics of 

labeled cells was therefore significantly different to that of the cTEC lineage and 

suggested that the higher frequency of ZsGreen+ mTEC observed after the first days 

following dox exposure must have derived from β5t-expressing cells that served as 

precursors to the mTEC lineage. These precursors required up to 56 days until their 

progeny established a constant ratio of MHChi and MHClo populations similar to 

non-labeled mTEC. 

We next sought to detail the cell proliferation for stages along the mTEC lineage. For 

this purpose, we treated 1-week old mice with Dox and analyzed their BrdU 

incorporation 2 and 10 days later (Figure 4C). At the earlier time point, labeled 

MHChi mTEC displayed a lower proliferation rate compared to the population of 

unlabeled MHChi mTEC which is consistent with the notion that labeled cells 

corresponded to epithelia that express β5t as part of their promiscuous gene 

expression program and Aire+ MHChi mTECs represent mostly postmitotic cells (31). 

At the later time point, labeled MHChi mTEC proliferated at an increased rate 

suggesting that this population now comprised a higher frequency of maturing 

mTEC. 



105 

We next sought to localise these precursor cells and their immediate clonal progeny 

in situ in the thymus of postnatal mice. Tissue sections taken 2 weeks after initiation 

of Dox treatment demonstrated an accumulation of ZsGreen+ mTEC at the cortico-

medullary junction as revealed by noticeable cell clusters whereas the pattern of 

labelled mTEC in the other parts of the medulla remained unchanged over time 

(Figure 4D). These tracing results suggested an expansion of precursors but could 

not inform on the clonality of these clusters. To address this specific aspect of mTEC 

growth, we generated [β5t-rtTA::LC1::R26R-Confetti] mice (designated 3xtgconfetti) 

which allow the stochastic multicolor labelling of cell clones from an individual β5t+ 

TEC whose progeny is indelibly marked by the same fluorescent protein (32). After a 

single dose of dox at 1 week of age, thymus tissue was isolated 2 weeks later and 

sections were screened for fluorochrome-labelled cell clusters. Small aggregates of 5 

to 25 monochromatic TEC cells could be detected at the cortical-medullary junction 

of treated but not untreated 3xtgconfetti mice (Figure 4D and data not shown). These 

data strongly suggested that β5t-expressing precursors localised at the junction 

between cortex and the medulla had proliferated and contributed to the growth of 

the epithelial component of the thymic medulla. 
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Figure 3.4-4. Lineage tracing in 1-week old 3xtgβ5t mice. (A) Frequency and time course analyses of ZsGreen 
expression in cTEC. One-week old mice received a single i.p. injection of Dox (1mg) and were 
subsequently analysed at the indicated times. Flow cytometric analyses of cTEC (EpCAM+LY51+UEA1-

CD45-) for the expression of ZsGreen and MHCII (left panel) and relative frequencies of ZsGreen+ cTEC 
over the course of 250 days after treatment (right panel). (B) Frequency and time course analyses of 
ZsGreen expression in mTEC from mice described in (A). Flow cytometric analyses of mTEC 
(EpCAM+LY51-UEA1+CD45-) for the expression of MHCII and ZsGreen (left panel) and relative 
frequencies of ZsGreen+ mTEC over the course of 250 days after drug treatment (right panel). (C) BrdU 
incorporation analysis of mTEC (EpCAM+UEA1+CD45-) in 3xtgβ5t mice treated at 1 week of age and 
chased for 2 and 10 days respectively. The BrdU incorporation rates are displayed for ZsGreen- and + 
mTEC subpopulations expressing high or low levels of MHCII. (D) Upper panels show 
immunohistologal analysis of thymic sections from 3xtgβ5t mice that had been treated with Dox at 1 
week of age and analysed 2 and 14 days after treatment for the expression of β5t (red) and ZsGreen 
(green) expression. Note the clusters of ZsGreen positive cells positioned at the cortical-medullary 
junction (dashed circles); lower panel: R26R-confetti mice were crossed with β5t-rtTA and LC1 
generating triple transgenic mice, 3xtgconfetti [β5t-rtTA::LC1::R26R-confetti]. Triple transgenic mice were 
treated with a single dose of Dox (1mg) at 1 week of age and analysed 2 weeks later for the expression 
of the transgenic fluorochromes and cytokeratin 14 (as mTEC marker). Note monochromatic cell 
clusters exclusively localized to the cortical medullar junction. *p<0.05, **p<0.01, ***p<0.001. 
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3.4.4.5 Post-natal β5t-positive cTEC serve as precursors for mTEC 

Data presented so far suggested that precursors to the mTEC lineage express β5t and 

are resident at the cortico-medullary junction from where their progeny extends into 

the medulla early in postnatal life. However, the efficiency with which these 

precursors seemingly contribute to the mTEC compartment already decreases in the 

second week of life (Figure S3). To formally test the assertion that β5t+ cTEC indeed 

serve as precursors for the post-natal mTEC lineage, we isolated ZsGreen+ cTEC two 

day after Dox treatment of 1-week old 3xtgβ5t mice, reaggregated 2.5x104 of these cells 

with E14.5 wild type, non-haematopoietic thymic stromal cells (1.5x105) and grafted 

the resultant organoids under the kidney capsule of adult athymic (nu/nu) recipients. 

