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Summary 

Background. The public health burden of type 2 diabetes cannot be overestimated. 

Prevalence of type 2 diabetes is continuously increasing and has caused a great number of 

deaths and economic losses. Optimal prevention measures for type 2 diabetes entail that more 

risk factors need to be identified. Air pollution is one of the modifiable environmental risk 

factors causing health problems, most notably respiratory diseases. Recently there have been 

indications for a spill-over of its effects into the cardio-metabolic systems.  Short-term 

exposure to air pollution may exert acute or sub-acute inflammatory cardio-metabolic 

responses which on long-term, sustained exposure could lead to overt cardiovascular diseases 

and type 2 diabetes. However, it is unclear if long-term exposure to pollutants in the air 

contributes to the development of type 2 diabetes. This work generates evidence to fill 

knowledge gaps on the impact of air pollutants on the development of type 2 diabetes and on 

how different susceptibilities in the general population could contribute to the understanding 

of the mechanisms involved in this relationship. 

Methods. First, this work summarized the existing evidence on the possible relationship 

between long-term exposure to air pollutants and type 2 diabetes. Furthermore, in the 

framework of the first follow-up of SAPALDIA- the Swiss Cohort Study on Air Pollution and 

Lung and Heart Diseases in Adults, this work used indices for long-term exposure air 

pollution – 10-year mean particulate matter <10µm in diameter [PM10] and nitrogen dioxide 

[NO2] - assigned to participants’ residences using a combination of Gaussian dispersion and 

Land-use regression models, participants residential histories and pollutant trends at 

monitoring stations. It identified diabetes and metabolic syndrome cases in a comprehensive 

way considering self-reports, blood tests and other physical measures. It additionally 

identified genetic variants through genotyping on two different arrays – the Human 

Illumina610quad Bead Chip and the Taqman PCR assay - for 63 type 2 diabetes genetic 
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polymorphisms [towards a diabetes gene score] and a functional polymorphism on the IL6 

gene respectively. Based on the above and detailed health socio-demographic and lifestyle 

characteristics including smoking habits, occupational exposures, alcohol, nutrition, physical 

activity, body measurements and additional data collected in SAPALDIA, it was ideal to 

investigate the cross-sectional relationships between air pollutants and diabetes and to explore 

interactions [based on various susceptibilities] to understand mechanisms involved in the 

relationship between long-term exposure to air pollutants and type 2 diabetes. 

Results. In this work, we found a positive relationship between PM2.5 and NO2 and the risk of 

T2D in the pooled evidence synthesized from electronic databases. In the frame of 

SAPALDIA biobank, we found a moderate positive association between long-term exposure 

to PM10 [and NO2] and prevalent diabetes, and demonstrated a sustained effect of PM10 

independent of NO2, while NO2 lost its association on accounting for PM10 in multi-pollutant 

models. Among the measures of cardio-metabolic function, PM10 impacted most on 

impairment of glucose homeostasis and least on blood lipoproteins and triglycerides. The 

relationship between PM10 and impaired fasting glycaemia was more apparent among the 

physically active. Age also appeared to influence the relationship between PM10 and impaired 

fasting glycaemia. People at higher polygenic risk for type 2 diabetes were more susceptible 

to PM10. Genetic risk for insulin resistance and obesity appeared to be more relevant than 

those for beta-cell function in modifying the effects of PM10, especially among those with 

some background inflammatory conditions. Carriers of the pro-inflammatory major ‘G’ allele 

of IL6-572GC, with allele frequency of 93%, were also more susceptible to PM10 in relation 

to diabetes. 

Conclusions. This work has greatly contributed to evidence suggesting the possible role of air 

pollutants in diabetes aetiology. The reported associations were observed at mean 

concentrations below current air quality guidelines. PM10 may be a good marker for aspects of 
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air pollution [rather than NO2] relevant for the development of diabetes. In particular, PM10 

might act through sub-clinical inflammation and resultant impaired insulin sensitivity. 

Impairment of insulin secretion may be a less relevant pathway for PM10 action. Physical 

activity, though beneficial, presented another likely pathway for PM10 effects.  These 

findings, if confirmed, call for the strengthening of air quality policies and adaptation of 

physical activity promotion to environmental contrasts.  Future studies should explore the 

totality of environmental exposures – exposomics –in a life-course fashion. The mediating 

role of DNA methylation influencing genetic expression should be further explored. For 

global generalizability, there is a strong need for evidence replication in developing countries 

where outdoor and indoor air pollution is quite high and mostly unregulated, and the burden 

of non-communicable diseases is rapidly growing. 
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Zusammenfassung 

Einführung. Die Belastung der öffentlichen Gesundheit durch Typ-2-Diabetes kann nicht 

überschätzt werden. Die Prävalenz von Typ-2-Diabetes steigt kontinuierlich an und hat 

bislang eine sehr hohe Anzahl an Todesfällen sowie wirtschaftliche Verluste verursacht. Um 

optimale Präventionsmassnahmen für Typ-2-Diabetes einleiten zu können, müssen noch mehr 

Risikofaktoren identifiziert werden. Die Umweltverschmutzung gehört zu den beeinflussbaren 

Umweltrisiken, welche Gesundheitsprobleme verursachen, insbesondere in Bezug auf 

Atemwegserkrankungen. In jüngster Zeit wurden Hinweise auf Spill Over-Effekte auf das 

kardio-metabolische System gefunden. Eine Kurzzeitexposition gegenüber 

Luftverschmutzung kann akute oder subakute entzündliche kardio-metabolische Reaktionen 

verursachen, welche bei langfristiger, anhaltender Exposition zu einer offenkundigen Herz-

Kreislauf-Erkrankung und Typ-2-Diabetes führen können. Es ist jedoch unklar, ob eine 

Langzeitexposition gegenüber Schadstoffen in der Luft tatsächlich zu Typ-2-Diabetes 

beiträgt. Diese Arbeit füllt Wissenslücken in Bezug auf den Zusammenhang zwischen 

Luftverschmutzung und Typ-2-Diabetes  und sowie in Bezug auf Wirkmechanismen und 

individuelle Empfindlichkeiten. 

Methoden. Diese Arbeit hat erstens die vorhandene Evidenz zum Zusammenhang zwischen 

Langzeitexposition gegenüber Luftschadstoffen und Typ-2-Diabetes zusammengefasst. Im 

Rahmen der ersten Nachuntersuchung von SAPALDIA, der Schweizerischen Kohortenstudie 

über Luftverschmutzung und Lungen und Herzerkrankungen bei Erwachsenen, hat diese 

Arbeit darüberhinaus Parameter für Langzeitexpositionen gegenüber Luftverschmutzung 

genutzt – Feinstaub <10µm in Durchmesser [PM10] und Stickstoffdioxid [NO2] –, welche den 

Wohnorten der Studienteilnehmer zugeordnet wurden. Sie hat Diabetes und Fälle mit 

metabolischem Syndrom in umfassender Weise identifiziert, indem Selbstberichte, Bluttests 

und andere physische Messungen berücksichtigt wurden. Sie hat zudem Genvarianten durch 
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Genotypisierung mit zwei unterschiedlichen Methoden identifiziert – der Human 

Illumina610quad Bead Chip und der Taqman PCR Test: 63 Typ-2-Diabetes genvarianten zur 

Berechnung eines Risikoscore; ein funktioneller Polymorphismus auf dem IL6-Gen. 

Basierend auf den oben erwähnten und detaillierten Gesundheits- und Lifestyle-

Charakteristiken, einschliesslich soziodemografischen Merkmalen, Rauchgewohnheiten, 

berufsbedingten Expositionen, Alkohol, Ernährung, körperlicher Aktivität, Körpermasse und 

ergänzenden in SAPALDIA erhobenen Daten, war es möglich die Querschnitts-

Zusammenhänge zwischen Luftschadstoffen und Diabetes zu untersuchen und Interaktionen 

zu erforschen [basierend auf zahlreichen Anfälligkeiten]. Die Resultate helfen die 

Mechanismen zu verstehen, welche dem Zusammenhang zwischen Langzeitexposition 

gegenüber Luftschadstoffen und Typ-2-Diabetes zu Grunde liegen.        

Resultate. Wir haben in dieser Arbeit einen positiven Zusammenhang zwischen PM2.5 und 

NO2 und dem T2D-Risiko in gepoolten, aus elektronischen Datenbanken synthetisierten 

Beweisen gefunden. Im Rahmen von SAPALDIA haben wir einen moderaten positiven 

Zusammenhang zwischen Langzeitexposition gegenüber PM10 und NO2 gefunden. Die 

Assoziation mit PM10 blieb unabhängig von NO2 bestellen, während NO2 seine Wirkung nach 

Mitenbezug von PM10 in Multi-Schadstoff-Modellen verlor. Unter den Parametern zur kardio-

metabolischen Funktion wirkte sich PM10 am stärksten auf die Beeinträchtigung der 

Glukosehomöostase und am schwächsten auf Blutlipoproteine und Triglyceride aus. Der 

Zusammenhang zwischen PM10 und Typ-2-Diabetes trat stärker bei den körperlich Aktiven 

hervor. Auch Alter schien den Zusammenhang mit gestörter Nüchternglukose zu 

modifizieren. Menschen mit erhöhtem polygenem Risiko für Typ-2-Diabetes waren anfälliger 

für die glykämischen Wirkungen von PM10. Ein genetisches Risiko für Insulinresistenz und 

Übergewicht schien dabei relevanter zu sein als jenes für Beta-Zell-Funktion, insbesondere 

bei Personen mit entzündlichen Erkrankungen. Zusätzlich waren Träger des 
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entzündungsfördernden „G“-Allels des IL6-572GC Polymorphismus [Allelfrequenz von 93%] 

empfänglicher für die glykämischen Wirkungen von PM10.  

Schlussfolgerungen. Diese Arbeit hat wesentlich zur Evidenz beigetragen, dass 

Luftschadstoffe eine Rolle spielen konnten in der Entstehung von Diabetes. Die gefundenen 

Zusammenhänge wurden auch unterhalb Limiten  aktueller Luftqualitätrichtlinien beobachtet. 

PM10 scheint dabei ein guter Marker für diabetes-relevante Luftverschmutzung zu sein [besser 

als NO2]. Insbesondere könnte PM10 über subklinische Entzündungen und die daraus 

resultierende Insulinsensitivität wirken. Körperliche Aktivität, obschon vorteilhaft in der 

Diabetesprävention, erhöht möglicherweise die diabetogene Auswirkung von PM10. Sollten 

sich diese Ergebnisse bestätigen, ist eine Stärkung der Luftqualitätpolitik notwendig sowie 

auch eine Anpassung der Förderung von körperlicher Betätigung an den Umweltkontext. 

Zukünftige Studien sollten die Gesamtheit der Umweltexpositionen – das Exposom – in 

verschiedenen Altersbereichen erforschen. Zudem sollte die vermittelnde Rolle der die 

Genexpression beeinflussende DNA-Methylierung mit untersucht werden. Für die globale 

Generalisierbarkeit der Zusammenhänge, ist es dringend nötig die Ergebnisse in 

Entwicklungsländern zu replizieren, in denen die Verschmutzung der Innen- und Aussenluft 

sehr hoch und überwiegend ungeregelt ist und wo zudem die Belastung durch nicht 

übertragbare Krankheiten rasant ansteigt.   
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Résumé 

Background. Le poids du diabète de type 2 sur la santé publique ne peut pas être surestimé. 

Sa prévalence est en constante augmentation et a causé un grand nombre de décès et de pertes 

économiques. Les mesures de prévention optimales du diabète de type 2 impliquent une 

meilleure identification des facteurs de risque. La pollution de l’air est un des facteurs de 

risque environnemental modifiable causant des problèmes de santé, notamment des maladies 

respiratoires. Récemment, plus d’intérêt a été porté à l’extension potentielle de ses effets sur 

les systèmes cardiométaboliques. L’exposition à court terme à la pollution de l’air peut 

exercer une réponse inflammatoire cardiométabolique aiguë ou subaiguë, qui, accompagnée 

d’une exposition continue sur le long terme, peut conduire à des maladies cardiovasculaires et 

au diabète de type 2. Il est cependant encore peu clair si l’exposition à long terme aux 

polluants dans l’air contribue au développement du diabète de type 2. Cet ouvrage génère des 

indices comblant les connaissances manquantes sur l’impact des polluants de l’air sur le 

développement du diabète de type 2 et sur la manière dont les différentes susceptibilités dans 

la population peuvent contribuer à la compréhension des mécanismes en jeu dans cette 

relation. 

Méthodes. Premièrement, cet ouvrage a rassemblé les indices existants sur la relation 

possible entre l’exposition à long terme à la pollution de l’air et au diabète de type 2.  De plus, 

dans le cadre du premier suivi de SAPALDIA – la cohorte suisse sur la pollution de l’air et les 

maladies pulmonaires et cardiaques chez les adultes, cet ouvrage a utilisé des indicateurs pour 

l’exposition à long terme à la pollution de l’air – particules fines <10um de diamètre [PM10] et 

dioxyde d’azote [NO2] – assigné à l’adresse de résidence des participants. Les cas de diabète 

et de syndrome métabolique ont étés identifiés de manière complète en appliquant des auto-

évaluations, des tests sanguins et d’autres mesures physiques. En addition, pour le diabète de 

type 2, les variantes de 63 polymorphismes génétiques [vers un score de gène du diabète] et 
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d’un polymorphisme fonctionnel sur le gène IL6 ont été identifiées par génotyping sur deux 

plateformes différentes d’analyse – le Human Illumina610quad Bead Chip et le Taqman PCR. 

Basé sur ce qui précède et les caractéristiques de santé et d’hygiène de vie détaillées, 

consommation de tabac, exposition liée au travail, consommation d’alcool, nutrition, activité 

physique, mesures corporelles et autres données collectées dans le cadre de SAPALDIA, il 

s’est avéré idéal d’investiguer, en usant SAPALDIA, les relations transversales entre les 

polluants de l’air et le diabète et d’explorer les interactions (basées sur des susceptibilités 

variées) afin de comprendre les mécanismes en jeu dans la relation entre l’exposition à long 

terme à la pollution de l’air et le diabète de type 2.  

Résultats. Dans cette ouvrage, nous trouvons une relation positive entre PM2.5 et NO2 sur le 

risque de diabète de type 2 dans les indices collectés dans des banques de données 

électroniques. Dans le cadre de SAPALDIA biobanque, nous trouvons une association 

positive modérée entre l’exposition à long terme au PM10 et NO2, et démontrons un effet 

continu de PM10 indépendent du NO2 qui perd son effet quand le PM10 est pris en compte dans 

les modèles multipolluants. Considérant les mesures de fonction cardiométabolique, le PM10 a 

plus d’impact sur l’homéostase de glucose déficient et moins d’impact sur les protéines 

sanguines et les trigycérides. La relation entre PM10 et la glycémie à jeûn déficiente était plus 

apparente au sein des sujets pratiquant une activité physique. Age semble également 

influencer la relation entre les PM10 et la glycémie à jeûn déficiente. Les sujets à plus haut 

risque polygénique pour le diabète de type 2 étaient plus susceptibles aux effets glycémiques 

des PM10. Les risques génétiques de la résistance à l’insuline et l’obésité étaient plus 

importants que ceux des fonctions des cellules béta dans la médiation des effets des PM10, en 

particulier parmi ceux avec un historique de condition inflammatoires. Les porteurs de l’allèle 

pro-inflammatoire ‘G’ de IL6-572GC avec une fréquence d’allèle de 93% étaient également 

plus susceptibles des PM10 en relation à diabète. 
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Conclusions. Cet ouvrage a grandement contribué aux preuves suggérant le rôle possible des 

polluants de l’air dans l’étiologie du diabète. Ces observations ont également eu lieu à des 

concentrations moyennes en dessous des directives actuelles de qualité de l’air. PM10 pourrait 

être un marqueur bien plus important [à la place de NO2] des effets de la pollution de l’air sur 

le diabète. En effet, PM10, pourrait induire une inflammation sub-clinique et ceci résulterait en 

une déficience à l’insuline accrue. Les déficiences dans la sécrétion de l’insuline pourraient 

être un mécanisme moins important de l’action des PM10. L’activité physique, bien que 

bénéfique, présentait un autre mécanisme probable pour les effets des PM10. Ces résultats, si 

confirmés,  appellent à un renforcement des politiques de qualité de l’air et à une adaptation 

de la promotion de l’activité physique aux contrastes environnementaux. Les études à venir 

devraient explorer la totalité des expositions environnementales  – exposomics – sur durée 

d’une vie. Le rôle médiateur de la méthylation de l’ADN influençant l’expression génétique 

devrait être exploré plus avant. Pour une généralisation globale, un fort besoin d’études de 

réplication venant des pays en voie de développement où la pollution de l’air à l’intérieur et à 

l’extérieur est haute et généralement non régulée et où le poids des maladies non 

transmissibles est en rapide augmentation.  
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1.  Background 

1.1 Type 2 diabetes in the context of non-communicable diseases 

1.1.1 Epidemiology and Public Health Burden 

Diabetes mellitus [DM] constitutes about 25% of the major non-communicable diseases 

[NCDs], – diseases which are not transmissible from person to person, of slow progression, 

age-related and of long duration [even life-long] – which also includes cardiovascular 

diseases [CVD], cancers and chronic respiratory diseases. As there is a global trend towards 

longer life expectancy, occurrence of NCDs becomes more likely. According to the World 

Health Organization [WHO], NCDs lead to about 38 million annual deaths, 82% and 5% of 

which are attributed to these four major NCDs and diabetes respectively (WHO, 2015). The 

International Diabetes Federation [IDF] estimates that diabetes is the fourth leading cause of 

death in Europe and about 70% of diabetes cases in Europe die from cardiovascular disease 

(IDF, 2008). In Switzerland, about 2,500 deaths were attributed to diabetes in 2013. Seventy-

five percent of all NCD-related deaths occur in low- and middle income countries (IDF, 

2013). Figure 1 shows global deaths from diabetes in 2013. 

 

Figure 1: Global distribution of mortality due to diabetes (IDF, 2013) 
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The number of global diabetes cases in 2013 was put at 317 million. This is expected to 

increase to 519 million in 2030 if adequate preventive measures are not implemented (IDF, 

2013). The global distribution of diabetes prevalence is presented in Figure 2.  In 2013, 

prevalence of diabetes and impaired glucose tolerance in Switzerland were 7.5% and 8.1% 

respectively (IDF, 2013).  

  

Figure 2: Global distribution of diabetes prevalence (IDF, 2013) 

Similar to other NCDs, diabetes is of great economic importance. The direct costs of 

treatments and the indirect costs due to disability and mortality are quite profound. Presently, 

most of these costs are borne by the high income countries [Figure 3] in part explained by the 

substantial degree of under-diagnosis and under-treatment of diabetes and its consequences in 

low and middle income countries [LMIC], for instance, Switzerland is estimated to have spent 

about USD 10,000 per diabetes patient in total cost per annum whereas Nigeria spent about 

USD 150. By 2030 (IDF, 2013), this is expected to change drastically, with the low and 

middle income countries taking up about 75% of both direct and indirect costs of diabetes. 
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Figure 3: Global distribution of diabetes expenditure (IDF, 2013) 

1.1.2. Symptoms, diagnosis and management 

Symptoms of type 2 diabetes 

Diabetes has several symptoms which may occur mildly in some people, and often go 

unnoticed for a long time. Symptoms may progress with disease severity. Some of the 

common symptoms of type 2 diabetes [T2D] according to the American Diabetes Association 

[ADA] include (ADA, 2015a) polyphagia – excessive eating or appetite, occurring even after 

eating; polydipsia – excessive thirst; polyuria – frequent urination; extreme fatigue and slow 

healing of bruises or infections. According to the National Institutes of health [NIH], other 

symptoms which could be reported on presentation, but are also indicative of on-going 

complications include blurry vision, tingling sensation or pain in the hands and feet and 

erectile dysfunction (NIH, 2015). About half of global diabetes cases remain undiagnosed 

(Harris et al., 1987, IDF, 2008) leading to late presentations and increased complications on 

presentation. 
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Diagnoses of T2D 

Type 2 diabetes accounts for >90% of all diabetes in adults and reduces life expectancy by 5-

10 years (Zimmet et al., 2001, King et al., 1998). A diagnosis of T2D can be made using 

plasma glucose or glycosylated haemoglobin [HbA1c] levels. Plasma glucose may be 

measured in a fasting state, 2 hours following an oral 75g glucose load or randomly regardless 

of when the last meal was had (ADA, 2014, ADA, 2015b, IDF, 2012). Diagnosis using 

HbA1c requires that the A1c assay be certified by the National Glycohaemoglobin 

Standardization Programme and standardized to the Diabetes Control and Complications Trial 

reference assay (ADA, 2015b). Although HbA1c is more convenient, has greater pre-analytic 

stability and does not fluctuate to daily stress variations and illness compared to plasma 

glucose measurements, it is more expensive, has limited availability in developing countries 

and may not correlate well with plasma glucose in some individuals (Nowicka et al., 2011, 

Garcia de Guadiana Romualdo et al., 2012, Ziemer et al., 2010, Kumar et al., 2010). A HbA1c 

value of ≥0.065, fasting [no caloric intake for at >=8 hours] plasma glucose of ≥7.0mmol/L 

and 2-hour post-prandial [75g oral glucose dissolved in water] glucose of ≥11.1 mmol/L are 

suggestive of diabetes (ADA, 2014, IDF, 2012). In the absence of unequivocal 

hyperglycemia, confirmation should be done by a repeat testing (ADA, 2015b). 

In asymptomatic individuals, a repeat test is necessary following an abnormal glucose test, to 

confirm diabetes whereas in symptomatic individuals a repeat test may not be necessary to 

make a diagnosis of diabetes (IDF, 2012). Screening/diagnosis in asymptomatic individuals is 

recommended using the following criteria (ADA, 2015b): (a) Testing should be considered in 

all adults who are overweight [BMI≥25kg/m2 or 23kg/m2 in Asians] and have additional risk 

factors; (b) Testing should begin at 45 years especially for obese persons; (c) If results are 

normal, testing should be repeated at a minimum of 3-year interval. If abnormal, a one-year 

testing interval may be applied. 
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Management of type 2 diabetes 

Optimal management of T2D entails that patients make necessary lifestyle modifications 

including improved nutrition, physical activity, quit smoking among other things. Patients are 

educated on self-management [Diabetes self-management education] and provided necessary 

support [Diabetes self-management support] to develop and maintain healthy behaviours 

towards achieving target plasma glucose levels (ADA, 2015b). For pharmacological 

treatment, Metformin is usually the first drug of choice (ADA, 2015b). Other agents may be 

added if target glucose levels are not reached. Insulin therapy is always initiated at some point 

in the course of T2D, especially when complications develop. Lifestyle modifications 

alongside pharmacological treatment ensure the best outcome in the management of more 

advanced T2D. 

1.1.3. Pathophysiology of type 2 diabetes 

Type 2 diabetes mainly results from impairment of insulin secretion by the pancreatic beta-

cells or reduction in insulin sensitivity by the muscle, fat and liver cells (Buse JB, 2003).  

Insulin secretion 

Glucose enters the pancreatic beta cell through facilitated diffusion by the glucose transporter 

2 on the beta cell membrane (Buse JB, 2003). Glucose metabolism increases cytosolic ATP, 

and initiates insulin secretion by blocking the ATP-dependent potassium ion channel on the 

beta cell membrane. This blockade induces beta cell membrane depolarization, increases 

cytosolic calcium ions and insulin secretion (Buse JB, 2003).  Apart from glucose which is the 

most important regulator of insulin release (Porte Jr and Pupo, 1969, Chen and Porte, 1976), 

essential amino acids (Levin et al., 1971, Fajans and Floyd Jr, 1972), gastrointestinal peptide 

hormones (Creutzfeldt and Ebert, 1985, Dupre et al., 1973) and parasympathetic stimulation 

through vagal nerve fibres (Nishi et al., 1987, Kurose et al., 1990) also contribute to the 
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regulation of insulin release. Studies have shown that in any 24-hour period, 50% of insulin 

secretion occurs under basal conditions and 50% in response to meals (Kruszynska et al., 

1987, Polonsky et al., 1988). Some circadian pattern in insulin secretion has been reported, 

with maximal secretion occurring in the morning following breakfast (Malherbe et al., 1969, 

Polonsky et al., 1988, Jarrett et al., 1972). Insulin secretion can be measured directly by 

fasting insulin levels, or indirectly using the C-peptide concentration, a product of proinsulin 

cleavage within the Golgi apparatus of the beta cell (Melani et al., 1970, Horwitz et al., 1975). 

C-peptide is released in equimolar concentrations with those of insulin but unlike insulin, is 

not extracted by the liver (Melani et al., 1970). In addition, C-peptide also has a longer half-

life [30 minutes] compared to insulin [4 minutes] (Palmer et al., 2004) making it preferable as 

a peripherally measurable marker of beta cell function, but under the assumption of constant 

mean clearance rates in normal physiologic conditions (Polonsky et al., 1983, Polonsky et al., 

1986). The secretion of insulin is also influenced by genetic constitution (Perry and Frayling, 

2008). 

Insulin sensitivity 

An impairment in insulin sensitivity results in insulin resistance. This is manifested by a 

reduction in insulin-stimulated glucose transport and metabolism in target cells including 

adipocytes, hepatocytes and skeletal muscle (Buse JB, 2003). Age, abdominal fat, ethnicity, 

physical inactivity and certain medications influence insulin sensitivity (Paolisso et al., 1999). 

Like beta-cell function, insulin resistance also has a genetic component. First-degree relatives 

of T2D patients have insulin resistance even without being obese (Groop, 2000, Lehtovirta et 

al., 2000). Hyperinsulinaemia is another determinant of insulin resistance. High levels of 

insulin down-regulate insulin receptors and desensitizes post-receptor pathways (Olefsky et 

al., 1985) and suppression of insulin secretion in insulin resistant people results in improved 
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insulin sensitivity. In many cases, T2D manifests when insulin resistance occurs in a 

background of some degree of impairment in beta-cell function. 

1.1.4 Determinants of type 2 diabetes 

Non-genetic determinants 

The traditional risk factors include demographic characteristics such as age and sex. T2D 

mostly occurs in older age groups (Harris et al., 1997, Harris et al., 1987, Mokdad et al., 

2001) although there has been an increasing occurrence in children, reaching up to 50% of 

childhood diabetes (Fagot-Campagna et al., 2000, Fagot-Campagna et al., 1998, Willi et al., 

1997). T2D prevalence may vary by sex, depending on the age group and ethnicity. There is 

roughly equal sex ratio in diagnoses made before 15 years of age (Gale and Gillespie, 2001). 

In Europeans between 15-40 years, there is a male excess whereas in non-Europeans, there is 

some female excess (Gale and Gillespie, 2001). Some lifestyle-related characteristics 

including obesity (Shai et al., 2006), physical inactivity (Sigal et al., 2006), dietary patterns 

(Shai et al., 2006, Hu et al., 2001, Salmeron et al., 2001) and stress (Heraclides et al., 2009, 

Novak et al., 2013, Siddiqui et al., 2015) have been epidemiologically identified to be 

important  predictors of T2D.  

Intermediate risk phenotypes for T2D including impaired glucose tolerance (Soderberg et al., 

2004, Shaw et al., 1999, de Vegt et al., 2001) and insulin resistance (Meigs et al., 2007, 

McKeigue et al., 1991, Everson-Rose et al., 2004) are also predictors of T2D. Pregnancy-

related determinants of T2D include parity (Nicholson et al., 2006, Araneta and Barrett-

Connor, 2010), gestational diabetes (Kim et al., 2002), and intrauterine malnutrition (Iliadou 

et al., 2004, Meier, 2009). 
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Genetic determinants  

There is ample evidence for a strong genetic basis for T2D. At the level of ethnicity, non-

European populations including Africans, Asians and South Americans are at greater risk for 

T2D (Fagot-Campagna et al., 1998, Everson-Rose et al., 2004, McKeigue et al., 1991, Shai et 

al., 2006). According to Neel (1962), in his thrifty gene hypothesis, the positive selection of 

genes that promote energy storage necessary for survival in periods of famine is now 

detrimental for survival since food is plenty, with limited physical activity. This holds true for 

the populations which have been shown to be at high risk for diabetes after undergoing 

genetic selection following a history of famine and transition into Western lifestyle 

(Kilpelainen and Franks, 2014).  

At the family level, concordance for T2D was observed in both monozygotic [~70%] and 

dizygotic twins [~25%] (Kaprio et al., 1992). Other familial evidence include a 40% lifetime 

risk of developing T2D in an offspring of a parent with T2D, and almost 70% if both parents 

are affected (Groop et al., 1996). A two-fold risk of T2D has been associated with a first 

degree family history of T2D (Lyssenko et al., 2005, Lyssenko et al., 2008).  

Following developments in high throughput genotyping, [with arrays producing an excess of 

1 million polymorphisms] (Ragoussis, 2009), and genome-wide association studies (GWAS), 

about 65 T2D genetic variants [Table 1] have been identified (Morris et al., 2012) which 

taken together, explain about 10% of the heritability of T2D (Talmud et al., 2015). The low 

heritability attributed to T2D genetic variants may imply that more partially rare genetic loci 

are likely awaiting discovery with continuing advances in genotyping and GWAS.  So far, 

studies on quantitative glycaemic traits (Dimas et al., 2014, Scott et al., 2012, Manning et al., 

2012, Harder et al., 2013, Perry and Frayling, 2008) have shown that many of these variants 

regulate beta-cell function whereas fewer regulate insulin sensitivity, in a ratio of 3:1 [Table 
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1] possibly signifying a stronger genetic component in insulin secretion compared to insulin 

resistance (Hong et al., 2001, Mills et al., 2004, Rich et al., 2004).  

Table 1: Genetic variants associated with type 2 diabetes and the risk allele frequencies 

in European population 

RS number CHR  Gene[pathway] 
Risk/ other allele Risk allele 

frequency  
rs10923931 1 NOTCH2 T/G 0.12 

rs2075423 1 PROX1[BCF] G/T 0.62 

rs780094 2 GCKR[IR] C/T 0.61 

rs10203174 2 THADA[BCF] C/T 0.89 

rs243088 2 BCL11A T/A 0.45 

rs7569522 2 RBMS1 A/G 0.44 

rs13389219 2 GRB14[IR] C/T 0.60 

rs2943640 2 IRS1[IR] C/A 0.63 

rs1801282 3 PPARG[IR] C/G 0.86 

rs1496653 3 UBE2E2[BCF] A/G 0.75 

rs12497268 3 PSMD6 G/C 0.80 

rs6795735 3 ADAMTS9 C/T 0.59 

rs11717195 3 ADCY5[BCF] T/C 0.77 

rs4402960 3 IGF2BP2[BCF] T/G 0.33 

rs17301514 3 ST64GAL1 A/G 0.13 

rs4458523 4 MAEA T/C 0.96 
rs459193 4 WFS1 G/T 0.57 
rs459193 5 ANKRD55[IR] G/A 0.70 

rs6878122 5 ZBED3 G/A 0.28 

rs7756992 6 CDKAL1[BCF] G/A 0.29 

rs4299828 6 ZFAND3 A/G 0.79 

rs3734621 6 KCNK16 C/A 0.03 

rs17168486 7 DGKB[BCF] T/C 0.19 

rs849135 7 JAZF1 G/A 0.52 

rs10278336 7 GCK[BCF] A/G 0.50 

rs17867832 7 GCC1 T/G 0.91 

rs13233731 7 KLF14[IR] G/A 0.51 

rs516946 8 ANK1[BCF] C/T 0.76 

rs7845219 8 TP53INP1 T/C 0.52 

rs3802177 8 SLC30A8[BCF] G/A 0.66 

rs10758593 9 GLIS3[BCF] A/G 0.42 

rs16927668 9 PTPRD T/C 0.24 

rs10811661 9 CDKN2A/B[BCF] T/C 0.82 

rs17791513 9 TLE4 A/G 0.91 

rs2796441 9 TLE1 G/A 0.57 

rs11257655 10 CDC123[BCF] T/C 0.23 

rs12242953 10 VPS26A G/A 0.93 

rs12571751 10 ZMIZ1 A/G 0.52 

rs1111875 10 HHEX/IDE[BCF] C/T 0.58 
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rs7903146 10 TCF7L2[BCF] T/C 0.27 

rs2334499 11 DUSP8 T/C 0.43 

rs163184 11 KCNQ1[BCF] G/T 0.50 

rs5215 11 KCNJ11[BCF] C/T 0.41 

rs1552224 11 ARAP1[BCF] A/C 0.81 

rs10830963 11 MTNR1B[BCF] G/C 0.31 

rs11063069 12 CCND2 G/A 0.21 

rs10842994 12 KLHDC5 C/T 0.80 

rs2261181 12 HMGA2[IR] T/C 0.10 

rs7955901 12 TSPAN8 C/T 0.45 

rs12427353 12 HNF1A [TCF1] G/C 0.79 

rs1359790 13 SPRY2 G/A 0.72 

rs4502156 15 C2CD4A[BCF] T/C 0.52 

rs7177055 15 HMG20A A/G 0.68 

rs11634397 15 ZFAND6 G/A 0.64 

rs2007084 15 AP3S2 G/A 0.92 

rs12899811 15 PRC1 G/A 0.31 

rs9936385 16 FTO[IR] C/T 0.41 

rs7202877 16 BCAR1[BCF] T/G 0.89 

rs2447090 17 SRR A/G 0.62 

rs11651052 17 HNF1B [TCF2] G/A 0.44 

rs12970134 18 MC4R[IR] A/G 0.27 

rs10401969 19 CILP2 C/T 0.08 

rs8182584 19 PEPD[IR] T/G 0.38 

rs8108269 19 GIPR G/T 0.31 

rs4812829 20 HNF4A A/G 0.19 

CHR: chromosome; BCF: beta cell function; IR: insulin resistance. 

Gene - environment interactions in type 2 diabetes 

A gene-environment interaction [GEI] occurs when there is a mutual dependency between a 

genetic variant and an environmental factor contributing to the development of a trait. T2D is 

a complex disease involving the interplay of genetic and environmental factors. T2D may 

develop if genetically predisposed individuals are exposed to diabetes-promoting exogenous 

factors. This is demonstrated by the fact T2D is best predicted using a combination of genetic 

variation clinical/environmental components (Lyssenko and Laakso, 2013, Talmud et al., 

2015).  

Physical activity and variants near the FTO gene are one of the most studied GEI in T2D 

(Kilpelainen and Franks, 2014). A Danish study reported the attenuation of the obesogenic 
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effect of FTO risk allele by physical activity (Andreasen et al., 2008). This followed previous 

evidence on the mediating effect of the FTO variant on T2D-BMI association (Frayling et al., 

2007). A subsequent meta-analysis of 45 inconsistent studies demonstrated an attenuation of 

the effect of FTO variant on BMI among the physically active compared to the inactive 

(Kilpelainen et al., 2011). The Pro12Ala variant of PPARG was shown to modify the 

association between physical activity and glucose regulation in people with (Adamo et al., 

2005) and without diabetes (Franks et al., 2004, Kahara et al., 2003). 

Evidence from GEI studies on nutrition and T2D also demonstrated that the carriers of this 

PPARG variant are more responsive to the beneficial effects of unsaturated fat and less 

susceptible to the adverse effects of saturated fat on glucose regulation and/or body mass 

index (Lamri et al., 2012, Luan et al., 2001, Memisoglu et al., 2003, Cornelis and Hu, 2012). 

Carriers of a TCF7L2 risk variant had a lower T2D risk when they were on low glycemic diet 

(Cornelis et al., 2009a, Fisher et al., 2009) and following some intensive lifestyle changes 

(Florez et al., 2006, Haupt et al., 2010). A large meta-analysis identified the modifying effect 

of SLC30A8 on the cross-sectional relationship between zinc intake and glucose homeostasis, 

observing a stronger negative relationship between zinc and glucose among carriers of the 

fasting glucose-raising allele (Kanoni et al., 2011). In another study, a higher whole grain 

intake was associated with smaller reductions in fasting insulin among carriers of the insulin 

raising allele of GCKR variant (Nettleton et al., 2010).  

GEI studies on T2D have also taken a wider, better-powered genetic risk score [GRS] 

approach, pooling variants into a composite score and identifying population subsets at 

greater genetic risk for T2D (Cornelis and Hu, 2012, Talmud et al., 2015). Using a GRS of 10 

variants, Cornelis et al. (2009b) found the relationship between GRS and T2D to be greater 

with increasing BMI. This finding was subsequently replicated by studies using a GRS of 49 

(Langenberg et al., 2014) and 46 variants (Andersson et al., 2013). A more western dietary 
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lifestyle, in another study using a GRS of 10 variants, increased T2D risk only among people 

with high GRS (Qi et al., 2009). 

1.2. Air pollution as an emerging environmental risk factor for type 2 diabetes 

Ambient air pollution ranks high among the risk factors for the global burden of disease (Lim 

et al., 2012). There has been growing interests in the health effects of air pollution following 

the deaths that occurred from the great smog in London in 1952.  Evidence has been growing 

on the relationships between exposure to classical air pollutants- particulate matter [PM], 

nitrogen dioxide [NO2], nitrogen oxides [NOx] and Ozone [O3] - and respiratory and 

cardiovascular mortality and morbidity (Schikowski et al., 2014, Brook et al., 2010). It is 

suggested that toxicological properties of combustion products from traffic sources may be 

most detrimental to health (Brook et al., 2010, Schlesinger et al., 2006) 

1.2.1.  Sources, composition and assessment 

Common sources and composition of air pollution 

Air pollution represents a complex mixture including gases, liquids and solid state 

components. The gaseous pollutants are usually products of local combustion processes 

[traffic and power plants] and include NO2, NOx, and sulphates. Other gaseous pollutants like 

O3 are produced as a second-stage reaction- reaction of NO2 with hydrocarbons under sunlight 

exposure- and exhibit a short half-life (Koike et al., 2005).  

The solid or liquid droplet fraction of air pollutants comprise the PM. Apart from combustion, 

these particles can also be generated from natural sources including molds, spores, soil and 

metals. Thus, the composition of PM is varied and depends on source and location (Eeftens et 

al., 2012). Following production, PM is suspended in air and travel long distances, long 

distances being inversely related to the size of the particles. Their size also determines their 

respirability, with the smaller ones going further into the respiratory tract. Based on their size, 
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PM are grouped into three categories - diameter < 10um [PM10 or coarse particles], diameter 

< 2.5um [PM2.5 or fine particles] and diameter <0.1um [ultra-fine particles] (Brook et al., 

2004). PM10 may deposit in the trachea and pulmonary bronchi while PM2.5 and UFP may 

reach the alveoli and pulmonary circulation respectively (Oberdorster et al., 2000, 

Oberdorster et al., 2002). 

Assessment of air pollution 

Due to their stability, particulate matter and nitrogen oxides are the more commonly measured 

pollutants. These pollutants’ concentrations in the air can be measured using devices that 

either measure on the spot or sample the air over long spans of time using various methods. 

Measurement of individual exposures to these pollutants can be achieved through the use of 

personal exposure measurement devices (Clench-Aas et al., 1999, Kramer et al., 2000).  

For big epidemiological studies, it becomes difficult to directly measure pollutants for each 

participant on both short and long terms. In these situations, values from the nearest air 

pollution monitoring station can be used as a proxy for an individual’s exposure (Kramer et 

al., 2010). More refined modeling techniques that incorporate several measurements from 

various devices, among other variables, can be applied to estimate an individual’s air 

pollution exposure over a long period of time. Common air pollution modeling techniques 

include proximity models, spatial interpolation models, dispersion models, land-use 

regression [LUR] models, integrated meteorological-emission models and hybrid models 

(Jerrett et al., 2005). 

Proximity models represent the most basic approach in assigning air pollution exposures 

using the assumption that distance from emission source proxies for actual exposure (Dijkema 

et al., 2011, Jerrett et al., 2005). Buffers can also be used to assign exposures where those 

within the buffer are exposed and those outside the buffers are non-exposed (Venn et al., 
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2000, Kramer et al., 2010). Interpolation models attempt to estimate air pollution at sites other 

than the locations of monitoring stations. Estimates are usually obtained at a grid centre, 

imposed over the study area and used to establish a continuous surface pollutant concentration 

(Jerrett et al., 2005). A commonly applied geostatistical technique is kriging (Jerrett et al., 

2001) which supplies the best linear unbiased estimate of the variable’s value at any point in 

the study area (Pikhart et al., 2001, Coogan et al., 2012).  

Dispersion models estimate spatial air pollutant concentrations relying on Gaussian equations 

and using data on air pollution concentrations, meteorology and emissions. Air pollution data 

used for model calibration are usually obtained from monitoring stations; meteorological data 

provide information on wind speed, direction and temperature; emissions data include local-

source emissions and traffic-based emissions (Clench-Aas et al., 1999, Liu et al., 2007, 

Andersen et al., 2012). Land-use regression models predict air pollution levels based on the 

land use and traffic characteristics at a given site. This method provides a practical approach 

to estimating traffic-related air pollution, using measured pollution concentration at a specific 

location as the response variable and land use types around the same location as the predictors 

of the measured locations (Hoek et al., 2008, Kramer et al., 2010, Puett et al., 2011). Land-use 

regression models thus rely on additional measurement campaigns. 

Integrated meteorological-emission models use chemical modules to simulate the dynamics of 

atmospheric pollutants. These models have high implementation costs, are useful for areas 

lacking comprehensive meteorological data and combine information on meteorology, 

chemistry transport, visualization and analysis to estimate air pollutant concentrations (Chen 

and Dudhia, 2001). Hybrid models combine personal or regional exposure monitoring data 

with other exposure modeling data (Liu et al., 1997, Zmirou et al., 2002) or combine different 

exposure models to optimize individual exposure estimates (Liu et al., 2012). 
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1.2.2. Health effects of air pollution 

Inhalation of air pollutants induces local pulmonary inflammation and oxidative stress and 

may generate reactive oxygen species at the airway (Ghio and Cohen, 2005, Moller et al., 

2010). Sustained exposure could lead to pulmonary inflammation resulting in the activation of 

pro-inflammatory cytokines, transcription factors and chemokines through various signaling 

pathways (Brook et al., 2010). Pulmonary oxidative stress and inflammation resulting from 

exposure to air pollutants have been shown to extend into the cardiovascular system (Ghio et 

al., 2000, Gurgueira et al., 2002, Brook et al., 2010). 

Health impacts of short-term exposure to air pollution 

Epidemiological short-term impact health studies relying on relationships between hourly or 

daily air pollution measures and health outcomes measured at comparable intervals have 

demonstrated positive relationships between air pollution exposure and daily hospitalizations 

(due to symptom exacerbations) and mortality due to pulmonary and cardiovascular 

morbidities (Brook et al., 2010, Ruckerl et al., 2011). Short-term exposure to air pollution was 

shown to increase blood pressure and triggering strokes and myocardial infarctions (Brook et 

al., 2010, Ruckerl et al., 2011). There is strong evidence for an increase in serum 

inflammatory markers [which may mediate air pollution-related morbidity] on short-term 

exposure to air pollution (Li et al., 2012, Tsai et al., 2012). 

Health impacts on long-term exposure to air pollution 

Long-term exposure to air pollution has been similarly associated with all-cause mortality and 

mortality due to cardiopulmonary causes (Brunekreef et al., 2015, Beelen et al., 2014). 

Chronic exposure to air pollution was associated with worsening of lung function in 

apparently healthy individuals, and individuals with asthma (Ruckerl et al., 2011, Gehring et 

al., 2013, Adam et al., 2015). In adults, a positive association between chronic exposure to air 
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pollution and incident asthma was reported (Perez et al., 2010). In children, air pollution 

exposure was positively associated with impaired lung function improvement that led to 

attenuation of age-dependent improvements in lung function (Gauderman et al., 2004, 

Gehring et al., 2013) and in neonates, an inverse relationship was observed between birth 

weight and long-term PM exposure (Pedersen et al., 2013). Incidence of coronary artery 

events and lung cancer were also linked to long-term exposure to PM in adults (Cesaroni et 

al., 2014, Raaschou-Nielsen et al., 2013). Long-term exposure to air pollutants was also 

shown to impact on several inflammatory biomarkers (Li et al., 2012, Mostafavi et al., 2015).  

Modifying effects of genetic variations on the health impacts of air pollution 

Functional genetic variants regulating the pathways through which air pollutants exert their 

effects on the cardiopulmonary system can modify an individual’s susceptibility. Most of the 

available evidence is on the modifying effect of oxidative stress-related variants on the 

relationship between air pollutants and cardiovascular (Zanobetti et al., 2011) and respiratory 

outcomes (Minelli et al., 2011, Curjuric et al., 2012, Curjuric et al., 2010).  

The degree of reduction in markers of heart rate variability, in relation to air pollutants, was 

associated with deletions in GSTM1 (Chahine et al., 2007), and long GT repeats of HMOX-1 

(Schwartz et al., 2005). This modification was also observed for carriers of wild type HFE 

(Park et al., 2006), cSHMT (CC) (Baccarelli et al., 2008) and IL6-572G>C (GG) (Adam et al., 

2014). GEI studies examining the modifying effect of variants [in APOE, VEGF and LPL] 

acting on autonomic function through lipid/endothelial metabolism pathway also reported a 

modifying effect of these variants on the relationship between PM2.5 and heart rate variability 

(Ren et al., 2010). Other reported GEI on air pollutants and cardiovascular outcomes include a 

modifying effect of variants of PHF11, MMP1, ITRP2 (Wilker et al., 2009), DICER, 

GEMIN3, GEMIN4 and DGCR8 (Mordukhovich et al., 2009) on the association of diastolic 

and systolic blood pressure with PM2.5; variants of GSS on the association of QT interval with 
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NO2, black carbon and carbon monoxide (Baja et al., 2010); and variants of AGTR1 and 

ALOX5 on the association of left ventricular mass with residential proximity to major 

highways (Van Hee et al., 2010).  

Similarly, in the respiratory system, a stronger effect on lung function in adults was observed 

with ozone among carriers of combined NQOI wild-type/GSTM1 null genotype (Bergamaschi 

et al., 2001, Chen et al., 2007). Carriers of the GSTP1 (Ile105Val) and long GT repeats on 

HMOX-1 also had stronger reductions in lung function in response to O3 exposure (Chen et 

al., 2007, Alexeeff et al., 2008). In another study, homozygotes of wild-type NQOI showed 

higher susceptibility to NO2 in relation to asthma (Castro-Giner et al., 2009). In children, 

homozygotes of GSTP1 (Ile105Val) showed higher susceptibility to NOx and sulphates for 

prevalent asthma (Lee et al., 2004); to O3, NOx and diesel exhaust particles for wheezing 

(Romieu et al., 2006, Melen et al., 2008, Schroer et al., 2009); to proximity to major road for 

asthma (Salam et al., 2007), and to ozone and PM for incident asthma (Islam et al., 2009). 

Also, GSTM1 variants were reported to modify relationships between traffic proximity and 

asthma symptoms in children (Salam et al., 2007). The Swiss Cohort Study on Air Pollution 

and Lung and Heart Diseases in Adults [SAPALDIA] provided first evidence on genome-

wide interactions between air pollution and lung function decline. The strongest interaction 

signal was found for a SNP in CDH13, a gene involved in adiponectin metabolism (Imboden 

et al., 2015).  

There is lack of evidence on the interactions between exposure to air pollution and genetic 

variations on metabolic outcomes including T2D and its intermediate phenotypes. 

1.3. Air pollution and Type 2 diabetes: state of knowledge  

Following the evidence supporting the inflammatory role of air pollution exposure on 

cardiopulmonary morbidities, it was thought that there could be an extension to the metabolic 
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morbidities including obesity and T2D. Cardiovascular morbidities and T2D share risk factors 

and constitute the metabolic syndrome, a pro-inflammatory condition characterized by a 

background of insulin resistance. These interrelationships led to the hypothesis that exposure 

to air pollution may contribute to the development of T2D. The following sections summarize 

the state of knowledge at the commencement of this work 

1.3.1. Potential mechanisms: Evidence from experimental studies 

Experimental evidence suggests that PM activates the innate immunity leading to production 

of inflammatory cytokines and oxidative products which may get into systemic circulation 

and create an inflammatory state (Rajagopalan and Brook, 2012, Liu et al., 2013). PM2.5 was 

shown to mediate endothelial dysfunction in both humans and animals (Mills et al., 2005, Sun 

et al., 2005) through impairments in the phosphatidyl inositol 3-kinase-Akt-endothelial nitric 

oxide synthase signaling (Sun et al., 2005). In conjunction with a high fat diet over 24 weeks, 

PM2.5 increased fasting postprandial glucose levels, insulin levels and induced insulin 

resistance in animal models (Sun et al., 2009). Similar derangements in glucose and insulin 

sensitivity measures were observed in mice models exposed to PM2.5 with or without high fat 

diet (Xu et al., 2010).  

PM2.5 exposure also led to increase in visceral adipose tissue macrophages characterized by 

increase in tumor necrosis factor-alpha, IL6 and decreased IL-10 gene expression (Sun et al., 

2009), which are characteristic of type 2 diabetes (Rajagopalan and Brook, 2012). PM2.5 

exposure was also associated with oxidative stress in the visceral adipose tissues and 

increased phosphorylation of a key cytosolic subunit of NADPH oxidase, and p47 (Xu et al., 

2010, Kampfrath et al., 2011). PM2.5 exposure was associated with defective insulin signaling 

in the liver and decreased gluconeogenesis (Zheng et al., 2013). Pathophysiologic stress in the 

endoplasmic reticulum, as a result of exposure to PM2.5 was also shown to be associated with 

abnormalities in glucose homeostasis and insulin resistance (Zheng et al., 2013, Laing et al., 
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2010). A 10-moth exposure to PM2.5 was associated with decreases in inter-scapular brown 

adipose tissue and mitochondrial size, accompanied by excess oxidative and nitrosative stress 

in brown adipose tissue. The expression of peroxisome proliferator-activated  receptor gamma 

[PPARG] coactivator 1-alpha and uncoupling protein 1 in brown adipose tissue was 

decreased, suggesting a down-regulation of insulin sensitivity in adipose tissue (Xu et al., 

2011b, Xu et al., 2011a). 

1.3.2. Evidence from epidemiological studies 

Short-term exposure to pollutants in Chile including PM10, NO2 among others, was associated 

with an increase in hospitalization risk due to acute diabetes complications (Dales et al., 

2012). In Canadian mortality studies, short- and long-term exposures to PM and gases were 

associated with diabetes-related mortality (Goldberg et al., 2006, Brook et al., 2013). O'Neill 

et al. (2007) demonstrated a decreased vascular reactivity among diabetes patients compared 

to those without diabetes following increasing levels of PM2.5, particle number, black carbon 

and sulphates over 6 days. Chuang et al. (2011) reported an increase in blood glucose and 

HbA1c levels in association with long-term exposure to PM10 among Taiwanese adults. In a 

study of children living in Iranian cities, a seven-day mean PM10 exposure was positively 

associated with homeostatic model assessment of insulin resistance (Kelishadi et al., 2009).  

Lockwood (2002) presented one of the first evidence, through an ecological correlation study, 

for a potential direct link between industrial emissions and diabetes prevalence in the US. 

Since then, epidemiological evidence from various study designs and populations has 

continued to increase, however, with inconsistent findings. Existing epidemiological evidence 

comprises five longitudinal studies (Kramer et al., 2010, Andersen et al., 2012, Puett et al., 

2011, Chen et al., 2013, Coogan et al., 2012), two cross-sectional studies (Brook et al., 2008, 

Dijkema et al., 2011) and one ecologic study (Pearson et al., 2010), with varying study 
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population, settings, markers and range of air pollution exposures, models for individual air 

pollution exposure assignment and analytic models. 

