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SUMMARY	
Epigenetic regulation of gene expression is a relatively new and rapidly developing 

research field. It studies the mechanisms of regulation of gene expression, which although 

heritable, occur independently of changes in the DNA sequence and certainly aid to the 

complexity of the this process and provide fine tuning to it.  

Now, it is known that many essential processes in plants such as: development, signaling, 

innate immunity, symbiosis, etc. are epigenetically regulated. However, little is known 

about the epigenetic regulation of cell’s specialization and differentiation. Here, we 

postulate the existence of a tissue-specific epigenetic code. This study consists primarily of 

a forward genetic screen, based on a tissue-specific GFP reporter line- silex, which reports 

adequately on the epigenetically regulated developmental gene APUM9 in Arabidopsis 

thaliana (Chapter 2). Of the numerous mutant lines that we recovered in the mutant screen, 

two epigenetic regulators are presented in this thesis.  

First, a new allele of the well-known histone deacetylase HDA6 was recovered and it was 

found that this protein has separable activities in the euchromatin and the heterochromatin 

(Chapter 2). The second mutant was found to be defective in AtSAC3B, a nuclear pore 

associated protein, which up until now hasn’t been associated with epigenetic regulation of 

gene expression. The homologues of AtSAC3B in different model organisms are involved 

in nuclear-cytoplasmic export of mRNAs. By using different mutant alleles of AtSAC3B for 

studying the nuclear-cytoplasmic export, the requirement of the protein in the process in 

plants was validated. The assessment of the transcripts present in the different cell 

compartments, nucleus and cytoplasm of the mutant, revealed an export bias towards 

antisense RNAs (asRNAs), suggesting that the selectivity of the export process in plants is 

dependent on AtSAC3B (Chapter 3). This indicated that AtSAC3B is an important player 

in the regulation of gene expression through its’ selectivity in the RNA export process. 

Likewise the nuclear pore complex that is known to influence the chromatin organization, 

the studies on the chromatin organization and the dynamics of selected histones 

modifications in atsac3b, revealed the importance of AtSAC3B for the heterochromatin 

organization in plants (Chapter 4).  
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Chapter	1		

General	Introduction	

The	history	of	epigenetics		
	
The term “epigenetic” was first introduced by Waddington, a developmental biologist, who 

used it to refer to “branch in biology that studies the interactions between genes and their 

products, which brings the genotype into being” (Waddington, 2014). From a broader 

perspective, Waddington’s definition of epigenetics explains why despite of the identical 

genetic information that cells carry, they can develop into different cell types and tissues. 

His “epigenetic landscape” model, illustrates the process of cells specialization (Fig.1.1). In 

this model the pluripotent cell is represented as a marble at the top of a hill. The valley 

down the hill contains many paths that the marble can roll down and each of them 

represents different cell fates. The features of the landscape, such as: branching, steepness, 

etc. are determined by a network of interactions between genes from underneath the 

valley’s surface.  

 

                                               
 

Figure 1.1 Waddington’s  “epigenetic landscape” 

(Taken from (Goldberg et al., 2007)) 

The marble represents a pluripotent cell evolving in the epigenetic landscape. Its’ fate is 
determined by the canals in which the ball is rolling. 
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To date there are numerous definitions of epigenetics. In this thesis the following definition 

will be used: Epigenetics is the study of mitotically and /or meiotically heritable changes in 

the gene functions without any changes in the DNA sequence (Haig D., 2004). Therefore, 

epigenetics describes a type of inheritance that is not in accordance with the classical 

Mendelian laws of heredity. 

Among the earliest examples for the existence of a non-Mendelian type of inheritance was 

the discovery of the paramutation in maize (Brink et al., 1968). During studying 

anthocyanin genes in maize Brink demonstrated that, the epigenetic state of one allele 

(paramutagenic) can be transferred to another (paramutable) allele. The coexistence of the 

two alleles in a heterozygous state can result in changes in the expression levels of the 

paramutable allele due to gene silencing (Brink et al., 1968; Coe, 1968; Pilu, 2011). 

Later work in Arabidopsis (Arabidopsis thaliana), revealed the existence of a mechanism 

that resembles paramutation and differs from it only by being non-allelic. Namely, in the 

phosphoribosylanthranilate isomerase (PAI) system composed of four genes at three 

unlinked loci (PAI1, PAI4, PAI2 and PAI3), spontaneous deletion of PAI1 and PAI4 due to 

genome rearrangements causes activation of the other two genes, resulting in a mosaic 

phenotype. This indicted that PAI1 and PAI4 have paramutagenic control over the unlinked 

PAI2 and PAI3 loci (Bender and Fink, 1995; Martienssen, 1996). 

To understand the molecular mechanism underlying paramutation, two models have been 

proposed. The “paring” model proposes direct interaction between two homologous 

chromosomal regions. During this interaction one of the regions (paramutagenic) induces 

modification at the other (paramutable), by transferring epigenetic marks (DNA 

methylation, histone modifications) and/or altering chromatin organization. The second 

model suggests existence of a mediator molecule (RNA) involved in the transfer of the 

epigenetic state from the paramutagenic to the paramutable locus, and/or changes the 

expression levels of the paramutable one. These two models are not exclusive and can 

coincide (Arnheiter, 2007; Chandler and Alleman, 2008; Chandler and Stam, 2004). 

Following the discovery of paramutation in maize, a number of other epigenetic 

phenomena have been observed in plants. Most of them can’t be classified as 

paramutations in sensu stricto (because they are not induced by other alleles and/or are not 

heritable through meiosis), but all of them show the significant role of silencing in the 

epigenetic regulation of gene expression.  

One of the very first transgene silencing events was demonstrated in tobacco. In 

transformation experiments with T-DNA (Matzke et al., 1989), was shown that sequential 
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transformation of tobacco plants with transgenes causes their inactivation. In doubly 

transformed plants, integration of a second T-DNA construct in the plant genome leads to 

inactivation of the first one in trans. This transgene inactivation was found to be reversible; 

it was associated with increased levels of DNA methylation in the promoter of the 

inactivated transgene and the inactivation efficiency was shown to be highly dependent on 

the insertion site (locus) of the second T-DNA. These experiments suggested that the 

sequence homology between the two transgenes was triggering the silencing event.  

Transgene induced gene silencing was also shown to alter the expression of endogenous 

loci, which share sequence homology with the transgene construct. This phenomenon was 

called “co-suppression” due to the silencing of both loci (endogene and transgene) (Napoli 

et al., 1990; van der Krol et al., 1990). In an attempt to overexpress the petals pigmentation 

gene chalcone synthase (CHS) in petunia, in a substantial number of plants, the pigment 

synthesis was blocked and instead of the expected increase of the color intensity, white 

flower petals were observed. Follow-up work (Van Blokland et al., 1994), showed that the 

DNA methylation levels in the promoters of the chs  genes wasn’t changing. This indicated 

that unlike the earlier described case of transgene induced silencing in tobacco plants, 

where the silencing coincided with increased DNA methylation levels in the transgene 

promoter (Matzke et al., 1989), the mechanism underlying co-suppression is rather 

different. The chs genes were shown to be transcriptionally active, yet the mRNA levels 

coming from the endogene and the transgene were reduced.  

The mechanisms underlying gene silencing have been elucidated and two types of gene 

silencing are known: transcriptional gene silencing (TGS) resulting from the inactivation of 

the promoters (silencing of the genes at transcriptional level/DNA level) and 

posttranscriptional gene silencing (PTGS) where mRNAs are degraded, or the protein 

synthesis is impaired. While TGS can be heritable, PTGS is reset after meiosis (Stam et al., 

1997).
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Posttranscriptional	gene	silencing	(PTGS)	
First described as “co-supression”, PTGS is known under different names in different 

organisms: PTGS in plants (Napoli et al., 1990; van der Krol et al., 1990), RNA 

interference (RNAi) in animals (Fire et al., 1998) and quelling in Neurospora crassa 

(Romano and Macino, 1992). An umbrella term for all these phenomena is RNA silencing, 

since all of these gene silencing phenomena occur at the posttranscriptional level (Aufsatz 

et al., 2002a). 

PTGS utilizes sequence homology of small RNAs (sRNAs) for targeting mRNAs for 

degradation. These small RNAs are 20-25 nucleotides long RNA molecules, products of 

endogenous or foreign double stranded RNAs (Baulcombe, 2004; Carthew and Sontheimer, 

2009; Castel and Martienssen, 2013; de Alba et al., 2013; Hamilton, 1999; Hamilton et al., 

2002; Mello and Conte, 2004; Sijen et al., 1996; Waterhouse et al., 1998). 

The class of small RNAs is diverse and the two best-studied types of small RNAs are: 

small interfering RNAs (siRNAs) and the micro RNAs (miRNAs). These two classes of 

small RNA have different origins. siRNAs are primarily derived from transgenes and 

viruses, and are produced from long perfectly complementary double stranded RNAs as 

opposed to miRNAs, which are products from endogenous double stranded RNAs with 

imperfect complementarity that form a stem-loop hairpin structures (Carthew and 

Sontheimer, 2009; Tomari and Zamore, 2005). 

The first miRNAs - lin4 and let7 were identified in Caenorhabditis elegans (Lee et al., 

1993; Reinhart et al., 2000). The biogenesis of the miRNAs involves several steps starting 

from the Pol II-dependent transcription of the MIR genes (so-called “pri-miRNA”, caped 

and polyadenylated transcripts), via formation of the stem-loop intermediate (known as 

“pre-miRNA”). This stem-loop precursor is than cleaved into miRNA:miRNA* duplexes  

(miRNA is the mature, miRNA* is the traveler molecule), a step which in plants is 

controlled by four Dicer like (DCL) RNase III endonucleases. Unlike in animals, in plants 

the formation of the miRNA:miRNA* duplexes occurs in the nucleus. The duplex is 

exported to the cytoplasm by the plant expotin 5 homologue-HASTY, where the duplexes 

are unwound by a helicase, and the mature miRNA is loaded into ARGONAUTE1 (AGO1, 

a PAZ and PIWI domain containing protein) to form the RNA-induced silencing complex 

(RISC). The miRNA in the RISC complex is then used for the sequence specific selection 

of the silencing targets by the RISC complex. AGO proteins form an RNase H-like fold, 
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with a slicer endonuclease activity (the PIWI domain), and can cleave targets that are 

complementary to the loaded miRNA. In plants, likewise in animals, miRNA mediated 

gene silencing can result in RNA cleavage or inhibition of translation (Beauclair et al., 

2010; Li et al., 2013; Yang et al., 2012b). 

Plants miRNAs are predominately 21 nucleotides (nt) long molecules, but their length can 

vary from 20 to 24 nt. This length variation is a result of differences in the activities of the 

different DCLs, namely DCL1 gives 21 nt, DCL2 gives 22 nt and DCL3-24 nt cleavage 

products (Bartel, 2004; Reinhart et al., 2002; Rogers and Chen, 2013). 

Defects in miRNAs biogenesis and regulatory pathways have pleotropic effects on the 

plant development. This is due to the fact that about 50% of their targets are transcription 

factors that control different processes (Zhang et al., 2006a). Moreover, miRNA are mobile 

molecules, and in plants the silencing signal can be spread from cell to cell via 

plasmodesmata, or some of them move systemically (Brosnan and Voinnet, 2011; Melnyk 

et al., 2011). The miRNA regulate a) plant development: leaf, root (Guo et al., 2005), shoot 

development as well as floral transition phase (Chen, 2004; Wu and Poethig, 2006); b) 

signal transduction (Paul et al., 2015; Zhang et al., 2006a) c) innate immunity (Li et al., 

2012).	