ZsGreen+ mTEC isolated in parallel served as the corresponding controls. A selection 

of exemplary cortical and medullary TEC genes, respectively, used to characterize 

further the grafted cells revealed the expected differences in transcription profiles 

(Figure 5A). However, the population of ZsGreen+ cTEC used for these grafting 

studies did not display different transcript levels for markers recently described in 

endogenous thymic epithelial progenitor cells when compared to unlabeled cTEC 

(Figure S4 and ref. (16, 17)). This is the likely result of analysing an inhomogeneous 

population of cTEC at different maturational stages, which includes a low frequency 

of β5t+ precursors to the mTEC lineage.  

The microscopic analysis of reaggregate thymic organ cultures (RTOC) 

demonstrated the presence of ZsGreen+ TEC in both types of grafts as early as 24 

hours after forming the organoids (Figure 5B, upper panels). Five weeks after the 

placement of grafts under the kidney capsule (Figure S5), the transplanted tissue was 

further investigated (Figure 5B, lower panels, and Figure 5C). The number of 

ZsGreen+ TEC in either the cortex or the medulla was limited owing to the ratio of 

labelled to unlabelled stromal cells used to generate the RTOC and the demonstrated 

difference in cell proliferation between embryonic and postnatal TEC (30). Tissue 

sections of grafts in which ZsGreen+ cTEC were admixed with E14.5 wild type 

stromal cells demonstrated not only the presence of ZsGreen+ TEC in the cortex and 

medulla but also disclosed mTEC clusters that expressed the typical medullary 

markers cytokeratin 14 (CK14) and Aire (Figure 5C upper panels). In contrast, tissue 
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sections from RTOC generated with ZsGreen+ mTEC revealed labelled TEC only in 

the medulla where the cells displayed an identical phenotype to epithelia derived 

from ZsGreen+ cTEC (Figure 5C, lower panels). Taken together, these 

transplantation studies unequivocally demonstrated that within 5 weeks after 

engraftment ZsGreen+ cTEC gave rise to TEC both in the cortex and the medulla 

whereas ZsGreen+ mTEC contribute exclusively to the epithelial compartment of the 

medulla highlighting an essential difference in the developmental potential of these 

two post-natal cell populations. 
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Figure 3.4-5. Transplantation of ZsGreen+ cTEC from 3xtgβ5t mice gives rise to cortical and medullary TEC. (A) 
RT-qPCR gene expression analysis of cortical (β5t, rtTA, Ctsl) and medullary (Aire, Ctss, Cldn4) TEC 
markers in ZsGreen-/+ TEC subpopulations. One-week old mice received a single i.p. injection of Dox 
(1mg) 48 hours prior to sorting cTEC (EpCAM+LY51+UEA1-CD45-) and mTEC (EpCAM+LY51-

UEA1+CD45-), subdivided by the expression of ZsGreen. Gene expression was normalized to EpCAM 
and is presented as relative expression to cTEC ZsGreen-. (B) Representative macroscopic images of 
RTOC 24 hours after reaggregation (upper row) and the transplants 5 weeks post transplantation (lower 
row). (C) Immunofluorescence analysis of thymic sections from transplants made with ZsGreen+ cTEC 
for the expression of ZsGreen, CK8 and CK14 (upper row, left and middle panel) or ZsGreen, β5t and 
Aire (upper row, right panel), and the analysis for the expression of ZsGreen, CK8 and CK14 in thymic 
sections from transplants made with ZsGreen+ mTEC (lower row, left panel) or for ZsGreen, β5t and 
Aire in transplants originally using embryonic stromal cells alone (lower row, right panel). Arrows 
indicate cells co-expressing ZsGreen and mTEC marker (CK14 or Aire) in areas that are shown in the 
close-up. Scale bar = 100µm. 
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3.4.5 Discussion 

TEC patterning is initiated during fetal development and continues throughout 

postnatal life as reflected by a permanent replacement of TEC in both cortex and 

medulla (29, 30, 33). The precise developmental point and physical location at which 

cTECs and mTECs diverge has, however, remained undefined. During embryonic 

development, the majority of mTECs, including Aire+ cells, derive from β5t-

expressing progenitors. Using in vivo lineage-tracing at population and single cell 

resolution, we now demonstrate that individual β5t+ cortical progenitors located at 

the cortico-medullary junction contribute to the formation and maintenance of the 

postnatal medulla. This input parallels the expansion of the thymic medulla and its 

extent is maximal during the first week of life when compared to later ages. Thus, 

age determines the degree by which β5t+ cortical precursors contribute to the 

medullary epithelial compartment, revealing a gradual change in the precursor-

progeny relationship within the mTEC lineage. These results contribute to an 

evolving concept that identifies differences between TEC lineage development in the 

embryo (7–10) and TEC maintenance in the postnatal thymus (15), thus highlighting 

a unique spatio-temporal contribution of β5t+ cortical epithelial precursors to the 

medullary TEC compartment. 