1.3.3. Research Needs 

More evidence is needed to confirm/ refute the hypothesis of a possible role of exposure to 

ambient air pollution in the development of T2D. The inconsistency in the epidemiological 

evidence summarized in section 1.3.2 warrants that a systematic quantitative synthesis is 

done, providing a precise summary estimate of the type 2 diabetes risk associated with 

exposure to air pollutants. This summary would also identify knowledge gaps for 

recommendation to future studies. 

In addition, more well-designed studies with adequate control of potential confounders from 

better representative population samples, which have not been studied, are needed for the 

generalizability of any evidence. There is also need to understand the mechanism of air 

pollution effects on a population level, and confirming the translation of observed effects in 

animal models presented in section 1.3.1 into the human population. Because of the complex 

interrelationships between non-communicable diseases and their risk factors, well-designed 

population-based epidemiologic studies may uncover other pathways that will guide the 

understanding of the potential diabetogenic effects of air pollutants. 

As demonstrated in sections 1.1.3 and 1.2.3, genotypes are important research instruments in 

understanding causalities and susceptibilities to environmental stressors. Until now, there is 

very limited evidence on the role of genetic variation in modifying the diabetogenic effects of 

exposure to air pollutants. The stability of genetic variation to confounders and the increasing 

availability of genetic information due to advancements in genotyping and reduced cost make 

the study of gene-environment interactions an ideal tool towards mechanistic understanding. 
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2. Objectives 

2.1. General objective 

In the light of the state of knowledge at the commencement of this work, on the possible role 

of air pollution in the development of T2D, and the need for more population-based 

epidemiologic evidence in establishing a direct link and contributing to mechanistic 

understanding of involved pathways, this work sets out to contribute to scientific knowledge 

on these relationships using various epidemiologic and statistical methods, making optimal 

use of the research potential of the well-characterized Swiss Cohort Study on Air Pollution 

and Lung and Heart Diseases in Adults [SAPALDIA] in answering the research questions. 

2.2. Specific objectives 

A. Investigating the relationship between long-term exposures to markers of 

ambient air pollution and T2D on a population level 

1. To systematically synthesize published population-based epidemiologic evidence 

 on the  relationship between long-term exposure to air pollution and T2D. 

 Results are presented in chapter 4 

2. To assess the relationship between long-term exposure to air pollution and T2D 

 within the SAPALDIA cohort. Results are presented in chapter 5 

B. Understanding the mechanisms involved in the cardio-metabolic impacts of long-

term exposure to ambient air pollution on a population level 

 3. To assess the relationship between long-term exposure to air pollution and 

 metabolic syndrome, taking into account, the different pathway-dependent 

 phenotypes.  Results are presented in chapter 6 
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4. To assess the modifying effect of type 2 diabetes genetic variants - in a polygenic 

 risk score approach, also reflecting the pathophysiologic pathways of T2D-on the 

relationship between long-term exposure to air pollutants and diabetes, in the 

SAPALDIA cohort. Results are presented in chapter 7 

5. To assess the modifying effect of a functional variant on the pro-inflammatory IL6 

gene on the relationship between long-term exposure to air pollutants and type 2 

diabetes, in the SAPALDIA cohort. Results are presented in chapter 8. 
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3.  Methodology 

This work answered the research questions presented in chapter 2 in two broad 

methodological parts which include a systematic review and meta-analysis and cross-sectional 

analyses using the SAPALDIA cohort. A general overview of the systematic review and 

meta-analysis, and the SAPALDIA cohort are presented in this chapter whereas the detailed 

objective-specific descriptions are presented in chapters 4-8. 

3.1.  Systematic review and meta-analysis 

At the beginning of this work, we conducted a systematic review of the published literature 

for existing epidemiologic evidence on the relationship between exposure to ambient air 

pollution and T2D. This was done to identify existing knowledge and gaps, and to guide 

further research questions. We searched electronic databases- Medline, Embase and ISI web 

of knowledge- up to 29 April 2014 and hand-searched reference lists of identified relevant 

articles (Eze et al., 2015). This work included only studies in English reporting an association 

between any air pollutant and T2D or adult diabetes, and excluded studies not reporting an 

association with adult diabetes, or reporting association with diabetes mortality or 

intermediate end-points (Eze et al., 2015).  

We synthesized the study characteristics, diabetes and air pollution definitions, and the 

reported crude and adjusted estimates of association between air pollutants and T2D. We 

pooled the effect estimates of similar pollutants, from the included population-based studies in 

meta-analysis, using both random- and fixed-effects after converting the exposures to a 

uniform scale to facilitate comparison (Eze et al., 2015). This work adhered to the preferred 

reporting items for systematic reviews and meta-analyses (Moher et al., 2010) and the meta-

analysis of observational studies in epidemiology (Stroup et al., 2000) guidelines at every 

stage of the methodology and reporting of this work. 
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3.2.  Description of the Swiss Cohort Study of Air Pollution and Lung and 

 Heart Diseases in Adults (SAPALDIA) 

3.2.1.  Study design 

SAPALDIA was initiated in 1991 to study the health impacts of air pollution exposure in 

Swiss adults, randomly sampled from the general population (Martin et al., 1997). 

Participants were drawn from eight Swiss communities with varying degrees of urbanization 

and representing the diverse geographical and climatic characteristics of Switzerland. About 

10,000 participants were enrolled in the baseline survey that focused on respiratory outcomes 

(Martin et al., 1997). At the first follow-up in 2001/2002, about 8000 participants participated 

(Ackermann-Liebrich et al., 2005). At this point, the survey was expanded to also include 

cardio-metabolic outcomes and consenting participants’ blood was sampled into a bio bank 

for blood marker and genetic assays (Ackermann-Liebrich et al., 2005). Figure 4 shows the 

location of participants of the first follow-up survey, clustered around the eight SAPALDIA 

study areas- Aarau, Basel, Davos, Geneva, Lugano, Montana, Payerne and Wald. 

 

Figure 4: Location of first follow-up SAPALDIA participants in a background of PM10 (Liu et 

al., 2007) 
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The second follow-up survey took place in 2011/2012 with 60% of the baseline participants 

taking part and further contributing to the bio bank. In over 20 years of the SAPALDIA study, 

the main health focus has been to understand the development and progression of non-

communicable diseases. Participants provided informed consent and ethical clearance was 

obtained from the Swiss national ethics committee and the ethics committees of the eight 

SAPALDIA areas. The SAPALDIA study flow is summarized in Figure 5.  

 

Figure 5: Basic characteristics of SAPALDIA cohort across 3 surveys 

At the commencement of this work, data from SAPALDIA 3 were still being collected and 

cleaned, thus it was not feasible to use the second follow-up data. This study therefore 

focused on the first follow-up survey, indicated by the red circle, where all necessary 

information for answering the research questions was available.  
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3.2.2.  Questionnaires and physical examination 

At the first follow-up survey, participants had computer-assisted interviews on their socio-

demographic, health and lifestyle characteristics. Questions included age, sex, educational 

attainment, occupation, detailed smoking history, and occupational exposure to vapours, 

dusts, gases and fumes, dietary history, alcohol consumption, detailed physical activity 

questions. Participants responded to questions about physician-diagnoses of several medical 

conditions including diabetes, hypertension, asthma, dyslipidaemia and their medication use. 

An overview of the questionnaires used in this survey can be found in Appendix 3. Physical 

examination included height, weight, blood pressure, lung function among others. Non-fasting 

glucose, HbA1c [in a subset of participants] and lipids were among the measured blood 

markers (Ackermann-Liebrich et al., 2005).  

3.2.3. Air pollution modelling for assignment of exposures 

PM10 and NO2 were modelled to participants’ residences in 1990 and 2000 using PolluMap, a 

Gaussian dispersion model which predicted mean annual pollutant concentration in both 

years. This model applied emission inventories [from traffic, agriculture, construction, 

household, commercial and industrial sources] topography, height of source and 

meteorological data (SAEFL, 2003). Air pollutant maps of the two years were temporally 

interpolated based on temporal trends at monitoring stations across Switzerland. Estimates of 

individual residential exposure for each intermediate year were obtained by combining 

interpolated pollutant maps and residential histories of participants (Liu et al., 2007). Since 

the dispersion model did not predict NO2 as well as it predicted PM10 in non-traffic sites, a 

hybrid model, incorporating land-use regression was applied to optimize the prediction of 

NO2 (Liu et al., 2012). Individual long-term pollutant exposure assignment is schematically 

depicted in Figure 6 below 
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Figure 6: Schematic representation of individual long-term exposure assignment for 

present study 

3.2.4. Genotyping and genetic data 

Genotyping of some candidate genes was done on DNA extracted from EDTA-buffered blood 

samples by 5’ nuclease real-time PCR in dedicated laboratories in Zurich, Pavia and 

Innsbruck in about 6000 participants who consented to genetic testing (Adam et al., 2014).  

In the framework of the GABRIEL study, a large collaborative study to investigate gene and 

environment interactions in asthma, about 1600 participants (asthma cases and controls) had 

whole genome genotyping using Human Illumina610-Quad bead chip (Moffatt et al., 2010). 

This yielded ~570,000 polymorphisms following quality control which included tests on 

Hardy-Weinberg equilibrium, genotyping call rate and minor allele frequencies (Moffatt et 
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al., 2010). The genotyping data was subjected to 1000 genome imputation resulting in the 

imputation of >29 million SNPs (Artigas et al., 2015). 

3.2.5. Implications for present research 

• As previously stated in section 3.2.1, this work focused only on SAPALDIA 2, the 

first follow-up survey due to the availability, at this survey, of all necessary data to 

contribute to scientific knowledge on the relationship between long-term exposure to 

air pollution and type 2 diabetes 

• This implies that this work could not study incident type 2 diabetes  

• All diabetes cases were assumed to be type 2 since >90% of adult diabetes is of type 2 

(Alberti and Zimmet, 1998). 

• Participants were identified as having diabetes if they responded ‘yes’ to a physician 

diagnosis of diabetes or reported use of diabetes medication. We identified 

undiagnosed cases if they had a non-fasting glucose ≥11.1 mmol/L or HbA1c≥0.065. 

• Clusters of cardio-metabolic symptoms (diabetes or impaired fasting glycaemia; 

hypertension; dyslipidaemias and central obesity) were identified among participants 

and metabolic syndrome was diagnosed according to WHO, IDF and NCEP-ATPIII 

criteria. Since waist circumference was not measured at first follow-up survey, but 

measured at second follow-up, we developed a validated prediction model among 

participants at the second follow-up and applied the residuals to the first follow-up 

survey to predict their waist circumference at first follow-up. This was to enable us to 

better capture central obesity instead of using only body mass index in identifying the 

cases. 
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• The markers of long-term exposure to air pollution were 10-year means of PM10 and 

NO2 up to the year before the first follow-up survey. PM2.5 and ultra-fine particles, 

which may exert stronger health effects due to their physical properties, were only 

measured at the second follow-up survey. PM2.5 currently constitutes ~80% of the 

fraction of PM10 across SAPALDIA areas, so we would expect very similar findings 

with PM2.5. 

• This work applied mixed logistic regression models with random intercepts for the 

study areas across all research questions. This was to enable us generalize our findings 

to the whole of Switzerland. Random slopes by study areas were always tested as 

sensitivity analyses. 

• There were variations in the studied populations for the various research questions 

answered in SAPALDIA. These variations were due to the requirements of the 

research questions. For instance, metabolic syndrome required the use of fasting 

samples, so we had to exclude participants who reported less than 4 hours fasting time 

before blood draw; the modifying effect of polygenic risk score required that 

participants come from the ~1600 who had whole genome genotyping whereas the IL6 

gene study required participants to come from the ~6,000 who were genotyped for 

some candidate genes. We applied inverse probability weighting and multiple 

imputations to assess potential selection bias in our findings. 

• The above points and some additional points, specific to each research question, were 

discussed in great length in the individual articles. Sensitivity analyses were applied to 

explore the robustness of our findings, given any of the limitations. 
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Introduction
Ambient air pollution ranks high among 
risk factors for the global burden of disease 
(Lim et al. 2012), and is linked to several 
chronic noncommunicable conditions such 
as cardiovascular diseases (Bauer et al. 2010; 
Brook et al. 2010; Künzli et al. 2010), 
asthma (Bui et al. 2013; Jacquemin et al. 
2012; Künzli et al. 2009), chronic obstruc-
tive pulmonary diseases (COPD) (Andersen 
et al. 2011; Schikowski et al. 2014; Zanobetti 
et al. 2008), and cancers including lung 
(Raaschou-Nielsen et al. 2013a), cervical, 
and brain cancers (Raaschou-Nielsen et al. 
2011). Persons with type 2 diabetes mellitus 
(T2DM) are at increased risk to develop 
micro- and macrovascular diseases and 
reduced lung function (Jones et al. 2014; 
Kinney et al. 2014). Air pollution has also 
been shown to be more detrimental to 
diabetic patients, worsening their clinical 
outcomes (O’Neill et al. 2005; Raaschou-
Nielsen et al. 2013b; Whitsel et al. 2009; 
Zanobetti and Schwartz 2001).

More recent evidence is supportive 
of an air pollution effect on diabetes risk. 
Experimental evidence show that possible 

pathways may include endothelial dysfunc-
tion, overactivity of the sympathetic nervous 
system (Rajagopalan and Brook 2012), 
immune response alterations in visceral 
adipose tissues; endoplasmic reticulum stress 
resulting in alterations in insulin transduc-
tion (Sun et al. 2009), insulin sensitivity, 
and glucose metabolism; and alterations in 
mitochondria and brown adipocytes (Liu et al. 
2013; Rajagopalan and Brook 2012).

Papazairopoulou et al. (2011) systema-
tically reviewed the etiologic association 
between environmental pollution and 
diabetes, taking into account studies on 
organic pollutants and secondary efects of air 
pollution on diabetic patients published up 
to November 2010. hey described a positive 
association between environmental pollution 
and prevalent diabetes, as well as increased 
morbidity and mortality among diabetic 
patients. A number of pertinent studies have 
been published since this review, and thus 
far there is, to the best of our knowledge, 
no meta-analysis of the available evidence. 
We therefore systematically identified and 
reviewed the epidemiological evidence on the 
association between air pollution and diabetes 

mellitus, and synthesized the results of studies 
on the association with T2DM. 

Methods

Search strategy. We systematically searched 
electronic literature databases [MEDLINE 
(http://www.nlm.nih.gov/bsd/pmresources.
html), EMBASE (https://www.embase.
com), and ISI Web of Science (http://www.
webofknowledge.com)] for pertinent litera-
ture published up to 3 February 2014. Terms 
used in this search included “air pollution,” 
“air pollutants,” “particulate matter,” “PM10,” 
“PM2.5,” “nitrogen dioxide,” “NO2,” “NOx,” 
“ozone,” “soot,” “smog,” “diabetes mellitus,” 
“diabetes,” “T1DM,” “T2DM,” “type 1 
DM,” “type 2 DM,” “IDDM,” “NIDDM,” 
alone and in combination. We applied no 
filters for study designs. Reference lists of 
eligible articles were searched for further 
pertinent articles. After de-duplication, titles 
and abstracts were screened for eligibility and 
potentially relevant articles were retrieved as 
full texts. Screening was performed indepen-
dently by two reviewers and any discrepancies 
were resolved by discussion.

Inclusion and exclusion criteria. We 
included only original research published 
in English as a full publication in a peer-
reviewed journal. We accepted any type of 
study design. In eligible studies, the deini-
tion of air pollution and diabetes mellitus 

Address correspondence to N.M. Probst-Hensch, 
Department of Epidemiology and Public Health, 
Swiss Tropical and Public Health Institute, 
Socinstrasse 57, 4002 Basel, Switzerland. Telephone: 
41 61 284 83 88. E-mail: Nicole.Probst@unibas.ch

Supplemental Material is available online (http://
dx.doi.org/10.1289/ehp.1307823).

The Federal Office for Forest, Environment and 
Landscape provided support for the salary costs 
related to this study. SAPALDIA (Swiss study on Air 
Pollution and Lung Disease in Adults) is supported by 
the Swiss National Science Foundation; the Federal 
Oice for Forest, Environment and Landscape; the 
Federal Oice of Public Health; the Federal Oice 
of Roads and Transport; the cantonal governments 
of Aargau, Basel-Stadt, Basel-Land, Geneva, Luzern, 
Ticino, and Zurich; the Swiss Lung League; and 
the Lung Leagues of Basel-Stadt/Basel-Landschaft, 
Geneva, Ticino, and Zurich. L.G.H. and H.C.B. are 
supported by unrestricted grants from Santésuisse.

he authors declare they have no actual or potential 
competing inancial interests.

Received: 30 October 2013; Accepted: 26 January 
2015; Advance Publication: 27 January 2015; Final 
Publication: 1 May 2015.

Association between Ambient Air Pollution and Diabetes Mellitus in Europe 
and North America: Systematic Review and Meta-Analysis

Ikenna C. Eze,1,2 Lars G. Hemkens,3 Heiner C. Bucher,3 Barbara Hoffmann,4,5 Christian Schindler,1,2 Nino Künzli,1,2 

Tamara Schikowski,1,2,4 and Nicole M. Probst-Hensch1,2

1Swiss Tropical and Public Health Institute, Basel, Switzerland; 2University of Basel, Basel, Switzerland; 3Basel Institute for Clinical 
Epidemiology and Biostatistics, University Hospital Basel, Basel, Switzerland; 4IUF-Leibniz Research Institute for Environmental 
Medicine, Düsseldorf, Germany; 5Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany

BACKGROUND: Air pollution is hypothesized to be a risk factor for diabetes. Epidemiological 
evidence is inconsistent and has not been systematically evaluated.

OBJECTIVES: We systematically reviewed epidemiological evidence on the association between air 
pollution and diabetes, and synthesized results of studies on type 2 diabetes mellitus (T2DM).

METHODS: We systematically searched electronic literature databases (last search, 29 April 2014) for 
studies reporting the association between air pollution (particle concentration or traffic exposure) and 
diabetes (type 1, type 2, or gestational). We systematically evaluated risk of bias and role of potential 
confounders in all studies. We synthesized reported associations with T2DM in meta-analyses using 
random-effects models and conducted various sensitivity analyses.

RESULTS: We included 13 studies (8 on T2DM, 2 on type 1, 3 on gestational diabetes), all 
conducted in Europe or North America. Five studies were longitudinal, 5 cross-sectional, 
2 case–control, and 1 ecologic. Risk of bias, air pollution assessment, and confounder control 
varied across studies. Dose–response effects were not reported. Meta-analyses of 3 studies on 
PM2.5 (particulate matter ≤ 2.5 µm in diameter) and 4 studies on NO2 (nitrogen dioxide) showed 
increased risk of T2DM by 8–10% per 10-µg/m3 increase in exposure [PM2.5: 1.10 (95% CI: 
1.02, 1.18); NO2: 1.08 (95% CI: 1.00, 1.17)]. Associations were stronger in females. Sensitivity 
analyses showed similar results.

CONCLUSION: Existing evidence indicates a positive association of air pollution and T2DM 
risk, albeit there is high risk of bias. High-quality studies assessing dose–response effects are 
needed. Research should be expanded to developing countries where outdoor and indoor air 
 pollution are high.

CITATION: Eze IC, Hemkens LG, Bucher HC, Hoffmann B, Schindler C, Künzli N, Schilowski T, 
Probst-Hensch NM. 2015. Association between ambient air pollution and diabetes mellitus 
in Europe and North America: systematic review and meta-analysis. Environ Health Perspect 
123:381–389; http://dx.doi.org/10.1289/ehp.1307823
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had to be clearly stated. Air pollution had 
to be outdoor (ambient, including traffic-
related), and we accepted any type of 
assessment including particle concentra-
tion in the air or indicators of long-term 
traic exposure. Diabetes mellitus had to be 
physician diagnosed or based on the use of 
antidiabetic medications. We included any 
type of diabetes mellitus (type 1, type 2, and 
gestational). Eligible studies had to report 
quantitative measures of association between 
air pollution and diabetes mellitus, and their 
95% confidence intervals (CIs) (or enough 
data to allow derivation of this association). 
We excluded studies that were based on 
the efect of blood markers, and not clearly 
defining clinical outcomes. Studies testing 
only whether diabetes status would modify 
the association between air pollution and 
health outcomes were not considered in this 
review. Animal studies were excluded.

For the meta-analysis, only studies on 
individual type 2 diabetes risk were included. 
We included all studies that quantified 
particle concentrations as “per ... μg/m3” or 
“ppb.” If the diabetes type was not clearly 
stated, we considered diagnoses of diabetes 
in nonpregnant adults (≥ 18 years age) as 
diagnoses of T2DM because > 90% of new 
diagnoses of adult diabetes is type 2 diabetes 
(Alberti and Zimmet 1998).

Data extraction. We extracted the 
following data from the eligible studies: year 

of study, study setting, study design, year of 
publication, population demographics, study 
definition of diabetes and assessment of air 
pollution exposure, confounder adjustments, 
and effect modification assessments. We 
extracted data on the efect estimates (unad-
justed and final model) of the association 
(and their 95% CIs) between air pollution 
and diabetes.

Data were extracted independently by two 
reviewers and disagreements were resolved by 
discussion.

Meta-analysis. We used random-effects 
models to synthesize the associations between 
air pollution and T2DM (Lau et al. 1997). 
Random-effect models give more weight 
to smaller studies and have typically wider 
CIs because in addition to the within-study 
variance, they also consider potential varia-
tion between the true efects that all included 
studies estimate. We used fixed-effects 
models (which assume that all studies share a 
common true efect) in a sensitivity analysis.

We used risk ratios as measure of asso-
ciation across all studies. When hazard ratios 
and incidence risk ratios were reported, 
we directly considered them as risk ratios. 
Because diabetes is not very common, we 
considered reported odds ratios as equivalent 
to risk ratios. For studies with estimates of 
association from multiple particle concen-
tration sources, we chose the estimates 
modelled at participants’ residences (land-use 

regression, kriging, or satellite-based esti-
mates). We used the efect estimates reported 
by the study authors as “main model” or 
“fully adjusted model.” We used estimates of 
association and their standard errors reported 
as “per 10 μg/m3” of exposure and we 
converted other reported quantities or units 
where necessary.

We described the between-study hetero-
geneity using the I2 metric and the between-
studies’ variance using Tau2. We assessed 
publication bias using the Egger’s test for 
asymmetry (Egger et al. 1997). We conducted 
sensitivity analyses including only studies that 
a) measured air pollution exposure before 
DM diagnosis, b) comprised both males and 
females, and c) were longitudinal, and we 
applied a fixed-effects analysis. All analyses 
were performed with Stata version 12 
(StataCorp, College Station, TX, USA) using 
the “metan” command. p-Values were two-
tailed and p < 0.05 was considered nominally 
statistically signiicant.

For reporting, we followed the Meta-
analysis Of Observational Studies in 
Epidemiology (Stroup et al. 2000) and the 
Preferred Reporting Items for Systematic 
Reviews and Meta-Analysis (Moher et al. 
2010) guidelines.

Results

he database search yielded 636 records after 
de-duplication, which were screened on title/
abstract level for eligibility (Figure 1). Sixteen 
potentially eligible articles were screened on 
full-text level, and 3 were excluded (Figure 1). 
Thirteen studies were included (Table 1). 
here were 5 longitudinal studies (Andersen 
et al. 2012; Chen et al. 2013; Coogan et al. 
2012; Krämer et al. 2010; Puett et al. 2011), 
5 cross-sectional studies (Brook et al. 2008; 
Dijkema et al. 2011; Fleisch et al. 2014; 
Malmqvist et al. 2013; van den Hooven 
et al. 2009), 2 case–control studies (Hathout 
et al. 2002, 2006), and 1 ecologic study 
(Pearson et al. 2010). Two studies were on 
type 1 diabetes (Hathout et al. 2002, 2006); 
3 studies on gestational diabetes (GDM) 
(Fleisch et al. 2014; Malmqvist et al. 2013; 
van den Hooven et al. 2009), and 8 studies 
on T2DM (Andersen et al. 2012; Brook 
et al. 2008; Chen et al. 2013; Coogan et al. 
2012; Dijkema et al. 2011; Krämer et al. 
2010; Pearson et al. 2010; Puett et al. 2011). 
Seven non-ecological studies on T2DM were 
selected for quantitative synthesis (with the 
exclusion of Pearson et al. 2010). Air pollu-
tion estimates from these studies were based 
on land-use regression (Andersen et al. 
2012; Brook et al. 2008; Dijkema et al. 
2011; Krämer et al. 2010; Puett et al. 2011), 
kriging (Coogan et al. 2012), and satellite-
derived estimates (Chen et al. 2013). All 
studies were conducted in Europe or North Figure 1. Results of systematic literature search.

1,074 records identified
through database search:
MEDLINE, EMBASE, and

ISI Web of Science

438 duplicate records
identified and excluded

620 records identified as
not addressing the research

question and excluded based 
on title/abstract screening

2 studies excluded for being abstracts 
presented in meetings without a full

publication; 1 excluded for 
not providing effect estimate

13 studies included in the
qualitative synthesis:

5 studies on type 1 or gestational 
diabetes excluded; 1 type 2 diabetes

study excluded for being an
ecologic study

636 records identified and
screened for eligibility

16 full-text articles
assessed for eligibility

7 studies on type 2 diabetes
included in the quantitative synthesis

•  8 type 2 diabetes
•  2 type 1 diabetes
•  3 gestational diabetes
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America. Tables 1 and 2 and Supplemental 
Material, Table S1, provide an overview of 
the 13 eligible studies. Table 3 summarizes 
the data reported in the studies synthesized 
in meta-analyses.

In the Supplemental Material, Table S2 
provides an overview of potential sources 
of bias and how they were assessed by the 
13 studies. hese are discussed in detail below.

Bias due to outcome assessment. As 
shown in Table 2, some studies relied on self-
reported, physician-diagnosed DM (Coogan 
et al. 2012; Dijkema et al. 2011; Krämer 
et al. 2010), whereas others linked partici-
pants to established databases to identify 
cases (Andersen et al. 2012; Brook et al. 
2008; Chen et al. 2013; Hathout et al. 2002, 
2006; Malmqvist et al. 2013). Additional 
steps were taken by some studies with self-
reported outcomes to test the validity of the 
DM diagnosis. hese steps included sending 
a follow-up questionnaire with the same ques-
tions about diabetes (Krämer et al. 2010) and 
conirmation from medical records provided 
by physicians (Coogan et al. 2012). Dijkema 
et al. (2011) further tested participants who 
did not report physician-diagnosed diabetes, 
to identify undiagnosed cases. 

Bias due to exposure assessment. The 
reviewed studies used diferent approaches to 
assess exposure of participants to air pollu-
tion, including modeled concentrations of 
various particulate matters, nitrogen oxides 
(NOx), sulfates, ozone, and various proxies 
to estimate traffic-related pollution, with 
varying buffer levels. The studies are also 
hetero geneous with regard to the lag time 
considered for exposure assessment. Only the 
Danish cohort (Andersen et al. 2012) assessed 
the impact of diferent lag times, albeit with 
little evidence for substantial differences in 
efects (see Supplemental Material, Table S1). 
In the absence of a biological basis for the 
latency between exposure and diagnosis of 
diabetes, diferent lag times should be tested. 
Overall, the diversity of exposure measure-
ment makes it difficult to compare the 
reported efect  estimates across these studies.

Bias due to confounder adjustment. Indoor 
air pollution and smoking. Beyond adjust-
ment for basic DM risk factors at baseline (see 
Supplemental Material, Table S2), Krämer 
et al. (2010) also adjusted for environmental 
tobacco smoke (ETS), indoor heating with 
fossil fuels, as well as occupational exposure 
to dust, fumes and extreme temperatures; 

Andersen et al. (2012) also adjusted for ETS. 
One study done in children considered ETS 
exposure (Hathout et al. 2006).

Demographics, physical activity, and 
dietary factors. The longitudinal studies 
uniformly adjusted for age, body mass index 
(BMI), and sex (when study population 
includes both sexes). he studies on women 
did not adjust for dietary factors, and all 
longitudinal studies but one adjusted for 
alcohol consumption and physical activity 
(see Supplemental Material, Table S1). he 
other studies assessed confounding by age and 
BMI except the case–control studies, which 
did not consider the children’s BMI in their 
models. he GDM studies mostly considered 
maternal alcohol consumption (but not 
dietary factors) whereas the cross-sectional 
T2DM studies did not consider either factor 
(see Supplemental Material, Table S1).

Socioeconomic status. There was a 
uniform adjustment for socioeconomic status 
in all studies, although on different scales. 
At the individual level, educational attain-
ment as a socioeconomic determinant was 
most commonly used across studies, and a 
few studies additionally considered house-
hold income and ethnicity (see Supplemental 

Table 1. Characteristics of the studies on the relationship between air pollution and diabetes mellitus.

Source Location Years of study Study design and duration of follow-up Population (n) and age (years) of participants

Krämer et al. 2010a Ruhrgebiet, Germany 1990–2006 Longitudinal: Study on the Inluence of Air Pollution 
on Lung Inlammation and Aging 
Follow-up: 16 years

n = 1,775 Caucasian women without 
T2DM at baseline, 54–55 years

Andersen et al. 2012a Copenhagen and Aarhus, 
Denmark

(1993–1997) –2006 Longitudinal: Danish Diet, Cancer and Health cohort 
Follow-up: 9.7 years

n = 51,818 Caucasians without DM at 
baseline, 50–65 years

Puett et al. 2011a Metropolitan Statistical 
Areas (MSA) in north-
eastern and midwestern 
states of USA

1989–2009 Longitudinal, with 2 cohorts: Nurses’ Health Study 
and Health Professionals Follow-up Study 
Follow-up: 20 years

n = 74,412 female nurses 30–55 years 
and 15,048 male health professionals 
40–75 years, without T2DM at baseline

Coogan et al. 2012a Los Angeles, California, 
USA

1995–2005 Longitudinal: Black Women’s Health Study 
Follow-up: 10 years

n = 3,992 African-American women, 
without DM at baseline and 21–69 years

Chen et al. 2013a Ontario, Canada (1996–2005) –2010 Longitudinal 
Follow-up: 8 years

n = 62,012 Canadians without DM, 
≥ 35 years

Brook et al. 2008a Hamilton and Toronto, 
Ontario, Canada

1992–1999 Cross-sectional n = 7,634 patients who attended two 
respiratory clinics in Hamilton and 
Toronto, ≥ 40 years

van den Hooven et al. 2009 Rotterdam, Netherlands 2002–2006 Cross-sectional: Generation R study n = 7,399 pregnant women, who had 
delivery date in the study period, 
21–38 years

Dijkema et al. 2011 Westfriesland, Netherlands 1998–2000 Cross-sectional: Hoorn Screening Study for T2DM n = 8,018 Caucasian residents, 
50–75 years

Malmqvist et al. 2013 Scania, Sweden 1999–2005 Cross-sectional: The Swedish Medical Birth Registry. n = 81,110 women who had singleton 
deliveries during the study period

Hathout et al. 2006 California, USA 2002–2003 Case–control 
Follow-up: retrospectively from birth until 
diagnosis of T1DM

n = 402 children (102 with T1DM and 
300 age-matched controls), 1–12 years, 
receiving care at Loma Linda University 
Pediatric Center

Hathout et al. 2002 California, USA 2002 Case–control 
Follow-up: retrospectively from birth until 
diagnosis of T1DM

n = 100 children (61 cases: 30 had onset 
≤ 5 years and 31 > 5 years) (39 age-
matched controls: 19 were ≤ 5 years 
and 20 were > 5 years) receiving care at 
Loma Linda University Pediatric Center

Fleisch et al. 2014 Boston, Massachusetts, 
USA

1999–2002 Cross-sectional: Project Viva Cohort n = 2,093 second-trimester pregnant 
women without known diabetes

Pearson et al. 2010 USA 2004–2005 Ecologic n = 3,082 counties of USA

Abbreviations: T2DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus. 
aIncluded in meta-analysis.
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Material, Table S1). Few studies considered 
spatial socioeconomic confounding in forms 
of unemployment rate, urban/rural residence, 
neighborhood income and neighborhood 

socioeconomic status score (see Supplemental 
Material, Table S1). Overall, there was sui-
cient consideration for individual-level socio-
economic status, but the insuicient control 

of area-level socioeconomic status may 
increase the risk of bias.

Co-morbidities. Some co-morbidities 
associated with diabetes may also be associated 

Table 2. Exposure and outcome deinitions.

Source Outcome Deinition of outcome Exposure Deinition of exposure Exposure estimates

Krämer et al. 
2010a 

Incident 
T2DM

Self-reported, 
physician-diagnosed 
T2DM

PM10, PM, 
PM2.5, NO2, 
and trafic 
exposure

5-year means of PM10 and NO2 in an 8-km 
grid from monitoring stations, before 
baseline

Median (25th–75th percentile) 
Monitoring stations (μg/m3):  
 PM10: 46.9 (44–54.1)  
 NO2: 41.7 (23.3–48.2)

Trafic PM and NO2 in a 1-km grid, in 
1 year, from emission inventory

Trafic emission inventory (tons/year/km2):  
 PM: 0.54 (0.22–1.09)

Trafic PM2.5 and NO2
b from a (1-year 

measurement) LUR model. Distance from 
the next major road with > 10,000 cars 
per day

NO2: 12 (5.4–24.4) 
LUR soot (10–5 m): 1.89 (1.67–2.06) 
NO2 (μg/m3): 34.5 (23.8–38.8) 
% participants living < 100 m from busy road: 15.8

Andersen et al. 
2012a 

Incident DM Conirmed DM cases 
from the Danish 
National Diabetes 
Register

NO2, NOx, 
trafic 
exposure

35b- and 15-year mean levels of NO2 
and NOx, from the Danish AirGIS model 
before baseline

Median (IQR) 
35-year NO2 and NOx (μg/m3): 14.5 (4.9) and 20.9 (11.4)  
15-year NO2 and NOx (μg/m3): 15.3 (5.6) and 22.1 (12)

1-year mean NO2 and NOx at baseline 1-year NO2 and NOx at baseline (μg/m3): 15.4 (5.6) and 
20.3 (10.9)

1-year mean NO2 and NOx at follow-up 1-year NO2 and NOx at follow-up (μg/m3): 15.2 (5.7) and 
21.5 (12)

Major road (with annual trafic density of 
≥ 10,000) within 50 m of residence.

% major road within 50 m: 8.1

Trafic load within 100 m of residence 
(103 vehicles/km/day)

Trafic load within 100 m (103 vehicles/km/day): 0.34 
(1.3)

Puett et al. 
2011a 

Incident 
T2DM

DM according to the 
National Diabetes 
Data Group Criteriac 

PM2.5, PM10, 
PM10–2.5

Average PM2.5
b, PM10, and PM10–2.5 

concentrations, from LUR model, 
12 months before diagnosis

Mean ± SD 
PM2.5 (μg/m3): 18.3 ± 3.1 for HPFS and 17.5 ± 2.7 for NHS
PM10 (μg/m3): 28.5 ± 5.5 for HPFS and 26.9 ± 4.8 for NHS 
PM10–2.5 (μg/m3): 10.3 ± 3.3 for HPFS and 9.4 ± 2.9 for NHS

Coogan et al. 
2012a 

Incident 
T2DM

Self-reported, 
physician-diagnosed 
T2DM

PM2.5, NOx, 
trafic 
exposure

1-year mean PM2.5
b during follow-up, 

assigned by kriging model
Mean ± SD

PM2.5 (μg/m3): 20.7 ± 2.1 
Median (25th–75th percentile) PM2.5 (μg/m3): 21.1 
(20.3–21.6)

1-year mean NOx the year after follow-up, 
assigned by LUR model

Mean ± SD 
NOx (ppb): 43.3 ± 11 

Median (25th–75th percentile) 
NOx (ppb): 41.6 (36.9–49.2)

Chen et al. 
2013a 

Incident DM Physician-diagnosed 
DM from Ontario 
database

PM2.5 6-year mean PM2.5
b during baseline/ 

follow-up, obtained from satellite-based 
estimates at 10 x 10 km resolution

Mean (range) PM2.5 (μg/m3): 
 10.6 (2.6–19.1)

Brook et al. 
2008a 

Prevalent 
DM

Physician-diagnosed 
DM from Ontario 
Health Insurance Plan 
and Ontario Health 
Discharge Database

NO2 NO2
b assigned by LUR models developed 

from mean ield measurements within 
3 years, from Hamilton and Toronto, 
Ontario, Canada

Median (25th–75th percentile) 
NO2 (ppb) 

Males: 
Hamilton: 15.2 (13.9–17.1); Toronto: 23 (20.8–25) 

 Females:
Hamilton: 15.3 (14–17); Toronto: 22.9 (20.8–24.7)

van den Hooven 
et al. 2009 

Prevalent 
gestational 
DM (GDM)

GDM diagnosed 
according to the 
Dutch midwifery and 
obstetric guidelines

Trafic 
exposure

Distance-weighted trafic density (DWTD) 
within a 150-m radius around residence 
(vehicles/24 hr × m)

Median (P25–P75) 
DWTD (vehicles/24 hr × m): 5.5 × 105 

(1.6 × 105 – 1.2 × 106)
Proximity to a major road (> 10,000 

vehicles/day)
Proximity to a major road (m): 143 (74–225)

Dijkema et al. 
2011 

Prevalent 
T2DM

Self-reported 
physician-diagnosed 
T2DM. Laboratory-
based diagnosis for 
undetected cases

NO2, trafic 
exposure

1-year mean NO2 assigned by LUR model Median (25th–75th percentile) 
NO2 (μg/m3): 15.2 (14.2–16.5)

Distance to the nearest main road 
(≥ 5,000 vehicles/day)

Distance to nearest main road (m): 140 (74–220)

Trafic low at the nearest main road 
(vehicles/24 hr)

Trafic low at the nearest main road (103 vehicles/24 hr): 
7.31 (5.87–9.67)

Total trafic per 24 hr on all roads within a 
250-m circular buffer around the address

Trafic within 250-m buffer (103 vehicles/24 hr): 
680 (516–882)

Malmqvist 
et al. 2013 

Prevalent 
GDM

GDM as deined in the 
Swedish Medical 
Birth Registry

NOx, trafic 
exposure

Monthly and trimester means of NOx 
assigned by dispersion modeling at a 
spatial resolution of 500 × 500 m over the 
duration of the pregnancy

Quartiles of NOx exposure (μg/m3): 
Q1: 2.5–8.9  
Q2: 9.0–14.1  
Q3: 14.2–22.6  
Q4: > 22.7

Trafic density within a 200-m radius Categories of trafic density within 200 m (vehicles/min):
1: no road  
2: < 2  
3: 2–5  
4: 5–10  
5: > 10

Table continued
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with air pollution. hese co-morbidities may 
include hypertension, myocardial infarc-
tion, stroke, asthma, and chronic obstruc-
tive pulmonary disease (Brook et al. 2010; 
Pelle et al. 2012; Vojtková et al. 2012). he 
longitudinal studies considered some of these 
co-morbidities (see Supplemental Material, 
Table S1). Participants with co-morbidities 
were not excluded from any T2DM study.

Effect modification. Several studies 
reported stronger efects in women compared 
with men (Andersen et al. 2012; Brook et al. 
2008; Chen et al. 2013; Dijkema et al. 2011). 
Other subgroups reported with potentially 
increased susceptibility include subjects with 
low education (Andersen et al. 2012; Chen 
et al. 2013; Krämer et al. 2010), COPD 

(Andersen et al. 2012; Chen et al. 2013), 
asthma (Andersen et al. 2012), higher waist-
to-hip ratio (Andersen et al. 2012), and higher 
level of subclinical inflammation (Krämer 
et al. 2010), nonsmokers (Andersen et al. 
2012), and subjects < 50 years or > 65 years 
of age (Chen et al. 2013) (see Supplemental 
Material, Table S1). No study assessed inter-
action between different air pollutants, air 
pollutants and noise, or interaction between 
air pollutants and genetic polymorphisms.

Loss to follow-up. Losses to follow-up 
and healthy survivor bias present common 
problems in epidemiological studies. Puett 
et al. (2011) reported a loss of < 10% in both 
studied cohorts over 20 years of follow-up, 
and Coogan et al. (2012) reported < 20% 

loss of cohort over 10 years of follow-up. 
he other longitudinal studies did not report 
losses to follow-up. None of the studies 
included sensitivity analyses to estimate the 
efect of the healthy survivor bias.

Publication bias. Although selective 
reporting and publication bias cannot be 
ruled out, considering a high probability that 
negative findings will not be published, we 
found no indication for such sources of bias 
(p-value of Egger’s test > 0.2). Some studies 
reported negative findings. However, most 
studies had several markers of air pollu-
tion available, and it remains unclear if 
some markers have been measured but not 
reported, so some selective reporting may 
have occurred.

Table 2. Continued.

Source Outcome Deinition of outcome Exposure Deinition of exposure Exposure estimates

Hathout et al. 
2006 

Prevalent 
T1DM

Physician-diagnosed 
T1DM from the 
database of Loma 
Linda University 
Pediatric Center

O3, NO2, SO2, 
SO4, and 
PM10

Average monthly pollutant exposure 
(obtained from the U.S. EPA and 
California Air Resources Board) from 
birth until diagnosis for cases and until 
enrollment for controls, assigned to 
residential ZIP codes

Mean (95% CI) 
For cases:  
 O3: 29.4 (28, 30.8) ppb  
 SO4: 3.6 (3.4, 3.87) μg/m3 

 SO2: 1.6 (1.41, 1.75) ppb  
 NO2: 30.3 (28.4, 32.3) ppb  
 PM10: 48.6 (45.9, 51.3) μg/m3 
For controls:  
 O3: 25.8 (25.2, 26.3) ppb 
 SO4: 3.3 (3.2, 3.36) μg/m3  
 SO2: 1.5 (1.42, 1.5) ppb 
 NO2: 29.7 (29.1, 30.4) ppb 
 PM10: 47.4 (46.3, 48.5) μg/m3

Hathout et al. 
2002 

Prevalent 
T1DM

Physician-diagnosed 
T1DM from the 
database of Loma 
Linda University 
Pediatric Center

O3, NO2, SO2, 
SO4, and 
PM10

Average monthly pollutant exposure 
(obtained from the U.S. EPA and 
California Air Resources Board) from 
birth until diagnosis for cases and until 
enrollment for controls, assigned to 
residential ZIP codes

Mean ± SD
For cases: 
 O3: 32.5 ± 5.22 ppb 
 SO4: 5.52 ± 0.75 μg/m3 

 SO2: 0.67 ± 0.55 pphm 
 NO2: 23.7 ± 7.91 ppb 
 PM10: 59.3 ± 12.9 μg/m3  
For controls:  
 O3: 26.7 ± 9.6 ppb 
 SO4: 5.88 ± 1.04 μg/m3 

 SO2: 1.29 ± 0.92 pphm 
 NO2: 24.7 ± 7.26 ppb 
 PM10: 49.6 ± 14.7 μg/m3

Fleisch et al. 
2014

Prevalent 
GDM

Failed GCTd with ≥ 2 
high values on the 
OGTTe

PM2.5 and black carbon from central sites 
within 40 km of residence

Mean ± SD 
From central sites:  
 PM2.5: 10.9 ± 1.4 μg/m3  
 Black carbon: 0.9 ± 0.1 μg/m3

PM2.5 and black carbon from spatio-
temporal models

From spatiotemporal models:  
 PM2.5: 11.9 ± 1.4 μg/m3 

 Black carbon: 0.7 ± 0.2 μg/m3

Neighborhood trafic density 
[(vehicles/day) × km] within 100 m

Trafic density: 1,621 ± 2,234 (vehicles/day × km)

Home roadway proximity (≤ 200 m) Roadway proximity: 281 ± 13
Pearson et al. 

2010 
Prevalent 

DM
County-level DM 

prevalence from 
the Centers for 
Disease Control and 
Prevention

PM2.5 County annual mean level of PM2.5 
obtained from the U.S. EPA as 36-km 
model, 12-km model, and surface monitor 
data

PM2.5 (μg/m3):
2004: 
 36-km model: Q1 mean = 7.71; Q4 mean = 12.11 
 12-km model: Q1 mean = 7.78; Q4 mean = 11.77 
 Ground data: Q1 mean = 9.43; Q4 mean = 12.69  
2005: 

 36-km model: Q1 mean = 7.69; Q4 mean = 12.75  
 12-km model: Q1 mean = 8.41; Q4 mean = 12.38  
 Ground data: Q1 mean = 9.51; Q4 mean = 13.65

Abbreviations: AirGIS, Air geographic information system; DM, diabetes mellitus; DWTD, distance-weighted trafic density; EPA, Environmental Protection Agency; GDM, gestational 
diabetes mellitus; HPFS, Health Professionals Follow-up Study; LUR, land-use regression; NHS, Nurses’ Health Study; NO2, nitrogen dioxide; NOx, nitrogen oxides; O3, ozone; OGTT, oral 
glucose tolerance test; PM, particulate matter; PM10, particulate matter ≤ 10 μm in diameter; PM10–2.5, particulate matter between 2.5 and 10 μm in diameter; PM2.5, particulate matter 
≤ 2.5 μm in diameter; SO2, sulfur dioxide; SO4, sulfate; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus. 
aStudies included in meta-analysis. bAir pollution estimates pooled in the meta-analysis. cElevated plasma glucose concentration on at least two different occasions, one or more DM 
symptoms and a single elevated plasma glucose concentration, or treatment with hypoglycemic medication. dGlucose challenge test: serum glucose 1 hr after a non-fasting 50-g oral 
glucose load. eOral glucose tolerance test: serum glucose 3 hr after a fasting 100-g glucose load. 



Eze et al.

386 VOLUME 123 | NUMBER 5 | May 2015 • Environmental Health Perspectives

Meta-analysis  of studies reporting 
the association of air pollution and risk of 
T2DM. Results of seven studies reporting on 
risk of T2DM [three on particulate matter 
with diameter ≤ 2.5 μm (PM2.5) and four 
on nitrogen dioxide (NO2)] were consid-
ered for quantitative synthesis. All studies 
synthesized for PM2.5 were longitudinal. For 
NO2, two were longitudinal and two were 
cross-sectional.

The pooled relative risks of T2DM per 
10-μg/m3 increase in exposure to PM2.5 
(Figure 2) and NO2 (Figure 3) were 1.10 
(95% CI: 1.02, 1.18) and 1.08 (95% CI: 
1.00, 1.17), respectively. he efect was more 
pronounced in females than in males [NO2: 
1.15 (95% CI: 1.05, 1.27) vs. 0.99 (95% CI: 
0.93, 1.07); PM2.5: 1.14 (95% CI: 1.03, 
1.26) vs. 1.04 (95% CI: 0.93, 1.17), respec-
tively] per 10-μg/m3 increase in exposure. he 
relative risks were similar across all sensitivity 
analyses (Table 4). We observed substantial 
statistical heterogeneity with NO2 studies 
(Table 4). Egger’s test was consistently > 0.2 
(p-value) in all cases.

Discussion

In this systematic review, we considered 
13 studies on different types of diabetes. 
The identified epidemiological evidence is 
highly diverse: Levels, timing, and assess-
ment of exposure varied, as did the outcome 
definitions, measures of association, and 
degree of confounder control. The studies 
included persons with different age ranges 
and settings, and some populations included 
only women. Although there is a risk of bias, 
the results of the meta-analyses indicate a 
positive association between traic-related air 
 pollution and T2DM.

Pathophysiologic mechanisms of DM–
air pollution association. There is strong 
evidence supporting the role of inflamma-
tion in T2DM (Donath and Shoelson 2011; 
Sjöholm and Nyström 2006). Chronic 
activation of inlammatory mechanisms can 
contribute to chronic insulin resistance and 
subsequent T2DM. Air pollution has been 
shown to be inlammatory (Liu et al. 2013; 
Rajagopalan and Brook 2012). Its potential 
mechanisms in mediating T2DM include 
pulmonary and systemic inflammation, 
directly releasing cytokines, alterations in 
glucose homeostasis through defective insulin 
signaling in tissues, immune cells activation 
in visceral adipose tissues potentiating inlam-
mation (Sun et al. 2009; Xu et al. 2010; Yan 
et al. 2011), and endoplasmic reticulum 
stress in the lung and liver in relation with 
hepatocyte and alveolar cells (Liu et al. 2013; 
Rajagopalan and Brook 2012). PM2.5 also 
acts as a hypothalamic stressor, inducing 
peripheral inflammation and abnormali-
ties in glucose metabolism (Liu et al. 2013; 

Purkayastha et al. 2011). PM2.5 was also 
shown to mediate dysfunctional brown 
adipose and mitochondrial tissues (Liu et al. 
2013; Rajagopalan and Brook 2012), which 
is one of the systemic pathologies in T2DM 
(Lowell and Shulman 2005).

Chuang et al. (2010) demonstrated 
that exposure to air pollution [PM ≤ 10 μm 
(PM10) and ozone] exposure leads to altera-
tion in blood pressure, blood lipids, and 
hemoglobin A1c, a marker of blood glucose 
control. Kelishadi et al. (2009) found positive 

associations between exposure to PM10, NO2, 
and insulin resistance among children in Iran. 
hiering et al. (2013) later found a positive 
association between residential proximity to 
traic, particulate matter (PM10), NO2, and 
risk of insulin resistance [homeostatic model 
assessment (HOMA-IR)] among children 
who were part of a birth cohort in Germany. 
Exposure to traic-related air pollution is also 
associated with impaired glucose tolerance in 
pregnancy (Fleisch et al. 2014). Experimental 
evidence also exists for the association of 

Figure 2. P M2. 5 and risk of T2DM. Where I2 is the variation in effect estimates attributable to heterogeneity, 
D + L (DerSimonian and Laird) overall is the pooled random effect estimate of all studies. I-V (inverse 
variance) overall is the pooled ixed effects estimate of all studies. Weights are from random-effects 
analysis. %Weight (D + L) is the weight assigned to each study, based on the inverse of the within- and 
between-study variance. The size of the blue boxes around the point estimates reflects the weight 
assigned to each study. The summarized studies were adjusted for age, sex, BMI, smoking, alcohol 
consumption, and socioeconomic status. 

  %
 Risk ratio  Weight
Source (95% CI) (D + L) n

Males 

Puett et al. 2011 1.18 (0.82, 1.72) 4.20 15,048

Chen et al. 2013 1.03 (0.91, 1.16) 39.70 27,905

D + L subtotal (I 2 = 0.0%, p = 0.486) 1.04 (0.93, 1.17) 43.90

I-V subtotal 1.04 (0.93, 1.17)

Females

Puett et al. 2011 1.05 (0.87, 1.26) 17.07 74,412

Coogan et al. 2012 1.63 (0.78, 3.42) 1.06 3,992

Chen et al. 2013 1.17 (1.03, 1.32) 37.97 34,107

D + L subtotal (I 2 = 0.0%, p = 0.405) 1.14 (1.03, 1.26) 56.10

I-V subtotal 1.14 (1.03, 1.26)

D + L overall (I 2 = 0.0%, p = 0.473) 1.10 (1.02, 1.18) 100.00

I-V overall 1.10 (1.02, 1.18)

Reduced risk Increased risk 

10.5 2 4

Risk ratio

Table 3. Data synthesized for meta-analysis.