Transcriptional	gene	silencing	(TGS)	
	
TGS is a silencing mechanism that inhibits transcription. A hallmark of TGS is its’ 

association with increased DNA methylation in the promoters of the silenced genes. These 

changes in the epigenetic state of silent loci can be mitotically and/or meiotically heritable 

(Fagard and Vaucheret, 2000; Matzke et al., 2000). One of the main functions of TGS is to 

protect the host genome against transposable elements and transgenes (Bucher et al., 2012; 

Zilberman, 2008), but it also influences the expression of endogenous genes. TGS is  

associated with covalent modifications at DNA (DNA methylation) and at histone residues 

but also with changes in chromatin organization via chromatin remodelers (Goldberg et al., 

2007).  
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DNA	methylation		
 
The methylation of cytosine residues in DNA, in a form of 5-methylcytosine (5mC) 

(Ehrich and Wang, 1981) is an epigenetic modification that plays an important role in 

transcriptional regulation. In mammalians DNA methylation occurs predominantly at 

the cytosine residues in CG sequence context with an exception of the embryonic 

stem cells, where DNA methylation can also be found in non-CG context (Lister et 

al., 2009). In plants, cytosine can be methylated in CG, CHG and CHH contexts 

(H=A, T, C) (Suzuki and Bird, 2008). Due to their symmetric nature DNA 

methylation in the CG and CHG contexts can be copied to the complementary DNA 

strand after DNA replication by specific DNA methyltransferase enzymes. This is not 

the case for CHH methylation where the DNA methylation information can be lost on 

the newly synthesized DNA strand. Therefore, CG and CHG methylation is also 

referred to as “symmetric”, whereas methylation in CHH context is knows as 

“asymmetric”. 

In Arabidopsis, DNA methylation plays an important role in the maintenance of the 

genome stability (Chan et al., 2005; Lisch, 2009; Bucher et al., 2012; Mirouze et al., 

2009; Miura et al., 2001; Zilberman, 2008). Genome stability can be compromised by 

transgene insertions and/or transposable elements. Transposable elements (TEs) are 

DNA elements, which have the potential to “move” within the genome, thereby 

causing mutations and genome rearrangement (translocations). DNA methylation 

keeps TEs in a silent (inactive) state (Martinssen and Colot, 2001; Lister et al., 2008;  

Zhang et al., 2009).  

DNA methylation was also shown to play an important role in the genetic imprinting, 

in both - plants and animals (Chen et al., 2009). Imprinting is an epigenetic 

phenomenon, which can result in differential silencing of genes, part of chromosomes 

or entire chromosomes, depending of their parent of origin (Finnegan et al., 2000; 

Garnier et al., 2008; Köhler et al., 2012; Pfeifer, 2000; Zilberman, 2008). Gene 

imprinting in plants occurs predominantly in the endosperm. The differential 

expression of the two parental alleles is associated with differences in their 

methylation levels, and improper regulation of this process, leads to biallelic 

expression that can result in improper development (Bauer and Fischer, 2011; 

Kinoshita et al., 1999; Köhler and Aichinger, 2010). The best-described cases of 

imprinted genes in Arabidopsis are the maternally expressed FLOWERING 
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WAGENINGEN (FWA)(Kinoshita et al., 2004), MEDEA (MEA)(Grossniklaus et al., 

1998), FERTILIZATION INDEPENDEN SEED 2 (FIS2) and the paternally expressed 

PHERES (PHE1) genes (Köhler et al., 2005).  

Genome wide studies in Arabidopsis have revealed that the DNA methylation is not 

restricted to the gene promoters, but it is also present in the gene bodies, where it is 

associated with active transcription. DNA methylation in the gene bodies was shown 

to be almost exclusively associated with CG methylation as opposed to the 

heterochromatic regions, which also have CHG and CHH methylation (Wang et al., 

2014; Zemach et al., 2013). 

	

DNA	methyltransferases	
Methylation of DNA is an enzymatic reaction in which a methyl group from S-

adenosyl- L-methionine (AdoMet) is transferred to cytosine residues. This transfer 

reaction is catalyzed by DNA methyltransferases (Fig. 1.2) (Cao et al., 2000; Junjun 

et al., 2010; Wada et al., 2003). 

 

                     .  

Figure 1.2 Methylation of cytosine  

Methylation of cytosine base in DNA is an enzymatic process catalyzed by DNA 

methyltransferases 

 

DNA methylation is established by the class of “de novo” DNA methyltransferases: 

DNA methyltransferase 3  (DNMT3) in animals and DOMAINS REARENGED 

METHYLTRANSFERASE 2  (DRM2) in plants. DNA methylation is maintained by 

the class of so-called “maintenance” DNA methyltransferases: DNA 

methyltransferase 1 (DNMT1) in animals and METHYLTRANSFERASE1  (MET1) 
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and CHROMOMETYLASE3 (CMT3) in plants (Cao and Jacobsen, 2002; Cao et al., 

2000; Kim et al., 2008). 

 

Establishment	of	DNA	methylation	in	plants		
The DRMs, which are plant homologues of Dnmt3a and Dnmt3b, are de novo 

methyltransferases, which deposit methyl groups to cytosine in CHH context (Law 

and Jacobsen, 2010). One very specific feature of DRMs is the rearrangement of the 

conserved catalytic motifs (I-X) compared to the rest of the eukaryotic 

methyltransferases (Fig.1.3). DRMs have several ubiquitin-associated (UBA) 

domains at the N-terminus that are involved in the recognition of DNA target sites for 

de novo methylation. This class of methyltransferases is represented with three 

members in Arabidopsis: DRM1, DRM2 and DRM3, with DRM2 being the most 

abundant one. DRM3 is a catalytically defective DNA methyltransferase, and can’t 

compensate for DRM2 loss of function in vivo. However, it is required for 

establishment and maintenance of DNA methylation in the CHH sequence context.  

DRM mutants don’t show developmental defects, and no drastic loss of DNA 

methylation at a global scale, but they are defective in de novo methylation at specific 

gene loci (Cao and Jacobsen, 2002; Junjun et al., 2010).  

 

 
Figure 1.3 Schematic representation of the domain organization of DRM2 in 

Arabidopsis (modified from Chan et al., 2005) 

The ubiquitin associated domains (UBAs) target sites in DNA for de novo 
methylation. The methyltransferase catalytic domains are indicated with numbers I-X, 
are rearranged in DRMs.  
	
	
	
Maintenance	of	DNA	methylation	by	Dnmt1/MET1	
The mouse Dnmt1 is the first described DNA methyltransferase and although initially 

described as a de novo DNA methyltransferase, the enzyme has higher affinity 

towards hemi-methylated than non-methylated DNA and is therefore known as a 

maintenance methyltransferase. During DNA replications, mammalian maintenance 
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DNA methyltransferases are primarily associated with the replication fork and are 

involved in restoring DNA methylation on the newly synthesized hemi-methylated 

DNA (Law and Jacobsen, 2010; Kim et al., 2008). 

Dnmt1 is a large enzyme with several domains. In addition to the catalytic 

methyltransferase domain at the C-terminus, further important Dnmt1 domains are the 

cysteine-rich CXXC-type zinc finger domain and the two Bromo-Adjacent Homology 

domains (BAH1 and BAH2) at the N-terminal site that are involved in DNA binding 

and protein-protein interactions respectively (Fig. 1.4) (Callebaut et al., 1999; Bestor, 

2000; Frauer et al., 2011).  

 
 

Figure 1.4 Schematic representation of the domain organization of MET1 in 

Arabidopsis 

The Bromo-Adjacent Homology domains (BAHs) are shown as green boxes and the 
catalytic DNA methyltransferase domain as a blue box (modified from Chan et al., 
2005). 

 

Loss of function of Dnmt1 is lethal in mice. It results in a global DNA demethylation, 

which causes pleiotropic developmental defects such as biallelic expression of some 

of the imprinted genes, transient activation of all X chromosomes to activation of 

transposable elements (Bestor, 2000).  

In Arabidopsis, the class of maintenance DNA methyltransferases is represented by a 

gene family of four members (MET1, METIIa, METIIb and METIII), with MET1 

being the best studied and characterized one (Genger et al., 1999). METIII, encodes a 

truncated protein and is not essential, whereas the METIIa and METIIb are functional 

proteins, that are involved in maintenance of DNA methylation, but can`t substitute 

MET1 loss of function (Genger et al., 1999). MET1 shares about 50% sequence 

identity with mouse Dnmt1, within the catalytic-methyltransferase domain (Finnegan 

and Kovac, 2000). A notable difference between the mouse Dnmt1 and the plant 

MET1 is the N-terminal cysteine rich region that is missing in plants (Finnegan and 

Kovac, 2000).   
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In Arabidopsis, mutations in MET1 result in drastic reduction of DNA methylation 

primarily in CG context at repetitive sequences and in the gene bodies, but also in 

CHG and CHH context, suggesting for a more global role for MET1 (Cao and 

Jacobsen, 2002). The lost methylation in met1 can be inherited to the next generation. 

Restoration of CG-DNA methylation is slow and requires a functional MET1 copy 

(Mathieu et al., 2007).  

MET1 was show to be important for the paternal imprinting of the FWA locus. FWA 

is a maternally expressed locus, due to the DNA hypomethylation in the female 

gametophyte and DNA hypermethylation in the male gametophyte. MET1 maintains 

the hypermethylated state of the male gametophyte, and imprinting is lost in crosses 

between wild type maternal plant and met1 paternal plant. Phenotypically, met1 

exhibit delay in flowering, which is a result of hypomethylated FWA (a repressor of 

flowering) epialleles leading to its ectopic expression (Kankel et al., 2003). 
 

Chromomethylases	
Chromomethylases (CMTs) are plant-specific class of DNA methyltransferases, 

which predominately maintain methylation at symmetric CHG context but are also 

known to establish de novo DNA methylation in the nonsymmetrical CHH context 

(Dangwal et al., 2014; Kawashima and Berger, 2014; Junjun et al., 2010). 

Chromomethyltransferases have a bromo domain and a chromodomain which is 

inserted between the catalytic motifs I and IV (Fig.1.5) (Bartee et al., 2001), which 

are involved in the recognition and binding of histone modifications (H3K9me2 in 

particular) (Du et al., 2012; Platero et al., 1995; Paro and Hogness, 1991). In the 

Arabidopsis genome three genes are encoding for chromomethylases: CMT1 

(Henikoff and Comai, 1998), CMT2 and CMT3 (McCallum et al., 2000). In some 

Arabidopsis accessions, the CMT1 gene is disturbed due to transposon insertions or 

frame shift mutations (Papa et al., 2001; Henikoff and Comai, 1998). CMT3 is 

involved in maintaining CHG-DNA methylation patterns, whereas CMT2 additionally 

establishes de novo CHH-DNA methylation patterns (Stroud et al., 2013; Lindroth, 

2001). On a structural base, CMT2 and CMT3 differ in the N-terminal domain and 

CMT2 doesn`t complement loss of function of CMT3. Mutation in CMT3 leads to 

strong decrease of methylation in CHG context and has a weak effect on the 

methylation in the CG context. Despite the lack of phenotypic abnormalities, cmt3 

mutants show substantial transcriptional activation of TEs (Lindroth, 2001).  
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Figure 1.5 Schematic representation of the domain organization of 

chromomethylases in Arabidopsis (modified from Chan et al., 2005) 

Numbers I-IX indicate the catalytic domains of the enzyme. Catalytic domain I is 
surrounded by the bromo-adjacent domain (BAH) the chromodomain (CHR) 
responsible for recognition and binding to H3K9me2.  
 

DDM1	
All of the aforementioned enzymes have direct DNA methylatransferase domains and 

activities thus directly regulate DNA methylation levels. DECREASE IN DNA 

METHYLATION1 (DDM1) is a chromatin remodeler (SWI2/SNF2-type), without 

DNA methyltransferase activity, and yet is involved in maintaining DNA methylation 

and in the regulation of gene expression (Jeddeloh et al., 1999). Chromatin 

remodelers, utilize energy derived from ATP to disturb histone-DNA interaction, 

which makes DNA accessible for numerous proteins among which DNA 

methyltransferases. Therefore the regulatory role of chromatin remodelers in DNA 

methylation is rather indirect (Zemach et al., 2013; Ryan and Owen-Hughes, 2011; 

Brzeski and Jerzmanowski, 2003).  