Several developmental models have been suggested to explain the step-wise 

formation and maintenance of the thymic epithelial scaffold (13). Single epithelial 

precursors with a developmental potential to contribute to both cortex and medulla 

can be isolated at E12.5 from the thymus anlage (8, 34). Interestingly, the expression 

of the epithelial cell-specific transcription factor FoxN1 is not necessary for the 

formation of the earliest TEC progenitors within the embryo and may only be 

required to achieve their differentiation into common and eventual lineage-restricted 

TEC precursors and their progeny (17). 

TEC with either cortical (CD205, β5t) or medullary phenotype (MTS10, Claudin3/4) 

are already detected in embryonic tissue at early stages of development (20, 21, 35, 

36). Ontogenic studies in embryos further imply that CD205+CD40- cTEC represent 

progenitors positioned between the population of bi-potent cTEC/mTEC progenitors 
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and mature cTEC that require for their continued maturation cell-extrinsic signals 

provided by early thymocytes (7, 9, 10, 37, 38). The frequency of these cTEC-like 

progenitors, their precise phenotype and hence the developmental stage at which 

they reduce or even lose their bi-potency in place of an exclusive contribution to only 

the cTEC lineage remains yet to be defined. Based on results presented here and 

published previously (21), it is, however, likely that some or all of these aspects may 

differ between fetal and postnatal mice. 

Distinct maturational stages have also been described for the postnatal mTEC lineage 

where a single linear differentiation process extends from immature progenitors 

(MHCIIlo CD80lo Aire-) to mature epithelia (MHCIIhi CD80hi Aire+) that may 

discontinue their Aire expression at a terminal stage (39, 40). Recently SSEA-1+ 

Claudin3/4+ mTEC have been identified that display a remarkable self-renewing 

capacity and serve as lifelong progenitors for the medullary but not the cortical 

epithelial compartment (22). Given their specific developmental potential, SSEA-1+ 

Claudin3/4+ mTEC progenitors must be distinct from the cortical β5t+ precursors 

described here though they may represent a first unipotent progeny downstream of 

these cortical β5t+ precursors. Moreover, our kinetic studies would suggest that 

cortical β5t+ precursors represent a rare population because following dox treatment 

of 1-week old 3xtgβ5t mice up to 56 days are required to achieve maximum labeling of 

the mTEC compartment. Assuming that mature mTEC are still largely derived from 

β5t+ precursors under these conditions (comparable to the fetal labeling 

experiments), we reason that their frequency must be low as a significant expansion 

is needed to label eventually as many as one third of all mTEC after a single dox 

dose. This interpretation is in keeping with our finding that only few clonal TEC 

clusters are detected at the cortico-medullary junction of individual medullary islets 

within 2 weeks following dox treatment. Moreover, the relatively low frequency of 

cortical β5t+ precursors among early labelled cTEC precluded efforts to identify at the 

population level a particular gene expression signature of these cells. The 

reconstitution efficiency of early-labeled β5t+ cTEC was however low, which is likely 

owing to the relatively low number used for reaggregates and the competitive 

advantage of fetal over adult TEC. The frequency of mTEC that express the label as a 
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result of promiscuous gene expression is very low, not least owing to the cells’ 

relatively short half-life in young mice (average 0.9 weeks; ref. (29)).  

In view of the labeling kinetics observed, it is likely that in young mice cortical β5t+ 

precursors with a developmental potential for the mTEC lineage give first rise to a 

larger number of epithelia that lack β5t expression but have a self-renewing capacity 

and can replenish mTEC at all ages to suit the homeostatic needs of the medulla. This 

population of epithelia may represent the earliest post β5t-stage in the mTEC lineage 

and could function comparable to transit-amplifying cells (TAC) that balance 

precursor usage with tissue generation (41). Whether these cells are indeed the 

aforementioned SSEA-1+ Claudin3/4+ TEC progenitors remains, however, to be 

determined. Should this be the case, then experimental evidence suggests that these 

uni-potent precursors are already being generated at E14.5 (22). Once the exponential 

growth of the medulla has seized, mTEC development may largely be drawn from 

the TAC-like population with cortical β5t+ precursors contributing now only to a 

limited extent to the maintenance of the medulla. Mutually not exclusive, the 

detection of labelled cells as late as 240 days after Dox treatment may, in part, also be 

the result of mTEC with an extended half-life (on average 10.9 weeks in older mice)  

(29). 