Source Population Pollutant
Assignment of  

individual exposure
Reported fully adjusted estimate  

(95% CI)a

Krämer et al. 2010 Females NO2 LUR model 1.42 (1.16, 1.73) per 15 μg/m3 of exposure
Andersen et al. 2012 Females NO2 LUR model 1.07 (1.01, 1.13) per 4.9 μg/m3 of exposure

Males NO2 LUR model 1.01 (0.97, 1.07) per 4.9 μg/m3 of exposure
Both NO2 LUR model 1.04 (1.00, 1.08) per 4.9 μg/m3 of exposure

Brook et al. 2008 Females NO2 LUR model 1.04 (1.00, 1.08) per 1 ppb of exposure
Males NO2 LUR model 0.99 (0.95, 1.03) per 1 ppb of exposure
Both NO2 LUR model 1.015 (0.98, 1.049) per 1 ppb of exposure

Puett et al. 2011 Females PM2.5 LUR model 1.02 (0.94, 1.09) per 4 μg/m3 of exposure
Males PM2.5 LUR model 1.07 (0.92, 1.24) per 4 μg/m3 of exposure
Both PM2.5 LUR model 1.03 (0.96, 1.10) per 4 μg/m3 of exposure

Chen et al. 2013 Females PM2.5 Satellite-based estimates 1.17 (1.03, 1.32) per 10 μg/m3 of exposure
Males PM2.5 Satellite-based estimates 1.03 (0.91, 1.16) per 10 μg/m3 of exposure
Both PM2.5 Satellite-based estimates 1.11 (1.02, 1.21) per 10 μg/m3 of exposure

Coogan et al. 2012 Females PM2.5 Kriging model 1.63 (0.78, 3.44) per 10 μg/m3 of exposure
Dijkema et al. 2011 Females NO2 LUR model 1.03 (0.90, 1.16) per 10 μg/m3 of exposure

Males NO2 LUR model 0.97 (0.87, 1.09) per 10 μg/m3 of exposure
Both NO2 LUR model 1.00 (0.94, 1.06) per 10 μg/m3 of exposure

Abbreviations: LUR, land-use regression; NO2, nitrogen dioxide; PM2.5, particulate matter ≤ 2.5 μm in diameter. 
aAll odds ratio, hazard ratio, and incident risk ratio estimates were converted to per 10 μg/m3 of exposure for meta-
analysis. Estimates from Dijkema et al. (2011) were derived from reported nonlinear estimates. 
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air pollution and type 1 diabetes (T1DM). 
Ozone is known to alter T-cell dependent 
immune response, predisposing to auto-
immune diseases (Krishna et al. 1998). It 
may also damage the beta cells of the pancreas 
possibly as a result of pulmonary reactive 
oxidative species production and oxidative 
stress, leading to reduced insulin secretion 
(Brenner et al. 1993; Kelishadi et al. 2009). 
Together with sulfate, ozone may have apop-
totic properties on the beta cells (Hathout 
et al. 2006). he use of antioxidant prophy-
laxis for T1DM also points to the possibility 
of oxidative or inlammatory mechanisms in 
T1DM (Albright and Goldstein 1996).

Strengths and limitations. Although 
we applied a very broad search strategy and 
accepted any study design, there are few 
published studies on the association of air 
pollution with T1DM or GDM. In addition, 
some studies did not allow distinguishing 
adult T1DM from T2DM. Only three of the 
seven synthesized studies explicitly analyzed 
the T2DM risk (Coogan et al. 2012; Dijkema 
et al. 2011; Krämer et al. 2010). However, 
because > 90% of adult diabetes diagnoses are 
T2DM, this is unlikely to substantially afect 
the conclusions. Overall, the available data 
are not suicient to evaluate associations with 
these diabetes types.

Our analysis on the association with 
T2DM was based on results from primary 
studies with unclear to high risk of bias and 
high diversity among the included studies. 
We took this into account by using effect 
estimates modeled to participants’ residences, 
converting all effect estimates to a compa-
rable unit (per 10 μg/m3 of exposure), 
stratifying analyses by sex, including only 
longitudinal studies, and performing other 
sensitivity analyses.

he high diversity among the studies was 
reflected in our observation of substantial 
heterogeneity in the meta-analysis for NO2 
(Table 4), which synthesized longitudinal and 
cross-sectional data. This was not observed 
for PM2.5, for which all studies were longi-
tudinal. However, the number of studies was 
too small to further analyze this heterogeneity.

Prospects. Future studies should report 
scales of exposure assessment (pollutant quanti-
ication and traic exposure proxies) that allow 
direct comparisons with existing evidence. 
It would be important to apply comparable 
models in assigning exposure to participants. 
Ideally, traffic distance measures should be 
replaced by objective particle concentration 
measures and models of near-road traffic-
related pollutants such as ultraine particles of 
elemental carbon. Also, it would be important 
to consider various time lags for exposure.

The studies on T1DM found associa-
tions with ozone and sulfates. hese pollut-
ants can be included in the future models 

for T2DM, because pollutants usually occur 
together in different proportions. Carbon 
monoxide, lead, oxidative metals, volatile 
organic compounds, and polycyclic aromatic 
hydrocarbons are other traic-related pollut-
ants that may be more deleterious to health 
but have been given less consideration.

Adjusting for noise exposure is also essen-
tial because air pollution and noise can be 
correlated (Foraster 2013; Kim et al. 2012; 
Ross et al. 2011; Tétreault et al. 2013) and 
share health effects. Sørensen et al. (2013) 
recently reported a positive association 
between road-traffic noise and incident 
diabetes, and another large meta-analysis of 
10 epidemiologic studies by Cappuccio et al. 
(2010) found that both quality and quantity 
of sleep, which are related to noise, were 

signiicant predictors of the risk of T2DM. 
Consideration of noise is thus necessary in 
assessing the health efects of air pollution.

Also, socioeconomic variables should 
be adjusted on the spatial scale, apart from 
individual-level adjustment. Consideration 
for this spatial confounding is necessary when 
individual diferences in health outcome are 
associated with neighborhood character-
istics such as neighborhood socioeconomic 
status (Sheppard et al. 2012). It is crucial 
that studies on diabetes risk consider estab-
lished diabetes risk factors including obesity, 
physical activity, and nutrition. Active 
and passive smoking should be considered 
when assessing the effect of air pollution. 
Lack of information on these creates a high 
risk for bias.

Figure 3. NO 2 and risk of T2DM. Where I2 is the variation in effect estimates attributable to heterogeneity, 
D + L (DerSimonian and Laird) overall is the pooled random-effects estimate of all studies. I-V (inverse 
variance) overall is the pooled ixed-effects estimate of all studies. Weights are from random-effects 
analysis. %Weight (D + L) is the weight assigned to each study, based on the inverse of the within- and 
between-study variance. The size of the blue boxes around the point estimates reflects the weight 
assigned to each study. The summarized studies were adjusted for age, sex, BMI, smoking, and 
socioeconomic status. 

  %
 Risk ratio Weight
Source  (95% CI) (D + L) n

Males 

Andersen et al. 2012 1.02 (0.92, 1.13) 18.12 24,545
Brook et al. 2008 0.95 (0.76, 1.18) 8.83 3,452

Dijkema et al. 2011 0.97 (0.87, 1.09) 16.64 3,949
D + L subtotal (I 2 = 0.0%, p = 0.744) 0.99 (0.93, 1.07) 43.59
I-V subtotal 0.99 (0.93, 1.07)

Females

Brook et al. 2008 1.23 (1.00, 1.51) 9.41 4,182
Krämer et al. 2010 1.26 (1.11, 1.44) 14.80 1,775
Andersen et al. 2012 1.15 (1.02, 1.29) 16.64 27,273

Dijkema et al. 2011 1.03 (0.90, 1.16) 15.57 4,069
D + L subtotal (I 2 = 46.1%, p = 0.135) 1.15 (1.05, 1.27) 56.41

I-V subtotal 1.15 (1.07, 1.23)

D + L overall (I 2 = 58.4%, p = 0.025) 1.08 (1.00, 1.17) 100.00
I-V overall 1.07 (1.02, 1.13)

Reduced risk Increased risk 
10.5 2

Risk ratio

Table 4. Sensitivity analyses and heterogeneity measures.

Analyses Population
NO2  

OR (95% CI)

Heterogeneity 
measures  

[I 2 (%); p-value; Tau2]
PM2.5  

OR (95% CI)

Heterogeneity 
measures  

[I 2 (%); p-value; Tau2]

Main model (random 
effects)

Males 0.99 (0.93, 1.07) 0; 0.744; 0 1.04 (0.93, 1.17) 0; 0.486; 0
Females 1.15 (1.05, 1.27) 46.1; 0.135; 0.0042 1.14 (1.03, 1.26) 0; 0.405; 0
Overall 1.08 (1.00, 1.17) 58.4; 0.025; 0.0063 1.10 (1.02, 1.18) 0; 0.473; 0

Studies assessing air 
pollution before DM 
diagnosis

Males 1.02 (0.92, 1.13) NA; NA; 0 1.04 (0.93, 1.17) 0; 0.486; 0
Females 1.20 (1.10, 1.30) 12.5; 0.285; 0.0006 1.13 (1.02, 1.25) 0; 0.344; 0
Overall 1.12 (1.05, 1.19) 69.8; 0.036; 0.008 1.09 (1.01, 1.18) 0; 0.489; 0

Studies including both 
men and women

Males 0.99 (0.93, 1.07) 0; 0.744; 0 1.04 (0.93, 1.17) 0; 0.486; 0
Females 1.11 (1.01, 1.23) 30.2; 0.238; 0.0023 1.13 (1.02, 1.25) 0; 0.344; 0
Overall 1.05 (0.98, 1.12) 34.9; 0.175; 0.0024 1.09 (1.01, 1.18) 0; 0.489; 0

Only longitudinal 
studies

Males 1.02 (0.92, 1.13) NA; NA; 0 1.04 (0.93, 1.17) 0; 0.486; 0
Females 1.20 (1.10, 1.30) 12.5; 0.285; 0.0006 1.14 (1.03, 1.26) 0; 0.405; 0
Overall 1.12 (1.05, 1.19) 69.8; 0.036; 0.008 1.10 (1.02, 1.18) 0; 0.473; 0

Meta-analysis using 
ixed-effects model

Males 1.00 (0.93, 1.07) 0; 0.744 1.04 (0.93, 1.17) 0; 0.486
Females 1.15 (1.07, 1.23) 46.1; 0.135 1.14 (1.03, 1.26) 0; 0.405
Overall 1.07 (1.02, 1.13) 58.4; 0.025 1.10 (1.02, 1.18) 0; 0.473

NA, not applicable. I 2 is the proportion of total variability explained by heterogeneity. Tau2 is a measure of among-study 
variance. 
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Other forms of bias such as the healthy 
survivor efect should be taken into account, 
especially in longitudinal studies. Raaschou-
Nielsen et al. (2013b) demonstrated asso-
ciations between diabetes mortality and NOx 
exposure; thus, diabetes patients exposed to air 
pollution could die and no longer participate, 
resulting in incorrect estimates of association 
if mortality was not taken into consideration.

No included study on this topic was done 
in developing countries. For generalizability 
of evidence, research should be extended 
to developing countries where air pollution 
(including indoor) is high. This could also 
help in understanding efects of diferent air 
pollution compositions. Indoor air pollu-
tion is also associated with diabetes as well as 
cardiovascular diseases (Lee et al. 2012) and is 
highly prevalent in developing nations (Lim 
et al. 2012).

Considering the ambiguity in dose–
response relationship in air pollution studies 
(Smith and Peel 2010), future studies should 
assess air pollution diabetes association in a 
dose–response manner. his will help in iden-
tifying the point in the dose spectrum where 
control will yield the most beneits for health 
policy (Smith and Peel 2010).

Overall, the existing evidence indicates a 
positive association of air pollution and T2DM 
risk, although there is high risk of bias. High-
quality longitudinal studies are needed (taking 
into consideration sources and composition of 
air pollution as well as biomarkers) to improve 
our understanding of this association.
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Table S1. Association between air pollution and diabetes mellitus. 

Study, exposure Exposure contrast Unadjusted effect estimate 
(95% CI) 

Adjusted effect estimate 
(95% CI) 

Confounder adjustment Effect modification 

Krämer et al. 2010
a 

PM10, monitoring stations IQR: 10.1 µg/m
3 HR = 1.64 (1.20, 2.25) HR = 1.16 (0.81, 1.65) Baseline age, education, 

smoking, work place exposure 
to dust, fumes and extreme 

temperatures, BMI (average of 
baseline and follow-up). 

Stronger association in 
women with high C3c 
levels: HR = 1.21 (0.70, 

1.64) 

NO2, monitoring stations IQR: 24.9 µg/m
3 HR = 1.53 (1.20, 1.95) HR = 1.34 (1.02, 1.76) Same as above Stronger association in 

women with high C3c 
levels: HR = 1.29 (0.93, 
1.79) 

PM, traffic emission inventory 0.87 tons/year/km
2 

HR = 1.23 (1.12, 1.35) HR = 1.15 (1.04, 1.27) Same as above Stronger association in 
women with high C3c 

levels: HR = 1.24 (1.08, 
1.41) 

NO2, traffic emission inventory 19 tons/year/km
2 

HR = 1.22 (1.11, 1.34) HR = 1.15 (1.04, 1.27) Same as above Stronger association in 

women with high C3c 
levels: HR = 1.24 (1.08, 
1.41) 

Soot, LUR 0.39 x 10
-5

m HR = 1.28 (1.12, 1.47) HR = 1.27 (1.09, 1.48) Same as above Stronger association in 
women with high C3c 
levels: HR = 1.22 (1.02, 

1.47) 

NO2, LUR 15 µg/m
3 HR = 1.47 (1.22, 1.77) HR 1.42 (1.16, 1.73) Same as above Stronger association in 

women with high C3c 

levels: HR = 1.31 (1.01, 
1.70) 

Distance from a busy road <100m HR (low education) = 2.32 (1.29, 4.17) HR (low education) = 2.54 (1.31, 4.91) Same as above Stronger association in 
women with high C3c 
levels 

HR = 3.51 (1.50, 8.23) 

Distance from a busy road <100m HR (high education) = 0.86 (0.55, 
1.36) 

HR (high education) = 0.92 (0.58, 1.47) Same as above Same as above 

Coogan et al. 2012
a 

PM2.5 IQR: 10 µg/m
3 NA IRR = 1.63 (0.78, 3.44) Time-varying age, BMI, years 

of education, income, number 

of people in a household, 
smoking, alcohol intake, 
physical activity, 

neighbourhood socio-
economic status score, family 
history of diabetes. 

NA 

NOx IQR: 12.4 ppb NA IRR = 1.25 (1.07, 1.46) Same as above NA 
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Study, exposure Exposure contrast Unadjusted effect estimate 
(95% CI) 

Adjusted effect estimate 
(95% CI) 

Confounder adjustment Effect modification 

Andersen et al. 2012
a 

NO2 (35-year mean) IQR: 4.9 µg/m
3 

HR = 1.11 (1.07, 1.15)
b 

HR = 1.04 (1.00, 1.08) Baseline age, sex, BMI, waist-

to-hip ratio, smoking status, 
duration and intensity, ETS, 
educational level, physical 

activity and intensity, alcohol, 
fruit and fat consumption and 
calendar year. 

Stronger effects among 

women HR = 1.07(1.01, 
1.13), subjects with high 
waist-to-hip ratio: HR = 

1.09(1.01, 1.18), non-
smokers: HR = 1.12 
(1.05, 1.20), subjects 

with <8 years of 
education: HR= 
1.06(1.01, 1.12), 

subjects with COPD: 
HR= 1.05(1.01, 1.09) 
and those with asthma: 

HR=1.05 (1.01, 1.09) 

NO2 (15-year mean) IQR: 5.6 µg/m
3 

HR = 1.10 (1.06, 1.13)
b 

HR = 1.04 (1.01, 1.07) Same as above NA 

NO2 (1-year mean at baseline) IQR: 5.6 µg/m
3 

HR = 1.08 (1.05, 1.11)
b 

HR = 1.02 (0.98, 1.05) Same as above NA 

NO2 (1-year mean at follow-up) IQR: 5.7 µg/m
3 

HR = 1.10 (1.06, 1.13)
b 

HR = 1.04 (1.01, 1.07) Same as above NA 

NOx (35-year mean) IQR: 11.4 µg/m
3 

HR = 1.05 (1.03, 1.07)
b 

HR = 1.02 (1.00, 1.04) Same as above NA 

NOx (15-year mean) IQR: 12.0 µg/m
3 

HR = 1.05 (1.03, 1.07)
b 

HR = 1.02 (1.00, 1.04) Same as above NA 

NOx (1-year mean at baseline) IQR: 10.9 µg/m
3 

HR = 1.02 (1.01, 1.02)
b 

HR = 1.00 (1.00, 1.01) Same as above NA 

NOx (1-year mean at follow-up) IQR: 12.0 µg/m
3 

HR = 1.05 (1.03, 1.06)
b 

HR = 1.02 (1.00, 1.04) Same as above NA 

Traffic proximity Major road within 50m HR = 1.20 (1.06, 1.36)
b 

HR = 1.07 (0.95, 1.21) Same as above NA 

Traffic load 1,300 vehicles/km/day HR = 1.05 (1.03, 1.08)
b 

HR = 1.02 (1.00, 1.04) Same as above NA 

Puett et al. 2011
a 

PM2.5 IQR: 4.0 µg/m
3 

HR (men) = 1.05 (0.91, 1.22)
c 

HR (men) = 1.07 (0.92, 1.24) Age, season, calendar year, 
state of residence, time-

varying smoking status, pack 
years, alcohol intake, diet and 
hypertension, baseline BMI 

and physical activity. 

NA 

PM2.5 IQR: 4.0 µg/m
3 

HR (women) = 1.04 (0.97, 1.12)
c 

HR (women) = 1.02 (0.94, 1.09) Same as above NA 

PM2.5 IQR: 4.0 µg/m
3 

HR (pooled) = 1.05 (0.98, 1.12)
c 

HR (pooled) = 1.03 (0.96, 1.10) Same as above NA 

PM10-2.5 IQR: 4.2 µg/m
3 

HR (men) = 1.05 (0.94, 1.17)
c 

HR (men) = 1.04 (0.93, 1.16) Same as above NA 

PM10-2.5 IQR: 4.0 µg/m
3 

HR (women) = 1.07 (1.01, 1.13)
c 

HR (women) = 1.04 (0.98, 1.10) Same as above NA 

PM10-2.5 IQR: 4.0 µg/m
3 

HR (pooled) = 1.06 (1.01, 1.12)
c 

HR (pooled) = 1.04 (0.99, 1.09) Same as above NA 

PM10 IQR: 7.2 µg/m
3 

HR (men) = 1.06 (0.93, 1.20)
c 

HR (men) = 1.06 (0.94, 1.20) Same as above NA 

PM10 IQR: 7.0 µg/m
3 

HR (women) = 1.06 (1.01, 1.12)
c 

HR (women) = 1.03 (0.98, 1.09) Same as above NA 

PM10 IQR: 7.0 µg/m
3 

HR (pooled) = 1.06 (1.01, 1.12)
c 

HR (pooled) = 1.04 (0.99, 1.09) Same as above NA 

Distance to road 0-49m vs. ≥200m HR (men): 0.99 (0.82, 1.19)
c 

HR (men): 1.02 (0.85, 1.23) Same as above NA 

Distance to road 50-99m vs. ≥200m HR (men): 0.76 (0.51, 1.14)
c 

HR (men): 0.74 (0.49, 1.11) Same as above NA 

Distance to road 100-199m vs. ≥200m HR (men): 0.86 (0.66, 1.13)
c 

HR (men): 0.88 (0.67, 1.16) Same as above NA 

Distance to road 0-49m vs. ≥200m HR (women): 1.20 (1.08, 1.33)
c 

HR (women): 1.14 (1.03, 1.27) Same as above Stronger effect in 
women 

Distance to road 50-99m vs. ≥200m HR (women): 1.20 (1.03, 1.40)
c 

HR (women): 1.16 (0.99, 1.35) Same as above Same as above 

Distance to road 100-199m vs. ≥200m HR (women): 1.02 (0.92, 1.14)
c 

HR (women): 0.97 (0.88, 1.08) Same as above Same as above 

Distance to road 0-49m vs. ≥200m HR (pooled): 1.11 (0.92, 1.33)
c 

HR (pooled): 1.11 (1.01, 1.23) Same as above NA 

Distance to road 50-99m vs. ≥200m HR (pooled): 0.99 (0.64, 1.54)
c 

HR (pooled): 0.96 (0.87, 1.06) Same as above NA 

Distance to road 100-199m vs. ≥200m HR (pooled): 0.99 (0.86, 1.13)
c 

HR (pooled): 1.02 (0.92, 1.14) Same as above NA 
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Study, exposure Exposure contrast Unadjusted effect estimate 
(95% CI) 

Adjusted effect estimate 
(95% CI) 

Confounder adjustment Effect modification 

Brook et al. 2008
a 

NO2 1 ppb NA OR (men) = 0.99 (0.95, 1.03) Age, sex, BMI and 

neighbourhood income 

NA 

NO2 1 ppb NA OR (women) = 1.04 (1.00, 1.08) Same as above Stronger effect in 
women 

NO2 1 ppb NA OR (pooled) = 1.015 (0.98, 1.049) Same as above Same as above 

Dijkema et al. 2011
a 

NO2 14.2-15.2 vs. 8.8-14.2 
µg/m

3 
OR = 0.98 (0.78, 1.23) OR = 1.03 (0.82, 1.31) Age, sex, BMI and average 

monthly income 
Stronger effect in 
women. 

NO2 15.2-16.5 vs. 8.8-14.2 

µg/m
3 

OR = 1.17 (0.94, 1.45) OR = 1.25 (0.99, 1.56) Same as above Same as above 

NO2 16.5-36.0 vs. 8.8-14.2 
µg/m

3 
OR = 0.80 (0.63, 1.01) OR = 0.80 (0.63, 1.02) Same as above Same as above 

Distance to nearest main road 140-220m vs. 220-1610m OR = 1.10 (0.87, 1.39) OR = 1.12 (0.88, 1.42) Same as above Same as above 

Distance to nearest main road 74-140m vs. 220-1610m OR = 1.22 (0.97, 1.53) OR = 1.17 (0.93, 1.48) Same as above Same as above 

Distance to nearest main road 2-74m vs. 220-1610m OR = 0.94 (0.74-1.19) OR = 0.88 (0.70-1.13) Same as above Same as above 

Traffic flow at the nearest main 
road 

5871-7306 vs. 5001-5871 
vehicles/day 

OR = 1.09 (0.87, 1.39) OR = 1.02 (0.81, 1.29) Same as above Same as above 

Traffic flow at the nearest main 
road 

7306-9670 vs. 5001-5871 
vehicles/day 

OR = 0.98 (0.78, 1.23) OR = 1.03 (0.81, 1.30) Same as above Same as above 

Traffic flow at the nearest main 
road 

9670-35567 vs. 5001-5871 
vehicles/day 

OR = 0.91 (0.72, 1.16) OR = 0.96 (0.75, 1.22) Same as above Same as above 

Traffic in 250m buffer 516-680 x 10
3 

vs. 63-516 x 

10
3 

vehicles/day 

OR = 1.28 (1.01, 1.61) OR = 1.25 (0.99, 1.59) Same as above Same as above 

Traffic in 250m buffer 680-882 x 10
3 

vs. 63-516 x 
10

3 
vehicles/day 

OR = 1.15 (0.91, 1.46) OR = 1.13 (0.89, 1.44) Same as above Same as above 

Traffic in 250m buffer 882-2007 x 10
3 

vs. 63-516 x 
10

3 
vehicles/day 

OR = 1.13 (0.89, 1.44) OR = 1.09 (0.85, 1.38) Same as above Same as above 

Chen et al. 2013
a 

PM2.5 10 µg/m
3 

HR = 1.08 (0.99, 1.17)
d 

HR = 1.11 (1.02, 1.21) Baseline age, sex survey year, 
region, marital status, 

education, household income, 
BMI, physical activity, 
smoking, alcohol consumption, 

diet, race, hypertension, urban 
residency, neighbourhood-
level unemployment rate, 

education, COPD, asthma, 
congestive heart failure and 
acute myocardial infarction 

Stronger effects among 
subjects with COPD: 

HR= 1.33 (1.03, 1.71), 
women: HR= 1.17 (1.03, 
1.32), subjects aged<50 

years: HR= 1.19 (1.00, 
1.40) or >65 years: HR= 
1.18 (1.01, 1.38) and 

subjects with low level of 
education: HR= 1.13 
(1.00, 1.28). 

van den Hooven et al. 2009 

Distance-weighted traffic 
density 

158-546 vs. <158 vehicles/ 
day*km 

OR = 0.66 (0.30, 1.48) OR = 0.69 (0.30, 1.57) Maternal age, education, 
ethnicity, BMI, parity, smoking, 

alcohol consumption, month 
and year of birth. 

NA 

Distance-weighted traffic 

density 

546-1,235 vs. <158 

vehicles/ day*km 

OR = 1.00 (0.49, 2.05) OR = 1.07 (0.51, 2.23) Same as above NA 

Distance-weighted traffic 

density 

>1,235 vs. <158 vehicles/ 

day*km 

OR = 0.67 (0.30, 1.49) OR = 0.79 (0.35, 1.81) Same as above NA 

Distance to major road 150-200m vs. >200m OR = 1.17 (0.53, 2.60) OR = 1.07 (0.47, 2.44) Same as above NA 

Distance to major road 100-150m vs. >200m OR = 0.76 (0.32, 1.82) OR = 0.77 (0.32, 1.88) Same as above NA 
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Study, exposure Exposure contrast Unadjusted effect estimate 
(95% CI) 

Adjusted effect estimate 
(95% CI) 

Confounder adjustment Effect modification 

Distance to major road 50-100m vs. >200m OR = 1.07 (0.50, 2.31) OR = 1.13 (0.51, 2.50) Same as above NA 

Malmqvist et al. 2013 

NOx 9.0-14.1 vs. 2.5-8.9 µg/m
3 

OR = 1.28 (1.07, 1.54) OR = 1.19 (0.99, 1.44) Maternal age, parity, 
prepregnancy BMI, calendar 
year, ethnicity, T1DM 

NA 

NOx 14.2-22.6 vs. 2.5-8.9 µg/m
3 

OR = 1.84 (1.56, 2.18) OR = 1.52 (1.28, 1.82) Same as above NA 

NOx >22.7 vs. 2.5-8.9 µg/m
3 

OR = 1.98 (1.68, 2.35) OR = 1.69 (1.41, 2.03) Same as above NA 

Traffic density within 200m <2 cars/min vs. No road OR = 0.89 (0.75, 1.06) OR = 0.93 (0.78, 1.12) Same as above NA 

Traffic density within 200m 2-5 cars/min vs. No road OR = 1.04 (0.88, 1.23) OR = 0.96 (0.81, 1.14) Same as above NA 

Traffic density within 200m 5-10 cars/min vs. No road OR = 1.53 (1.27, 1.84) OR = 1.18 (0.97, 1.43) Same as above NA 

Traffic density within 200m >10 cars/min vs. No road OR = 1.50 (1.24, 1.82) OR = 1.23 (1.01, 1.51) Same as above NA 

Hathout et al 2006 

O3 10 ppb OR = 2.92 (1.86, 4.58) OR = 1.73 (1.08, 2.77) Age at diagnosis/entry, ETS, 
attendance of day care, breast 
feeding, maternal diabetes, 

family history of diabetes and 
autoimmunity, maternal drug 
use, parental education. 

NA 

SO4 10 µg/m
3 

OR = 1.65 (1.20, 2.28) NA NA NA 

SO2 1 ppb OR = 1.42 (0.91, 2.21) NA NA NA 

NO2 10 ppb OR = 1.03 (0.71, 1.50) NA NA NA 

PM10 10 µg/m
3 

OR = 1.08 (0.87, 1.34) NA NA NA 

Hathout et al 2002 

O3 IQR: 10.93 ppb OR = 4.22 (1.96, 9.10) OR = 4.22 (1.96, 9.10) Age NA 

SO4 IQR: 1.025 µg/m
3 

OR = 0.56 (0.37, 0.87) OR = 0.55 (0.35, 0.85) Same as above NA 

SO2 IQR: 1.235 ppb OR = 0.54 (0.33, 0.89) OR = 0.52 (0.31, 0.88) Same as above NA 

NO2 IQR: 11.175 ppb OR = 0.57 (0.31, 1.02) OR = 0.56 (0.30, 1.03) Same as above NA 

PM10 IQR: 22.65 µg/m
3 

OR = 2.37 (1.11, 5.03) OR = 2.37 (1.11, 5.03) Same as above NA 

Fleisch et al. 2014 

Central-site PM2.5 IQR: 1.7 µg/m
3 

NA OR = 0.81 (0.62, 1.08) Age, prepregnancy BMI, 

pregnancy weight gain, 
education, race/ethnicity, 
family history of diabetes, prior 

GDM and season of last 
menstrual period. 

NA 

Central-site PM2.5 10.0-10.7 vs. 8.3-10.0 

µg/m
3 

NA OR = 0.91 (0.50, 1.65) Same as above NA 

Central-site PM2.5 10.7-11.7 vs. 8.3-10.0 
µg/m

3 
NA OR = 0.52 (0.27, 1.00) Same as above NA 

Central-site PM2.5 11.7-17.2 vs. 8.3-10.0 
µg/m

3 
NA OR = 0.69 (0.38, 1.27) Same as above NA 

Spatiotemporal PM2.5 IQR: 2.0 µg/m
3 

NA OR = 0.94 (0.67, 1.34) Same as above NA 

Spatiotemporal PM2.5 10.8-11.8 vs. 8.5-10.8 
µg/m

3 
NA OR = 0.62 (0.30, 1.28) Same as above NA 

Spatiotemporal PM2.5 11.8-12.8 vs. 8.5-10.8 
µg/m

3 
NA OR = 0.93 (0.48, 1.78) Same as above NA 

Spatiotemporal PM2.5 12.8-15.9 vs. 8.5-10.8 

µg/m
3 

NA OR = 0.71 (0.35, 1.42) Same as above NA 

Central-site black carbon IQR: 0.16 µg/m
3 

NA OR = 0.69 (0.42, 1.13) Same as above NA 

Central-site black carbon 0.78-0.87 vs. 0.60-0.78 
µg/m

3 
NA OR = 0.75 (0.39, 1.45) Same as above NA 
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Study, exposure Exposure contrast Unadjusted effect estimate 
(95% CI) 

Adjusted effect estimate 
(95% CI) 

Confounder adjustment Effect modification 

Central-site black carbon 0.87-0.94 vs. 0.60-0.78 
µg/m

3 
NA OR = 0.59 (0.25, 1.35) Same as above NA 

Central-site black carbon 0.94-1.10 vs. 0.60-0.78 
µg/m

3 
NA OR = 0.60 (0.23, 1.53) Same as above NA 

Spatiotemporal black carbon IQR: 0.34 µg/m
3 

NA OR = 1.02 (0.73, 1.41) Same as above NA 

Spatiotemporal black carbon 0.55-0.70 vs. 0.14-0.55 
µg/m

3 
NA OR = 1.01 (0.54, 1.87) Same as above NA 

Spatiotemporal black carbon 0.70-0.89 vs. 0.14-0.55 

µg/m
3 

NA OR = 1.12 (0.59, 2.09) Same as above NA 

Spatiotemporal black carbon 0.89-1.69 vs. 0.14-0.55 

µg/m
3 

NA OR = 0.90 (0.45, 1.79) Same as above NA 

Neighbourhood traffic density 
within 100m 

IQR: 1,533 vehicles/day*km NA OR = 1.02 (0.87, 1.18) Same as above NA 

Neighbourhood traffic density 
within 100m 

4,062-9,680 vs. 0-4,061 
vehicles/day*km 

NA OR = 1.18 (0.66, 2.11) Same as above NA 

Neighbourhood traffic density 

within 100m 

9,680-19,371vs. 0-4,061 

vehicles/day*km 

NA OR = 0.94 (0.51, 1.72) Same as above NA 

Neighbourhood traffic density 

within 100m 

19,383-30,860 vs. 0-4,061 

vehicles/day*km 

NA OR = 0.74 (0.39, 1.42) Same as above NA 

Home roadway proximity ≤200m vs. >200m NA OR = 0.99 (0.52, 1.88) Same as above NA 

Pearson et al. 2010 

PM2.5 (36km model, 2004) 10 µg/m
3 

OR = 6.69 (5.53, 7.77) OR = 3.16 (2.77, 3.74) County-level median age, per 
capita income, percentage of 
men, per capita income, 

percentage of the population 
aged >25 years with a high 
school or general equivalency 

degree, percentage of 
ethnicities, prevalence of 
obesity, physical activity, 

population density and latitude 
(from census 2000) 

NA 

PM2.5 (36km model, 2004) 10 µg/m
3 

OR = 6.69 (5.53, 7.77) OR = 2.18 (1.48, 3.49) Same as above (from ACS 1-

year) 

NA 

PM2.5 (36km model, 2005) 10 µg/m
3 

OR = 6.69 (5.42, 7.92) OR = 2.51 (2.12, 3.10) Same as above (from census 

2000) 

NA 

PM2.5 (36km model, 2005) 10 µg/m
3 

OR = 6.69 (5.42, 7.92) OR = 2.25 (1.62, 2.91) Same as above (from ACS 1-
year) 

NA 

PM: particulate matter; PM10: particulate matter <10µm in diameter; PM10-2.5: particulate matter between 2.5 and 10µm in diameter; PM2.5:  

particulate matter <2.5µm in diameter; NO2: nitrogen dioxide; NOx: nitrogen oxides; O3: ozone; SO2: sulphur dioxide; SO4: sulphate; T1DM: type 1  

diabetes mellitus; GDM: gestational diabetes mellitus; LUR: land-use regression; IQR: interquartile range; C3c: complement protein 3c; ETS:  

environmental tobacco smoking; BMI: body mass index; COPD: chronic obstructive pulmonary disease; NA: not available; ACS: American  

Community Survey.  

a
Included in meta-analysis. 

b
Adjusted for only age. 

c
Adjusted for age, season and year. 

d
Adjusted for age, sex, year and region.  
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Table S2. Risk of bias assessment for included studies. 

Source Adjustment 

for basic DM 
risk factors

a 

at baseline 

Exposure 

assessment 
before DM 
diagnosis 

Exposure 

modelled at 
participants’ 

residence 

Attempts to 

identify 
undiagnosed 

DM 

Consideratio 

n of healthy 
survivor bias 

Adjustment for 

noise as an 
environmental 

risk factor 

Consideratio 

n of time-
dependent 

confounding 

Krämer et al. 2010
b 

Yes
c 

Yes Yes No No No No 

Andersen et al. 2012
b 

Yes
c 

Yes Yes No No No Yes 

Puett et al. 2011
b 

Yes
c 

Yes Yes No No No Yes 

Coogan et al. 2012
b 

Yes
d 

No Yes No No No Yes 

Chen et al. 2013
b 

Yes
b 

Yes Yes No No No No 

Brook et al. 2008
b 

Yes
e 

No Yes No NA No NA 

Dijkema et al. 2011
b 

Yes
f 

No Yes Yes NA No NA 

Pearson et al. 2010 Yes
g 

NA NA NA NA No NA 

Malmqvist et al. 2013 Yes
c 

No Yes No NA No NA 

Van den Hooven et al. 2009 Yes
c 

Yes Yes No NA No NA 

Hathout et al. 2002 Yes
h 

Yes Yes No NA No NA 

Hathout et al. 2006 Yes Yes Yes Yes NA No NA 

Fleisch et al. 2014 Yes
d 

No Yes Yes NA No NA 

a
Include age, BMI, socio-economic status, smoking, family history and physical activity. 

b
Included in meta-

analysis. 
c
Except family history. 

d
Except physical activity. 

e
Except  family history, physical activity; 

f 
except 

family history, physical activity, smoking. 
g
On ecologic scale. 

h
Only age. NA: not applicable. 
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Air Pollution and  

Diabetes Risk
Assessing the Evidence to Date

Many studies have reported associations between ambient air 
pollution and cardiovascular disease, asthma, and cancer.1 
Diabetes mellitus also is a risk factor for vascular and respiratory 
diseases, and development of these outcomes in people with 
diabetes may be exacerbated by exposure to air pollution.2 In this 
issue of EHP, a team of European scientists conducted a systematic 
review to evaluate whether air pollution exposure is also associated 
with developing diabetes itself.3

The researchers systematically searched databases for English-
language articles addressing diabetes and outdoor air pollution in 
human subjects. They screened 636 studies and identified 13 that 
addressed the research question of interest. Eight pertained to type 
2 diabetes, two pertained to type 1 diabetes, and three pertained 
to gestational diabetes. Seven of the studies on type 2 diabetes—
selected because they reported air particle concentrations the same 
way—were pooled in a meta-analysis.

Based on three available longitudinal studies on exposure to fine 
particulate matter (PM2.5), the authors estimated a 10% increased 
risk of type 2 diabetes per 10-mg/m3 increase in exposure. For 
nitrogen dioxide (NO2), there were two longitudinal and two cross-
sectional studies available, which suggested an 8% increase in type 2 
diabetes per 10-mg/m3 increase in exposure.3 

For both NO2 and PM2.5, 
estimated effects were more 
pronounced in females than 
males.3 “This was one of 
the surprising findings of 
our study, considering that 
men are usually at higher 
risk for type 2 diabetes,” 
says coauthor Ikenna Eze, a 
PhD candidate at the Swiss 
Tropical and Public Health 
Institute. “There could also 
be some unexplained sex-
based physiologic differences 
which could account for 
this.” Alternatively, women 
generally tend to stay around 
the home more than men,4 
hence residence-based expo-
sure estimates may have 
better captured their actual 
exposures. 

Pos i t ive  as soc ia t ions 
reported in the epidemio-
logic literature give credence 
to the hypothesis that air 
pol lution exposure may 
increase the risk of develop-
ing diabetes, says Patricia 
Coogan, an epidemiology 
research professor at Boston 
University and coauthor of 
one of the studies reviewed.5 
“Even more convincing, I 
think, are the animal and 

clinical studies indicating that air pollution can affect insulin 
sensitivity and other biologic pathways relevant to diabetes,” 
Coogan says. 

Ursula Krämer, a professor at the IUF-Leibniz Research 
Institute for Environmental Medicine whose study was included 
in the meta-analysis,6 believes the association between air pollution 
exposure and development of diabetes is plausible. “Subclinical 
inflammation is a major driving force for the incidence of diabetes, 
and particle pollution can cause subclinical inflammation,” she says. 
“I fully agree with the main conclusion of the authors: Research 
should be expanded to developing countries, where a steep increase 
in diabetes type 2 was observed in the last decade and where 
outdoor and indoor pollution is much higher than in Europe and 
North America.”

Wendee Nicole was awarded the inaugural Mongabay Prize for Environmental Reporting in 2013. 
She writes for Discover, Scientific American, National Wildlife, and other magazines.
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Subclinical inflammation, which can be caused by exposure to 

particulate matter, is “a major driving force” behind diabetes. 
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Air pollution is an important risk factor for global burden of disease. There has been recent interest in its possible

role in the etiology of diabetes mellitus. Experimental evidence is suggestive, but epidemiological evidence is

limited and mixed. We therefore explored the association between air pollution and prevalent diabetes, in a

population-based Swiss cohort.

We did cross-sectional analyses of 6392 participants of the Swiss Cohort Study on Air Pollution and Lung and

Heart Diseases in Adults [SAPALDIA], aged between 29 and 73 years. We used estimates of average individual

home outdoor PM10 [particulate matter b10 μm in diameter] and NO2 [nitrogen dioxide] exposure over the

10 years preceding the survey. Their association with diabetes was modeled using mixed logistic regression

models, including participants' study area as random effect, with incremental adjustment for confounders.

There were 315 cases of diabetes (prevalence: 5.5% [95% confidence interval (CI): 2.8, 7.2%]). Both PM10 and NO2

were associated with prevalent diabetes with respective odds ratios of 1.40 [95% CI: 1.17, 1.67] and 1.19 [95% CI:

1.03, 1.38] per 10 μg/m3 increase in the average home outdoor level. Associations with PM10 were generally

stronger thanwithNO2, even in the two-pollutantmodel. Therewas some indication that beta blockersmitigated

the effect of PM10. The associations remained stable across different sensitivity analyses.

Our study adds to the evidence that long term air pollution exposure is associated with diabetes mellitus. PM10

appears to be a useful marker of aspects of air pollution relevant for diabetes. This association can be observed

at concentrations below air quality guidelines.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA license

(http://creativecommons.org/licenses/by-nc-sa/3.0/).

1. Introduction

Ambient air pollution, indoor air pollution and hyperglycemia con-

stitute major risks for the global burden of disease (Lim et al., 2012).

Air pollution is associated with cardiovascular diseases (Auchincloss

et al., 2008; Hoffmann et al., 2007), and chronic respiratory diseases

(Künzli et al., 2009; Schikowski et al., 2010) and has been shown to con-

tribute to hospitalizations and deaths among cardiac disease patients

(Goldberg et al., 2013), and diabetic patients (Goldberg et al., 2013;

O'Neill et al., 2005; Zanobetti and Schwartz, 2001). Type 2 diabetes is in-

creasing globally and is already one of the major causes of death (Lim

et al., 2012). Type 2 diabetes and cardiovascular diseases share similar

risk factors. Air pollution could be involved in the etiology of type 2 di-

abetes mellitus. Postulated mechanisms of action include oxidative

stress and low grade inflammation, endothelial dysfunction, visceral ad-

ipose tissue inflammation, endoplasmic reticulum stress andmitochon-

drial dysfunction (Liu et al., 2013; Rajagopalan and Brook, 2012) with

resulting impairment in insulin signaling (Xu et al., 2013).

Animal and human biomarker studies, including sparse epidemio-

logical studies contribute to this evidence. Animal studies suggest a con-

tribution of fine particles to insulin resistance, especially in association

with a high fat diet (Sun et al., 2009; Xu et al., 2011; Yan et al., 2011).

Chuang et al. (2007) demonstrated an alteration in glycosylated hemo-

globin C, blood lipids and blood pressure in young adults in Taipei, after

exposure to particulate matter and ozone.

Epidemiological evidence is sparse and findings are mixed. Longitu-

dinal studies in European and North American populations (Andersen
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et al., 2012; Chen et al., 2013; Coogan et al., 2012; Krämer et al., 2010;

Puett et al., 2011), found inconsistent associations between incident

diabetes mellitus and PM10 [particulate matter b 10 μm in diameter],

NO2 [nitrogen dioxide], NOx [nitrogen oxides], PM2.5 [particulatematter

b 2.5 μm in diameter], PM10–2.5 [particulate matter with diameter

between 2.5 and 10 μm] and residential proximity to traffic. Although

the previous studies taken together with experimental evidence

support the evidence for an association between inhaled pollutants

and diabetes, several aspectsmay contribute to uncertainties and incon-

sistencies. Limiting factors toward more conclusive evidence include

differences in (a) exposuremetrics and assessment; (b) diabetes defini-

tion; (c) population characteristics and (d) covariates considered

(Papazafiropoulou et al., 2011; Rajagopalan and Brook, 2012). Two

epidemiological studies have investigated the association between air

pollution and prevalent type 2 diabetes, with contradictory results on

NO2 effects (Brook et al., 2008; Dijkema et al., 2011). Noise can positive-

ly correlate with air pollution (Foraster, 2013; Kim et al., 2012) and has

been implicated in cardiovascular diseases (Dratva et al., 2012; Sorensen

et al., 2011), as well as more recently with diabetes (Sorensen et al.,

2013). The quality and quantity of sleep have been shown to be signifi-

cant predictors of the risk of type 2 diabetes (Cappuccio et al., 2010).

Thus, noise can be considered a potential confounder in air pollution

epidemiology studies.

To add to the epidemiologic evidence base on the newly uncovered,

potentially causal relationship between air pollution and diabetes, we

investigated the association between ambient/traffic-related air pollu-

tion and prevalent diabetes mellitus in the Swiss Cohort Study on Air

Pollution and Lung and Heart Diseases in Adults [SAPALDIA], taking

noise exposure, individual and area-level socio-economic index into

consideration.

2. Materials and methods

2.1. Study population and health examinations

At baseline [SAPALDIA 1; 1991], the study population of SAPALDIA

included 9561 randomly selected participants aged 18–65 years.

These participants were selected from eight different areas in

Switzerland, representing a wide range of environmental conditions in

Switzerland. Subjects had extensive health examinations which in-

volved computer-assisted interviews, lung function and allergy testing.

At the first follow-up [SAPALDIA 2; 2002], the health assessments were

repeated in 8047 participants, with more detailed interviews, including

information on diabetes and other chronic non-communicable diseases,

blood testing for biomarkers and genotyping. This is described in detail

elsewhere (Ackermann-Liebrich et al., 2005). For the purpose of the

present analysis, we had a sample of 6392 follow-up participants,

aged 29–73 years, who had complete information on all the variables

of interest, for assessing the association between air pollution and dia-

betes mellitus.

2.2. Definition of diabetes mellitus

At SAPALDIA 2, participants were asked “do you have diabetes

mellitus?” and “was it diagnosed by a physician?” Participants' non-

fasting blood samples were taken to measure blood markers, including

non-fasting blood glucose, glycosylated hemoglobin C [HbA1c] and

blood lipids. Based on the available information, we defined diabetes

as present if at least one of the following conditions was met i) intake

of any anti-diabetic medication; ii) self-reported, physician-diagnosed

diabetes mellitus; iii) non-fasting blood glucose of N11.1 mmol/L or

iv) HbA1c of N6.5% or 48 mmol/mol. Since this is an adult population

[minimum age of 29 years] and N90% of diabetes in adults is of type 2,

we assumed the majority of diabetic cases in this population to be

type 2 diabetes mellitus.

2.3. Individual assignment of exposures

We considered markers of ambient air pollution [PM10] and traffic-

related air pollution [NO2] as our air pollution exposure indicators. Esti-

mates of mean ambient levels of these pollutants were available for the

residential addresses of the participants in the years 1990 and 2000, the

years before health assessments (Liu et al., 2007). They were obtained

from validated dispersion models, with different emission inventories

for both years. They have a spatial resolution of 200 × 200 m (Liu

et al., 2007). Annual trends at fixed monitoring sites and participants'

residential histories were used to estimate average ambient residential

levels of the two pollutants over periods of 1 to 10 years prior to thefirst

follow-up assessment in 2002. The dispersion model for PM10 provided

good predictions both at background and traffic sites, whereas the

model for NO2 provided better predictions at traffic sites while

underestimating levels at background sites (Liu et al., 2007). For this

reason, the dispersion model for NO2 was extended to a hybrid model

involving land-use regression components (Liu et al., 2012). For this

analysis, we primarily used the modeled average ambient levels of

PM10 and NO2 at participants' residential addresses over the 10 years

preceding the first follow-up survey.

We obtained estimates of road traffic and railway noise from

sonBASE, the Swiss national noise database (FOEN, 2009a,b). This data-

base, developed by the Swiss Federal Office of Environment, provides

average railway and road traffic noise estimates for day [0600 h–

2200 h] and night [2200 h–0600 h]. Noise propagation was estimated

with 10 × 10 meter grids and for individual buildings using the

StL86+ emissionmodel for road traffic noise and SEMIBEL [Swiss emis-

sionmodel for the estimation of railway noise] for railway noise (FOEN,

2009b). These estimates were then assigned to participants' residential

addresses. From the day and night estimates, we estimated the average

day–night [Ldn] noise exposure level by applying a penalty of 10 dB on

the night noise estimates for both road traffic and railway noise. The

Ldn value at the participant's address of the first follow-up survey was

used asmeasure of individual noise exposure in the regression analysis.

2.4. Potential confounding variables

From the computer-assisted interviews at SAPALDIA 2, we extracted

information on potential confounders. These included participants' age,

sex [male, female], height and weight to compute the body mass index

[BMI; kg/m2], and educational attainment [low corresponding to prima-

ry education; intermediate corresponding to secondary, middle, or vo-

cational school; and high corresponding to technical college or

university]. Neighborhood-level socio-economic index was obtained

for participants' residential areas. This index was defined using neigh-

borhood characterization based onmedian rent, occupation and educa-

tion of heads of households and crowding of households, combined in a

principal component analysis (Panczak et al., 2012). We also extracted

information on physical activity [≤0.5 h per week, 0.5–2 h per week

and N2 h perweek of vigorous activity], smoking [never, former, current

and pack years smoked], environmental tobacco smoking in the past

12 months [never smoker, and former smoker] and alcohol consump-

tion [never,≤once a day, and Nonce a day], and occupational exposure

to gases, dusts and fumes [yes/no]. In addition, we extracted informa-

tion on consumption of raw vegetables [never, ≤3 days per week, and

N3 days per week], consumption of citrus fruits [never, ≤3 days per

week, and N3 days per week] and consumption of other fruits [never,

≤3 days per week, and N3 days per week]. We also extracted informa-

tion on some existing co-morbidities including hypertension [yes/no],

and chronic obstructive pulmonary disease [COPD; defined by GOLD

standard: forced expiratory volume in 1 s (FEV1) ÷ forced vital capacity

(FVC) b 0.7; yes/no].

Since the parameter of air pollution exposurewas themean ambient

residential level over the ten years preceding the first follow-up survey,

we also considered some baseline exposure characteristics, as potential
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confounders. We extracted information on baseline smoking history

[never, former, current and pack years smoked], environmental tobacco

smoking in the past 12 months [never smoker, former smoker] and oc-

cupational exposure to gases, dusts or fumes [yes/no].

2.5. Statistical analysis

We included 6392 participantswith complete information on the var-

iables of interest in this analysis. First, we estimated the prevalence of di-

abetes mellitus among the study sample. We then evaluated the

distribution of various characteristics among participants, stratified by di-

abetes status.

Second, we assessed the association between air pollution and preva-

lent type 2 diabetesmellitus usingmixed logistic regressionmodels, with

a random intercept for the different study areas. We selected potential

confounders based on literature review and plausibility and added them

to themodel in an incremental manner. Our fully-adjustedmodel includ-

ed age, sex, BMI, educational status, neighborhood socio-economic index,

smoking status, pack years of cigarettes smoked, environmental tobacco

smoking status, occupational exposure to gases, dusts or fumes, con-

sumption of alcohol, raw vegetables, citrus fruits and other fruits, and

average railway and road traffic noise exposure. In some exploratory

analyses, we additionally adjusted for self-reported hypertension, inflam-

matory markers including high sensitivity C-reactive protein and dyslip-

idemia. We assessed this association singly for each pollutant [single

pollutant model] and in combination [two-pollutant model].

Third, we assessed potential effect modifiers. The pre-selected

candidates included age group [≤50 years, and N50 years], sex, obe-

sity [BMI N 30 kg/m2], educational level [low, intermediate, and

high], physical activity [low, medium, and high], COPD [yes/no], hy-

pertension [yes/no] and intake of beta-blockers [yes/no]. Beta-

blockers have been shown to be protective on the cardiac effects of

Table 1

Background characteristics of participants by diabetes status.