DDM1 maintains protein coding genes and transposons transcriptionally silent by 

maintaining the DNA methylation in all cytosine contexts and countering the 

influence of the linker H1 histone, therefore creating less compact chromatin structure 

(Zemach et al., 2013). Loss of function in DDM1, causes strong reduction of DNA 

methylation at transposons and repetitive sequences, which can lead to the 

mobilization of transposable elements. It also leads to developmental defects, that 

become more severe with the inbreeding homozygous lines for several generations 

(Zemach et al., 2013; Jeddeloh et al., 1998; Kakutani et al., 1996; Vongs et al., 1993). 

	

	
	



 

	
13	

	

DNA	demethylation	
 
DNA methylation is a reversible process. Removal of methyl groups from cytosines 

in the DNA can be a passive or an active process. Passive DNA demethylation occurs 

when DNA methylation-maintenance machinery fails to propagate the methylation 

patterns after DNA replication. The active removal of methylated cytosines in DNA 

involves the direct removal of the methyl group from the cytosine ring, excision of the 

methylated cytosine and /or chemical modification of the 5mC followed by 

replacement (Piccolo and Fisher, 2014). 

In plants active DNA demethylation is mediated by group of enzymes known as DNA 

glycosylases (Piccolo and Fisher, 2014; Zhu, 2009). The mechanism of action of 

DNA glycosylases involves direct cleavage of the bound between the 5meC and the 

deoxyribose. This creates gaps in the DNA helix, which are repaired by the basic 

excision repair pathway, by adding unmodified cytosines.  

In Arabidopsis four DNA glycosylases have been identified: REPRESSOR OF 

SILENCING (ROS1), DEMETER (DME) and DEMETER-LIKE2 and 3 (DML2, 

DML3).  ROS1, DML2 and DML3 are expressed in adult tissues in Arabidopsis, 

where they control the levels of 5mC at specific loci (DML2 and DML3) or on a 

broader scale (ROS1).  DME has a tissue-specific expression pattern. It is active in 

the central cell of the female gametophyte and it`s activity is essential for a proper 

genomic imprinting. This tissue-specific expression and the lack of DME activity in 

the male gametophyte, provides the differential expression of the maternally 

expressed genes (MEA, FIS2, FWA) (Zhang and Zhu, 2013; Zhu, 2009). 

	

RNA-Directed	DNA	methylation	(RdDM)	pathway		
RNA-directed DNA methylation (Wassenegger et al., 1994) is a plant specific form of 

RNA silencing, which causes sequence-specific DNA methylation changes in the 

genome (Aufsatz et al., 2002a). Reminiscent to PTGS, it utilizes small RNAs to target 

regions in the genome (based on sequence homology) for de novo DNA methylation.  

RdDM is entailed in de novo DNA methylation in all cytosine contexts (CG, CHG, 

CHH) (Castel and Martienssen, 2013; Holoch and Moazed, 2015; Furner and Matzke, 

2010; Matzke et al., 2009; Huettel et al., 2007).  
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RdDM plays a role in protection of the genome stability and silencing of transposable 

elements (Mosher et al., 2011; Ito et al., 2011; Mirouze et al., 2009) . 

	

Histone	modifications	
Histone proteins are the main components of the nucleosomes - the building blocks of 

chromatin. The core histones H2A, H2B, H3, H4 are grouped in an octamer structure 

around which DNA is wrapped creating nucleosomes. The individual nucleosomes 

are connected with the linker histone H1( Zhang et al., 2006b; Pandey et al., 2002; 

Luger et al., 1997). The nucleosomes are further packed into supercoiled structures, 

creating the backbone of the chromatin. Two different chromatin structures can be 

observed: a relaxed/open, which is transcriptionally active-euchromatin and 

condensed/closed transcriptionally silent-heterochromatin (Grewal, 2003). 

Core histones have globular structure, but their C- and N-terminal “tails” are free and 

can undergo posttranslational modifications. Even though most of the 

posttranslational modification are found at the tails, some of them are localized in the 

globular domain of the histone (Berger, 2007; Kouzarides, 2007). These 

posttranslational modifications of histone tails alter the chromatin structure by 

influencing the strength of the DNA-histone interaction, making the DNA more 

accessible (open chromatin) or less accessible (closed, compact chromatin) thereby 

influencing gene expression. However, not all histone modifications have a direct 

effect on the gene expression and some of them act via mediator molecules that 

recognize and bind the modification. The heredity of the histone modifications is 

opening discussions on whether they can be classified as bona fide epigenetic marks. 

Namely, so far only for two histone modifications - H3K27me3 and H3K9me2 have 

been shown to be heritable (Burgess, 2014).  

The theory arguing against the histone modifications being true epigenetic marks, 

gives importance to the chromatin remodelers and the nucleosome occupancy. It 

suggest that dynamic processes that affect the nucleosomes, create histone 

modifications patterns, which in turn affect the physical properties of the nucleosomes 

and help to maintain active or silent chromatin state (Henikoff and Shilatifard, 2011; 

Cosgrove et al., 2004). 

Opposing to this, the hypothesis of the “histone code” suggests that multiple histone 

modifications on one or multiple tails, acting in a combinatorial or sequential fashion, 
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specify unique downstream functions ( la Cruz et al., 2005; Spotswood and Turner, 

2002; Jenuwein and Allis, 2001; Strahl and Allis, 2000). Two recent works in 

C.elegans and Arabidopsis have shown a trans generational effect of H3K27me3 

(Crevillén et al., 2014; Gaydos et al., 2014), supporting the epigenetic nature of the 

histone modifications.  

The best-studied histone modifications include: acetylation, methylation, 

phosphorylation, ubiquitination, sumoylation and ADP ribosylation (Liu et al., 2010; 

Berger, 2007; Kouzarides, 2007). The overall effect of the different histone 

modification on gene expression is difficult to predict. This is due to the complex 

interplay between the different modifications. Some of the histone modifications are 

exclusive, whereas others can coincide. Ultimately the type of modifications, their 

number (amount), the position and the surrounding environment will determine the 

effect one modification will have on gene expression.  

In Arabidopsis, acetylation can be associated with several lysine residues at different 

positions in histone H4: K5, K8, K12, K16 and K20 (“K” stands for lysine residue, 

and the number indicates the position of the lysine in the histone). Lysine residues in 

histone three (H3) can also be subjected to acetylation. Likewise acetylation of lysine 

residues in histone 3 (H3) also can occur at several positions (K9, K14, K18 and 

K23).  

Methylation is found to be associated with lysine residues at histone H3 (K4, K9, 

K27, K36) and histone H4 (K5, K8, K12 and K16) (Liu et al., 2010; Zhou, 2009; 

Zhang et al., 2006b). Histones modifications are reversible and can be established and 

erased upon a stimuli in a short period of time (Kouzarides, 2007). Different classes 

of enzymes are involved in the establishment and removal of the different 

modifications (Tab.1.1).  
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Histone 

modification 

Effect on 

transcription 

“Writers” 

enzymes adding  

the mark 

“Erasers” 

enzymes removing the mark 

 

H3K4 

me1  

Transcriptional 

activation 

 

Trithorax(trxG) 

(ATX1;ATX2) 

 

Jumanji 

(JMJ15; JMJ16; JMJ18) 

me2 

me3 

 

H3K9 

me1 Transcriptional 

repression 
(repetitive sequences 

and transposable 

elements) 

 

SUVH 

(SUVH4;SUVH5;SUVH6) 

 

Jumanji 

(JMJ25) 

me2 

me3 

 

H3K27 

me1  

Transcriptional 

repression 

 

Polycomb (PRC2) 

 

Jumanji 

(JMJ12) 

me2 

me3 

 

       H4 

 

Transcriptional 

activation 

HATs 

(GANT;p300/CREB; 

TAF250 and MYST) 

 

HDACs 

 

Table 1.1 Histone modifications in Arabidopsis, their effect on transcription, 

“writers” and “erasers” 

	

Histone	modifying	enzymes		
 

Histone	acetyltransferases	(HATs)	and	deacetylasess	(HDACs)	
Histone acetylation is related to transcriptional activation. Acetylation of the lysine 

residues reduces the positive charge of the histone tails, which in turn reduces their 

affinity for DNA. This results in relaxation of the condensed chromatin, making it 

more accessible for transcription factors (Struhl, 1998; Vettese-Dadey et al., 1996). 

Using acetyl-coenzyme A as a donor the enzymes-histone acetyltransferases (HATs) 

mediate the transfer of an acetyl group to the lysine residues at the histone tails (Kuo 

and Allis, 1998).  
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Based on the sequence homology with the mammalian HATs, the Arabidopsis 

homologues can be classified into four groups: a) GNAT, b) p300/CREB (CBP), c) 

TAF250 and d) MYST( Servet et al., 2010; Pandey et al., 2002). 

HATs regulate many processes in Arabidopsis that vary from adaptation to stress to 

different developmental changes (AtGCN5) (Servet et al., 2010), to flowering time 

(p300/CBP) (Deng et al., 2007; Han et al., 2006) and sexual reproduction (MYST) 

(Latrasse et al., 2007). 

Histone acetylation is a reversible process. The removal of the acetyl groups is 

performed by histone deacetylases. They can be classified into three groups: a) 

RPD3/HDA1 (Reduced Potassium Dependance3/Histone Deacetylase 1), b) SIR 

(Silent Information Regulator 2) and c) HD2 (Histone Deacetylase 2). The last class is 

plant specific. In the Arabidopsis genome 18 genes encode for HDACs. Most of them 

(about 12) belong to the group of RPD3/HDA1. Among them the best characterized 

members are: HDA6, HDA19, HDA7 and HDA9 (van Zanten et al., 2014; Xuncheng 

et al., 2014; Pandey et al., 2002). 

HDA7 is required for the female gametophyte development. Mutations in HDA7 

result in unfertilized ovules and /or aborted seeds (Cigliano et al., 2013). HDA9 

defective plants display pleotropic defects. First, HDA9 was reported to control 

flowering time by regulating the expression of two flowering genes: FLOWERING 

LOCUS T (FT) and the MADS-box protein-AGAMOUS-LIKE 19 (AGL19) (Kim et 

al., 2013; Yun et al., 2012). Recent studies have reported on the role of HDA9 in the 

control of seed dormancy, and showed that hda9 plants exhibit reduced seed 

dormancy and enhanced germination speed (van Zanten et al., 2014). HDA19 is 

ubiquitously expressed and is needed for proper development of reproductive tissues. 

Mutations in HDA19 result in reduced fertility, and aborted seeds. HDA6 is involved 

in silencing of TEs, transgenes, and repetitive sequences (To et al., 2011a; Hollender 

and Liu, 2008; Probst et al., 2004; Murfett et al., 2001). 

 

Histone	methyltransferases	(HMTs)	and	demethylases	
Histone methylation is involved in regulation of important processes like chromatin 

stability, development or cellular memory. Histone methylation can occur at lysine 

residues (K) as mono-, di- or tri- methylation and at the arginine residues (R) as 

mono- and di- methylation. Methylation can be associated with activation as well as 

with repression of genes. This is determined by the number of methyl groups added as 



 

	
18	

well as the position of the methylated residues. Whereas the aforementioned histone 

acetylation reduces the positive charge of the histone tails, the methyl groups don’t 

have this kind of effect. They are recognized by proteins (eg. heterochromatin protein 

1-HP1), which then alter the chromatin structure (Bannister and Kouzarides, 2005; 

Zhang and Reinberg, 2001). 

The addition of methyl groups to the lysine and arginine residues at the histone tails is 

performed by a group of enzymes called histone methyltransferases.  