MHC-mismatched ES ± blastocyst chimaeras and fetal thymus reaggregate grafts 

have suggested that individual progenitor cells generate, at least during fetal thymus 

development, individual medullary islet (19). In the young mouse most of these are 

not connected to each other or to a major medullary compartment (19, 42), thus 

creating a 3-dimensional branched medulla with an extended cortico-medullary 

junction. The resultant fractal geometry of the medulla therefore optimizes the 

recruitment of early stage mTEC precursors differentiating from β5t+ precursors 

positioned in the cortex. Considering the increasing size of individual medullary 

islets in young mice, our results and previously published results (19) are compatible 

in demonstrating that individual islets are generated during fetal organogenesis 

from a single precursor but are later in life derived from an oligoclonal origin. While 

it had so far remained untested whether these epithelial progenitors are only able to 
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establish the correct medullary architecture during ontogeny, lineage tracing and 

competitive grafting experiments presented here now demonstrate that this capacity 

of β5t+ cortical epithelial precursors is maintained into postnatal life. However, 

contributions from these precursors are significantly diminished in older mice and 

are not reactivated following thymic injury in adult mice (data not) thus inferring a 

regenerative process that is compartment-intrinsic. 

The persistence of ZsGreen+ TEC in both cortex and medulla over an extended 

period following short time labelling is remarkable and can best be explained by a 

pool of long-lived precursors in which recombination had successfully occurred and 

from which mature TEC are eventually generated. Alternative mechanisms may exist 

but have to date not yet been established for TEC. For example, a fraction of 

differentiated ZsGreen+ TEC could be generated in situ via a process of self-

duplication in the absence of any contribution from progeny of labeled precursor 

cells, a phenomenon reported for other epithelial cell lineages (25–27). However, this 

mechanism would need to be stochastic and independent of specific developmental 

niches, as individual clusters of ZsGreen+ TEC cannot be discerned in the cortex or 

the medulla of older mice that had been treated with Dox at one or five weeks of age. 

In summary, we demonstrate to our knowledge for the first time that a population of 

β5t + cortical progenitors positioned adjacent to the medulla gives rise to mTEC. The 

extent of this contribution changes considerably during the first postnatal weeks 

when number and proportion of mTEC dramatically increase due to extensive 

proliferation. The precise signals and their down-stream molecular events 

responsible for this change remain presently undefined. However, insight into this 

process and the isolation and manipulation of β5t+ cortical epithelial precursors 

constitute a novel rationale for therapeutic strategies to restore immune function. 
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3.4.6 Experimental procedures  

Mice 

C57BL/6 mice were obtained from Janvier (France). LC1-Cre transgenic, CAG-loxP-

STOP-loxP-ZsGreen, CAG-loxP-stop-loxP-EGFP, R26R-Confetti, β5t-Cre and tetO-

Cre1Jaw/J mice were described previously (14, 23, 24, 32, 43, 44). Mice were crossed 

to obtain double or triple heterozygous mutant animals as indicated in the text. For 

developmental staging, the day of a visible vaginal plug was designated in timed 

pregnancies as embryonic day 0.5 (E0.5). Mice were kept under specific pathogen-

free conditions and all experiments were in accordance with local and national 

regulations and permissions.  

 

Generation of β5t-rtTA mice 

β5t-rtTA mice were generated analogous to the β5t-Cre animals previously reported 

(14). 

 

Doxycycline Treatment 

Fetal [β5t-rtTA::LC1-Cre::CAG-loxP-STOP-loxP-ZsGreen] mice (designated triple 

transgenic, 3xtgβ5t) were exposed to Doxycycline (Dox) via the mother’s drinking 

water which was supplemented with the drug (2mg/ml) and sucrose (5% w/v) from 

E7.5 until birth. One-week-old 3xtgβ5t mice were treated with a single intraperitoneal 

(i.p.) injection of Dox (0.3mg) whereas older mice received two i.p. injections of Dox 

(2mg, each) in the course of 24 hours during which they were in addition exposed to 

drinking water supplemented with the drug. 

 

BrdU Labelling 

Mice were injected i.p. with 1mg BrdU (BrdU Kit, BD Pharmingen) and kept for 16 

hours prior to analysis. 
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Cell Preparation 

Thymic lobes were cut up into fragments, incubated in PBS containing 0.2mg/ml 

Liberase TM (Roche Diagnostics) and 30µg/ml DNaseI (Roche Diagnostics) at 37˚C 

for 60 min with occasional pipetting to facilitate digestion. Embryonic thymic tissue 

was incubated in PBS with 2% FCS (Perbio), 1mg/ml Collagenase D (Roche 

Diagnostics) and 30µg/ml DNaseI at 37˚C for 30 min. For the specific analyses of 

TEC, cells were enriched using magnetic beads (autoMACS Pro Separator, Miltenyi 

Biotech) and sorted using a FACSAria II (BD Bioscience). 

