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Abstract 

One of the great challenges in neuroscience is to explain the function of neuronal circuits as a 

consequence of the connections and interactions between large numbers of neurons. To 

understand the dynamics of small microcircuits, it is indispensable to study the connectivity 

between neurons and its influence on the function of the intact system. However, for most neural 

circuits the detailed wiring diagram is unknown. The zebrafish is an excellent model system to 

address these questions because it is small in size, facilitating large-scale neuronal 

reconstructions, and because a variety of established tools can be combined to identify neurons 

and measure neuronal activity patterns. The olfactory bulb (OB) is the first stage of information 

processing in the olfactory system and has become a model for studies of neural circuit structure 

and function in the intact brain. We used serial block face electron microscopy to obtain a large 

high-resolution anatomical dataset from the adult olfactory bulb. Focused reconstruction from a 

small subset of neurons revealed the complete structure of mitral cells. Synapse mapping 

revealed their complete synaptic map.  In higher vertebrates an excitatory interneuron, external 

tufted cell, has been shown to receive direct synaptic input and then relay the information to the 

mitral cells. We observed that mitral cells in adult zebrafish receive direct synaptic inputs from 

the olfactory receptor neurons. Both these scenarios of information transfer can have different 

computational consequences in the OB. 

Two recent computational studies focused on reciprocal connectivity in the OB between mitral 

cells and granule cells. One model predicts that granule cells activity is ultra-sparse and mitral 

cell activity is sparse, and that this type of reciprocal circuit helps to perform decorrelation in the 

OB. Another computational model used the same mathematical approach but comes with 

different predictions. It puts no constrains on the sparseness of MC and GC cells. It further 

predicts that the reciprocal circuit performs contrast normalization and brings the OB into a 

variance-balanced state. We tested both these models experimentally and saw indeed that the 

granule cell activity was not sparse, thereby showing that the first model is not biologically 

plausible in the OB. The fraction of reciprocal synapses out of all the input synapses on the mitral 

cells was significant. With this fraction the olfactory circuit still performs strong contrast 

normalization thereby showing that the second model is biologically plausible. 
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INTRODUCTION 

 

1.1 The olfactory system and information processing  

The olfactory bulb is a telencephalic brain area that receives direct input from olfactory receptor 

neurons (ORNs) in the nose and has been proposed to share functional principles with cortical 

circuits (Haberly, 2001). Each ORN expresses a single odorant receptor out of a repertoire of 

approximately 1000 different receptors in rodents and about 300 in teleosts (Shepherd 1997, 

Mombaerts 1999, Alioto et al., 2005). ORNs expressing one specific receptor are scattered 

throughout the nasal epithelium, but their axons converge in the OB onto one or a few discrete 

glomeruli (Buck, 2000). The total number of glomeruli is approximately 2000 in mice and 200-

300 in zebrafish (Mombaerts, 1999; Braubach et al., 2012). Within glomeruli, ORN axons form 

synapses with the principal cells of the OB, the mitral cells (MC), and with inhibitory interneurons.  

Within the OB, mitral cells interact with three main classes of inhibitory interneurons: the 

periglomerular cells, the short-axon cells and the granule cells. The latter are located in the deep 

layers of the OB. The output of the OB is conveyed by mitral cells to multiple higher brain areas 

including the olfactory cortex. Each odorant receptor can bind multiple different odor molecules, 

and each odorant is recognized by multiple types of odorant receptors. Consequently, a given 

odor molecule is initially represented in the OB by the activation of a specific combination of 

glomeruli (Friedrich and Korsching, 1997; Rubin and Katz, 1999; Wachowiak and Cohen, 2001).  

At the level of mitral cells, odors are also represented combinatorially. However, activity patterns 

across mitral cells change dynamically during the initial phase of a response, which reflects 

multiple computations. Initially, mitral cells activity patterns evoked by odors of the same 

chemical category overlap and are often very similar to each other. Subsequently, however, 

patterns evoked by different odors diverge and become more distinct (Friedrich and Laurent, 

2001; Niessing and Friedrich, 2010).  
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This decorrelation facilitates the discrimination between odor representations by a simple 

classifier and may be necessary for storage of odor representations by auto-associative networks. 

However, the mechanisms underlying pattern decorrelation are, however, only beginning to be 

understood. One possibility is that pattern decorrelation emerges from neuronal nonlinearities 

and is amplified by recurrent connectivity (Wiechert et al., 2010). Computations such as pattern 

decorrelation depend on network interactions between mitral cells and interneurons. Most inter-

glomerular interactions between mitral cells are mediated via interneurons that are inhibitory in 

nature. 

Another computation performed by the olfactory bulb is pattern equalization, which stabilizes 

mitral cell activity patterns against variations in stimulus intensity (Zhu et al., 2013). Equalization 

is mediated, at least in part, by short-axon cells that are depolarized by sensory input and provide 

output to mitral cells via electrical and GABAergic synapses. Weak sensory input results in a 

depolarization of mitral cells that is transmitted via gap junctions while strong inputs 

hyperpolarize mitral cells via GABAergic inhibition. As a consequence, short-axon cells boost 

mitral responses to weak input but attenuate mitral cells responses to strong inputs. These and 

other mechanisms maintain both the mean and the variance of odor-evoked activity patterns 

across the mitral cell population within a narrow range and thereby help establish concentration-

invariant representations of odor identity. 

Testing models of neuronal computations in the olfactory bulb and other brain areas often 

requires more detailed insights into the connectivity between individual neurons and their 

computational consequences. Many synaptic contacts between mitral cells and interneurons 

(particularly granule cells) are reciprocal dendro-dendritic synapses: an excitatory mitral cell-to-

interneuron synapse occurs in close proximity to an inhibitory interneuron-to-mitral cell synapse 

between the same neurons (Rall et al., 1966; Reese and Brightman 1966, Pinching and Powell, 

197I, Isaacson and Strowbridge, 1998; Urban and Sakmann, 2002). It is therefore thought that 

interneurons, particularly granule cells, mediate mutual lateral inhibition between mitral cells. 

Besides this striking symmetry of connectivity at fine spatial scales, it is, however, unknown 
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whether connectivity between mitral cells and interneurons exhibits non-random structure at 

larger scales.  

In other words, the topology of connections in the OB is largely unknown. For example, it is 

known that connectivity between mitral and granule cells is sparse and that connection 

probability decreases with distance (Egger and Urban, 2006; Fantana et al., 2008; Wiechert et al., 

2010) but the precise neuron-to-neuron connectivity matrix is unknown. The reason for this lack 

of knowledge is that conventional approaches to determine connectivity such as stains of 

individual neurons, viral tracing of synaptically connected neuronal ensembles, or paired 

electrophysiological recordings provide only first-order statistical information on connection 

probability.  

 
 
 
1.2 Detailed architecture of the olfactory system 

The neuronal organization of the olfactory bulb is largely preserved throughout the vertebrate 

classes and exhibits similarities also to the first olfactory processing center in insects, the 

antennal lobe. The olfactory bulb and the antennal lobe both receive direct input from olfactory 

sensory neurons through an array of anatomically distinct glomeruli, encode odor information in 

a combinatorial fashion, and process odor-evoked activity patterns by interneuron networks that 

are coupled to output neurons via GABAergic synapses and gap junctions. However, the antennal 

lobe contains much fewer interneurons and, contrary to the olfactory bulb receives very few top-

down projections. Moreover, the insect antennal lobe has only two projection targets, the 

mushroom body and the lateral horn, while the olfactory bulb has more projection targets 

(Hildebrand and Shepherd, 1997). Hence, some aspects of olfactory processing may differ 

between vertebrates and insects. We focused on the olfactory bulb of zebrafish, which is 

described in more detail below. 
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Olfaction in zebrafish 

Zebrafish can detect molecules in aqueous solution like amino acids, nucleotides, steroids and 

bile acids. Some of these odorants or their mixtures elicit specific physiological responses or 

behaviors in zebrafish such as feeding, swimming, chemosensory, reproductive behaviors (Kyle 

1983, Vogt, 2004, Zielinski, 2007).The noses of the zebrafish are a paired structure. Each nose has 

an inflow and an outflow opening through which water flows unidirectionally. Unlike rodents and 

other mammals, zebrafish do not sniff rhythmically. Water flow through the nose is generated 

by constantly beating cilia of supporting cells and by swimming (Zielinski, 2005; Zielinski, 2007).  

Olfactory Sensory Neurons 

ORNs are the primary sensory neurons in the nose (Shepherd, 1997). Zebrafish ORNs comprise 

three distinct cell types: ciliated cells, microvillous neurons and crypt cells (Hansen and Zielinski, 

2005). Somata of these three different cell types are located at different depths in the olfactory 

epithelium. ORNs are constantly renewed by division of stem cells in the deep layers of the 

olfactory epithelium (Cancalon, 1982; Julliard, 1996).  

The Zebrafish Olfactory Bulb 

OB can be primarily divided into three layers, the glomerular layer (GL), the plexiform layer (PL) 

and the granule cell layer (GCL). (Fig. 1).  

1) Glomerular layer. This layer contains glomerular neuropil units as well as somata of two types 

of output neurons, the mitral cells and ruffed cells. In addition, the GL contains somata of subsets 

of interneurons, including short-axon cells and periglomerular cells (Byrd et al., 2005; Fuller et 

al., 2006, Braubach et al., 2012). In mammals, an additional juxtaglomerular cell type, the 

external tufted cell (ET), has been described (Hayar et al., 2004). While short-axon and 

periglomerular cells are GABAergic, external tufted cells are glutamatergic. 

2) Plexiform layer. This neuropil layer consists mainly of dendrites of mitral cells and different 

types of interneurons. Only few somata can be found.  



                                                                           Introduction 

14 
 

3) Granule cell layer. This layer contains a high density of interneuron somata. The largest 

population of interneurons is granule cells (Michel et al., 2002). Additional smaller populations 

of interneurons may include deep short axon cells, which have been described in other 

vertebrate species (Schneider and Macrides, 1978). 

The Glomerulus 

The zebrafish glomerular layer contains approximately 140 distinct glomeruli and a region 

containing additional, small glomerular structures that have not been delineated precisely. 

Subsets of these glomeruli are large and unambiguously identifiable between individuals 

(Braubach et al., 2012). Moreover, anatomically and molecularly defined clusters of glomeruli 

can be found consistently in different individuals. 

Glomeruli represent the sites of convergence of ORNs expressing the same odorant receptor as 

well as the sites of convergence of the dendrites of a small number of mitral cells. Anatomically, 

the glomerulus comprises a shell and a core. The shell is comprised of a heterogeneous 

population of periglomerular and short-axon cells, which are collectively referred to as 

juxtaglomerular cells (Kosaka et al., 1998). The core contains of neuropil that contains ORN 

terminals, mitral cell dendrites and processes of juxtaglomerular cells (Pinching and Powell, 

1971). 

Principal neurons 

Mitral cells and ruffed cells are the principal neurons of the teleost olfactory bulb (Fig. 1). There 

are about 1500 mitral cells in adult zebrafish OB (Wiechert et al., 2010). The mammals olfactory 

bulb also contains two types of output neurons, the mitral cells and tufted cells, but it remains 

unclear whether tufted cells in mammals correspond to ruffed cells in teleosts. 

Juxtaglomerular cells 

Juxtaglomerular cells comprise of short axon cells (SA) periglomerular cells (PG) and external 

tufted cells (ET) (Cajal, 1911; Powell, 1971; Shepherd, 2004). Short axon interneurons have 

dendrites arborizing within and around the glomeruli without a dense apical tuft (Aungst et al., 

2003; Shepherd et al., 2004; Shipley et al., 2010). Periglomerular cells (Fig. 2) have bushy dendrite 
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arborization (Pinching and Powell, 1971a, c; Shepherd et al., 2004). External tufted cells are 

morphologically heterogeneous with a fan shaped apical dendritic tuft and arborize in a single 

glomerulus (Powell, 1971; Schneider, 1982; Hayar et al., 2004). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
  
 
 
 
 
Fig. 1: Simplified diagram of the olfactory system in zebrafish. 

