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Introduction

It was on December 23, 1947 when the first transistor was invented at Bell
Laboratories by William Shockley, John Bardeen, and Walter Brattain [1]. This
was perhaps the most important discovery in information technology in the
20th century setting off what is now known as the semiconductor revolution.
Important steps such as the first integrated circuit (IC) by Jack Kilby in 1958,
or the first IC available on a monolithic chip by Fairchild Corp. in 1961 followed
and have finally resulted in a dramatic minituarization of semiconductor devices.
Since 1960 the IC complexity has followed ”Moore’s Law”, predicting a doubling
of circuit density or capacity of semiconductor devices every 18 months [2].

Meanwhile lithography has reached IC feature sizes of 100 nm, approaching
the ultimate limits of optical lithography, and gate oxide thicknesses have be-
come as low as 1.7 nm [3]. From this fact, two problems arise. First, there is
a need for new techniques allowing one to produce reliably features on the nm
scale. Second, at theses dimensions, quantum effects can enter the game and
drastically modify the performance of the logic devices. How to overcome this
problem? Possible solutions to these problems may be provided by the emerging
field of molecular electronics.

There are two basic devices people try to construct in molecular electronics,
which can be distinguished as classical and quantum molecular transistor. The
classical molecular transistor can be considered as a scaling of a field effect
transistor down to the nm-scale without modifying the physical mechanism of
operation. The quantum molecular transistor, however, additionally makes use
of quantum effects in its device operation.

Since their discovery in 1991 [4], carbon nanotubes have been envisioned
and realized for both types of devices. Due to their semiconducting behavior
(2/3 of all nanotubes) they have been used as classical field effect transistors
at room temperature with the potential of being integrated into Si-based elec-
tronics within the coming 20-30 years. At lower temperatures (below ≈ 20 K)
the energy scales of quantum effects become accessible and carbon nanotubes
have proven to be a fertile ground for the exploration of quantum electronics.
Under these conditions carbon nanotubes become a mesoscopic system, where
particles behave like extended objects with wave character. In fact, carbon
nanotubes offer an experimentally easy accessible system for the quantum me-
chanics textbook example of a particle in a box, called quantum dot or artificial
atom [5, 6].
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Much of the following thesis will be devoted to the quantum dot behavior of
carbon nanotubes. They represent an alternative system as compared to artifi-
cial atoms gate-defined in GaAs-based two-dimensional electron gas systems in
which researchers have achieved an amazing degree of control over the system
[7]. However, quantum dot physics in carbon nanotubes is not just about copy-
ing what has already been done in semiconductor structures. Due to the unique
properties of nanotubes, new physics such as the effect of superconducting and
ferromagnetic correlations on electronic transport through a single quantum-
mechanical state can be probed [8, 9, 10]. In addition the big energy scales
of nanotubes caused by the tiny diameter allow for operation of quantum dot
devices at higher temperatures. When it is possible to obtain an even larger
degree of control over carbon nanotube quantum dots, it seems thinkable to cre-
ate quantum bits [11] or entangled Einstein-Podolsky-Rosen (EPR) pairs [12]
on a solid state basis [13, 14, 15]. Many exciting quantum phenomena remain
to be addressed in experiments; carbon nanotubes may provide a well-suited
platform.



xi

This thesis

In this thesis we will focus on

(a) superconducting electrodes attached to carbon nanotube quantum dots in
order to study the effects of superconducting correlations on quantum systems
and

(b) local gate control of carbon nanotubes in order to define and control dou-
ble quantum dot systems in carbon nanotubes. As it turns out, local gates are
an important tool for increasing the control over quantum states in nanotubes.

The thesis is structured as follows:

• Chapter 1 gives a brief introduction to the chemical and electronic prop-
erties of carbon nanotubes and the experimental procedures necessary for
manufacturing electrical devices with single carbon nanotubes.

• In Chapter 2 selected topics of charge transport in mesoscopic systems,
such as single and coupled quantum dots, are reviewed.

• In Chapter 3 we present electrical transport measurements through a car-
bon nanotube coupled to a normal and a superconducting lead - a test
system for the exploration of the nature of many-particle correlations.

• Chapter 4 describes how to achieve local gate control over semiconducting
carbon nanotubes by adding top-gate electrodes.

• In Chapter 5 double quantum dots are defined and controlled inside a
carbon nanotube. The system allows for the observation of molecular
states induced by a large tunnel coupling of the dots; an artificial molecule
is defined inside a real one.
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Chapter 1

Carbon nanotubes:
Structure, growth and
electrical contacts

1.1 Geometry and energy dispersion of nano-
tubes

There are different manifestations of the element carbon. Besides the well-
known graphite and diamond, researchers have discovered two further forms.
In 1986 fullerenes were reported, tiny spheres (diameter ≈ 1 nm) with all car-
bon atoms at the surface [1]. Then, in 1991 carbon nanotubes followed, two-
dimensional sheets of graphene rolled up into long and thin cylinders [2]. Due to
their unique geometries, both fullerenes and nanotubes have attracted an enor-
mous scientific interest. In particular, carbon nanotubes are often considered
to be the prime example of a one-dimensional system.

Carbon nanotubes are long cylinders rolled up out of two-dimensional sheets
of hexagonally-arranged carbon atoms, so-called graphene. One distinguishes
single-walled carbon nanotubes (SWNT) consisting only of one graphene sheet
and multi-walled carbon nanotubes (MWNT) with typically 10-20 rolled up
sheets. The diameters range from ≈ 1 nm for SWNTs to ≈ 10 − 20 nm in
the case of MWNTs. Carbon nanotubes can be fairly long, lengths of up to
4 cm have been reported [3]. A specific carbon nanotube is defined by a vector
~C = n~a1+m~a2 with ~a1 and ~a2 being the unit vectors of the hexagonal lattice and
n,m integers. A pair (n,m) then corresponds to a specific set of tube diameter
d and chiral angle φ:

d = a/π
√

(n2 + m2 + nm) , (1.1)

φ = arccos(
√

3(n + m)/2
√

(n2 + m2 + nm)) . (1.2)

Figure 1.1 shows the hexagonal graphene lattice and the corresponding lattice
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Figure 1.1: Sketch of a graphene
sheet. The nearest-neighbor-
distance is a0 = 1.42 Å.

vectors ~a1 and ~a2. Axis with special symmetries are the zigzag (n,0) and arm-
chair (n,n) directions named according to the line-shape of a tube circumference
following the carbon atoms. There are many possible ways of rolling up a two-
dimensional graphene sheet into a nanotube. In general one distinguishes three
classes of nanotubes:

• armchair (n,0)

• zig-zag (n,n)

• chiral (n,m)

The structure of these three types of carbon nanotubes and a scanning tunneling
microscope image of a chiral SWNT are illustrated in Fig. 1.2.

As it turns out, the wrapping vector finally determines whether the SWNT
is semiconducting or metallic. Three out of the four valence electrons of carbon
form a strong sp2 σ-bond with the three nearest neighbors on the hexagonal
graphene lattice. The orbitals lie in plane with an included angle of 120◦.
The remaining, fourth electron resides in a π-orbital extending perpendicular
to the graphene plane. Since the π-bonds are much weaker than the σ-bonds
the electronic properties of carbon nanotubes are well described taking into
account only the π-electrons per unit cell [5, 6, 7]. Note that the unit cell of the
hexagonal lattice contains 2 atoms and thus 2 π-electrons.

From the energy dispersion of the π-electrons of a graphene sheet as obtained
from a tight-binding calculation [8] it follows that they can be either in a bonding
(-) or an anti-bonding (+) band:

E(kx, ky) = ±γ0[1 + 4cos(
√

3kxa

2
)cos(

kya

2
) + 4cos2(

kya

2
)]1/2 . (1.3)

Here γ0 = 2.5 eV is the energy overlap integral between the nearest neighbours.
Figure 1.3 shows a three-dimensional plot of the energy dispersion of graphene.
The bonding (conduction) band and the anti-bonding (valence) band meet at



1.1 Geometry and energy dispersion of nanotubes 3

armchair

zigzag

chiral

(d)

Figure 1.2: Different nanotube structures: (a) A (5,5) armchair tube. (b) A
(9,0) zigzag tube. (c) A (10,5) chiral tube. (d) Atomically resolved STM image
of an individual SWNT. The diameter was found to be d=1.3 nm and the chiral
angle φ = 7◦. Adapted from reference [4].

six distinct points corresponding to the corners of the first Brillouin zone. These
points are referred to as K-points. Three out of the six K-points are equivalent
due to the spatial symmetry of the hexagonal lattice, thus two distinguishable
points remain called K and K’.

So far, the discussion has been limited to an infinite, planar graphene sheet.
When rolling up such a sheet to a seamless cylinder and forming a nanotube, an
additional quantization condition for the wave vector component perpendicular
to the tube direction arises. The scalar product of the electronic wave vector ~k
and ~C has to be an integer multiple of 2π, resulting in the following quantization
for the absolute value of the perpendicular component ~k⊥:

| ~k⊥,p |= 2π
(m− n)/3 + p

πd
(1.4)

where p is an integer and d denotes the tube diameter. This condition is ful-
filled in planes perpendicular to the kx − ky-plane. The energy dispersion for
a nanotube thus can be obtained by taking slices through the graphene energy
dispersion plotted in Fig. 1.3. One can show that the one-dimensional band
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Figure 1.3: (a) Band structure of graphene. The valence and conduction band
meet at six points corresponding to the corners of the first Brillouin zone shown
in (b). Due to spatial symmetry, two sets of these points, K and K’, are inequi-
valent.

structure of (n,m) carbon nanotubes in the vicinity of the fermi energy is given
by [9]:

Ep(k‖) = ±2hvF

d

√
(
m− n

3
+ p)2 + (

k‖d

2
)2 . (1.5)

Here h is Planck’s constant and vF = 8 × 10−5 m/s is the Fermi velocity of
graphene. Whether the nanotube is semiconducting or metallic is determined
by the first bracket within the square root of Eq. (1.5). If m-n = 3N with
N an integer, there will always be an integer p = −N forcing the bracket to
equal zero. In this case there will be no energy gap around k‖ = 0, i.e. the
tube will be metallic. Else the tube will be semiconducting. When all (n,m)
wrapping vectors are equally probable, 1/3 of all SWNTs are expected to be
metallic and 2/3 to be semiconducting. Figure 1.4 shows the energy versus
momentum dispersion for a zigzag (5,5) (zigzag tubes are always metallic) and
a semiconducting armchair (9,0) nanotube. For a typical nanotube diameter of
d = 1.3 nm the energy gap amounts to 0.68 eV.
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E E

k k
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Figure 1.4: (a) Energy dispersion of a metallic (5,5) carbon nanotube. (b)
Energy dispersion of a semiconducting (9,0) nanotube. Energy is plotted in
units of E0 = 2h̄vF

d and k in units of k0 = 2
d

.

1.2 Growth by chemical vapor deposition

There are different methods of how to produce carbon nanotubes such as laser
ablation [10], arc-discharge, and chemical vapor deposition (CVD) [11]. For the
early work within this thesis MWNTs obtained by an arc-discharge process have
been used. The MWNTs have been synthesized at L. Forró’s group at the EPFL
(Lausanne). A large current of the order 100 A is passed through a graphite rod
in a He atmosphere. On the graphite cathode a deposit consisting of bundles of
MWNTs forms during the process. After removing the deposit, the nanotubes
can be stored in chloroform and spread on a substrate. For a more detailed
description of nanotube growth by arc-discharge see references [2, 12, 13].

However, using SWNTs has big advantages. First, the system is defined in
a much more robust manner, second, the energy scales of SWNTs are roughly
a factor ten times bigger than those of MWNTs. Hence, quantum and single-
charge effects are accessible at higher temperatures. In the second part of this
work experiments thus made use of SWNTs grown in-house using a CVD pro-
cess. A joined effort was needed in order to finally achieve the successful growth
of single (unbundled) single-walled carbon nanotubes.

The principle setup of the CVD apparatus is shown in Fig. 1.5. A substrate
(Si/SiO2) with a catalytic surface is put inside a furnace which then is heated up
to 900 - 1000◦ C whilst maintaining a constant flow of an unreactive carrier gas
(Argon). When the final temperature is reached the carrier gas is replaced by a
carbon-containing gas (Methane, CH4) providing the carbon for the formation
of the carbon nanotubes. The dissociation of CH4 is energetically favored on
the catalyst surface from where the nanotubes start to form. After a growth
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Figure 1.5: Setup of the CVD apparatus. On the top right a photograph of the
actual furnace is shown.

.

time of ten minutes the methane flow is stopped while restarting the argon flow
through the oven. When the furnace has cooled down sufficiently (≈ 350◦ C)
the argon flow can be stopped and the sample taken out. During the growth
process we also added hydrogen to the methane which limits the formation of
undesired amorphous carbon on the substrate.

The used catalyst consists of iron nitrate (Fe(NO3)3-9H2O), molybdenum
dioxide dichloride (MoO2Cl2) and alumina (Al2O3) following the recipe given
by Ref [14]. What is the function of the individual components? A detailed
description of the growth mechanisms can be found in Ref. [15], summarizing
the function of the components as follows (neglecting N and Cl): Mo catalyzes
the formation of radicals from the carbon feedstock CH4 in direct contact with
Fe, and the presence of Al prevents the Fe from oxidizing. The hydrogen passed
through the oven during the growth process slows down the uncontrolled forma-
tion of radicals and etches amorphous carbon deposited on the substrate. The
detailed recipe for growing SWNTs on Si/SiO2 substrates can be found in the
Appendix.

1.3 Making nanotube-based electrical devices

In most cases, what one wants to end up with, is a field-effect transistor setup
depicted in Fig. 1.6. The carbon nanotube lies on top of a layer of SiO2 insulating
the device from the underlying doped Si substrate which is used as a back-gate
electrode. The following section will be devoted to the details on how to get
there.
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Figure 1.6: The device of inter-
est: A carbon nanotube field ef-
fect transistor.

One starts by cleaving a Si 110 wafer covered by typically 400 nm SiO2 into
small pieces of roughly 2 cm × 2 cm. It is important to clean the substrate thor-
oughly, in our laboratory this is done by an ultrasonical cleaning in isopropanol
for ten minutes, ten minutes cleaning in an O3-chamber and finally by an oxy-
gen plasma for 20 s. After completing all steps preparations for the growth of
SWNTs have to be met. One droplet of the catalyst solved in isopropanol is
spun onto the substrate turning at a speed of 4000 rounds per minute (rpm).
Then the CVD-growth of the nanotubes is performed, see the recipe in the Ap-
pendix. Figure 1.7 (a) shows a typical SEM micrograph of the substrate after
CVD-growth of carbon nanotubes.