 

Flow Cytometry 

Cells were incubated with antibodies specific for CD45 (30F11; eBioscience), EpCAM 

(G8.8; DSHB, University of Iowa), MHCII (M5/114.15.2; BioLegend), Ly51 (6C3; 

BioLegend), UEA-1 (Reactolab), Aire (5H12; eBioscience) and BrdU. For intracellular 

staining, cells were fixed, permeabilized (Cytofix/Cytoperm Kit, BD Biosciences) and 

labelled for the expression of Aire or the incorporation of BrdU. Stained samples 

were acquired on a FACSAria II flow cytometer and the data was analyzed using the 

FlowJo (Treestar) software. 

 

Quantitative PCR analysis 

Total RNA was isolated from sorted cells with the RNeasy Micro Kit (Qiagen), 

validated using a NanoDrop 2000 (Thermo Scientific). cDNA was synthesized using 

SuperScriptIII (Live Technologies) and assessed by quantitative real-time PCR with 

SYBR Green (SensiMix; Bioline). Primer sequences are available upon request. Epcam 

specific transcripts were used as an internal control and PCR data was analysed 

using the LinRegPCR software (45). 
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Transcriptomic analyses 

The transcriptomes of 174 single mature mTEC expressing more than 3000 genes 

(copy numbers from ref. (6), GEO accession GSE60297) were examined for Psmb11 

expression. 26 cTEC and 229 mTEC marker genes (Fig 3C) were identified from cTEC 

and Aire-KO mTEC population RNA-seq data (GEO accession GSE53110 (6)). Here 

the mature Aire-KO mTEC population was used to avoid confounding Aire-induced 

promiscuous gene expression. Marker genes were required to be expressed at > 20 

FPKM in the population of interest and < 1 FPKM in the other. Aire-regulated genes 

and TRA definitions are taken from (6). 

 

Histological analyses 

Prior to freezing, thymic lobes were fixed in 3.7% Formalin (Sigma) for 2-4 hours and 

dehydrated over night in a 20% w/v Sucrose solution. Thymic sections (8µm) were 

stained using Abs specific for Psmb11 (MBL), CK8 (Progen), CK14 (Covance) and 

Aire (eBioscience). Alexa Fluor-conjugated anti-IgG Abs (Invitrogen) were used as 

secondary reagents. Images were acquired using a Zeiss LSM510 (Carl Zeiss). 

 

RTOC transplants 

25’000 sorted transgenic TEC were mixed with 150’000 wild type embryonic (E14.5) 

cells depleted of CD45+ and Ter119+ subpopulations (autoMACS Pro Separator, 

Miltenyi Biotech), spun down and incubated at 37°C over night. Reaggregates were 

placed under the kidney capsule of the recipient nu/nu mice and analysed 5 weeks 

later. 
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Statistical analyses 

Statistical analyses were performed using Students t test (unpaired, two-tailed). 

Probability values were classified into four categories: P>0.05 (n.s.), 0.05≥P>0.01 (*), 

0.01≥P>0.001 (**) and P≤0.001 (***). 
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3.4.8 Supplementary Material 

 

Figure S1. Comparative analysis of triple-transgenic mice in which Cre expression is driven by different 
transgenes. (A) Thymic cross-sections of untreated 5-week old 3xtgβ5t and 3xtgtetO-Cre mice were analysed 
by immunofluorescence for the expression of ZsGreen, CK8 and CK14. (B) Flow cytometric analysis of 
cTEC (EpCAM+LY51+UEA1-CD45-) and mTEC (EpCAM+LY51-UEA1+CD45-) for the expression of 
ZsGreen in 5-week old 3xtgβ5t (upper panel) and 3xtgtetO-Cre (lower panel) mice that were i.p. injected twice 
within 24hr with Dox (2mg) and given Dox (2mg/ml) supplemented drinking water in that time. (C) 
Flow cytometric analysis of cTEC and mTEC for the expression of ZsGreen in 6-week old 3xtgβ5t mice 
i.p. injected with Dox (2mg) at 5 weeks of age and then given Dox (2mg/ml) supplemented drinking 
water for the following week. 

 

Supplementary Figure 1

A Dox-

ZsGreen CK8 CK14

3
x
tg

ß
5

t
3
x
tg

te
tO

-C
re

B

%
 o

f 
M

a
x

ZsGreen

3
x
tg

ß
5

t
3
x
tg

te
tO

-C
re

mTECcTEC

0.0±0.0

1.4±0.3

0.0±0.0

5.8±1.2

D
o
x
-

D
o
x
+

D
o
x
-

D
o
x
+

D
o
x
-

D
o
x
+

6.0±1.0

9.1±1.8

5.7±1.1

18.4±1.2

D
o
x
-

D
o
x
+

%
 o

f 
M

a
x

ZsGreen

mTECcTEC

3
x
tg

ß
5

t

3.9±1.016.7±5.3

C



121 

 