SET (Su (var)-E (z)-trx) - domain proteins are the best studied histone 

methyltransferases. They facilitate the transfer of a methyl group from S-adenosyl-L-

methionine (AdoMet) to lysine residues (Dillon et al., 2005). In Drosophila 

melanogaster, the 130-160 amino acid SET domain was found in: 

a. Suppressor of variegation 3-9 (SU(VAR)3-9) involved in heterochromatin-

dependent gene silencing by methylation of H3K9 (Schotta et al., 2002; 

Tschiersch et al., 1994); 

b. Enhancer of zeste (E(z)) (Jones and Gelbart, 1993) - member of the polycomb 

group (PcG), involved in maintaining the repressive state of chromatin and 

c. trithorax (trx) – maintain the activity of homeotic genes during development   

(Dillon et al., 2005; Baumbusch et al., 2001). 

The Arabidopsis genome has 29 genes encoding SET- domain proteins that can be 

distributed in one of these three categories (Table 1.2). A special feature for the group 

of SUVH in Arabidopsis is the presence of a plant-specific domain that is common 

for SET and RING domain proteins. It is called SER domain  (SET and RING 

associated) (Johnson et al., 2007; Baumbusch et al., 2001). 

Arabidopsis E(z) homologues play important roles in the plant development.  MEDEA 

(MEA) (Grossniklaus et al., 1998) is required for a proper embryo and endosperm 

development. This maternal gene is imprinted and loss-of function results in seed 

abortion (Kinoshita et al., 1999). CURLY LEAF (CLF) (Goodrich et al., 1997) is 

important for leaves and flower development. Direct CLF targets are genes involved 

in flowering such as: FLOWERING LOCUS C (FLC), FLOWERING LOCUS T (FT) 

and the MADS-box protein-AGAMOUS (AG). In clf these targets are miss expressed, 

and have reduced levels of H3K27me3 (Lopez-Vernaza et al., 2012). ENHANCER 

OF ZESTE FROM ARABIDOPSIS (EZA) or SWINGER (SWN) is a CLF homologue 

and acts in a redundant manner. Mutations in SWN don’t cause severe developmental 



 

	
19	

phenotype. However, clf swn plants are severely impaired and develop callus like 

structures (Chanvivattana et al., 2004).  

 

 
Drosophila 

melanogaster 

Arabidopsis 

thaliana 

References 

 

SUV(VAR)3-9 • SUVH1-SUVH10 • Bambusch 2001 

 

E(z) 

• CURLY LEAF (CLF) 

• MEDEA (MEA) 

• SWINGER (SWN) 

• Goodrich 1997 

• Grossniklaus 1998 

• Lindroth 2004 

 

Tritorax 

• ATX1-ATX5 

• ATXR1-ATXR7 

• Bambusch 2001 

 

Table 1.2 Orthologous D. melanogaster histone methyltransferases that have 

been identified in Arabidopsis 

 

For a long time histone methylation was considered to be a stable and irreversible 

modification (Bannister et al., 2002). However, the nature of this modification and its’ 

role in regulation of gene expression requires reversibility of histone methylation. The 

transcriptional activity of a gene can be altered (from active to silent state and vice 

versa) very rapidly upon stimuli. This requires fast changes also in the gene-

associated factors including chromatin modifications like histone methylation.  

In plants histone methylation is actively removed from histones by two groups of 

proteins: KDM1/LSD1-like histone demethylases and JmjC domain containing 

histone demethylases (Chen et al., 2011; Liu et al., 2010; Lu et al., 2008). 

Although histone modifications and their role in regulation of transcription are 

extensively studied fields, the many possible combination of histone modification, is 

an obstacle in their full understanding. The best-studied ones in Arabidopsis include: 

a. Methylation of H3K4 (lysine 4 at histone 3). H3K4 exists in mono- 

(H3K4me1), di- (H3K4me2) and tri- (H3K4me3) methylated form. All three 

forms of methylated H3K4 are associated with transcriptional activation (Feng 

and Jacobsen, 2011; Zhang et al., 2009).  Trithorax proteins deposit 

methylation groups at H3K4. In Arabidopsis ATX1 and ATX2 create 
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H3K4me3 and H3K4me2 respectively. ATX1 mutants display an early 

flowering phenotype.  

b. JMJ18 is H3K4me2 and H3K4me3 demethylase. It was also shown that 

JMJ18 is promoting flowering via repressing the flowering inhibitor FLC 

(Yang et al., 2012a). In addition to JMJ18, JMJ15 and JMJ16 also showed 

H3K4 demethylation activity (Shen et al., 2013).  

c. H3K9 is present as mono- (H3K9me1), di- (H3K9me2), and the less abundant 

tri-methylated form (H3K9me3). H3K9me1 and H3K9me2 show enrichment 

at repetitive sequences and transposable elements, suggesting that they play an 

important role in silencing of heterochromatin regions (Du et al., 2012; Feng 

and Jacobsen, 2011; Bernatavichute et al., 2008; Lippman et al., 2004). This 

type of methylation is established by SUVH4/KYP (homolog of SU(VAR)3-

9),  SUVH5 and SUVH6 (Feng and Jacobsen, 2011; Liu et al., 2010; 

Thorstensen et al., 2005). 

d. Mutations in these methyltransferases do not cause developmental defects, but 

loss of DNA methylation is observed in CHG context. This is due to the 

SUVH4/KYP interactions with CMT3 (Lindroth et al., 2004). Taken together, 

these observations suggest a complex interplay between DNA methylation and 

histone modifications. INCREASE IN BONSAI METHYLATION1 (IBM1), 

also known as JMJ25, catalyses demethylation of H3K9. This enzyme keeps 

the CHG DNA methylation away from the gene bodies. Loss of function in 

IBM1 causes hypermethylation especially at genes with methylated bodies 

(Chen et al., 2011). 

e. H3K27me1, H3K27me2 and H3K27me3 are the three forms of methylation of 

the lysine residues at position 27 in H3. H3K27me1 is found to be associated 

with heterochromatin, while H3K27me3 is associated with transcriptional 

silencing, tissue specific gene expression and regulation of developmental 

processes (Liu et al., 2010).  

Polycomb proteins deposit methyl groups at the H3 histone tails. Although, polycomb 

proteins were found in the Arabidopsis genome, the histone methyltransferase activity 

of these proteins has not been confirmed yet. Instead they create a complex known as 

polycomb repressive complex 2 – PRC2 that shows methyltransferase activity. In 

Arabidopsis there are three PRC2 complexes:  
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a. the FIS containing complex – controlling imprinted genes; 

b. the EMF complex- that regulates the floral transition and expression of 

floral homeotic genes and 

c. VRN2 regulating vernalization(Liu et al., 2010). 

RELATIVE OF EARLY FLOWERING 6 (REF6) also known as JMJ12 that was 

identified as a H3K27me2 and H3K27me3 demethylase (Crevillén et al., 2014; Lu et 

al., 2011). 

Interplay	between	the	different	epigenetic	marks	
The epigenetic modifications described earlier create a complex network, and can’t be 

analyzed/interpreted individually without considering the big picture. Some of them 

are exclusive, others have synergistic effect or some require the activity of another.  

An example for this complex network is the association of H3K9 with DNA 

methylation. Genetic studies have shown that there is a tight correlation between the 

CHG-DNA methylation levels and the H3K9me2 histone mark, suggesting interplay 

between DNA methylation machinery and the histone methyltransferases. It is a self-

reinforcing loop, in which the DNA (CHG and CHH) methylation recruits the 

methyltransferase-SUVH4/KYP, which deposits two methyl groups at H3K9 

(H3K9me2). H3K9me2 is then recognized by CMT3, which in turn methylates the 

targeted locus. SUVH4/KYP can also be guided to the target sequences by siRNAs 

produced by the RdDM pathway. The DNA methyltransferase CMT2 deposits methyl 

groups at cytosines in all sequence contexts. Both, CMT2 and CMT3 utilize their 

chromo domain and the bromo domain for dual recognition and binding to H3K9me2 

(Greenberg et al., 2013; Zemach et al., 2013; Saze and Kakutani, 2011).  

Another regulatory network is the one between DNA methylation and histone 

acetylation levels. It was shown that there is direct interaction between the histone 

deacetylase-HDA6 and the CG-maintenance DNA methylatransferase-MET1, which 

makes them act coordinately in silencing TEs (Liu et al., 2012; To et al., 2011b). 
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The	Nucleus		
The compartmentalization in eukaryotes led to the development of highly specialized 

organelles, assigned to very specific processes and functions. Despite the spatial and 

functional separation, the cell functions as a unit and absolutely isolating border 

between the different compartments cannot be set. The nucleus is separated from the 

cytoplasm with the nuclear membrane, which thereby guards the genetic information 

stored in the nucleus. The nuclear membrane is a double layer envelope that consists 

of inner nuclear membrane (INM) and the outer one (ONM), separated with 

perinuclear space. The outer nuclear membrane is fused with the endoplasmic 

reticulum and the inner membrane in metazoans is connected with the nuclear lamina 

(Meier, 2007). The two membranes (outer and inner) fuse at several points, making 

“holes” in the membrane. Nuclear pore complexes are embedded into these fusions. 

The nuclear membrane separates the genome from the rest of the cell, and the nuclear 

pores regulate the traffic of molecules (import and export of proteins and RNAs) 

between the nucleus and the cytoplasm (Güttinger et al., 2009). 

Nuclear	pore	complexes	(NPCs)	and	nucleoporins	(Nups)	
Nuclear pore complexes are large (40-60MDa) multicomponent structures, which 

facilitate exchange of molecules between the nucleus and the cytoplasm (Grossman et 

al., 2012; Capelson et al., 2010; Cook et al., 2007). The size of the NPCs differs 

among yeast, plants and vertebrates, with yeast having the smallest and metazoans the 

largest complexes (Roberts and Nortcote, 1970).  Nucleoporins (Nups) are the 

building blocks of the NPCs. Approximately 30 Nups have been identified in 

Arabidopsis (Tamura et al., 2010).  NPCs share eight-fold symmetry, meaning that 

each of the NUPs is presented with at least eight copies, creating funnel-like large 

complexes. A large part of the Nups is embedded into the nuclear envelope, creating 

the central transport channel of the NPC surrounded by central spoke ring and two 

outer rings - cytoplasmic and nuclear. Eight filaments are attached to each of the rings 

(at the nuclear and the cytoplasmic site). On the nuclear site, these filaments are 

organized in a structure “nuclear basket”, that is not present at the cytoplasmic side 

(Fig.1.6) (Grossman et al., 2012; Strambio-De-Castillia et al., 2010; D'Angelo and 

Hetzer, 2008). 
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Figure 1.6 Organization of the nuclear pore complex 

(modified from Strambio-De-Castillia et al., 2010) 

The central transport channel represents the core part of the nuclear pore complex and 
it is the main route for the transport between the nucleus and the cytoplasm. The 
central spoke ring and the nuclear and the cytoplasmic rings stabilize the central 
transport channel. The filamentous Nups on the nuclear site are organized in a nuclear 
basket.  

 
 

Five motifs can be identified in the Nups, all of them involved in establishing or 

maintenance of protein-protein interactions, therefore mediating the transport 

processes. Among them are: alpha solenoids, beta propellers, phenylalanine- glycine 

(FG) repeats, coiled coil and transmembrane motifs (D'Angelo and Hetzer, 2008; 

Devos et al., 2006).    

Based on the position in the NPC and the motifs present, Nups can be divided into: a) 

transmembrane, b) scaffold (Nups at the central spoke ring, the outer rings, and the 

linker Nups), and c) barrier Nups (FG Nups from the central channel, cytoplasmic and 

nuclear FG Nups) (Grossman et al., 2012). Transmembrane Nups are anchoring the 
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NPCs to the nuclear membrane, the scaffold Nups stabilize the complex via 

connecting the transmembrane and barrier Nups, whereas the barrier Nups provide the 

selectivity of the transport through the membrane (Grossman et al., 2012; Tamura et 

al., 2010; Patel et al., 2007).  