The axons of olfactory receptor neurons make synapses in the glomerular layer (GL). Neurons surrounding glomeruli 
in the GL are juxtaglomerular cells, consisting of three morphologically distinct interneuron cell types: periglomerular 
(PG) cells, external tufted (ET) cells (not shown), and superficial short-axon (SA) cells. There are two types of 
projection neurons, the mitral cells and the ruffed cells (not shown), which send their axons to the higher order brain 
centers/ downstream targets. Mitral cells project their primary dendrite into a glomerulus, where they are thought 
to receive synaptic inputs from the axons of olfactory receptor neurons and make reciprocal synapses with the 
dendrites of PG cells. Granule cells in GL are axon-less interneurons extending dendrites apically into the PL where 
they reciprocally synapse onto mitral cells.  

GL 

PL 
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Glomerulus 

PG cell 
SA cell 

MC 
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Fig. 2: Interneuron subtypes in the OB. 

Schematic representations of different interneuron populations: periglomerular cells (green), short axon cells (red) 
and external tufted cells (purple).  Two subtypes of PG cells are distinguished based on their synaptic connections. 
Type-1 PG cells receive synaptic inputs on their dendrites from both ORNs and neurons in the olfactory bulb. Type-
2 PG cells only receive inputs from neurons in the olfactory bulb. SA cells have long processes. Subtypes of ET cells 
are determined by morphology: those without and those with secondary dendrites. Six subtypes of granule cells are 
distinguished based on the location (depth) of their cell somata in the GCL. Subtypes of deep SA cells (not shown) 
are also present in GCL. (Modified from Nagayama S and Imamura F, 2014). 
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External tufted cells  

ET cells can be divided into two morphologically distinct subtypes: those with and those without 

secondary (basal) dendrites (Macrides and Schneider, 1982) (Fig. 2). These morphological 

differences are also correlated with physiological distinctions (Antal et al., 2006). 

 Thus basal-dendrite bearing and non-basal-dendrite-bearing ET cells may in principal be two (or 

more) separate populations. ET cells have long been considered glutamatergic. Recent studies 

suggest ET cells receive direct synaptic input from the terminals of olfactory receptor neurons. 

ET cells synapse onto mitral cells (Shipley et al., 2004; Schoppa et al., 2012). 

Granule cells 

Granule cells are a very large population of cells located in deep layers. Granule cells lack axons 

and extend dendrites to different depths of the plexiform layer (Fig. 2) (Golgi, 1875; Cajal, 1880). 

In mammals, GCs have been categorized into six types (superficial, intermediate and deep) based 

on their depth in OB (Mori et al., 1983; Mori et al., 1987; Orona et al., 1983; Naritsuka et al., 

2009; Merkle et al., 2014). Granule cells form reciprocal dendro-dendritic synapses with mitral 

cells. 

 

 

 

1.3 Direct vs. indirect sensory input to mitral cells 

Classical anatomical studies concluded that mitral cells receive direct synaptic inputs from the 

olfactory receptor neurons (Pinching and Powell, 1971). These studies were based on 

transmission EM images from sections. Mitral cells were identified by the particular shape of their 

dendrites in the glomerular region. However, because it was not possible to follow the dendritic 

profile to the soma, the identification of mitral cells was tentative. The evidence that mitral cells 

receive direct sensory input was therefore considered convincing, albeit indirect. 

Recent studies have challenged this conclusion and proposed that ORNs terminate on ET cells, 

which in turn provide synaptic input to MCs (Shipley et al., 2004; Schoppa et al., 2012). While 

physiological studies clearly support the conclusion that ET cells receive strong direct olfactory 
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receptor neuron input, and that MCs receive synaptic input from ET cells (Shipley et al., 2004). 

However, it is controversial whether MCs also receive direct sensory from ORNs.  

Based on recent physiological results it has been proposed that such as direct synaptic pathway 

does not exist, and that all excitatory input from ORNs is transmitted to mitral cells by a disynaptic 

pathway via ET cells (Schoppa et al., 2012). However, this evidence is again indirect because it 

relies on extracellular stimulation and electrophysiological recordings. These methods cannot 

directly reveal synaptic connectivity. A disynaptic pathway between ORNs and MCs via ET cells 

could provide opportunities for additional processing between sensory input and output (De 

Saint Jan et al., 2009; Najac et al., 2011; Schoppa et al., 2012) (Fig. 3). 

 

 

     A                                                              B 

 

 

 

                                                                  

 

 

 

 

 

 

 
Fig. 3: Disynaptic pathway including ET cells. 

(A) Schematic showing mitral cells receive direct input from the olfactory sensory axons. (B) Schematic of external 
tufted cells receiving direct olfactory sensory neuron input and then transfer the olfactory information to mitral cells 
in a disynaptic-step pathway. 
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1.4 Reciprocal connectivity in the olfactory bulb 

Reciprocal synapses have been first reported in the olfactory bulb of rats (Fig. 4) (Hirata, 1964; 

Andres, 1965; Rall and Shepherd, 1968; Reese and Brightman 1966). In the olfactory bulb they 

have been observed frequently between glutamatergic mitral cells and interneurons, particularly 

GABAergic granule cells. Reciprocal synapses have also been found in other parts of the brain e.g. 

the hypothalamus (Giildner and Wolff 1974), superior colliculus (Lund et al., 1969) and retina 

(Dowling and Boycott 1966). Dendro-dendritic physiological properties were studied and first 

reported in rabbit OB. Further studies in turtle and salamander show that reciprocal synapses are 

functional in both directions (Phillips, 1963; Nicoll, 1969; Jahr and Nicoll, 1980; Nowycky et al., 

1981; Wellis and Kauer, 1993; Isaacson and Strowbridge 1998; Schoppa et al., 1998). 

Structurally, reciprocal synapses in the OB have been studied by electron microscopic 

reconstructions from single and serial sections. They consist of an asymmetric (excitatory) mitral 

cell to interneuron synapse and a close-by symmetric (inhibitory) interneuron to mitral cell 

synapse (Fig. 4). In mammalian granule cells, reciprocal synapses are located on large dendritic 

protrusions called gemmules that are similar to ordinary spines but larger (Rall et al., 1966; Rall 

and Shepherd, 1968; Price and Powell, 1970). 

Functionally, a reciprocal structure efficiently generates feedback inhibition on the dendrites of 

mitral cells (Yokoi et al., 1995; Brennan and Keverne, 1997). Obviously, reciprocal connectivity 

can also generate lateral inhibition (Chen et al., 2000; Egger et al., 2003). Moreover, it has been 

argued that reciprocal connectivity supports synchronization of mitral cells (Kashiwadani et al., 

1999; Mori et al., 1999; Schoppa et al., 2006).  

NMDA receptors are highly expressed on granule cells and thought to play a major role in 

signaling at reciprocal synapses (Collingridge and Lester, 1989; Iverson et al., 1987). In brain 

slices, the activation of mitral cell to granule cell excitatory synapse can lead to a calcium influx 

through the NMDA receptor resulting in an increase in the calcium concentration in the granule 

cell gemmule. This in turn can trigger GABA release at the granule cell to mitral cell inhibitory 

synapse even in the absence of an action potential (Schoppa et al., 1998; Isaacson and 
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Strowbridge, 1998; Chen et al., 2000; Halabisky et al., 2000). This mechanism may mediate 

feedback inhibition of active mitral cells even when granule cell activity remains subthreshold. 

 

          A 

 

 

 

 

 

 

                  
 
                       B 
 
 
 
 
 
 
 
 
 
 
 
 
            
 
 
 
 
Fig. 4: Reciprocal dendro-dendritic synapse. 

(A) Electron micrograph of a mitral secondary dendrite making a mitral-to-granule asymmetric synapse onto a 
granule cell spine, which makes a reciprocal granule-to-mitral symmetric synapse onto the same mitral cell dendrite 
(from Rall et al., 1966). (B) Illustration of reciprocal dendro- dendritic synapses between a mitral and granule cell in 
the OB. It consist of a glutamatergic mitral cell to granule cell excitatory synapse and a close-by granule cell to mitral 
cell GABAergic synapse.  

 

Mitral cell 
 

Granule cell 
 

GABA 
Glutamate 

AMPAR 

NMDAR 

GABAA 

Mitral cell 

Granule cell 



                                                                           Introduction 

21 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Schematic illustration of feedback and lateral inhibition. 

The scheme illustrates a hypothetical situation where mitral cell 1 receives strong ORN input and mitral cell 2 
receives weak input. The granule cell shown forms reciprocal synapses with both mitral cells and receives sufficiently 
strong input, mainly from mitral cell 1, to generate an action potential. The granule cell therefore inhibits mitral cell 
1, the main source of its excitatory input (feedback inhibition, black arrow), as well as mitral cell 2 (lateral inhibition, 
black arrow).  

 

Strong excitatory input can induce an action potential in a granule cell which propagates 

throughout the dendritic tree, which is assumed to trigger GABA release at many synapses (Chen 

et al., 2000; Egger et al., 2003). The inhibition from granule cells to mitral cells is thus targeted to 

mitral cell involved in excitation but also to mitral cells which do not contribute in granule cell 

excitation, resulting in an effective lateral inhibition through reciprocal synapses (Fig. 5).  

During an odor response, a substantial fraction of mitral cells rhythmically synchronize their 

action potentials at frequencies in the beta and gamma ranges. (Adrian, 1950; Rall and Shepherd 
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1968; Kashiwadani et al., 1999). The rhythmic activity of neurons in the OB can be recorded 

extracellularly as an oscillatory local field potential, and action potentials of mitral cells occur 

preferentially around a specific phase of the oscillation. Patch clamp recordings indicate that the 

timing of mitral cell action potentials depends on synaptic inhibition from granule cells (Schoppa 

et al., 2006) and it has been proposed that reciprocal connectivity between mitral and granule 

cells supports oscillatory synchronization.  

 
 
 
1.5 Computational consequences of reciprocal connectivity 
 
Most brain regions contain a majority of excitatory projection neurons whose activity is regulated 

by a smaller number of local inhibitory neurons. In the OB, however, inhibitory interneurons out-

number exitatory neurons by a factor of 100 or more (Aungst et al., 2007). The majority of 

olfactory bulb interneurons are granule cells (Mori et al., 1987; Shepherd et al., 2004) that form 

reciprocal synapses with the principal mitral cells. It has been proposed that reciprocal synaptic 

inhibition by olfactory bulb interneurons mediates gain control by feedback inhibition, contrast 

enhancement by lateral inhibition and synchronization of mitral cells. Conceivably, however, a 

strictly reciprocal connectivity between mitral cells and interneurons is not necessary for any of 

these computations. 

Recently, two theoretical and computational studies examined computational consequences of 

reciprocal connectivity in more detail and arrived at different conclusions (Koulakov and Rinberg, 

2011; Wiechert, 2015). The approaches used in these studies are based on the same simplified 

model that consists of principal neurons (“mitral cells”) and reciprocally connected inhibitory 

neurons (“granule cells”). However, the two studies differ in the mathematical analysis and made 

different simplifications.  

The first study (Koulakov and Rinberg, 2011) suggests that sparse codes in the OB emerge as a 

result of the balance between mitral cell excitatory inputs and inhibition provided by the granule 

cells (Fig. 6 A). The model suggests that granule cells can form representations of the incoming 

olfactory stimuli in the inhibitory inputs that they return to the mitral cells. The pattern of 
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inhibitory synaptic input from granule cells will be then “removed” from the pattern of excitatory 

synaptic input from ORNs (or ET cells). An exact balance between the receptor neuron excitation 

and granule cell inhibition would completely eliminate mitral cell odorant responses. However, 

because the granule cell population feedback cannot represent all possible mitral cell activity 

patterns, the set of granule cell odor representations is assumed to be “incomplete”. As a 

consequence, some residual mitral cell activity will not be cancelled out. This activity represents 

the mismatch between the sensory input and the granule cell feedback patterns and will be 

transmitted to higher brain areas.  

 

    A 

 

 

 

 

   B 

 

 
 
 
 
 
 
Fig. 6: Proposed computational consequences of reciprocal feedback: SIR and VBS models. 