Figure S2. Kinetic changes of MHCII expression in EGFP+ mTEC. Flow cytometric analysis of MHCIIhi and 
MHCIIlo mTEC (EpCAM+Ly51-UEA1+CD45-) in β5t-rtTA::LC1::CAG-EGFP mice treated at 4 weeks of 
age for one week with Dox (2mg/ml) supplemented drinking water. Percentage of EGFP+ cells for each 
of the indicated TEC subpopulations is plotted against the age of the mice. *P<0.05. 
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Figure S3. Contribution of β5t+ progenitor cells to the postnatal medulla growth is reduced with age. 3xtgβ5t 
mice were treated with Dox at either 1 week, 2 weeks or 5 weeks of age and chased for 2 days or 8 to 10 
weeks. Percentage of ZsGreen+ mTEC (EpCAM+Ly51-UEA1+CD45-) was determined at each time point 
by flow cytometry. Values represent mean ± SD of at least three independent experiments with at least 
three mice per time point each. 
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Figure S4. ZsGreen+ cTEC used for RTOC contribute to the formation of the thymus when transplanted into 
recipient mouse. (A) ZsGreen-/+ cTEC were sorted from 3xtgβ5t mice treated with a single injection of Dox 
(1mg) at one week of age and kept for two days. RT-qPCR analysis of selected genes in ZsGreen+ cTEC 
shown relative to ZsGreen- cTEC. Values represent the mean ± SD. (B) Macroscopic image showing 
kidneys of nu/nu mice 5 weeks after transplanting RTOC containing either ZsGreen+ cTEC or mTEC 
mixed with embryonic cells, or embryonic cells alone. Scale bar = 2mm. 
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The thymic epithelial cells (TEC) are required for thymopoiesis and play an 

important role in the establishment of central tolerance. TEC in the cortex 

(designated cTEC) guide the first steps of T cell development by expressing factors 

that attract, commit and select T cell progenitor cells (1–4). The subsequent steps in T 

cell development are controlled by medullary TEC (mTEC), which are specialized in 

the ectopic expression and presentation of tissue-restricted antigens (TRA) (5, 6). 

These are required for the correct negative selection of potentially auto-reactive T 

cells  (2). Due to their importance in the establishment of T cell tolerance, the study of 

mTEC development and function has been a strong focus of thymic research. In spite 

of the difficulty to investigate TEC precursors due to the lack of appropriate markers 

that define this rare cell population, several important findings were made in recent 

years. Two groups have reported the existence of bi-potent TEC progenitor cells 

during embryogenesis and in postnatal mice, defining a shared developmental origin 

of cTEC and mTEC (7, 8). Recent publications extended this relationship reporting 

that progenitor cells to the mTEC lineage express β5t and CD205, molecules 

characteristic for adult cTEC, during embryonic development (9, 10). Similar 

observations were made in adult mice, in which label-retaining cells were 

characterized and tested for their progenitor capacity (11, 12). These experiments 

identified a subpopulation of cTEC that gave rise to mTEC in reaggregation and 

transplantation experiments. In addition, adult cTEC revealed a significant 

regenerative capacity upon drug-induced injury of the thymic cortex, implying the 

presence of TEC progenitor cells in within the cTEC compartment (13). In parallel to 

the accumulating cTEC-centric evidence, mTEC lineage-restricted progenitor cells 

were identified in the medullar compartment during embryogenesis and in adult 

mice (14–16). Moreover, TEC with progenitor capacities were reported in EpCAM- 

Foxn1- TEC, and in animals in which Foxn1, a transcription factor that is required for 

the expansion and final maturation of TEC, was induced in adulthood (17–19). In 

aggregate, these publications show that progenitor cells to the mTEC lineage are 

present during thymic organogenesis and in the adult mouse, and that cTEC-like 

cells as well as mTEC lineage-restricted progenitors in the medulla contribute to the 

development of the medullary compartment. 
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The study presented in chapter 3.1 describes the involvement of Dicer and miRNA in 

TEC development, differentiation and function. This investigation concluded that 

Dicer is largely dispensable during embryonic TEC development because no changes 

were observed in architecture or function of thymi in which Dicer was selectively 

deleted in TEC at embryonic day of development (E) 12.5. Therefore the initial wave 

of T cell development was undisturbed. However, the lack of Dicer disturbed the 

postnatal formation of the medulla because mTEC failed to expand in numbers in 

mice of one week of age and older. In keeping with this conclusion, the thymic 

epithelial identity and function were lost, as observed in 2-week-old mice when the 

overall thymic micro-architecture displayed aberrant expression of markers 

characteristic for cTEC and mTEC and defects in thymic T cell positive selection 

emerged. In light of the data presented in chapter 3.4, I now interpret the observed 

changes that occurred after the loss of Dicer expression in TEC, as follows: The 

postnatal development of the thymus is marked by a significant growth of the 

medulla and hence an increase in mTEC numbers. Mice, in which Dicer was 

specifically deleted in TEC, revealed normal number of mTEC until 1 week of age. 