The entire traffic of molecules between the nucleus and the cytoplasm occurs via 

NPCs. NPCs are permeable for small molecules and ions, but molecules with 

molecular mass lager than 40kDa have to be actively transported through the NPCs 

(Stewart, 2010). 

The active transport requires nuclear transport factors (NFTs), as well as short amino 

acid transport signals at the molecules subjects to transport, in a form of nuclear 

localization sequences (NLSs) or nuclear export sequences (NESs) that are 

recognized and bound by the NTFs	(karyiopherin-β and importin-β) (Grünwald et al., 

2011; Strambio-De-Castillia et al., 2010).  

Unique features of the transport through the nuclear membrane are selectivity and 

directionality and several models have emerged trying to explain them. The “virtual 

gate model” (Rout et al., 2000), “selective phase model” (Ribbeck and Görlich, 2001), 

“spaghetti oil model” (Macara, 2001), and the “two dimensional model” (Peters, 

2005), even though different, all of them attribute the selectivity of the nuclear pore 

transport to the FG domains containing Nups (D'Angelo and Hetzer, 2008; Terry et 

al., 2007; Fried and Kutay, 2003). 

The directionality of the nuclear pore transport is achieved with the GTPase Ran and 

the asymmetric distribution of its’ two forms (RanGTP and RanGDP) in the nucleus 

and in the cytoplasm. RanGTP has higher affinity for binding cargo. It prevails in the 

nucleus, where the affinity of Ran for GTP hydrolysis is very low. In the cytoplasm 

the presence of factors such as RanGAP promotes the hydrolysis of GTP by Ran to 

GDP and dissociation of the cargo (Fried and Kutay, 2003).  

Additional	roles	of	NPCs	
NPC regulates gene expression in transport-dependent and transport-independent 

manner (Raices and D'Angelo, 2012; Capelson and Hetzer, 2009). The first one is 

related to the association of the RNA surveillance machinery with the the nuclear 

basket and the NPC. The transport-independent regulation of gene expression on the 

other hand is related to the nuclear organization, which reveals the role of the nuclear 
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pore in the organization of the chromatin (Ptak et al., 2014; Strambio-De-Castillia et 

al., 2010; Qureshi and Mehler, 2010; Capelson and Hetzer, 2009).  

The NPCs influence the chromatin structure in several aspects: 

a) In yeast the nuclear periphery is associated with patches of heavily condensed 

heterochromatin. The regularity of condensed chromatin along the nuclear rim 

is disrupted by the NPCs (nuclear basket in particular) where the chromatin is 

open (relaxed) (Ptak et al., 2014; Raices and D'Angelo, 2012). Studies in yeast 

have shown that the position of a certain gene within the nucleus can greatly 

influence its transcription and that transcriptionally active genes are associated 

with the nuclear pores. The inducible genes INO1 and HXK1 in 

Saccharomyces cerevisiae, are an example for this phenomenon. In favorable 

conditions, these genes get activated and translocated to the nuclear basket, 

and this translocation was shown to be independent of active transcription, 

indicating that translocation happens prior to transcription initiation (Taddei et 

al., 2006; Brickner and Walter, 2004). These observations are supporting the 

theory of “gene gating” (Blobel, 1985), according to which the tethering of 

genes to the NPC leads to transcriptional activation.  

b) In addition to the role of the nuclear pores in gene activation via the process of 

gene gating, the nuclear pores play a role also in supporting the stability of the 

replication fork and ultimately support the chromosome stability. During 

replication in S phase a topological stress is created, which is especially 

profound when the replication fork clashes with transcription units. The 

positive supercoiling can cause chromosomal breaking and fork reversal, 

whereas the negative supercoiling can cause formation of R-loops (Skourti-

Stathaki and Proudfoot, 2014). R loops are DNA/RNA hybrids formed 

between the replication forks and the newly synthesized RNA from the 

transcription machinery. With the gating process chromosomes get attached to 

the nuclear pore at several points, creating barriers that disperse the 

topological pressure.  The association of the NPC with chromosome stability 

is supported by the fact that gene-gating mutants exhibit formation of R-loops 

(Gonzalez-Aguilera, 2008).  

c) The epigenetic state of a certain sequence can influence the epigenetic state of 

neighboring regions. The so-called “boundary elements” can block the 
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communication between active and silent chromatin. Boundary activity was 

shown for Nup2 in yeast (Burgess-Beusse et al., 2002).  

d) NPCs and Nups were associated with epigenetic transcriptional memory (Ptak 

et al., 2014; Light et al., 2013;Van de Vosse et al., 2010). Transcriptional 

memory explains the faster activation of genes that have recently been active 

but were repressed compared to genes that were silenced for long time (Light 

et al., 2013; Ptak et al., 2014; Brickner et al., 2007). In yeast, DNA loops 

created upon gene tethering to the pore, stay associated with it even in 

repressive conditions, thus allowing faster Pol II association in activation 

conditions (Tan-Wong et al., 2009). This mechanism is highly conserved from 

yeast to humans. In both systems transcriptional memory is a multistep 

process that involves interactions of the pore members Nup98 and Nup100p 

with the promoters of the activated genes, which leads to accumulation of 

H3K4me2 in the promoter region of the activated genes and faster reactivation 

(Light et al., 2013).  

 

Role	of	the	Nups	in	developmental	processes	and	tissue	specificity	
Different developmental programs in an organism are based on different 

transcriptional activities. Hence, regulators of transcription can influence the 

development of the organism. Since the NPCs are involved in regulation of 

transcription, their importance in the control of development doesn’t come as a 

surprise. The diversity of the NPCs functions is displayed via pleotropic 

developmental defects in the different Nup mutants.  

In humans the role of NUP98 in leukemia was reported (Lam and Aplan, 2001), 

whereas NUP133 is required for neural differentiation and embryonic development in 

mice (Lupu et al., 2008).  

In Arabidopsis NUPS are predominately associated with control of flowering time, 

but were shown also to be involved in processes like fungal and rhizobia symbiosis, 

innate immunity, or hormone signaling (Table 1.3). 
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Table 1.3 Best-studied nucleoporins in Arabidopsis and their physiological roles 

 

Some of the NUPs have tissue-specific expression patterns. In mammals NUP155 

shows heart specific expression patters, and is essential for its development. Lack of 

function in NUP155 causes cardiac disease (Zhang et al., 2008). The tissue specificity 

makes them essential for the establishment of specific developmental programs. 

Therefore, developmental defects in NUP mutants can be partially assigned to the 

tissue-specificity of their expression.  

NUPs can also show selectivity towards the transport export factors (specific NUPs 

will bind only certain subset of transport export factors). Their higher affinity towards 

some of the transport export factors will favor the export of their cargoes. This can in 

great extend have an influence on the development of the organism. 

Nuclear-cytoplasmic	export	of	RNAs	
Messenger RNAs are exported form the nucleus as large ribonucleoprotein complexes 

(RNPs). Therefore, the translocation through the nuclear pores requires the assistance 

of transport factors (NTFs). Until now four NPC mediated mRNA export pathways 

have been identified in higher eukaryotes - three of them are CRM1 dependent 

(Chromosomal maintenance 1, known as Xpo1 in yeast) and one is NXF1/NXT1 

dependent pathway (also known as TAP/p15; Mex67/Mtr2 in yeast) (Natalizio and 

Wente, 2013).  

CRM1 (Xpo1) encodes for β- kariopherin, and since kariopherins require Ran-GTP 

for functioning the entire pathway is a Ran-GTP dependent process, and the release of 

 

Nucleoporins in Arabidopsis thaliana 

NUP160 Flowering time and cold 

tolerance 

(Dong et al., 2006) 

NUP96/MOS3 Hormone signaling and 

flowering time 

(Zhang and Li, 2005) 

NUA/AtTPR Flowering time, fertility, 

growth 

(Xu et al., 2007) 

 

NUP85 Symbiosis (Saito et al., 2007) 

NUP88/MOS7 Innate immunity (Cheng et al., 2009) 

SARE Hormone signaling (Parry et al., 2006) 
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the cargo (primarily rRNAs, snRNAs) requires hydrolysis of Ran-GTP to GDP  

(Natalizio and Wente, 2013; Rodriguez et al., 2012; Hutten and Kehlenbach, 2007).  

Conversely, the NXF1/NXT1 (Mex67/Mtr2) pathway is a Ran-GTP independent 

pathway with strict RNA quality control and is primarily utilized by the bulk mRNAs. 

(Natalizio and Wente, 2013; Reed and Hurt, 2002; Clouse et al., 2001; Hurt, 2000; 

Strässer et al., 2000; Segref et al., 1997).  

Whereas some of the RNAs (tRNAs) create secondary structures that can be 

recognized by transport (export) factors, direct recognition of mRNAs doesn’t occur 

due to their great diversity in size and sequence. Therefore, several transport adaptor 

proteins are linked to transcription. From the point of transcription to the point of 

export, maturation of mRNAs occurs (5'capping, 3'polyadenylation and splicing). 

Maturation of mRNA is a co-transcriptional process, and the factors involved in these 

steps, associate with the C-terminal domain of Pol II. Association of some factors 

involved in the maturation steps, promotes the binding of export adaptor proteins, 

creating the transcription - export (TREX) complex (Katahira, 2012; Dieppois and 

Stutz, 2010; Kelly and Corbett, 2009; Köhler and Hurt, 2007; Vinciguerra and Stutz, 

2004). 

	

TREX-THO	complex	
	
The TREX complex is involved in coupling transcription and export and escorts 

nascent RNAs on their way to the nuclear pore. In yeast the complex consists of 

export adaptor factors – Yra1, Sub2 and Tex1 and a sub complex THO (Tho2, Hpr1, 

Mft1 and Thp2) (Katahira, 2012; Stewart, 2010; Köhler and Hurt, 2007; Sträßer et al., 

2002; Chavez et al., 2001). Mutations in TREX-THO members cause nuclear 

retention of mRNAs (Sträßer et al., 2002).  

The mechanism of TREX assembly in yeast is associated with transcription and it is 

splicing independent, due to fact that only 5% (mostly highly expressed genes) of 

yeast genes contain introns (Parenteau et al., 2008; Sträßer et al., 2002; Zenklusen et 

al., 2002; Strässer and Hurt, 2000;). Assembly of the TREX complex and it's loading 

to the transcripts is coupled with transcription elongation and 3' end processing  

(Kelly and Corbett, 2009; Gwizdek et al., 2006). Consistent with this model are the 

reports on mRNA nuclear retention in mutants of the 3' end processing machinery, 
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and hyperpolyadenylation of mRNAs in mex67 and yra1 mutants (Hammell et al., 

2002; Jensen et al., 2001). 

Yeast THO is known to be required for transcription elongation. Mutations in its 

members affect in particular the expression of CG - rich and repeat-containing genes, 

causing stalling of the transcription complex (Voynov et al., 2006; Chavez et al., 

2001). Impaired transcriptional elongation can result in R-loops formation, which was 

observed in tho/trex mutants (Katahira, 2012; Jimeno et al., 2002). 

Metazoan genes are rich on introns hence a different, cap and splicing - dependent 

model of TREX assembly exists (Müller-McNicoll and Neugebauer, 2013; Stewart, 

2010; Köhler and Hurt, 2007; Cheng et al., 2006; Masuda et al., 2005). In metazoans 

the TREX complex consists of:  the transport adaptors UAP56 (homolog of Sub2), 

Aly (homolog of Yra1) and Tex1, and the THO sub complex (Cheng et al., 2006). 

In plants the mRNA export pathway is poorly understood. Paralogs of the 

TREX/THO members have been identified in Arabidopsis, indicating that the 

complex is evolutionary conserved. The Arabidopsis TREX/THO complex consists 

of: THO1-THO7 and UAP56 (Meier, 2012). In addition to regulation of the mRNAs 

export, the complex also regulates the production of siRNAs. Loss of function in 

THO1, THO6 and THO3 (also known as TEX1) result in reduced levels of siRNAs 

originating from inverted repeats and transgenes. While TEX1 regulates the processes 

of siRNA production, THO2 is more involved in the production of miRNAs. No 

direct interaction of the TREX/THO complex with any of the small RNAs synthesis 

pathways has been identified so far, suggesting an indirect role of the complex in 

these pathways. However, the complex is required for the translocation of the small 

RNAs’ precursors to the processing sites (Francisco-Mangilet et al., 2015; Furumizu 

et al., 2010; Jauvion et al., 2010; Yelina et al., 2010). 