Characteristic

(%)

Diabetes mellitus

N = 315

No diabetes mellitus

N = 6077

p-Value

[chi-square]

Females 34.6 52.2 b0.001

Smoking status [yes/no] b0.001

Never 35.6 43.9

Former 42.5 31.0

Current 21.9 25.1

ETS [yes/no] 0.768

Never smoker 7.0 6.6

Former smoker 6.0 6.5

Physical activity [yes/no] b0.001

b0.5 h/week 58.1 37.7

0.5–2 h/week 23.8 34.2

N2 h/week 18.1 28.1

Educational level [yes/no] b0.001

Low 11.4 5.9

Intermediate 65.4 65.6

High 23.2 28.5

Work exposure to gas/dusts/fumes [yes/no] 25.7 27.6 0.474

Alcohol consumption [yes/no] b0.001

Never 14.6 8.9

≤Once/day 71.4 82.3

NOnce/day 14.0 8.8

Raw vegetable consumption [yes/no] 0.288

Never 0.3 0.6

≤3 days/week 20.3 18.8

N3 days/week 79.4 80.6

Citrus fruits consumption [yes/no] 0.045

Never 12.7 8.2

≤3 days/week 54.0 56.2

N3 days/week 33.4 35.7

Other fruits consumption [yes/no] 0.053

Never 1.9 1.8

≤3 days/week 25.7 33.6

N3 days/week 72.4 64.6

Duration of residence b 10 years 30.8 42.4 b0.001

Duration of residence ≥ 10 years 69.1 57.6

Self-reported hypertension [yes/no] 52.4 17.7 b0.001

COPD (FEV1/FVC b 0.7) [yes/no] 22.5 19.7 0.209

Dyslipidemia [yes/no] 73.7 46.6 b0.001

High hs-CRP [yes/no] 72.4 48.8 b0.001

Mean (SD) T-test

Age [years] 60.8 (8.1) 51.7 (11.4) b0.001

BMI [kg/m2] 30.3 (5.1) 25.6 (4.3) b0.001

Pack-years of smoking 16.4 (25.1) 10.5 (17.9) b0.001

Neighborhood socio-economic index 63.6 (10.1) 62.1 (10.4) 0.005

10-year mean PM10 [μg/m
3] 24.4 (7.2) 22.2 (7.4) b0.001

10-year mean NO2 [μg/m
3] 29.2 (10.5) 26.7 (11) b0.001

Mean railway noise [dB] 11.6 (13.5) 10.3 (13.0) 0.076

Mean street noise [dB] 49.9 (9.0) 49.4 (8.8) 0.365

ETS: Environmental tobacco smoking; COPD: chronic obstructive pulmonary disease. FEV1: forced expiratory volume in 1 s, FVC: forced vital capacity. hs-CRP: high sensitivity C-reactive

protein. High hs-CRP is defines as hs-CRP ≥ 1.0 mmol/L, themedian hs-CRP. Dyslipidemia defined as triglyceride ≥ 1.7 mmol/L and/or high density lipoprotein ≤ 1.03 mmol/L inmen or

≤1.29 mmol/L in women. Low education corresponds to primary school level, intermediate corresponds to secondary, middle, or vocational school, and high education corresponds to

technical college or university. IQR: Inter-quartile range.
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PM2.5 (Folino et al., 2009; Lotti, 2011). Non-selective beta blockers

have also been shown to improve insulin sensitivity among cardiac

and diabetic patients (Hara et al., 2003; Kveiborg et al., 2006), possi-

bly through their anti-atherogenic, anti-inflammatory and oxygen

perfusion improvement properties (Bell, 2004). We generated inter-

action terms between each of the potential effect modifiers and the

variables of PM10 and NO2 exposure, and added these interaction

terms to the fully-adjustedmodel one by one. We estimated separate

effects of the respective air pollutant variable for the groups com-

pared, from the same model. Heterogeneity of these separate esti-

mates was assessed using the likelihood ratio test and the p-values

were noted. Finally, we did some sensitivity analyses, using the

fully-adjusted single-pollutant model, to check the robustness of

the estimated association of air pollution on the prevalence rate of

diabetes mellitus. In the first sensitivity analysis, we restricted the

analysis to those who had lived in the same residence between

SAPALDIA 1 and SAPALDIA 2, since our noise data was from a single

measurement during follow-up. Next, we excluded participants

with any heart disease from the model. In another sensitivity analy-

sis, we excluded cases that reportedly started anti-diabetic medica-

tion before or at baseline. We also restricted the diabetes definition

to each of the diagnostic criterion used to identify diabetes cases, ex-

cluding the diabetes cases not matching the criterion, from the con-

trols. We also adjusted for participation bias using the inverse

probability weighting (ignoring area as a random effect). We did

this by deriving a model for the probability of participation based

on informative predictor variables assessed at baseline, i.e., age,

sex, BMI, nationality, educational status, chronic disease status and

lifestyle characteristics. We then weighted each participant based

on their probabilities and added it to the fully adjusted model. Lastly,

we tested linearity of association by introducing quadratic terms of

the exposure variables to the model.

In most analyses, participants' study area was treated as a random

effect [except in some sensitivity analyses]. This is to account for the

gradient between health outcomes and exposure levels across study

areas, and not exclusively focusing only on within-area gradients,

which leads to loss of some statistical power.

We used STATA statistical software version 12 (StataCorporation,

2011) for all statistical analyses and defined statistical significance at

the 5% level.

3. Results

3.1. Characteristics of study population

The prevalence of diabetes mellitus in the study sample was 5.5%

[95% confidence interval (CI): 2.8, 7.2%]. The mean age of the partici-

pants was 52 years and about 50% of them were females (Table 1).

Males constituted 65% of the diabetics, were more overweight/obese

[64% vs. 43%], smoked twice the pack-years of females [14 vs. 7.7] and

were more often current smokers [27% vs. 22%], but mean age was the

same formales and females. Themean PM10 exposure in the study pop-

ulation was 22.3 μg/m3 [WHO air quality guideline: 20 μg/m3 (WHO,

2006)] whereas mean NO2 exposure was 26.8 μg/m3 [WHO: 40 μg/m3

(WHO, 2006)]. The mean railway noise exposure was 10.4 dB whereas

the mean road traffic noise was 49.5 dB. Participants with diabetes

were older, had higher body mass index, smoked more and were

more likely exposed to environmental tobacco smoke. Furthermore, di-

abetic subjects were less educated, and consumed less fruits but more

alcohol. In addition, diabetic subjects had higher exposures to PM10

and NO2 and were more likely to remain in the same residential area

over the course of follow-up. Diabetic subjects were also more likely

to be hypertensive and have COPD [Table 1]. Table A1 summarizes ex-

cluded subjects vs. included subjects based on the background charac-

teristics and shows no substantial differences between these groups.

Fig. A1 shows the identification of diabetes cases for this study.

3.2. Association between air pollution and diabetes mellitus

For every 10 μg/m3 increase in home outdoor PM10 or NO2, the fully

adjusted odds ratio for prevalent diabetes mellitus was 1.40 [95% CI:

1.17, 1.67] and 1.19 [95% CI: 1.03, 1.38], respectively. The unadjusted

odds ratio for prevalent diabetes mellitus was 1.46 [95% CI: 1.20, 1.77]

and 1.20 [95% CI: 1.03, 1.39] respectively [Table 2]. Additional adjust-

ment for neither age and sex nor educational level and neighborhood-

level socio-economic index appreciably changed the estimates. Addi-

tional adjustment for lifestyle characteristics such as physical activity,

diet, smoking and alcohol consumption, reduced the home outdoor

PM10 estimate by 11% [OR: 1.35 (95% CI: 1.12, 1.63)]; and NO2 estimate

by 3% [OR: 1.17 (95% CI: 1.02, 1.36)]. The effect estimate for home out-

door NO2 and PM10 increased by 4% [OR: 1.21 (95% CI: 1.05, 1.39)] and

9% [OR: 1.40 (1.21, 1.71)] respectively, upon additional adjustment for

body mass index. Additional adjustment for noise further reduced the

effect estimates, but these estimates remained stable all through the ad-

justments, including hypertension, high sensitivity C-reactive protein

(hs-CRP) and dyslipidemia [Table 2].

For the multi-pollutant model, the unadjusted odds ratio for home

outdoor PM10 and NO2 was 1.37 [95% CI: 1.02, 1.84] and 1.02 [95% CI:

0.84, 1.25] respectively. These estimates remained fairly stable follow-

ing additional adjustments [Table 3].

A multivariate comparison across study areas, showed a consistent

association between adjusted diabetes prevalence rates and the com-

munity air pollution levels (r= 0.88 and 0.70 for PM10 and NO2 respec-

tively). Areas with higher air pollution levels tended to have higher

rates of diabetes [Figs. A2 and A3]. Also, the effect estimates did not sub-

stantially changewhenwe removed one area at a time in ourmodel [re-

sult not shown].

Table 2

Association between home outdoor air pollution and diabetes mellitus [single pollutant models].

NO2

OR [95% CI]

PM10

OR [95% CI]

Unadjusted 1.20 [1.03, 1.39] 1.46 [1.20, 1.77]

Adjusted for age and gender 1.23 [1.06, 1.43] 1.43 [1.18, 1.74]

+ adjusted for educational level and neighborhood SEI 1.22 [1.05, 1.41] 1.45 [1.23, 1.72]

+ adjusted for lifestyle characteristicsa 1.17 [1.02, 1.36] 1.35 [1.12, 1.63]

+ adjusted for body mass index 1.21 [1.05, 1.39] 1.44 [1.21, 1.71]

+ adjusted for noise 1.19 [1.03, 1.38] 1.40 [1.17, 1.67]

+ adjusted for hypertension 1.17 [1.01, 1.36] 1.37 [1.14, 1.65]

+ adjusted for high hs-CRP and dyslipidemia 1.21 [1.04, 1.40] 1.41 [1.17, 1.69]

SEI: socio-economic index. OR: odds ratio. OR values represent % increase in diabetes prevalence per 10 μg/m3 increase in PM10 or NO2. CI: confidence interval. hs-CRP: high sensitivity C-

reactive protein. High hs-CRP defined as CRP level N sample median (1.0 mmol/L). Dyslipidemia defined as triglyceride ≥ 1.7 mmol/L and/or high density lipoprotein ≤ 1.03 mmol/L in

men or≤1.29 mmol/L in women. Area was treated as a random effect in all models. + indicates additional adjustment. N = 6392 at all levels of adjustment except for hs-CRP and dys-

lipidemia where N = 6111.
a Include alcohol consumption, smoking, passive smoking, work exposure to dust gas and fumes, consumption of alcohol, fruits and raw vegetables and physical activity.
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3.3. Effect modification

Wedid notfind any statistically significant interaction termwith the

selected potential modifiers [Table 4]. Intake of beta-blocker may be

protective for PM10 with OR 0.23 [95% CI: 0.02, 3.32] vs. 1.41 [95% CI:

1.18, 1.69] for those not taking the medication.

3.4. Sensitivity analyses

Restricting the analysis to subjectswhodid not change their residen-

tial address between baseline and follow-up assessments and to per-

sons without self-reported heart disease did not substantially alter the

association between air pollution and diabetes [Table 5]. Excluding par-

ticipants who reported diabetes medication intake before baseline as-

sessment increased the estimates of association by 2% for both

pollutants [Table 5]. Associations remained positive and significant

when we narrowed diabetes definition to each criterion used for case

identification except for narrowing the definition of diabetes to report-

ed intake of anti-diabetic medication where associations remained

positive but statistically insignificant [Table A2]. This may imply

under-reporting of diabetic medication intake among those we identi-

fied as diabetic. The mean probability of participation in this study

(from baseline) was 66.2%; therefore, we adjusted for participation

bias (IPW) which gave adjusted odds ratios of 1.39 [95% CI: 1.15, 1.67]

and 1.18 [95% CI: 1.05, 1.34] per 10 μg/m3 increase in PM10 and NO2 re-

spectively [Table 5]. There was evidence that associations might be

slightly non-linear. The coefficients of the quadratic terms of NO2

and PM10 were negative (−0.00152 and −0.00144), with respective

p-values of 0.004 and 0.164. This might imply attenuation of effects at

higher levels of exposure.When treating area as a fixed effect, no signif-

icant association between air pollution exposure and diabetes mellitus

could be seen anymore and the 95% CI of these effect estimates got

wide [Table A3]. We did not observe strong heterogeneity in area-

specific effects of PM10 and NO2.

4. Discussion

In this analysis, we found that long-term exposure to PM10 and NO2

were positively associated with prevalent diabetes mellitus in the

SAPALDIA cohort, at concentrations below the air quality guidelines. As

mentioned earlier, we assume the diabetes cases to be predominantly

type 2, since N90% of adult diabetes is type 2 diabetes. The associations

were independent of traffic-related noise exposure, individual and area-

level socioeconomic status. They were in fact remarkably insensitive to

adjustment for potential confounders. Based on evidence and physical

properties, PM2.5 could be a better predictor of health effects of air pollu-

tion than PM10, but the associations would essentially be the same due to

the high spatial and temporal correlations in the SAPALDIA study areas

(measured at a later point), given their ratio of ~0.80.

In contrast to the results for NO2, those for PM10 were very differ-

ent when area was controlled as a fixed instead of a random effect.

The absence of significant associations within areas, shown by the

fixed effect estimates, could have several reasons. First, power to de-

tect within-area associations is clearly lower for PM10 due to its low

spatial variation within these rather small geographic areas. NO2 has

instead larger contrasts within areas as it picks up the local contrasts

of traffic related pollution. Second, PM10 is known to have different

compositions across areas. Depending on the PM10 composition,

the diabetogenic toxicity may vary, thus, adding to the heterogeneity

in the within-area effects. Instead, NO2 is generally an indicator of

local traffic-related pollution, which is a comparable source all across

Switzerland. Lastly, the prevalence of possible susceptibility factors

varied across areas, for instance the proportion of high physical ac-

tivity and alcohol intake N once/day varied from 8.1 to 42% and 1.7

to 21.9% respectively. However, effect estimates for PM10 and NO2

remained quite stable when we additionally considered interaction

terms between these factors and the exposure variables or study

area. Thus, variation in susceptibility factors is unlikely to explain

the observed difference in the associations within and across study

areas. Since associations between air pollution and diabetes across

areas might be confounded by lifestyle characteristics at the area

level, we conducted additional sensitivity analyses including area

means of socio-demographic and lifestyle characteristic. Again, ef-

fect estimates of PM10 and NO2 remained remarkably stable.

This study adds to the growing, but still inconsistent evidence on the

cross-sectional and longitudinal association between air pollution and

possible type 2 diabetes. Brook et al. (2008) found a positive association

between NO2 and prevalent diabetes mellitus in women, but not men,

who attended respiratory clinics in Hamilton and Toronto, Canada [OR:

1.04; 95% CI: 1.00, 1.08 for every 1 ppb increase in NO2]. Dijkema et al.

did not find any association of diabeteswith NO2 and traffic proximity es-

timates (Dijkema et al., 2011). In a purely ecologic comparison, Pearson

et al. (2010) found a positive association between PM2.5 and diabetes

prevalence at the county level.

The longitudinal studies on incident diabeteswere a bitmore consis-

tent. Kraemer et al. found the hazard of diabetes to be increased by 15–

42% per interquartile range (IQR) of PMor traffic-related exposuremea-

sured as NO2 in a German cohort of 1775 adult females (Krämer et al.,

2010). Chen et al. reported a hazard ratio of 1.11 [95% CI: 1.02, 1.21],

for diabetes as recorded in the Ontario diabetes database, per 10 μg/m3

increase in 6-year average PM2.5 in a Canadian cohort of 62,012

adults (Chen et al., 2013). In a Danish registry-based study involving

51,818 participants (Andersen et al., 2012), NO2 was also associated

with confirmed diabetes cases [HR = 1.04; 95% CI: 1.00, 1.08 per

2.6 ppb interquartile range of NO2]. Coogan et al. studied 3992

African–American women in Los Angeles and reported an incidence

risk ratio of 1.25 [95% CI: 1.07, 1.46] per 12.4 ppb IQR of NOx and 1.63

[95% CI: 0.78, 3.44] per 10 μg/m3 increase in PM2.5 (Coogan et al.,

Table 3

Association between home outdoor air pollution and diabetes mellitus [two-pollutant models].

NO2

OR [95% CI]

PM10

OR [95% CI]

Unadjusted 1.03 [0.83, 1.27] 1.41 [1.02, 1.96]

Adjusted for age and gender 1.10 [0.87, 1.37] 1.28 [0.90, 1.82]

+ adjusted for educational level and neighborhood SEI 1.03 [0.84, 1.28] 1.40 [1.03, 1.90]

+ adjusted for lifestyle characteristicsa 1.03 [0.83, 1.28] 1.31 [0.95, 1.79]

+ adjusted for body mass index 1.04 [0.86, 1.27] 1.37 [1.02, 1.85]

+ adjusted for noise 1.02 [0.84, 1.25] 1.37 [1.02, 1.84]

+ adjusted for hypertension 1.02 [0.82, 1.26] 1.35 [0.99, 1.84]

+ adjusted for high hs-CRP and dyslipidemia 1.04 [0.84, 1.29] 1.35 [0.99, 1.84]

SEI: socio-economic index. OR: odds ratio. OR values represent % increase in diabetes prevalence per 10 μg/m3 increase in PM10 or NO2. CI: confidence interval. hs-CRP: high sensitivity

C-reactive protein. High hs-CRP defined as CRP level N samplemedian (1.0 mmol/L). Dyslipidemia defined as triglyceride ≥ 1.7 mmol/L and/or highdensity lipoprotein ≤ 1.03 mmol/L in

men or ≤1.29 mmol/L in women. Area was treated as a random effect in all models. + indicates additional adjustment. N = 6392 at all levels of adjustment except for hs-CRP and

dyslipidemia where N = 6111.
a Include alcohol consumption, smoking, passive smoking, work exposure to dust gas and fumes, consumption of alcohol, fruits and raw vegetables and physical activity.
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2012) whereas Puett et al., in the Health Professionals Follow-up Study

and Nurses' Health Study, found an association only among female

nurses living b50 m from a roadway [HR: 1.14, 95% CI: 1.03, 1.27]

(Puett et al., 2011).

In our two-pollutant model, there was an attenuation of the effect of

NO2 from 1.19 [95% CI: 1.03, 1.38] to 1.02 [0.84, 1.25]. The Black

Women Health Study reported a similar pattern with the attenuation of

NOx coefficient in themodel that includedPM2.5 (Coogan et al., 2012). Un-

like some studies that found a stronger effect in women (Brook et al.,

2008; Chen et al., 2013), we did not find any substantial gender differ-

ences in our analysis. One of the reasons for observing a gender difference,

apart from chance or hormonal differences, is potential exposuremisclas-

sification, because exposure estimates were based on residential ad-

dresses and women are believed to stay more around the home than

men (Brook et al., 2008). Our exposure estimates were also based on

the residential addresses and we found a slightly weaker effect in

women, which might be a chance finding. Similar to the Canadian cohort

(Chen et al., 2013) and the Danish cohort (Andersen et al., 2012), we did

not find any significant interactions with any co-morbidities. Unlike the

Danish study (Andersen et al., 2012), we did not find any interaction

with physical activity, even though we observed stronger effects among

the physically active for both pollutants. Whereas Kraemer et al. found a

higher effect of living near a busy road in women of low education [HR:

2.54; 95% CI: 1.31–4.91, p = 0.006], we did not find any interaction

with educational level.

4.1. Biological mechanisms linking air pollution to development of diabetes

mellitus

Air pollution causes subclinical inflammation and appears to mediate

components of the metabolic syndrome including impaired vascular en-

dothelial function, and alterations in the central autonomic tone, visceral

and brown adipose tissue, with mitochondrial and hepatic insulin recep-

tor dysfunction (Liu et al., 2013; Rajagopalan and Brook, 2012). Apart

from the experimental studies on mouse models which showed insulin

resistance among rats, regardless of the type of diet given (Sun et al.,

2009; Xu et al., 2011), human epidemiological studies have also demon-

strated insulin resistance after air pollution exposure. Thiering et al.

found a positive association between long-term exposure to NO2 and

PM10, and homeostatic model assessment (HOMA) of insulin resistance

among 10-year old children in Germany. Insulin resistance increased by

17% [95% CI: 5.0, 30.3] and 18.7% [95% CI: 2.9, 36.9] for every 2SD increase

in NO2 and PM10 respectively (Thiering et al., 2013). Similarly, Kelishadi

and colleagues found positive associations between exposure to PM10,

and NO2 [and other markers of air pollution], and insulin resistance [and

other markers of inflammation and oxidative stress] among children in

Iran (Kelishadi et al., 2009).

4.2. Strengths and limitations of this study

This study draws from the extensive database of the SAPALDIA

study. This is the first cross-sectional study assessing this association

with detailed confounding adjustment, including several lifestyle

characteristics, health status as well as noise exposure. Our air pollu-

tion estimates were derived annually, over the 10 years preceding

the first follow-up. This provided reliable estimates for cumulative

exposure of the participants in this study. To limit outcome misclas-

sification, we tried to identify undiagnosed cases through tests for

non-fasting blood glucose and HbA1c, the gold standard for diagno-

sis of diabetes mellitus.

One major limitation of this study was the inclusion of all cases of

self-reported, physician-diagnosed diabetes in the analysis irrespec-

tive of time of diagnosis. We did not have this information for all di-

abetes cases. However, we had information on some who reported

Table 4

Modification of the association between air pollution and diabetes mellitus.

Variable Categories NO2

OR [95% CI]

PM10

OR [95% CI]

Age ≤50 years 1.22 [0.87, 1.71] 1.34 [0.81, 2.20]

N50 years 1.18 [1.01, 1.38] 1.42 [1.18, 1.71]

Interaction (p-value) 0.925 0.813

Sex Males 1.25 [1.06, 1.48] 1.53 [1.29, 1.90]

Females 1.11 [0.91, 1.36] 1.18 [0.89, 1.58]

Interaction (p-value) 0.300 0.146

Obesity (BMI N 30 kg/m2) No 1.19 [1.00, 1.40] 1.37 [1.10, 1.67]

Yes 1.13 [0.93, 1.34] 1.28 [0.99, 1.70]

Interaction (p-value) 0.639 0.702

Hypertension No 1.14 [0.90, 1.43] 1.34 [0.98, 1.84]

Yes 1.19 [1.01, 1.41] 1.38 [1.12, 1.71]

Interaction (p-value) 0.687 0.881

COPD (FEV1/FVC b 0.7) No 1.15 [0.98, 1.35] 1.32 [1.08, 1.61]

Yes 1.31 [1.02, 1.67] 1.61 [1.11, 2.34]

Interaction (p-value) 0.326 0.331

Educational level Low 1.13 [0.83, 1.55] 1.32 [0.78, 2.48]

Medium 1.22 [1.03, 1.44] 1.46 [1.18, 1.79]

High 1.17 [0.91, 1.51] 1.23 [0.84, 1.79]

Interaction (p-value) 0.885 0.698

Physical activity Low 1.14 [0.96, 1.35] 1.37 [1.11, 1.70]

Medium 1.23 [0.94, 1.60] 1.31 [0.90, 1.90]

High 1.38 [1.03, 1.86] 1.73 [1.07, 2.80]

Interaction (p-value) 0.456 0.618

Intake of Beta-blockers No 1.19 [1.03, 1.38] 1.41 [1.18, 1.69]

Yes 1.83 [0.52, 6.39] 0.23 [0.02, 3.32]

Interaction (p-value) 0.388 0.185

OR values represent % increase in diabetes prevalence per 10 μg/m3 increase in PM10 or NO2; OR: odds ratio, CI: confidence interval; kg/m2: kilogram per meter squared; COPD: chronic

obstructive pulmonary disease, FEV1: forced expiratory volume in 1 s, FVC: forced vital capacity. OR values represent % increase in diabetes prevalence per 10 μg/m3 increase in PM10 or

NO2 in each category. Area was treated as a random effect in all models. The odds ratio of each category represents a stratified analysis for the category. Odds ratio in each category rep-

resents the effect in that groupwhereas the p-value of interaction term represents the p-value of the likelihood ratio test. All models were adjusted for age, sex, educational status, neigh-

borhood socio-economic index, smoking status, pack-years of smoking, environmental tobacco smoking, occupational exposure to dusts, gases and fumes, consumption of alcohol, raw

vegetables and fruits, physical activity, body mass index and noise. Low education corresponds to primary school level, intermediate corresponds to secondary, middle, or vocational

school, and high education corresponds to technical college or university.
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starting anti-diabetic medication, 90% of whom started taking the

medication after the baseline examination.We also performed a sen-

sitivity analysis, excluding those who reported taking diabetes med-

ication before baseline. Another limitation was that air pollution was

modeled at participants' residences. We did not have estimates for

exposure at work and at other places where outdoor activities may

take place. We expect this misclassification to be mostly non-

systematic, thus, leading to bias toward the null. Fortunately, atten-

uation due to ignoring exposure at work is expected to be small

(some 10%), because people spend more of their time at home. Nev-

ertheless, we adjusted for occupational exposure to vapor, dust and

fumes, which is unlikely to confound our main findings because it

is not really correlated with our exposure of interest.

To the best of our knowledge, this is the first epidemiological study to

consider noise exposure as a potential confounder of the association be-

tween diabetes and ambient air pollution exposure. Experimental evi-

dence associating noise with diabetes mellitus (Spiegel et al., 2005;

Tasali et al., 2009) postulates mechanisms through sleep deprivation, im-

balance of the autonomic nervous systemwith a relative increase in sym-

pathetic tone, release of stress hormones and consequent increase in

blood pressure, blood lipids, glucose level, clotting and viscosity. Our con-

sideration of noise could be a strength and a limitation. As discussed

above, one may hypothesize interrelated pathways where both noise

and air pollution may be relevant, thus, as in the case of cardiovascular

outcomes, taking noise into account in air pollution–diabetes research is

a strength (Tetreault et al., 2013). On the other side, we had only outdoor

noise estimates available. As discussed by Foraster, outdoor noise esti-

mates may not be a good proxy for personal exposure to noise, thus, it

is not clear to what degree our models were able to properly control for

independent effects of noise (Foraster, 2013). Finally, we had only one

noise exposure estimate, at participants' residences for the entire

follow-up period. To address this limitation,we also did a sensitivity anal-

ysis restricting the analysis to participants having lived in the same resi-

dence between baseline and follow-up.

The potential bias due to differential non-participation deserves

further investigation. Analyses involving IPW help to correct at

least some of the bias, but some bias may persist. All longitudinal

studies on diabetes determinants face this challenge. Diabetic indi-

viduals with more advanced disease and disease-related handicaps

are more likely to die or no longer participate. Air pollution is

thought to contribute to the progression of diabetes and to suscepti-

bility for cardiovascular events (Rajagopalan and Brook, 2012). Also,

our finding of effect attenuation at higher rather than lower levels of

exposure (opposing the usual threshold thinking), deserves further

investigation. This calls for extension of air pollution research to

areas with higher pollution levels and larger contrasts as observed

in many developing countries.

In conclusion, this study adds to the evidence for amoderate and in-

dependent association between air pollution and diabetes. The results

point to the need of future studies to consider the composition of PM.

The observed association at concentrations below air quality standards

parallels associations with mortality and points to continuous needs in

air quality regulation.
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Table 5

Sensitivity analyses.

N

[cases/controls]

NO2

OR [95% CI]

PM10

OR [95% CI]

Subjects living in same residence over 10-year follow-up period 3719 [218/3719] 1.17 [1.00, 1.37] 1.36 [1.09, 1.70]

Subjects without self-reported heart disease 5951 [259/5692] 1.21 [1.04, 1.41] 1.41 [1.16, 1.71]

Exclusion of diabetes reported at or before baseline assessment 6373 [296/6077] 1.21 [1.04, 1.41] 1.42 [1.17, 1.72]

Adjustment for participation bias (Inverse probability weighting) 6392 [315/6077] 1.18 [1.05, 1.34] 1.39 [1.15, 1.67]

OR values represent % increase in diabetes prevalence per 10 μg/m3 increase in PM10 or NO2. OR: odds ratio, CI: confidence interval. Area was treated as a random effect in all models. All

models were adjusted for age, sex, educational status, neighborhood socio-economic index, smoking status, pack-years of smoking, environmental tobacco smoking, occupational expo-

sure to dusts, gases and fumes, consumption of alcohol, raw vegetables and fruits, physical activity, bodymass index and noise. All sensitivity analyses were done using the fully-adjusted

single-pollutant models.
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Appendix A

Table A1

Characteristics of participants included/excluded from the study.

Variables (%) Baseline participants

excluded only

(N = 1604)

Follow-up participants

excluded (N = 1655)

Participants

Included

(N = 6392)

N of baseline participants

excluded/N of

follow-up participants

excluded/N

included in the

analysis

Females 45.3 54.5 51.3 1604/1655/6392

Smoking status at baseline

Never smoker 35.6 40.1 46.9 1602/1648/6392

Ex-smoker 22.4 20.6 23.2

Current smoker 42.0 39.3 29.9

Smoking status at follow-up 0/1642/6392

Never smoker 37.5 43.5

Ex-smoker 30.6 31.6

Current smoker 31.9 24.9

ETS in never smokers

Baseline 12.4 13.2 13.3 1602/1648/6392

Follow-up 5.3 6.7 0/1261/6392

ETS in ex-smokers

Baseline 8.2 7.5 7.2 1602/1648/6392

Follow-up 6.3 6.4 0/1261/6392

Occupational exposure

to dust/gases/fumes

Baseline 36.6 31.3 30.6 1600/1628/6392

Follow-up 26.3 27.5 0/171/6392

Physical activitya 0/141/6392

b0.5 h/week 45.4 38.7

0.5–2 h/week 31.2 33.7

N2 h/week 23.4 27.6

Educational level at baseline 1594/1643/6390

Low 27.4 19.0 13.7

Intermediate 57.6 65.7 68.9

High 15.0 15.3 17.5

Educational level at follow-up 0/1649/6392

Low 18.5 6.2

Intermediate 64.5 65.6

High 17.0 28.2

Alcohol consumptiona 0/170/6392

Never 10.6 9.2

≤Once a day 75.9 81.8

NOnce a day 13.5 9.0

Raw vegetable consumptiona 0/172/6392

Never 0 0.6

≤3 days/week 16.9 18.8

N3 days/week 83.1 80.6

Citrus fruits consumptiona 0/172/6392

Never 7.1 8.4

≤3 days/week 52.9 56.1

N3 days/week 40.0 35.5

Other fruits consumptiona 0/168/6392

Never 1.2 1.8

≤3 days/week 31.6 33.2

N3 days/week 67.3 65.0

Areasa: Basel 15.1 12.9 0/195/824

Wald 17.9 18.1 0/231/1154

Davos 7.6 8.0 0/98/512

Lugano 16.1 14.5 0/208/928

Montana 5.8 9.2 0/75/589

Payerne 18.5 13.8 0/238/885

Aarau 3.4 15.1 0/44/968

Geneva 15.5 8.3 0/199/532

Diabetes casesa 4.9 4.9 0/1045/6392

COPD (FEV1/FVC b 0.7) casesa 22.7 19.8 0/185/6392

Hypertension casesa 15.6 19.3 0/1025/6392

Dyslipidemiasa 48.5 47.9 0/206/6111

High hs-CRPa 57.8 53.4 0/206/6111

Mean (SD)

Age at baseline (years) 40.7 (12.0) 40.7 (12.1) 41.3 (11.4) 1604/1655/6392

Age at follow-up (years) 51.8 (12.1) 52.2 (11.4) 0/1655/6392

BMI at baseline (kg/m2) 24.4 (4.3) 24.1 (4.1) 23.8 (3.6) 1571/1618/6363

BMI at follow-up (kg/m2) 26.6 (5.4) 25.9 (4.4) 0/206/6392

Neighborhood SEIa 62.7 (10.7) 63.5 (10.1) 0/1598/6392

10-year mean PM10 (μg/m
3)a 22.7 (7) 22.3 (7.4) 0/1532/6392
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Table A1 (continued)

Variables (%) Baseline participants

excluded only

(N = 1604)

Follow-up participants

excluded (N = 1655)

Participants

Included

(N = 6392)

N of baseline participants

excluded/N of

follow-up participants

excluded/N

included in the

analysis

10-year mean NO2 (μg/m
3)a 28.3 (11.4) 26.8 (11) 0/1532/6392

Mean smoking pack-years 12.4 (19.9) 10.8 (18.4) 0/1493/6392

Mean railway noise (dB)a 10.5 (13.1) 10.4 (13.1) 0/1595/6392

Mean street noise (dB)a 49.7 (9.4) 49.5 (8.8) 0/1595/6392

ETS: Environmental tobacco smoking; COPD: chronic obstructive pulmonary disease. FEV1: forced expiratory volume in 1 s, FVC: forced vital capacity. hs-CRP: high sensitivity C-reactive protein.

Highhs-CRP is defines as hs-CRP ≥ 1.0 mmol/L, themedianhs-CRP.Dyslipidemia definedas triglyceride ≥ 1.7 mmol/L and/or highdensity lipoprotein ≤ 1.03 mmol/L inmenor≤1.29 mmol/L

in women. Low education corresponds to primary school level, intermediate corresponds to secondary, middle, or vocational school, and high education corresponds to technical college or

university. SEI: socio-economic index. IQR: inter-quartile range.
a Measured only at follow-up.

Table A2

Association between air pollution and diabetes mellitus, stratified by case definition criteria.

Self-reported, physician-diagnosed diabetes Non-fasting blood glucose ≥ 11.1 mmol/L

or HbA1c ≥ 0.065.

Self-reported diabetes medication

NO2 PM10 NO2 PM10 NO2 PM10

OR [95% CI] 1.18 [0.99,1.40] 1.31 [1.02, 1.67] 1.26 [1.09, 1.45] 1.48 [1.19, 1.82] 1.19 [0.96, 1.48] 1.12 [0.84, 1.51]

N = 6306; Cases = 229 N = 6298; Cases = 221 N = 6224; Cases = 147

OR values represent % increase in diabetes prevalence per 10 μg/m3 increase in PM10 or NO2. OR: odds ratio, CI: confidence interval. Area was treated as a random effect in all models. All

models were adjusted for age, sex, educational status, area socio-economic index, smoking status, pack-years of smoking, environmental tobacco smoking, occupational exposure to dusts,

gases and fumes, consumption of alcohol, raw vegetables and fruits, physical activity, body mass index and noise. Diabetes cases not matching the criterion were excluded from the

controls.

Table A3

Association between air pollution and diabetes with fixed effect models.

NO2

OR [95% CI]

PM10

OR [95% CI]

Fully adjusted model treating study area as a fixed effect 1.11 [0.87, 1.40] 0.86 [0.47, 1.60]

Fully adjusted model ignoring study area 1.21 [1.07,1.36] 1.40 [1.17, 1.68]

OR values represent % increase in diabetes prevalence per 10 μg/m3 increase in PM10 or NO2. OR: odds ratio, CI: confidence interval. Area was treated as a fixed effect in all models. All

models were adjusted for age, sex, educational status, area socio-economic index, smoking status, pack-years of smoking, environmental tobacco smoking, occupational exposure to

dusts, gases and fumes, consumption of alcohol, raw vegetables and fruits, physical activity, body mass index and noise. N = 6392 at all levels of adjustment.
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Self–reported,  

physician-

diagnosed diabetes

Blood HbA1c≥0.065

or glucose≥11.1 

mmol/l

Self-reported 

diabetes 

medication

No n=5959

Yes n=4

Yes n=82

No n=6163

No n=3268

Missing n=2891

Missing 

n=118

Diabetes 

n=315
No Diabetes 

n=6077

n=2773

Sapaldia follow-up 

participants 

n=8047

Excluded

Yes n=229

Complete information on covariates 

and self-reported diabetes n=6392

Missing data 

n=1655

Fig. A1 Diabetes case identification flow chart.

Fig. A2 Correlation between adjusted diabetes prevalence and mean PM10 by area. Fig. A3 Correlation between adjusted diabetes prevalence and mean NO2 by area.
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Abstract

Air pollutants (AP) play a role in subclinical inflammation, and are associated with cardio-

vascular morbidity and mortality. Metabolic syndrome (MetS) is inflammatory and precedes

cardiovascular morbidity and type 2 diabetes. Thus, a positive association between AP and

MetS may be hypothesized. We explored this association, (taking into account, pathway-

specific MetS definitions), and its potential modifiers in Swiss adults. We studied 3769 par-

ticipants of the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults,

reporting at least four-hour fasting time before venepuncture. AP exposures were 10-year

mean residential PM10 (particulate matter <10μm in diameter) and NO2 (nitrogen dioxide).

Outcomes included MetS defined by World Health Organization (MetS-W), International Di-

abetes Federation (MetS-I) and Adult Treatment Panel-III (MetS-A) using four- and eight-

hour fasting time limits. We also explored associations with individual components of MetS.

We applied mixed logistic regression models to explore these associations. The prevalence

of MetS-W, MetS-I and MetS-A were 10%, 22% and 18% respectively. Odds of MetS-W,

MetS-I and MetS-A increased by 72% (51-102%), 31% (11-54%) and 18% (4-34%) per

10μg/m3 increase in 10-year mean PM10. We observed weaker associations with NO2. As-

sociations were stronger among physically-active, ever-smokers and non-diabetic partici-

pants especially with PM10 (p<0.05). Associations remained robust across various

sensitivity analyses including ten imputations of missing observations and exclusion of dia-

betes cases. The observed associations between AP exposure and MetS were sensitive to

MetS definitions. Regarding the MetS components, we observed strongest associations

with impaired fasting glycemia, and positive but weaker associations with hypertension and

waist-circumference-based obesity. Cardio-metabolic effects of AP may be majorly driven

by impairment of glucose homeostasis, and to a less-strong extent, visceral adiposity. Well-

designed prospective studies are needed to confirm these findings.
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Introduction

Metabolic syndrome (MetS) represents a group of symptoms including central obesity, hyper-

tension, atherogenic dyslipidaemias and insulin resistance. World Health Organization

(WHO) defines MetS (MetS-W) as diagnosis of impaired fasting glycaemia (IFG; or treatment

for type 2 diabetes) and of any two out of central obesity, hypertension, hypertriglyceridemia

(HTG) and low high-density lipoproteins (HDL) (or treatment for specific dyslipidaemia), and

urinary albumin excretion ratio�20μg/min [1]. International Diabetes Federation (IDF) de-

fines MetS (MetS-I) as central obesity and any two out of IFG, hypertension, HTG and low

HDL [2], whereas Adult Treatment Panel (ATP) III defines MetS (MetS-A) as diagnosis of any

three of five major components [3, 4]. MetS greatly contributes to global disease burden, occur-

ring in about 25% of adults [2]. It predisposes to cardiovascular events and type 2 diabetes.

Similarly, air pollutants (AP) are common, top risk factors for disease burden [5] and have

been associated with cardiovascular [6–8]-and diabetes-related events [9–11]. Controlling dis-

ease burden from cardiovascular morbidity and diabetes implies that prevention of MetS and

excessive AP exposure are crucial. Identifying modifiable risk factors to MetS will improve at-

tribution of the burden and support public health control strategies.

MetS enhanced susceptibility to adverse effects of short-term AP exposure. Experimental

exposure to diesel exhaust resulted in more haemoconcentration and thrombocytosis in MetS

subjects compared to healthy ones [12]. MetS subjects also developed cardiovascular symptoms

when exposed to ultrafine particles [13]. Susceptibility to low grade systemic inflammation on

exposure to long- term particulate matter<10μm (PM10) was enhanced by MetS [14]. Thus, a

link between AP exposure and MetS is plausible but has not been studied. Previous MetS-

related studies have focused on PM effects. Unlike PM, which is a marker of general pollution

and particle exposure, Nitrogen dioxide (NO2) is more specific for traffic-related pollution.

Studying NO2 will reveal if traffic exposure contributes to the association, or whether the ob-

served association solely reflects a particle effect (pointing towards an innate immunity activa-

tion pathway) or a contribution of different sources. Studying the various definitions of MetS

will not only assess the sensitivity of associations to definition, but will also aid the understand-

ing of pathways most likely driving the cardio-metabolic effects of AP on a population level.

We therefore explored associations between long-term AP exposure and MetS in adults from a

general population sample.

Materials and Methods

Ethics Statement

Ethical clearance for the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in

Adults (SAPALDIA) was obtained from the Swiss Academy of Medical Sciences, the National

Ethics Committee for Clinical Research (UREK, Project Approval Number 123/00) and the

Cantonal Ethics Committees of the eight health examination areas (Aargau, Basel, Geneva,

Grisons, Ticino, Valais, Vaud and Zurich). Participants were required to give written consent

prior to the conduct of any health examination.

We used data from 3769 follow-up participants of the SAPALDIA study aged 29–73 years.

Details of this study are explained elsewhere [15] but briefly, SAPALDIA began in 1991 with

9651 participants randomly drawn from eight Swiss communities representing a wide range of

environmental conditions in Switzerland. 8047 individuals participated in the follow-up study

in 2001/2002. Participants completed computer-assisted interviews on health and lifestyle, and

had physical examinations including blood sampling, at follow-up, into a bio bank for bio-

marker and genetic assays. Inclusion in the present study required participation in the follow-
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up study, complete data on outcomes and covariates and at least four-hour fasting time before

the follow-up examination. The reduction in sample size for this study is primarily explained

by the exclusion of non-fasting subjects. Fasting status was not required for

SAPALDIA participation.

Definition of MetS

Participants reported their fasting time at first follow-up physical examination (including vene-

puncture). Height, weight, blood pressure (BP), plasma glucose and lipids were measured.

Blood pressure was measured twice at rest, on the left arm, at least three minutes apart, in a sit-

ting position. The mean value of both measures was computed for analyses. Participants were

asked about physician diagnoses of diabetes, hypertension, dyslipidaemia and use of medica-

tion for these conditions. We defined hypertension as BP (mmHg)� 140/90 (MetS-W) and

>130/85 (MetS-I; MetS-A) or a physician diagnosis/ treatment. We defined low HDL as plas-

ma HDL (mmol/l)<0.9 (MetS-W) and<1.03 (MetS-I; MetS-A) in males and<1.0 and<1.30

respectively in females and/or diagnosis/ treatment of dyslipidaemias. We defined HTG as

plasma triglyceride (mmol/l)�1.7 and/or diagnosis/ treatment of dyslipidaemias, and im-

paired fasting glycaemia (IFG) as plasma glucose�6.1mmol/l (MetS-W) and�5.6mmol/l

(MetS-I; MetS-A) and/or diagnosis/treatment of diabetes. Waist circumference (WC) was not

measured at this visit, but was measured at the next follow-up visit. We derived a prediction

model, with optimal Bayesian Information Criterion, for waist circumference measured at the

next follow-up:

Waist circumference ðcmÞ ¼ b0 þ b1�sexþb2�age þ b3�age
2 þ b4�BMI

þb5�BMI2 þ b6�age � bmi þ b7�sex � age þ b8�sex � age
2

þ b9�sex � BMI þ b10�sex � BMI2 þ b11 � sex � age � BMI

þ b12�alcohol þ b13�physical activity þ b14�ex‒smoker

þ b15�current smoker:

We applied this model, using the covariate values of the second survey and added the residuals

from the third survey, to back-predict waist circumference for present analyses. We used cross-

validation to assess our imputation model, randomly splitting the follow-up sample into a

training and a validation sample. The mean imputation error was not significantly different

from zero, and the correlations of the imputation errors and the independent variables were

also not significantly different from zero. The adjusted R2 of the imputation model was 0.79

and the squared correlation between the imputed and the actual values was of the same size.

We thus defined central obesity (MetS-I) for a European population as WC�94cm and

�80cm for males and females respectively. We also defined central obesity (MetS-A) asWC

�102cm and�88cm for males and females respectively. Central obesity can be assumed if

BMI>30 kg/m2 [2]. Finally, we defined MetS-W, MetS-I and MetS-A based on the above criteria.

Assignment of exposures

We considered estimates of residential exposure to PM10 and NO2. Annual means of AP for

1990 and 2000 were estimated from dispersion models using various emission inventories in-

cluding road and rail traffic, residential, agricultural, heavy equipment and industrial emissions

[16] on a 200x200m grid, and linked to participants’ addresses.[17] Estimates of NO2 exposure

were obtained from a hybrid model incorporating land-use regression, since the dispersion

model alone did not optimally predict NO2 near traffic sites.[18] Annual data of AP at

Ambient Air Pollution and Metabolic Syndrome
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monitoring sites and participants’ residential histories were used to estimate annual means of

residential exposure levels during the follow-up period and to assign estimates of average resi-

dential exposure over the 12 month and 10 year period, respectively, preceding the follow-up

examination.[17]

Potential confounders

Consistent with our previous report on diabetes [10], we considered the following characteris-

tics, measured at follow-up, as potential confounders: age, sex, educational attainment (�9,>9

years), smoking status (never, former, current) and pack-years, passive smoke exposure (yes/

no), occupational exposure to vapours, gases, dusts or fumes (VGDF; yes/no), alcohol consump-

tion (including beers, wines, liquors and spirits) (never,� once a day,> once a day), consump-

tion of raw vegetables (including salads, juices), citrus fruits (including juices) and other fruits

(including juices) (never,� 3 days per week,>3 days per week respectively), and self-reported

vigorous physical activity defined as participation in activities making one sweat or breathless

(<0.5 and�0.5 hours/week). We also considered neighbourhood-level socio-economic index

(SEI) of participants, derived from a principal component analysis using median rent, number

of residents of households, educational level and occupation of household heads [19].

Statistical Analyses

We summarized participants’ characteristics by different MetS definitions and also by inclu-

sion/exclusion status. We estimated the prevalence of MetS-W, MetS-I and MetS-A, and their

associations with 10-year-means of exposure metrics, using mixed logistic models with a ran-

dom intercept for study area. Since metabolic syndrome is common [2] and given the preva-

lence in our study sample, we applied mixed Poisson models to estimate incidence rate ratios

and used a heuristic approach to obtain robust confidence intervals [20]. Our fully-adjusted

model included participants’ age, sex, educational attainment, neighbourhood SEI, smoking

status and pack-years, passive smoke and VGDF exposure, consumption of alcohol, vegetables,

citrus fruits and other fruits, and physical activity and BMI. We adjusted for continuous BMI

to capture its variation within obesity and non-obesity groups. Using this fully-adjusted model,

we also explored independent associations of PM10 and NO2 with MetS in two- pollutant mod-

els. We also explored associations between AP and components of MetS. All these models addi-

tionally included BMI except for the AP- obesity model. We repeated these analyses among

participants reporting at least eight-hour fasting time (N = 367).

We assessed potential effect modification by age (�50,>50 years), sex, and physical activity,

diabetes and smoking status by stratification and interaction, given previously reports on their

role as potential modifiers of AP and diabetes association [21]. Sensitivity analyses included:

imputation of 75 observations (10 imputations) with missing data using chained equations; ex-

cluding participants who had IFG or obesity but not identified as MetS; treating study area as

fixed factor; omitting study area from the models. We applied inverse probability weighting

(IPW) to explore non-participation bias. We defined alternative MetS including MetS-I with

BMI-based central obesity and MetS-I with North American cut-offs for waist circumference.

We performed all analyses with STATA version 13 (Stata Corporation, Texas).

Results

Characteristics of participants

Table 1 shows the characteristics of included participants by MetS status. The distribution of

established risk factors with MetS generally followed expectations (e.g. male sex, smoking,

Ambient Air Pollution and Metabolic Syndrome
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Table 1. Background Characteristics of participants.

Characteristic (%) MetS-Wa MetS-Ib MetS-Ac No MetSd

N 382 771 663 2617

Females 40.1 46.0 40.8 58.0

Education >9 years 85.1 88.9 88.5 93.6

Never smokers 37.2 43.3 44.6 45.0

ETS exposure 49.5 46.3 46.4 46.7

Occupational exposure to VGDF 45.0 45.2 45.1 42.4

Alcohol intake: None 13.1 9.9 9.9 9.9

� once/day 72.2 76.4 75.3 81.7

> once/day 14.7 13.7 14.8 8.4

Citrus fruits intake: None 12.8 9.5 8.7 7.6

�3days/week 54.2 54.5 55.7 56.8

>3days/week 33.0 36.0 35.6 35.6

Fruit intake: None 2.1 2.1 2.1 2.1

�3days/week 26.4 30.2 30.8 33.7

>3days/week 71.5 67.7 67.1 64.2

Raw vegetables intake: None 0 1.0 0.7 0.7

�3days/week 20.7 18.0 18.6 18.5

>3days/week 79.3 81.0 80.7 80.8

Vigorous physical activity �0.5hours/week 42.7 53.0 52.8 60.1

Impaired fasting glycaemia (IFG)e 100 56.3 67.8 7.9/20.7h

Low high-density lipoproteins (HDL)f 41.6 51.1 65.6 6.9/14.7h

High triglycerides 91.6 83.4 89.4 34.3

Obesity (BMI>30kg/m2) 49.0 36.4 34.0 9.3

Hypertensiong 81.9 82.4 82.0 25.5/36.3h

Area:

Basel 13.4 11.3 10.0 10.6

Wald 14.6 13.7 16.5 16.1

Davos 2.6 8.6 8.2 9.1

Lugano 25.1 17.6 19.8 17.3

Montana 5.2 10.1 10.5 11.6

Payerne 14.7 15.2 12.3 11.9

Aarau 16.0 14.5 13.6 13.6

Geneva 8.4 8.9 9.1 9.9

Mean (SD)

Age (years) 61.4(7.3) 58.1 (9.1) 57.9 (9.2) 51.2 (11.5)

BMI (kg/m2) 30.3(4.9) 29.1(3.9) 28.7 (4.0) 24.8 (3.9)

Predicted waist circumference (cm) 100.7 (11.9) 100.3 (10.6) 98.8 (11.7) 83.5 (11.4)

Neighborhood SEI 61.7(10.3) 62.5(9.9) 62.9 (9.5) 63.2 (10.0)

Pack-years of cigarettes smoked 15.9(24.7) 13.4(22.4) 13.6 (22.2) 9.8 (16.6)

10-year PM10 (μg/m
3) 25.0(7.4) 22.7(7.9) 22.8 (8.1) 22.2 (7.8)

(Continued)
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physical inactivity were more prevalent in MetS). The MetS cases also had higher exposures to

AP than the controls (Table 1).

MetS-W had a weakly positive correlation with MetS-I (kappa = 0.25), but both correlated

better with the MetS-A (kappa = 0.40 and 0.67 respectively). Differences between included and

excluded participants are shown in S1 Table. Included participants tended to be older, more ed-

ucated, never-smokers, more exposed to occupational dusts and less physically active (S1

Table).

Table 1. (Continued)

Characteristic (%) MetS-Wa MetS-Ib MetS-Ac No MetSd

10-year NO2 (μg/m
3) 29.9(11.4) 27.6(11.6) 27.5 (11.8) 27.2 (11.3)

MetS-W: World Health Organization-defined metabolic syndrome. MetS-I: International Diabetes Federation-defined metabolic syndrome. MetS-A: Adult

Treatment Panel III-defined metabolic syndrome. ETS: environmental tobacco smoke. VGDF: vapours, gases, dusts or fumes. SEI: socio-economic index

expressed as a percentage. PM10: particulate matter <10μm in diameter from all sources. NO2: nitrogen dioxide.
adefined as IFG and any two of central obesity, hypertension, low HDL and high triglycerides.
bdefined as central obesity and any two of IFG, hypertension, low HDL and high triglycerides.
cdefined as any three of IFG, central obesity, hypertension, low HDL and high triglycerides.
d defined as not having a, b and c.
edefined by WHO as fasting blood glucose�6.1mmol/L and/or diagnosis of type2diabetes; and by IDF and ATP-III as fasting blood glucose�5.6mmol/L

and/or diagnosis of type2diabetes. High triglycerides defined as fasting triglycerides�1.7mmol/L or treatment for this condition.
f defined by WHO as � 0.9 mmol/L (males), � 1.0 mmol/L (females); and by IDF and ATP-III as < 1.03 mmol/L (males), < 1.29 mmol/L (females), or

treatment for this condition.
gdefined by WHO as �140/90, or treatment of previously diagnosed hypertension; and by IDF and ATP-III as blood pressure >130/85 mm Hg or

previously diagnosed hypertension.
hproportion in controls according to MetS-W/ MetS-I or MetS-A criteria respectively.

doi:10.1371/journal.pone.0130337.t001

Table 2. Association between air pollutants andmetabolic syndrome (4-hour fasting time).