(a) (b)

10 mm 10 mm

Figure 1.7: (a) Carbon nanotubes on a Si/SiO2 substrate right after CVD-
growth. (b) Nanotubes are localized by using evaporated markers spaced by 10
µm. In this case the vertically lying tube marked by the arrow was selected.

After the growth, markers (see Fig. 1.7 (b)), which are necessary to local-
ize individual nanotubes, and large metal pads for the bond wires are fabri-
cated by electron-beam (e-beam) lithography and electron-gun evaporation (see
Fig. 1.8 (b)). For the lithography a resist sensitive to electron-beam radiation
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(Polymethyl metacrylate (PMMA) diluted with chlorbenzene) is spun onto the
substrate (4000 rpm) and baked at 180◦ C for 45 minutes. The final PMMA
film thickness after baking was chosen to be around 550 nm - 600 nm. E-beam
lithography is performed with a JEOL JSM-IC848 scanning electron microscope
(SEM) and Proxy-Writer software by Raith. After e-beam lithography one has
to develop the PMMA in an MIBK:Isopropanol 1:3 mixture for 90 s. Now the
metal films can be evaporated. The substrate is built into a vacuum cham-
ber where the metal deposition takes place at a pressure of ≈ 10−6 mbar by
heating up a target with an electron beam. For the markers and bonding pads
the following material layers and corresponding thicknesses are evaporated: 1.
10 nm SiO2 (prevents from shorts due to long nanotube bundles bridging the
bond-pads). 2. 10 nm Ti (Ti partly oxidizes during evaporation and thus serves
as an adhesion layer for the following metal layers). 3. 70 nm Au (Au does not
oxidize and is thus well-suited as top layer.) After evaporation the remaining
PMMA needs to be removed by a lift-off procedure in hot (60◦ C) acetone.

Figure 1.8: (a) Contacted carbon nanotube on chip. (b) Zoom out of (a): Bond
pads and Al bond wires. (c) Zoom out of (b): Completed device in a chip
carrier. The dimension of the chip carrier is roughly 1 cm × 1 cm. The silver-
paint blob at the left bottom corner makes electrical contact to the Si-substrate,
being used as back-gate.

Now we are able to look for the carbon nanotubes we would like to use for
the electrical devices. The localization is done with an SEM (LEO SUPRA
35). It has been shown that all nanotubes that can be resolved by an atomic
force microscope (AFM) can be resolved with the LEO SEM as well [15]. In
addition localizing nanotubes with an SEM is much quicker than with an AFM.
The position of the nanotubes one intends to contact is determined with respect
to the alignment markers placed randomly on the substrate. After localizing
the tubes a second e-beam lithography and metal-deposition process is needed
in order to place electrodes on top of the nanotube chosen. The processing
steps are identical to the lithography of the markers and bond pads, however,
by using the markers the substrate has to be carefully aligned in-situ for the
lithography procedure. For the deposition of the electrodes Pd has become the
standard material, since Pd has good wetting properties on nanotubes. For
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the experiments on MWNTs also Au and Ti/Au or Au/Al bilayers were used.
Figure 1.8 (a) shows a contacted SWNT. The whole process is almost identical
for both MWNTs from a solution and CVD-grown SWNTs. The only major
difference is that CVD-tubes are grown before placing markers and bond pads
on the Si substrate whereas the MWNTs from solution are spread after markers
and bond-pads have already been patterned.

After the lift-off the substrates are glued onto a chip carrier with 20 contacts.
The bond-pads on-chip are then connected to these contacts by thin Aluminum
bonding wires. Care has to be taken not to damage the insulating SiO2 layer on
the chip when using a too high power during the ultrasonical bonding process.
Figure 1.8 (c) shows a photograph of a completed device inside the chip carrier.
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Chapter 2

Charge transport in
mesoscopic systems

2.1 A few remarks

In this chapter selected topics of charge transport in mesoscopic systems relevant
to this thesis are reviewed. In particular, we will briefly discuss the key results
of the Landauer-Büttiker formalism and interference effects with reference to
experimental evidence of both. Additional important ingredients of this work
are quantum dot behavior and single charge tunneling, which will be discussed in
section 2.3. We then go over to the mechanisms governing electronic transport
at (mesoscopic) normal-superconductor interfaces and will finish this chapter
with a brief introduction to double quantum dot physics. As this chapter can
only give a small flavor of the field of mesoscopic physics, the interested reader
is asked to refer to, e.g. ”Electronic Transport in Mesoscopic Systems” by S.
Datta [1], ”Mesoscopic Physics and Electronics” by T. Ando [2], and ”Single
Charge Tunneling - Coulomb Blockade Phenomena in Nanostructures” edited
by H. Grabert and M.H. Devoret [3].

2.2 Conductance, transmission and interference

With the advent of micro- and nano-structuring fabrication techniques it has
become possible to study physics in an intermediate regime between the atomic
scale and the macroscopic one, the so-called mesoscopic regime. In this regime
charge carriers may have a quantum-mechanically coherent history, and behave
according to the particle-wave duality. Here, the de Broglie wavelength and the
momentum at the Fermi energy, λf and kf are related by λf = 2π/kf =

√
2π ns,

with ns being the density of electrons. Quantization effects are expected when
the dimensions of the system are of the order of λf , resulting in a discrete energy
spectrum.
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In mesoscopic systems electronic transport is often described as a scattering
problem, i.e. a moving electron hits a certain barrier and gets transmitted
with a probability T or reflected with a probablity 1− T . From this picture it
becomes clear that conductance through a system can be viewed as transmission
of the charge carriers through it. When the scattering processes are elastic,
the conductance G through a conductor (quantum wire) with M non spin-
degenerate modes with transmission T can be expressed using the Landauer-
Büttiker formalism as [4, 5]:

G =
e2

h

M∑
i

Ti , (2.1)

where e2/h ≈ 38 µS corresponding to the inverse of the resistance quantum
RQ = 25.8 kΩ. RQ was first observed as quantized Hall resistance in the
quantum Hall effect [6]. Later, conductance quantization in quantum point
contacts, narrow constrictions defined inside a two-dimensional electron gas (2-
DEG) were reported by van Wees et al. [7]. In metals, where kf is much shorter,
conductance quantization was observed in atomic-scale contacts accessible by
STM [8] or mechanically-controllable break junction techniques [9]. Frank et
al. reported a quantized conductance in an experiment in which multi-walled
carbon nanotubes (MWNTs) were used as an STM tip and then lowered into
liquid mercury [10]. In all these experiments the observed quantized change of
conductance could be attributed to single modes entering or leaving the system.

Eq.(2.1) implies that, even in the case of a ballistic conductor perfectly
attached to electron reservoirs (T = 1), there is a finite resistance. The voltage
drop involved then occurs at the contacts and a four-point measurement of the
resistance of the ballistic conductor yields zero , as was observed experimentally
in Ref. [11]. For an ideal metallic nanotube, i.e. ballistic and undoped, one
expects a two-terminal conductance of G = 4 e2/h, where we took into account
the two degenerate bands at ±kf (see chapter 2), each of them two-fold spin-
degenerate.

The wave character of electrons in mesoscopic systems is reflected in interef-
erence effects observed in numerous experiments. Probably the most prominent
is the solid-state analog of the double-slit experiment, the
Aharonov-Bohm effect. In a 1985 experiment Webb et al. passed a current
through a submicron-diameter Au ring and measured periodic oscillations of
the conductance when varying a magnetic flux applied perpendicular to the
ring [12]. These results can be interpreted as the interference between the two
paths an electron can take in order to propagate through the ring. A necessary
condition is that the electron path through the ring is shorter than the phase
coherence length lΦ. If this is not the case, the electron will lose its phase infor-
mation in between and will not be able to interfere. Aharonov-Bohm oscillations
have been observed not only in metal rings, but also in rings defined in 2-DEGs
[13] and in MWNTs [14].

Other well-known interference effects in mesoscopic systems are weak local-
ization [15] and universal conductance fluctuations (UCF) [1]. In disordered,
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Figure 2.1: (a) Schematics of a quantum dot tunnel-coupled to metallic elec-
trodes. (b) Conductance through a quantum dot versus gate voltage (top) and
corresponding stability diagram, exhibiting so-called Coulomb diamonds (bot-
tom).

phase-coherent samples the probability for backscattering is enhanced due to
the constructive interference of such time-reversed (backscattered) trajecto-
ries. By applying a perpendicular magnetic field the enhanced backscattering
is suppressed as the magnetic flux leads to a phase difference between the two
backscattered paths. The enhanced backscattering at zero magnetic field is re-
ferred to as weak localization. UCF are random sample to sample fluctuations
of the conductance in diffusive, phase-coherent systems. They are universal in
the sense that the amplitude of the conductance fluctuations is of the order e2/h
irrespective of sample size and degree of disorder. In carbon nanotubes, both
weak localization and UCF have been studied extensively [16, 17].

2.3 Quantum dots

As described above, in mesoscopic physics particles can be described as ex-
tended objects with wave character. When the wavelength of the particles be-
comes comparable to the system dimensions, the energy spectrum (the density
of states) is modified. Such finite-size effects lead to a quantization of the wave
vector in the confined direction. The system is referred to as quantum dot when
the particle is confined in all spatial directions and reduces to a zero-dimensional
problem, where the energy eigenvalues are quantized. The energy difference be-
tween two allowed energy eigenvalues is called level spacing or orbital energy. In
fact, quantum dots are an experimental realization of the quantum-mechanics
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Figure 2.2: Grayscale plot of the differential conductance (dark = more conduc-
tive) and trace of the linear conductance through a SWNT at 4.2 K.

textbook example of a particle in a box. The analogy to atomic orbitals has led
to the alternative name ”artificial atoms” [18].

Whereas spectroscopy experiments on real atoms have mainly made use of
light, attaching leads to artificial atoms provides a novel way of accessing the
properties of quantum-mechanical states by means of electronic transport. In
addition, due to the small size of quantum dots, another, completely classical,
energy scale enters the game. This energy scale is the single-electron charging
energy, also referred to as the on-site repulsion. A typical quantum dot consists
of an island which is coupled to leads via tunnel barriers. Classically, a tunnel
barrier can be represented simply as a capacitor with a certain capacitance C.
The energy it takes to add an electron charge e on the capacitor is given by UC =
e2/2C [3, 19]. In the case of nano-structured tunnel-barriers the capacitance
can become very small resulting in a significant single-electron charging energy
UC of the order 1 to a few K. In order to enable transport of electrons through
the system this energy has to be provided, either by a bias voltage or by a
change of the gate voltage. In the regime kBT < UC single electron charging
phenomena thus allow for the control of the number of charge carriers residing
on the system.

The coupling to the attached leads is characterized by the tunneling rates
ΓS and ΓD. As a consequence of the finite tunnel-coupling to the leads the
discrete energy state gets smeared out and has a width given by the Γs. From
the Heisenberg uncertainty principle ∆E ∆t ≈ h the life time of the state can
be deduced. Figure 2.1 (a) shows the schematics of a quantum dot coupled to
metallic source and drain electrodes. We assume only spin-degeneracy, i.e. each
energy level can be occupied by two electrons. The orbital energy is denoted
δE. If a level is occupied by only one electron, one will have to pay an addition
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energy of UC , the single-electron charging energy, for adding another electron.
If, however, a level is already occupied by two electrons, the additional electron
will have to be put into the next higher orbital state. The addition energy in
such a case is then given by UC +δE. With capacitively coupled gate electrodes
the levels on the dot can be moved linearly, i.e. the quantum dot can be filled
or emptied subsequently. How do the transport characteristics of such a system
look? In the linear regime (Vsd = 0) charge carriers can tunnel through the
dot when an empty state on the dot is lined up with the chemical potentials
of source and drain. One thus expects a sharp resonance of conductance every
time the necessary addition energy is provided by the gate voltage. Since there
are different addition energies for an odd or an even occupancy of the dot one
expects two different spacings in between the resonances of conductance: See
the top of figure 2.1 (b).

The charge stability diagram of a quantum dot can be obtained by sweeping
both the source-drain voltage and the gate voltage, see the bottom of figure
2.1 (b). The drawn lines correspond to the conditions Vsd = ±α(VG − VG0)
where α = CG/(CS + CD + CG) = CG/CΣ is the coupling factor of the gate
electrode and VG0 is the gate voltage position of the conductance resonance,
i.e. where a dot level is aligned with the chemical potential of source and drain.
Connecting the intersects of the lines results in a pattern often referred to as
Coulomb diamonds. Inside each of the diamonds the quantum dot is stable
against fluctuations of its charge. Sweeping the gate voltage to more positive
values subsequently fills electrons on the dot whereas sweeping the gate to more
negative values pushes electrons out of it. The two different addition energies
result in two different sizes of diamonds. Coulomb diamonds are also present for
a single-electron-transistor (SET), however, in contrast to quantum dots there
are no single quantum levels involved. Thus the addition energy is constant and
all Coulomb diamonds are expected to have the same size.

For a nanotube with effective length L the wave vector in the direction of
the tube axis is quantized. The quantization of the wave vector leads to a
quantization of the energy spectrum. In the vicinity of the Fermi level, the
orbital energy δE of an ideal metallic nanotube yields δE = hvF /2L where
the Fermi velocity vF = 8 · 105 m/s. For a typical length of 1 µm the level
spacing follows to be δE = 1.7 meV which corresponds to a temperature of
roughly 20 K. For SWNTs the charging energy UC is of the same order. In
MWNTs, both δE and UC are about one order of magnitude smaller. Figure
2.2 shows the stability diagram and the linear differential conductance through
a SWNT quantum dot with a contact spacing of 300 nm and UC ≈ δE ≈ 6
meV measured at 4.2 K. Note, for an ideal nanotube one expects a four-fold
degeneracy of the levels due to the band structure which is symmetric around
k = 0, see Chapter 1.

The discussion on nanotube quantum dots so far has been limited to the
case of Coulomb-blockaded islands. However, when G ≥ e2/h, single-electron
charging effects become less pronounced. Instead, interference phenomena, with
amplitudes depending sensitively on the transmission of barriers, take place in
the nanotube wave-guide, similar to Fabry-Perot interferences in optical cavities
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Figure 2.3: Colorscale plot of the differential conductance (dark blue = more
conductive) and trace of the linear conductance through a fairly open SWNT
at 4.2 K. We attribute the modulation of the conductance with gate voltage to
quantum interference processes. The kink at VG ≈ 0 V is due to a random,
occasionally occurring jump of the gate potential.

[20]. Figure 2.3 shows a colorscale plot of the differential conductance through
an open nanotube device at 4.2 K. In contrast to Coulomb oscillations, the
amplitude of the conductance modulations is only about 1/3 of the signal and
the conductance in the valley is still greater than e2/h. In an intermediate
regime, where both, fairly transparent tunnel barriers and Coulomb blockade are
present, the lead-dot system may exhibit Kondo correlations [21]. The Kondo
effect and its interplay with a superconducting electrode will be the subject of
Chapter 3.