(A) SIR model: Strong olfactory inputs activate a subset of glomeruli (black circles), which in turn activate a specific 
subset of mitral cells. Active mitral cells excite granule cells via reciprocal synapses. The granule cell whose synaptic 
input pattern best matches the glomerular activity pattern (blue) will reach threshold first and provide reciprocal 
inhibition to the active MCs. As a consequence, most MCs will be nearly silenced (gray triangles). However, some 
mitral cells may escape silencing (black triangle) because the granule cell feedback pattern is incomplete. (B) VBS 
model: Reciprocal connectivity does not reorganize or sparsify mitral cell activity patterns but down-scales the entire 
pattern without reorganizing it and thereby normalize pattern contrast. 
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This model will be referred to as the “sparse incomplete representation” (SIR) model and makes 

the following predictions (Koulakov and Rinberg, 2011): 

1) Granule cell activity patterns should be very sparse. This is a strong prediction. 

2) Granule cell feedback should decorrelate mitral cell activity patterns.  

3) Granule cell feedback should sparsify mitral cell activity patterns. 

The second study (Wiechert, 2015) arrived at the conclusion that reciprocal connectivity does not 

reorganize or sparsify mitral cell activity patterns (Fig. 6 B). This study found that the pattern of 

reciprocal feedback inhibition from the granule cell population mirrors the pattern of excitatory 

inputs and thereby down-scales the entire pattern without reorganizing it. The study 

demonstrates that this phenomenon holds also in “balanced state” networks, as discussed 

below, and results in a normalization of variance. It is therefore referred to as the “variance-

balanced state” (VBS) model. 

The balanced state is a theoretical model for neuronal networks in which each neuron receives 

constant excitatory and inhibitory inputs from other neurons in the network (Pare et al., 1998, 

Wolf et al., 2014). In a classical balanced state network, connectivity is assumed to be sparse and 

random, therefore inhibitory and excitatory currents are approximately uncorrelated. Classical 

balanced state networks can allow individual neurons to respond fast and reliably to specific 

stimuli while maintaining the mean firing rate of the population within a narrow range, even 

when the global input intensity fluctuates. However, this “normalizing” function works well only 

when the variance of activity across external inputs is relatively low. In reality, however, this 

variance can be high, particularly in sensory systems (Pare et al., 1998). In the OB, for example, 

an odor may provide inputs of very different strength to different glomeruli. The mathematical 

and computational analysis underlying the VBS model demonstrated that reciprocal connectivity 

can maintain a balanced state also when input variance varies over a wide range. This effect is a 

direct consequence of reciprocal connectivity and was found to be robust against variations of 

various model parameters (Wiechert, 2015).  
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In a reciprocally connected network, excitatory and inhibitory inputs are therefore balanced not 

only on average but also in individual cells. As a consequence, input patterns are down-scaled 

when the variance of the input increases. It has therefore been proposed that reciprocal 

connectivity promotes contrast normalization in the OB, rather than contrast enhancement. 

Contrast normalization is a computation of high importance in many brain regions, particularly 

in sensory systems. 

The VBS model makes predictions that are different from those of the SIR model: 

1. Granule cell activity does not have to be extremely sparse. 

2. Granule cell feedback does not decorrelate mitral cell activity patterns. 

3. Granule cell feedback does not sparsify mitral cell activity patterns. 

Both studies assume that a substantial fraction of mitral-granule cell synapses are reciprocal. 

Anatomical studies indicate that reciprocal synapses are indeed common in the OB but the exact 

degree of reciprocity has not been quantified. The VBS model suggests that a robust VBS requires 

approximately >20% of the synapses between mitral cells and interneurons to be reciprocal but 

the exact fraction may depend on synaptic strength (Wiechert, 2015). 

How can the SIR and the VBS models be tested in the olfactory bulb? One approach would be to 

silence granule cells and analyze the density and correlation of mitral cell activity patterns in 

order to test predictions 2 and 3. However, this approach is technically difficult. Moreover, it may 

disrupt excitation/inhibition balance and thereby push the network into a qualitatively different 

state that would not allow for tests of the VBS model. Another approach is to examine whether 

granule cell activity is extremely sparse. This is a strong prediction of the SIR model. Hence, non-

sparse activity across the granule cell population during an odor response would strongly argue 

against the SIR model and in favor of the VBS model. Previous studies indeed suggest that granule 

cell activity is not sparse (Tabor and Yaksi et al., 2004; Zhu et al., 2012). If so, further support for 

the VBS model could be obtained by determining the fraction of mitral cell-to-interneuron 

synapses that are reciprocal. If this fraction is >20%, this would provide further support for the 

VBS model. 
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1.6 State of the art in 3D EM for dense circuit reconstruction 

One of the major challenges in neuroscience is to explain the function of neuronal circuits as a 

consequence of the connections and interactions between large numbers of neurons. To truly 

understand the dynamics of even small microcircuits, it is indispensable to study the detailed 

synaptic connectivity between neurons and its influence on the function of the intact system. 

One of the factors impeding progress in systems neurobiology has been the lack of appropriate 

methods to determine neuron-to-neuron connectivity in large networks.  

Classical methods typically give information about the first-order statistics of neuronal 

connectivity, i.e. about the probability that defined cell types are connected to each other, and 

about the dependence of this probability on the distance between neurons. Higher-order 

topological motifs such as connected ensembles, however, are very difficult to identify using 

classical methods. The major challenge in understanding neuronal circuit function is therefore to 

obtain a detailed description of synaptic connections between most or all neurons in a circuit. 

Currently, this has not been achieved for any large neuronal circuit or ultimately for a complete 

nervous system with the exception of C. elegans, where connections were reconstructed from 

serial electron microscopic images through decades of manual labor (White et al., 1986).  

The main challenge of exhaustive connectivity measurements by imaging methods has been to 

maintain a resolution of a few tens of nanometers, which is required to trace fine neuronal 

processes and identify synapses, throughout large volumes of tissue. Progress towards this goal 

has recently been made by novel developments in electron microscopy (EM) (Briggman and 

Denk, 2006). Serial block face scanning electron microscopy (SBEM) uses a microtome inside the 

vacuum chamber of a scanning EM to acquire series of EM images from the block face of a sample 

while successively cutting ultrathin sections (<30 nm) (Denk and Horstmann, 2004, Denk et al., 

2012).This method is fully automated and can generate stacks of EM images from large blocks of 

tissue (hundreds of microns edge length).  

Alternatively, a focused ion beam can be used to mill sections off the surface of the block (FIB-

SBEM) (Knott et al., 2008). This method achieves higher resolution but is severely limited in 
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volume (tens of microns edge length). In a different strategy, serial sections are automatically 

cut, collected on tape, and transferred onto a silicon wafer. Subsequently, they may be imaged 

using an automated scanning EM. Unlike the block face methods, this approach allows for 

repeated imaging of the same sections but requires more elaborated image alignment to obtain 

3-D stacks and may be more prone to problems associated with the preservation of sections.  

Recent results have demonstrated that reconstructions of large circuits in the retina can be 

achieved by SBEM (Briggman et al., 2011). However sample charging in SBEM due to the electron 

beam on the sample can have severe effects such as improper cutting, reduced contrast and 

image distortions which limits the potential of SBEM (Mathieu, 1999; Denk and Horstmann, 2004; 

Titze and Denk, 2013). New methods which involve conductive embedding of the tissue samples 

reduce charging to great extend and therefore improve image quality and enable acquisition of 

large EM stacks (Wanner et. al, submitted).  

Another challenge towards acquiring and understanding neuronal wiring diagrams is the 

reconstruction of individual neurons and their synaptic connections present in the EM data stack. 

Because the tracing of neuronal processes and the annotation of synapses in EM data stacks is 

very time-consuming, the physical size is currently a factor that constrains circuit reconstruction 

(Helmstaedter et al., 2013; Kim et al., 2014). Obviously, accuracy is important because 

reconstruction errors can result in incorrect wiring diagrams. Advancements in the interactive 

tracing and synapse detection software tools have allowed tracing neurons manually with high 

accuracy (Helmstaedter et al., 2011, Seung et al., 2014).  

 

1.7 Zebrafish as a vertebrate model in systems neuroscience 

The analysis of neuronal circuit functions underlying sensory processing and higher brain 

functions can be facilitated by the use of a small model organism. One of the popular model 

organisms is the zebrafish, a relatively small freshwater teleost species that is commonly found 

in still or slow waters such as rice fields of India, Bangladesh and Myanmar (Engeszer et al., 2007; 
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Spence et al., 2008). In addition, zebrafish are inexpensive to maintain in a facility, easy to breed 

and have a high reproduction rate. 

The olfactory bulb of zebrafish is a particularly attractive circuit to study for multiple reasons. 

First, because since the OB is small (~400 um in diameter), neuronal population activity can be 

measured exhaustively with single cell resolution by using multiphoton calcium imaging (Denk et 

al., 1990). Moreover, activity can be manipulated with high spatial and temporal precision using 

optogenetic methods. Second, SBEM allows for (Denk et al., 2004; Denk et al., 2005) 

ultrastructural imaging of all layers of the OB. Third, computations in the OB have been studied 

extensively in adult zebrafish, providing a basis to relate neuronal circuit structure to function. 

Despite the smaller size of the OB, the developmental and organizational principles of the 

olfactory system in zebrafish are similar to those of other vertebrates (Wullimann and Mueller, 

2004, Ache and Young, 2005; Sato et al., 2007, Friedrich et al., 2010). 

 

1.8 Aim of the study  

Large SBEM stack 

The first goal of the project was to obtain a large high-resolution stack of EM images from the 

lateral part of the adult OB using SBEM. The stack should include both mitral cell and deep 

interneuron layers and the resolution should be sufficient to manually trace and reconstruct 

neurons and label individual synapses.  

Principal cells in adult OB 

To determine whether mitral cells receive direct input from ORNs, the second goal was to 

reconstruct individual mitral cells in the SBEM stack, map their synaptic inputs, and estimate the 

fraction of synaptic inputs from ORNs.  

Sparseness of granule cell activity patterns 

A third goal was to determine whether odor-evoked activity patterns across granule cells are 

extremely sparse in order to test the central prediction of the SIR model. It was expected that 
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the results provide a strong basis to compare the biological plausibility of the SIR model and the 

VBS model. 

Mapping reciprocal connectivity  

A fourth goal was to map reciprocal and other synapses onto the dendritic tree of mitral cells in 

3D. The results should allow for a direct quantification of the fraction of reciprocal synapses made 

by mitral cells, which is important to assess the biological plausibility of the SIR and VBS models. 

Moreover, as little quantitative information about the number and subcellular distribution of 

synapses is available for mitral cells and most other cell types, these results were expected to 

provide novel insights into the synaptic organization of OB circuits.  
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METHODS 

 

2.1 Zebrafish adult brain explant preparation 

All experimental protocols on zebrafish were approved by the veterinary department of the 

Canton Basel-Stadt (Switzerland). The experiments were carried out on 4-6 month old adult 

zebrafish (Danio rerio). The fish were kept at 25-28°C on a 13 hour light/11 hour dark cycle in 

the FMI zebrafish facility.  During experiments adult zebrafish were kept in the laboratory at 

25–30°C. For the 2-photon experiments the recordings were performed on an explant 

preparation of adult (3-6 months old) zebrafish comprising of the nose and the entire brain, 

with the olfactory bulb remaining intact (Friedrich and Laurent, 2001; Zhu et al., 2012). Before 

the start of the experiment zebrafish were anesthetized by slowly cooling them down in fish 

water to approximately 4 degree C. Animals were then transferred to ACSF (artificial 

cerebrospinal fluid, Mathieson and Maler, 1988) and the head was decapitated from the rest of 

the body in the cold. Eyes along with lower jaw and bones were carefully removed to expose 

the two olfactory bulbs. For injection of a calcium indicator dye, the dura covering the OB was 

carefully removed with blunt forceps. For electron microscopy experiments the dura was kept 

intact for better preservation of the tissue during EM staining. For 2-photon imaging, the 

sample was then transferred to a custom-made holding chamber in the 2-photon microscope. 

Throughout the experiment a continuous perfusion of ACSF maintained (flow rate 1-5 mL/min). 

ACSF was aerated with carbogen (O2: 95%, CO2: 5%).  

ACSF composition (Nacl = 124 mM, KCL = 2 mM, MgSO4 = 1.6 mM, Cacl2 = 2 mM, KH2PO4 = 
1.25 mM, NaHCO3 = 24 mM, Glucose = 22 mM). 