Model 10-year mean PM10 P-Value 10-year mean NO2 P-value
OR (95%CI) OR (95%CI)

MetS-W Model 1 1.64 (1.35, 1.98) <0.001 1.20 (1.02, 1.41) 0.025c

Cases = 382 Model 2 1.58 (1.29, 1.95) <0.001 1.21 (1.02, 1.43) 0.026c

Model 3 1.72 (1.46, 2.02) <0.001 1.22 (1.02, 1.46) 0.033c

MetS-Ia Model 1 1.23 (1.05, 1.45) 0.009 1.10 (1.00, 1.22) 0.056

Cases = 771 Model 2 1.21 (0.99, 1.49) 0.058 1.10 (0.97, 1.24) 0.154

Model 3 1.31 (1.11, 1.54) 0.002 1.17 (1.04, 1.31) 0.011

MetS-Ab Model 1 1.12 (1.00, 1.24) 0.047c 1.03 (0.95, 1.10) 0.505

Cases = 663 Model 2 1.10 (0.98, 1.24) 0.117 1.01 (0.93, 1.09) 0.899

Model 3 1.18 (1.04, 1.34) 0.011 1.05 (0.95, 1.17) 0.339

MetS-W: World Health Organization-defined metabolic syndrome. MetS-I: International Diabetes Federation-defined metabolic syndrome. Model 1: Crude;

Model 2: Model 1+ age, sex, educational attainment, neighborhood socio-economic index, occupational exposure to vapors, gases, dusts or fumes,

smoking status, smoked pack-years, exposure to passive smoke, consumption of fruits and raw vegetables, and physical activity; Model 3: Model 2+ body

mass index. PM10: particulate matter <10μm in diameter from all sources. NO2: nitrogen dioxide. OR: odds ratio. CI: confidence interval. OR values refer

to increments of 10μg/m3 in PM10 and NO2 exposure respectively. Participants’ study area was treated as a random effect in all models.
a MetS-I defined using predicted waist circumference and European cut-off for central obesity (�94cm for men and �80cm for women).
b MetS-A defined using predicted waist circumference and North-American cut-off for central obesity (�102cm for men and �88cm for women).
C Lost statistical significance following Bonferroni correction at P<0.016 (0.05/3). PM10 and NO2 are not testing independent hypothesis.

doi:10.1371/journal.pone.0130337.t002
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Associations between AP and MetS

The odds of MetS-W, MetS-I and MetS-A increased by 72% (46–102%), 31% (11–54%) and

18% (4–34%) per 10μg/m3 increase in 10-year mean home outdoor PM10 (Table 2). We also

observed positive but less strong associations per 10μg/m3 increase in 10-year mean home out-

door NO2 (Table 2).

Translated into incidence rate ratios, the risk of MetS-W, MetS-I and MetS-A increased by

52% (35–70%), 12% (4–19%), and 9% (0–19%) per 10μg/m3 increase in 10-year mean PM10,

and weaker associations were also observed with NO2 (S2 Table). Among the outcomes, we ob-

served strongest associations with MetS-W, and associations were stronger with PM10 than

NO2 (Table 2). Restriction of analyses to subjects reporting eight-hour fasting time provided

similar results albeit with limited statistical power. While odds ratios for MetS-W slightly de-

creased, those for MetS-I and MetS-A increased, and no association was observed between

NO2 and MetS-A (S3 Table). In multi-pollutant MetS models, associations with PM10 persisted

across outcomes, while those with NO2 were strongly decreased or lost (S4 Table).

Fig 1. Effect modification by vigorous physical activity.MetS-W: Metabolic syndrome according to World
Health Organization. MetS-I: Metabolic syndrome according to International Diabetes Federation. MetS-A:
Metabolic syndrome according to Adult Treatment Panel-III criteria. Active defined as vigorous physical
activity�30 minutes per week. Inactive defined as vigorous physical activity <30minutes per week. Fully
adjusted models include age, sex, educational attainment, neighbourhood socio-economic index,
occupational exposure to vapours, gases, dusts and fumes, smoking status, smoked pack-years, exposure
to passive smoke, consumption of fruits and raw vegetables, and body mass index. PM10: particulate matter
<10μm in diameter from all sources. All analyses were done with four-hour fasting participants. Participants’
study area was treated as a random effect in all models. Odds ratio values refer to increments of 10μg/m3 in
PM10 exposure. Total N = 3684; N(physically-active) = 2115.

doi:10.1371/journal.pone.0130337.g001
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Modification of AP and MetS association

Associations were enhanced by being physically-active (Fig 1), an ever-smoker (Fig 2) and

non-diabetic (Fig 3). We observed significant interaction between these variables and PM10 in

association with MetS-W (Pinteraction = 0.025, 0.024 and 0.020 respectively). Similar trends were

observed with MetS-I, and associations with NO2 even though interaction terms were non-sig-

nificant (S5 Table). We observed no significant gender (Fig 4 and S5 Table) and age-group (Fig

5 and S5 Table) differences in the AP-MetS association, even though there was indication for a

stronger association among males and participants>50 years (Figs 4 and 5, S5 Table). With

MetS-A, there was a significant modification of NO2 effect by age (Pinteraction = 0.021; S5

Table). Other interactions were largely non-significant (S5 Table).

Sensitivity Analyses

Estimates of associations were remarkably robust across sensitivity analyses. Multiple imputa-

tions of 75 observations marginally improved effect estimates. IPW adjustment for participa-

tion bias and exclusion of diabetes cases did not appreciably change these estimates (Table 3).

Ignoring study area gave very similar results as the fully-adjusted random-effects model where-

as area-specific slopes reduced the effect estimates especially for PM10 (Table 3).

Fig 2. Effect modification by smoking status.MetS-W: Metabolic syndrome according to World Health
Organization. MetS-I: Metabolic syndrome according to International Diabetes Federation. MetS-A:
Metabolic syndrome according to Adult Treatment Panel-III criteria. Fully adjusted models include age, sex,
educational attainment, neighbourhood socio-economic index, occupational exposure to vapours, gases,
dusts and fumes, exposure to passive smoke, consumption of fruits and raw vegetables, physical activity and
body mass index. PM10: particulate matter <10μm in diameter from all sources. All analyses were done with
four-hour fasting participants. Participants’ study area was treated as a random effect in all models. Odds
ratio values refer to increments of 10μg/m3 in PM10 exposure. Total N = 3684; N(never-smoker) = 1623.

doi:10.1371/journal.pone.0130337.g002
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We observed weaker associations with MetS-I based on BMI-defined central obesity, and

MetS-I based on North-American cut-offs for central obesity in a European population (S6

Table).

Association between AP and MetS components

There were positive associations between AP and IFG (Table 4). Associations were consistent

across exposure metrics. We also observed positive associations with hypertension, which were

strongest with NO2. We also found stronger associations with central obesity defined by waist

circumference compared to central obesity defined by BMI. We found no appreciable associa-

tions with other components, although eight-hour MetS estimates appeared to be stronger

than four-hour MetS estimates (Table 4).

Discussion

We found positive associations between markers of long-term AP exposure and MetS, which

were sensitive to definition in this sample of Swiss adults. Associations were most pronounced

with MetS-W, which reflects a glucose metabolism-dependent pathway, and weaker with

Fig 3. Effect modification by diabetes status.MetS-W: Metabolic syndrome according to World Health
Organization. MetS-I: Metabolic syndrome according to International Diabetes Federation. MetS-A:
Metabolic syndrome according to Adult Treatment Panel-III criteria. Fully adjusted models include age, sex,
educational attainment, neighbourhood socio-economic index, occupational exposure to vapours, gases,
dusts and fumes, smoking status, smoked pack-years, exposure to passive smoke, consumption of fruits and
raw vegetables, physical activity and body mass index. PM10: particulate matter <10μm in diameter from all
sources. All analyses were done with four-hour fasting participants. Participants’ study area was treated as a
random effect in all models. Odds ratio values refer to increments of 10μg/m3 in PM10 exposure. Total
N = 3684; N(diabetes) = 144.

doi:10.1371/journal.pone.0130337.g003
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MetS-I which is based on visceral adiposity, and MetS-A which does not depend on a particular

pathway. Our results therefore suggest that AP seems to impact particularly on insulin resis-

tance part of MetS—aligned with impact on adipose tissue inflammation observed in animal

models [22–24] and homeostatic model of insulin resistance observed in humans [25, 26].

Given the cross-sectional nature of the analysis and the sub-group findings, one cannot derive

etiologic conclusions. But the plausibility of underlying mechanisms warrants further longitu-

dinal investigations of these highly relevant results.

Potential mechanisms of action

MetS reflects a status of low grade systemic inflammation, and exposure to PM has been associ-

ated with blood markers of inflammation [27]. Exposure to PM10 increased the expression of

inflammatory and MetS genes in mice [28]. MetS may predispose to the expression of inflam-

matory markers [14] and autonomic dysfunction [22, 23, 29] associated with chronic AP expo-

sure. The components of MetS have also been positively linked to AP. Exposure to AP has been

linked to hypertension [30, 31], alterations in blood lipids [32, 33], insulin resistance [22, 23]

and obesity [34, 35]. Exposure to passive smoke, a contributor to PM also induces inflammato-

ry responses and lipid changes, and has been positively associated with MetS-I [36]. In

Fig 4. Effect modification by sex.MetS-W: Metabolic syndrome according to World Health Organization.
MetS-I: Metabolic syndrome according to International Diabetes Federation. MetS-A: Metabolic syndrome
according to Adult Treatment Panel-III criteria. Fully adjusted models include age, educational attainment,
neighbourhood socio-economic index, occupational exposure to vapours, gases, dusts and fumes, smoking
status, smoked pack-years, exposure to passive smoke, consumption of fruits and raw vegetables, physical
activity and body mass index. PM10: particulate matter <10μm in diameter from all sources. NO2: nitrogen
dioxide. All analyses were done with four-hour fasting participants. Participants’ study area was treated as a
random effect in all models. Odds ratio values refer to increments of 10μg/m3 in PM10 exposure. Total
N = 3684; N(males) = 1746.

doi:10.1371/journal.pone.0130337.g004
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addition, sub-acute exposures to low levels of PM2.5 induced insulin resistance in healthy

young adults [26], whereas exposure to ambient levels of PM10 and NO2 induced insulin resis-

tance in children [25]. Based on the evidence from human insulin resistance studies, our find-

ing of strongest association with MetS-W and the results of the individual MetS components,

the insulin resistance pathway may be the strongest pathway through which AP exert their car-

dio-metabolic effects. This is also supported by the finding of slightly stronger association with

waist circumference-based central obesity as opposed to BMI-based central obesity, with the

former being a better indicator for insulin resistance.

Changes in inflammatory markers and blood lipids were non-significant in young adults

when exposed to AP [37]. Conversely, significant changes were observed in middle-aged/older

subjects, reversible with omega-3-fatty acid [38]. This supports our finding of stronger associa-

tions among older people. Smoking is a known risk factor for cardio-metabolic diseases [39],

hence our finding of stronger effect among ever-smokers may be additive effect on the already

existing effect of smoking exposure. Stronger effects among ever-smokers was observed for

MetS-W and MetS-I, but not for MetS-A. This may be explained by the facts that the never-

smokers, in our study population, were less physically-active (S7 Table) and had higher pre-

dicted waist circumference (90 vs. 88cm) compared to ever-smokers. Whereas the findings for

Fig 5. Effect modification by age group.MetS-W: Metabolic syndrome according to World Health
Organization. MetS-I: Metabolic syndrome according to International Diabetes Federation. MetS-A:
Metabolic syndrome according to Adult Treatment Panel-III criteria. Fully adjusted models include sex,
educational attainment, neighbourhood socio-economic index, occupational exposure to vapours, gases,
dusts and fumes, smoking status, smoked pack-years, exposure to passive smoke, consumption of fruits and
raw vegetables, physical activity and body mass index. PM10: particulate matter <10μm in diameter from all
sources. All analyses were done with four-hour fasting participants. Participants’ study area was treated as a
random effect in all models. Odds ratio values refer to increments of 10μg/m3 in PM10 exposure. Total
N = 3684; N(age�50) = 1393.

doi:10.1371/journal.pone.0130337.g005
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MetS-W and MetS-I appear to contradict a previous finding of stronger AP effects (on diabe-

tes) among never-smokers [21], our finding with MetS-A supports it. We did not observe any

associations among the diabetes cases. This may be because of their use of medication for

blood glucose control. It may also be due their very small number which limits the statistical

power to see any associations.

We observed stronger associations among the physically active. This observation was inde-

pendent of MetS definition and persisted in the sub-sample with eight-hour fasting time.

Stronger AP associations among the physically active (with diabetes) were shown elsewhere

[10, 21]. This may be expected if the physically-active spend more time outdoors, thus, their

outdoor concentrations may better capture their actual exposure. Also, due to their deeper in-

halation while active, the physically-active have higher exposure of their lung tissues to AP for

the same ambient concentration. Physical activity improves lung function [40] and has been

shown to enhance response to volatile organic compounds [41].

As shown (S7 Table), the physically-active lived in less polluted areas. Being physically inac-

tive was also associated with areas of high outdoor PM2.5 concentrations in normal-weight peo-

ple in previous studies [42]. One may conjecture that the observed interaction with physical

activity may be partly due to some other non-considered covariates. The inactive subjects were

exposed to other risk factors for MetS at a higher level than the active subjects (S7 Table), thus,

Table 3. Sensitivity Analyses.

10-year mean PM10 10-year mean NO2

MetS-W MetS-I MetS-A MetS-W MetS-I MetS-A
OR (95%CI) OR (95%CI) OR (95%CI) OR (95%CI) OR (95%CI) OR (95%CI)

Fully-adjusted, random-effect model 1.72 (1.46,
2.02)

1.31 (1.11,
1.54)

1.18 (1.04,
1.34)

1.22 (1.02,
1.46)

1.17 (1.04,
1.31)

1.05 (0.95,
1.17)

P-value <0.001 0.002 0.011 0.033 0.011 0.339

Fully-adjusted random-effect model with multiple
imputations

1.81 (1.52,
2.15)

1.39 (1.20,
1.62)

1.17
(1.02,1.35)

1.28 (1.15,
1.43)

1.23 (1.11,
1.12)

1.07 (0.98,
1.17)

P-value <0.001 <0.001 0.021 <0.001 <0.001 0.156

IPW analysis for participation bias. 1.74 (1.49,
2.03)

1.29 (1.12,
1.49)

1.17 (1.02,
1.33)

1.31 (1.19,
1.46)

1.15 (1.04,
1.27)

1.05 (0.96,
1.15)

P-value <0.001 0.001 0.023 <0.001 0.005 0.292

Model excluding diabetes cases 1.77 (1.48,
2.12)

1.31 (1.11,
1.54)

1.16 (1.02,
1.32)

1.22 (1.00,
1.50)

1.17 (1.05,
1.32)

1.04 (0.94,
1.16)

P-value 0.020 0.356 0.994 0.110 0.091 0.597

Model excluding diabetes cases reporting
medication

1.80 (1.51,
2.14)

1.30 (1.10,
1.53)

1.17 (1.03,
1.34)

1.15 (0.92,
1.43)

1.17 (1.04,
1.32)

1.05 (0.94,
1.16)

P-value <0.001 0.002 0.015 0.226 0.009 0.421

Model, ignoring study area 1.72 (1.46,
2.02)

1.30 (1.13,
1.50)

1.18 (1.04,
1.34)

1.31 (1.18,
1.46)

1.16 (1.06,
1.28)

1.06 (0.98,
1.16)

P-value <0.001 <0.001 0.011 <0.001 0.002 0.159

Model, including study area as fixed effect 1.10 (0.63,
2.09)

1.35 (0.86,
2.11)

1.19 (0.74,
1.91)

1.09 (0.88,
1.36)

1.21 (0.99,
1.48)

0.96 (0.79,
1.14)

P-value 0.733 0.194 0.474 0.419 0.058 0.576

Fully adjusted models include age, sex, educational attainment, neighbourhood socio-economic index, occupational exposure to vapours, gases, dusts

and fumes, smoking status, smoked pack-years, exposure to passive smoke, consumption of fruits and raw vegetables, physical activity and body mass

index. MI: multiple imputations. IPW: inverse probability weighting. PM10: particulate matter <10μm in diameter from all sources. NO2: nitrogen dioxide.

OR: odds ratio. CI: confidence interval. OR refer to increments of 10μg/m3 in PM10, and NO2 exposure respectively. All analyses were done with four-hour

fasting participants.

doi:10.1371/journal.pone.0130337.t003
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the relative role of AP in MetS development may be less crucial in them. Use of more objective

measures of visceral adiposity should improve the definition of MetS.

Strengths and Limitations

This study derives from the large SAPALDIA database, with detailed information on health,

socio-demographic and lifestyle characteristics. This allowed us to have a clean case definition

and detailed confounder adjustment. We had validated annual estimates of residential AP ex-

posures from which long-term exposure estimates were derived. To the best of our knowledge,

this is the first study to assess direct associations between AP and MetS. Its results may help in

understanding the pathways involved in the effects of AP on cardiovascular disease

and diabetes.

A major limitation is the cross-sectional design which precludes etiologic inferences. We

did not measure waist circumference at this visit but had a validated prediction model based on

trends at the next follow-up visit. As we do not have urinary albumin excretion ratio for our

participants, we may have misclassified some MetS-W cases. We used four-hour fasting time

to define MetS, instead of conventional eight hours in our main analysis. This was due to the

small sample of participants who reported a fasting time of at least eight hours, limiting our sta-

tistical power. However, associations were also positive in the subjects who fasted for eight

hours. Four-hour fasting blood samples can be used for patient diagnosis in ambulatory set-

tings [43]. Also, non-fasting triglycerides were shown to be a predictor of cardiac events in

Table 4. Association between air pollutants and components of metabolic syndrome.

Fasting time
(hours)

10-year mean PM10

OR (95%CI)
P-value 10-year mean NO2

OR (95%CI)
P-value

Impaired fasting Glycaemia (IFG;WHO) 4 1.82 (1.60, 2.08) <0.001 1.15 (0.98, 1.34) 0.080

8 2.27 (1.43, 3.62) 0.001 1.33 (0.98, 1.79) 0.063

Impaired fasting Glycaemia (IFG; IDF/ATP-III) 4 1.45 (1.19, 1.78) <0.001 1.06 (0.93, 1.21) 0.388

8 1.84 (1.30, 2.60) 0.001 1.36 (1.08, 1.72) 0.008

Low high-density lipoproteins (WHO) 4 0.95 (0.76, 1.19) 0.657 0.88 (0.76, 1.01) 0.071

8 0.89 (0.47, 1.70) 0.735 0.76 (0.49, 1.19) 0.229

Low high-density lipoproteins (IDF/ATP-III) 4 0.99 (0.87, 1.12) 0.847 0.95 (0.87, 1.05) 0.303

8 0.99 (0.63, 1.56) 0.982 0.86 (0.66, 1.13) 0.287

High triglycerides 4 0.90 (0.77, 1.05) 0.169 0.94 (0.85, 1.03) 0.194

8 1.14 (0.78, 1.67) 0.494 0.94 (0.73, 1.21) 0.630

Hypertension (WHO) 4 1.12 (0.97, 1.29) 0.130 1.11 (1.01, 1.20) 0.022

Hypertension (IDF/ATP-III) 4 1.11 (0.95, 1.30) 0.172 1.12 (1.03, 1.23) 0.011

Central obesity (BMI>30kg/m2) 4 1.00 (0.83, 1.21) 0.971 1.01 (0.89, 1.14) 0.898

Central obesitya 4 1.19 (0.90, 1.58) 0.218 1.06 (0.90, 1.26) 0.465

Fully adjusted models include age, sex, educational attainment, neighbourhood socio-economic index, occupational exposure to vapours, gases, dusts

and fumes, smoking status, smoked pack-years, exposure to passive smoke, consumption of fruits and raw vegetables, physical activity and body mass

index (BMI). Model for obesity excludes BMI. PM10: particulate matter <10μm in diameter from all sources. NO2: nitrogen dioxide. Traffic PM10 refers to

dispersion models including only traffic-related emissions. OR: odds ratio. CI: confidence interval. OR values represent fold increase in odds of outcomes

per 10μg/m3 of PM10, NO2, and 1μg/m3 of traffic PM10 exposure. IFG defined as fasting blood glucose�6.1mmol/L and/or diagnosis of type2diabetes.

High triglycerides defined as fasting triglycerides�1.7mmol/L or treatment for this condition. Low HDL defined by IDF and ATP-III as < 1.03 mmol/L

(males), < 1.29 mmol/L (females), or treatment for this condition, and by WHO as � 0.9 mmol/L (males), � 1.0 mmol/L (females). Hypertension defined by

IDF and ATP-III as blood pressure >130/85 mm Hg and by WHO as �140/90, or treatment of previously diagnosed hypertension. Participants’ study area

was treated as a random effect in all models. N (4 hours fasting time) = 3684. N (8 hours fasting time) = 367.
aCentral obesity defined using the predicted waist circumference and European cut-offs (�94cm for males and �80cm for females)

doi:10.1371/journal.pone.0130337.t004
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women [44]. PM2.5 was not modelled in this study, thus we relied on PM10. While one may

argue PM2.5 to be more relevant for systemic effects, the lack thereof, is unlikely to bias this

analysis. In Switzerland, PM2.5 contributes 70–80% to the PM10 fraction and both are highly

correlated within and across SAPALDIA areas (R~0.8).

We used two markers of ambient pollution with partly different characteristics. Our results

indicate possible larger effects of PM10 compared to NO2. This may largely be because PM10

represents a mixture of different particles, unlike NO2 which measures a specific gas. Particu-

late matter has been shown to be stronger activators of innate immunity in comparison with

gaseous pollutants [22, 23].

We did not have estimates of indoor or occupational AP for our participants, but any mis-

classification that could be caused by this is expected to be non-systematic, leading to a null

bias. We considered occupational exposure to VGDF, which partly adjusts for indoor occupa-

tional exposure. Only 46% of follow-up and 38% of baseline participants was studied. A sub-

stantial percentage of non-inclusion was due to subjects who had venepuncture in less than

four-hour fasting time. Despite this low participation, all study areas and other characteristics

were well represented in this study sample. Sensitivity analyses using IPW suggested that par-

ticipation bias was non-substantial. Despite this finding, some bias may still persist. The weaker

precision from the fixed effect model, especially for PM10, could be due to poor within-area

spatial contrasts exhibited by PM10 compared to the traffic-related exposures [10, 45].

It is unclear if the associations with PM10 are due to the inflammation elicited by physical ef-

fects of particles and/or the innate immunity response elicited by its biological components.

These and other questions deserve further investigation by future well-designed longitudinal

studies. The studies should consider measured waist circumference as a component of MetS,

and explore associations with PM components. Also, physical activity must be more objectively

measured. Our findings, if confirmed, are of great public health relevance, as they may call for

physical activity promotion to be adapted to various environmental contrasts.

Supporting Information

S1 Table. Characteristics of participants included and excluded in the study. ETS: environ-

mental tobacco smoke. VGDF: vapours, gases, dusts and fumes. MVPA: moderate to vigorous

physical activity. Hypertension defined as blood pressure>130/85 mm Hg or treatment of pre-

viously diagnosed hypertension. SEI: socio-economic index expressed as a percentage. PM10:

particulate matter<10μm in diameter from all sources. NO2: nitrogen dioxide.

(DOCX)

S2 Table. Incidence rate ratios of metabolic syndrome in association with air pollutants.

MetS-W: World Health Organization-defined metabolic syndrome. MetS-I: International Dia-

betes Federation-defined metabolic syndrome. Model 1: Crude; Model 2: Model 1+ age, sex,

educational attainment, neighbourhood socio-economic index, occupational exposure to va-

pours, gases, dusts or fumes, smoking status, smoked pack-years, exposure to passive smoke,

consumption of fruits and raw vegetables, and physical activity; Model 3: Model 2+ body mass

index. PM10: particulate matter<10μm in diameter from all sources. NO2: nitrogen dioxide.

OR: odds ratio. CI: confidence interval. OR values refer to increments of 10μg/m3 in PM10 and

NO2 exposure respectively. Participants’ study area was treated as a random effect in all mod-

els. N = 3684

(DOCX)

S3 Table. Association between air pollutants and metabolic syndrome (8 hours fasting

time).MetS-W: World Health Organization-defined metabolic syndrome. MetS-I:

Ambient Air Pollution and Metabolic Syndrome

PLOSONE | DOI:10.1371/journal.pone.0130337 June 23, 2015 14 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0130337.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0130337.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0130337.s003


International Diabetes Federation-defined metabolic syndrome. Model 1: Crude; Model 2:

Model 1+ age, sex, educational attainment, neighbourhood socio-economic index, occupation-
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S7 Table. Participants’ characteristics by self-reported physical activity.MetS-W: Metabolic

syndrome according to World Health Organization. MetS-I: Metabolic syndrome according to

International Diabetes Federation. MetS-A: Metabolic syndrome according to Adult Treatment

Panel III criteria. ETS: environmental tobacco smoke. VGDF: vapours, gases, dusts and fumes.

IFG defined as fasting blood glucose�6.1mmol/L and/or diagnosis of type2diabetes. High tri-

glycerides defined as fasting triglycerides�1.7mmol/L or treatment for this condition. Low
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HDL defined by IDF as< 1.03 mmol/L (males),< 1.29 mmol/L (females), or treatment for

this condition, and by WHO as� 0.9 mmol/L (males),� 1.0 mmol/L (females). Hypertension
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matter<10μm in diameter from all sources. NO2: nitrogen dioxide.
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S1 Table:  Characteristics of participants included and excluded in the study  

Characteristic (%) Included 

(N=3684) 

Excluded 

(N=5967) 

P-value 

(Chi
2
) 

Females 52.6 51.1  0.223 

Education >9 years 92.0 61.0  <0.001 

Smoking status: Never  44.0 40.6  <0.001 

 Former  32.0 31.2   

 Current  24.0 28.2   

ETS exposure 46.8 48.0  0.256 

Occupational exposure to VGDF 43.0 19.5  <0.001 

Alcohol intake: None 10.1 8.0 <0.001 

 ≤ once/day 79.9 83.9  

 > once/day 9.9 8.1  

Citrus fruits intake: None 8.4 8.3 0.989 

 ≤3days/week 56.0 56.1  

 >3days/week 35.6 35.6  

Fruits intake: None 2.1 1.4 0.089 

 ≤3days/week 32.5 33.9  

 >3days/week 65.4 64.7  

Raw vegetables intake: None 0.8 0.4 0.099 

 ≤3days/week 18.6 19.0  

 >3days/week 80.6 80.6  

Vigorous physical activity 

≥0.5hours/week 

57.6 65.6 <0.001 

Central obesity (BMI>30kg/m
2
) 17.0 14.8 0.015 

Hypertension 38.5 38.3 0.966 

Area: Basel 10.9 15.5 <0.001 

 Wald 15.4 20.4 <0.001 

 Davos 8.7 7.2 0.016 

 Lugano 17.7 12.1 <0.001 

 Montana 10.8 6.6 <0.001 



 Payerne 12.8 16.3 <0.001 

 Aarau 13.9 12.5 0.063 

 Geneva 9.7 9.4 0.653 

Mean (SD)   T-test 

Age (years) 53.3(11.4) 50.9(11.5) <0.001 

Body mass index (kg/m
2
) 26.0(4.6) 25.7(4.4) 0.005 

Blood glucose (mmol/L) 5.6(1.6) 5.6(1.5) 0.996 

Triglycerides (mmol/L) 1.9(1.3) 1.8(1.2) <0.001 

High-density lipoproteins 

(mmol/L) 

1.5(0.5) 1.5(0.4) 0.7 

Neighbourhood SEI 63.1(10.0) 63.6(10.4) 0.030 

Pack-years of smoking 11.0(18.7) 11.1(18.6) 0.753 

10-year PM10 (µg/m
3
) 22.5(7.9) 22.3(6.9) 0.482 

10-year NO2 (µg/m
3
) 27.4(11.4) 26.8(10.8) 0.018 

ETS: environmental tobacco smoke. VGDF: vapours, gases, dusts and fumes. MVPA: moderate to 

vigorous physical activity. Hypertension defined as blood pressure >130/85 mm Hg or treatment of 

previously diagnosed hypertension. SEI: socio-economic index expressed as a percentage. PM10: 

particulate matter <10µm in diameter from all sources. NO2: nitrogen dioxide.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



S2 Table: Incidence rate ratio (IRR) of metabolic syndrome in association with air pollutants. 

 Model 10-year mean PM10  

IRR (95%CI) 

10-year mean NO2  

IRR (95%CI) 

MetS-W; Cases=382 Model 1 1.55 (1.31, 1.83) 1.18 (1.02, 1.37) 

 Model 2 1.45 (1.25, 1.69) 1.17 (1.02, 1.34) 

 Model 3 1.52 (1.35, 1.70) 1.19 (1.02, 1.40) 

MetS-I 
a 
; 

 
Cases=771 Model 1 1.14 (1.03, 1.26) 1.07 (1.00, 1.14) 

 Model 2 1.08 (1.00, 1.18) 1.03 (0.99, 1.07) 

 Model 3 1.12 (1.04, 1.19) 1.06 (1.01, 1.11) 

MetS-A
b
; 

 
Cases=663 Model 1 1.11 (1.02, 1.20) 1.04 (0.96, 1.11) 

 Model 2 1.06 (0.98, 1.15) 1.00 (0.98, 1.02) 

 Model 3 1.09 (1.00, 1.19) 1.02 (0.96, 1.08) 

MetS-W: World Health Organization-defined metabolic syndrome. MetS-I: International Diabetes Federation-

defined metabolic syndrome. 
 
Model 1: Crude; Model 2: Model 1+ age, sex, educational attainment, 

neighbourhood socio-economic index, occupational exposure to vapours, gases, dusts or fumes, smoking status, 

smoked pack-years, exposure to passive smoke, consumption of fruits and raw vegetables, and physical activity; 

Model 3: Model 2+ body mass index. PM10: particulate matter <10µm in diameter from all sources. NO2: 

nitrogen dioxide. OR: odds ratio. CI: confidence interval. OR values refer to increments of 10µg/m
3
 in PM10 and 

NO2 exposure respectively. Participants’ study area was treated as a random effect in all models. N=3684                          
a
 MetS-I defined using predicted waist circumference and European cut-off for central obesity (≥94cm for men 

and ≥80cm for women).                                                                                                                                              
b
 MetS-A defined using predicted waist circumference and North-American cut-off for central obesity (≥102cm 

for men and ≥88cm for women).  

 

 

 

 

 

 

 

 

 

 

 



S3 Table: Association between air pollutants and metabolic syndrome (8 hours fasting time). 

 Model 10-year mean PM10                        

OR (95%CI) 

10-year mean NO2                          

OR (95%CI) 

MetS-W  

Cases=34 

Model 1 1.41 (0.76, 2.61) 1.17 (0.80, 1.72) 

 Model 2 1.54 (0.86, 2.76) 1.11 (0.75, 1.64) 

 Model 3 1.62 (0.81, 3.26) 1.16 (0.73, 1.84) 

MetS-I
a 
Cases=62 Model 1 1.82 (0.91, 3.63) 1.13 (0.77, 1.64) 

 Model 2 2.26 (0.93, 5.52) 1.23 (0.74, 2.05) 

 Model 3 2.23 (1.04, 4.79) 1.30 (0.78, 2.19) 

MetS-A
b 
Cases=56 Model 1 1.35 (0.85, 2.15) 0.94 (0.71, 1.26) 

 Model 2 1.51 (0.77, 2.97) 0.85 (0.57, 1.26) 

 Model 3 1.56 (0.82, 2.98) 0.87 (0.78, 1.26) 

MetS-W: World Health Organization-defined metabolic syndrome. MetS-I: International Diabetes Federation-

defined metabolic syndrome. 
 
Model 1: Crude; Model 2: Model 1+ age, sex, educational attainment, 

neighbourhood socio-economic index, occupational exposure to vapours, gases, dusts or fumes, smoking status, 

smoked pack-years, exposure to passive smoke, consumption of fruits and raw vegetables, and physical activity; 

Model 3: Model 2+ body mass index. PM10: particulate matter <10µm in diameter from all sources. NO2: 

nitrogen dioxide. OR: odds ratio. CI: confidence interval. OR values refer to increments of 10µg/m
3
 in PM10 and 

NO2 exposure respectively. Participants’ study area was treated as a random effect in all models.  N=367                         
a
 MetS-I defined using predicted waist circumference and European cut-off for central obesity (≥94cm for men 

and ≥80cm for women).                                                                                                                                               
b
 MetS-A defined using predicted waist circumference and North-American cut-off for central obesity (≥94cm 

for men and ≥80cm for women).   

 

 

 

 

 

 

 

 

 

 

 

 



S4 Table: Association between air pollutants and metabolic syndrome (two-pollutant models). 

 Model 10-year meanPM10                          

OR (95%CI) 

10-year mean NO2                           

OR (95%CI) 

MetS-W; Cases=382 Model 1 1.79 (1.40, 2.30) 0.90 (0.72, 1.13) 

 Model 2 1.65 (1.21, 2.25) 0.96 (0.76, 1.21) 

 Model 3 1.84 (1.40, 2.42) 0.94 (0.78, 1.13) 

MetS-I 
a 
; Cases=771 Model 1 1.24 (1.00, 1.54) 0.99 (0.86, 1.54) 

 Model 2 1.21 (0.94, 1.57) 1.00 (0.84, 1.19) 

 Model 3 1.25 (0.97, 1.61) 1.04 (0.88, 1.23) 

MetS-A
b 
; 

Cases=663 

Model 1 1.25 (1.04, 1.50) 0.91 (0.80, 1.03) 

 Model 2 1.26 (1.04, 1.53) 0.89 (0.77, 1.01) 

 Model 3 1.28 (1.04, 1.58) 0.93 (0.81, 1.08) 

MetS-W: World Health Organization-defined metabolic syndrome. MetS-I: International Diabetes Federation-

defined metabolic syndrome. 
 
Model 1: Crude; Model 2: Model 1+ age, sex, educational attainment, 

neighbourhood socio-economic index, occupational exposure to vapours, gases, dusts or fumes, smoking status, 

smoked pack-years, exposure to passive smoke, consumption of fruits and raw vegetables, and physical activity; 

Model 3: Model 2+ body mass index. PM10: particulate matter <10µm in diameter from all sources. NO2: 

nitrogen dioxide. OR: odds ratio. CI: confidence interval. OR values refer to increments of 10µg/m
3
 in PM10 and 

NO2 exposure respectively. Participants’ study area was treated as a random effect in all models. N=3684                         
a
 MetS-I defined using predicted waist circumference and European cut-off for central obesity (≥94cm for men 

and ≥80cm for women).                                                                                                                                              
b
 MetS-A defined using predicted waist circumference and North-American cut-off for central obesity (≥102cm 

for men and ≥88cm for women).  

 

 

 

 

 

 

 

 

 

 

 

 

 



S5 Table: Effect modification of NO2 and metabolic syndrome association. 

Fully adjusted models include age, sex, educational attainment, neighbourhood socio-economic index, 

occupational exposure to vapours, gases, dusts and fumes, smoking status, smoked pack-years, exposure to 

passive smoke, consumption of fruits and raw vegetables, physical activity and body mass index. NO2: nitrogen 

dioxide. All analyses were done with four-hour fasting participants. Participants’ study area was treated as a 
random effect in all models. OR: Odds ratios OR values refer to increments of 10µg/m

3
 in NO2 exposure. Total 

N=3684; N(age≤50)= ; N(males)=1746 ; N(physically-active)=2115 ; N(never-smoker) =1623 ; 

N(diabetes)=144. 

 

 

 

 

 

 

 

 

 MetS-W 

OR (95%CI) 

MetS-I 

OR (95%CI) 

MetS-A 

OR (95%CI) 

Age:       Age≤50 1.24     (1.04, 1.49) 1.05     (0.81, 1.36) 0.83     (0.65, 1.08) 

 Age>50 1.34     (0.91, 1.97) 1.20     (1.07, 1.34) 1.12     (1.01, 1.23) 

 P-value 0.664 0.091 0.021 

Sex:  Males 1.27     (1.01, 1.61) 1.27     (1.08, 1.48) 1.10     (0.96, 1.25) 

 Females 1.22     (1.01, 1.48) 1.08     (0.94, 1.25) 1.02     (0.89, 1.16) 

 P-value 0.258 0.407 0.434 

Vigorous physical activity ≥0.5 
hrs/wk: Yes 

1.27     (1.08, 1.49) 1.26     (1.06, 1.48) 1.08     (0.95, 1.23) 

        No 1.22     (0.93, 1.62) 1.04     (0.90, 1.20) 1.02     (0.87, 1.18) 

 P-value 0.299 0.077 0.593 

Never-smoker:    Yes 1.17     (0.94, 1.46) 1.19     (0.98, 1.46) 1.11      (0.98, 1.27) 

 No 1.26     (0.97, 1.62) 1.20     (1.03, 1.36) 1.00     (0.85, 1.16) 

 P-value 0.130 0.804 0.252 

Diabetes: Yes 0.84     (0.58, 1.23) 0.49     (0.12, 2.03) 1.56     (0.76, 3.22) 

 No 1.22     (1.00, 1.50) 1.17     (1.05, 1.32) 1.04     (0.94, 1.16) 

 P-value 0.110 0.091 0.597 



S6 Table: Association between air pollution and alternative definitions of metabolic syndrome 

 Model 10-year mean PM10  

OR (95%CI) 

10-year mean NO2  

OR (95%CI) 

MetS-I
 a 

; Cases = 492 Model 1 1.07 (0.90, 1.26) 1.04 (0.92, 1.18) 

 Model 2 1.05 (0.88, 1.25) 1.04 (0.91,1.18) 

 Model 3 1.19 (0.97, 1.46) 1.15 (1.00, 1.33) 

MetS-I 
b
 Cases = 479 Model 1 1.15 (0.90, 1.47) 1.08 (0.93, 1.23) 

 Model 2 1.11 (0.84, 1.48) 1.03 (0.88, 1.22) 

 Model 3 1.12 (0.84, 1.48) 1.05 (0.88, 1.24) 

MetS-I
 a, c 

; Cases=50 Model 1 1.61 (0.84, 3.07) 1.37 (0.93, 2.03) 

 Model 2 1.63 (0.87, 3.04) 1.30 (0.88, 1.91) 

 Model 3 2.24 (1.01, 4.98) 1.73 (1.05, 2.85) 

MetS-I
 b, c

 Cases=39 Model 1 1.51 (0.67, 3.38) 0.93 (0.59, 1.47) 

 Model 2 1.78 (0.67, 4.73) 0.94 (0.54, 1.64) 

 Model 3 1.98 (0.77, 5.08) 1.02 (0.57, 1.82) 

MetS-W: World Health Organization-defined metabolic syndrome. MetS-I: International Diabetes Federation-

defined metabolic syndrome. 
 
MetS-ATP-III: Adult treatment panel III criteria- defined metabolic syndrome.. 

Model 1: Crude; Model 2: Model 1+ age, sex, educational attainment, neighbourhood socio-economic index, 

occupational exposure to vapours, gases, dusts or fumes, smoking status, smoked pack-years, exposure to 

passive smoke, consumption of fruits and raw vegetables, and physical activity; Model 3: Model 2+ body mass 

index. PM10: particulate matter <10µm in diameter from all sources. NO2: nitrogen dioxide. OR: odds ratio. CI: 

confidence interval. OR values refer to increments of 10µg/m
3
 in PM10 and NO2 exposure respectively. 

Participants’ study area was treated as a random effect in all models.  N (Four-hour fasting time)=3684; N 

(Eight-hour fasting time)=367.                                                                                                                                    
a
 MetS-I defined using BMI>30kg/m

2
 to define central obesity.                                                                                

b
 MetS-I defined using predicted waist circumference and North-American cut-off for central obesity (≥102cm 

for men and ≥88cm for women).                                                                                                                                 
c
 Eight-hour fasting time 

 

 

 

 

 

 

 

 

 



S7 Table: Participants’ characteristics by self-reported physical activity 

Characteristic (%) Physical activity  

<0.5 hours/week  

(N=1569) 

Physical activity  

≥0.5 hours/week  

(N=2115) 

P-value 

(Chi
2
) 

Females 59.6 47.4 <0.001 

Education >9 years 87.8 95.7 <0.001 

Never-smokers  41.7 45.8  0.015 

ETS exposure 51.9 43.1  <0.001 

Occupational exposure to VGDF 41.4 44.0  0.116 

Alcohol intake: None 14.3 7.2 <0.001 

 ≤ once/day 73.2 84.8  

 > once/day 12.5 8.0  

Citrus fruits intake: None 10.0 7.2 0.002 

 ≤3days/week 56.3 55.9  

 >3days/week 33.7 36.9  

Fruits intake: None 2.4 1.8 0.187 

 ≤3days/week 31.8 33.2  

 >3days/week 65.8 65.0  

Raw vegetables intake: None 1.0 0.6 0.318 

 ≤3days/week 20.6 17.1  

 >3days/week 78.4 82.3  

Low HDL (WHO) 16.6 13.9 0.081 

Low HDL (IDF) 30.4 22.7 <0.001 

High triglycerides (≥1.7 mmol/L) 51.7 45.0 <0.001 

Impaired fasting glycaemia (IFG; WHO) 16.8 12.6 <0.001 

Impaired fasting glycaemia (IFG; IDF) 38.2 30.1 <0.001 

Hypertension (WHO) 41.9 35.3 <0.001 

Hypertension (IDF) 53.2 47.9 0.002 

MetS-I 
a
 38.0 26.5 <0.001 

MetS-W 
b
 13.9 7.7 <0.001 

MetS-A
c
 24.9 18.9 <0.001 

Area: Basel 9.0 12.2 0.002 



 Wald 12.3 17.9 <0.001 

 Davos 6.5 10.3 <0.001 

 Lugano 32.0 7.0 <0.001 

 Montana 7.9 13.0 <0.001 

 Payerne 12.3 13.1 0.510 

 Aarau 9.4 17.3 0.003 

 Geneva 10.4 9.2 0.236 

Mean (SD)   T-test 

Age (years) 55.6 (11.1) 51.7 (11.3) <0.001 

Body mass index (kg/m
2
) 26.3 (4.8) 25.6 (4.2) 0.004 

Predicted waist circumference (cm) 89.6 (13.5) 88.7 (12.9) 0.149 

Neighborhood SEI 61.9 (10.3) 63.4 (9.7) <0.001 

 Davos 6.5 10.3 <0.001 

 Lugano 32.0 7.0 <0.001 

 Montana 7.9 13.0 <0.001 

MetS-W: Metabolic syndrome according to World Health Organization. MetS-I: Metabolic syndrome according 

to International Diabetes Federation. MetS-A: Metabolic syndrome according to Adult Treatment Panel III 

criteria. ETS: environmental tobacco smoke. VGDF: vapours, gases, dusts and fumes. IFG defined as fasting 

blood glucose≥6.1mmol/L and/or diagnosis of type2diabetes. High triglycerides defined as fasting 

triglycerides≥1.7mmol/L or treatment for this condition. Low HDL defined by IDF as < 1.03 mmol/L (males), < 

1.29 mmol/L (females), or treatment for this condition, and by WHO as ≤ 0.9 mmol/L (males), ≤ 1.0 mmol/L 

(females). Hypertension defined by IDF and ATP-III as blood pressure >130/85 mm Hg and by WHO as 

≥140/90, or treatment of previously diagnosed hypertension. SEI: socio-economic index. PM10: particulate 

matter <10µm in diameter from all sources. NO2: nitrogen dioxide.                                                               
a
defined as central obesity and any two of IFG, hypertension, low HDL and high triglycerides.                   

b
defined as IFG and any two of central obesity, hypertension, low HDL and high triglycerides.                  

c
defined as any three of five components. 
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Exposure to ambient air pollution (AP) exposure has been linked to type 2 diabetes (T2D) risk. Evidence on the

impact of T2D genetic variants on AP susceptibility is lacking. Compared to single variants, joint genetic variants

contribute substantially to disease risk. We investigated the modification of AP and diabetes association by a ge-

netic risk score (GRS) covering 63 T2D genes in 1524 first follow-up participants of the Swiss cohort study on air

pollution and lung and heart diseases in adults. Genome-wide data and covariates were available from a nested

asthma case-control study design. AP was estimated as 10-year mean residential particulate matter b10 μm

(PM10). We computed count-GRS and weighted-GRS, and applied PM10 interaction terms in mixed logistic re-

gressions, on odds of diabetes. Analyses were stratified by pathways of diabetes pathology and by asthma status.

Diabetes prevalence was 4.6% and mean exposure to PM10 was 22 μg/m3. Odds of diabetes increased by 8%

(95% confidence interval: 2, 14%) per T2D risk allele and by 35% (−8, 97%) per 10 μg/m3 exposure to PM10.

We observed a positive interaction between PM10 and count-GRS on diabetes [ORinteraction = 1.10 (1.01, 1.20)],

associations being strongest among participants at the highest quartile of count-GRS [OR: 1.97 (1.00, 3.87)].

Stronger interactions were observed with variants of the GRS involved in insulin resistance [(ORinteraction =

1.22 (1.00, 1.50)] than with variants related to beta-cell function. Interactions with count-GRS were stronger

among asthma cases. We observed similar results with weighted-GRS. Five single variants near GRB14, UBE2E2,

PTPRD, VPS26A and KCNQ1 showed nominally significant interactions with PM10 (P b 0.05). Our results suggest

that genetic risk for T2D may modify susceptibility to air pollution through alterations in insulin sensitivity.

These results need confirmation in diabetes cohort consortia.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Epidemiologic evidence shows a positive association between air pol-

lution and type 2 diabetes (T2D) risk (Eze et al., 2014a, 2015a; Park et al.,

2015). The underlyingmechanisms and susceptibilities are still subject to

active research. Effects of inhaled pollutants that are supported by exper-

imental and epidemiological evidence include the contribution to system-

ic inflammation, autonomic imbalance, weight gain, and to insulin

resistance, thought to be in part the result of inhalants stimulating an in-

nate immune response, influencing endoplasmic reticulum, glucose and

lipid metabolism, and activating the central nervous system (Rao et al.,

2015).
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Abbreviations: BCF, beta cell function; BMI, body mass index; CI, confidence interval;

CNG, Centre National de Génotypage; DNA, deoxyribonucleic acid; EDTA,

ethylenediaminetetraacetic acid; GEI, gene-environment interaction; GWAS, genome-

wide association studies; GRS, genetic risk score; GRSIR, genetic risk score of variants in

the insulin resistance pathway; GRSBCF, genetic risk score of variants in the beta-cell func-

tion pathway; HbA1c, glycosylated haemoglobin; HWE, Hardy-Weinberg equilibrium;

IPW, inverse probability weighting; IR, insulin resistance; MAF, minor allele frequency;

OR, odds ratio; PM2.5, particulate matter with diameter b 2.5 μm; PM10, particulate matter
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Gene-environment interaction (GEI) can inform on biological path-

ways by which air pollution affects diabetes, an aspect of relevance to

air quality regulation. So far, GEI studies in areas of air pollution have fo-

cused on candidate genes in the domains of oxidative stress and inflam-

mation on cardio-respiratory and metabolic outcomes (Curjuric et al.,

2012; Eze et al., 2016;Minelli et al., 2011; Zanobetti et al., 2011). The de-

gree of reduction in markers of heart rate variability, in relation to air

pollutants, was associated with deletions in GSTM1 (Chahine et al.,

2007), long GT repeats of HMOX-1 (Schwartz et al., 2005), wild-type

HFE (Park et al., 2006), and IL6-572GC (Adamet al., 2014). A stronger ef-

fect of ozone on lung functionwas reported among carriers of combined

NQOI wild-type/GSTM1 null genotype, GSTP1 and long GT repeats on

HMOX-1 (Alexeeff et al., 2008; Chen et al., 2007). A variant in CDH13

showed the strongest signal in a genome-wide interaction study be-

tween PM10 and lung function decline (Imboden et al., 2015). Particle

number significantly increased fibrinogen concentrations in individuals

with high genetic risk score (GRS) of genes in the oxidative stress path-

way, and increased C-reactive proteins and intracellular adhesion

molecule-1 concentrations in individuals with higher genetic scores of

metal-processing gene variants (Bind et al., 2014).

Over the years, T2D susceptibility loci have been increasingly identi-

fied through meta-analyses of agnostic genome-wide analyses. So far,

N60 T2D genetic risk variants have been identified (Morris et al.,

2012). By selecting diabetes gene risk variants identified in genome-

wide association studies (GWAS) for interaction with air pollution, a

novel mechanistic understanding may evolve. This approach has been

applied to factors other than air pollution, and to single diabetes gene

risk variants (Cornelis and Hu, 2012).

Physical activity and variants near the FTO gene are one of the most

studied GEI in T2D (Kilpelainen and Franks, 2014), demonstrating an

attenuation of the effect of an FTO variant on BMI among the physically

active compared to the inactive (Kilpelainen et al., 2011). Variants near

HNF1B (Brito et al., 2009) and CDKN2A also interacted with physical ac-

tivity on T2D incidence (Moore et al., 2008). The Pro12Ala variant of

PPARG was shown to modify the association between physical activity

and glucose regulation in people with (Adamo et al., 2005) andwithout

diabetes (Kahara et al., 2003). Evidence from GEI studies on nutrition

and T2D also demonstrated that the carriers of this PPARG variant are

more responsive to the beneficial effects of unsaturated fat and less sus-

ceptible to the adverse effects of saturated fat on glucose regulation and/

or bodymass index (Lamri et al., 2012). Carriers of a TCF7L2 risk variant

had a lower T2D risk when they were on low glycemic diet (Cornelis

et al., 2009a). An SLC30A8 variantmodified the negative relationship be-

tween zinc intake and glucose homeostasis (Kanoni et al., 2011).

Compared to single genetic variants, a combination of genetic vari-

ants may contribute more substantially to disease risk and might thus

be useful to better characterize high-risk populations (Talmud et al.,

2015; Vassy et al., 2014). Few studies have explored the impact of the

T2D genetic risk score on its associated phenotypes such as coronary ar-

tery disease (Hamad et al., 2015), or explored itsmodifying effect on the

diabetes association with basic risk factors including age, sex, physical

activity (Langenberg et al., 2014), weight gain (Andersson et al.,

2013), obesity and family history (Cornelis et al., 2009b; Langenberg

et al., 2014). No study explored the interaction of the T2D genetic risk

score with air pollution.

Several studies on the effects of T2D risk variants on quantitative

traits of glucose metabolism have identified pathways through which

some of these variants impact on T2D. Pathways through which the

risk variants impact directly on T2D include the impairment of beta-

cell function (BCF) and insulin resistance (IR) (Dimas et al., 2014;

Harder et al., 2013; Manning et al., 2012; Perry and Frayling, 2008;

Scott et al., 2012) or other pathways may confer insulin resistance indi-

rectly through obesity risk increasing genetic variants (near FTO and

M4CR) (Perry and Frayling, 2008; Scott et al., 2014).

We generated GWAS-derived polygenic risk scores and explored

modification of our previously reported association between air

pollutants and diabetes (Eze et al., 2014a) among participants of the

Swiss cohort study on air pollution and lung and heart diseases in adults

(SAPALDIA), in general and in pathway-analyses approach. Genome-

wide data and detailed covariate informationwere available from a pre-

vious nested asthma case-control study design.

2. Materials and methods

2.1. Study population and sample selection

The SAPALDIA study has been described elsewhere (Martin et al.,

1997) but in brief, the participants include 9651 population-

representative adults, aged 18 to 60 years when they were recruited

in 1991, from eight Swiss communities (Aarau, Basel, Davos, Geneva,

Lugano, Montana, Payerne, andWald) which represent the diverse geo-

graphic characteristics of Switzerland. At baseline (SAPALDIA1) andfirst

follow-up in 2002 (SAPALDIA2), 8047 participants had computer-

assisted interviews on health and lifestyle characteristics. Venipuncture

for biomarker and genetic assays was also done at follow-up. Details of

follow-up participation rates can be found elsewhere (Ackermann-

Liebrich et al., 2005). Participants gave prior written informed consent

(including to genetic testing). The study protocols were approved by

the Swiss National Ethics Committee and the Regional Ethics Commit-

tees of the eight study centers. As part of the European asthma consor-

tium, GABRIEL, a nested asthma case-control study was designed using

the SAPALDIA2 samples and data involving 1612 participants (Moffatt

et al., 2010). Participants were identified as having asthma if they

responded “yes” to the question: “have you ever been diagnosed of

asthma”? Corresponding controls were selected from participants who

responded “no” to this question. Eligible participants in the GABRIEL

study comprised 654 asthma cases and 958 randomly selected asthma

controls (Moffatt et al., 2010) and underwent genome-wide typing.

The present cross-sectional analyses include 1524 (615 asthma cases

and 913 controls) SAPALDIA2 participants who had genome-wide

data and data on other relevant variables for current research question.