2.4 Transport through a normal-superconductor
junction

Chapter 3 of this thesis deals with the transport properties of a carbon nano-
tube coupled to a normal and a superconducting electrode. It is thus impor-
tant to understand the physics governing charge transfer processes at a normal-
superconducting (N-S) interface. Conventional superconductivity is explained
within the framework of the so-called BCS theory [22] by a phonon-mediated
attractive interaction between electrons around the Fermi edge. Due to this
interaction an energy gap ∆ arises in the quasiparticle density of states. Inside
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Figure 2.4: Illustration of a normal-superconducting interface at a an applied
bias | eVsd |> ∆ in (a) and | eVsd |< ∆ in (b). In (b) transport at zero
temperature is only carried by Andreev reflections.

the energy gap electrons condense into so-called Cooper pairs, outside the gap
electrons are unpaired with a modified quasiparticle density of states N(E),
given by [23]:

N(E)
N0

=
{ E√

E2−∆2 |E| ≥ ∆
0 |E| < ∆

, (2.2)

where N0 is the normal density of states which can be treated as a constant
around the Fermi energy.

From these first considerations it becomes clear that transport at an N-
S boundary strongly depends on whether the applied bias voltage across the
junction is smaller or bigger than the BCS gap. When | eVsd |> ∆ quasiparticle
transport is possible, when | eVsd |< ∆ two electrons from the normal metal
have to form a Cooper pair in order to enable transport. Since two electrons
are involved, the probability of such a process goes with T 2 where 0 < T < 1
is the transmission probability of a single electron through the N-S interface.
The underlying processes are so-called Andreev reflections, where, in order to
conserve spin and charge, in addition to the original electron, a second electron
enters the superconductor and a hole is reflected back into the normal region
[24]. Figure 2.4 illustrates the charge transfer processes at an N-S interface.

Electrical transport through an N-S interface characterized by a certain
transmission has been described quantitatively by references [25] and [26]. Fig-
ure 2.5 shows the differential conductance dI/dVsd for various values of the
transmission T . In the case of low transmission values (tunnel barriers), the
differential conductance directly reflects the BCS quasiparticle density of states
since Andreev processes are strongly suppressed. For an increasingly transpar-
ent junction the probability of Andreev processes increases enabling transport
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within the superconducting gap. In the extreme case of T = 1 the differential
conductance inside the superconducting gap is twice as big as that in the nor-
mal state due to the back-reflected hole originating from the Andreev process.
However, keep in mind that in this picture of a normal-superconductor-junction
we have neglected any energy-dependence of the barrier transmission. In meso-
scopic systems, however, the wave-nature of charge-carriers and charging effects
often lead to resonant transport, i.e. strongly energy-dependent transmissions.
Transport through a resonant N-S-junction has been described by Khlus et al.
[27], whose model will be used in Chapter 3 to analyze our data.

2.5 Double quantum dots

In section 2.3 the electrical transport properties of quantum dots, so-called
artificial atoms, are discussed. Soon after the first realized single quantum dots,
the idea of coupled quantum dots, so-called artificial molecules arose, and was
realized, see [28] and references therein. In such structures it is possible to study
the fundamentals of molecular physics. That is, probing and controlling the
interaction between two artificial atoms. The interaction can be electrostatic,
due to an inter-dot mutual capacitance, or quantum-mechanical, induced by a
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tunnel coupling due to a finite overlap of the dot wavefunctions. In Fig. 2.6(a)
a double quantum dot connected to leads and gate electrodes, controlling the
individual dots, is illustrated.

Source	    QD1	       QD2        Drain

µd

µs

Gate 1 Gate 2

(a)

S DQD 1 QD 2

VG1 VG2

CG1

CS CD

CG2

Cm
(b)

S D

Γs Γdt

(c)

Figure 2.6: (a) Schematics of a double quantum dot connected to leads. Gates
1 and 2 control the chemical potentials of dots 1 and 2, respectively. (b) Elec-
trostatic model of a double quantum dot. (c) Illustration of a double quantum
dot with molecular states induced by a tunnel coupling t.

In order to gain an understanding of the transport properties of coupled
quantum dots we will first neglect a tunnel-coupling between the dots and con-
sider double dots with a purely electrostatic interaction, see Fig. 2.6(b). How
does the charge stability diagram in terms of the gate voltages VG1 and VG2

look? Let us first assume very decoupled dots, i.e. electrical transport through
one dot is independent of the other one. In order to enable transport through
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one dot, the single-electron addition energy Eadd has to be provided by the cor-
responding gate voltage. In order to enable transport through the whole system,
this condition has to be fulfilled for the second dot as well. The charge stability
diagram of the system is thus a rectangular pattern with transport allowed only
at the intersection points labelled with blue in Fig. 2.7(a). Introducing a finite
electrostatic interaction, the degeneracy at these points is partially lifted. Two
possible charge transfer processes for, say moving an electron from the left to
the right lead are:

• (n+1,m) → (n,m+1) → (n,m) → (n+1,m) or

• (n+1,m) → (n,m+1) → (n+1,m+1) → (n+1,m).

Despite the fact that both sequences start and end at the same charge config-
uration, their intermediate energies are non-degenerate for fixed gate voltages
VG1,G2. Due to the electrostatic nearest-neighbor interaction it actually makes a
difference energetically whether the system follows the sequence to the (n,m+1)
charge configuration via the (n+1,m+1) or via the (n,m) one. The resulting
two points, where transport according to the two processes listed above is en-
abled, are referred to as triple points. The spacing between these triple points
is a measure of the electrostatic nearest-neighbor interaction U ′, mediated by
a mutual capacitance Cm. For finite U ′ the formerly rectangular stability di-
agram transforms into a hexagonal pattern, the so-called honeycomb pattern,
see Fig.2.7(b).

We can now continue our previous considerations concerning the electrostatic
coupling of the two dots. At some point, while continuously increasing the
electrostatic coupling of the dots, the two dots will merge into a single one.
Charge transport is possible when the addition energy for an electron is provided
by the two gate voltages, i.e. the condition α(VG1 + VG2) = Eadd(N) needs to
be fulfilled. Here N denotes the number of charges residing on the dot. This is
the case at diagonal lines VG1 = −VG2 +Eadd(N)/α, as illustrated in Fig.2.7(c).
Note that here we assumed an equal coupling α (identical gate capacitance) of
the two gates, resulting in a slope of the line of -1.

Now, in order to be more quantitative, we can write down the double dot
energy of the (n+1,m+1) configuration:

En+1,m+1 = En,m + E1 + E2 + U ′ , (2.3)

with En,m being (up to a constant offset independent of of n,m)

En,m =
U

2
(n(n− 1) + m(m− 1)) + V1n + V2m + U ′nm , (2.4)

and with the energies E1 and E2:

E1 = V1 + Un + U ′m , (2.5)

E2 = V2 + Um + U ′n . (2.6)
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Figure 2.7: Charge stability diagram for an increasing electrostatic coupling
from (a) to (c): Points / lines where transport is enabled are colored in blue,
borders of stable charge regions in red. (a) Two decoupled dots. (b) Intermedi-
ate coupling: Splitting of the charge transport points. Honeycomb lattice. (c)
The two dots have merged into a single dot with two gates. Charge transport
is possible along diagonal lines. (d) Honeycomb pattern in the presence of a
finite tunnel coupling t. The spacing of the triple points is enlarged compared
to (b) and the honeycomb edges exhibit a curvature in the vicinity of the triple
points. Note that transport is partly possible at these edges due to the presence
of molecular states.
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Here, U is the on-site repulsion of the two dots (for simplicity assumed to
be identical), and Vi is the single particle energy of dot i provided by the gate
voltages VG1 and VG2.

E+

E-

Energy

Detuning ε

Figure 2.8: Energies E+ and E− versus detuning. When a tunnel coupling is
absent, the two levels intersect in the origin. The perturbation induced by the
tunnel coupling results in a level anti-crossing. In this plot, ∆ is set to 0.

As the next step we now describe a system such as the one depicted in
Fig. 2.6(c) and take into account a tunnel coupling t. First, we neglect the
electrostatic nearest-neighbor interaction between the two dots. A tunnel cou-
pling arises from an overlap of the wave functions of the two dots. In quantum
mechanics such overlap of degenerate states generally results in an anti-crossing
of the energy levels due to a mixing of the states. In fact, the tunnel coupling
can be seen as a perturbation modifying the Hamiltonian, its eigenvalues and
eigenfunctions. In order to quantify this effect we follow the description of a
quantum two-level system given by Cohen-Tannoudji [29]. We start with two
well-separated dots not tunnel-coupled. The eigenstates |φ1〉 and |φ1〉 of dot 1
and dot 2 then solve the Schrödinger equation with the Hamilton operator H0

and the eigenvalues E1 and E2:

H0|φ1〉 = E1|φ1〉 , (2.7)

H0|φ2〉 = E2|φ2〉 . (2.8)

Next, the tunnel coupling can be taken into account by a hermitian matrix
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T with only off-diagonal elements for the sake of simplicity.

T =
(

0 t12
t21 0

)
, (2.9)

where t12 = t∗21. In the (|φ1〉, |φ2〉) basis the matrix of the Hamilton operator H
is then given by:

H = H0 + T =
(

E1 t12
t21 E2

)
. (2.10)

This matrix can be diagonalized and the eigenvalues are:

E± =
1
2
(E1 + E2)∓

1
2

√
(E1 − E2)2 + 4 | t12 |2 . (2.11)

We can now set ∆ = 1√
2
(E1 + E2), ε = 1√

2
(E1 − E2), | t12 |2= t2 and rewrite

Eq.(2.11):

E± =
1√
2
(∆∓

√
ε2 + 2 t2) . (2.12)

E+ is the energy of the bonding state, which is the ground state of the system.
We can now plot the two energies E+ and E− versus the so-called detuning
ε, which is a measure of the energy difference of the two states, see Fig. 2.8.
When ε = 0 the effect of level-repulsion reaches it maximum. The asymptotes
of the unperturbed energy levels (| ε |>> 0) intersect in the origin of the plot.
The corresponding wave functions of the perturbed system |Ψ〉 with H |Ψ±〉 =
E± |Ψ±〉 are linear superpositions of |φ1〉 and |φ2〉 and are either bonding (E+)
or anti-bonding (E−). Consequently, a tunnel coupling leads to a delocalization
of the electrons or holes trapped in a double-dot system.

In real double quantum dots one typically has both an electrostatic nearest-
neighbor interaction U ′ and a tunnel coupling t. Both phenomena result in
an increased spacing of the triple points, however only tunneling will lead to
a curvature of the energy levels. For strong tunneling, the honeycomb pattern
will be similar to the one sketched in Fig. 2.7(d). In particular, transport
is partly enabled on the honeycomb edges, as electrons can be transferred via
tunnel-coupled, molecular states |Ψ〉. An allowed charge transfer processes is
then:

• |n, m〉 → |Ψ〉 = α |n, m + 1〉+ β |n + 1,m〉 → |n, m〉

where α and β are the coefficients of the linear combination of the unperturbed,
single-dot wave functions. The exact expressions for these coefficients are:

| α±(ε) |2= 2t2

2t2 + (ε±
√

ε2 + 2t2)2
, (2.13)

| β±(ε) |2= 1− | α±(ε) |2 . (2.14)

In Chapter 5 the measured stability diagram of a carbon nanotube double quan-
tum dot is presented. There, the spacing of the two high-conductance wings in
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the vicinity of two triple points will be used in order to precisely extract t. In
the following we will thus deduce a convenient expression for the spacing of the
two wings.

First, we include the lower-lying charge states on the dot and U ′. The energy
of the coupled state |E±〉, with one excess particle relative to |m,n〉 is then given
by:

E±
(∆,ε) = En,m(∆, ε) +

1√
2
(∆∓

√
ε2 + 2 t2) . (2.15)

The energy of the state |m + 1, n + 1〉 follows from Eq.(2.3) to be:

En+1,m+1(∆, ε) = En,m(∆, ε) +
√

2∆ + U ′ . (2.16)

The two high-conductance wings one observes in the double-dot stability dia-
gram now correspond to energy-conserving transitions from (a) the |n+1,m+1〉
state to the bonding state |E+〉 and (b) from |E+〉 to |n, m〉. We can now write
the conditions for these transitions:

µ =
∆E

∆N
= En+1,m+1(∆, ε)− E+(∆, ε) = U ′ +

1√
2
(∆ +

√
ε2 + 2 t2) , (2.17)

µ =
∆E

∆N
= E+(∆ + E∆, ε)−En,m(∆ + E∆, ε) = +

1√
2
(∆ + E∆ −

√
ε2 + 2 t2) .

(2.18)
By setting Eq.(2.17) and Eq.(2.18) equal we can now determine the spacing in
the ∆-direction, E∆, of the two wings:

E∆ =
√

2U ′ +
√

4ε2 + 8t2 . (2.19)

Additionally, in Chapter 5 we will make use of the fact that the differential con-
ductance along the wings is proportional to | αβ |2. With the help of Eq.(2.13)
we are then able to directly extract the coefficients of the superposed wavefunc-
tion and map it.
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Chapter 3

Quantum dot coupled to a
normal and a
superconducting lead

3.1 Motivation

In Chapter 2 we have seen that, at low temperatures, carbon nanotubes can act
as quantum dots. Different transport regimes, depending on the transparency
of the contacts, such as Coulomb blockade and Kondo effect have been real-
ized [1, 2]. Recently it has also been possible to couple a carbon nanotube
quantum dot in the Kondo regime to superconducting leads, demonstrating a
rich interplay of these two many particle phenomena [3]. In this chapter we
consider a slightly different geometry, namely a quantum dot connected to both
a normal and a superconducting lead. These hybrid systems are interesting
for two reasons. First, the interplay of the Kondo effect and superconductiv-
ity can be examined on a different basis. Various predictions have been made
for this scenario, e.g. suppression or enhancement of the conductance [4], side-
peaks in the density of states at the position of the superconducting gap [5]
and excess Kondo resonances [6]. Second, the structure mentioned above is the
basic building block of proposed Andreev entanglers making use of either the 0-
dimensional quantum dot charging energy UC [7] or the 1-dimensional Luttinger
repulsion energy of a nanotube in order to spatially separate pairs of entangled
electrons [8, 9, 10]. In the following we will focus on the interplay of the Kondo
effect and the superconducting lead.

3.2 Sample fabrication and measurement

The device we consider consists of a multi-walled carbon nanotube (MWNT)
coupled to a normal metal on one side and to a superconductor on the other.
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Figure 3.1: (a) Schematics of the device. (b) SEM micrograph of the sample.