 

2.2 Two photon calcium imaging and odor stimulation 

In order to identify mitral cells in the olfactory bulb of adult zebrafish, a genetically modified 

line (HuC-YC) line was used that expresses the transgenic calcium indicator yellow cameleon 
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(YC) under the control of the HuC promoter (Miyawaki et al., 1997; Higashijima et al., 2003; Li et 

al., 2005). HuC drives panneuronal expression zebrafish larvae but more restricted expression in 

adults. In the adult OB, HuC drives expression selectively in mitral cells (Li et al., 2005). To label 

the bulbar neurons with a calcium indicator, a stock solution was made by dissolving 50 μg of 

Rhod-2-AM dye in 16 μl DMSO/Pluronic Acid F-127 (80/20). For each experiment 3 µl of the 

stock were diluted in a ratio 1:10 in oxygenized ACSF and 5 μl of the diluted dye solution were 

loaded into a customized glass injection pipette. The amino acid responsive, ventrolateral 

region (Yaksi et al., 2009) of the OB was located under the microscope using a position sensitive 

detector (PSD) that makes use of the transmitted light. Next, the injection pipette was brought 

close to this region. The first injection was done approximately 100 μm under the ventral 

surface of OB. 2-3 injections were then made in each plane and repeated in 3-4 planes to make 

sure the dye is homogeneously distributed throughout deep layers of the OB. 

Amino acid odors (10-5 M; ≥99.0% purity; Fluka, Neu-Ulm, Germany) were applied to the 

ipsilateral naris via a constant flow (Fig. 7). High-resolution two photon imaging of HuC-YC 

expression was carried out using a multiphoton microscope custom-built on an Olympus BX-51 

body (Bundschuh et al., 2012). The microscope and related equipment were controlled by 

ScanImage and Ephus software (Pologruto et al., 2003; Suter et al., 2010).  

Fluorophores were excited by two-photon excitation at 860 nm. Rhod-2 and YC signals were 

detected simultaneously through two channels separated by emission filters. The raw 

fluorescence values for acquired image series were converted pixel-wise into ΔF/F values and 

further analyzed. Regions corresponding to mitral cell and granule cell somata were marked 

manually based on the raw YC and Rhod-2 fluorescence images. Mean response amplitudes 

were calculated for the same time windows as the odor response maps. 
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Fig. 7: Two-photon calcium imaging and odor stimulation. 

Whole brain explant of zebrafish adult brain shown in the illustration. Olfactory bulb was injected with a calcium 
sensitive dye and odors were applied to the nose. The odor-evoked activity was measured using two-photon 
microscope. Drawing of brain is from Wullimann et al. (1996). 

 

2.3 Staining tissue for electron microscopy 

After brain explant preparation as described above, the entire adult zebrafish brain was 

removed from the head bones to further proceed to the EM staining procedure. Batches of five 

fish brains were stained in parallel. A total of 35 fish brains were stained with this procedure. All 

the 35 samples were carefully trimmed and imaged in serial block face EM to test the quality of 

the tissue. The best of the samples after staining and imaging were selected on the basis of 

tissue quality, hardness of the silver block, extent to which staining components have 

penetrated the tissue (by carefully analyzing acquired EM images from each sample) and the 

extent of damage to the sample which might have occurred during dissection or trimming of 

the sample. The step-by-step staining procedure is described below. 

SBEM protocol with ROTO and en-bloc Walton's lead aspartate staining; 

 

No. Steps in the protocol Time  Total time 

1. Dissection: 
Dissect adult zebrafish to expose entire brain by removing head 
bones under constant perfusion of ACSF. 

15 minutes 15 minutes 
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2. Fixation: 
Immerse in 2% paraformaldehyde, 1% glutaraldehyde and 0.15M 
cacodylate buffer with 2mM calcium chloride, check pH 7.4. 1h at 
room temp. One hour on ice. 

2 hours 2 hours and 15 
minutes 

3.  Washing: 
Wash 5 x 3min in cold 0.15 M cacodylate buffer with 2 mM 
calcium chloride. 

15 minutes 2 hours and 30 
minutes 

4. Post-fixation: 
Immerse in freshly prepared 3% K4[Fe(CN)6] 0.3 M ice-cold 
cacodylate buffer with 4 mM calcium chloride and 4% aqueous 
OsO4.On ice. 

1 hour 3 hours and 30 
minutes 

5. Washing: 
Wash with bidest H2O 5 x 3min at room temperature. 

15 minutes 3 hours and 45 
minutes 

6. Filter TCH solution through a 0.22 µm Millipore syringe filter and 
immerse sample in filtered solution at room temperature. 

30 minutes 4 hours and 15 
minutes 

7. Washing: 
Rinse 5 x 3min in bidest dH2O at room temperature. 

15 minutes 4 hours and 30 
minutes 

8. Post fixation: 
Fix in 2% OsO4 in bidest dH2O at room temperature. 

45 minutes 5 hours and 15 
minutes 

9. Washing: 
Wash 5 x 3min with bidest dH2O at room temperature. 

15 minutes 5 hours 30 
minutes 

10. Place in 1% uranyl acetate in bidest dH2O Overnight Overnight 
11.  Washing: 

Wash sample 5 x 3min with bdH2O. Put in a 60°C oven for 30min. 
45 minutes 45 minutes 

12. Immerse in freshly prepared lead aspartate solution in a 60°C 
oven.  
(Walton's lead aspartate preparation: 10ml bdH2O at 60°C, 0.040g 
aspartic acid, 0.066g lead nitrate. Adjust pH to 5.5 (at 60°C) with 
1M NaOH (~335ul). Place solution in a 60°C oven for 30min). 

1 hour 1 hour 45 
minutes 

13.  Washing: 
Wash sample 5 x 3min with bidest dH2O at room temperature. 

15 minutes 2 hours 

14. Dehydrate in EtOH 6 x 5min (20%, 50%, 70%, 90%, 100%, and 
100%). At room temperature. 

30 minutes 2 hours and 30 
minutes 

15. Immerse samples in 50% Epon 50% EtOH. 
(Epon resin preparation: 9.25ml Glycid ether (11.1g), 
6.25ml DDSA (6.19g), 5ml MNA (6.25g), mix very well 
0.325ml BDMA. Mix & degas). 

30 minutes 3 hours 

16. Immerse samples in 100% Epon 1 hour 4 hours 

17.  Embed samples in Silver Conductive Resin 4 hours 8 hours 

18. Place embedded samples in 60°C oven 48 hours 56 hours 
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2.4 Tissue preparation for serial block face electron microscopy 

Samples embedded in standard Epon are usually non-conductive and scanning them in EM 

leads to surface charging which could lead to adverse effects such as image distortions and 

improper cutting. In order to avoid these problems, we embedded the samples in conductive 

resin. The last step of the staining protocol (No. 17 above in protocol) is crucial. It must be 

ensured that the silver conductive resin is evenly distributed over the fish brain and that there 

are no air bubbles between the surface of the brain and the silver resin surrounding it. This is 

facilitated by first mixing the two component epoxy glue (Epo-Tek EE129-4) with silver particles 

in ratio of (A:B, 1.25:1) and then dipping the brain in the mixed resin multiple times, ensuring 

that all brain areas of interest are in direct contact with the conductive resin. The final sample 

obtained is a hard conductive opaque silver block, which needs to be further processed before 

it can be imaged.  

First, the block has to be trimmed from all sides to remove unnecessary extra silver resin and 

also to remove the brain regions that are not of interest. It is desired to obtain a sample that is 

as small as possible. The block at the final stages therefore contained only the olfactory bulbs. 

The trimming of the sample involves multiple steps as described below (Fig. 8).  

Step 1. Manual trimming of the sample was avoided as it might cause damage to the sample. 

Instead, freshly prepared glass knives with sharp edges were used in a microtome that can cut 

as thin as 0.5 µm. The silver block was labeled according to the position of the embedded brain 

inside. Trimming of the silver block then started from the caudal end. 

Step 2. After loading the sample into the microtome, the caudal end was brought close to the 

edge of the knife. Positioning was controlled through the eyepiece of the attached microscope. 

Initially, thicker sections (5-10 microns) were cut. The glass knife was replaced after 20-30 steps 

to avoid rough and uneven cuts.  

Step 3. Trimming started from the hindbrain and proceeded along the mid brain towards the 

telencephalon. As the olfactory bulbs were approached, step size was decreased to (1-2 µm)  
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Fig. 8: Embedding and resizing of the sample. 

(A) Embedding of the adult brain in silver conductive resin. The brain was positioned ventral side up. (B) Trimming 
was performed using a microtome with a sharp glass knives and proceeded from the caudal end of the brain. (C) 
After the trimming of the sample all the sides should have clean surfaces and should be shaped like a pyramid.  
(Source;http://www.zeiss.com/microscopy/en_de/products/scanning-electron-microscopes/merlin-life-science). 
 

and the knife was changed more frequently. Trimming stopped after all of the telencephalon 

was cut. 

Step 4. The block was trimmed on all six sides to remove extra silver resin, resulting in a 

pyramid-shaped sample block that contained only the two olfactory bulbs. Care was taken not 

to cut into any region of the OB. At the end all the trimmed sides should have clean surfaces 

and should be parallel. The sample should look pyramid shaped as shown below (Fig. 8).  

 
 

2.5 Serial block face 3D electron microscope 

Brain samples were imaged using an SEM. Two SEMs were used: an FEI QuantaFEG 200 or a 

Zeiss Merlin electron with a Gemini II column. The FEI QuantaFEG 200 is a variable-pressure 

microscope that can be operated either under standard high vacuum conditions, or with an 

adjustable low water pressure inside the vacuum chamber (low vacuum mode). In low vacuum, 

Embedded brain sample Sample holder 
In microtome  
  

Sample 
Glass knife 

B 
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charging of samples is reduced because the incoming electron beam ionizes water molecules 

which then remove charges from the sample surface as they are pumped out of the vacuum 

chamber. However, low vacuum conditions also degrade image contrast and beam focus by 

scattering of electrons.  

The Zeiss Merlin can only be operated in high vacuum and therefore requires highly conductive 

samples. The Zeiss Merlin provided two important advantages: first, it contains technology that 

allows for very sharp focusing of the electron beam at very low landing energies (<2 keV). As 

such low landing energies are important for SBEM, this technology increases the effective 

resolution. Second, the Zeiss Merlin allowed for the acquisition of image data at 10 times higher 

speed (sampling rate: 2 MHz) than the FEI QuantaFEG 200 (sampling rate: 200 kHz). 

Both microscopes were equipped in the vacuum chamber with an automated microtome 

(3View, Gatan) that cuts sections with a diamond knife (Diatome) (Denk and Horstmann., 2004). 

The microtome was controlled by the software package DigitalMicrograph® (Gatan; Fig. 9). Data 

acquisition was carried out using a data acquisition system that was also controlled by 

DigitalMicrograph® (Gatan). Backscattered electrons were detected by a silicon diode detector. 

The signal was amplified by a preamplifier and further amplified by a main amplifier (Gatan). 

Prior to a long acquisition, short series of images were acquired to ensure that thin sections 

could be obtained consistently (≤30 nm). In order stabilize the conditions in the recording 

chamber the sample was kept in the vacuum chamber overnight before starting a long- 

acquisition. To cover a large area, tiling was performed, which was controlled by 

DigitalMicrograph®. The overlap between adjacent tiles was approximately 10%. 
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Fig. 9: Operation of the automated microtome in the vacuum chamber.  

(1) The sample is moved up by a distance equal to the cutting thickness (usually 25 nm). (2) A section is removed 
from the sample surface by the automated microtome. (3) The knife proceeds beyond the sample to remove 
debris from the surface. (4) The block face is scanned by the electron beam to record an image.  
(Source;http://www.zeiss.com/microscopy/en_de/products/scanning-electron-microscopes/merlin-life-science). 