However, in 2-week-old mice we detected that the number of cTEC was slightly 

increased, while mTEC cellularity was markedly diminished. A deficiency in Dicer, 

and consequently most miRNA, could thus have impaired the postnatal cTEC-like 

progenitor cell and, as a consequence, affected the formation of the medulla. 

Unfortunately, the precise phenotypic identity of that cell remains unknown, which 

limits the ability to verify this hypothesis. However, the work presented here 

significantly advanced our understanding of embryonic and postnatal mTEC 

development in as much as it identified β5t as a marker in cells that serve as mTEC 

progenitors. In addition, I characterized the branching point of cortical and medullar 

lineage divergence during embryonic development, giving insights into the 

phenotypic dynamics during lineage commitment. Because we have shown that β5t+ 

mTEC progenitor cells continue to contribute to the growth of the medulla during 

the first weeks of live, the phenotypic identification of mTEC at distinct steps during 

differentiation could potentially help understanding the mechanisms that drive the 

development of this compartment in the postnatal mouse. Unfortunately, β5t is not a 
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specific to mTEC progenitor cells but a protein expressed in almost all cTEC. This 

broad expression pattern limits the isolation of only progenitor cells based on β5t-

expression for the analysis of their gene expression profile and progenitor capacity. 

To overcome this issue I propose three strategies that focus on the investigation of 

3xtgβ5t mice treated with Dox at 1 week of age. ZsGreen+ cTEC detected at 2 days 

after treatment could be subdivided based on their expression of different cell 

surface markers that have been proposed for adult TEC progenitor cells (e.g. Ly51low, 

MHCIIlow, Atxn1+, Itga1+) and tested for their progenitor capacities in reaggregation 

and transplantation experiments, such as the ones described in chapter 3.4.5 (12, 17). 

This approach would specify the phenotype of a cTEC subpopulation that is 

enriched in mTEC progenitor cells. Unfortunately, this strategy is unlikely to lead to 

the clean isolation of progenitor cells, because, due to the scarcity of candidate 

progenitor markers, the isolated subpopulations would likely contain mature, non-

progenitor cTEC. Although many mature cTEC could be excluded following this 

procedure, an analysis of such a mixture of cells would unlikely provide the clear 

phenotypic identity of the unknown progenitor cell. 

In chapter 3.4 I found that β5t was expressed as part of the promiscuous gene 

expression program in mature mTEC, which lead to the expression of ZsGreen in 

approximately 2% of mTEC at 2 days after Dox treatment. Because the relative and 

absolute number of ZsGreen+ mTEC increased during the following 8 weeks after 

treatment of 1-week-old mice, I concluded that β5t+ progenitor cell-derived, newly 

generated mTEC contributed to the growth of the medulla during the postnatal 

development of the thymus. I propose that the ZsGreen+ fraction of cells within the 

medulla at 2 days after the Dox treatment of 1-week-old mice is composed of two 

very different cell populations: mature mTEC that expressed β5t as part of their 

promiscuous gene expression (pGE) program, and newly generated epithelia that are 

committed to the mTEC-lineage. It is likely that these two populations can be 

differentiated owing to their transcription of cell markers associated with mature 

mTEC (e.g. UEA1high, CD80high, CD86high, Aire+, Involucrin+, CK10+), or expression of 

molecules characteristic for cTEC (e.g. β5t, CD205, Ly51). This expected phenotype 

would therefore be the cumulative result of a progression from a cTEC-like 
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progenitor cell to an epithelium with an mTEC fate. The availability of a set of 

specific cell surface markers would allow to purify mTEC progenitor cells in 

unmanipulated thymi and to map their differentiation pathway. An analysis of the 

transcriptional landscape of these β5t+ progenitor cell-derived, differentiating mTEC 

could therefore provide an approximate phenotype of the enigmatic cTEC-like 

progenitor. The progenitor cells themselves are, however, unlikely to be identified 

using this approach. 

Should the distinction between β5t+ progenitor-derived cells and those expressing 

β5t as part of their pGE prove to be difficult, alternative approaches will have to be 

considered. For example, individual ZsGreen+ mTEC, isolated at 2 days after the 

treatment of 1-week-old mice, could be analyzed for their transcriptional landscapes 

on a per-cell basis. Using computer-assisted cluster matching profiling a precise 

developmental pathway could be suggested that can subsequently be tested. In spite 

of holding some challenges, including a lower sensitivity in detecting lowly 

abundant transcripts, this last approach is the most likely in succeeding to identify 

the phenotype of the β5t+ mTEC progenitor cell. 

Once the cTEC-like progenitor cell is phenotypically identified it will be interesting 

to test the progenitor capacity of that cell. Specifically it would be informative to 

elucidate whether these precursors are restricted to the mTEC lineage in neonatal 

mice and if so, when during thymic organogenesis they establish this capacity. 