The sample preparation involves the following steps. First MWNTs are spread
on a degenerately doped silicon substrate, in the experiment serving as a back-
gate, which is covered by a 400 nm thick insulating layer of SiO2. Single na-
notubes are then contacted by means of electron-beam-lithography and e-gun-
evaporation, see Chapter 1. Similar to reference [3] the superconducting contact
is a 45 nm Au/ 160 nm Al proximity bilayer. However, by using tilt-angle-
evaporation for the Al layer one obtains a structure such as the one sketched in
Fig. 3.1(a). Whereas the left-hand side of the MWNT is coupled to the super-
conducting Au/Al bilayer, the right-hand electrode is formed simply by the 45
nm gold layer. There will also be Al deposited on this side, but the spatial
separation of the nanotube-gold-contact and the Al film is fairly long (approx-
imately 1 µm). To check quantitatively whether also on this side of the sample
proximity effects have to be taken into account one can estimate the Thoules
energy [11]. The Thoules energy represents an upper limit in energy for ob-
serving superconducting correlations (assuming perfect barriers). One obtains
ET = h̄D/L2 ≈ 3 µeV ≈ 10 mK using a gold diffusion constant D = 5 × 10−3

m2/s (corresponding to an estimated Au mean free path of 10 nm) and a spatial
separation L ≈ 1 µm. The experiment is performed at 90mK, hence, kT is big-
ger than the estimated ET and any proximity induced superconductivity on the
right sample contact can be safely neglected. Consequently the sample geometry
represents a S-QD-N structure. Figure 3.1(b) shows an SEM (Scanning Electron
Microscope) micrograph of the sample. Electrical transport measurements were
performed in a Kelvinox dilution refrigerator.
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Figure 3.2: (a) Grayscale representation of the normal state conductance at
90 mK and B = 25 mT (dark = more conductive). The white curve on the
left (right) shows the differential conductance versus the applied source-drain
voltage at the position of the left (right) arrow. The two Kondo ridges are
labelled “A” and “B”. (b) Grayscale representation of the conductance in the
superconducting state at 90 mK and B = 0 mT.

3.3 Kondo regime

By applying a small perpendicular magnetic field of 25 mT the superconducting
electrode is driven into the normal state and the sample can be characterized in
the N-QD-N configuration. This is possible because the magnetic field is bigger
than the Aluminum critical field but still small in terms of the Zeeman shift of
the nanotube energy levels (EZeeman = gµBB where g ≈ 2 is the gyromagnetic
ratio and µB the Bohr magneton). Figure 3.2(a) shows a grayscale represen-
tation of the differential conductance through the device at T = 90 mK and
B = 25 mT with varying back-gate and source-drain voltage. Despite some de-
gree of disorder clear signs of Coulomb blockade diamonds and the Kondo effect
as manifest in the high conductance ridges at zero bias voltage labelled “A”
and “B” are visible. From the size of the diamonds one can deduce a charging
energy UC = e2/2C ≈ 0.3 meV and a level spacing energy ∆E ≈ 0.3 meV. The
coupling C/CGate is of order 250. The Kondo effect occurs when the number
of electrons on the dot is odd and it thus acts as a localized magnetic moment
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with spin 1/2. Below the Kondo temperature TK the spins of the leads try
to screen the localized spin, i.e. change its spin expectation value to zero. In
quantum dots this happens via fast spin-flip processes allowed only on a short
timescale within the Heisenberg uncertainty principle. As a result of these pro-
cesses between each lead and the dot a resonance of the dot spectral density at
the chemical potential of the lead occurs which finally also causes a resonance
of the conductance at zero bias. In the so-called unitary limit, corresponding
to T << TK [12], a perfectly transmitting transport channel opens up and
the many-particle phenomenon Kondo effect reduces effectively to a completely
non-interacting problem [13].
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Figure 3.3: (a) Linear response conduction of ridge “A” for different temper-
atures in the normal state (B = 25 mT). Labels indicate the temperature in
mK. (b) Like (a), but in the superconducting state (B = 0 mT). (c) Scaling
plot of the maximum Kondo conductance for ridge “A” and “B” in the normal
and ridge “B” in the superconducting state. The inset shows the temperature
dependence of the conductance at the center of ridge “A” in the normal (upper
data) and superconducting (lower data) state.

Figure 3.3(a) shows the gate dependence of the linear conductance of ridge
“A” for various temperatures in the normal state. TK can be determined by
examining the temperature dependence of the linear conductance G(T ) on the
Kondo ridge, i.e. exactly in the middle of the two adjacent Coulomb peaks. As
for the ’classical’ Kondo effect one finds a logarithmic temperature dependence.
In order to determine TK we used the empirical relation G(T ) = G0/(1+(21/s−
1)(T/TK)2)s where s=0.22 for a spin 1/2 system and the maximum conductance
G0 = 2 e2/h in the case of symmetric coupling [14]. Best fits to our data yield
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TK,A = 0.3 K, TK,B= 1.3 K, G0,A = 1.54 e2/h and G0,B = 1.57 e2/h. When
plotting the normalized conductance G/G0 over the reduced temperature T/TK

the normal state data of ridges “A” and “B” collapse on a universal locus, as seen
in Fig. 3.3(c). A further rough estimate of the Kondo temperature is obtained
by the width of the resonant conductance peak yielding 0.6 meV (≈ 0.72 K)
and 0.1 meV (≈ 1.2 K) for ridges “A” and “B”, respectively.

When one of the two electrodes enters the superconducting state the Kondo
effect is modified. As was shown in [3] the Kondo effect is suppressed by su-
perconductivity only when the superconducting gap ∆ is bigger than kBTK . A
crossover is expected for ∆ ≈ kBTK . However, in contrast to an S-QD-S geome-
try here one faces an asymmetric situation and one has to distinguish the nature
of coupling between the dot and the normal lead on one side and between the
dot and the superconducting lead on the other. Whereas the Kondo processes
between the normal lead and dot remain unaffected, two different scenarios
are possible for the superconducting lead-dot-coupling. In the first case, when
kBTK is bigger than ∆ one expects the Kondo resonance to persist since quasi-
particle states in the superconducting electrode can participate in the Kondo
spin-flip processes. If, however, kBTK is smaller than ∆ these states will be
missing and the Kondo coupling between the dot and the superconducting lead
will be strongly suppressed. Yet, a resonance of the dot spectral density with a
renormalized Kondo temperature (Kondo resonance width) T ∗

K < TK remains,
which is caused by the Kondo processes between the normal lead and the dot.
Whether one actually sees an enhancement of zero-bias conductance at temper-
atures below T ∗

K will now depend on the relevant dot energy scales such as the
charging energy UC (suppresses Andreev reflections at the dot-superconductor
interface) and the coupling strength on both sides ΓS and ΓN . In certain pa-
rameter regimes it thus should also be possible to enhance the conductance
up to 4 e2/h, which is the maximum value for a single perfectly-transmitting
channel [15].

Figure 3.2(b) shows the conductance through our device in a grayscale rep-
resentation for the superconducting state at T = 90 mK and B = 0 mT. The
magnitude of the superconducting gap can be deduced from the horizontal fea-
ture at eVsd = ∆ ≈ 0.09 meV in good agreement with [3], yielding a transition
temperature TC ≈ 1 K. For the energy scales of our quantum dot we thus
obtain ∆E ≈ UC ≈ 3∆. We now focus on the two Kondo regions in the
superconducting case. In the case of ridge “B” with the width of the Kondo
resonance being bigger than the superconducting gap (kBTK/∆ ≈ 1.3) both
the grayscale representation of the Kondo conductance and its temperature de-
pendence remain almost identical to the normal state, i.e. a strong zero-bias
conductance resonance and a logarithmic temperature dependence at low tem-
peratures. However, for temperatures approaching the transition temperature
TC the conductance in the S-QD-N case is slightly higher than in the N-QD-N
case, similar to what one would expect for a channel with constant transmission
in the BTK model [16]. When fitting the temperature dependence with the
same formula as above one obtains a slightly enhanced Kondo temperature of
TK = 1.44 K and a slightly reduced maximum conductance of G0 = 1.55 e2/h.
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For this fit we only considered temperatures sufficiently below TC in order to
exclude the BTK-like conductance enhancement mentioned above. The data
also collapse on the universal Kondo locus, see Fig. 3.3(c).

The resonance of ridge “B” remains in the superconducting state, but its
conductance is not increased. At first sight this behavior seems surprising,
since resonances indicate a high effective transmission for which a doubling in
conductance is expected in the unitary limit. This, however, only holds for a
symmetrically coupled junction. Our observation is in quantitative agreement
with the theoretically expected conductance if we account for the asymmetry.
We consider the unitary limit for which the results for non-interacting electrons
should hold. The maximum conductance (at resonance) of a transport channel
between two normal electrodes is given by

GNN = (2 e2/h)
4ΓLΓR

(ΓL + ΓR)2
. (3.1)

From our data we obtain G0 = 1.57 e2/h and thus a relative asymmetry
of the lead coupling of ΓL/ΓR = 0.37 (or the inverse). Between a normal
and a superconducting lead the maximum Andreev conductance follows this
expression derived by Beenakker [15]:

GNS = (4 e2/h) (
2ΓNΓS

(Γ2
N + Γ2

S)
)2 . (3.2)

Using the Γ-ratio determined before one obtains for the resonance conduc-
tance in the superconducting state G0 = 1.69 e2/h. This value is only slightly
higher than the one in the normal state and therefore explains our experimental
observation.

In the case of ridge “A” the scenario is different (kBTK/∆ ≈ 0.3). The
superconducting electrode results in a suppression of the zero bias Kondo con-
ductance enhancement but high conducting side ridges at the position of the
gap occur. This can be understood when taking a look at Fig. 3.4 where
the electronic spectrum of the quantum dot and of the leads is depicted. The
remaining Kondo coupling between the normal lead and the dot results in a res-
onance of the dot spectral density pinned to the normal lead chemical potential
µN . At a bias of Vsd = ∆/e the superconductor quasiparticle spectrum and the
normal lead chemical potential (and thus the Kondo resonant level) are lined
up and resonant transport occurs. The linear conduction of ridge “A” in the
superconducting state versus gate voltage is shown for various temperatures in
Fig. 3.3(b). In the inset of Fig. 3.3(c) the conductance at the center of ridge
“A” is plotted versus temperature for both the normal and the superconducting
state. Whereas there is an increase of conductance below TK ≈ 0.3 K for the
normal state data, the conductance remains more or less constant in the super-
conducting case. Thus we were not able to perform a fit in order to determine
the renormalized Kondo temperature T ∗

K . However, we suspect T ∗
K to be of

the order of 100 mK since the 90 mK data show an increase of conductance.
The temperature dependence of the conductance on the ∆-side-peaks (data not
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shown) does not show logarithmic behavior down to our lowest temperatures
either, but similar to the linear response conductance an enhancement for the
90 mK data. This might indicate Kondo coupling at non-zero bias between the
quasiparticles in the superconducting and the normal lead.

NS QD

2∆µS
µΝ

kBTK

GS GN

Figure 3.4: Simplified schematics of a quantum dot coupled to a normal and
a superconducting lead in the Kondo regime. When ∆ > kBTK the Kondo
resonance remains pinned to the normal lead chemical potential µN .

3.4 Modelling the data

The I-V characteristics of a normal-superconductor interface are usually well
described within the so-called BTK model as proposed by Blonder, Tinkham
and Klapwijk [16]. This model treats the transport through an N-S interface
by solving the Bogoliubov equations, see e.g. Ref. [17], for a δ-shaped inter-
face potential with an arbitrary transmission. However, this model assumes
an energy-independent transmission coefficient and is thus not applicable to
describe transport through highly-resonant systems such as quantum dots. In
the following we compare our data with two simple pictures: On the one hand
a model of resonant tunneling through an N-S interface and on the other a
tunneling model taking into account quasiparticle transport only.
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Figure 3.5: (a) Resonant tunneling through an S-N interface: Calculated differ-
ential conductance versus source-drain voltage at kBT = 0.1∆. The solid curve
represents the normal state with ΓL/R = 0.60 and ΓR/L = 0.37∗0.6 = 0.22. The
dashed (dotted) curve corresponds to the superconducting state and ΓS(N) =
0.22 and ΓN(S) = 0.6. (b) Measured differential conductance at T = 90 mK in
the normal (solid line) and superconducting (dashed line) state at the center of
Kondo ridge “B”.
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Resonant tunneling through an SN interface

In the case of kBTK > ∆ we were able to determine the coupling asymmetry
of the nanotube quantum dot by using the model of a non-interacting resonant
level in the linear regime. Quite remarkably, extending the SN resonant picture
to finite bias allows us to determine not only the asymmetry of the two cou-
plings ΓS and ΓN but also which one of the two dominates. In order to do so
we follow the approach to resonant tunneling in a normal metal-superconductor
interface as given by Khlus et al. [18]. Similar to the BTK-model the Bogoli-
ubov equations are solved by matching the wave functions in the normal and the
superconducting region. However, in addition, localized states inside the bar-
rier are taken into account by implementing an energy-dependent transmission
coefficient Tres given by:

Tres =
4ΓRΓL

(E − E0)2 + (ΓR + ΓL)2
. (3.3)

Here E0 denotes the energy of the level and ΓR and ΓL the coupling energies to
the right and the left lead, respectively. The conductance for transport through
a single level then turns out to be:

G(V ) =
2e2

h

∫ +∞

−∞
dE (−∂f(E − V )

∂E
)[2A(E) + T (E)] . (3.4)

Here f(E) denotes the Fermi function and A(E) and T (E) the probabilities
for Andreev and quasiparticle contribution to the current, respectively. These
probabilities are given by:

A(E) =
16u2v2(ΓSΓN )2

W (E)
. (3.5)

T (E) = C(E) + D(E) . (3.6)

C(E) = 4ΓRΓL
u(E)(u(E)− v(E))[(E + E0)2 + (ΓN + ΓS)2]

W (E)
. (3.7)

D(E) = 4ΓRΓL
v(E)(u(E)− v(E))[(E + E0)2 + (ΓS − ΓN )2]

W (E)
. (3.8)

u2(E) =

{
1
2 (1 +

√
E2−∆2

|E| ) |E| ≥ ∆
1
2 (1 + i

√
E2−∆2

|E| ) |E| < ∆ .
(3.9)

v2(E) =

{
1
2 (1−

√
E2−∆2

|E| ) |E| ≥ ∆
1
2 (1− i

√
E2−∆2

|E| ) |E| < ∆ .
(3.10)
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W (E) = |u(E)(E − E0 + i(ΓS + ΓN ))(E + E0 + i(ΓS + ΓN ))−
v(E)(E − E0 − i(ΓS − ΓN ))(E + E0 − i(ΓS − ΓN ))|2 . (3.11)

In the limiting case of very low temperatures and low voltages only Andreev
processes carry current. From Eq.(3.4) one can then read the linear conductance
to be 2A(0). In this limit one recovers Eq.(3.2). In the following we set E0 = 0
assuming the Kondo resonance is pinned to the normal lead chemical potential.