The	TREX-2	complex		
	
The transcription and export complex 2 (TREX2, consisting of Sac3, Thp1, Cdc31, 

Sus1) was initially identified in yeast as an important component of nuclear-

cytoplasmic export of mRNAs (Fischer et al., 2002). Even though TREX-2 

homologues have been identified in plants (Lu et al., 2009), fruit fly (Kopytova et al., 

2010) and in humans (Jani et al., 2012),  most studies were carried out in yeast.  

Mutations in TREX-2 members exhibit several phenotypes. One of them is 

impairment of mRNA export. Yeast TREX-2 represents a bridge at the nuclear pore, 
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connecting the export machinery Mex67p-Mtr2p and the nucleporins Nup1, and 

Nup60, thereby targeting the newly synthesized transcripts to the pore channels 

(Fischer et al., 2002). Deletions of yeast TREX-2 members (eg. Sac3, Thp1) results in 

accumulation of mRNAs in the nucleus, a phenotype which can be also observed in 

TREX/THO mutant backgrounds (Gallardo et al., 2003; Lei, 2002), indicating that 

both complexes are involved in the mRNAs  nuclear-cytoplasmic export.   

 

  

Sacharomyces 
cerevisiae 

Mus musculus Drosophila 
melanogaster 

Arabidopsis 
thaliana 

Sac3 GANP/SHD1 Xmas-2 Sac3A, Sac3B, 
Sac3C 

Thp1 PCID   Thp1 
Sus1 ENY2 E(y)2 Sus1 

Cdc31 CEN2   Cen1, Cen2 
Sem1 DSS1 DSS1 Dss1 

 

Table 1.4  Members of the TREX-2 complex in yeast and their homologues in 

different model organisms (García-Oliver et al., 2012) 

 

TREX-2 was also shown to be required for transcription of long transcripts and 

transcripts with high CG content, and a general down regulation of these transcripts is 

observed in TREX-2 mutants (sac3 and thp1)(Santos-Pereira et al., 2014). Therefore, 

mutants in TREX-2 components exhibit defects in transcription elongation and 

genome stability. This phenotype is consistent with the phenotype of THO/TREX 

mutants, which supports the notion that a coordinated activity of the two complexes 

takes place and for their important role in transcription and export (Santos-Pereira et 

al., 2014;  Faza et al., 2009; Gonzalez-Aguilera, 2008). 

In yeast TREX-2 consists of several subunits: Sac3, Thp1, Cdc31, Sus1, and the small 

protein Sem, which stabilizes the complex (Faza et al., 2009; Köhler and Hurt, 2007; 

Fischer et al., 2002). The homologues of these yeast proteins in higher eukaryotes are 

given in table 1.4 (Wickramasinghe et al., 2010; Kurshakova et al., 2007).  

 

Sac3	(Suppressor	of	actin	3)	
Sac3 is the core protein in the TREX-2 complex around which the other subunits are 

organized (Ellisdon et al., 2012; Jani et al., 2009; Fischer et al., 2002). The central-
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CID region of the protein interacts with two Sus1 (Sus1A and Sus1B) and one Cdc31 

proteins, which work synergistically in providing the connection of TREX-2 to the 

NPC, and stabilizing the long Sac3-CID alpha helix (Jani et al., 2009). The protein 

has a conserved SAC3/ GANP domain, which together with the N-terminal domain 

binds to Thp1, and the Mex67-Mtr2p export complex (Jani et al., 2012). 

Deletion analyses of the Sac-CID domain and its N-terminal domain result in mRNA 

export and growth defects in yeast, suggesting that both domains are responsible for 

the mRNA export functions of Sac3 (Ellisdon et al., 2012; Jani et al., 2012). 	  
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Thesis	outline	
In recent years, research on epigenetic regulation of gene expression in Arabidopsis 

has been very intensive, especially in the field of RNA-directed DNA methylation. 

Even though numerous detailed mechanisms have now been revealed, surprisingly 

little is known about how epigenetic mechanisms influence plant development. More 

specifically, little is so far known about epigenetic regulation of tissue specific gene 

expression, which should play a central role in development and adaptation. 

The initial aim of this thesis was to uncover novel epigenetic regulators in 

Arabidopsis that regulate tissue-specific gene expression. The basis of this thesis was 

a forward genetic mutant screen that was previously performed in the lab that was 

designed to discover tissue-specific epigenetic regulators.  

In Chapter 2, I present data describing the transgenic reporter line that was used in the 

forward genetic mutant screen. I first confirm via forward genetics that the reporter 

line behaves as expected and then describe a novel mutant allele (epic1) of the histone 

deacetylase HDA6 that was recovered in the mutant screen. 

In Chapter 3 I then mapped the causal mutation in epic3. This mutant is defective in a 

central component of the nuclear pore complex, thus resulting in defects in the 

nuclear-cytoplasmic export of polyadenylated RNAs. Using transcriptomics I show 

that epic3 plants behave like heat-stressed plants and I show that heat stress inhibits 

polyA RNA export in Arabidopsis. Based on transcriptomes carried out separately on 

nuclear and cytoplasmic RNA I show the very surprising finding that EPIC3 plays a 

role in the export of antisense transcripts. 

In Chapter 4 I then focus on the role of EPIC3 and the NPC in regulating the 

chromatin organization. I show that EPIC3 is required to maintain proper 

heterochromatin structure and that it is required to global levels of repressive histone 

marks. 

A general discussion is then presented in Chapter 5, where I put all my findings into 

the general context. 
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Chapter	2		

	

The	forward	genetic	mutant	screen	and	characterization	of	epic1	
	
Modified version of this chapter was published in the journal “Plant Physiology” 

(April, 2015 pp.00177.2015) under the title: 

“HDA6 controls gene expression patterning and DNA methylation-independent 

euchromatic silencing”  

Authors: Emilija Hristova, Kateryna Fal, Laurin Klemme, David Windels and Etienne 

Bucher  

 

	
	

Abstract	
 
Cellular differentiation is a process, determined by the implementation of specific 

transcriptional programs. Up until now, the epigenetic aspect of gene expression 

patterning and the link between the epigenetic regulators and cell differentiation was 

missing. We addressed this question by using a novel epigenetically controlled and 

highly tissue-specific GFP based reporter line, which is reporting on the 

epigenetically regulated APUM9 in Arabidopsis (Arabidopsis thaliana). A forward 

genetic screen on this line led to the identification of several mutants (epic1- epic7) 

that activated the transcription of the transgene in different tissues, indicating on 

different epigenetic regulators being involved in silencing of the transgene in different 

tissues. Among the recovered mutants is a novel HDA6 allele (epic1, hda6-8). This 

allele differs from the previously reported alleles, as it did not affect DNA 

methylation and only had a very modest effect on the release of transposable elements 

and other heterochromatic transcripts. Overall the data shows that HDA6 has at least 

two clearly separable activities in different genomic regions.  
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Introduction	
	

Background		
All of the cells in a given multicellular organism have a common “ancestor” cell, 

therefore carry the same genetic information, and have potential to develop/specialize 

in any cell type. One of the most fundamental biological questions is “what is 

determining cell’s fate”? Understanding the molecular mechanisms behind this 

process and identification of the factors involved in it is a still ongoing process. Even 

though the role of transcription factors in the establishment of tissue specific 

(transcription) programs has been elucidated (Odom et al., 2007; Naya et al., 1995; 

Maniatis et al., 1987), little is known about the epigenetic aspect of these processes.  

Genome wide studies of plants defective in different epigenetic pathways have 

provided valuable information about the localization of different chromatin marks and 

their general effect on transcription (e.g. (Reinders et al., 2008; Zhang et al., 2007)). 

While there are some reports proposing a tissue-specific distribution of these marks in 

plants (Caro et al., 2007; Costa and Shaw, 2006), majority of the studies have focused 

on germ cells (She et al., 2013; Hsieh et al., 2009; Slotkin et al., 2009). Currently, 

little is known about how different epigenetic marks influence tissue-specific gene 

expression patterns in sporophytic tissues. 

To investigate the role of different epigenetic regulators and pathways in the 

establishment and maintenance of tissue-specific gene expression programs, we 

selected a gene that displays a complex epigenetic regulation and tissue specific gene 

expression in Arabidopsis for our genetic studies. 

 

The	Arabidopsis	APUM9	gene	
 
APUM9 is a member of the Pumilio/PUF protein family in Arabidopsis (Abbasi et al., 

2011). These proteins are known to be regulators of embryogenesis, development and 

differentiation in mammals (Quenault et al., 2011). 

Although being generally known as translational repressors, PUF proteins have 

versatile mechanisms of action. They control gene expression primarily by 

influencing mRNA stability (Wharton and Aggarwal, 2006). The PUF family 

members contain the characteristic PUM-HD domain (composed of eight 36 amino-

acid long repeats), that is involved in recognition and binding to a specific sequence at 
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the 3' end of mRNAs, thereby controlling mRNAs stability. The mRNA recognition is 

base specific (e.g. an adenine base in the RNA is bound by specific cysteine and 

glutamine residues of the PUF protein) (Filipovska et al., 2011; Quenault et al., 2011; 

Francischini and Quaggio, 2009; Miller et al., 2008). PUF proteins were also shown 

to influence the subcellular localization of the mRNAs by targeting them to specific 

cellular compartments, which can result in both, transcriptional repression or 

activation of a certain gene (Quenault et al., 2011; Gu et al., 2004).  

In Arabidopsis the APUM family comprises 25 PUF proteins, 12 of which share 

between 50% and 75% sequence homology with the PUF proteins in Drosophila.  

Their function is also conserved. Notably, six members of the family (APUM1-

APUM6) were shown to regulate developmental genes like: WUSCHEL, CLAVATA 

and FASCIATA (Abbasi et al., 2011; Francischini and Quaggio, 2009). APUM5 was 

shown to have a protective role against virus infection (Un Huh and Paek, 2013), 

which shows the diverse roles of these proteins in plants.  

The APUM9 gene (AT1G35730) is located on chromosome one in Arabidopsis. The 

region is of high interest, due to the presence of a copia-like retrotransposon 

(ROMANIAT5) in close proximity of the APUM9 transcriptional start site (772bp 

upstream of the transcriptional stat site) (Fig. 2.1A). Transposable elements (TEs) are 

under tight epigenetic repression in order to prevent their mobilization. The TEs 

themselves and their epigenetic state can highly influence the fate of their neighboring 

genes (Slotkin and Martienssen, 2007; Girard and Freeling, 1999). The question 

arising is if the epigenetic state from ROMANIAT5 can spread to APUM9, and if it is 

the case, to what extend is it influencing the expression of APUM9. A previous study 

from (Yokthongwattana et al., 2010) reported on the coordinated transcriptional 

regulation of APUM9 and the ROMANIAT5. First it was shown that transcriptional 

activation of APUM9 corresponds with transcriptional activation of ROMANIAT5, 

and that both of them are under similar epigenetic regulation being targets for several 

epigenetic regulators (MOM1, DRM2, Pol V).  

In order to monitor APUM9 expression, we obtained a GFP based reporter line that 

reports on APUM9 expression and used this line in forward and reverse genetic 

studies. We performed a forward genetic mutant screen on that reporter line and 

recovered several lines (epic1-7; for epigenetic control), mutated in distinct epigenetic 

regulators. All of these mutations caused activation of the silenced transgene in 

different tissues, providing evidence for the potential existence of the tissue-specific 
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epigenetic programs, and allowing assessment of how the different epigenetic 

regulators contribute to the gene expression patterning. 