Indeed, single cell evidence has yet to be produced as to the existence of a truly bi-

potent TEC progenitor in the adult thymus, comparable to Plet1+ (a.k.a. MTS20 and 

MTS24) cells described in the early bot not late embryo (8). Data presented in chapter 

3.4 demonstrates that mTEC progenitor cells are located in the neonatal thymus at 

the cortico-medullary junction, a structure that has long been hypothesized as the 

site where bi-potent precursor cells should be placed (20, 21). Traditionally, 

extrapolation from results obtained studying thymus organogenesis has linked bi-

potency to a TEC phenotype that is Plet1+, CK5+ and CK8+ (22). And in fact 

CK5+CK8+ cells can be detected in the adult thymus located near the cortico-

medullary junction, which has made this population very attractive as a potential 
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postnatal bi-potent progenitor population. Experiments showed that in thymi of 

human CD3ε transgenic mice, in which T cell development is blocked at a very early 

CD44+CD25- DN stage, CK5+CK8+ TEC were most abundant (20). These cells gave 

rise to CK5-CK8+ cTEC when transplanted into Rag1-/- mice, enforcing this 

phenotype to be typical for TEC progenitor cells. In contrast I do not know whether 

the β5t+ progenitor cells to the mTEC lineage express indeed CK5 or CK8 and 

whether they contribute to the formation of the cortex. Because the percentage of 

ZsGreen+ cTEC remained stable for at least 20 weeks in 3xtgβ5t mice that were treated 

at one week of age, I hypothesize that β5t is does not preferentially label cTEC 

progenitor cells at that age. To investigate whether β5t+ progenitor cells contribute to 

the formation of the cortical compartment I propose to pulse-treat 3xtgconfetti mice 

with Dox during embryogenesis and follow the quantity and localization of reporter-

positive cells after short periods of chase. The detection of reporter-positive clusters 

would provide more insights into cTEC development during thymic organogenesis. 

An alternative explanation to the stable percentage of ZsGreen+ cTEC would be that 

β5t is not preferentially expressed (or not-expressed) in postnatal cTEC progenitors, 

which would lead to a continuous contribution of ZsGreen+ and ZsGreen- 

progenitor cells to the cortical epithelial compartment in which the overall 

percentage of reporter positive cells does not change over time. However, this 

alternative explanation is less likely to be correct because ZsGreen+ cTEC progenitors 

would still participate to the cortex (even though equally to ZsGreen- ones), which 

would lead to regional clusters of reporter positive cells in the vicinity of precursors. 

Yet we did not observe any cluster formation during short or long chases after Dox 

treatment when investigating thymic cross-sections, nor did we detect a biased 

distribution of same-colored cells in the cortex of 3xtgconfetti mice. In addition we did 

not find cluster formation in thymic injury models, i.e. mice that received sub-lethal 

total body irradiation (data not shown). I therefore conclude that the contribution of 

β5t+ progenitor cells to the cortex after one week of life is very limited. 

In light of the results presented in chapter 3.4, I would like to propose a model of 

postnatal TEC development (Figure 1) in which β5t+ progenitor cells sitting at the 

cortico-medullary junction actively contribute to the growth of the medulla during 
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the first weeks of life, as observed in the in vivo tracing studies of 3xtgβ5t mice treated 

at one week of age and the transplantation experiments of RTOC generated with 

sorted ZsGreen+ cTEC. The immediate progeny of those progenitors would give rise 

to a transiently amplifying immature, mTEC-lineage restricted population (based on 

the BrdU incorporation data and the examination of transplants originating from 

RTOC generated with ZsGreen+ mTEC). Ultimately, after the amplification phase, 

the mTEC lineage-committed progenitor would develop into the various mature 

mTEC lineages. 

 

 

Figure 3.4-1. Model for postnatal mTEC development. During the postnatal expansion of the medulla β5t+ 
progenitor situated at the cortico-medullary junction give rise to a transiently amplifying population of 
mTEC lineage-restricted cells, which, upon several round of proliferation, develop into the mature 
mTEC lineages observed in the adult thymus. 

 

In summary, the results presented in this thesis provide an insight into the complex 

spatio-temporal dynamics of thymic epithelial cell development. cTEC-like (i.e. β5t+ 

and CD205+) cells appear very early during thymic organogenesis and are required 

for the production of signals that attract and commit immigrating hematopoietic 

progenitor cells. Later in development, cTEC are involved in the processes of 

positive selection, a critical step during T cell development, and even negative 

selection, as adult cTEC have been shown to express TRA (5). Thus mTEC provide 
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addition to a function already largely provided by cTEC and hence not critically 

needed for the generation of T cells. However, mTEC clearly refine the overall 

competence of the thymus. The delayed developmental appearance of mTEC and the 

possible continuous contribution of cTEC-like cells to the growing medulla could 

therefore drive an evolutionary evolved fine-tuning of the thymic function that 

allows the creation of a secondary specialized compartment able to secure the correct 

selection of the T cell antigen receptor repertoire. 
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