Figure 3.5(a) shows the results of the simulation where finite temperature is
taken into account by setting kBT = 0.1 ∆. The solid line represents the normal
state conductance resonance for ΓL/R = 0.60 and ΓR/L = 0.37× 0.60 = 0.22 as
obtained from the asymmetry and a rough match of the peak width. The dot-
ted curve represents the resonance in the superconducting state with a stronger
coupling to the superconductor, i.e. ΓS = 0.60 and ΓN = 0.22. In this case the
simulation data show two pronounced conductance resonances at Vsd ≈ ±∆/2e
with a maximum conductance of approximately 2.7 e2/h. The features are
smeared out by finite temperature, hence resulting in a linear conductance big-
ger than the zero-temperature limit G = 1.69 e2/h, depending only on the rel-
ative asymmetry. The dashed line shows the second possible scenario in which
the normal lead has a stronger coupling to the quantum dot, thus ΓN = 0.60
and ΓS = 0.22. Here the maximum conductance of order 1.6 e2/h is reached
in the linear-response regime, while additional structures occur at the position
of the gap. Let us now compare the simulation to the experimental data. Fig-
ure 3.5(b) shows the measured differential conductance of ridge “B” at 90 mK
plotted versus the applied source-drain voltage for the normal (solid line) and
superconducting (dashed line) case. Indeed the calculated conductance assum-
ing a bigger coupling to the normal conductor and the measured conductance
agree quite well. Both peak height and the feature at Vsd = −∆/e can be repro-
duced. The corresponding feature for positive source-drain voltages, though, is
washed out by the asymmetric shape of the measured Kondo resonance. Yet
we are able to conclude that for our sample the normal lead exhibits a bet-
ter coupling to the dot than the superconducting lead with an asymmetry of
ΓS ≈ 0.37 ΓN .

Tunneling model

The behavior of ridge “A” can find a simple explanation by assuming a strong
suppression of the Kondo coupling between the dot and the superconducting
lead lowering the effective transmission Teff of this interface to values compa-
rable to tunnel barriers. The current through our device in the superconducting
state is then given by [17]:

I = 2e/hTeff

∫ ∞

−∞
NDot(E)NS(E + eV )(f(E)− f(E + eV ))dE (3.12)

with NS(E) being the BCS density of states in the superconducting lead, NDot(E) =
Re(iw(E+iw)−1) the QD local density of states of the resonant level with width
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w, f(E) the Fermi function and TS << 1 the transmission of the barrier. Sim-
ilar to [19] we included a broadening γ of the BCS density of states which we
attribute to the additional Au layer separating tube and Al layer. In Fig. 3.6
we plot the conductance of ridge “A” in the superconducting state normalized
by that in the normal state from both our experimental data and simulations.
Best agreements are obtained with w = 0.3 ∆, Teff = 0.15 and γ = 0.05 ∆.
Finite temperature is taken into account by setting kBT = 0.1∆. In the normal
state we approximated the Kondo conductance peak as a Lorentzian. Compar-
ison with our experimental data yields for the width of the Lorentzian 0.6 ∆, a
maximum conductance of 1.35 e2/h and a background conductance of 0.75 e2/h.
The proposed model clearly reproduces the main features of the experimental
data, however a precise quantitative agreement remains difficult. A possible
explanation of e.g. the bigger width of the ∆-peaks is an energy-dependent
transmission matrix element (which we assumed to be constant) of increasing
magnitude as the applied bias approaches ∆/e due to Kondo coupling between
the normal lead, the dot and the superconducting quasiparticles.
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Figure 3.6: Solid line: Superconducting conductance of ridge “A” versus source-
drain voltage at 90 mK normalized by the normal state conductance. Dashed
line: Simulation using the tunneling model with the parameters given in the
text.
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3.5 Coulomb blockade regime

When changing the back-gate electrode to a lower potential the sample exhibits
a low-transparent Coulomb blockade behavior. Figure 3.7 shows the differential
linear conductance through the device in a grayscale representation in the nor-
mal state at a temperature of 90 mK and a magnetic field of 25 mT. There is a
striking difference when comparing the data with that from the Kondo regime.
The energy scale of the diamond structures is of the order 3 meV, i.e. about
a factor 10 bigger. We thus conclude that this is rather a different quantum
dot than the same dot in a different regime. Possible explanations are either
inner shells of the MWNT or a quantum dot defined by impurities inside the
nanotube. The occurrence of lines of negative differential conductance (NDC)
at the borders of the Coulomb diamonds suggests spin effects, possibly in a se-
rial multi-dot structure. Figure 3.7(b) shows the differential conductance in the
superconducting state. A barely visible feature at the position of the supercon-
ducting gap ∆ can be seen. However, as expected from the fact that UC >> ∆
Andreev processes are suppressed strongly.

3.6 Summary

In this chapter we studied a carbon nanotube quantum dot in the Kondo regime
coupled to a superconducting and a normal lead. In the case of kBTK < ∆ the
Kondo ridge at zero bias disappears and peaks at the position of the gap occur.
For this scenario we proposed a simple tunnelling model explaining all significant
features of the conductance curves. In the case kBTK > ∆ the Kondo resonance
persists but does not show an enhancement of the conductance compared to the
normal state at the lowest temperatures accessible in our experiment. This
behavior could be explained within a model of resonant transport at an SN-
interface [18]. Future experiments will have to

(a) clarify whether the Kondo resonance can actually be enhanced in pres-
ence of the superconducting electrode by tuning the coupling asymmetry ΓS/ΓN

and

(b) explore the possibility of generating pairs of entangled electrons by mak-
ing use of nanotubes coupled to normal and superconducting leads [8, 9, 10].
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Chapter 4

Local gating of carbon
nanotubes

4.1 Motivation

In the previous chapters we have seen that at low temperatures carbon nano-
tubes can provide a platform well-suited for studying quantum dot physics. In
fact, new physical phenomena such as superconducting correlations or spin injec-
tion into quantum dots can be studied in carbon nanotube quantum dots, see e.g.
Ref. [1, 2, 3] and Chapter 3 of this thesis. Up to now ferromagnetic and super-
conducting electrodes have not been accessible in semiconductor-based quantum
dots. However, the major drawback of carbon nanotube quantum dots is the
missing degree of control over the dot properties such as the tunnel-coupling Γ
to the leads. In contrast, dots defined in two-dimensional electron gases allow
for a precise tuning of the Γs by energizing locally acting gate electrodes, see
e.g. [4] and references therein. Additionally, center gates can be used in or-
der to define double quantum dot structures with a tunable inter-dot coupling.
This tunability is an essential ingredient for further experiments exploring the
quantum nature of electronic states in carbon nanotubes - or, even more am-
bitious, for realizing quantum electronic devices such as spin- or charge-based
quantum bits [5, 6, 7]. Local gates could lead to an enhanced control over the
electric properties of carbon nanotubes [8, 9, 10, 11]. The following chapter
will be devoted to the fabrication process and the electrical characterization of
novel carbon nanotube devices with local top-gate electrodes in addition to the
standard back-gate.

4.2 Experimental

The experimental challenge was to find a way to reliably manufacture local gate
electrodes on carbon nanotubes. A first question to ask is how many electron-
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Figure 4.1: (a) After the fabrication of SiO2/Ti/Au bond pads (orange boxes,
real dimensions 200 × 300 µm) and markers (not shown), the top-gates and
parts of the source/drain electrodes are defined in a second lithography and
metal deposition process. (b) In a third step electrical contacts to the tube
(real length few µm) and to the large pads are made. Note: In order to be more
illustrative, scales are not correct.

beam-lithography and evaporation processes are needed to do so. Every addi-
tional process step may (and mostly does) lead to a lower yield of successfully
operating devices. Different approaches are thinkable for manufacturing top-
gates on carbon nanotubes. In a first approach tilted-angle evaporation could
be used in order to define top-gates and source and drain electrodes within the
same processing step. However, in this case often problems occur during the
lift-off procedure of the remaining PMMA after the evaporation, see Chapter 1
for a more detailed description of the lithography process. For this reason a
different method was chosen, defining gates and source / drain electrodes in two
subsequent steps. In the following we will now describe the processing steps in
detail:

After the initial preparation of SiO2/Ti/Au bond pads and alignment mark-
ers, single-walled carbon nanotubes (SWNTs) were localized with a scanning
electron microscope (SEM). In the following step gates and connection lines
for the source-drain electrodes were defined by e-beam-lithography, see figure
4.1 (a). Electron-gun-evaporation of SiO2 as gate-oxide, Ti as gate-metal, and
Pd serving as anti-oxidant cover layer followed. The gate-oxide film thickness
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Figure 4.2: (a) SEM micrograph of a nanotube device with two top-gates. (b)
SEM micrograph of a nanotube device with three top-gates. The illustrations
at the bottom give dimensions and materials used for these samples.

was chosen to be either 10 nm or 15 nm, the Ti film thickness 30 nm, and
the Pd one 25 nm. The materials were evaporated at a pressure of ≈ 10−7

mbar. By defining not only the top-gates, but also long connecting parts of
the source-drain-electrodes with SiO2 underneath, electrical shorts caused by
long (tens-hundreds of µm) carbon nanotube bundles bridging the electrodes in
parallel to the sample were practically eliminated.

Then, in a final e-beam-lithography step the source and drain electrodes of
the nanotube and contacts to the large bond pads were defined, see Fig. 4.1(b).
In the final e-gun-evaporation a 40 nm thick film of Pd was evaporated in order
to provide good electrical contact. The evaporation conditions were the same
as described above, except the substrate was kept at a constant temperature of
≈ 0◦ C by liquid nitrogen cooling of the sample holder inside the evaporation
chamber. In general, the liquid nitrogen cooling reduces outgasing effects of
materials inside the vacuum chamber due to heating effects during the evapo-
ration. After removing the remaining PMMA in hot acetone, the samples were
then glued into a 20-lead chip carrier and bonded.

Figures 4.2(a) and (b) show scanning electron micrographs and side-view
schematics of fabricated SWNT devices with either two or three top-gates in
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Figure 4.3: Linear conductance G for a device with two top-gate electrodes
(oxide thickness 15 nm) versus top-gate- and back-gate-voltage. The gates non
swept are connected to ground potential.

addition to the source and drain electrode. The spacing between source and
drain electrode amounts to 1.4 µm in (a) and 2.2 µm in (b). The oxide thickness
was chosen to be 15 nm in (a) and 10 nm in (b) and width of the gates 100 nm
and 200 nm, respectively. Wider gates and thinner gate oxides increase the gate
capacitance, since, in a simple model of a plane capacitor, C ∝ A/d, where A
denotes the area and d the spacing of the two planes. The back-gate oxide has
a commonly used thickness of 400 nm.

4.3 Local gating at room temperature

Gate response

After verifying that there are no shorts from any gate to the source or drain
electrode, or to any other gate, the electrical properties of the nanotube can be
studied at room temperature. Figure 4.3 shows a plot of the linear conductance
versus the applied voltage at either of the two top-gates (lower axis) and at the
back-gate (upper axis). At a voltage of roughly 0.6 V applied to either of the
two top-gates the conductance through the device is suppressed indicating the
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chemical potential is shifted locally into the semiconducting gap of the SWNT.
When comparing to the Si back-gate the top-gates have a much a stronger
coupling α = Cgate/CΣ where CΣ is the sum of all gate and contact capacitances.
For the back-gate an applied voltage of about 7 V is needed in order to reach
the energy gap of the nanotube. On the one hand this rather low coupling
of the back-gate is due to the thicker gate oxide (400 nm), on the other hand
there are also electrostatic screening effects due to the additional metal top-gate
electrodes covering parts of the tube. The screening effect of the metallic top-
gates is illustrated in Fig. 4.4 which shows a colorscale plot of the calculated
electrical potential in our device for an applied back-gate voltage of 10 V.

Figure 4.4: Colorscale plot of the electrical potential calculated for the two
top-gate device. The back-gate is energized to +10 V, source, drain and top-
gates are kept at 0 V. Screening effects are apparent underneath the top-gates
and in vicinity of the source and drain electrode. Calculation by S. Feigh,
TU Darmstadt.

In Fig. 4.5 the linear conductance versus gate voltage of a semiconducting
SWNT device with three top-gate electrodes with a gate-oxide thickness of 10
nm is plotted. The gate-dependence is similar to the device discussed above,
however, after a decrease of conductance for increasing gate voltage, the con-
ductance rises again for more positive gate voltages. This behavior is explained
by the band diagram sketched at the bottom of Fig. 4.5.
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Figure 4.5: Top: Linear conductance G on a logarithmic scale for a device with
three top-gate electrodes (oxide thickness 10 nm) versus top-gate-voltage. The
gates non swept are connected to ground potential. Bottom: (a) - (c) illustrate
the band structure for increasing top-gate voltage.
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Intrinsically the tube is p-doped and the chemical potential µ resides in the
valence band (a). For increasing voltage at the top-gate the potential landscape
is changed locally and just below the gate µ lies within the energy gap (b).
In this scenario the conductance through the nanotube reaches its minimum.
With this technique it should thus be possible to create local barriers inside
a carbon nanotube, allowing one to create artificial potential landscapes. If
the gate voltage is increased even more, the lower edge of the conduction band
will eventually reach the upper edge of the valence band (c). Now thermally
activated band-to-band processes indicated by the green arrows are possible and
the conductance increases again. Within this work such behavior has only been
seen at 300 K indicating the high energy scales involved in band-to-band charge
transfer processes.

Hysteretic gate-responses

A further important topic to address are the hysteretic characteristics of a na-
notube field effect transistor. At room temperature, devices which are only
back-gate controlled often suffer from strong hysteretic shifts in the gate re-
sponse. For nanotube applications, such as for sensing purposes [12], no or only
little hysteretic behavior is desired. Figure 4.6 compares the gate response of a
semiconducting device with three top-gates when sweeping up and down either
one of the top-gates (gate 2) or the back-gate. Hysteretic effects are strongly
reduced in the case of the top-gate, but are prominent for the back-gate. Hys-
teretic behavior is mainly due to jumps of trapped charge states, e.g. in the
SiO2 underneath. The bigger the applied electrical field, the bigger the prob-
ability of such jumps. In fact, the electrical field is strongly enhanced in the
vicinity of source and drain contact, due to the electrostatic bending of the field
lines. Our result confirms that hysteresis effects in the conductance are related
to effects occurring in the vicinity of the source and drain contact. Whereas
the back-gate affects these contact regions and is hysteretic, the top-gate acts
locally on the SWNT and consequently has a less hysteretic behavior.