Among the recovered mutants from the genetic screen is epic1, a novel allele of the 

histone deacetylase HDA6, which is well known epigenetic regulator, involved in 

silencing TEs, rRNA genes, transgenes and developmental processes (Earley et al., 

2010; Probst et al., 2004; Aufsatz et al., 2002b) via regulating the dynamics of the 

acetylation levels in histones and DNA methylation (Liu et al., 2012; Vaillant et al., 

2006; Aufsatz et al., 2002b).  

In this chapter I further characterize the novel HDA6 allele and found that it affects 

histone acetylation, but not DNA methylation. The detailed analysis of this novel 

allele revealed that HDA6 has at least two independent euchromatic and 

heterochromatic functions. This allowed the postulation of a new regulatory 

mechanism in which HDA6 may inhibit de novo DNA methylation in the CG context. 
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Results		
 

The	silex	reporter	line	
In a mutant screen for modifiers of MOM (Morpheus’ molecule) (Amedeo et al., 

2000), a genetic interaction between MOM and Pol V was revealed. These two TGS 

regulators were shown to have a synergistic effect in transcriptional activation at 

selected loci in the Arabidopsis genome	 (Yokthongwattana et al., 2010). Yet, this 

synergistic effect was suggested to be highly dependent on the target loci and their 

chromosomal location. The APUM9 gene in Arabidopsis is one such locus that is 

regulated by MOM1 and Pol V. Loss of function in mom1 plants causes 

transcriptional activation of APUM9 that is even more pronounced in mom1nrpe1 

(Yokthongwattana et al., 2010). This suggests that MOM1 and Pol V independently 

silence APUM9 creating a double lock on its transcription. 

We used a transgenic reporter line to investigate the regulation of APUM9 in more 

details. The reporter line was retrieved from the collection of GFP reporter lines of 

low expressing genes in Arabidopsis (Xiao et al., 2010). The transgene construct 

includes the promoter of APUM9 and 1.5 kb of the ROMANIAT5 that lies upstream 

(Fig. 2.1B). Arabidopsis plants transformed with the reporter construct showed no 

visible GFP expression at the juvenile stage, and tissue-specific expression in adult 

phase, where GFP was observed in the fruits (siliques), hence the name of the reporter 

line ”silex” (silique expression) (Fig.2.1C). Segregation analyses showed that the 

construct was inserted as a single copy at chromosome three, in a gene (AT3G07640) 

of unknown function. 

 



	

Figure 2.1 The silex GFP reporter line 

(A) Schematic representation of the endogenous APUM9 locus on chromosome 1 of 
Arabidopsis. The exons of APUM9 are indicated by blue boxes. The yellow box 
upstream of APUM9 marks the ROMANIAT5 retrotransposon and the red boxes 

represent its LTRs. (B) Representation of the transgene in the silex line. It contains 
2395 bp of the DNA sequence upstream of the CDS including 75 bases of the APUM9 
CDS. It was cloned in front of GAL4/VP16, which in turn will recognise the 4X UAS 

sequence in front of GFP to drive GFP expression. (C) Fluorescence images of the 
silex reporter line. GFP expression is green and chloroplast autofluorescence is red. 

Left panel shows GFP expression in siliques, GFP was detected in the valve margin of 
siliques (central panels). A dissected silique is shown on the right panel depicting a 
seed and the green fluorescent valve margin. Wild type non-transgenic plants are 

shown as controls. 
 

The	silex	reporter	transgene	is	epigenetically	repressed		
The transgene construct and endogenous APUM9 were found to be under similar 

epigenetic regulation. Notably, introgressions of mom1 (mom1-2 (Habu et al., 2006)), 

nrpe1 (nrpe1-2 (Pontier et al., 2005)) and mom1nrpe1 into the silex line resulted in 

GFP expression that was visible on the abaxial side of the leaves in the case of 

mom1nrpe1, as opposed to mom1 and nrpe1, where no GFP signal could be detected 

visually (Fig. 2.2 A). Quantification of GFP mRNA levels by real-time PCR 

corresponded well with the observed increase in GFP fluorescence. GFP transcript 

accumulation was the highest in mom1nrpe1 and showed weak activation of the 

transgene in nrpe1 (two fold increase) and activation in mom1 plants (Fig. 2.2 B). 
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However, activation in mom1 plants was insufficient to produce microscopically 

detectable GFP fluorescence (Fig. 2.2). 

 
Figure 2.2 The silex transgene is repressed by the synergistic activity of 

MOM1 and NRPE1. 
(A) Fluorescence imaging of the abaxial side of leaves. mom1, nrpe1 and the 

combination of both mutations were introgressed into the silex reporter line. Only the 
double mutant resulted in visible release of GFP expression in veins. (B) Real-time 

PCR based measurement of GFP and APUM9 transcript levels. The error bars 
indicate s.e.m. of three biological replicates. 

 

We further analyzed the role of DNA methylation in repressing the transgene. For this 

purpose silex seedlings were grown on a MS medium supplied with 5-aza-2’-

deoxycytidine (AzaC), a drug known to cause global DNA methylation reduction 

(Doerfler, 1983). In treated seedlings we observed stochastic release of GFP silencing 

in cotyledons (Fig. 2.3 A). Drug-induced release of GFP transcription was also 

confirmed at the transcriptional level (Fig. 2.3 B). Methylation sensitive analyses in 

the transgene promoter additionally confirmed the synergistic mom1nrpe1 interaction. 

Whereas no loss of DNA methylation was identified in mom1 (MOM1 causes 

transcriptional activation without changes in DNA methylation), there is significant 

change of DNA methylation in nrpe1, and this effect is even more pronounced in 

mom1nrpe1 (Fig. 2.3 C).  
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Thus DNA hypomethylation at the transgene promoter to a certain extend contributes 

to GFP activation in mom1nrpe1.  

 

 

 
Figure 2.3 The transgene is methylated in silex 

(A) Fluorescence imaging of cotyledons of silex seedlings grown on MS medium 
supplied with AzaC shows stochastic GFP activation. Non-treated seedlings are 

shown as a control. (B) Real-time PCR measurements of the GFP transcripts in AzaC 
treated and non-treated plants. (C) Methylation sensitive restriction combined with 

PCR analyses of the CG methylation at the transgene promoter shows the synergistic 
effect of mom1nrpe1 on the transgene. ACT2 is shown as a digestion control. 

 

Taken together these data show that the transgene, likewise the endogene, is regulated 

by at least two epigenetic regulators, MOM1 and NRPE1, which in combination have 

a stronger, synergistic effect. Our GFP reporter line is adequately reporting on the 

epigenetic state of the endogenous APUM9. The observation of changes in the GFP 

expression pattern in different epigenetic regulators backgrounds, prompted us to seek 

novel epigenetic regulators. For that purpose, a forward genetic screen was 

performed.  
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Mutagenesis	and	mutant	screen		
Seeds from the silex were subjected to EMS (ethyl methanesulfonate) mutagenesis. 

EMS is an alkylating agent that causes randomly distributed mutations in the genome. 

It creates single nucleotide polymorphism (SNPs) resulting in changes of the bases 

G:C->A:T. The EMS mutation mechanism is based on modification of the nucleotides 

bases, which reduces their affinity towards their complementary nucleotides and 

causes miss paring. The miss paring is recognized by the DNA repair machinery, 

which exchanges the bases with new, complementary ones (Greene et al., 2003). 

The seedlings from the progeny (M2) of the mutagenized silex seeds were screened 

for activation of GFP expression. The screen resulted in several lines, which activated 

the reporter transgene in different tissues (eg. shoot apex, hydatodes and vasculature, 

leaf edge) (Fig 2.4). Assuming that our mutants may be affected in epigenetic control 

of gene expression we named them “epic” mutants. 

 

 
Figure 2.4 Tissue-specific transgene activation 

Fluorescence imagining of silex and the “epic” lines (epic1, epic2, epic3, epic7) 
recovered upon EMS mutagenesis shows activation of the transgene in numerous 
different tissues. 
 

Characterization	and	identification	of	the	epic1	mutation	
The first line we identified in our mutant screen was epic1 (epigenetic control of gene 

expression-1). It activates the transgene in the shoot apex (Fig. 2.5 A). The epic1 

mutation was recessive and was backcrossed to the parental silex line twice prior to 

further analysis in all following experiments. Real-time PCR measurements of

 APUM9 and GFP transcript levels in epic1 seedlings confirmed that these targets 

were de-repressed (Fig.2.5 B). Steady-state transcript levels of these two targets were 

also assessed in dissected young leaves where the GFP fluorescence is present in 
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epic1 and compared to fully developed leaves and the corresponding tissue in silex 

(Fig. 2.5 C).  

 
 

       C 

                
 

Figure 2.5	epic1, a novel mutant allele of HDA6, releases GFP expression in the 
shoot apex 

(A) Fluorescence images of the silex and the epic1 mutant that released GFP silencing 
in young leaves (B) Real-time PCR based quantification of the release of GFP and 
APUM9 silencing in epic1 (error bars show s.e.m. of three biological replicates) (C) 
Real-time PCR measurements of APUM9 and GFP transcript levels in dissected plant 
parts to compare expression between leaves and the shoot apex. Error bars show 
s.e.m. of three biological repeats. 
 

In order to identify the causal mutation in epic1 we performed whole-genome re-

sequencing on a pool of DNA extracted from 10 GFP positive F2 plants resulting 

from a backcross of epic1 into the silex line. This allowed us to map the mutation to 

HISTONE DEACETYLASE 6 (HDA6, Fig 2.6).
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A 

 
B

C 

   
Figure 2.6 hda6-8 carries a mutation in conserved domain of HDA6 

(A) Homozygous versus heterozygous EMS mutation counts in 500 kb windows 
plotted along the five Arabidopsis chromosomes. DNA of a pool of 10 epic1 plants 
coming from a backcross to the parental silex line was subjected to whole genome 
sequencing. This was sufficient to detect strong linkage disequilibrium at the lower 
arm of Chr. 5 (B) The conserved domains of HDA6 and the mutant alleles used in this 
study (C) hda6-8 is mutated in a highly conserved E-R domain of HDA6 that is 
shared between histone deacetylases and histone acetylases. The colors indicate 
similarity levels (green for high and yellow for low). The hda6-8 mutation was 
mapped to the first amino acid of this motif and resulted in a substitution of an 
arginine to histidine (indicated by the red star). The filled boxes indicate amino acids 
that have been found to be required for the enzymatic activity of the histone 
acetylases and histone deacetylases in yeast. Empty boxes indicate highly conserved 
amino acids that were shown to be dispensable for the enzymatic activity of both 
types of enzymes.  
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To confirm that a mutation in HDA6 could release GFP expression in young leaves 

we introgressed the hda6-6 (axe1-5) allele of HDA6 (Murfett et al., 2001) into silex. 

This resulted in the same GFP expression pattern as we had previously observed 

in epic1 (Fig. 2.7). We then rescued epic1 by transformation with HDA6 under its 

native promoter and thereby confirmed that the causal mutation was indeed located in 

HDA6 (Fig. 2.7). In order to identify in which tissues HDA6 was expressed, we 

created an HDA6::GUS reporter line. GUS staining was observed in young 

developing leaves corresponding well with the release of GFP expression we had 

observed in hda6-8 (Fig. 2.7). 

 
Figure 2.7 Confirmation of the mapping of the epic1 mutation to HDA6 

From left to right: The epic1 mutation was rescued with full-length HDA6 under its 
endogenous promoter (epic1, HDA6). Introgression of hda6-6 (axe1-5) into the silex 

reporter line resulted in the epic1 phenotype. GUS staining of the HDA6pro:GUS 
reporter line shows the expression pattern of HDA6. 

 

Since we validated epic1 to be mutated in HDA6 we termed this allele hda6-8 (Fig. 