2.2. Case identification

We identified participants with diabetes as having at least one of the

following at follow-up: a self-report of physician-diagnosed diabetes;

use of diabetesmedication in the pastmonth; non-fasting blood glucose

N11.1 mmol/L or HbA1c N 0.065. HbA1c was measured only in partici-

pants with non-fasting glucose N 6.1 mmol/L (Eze et al., 2014b). We

did not have information on diabetes status at baseline, thus precluding

the study of incident diabetes.

2.3. Air pollution exposure assignment

Consistentwith our previous publication (Eze et al., 2014a), we con-

sidered 10-year mean residential exposure to particulate matter

b10 μm (PM10) as our air pollution exposure measure of interest. We

did not consider nitrogen dioxide (NO2) in this study because PM10

showed a sustained effect on diabetes and metabolic syndrome inde-

pendent of NO2 (in adjusted two-pollutantmodels) in the SAPALDIA co-

hort (Eze et al., 2014a, 2015b). PM10 was assigned to participants'

residential addresses in 1990 and 2000 using validated dispersion

models, at a resolution of 200m× 200m, based on various emission in-

ventories including road and rail traffic, agriculture and industries (Liu

et al., 2007). Annual estimates of ambient residential PM10 levels of up

to ten years of follow-up were computed using annual trends at fixed

monitoring stations closest to the residential addresses, and partici-

pants' residential histories. We computed 10-year means as a marker

of long-term exposure to PM10 (Eze et al., 2014a).
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2.4. Genotyping, imputation and selection of T2D risk variants

Genomic DNA was extracted using PUREGENE™ DNA Purification

Kit (GENTRA Systems, Minneapolis, USA), from EDTA-buffered whole

blood (Ackermann-Liebrich et al., 2005). Whole genome genotyping

was done at the Centre National de Génotypage (CNG, Evry, France)

within thenested asthma case-control study (N=1612), using Illumina

Human610K Quad BeadChip (Illumina, San Diego, CA, USA) covering

567′589 autosomal single nucleotide polymorphisms (SNPs) (Moffatt

et al., 2010). Following quality control, 35 participants were excluded

for having low genotyping call rate (b97%), leaving 1577 participants

with high quality genome-wide data for analyses. Successfully geno-

typed SNPs were imputed to 2.5 million SNPs using MaCH v1.0 (Li

et al., 2010; Soler Artigas et al., 2015).

T2D risk variants were selected if they were identified or confirmed

as achieving genome-wide significance (P b 5 × 10−8) irrespective of

population ancestry. A recent meta-analysis identified 65 T2D variants

reaching genome-wide significance (Morris et al., 2012). We included

63 T2D in our GRS. Genotype data on two variants (rs6819243 near

gene MAEA and rs4458523 near WFS1) on chromosome 4 (including

proxies with R2
≥ 0.8) were not captured on the Illumina 610 K Quad

BeadChip, thus, the genetic risk scores computed for this study were

based on 63 T2D SNPs each representing the top GWAS-identified vari-

ant of one T2D associated locus.

2.5. Genetic risk scores

We computed two polygenic risk scores, “count-GRS” and

“weighted-GRS”, based on the 63 selected SNPs. We calculated the

count-GRS by summing up the number of risk alleles across the 63

SNPs, giving a minimum of 52 risk alleles and a maximum of 82 risk al-

leles. Count-GRS assumes that alleles contribute to disease risk in an ad-

ditivemanner, i.e., with a value of 0 for non-risk and 1 for each risk allele

(Cornelis et al., 2009b). The additive model is more plausible when

the genetic model is unknown (Balding, 2006). We calculated the

weighted-GRS byfirst, weighting by size of the beta-coefficients derived

from the largest genome-wide meta-analysis on T2D (Morris et al.,

2012). We weighted the SNPs by multiplying the number of risk alleles

of each SNP (i.e., 0, 1, and 2) by the reported beta-coefficient associated

with the SNP. Next, we summed up the products across the 63 SNPs. To

facilitate interpretation of effect size per risk allele, and enable compar-

ison with count-GRS, we standardized the weighted-GRS by dividing it

by 5.34 (the sum of the beta-coefficients) and multiplying by 63 (the

possible maximal number of risk variants) (Cornelis et al., 2009b). The

minimum and maximum weighted-GRS were 49.9 and 84.6 risk alleles

respectively.

We also computed count- andweighted-GRS, using the same proce-

dure, for themajor pathwaymarkers of T2D pathology including insulin

resistance (count-GRSIR; weighted-GRSIR; involving variants near GCKR,

GRB14, IRS1, PPARG, ANKRD55, KLF14,HMGA2, FTO,M4CR and PEPD) and

beta-cell function (count-GRSBCF; weighted-GRSBCF; involving variants

near PROX1, THADA, UBE2E2, ADCY5, IGF2BP2, CDKAL1, DGKB, GCK,

ANK1, SLC30A8, GLIS3, CDKN2A/B, CDC123, HHEX/IDE, TCF7L2, KCNQ1,

KCNJ11, ARAP1, MTNR1B, C2CD4A and BCAR1) or of related traits likely

to mediate insulin resistance based on two T2D GWAS variants, one

near FTO and one in theM4CR gene.

2.6. Potential confounders

Similar to our previous publication on air pollution and diabetes (Eze

et al., 2014a), we considered the following potential confounders: age

(years; continuous), sex, body mass index (kg/m2; continuous), years

of formal education (≤9; N9), neighborhood socio-economic index

(expressed as a percentage; developed from a principal component

analysis involving occupation and educational level of household

head, median rent and number of persons in a household (Panczak

et al., 2012)). Additionally we considered active smoking history

(never, former, current; and pack-years), exposure to passive smoke

(yes/no) and occupational vapors, gases, dusts and fumes (yes/no), as

well as nutritional habits like alcohol consumption (including beers,

wines, spirits and liquors: never; ≤1 glass/day; N1 glass/day); consump-

tion of at least one portion of fruits and raw vegetables respectively

(never; ≤3 days/week; N3 days/week) and moderate physical activity

(defined as at least 150 min/week of participation in activities that

make one out of breath). All models were adjusted for genome-wide

population stratification.

2.7. Statistical analyses

We summarized characteristics at follow-up of participants with

and without diabetes and contrasted them to follow-up participants

not included in the current analysis. We assessed risk allele frequency

(RAF) and Hardy-Weinberg equilibrium of the selected risk variants.

We explored associations of diabetes with GRS and with ambient air

pollution in this sample.

We first assessed interactions between PM10 and each of the 63 T2D

genetic risk variants on diabetes. Then we fitted interaction terms be-

tween the GRS and PM10, on a continuous scale to assess potential risk

dependent effect modification. We also explored associations between

PM10 and diabetes across quartiles of GRS. For the pathway-related ge-

netic risk, we fitted interaction terms between count- and weighted-

GRS, and PM10 for insulin resistance, obesity-mediated insulin resis-

tance and beta cell function pathway separately (count-GRSIR and

count-GRSBCF) to explore their specific interaction with PM10 on diabe-

tes. In sensitivity analyses, we repeated all analyses with weighted-GRS

by i) stratifying our analyses by asthma status, ii) omitting BMI from co-

variates, iii) assessing impact of selection bias by applying inverse prob-

ability weighting (IPW) to the models and iv) performing models with

study center as fixed effect. All analyses were performed with STATA

version 14 [STATA Corporation, Texas, USA] and involvedmixed logistic

regression models, with random intercepts by study area.

3. Results

Characteristics at the first follow-up (SAPALDIA2) of participants

and non-participants in the presented analyses and comparison of the

included participants with and without diabetes are presented in

Table 1.

Overall, the participant characteristicswere similarly distributed be-

tween the included (no diabetes) and excluded participants, despite a

low inclusion rate of ~20% (Table 1). Among included participants, dia-

betes prevalence was 4.6%, and highly comparable to the diabetes prev-

alence in the non-participants (4.7%); and mean PM10 exposure was

22.1 μg/m3 in participants and 22.5 μg/m3 in non-participants. Com-

pared to participants without diabetes, diabetes cases were more likely

to be male, of lower social status, obese, smokers and consumed more

alcohol. Moreover, they were exposed to higher PM10 concentrations.

Prevalent asthma and mean count- and weighted GRS were also signif-

icantly higher among participants with diabetes (Table 1). Mean (SD)

count-GRS was 67 (4.8) risk alleles whereas mean (SD) weighted-GRS

was 66.5 (5.3) risk alleles. Both GRS were normally distributed in the

study population (0.4 ≤ P-value of Shapiro-Wilk test ≤0.8). Table 2 de-

scribes all included SNPs, indicating chromosomal location, nearby

gene, risk allele and its frequency. All SNPs were in Hardy-Weinberg

Equilibrium (P N 0.01), with risk allele frequency (RAF) ≥3%.

The previously published positive association between PM10 and di-

abetes (Eze et al., 2014a) persisted in this smaller sample in both crude

(odds ratio (OR): 1.23 (0.88, 1.73) per 10μg/m3 exposure to PM10) and

adjusted models (OR: 1.35 (0.92, 1.97)). Additional adjustment for

count-GRS (while adjusting for BMI), and removal of BMI (while

adjusting for count-GRS) only increased the odds of diabetes by 2%

and 6% respectively.
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The direction of association of 41 alleles agrees with that of

published risk alleles on T2D, despite perfect agreement in the RAFs

(Supplementary Table 1). We observed positive associations between

count- and weighted-GRS and diabetes in our sample. In the crude

model, odds of diabetes was increased by 7% (2, 12%) and 6% (2, 11%)

per unit of count- and weighted-GRS respectively. Adjusted models,

which did not depend on adjustment for BMI or PM10, showed similar

results (Table 2).

Table 2 also shows the results of the single SNP interactions with

PM10 on the odds of diabetes. Interaction with only five variants (near

GRB14, UBE2E2, PTPRD, VPS26A and KCNQ1) showed nominal signifi-

cance (P b 0.05). Although nominally non-significant, we observed

strong interaction signals with variants near THADA, PPARG, KLF14,

ZMIZ1, DUSP8, ARAP1, PRC1 and FTO (Table 2). No single variant interac-

tion remained significant following Bonferroni correction at P b 0.0016

(0.1/63), false discovery rate P b 0.0016 (0.1 ∗ 1/63) or family-wise

error rate P b 0.0016 (1-(1–0.1)1/63).

Looking at the combination of T2D variants, we observed a signifi-

cant positive interaction between 10-year mean PM10 and 63-loci GRS

(Table 2). The association between PM10 and diabetes increased across

quartiles of count-GRS, being strongest among those in the highest

quartile of genetic risk (Table 3). Compared to those at lowest genetic

risk (Q1), odds of diabetes (per 10 μg/m3 exposure to PM10) increased

by 106% among those at highest risk (Q4). Interactions between PM10

and weighted-GRS on odds of diabetes were similar, and sometimes

stronger, compared to those observed with count-GRS (Table 3).

Fig. 1 shows interaction odds ratios for PM10 and pathway-specific

GRS. Odds of diabetes (per 10μg/m3 exposure to PM10) increased by

22% (95% CI: 0, 49%) per T2D risk allele of insulin resistance GRS

(count-GRSIR).

We observed a positive and weaker interaction with beta cell

function GRS (count-GRSBCF), the odds of diabetes (per 10 μg/m3

exposure to PM10) increased by 6% (−8, 22%) per T2D risk allele

of count-GRSBCF (Fig. 1). Interactions with weighted-GRS were almost

identical to those observed with count-GRS for both pathways

(Supplementary Table 2), andwere insensitive to BMI in the interaction

model.

Interactions with 63-loci GRS were comparable between asthma

cases and controls, but pathway-specific GRSIR showed stronger signif-

icant interactions with PM10 among asthma cases (Fig. 2).

When considering only obesity-dependent variants in the count-

GRSIR, asthma cases had amore than twofold increased odds of diabetes

(per 10 μg/m3 exposure to PM10 and per T2D risk variant) (Fig. 2).

These observations were also very consistent with weighted-GRS

(Supplementary Table 2) andwere insensitive to BMI.When comparing

participants by asthma status, significant differences were only

observed for age, BMI, alcohol consumption and diabetes status

(Supplementary Table 3).

Sensitivity analyses proved robust results. In particular, interactions

were not sensitive to body mass index. Adjusting the analyses for

selection bias or treating study area as fixed effect also did not change

the results of PM10-GRS interactions (Table 4).

4. Discussion

This is the first study to show a positive interaction between T2D

polygenic risk and particulatematter, on prevalent diabetes. Individuals

at higher genetic risk for diabetes were more susceptible to PM10. This

was especially true for genetic variants functionally related to T2D

through alteration of insulin sensitivity. Our findings, which remained

robust across sensitivity analyses, also indicate that stronger associa-

tions may be observed in pathway-based analyses, providing a promis-

ing handle to disentangle the complex disease etiology by assessing

gene-environment interactions.

Similar to our finding of a positive relationship between T2D poly-

genic risk and diabetes and its modifiability by air pollution, in the

Health Professionals Follow-up and Nurses' Health Study, a ten-SNP

score-associated risk of T2D was higher among the obese and persons

with family history of diabetes (Cornelis et al., 2009b). Another study

of a GRS of 49 SNPs also showed the positive association with incident

T2D to be modified by age and obesity (Langenberg et al., 2014). A

study by Andersson et al (Andersson et al., 2013) showed a polygenic

risk score of 46 SNPs to predict T2D especially among weight gainers

(Andersson et al., 2013). A 65-loci GRS was associated with prevalent

Table 1

Characteristics of participants at first follow-up of SAPALDIA study, included and excluded from present study.

Characteristics (% or mean (SD)) Diabetes

N = 70

No diabetes

N = 1454

Excluded % or

mean (SD); N

Age (years) 60.7 (8.4) 51.5 (11.3)a 52.1 (11.6); 6156

Females 33.8 51.7a 52.1; 6156

Body mass index (kg/m2) 30.6 (5.2) 25.7 (4.3)a 25.9 (4.5); 5074

Formal education ≤9 years 15.5 6.1a 8.7; 6145b

Neighborhood socio-economic index (%) 60.9 (9.8) 63.6 (10.2)a 63.3 (10.3); 6466

Ever-smokers 70.4 56.1a 58.1; 6523

Pack-years smoked 16.6 (27.4) 9.9 (17.6)a 11.3 (18.7); 5972

Exposure to passive smoke 54.9 47.5 47.6; 6523

Occupational exposure to vapors, gases, dusts and fumes 48.6 43.0 31.0; 6523b

Alcohol consumption N1 glass/day 11.4 8.2 9.4; 5038

Consumption of fruits - never/seldom 7.0 8.9 8.9; 5036

Consumption of raw vegetables - Never/seldom 4.2 2.0 2.0; 5040

150 min of moderate physical activity /week 51.4 46.8 49.9; 5019

Asthma cases 52.1 39.9a 43.4; 53

Diabetes cases 100 0a 4.7

10-year mean PM10 (μg/m
3) 23.1 (7.0) 22.0 (7.0) 22.5 (7.5); 6052

Total count-GRS 68.5 (4.8) 66.9 (4.7)a 67.3 (3.9); 53

Total weighted-GRS 68.2 (5.2) 66.4 (5.3)a 66.6 (4.4); 53

Insulin resistance count-GRS 10.8 (2.1) 10.4 (1.9) 10.4 (1.8); 53

Insulin resistance weighted-GRS 10.7 (2.2) 10.4 (2.0) 10.4 (2.0); 53

Beta-cell function count-GRS 24.1 (3.1) 23.5 (3.2) 20.7 (2.7); 53

Beta-cell function weighted-GRS 20.7 (2.7) 19.9 (3.1)a 2.2 (0.3); 53

Insulin resistance (obesity variants) count-GRS 1.6 (0.9) 1.4 (0.9) 1.6 (1.0); 53

Insulin resistance (obesity variants) weighted-GRS 1.7 (1.0) 1.4 (1.0)a 1.6 (1.0); 53

GRS: genetic risk score; PM10: particulate matter b10 μm in diameter; SAPALDIA: Swiss cohort study on air pollution and lung and heart diseases in adults.
a Significant difference in proportion or mean between diabetes cases and participants without diabetes (P b 0.05).
b Significant difference in proportions or means between participants and non-participants of the presented analyses (P b 0.05).
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Table 2

Interactions of PM10 with candidate SNPs and genetic risk scores on the odds of diabetes in the SAPALDIA study.

RS number CHR Gene(pathway)
a Risk/other allele Risk allele frequency Association with diabetesb Increase in odds of diabetes per 10 μg/m3 increase in PM10

b

OR (95% CI) OR (95% CI)

rs10923931 1 NOTCH2 T/G 0.09 0.89 (0.46, 1.71) 0.73 (0.29, 1.87)

rs2075423 1 PROX1(BCF) G/T 0.64 0.71 (0.49, 1.04) 1.15 (0.66, 1.99)

rs780094 2 GCKR(IR) C/T 0.54 1.07 (0.74, 1.55) 0.77 (0.46, 1.27)

rs10203174 2 THADA(BCF) C/T 0.89 2.20 (1.02, 4.71)c 0.35 (0.11, 1.13)

rs243088 2 BCL11A T/A 0.48 0.95 (0.66, 1.37) 0.71 (0.43, 1.19)

rs7569522 2 RBMS1 A/G 0.47 1.16 (0.78, 1.73) 0.76 (0.43, 1.32)

rs13389219 2 GRB14(IR) C/T 0.62 0.85 (0.58, 1.24) 2.19 (1.26, 3.80)c

rs2943640 2 IRS1(IR) C/A 0.66 1.19 (0.80, 1.17) 1.33 (0.74, 2.38)

rs1801282 3 PPARG(IR) C/G 0.89 0.75 (0.42, 1.33) 0.55 (0.23, 1.28)

rs1496653 3 UBE2E2(BCF) A/G 0.82 0.80 (0.49, 1.31) 1.98 (1.01, 3.90)c

rs12497268 3 PSMD6 G/C 0.84 0.95 (0.56, 1.61) 1.28 (0.55, 2.96)

rs6795735 3 ADAMTS9 C/T 0.56 1.27 (0.85, 1.88) 0.69 (0.40, 1.21)

rs11717195 3 ADCY5(BCF) T/C 0.80 1.35 (0.83, 2.20) 0.65 (0.31, 1.37)

rs4402960 3 IGF2BP2(BCF) T/G 0.31 1.25 (0.84, 1.86) 1.17 (0.65, 2.12)

rs17301514 3 ST64GAL1 A/G 0.10 1.51 (0.86, 2.63) 0.97 (0.42, 2.26)

rs459193 5 ANKRD55(IR) G/A 0.74 0.99 (0.63, 1.57) 1.11 (0.60, 2.07)

rs6878122 5 ZBED3 G/A 0.30 1.00 (0.67, 1.49) 1.00 (0.56, 1.79)

rs7756992 6 CDKAL1(BCF) G/A 0.28 1.24 (0.82, 1.88) 1.20 (0.65, 2.21)

rs4299828 6 ZFAND3 A/G 0.72 0.96 (0.61, 1.50) 1.06 (0.55, 2.06)

rs3734621 6 KCNK16 C/A 0.03 1.03 (0.37, 2.88) 1.20 (0.34, 4.24)

rs17168486 7 DGKB(BCF) T/C 0.15 0.98 (0.58, 1.66) 1.85 (0.83, 4.15)

rs849135 7 JAZF1 G/A 0.50 0.87 (0.60, 1.25) 1.27 (0.76, 2.14)

rs10278336 7 GCK(BCF) A/G 0.60 1.01 (0.68, 1.49) 1.13 (0.64, 1.99)

rs17867832 7 GCC1 T/G 0.92 0.89 (0.44, 1.79) 1.01 (0.36, 2.81)

rs13233731 7 KLF14(IR) G/A 0.54 1.46 (0.99, 2.15) 1.61 (0.91, 2.83)

rs516946 8 ANK1(BCF) C/T 0.73 1.05 (0.69, 1.60) 0.75 (0.41, 1.39)

rs7845219 8 TP53INP1 T/C 0.50 1.06 (0.74, 1.52) 0.90 (0.53, 1.53)

rs3802177 8 SLC30A8(BCF) G/A 0.73 0.88 (0.59, 1.31) 1.38 (0.75, 2.53)

rs10758593 9 GLIS3(BCF) A/G 0.42 1.07 (0.74, 1.55) 1.00 (0.58, 1.74)

rs16927668 9 PTPRD T/C 0.24 1.26 (0.83, 1.91) 0.50 (0.28, 0.92)c

rs10811661 9 CDKN2A/B(BCF) T/C 0.80 1.54 (0.92, 2.58) 0.86 (0.42, 1.79)

rs17791513 9 TLE4 A/G 0.94 1.57 (0.63, 3.94) 0.95 (0.20, 4.41)

rs2796441 9 TLE1 G/A 0.61 1.08 (0.73, 1.59) 1.01 (0.58, 1.73)

rs11257655 10 CDC123(BCF) T/C 0.20 0.86 (0.54, 1.37) 1.23 (0.62, 2.43)

rs12242953 10 VPS26A G/A 0.93 0.79 (0.41, 1.53) 2.96 (1.04, 8.41) c

rs12571751 10 ZMIZ1 A/G 0.54 1.01 (0.69, 1.48) 1.52 (0.90, 2.57)

rs1111875 10 HHEX/IDE(BCF) C/T 0.61 1.03 (0.71, 1.51) 1.30 (0.77, 2.21)

rs7903146 10 TCF7L2(BCF) T/C 0.33 1.33 (0.91, 1.94) 0.81 (0.47, 1.40)

rs2334499 11 DUSP8 T/C 0.40 0.80 (0.55, 1.15) 1.59 (0.92, 2.75)

rs163184 11 KCNQ1(BCF) G/T 0.47 1.16 (0.80, 1.69) 1.87 (1.09, 3.20)c

rs5215 11 KCNJ11(BCF) C/T 0.37 0.87 (0.59, 1.28) 1.00 (0.56, 1.77)

rs1552224 11 ARAP1(BCF) A/C 0.86 1.79 (0.90, 3.55) 0.50 (0.18, 1.37)

rs10830963 11 MTNR1B(BCF) G/C 0.27 1.28 (0.79, 2.07) 0.68 (0.34, 1.37)

rs11063069 12 CCND2 G/A 0.18 1.93 (1.12, 3.33) a 1.40 (0.64, 3.08)

rs10842994 12 KLHDC5 C/T 0.82 1.26 (0.75, 2.12) 1.10 (0.53, 2.30)

rs2261181 12 HMGA2(IR) T/C 0.12 0.81 (0.43, 1.51) 1.47 (0.59, 3.66)

rs7955901 12 TSPAN8 C/T 0.47 1.24 (0.85, 1.81) 1.25 (0.73, 2.13)

rs12427353 12 HNF1A (TCF1) G/C 0.80 1.39 (0.81, 2.37) 1.34 (0.63, 2.88)

rs1359790 13 SPRY2 G/A 0.73 0.96 (0.63, 1.44) 1.16 (0.66, 2.05)

rs4502156 15 C2CD4A(BCF) T/C 0.57 1.12 (0.77, 1.64) 0.99 (0.58, 1.72)

rs7177055 15 HMG20A A/G 0.70 1.02 (0.68, 1.53) 0.90 (0.51, 1.60)

rs11634397 15 ZFAND6 G/A 0.65 1.24 (0.82, 1.86) 1.41 (0.77, 2.59)

rs2007084 15 AP3S2 G/A 0.93 1.26 (0.58, 2.74) 0.65 (0.19, 2.20)

rs12899811 15 PRC1 G/A 0.31 1.00 (0.67, 1.50) 1.64 (0.94, 2.86)

rs9936385 16 FTO(IR) C/T 0.42 1.35 (0.93, 1.96) 1.59 (0.92, 2.73)

rs7202877 16 BCAR1(BCF) T/G 0.90 2.31 (1.06, 5.03)c 0.52 (0.17, 1.60)

rs2447090 17 SRR A/G 0.64 0.83 (0.57, 1.21) 0.82 (0.46, 1.44)

rs11651052 17 HNF1B (TCF2) G/A 0.49 0.92 (0.63, 1.33) 1.47 (0.86, 2.53)

rs12970134 18 MC4R(IR) A/G 0.28 1.08 (0.72, 1.63) 0.95 (0.52, 1.72)

rs10401969 19 CILP2 C/T 0.07 0.15 (0.03, 0.87)c 1.07 (0.07, 15.6)

rs8182584 19 PEPD(IR) T/G 0.38 1.20 (0.81, 1.76) 0.87 (0.50, 1.51)

rs8108269 19 GIPR G/T 0.32 1.02 (0.68, 1.51) 1.07 (0.59, 1.95)

rs4812829 20 HNF4A A/G 0.18 1.16 (0.72, 1.89) 0.71 (0.35, 1.44)

Count genetic risk score 1.08 (1.02, 1.14)c 1.10 (1.01, 1.20)c

Weighted genetic risk score 1.09 (1.03, 1.14)c 1.07 (0.99, 1.16)d

BCF: Beta-cell function; CI: confidence intervals; IR: Insulin resistance; OR: Odds ratio; PM10: particulate matter b10 μm in diameter; SAPALDIA: Swiss cohort study on air pollution and

lung and heart diseases in adults; SNPs: Single nucleotide polymorphisms.
a SNPs were genotyped using Illumina Human610Kquad BeadChip and imputations done using MaCH v1.0 software.
b All models adjusted for age, sex, educational level, neighborhood socio-economic index, smoking status and pack years, passive smoke exposure, consumption of alcohol, fruits and

vegetables, physical activity, body mass index and genome-wide population stratification.
c P b 0.05.
d P b 0.1.
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T2D among people with European ancestry (Talmud et al., 2015)

whereas a 62-loci GRS equally predicted T2D in both blacks and whites

(Vassy et al., 2014).

Experimental and epidemiologic evidence have demonstrated the

contribution of fine particulate matter to insulin resistance. PM2.5 was

shown to enhance insulin resistance in a mouse model of diet-induced

obesity (Sun et al., 2009). Kelishadi and colleagues found PM2.5 to be as-

sociated with markers of insulin resistance among Iranian children

(Kelishadi et al., 2009). On the other hand, NO2 was also associated

with insulin resistance among two cohorts of German children

(Thiering et al., 2013). In a study of 25 healthy adults, Brook and col-

leagues found an association between a sub-acute exposure to PM2.5

and insulin resistance (Brook et al., 2013). Postulated mechanisms for

the observed association include systemic inflammation, alteration of

insulin signaling following oxidative stress, endothelial vasoconstric-

tion, hypothalamic-adrenal stress response and augmentation of sym-

pathetic activity (Liu et al., 2013; Rajagopalan and Brook, 2012).

Our results also suggest that individualswith pre-existing inflamma-

tion like asthma or at risk of obesity are potentially most susceptible to

air pollution increasing the risk for developing diabetes. We observed a

stronger interaction of PM10 with insulin resistance variants among

asthma cases which was even stronger when we restricted the score

to the FTO and M4CR variants which are known to be causally related

to higher BMI over the course of life (Perry and Frayling, 2008; Scott

et al., 2014) (Fig. 1). Air pollution exposure has been linked to both asth-

ma and obesity (Eze et al., 2015b; Jacquemin et al., 2015; Jerrett et al.,

2014), and studies have linked asthma to obesity and insulin resistance

(Husemoen et al., 2008; Sanchez Jimenez et al., 2014; Singh et al., 2013).

While there is a consensus that obesity-related systemic inflammation

likely contributes to the asthma etiology, epidemiological evidence on

the relationship between asthma and diabetes is limited and conflicting.

Some studies reported a link between asthma and diabetes (Ehrlich

et al., 2010; Mueller et al., 2013) especially in obese people (Mueller

et al., 2013), others did not (Rana et al., 2004).

While asthma and obesity are recognized inflammatory conditions

andwith experimental data from animal models corroborating that vis-

ceral adiposity-related inflammation may act as mediator for PM2.5 to

increase the risk for insulin resistance (Sun et al., 2009), other studies

have shown discordance between systemic inflammation and severity

of symptoms in obese asthmatics (Beuther et al., 2006; Haldar et al.,

2008). Other lines of evidence suggest that non-inflammatory pathways

might also link PM to insulin resistance (Brook et al., 2013), with exper-

imental animal models providing evidence for insulin resistance in

muscle tissues resulting from lipid and protein oxidation by-products

upon acute exposure to ozone (Kodavanti, 2015; Vella et al., 2015).

Hence, despite the strong evidence for a central role of pre-existing in-

flammation, e.g., due to asthma or being at genetic risk of obesity,

other non-inflammation based mechanisms cannot be ruled out to un-

derlie or contribute to the air pollution-diabetes association.

There is some evidences on the impact of environmental pollutants

(including organophosphorus compounds, persistent organic pollutants

andmetals) on various aspects of beta-cell dysfunction that lead to dia-

betes (Hectors et al., 2011), but there is to date no experimental evi-

dence on the impact of air pollutants on BCF. Although interactions

with the polygenic risk involving the BCF variants in the 63-loci GRS

were not significant, we observed some positive signals among non-

asthmatics in the BCF pathway (Fig. 2) and nominally significant

Table 3

Associations between PM10 and quartiles of count-GRS on the odds of diabetes in the SAPALDIA study.

Quartile N Range of risk alleles Association with diabetesa Increase in odds of diabetes per 10 μg/m3 increase in PM10
b

Count-GRS OR (95% CI) OR (95% CI)

Q1 385 51.67–63.83 Reference 0.82 (0.41, 1.65)

Q2 378 63.84–67.09 0.93 (0.40, 2.14) 0.92 (0.55, 1.54)

Q3 381 67.10–70.22 1.66 (0.76, 3.61) 1.54 (0.95, 2.49)d

Q4 380 70.23–82.33 1.86 (0.86, 3.99) 1.97 (1.00, 3.87)c

Q4 vs. Q1 765 51.67–82.33 2.31 (1.03, 5.19)c 2.06 (0.69, 6.19)

Weighted-GRS

Q1 381 49.92–62.84 Reference 0.83 (0.39, 1.74)

Q2 382 62.85–66.49 1.28 (0.55, 2.99) 1.04 (0.62, 1.73)

Q3 380 66.50–70.13 1.40 (0.60, 3.28) 1.21 (0.73, 1.99)

Q4 381 70.14–84.62 3.28 (1.48, 7.27)c 2.01 (1.04, 3.88)c

Q4 vs. Q1 762 49.92–84.62 3.61 (1.55, 8.42)c 2.53 (0.82, 7.76)

Abbreviations: CI, confidence intervals; GRS, genetic risk score; OR, Odds ratio; PM10, particulate matter b10 μm in diameter; SAPALDIA, Swiss cohort study on air pollution and lung and

heart diseases in adults.
a ORs and 95%CIs represent increase in odds of diabetes per risk allele.
b ORs and 95%CIs represent increase in odds of diabetes per 10 μg/m3 increase in exposure to PM10.
c P b 0.05.
d P b 0.1.

Fig. 1. Interactions between PM10 and count-GRS on prevalent diabetes in the SAPALDIA

study. GRS: total genetic risk score; GRS-BCF: beta-cell function genetic risk score; GRS-

IR: insulin resistance genetic risk score; GRS-IR (no obesity variants): insulin resistance

genetic risk score excluding polymorphisms on FTO and M4CR with primary effect on

obesity; GRS-IR (only obesity variants): insulin resistance genetic risk score including

only polymorphisms on FTO and M4CRwith primary effect on obesity; PM10: particulate

matter b10 μm in diameter; SAPALDIA: Swiss cohort study on air pollution and lung and

heart diseases in adults. Count-GRS was computed by summation of risk alleles. Odds

ratios represent increase in odds of diabetes per 10 μg/m3 exposure to PM10 and per risk

allele. All associations were adjusted for obesity, age, sex, socio-economic status,

smoking habits, consumption of alcohol, fruits and vegetables, physical activity and

genome-wide population stratification. Study area was treated as a random effect in all

models.
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interactions with single variants in the BCF pathway (Table 2). This

might indicate that PM may also have some impact on T2D through

some alterations in the BCF.

This study has several strengths. It provides comprehensive

evidence on the modifying effect of a polygenic risk score (including

pathway-related components) on the association between ambient air

pollution and DM. The SAPALDIA study contains a rich data set on

well characterized participants including a large number of phenotypes

and lifestyle characteristics, in addition to genomic data. We attempted

to identify undiagnosed diabetes, using non-fasting blood tests, to limit

outcome misclassification. Our estimates of air pollution derive from

validated models, which have been applied to other SAPALDIA studies.

These estimateswere assigned to participants' residential address histo-

ry, thus limiting exposure misclassification.

Despite these strengths, our study has also limitations. First is our in-

ability to distinguish T1D and T2D. We assumed most of our diabetes

cases to be type 2, since N90% of adult diabetes is type 2 (Alberti and

Zimmet, 1998). We observed strong associations between the con-

firmed T2D risk alleles and our diabetes cases, in the range of published

literature, thus strengthening our assumption of T2D. Moreover, when

we limited the diabetes definition to either medication use or those

without a diagnosis but increased non-fasting glucose levels, the associ-

ationswith GRS remained unchanged.We had limited sample size (62%

statistical power) for this analysis due to lacking genome-wide data. As-

suming the observed effect is identical to the true effect, wewould have

needed twice the size of our sample to achieve 90% power for detecting

this effect at the usual significance level of 5%. However, wemade some

salient findings, and IPW revealed no effect of potential selection bias in

our study. This was a cross-sectional analysis, precluding any causal in-

ferences. To limit this design bias, we focused on the 10-year mean of

PM10 exposure, rather than on the mean during the year preceding

the health assessment. Our study of genetic variation also limits this

design bias to some extent considering that genetic variants remain un-

changed throughout life. Furthermore, we studied PM10, instead of

PM2.5, which may have stronger health effects due to its physical prop-

erties. Modeled PM2.5 was not available for our study, but there is a

high correlation between both pollutants across SAPALDIA study areas

(R = 0.8) (Eze et al., 2014a). We would expect similar, if not stronger

associations with PM2.5. Lastly, our observations may be biased by the

relationship between asthma (and its treatment) and diabetes, but we

did not observe substantial differences in interactions between PM10

and total genetic risk, on stratification by asthma status.

Future studies should explore the possible role of air pollution in the

impairment of BCF, and explore the role of unclassified T2D variants in

disease etiology. Our present findings need confirmation and follow-

up in diabetes cohort consortia. Consideration should also be given to

ultra-fine particles, which can penetrate even further into the respirato-

ry tract than PM2.5 or PM10.

In conclusion, our results indicate that polygenic risk of T2D may

modify the effects of air pollutants on the risk of diabetes through alter-

ation of insulin sensitivity among people with some existing back-

ground inflammation. This study is relevant given the need for the

knowledge of genetic risk in disease prevention, and the importance

of genotypes as research instrument in disentangling complexities and

mechanisms in causality of modifiable risks.

Fig. 2. Interactions between PM10 and count-GRS on prevalent diabetes in the SAPALDIA

study, stratified by asthma status. GRS: total genetic risk score; GRS-BCF: beta-cell

function genetic risk score; GRS-IR: insulin resistance genetic risk score; GRS-IR (no

obesity variants): insulin resistance genetic risk score excluding polymorphisms on FTO

and M4CR with primary effect on obesity; GRS-IR (only obesity variants): insulin

resistance genetic risk score including only polymorphisms on FTO and M4CR with

primary effect on obesity; PM10: particulate matter b10 μm in diameter; SAPALDIA:

Swiss cohort study on air pollution and lung and heart diseases in adults. Count-GRS

was computed by summation of risk alleles. Odds ratios represent increase in odds of

diabetes per 10μg/m3 exposure to PM10 and per risk allele. All associations were

adjusted for obesity, age, sex, socio-economic status, smoking habits, consumption of

alcohol, fruits and vegetables, physical activity and genome-wide population

stratification. Study area was treated as a random effect in all models. N (asthma) =

615; N (no asthma) = 909.

Table 4

Sensitivity analyses using inverse probability weighting to assess for potential selection bias, and testing study area as a fixed effect, in themodification of associations between PM10 and

diabetes by GRS in the SAPALDIA study.

Model Interactions between PM10 and

count-GRS on prevalent diabetesa
Interactions between PM10 and

weighted-GRS on prevalent diabetesa

Inverse probability weighting for selection bias OR (95% CI) OR (95% CI)

63-loci GRS 1.10 (1.02, 1.20)b 1.08 (1.00, 1.16)b

GRS-beta cell function 1.07 (0.95, 1.20) 1.04 (0.93, 1.15)

GRS-insulin resistance 1.25 (1.03, 1.51)b 1.23 (1.03, 1.47)b

GRS-insulin resistance excluding obesity variants 1.21 (0.96, 1.53) 1.20 (0.95, 1.52)

GRS-insulin resistance (only obesity variants) 1.25 (0.86, 1.83) 1.54 (0.50, 4.69)

Study area as a fixed effect

63-loci GRS 1.10 (1.01, 1.20)b 1.07 (0.99, 1.15)b

GRS-beta cell function 1.06 (0.92, 1.22) 1.03 (0.91, 1.15)

GRS-insulin resistance 1.22 (1.00, 1.50)b 1.21 (1.00, 1.48)b

GRS-insulin resistance excluding obesity variants 1.18 (0.95, 1.47) 1.17 (0.93, 1.47)

GRS-insulin resistance (only obesity variants) 1.29 (0.87, 1.91) 1.32 (0.90, 1.92)

Abbreviations: CI, confidence intervals; GRS, genetic risk score; OR, Odds ratio; PM10, particulate matter b10 μm in diameter; SAPALDIA, Swiss cohort study on air pollution and lung and

heart diseases in adults.
a ORs and 95%CIs represent increase in odds of diabetes per 10 μg/m3 increase in exposure to PM10 and per unit risk allele. All models were mixed logistic regression with random

intercepts for study areas, and adjusted for age, sex, educational attainment, neighborhood socio-economic index, smoking status, exposure to passive smoke and occupational vapors,

dusts, gases and fumes, consumption of alcohol, fruits and vegetables, physical activity, body mass index and genome-wide population stratification.
b P b 0.05.
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5. Current SAPALDIA team

Study directorate: NM Probst-Hensch (PI; e/g); T Rochat (p), C

Schindler (s), N Künzli (e/exp), JM Gaspoz (c).

Scientific team: JC Barthélémy (c), W Berger (g), R Bettschart (p), A

Bircher (a), C Brombach (n), PO Bridevaux (p), L Burdet (p), Felber Die-

trich D (e), M Frey (p), U Frey (pd), MW Gerbase (p), D Gold (e), E de

Groot (c), W Karrer (p), F Kronenberg (g), B Martin (pa), A Mehta (e),

D Miedinger (o), M Pons (p), F Roche (c), T Rothe (p), P Schmid-

Grendelmeyer (a), D Stolz (p), A Schmidt-Trucksäss (pa), J Schwartz

(e), A Turk (p), A von Eckardstein (cc), E Zemp Stutz (e).

Scientific team at coordinating centers: M Adam (e), I Aguilera

(exp), S Brunner (s), D Carballo (c), S Caviezel (pa), I Curjuric (e), A Di

Pascale (s), J Dratva (e), R Ducret (s), E Dupuis Lozeron (s), M Eeftens

(exp), I Eze (e), E Fischer (g), M Foraster (e), M Germond (s), L Grize

(s), S Hansen (e), A Hensel (s), M Imboden (g), A Ineichen (exp), A

Jeong (g), D Keidel (s), A Kumar (g), N Maire (s), A Mehta (e), R Meier

(exp), E Schaffner (s), T Schikowski (e), M Tsai (exp).

(a) allergology, (c) cardiology, (cc) clinical chemistry,

(e) epidemiology, (exp) exposure, (g) genetic and molecular biology,

(m) meteorology, (n) nutrition, (o) occupational health,

(p) pneumology, (pa) physical activity, (pd) pediatrics, (s) statistics.

Local fieldworkers: Aarau: S Brun, G Giger, M Sperisen, M Stahel,

Basel: C Bürli, C Dahler, N Oertli, I Harreh, F Karrer, G Novicic, N

Wyttenbacher, Davos: A Saner, P Senn, R Winzeler, Geneva: F Bonfils,

B Blicharz, C Landolt, J Rochat, Lugano: S Boccia, E Gehrig, MT Mandia,

G Solari, B Viscardi, Montana: AP Bieri, C Darioly, M Maire, Payerne: F

Ding, P Danieli A Vonnez, Wald: D Bodmer, E Hochstrasser, R Kunz, C

Meier, J Rakic, U Schafroth, A Walder.

Administrative staff: N Bauer Ott, C Gabriel, R Gutknecht.
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Supplementary Table 1. Comparison of effect sizes of SNPs on the odds of diabetes in 

SAPALDIA with published data 

RS number CHR  Gene(pathway)
a
 

Risk 

allele 

Risk 

allele 

frequency 

(SAPAL-

DIA) 

Risk 

allele 

frequency 

(published 

data) 

OR  

effect 

size 

(SAPAL-

DIA)
b
 

OR effect 

size 

(published 

data) 

rs10923931 1 NOTCH2 T 0.09 0.12 0.89  1.08 

rs2075423 1 PROX1(BCF) G 0.64 0.62 0.71  1.07 

rs780094 2 GCKR(IR) C 0.54 0.61 1.07  1.06 

rs10203174 2 THADA(BCF) C 0.89 0.89 2.20  1.14 

rs243088 2 BCL11A T 0.48 0.45 0.95  1.07 

rs7569522 2 RBMS1 A 0.47 0.44 1.16  1.05 

rs13389219 2 GRB14(IR) C 0.62 0.60 0.85  1.07 

rs2943640 2 IRS1(IR) C 0.66 0.63 1.19  1.10 

rs1801282 3 PPARG(IR) C 0.89 0.86 0.75  1.13 

rs1496653 3 UBE2E2(BCF) A 0.82 0.75 0.80  1.09 

rs12497268 3 PSMD6 G 0.84 0.80 0.95  1.03 

rs6795735 3 ADAMTS9 C 0.56 0.59 1.27  1.08 

rs11717195 3 ADCY5(BCF) T 0.80 0.77 1.35  1.11 

rs4402960 3 IGF2BP2(BCF) T 0.31 0.33 1.25  1.13 

rs17301514 3 ST64GAL1 A 0.10 0.13 1.51  1.05 

rs459193 5 ANKRD55(IR) G 0.74 0.70 0.99  1.08 

rs6878122 5 ZBED3 G 0.30 0.28 1.00  1.10 

rs7756992 6 CDKAL1(BCF) G 0.28 0.29 1.24  1.17 

rs4299828 6 ZFAND3 A 0.72 0.79 0.96  1.04 

rs3734621 6 KCNK16 C 0.03 0.03 1.03  1.07 

rs17168486 7 DGKB(BCF) T 0.15 0.19 0.98  1.11 

rs849135 7 JAZF1 G 0.50 0.52 0.87  1.11 

rs10278336 7 GCK(BCF) A 0.60 0.50 1.01  1.07 

rs17867832 7 GCC1 T 0.92 0.91 0.89  1.09 

rs13233731 7 KLF14(IR) G 0.54 0.51 1.46  1.05 

rs516946 8 ANK1(BCF) C 0.73 0.76 1.05  1.09 



3 

 

rs7845219 8 TP53INP1 T 0.50 0.52 1.06  1.06 

rs3802177 8 SLC30A8(BCF) G 0.73 0.66 0.88  1.14 

rs10758593 9 GLIS3(BCF) A 0.42 0.42 1.07  1.06 

rs16927668 9 PTPRD T 0.24 0.24 1.26  1.04 

rs10811661 9 CDKN2A/B(BCF) T 0.80 0.82 1.54  1.18 

rs17791513 9 TLE4 A 0.94 0.91 1.57  1.12 

rs2796441 9 TLE1 G 0.61 0.57 1.08  1.07 

rs11257655 10 CDC123(BCF) T 0.20 0.23 0.86  1.07 

rs12242953 10 VPS26A G 0.93 0.93 0.79  1.07 

rs12571751 10 ZMIZ1 A 0.54 0.52 1.01  1.08 

rs1111875 10 HHEX/IDE(BCF) C 0.61 0.58 1.03  1.11 

rs7903146 10 TCF7L2(BCF) T 0.33 0.27 1.33  1.39 

rs2334499 11 DUSP8 T 0.40 0.43 0.80  1.04 

rs163184 11 KCNQ1(BCF) G 0.47 0.50 1.16  1.09 

rs5215 11 KCNJ11(BCF) C 0.37 0.41 0.87  1.07 

rs1552224 11 ARAP1(BCF)  A 0.86 0.81 1.79  1.11 

rs10830963 11 MTNR1B(BCF) G 0.27 0.31 1.28  1.10 

rs11063069 12 CCND2 G 0.18 0.21 1.93  1.08 

rs10842994 12 KLHDC5 C 0.82 0.80 1.26  1.10 

rs2261181 12 HMGA2(IR) T 0.12 0.10 0.81  1.13 

rs7955901 12 TSPAN8 C 0.47 0.45 1.24  1.07 

rs12427353 12 HNF1A (TCF1) G 0.80 0.79 1.39  1.08 

rs1359790 13 SPRY2 G 0.73 0.72 0.96  1.08 

rs4502156 15 C2CD4A(BCF) T 0.57 0.52 1.12  1.06 

rs7177055 15 HMG20A A 0.70 0.68 1.02  1.08 

rs11634397 15 ZFAND6 G 0.65 0.64 1.24  1.05 

rs2007084 15 AP3S2 G 0.93 0.92 1.26  1.02 

rs12899811 15 PRC1 G 0.31 0.31 1.00  1.08 

rs9936385 16 FTO(IR) C 0.42 0.41 1.35  1.13 

rs7202877 16 BCAR1(BCF) T 0.90 0.89 2.31  1.12 

rs2447090 17 SRR A 0.64 0.62 0.83  1.04 
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rs11651052 17 HNF1B (TCF2) G 0.49 0.44 0.92  1.10 

rs12970134 18 MC4R(IR) A 0.28 0.27 1.08  1.08 

rs10401969 19 CILP2 C 0.07 0.08 0.15  1.13 

rs8182584 19 PEPD(IR) T 0.38 0.38 1.20  1.04 

rs8108269 19 GIPR G 0.32 0.31 1.02  1.07 

rs4812829 20 HNF4A A 0.18 0.19 1.16  1.06 

BCF: Beta-cell function; IR: Insulin resistance; OR: Odds ratios; SAPALDIA, Swiss cohort study on 

air pollution and lung and heart diseases in Adults; SNPs: Single nucleotide polymorphisms. 
a
 All 

SNPs were genotyped in SAPALDIA using Illumina Human610Kquad BeadChip. 
b 
ORs from 

SAPALDIA were adjusted for age, sex, educational level, neighborhood socio-economic index, 

smoking status and pack years, passive smoke exposure, consumption of alcohol, fruits and 

vegetables, physical activity, body mass index and genome-wide population stratification. 
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Supplementary Table 2: Associations between PM10 and  weighted-GRS on the odds of 

Diabetes in the SAPALDIA study 

Model Association with 

diabetes 
a
  

Interactions between 

PM10 and weighted-

GRS on prevalent 

diabetes 
b
                

 OR (95% CI) OR (95% CI) 

Total weighted genetic risk score 1.09 (1.03, 1.14)
c
 1.07 (0.99, 1.16)

d
 

 Asthma 1.03 (0.95, 1.11) 1.08 (0.97, 1.20) 

 No asthma 1.16 (1.06, 1.26)
c
 1.07 (0.95, 1.21) 

Weighted genetic risk score- IR 1.08 (0.95, 1.24) 1.21 (1.00, 1.46)
c
 

 Asthma 1.06 (0.87,1.28) 1.59 (1.16, 2.18)
c
 

 No asthma 1.12 (0.91, 1.38) 1.01 (0.76, 1.35) 

Weighted genetic risk score- IR excluding 

FTO and M4CR 

1.02 (0.87, 1.19) 1.17 (0.93, 1.46) 

 Asthma 0.99 (0.78, 1.25) 1.43 (1.00, 2.05)
c
 

 No asthma 1.07 (0.84, 1.36) 1.00 (0.71, 1.42) 

Weighted genetic risk score- IR (only FTO 

and M4CR) 

1.24 (0.95, 1.63) 1.33 (0.91, 1.94) 

 Asthma 1.26 (0.83, 1.91) 2.36 (1.22, 4.59)
c
 

 No asthma 1.24 (0.84,1.82) 0.98 (0.59, 1.62) 

Weighted  genetic risk score- Beta-cell 

function 

1.12 (1.03, 1.23)
c
 1.01 (0.89, 1.13) 

 Asthma 1.06 (0.93, 1.22) 0.97 (0.81, 1.15) 

 No asthma 1.21 (1.06, 1.39)
c
 1.07 (0.90, 1.28) 

CI: confidence intervals; GRS: genetic risk score; IR: insulin resistance; OR: Odds ratio; PM10: 

particulate matter <10µm in daimeter; SAPALDIA: Swiss cohort study on air pollution and lung and 

heart diseases in adults. 
a
ORs and 95%CIs represent increase in odds of diabetes per risk allele. 

b
ORs 

and 95%CIs represent increase in odds of diabetes per 10ug/m
3
 increase in exposure to PM10. 

a, b
All 

models were mixed logistic regression with random intercepts for study areas, and adjusted for age, 

sex, educational attainment, neighborhood cosio-economic index, smoking status, exposure to passive 

smoke and occupational vapors, dusts, gases and fumes, consumption of alcohol, fruits and vegetables, 

physical activity, body mass index and genome-wide population stratification. 
c
P<0.05. 

d
P<0.1. 
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Supplementary Table 3: Characteristics of  participants in the present SAPALDIA study, 

stratified by Asthma status 

Characteristics (% or Mean (SD)) Asthma             

N=615 

No asthma          

N=909 

Age (years) 51.0 (11.4) 52.5 (11.3)
 a
 

Females 51.5 50.4 

Body mass index (kg/m
2
) 26.4 (4.9) 25.6 (4.3)

 a
 

Formal education ≤ 9 years 6.8 6.4 

Neighborhood socio-economic index (%) 63.5 (10.8) 63.4 (9.8)
 
 

Ever-smokers 56.9 56.5 

Pack-years smoked 10 (17.7) 10.4 (18.5)
 
 

Exposure to passive smoke 48.9 47.2 

Occupational exposure to vapours, gases, dusts and 

fumes 

45.4 41.8 

Alcohol consumption >1 glass/day 13.3 9.6
 a
 

Consumption of  fruits- Never/seldom 9.7 8.1 

Consumption of raw vegetables- Never/seldom 2.4 2.0 

150 minutes of moderate physical activity /week 46 47.6 

Diabetes cases 5.9 3.7
 a
 

10-year mean PM10 (µg/m
3
) 22.1 (6.7)  22.1 (7.1)

 
 

Total count-GRS 67 (4.9) 67 (4.7)
 
 

Total weighted-GRS 66.4 (5.4) 66.5 (5.2)
 
 

Insulin resistance count-GRS 10.4 (2.1) 10.4 (1.9) 

Insulin resistance weighted-GRS 10.4 (2) 10.4 (1.9) 

IR (only FTO and M4CR) count-GRS 1.4 (0.9) 1.4 (0.9) 

IR (only FTO and M4CR) weighted-GRS 1.5 (1.0) 1.5 (1.0)
 
 

Beta-cell function count-GRS 23.5 (2.9) 23.5 (2.8) 

Beta-cell function weighted-GRS 19.9 (3.1) 19.9 (3.3)
 
 

GRS: genetic risk score; IR: insulin resistance; PM10: particulate matter <10µm in diameter; 

SAPALDIA: Swiss cohort study on air pollution and lung and heart diseases in adults.  
a
 Significant 

difference in proportion or mean between diabetes cases and participants without diabetes (P<0.05).  
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A common functional variant on the
pro-inflammatory Interleukin-6 gene may
modify the association between long-term
PM10 exposure and diabetes
Ikenna C. Eze1,2, Medea Imboden1,2, Ashish Kumar1,2,3, Martin Adam1,2, Arnold von Eckardstein4, Daiana Stolz5,

Margaret W. Gerbase6, Nino Künzli1,2, Alexander Turk7, Christian Schindler1,2, Florian Kronenberg8,9

and Nicole Probst-Hensch1,2*

Abstract

Background: Air pollutants have been linked to type 2 diabetes (T2D), hypothesized to act through inflammatory

pathways and may induce interleukin-6 gene (IL6) in the airway epithelium. The cytokine interleukin-6 may impact

on glucose homeostasis. Recent meta-analyses showed the common polymorphisms, IL6 -572G > C and IL6 -174G > C

to be associated with T2D risk. These IL6 variants also influence circulatory interleukin-6 levels. We hypothesize that

these common functional variants may modify the association between air pollutants and T2D.