4.4 Local gating at low temperatures

A device with two top-gates

From typical energy scales of carbon nanotube quantum dots one expects single-
electron charging phenomena and finite-size effects to become important for
charge-transport at low temperatures. Figure 4.7 shows colorscale plots of the
differential conductance through a device with two top-gates versus the two
top-gate voltages at temperatures of 77 K and 4.2 K. At 77 K, there are no
pronounced features in the plot and the overall variation of the conductance is
small. Regions of similar conductance are separated by diagonal lines with a
slope of roughly -1. This in fact corresponds to the condition VG1+VG2 = const.
where we assumed an identical coupling of gates 1 and 2, as is the case when
the gate capacitances CG1 and CG2 are equal. The diagonal features indicate
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Figure 4.6: Conductance through a sample with three top-gates versus (top)-
gate 2 (left) and back-gate (right). Hysteresis effects are strongly suppressed
when sweeping the top-gate. Gates are swept from position 1 to 2 to 3 to 4.
Gates non swept are connected to ground potential. The difference in maximum
conductance is due to hysteretic behavior of the back-gate.

that both gates act equivalently and additively on the same region. At a lower
temperature of 4.2 K the pattern changes dramatically towards a chessboard-
like and the overall conductance decreases. The behavior inside the shown
gate voltage window is not uniform. When VG2, VG1 < 0 diagonal lines with
a negative slope VG1 = −αVG2 are the most prominent features. These lines
indicate a rather open state of the device, i.e. wave functions are extended
along the whole nanotube and the top-gates act more or less globally. When,
however, VG2, VG1 > 0.2 V, the pattern exhibits rather square-like structures.
This behavior suggests the formation of gate-defined, isolated islands on the
nanotube.

Consequently, the following measurements of this two top-gate device were
devoted to the question whether nanotubes with gates evaporated on top still
can act as clean quantum dots. As an example, a region exhibiting regular
Coulomb oscillations at an applied back-gate voltage between 4.2 and 5.0 V was
probed. Regular Coulomb blockade diamonds with a charging energy of roughly
10 meV were observed, see the top part of Fig. 4.8. Due to the uniformity of the
diamonds a single dot picture still seems a reasonable assumption in this gate
voltage range. Additionally, as we will point out, the following data taken in this
region allow for a rough estimate of the capacitance of the top-gate electrodes
relative to that of the back-gate.

The bottom of Fig. 4.8 shows the linear conductance through the device
versus back-gate voltage for four different voltages applied at gate 2, VG2=0,
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Figure 4.7: Right: Colorscale plot of the linear differential conductance at 4.2
K at a back-gate voltage of 0 V. Left: Linear differential conductance of the
dashed region in the right plot at 77 K. Note the different colorscale of the two
plots.

0.01, 0.02 and 0.03 V. Gate 1 was kept at a constant voltage of VG1 = 0 V.
When energizing gate 2 to more positive potentials the position of the peaks in
differential conductance shifts to lower values of the back-gate voltage indicating
a resonance condition αBack−gate VBack−gate+αG2VG2 = const. is fulfilled. Here
the α’s denote the coupling Cgate/CΣ of the respective gate electrode, with
CΣ being the sum of all capacitances of the device. Note, however, that such
behavior assumes that the top-gates either act globally as does the back-gate or
that transport through the device is mainly governed by a small region affected
by the top-gate. In fact, the data show that this assumption holds only partially.
Whereas some of the conductance peaks show up in all four traces (shifted to
smaller back-gate voltages), others dramatically transform. The double-peaked
structure around VBack−gate = 4.4 V, for example, finally transforms into a
single peak at VG2 = 0.03 V. Still we can get a rough estimate of the top-gate
coupling from the slope of the dashed traces following the shift of the peaks
which yields CG2 ≈ 3 CBack−gate.
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A device with three top-gates

Also devices with three top-gate electrodes were measured at 4.2 K. In Fig. 4.9(a)
the linear differential conductance is plotted versus voltages applied at the top-
gates 1 and 2 for a constant center-gate voltage of VCenter = −1 V. At top-gate
voltages of around 0.5 V the chemical potential is shifted into the energy gap of
the nanotube and electrical transport is suppressed. The pattern mostly shows
high-conductance lines with a small slope and turns into a more square-like
one when approaching the energy gap. Figure 4.9(b) shows a zoom for such
a region exhibiting a square-like pattern. In fact, taking into account features
are strongly smeared out by temperature, the stability diagram resembles a
honeycomb pattern characteristic for a double quantum dot. In principle the
dimensions of the cells obtained correspond to the charging energy of the dots.
However, a precise value is difficult to extract as these dimensions vary strongly.
A more careful analysis of double quantum dots defined in devices with three
top-gates will be the focus of the following chapter of this thesis. The main
difference, as compared to the device with two top-gates, is the electrostatic
screening of the center gate. The outermost gates act more locally and less
additively, resulting in more rectangular patterns of the stability diagram.
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Chapter 5

Carbon nanotube double
quantum dots

5.1 Motivation

The interference of quantum states is one of the most striking features of na-
ture enabling the formation of molecular bonds. In fact, quantum interference
is the glue that keeps matter together. Coupled quantum dots are engineered
model systems in which the interplay between quantum interference and inter-
actions of electrons can be studied in regimes that are not accessible in true
molecules. For example, such devices have allowed for probing and control-
ling quantum-mechanically superposed states in terms of the electron charge
and spin [1, 2, 3, 4, 5]. Additionally, being a quantum two-level system, these
so-called artificial molecules have been proposed as coupled spin quantum bits
for future applications in information technology [6]. Whereas most electri-
cal transport experiments on coupled quantum dots so far have investigated
GaAs-based semiconductor quantum dots (see [7] and references therein), only
recently such structures have been realized in carbon nanotubes and semicon-
ducting nanowires [8, 9, 10]. These materials are attractive not just for the
relative ease in production, but also for the fact that superconducting and fer-
romagnetic contacts have been demonstrated [11, 12, 13], opening up a road for
various kinds of novel quantum devices [14]. In addition the effect of reduced
hyperfine interactions on spin dephasing times may be probed in carbon nano-
tube coupled quantum dots, as the nuclear spin of the dominant isotope 12C is
zero.

In this Chapter electrical transport measurements through a semiconducting
single-walled carbon nanotube (SWNT) with source and drain electrodes and
three additional top-gates are described. In specific gate voltage ranges the
system acts as a double quantum dot with large inter-dot tunnel coupling t
allowing for the observation of a quantum-mechanical superposition of |n, m+1〉
and |n + 1,m〉 states where n and m denote the number of charges on the
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left and right dot, respectively. Using an effective single particle picture we
precisely determine the tunnel coupling and identify molecular-like states with
wave functions extending over the whole nanotube double dot.
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Figure 5.1: (a) Schematic representation of the fabricated device. The three
top-gates are labelled gate 1, center gate and gate 2 (from source to drain).
(b) Scanning electron micrograph of a sample fabricated identically to the one
measured. The distance from source to drain is 2.2 µm. Dashed circles denote
the regions affected by gates 1 and 2. (c) Conductance G through the device at
T = 300 K plotted versus top-gate voltage. All gates not swept are connected
to ground. Note: Differences between the individual gate scans at 0 V arise
from slightly hysteretic gate responses. Inset: Colorscale plot of the linear
conductance versus gate 1 and gate 2 for fixed VCenter = -1 V at 2.2 K. Bright
corresponds to 0.4 e2/h, dark to 0 e2/h.

5.2 Sample preparation and characterization

Single-walled carbon nanotubes were grown by means of chemical vapor depo-
sition on a highly doped Si substrate covered by an insulating layer of 400 nm
SiO2. Details of the SWNT growth can be found in Chapter 1 and in Ref. [15].
Single nanotubes were selected using a scanning electron microscope. Three 200
nm wide local gates equally spaced by 400 nm were then defined by means of
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standard electron beam lithography and e-gun evaporation of SiO2, Ti and Pd.
The fabrication of the top-gate electrodes followed the recipes given in Chap-
ter 4, the gate oxide thickness was chosen to be 10 nm. Finally Pd source and
drain contacts were fabricated. Figure 5.1(a) shows a schematic of the device,
the materials used, and corresponding film thicknesses. A scanning electron
micrograph of a device fabricated identically to the one measured is shown in
Fig. 5.1(b).

Room temperature characterization identifies the semiconducting nature and
an intrinsic p-doping state of the nanotube. Figure 5.1(c) shows the linear
conductance through the device as a function of the three top-gate voltages and
the back-gate voltage. At a top-gate voltage of roughly 0.4 V conductance is
suppressed indicating the chemical potential is shifted into the energy gap of the
semiconducting tube. We attribute the conductance increase at more positive
voltages to band-to-band-tunneling effects, as reported in previous studies of
semiconducting SWNT with top-gates [16]. Five identically prepared devices
were tested at room temperature and showed the same behavior. The inset of
Fig. 5.1(c) shows a colorscale plot of the linear conductance versus gates 1 and
2 for a constant center gate voltage at 2.2 K. Again, applying positive voltages
of the order 1 V to any of the top-gates locally shifts the chemical potential into
the energy gap of the intrinsically p-doped SWNT and thus suppresses electrical
transport.

Low-temperature measurements were performed in a 3He cryostat with a
base temperature of 290 mK. Differential conductance dI/dVsd was measured
using standard lock-in techniques with an excitation voltage of typically 7.5 µV
at a frequency of 327.7 Hz and an I/V converter with a gain of 107 V/A. For the
measurements presented in the following center gate and back-gate were kept
at constant voltages VCenter=-0.1 V, VBack=0 V, and no magnetic field was
applied. A detailed description of the electrical setup is given in the Appendix.

5.3 Double quantum dot behavior

Sweeping gate 1 and gate 2 leads to pronounced oscillations of the conductance
due to single electron charging phenomena and finite size effects of the nanotube.
A colorscale plot of the differential conductance dI/dVsd is depicted in Fig. 5.2(a)
exhibiting the so-called ”honeycomb” stability diagram characteristic for double
quantum dots. Within each cell of the pattern the number of holes (n,m) on
each of the two dots is constant. Energizing gate 1 (2) to more negative voltages
successively fills holes into dot 1 (2) whereas a more positive voltage pushes holes
out of the dot. Two identical devices were measured at low temperatures and
both exhibited a honeycomb pattern. In a third sample, with shorter source-
drain spacing and smaller width of the gates, a double dot could be defined,
too. Data from the second sample are presented in Sections 5.7 and 5.8, from
the third one in Section 5.9.
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Figure 5.2: (a) Colorscale plot of the conductance at a temperature of
T=290 mK and Vsd = −128 µV. The resulting honeycomb pattern repre-
sents the charge stability diagram of coupled double quantum dots. Two triple
points (located at the degeneracy point of three stable charge configurations)
are marked by a yellow and a blue dot for clarity. Dashed lines are guide to the
eye. (b) Close-up of a single honeycomb cell. (c) Vicinity of the triple points at a
source-drain bias voltage of 391 µV. (d) Capacitive model of a double quantum
dot device. (e) Schematics of a double quantum dot with molecular eigenstates
coupled to source and drain. (f) Colorscale plot of the conductance versus
source-drain and top-gate voltage (all three top-gates connected in parallel):
Coulomb diamonds.
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The stability diagram allows for a quantitative determination of dot and
gate capacitances (see Fig. 5.2(d)) of the device [7]. From the dimensions of
a single cell as depicted in Fig. 5.2(b) and ∆VG1,2 =| e | /CG1,2 one obtains
gate capacitances CG1=23 aF and CG2=21 aF. Applying a finite source-drain
bias voltage Vsd results in a broadening of the triple points at the honeycomb
edges into triangular-shaped regions, see Fig. 5.2(c). In our device the triangles
are less clear defined due to finite temperature and the strong tunnel coupling
between the dots which we will discuss in the following paragraphs. Using the
relation CG1,2/C1,2 =| Vsd | /δVG1,2 the capacitances C1 = CS + CG1 + Cm

and C2 = CD + CG2 + Cm follow to be 84 aF and 145 aF, respectively. On-
site charging energies of both dots then yield UC,1 = e2/C1 ≈ 1,9 meV and
UC,2 = e2/C2 ≈ 1.1 meV in satisfactory agreement with the dimensions of the
Coulomb blockade diamonds at finite bias, see Fig. 5.2(f).

In order to estimate the mutual capacitance Cm in between the two dots
we first neglect a finite tunnel coupling and assume a purely electrostatic in-
teraction. From the triple-point spacing given in Fig. 5.2(b) and ∆V m

G1,2 =| e |
Cm/(CG1,2 C2,1) one then determines Cm ≈ 15 aF. Note, that in an electrostatic
model one typically overestimates Cm and that this value is an upper bound. In
Fig. 5.2(a), electrical transport is enabled on the edges of the honeycomb cells
and the high-conductive features exhibit , despite the applied bias of 128µV
partially washing out this feature, a strong curvature close to the triple points.
These two features suggest a significant (quantum-mechanical) tunnel coupling
in addition to the (classical) electrostatic interaction between the charges on the
two dots.