2.6 Image processing  

Stacks of raw 16 bit images were processed, registered and stitched using custom software 

tools in MATLAB written by Adrian Wanner that allowed for parallel batch processing of large 

datasets. For image registration, translational offsets between neighboring image tiles were 

calculated using an optimized reduced normalized cross-correlation procedure. The offsets 

were used to optimize the tile positions in a global total least square displacement sense. Image 

contrast was normalized by fitting a Gaussian distribution to the pixel intensity histogram and 

thresholding at 1.5 – 3 standard deviations around the peak of the Gaussian distribution to 

convert the images to 8 bit. After stitching, each section was inspected to identify artifacts that 

may have been caused by software errors or debris. The large stack consisted of 3918 sections, 

each with 40 tiles. In a total of >150,000 tiles, 70 corrupted tiles were identified and replaced by 

tiles from adjacent sections. Finally, image stacks were divided into cubes of 128 x 128 x 128 

voxels for dynamic data loading in KNOSSOS or PyKNOSSOS.  
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2.7 Neuronal skeleton tracing and synapse detection 

Tracing of neurites and synapse detection were performed using the freely available software 

package KNOSSOS (Helmstaedter et al., 2011) or PyKNOSSOS, a novel software package with 

extended functionality written in PYTHON (Wanner et. al., submitted). Both programs 

PyKNOSSOS dynamically access small data cubes during user actions. This dynamic data loading 

strategy enables instantaneous seamless browsing and, in PyKNOSSOS, multi-scale zooming. In 

tracing mode, users can assign nodes and connections between nodes (edges) to define a 

skeleton representing the morphology of a neuron. Four different viewports are provided which 

allow the data to be seen in XY, YZ, XZ and orthogonal view and help in better visualization of 

the data (fig. 10). The reconstructed skeleton of the neurons can be further visualized in full 3D, 

as lines, points or tubes. Synapse detection was performed using PyKNOSSOS, which allows 

users to define synapses by two mouse clicks. Synapses were divided into four different 

categories and were given confidence levels ranging from 0 to 100% (Fig. 10). The previously 

traced skeleton of an individual neuron was navigated a second time for identification and 

labeling of individual synapses. An automated procedure was used to guide the user along all 

branches of the skeleton. Different synapse categories could be assigned different colors for 

ease of visualization. A synapse was defined by clicking on the synaptic cleft and then clicking 

again inside the partner neuron. At each click, a node was deposited, and the node on the 

synaptic cleft was automatically connected to the nearest node in the skeleton. Synapses were 

identified visually by vesicle clusters making contact with the plasma membrane. 
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Fig. 10: PyKNOSSOS. 

Overview of PyKnossos. There are four viewports for data visualization: XY, YZ, XZ and orthogonal viewports. The 
skeleton viewport allows to visualize reconstructed neurons. Synapse detection mode: four synapse classes 
(Inbound, Outbound, Reciprocal and Sensory) were predefined. Each synapse was assigned to one of these classes 
and scored with a confidence level (certainty; green box). 
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RESULTS 

 

3.1 Measuring granule cell sparseness in OB by two-photon imaging.  

To determine whether odors evoke sparse activity in the population of granule cells, odor-evoked 

calcium signals were measured in an explant preparation of the adult zebrafish brain with intact 

nose (Zhu et al., 2012). Neurons in the olfactory bulb were loaded with rhod-2-AM, a red 

fluorescent calcium indicator, by bolus injection (n = 4 fish) (Brustein and Marandi, 2003; Stosiek 

and Garaschuk, 2003; Yaksi and Friedrich, 2006) and changes in rhod-2-AM fluorescence were 

measured by two- photon microscopy (Denk and Strickler, 1990). Wide range of odors like food 

odor and different amino acids were used to measure responses in granule cells (10-5 M; Fig. 11). 

Amino acids are natural odors for zebrafish with response thresholds in the nanomolar range and 

maximal concentrations within food sources in the millimolar range (Carr, 1988; Michel and 

Lubomudrov, 1995). HuC-YC, which is a yellow fluorescent transgenic marker, was used to 

identify mitral cells during imaging (Masino et al., 2003; Li and Mack, 2005).  

 

 

 

 
 
 
 
                                                                                                                                                      
                                                                                                                                                     
 
 
 
 
Fig. 11: Granule cell responses to odors. 

Two-photon calcium imaging of neuronal odor responses in the granule cell layer. Each odor was applied twice in 
pseudo-random order and responses to the same odors were averaged. Concentration of amino acids was 10-5 M. 
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Density of granule cells responses 

Two-photon calcium imaging showed that many neurons in the granule cell layer responded to 

odors (n = 4 fish). In order to quantify the density of responses in the granule cell layer we marked 

individual somata in the granule cell layer by regions of interest (ROIs) on the raw florescence 

images (Fig. 12). Relative changes in fluorescence intensity (dF/F) after odor stimulation were 

measured in all ROIs and plotted together for each fish.  The results show that many granule cell 

responded to odor stimulation. 

The density of granule cell responses was further analyzed by determining the fraction of cells 

that responded with dF/F > 20%, which is a conservative threshold. 62% of cells in the granule 

cell layer showed responses with dF/F > 20%. In addition, we determined the population 

sparseness (Vinie and Gallant, 2000), a measure that varies between 0 and 1. A population 

sparseness of zero indicates that all of the given cells are responding equally to different odors, 

while a population sparseness of 1 means that only one cell responds to each stimulus. We found 

the population sparseness to be 0.48. Together, these results show that odor responses in the 

granule cell layer are not sparse, contrary to the prediction of the “SIR” (Sparse incomplete 

representation) model (Koulakov and Rinberg, 2011). 
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Fig. 12: Responses and density of granule cells. 

(A) Raw florescence image showing neuronal somata in the  
adult OB after injection of Rhod-2-AM. Mitral cell (MC) and  
granule cell (GC) layer are indicated. (B) Calcium signals  
evoked by olfactory stimulation with food odor in the same  
field of view as in A. Many cells in the granule cell region  
show responses to food odor. (C) Responses of 151 cells  
in the granule cell layer plotted together in descending  
order of response magnitude. (D) Distribution of response  
intensities evoked by odors (Food odor). Red line at 20% dF/F  
depicts a conservative threshold to define a positive odor  
response. 62% of cells responded with dF/F > 20% dF/F.  
(E) Pooled data from 4 fish (n = 771 cells from 4 fish), sorted  
by descending response amplitudes. Majority of cells are  
responding. 
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3.2 A small scale study to explore SBEM methods 

In order to test the imaging, staining and embedding methods for SBEM we acquired a small stack 

of EM images from the glomerular region of the OB using an FEI Quanta FEG-200 microscope. 

The QuantaFEG 200 offers options for low or high vacuum with an automated ultramicrotome 

inside the vacuum chamber. The adult zebrafish brain tissue was initially fixed, stained using the 

ROTO – Walton (reduced OsO4 (osmium) – thio carbohydrazide – OsO4) method with lead 

aspartate to contrast membranes (Tapia et al., 2012) and then embedded in epon resin. Various 

changes were made to the original protocol (Tapia et al., 2012, see Methods 2.3) to optimize 

penetration of reagents into the tissue. In particular, the incubation times of many steps were 

increased. A total of 35 samples were processed to select the best samples for further analysis. 

Criteria for sample selection were tissue stability, block strength, homogeneity of staining, 

orientation of sample in the block and the preservation of morphology inside the OB. Earlier 

samples (n = 22) that were embedded in epon without silver particles displayed signs of charging 

and image distortions as well as improper cutting of the tissue by automated knife during 

imaging. These issues were completely alleviated in samples embedded in resin containing silver 

particles. 

A stack was obtained from the anterior region of the olfactory bulb in a sample embedded in 

silver-containing resin (Fig. 13). The field of view was 35 x 70 µm. The area of the stack was 

selected to contain glomerular neuropil. The stack was obtained over a period of one week during 

which the microscope was constantly imaging. Each image plane consisted of 2 tiles with 4096 x 

4096 pixels and overlap of 10% between the tiles. A total of 1000 sections were obtained with 

slice thickness of 30 nm each, resulting in a volume of 35 x 70 x 30 μm3 per section with a 

resolution desired for neuronal circuit reconstruction (11.3 x 11.3 nm2). 

To understand and visualize the general architecture of neurons in this stack it was essential to 

trace individual neurons. All the somata (n = 62) in the stack were identified and all the branches 

arising from these somata were traced using PyKnossos (Wanner et al., submitted). The total 

tracing length of all the neurons was 7.3 mm. Many of the 62 neurons had processes which did 

not branch profusely (Fig. 14). Synapses identification did not reveal synaptic connections 
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between the traced neurons although they do have synapses with other unknown neurons. The 

average soma size was 6.5 ± 0.77 microns (mean ± S.D.), which is smaller than the reported sizes 

of mitral cells (Pinching and Powell, 1971). These observations indicate that most or all of the 62 

neurons were interneurons, presumably periglomerular and short-axon cells.  

                                                                                                         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13: Overview of the adult OB (left OB). 

Low-magnification overview of an OB sample. Black objects in the resin outside the OB are silver particles. The red 
area indicates the ventro-lateral area from where the stack was imaged. The dura mater was left intact. Dark profiles 
inside the OB are olfactory nerve bundles coming from the nose. Light regions are the somata and neuropil of OB.  
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In conclusion, the stack helped us to optimize the staining protocol, helped resolving technical 

issues during long acquisitions, and helped in choosing the best dimensions for the larger stack. 

The results demonstrated that a considerably larger volume was required to completely 

reconstruct mitral cells and determine the complete distribution of synapses on the dendrites of 

mitral cells. Ideally, the data should extend through both mitral and granule cells layers. To 

achieve this, we used another electron microscope (Zeiss Merlin) that can be operated only using 

high vacuum. It maintains a sharply focused beam and provides a large range of beam currents 

in the regime of very low EL (<2 keV). This electron microscope allowed for faster data acquisition 

and also provided higher resolution for identification of synapses.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14: Neuron reconstruction. 

A total of 62 somata and branches of all these somata were reconstructed. Background shows the original EM data 
(stack covering a volume of 35 x 70 x 30 μm3; 1000 sections). Large structures represent somata; lines represent 
traced neurites. Different colors are given randomly to different neurons.  
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3.3 Large scale detailed SBEM imaging of adult olfactory bulb 

In order to understand the detailed connectivity in the adult zebrafish olfactory bulb it is 

important to have a large dataset which encompasses both glomerular/mitral cell layer and 

interneuron layer (Fig. 15). To cover such a large volume we used an ultra-fast, high resolution, 

Zeiss Merlin electron microscope with a Gemini column with an automated microtome inside the 

vacuum chamber. This microscope can be operated only in high vacuum and maintains a highly 

coherent beam and provides a large range of beam currents in the regime of very low EL (<2 keV). 

The resolution and signal to noise ratio of the microscope are significantly higher.  The speed of 

acquisition using Zeiss Merlin was 2 MHz. In the previous stack using Quanta microscope (Results 

3.2) the speed of acquisition was 200 - 250 kHz. 
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Fig. 15: Large stack from olfactory bulb: overview. 

(A) EM overview of the OB. (B) The rectangular area shows area of the recorded stack. Glomerular/mitral cell and 
granule cell layers are present in the imaged area. Silver resin (detail in methods 2.4) is touching the OB. (C) 
Volume of the acquired stack. The total volume of the imaged stack is 18% of the entire OB. 
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To image planes of a sufficiently large area, 40 tiles were combined into a large composite image 

in each plane with an overlap of 10%. Overlapping areas were exposed multiple times to the 

electron beam but this did not reduce the image quality. We initially choose tiles of 8192 x 8192 

pixels but this caused mild edge distortions. We therefore reduced tile size to 4096 x 4096 pixels 

(Fig. 16). The complete stack was 288 x 173 x 98 μm3 in volume. The total number of sections in 

the stack was 3918 with slice thickness of 25 nm. Voxel size in lateral directions was 9 x 9 nm2. 

This resolution was clearly sufficient to visually detect individual vesicles and label synapses. 

Landing energy was kept constant at 1.5 keV. The beam current initially used was 440 pA but was 

reduced to 412 pA after 1800 slices. Reduction in beam current had no effect on the quality of 

imaging and acquisition. 

   A                                                                                                                   B 
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Fig. 16: Edge distortions.  