Methods: We cross-sectionally studied 4410 first follow-up participants of the Swiss Cohort Study on Air Pollution and

Lung and Heart Diseases (SAPALDIA), aged 29 to 73 years who had complete data on genotypes, diabetes status and

covariates. We defined diabetes as self-reported physician-diagnosed, or use of diabetes medication or non-fasting

glucose >11.1 mmol/L or HbA1c > 0.065. Air pollution exposure was 10-year mean particulate matter <10 μm in diameter

(PM10) assigned to participants’ residences using a combination of dispersion modelling, annual trends at monitoring

stations and residential history. We derived interaction terms between PM10 and genotypes, and applied mixed logistic

models to explore genetic interactions by IL6 polymorphisms on the odds of diabetes.

Results: There were 252 diabetes cases. Respective minor allele frequencies of IL6 -572G > C and IL6 -174G > C

were 7 and 39 %. Mean exposure to PM10 was 22 μg/m3. Both variants were not associated with diabetes in

our study. We observed a significant positive association between PM10 and diabetes among homozygous

carriers of the pro-inflammatory major G-allele of IL6 -572G > C [Odds ratio: 1.53; 95 % confidence interval

(1.22, 1.92); Pinteraction (additive) = 0.003 and Pinteraction (recessive) = 0.006]. Carriers of the major G-allele of IL6 -174G > C also

had significantly increased odds of diabetes, but interactions were statistically non-significant.

Conclusions: Our results on the interaction of PM10 with functionally well described polymorphisms in an important

pro-inflammatory candidate gene are consistent with the hypothesis that air pollutants impact on T2D through

inflammatory pathways. Our findings, if confirmed, are of high public health relevance considering the ubiquity of the

major G allele, which puts a substantial proportion of the population at risk for the development of diabetes as a result

of long-term exposure to air pollution.

Keywords: Particulate matter, Air pollution, Diabetes mellitus, Interleukin-6 gene, Gene-environment interactions,

Single nucleotide polymorphisms, Cross-sectional epidemiology
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Background
Evidence suggests a positive association between ambi-

ent air pollution and risk of type 2 diabetes (T2D) [1–3].

This association is hypothesized to be mediated through

inflammatory mechanisms. Experimental evidence [4, 5]

suggests subclinical systemic inflammation occurring at

several sites including adipose tissue, liver, skeletal mus-

cles and the autonomic nervous system, with resultant

insulin resistance, the hallmark of T2D. On the popula-

tion level, acute and long-term exposure to ambient air

pollution has been linked to raised markers of inflamma-

tion including circulating C-reactive proteins (CRP) [6, 7]

IL-6, [8] fibrinogen [9, 10] vascular and intracellular adhe-

sion molecules [11]. Indeed, air pollution is thought to ac-

celerate pro-thrombotic state following lung inflammation

through an IL-6 dependent pathway [12, 13]. Exposure to

industrial particulate matter has been shown to induce IL-

6 genes in human airway epithelial cells [14]. Likewise,

exposure of mice to particulate matter induced the

expression of genes involved in inflammation, lipid metab-

olism and atherosclerosis [8].

IL-6 in itself may be related to the development of

type 2 diabetes [15]. Elevated levels of IL-6 were associ-

ated with higher incidence of type 2 diabetes [16, 17],

and animal studies also showed IL-6 to inhibit insulin

secretion from islet cells following glucose stimulation

[18]. Other in vitro studies also showed negative impacts

of IL-6 on insulin sensitivity through reduced insulin re-

ceptor expression [19] and adiponectin gene expression

[20] in adipocytes. Among T2D patients, IL-6 was asso-

ciated with whole-body insulin resistance and hypergly-

cemia [21]. Raised IL-6 levels were also associated with

hyperinsulinemia in patients without T2D [22].

IL6 gene plays an important role in the regulation of sys-

temic inflammatory pathways. Some common single nu-

cleotide polymorphisms (SNPs), including IL6 -572G >C

and IL6 -174G > C have been shown to influence the levels

of circulatory IL-6 [23, 24], as well as circulating CRP [25].

In these studies, the major G alleles of both variants were

identified as the pro-inflammatory alleles. Recent meta-

analyses of 11,681 individuals of Asian and European des-

cent showed the G allele of IL6 -572G >C to be associated

with increased risk of T2D [26] whereas another study of

22,626 individuals of European descent showed the C allele

of IL6 -174G >C to be associated with decreased risk of

T2D [27].

Studying gene-environment interactions helps to better

understand aetiologic mechanisms and causality of

exogenous factors, in this case, air pollution, and to iden-

tify population at increased risk of adverse health effects

of environmental exposures. We hypothesize, based on

the above evidence, that the common functional SNPs,

IL6 -572G > C and IL6 -174G > C, may modify the existing

association between air pollutants and diabetes [28].

Methods
Study population

We studied participants of the Swiss Cohort Study on Air

Pollution and Lung and Heart Diseases in Adults (SAPAL-

DIA). This study has been described elsewhere in detail

[29]. Briefly, it consists of a population-based sample of

9651 adults, aged 18–60 when they were recruited at base-

line (1990/1991) from eight communities reflecting the di-

verse geographic and climatic features of Switzerland.

Participants underwent health interviews and physical ex-

aminations. At first follow-up (2001/2002) which add-

itionally included blood marker and genetic assays, 8047

participants completed at least the screening question-

naire [30]. 6212 participants at first follow-up, consenting

to genetic assays were genotyped for IL6 -572G > C and

IL6 -174G > C in those studies. For the present analysis,

we studied 4410 follow-up participants, aged 29–73 years,

with complete data on diabetes status, selected covariates,

and population stratification data from genome-wide asso-

ciation studies. The algorithm for participant selection is

shown on Fig. 1.

Participants provided informed consent for participa-

tion in the health interviews, physical examinations,

blood marker and genetic assays. Ethical clearance for

the SAPALDIA study was obtained from the Swiss

Academy of Medical Sciences, the National Ethics Com-

mittee for Clinical research (UREK, Project Approval

Number 123/00) and the Ethics Committees of the eight

participating communities including Basel, Wald, Davos,

Lugano, Montana, Payerne, Aarau and Geneva.

Identification of diabetes cases

Participants were identified as having diabetes if they 1)

reported physician diagnosed diabetes or 2) use of

diabetes medication in the past month or 3) had non-

fasting blood glucose >11.1 mmol/L or 4) HbA1c >0.065.

Non-fasting blood glucose was measured in all partici-

pants whereas HbA1c was only measured if non-fasting

glucose >6.1 mmol/L [28]. The lack of data on diabetes

status at baseline precluded the study of incident diabetes.

Also, we could not exclude type 1 diabetes (T1D) and

have assumed the majority of these cases to be T2D con-

sidering that on the average, >90 % of adult diabetes are

T2D [31].

Individual assignment of air pollution exposure

We considered 10-year means of PM10 (particulate mat-

ter <10um in diameter) as our pollutant exposure meas-

ure of interest. In our previous studies on diabetes [2]

and metabolic syndrome [32], associations with nitrogen

dioxide (NO2) disappeared in two-pollutant models that

included NO2 and PM10, whereas those of PM10

remained unchanged. Therefore we did not consider

NO2 in this study. Estimates of PM10 exposure were
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assigned to participants’ residential addresses using dis-

persion models for the years 1990 and 2000 (respective

years before baseline and follow-up) [33]. This model

incorporated data from meteorology, topography and

several emission inventories including industrial, agricul-

tural, heavy equipment and traffic at a resolution of

200 × 200 m [34]. Annual PM10 levels measured at fixed

monitoring stations across Switzerland and participants’

residential histories were further used to derive estimates

of mean PM10 exposure at participants’ residential ad-

dresses over the 10-year period preceding the first

follow-up health examination [28].

Genotyping of candidate SNPs, IL6 -572G > C and

IL6 -174G > C.

Genomic DNA was extracted from ethylenediamine-

tetraacetic acid (EDTA)-buffered whole blood using

PUREGENE DNA Purification Kit (GENTRA Systems,

Minneapolis, USA) [30]. Genotyping for these polymor-

phisms was done using 5’-nuclease fluorescent polymer-

ase chain reaction (Taqman) assay (Applera Europe,

Rotkreuz, Switzerland). Detection of end-points was done

using a 7000 ABI System detection device (ABI, Rotkreuz,

Switzerland) [35]. Genotyping call rate was >97.5 %. A

random selection of 638 samples (10 %) was genotyped

twice for quality control and repeated genotypes were

100 % concordant (R2 = 1; P < 0.001). Subsamples of 3015

and 1612 SAPALDIA participants had whole genome

genotyping using the Illumina HumanOmniExomeEx-

press BeadChip and Illumina 610 K quad BeadChip (Illu-

mina, San Diego, CA, USA) respectively. In this combined

SAPALDIA subsample which are predominantly of

Caucasian ancestry, we derived ten population stratifica-

tion components using multidimensional scaling analysis

(Plink v1.07 [36]) on 72,122 SNPs with MAF > 1 % and

genotyping call rate >97 %, present on both genotyping

arrays.

Potential confounders

We considered the following characteristics, based on

our previous publication on air pollution and diabetes

[28], as potential confounders: age (years; continuous),

sex, years of formal education (≤9; >9), neighbourhood

socio-economic index developed from a principal com-

ponent analysis including occupation and educational

level of household head, median rent and number of

persons living in a household, expressed as a percentage

[37]. We also considered smoking history (current,

former and never smoker; and smoked pack-years com-

puted by multiplying number of cigarette packs per year

and number of smoking years), exposure to passive

smoke (yes/no), occupational exposure to vapours gases,

dusts and fumes (yes/no) daily consumption of at least

one portion of fruits and vegetables (never; ≤3 days/

week; >3 days/week respectively). We also considered al-

cohol consumption (including beers, wines, spirits and

liquors: never; ≤1glass/day; >1glass/day); hours per week

of vigorous physical activity defined as taking part in ac-

tivities that make one sweat or out of breath (<0.5; ≥0.5),

body mass index (BMI; kg/m2, continuous) and genome-

wide population stratification components.

Statistical analyses

We assessed linkage disequilibrium between IL6 -572G >C

and IL6 -174G >C and tested both candidate SNPs for

Hardy-Weinberg equilibrium (HWE) among the geno-

typed participants regardless of inclusion in the study. We

computed an IL6 genetic risk score (IRS) by summing up

the risk alleles (number of G alleles coded as 0, 1 and 2)

across both SNPs. We summarized the characteristics of

4410 included participants based on their genotype and

also by inclusion and exclusion status. We applied a mixed

Fig. 1 Algorithm for participant inclusion in the present study
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logistic regression model, with a random intercept by study

area to explore the associations of diabetes with both SNPs,

IRS and with PM10. We generated interaction terms be-

tween PM10 and candidate SNPs (including IRS) and

assessed their associations with prevalent diabetes. Inter-

action analyses with candidate SNPs involved additive, re-

cessive and co-dominant models. Stratifying by genotype,

we assessed the associations between PM10 and diabetes,

to identify genotype-specific associations. We also stratified

by groups of IRS indicating increased inflammatory risk.

Since this study included 46 % of baseline participants

which differed in several sociodemographic characteristics

(Additional file 1: Table S1), we assessed the effect of po-

tential participant selection bias on our results using in-

verse probability weighting by applying the inverse of the

probability of participating in present study derived at

baseline (using variables that significantly predicted partici-

pation in the present study), to the primary model in this

study. All analyses were performed using a primary

model which included, after stepwise selection, partici-

pants’ age, sex, educational attainment, neighbourhood

socio-economic index, smoking status, smoked pack-

years, exposure to passive smoke, occupational expos-

ure to vapours, gases, dusts and fumes, consumption of

fruits and vegetables, vigorous physical activity, BMI

and genome-wide population stratification components

and applying a random intercept by study area.

We performed several sensitivity analyses. We defined

diabetes based on each of the diagnostic criteria (exclud-

ing the cases identified only by alternative criteria). We

repeated the interaction analyses using mixed logistic re-

gression models with random slopes by study area to ex-

plore if study area influenced any of the observed

interactions. All statistical analyses were performed with

STATA software, version 14 (Stata Corporation, Texas).

Results
There were 252 diabetes cases in this study. Mean ex-

posure to PM10 was 22.6ug/m
3 and mean IRS was 3 risk

alleles. IL6 -572G > C and IL6 -174G > C were not in

linkage disequilibrium (R2 = 0.02; D’ = 1.0). The results

of the HWE test for IL6 -572G > C and IL6 -174G > C,

which have respective minor allele frequency of 7 and

39 % in the SAPALDIA population are shown in Table 1.

IL6 -174G > C was in HWE in both cases and controls

whereas IL6 -572G > C only reached HWE among the

diabetes cases (P = 0.636) and not among those without

diabetes (P = 0.006). The overall HWE test for IL6

-174G >C and IL6 -572G >C was 0.408 and 0.006

respectively (Table 1). In the European study of ~6000 par-

ticipants reporting an association between IL6 -572G >C

and T2D, this functional SNP (having MAF= 5 %) was also

not in HWE [38]. Since only 30 participants carry the minor

CC genotype of IL6 -572G >C, we present the results for

this SNP as GG vs. GC +CC, which yields better statistical

power.

Compared to the carriers of the major GG genotype,

carriers of the GC + CC genotype of IL6-572G > C had

higher body mass index and PM10 exposure whereas car-

riers of CC genotype of IL6 -174G > C smoked more,

consumed more alcohol and had lower exposure to

PM10 and there was a significant difference in genotype

distribution across areas (Table 2). There was no signifi-

cant difference in diabetes prevalence across genotypes

for both polymorphisms (Table 2). Additional file 1:

Table S1 shows the differences in these characteristics

between the included and excluded participants. There

were significant differences in most of the participants’

characteristics including diabetes prevalence and PM10

exposure, but the prevalence of these characteristics

were generally higher among the included participants

compared to the excluded ones (Additional file 1: Table

S1). The IL6 -572G > C and IL6 -174G > C genotypes,

and IRS were similarly distributed between both groups

(Additional file 1: Table S1).

The positive association between air pollutants and

diabetes, which we previously observed in our previous

study of 6392 participants at this follow-up study [28],

persisted in the present sample. The adjusted odds of

diabetes increased by 47 % (95 % CI: 1.21, 1.78) per

Table 1 Distribution of IL6 -572 G > C and IL6 -174 G > C

genotypes and alleles by diabetes status

Genotype Diabetes No diabetes

N = 286 N = 5554

IL6 -572 G > C*

Genotype

GG 248 (86.7) 4896 (88.2)

GC 36 (12.6) 623 (11.2)

CC 2 (0.7) 35 (0.6)

Allele

G 532 (93) 10415 (93.7)

C 40 (7) 693 (6.3)

IL6 -174 G > C**

Genotype

GG 111 (39) 2081 (37)

GC 135 (47) 2614 (47)

CC 40 (14) 865 (16)

Allele

G 357 (62) 6776 (61)

C 215 (38) 4344 (39)

Data are presented as absolute numbers (N) and relative numbers (%)

in parentheses
*
P-value for Hardy-Weinberg Equilibrium (HWE) test in diabetes cases = 0.585;

no diabetes = 0.006; overall = 0.006. P-value for Fisher’s exact test = 0.664
**
P-value for Hardy-Weinberg Equilibrium test in diabetes cases = 0.918; no

diabetes = 0.352; overall = 0.408. P-value of Chi-square test = 0.762
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10ug/m3 of exposure to PM10. We did not observe any

significant association between the candidate IL6 SNPs

and diabetes, across three genetic models. We also did

not observe significant associations between IRS and

diabetes in our sample (Additional file 1: Table S2).

Stratified by genotypes, the association between PM10

and diabetes was most pronounced among carriers of

the major GG pro-inflammatory alleles for both poly-

morphisms (Fig. 2). We observed significant interactions

between PM10 and IL6 -572G > C in the additive and re-

cessive models which became more significant in the

models accounting for potential selection bias by IPW

and remained significant following Bonferroni correction

at P = 0.01 (0.05/5) (Table 3). We did not observe any

statistically significant interactions with IL6 -174G > C

across genetic models and adjustment for potential se-

lection bias by IPW (Table 3). We observed a positive

trend in the association between PM10 and diabetes across

levels of IRS (Fig. 2). Carriers of four pro-inflammatory G

alleles had the highest odds of diabetes per 10ug/m3

increase in exposure to PM10 (Pinteraction = 0.10) (Fig. 2).

Compared to carriers of two pro-inflammatory G alleles,

Table 2 Characteristics of participants by IL6 -572 G > C and IL6 -174 G > C genotypes

IL6 -572 G > C IL6 -174 G > C

GG (N = 3891) GC + CC (N = 519) P (Chi2) GG (N = 1618) GC (N = 2110) CC (N = 682) P (Chi2)

Proportion (%)

Females 48.4 49.1 0.768 48.3 48.1 50.6 0.509

Education ≥9 years 94.9 93.2 0.107 94.4 94.9 95.0 0.721

Never-smokers 44.3 45.6 0.490 42.4 44.8 48.1 0.036

Passive smoke exposure 46.4 46.6 0.927 48.6 45.4 44.4 0.078

Occupational VGDF exposure 42.8 42.4 0.845 43.9 42.6 40.9 0.398

Alcohol intake ≤1glass/day 91.0 91.4 0.620 89.8 91.2 93.0 0.050

Alcohol intake >1glass/day 9.0 9.6 10.2 8.8 7.0

Portion of raw vegetables ≤3 days/week 18.2 20.8 0.150 17.4 19.1 19.4 0.351

Portion of raw vegetables >3 days/week 81.8 79.2 82.6 80.9 80.6

Portion of fruits ≤3 days/week 35.8 35.6 0.923 35.0 36.2 36.7 0.657

Portion of fruits >3 days/week 64.2 64.4 65.0 63.8 63.3

Portion of citrus fruits ≤3 days/week 64.2 64.0 0.909 64.2 63.9 64.8 0.917

Portion of citrus fruits >3 days/week 35.8 36.0 35.8 36.1 35.2

Vigorous physical activity <0.5 h/week 35.5 37.2 0.449 37.3 34.6 34.2 0.082

Vigorous physical activity ≥0.5 h/week 64.5 62.8 62.1 65.4 65.8

Diabetes cases 5.5 6.7 0.260 6.2 5.5 4.8 0.430

Areas: Basel 11.5 12.9 0.062 10.5 11.6 14.8 <0.001

Wald 19.1 19.1 19.0 18.6 20.8

Davos 7.7 6.9 7.5 7.9 7.0

Lugano 12.6 14.6 15.0 12.6 8.4

Montana 11.1 6.9 9.2 11.2 12.0

Payerne 13.1 12.7 13.3 12.1 15.2

Aarau 16.6 19.3 16.9 17.6 14.4

Geneva 8.4 7.5 8.6 8.4 7.3

Means (SD) T-test ANOVA

Age (years) 51.8 (11) 51.3 (11) 0.269 51.8 (11) 51.8 (11) 51.5 (11) 0.732

BMI (kg/m2) 25.8 (4.3) 26.3 (4.3) 0.025 26.0 (4.3) 25.8 (4.3) 25.9 (4.3) 0.152

Neighborhood SEI 63.7 (10) 63.8 (10) 0.827 63.5 (10) 63.9 (10) 63.8 (9) 0.455

10-year mean PM10 (μg/m
3) 21.8 (7.3) 22.8 (7.2) 0.005 22.3 (7.4) 21.9 (7.3) 21.5 (6.9) 0.030

Pack-years of smokinga 0 (14) 0.1 (16) 0.296 0.3 (16) 0 (16) 0 (14) 0.524

VGDF: vapours, gases, dusts and fumes; SD: standard deviation; BMI: body mass index; SEI: socio-economic index; PM10: particulate matter <10 μm in diameter.
avalues represent median (interquartile range) and P-values represent significance level of median test
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Fig. 2 Interaction between PM10 and IL6 polymorphisms on odds of diabetes. Odds ratio values represent percentage increase of odds of diabetes per

10 μg/m3 increase in PM10 exposure adjusted for potential selection bias. PM10: particulate matter <10 μm in diameter. All associations are adjusted for

body mass index, age, sex, socio-economic status, smoking habits, consumption of alcohol, fruits and vegetables, physical activity and genome-wide

population stratification. Study area was treated as a random effect in all models

Table 3 Associations and interactions between PM10 and candidate SNPs on odds of diabetes, applying inverse probability

weighting (IPW) to account for potential selection bias

Genotype Genotype-specific PM10 and diabetes
association OR (95 % CI)

P-value* P-value of interaction** P-value of interaction*** P-value of interaction****

IL6 -572G > C

Adjusted model without IPW

GG 1.53 (1.22, 1.92) <0.001 0.031 n.d. 0.058

GC + CC 0.87 (0.51, 1.49) 0.618

Adjusted model applying IPW

GG 1.53 (1.23, 1.91) <0.001 0.003 n.d. 0.006

GC + CC 0.74 (0.46, 1.20) 0.225

IL6 -174G > C

Adjusted model without IPW

GG 1.49 (1.09, 2.04) 0.012 0.763 0.966 0.645

GC 1.35 (1.01, 1.80) 0.046

CC 1.43 (0.80, 2.54) 0.226

Adjusted model applying IPW

GG 1.44 (1.07, 1.93) 0.016 0.847 0.955 0.749

GC 1.34 (1.01, 1.78) 0.044

CC 1.41 (0.76, 2.61) 0.226

Adjusted models include age, sex, educational attainment, neighborhood-level socio-economic status, smoking status, pack-years of smoking, exposure to passive

smoke and occupational dusts and fumes, dietary fibre intake, alcohol consumption, physical activity, body mass index (BMI), PM10. Study area was treated as random

effects in all models. OR: odds ratio; CI: confidence intervals; OR values represent percent increase in odds of diabetes per 10 μg/m3 increase in PM10 exposure. PM10:

particulate matter <10 μm in diameter.* P-value of genotype specific association between PM10 and diabetes.** additive model (per G allele); ***dominant model (GG +

GC vs. CC); ****recessive model (GG vs. GC + CC); n.d.: not done due to the few number of CC allele carriers
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carriers of four risk alleles had 60 % (95 % CI: −15 %,

197 %) higher odds of diabetes per 10ug/m3 increase in

exposure to PM10. These interactions were largely stable

to confounder adjustments.

Sensitivity analyses showed very similar results. Defining

diabetes according to each of the classification criteria

showed very similar results with significant interactions in

the additive and recessive genetic models (Table 4). Odds

of diabetes identified through blood tests among GG

genotype carriers remained positive but less significant

(Table 4). Applying a logistic regression model with ran-

dom slopes by study area also did not change estimates of

the interaction between PM10 and the candidate SNPs on

prevalent diabetes, but changed the estimated association

between PM10 and diabetes among the pro-inflammatory

GG genotype carriers (Table 4). In a sub-sample of 2825

non-asthmatic participants who were genotyped using the

Illumina Human Omni Exome Express Bead Chip, where

IL6 -572G > C was in HWE (Pearson’s correlation R2

between both SNPs =1), associations persisted among

pro-inflammatory GG carriers [OR: 1.64 (1.24, 2.16)] and

interactions persisted in the models accounting for poten-

tial selection bias (P(additive) =0.053; P(recessive)= 0.048).

Discussion
We found a modifying effect of IL6 -572G > C poly-

morphism on the association between air pollutants and

diabetes, where carriers of the pro-inflammatory GG

genotype were most susceptible. These associations were

highly stable to confounder adjustments and remained

robust across several sensitivity analyses. The lack of

interaction with IL6 -174G > C is supported by the fact

that both SNPs are not in linkage disequilibrium. Com-

bining both SNPs into an IRS showed increased associ-

ation among participants at high genetic risk of

inflammation.

The lack of association between PM10 and DM among

the GG genotype carriers in the fixed effect model could

be attributed to variation of PM10 constituents across

different areas (Pearson’s R for PM10 crustal components

across four SAPALDIA areas = 0.34) [39]. Due to the fact

that the likelihood-ratio tests for interactions between

PM10 and study area (also between SNP and study area)

were non-significant (P > 0.2), and that the goal of

SAPALDIA air pollution studies is to capture the be-

tween area differences in health effects which cannot be

explained by the fixed factors in the models, we per-

formed the main analyses using area as a random covari-

ate. In addition, applying the fixed effects model did not

change our estimates of interaction between IL6 poly-

morphisms and PM10 which is our main interest in this

study. The reduced significance of interactions among

those reporting the use of diabetes medication is most

likely to be due to under-reporting of medication use.

The absence of any significant association between the

IL6 polymorphisms and diabetes in our sample may be

due to our inability to differentiate T1D from T2D, or

the relatively small number of cases compared to other

studies [26]. Thus, our observation of a significant inter-

action is surprising given the limited number of cases in

our study.

To our knowledge, this is the first evidence on gene-

air pollution interaction in adult diabetes. Until now,

gene-air pollution interaction studies focused on respira-

tory and cardiovascular outcomes, exploring diverse

candidate genes or polymorphisms, pollutants and out-

comes [40–42]. Many of the interacting genes including

IL6, regulate systemic oxidative stress and inflammatory

pathways [41, 43]. IL6 is one of the genes involved in

systemic inflammation by regulating or inducing the

production of inflammatory cytokines such as IL-6 and

CRP. In-vitro studies also show that exposure to particu-

late matter induces IL6 and CRP gene expression in epi-

thelial and macrophage cell lines [14, 44, 45]. In

addition, polymorphisms on IL6 have been shown to

interact with acute exposure to carbon monoxide and

nitrogen dioxide, in eliciting plasma IL-6 response [43].

Our results support the hypothesis that exposure to

air pollution may contribute to diabetes aetiology

through inflammatory pathways. Since we have analysed

two C/G polymorphisms located in the promoter region

of IL6 in our study, a potential mechanism of action

could be related to changes in DNA methylation at these

sites, affecting IL6 gene expression. Air pollution expos-

ure was positively associated with methylation of IL6 in

elderly men [46]. Hypomethylation of IL6 was associated

with raised levels of serum IL-6 in patients with rheuma-

toid arthritis [47], and with body weight among diabetes

patients [48]. In contrast, increased methylation of IL6

was associated with risk of obesity [49] and body weight

among patients without diabetes [48]. Furthermore there

is suggestive evidence on a potential link between epi-

genetic changes at inflammatory genes (including IL6)

and diabetes [50, 51]. While the evidence supports a role

of IL6 methylation with regard to both, air pollution and

diabetes, the relevance of hyper- versus hypomethylation

and the association with the IL6 SNPs studied here

needs further clarification.

Our study has major strengths. It provides first evi-

dence to our knowledge on gene-air pollution interac-

tions on diabetes risk. It derives from the large database

of the population-based SAPALDIA cohort, with well

characterized phenotypes, genotypes and lifestyle charac-

teristics. Our air pollution estimates were assigned to

participants’ residences and derived from validated

models which have been applied to other studies. [33]

By taking into account residential histories of partici-

pants, we could compute individual estimates of long-
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term exposure to air pollution, which is a crucial in under-

standing disease development and progression attributable

to air pollution. We minimized outcome misclassification

by identifying undiagnosed diabetes cases through add-

itional blood tests.

Our study also has limitations. It has a cross-sectional

design hence we cannot infer causality of observed asso-

ciations. We tried to improve this by estimating air

pollution exposure in the ten years prior to the survey

where diabetes was assessed. In addition, an exploratory

Table 4 Other Sensitivity Analyses

Sensitivity analysis Genotype Adjusted OR (95 % CI) P-value* P-value** P-value*** P-value****

Diabetes defined as self-reported physician
diagnosis and medication use
[N(diabetes) = 196]

IL6 -572G > C

GG 1.41 (1.11, 1.79) 0.005 0.001 n.d. 0.004

GC + CC 0.63 (0.38, 1.04) 0.070

IL6 -174G > C

GG 1.23 (0.88, 1.71) 0.222 0.931 0.797 0.794

GC 1.33 (0.98, 1.81) 0.065

CC 1.17 (0.58, 2.35) 0.669

Diabetes defined as self-reported physician
diagnosis only [N(diabetes) =193]

IL6 -572G > C

GG 1.43 (1.13, 1.83) 0.003 0.008 n.d. 0.003

GC + CC 0.63 (0.38, 1.04) 0.072

IL6 -174G > C

GG 1.23 (0.88, 1.71) 0.226 0.881 0.749 0.694

GC 1.38 (1.01, 1.88) 0.041

CC 1.16 (0.57, 2.33) 0.680

Diabetes defined as self-reported use of
diabetes medication only [N(diabetes) =125]

IL6 -572G > C

GG 1.25 (0.95, 1.66) 0.113 0.008 n.d. 0.031

GC + CC 0.49 (0.22, 1.10) 0.085

IL6 -174G > C

GG 1.10 (0.72, 1.66) 0.666 0.954 0.600 0.803

GC 1.24 (0.86, 1.78) 0.246

CC 0.90 (0.36, 2.28) 0.829

Diabetes cases identified from blood
tests only [N (diabetes) = 184]

IL6 -572G > C

GG 1.65 (1.27, 2.13) <0.001 0.002 n.d. 0.006

GC + CC 0.70 (0.39, 1.25) 0.223

IL6 -174G > C

GG 1.46 (1.04, 2.06) 0.030 0.738 0.553 0.962

GC 1.41 (1.00, 1.99) 0.052

CC 1.83 (0.86, 3.90) 0.118

Model applying random slopes for
study areas [N(diabetes) = 252]

IL6 -572G > C

GG 0.92 (0.44, 1.92) 0.819 0.004 n.d. 0.008

GC + CC 0.44 (0.19, 1.05) 0.065

IL6 -174G > C

GG 0.86 (0.41, 1.83) 0.704 0.814 0.928 0.687

GC 0.78 (0.36, 1.70) 0.540

CC 0.85 (0.33, 2.20) 0.735

Adjusted models include age, sex, educational attainment, neighborhood-level socio-economic status, smoking status, pack-years of smoking, exposure to passive

smoke and occupational dusts and fumes, dietary fibre intake, alcohol consumption, physical activity, body mass index (BMI), PM10. Study area was treated as

random effects in all models except the model with random slopes for study area.OR: odds ratio; CI: confidence intervals; OR values represent percent increase in

odds of diabetes per 10 μg/m3 increase in PM10 exposure. PM10: particulate matter <10 μm in diameter; n.d: not done due to very low sample size for CCgenotype.
*
P-value of genotype specific association between air pollutant and diabetes. **additive model (per C allele); ***dominant model (GG + GC vs. CC); ****recessive model

(GC + CC vs.GG)
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analysis excluding 17 diabetes cases who reported to have

started using diabetes medication before 1991 gave very

similar results. We could not differentiate T1D from T2D

cases and therefore have misclassified a few cases (on the

average <10 % as T2D instead of T1D). [31].

One of our functional SNPs of interest, IL6 -572G > C,

was not in HWE (Table 1). SNPs may deviate from

HWE due to genotyping error, population stratification

or population selection [52, 53]. Therefore, we assessed

quality control by genotyping a subsample of our partici-

pants using an alternative genotyping array. There was

no indication of genotyping errors since both SNPs had

a perfect correlation between the two genotyping

rounds. Also, we adjusted for population stratification in

our study population using genome-wide principal

components. It has been shown that SNPs may still devi-

ate from HWE despite controlling for the afore-

mentioned reasons [53]. It is also important to note that

IL6 -572G > C was not in HWE in a study linking it to

T2D in Europeans [38] and the minor alleles were simi-

larly distributed between the reference study (MAF =

5 %) and our study (MAF = 7 %). Furthermore, the geno-

type frequencies were also similarly distributed [Diabetes

cases- GG: 90.6 %, GC: 9 %, CC: 0.4 %; No diabetes - GG:

86.7 %, GC: 12.6 %, CC: 0.7 % vs. Table 1). We additionally

assessed public databases to identify any potential interfer-

ence on our PCR probe by nearby SNPs but found no evi-

dence for such. We did not measure plasma IL-6

concentrations in our participants due to lack of funds,

precluding our assessment of association between candi-

date SNPs and serum IL-6 levels, but there was a positive

correlation between both SNPs and mean high-sensitivity

C-reactive proteins (hs-CRP) measured at this first follow-

up (IL6 -572G > C-CC: 1.28 g/l, GC: 1.45 g/l, GG: 1.58 g/l

and IL6 -174G >C-CC: 1.58 g/l; GC: 1.53 g/l; GG: 1.60 g/l).

The larger differences in hs-CRP levels associated with

IL6 -572G > C agrees with its larger interaction effect.

Lastly, our study had sample size limitations, especially

among the CC genotype carriers of IL6 -572G > C, lim-

iting the statistical power to detect more associations.

Despite this, we made some statistically significant

observations.

Conclusions

Our findings suggest that homozygous carriers of the com-

mon pro-inflammatory major ‘G’ allele of IL6 -572G >C

polymorphism may be more susceptible to the diabeto-

genic effects of particulate matter, supporting the relevance

of inflammatory pathways in the relationship between air

pollution and diabetes. If confirmed, our results are of high

public health relevance considering the ubiquity of the

major G alleles, which put a substantial proportion of the

population at risk for the development of diabetes as a

result of exposure to air pollution. Our results therefore

call for replication by other longitudinal population-based

studies with adequate air pollution, genotype and diabetes

information.
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Table A1: Characteristics of included and excluded participants 

Proportion (%) Included 

(N=4410) 

Excluded % (N) P-value (Chi
2
) 

Females 48.5 57.6 (5241) <0.001 

Education ≥9 years 95.0 91.0 (5241) <0.001 

Never-smokers 44.4 41.4 (5241) 0.026 

Passive smoke exposure 46.5 47.6 (5241) 0.414 

Occupational VGDF exposure 42.8 41.0 (5241) 0.180 

Alcohol intake ≤1glass/day 90.0 90.9 (2976) 0.908 

Alcohol intake >1glass/day 9.0 9.1  (294)  

Portion of raw vegetables ≤3 

days/week 

18.5 21.7 (752) 0.003 

Portion of raw vegetables >3 

days/week 

81.5 78.3 (2518)  

Portion of fruits ≤3 days/week 35.8 33.0 (1112) 0.030 

Portion of fruits >3 days/week 64.2 67.0 (2158)  

Portion of citrus fruits ≤3 days/week 64.1 65.4 (2142)  

Portion of citrus fruits >3 days/week 35.9 34.6 (1128) 0.320 

Vigorous physical activity <0.5 

hour/week 

35.7 45.5 (1488)  

Vigorous physical activity ≥0.5 

hour/week 

64.3 54.5 (1782) <0.001 

Diabetes cases 5.7 3.2 (75) <0.001 

IL6-572 G>C: GG 88.2 88.0 (1494) 0.417 

  GC 11.1 11.6 (197)  

  CC 0.7 0.4 (7)  

IL6-174 G>C: GG 36.7 38.9 (690) 0.219 

  GC 47.8 45.4 (808)  

  CC 15.5 15.8 (281)  

Areas:  Basel 11.8 15.4 (970) <0.001 

 Wald 19.0 15.9 (676)  

 Davos 7.6 8.9 (408)  

 Lugano 12.8 18.3 (743)  

 Montana 10.6 6.2 (326)  

 Payerne 13.0 15.7 (919)  

 Aarau 16.9 11.2 (551)  

 Geneva 8.3 8.4 (632)  

Means (SD) [N]   P-value (T-test) 

Age (years) 51.8 (11.1) 53.1 (12.0) [5241] <0.001 

BMI (kg/m
2
) 25.9 (4.3) 25.9 (4.7) [3270] 0.874 

Neighborhood SEI 63.7 (9.9) 62.9 (10.6) [3270] 0.005 

10-year mean PM10 (µg/m
3
) 22.0 (7.2) 23.2 (7.2) [5241] <0.001 

IL6 risk score 3.1 (0.7) 3.1 (0.7) [1698] 0.222 

Pack-years of smoking
 a
 10.4 (18.0) 11.8 (19.1) [5241] 0.069 

VGDF: vapours, gases, dusts and fumes; SD: standard deviation; BMI: body mass index; SEI: socio-

economic index; PM10: particulate matter <10µm in diameter. 
a
 values represent median (interquartile 

range) and P-values represent significance level of median test. 
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Table A2: Association between functional IL6 polymorphisms and diabetes  

Model Reference 

genotype 

 Crude 

OR (95% CI) 

Adjusted model  

OR (95% CI) 

 

Adjusted
 

model+PM10  

OR (95% CI) 

IL6-572G>C      

Additive  Per G allele Per G allele 0.91 (0.66,1.26) 0.94 (0.64,1.39) 0.95 (0.64,1.40) 

Co- 

dominant 

CC GC 0.99 (0.23,4.29) 1.23 (0.20,7.72) 1.23 (0.20,7.23) 

CC GG 0.89 (0.21,3.73) 1.13 (0.18,7.00) 1.14 (0.19,7.01) 

Dominant CC GG+GC vs. CC 0.90 (0.21,3.78) 1.16 (0.19,7.15) 1.17 (0.19,7.18) 

Recessive GC+CC GG vs. GC+CC 0.90 (0.63,1.28) 0.93 (0.61,1.40) 0.93 (0.62,1.41) 

IL6-174G>C      

Additive  Per G allele Per G allele 1.04 (0.87,1.24) 1.07 (0.87,1.31) 1.07 (0.87,1.31) 

Co- 

dominant 

CC GC 1.09 (0.76,1.56) 1.20 (0.78,1.86) 1.22 (0.79,1.88) 

CC GG 1.10 (0.76,1.59) 1.19 (0.76,1.86) 1.21 (0.77,1.88) 

Dominant CC GG+GC vs. CC 1.09 (0.77,1.54) 1.20 (0.79,1.81) 1.21 (0.81,1.83) 

Recessive GC+CC GG vs. GC+CC 1.03 (0.81,1.32) 1.03 (0.77,1.38) 1.03 (0.78,1.38) 

IL6 genetic 

risk score 
     

 Per G allele Per G allele 1.01 (0.86,1.20) 1.05 (0.86,1.27) 1.05 (0.86,1.28) 

 2 G alleles 3 G alleles 1.12 (0.81,1.54) 1.14 (0.78,1.66) 1.16 (0.80,1.68) 

 2 G alleles 4 G alleles 1.05 (0.74,1.48) 1.11 (0.74,1.67) 1.13 (0.75,1.69) 

Adjusted models include age, sex, educational attainment, neighborhood-level socio-economic status,  

smoking status, pack-years of smoking, exposure to passive smoke and occupational dusts and fumes, 

dietary fibre intake, alcohol consumption, physical activity, body mass index (BMI), PM10. Study area 

was treated as random effects in all models. OR: odds ratio; CI: confidence intervals; OR values 

represent percent increase in odds of diabetes across different genetic models. PM10: particulate matter 

<10µm in diameter. 
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9.  Discussion and Conclusions 

9.1 Main findings in a general context 

The findings from this work provide new insights into the relationship between exposure to 

air pollutants and risk of T2D. This work has applied several epidemiologic methods and 

genetic epidemiology to try to reach its ultimate goal, which is to quantify and elucidate the 

mechanisms underlying the potential role of air pollution in diabetes aetiology. Genetic 

epidemiology seeks to contribute to causal understanding of the links between genomic 

variations, environmental influences and phenotypic variability. By identifying disease 

mechanisms and susceptibilities, the research field of genetic epidemiology helps to improve 

understanding of disease mechanisms and preventive measures against modifiable risk 

factors, and identify biomarkers for risk screening.  

This PhD thesis incorporates the principles of Swiss TPH built around the triangle of 

innovation, validation and application. Although most of the objectives of this work center on 

innovation [chapters 6-8] and validation [chapters 4-8] [Table 2], it contributes to application 

in three ways. First, this work demonstrates the relevance of air pollution and physical activity 

interaction for health-in-all policy framework. Second, this work has paved the way for 

capacity building and its application in diabetes projects in Africa. Third, SAPALDIA is 

importantly influencing air quality policies in Switzerland and Europe (Brunekreef et al., 

2015, Adam et al., 2015, Downs et al., 2007, FOEN, 2015) [see http://www.sapaldia.ch/en]. 
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Table 2: Contribution of the objectives of this thesis to the nexus of Swiss TPH built 

around the triangle of innovation, validation and application. Shaded areas represent the 

specific areas of contribution by the respective objective. 

Objective Innovation Validation Application 

Association between ambient air pollution and 

diabetes in Europe and North America: 

Systematic review and Meta-analysis 

   

Long-term air pollution exposure and diabetes in 

adults 

   

Long-term exposure to air pollution and metabolic 

syndrome in adults 

   

A common functional variant in the pro-

inflammatory Interleukin-6 may modify the 

association between air pollutants and diabetes  

   

Air pollution and diabetes association: 

Modification by type 2 diabetes genetic risk score 

   

Consideration of objectives in the overall impact 

of SAPALDIA research 

   

Human development in the frame of developing 

and NCD research agenda in the South. 

   

In the following sections, this work discusses the findings made in its constituent projects 

including associations between air pollutants and diabetes, associations between air pollutants 

and markers of cardiometabolic syndrome and the modifying effects of genetic variations on 

the relationship between air pollutants and diabetes. Also discussed are other relevant 

potential modifiers identified in the course of this work, its strengths and limitations and 

research outlook in this growing field of epidemiology.  

9.1.1 Relationship between air pollutants and impaired glucose homeostasis 

The meta-analysis pooling the effects of PM2.5 and NO2 presented in chapter 4 provides 

summarized quantitative evidence linking both pollutants to the risk of T2D. This work 

synthesized data from three studies on PM2.5 and four studies on NO2 and analyzed them in a 

random-effects meta-analysis [Chapter 4]. Interestingly, the studies on PM2.5 were quite 

homogenous despite variations in design and population and presented stronger effect 
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estimates compared to NO2. Despite the potential for high risk of bias which calls for 

cautionary interpretation, pooled estimates were remarkably robust across sensitivity analyses 

(Eze et al., 2015a). This meta-analysis identified methodological gaps including the need to 

identify undiagnosed diabetes cases, and for consideration of neighborhood-level socio-

economic status and noise exposure as potential confounders [Chapter 4]   

In the SAPALDIA cohort, the results of our meta-analysis were validated, demonstrating a 

positive significant relationship between exposure to 10-year mean ambient PM10 and NO2, 

and prevalent diabetes [Chapter 5]. In an improved analytic framework as suggested in 

chapter 3, this study identified undiagnosed diabetes cases through additional blood tests, and 

explored the roles of neighborhood-level socio-economic status and noise exposure as 

potential confounders [Chapter 5]. Estimates of this association were remarkably stable to 

confounder adjustments and also were not affected by the definition of diabetes or potential 

selection bias assessed using inverse probability weighting (Eze et al., 2014a). 

Since the publication of the above evidence, additional mixed evidence on the impact of air 

pollutants on T2D have emerged. Park et al. (2015) found a positive significant relationship 

between one-year mean PM2.5 and NOx, and prevalent diabetes among American residents 

from six cities. Observed associations between both pollutants and incident T2D in the same 

study were positive but non-significant (Park et al., 2015). Another study by To et al. (2015) 

found a positive association between 18-year mean PM2.5 and prevalent diabetes among 

women resident in Ontario. In Germany, a 5-year longitudinal study reported a positive 

association between two-year mean PM10 and incident T2D. A positive but non-significant 

relationship was reported for PM2.5 (Weinmayr et al., 2015). In the first evidence from 

Australia using data from the Australian Longitudinal Study on Women’s Health, a positive 

but non-significant association was observed between exposure to 3-year mean NO2 and 

prevalent diabetes (Lazarevic et al., 2015). An update of the previously reported meta-analysis 
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[Chapter 4] including this additional evidence, done by this work, demonstrates a positive 

relationship between PM2.5 and NO2, with risk of T2D [Appendices 1 and 2]. 

Before the hypothesis of a potential aetiologic link between air pollution and T2D based on 

thinking towards the interrelationships between cardiovascular diseases and T2D (Elkeles, 

2000, Bagg et al., 2000), there was more interest in the impact of air pollutants on 

cardiovascular morbidity and mortality as demonstrated by several epidemiological studies 

(Brook et al., 2004, Brook et al., 2010). It became imperative that to understand mechanisms 

and disentangle this complexity, a first step would be to identify the pathway that could be 

driving cardiovascular diseases and T2D constituting the cardio-metabolic syndrome. 

This work attempted to answer this question by investigating associations with metabolic 

syndrome and its components [Chapter 6] in the SAPALDIA cohort. While other studies 

explored associations of air pollution exposure [in different populations] with individual 

components of metabolic syndrome for instance Fuks et al. (2014), Chuang et al. (2011), and 

(Xu et al., 2010) or the modifying effect of this syndrome in air pollution health effects 

(Krishnan et al., 2013, Devlin et al., 2014, Chen and Schwartz, 2008), this work investigated 

all the components of metabolic syndrome at the same time in the same population, providing 

a first evidence in this regard toward understanding the more likely pathways for cardio-

metabolic effects of air pollutants. In this study, we reported a positive association across all 

three metabolic syndrome phenotypes, but the relationship was strongest with the glucose-

dependent phenotype (Eze et al., 2015c).  

Across the individual components, we also found positive relationships with hypertension, 

replicating findings from another study (Fuks et al., 2014), and obesity, replicating a similar 

finding that was made only in children (Jerrett et al., 2014). Although we defined metabolic 

syndrome using a self-reported fasting time of 4 hours, our results are considered valid as a 4-

hour fasting time can be used in emergencies or outpatients to identify diabetes cases or its 
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intermediate phenotypes (Troisi et al., 2000). On the other hand, non-fasting lipids have been 

shown to predict the risk of cardiovascular events comparably to fasting lipids, in women 

(Bansal et al., 2007). In addition, we replicated our main findings among ~400 participants 

reporting 8 hours fasting time [Chapter 6]. A recent population-based study also found an 

association between short-term exposure to NO2 and fasting serum glucose (Sade et al., 

2015). Taken together, it appears that a major pathway through which air pollution exposure 

impacts on cardio-metabolic health could be through alterations in glucose homeostasis. 

9.1.2 The culprit: Is it the physical or chemical properties of  pollutants?  

Traffic–related air pollution represents a common and major source of ambient air pollution. 

Markers of traffic-related air pollution include NO2, NOx, PM2.5, ultrafine particles, carbon 

monoxide, sulphates etc. derived from combustion processes in vehicles. Non-traffic related 

air pollutants may include particles like PM10 which are derived from natural or agricultural 

sources. Unlike the gases which are mainly derived from combustion processes, particulate 

matter has multiple sources and characteristics including morphology, solubility, surface area, 

count, stability, oxidative potential which mostly constitute its physical properties and 

combine to determine their toxicity (Brook et al., 2010). A large proportion of particulate 

matter may consist of organic sources including fungal spores and pollen (Yin et al., 2005), 

which are easily recognized by the macrophage and other immune cells, activating innate 

immune responses (Goto et al., 2004) and eliciting inflammation. Brook et al. (2010) 

suggested that traffic might lead to more toxic combinations of PM than natural PM or other 

sources, contributing to a stronger activation of inflammatory pathways, and an expert citation 

suggests that carbonaceous particles may be more toxic than nitrates and sulphates (Tuomisto 

et al., 2008). Thus, it is expected that particles, being a mixture of various components, are 

more implicated in the air pollution effects.  
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Much of the research onrespiratory health impacts of air pollution exposure have focused on 

particulate pollutants which could occur as fine secondary acid-coated particles (Schlesinger, 

1995, Zelikoff et al., 1997), soluble fine particles with oxy-reactive components (Murphy et 

al., 1998, Adamson et al., 1999), insoluble ultrafine particles (Roth et al., 1998, Ziesenis et al., 

1998), or bio-organics (Behrendt et al., 1997, Knox et al., 1997). An experimental study on 

the impact of oxidation [by NO2 and O3] on the physical and chemical properties of soot, and 

their influence on inflammatory markers demonstrated that despite the increased cytotoxic 

properties of oxidized compared to non-oxidized soot, there was no difference in the IL-8 

concentration produced by both (Holder et al., 2012), suggesting the relative importance of 

the physical properties of soot in eliciting inflammatory reactions.  

Epidemiological evidence from the European Study of Cohorts for Air Pollution Effects 

demonstrate that particulate matter may be more relevant than NOx in eliciting inflammatory 

responses (Hampel et al., 2015, Mostafavi et al., 2015). A positive association was 

demonstrated between C-reactive proteins [CRP] and markers of traffic-related pollution 

including traffic density and coarse PM. Although this (Lanki et al., 2015) found a positive 

association between NOx and CRP, Mostafavi et al. (2015) could not replicate this finding in 

their study which focused on healthy adults. In another study focusing on PM constituents, a 

positive relationship was observed between copper and iron contents of PM and CRP; and 

between zinc content of PM and fibrinogen (Hampel et al., 2015). Studies from the US have 

also demonstrated consistent evidence on the positive link between iron and sulphate content 

of PM and ischaemic heart disease mortality (Ostro et al., 2010, Lippmann et al., 2013) . 

Experimental research in the aspects of insulin resistance has mainly focused on fine particles 

(Sun et al., 2005, Xu et al., 2011, Rajagopalan and Brook, 2012, Liu et al., 2013, Rao et al., 

2015) and demonstrating insulin resistance due to PM-induced inflammation.  Population-

based epidemiologic evidence from this work presented in chapters 5 and 6 supports this PM 
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hypothesis and showed the relative importance of particulates in PM10 models additionally 

accounting for NO2 exposure. In fact, the effect of NO2 was completely lost when considering 

intermediate phenotypes [Chapter 6]. This work applied multi-pollutant models because both 

pollutants were testing independent hypothesis and had some positive correlation with each 

other, so it was useful to see which was more relevant. However multi-pollutant models can 

be limited by co-variation of pollutants, the possibility of complex interactions among 

pollutants, potential confounding by unmeasured pollutants, the subtlety of association of 

interest, exposure uncertainty and power issues (Tolbert et al., 2007). Despite the apparent 

importance of particles in air pollution-related health effects, it is expected that most health 

effects should occur in situations of combined particle-gaseous pollutant exposure as 

demonstrated in some studies (van Bree and Cassee, 2000, Brook et al., 2010).  

9.1.3 Are women at greater risk? 

Sex differences in health outcomes remain an issue in environmental epidemiology. Several 

studies have explored susceptibility due to sex in investigating the health impacts of 

environmental exposures including air pollutants (Clougherty, 2010). It is thought that being 

male or female influences one’s exposure to dose, from dose to effective dose and from 

effective dose to health outcomes (Clougherty, 2010).  

Exposure to dose could be determined by the sex-differences in the respiration of air-borne 

pollutants due to sex-dependent characteristics of lung function (Jones and Lam, 2006) and 

gas-blood barrier permeability (Brauner et al., 2009). Dose to effective dose could be 

determined by the hormonal differences between both sexes, for instance, the oestrogenic 

influence on some environmentally-derived compounds (Morris et al., 2003), the higher 

propensity for mercury retention in kidneys in women (Hultman and Nielsen, 2001) and the 

potential change in exposure patterns due to pregnancy (Nethery et al., 2009). At the target 

organs, sex differences could influence the translation from effective dose to health outcomes. 
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Sex-linked hormonal differences influenced alterations in vascular endothelium (Prisby et al., 

2008) and it was demonstrated that women had more urogenital pathologies than men in areas 

with high arsenic exposure (Concha et al., 1998). 