5.4 Extracting the tunnel coupling

In order to gain a deeper insight into the system and to evaluate t we adopt a
model Hamiltonian of the form H = HC +HT +HL which describes the system
depicted in Fig. 5.2(e) [17]. Here, HC describes the orbital and Coulomb energies
of the double dot system, HT describes the tunnel-coupling between the two
dots and HL the coupling of each dot to the leads. We assume a simple model
for the Coulomb interaction, including only on-site (U) and nearest-neighbor
(U ′) charging energies. In this case, states with a fixed number of charges on
each dot are eigenstates of HC : HC |m,n〉 = Emn|m,n〉 where Emn = Eorb

mn +
U
2 [m(m− 1) + n(n− 1)]+U ′mn+E1m+E2n. Eorb

mn is the total orbital energy of
the |m,n〉 charge configuration, and E1(2) is the single-particle energy of the left
(right) dot, supplied by the gate voltages VG1,2. In a simple picture of sequential
tunneling through HC-eigenstates (neglecting HT to leading order), one would
expect nonzero conductance only at the triple points. It is only at these points
that sequential tunneling processes of the kind |m,n〉 → |m,n + 1〉 → |m +
1, n〉 → |m,n〉 can lead to charge transport through the double dot from, in
this case, the right lead to the left (blue sequence in the inset of Fig. 5.3(b)).
However, if we allow for superposed double dot states of the form α|m,n +
1〉+ β|m + 1, n〉, having one excess hole relative to |n, m〉, sequential transport
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Figure 5.3: (a) Colorscale plot of the differential conductance (Vsd=20µV,
T=290 mK) in the vicinity of the two triple points in the bottom right cor-
ner of Fig. 5.2(b). Dashed lines are guides to the eye. (b) Spacing E∆ (see
Eq. (5.2)) of the two wings with respect to the ∆-direction versus detuning ε.
Inset: Schematics of sequential tunnel processes allowed at the triple points
(blue dot) and at the honeycomb edges (red circle) via molecular states.

is possible along the honeycomb edges as well (red sequence in the inset of
Fig. 5.3(b)). Such superposed states are induced by a tunneling term of the form
HT = t (|m,n + 1〉〈m + 1, n|+ h.c.). The sequential transport then proceeds
through the eigenstates |E〉 of HC + HT . For spinless holes and assuming that
only a single eigenstate |E〉 participates in transport, we find that the stationary
current is given by

I = |e|Γ |αβ|2 [f1(µmol)− f2(µmol)] . (5.1)

Here, fl(µmol) = 1/ (exp [(µmol − µl)/kT ] + 1) is a Fermi function at temper-
ature T , µl (l = 1(2)) the chemical potential of the source (drain) leads, and
Γ the dot-lead tunneling rate. The chemical potential of the molecular level
µmol depends on whether sequential tunneling occurs at |n, m〉 ↔ |E〉 (right
branch in the inset of Fig. 5.3(b)), or at |n + 1,m + 1〉 ↔ |E〉 (left branch):
µmol = E − Enm for the former and En+1,m+1 − E for the latter. Note that in
a spinless description we exclude the possibility of e.g. spin-blockade, which, in
our experiment, has not been observed.

With the help of Eq. (5.1), the data allow for a precise quantitative analysis of
the tunnel coupling t between the dots. Fig. 5.3(a) shows a colorscale plot (linear
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scale) of the differential conductance at Vsd = 20µV≈ kT in the vicinity of a
triple point region. As expected in the presence of tunnel-coupled eigenstates
transport is possible not only at the triple points but also on the wings extending
from the triple points. The two gate voltages VG1 and VG2 are converted into
energies E1 and E2 by multiplying them with the conversion factors α1 = 0.42e
and α2 = 0.29e, which we obtain from the splitting of a differential conductance
resonance at finite bias voltage, as will be discussed in the context of Fig. 5.4.
We then change variables to ε = (E1 − E2)/

√
2 and ∆ = (E1 + E2)/

√
2. In

terms of these new variables, the double-dot molecular eigenenergies are (up
to a constant offset) E±(∆, ε) = Emn(∆, ε) +

(
∆∓

√
ε2 + 2t2

)
/
√

2. When
the bias and temperature are smaller than the double-dot level spacing (i.e.,
Vsd, kT < E−−E+), transport occurs only through the ground-state |E+〉. For
small bias, we set µ1 = µ2 = µ, then transport is due to energy-conserving
transitions between the state |E+〉 and either |m,n〉 (when E+ − Emn = µ) or
|m + 1, n + 1〉 (when Em+1,n+1−E+ = µ). These conditions are fulfilled at the
two high-conductance wings. The separation of the wings in the ∆-direction
(E∆) is given by:

E∆ =
√

2U ′ +
√

4ε2 + 8t2. (5.2)

In Fig. 5.3(b) the spacing of the two wings E∆ is plotted versus the detuning ε
and fitted to Eq. (5.2). Satisfactory fits to the data yield a tunnel coupling of
t = 310 . . . 370 µeV and U ′ ≤ 100 µeV. The fit plotted yields t = 358 µeV and
U ′ = 16µeV . One can relate U ′ to the capacitances of the double-dot: U ′ =

2e2Cm

C1C2−C2
m

[18]. Evaluating for U ′ ≤ 100 µeV one obtains a mutual capacitance
Cm ≤ 4 aF consistent with the electrostatic estimate yielding an upper bound
of 15 aF. We conclude that the triple-point spacing E∆(ε = 0) at this specific
position in gate-voltage is predominantly due to coherent tunneling between the
dots and only by a much smaller extent to the electrostatic interaction U ′, which
is possibly screened by the metallic center gate.

5.5 Molecular states

Figure 5.4 shows a map of the differential conductance in the vicinity of the two
triple points (same region as Fig. 5.3) for three different source-drain voltages.
On the right side, traces of the differential conductance with respect to gate 1
are extracted at the same position of gate 2 (dashed line) well separated from
the triple points. In Fig. 5.4(a) the conductance trace has a single peak. In
the finite-bias cases (b) and (c) the single peak splits into two peaks which are
separated by the applied bias voltage. Due to the linear dependence of the peak
splitting on bias, see the inset of Fig. 5.4(a), the entrance of the second peak does
not indicate an additional level entering the bias window. To understand this
feature, we consider our conductance measurements in greater detail. In our
setup, differential conductance is measured by modulating the source voltage
(µ1), keeping the drain voltage (µ2) and all other gate voltages fixed.
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Figure 5.4: Colorscale plot of the differential conductance in the vicinity of the
same triple point as in Fig. 3 for three different bias voltage: (a) Vsd=20µV, (b)
Vsd=391µV and (c) Vsd = −647µV. Dark corresponds to 0 e2/h and bright to
0.1 e2/h. On the right open circles denote traces of the differential conductance
taken at the position of the dashed line. Solid lines represent fits to the line
shape given by Eq. (5.3). Left-hand scale: Voltage applied to gate 1. Right-hand
scale: Voltage applied to gate 1 converted into energy.
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Capacitive coupling of the source lead to the double-dot levels results in a
simultaneous modulation of the molecular level µmol, albeit with an amplitude
reduced by the factor r = ∂µmol/∂µ1 = CS/CΣ, where CΣ ≈ CS + CD +
CG1 +CG2. Here, it is assumed that the mean double-dot charge is fixed during
modulation. From Eq. (5.1) the differential conductance for our setup is then
given by

dI

dµ1
= − |e|Γ |αβ|2 [(1− r) f ′1(µmol) + rf ′2(µmol)] , (5.3)

where f ′l (x) = d
dxfl(x). Thus, we expect a double-peaked structure like that

in Fig. 5.4, with peaks separated by the bias, consistent with the above ob-
servations. In fact we can use the peak-splitting in order to convert top-gate
voltages into energy more precisely than by using the finite-bias triangles and
obtain the conversion factors given above. For our device, we have CS ≈ 65 aF,
CΣ ≈ CS + CD + CG1 + CG2 ≈ 230 aF, which gives r ≈ 0.3. According to this
model the relative height of the two differential conductance peaks should be
roughly r

1−r ≈ 0.5. This value is consistent with the data shown in Fig. 5.4
(with ratios of 0.42 in (b) and 0.28 in (c)). Additionally, we find that the asym-
metry of the peaks switches from positive (b) to negative (c) bias, as is expected
from Eq. (5.3).

The data in Fig. 5.4(a) can be fit to Eq. (5.3) yielding a peak width of 49 µeV.
Note that in this case Vsd ≈ kT and the peak thus does not split. Subtracting
the bias of 20 µeV one obtains an effective temperature of the electrons of 29
µeV ≈ 335 mK. Fitting Fig. 4(b) and 4(c) to Eq. (5.3), one obtains a bigger
peak width corresponding to temperatures of 866mK and 1180 mK, respectively,
which we attribute to Joule heating at finite bias. The excellent agreement of
the sequential tunneling fits is an additional indication of the molecular double-
dot system. We emphasize the sequential nature of the charge transport far
off the triple points and outside the finite-bias triangles in contrast to trans-
port attributed to co-tunneling at the honeycomb edges in absence of molecular
states.

5.6 Temperature dependence

A further tool to probe the quantum states of the artificial molecule is their tem-
perature dependence. For electrical transport through eigenstates one expects
resonant behavior, i.e. an increasing conductance for decreasing temperatures.
In particular, in Eq.(5.3) the peak differential conductance is proportional to
1/T . In the case of co-tunneling, however, a Tλ power law dependence of the
differential conductance is expected, with λ > 0 [19].

Figure 5.5(a) shows the differential conductance through the double dot
versus the voltage applied at gate 1 at different temperatures. The potential of
gate 2 is kept constant, VG2 = −18.5 mV. The trace corresponds to a vertical
cut through the bottom left triple point of the honeycomb cell depicted in the
inset of Fig. 5.5(b).
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The width of the peaks decreases with temperature, we are thus in the regime
kT > Γ. For temperatures down to 400 mK the peak height increases with
temperature, as is the case for resonant tunneling. The 350 mK data, however,
show a decrease of the maximum conductance. The peak height is plotted
versus temperature on a double logarithmic scale in Fig. 5.5(b). A linear fit
(not taking into account the 350 mK data) yields a slope of -1/3, consequently
the peak conductance is proportional to T−1/3. The exponent is surprising, as
it is different from the 1/T scaling discussed above. A possible explanation is a
combination of coherent, sequential tunneling and some amount of co-tunneling,
both taking place at this position in the stability diagram. The data is taken at
an applied bias of Vsd = −128 µV, therefore inelastic processes such as electron-
phonon scattering possibly affect transport as well. An explanation for the
conductance-decrease at 350 mK could be an additional energy scale entering,
such as exchange, orbital energy, or even Kondo correlations. Recalling that
Mason et al. reported an unconventional temperature dependence of transport
through a more decoupled nanotube double dot as well [8], this issue remains
to be fully understood.

5.7 Control experiment with a second device

In the previous sections of this chapter we have described the local gate control
of a double quantum dot in a carbon nanotube. A natural question arising is
whether this is an intrinsic double quantum dot, e.g. defined by a scatterer
in the nanotube, or whether the double dot is gate-defined. In order to check
this, a second, identically fabricated sample was measured. Room temperature
behavior was found to be very similar to the first sample, also identifying a
semiconducting SWNT and an intrinsic p-doping. Unfortunately in this sample
gate 2 was not working properly at low temperatures, the gate coupling was
about two orders of magnitude too low. Such behavior can be explained by, e.g.
a broken connection line on chip close to the device or a loose contact. However,
still double quantum dot behavior could be probed by sweeping gate 1 and the
center gate. The occurrence of double quantum dots in two independent samples
strongly suggests that they are indeed gate-defined and not intrinsic ones.

In contrast to the data where gate 1 and gate 2 are swept, the center gate
acts on both dots as it is not screened by a metal gate electrode in between.
We would thus expect a bigger cross capacitance. A bigger cross capacitance
leads to a more diagonal honeycomb pattern as compared to a smaller one.
In Fig. 5.6 the honeycomb stability diagram of the double dot is evident in a
colorscale plot of the differential conductance versus gate 1 and center gate.
Indeed the honeycomb pattern is more diagonal than in case of Fig. 5.2(a),
consistent with our expectations. Figure 5.6(b) shows a zoom of a triple point
region at a bias of Vsd = −550 µV. Here, the triangles at finite bias are well
resolved indicating a smaller tunnel coupling in between the two dots. In analogy
to Section 5.3 we can evaluate the double dot capacitances in an electrostatic
model. The capacitances yield: CG1 ≈ 25 aF, CCG ≈ 60 aF, C1 ≈ 90 aF,
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C2 ≈ 270 aF, and Cm ≈ 50 aF. In our notation, C2 is the total capacitance of
the dot controlled by the center gate. Differently-sized honeycomb cells suggest
an estimate of the orbital energy of dot 2, ∆E2 ≈ 2.5 × UC,2 ≈ 0.8 meV. Here
UC,2 = e2/2C ≈ 0.3 meV denotes the on-site repulsion energy of dot 2.

Figure 5.6: (a) Colorscale plot of the differential conductance versus gate 1
and center gate for the second sample, exhibiting a honeycomb pattern. (b)
Zoom of a triple point region at an applied bias of Vsd = −550 µV. The finite
bias triangles overlap. All data is taken at base temperature of our dilution
refrigerator, Tel ≈ 50 mK, see Appendix.

5.8 DC measurements

The measurements presented in this chapter so far were taken using lock-in am-
plifying techniques and a small excitation voltage Vac ≤ kT . In Section 5.5
this AC technique has led, as one directly probes the differential conductance
dI/dVsd, to the occurrence of a double-peak structure in the charge-stability di-
agram at finite bias. If one probed the dc current Idc flowing through the double
dot rather than dI/dVsd, this double-peak structure should not be present. Fig-
ure 5.7(a) and (b) show a colorscale representation of the dc current through
the second sample at base temperature of our dilution refrigerator. The applied
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Figure 5.7: Colorscale plot of the current through a nanotube double quan-
tum dot for two different source-drain voltages: (a) Vsd = −150 µV (b)
Vsd = −950 µV.

bias voltage is 150 µV in (a) and 950 µV in (b). The honeycomb pattern typical
for double quantum dots can be observed in the current as well. In (b) the
bias leads to a significant broadening of the features and to fluctuations of the
top-gate potentials. As expected for a measurement of the dc current, the bias-
broadened honeycomb edges do not show a double-peaked structure, which, if
present, should still be observable despite the fluctuations. This result confirms
the model we have used in order to analyze the measurements of differential
conductance through the nanotube double quantum dot.

5.9 Mapping the molecular wavefunctions

In order to obtain an even better understanding of artificial molecules gate-
defined in SWNTs, a third device with a slightly different geometry was pre-
pared. In this sample the distance from source to drain was only 1.2 µm in
contrast to 2.2 µm in the case of the first two devices described in this chapter.
Also, the width of the top-gates was scaled down to 100 nm, see the top right
part of Fig. 5.8. Instead of using only Pd for source and drain contacts, a 12 nm
layer of Pd followed by a 60 nm layer of Al were evaporated. Although intended,
the bilayer did not become superconducting at low temperatures, and remained
in the normal state. Confirming the previous results, this third device again
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gate 1 and gate 2 for the third device, exhibiting a honeycomb pattern. Data
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the top right, an SEM micrograph of a device identical to the one measured is
shown.

acts a double quantum dot. Figure 5.8 shows a colorscale plot of the differential
conductance of the device versus gates 1 and 2 at a center gate voltage of 0 V,
a back-gate voltage of 0 V, and a bias of Vsd = 20µV. The honeycomb edges ex-
hibit a strong curvature in the vicinity of the triple point regions and transport
is enabled on the edges as well. As pointed out before, both features indicate
the formation of coherent, molecular states in the system. We will now focus on
the upper left triple point region shown in Fig. 5.8, marked by a dashed circle.