(A) A total of 40 tiles with 4096 x 4096 pixels each were acquired with an overlap of 10% in each image plane. (B) 
Using 8096 x 8096 windows caused edge distortions (see area marked by green outline). (C) Overlap between 
adjacent 4096 x 4096 tiles did not affect image quality and synapse identification. 
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The total time to image the stack was 32 days including overhead. The total data size was 6.4 TB 

unstitched at 16 bit/voxel and final size was 2.2 TB stitched at 8 bit/voxel. The total volume of 

the imaged stack covered ∼18% of the entire OB (Fig. 15). After acquisition was complete and 

tiles were stitched in each plane, each of the 3918 sections was manually checked multiple times 

to detect any distortions, residual debris or other artifacts. 70 sections were either completely 

removed or corrupted tiles were replaced by tiles in preceding or following sections. The stack 

was then divided into small cubes of 128 x 128 x 128 voxels so that it could be dynamically loaded 

in PyKNOSSOS for further analysis (explained in methods 2.6). 

We observe non-uniform extracellular space in the acquired data stack (Fig. 17). Extracellular 

space is abundantly present in the glomerular layer and the plexiform layer of the olfactory bulb. 

In the deeper layers of the olfactory bulb, there is less extracellular space. We did not find 

extracellular space in all the different samples we imaged. It is most likely an artifact which was 

caused during the staining of the tissue (Briggman et al., 2015). 

 

           
                                                                                 
 

Fig. 17: Extracellular space. 

In the GL and parts of the PL, but not in the GCL, considerable amount of extracellular space are visible. Extracellular 
space is shown in blue, manually labelled using Fiji. 
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3.4 Detailed analysis from the adult olfactory bulb SBEM dataset 

3.4.1 Number of neurons in the dataset 

In order to estimate the total number of neurons in the stack and their distribution we first 

labeled all somata using KNOSSOS (Helmstaedter et al., 2011). The total number of somata 

detected was 4892 (Fig. 18). The total number of mitral cells and interneurons in an adult OB has 

been estimated to be 1500 MCs and ~23,000 interneurons (Wiechert et al., 2010; Zhu et al., 

2013). The number of detected somata in the stack is therefore consistent with the number 

expected for 18% of the OB volume.  

In addition, we detected dark objects by thresholding gray levels. These are likely to mainly 

comprise mainly of blood vessels and sensory axons. Based on the distribution of somata and 

neuropil we distinguished three different layers in the OB: the superficial glomerular layer (GL), 

an underlying plexiform layer (PL), and the deep granule cell layer (GCL) (Fig. 18, 19).  

Previous studies showed that the GL contains somata of two types of output neurons, mitral cells 

and ruffed cells and also has subpopulations of interneurons (Byrd et al., 2005; Fuller et al., 2006, 

Braubach et al., 2012; Zhu et al., 2013).  The GL also contains abundant sensory axons that are 

stained darkly and have large axon terminals (Fig. 20 A). The neuropil in the PL mainly consists of 

dendrites of mitral cells and different types of interneurons. Somata are rare in this layer (Fig. 20 

B). GCL are assumed to be dominated by granule cells but is likely to also contain other, rarer cell 

types such as deep short axon cells (Michel et al., 2002). Somata in the GCL appeared relatively 

homogeneous in their size and appearance, supporting the assumption that most of them are 

granule cells (Fig. 20).               
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Fig. 18: Somata in the large stack. 

(A) Distribution of somata (n = 4892) in the stack. Somata in different layers are labeled by different colors (red, 
green, blue). Dark objects, which are mainly sensory neurons and blood vessels, were identified by thresholding and 
are shown in yellow. (B) Number of somata detected in each layer. (C) Average somata diameter (µm) of 10 cells in 
the GL and 10 cells in the GCL. The mean soma diameter is not statistically different (p = 0.16) (student’s t test). 
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Fig. 19: Layers in the olfactory bulb. 

(A) Section through the OB. Layers are indicated. (B) Inset images show re-slices at higher magnification. 
Resolution is clearly sufficient to identify synapses.  
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Glomerular layer 

 

              

 

Fig. 20 A: GL layer. 

The GL contains extensive neuropil including many sensory axons that are stained darkly and have large terminals. 
Somata are rare. 
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Plexiform layer 

 

          

 

Fig. 20 B: PL layer.       

The PL contains a high neuropil fraction but sensory axons are absent, indicating that neurites are contributed mainly 
by mitral cells, interneurons, and possibly centrifugal inputs. The density of somata is low.   
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Granule cell layer 

 

                   

 

Fig 20 C. GC layer. 

The GCL contains a high density of somata that are homogeneous in appearance and relatively small. Most of these 
somata are likely to be granule cells. 
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3.4.2 Glomerular structures 

The zebrafish glomerular layer contains approximately 140 distinct glomeruli and a region 

containing additional, small glomerular structures that have not been delineated precisely 

(Braubach et al., 2012). Based on light microscopic studies, glomerular structures in adult 

zebrafish OB have been categorized and classified into different groups (Braubach et al., 2012). 

The size and number of glomeruli varies between regions of the OB (Braubach et al., 2012). The 

ventro-lateral region covered by our stack contains primarily small, densely packed glomerular 

structures that have not been analyzed in detail by light microscopy (Braubach et al., 2012). We 

term these structures “microglomeruli”. It is currently unknown whether individual 

microglomeruli are innervated by distinct subsets of ORN axons, indicating that they are 

independent functional units, or whether different microglomeruli are innervated by overlapping 

sets of ORN axons, indicating that they are subunits of a larger functional structure. 

As the OB volume in our stack contained many microglomeruli we analyzed their anatomical 

organization in more detail. As in light microscopic studies (Braubach et al., 2012), microglomeruli 

were defined based on the organization of sensory axons and outlined manually. An aggregation 

of sensory axons was considered a microglomerulus if it was roughly spheroidal and connected 

to the olfactory nerve by a distinct stalk. The size and shape of microglomeruli varied substantially 

(Fig. 21).   

In order to analyze the innervation pattern of microglomeruli we traced sensory axons which 

were identified by their dark cytoplasmic staining (Pinching and Powell., 1971). Outside 

glomeruli, sensory axons are usually organized in bundles. These bundles extend as a large group 

over long distances. Large bundles consist of several hundred axons and divide into successively 

smaller bundles before innervating a glomerulus (Fig. 22 A). Near a glomerulus, or within 

glomeruli, bundles separate into individual axons before axons make synapses onto postsynaptic 

cells. 
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Fig. 21: Microglomeruli in the adult OB.  

Outlined microglomeruli seen in the OB. The structures can be seen consistently in the GL layer. Here these 
microglomeruli structures have been manually outlined in red. 
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Individual sensory neurons were traced by two approaches using PyKNOSSOS (Wanner et al., 

submitted):  

First, sensory neuron tracing started from a synapse with a mitral cell that was reconstructed 

previously (Fig. 22 B) (see section 3.5 for MC reconstruction). The sensory neuron was then traced 

until it joined a large axon bundle. Second, sensory axons were selected randomly within a large 

axon bundle and traced into microglomeruli (Fig. 22 B). Using the two tracing approaches 

mentioned above we traced 30 sensory neurons. It was observed that sensory axons do not make 

branches in large bundles. Rather, individual sensory axons left large bundles as a whole. After 

leaving a bundle, axons did not project over long distances before innervating a microglomerulus. 

Branches were sparse, short and occurred near or within microglomeruli. These observations 

suggest that individual sensory axons innervate only one or at most a few neighboring 

microglomeruli.  
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Fig. 22: Sensory axon bundles. 

(A) First image shows large axon bundle (blue outline) consisting of several hundred sensory axons. Further, small 
bundles detach from the large axon bundle (white arrows, second and third image). After completely getting 
detached (yellow outlines, fourth image) these smaller bundles consist of fewer sensory axons (117 individual axons 
labelled in red, fifth image). (B) Sensory neuron tracing started from a typical synapses between olfactory receptor 
neuron and a mitral cell. A thick vesicle cluster at the site of synapse (white arrow). (C) A random axon was selected 
from an axon bundle (green) and traced till it enters a microglomeruli. (D) Same olfactory receptor neuron makes 
two synapses (white arrow) with the same post synaptic mitral cell in close proximity.  
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In order to annotate synapses of sensory axons, we followed all traced branches and identified 

locations where clusters of vesicles were present and touched the neuronal membrane. On 

average, we detected 15.2 ± 3.9 synapses per sensory axon (mean ± S.D.; n = 30 axons).The 

average number of synapses per sensory axon is consistent with data from higher vertebrates 

(Greer et al., 1993). Moreover, we observed that synapses were usually large, containing a large 

number of synaptic vesicles. 

As described below (section 3.5), five mitral cells were fully reconstructed. Three of these mitral 

cells were located in the same region as the reconstructed sensory axons. I determined the 

number of synapses that each sensory axon made with one of these mitral cells. The number 

ranged between 0 and 5, with a mean of 1.9 ± 1.4 synapses per mitral cell (mean ± S.D.; n = 30 

axons). Hence, sensory axons contacts the same mitral cell usually multiple times (Fig. 22 D). 

Moreover, each sensory axon targets multiple neurons. The identity of other post synaptic 

neurons which synapses with a sensory neuron is unknown. It has been reported that sub types 

of periglomerular cells present in the GL layer receive direct inputs from sensory neurons (Kosaka 

et al., 2005). Physiological studies have suggested that ET present in the glomerular layer also 

receive direct synaptic inputs from sensory neurons (Shipley et al., 2004). 

 

3.5 Reconstruction of mitral cells in olfactory bulb 

Two strategies were used to reconstruct mitral cells. First, processes postsynaptic to ORN axons 

were traced because mitral cells have been proposed to receive direct synaptic input from ORNs. 

However, synaptic input from ORNs is not a diagnostic feature of mitral cells because ORN axons 

also make synapses with interneurons. Moreover, recent studies suggested that mitral cells do 

not receive direct synaptic input from ORNs, although this view is debated (Shipley et al., 2004, 

Schoppa et al., 2012). The second strategy was to start tracing from somata near glomeruli. 

Because mitral cells cannot be identified based on somata alone, the identity of the cell cannot 

be predicted before the reconstruction. Both strategies therefore yielded reconstructions of 

mitral cells and interneurons. The identity of mitral cells was then established based on the 

presence of a myelinated axon, which does not occur in interneurons (Fig. 23). 
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We reconstructed 14 cells in total. Out of these, five cells had myelinated axons and were 

therefore classified as mitral cells. All five mitral cells had dense dendritic tufts innervating one 

or a few microglomeruli. This is consistent with previous descriptions of zebrafish mitral cells 

from light microscopy data (Byrd et al., 2006). Other neurons had small or no dendritic tuft and 

appeared to be axon-less which is consistent with light microscopic descriptions of interneurons, 

particularly short axon cells, in the zebrafish OB (Zhu et al., 2013). 

The five mitral cells were analyzed further and had a total neurite length of 11.98 mm. Somata 

were large (7-8 microns) and myelinated axons travelled together in fascicles of 4-8 axons over 

long distances (Fig. 23). The somata of three mitral cells were adjacent to each other.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 23: Reconstruction of a mitral cell.   
 
(A) Complete reconstruction of a mitral cell. A dense dendritic tuft, a soma (7.86 µm) and a myelinated axon can be 
seen. (B) Images show raw data along the axon with the traced skeleton. The first image shows the starting point 
(arrow) of myelination, which is apparent as a thick black layer around the axonal profile. The second image shows 
an axon completely myelinated. A fascicle containing five myelinated axons is seen in the last image. 
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Moreover, their dendrites innervated the same microglomeruli and their axons traveled in the 

same fascicle (Fig. 24). We therefore refer to these mitral cells as sister mitral cells. Somata of 

the other two MCs resided in a different location and innervated other glomeruli. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 24: Group of sister mitral cells.  

Reconstruction of three sister mitral cells. All three cells have compact dendritic tufts innervating the same 
microglomeruli. All three have similar soma size, MC 1 (7.16 µm) MC 2 (7.42 µm) MC 3 (7.86 µm) and myelinated 
axons in the same fascicle. 
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The identity of the nine cells that were not classified as mitral cells is unknown. Although not all 

of these neurons have been completely traced, it is obvious that these cells had neuronal 

morphologies. Moreover, none of them had a dense dendritic tuft, their somata were smaller 

than those of mitral cells, and no myelinated axons were detected, indicating that they were 

interneurons (Fig. 25).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 25: Presumptive interneurons. 