Of additional interest is the role of gender- a social construct which includes norms, roles and 

behaviours shaped by relations among the sexes (Krieger, 2003)- in shaping observed health 

outcomes due to air pollution exposure. Gender determines people’s activity patterns 

including leisure and work-related activities. Thus, an analysis of gender will inform about 

concentration of exposure (Clougherty, 2010). Studies from developing countries showed that 

women were more likely to suffer respiratory problems due to indoor fossil fuels, more 

frequently than men, attributed to the fact that women generally perform the cooking at home 

(Behera and Balamugesh, 2005). This may be explained by the fact that estimates of air 

pollution exposure at home will better capture the actual exposures of people who spend more 

time at home than others (Brook et al., 2008).  

In the meta-analysis presented in chapter 4, we found significant sex differences in the risk of 

T2D due to air pollution exposure. While this appears to be an initial support for the sex and 

gender hypotheses, it is important to note that an update of this meta-analysis, done in this 

work, and incorporating five additional studies published after this meta-analysis (Eze et al., 

2015a, Park et al., 2015, To et al., 2015, Weinmayr et al., 2015, Lazarevic et al., 2015) 

showed comparable estimates between males and females, obliterating the initially observed 

differences [Appendices 1 and 2]. This pattern did not change for both pollutants when we 

limited the inclusion criteria to longitudinal studies [Appendices 1 and 2]. 

9.1.4 The role of physical activity- implication for health-in-all policies? 

Physical activity leads to physiological changes that may enhance the health effects of air 

pollution. These may include changes in breathing pattern, pollution dose, and nasal defenses 
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(Giles and Koehle, 2014, Niinimaa et al., 1980). As exercise intensity increases, ventilation 

increases and breathing switches from predominantly nasal to oral, bypassing the nasal 

filtration and increasing the inhaled dose of pollutants (Niinimaa et al., 1980).  Acute 

exposure to PM2.5 was shown to induce platelet activation, raised markers of inflammation 

and oxidative stress and DNA damage (Brauner et al., 2007, Vinzents et al., 2005) during 

exercise. Chronic exposure to ultra-fine particles during exercise in an urban setting was also 

associated with increased leukocyte and neutrophil counts compared to exercise in a rural 

setting (Bos et al., 2013). Evidence for reduction in exercise performance (Kargarfard et al., 

2011, Giles et al., 2012), lung inflammation (Alfaro et al., 2007, Rundell et al., 2008) and 

reduction of lung function (Giles et al., 2012, Brauner et al., 2009), on exposure to air 

pollutants during exercise, has been mostly positive (Giles and Koehle, 2014). Exposure to air 

pollutants during exercise was also associated with angina and myocardial ischemia (Lanki et 

al., 2006, Pekkanen et al., 2002) an effect potentially mediated by vasoconstriction and 

endothelial dysfunction through autonomic disturbances (Brook et al., 2010). 

The findings from this work presented in chapters 5 and 6 support a role for physical activity 

in exacerbating the glycemic effects of air pollution. Other population-based studies 

investigating the air pollution-diabetes relationship also reported stronger associations among 

the physically active (Andersen et al., 2012, Weinmayr et al., 2015). However, this pattern 

was not observed in our study on the relationship between passive smoke and diabetes in adult 

never-smokers (Eze et al., 2014c). Taken together, these findings demonstrate the importance 

of considering air pollution in the promotion of physical activity. On the other side, evidence 

suggests that physical activity led to less retention of PM in the lung and higher bronchial 

clearance some hours after exercise, compared to at rest (Bennett et al., 1985). Another study 

demonstrated that high intensity cycling obliterates the differences in physiological 

parameters observed with low-intensity cycling with filtered air and with diesel exhaust (Giles 

et al., 2014). In addition, exposure to NO2 did not significantly modify the protective effect of 
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physical activity on mortality, with this effect occurring across both high and low levels of 

NO2 exposure (Andersen et al., 2015). Overall, despite precautionary measures towards 

exercising in polluted areas, the long-term benefits of physical activity towards preventing 

mortality may outweigh the risks associated with air pollution exposure during physical 

activity (de Nazelle et al., 2011), hence it is important for environmental and health policies to 

interact in this regard. 

9.1.5 The roles of inflammation and insulin resistance: evidence from genetics 

Inflammation plays a major role in the aetiology of metabolic disorders (Hotamisligil, 2006). 

In obese individuals, activated M1 macrophages produce various pro-inflammatory cytokines 

that suppress insulin signaling in adipose tissue, whereas activated M2 macrophages found in 

lean individuals produce interleukin-10 which enhances insulin signaling in adipocytes 

(Hirosumi et al., 2002, Cai et al., 2005). In mice, CD11c knockout of M1 macrophages 

reduced obesity-induced inflammation in the adipose tissue and insulin resistance (Patsouris 

et al., 2008).  

Induction of systemic inflammation by air pollutants (Figure 7) begins in the lungs where the 

pollutants may: activate innate immune cells directly or through the generation of reactive 

oxygen species (Goto et al., 2004, Kampfrath et al., 2011); activate adaptive immunity 

through oxidation by antigen-presenting cells; cause the overflow of reactive oxygen species 

into the systemic circulation, leading to inflammatory response (Dominici et al., 2007, 

Kampfrath et al., 2011) and additionally activating the central nervous system, following the 

overflow of inflammatory markers into the systemic circulation (Liu et al., 2013, Rajagopalan 

and Brook, 2012, Rao et al., 2015). Other hypothesis includes a rapid and direct translocation 

of ultrafine particles and soluble compounds from the alveoli to the capillary circulation 

(Simkhovich et al., 2008). 



171 

 

 

 

 

Figure 7: Mechanisms involved in inflammatory response activation by air pollutants 

(Rao et al., 2015) 

Much of this evidence has been from experimental animal models. The need for replication in 

human population requires conditions where several inflammatory processes are measured 

with controlled air pollution exposure, which may be quite expensive, considering issues with 

statistical power and optimizing confounder control. Given limited resources, a good and 

valid tool to assess the role of immune system and inflammation-related processes would be 

through the use of genetic variations [obtained through a combination of genotyping and 

imputation using reference genomes] as indicators of functional parameters relevant to the 

understanding of systemic impacts of environmental toxicants.  

Genetic epidemiology applies the principle of Mendelian randomization by using genetic 

variants in observational studies (Lawlor et al., 2008). Mendelian randomization has been 

likened to natural randomized controlled trials (Hingorani and Humphries, 2005, Davey Smith 
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and Ebrahim, 2005), and implies that the inheritance of one trait is independent of the 

inheritance of other traits. Although not always true for genes located close to each other on 

homologous chromosomes (i.e., in linkage disequilibrium) (Morgan TH, 1915), the 

randomization principle still controls bias when relating genetic variants to disease outcomes 

at a population level because alleles are generally unrelated to confounding factors (Bhatti et 

al., 2005, Davey Smith et al., 2007); there is no reverse causality since diseases do not alter 

genotype; there is less associative selection bias (Berkson, 2014), less regression dilution bias 

(Davey Smith and Phillips, 1996), and causal inference can be made since the association 

between a genotype and a modifiable risk mostly remains throughout life (Davey Smith and 

Ebrahim, 2004). This approach requires the knowledge of the functions of genetic variants, 

which is then applied as an instrument for the modifying factor of interest (Lawlor et al., 

2008). 

As presented in chapter 7, we applied a 63-locus polygenic risk score for T2D to assess its 

impact in the air pollution-diabetes relationship (Eze et al. 2016a). As expected, this score 

associated well with diabetes status, validating our assumption of T2D. Other studies have 

also reported the predictive power of T2D gene risk scores on T2D (Andersson et al., 2013, 

Cornelis et al., 2009, Langenberg et al., 2014, Talmud et al., 2015, Vassy et al., 2014), all 

demonstrating a positive relationship. Exploring the mediating role of pathway-specific scores 

(insulin resistance and beta-cell function), while not measuring insulin sensitivity and beta 

cell function parameters in this work, allowed a better understanding of the mechanisms in 

this relationship. Additional observation of interactions with asthma phenotype on PM10-

diabetes relationship further strengthened our understanding of the involvement of 

inflammatory pathways in this complex relationship (Eze et al., 2016a). 

Moreover, the results presented in chapter 8 contribute more evidence on the involvement of 

inflammatory mechanisms in the PM10-diabetes relationship (Eze et al., 2016b). By using a 
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functional IL6 polymorphism known to regulate the production of circulating IL-6 (Brull et 

al., 2001, Sanderson et al., 2009), one of the inflammatory risk markers of T2D (Pradhan et 

al., 2001, Kristiansen and Mandrup-Poulsen, 2005, Spranger et al., 2003), without measuring 

plasma IL-6, this work was able to demonstrated that homozygous carriers of the pro-

inflammatory major ‘G’ allele were most susceptible to PM10. Raised plasma concentrations 

of IL-6 are associated with having a GG genotype (Brull et al., 2001, Sanderson et al., 2009), 

thus using the polymorphism as proxy has clearly demonstrated the impact of environmental 

toxicants, in inducing production of IL-6, and potentially increasing the risk of diabetes in a 

substantial proportion of the population with the risk allele. Although we did not have plasma 

IL-6 measures to corroborate our findings, levels of high sensitivity C-reactive proteins, 

which is also regulated to an extent by IL6 polymorphisms (Sainz et al., 2008), was found to 

correlate positively with this polymorphism in this study (Eze et al., 2016b).  

9.1.6 Strengths of study 

The specific strengths of the studies constituting this work are presented in chapters 4-8. 

Taken together, this work makes great scientific contributions toward identifying and 

understanding the mechanism involved in the hypothesized relationship between exposure to 

air pollution and T2D. Taking optimal advantage of the research potential of the well-

characterized SAPALDIA database which includes information of socio-demography, health, 

lifestyle factors, home and work exposures, and genomics [Figure 8], this work demonstrates 

in great depth the relevance and potential of big data in disentangling the complexities of non-

communicable disease aetiology. The relevance of studying interactions also point to the need 

for much larger cohorts and biobanks such as the United Kingdom biobank. 



174 

 

 

 

 

Figure 8: Data collected longitudinally in SAPALDIA over 25 years 

This work was done using validated air pollution models which predicted well air pollution 

exposures, both at home and traffic sites using combinations of Gaussian dispersion models 

and Land-use regression models (Liu et al., 2007, Liu et al., 2012). In the frame of the 

SAPALDIA study, this work identified prevalent diabetes cases at first follow-up (Eze et al., 

2014a) and confirmed them by the use of genetic variants [Chapter 7]. This work also 

identified cases of metabolic syndrome following the prediction and validation of waist 

circumference measures which were not measured at the first follow-up of the SAPALDIA 

study (Eze et al., 2015c). Using a population-based approach, this work has also demonstrated 

the importance of gene-environment interactions in understanding the mechanisms and 

susceptibilities of exposure to environmental toxicants, and further strengthened the relevance 

of genotypes as research instruments in understanding causality [Chapters 7 and 8]. Lastly, we 

applied adequate statistical methods across studies, performing several sensitivity analyses 

including inverse probability weighting and multiple imputations to assess the relevance of 

potential selection bias and robustness of our findings [Chapters 5-8]. 
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9.1.7 Limitations of study 

As discussed in chapters 4-8, the main limitation of this work was the cross-sectional 

approach in all its studies which limits the inference of causality. This was mostly due to data 

availability and also affected our identification of incident T2D cases. As discussed in 

chapters 5, 7 and 8, we used 10-year means of pollutants up to the year prior to first follow-up 

when diabetes cases were identified, and we expect <10% of these diabetes cases to be T1D 

(Alberti and Zimmet, 1998). Air pollution measures were derived from measurements 

captured at a resolution of 200x200m (Liu et al., 2007). A higher resolution of the air 

pollution exposure would also potentially limit misclassification and lead to stronger results. 

Another limitation is that we considered PM10 as our particulate matter of interest, instead of 

PM2.5 or ultra-fine particles, which may penetrate further into the respiratory tract through 

translocation. At the start of this work, only PM10 was available for analysis, which was later 

shown to correlate well with PM2.5 across SAPALDIA areas (R~0.8). Ultra-fine particles were 

measured at the second follow-up and replication studies are planned with diabetes. 

Compared to diabetes cohort consortia, we had relatively small sample size of diabetics across 

our studies. While this may have been a limitation, this work presented very relevant findings 

which are expected to even be stronger and more significant in bigger studies having all the 

necessary exposure, phenotype and genomic data. 

9.2.  Outlook: Disentangling the complexities of non-communicable disease 

 aetiology 

In attributing aetiologic roles to environmental stressors in the development of T2D, future 

studies should focus on disentangling complexities involved in the inter-relationships of these 

constituent or potential risk factors and conduct studies in different contexts. 
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9.2.1. Disentangling air pollution and noise effects and understanding interactions 

Noise is a well-known environmental stressor, an unwanted sound, which also has adverse 

health effects through annoyance, sleep disturbances, cognitive and emotional disturbances 

(Muzet, 2007). Traffic noise is a common type of environmental noise especially in urban 

areas and growing evidence from noise epidemiology has demonstrated its impact on 

cardiovascular health (Babisch, 2006, Babisch, 2011). Recently, the impact of noise on 

diabetes has been receiving some attention, and is thought to act through stress-related 

pathways impacting on glucose homeostasis (Cappuccio et al., 2010, Dzhambov, 2015). On 

the other hand, traffic is a combined source of both air pollution and noise making both 

exposures to potentially confound each other in common outcomes. 

Different studies have investigated the spatial distribution of both traffic-related air pollution 

and noise to understand their correlation patterns e.g. Allen et al. (2009).  Correlations were 

observed to be dependent on area and time, and night-time correlations appeared to be 

strongest (Kim et al., 2012). In addition, Foraster et al. (2011) described a positive substantial 

correlation between annual NO2 and 24-hour noise measures which was dependent on urban 

structures and traffic patterns. These data indicate that noise could confound health 

associations observed with air pollution, hence the importance of disentangling associations 

of both exposures. 

In their review of the air pollution-noise confounding on cardiovascular outcomes, Tetreault 

et al. (2013) concluded with caution that since the degree of confounding in the nine pooled 

studies was low, it may not be necessary to control for noise in studies on health effects of air 

pollution. In identifying the determinants for varying degrees of confounding, Foraster (2013) 

suggested that while this conclusion may be true for some settings, it cannot be generalized 

due to the fact that the correlations between noise and air pollution varied across areas, and 

confounding could be relevant in some studies. On the other hand, the use of different noise 
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and air pollution indicators and lack of information of exposure data quality may have also led 

to the low confounding.  Furthermore, the inability to account for indoor noise exposure- 

which is more relevant for health effects- might have also biased the noise estimates (Foraster, 

2013). 

Attempts at disentangling both exposures have been made in some studies on the health 

effects of air pollution and noise exposures. Studies on air pollution have adjusted for noise 

[Chapter 4], whereas studies on noise have adjusted for air pollution exposure (Coogan et al., 

2012, Sorensen et al., 2013). In both situations, the associations of health outcomes with 

pollutants of interest were sustained despite adjusting for the potentially confounding 

exposure. Lack of confounding, like in our study, may have been due to the use of low 

resolution noise data, which precluded the correct assessment of confounding, and may have 

led to residual confounding in the study (Kunzli, 2013). All these estimates have been from 

outdoor exposures. In relation to noise and its health effects, it is particularly important to 

measure indoor levels at home to refine exposure because of the impact of shielding on noise 

and the importance of sleep on the noise-related health effects. Therefore, adjustment for 

outdoor traffic noise levels would not truly capture the individuals’ exposure and will hinder 

the independence of the effects of traffic-related air pollution from those of road traffic noise 

(Foraster et al., 2014). In fact, Foraster et al. (2014) demonstrated that estimating indoor noise 

exposure reduces the correlation with outdoor air pollution and better disentangles 

relationship between noise, NO2 and blood pressure, which could not be achieved by using 

only outdoor noise estimates. It is also essential that indoor air pollution is assessed for a more 

global overview of noise and air pollution exposures in this regard. 

Until now, noise epidemiology research has relied on A-weighted sound pressure levels 

[LAeq] which represent average noise levels over different day periods or the 24 hours 

(Dzhambov, 2015, Rylander et al., 1986). Also of interest is the number of events which 
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reflects the number of times noise levels are above a threshold at a given time (Fields, 1984). 

Advances in noise research have resulted in refined metrics that may better capture the 

temporal noise variations and their health effects. The metric termed intermittency ratio 

expresses the proportion of the acoustical energy contribution in the total energetic dose that 

is created by individual noise events above a certain threshold (Wunderli et al., 2015).  

Analytical approaches to disentangle the noise-air pollution confounding in studies using well 

characterized estimates for both exposures may include stratification by area or using area-

weighted regression (Foraster et al., 2014) and generating interaction terms between both 

exposures. With the development of indoor noise exposures, intermittency ratios, and indoor 

air pollution exposures, applying these analytic approaches to these exposure metrics in 

parallel will contribute to the understanding of independent effects of noise and air pollution 

exposure measures in future research. 

9.2.2. The role of comparative research in disentangling complexities 

Comparative epidemiology seeks to answer research questions using comparisons across 

species, phenotypes, settings etc. By comparing spatial and temporal trends and relationships 

across defined characteristics, new concepts, hypotheses and theories may evolve. 

Comparative epidemiology improves epidemiological studies and allows reaching valid 

conclusions through a better understanding of the complexities and the background of the 

subject under study. 

A.  Considering air pollutants from different sources and at different levels 

As demonstrated in chapter 4, epidemiological and experimental evidence from the health 

effects of air pollution regarding diabetes has been from Europe and North America. Even 

additionally published evidence [following the meta-analysis] has also been from these 

regions, including Australia. Advancements in air quality monitoring available in these 
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western countries are lacking in the developing settings like Africa.  Switzerland, for instance, 

covering an area of ~42000 km
2
 has 16 monitoring stations according to the Swiss Agency for 

Environment, Forests and Landscape (SAEFL, 2003), whereas Nigeria having an area of 

~920,000 km
2
 has only one monitoring station, according to the Nigerian national Air Quality 

Monitoring Programme (NNAQMP, 2015). Pollution levels have been demonstrated to be 

higher in the developing countries of Africa and Asia, compared to the areas with better 

regulation facilities [Figure 9]. A recent review demonstrated that most countries with high 

pollution levels do not even have regulatory limits for air pollutants (Kunzli et al., 2015), 

demonstrating the general lack of interest in air quality issues. Also the lack of 

epidemiological cohorts in the developing areas of the world also limits the generation of 

evidence from these areas (Lelieveld et al., 2015). 

 

Figure 9: PM10 levels by region for any year in the period 2008-2012. Amr: America, Afr: 

Africa; Emr: Eastern Mediterranean, Sear: South-East Asia, Wpr: Western Pacific; LMI: 

Low- and middle-income; HI: high-income. PM10 values are regional urban population-

weighted (WHO, 2014). 

Environmental toxicants depend on geography and meteorology, and this holds particularly 

true for particulate matter which occurs as a mixture of several particles. In the SAPALDIA 
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cohort, the ratio of PM2.5 to PM10 is ~0.8, implying the possibility of extension of results 

observed with PM10 to PM2.5. In contrast, 2013 field studies in Nigeria showed the ratio of 

PM2.5 and PM10 to range from 10-33% across six cities with varying residential and traffic 

densities (NNAQMP, 2015). One may therefore expect different patterns of associations of 

PM10 and PM2.5 with health outcomes compared to those observed in Switzerland. 

Countries in the South face a dual burden of pollutant exposure – ambient pollutants and 

indoor pollutants mainly from biomass fuel, both of which contributed >6 million global 

deaths in 2010 (Lim et al., 2012).  Figure 10 demonstrates the regional distribution 

contributions of various pollutant sources to mortality.  

 Figure 10: Distribution of source categories responsible for largest impact on mortality 

due to outdoor air pollution. IND, industry; TRA, land traffic; RCO, residential and 

commercial energy use; BB, biomass burning; PG, power generation; AGR, agriculture; and 

NAT, natural. In the white areas, annual mean PM2.5 is below the concentration–response 

threshold (Lelieveld et al., 2015). 

Biomass burning contributes about 70% to PM2.5 in Brazil and up to 90% in Angola 

(Lelieveld et al., 2015). A Chinese study showed that the use of biomass greatly increased PM 

concentrations in the home (Jiang and Bell, 2008). PM2.5 from biomass burning are mainly 

carbonaceous particles (Tuomisto et al., 2008) comprising pro-oxidative organic 
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hydrocarbons that activate inflammatory pathway and cause DNA damage (Bhatnagar, 2006). 

Exposure to PAH from cooking in particular was linked to oxidative DNA damage in 

restaurant workers (Pan et al., 2008). Indoor air pollution from biomass fuels was also linked 

to adverse respiratory outcomes including tuberculosis and lung cancer (Behera and 

Balamugesh, 2005, Ezzati and Kammen, 2001, Hernandez-Garduno et al., 2004), 

cardiovascular diseases, diabetes (Lee et al., 2012) and increased mortality from lung cancer 

and cardiovascular diseases (Lippmann et al., 2013). Thus, considering air pollution from 

biomass, in addition to ambient air pollution, by extending NCD research to the South, will 

add to the understanding of the degree of their health impacts, towards a more targeted control 

(Kunzli et al., 2015).  

B. Considering air pollution effects in a context of high burden of infections and 

 therefore, inflammation. 

Infectious diseases are associated with inflammatory responses which usually resolve with 

appropriate treatment. Individuals mounting strong inflammatory responses to certain 

infections have been shown to be more susceptible to age-related inflammatory morbidity 

later in life (Koopman et al., 2012, Gurven et al., 2008). Koopman et al. (2012) demonstrated 

a higher inflammatory profile in a Ghanaian population compared to a western population, 

and a lower prevalence of cardio-metabolic risk factors and diseases in the Ghanaian 

population. Corroborating this finding, higher level of CRP was observed among Bolivians 

compared to Americans across all ages despite having lower cases of NCDs (Gurven et al., 

2008). The presence of chronic infections may lead to cell and organ damages and 

derangements in the immune system which may impact on susceptibilities to environmental 

toxicants. This is particularly true in the LMIC where infections are endemic and exhibit 

chronicity. In fact, a substantial proportion of disability-adjusted life years attributed to 
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cardiovascular diseases in LMIC are due to inflammatory precursors such as rheumatic fever 

and neglected infections of poverty (Moolani et al., 2012).  

While it is evident that inflammation plays a role in T2D and diabetes puts individuals at high 

risk to develop infections, the role of infections in developing diabetes is poorly understood. 

Exposure to particulate matter was related to the development of pneumonia in children 

(MacIntyre et al., 2014), and outdoor sulphates and indoor biomass exposure were related to 

tuberculosis (Hwang et al., 2014, Lin et al., 2007), both conditions being strong activators of 

the immune system. Engaging LMIC in NCD research incorporating environmental stressors 

will aid the understanding of the role of cellular and immune changes due to sustained 

infections in the development of NCDs. 

C. Considering different gender contexts 

The importance of sex and gender in environmental epidemiology has been previously 

discussed. While it would seem obvious to disentangle these two concepts, it has not been 

very practical to clearly differentiate exposures by sex and gender. In addition, conflation of 

both terms in epidemiologic research due to the fact that they are intertwined has also not 

helped (Krieger, 2003). An understanding of the gendered environment can improve exposure 

assignment, and help to better identify biologic responses. It can also provide a model for 

examining other social effect mediators of health outcomes in relation to environmental 

exposures (Clougherty, 2010, Clougherty and Kubzansky, 2009).  

Apart from stratifications and analyses using sex-based interaction terms (Chapters 4-6), other 

analytic approaches to improve our understanding may include population-specific exposure 

modeling clarifying gendered exposure differences (Maziak et al., 2005); temporally refined 

exposure assessment incorporating gendered activities in probabilistic models  (Zidek et al., 

2005); propensity analysis incorporating predictive modeling for exposures and responses, 

and allowing the prediction of likelihood of exposure, given population exposure distributions 



183 

 

 

 

and possibly, pre-exposure characteristics (Kurth et al., 2006); and variants of multilevel 

modeling to disentangle between- and within sex variations (Phillips, 2005). It is also 

important to note the issue of competing risks and differences in the background rates of 

disease when interpreting sex- or gender-based risk estimates (Perneger, 2001). 

9.2.3.  The role of exposome approaches in disentangling complexities 

A.   Limitations of genetics 

Apart from the inherent problems in genetic epidemiology studies including issues with 

population stratification, where differences in genetic ancestry lead to population 

heterogeneity (Davey Smith and Ebrahim, 2003); issues with genetic pleiotropy, where  a 

gene may regulate related phenotypes (Newcomer et al., 1978); and issues with canalization, 

where developmental adaptation due to genetic predisposition reduces or prevents phenotypic 

expression (Davey Smith and Ebrahim, 2003), genetic variation remains insufficient for 

capturing the full mechanistic or biological changes in response to air pollution and 

underlying susceptibilities. This is mainly due to the complexities in the downstream result of 

genetic expression, where post-transcriptional and post-translational events contribute to 

metabolic end-points, which can be considered closer to the phenotype (Hollywood et al., 

2006). Thus metabolite profiling can identify biomarkers of air pollution exposure or disease. 

B. Omics biomarker and molecular networks 

Omics technology today allows capturing molecular patterns in their full complexity. Easily 

accessible blood samples can be measured for various omics profiles that reflect full patterns 

of molecular networks. Much can be learnt about molecular networks mediating the impact of 

air pollution on diabetes or other health outcomes by applying the meet-in-the-middle concept 

which combines, within a population-based study, the prospective search for intermediate 
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biomarkers elevated in subjects that develop a disease and a retrospective search for links of 

these biomarkers to environmental exposures [Figure 11]. 

 

Figure 11: Schematic representation of the meet-in-the-middle concept of exposomics 

(Vineis et al., 2013)  

This meet-in-the-middle concept suggests the inference of causality if an association is found 

within the component steps including first, investigating association between exposure and 

disease; second, investigating association between (biomarkers of) exposure and intermediate 

omics biomarkers of early effects; and investigating association between disease outcomes 

and intermediate omics biomarkers of early effects (Vineis et al., 2013). 

C. Exposome-wide approaches for disentangling complexities 

The exposome includes a combination of reactive electrophiles, metals, endocrine disrupters, 

immune modulators and receptor-binding proteins representing intermediate markers of early 

effect, which can be measured on a body fluid or tissue sample using the various omics 

technologies (Wild, 2012). At the exogenous risk factor level, research is also moving from 

looking at single exposures to a large number of exposures combined by applying exposome-

wide association studies [EWAS] which uses the same approach as in GWAS. A practical 
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example of EWAS applying the meet-in-the middle concept in studying the molecular links 

between ambient PM [PM2.5 and PM10] and lung function across 280 metabolites identified 

through non-targeted metabolomics profiling found circulating levels of eight metabolites to 

be associated with both exposure to PM and lung function, and observed the strongest 

association with alpha-tocopherol (Menni et al., 2015), the biologically active form of 

antioxidant vitamin E which also regulates VEGF expression (Zingg et al., 2015). In doing 

this, this study was able to demonstrate the importance of oxidative pathways in the PM and 

lung function relationship. Similar approaches with PM in relation to diabetes will contribute 

to mechanistic understanding of this relationship. 

A first attempt at environment-wide association study on type 2 diabetes assessed the 

association between 266 biomarkers of exposure to environmental agents among participants 

of the National Health and Nutrition Examination Survey in 2010 (Patel et al., 2010). In this 

study biomarkers of exposure were measured from urine and blood samples and positive 

associations with prevalent T2D were observed between pesticide-derivative heptachlor 

epoxide and vitamin gamma-tocopherol, and a protective effect of beta-carotenes was also 

demonstrated (Patel et al., 2010). Future studies that include measures of PM and applying the 

meet-in-the-middle concept will provide a better understanding of the roles of these 

metabolites in the relationship between PM and T2D. 

In the context of epigenome-wide association studies, markers of DNA methylation are 

capable of capturing long-term exposure to environmental toxicants including tobacco smoke 

(Zeilinger et al., 2013, Breton et al., 2014) and particulate matter (Madrigano et al., 2012, 

Breton and Marutani, 2014), and could also be of interest in capturing a history of infections, 

or as a disease risk marker (Beyan et al., 2012). Epigenome-wide association studies have 

been applied in diabetes and CVD-related phenotypes in population-based studies (Rakyan et 

al., 2011, Hidalgo et al., 2014). In addition, individuals with T2D were shown to exhibit 
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epigenetic and transcriptional changes in adipose tissue that are relevant to disease 

development (Nilsson et al., 2014, Dayeh et al., 2014). Taken together, application of 

exposome-wide approaches in the framework of the meet-in-the-middle concept in future 

studies will improve our understanding of aetiologic relationships between environmental 

exposures and T2D. 

9.3. Conclusions 

9.3.1. Brief summary of main findings 

• This work has presented compelling evidence supporting a positive relation between 

exposure to air pollutants and T2D. 

• Particulate matter may be a more relevant marker of air pollution relevant for diabetes 

• Individuals at high genetic risk for type 2 diabetes may be more susceptible to the 

diabetogenic effects of air pollutants. 

• Alterations in insulin sensitivity may be a more relevant pathway through which air 

pollutants lead to T2D. 

• The presence of back ground inflammation may potentiate the contribution of genetic 

risk to air pollutant susceptibility. 

• Physical activity presented another pathway through which air pollutants may impact 

on type 2 diabetes. The modifying effect of physical activity should be confirmed and 

appropriate measures taken in the promotion of physical activity. 

• Future studies should explore the potential impacts of air pollutants on beta-cell 

function, and the contributions of non-inflammatory pathways in the health effects of 

air pollutants 
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9.3.2. Public Health relevance of findings 

• From the northern perspective, the findings from this work demonstrate the 

contribution of ambient air pollution to diabetes burden in Switzerland. PM also 

contributed to the burden of impaired fasting glycaemia and central obesity, which are 

risk factors for diabetes and some of the major contributors to global burden of disease 

(Lim et al., 2012). Although effect estimates were moderate to small, and may have a 

small impact at the individual level, exposures may be unavoidable and affects a 

substantial proportion of the population. If our association is causal, air pollution 

control policies targeting the general population would contribute to the reduction of 

diabetes prevalence, benefitting millions of people. Thus there is need for continuous 

update of air quality guidelines following evidence from research. In line with our 

finding of associations at mean concentrations below current guidelines, exposure to 

air pollutants at levels below air quality guidelines in Sweden was related to 

gestational diabetes and preeclampsia (Malmqvist et al., 2013). First, the European 

Union should adopt the WHO limits, and both organizations should unanimously 

develop evidence-based lower limits adapted to national and local conditions 

(Brunekreef et al., 2015). It is important to note that although studies have not been 

able to demonstrate lower thresholds at which exposure to air pollutants may not have 

health effects, making it difficult to set these limits, sustained efforts should be made 

at lowering the current standards. Appropriate dose-response studies are therefore 

needed to demonstrate a lower threshold of air pollution effects, for evidence-based 

information of air quality policies. 

• The strength of evidence on the impact of physical activity on the susceptibility to air 

pollutants raises cause for concern. While this calls for well-designed studies for 

confirmation, efforts should be made to encourage physical activity in settings with 
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less air pollution. For instance, individuals in polluted cities may have to exercise 

indoors or go to less polluted areas for outdoor physical activity. In order not to 

discourage physical activity in general, it is important to note once more that air 

pollution may be unavoidable and the health benefits of physical activity will most 

likely outweigh the risks due to air pollution exposure (Andersen et al., 2015, Giles et 

al., 2014). There is thus a need for interactions between health and environmental 

policies towards sustaining and promoting physical activity in achieving better overall 

health (de Nazelle et al., 2011). 

• From the southern perspective, the lack of evidence from this area calls for an urgent 

need for comparative evidence, considering that air pollution can reach very high 

levels [a combination of ambient air pollution and indoor pollution from biomass 

fuels] and NCD burden is increasing, and reaching levels of infectious diseases, due to 

epidemiologic transition. The wide gradient in air pollution exposures may enable the 

study of dose-response relationships and the variety of exposures will generate 

evidence for targeted policies. 

• The development of NCD research agenda in the South, incorporating environmental 

exposures, will provide evidence in the local southern contexts which will inform 

policy in these countries, and stimulate serious interests in air quality regulation which 

are presently lacking (Kunzli et al., 2015). 
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Appendix 1: Updated meta-analysis of PM2.5 and risk of T2D. 

A. Meta-analysis combining longitudinal and cross-sectional studies 

 

B. Meta-analysis limited to only longitudinal studies 

 

NOTE: Weights are from random effects analysis
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Appendix 2: Updated meta-analysis of NO2 and risk of T2D. 

A. Meta-analysis combining longitudinal and cross-sectional studies 

 

 

B. Meta-analysis limited to only longitudinal studies 

 

NOTE: Weights are from random effects analysis
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Appendix 3. Short version of SAPALDIA 2 health questionnaire (German) 

Question number Question 

  � Answers 

T_H00010 Haben Sie in den letzten 12 Monaten irgendwann ein pfeifendes 

Atemgeräusch in der Brust gehabt? 

   � nein     gehen Sie bitte zu Frage T_H00040, S. 1 

 � ja 

 � weiss nicht 

 � Weigerung 

 

T_H00020 Haben Sie in den letzten 12 Monaten Mühe gehabt mit Atmen, wenn 

Sie dieses pfeifende Atemgeräusch in der Brust gehabt haben? 

 

 � nein 

 � ja 

 � weiss nicht 

 � Weigerung 

 

T_H00030 Haben Sie in den letzten 12 Monaten dieses pfeifende Atemgeräusch 

gehabt, ohne dass Sie gleichzeitig erkältet waren? 

 � nein 

 � ja 

 � weiss nicht 

 � Weigerung 

 

T_H00040 Sind Sie in den letzten 12 Monaten irgendwann aufgewacht mit einem 

Druckgefühl oder Engegefühl in der Brust? 

 � nein 

 � ja 

 � weiss nicht 
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 � Weigerung 

 

T_H00050 Haben Sie in den letzten 12 Monaten tagsüber einen Anfall von 

Atemnot gehabt, wenn Sie ruhig waren? (gemeint ist "in Ruhe") 

 � nein 

 � ja 

 � weiss nicht 

 � Weigerung 

 

T_H00060 Haben Sie in den letzten 12 Monaten einen Anfall von Atemnot nach 

körperlicher Anstrengung gehabt? 

 � nein 

 � ja 

 � weiss nicht 

 � Weigerung 

______________________________________________________________________ 

T_H00070 Sind Sie in den letzten 12 Monaten jemals aufgewacht, weil sie einen Anfall 

von Atemnot gehabt haben?  

 � nein  gehen Sie bitte zu Frage T_H00100, S. 2  

 � ja 

 � weiss nicht 

 � Weigerung 

 

T_H00080 Sind Sie in den letzten 3 Monaten durchschnittlich mindestens einmal 

in der Woche mit einem Anfall von Atemnot aufgewacht? 

 � nein 

 � ja 

 � weiss nicht 

 � Weigerung 
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T_H00100 Sind Sie in den letzten 12 Monaten jemals wegen eines Hustenanfalles 

aufgewacht? 

 � nein 

 � ja 

 � weiss nicht 

 � Weigerung 

 

T_H00110 Husten Sie normalerweise morgens nach dem Aufstehen? 

 � nein     gehen Sie bitte zu Frage T_H00130, S. 2 

 � ja 

 � weiss nicht 

 � Weigerung 

 

T_H00120 In welchen Jahreszeiten husten Sie normalerweise morgens nach dem 

Aufstehen? 

 � unabhängig von der Jahreszeit 

 � nur im Winter 

 � nur im Frühling, Sommer oder Herbst 

 � weiss nicht 

 � Weigerung 

 

T_H00130 Husten Sie normalerweise tagsüber oder nachts? 

 � nein  wenn T_H00110 „nein“ und T_H00130 „nein“  

   gehen Sie bitte zu Frage T_H00170, S. 3 

 � ja 

 � weiss nicht 

 � Weigerung 

 

T_H00140 Husten Sie so an den meisten Tagen während mindestens 3 Monaten im 

Jahr?  
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 � nein  

 � ja 

 � weiss nicht 

 � Weigerung 

 

T_H00150 In welchen Jahreszeiten husten Sie normalerweise tagsüber oder in der 

Nacht? 

 � unabhängig von der Jahreszeit 

 � nur im Winter 

 � nur im Frühling, Sommer oder Herbst 

 � weiss nicht 

 � Weigerung 

___________________________________________________________________________ 

T_H00160 Seit wie vielen Jahren? 

 ______(Zahl einfüllen) 

 � weiss nicht 

 � Weigerung 

 

T_H00170 Haben Sie normalerweise Auswurf morgens nach dem Aufstehen? 

 � nein   gehen Sie bitte zu Frage T_H00190, S. 3 

 � ja 

 � weiss nicht 

 � Weigerung 

 

T_H00180 In welchen Jahreszeiten haben Sie normalerweise Auswurf morgens 

nach dem Aufstehen? 

 � unabhängig von der Jahreszeit 

 � nur im Winter 

 � nur im Frühling, Sommer oder Herbst 
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 � weiss nicht 

 � Weigerung 

 

T_H00190 Haben Sie normalerweise tagsüber oder nachts Auswurf? 

 � nein  wenn T_H00170 „nein“ und T_H00190 „nein“  

   gehen Sie bitte zu Frage T_H00310, S. 4 

 � ja 

 � weiss nicht 

 � Weigerung 

 

T_H00200 Haben Sie normalerweise an den meisten Tagen während mindestens 3 

Monaten pro Jahr solchen Auswurf? 

 � nein 

 � ja 

 � weiss nicht 

 � Weigerung 

 

T_H00210 In welchen Jahreszeiten haben Sie normalerweise tagsüber oder nachts  

Auswurf? 

 � unabhängig von der Jahreszeit 

 � nur im Winter 

 � nur im Frühling, Sommer oder Herbst 

 � weiss nicht 

 � Weigerung 

___________________________________________________________________________ 

T_H00220 Seit wie vielen Jahren?  

 ______(Zahl einfüllen)  

 � weiss nicht 

 � Weigerung 
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T_H00310 Haben Sie jemals Asthma gehabt? 

 � nein  gehen Sie bitte zu Frage T_H00500, S. 5 

 � ja 

 � weiss nicht 

 � Weigerung 

 

T_H00320 Wurde dies von einem Arzt bestätigt? 

 � nein 

 � ja 

 � weiss nicht 

 � Weigerung 

 

T_H00370 Haben Sie in den letzten 12 Monaten einen Asthmaanfall gehabt? 

 � nein  gehen Sie bitte zu Frage T_H00430, S. 4 

 � ja 

 � weiss nicht 

 � Weigerung 

T_H00380 Wie viele Asthmaanfälle haben Sie in den letzten 12 Monaten gehabt? 

 

 ______(Zahl einfüllen)  

 � weiss nicht 

 � Weigerung 

T_H00390 Wie viele Asthmaanfälle haben Sie in den letzten 3 Monaten gehabt? 

 ______(Zahl einfüllen)  

 � weiss nicht 

 � Weigerung 
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T_H00430 Nehmen Sie zur Zeit irgendwelche Medikamente gegen Asthma (auch 

Inhalationsmittel, Aerosole oder Tabletten)? 

 � nein 

 � ja 

 � weiss nicht 

 � Weigerung 

 

T_H00500 Haben Sie allergischen Schnupfen oder Heuschnupfen? 

 � nein  gehen Sie bitte zu Frage T_H00520, S. 5 

 � ja 

 � weiss nicht 

 � Weigerung 

 

T_H00640 Haben Sie in diesem Jahr schon Heuschnupfen gehabt? 

 � nein 

 � ja 

 � weiss nicht 

 � Weigerung 

 

T_H00520 Hatten Sie jemals Probleme mit Niesen oder mit einer laufenden oder 

verstopften Nase, ohne erkältet zu sein oder eine Grippe zu haben? 

 � nein 

 � ja 

 � weiss nicht 

 � Weigerung 

 

 T_H00730 Haben Sie eine chronische Erkrankung, die Sie in irgendeiner Weise 

einschränkt? 

 � nein   

 � ja 
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 � weiss nicht 

 � Weigerung 

Haben Sie etwas von dem Folgenden? 

T_H00740 Arthritis   

 � nein 

 � ja, aber nicht vom Arzt diagnostiziert 

 � ja, vom Arzt diagnostiziert 

 � weiss nicht 

 � Weigerung 

T_H00741 Hoher Blutdruck 

 � nein 

 � ja, aber nicht vom Arzt diagnostiziert 

 � ja, vom Arzt diagnostiziert 

 � weiss nicht 

 � Weigerung 

T_H00742 Schwerhörigkeit  

 � nein 

 � ja, aber nicht vom Arzt diagnostiziert 

 � ja, vom Arzt diagnostiziert 

 � weiss nicht 

 � Weigerung 

T_H00743 Krampfadern 

 � nein 

 � ja, aber nicht vom Arzt diagnostiziert 

 � ja, vom Arzt diagnostiziert 

 � weiss nicht 

 � Weigerung 
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T_H00744 Grauer Star (Linsentrübung) 

 � nein 

 � ja, aber nicht vom Arzt diagnostiziert 

 � ja, vom Arzt diagnostiziert 

 � weiss nicht 

 � Weigerung 

T_H00745 Herzkrankheiten 

 � nein 

 � ja, aber nicht vom Arzt diagnostiziert 

 � ja, vom Arzt diagnostiziert 

 � weiss nicht 

 � Weigerung 

T_H00746 Depression 

 � nein 

 � ja, aber nicht vom Arzt diagnostiziert 

 � ja, vom Arzt diagnostiziert 

 � weiss nicht 

 � Weigerung 

T_H00747 Diabetes/Zuckerkrankheit 

 � nein 

 � ja, aber nicht vom Arzt diagnostiziert 

 � ja, vom Arzt diagnostiziert 

 � weiss nicht 

 � Weigerung 

T_H00748 Migräne/oft auftretende  

 � nein 

 � ja, aber nicht vom Arzt diagnostiziert 

 � ja, vom Arzt diagnostiziert 
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 � weiss nicht 

 � Weigerung 

T_H00749 Krebs (Stellen Sie die Frage so: Haben Sie Krebs gehabt?) 

 � nein 

 � ja, aber nicht vom Arzt diagnostiziert 

 � ja, vom Arzt diagnostiziert 

 � weiss nicht 

 � Weigerung 

T_H00750 Schlaganfall 

 � nein 

 � ja, aber nicht vom Arzt diagnostiziert 

 � ja, vom Arzt diagnostiziert 

 � weiss nicht 

 � Weigerung 

 

T_H00880 Mit welchem Alter haben Sie Ihre vollzeitliche Ausbildung 

abgeschlossen? 

(0 entspricht hauptberuflich Student) 

  ___________ (Zahl einfüllen) 

� weiss nicht 

� Weigerung 

 

Was machen Sie zur Zeit? 

T_H00890 voll erwerbstätig 

 � Nein 

 � Ja 

 � weiss nicht 

 � Weigerung 
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T_H00891 teilweise erwerbstätig 

 � Nein 

 � Ja 

 � weiss nicht 

 � Weigerung 

T_H00892 Hausfrau/Hausmann 

 � Nein 

 � Ja 

 � weiss nicht 

 � Weigerung 

T_H00893 in Ausbildung 

 � Nein 

 � Ja 

 � weiss nicht 

 � Weigerung 

T_H00894 pensioniert/Rentner 

 � Nein 

 � Ja 

 � weiss nicht 

 � Weigerung 

T_H00895 arbeitslos 

 � Nein 

 � Ja 

 � weiss nicht 

 � Weigerung 

T_H00896 längerer Militärdienst (z.B. RS), längere Ferien (z.B. nach 

Schulabschluss oder zwischen zwei Stellen)  

 � Nein 
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 � Ja 

 � weiss nicht 

 � Weigerung 

T_H00897 krank oder invalid 

 � Nein 

 � Ja 

 � weiss nicht 

 � Weigerung 

T_H00898 mache etwas anderes 

 � Nein 

 � Ja 

 � weiss nicht 

 � Weigerung 

 T_H01000 Haben Sie jemals in einem Beruf gearbeitet, bei dem Sie Dampf, Gas, 

taub oder Rauch ausgesetzt waren? 

 � Nein 

 � Ja 

 � weiss nicht 

 � Weigerung 

T_H01340 Leben Sie in derselben Wohnung/Haus wie in der letzten 

Untersuchung? 

 � Nein 

 � Ja 

 � weiss nicht 

 � Weigerung 

 

T_H01720 Welche Aussage beschreibt Ihre Wohnsituation am besten? Ich wohne  

 � im Stadt/Dorfzentrum an stark befahrener Strasse 
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 � im Stadt/Dorfzentrum an wenig bis mässig befahrener Strasse 

 � im Aussenquartier/am Dorfrand an mässig bis stark befahrener Strasse  

 � im Aussenquartier/am Dorfrand an wenig befahrener Strasse 

 � in alleinstehenden Haus auf dem Land 

 � weiss nicht 

 � Weigerung 

 

T_H01730 Wie gross ist werktags das Verkehrsaufkommen auf der Strasse, an 

welcher Sie wohnen? 

 � Stark befahrene Strasse/ununterbrochener Verkehrsfluss 

 � Mässig befahrene Strasse/viele Autos fahren vorbei 

 � Wenig befahrene Strasse/nur ab und zu ein paar Autos 

 � weiss nicht 

 � Weigerung 

 

T_H01740 Wie oft fahren an Wochentagen Lastwagen durch die Strasse, an 

welcher Sie wohnen? 

 � nie 

 � selten 

 � öfter am Tag 

 � fast den ganzen Tag 

 � weiss nicht 

 � Weigerung 

_______________________________________________________________________ 

T_H02040 Haben Sie schon einmal mindestens ein Jahr lang geraucht? 

(„Ja“ heisst mindestens 20 Zigarettenpackungen oder 360g Tabak im 

ganzen Leben ODER: mindestens 1 Zigarette pro Tag, oder eine 

Zigarre pro Woche für ein Jahr). 
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 � nein  gehen Sie bitte zu Frage T_H02150, S. 10 

 � ja 

 � weiss nicht 

 � Weigerung 

T_H02050 In welchem Alter haben Sie angefangen, regelmässig zu rauchen? 

 ____________ (Zahl einfüllen) 

 � weiss nicht 

 � Weigerung 

T_H02060 Rauchen Sie zur Zeit (im letzten Monat)? 

 � nein  gehen Sie bitte zu Frage T_H02105, S. 9 

 � ja 

 � weiss nicht 

 � Weigerung 

 

T_H02070 Wie viel rauchen Sie jetzt im Durchschnitt? 

  Anzahl Zigaretten pro Tag 

 ________ (Zahl einfüllen) 

 � weiss nicht 

 � Weigerung 

 

T_H02072 Anzahl Zigarren pro Woche 

 ________ (Zahl einfüllen) 

 � weiss nicht 

 � Weigerung 

 

T_H02073 Pfeifentabak in Gramm pro Woche 

 ________ (Zahl einfüllen) 

 � weiss nicht 

 � Weigerung 
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T_H02105 In welchem Alter haben Sie aufgehört zu rauchen? 

 ____________ (Zahl einfüllen) 

 � weiss nicht 

 � Weigerung 

T_H02110 In der gesamten Zeit, in der Sie rauchten, haben Sie durchschnittlich 

wie viel geraucht?  

Anzahl Zigaretten pro Tag 

 ________ (Zahl einfüllen) 

 � weiss nicht 

 � Weigerung 

 

T_H02150 Sind Sie in den letzten 12 Monaten regelmässig Tabakrauch ausgesetzt 

gewesen? (regelmässig heisst, an den meisten Tagen oder Nächten) 

 � nein  gehen Sie bitte zu Frage T_H02280, S. 10 

 � ja 

 � weiss nicht 

 � Weigerung 

 

T_H02160 Sie selber nicht mitgezählt, wie viele Personen rauchen in Ihrem 

Haushalt? 

 ________ (Zahl einfüllen) 

 � weiss nicht 

 � Weigerung 

T_H02170 Rauchen an Ihrem Arbeitsplatz andere Personen regelmässig? 

 � nein 

 � ja 

 � weiss nicht 

 � Weigerung 
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T_H02190 Wie viele Stunden sind Sie täglich dem Tabakrauch von anderen Leuten 

ausgesetzt? 

 ________ (Zahl einfüllen) 

 � weiss nicht 

 � Weigerung 

 

T_H02280 Haben Sie seit der letzten Untersuchung jemals inhalierbare 

Glucocorticoide (Kortison) benutzt? (Liste zeigen) 

 � nein 

 � ja 

 � weiss nicht 

 � Weigerung 

 

T_H02390 Haben Sie in den letzten 12 Monaten die Notfallstation eines Spitals 

aufgesucht wegen Atemproblemen? 

 � nein  gehen Sie bitte zu Frage T_H02420, S. 11 

 � ja 

 � weiss nicht 

 � Weigerung 

___________________________________________________________________________ 

 T_H02400 War dies wegen Asthma, Mühe mit der Atmung oder wegen des pfeifenden 

Atemgeräusches? 

 � nein 

 � ja 

 � weiss nicht 

 � Weigerung 

T_H02410 Wie oft in den letzten 12 Monaten? 

 ________ (Zahl einfüllen) 

 � weiss nicht 

 � Weigerung 
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T_H02420 Haben Sie in den letzten 12 Monaten die Notfallstation eines Spitals 

aufgesucht wegen Herz-Kreislaufproblemen? 

 � nein  gehen Sie bitte zu Frage T_H02480, S. 11 

 � ja 

 � weiss nicht 

 � Weigerung 

War dies wegen 

T_H02430  Angina pectoris 

 � nein 

 � ja 

 � weiss nicht 

 � Weigerung 

T_H02431 Herzinfarkt 

 � nein 

 � ja 

 � weiss nicht 

 � Weigerung 

T_H02432 Herzrhythmusstörungen 

 � nein 

 � ja 

 � weiss nicht 

 � Weigerung 

 

T_H02480 Haben Sie in den letzten 12 Monaten eine Nacht in einem Spital 

verbracht wegen Atemproblemen? 

 � nein  gehen Sie bitte zu Frage T_H02520, S. 12 

 � ja 
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 � weiss nicht 

 � Weigerung 

 

T_H02490 War dies wegen Asthma, Mühe mit der Atmung oder pfeifender 

Atmung? 

 � nein 

 � ja 

 � weiss nicht 

 � Weigerung 

 

T_H02520 Haben Sie in den letzten 12 Monaten eine Nacht in einem Spital 

verbracht wegen Herz-/Kreislaufproblemen? 

 � nein 

 � ja 

 � weiss nicht 

 � Weigerung 

 

T_H02590 Sind Sie in den letzten 12 Monaten von einem Arzt untersucht worden 

wegen Atembeschwerden oder wegen Mühe mit der Atmung? 

 � nein  gehen Sie bitte zu Frage T_H02650, S. 12 

 � ja 

 � weiss nicht 

 � Weigerung 

 T_H02600 War dies wegen Asthma, wegen Mühe mit der Atmung oder wegen 

eines pfeifenden Atemgeräusches? 

 � nein 

 � ja 

 � weiss nicht 

 � Weigerung 
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T_H02650 Sind Sie in den letzten 12 Monaten von einem Arzt untersucht worden 

wegen Herz-/Kreislaufbeschwerden? 

 � nein 

 � ja 

 � weiss nicht 

 � Weigerung 

___________________________________________________________________________ 

T_H03030 Wie viele Tage konnten Sie in den letzten 12 Monaten wegen Asthma, 

wegen Mühe mit der Atmung oder wegen pfeifender Atemgeräusche 

nicht zur Arbeit gehen? 

 ________ (Zahl einfüllen) 

 � weiss nicht 

 � Weigerung 
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