Figure 5.9(a) shows a colorscale plot of the conductance of this region versus
single particle energies E1 and E2. The conversion from gate voltages to energies
has been carried out using the width of the honeycomb edges at finite bias
yielding the conversion factors α1 = 0.65 e and α2 = 0.6 e. From the spacing of
the two high-conductance wings and Eq.(5.2) we determine a tunnel coupling
t ≈ 200 µeV � U ′. The spacing E∆ versus detuning and the corresponding
fit (parameters are t = 217 µeV, U ′ = 0) are shown on the right-hand side of
Fig. 5.9(a).
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Figure 5.9: (a) Colorscale plot of the differential conductance in a triple point
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(left-hand vertical scale) and corresponding fits according to Eq.(5.6) versus
detuning ε for the upper and the lower wing of (a). Right-hand vertical scale:
Coefficients α+ or β+, calculated with the given values of t, obtained from the
fit. Due to the strong curvature of the wings, it is difficult to extract more data
points with a precise value of ε for the center of the peaks. At the maximum of
differential conductance, ε was set 0.
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The conductance through the molecular eigenstates along the wings is ex-
pected to reach its maximum when the detuning ε = 0. From Eq.(5.3) one sees
that the differential conductance falls off with | αβ |2, where

| α±(ε) |2= 2t2

2t2 + (ε±
√

ε2 + 2t2)2
(5.4)

| β±(ε) |2= 1− | α±(ε) |2 (5.5)

are the coefficients of the superposed wavefunction |Ψ〉 = α |n, m + 1〉+ β |n +
1,m〉, as given in Chapter 2. The ground state (bonding state), through which
transport occurs at low bias, is denoted by ’+’. In Fig. 5.9(b) the conductance
versus detuning is extracted for the upper and lower wing. Here, the upper
wing is the one adjacent to (n,m) and the lower wing is the one adjacent to
(n+1,m+1). The conductance traces are fit to

dI/dVsd(ε) = const× | α(ε)β(ε) |2 (5.6)

independently for positive and negative detuning. The coefficients | α |2 and
| β |2 follow consequently and are added in Fig. 5.9(b) (blue line, right-hand
vertical scale). This can be considered a mapping of the molecular wavefunction.
The fits yield tunnel couplings about a factor 2-4 smaller than obtained by
fitting the curvature of the two wings. The obtained values of t are noted
in Fig. 5.9(b), next to the corresponding conductance trace. It is difficult to
estimate the uncertainty of t, satisfactory fits are obtainable within a range of
roughly t ± t/5. Additionally, the tunnel couplings obtained for positive and
negative detuning are not symmetric. We can only speculate about the origin
of the deviations. A dependence of the tunnel coupling on the detuning can
be excluded as explanation, as such behavior would show up in the spacing
of the two wings as well. Taking into account the fitting curves are mainly
determined by their tails, co-tunneling processes taking place at these positions
could have an influence on the conductance trace. We emphasize, however,
that these measurements are taken at a very low temperatures of the order
50 mK and at small source-drain bias. Hence, we expect co-tunneling processes
to be strongly suppressed. Recalling the deviations from 1/T -scaling of the
temperature dependence of the differential conductance, see Section 5.6, our
simple model of spinless transport through a single molecular level cannot fully
capture quantitatively the conductance through the system.

5.10 Summary

In this Chapter local top-gate electrodes were used in order to define double
quantum dots in SWNTs. Measurements of three devices strongly suggest that
the double dots are indeed gate-defined and not intrinsic to the nanotube. In a
detailed analysis we were able to trace tunnel-coupled, molecular eigenstates of
the double dot and precisely quantify the tunnel coupling t. Carbon nanotube
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artificial molecules are unique, in that the tunnel coupling t can strongly exceed
the electrostatic nearest-neighbor interaction between the artificial atoms. To
our knowledge, this is the first time that such molecular states have been mea-
sured and carefully analyzed in carbon nanotube double quantum dots. In our
analysis we have restricted ourselves to the charge degree of freedom. Future
experiments, possibly in the few electron or hole regime, will have to address
superposed spin states and spin lifetimes. Using spin-injection and supercon-
ducting proximity, both of which have been demonstrated in carbon nanotube
devices, new functionality may be added to double quantum dot devices.

Due to their unique properties and their experimental ease, carbon nanotube
double quantum dot systems help to address fundamental issues of quantum
mechanics and may play an important role in future information technology.
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Appendix A

Electrical measurements
and cryostats

A.1 Measurement setup

A typical setup for our electrical transport measurements is illustrated in Fig. A.1.
Mostly, a lock-in technique was used with excitation voltages ≈ 10 µV. Best
results were obtained when using an I/V-converter (gain 107 − 109) and a so-
called ground loop killer (gain 10), which breaks low-impedance ground loops.
An essential ingredient is the filtering incorporated which is needed to ensure
an electronic temperature somewhat similar to the phononic bath temperature.
In our setup, there are two stages of filtering.

1. π-filters at room temperature: A π-filter is a combination of two capacitors
and an inductor which gets its name from the resemblance of the equivalent
circuit to the symbol ’π’. The filters used provide a damping of 40-60 dB
for frequencies ≥ 0.3 MHz [1].

2. Microcoax filters at base temperature: These are thin, ≈ 1 m long, coaxial
cables consisting of a central conductor (resistive wire with a resistivity of
1.32 µΩm, coated with insulating varnish), and an outer jacket (stainless
steel, resistivity 0.71 µΩm). Due to the skin effect the losses in such
coaxial cable go with

√
ω. Ref. [2] gives an attenuation per unit length of

≈ 60 dB/m at 1 GHz and ≈ 200 dB/m at 10 GHz for such a geometry.

The wiring in between the two filtering stages from 300 K to base temperature is
done with constantan (Cu55/Ni45) wires (Kelvinox) and either phosphorbronze
(Cu94/Sn6) or manganin (Cu84/Ni4/Mn12) wires (He3).
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Figure A.1: Schematic of the electrical setup used for measurements of carbon
nanotube double quantum dot devices.
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Figure A.2: Width of measured Coulomb peaks in a carbon nanotube double
quantum dot versus bath temperature.

In Fig. A.2 the width of measured Coulomb peaks in a carbon nanotube
double quantum dot is plotted versus the bath temperature of our Kelvinox
dilution refrigerator. For temperatures higher than 100 mK the peak-width is
proportional to the bath temperature. The peak-width at base temperature
(24 mK), however, does not lie on the line defined by the other temperatures.
From the intersect of this line and a horizontal one through the base-temperature
data one obtains an effective electronic temperature of Tel ≈ 50 mK.

A.3 Cryostats

Within this work the following cryostats have been used:

• 4He storage dewar, T = 4.2 K.

• 4He cryostat, base temperature 1.7 K.

• 3He cryostat, base temperature 300 mK.

• Kelvinox 3He/4He dilution refrigerator, base temperature 25 mK.
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Whereas the dewar and a dip-stick represent the simplest possible refrigerator
and will not be further discussed here, both the 4He and the 3He-cryostat of our
group have been described elsewhere [1, 3]. As during my Ph.D. work we had
to face quite a few problems with the Kelvinox dilution refrigerator, the system
is very briefly discussed in the following.

The principle of operation of a dilution refrigerator is that a mixture of the
two isotopes 3He and 4He separates into two phases below a critical temperature
(Tcr = 0.86 K). The concentrated, lighter phase (rich in 3He, ≈ 90 %) then
floats on top of the heavier dilute phase (typically 6-7 % 3He). According to the
unique phase diagram of 3He/4He mixtures, the dilute phase is superfluid, i.e. a
quantum fluid, the concentrated phase, however, remains a normal liquid. When
now the concentrated phase is transferred (pumped) into the dilute (superfluid)
one it will be in an ’excited’ state, which costs energy. The environment provides
this energy and gets cooled, consequently.

Figure A.3 shows the operation diagram of a Kelvinox dilution refrigerator.
The phase boundary is located (ideally) inside the mixing chamber, which the
coldest part of the refrigerator. If the phase boundary is not located in there,
but for example in the small tubes connecting to the still stage, the cooling
power will be drastically reduced. The position of the phase boundary can be
controlled by the amount of 3He in the mixture. Our current mixture contains
7.5 l 3He and 36 l4He. Due to osmotic pressure the dilute phase goes up to the
still and is evaporated there by an applied heating power of, in our case ≈ 3-
5 mW. The evaporated phase is again rich in 3He, gets pumped through the
3He pump outside the fridge and finally recondensed in the condenser (cooled
by the 1-K pot at a temperature of ≈ 1.5 K). After it has been cooled in the
heat exchangers by the outgoing dilute phase, the concentrated phase is then
introduced into the mixing chamber and the cycle starts over. In our dilution
refrigerator, the cooling power (≈ 5 µW) was much less than the specified one of
100 µW at 100 mK. In addition the base temperature was only of the order 50-
100 mK. Most likely, there was a crossover-leak, located somewhere in the heat
exchangers. There is almost no way of detecting such a crossover-leak, as the
mixture still remains in a closed cycle. However, only parts of the concentrated
phase are transferred through the mixing chamber. Instead a big amount of it
takes a bypass through the crossover-leak located in the heat exchangers. After
the heat exchangers were exchanged, the system operated fully according to
its specifications and reached a base temperature of 18 mK (without sample
holder).
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Figure A.3: Schematic of a dilution refrigerator. Taken from the Kelvinox
manual [4]
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Additional data

B.1 Approaching the few-hole regime
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Figure B.1: Colorscale plot of the differential conductance versus source-drain
bias voltage and back-gate. Trace of the linear differential conductance at Vsd=-
50 mV.

Figure B.1 shows a colorscale plot of the differential conductance at 4.2 K
through a nanotube device with 2 top-gates (for this measurement kept at 0 V,
same device as described in Chapter 4) for high back-gate voltages, i.e. when
approaching the energy gap of the semiconducting tube. Different energy scales
are evident from differently-sized Coulomb diamonds, suggesting that more than
a single quantum dot is involved in transport. Close to the gap, the charging
energy increases dramatically up to more than ≈ 50 meV. This is in agreement
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with the first measurement of the few electron / hole regime in SWNT [5].
However, extracting the precise number of holes residing on the dot(s) is not
possible from our data.
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B.2 Influence of the center gate on the dot-dot
coupling

Figure B.2(a) and (b) show the same region of the first double-dot sample
described in Chapter 5 for two different voltages applied at the center gate. For
a more positive voltage (b), the honeycomb pattern looks more rectangular, i.e.
the dots are more decoupled.
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Figure B.2: Colorscale plot of the differential conductance versus gate voltages
applied at top-gates 1 and 2 for two different voltages applied at the center gate:
(a) VCenter = -0.1 V. (b) VCenter = 0.1 V. The temperature is 300 mK and the
applied bias 128 µV. Vback−gate =0 V.
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CVD-growth recipe for
single-walled carbon
nanotubes

C.1 Catalyst preparation

Catalyst composition

The liquid based catalysts consist of the following components iron nitrate
(Fe(NO3)3-9H2O), molybdenum dioxide dichloride (MoO2Cl2) and alumina (Al2O3)
in different combinations. The alumina nanopowder is used with two different
particle sizes with diameters of 4 and 40 nm. The solvents are water, methanol,
ethanol and 2-propanol (isopropylic alcohol). The composition is similar to that
of the catalyst used by Kong et al. [6]. But there is a difference in the recipe,
MoO2Cl2 is used instead of MoO2 which was not available.

The catalyst is prepared with stock solutions that guarantee a constant com-
position over time. 30 mg Al2O3 (either 4 or 40 nm nanopowder) is dissolved
in 20 ml 2-propanol, 93 mg Fe(NO3)3-9H2O is dissolved in 20 ml 2-propanol
and 27 mg MoO2Cl2 is dissolved in 20 ml 2-propanol. These stock solutions are
sonicated over night with an Ultrasonic300, power and degas in middle position.
Next, they are mixed to the actual catalyst consisting of 0.5 ml alumina solu-
tion (either 4 or 40 nm), 0.5 ml iron nitrate solution and 0.5 ml molybdenum
dioxide dichloride solution diluted with 18.5 ml 2-propanol to a final volume of
20 ml. The catalyst is sonicated overnight after mixing and for 2 hours prior
to use. (This corresponds to final concentrations of 0.37 mM Al2O3, 0.29 mM
Fe(NO3)3-9H2O and 0.17 mM MoO2Cl2, respectively.)
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Sample preparation:

The catalyst is sonicated 2 hours prior to use. The samples are sonicated in
acetone for 5 minutes and in 2-propanol for 2 minutes as well as placed in the
UV cleaner for 10 minutes. Simultaneously the biggest clusters are removed by
a sedimentation step that lasts between 10 to 30 minutes. The sample (Si/SiO2

substrate, area ≈ 2 cm × 2 cm) is placed on a spinning table (2’000 rpm for
40 seconds), 1 droplet of catalyst is added when the maximal speed is reached.

C.2 Growth protocol methane/hydrogen process

Here the step by step protocol for the methane/hydrogen CVD process is given.
With this recipe, the SWNT with the highest quality have been grown. For
more details about the setup of gas systems see Chapter 1. The effect of room
temperatures deviating from the calibration temperature 20 ◦C is negligible
(< 2%). The gas system is operated with three gas lines for argon, hydrogen
and methane, respectively. The pressure drop over the flowmeters is set to
0,2 bar, using the reduction valves of the gas bottles. This makes a pressure
correction unnecessary. For more information about corrections necessary when
using flowmeters, see [7].

1. Mount sample, close tube.

2. Open all gas valves (Ar (check if there are bubbles), CH4, H2).

3. Flush the lines for 2 minutes.

4. Close H2 and CH4 valves.

5. Keep Ar flowing at 1’500 ml/min±3% (The reading at the variable area

flow meter is 105 l/h, this corresponds to a corrected flow of: 105′000ml
60min

√
1.293
1.784 =

1′489ml/min.)

6. Heat-up oven to 900 ◦C.

7. Open H2 flow up to 500 ml/min±3% (The reading at the variable area

flowmeter is 8 l/h, this corresponds to a corrected flow of: 8′000ml
60min

√
1.293
0.090 =

505ml/min).

8. Close Ar.

9. Open CH4 up to 1000 ml/min±3% (The reading at the variable area

flowmeter is 45 l/h, this corresponds to a corrected flow of: 45′000ml
60min

√
1.293
0.717 =

1′007ml/min).

10. Leave the gasses flowing for 10 minutes.

11. Open up Ar up to 1.5 l/min (leave H2 open).
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12. Close CH4.

13. Let oven cool down to 550 ◦C.

14. Close H2.

15. Unmount sample when temperature ≤ 350 ◦C.

16. Close Ar.
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M.R. Gräber, W. A. Coish, C. Hoffmann, M. Weiss, J. Furer, S. Ober-
holzer, D. Loss, and C. Schönenberger, to be published in Physical Review
B (2006).

• Defining and controlling double quantum dots in single-walled carbon na-
notubes.
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