Incompletely reconstructed neurons that were not classified as mitral cells.  
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3.6 Synapse identification and labelling 

An important aim of this study was to identify and label all the synapses of 

reconstructed mitral cells. Synapse labelling was done using PyKnossos (Wanner et al., 

submitted). In order to annotate synapses we followed all previously traced branches 

of mitral cells, identified locations where many vesicles were present, and searched 

for vesicle clusters touching the neuronal membrane. Sites that fulfilled these criteria 

were defined as synapses. The different synapses classes are described in detail 

below. Synapses were divided into four different classes: 

Sensory synapses: 

These synapses occur between ORN and dendritic branches of mitral cells (Fig. 26 A). 

Sensory axons could be identified because their cytoplasm is darkly stained (Pinching 

and Powell., 1971). Sensory synapses were usually large and contained many synaptic 

vesicles. 

Inbound synapses: 

A non-sensory synapse for which a mitral cell was postsynaptic is classified as an 

inbound synapse (Fig. 26 B). Most inbound synapses are assumed to be made by 

GABAergic interneurons.  

Outbound synapses: 

A synapse for which a mitral cell is presynaptic was classified as an outbound synapse 

(Fig. 26 C). As mitral cells are glutamatergic, outbound synapses are assumed to be 

excitatory.  

Reciprocal synapses: 

A pair of inbound and outbound synapses was classified as a reciprocal synapse when 

the synapses were between the same neurons and within a short distance from each 

other (<1 µm) (Fig. 26 D). Reciprocal synapses are known to occur between dendrites 

of mitral cells and interneurons (granule cell, periglomerular cell) in the OB. Reciprocal 

synapses are difficult to identify in single EM images because the two synapses are 

often not in the same image plane. In the 3D dataset, in contrast, reciprocal synaptic 

contacts are straightforward to detect. 
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Fig. 26: Four synapses classes. 

(A) A sensory synapse between an OSN and a mitral cell dendrite (blue). (B) An inbound synapse 
between an unknown neuron and a mitral cell (red). (C) An outbound synapse between a mitral cell 
and an unknown neuron (green). (D) A reciprocal synapse shown between a mitral cell and an unknown 
interneuron (yellow). Vesicle densities can be seen on both sides.  
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Synapse distribution (Mitral cell 1479) 
 
Detailed synapse labelling and distribution is described below for three mitral cells 

(MC 1479, MC 1477, and MC 1483). Synapses were divided into four different 

categories as described above. Each traced branch in a mitral cell was visited at least 

once and each synapse was given a confidence level between 10% to 100% using 

PyKnossos (Wanner et al., submitted). The total tracing length of MC 1479 (arbitrary 

number for MC) was 2.48 mm and the total number of synapses annotated was 4582. 

The majority of the synapses labelled were sensory synapses (1478, 32%) followed by 

reciprocal synapses (1375, 30%). The total number of inbound synapses labelled were 

(1180, 26%) and the total number of outbound synapses labelled were (549, 12%). 

(Fig. 27). 

In addition to the analysis of all synapses reported above, we also analyzed synapses 

near soma separately (Fig. 27 G) and found that no sensory synapses were present 

near the soma. Generally synapses near and around soma have smaller vesicle cluster, 

hence, more difficult to label compared to the synapses away from the soma. The 

relative abundance of the other synapse types was similar to the dendrite: inbound 

and reciprocal synapses were the most abundant types, followed by outbound 

synapses. These synapse numbers near soma were added to the final synapse count. 

In order to facilitate visualization of the synapse distribution, labelled synapses were 

plotted on a dendrogram that represents the branching structure of the mitral cell 

dendrite in a 2D graph (Fig. 28). In MC 1479 we observed strong compartmentalization 

of sensory synapses (shown in blue) on the distal-most dendritic branches. Reciprocal 

synapses showed weak or no obvious compartmentalization and were scattered all 

along the mitral cell branches. Inbound and outbound synapses are also distributed 

all along the mitral cell branches. Synapses on the dendritic branches and synapses 

near the soma of a mitral cell often differ in size.  
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Fig. 27: Synapse distribution of mitral cell 1479. 

Distribution of synapses on the branches of mitral cell 1479. (A) Sensory synapses are shown in blue. 
(B) Inbound synapses are shown in red. (C) Outbound synapses are shown in green. (D) Reciprocal 
synapses can be seen in yellow. (E) All synapses shown on the dendritic branches of the mitral cell. (F) 
Final synapse numbers. (G) Synapses numbers near soma.  
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Fig. 28: 2D dendrogram. 

Distribution of synapses in MC1479 shown in a 2D layout. Each small colored dot represents a synapse 
type. Sensory (blue), Reciprocal (yellow), Inbound (red) and outbound (green). The horizontal axis 
shows the distance from the soma and the vertical axis separates different branches.  
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Synapse distribution (Mitral cell 1483) 

The complete skeleton reconstruction of mitral cell 1483 revealed the total tracing 

length to be 3.20 mm. We further labelled four classes of synapses in MC 1483. After 

synapses identification, the total number of synapses labelled were 3653. The 

majority of the synapses were sensory synapses (1223, 33%) and inbound synapses 

(1161, 32%). The number of reciprocal synapses were (835, 23%) and the number of 

outbound synapses were (434, 12%) (Fig. 29 A). 

In order to visualize the synapse distribution in MC 1483, labelled synapses were 

plotted on a dendrogram that represents the branching structure of the mitral cell 

dendrite in a 2D graph (Fig. 30). There is a strong compartmentalization of sensory 

synapses (shown in blue) on the distal most dendritic branches of the mitral cell (Fig. 

30). This is consistent with the results from mitral cell 1479. In MC 1483, Inbound and 

outbound synapses were distributed all along the mitral cell branches. There was no 

obvious compartmentalization of reciprocal synapses.  

We labelled synapses around the soma and analyzed them separately. Reciprocal and 

inbound synapses were the most abundant near the soma followed by outbound 

synapses. No sensory synapses were seen as they are compartmentalized on the distal 

dendrites (Fig. 29 B). These synapse numbers near soma were added to the final 

synapse count. 

 

 

 

 

 

 

 
 
 
Fig. 29: Synapse type numbers of mitral cell 1483. 

(A) Synapses numbers in mitral cell 1483. Majority of the synapses are sensory and inbound. Followed 
by reciprocal and outbound. (B) Synapses near the soma of mitral cell 1483. Sensory synapses were 
absent. 
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                                                                    Results 

68 
 

 
 

 
 
 
Fig. 30: 2D dendrogram. 
 
Distribution of synapses in MC1483 shown in a 2D layout. Each small colored dot represents a synapse 
type. Sensory (blue), Reciprocal (yellow), Inbound (red) and outbound (green) synapses are 
distinguished. The horizontal axis shows the distance from the soma and the vertical axis separates 
different branches.  
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Synapse distribution (Mitral cell 1477) 

Synapse detection was completed for the third mitral cell. After its complete skeleton 

reconstruction the total tracing length was 2.32 mm. The number of synapses labelled 

in the entire mitral cell were 2497. Out of the four synapses classes the majority of 

synapses labelled were inbound synapses (1017, 41%) and reciprocal synapses (828, 

33%). The number of sensory synapses labelled were (427, 17%) and the number of 

outbound synapses labelled were (225, 9%) (Fig. 31 A). 

Consistent with earlier synapse identification results, here as well we observe strong 

compartmentalization of sensory synapses (shown in blue) on the distal most 

dendritic branches of the mitral cell (Fig. 32). Inbound, outbound and reciprocal 

synapses showed no obvious compartmentalization. Synapses identification near the 

soma of MC 1477 was done as well. Around the soma, reciprocal and inbound 

synapses were the most abundant followed by outbound synapses. No sensory 

synapses were found near the soma (Fig. 31 B).  

 

 

 

 

 

 

 

 

 

Fig. 31: Synapse distribution of MC 1477. 

(A) Synapses numbers in mitral cell 1477. Majority of the synapses are inbound and reciprocal followed 
by sensory and outbound. (B) Synapses near the soma of mitral cell 1477. Sensory synapses were 
absent. 
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Fig 32. 2D dendrogram. 
 
Distribution of synapses in MC1477 shown in a 2D layout. Each small colored dot represents a synapse 
type. Sensory (blue), Reciprocal (yellow), Inbound (red) and outbound (green) synapses are 
distinguished. The horizontal axis shows the distance from the soma and the vertical axis separates 
different branches.  
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The total number of synapses labelled in all the three fully traced mitral cells was 

10732 (3577 ± 853 mean ± S. D.). Of those, 29% were sensory synapses, 28% were 

reciprocal synapses, 31% were inbound synapses, and 12% were outbound synapses 

(Fig. 33). The fraction of reciprocal synapses, differs substantially from neuron to 

neuron, ranging from 23% to 33%. However, the mean value of 28.66 ± 5.13 (mean ± 

S.D.) gives a coarse estimate that can be used for comparison with theoretical models.  

The “variance-balanced state” (VBS) model predicts that for a robust VBS to occur, a 

substantial fraction of synapses (approximately >20 %) between mitral cells and OB 

interneurons should be reciprocal. This reciprocal synapses fraction takes into account 

all reciprocal synapses irrespective of which interneuron population they belong to. 

This number is normalized by the total number of synapses, excluding sensory 

synapses. This yields a 32% fraction of reciprocal synapses (Fig. 34), in agreement with 

predictions of the theoretical VBS model. 

 
                               

Fig. 33: Final synapse numbers. 

(A) Total number of sensory synapses (3128, 29%) , reciprocal syanapses (3038, 28%), inbound synapses 
(3358, 31%), outbound synapses (1208, 12%).  
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Fig. 34: Fraction of reicprocal synapses in VBS model. 
The fraction of reciprocal synapses is 32%. Here the total number of synapses is 7662. This synapse 
number includes all network input synapses to the mitral cell except sensory synapses. 
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DISCUSSION 

 

4.1 Reconstruction of neuronal morphology and synapses in volumetric EM data 

Acquisition of large volumetric electron microscopy data and further reconstruction of neuronal 

morphology and their synapses for connectivity mapping is a major goal in neuroscience. We 

acquired a large EM dataset from the adult zebrafish olfactory bulb and reconstructed a subset 

of the neurons in this volume. The reconstruction of all neurons in the stack would require an 

enormous amount of manual labor and is far beyond the scope of this study. However, the 

reconstruction of individual neurons and the annotation of their synapses was feasible. This 

allowed us to address fundamental questions of reciprocal connectivity between mitral cells 

and interneurons in the OB. 

The reconstruction of neurons and the annotation of their synapses requires a resolution of 

approximately 10 – 30 nanometers throughout large volumes of tissue. We have been able to 

maintain a high resolution (9 nm pixel size in xy and 25 nm in z) throughout the acquired 

dataset. New methods that involve conductive embedding of the tissue samples, dramatically 

reduced charging. This approach was essential for the acquisition of a large dataset and 

improved image quality (Wanner et. al. submitted).The large volume of the dataset and its high 

image quality allowed us to reconstruct the arbors and synapses of three mitral cells. Such 

detailed reconstructions of mitral cells and labeling of their synapses have so far not been 

achieved in any other brain area/species with the exception of C. elegans, where connections 

were reconstructed from serial electron microscopic images through decades of manual labor 

(White et al., 1986). 

 

4.2 Mitral cells receive direct input from olfactory sensory axons 

Olfactory information is transmitted from the olfactory sensory neurons to the mitral cells 

either directly or via interneurons. Recent studies suggest that an excitatory interneuron type 

called external tufted cell (ET cell), present in the glomerular layer, receives direct sensory 
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synaptic input and then transmits it to the mitral cell (Shipley et al., 2004; Schoppa et al., 2012). 

Based on recent physiological results it has been proposed that mitral cells do not receive direct 

input from sensory neurons, but that their excitatory input is transmitted exclusively through 

the disynaptic pathway via ET cells. Other studies, however, indicated that at least a subset of 

synapses of sensory neurons directly target mitral cells (Shipley et al., 2004). An olfactory bulb 

circuitry with ET cells in between olfactory sensory neurons and mitral cells could potentially 

allow for more flexible processing of sensory information because the activity of output 

neurons is not directly driven by their inputs (De Saint Jan et al., 2009; Najac et al., 2011; 

Schoppa et al., 2012). For example, ET cells could temporally integrate inputs, suppress weak 

inputs by thresholding, perform other non-linear operations, or serve as target for 

neuromodulatory inputs. In addition, ET cells could be involved in transmitting information 

across glomeruli via excitatory pathways while other inter-glomerular interneurons are 

inhibitory. 

Studies proposing that mitral cells do not receive direct sensory input used physiological 

methods. Recordings were performed from the ET cell and mitral cell while stimulating axons of 

olfactory sensory neurons in brain slices (Schoppa et al., 2012). However, these physiological 

studies do not directly resolve connectivity, since a detailed anatomical mapping of synapses is 

required to ultimately identify the synaptic partners of sensory axons.  

We reconstructed mitral cells completely, mapped their synapses, and classified them into 

different categories. We found that each mitral cell received a large number of direct synaptic 

inputs from olfactory sensory neurons. Of all the synapses (10917 synapses in total) we labeled 

in three mitral cells, a considerable fraction (28%, i.e. 3138 synapses) were sensory synapses. In 

all mitral cells, sensory input was found preferentially on the distal dendrites. Although an 

indirect connection between sensory neurons and MC via ET cells cannot be ruled out, the large 

fraction of sensory synapses on MC indicates a major role of these direct contacts. The 

hypothesis that there are no or only few direct inputs from ORN to MC can therefore be ruled 

out, and it is likely that the large number of direct sensory synapses on MC has important 
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physiological effects. Our results therefore indicate that the activity of mitral cells is strongly 

determined by their sensory inputs. 

 

4.3 Two photon calcium imaging reveals dense granule cell responses 

Consistent with a previous study (Yaksi et al., 2007), our results from two photon imaging 

revealed that a large fraction of neurons in the GCL of the adult OB responds to any given odor. 

Odor stimuli included individual amino acids at intermediate concentration, which are relatively 

weak stimuli. This result cannot be explained by strong odor stimulation. The majority of 

neurons in the GCL are most likely granule cells, implying that granule cell activity patterns 

evoked by odor stimulation are dense. The large number of responsive granule cells suggests 

that granule cells may have a strong impact on OB output.  

Two theoretical studies have recently proposed different functions of granule cells in odor 

processing. One study proposes that reciprocally connected granule cells form sparse 

overcomplete representations of odors that are removed from mitral cell activity patterns and 

decorrelate OB output (Koulakov and Rinberg, 2011). A central prediction of this study is that 

granule cell activity patterns are very sparse. However, our data directly demonstrate that 

odor-evoked granule cell activity is dense.  

Another theoretical study came to a conclusion that is different from the study mentioned 

above (Wiechert, 2015). This study concluded that reciprocally connected granule cells do not 

decorrelate or otherwise reorganize OB output patterns. Instead, reciprocally connected 

granule cells are predicted to downscale activity patterns, resulting in contrast normalization. 

This study does not predict sparse granule cell activity patterns. Therefore our data do not 

support conclusions of the first study but are consistent with predictions of the second study. 

 

4.4 Reciprocal synapses show weak compartmentalization 

Unlike sensory synapses, which show strong compartmentalization on the distal dendrites, 

reciprocal synapses do not seem to be strongly compartmentalized. In all the mitral cells we 
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traced, we see substantial numbers of broadly distributed reciprocal synapses present in each 

mitral cell. However, at least in some mitral cells, reciprocal synapses may have a tendency to 

be concentrated near branch points.  

Reciprocal synapses are present around the soma as well as along the dendritic branches of 

mitral cells. We also observe that reciprocal synapses vary in size. Reciprocal synapses around 

the mitral cell soma are smaller in size compared to the ones near the mitral cell dendrites. In 

principle these different subpopulations of reciprocal synapses could originate from different 

types of interneurons. This question can now be addressed by tracing neurons from the 

reciprocal synapses. 

 

4.5 Reciprocal connectivity may support variance balancing 

The computational consequences of reciprocal connectivity were examined in a recent 

theoretical model. This work demonstrates that reciprocal synapses can support a variance-

balanced state (VBS) that achieves efficient contrast normalization (Wiechert, 2015). The model 

predicts that for a robust VBS to occur, a substantial fraction of synapses (approximately >20 %) 

between mitral cells and OB interneurons should be reciprocal. Moreover, mitral cells should 

receive substantial excitatory input to reach a balanced state. We have already shown that the 

MC indeed receive a large number of direct sensory input that could provide the necessary 

excitatory drive. Consistent with this hypothesis, mitral cells have high spontaneous firing rates 

and constantly receive excitatory and inhibitory inputs (Friedrich and Laurent, 2004). It has, 

however, been unknown whether the fraction of reciprocal synapses in the network is 

sufficiently high to support a balanced state (Hirata 1964, Rall et al., 1966; Rall and Shepherd, 

1968; Price and Powell, 1970). To address this question, we directly quantified the number of 

reciprocal synapses in mitral cells. 

Here, we find based on our pooled synapse detection data from three mitral cells that the 

fraction of reciprocal synapses is 32%. This fraction of reciprocal synapses takes into account all 

reciprocal synapses, irrespective of the interneuron population to which they belong. The 

computational study by Wiechert (Wiechert, 2015), shows how the variance of the output 
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pattern (MC activity) relates to the variance of the input pattern (sensory neuron activity) when 

the degree of reciprocity of the network is changed. In the model, the variance of the output 

pattern is normalized efficiently when the fraction of reciprocal synapses is higher than ~20%. 

This result was robust even when the strengths of individual synapses were assumed to be 

heterogeneous. Our findings are therefore consistent with the hypothesis that reciprocal 

connectivity in the OB supports a variance-balanced state that results in contrast normalization. 

 

4.6 Limitations of the study and outlook 

Tracing and synapse detection reliability 

Tracing of mitral cells in the adult olfactory bulb was performed by a single person. Although 

this person has visited most branches multiple times, it is still possible that some branches are 

incorrect or missing. However, the main results of this study are statistical in nature, and no 

major differences in synapse distribution have been observed between different branches. It is 

therefore unlikely that any missing branches would have a strong impact on the result. Wrong 

branches are unlikely to make major contributions to the reconstructions because they are 

typically straightforward to detect, for example by incorrect connections to more than one 

soma. It is therefore unlikely that tracing errors resulted in major errors. 

In order to quantify the tracing precision more rigorously and also to detect false positively 

traced branches, the full tracing would need to be verified multiple times. Ideally multiple 

tracers should trace each neuronal skeleton and then the skeletons should be compared to 

detect mismatch points (Wanner et al., submitted). 

Similarly, the accuracy and completeness of synapse detection may be further increased by 

combining independent annotations of multiple tracers. Synapse detection during the first 

round of tracing on three mitral cells revealed the number to be 9362. After tracing the 

branches found during the second round from three mitral cells, the total synapse number 

increased to 10917. Hence, it is possible that not all synapses have been detected. Assuming 

that synapses have been missed stochastically, it is unlikely that a small fraction of missed 

synapses would have a substantial impact on the statistical results. 
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Synapse classification could also be further improved. Presently, synapses are assigned to four 

different classes. In principle, it is possible to define more sub-classes. This information could 

then be further used to refine models of the circuits and to re-analyze possible clustering of 

synaptic sub-types. 

 

Reconstruction of olfactory sensory neurons and postsynaptic partners 

Quantitative data on synaptic connectivity between sensory neurons and OB neurons was 

obtained from reconstructions of sensory axons. However, these results are preliminary 

because the number of reconstructed axons was small. Since we have traced many olfactory 

sensory neurons completely and also identified and labeled all their synapses, we see sensory 

neurons make relatively few synapses (15 on average). It is therefore realistic to fully trace all 

their postsynaptic partners starting from these individual synapses. This would allow to 

determine the identity of other postsynaptic neurons apart from mitral cells and to address the 

question whether this set of neurons also includes ET cells.  

The zebrafish glomerular layer contains approximately 140 distinct glomeruli and a region 

containing additional, small glomerular structures that have not been delineated precisely. 

Subsets of these glomeruli are large and unambiguously identifiable between individuals 

(Braubach et al., 2012). Moreover, anatomically and molecularly defined clusters of glomeruli 

can be found consistently in different individuals. Reconstruction of these sensory neurons 

would also delineate the structure of glomeruli in the adult olfactory bulb more clearly.  

Another interesting future direction is to trace neurons postsynaptic to sister mitral cells. This 

provides the opportunity to determine whether sister mitral cells receive correlated input also 

from the OB network. If so, sister mitral cells would be likely to represent redundant output 

channels of the OB. Such architecture could increase the “safety factor” in odor 

representations. Alternatively, sister mitral cells could receive different inputs from the 

network and therefore convey non-redundant information. Such architecture could enhance 

the bandwidth of information transmission from the OB to higher brain areas. 
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Reconstruction of interneurons 

Computations such as pattern decorrelation depend on network interactions between mitral 

cells (Tabor et al., 2004). Mitral cells connected to different glomeruli do not make direct 

synaptic contacts (Pinching and Powell, 1971; Price and Powell, 1970; White, 1972). Rather, 

most inter-glomerular interactions between mitral cells are mediated via interneurons and are 

inhibitory in nature. Many synaptic contacts between mitral cells and interneurons (particularly 

granule cells) are made between dendrites and are reciprocal in nature, i.e., an excitatory mitral 

cell-to-interneuron synapse occurs in close proximity to an inhibitory interneuron-to-mitral cell 

synapse between the same neurons (Isaacson and Strowbridge, 1998; Urban and Sakmann, 

2002). It is therefore thought that interneurons, particularly granule cells, mediate mutual 

lateral inhibition between mitral cells. Besides this striking symmetry of synaptic contacts at 

fine spatial scales, it is unknown whether connectivity between mitral cells and interneurons 

exhibits non-random structure at larger scales. In other words, the topology of connections in 

the OB, which is represented by the neuronal connectivity matrix, is largely unknown. Recent 

evidence indicates that connectivity is sparse and that connection probability decreases with 

distance (Egger and Urban, 2006; Fantana et al., 2008; Wiechert et al., 2010). However, these 

studies do not reveal the connectivity matrix because they provide only first-order statistical 

information on connection probability. 

In order to better understand the reciprocal circuit that involves the mitral cells, it would be 

helpful to reconstruct the arborization of the synaptic partners involved. These are most likely 

predominantly granule cells and also periglomerular cells. The precise reciprocal connectivity 

would allow refining current models that assume stochastic connectivity between mitral cells 

and interneurons for reciprocal synapses. This could be done with the reciprocal synapses or 

inbound synapses of traced mitral cells as starting points. We see a broad distribution of 

reciprocal synapses along the branches of the mitral cells and weak compartmentalization at 

the branch points.  

Choosing areas with a cluster of reciprocal synapses and tracing these interneurons, possibly 

granule cells, would give an idea how MC and GC are connected. The number of reciprocal 
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synapses is large in each of the mitral cells we reconstructed. Hence to trace all of them would 

require enormous labor. Therefore focusing on a subset of reciprocal synapses and 

reconstructing them completely would be possible.  

 

Physiological recordings combined with dense reconstructions 

Ultimately, understanding of a neuronal circuit requires not only the detailed connectivity, but 

also the physiological behavior of the circuit. To access how functional response properties of 

individual neurons and neuronal computations are shaped by interactions with other neurons, 

it will be important to measure functional response properties and connectivity matrices of 

large numbers of neurons in the same specimens. The physiology of the olfactory bulb in 

zebrafish is already partly understood (Niessing et al., 2010; Friedrich et al., 2001), but our 

understanding could be further enhanced by combining functional studies with complementary 

dense circuit reconstruction as has been done in other studies (Briggman et al., 2011).  

For example, it has been observed that mitral cells abruptly change their firing response when 

the fish is exposed to gradually changing odor stimuli (Niessing et al., 2010). This switching 

behavior cannot be explained using a theoretical model that is based on random connectivity 

(Wiechert et al., 2010), but could likely be achieved by a network with non-random 

connectivity. A dense connectivity reconstruction can provide an approach to search for non-

random connectivity features that could explain the abrupt transitions in network states. More 

specifically, such network behavior could be produced by preferred or anti-preferred 

connectivity among ensembles of neurons with similar response properties. Similar connectivity 

rules could also account for computations in other brain areas and have been proposed to be 

fundamental motifs of neuronal circuit architecture. Testing such hypotheses requires 

exhaustive analysis of the connectivity among neurons, together with a physiological 

characterization of their response properties. 
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