2.6 B shows the HDA6 alleles used in this study and their position in the protein).  

Predictions of the secondary structure of HDA6 suggested that the hda6-8 mutation 

did not cause a change in the secondary structure of the protein (Rice et al., 2000). 

However, we found that the hda6-8 allele was of interest because it was mutated in a 

highly conserved amino acid of the previously described E-R (Esa1-Rpd3) motif. 

Notably, this motif is present in both, histone acetylases and histone deacetylases 

(Adachi, 2002) (Fig. 2.6 C). Phenotypically, hda6-8 did not differ form hda6-6 or 

hda6-7 (rts1) and also showed delayed flowering as was previously reported for 

hda6-6 (Yu et al., 2011). 
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hda6-8	affects	histone	acetylation	but	not	DNA	methylation	
Because HDA6 is required for histone deacetylation we tested if the chromatin at the 

promoters of the APUM9 endogene and the silex transgene were hyperacetylated in 

hda6-8 plants. Indeed we observed a strong increase in H4-tetra-acetylations in the 

promoter region of these loci (Fig. 2.8 A). 

 

 
Figure 2.8 hda6-8 affects histone acetylation but not DNA methylation at the 

transgene promoter   
(A) Chromatin immunoprecipitation of acetylated histones (H4 tetra-acetylations) and 

quantification by real time PCR at the transgene and endogene APUM9 promoters 
(error bars show s.e.m. of three biological replicates) (B) bisulfite sequencing of the 

ROMANIAT5 LTR present in the transgene. 
 

Since HDA6 has been reported to play a role in the maintenance of DNA methylation 

(Probst et al., 2004) we assessed its’ levels at the transgene locus using bisulfite 

sequencing. However, we did not detect significant changes in DNA methylation in 

any of the sequence contexts in hda6-8 (Fig. 2.8 B). 

We then compared transcription of known target genes controlled by HDA6 in hda6-8 

and the well-characterized hda6-7 (rts1-1) null mutant allele of HDA6 (Aufsatz et al., 

2002b; Pontvianne et al., 2012). We found that silencing of targets controlled by 

RNA-directed DNA methylation (RdDM) such as solo LTR (Huettel et al., 2006) and 

AT4G04293 (AtIS112A) (Numa et al., 2009; Yokthongwattana et al., 2010) were 

released in both hda6-7 and hda6-8, however hda6-8 tended to have a weaker effect 

(Fig. 2.9 A).  A clear difference between hda6-8 and hda6-7 was observed when we 

assessed transcription of the HDA6 targets AT5G41660 and AT3G4470 (Fig. 2.9 A) 
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(To et al., 2011a). In contrast to hda6-7, hda6-8 showed no release of transcriptional 

suppression of these two targets. 

To test if histone acetylation levels at these HDA6 targets were affected in hda6-8 we 

performed chromatin immunoprecipitation (ChIP) (Jaskiewicz et al., 2011) of histone 

H4 lysine residues associated with tetra-acetylation (K5, K8, K12, and K16 on H4). 

Confirming previous reports (To et al., 2011a), we observed strong increase of H4 

tetra-acetylation in the hda6-7 null mutant at all tested targets (Fig. 2.9 B).

Compared to the silex reporter line hda6-8 also showed significantly increased H4 

tetra-acetylation levels at solo LTR and AT4G04293. In the case of AT5G41660 and 

AT3G44070 we only observed a very modest increase of H4 tetra-acetylation in hda6-

8. It has been reported that release of silencing of certain targets in HDA6 defective 

plants was coinciding with loss of DNA methylation in the CG context (Earley et al., 

2010; To et al., 2011a). One such target that has previously been described is 

AT5G41660. Confirming these previous reports, we found loss of CG methylation at 

AT5G41660 in hda6-7, but we did not observe loss of DNA methylation in hda6-8 

(Fig. 2.9C). Other tested HDA6 targets did not show loss of DNA methylation in 

either hda6-7 or in hda6-8 (Fig. 2.9 C).  
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Figure 2.9 hda6-8 influences HDA6 target specificity 
(A) Comparison of the release of transcription of HDA6 targets in the hda6-7 null 
mutant and hda6-8. (B) H4 tetra-acetylation levels at the HDA6 targets assesses by 
ChIP followed by real-time PCR. Error bars show s.e.m. of three biological 
replicates(C) DNA methylation levels in the CG context of HDA6 targets. Genomic 
DNA was digested by the methylation sensitive HpaII restriction enzyme reporting on 
CG and CHG methylation and then PCR amplified with target specific primers.  
 

Transcriptional	release	of	hetercochromatic	regions	differ	in	hda6-6	and	hda6-8	
In order to globally compare the genomic regions that were transcriptionally activated 

in hda6-6 and hda6-8 we generated a transcriptome of hda6-8 using tiling arrays and 

compared it to the previously reported hda6-6 transcriptome (To et al., 2011a). It was 

shown earlier that the hda6-6 and hda6-7 mutant alleles efficiently release 

transcription of TEs (Blevins et al., 2014; Probst et al., 2004; To et al., 2011a). In 

order to obtain an overview of the chromosomal distribution of the up-regulated 

transcripts in hda6-6 and hda6-8 they were plotted onto the five Arabidopsis 

chromosomes (Fig. 2.10 A). Notably on the chromosomes 4 and 5 a high number of 

up-regulated transcripts can be observed in heterochromatic regions (represented as 

TE-rich regions here) in hda6-6 while it is not the case in hda6-8. In accordance with 
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this observation hda6-8 released transcription of very few TEs compared to hda6-6 

(Fig. 2.10 B). 

 

A	highly	conserved	amino	acid	in	HDA6	prevents	de	novo	CG	methylation	
We then wanted to assess if HDA6 could play a role in de novo DNA methylation by 

testing if DNA methylation that was lost in hda6-7 could be recovered by restoring 

HDA6 activity. hda6-7 plants were transformed with wild-type HDA6 or with the 

mutant hda6-8 allele (hda6-7,HDA6 and hda6-7,hda6-8 respectively). Transformation 

of hda6-7 with HDA6, did not restore CG methylation at AT5G41660, similarly to the 

ETR7 gene that was previously described (Blevins et al., 2014). However, we 

observed acquisition of de novo DNA methylation at AT5G41660 in hda6-7 plants 

rescued with hda6-8 (Fig. 2.10 C). Same results were obtained with two independent 

transformants for each line presented here. All plants were genotyped for the presence 

of the transgene and the hda6-7 mutation. This data suggests that the highly 

conserved E-R motif of HDA6 is involved in repressing de novo DNA methylation 

activity at certain targets. As an additional control we included AT2G34655 (ETR15 

in (Blevins et al., 2014)), which is up regulated in hda6 mutants but where CG 

methylation is not lost (Fig. 2.10 C). 
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Figure 2.10 hda6-8 regulates euchromatic silencing and may play a role in de 
novo DNA methylation 

(A) Graphic representation of the 5 Arabidopsis chromosomes (green), distribution of 
TEs (black), distribution of hda6-6 up-regulated annotated transcripts (in red, from 
(To et al., 2011)) and hda6-8 up-regulated genes (blue). (B) Number of up-regulated 
TEs and protein coding genes in hda6-8 and hda6-6. (C) Chop-PCR based analysis of 
the CG methylation state of AT5G41660 and AT2G34655 in the different HDA6 
alleles and in the hda6-7 lines that were rescued with wild type HDA6 or the hda6-7 
allele. ACT2 is shown as a digestion control.
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Discussion	
	
Numerous factors repressing transcription of silenced chromatin in Arabidopsis have 

been described (see (Eun et al., 2012; Furner and Matzke, 2010; Matzke and Mosher, 

2014) for recent reviews). Intriguingly, many of these factors only affect certain 

subsets of silenced TEs and genes (Slotkin, 2010; Vaillant et al., 2006; 

Yokthongwattana et al., 2010) suggesting that each factor has a distinct target 

specificity. However, how these factors contribute to gene expression patterning has 

not been investigated in detail so far. 

In order to explore this systematically we used the epigenetically controlled and 

highly tissue specific silex reporter line.   

 

Epigenetic	regulation	of	gene	expression	patterning	
The silex reporter line showed GFP expression in the valve margin of siliques. This 

was unexpected as transcription of the APUM9 gene is under tight epigenetic 

repression implemented by MOM1 and NRPE1 (Yokthongwattana et al., 2010). This 

suggests that both MOM1 and NRPE1 may be inactive in this tissue. Interestingly, 

this observation fits well with the developmental relaxation of TE silencing that has 

been proposed (Martínez and Slotkin, 2012). In Arabidopsis this has been extensively 

studied in reproductive and gametophytic tissues but little is known concerning 

sporophytic tissues. The presented GFP reporter line now allows addressing this 

tissue as well. 

Introgression of the individual mom1 and nrpe1 mutations into the silex line showed 

no visible release of GFP expression, nevertheless we could detect some GFP mRNAs 

in mom1 plants. Interestingly, the mom1 nrpe1 double mutant released GFP 

expression at the veins, which was only visible on the abaxial side of the leaves. 

Taking into consideration previous reports on the global effect of mom1	in transgene 

activation in the 6b5 reporter line, this phenotype was unexpected (Vaucheret and 

Fagard, 2001). The vein specific activation of the transgene in mom1 nrpe1 plants, 

and the stochastic activation upon AzaC treatment, indicated that several epigenetic 

regulators might influence the expression pattern of the silex transgene. The forward 

genetic screen confirmed these observations because we recovered epic1, a mutant 
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releasing GFP expression in the shoot apex of seedlings. This mutant depicted a 

distinct GFP expression pattern compared to mom1nrpe1 (Fig. 2.2 and 2.5). 

We mapped the epic1 mutation to HDA6 (and we thus renamed this allele hda6-8), a 

well-characterized histone deacetylase that has been recovered in several mutant 

screens designed to identify factors involved in transcriptional gene silencing (TGS) 

(Aufsatz et al., 2002b; Murfett et al., 2001; Probst et al., 2004). The GFP expression 

pattern corresponded well with the specific transcription of HDA6 in the shoot apex 

(Fig. 2.7, (Winter et al., 2007)) and to the pattern of release of GUS silencing initially 

described in the HDA6 mutant axe1-3 (Murfett et al., 2001). This suggests that the 

main activity of HDA6 takes place in the shoot apex, where it repressed the GFP 

transgene of the silex line. This is well in line with a recent report that showed that 

expression of meristem-specific silencing factors is important to repress TEs (Baubec 

et al., 2014; Yadav et al., 2009). Notably, as leaves expand and mature GFP 

fluorescence is lost. It is thus possible that other epigenetic regulators, such as the 

histone-deacetylase HDA19 that is more ubiquitously expressed in seedlings (Zhou et 

al., 2005), take over the role of silencing the transgene in these tissues. Another 

possibility that cannot be excluded is post-transcriptional repression of the transgene 

that might occur as the leaf ages. 

 

A	highly	conserved	domain	in	HDA6	is	required	for	its	target	specificity		
Since hda6-8 solely carried a single amino acid substitution we wanted to compare its 

effect on the release of known HDA6 targets to an HDA6 null mutant (hda6-7, rts1-1 

(Aufsatz et al., 2002b)). We found that hda6-8 strongly released RdDM-dependent 

HDA6 loci (solo LTR and AT4G04293) but not the RdDM-independent HDA6 targets 

(AT5G41660 and AT3G44070). The effect on transcription was also reflected by 

changes in epigenetic marks since the RdDM-independent targets did not gain histone 

H4 acetylation in hda6-8 (Fig. 2.9 B). Interestingly, we also found that at AT5G41660 

DNA methylation was lost in the CG context in hda6-7 but not in hda6-8 (Fig. 2.9 C). 

The finding that CG methylation was not reduced in hda6-8 indicates that recruitment 

of MET1 by HDA6 was not affected in hda6-8 plants (Liu et al., 2012; To et al., 

2011b). Detailed analysis revealed that the mutation in hda6-8 was located in the 

highly conserved ER motif that is present in histone acetylases and deacetylases 

(Adachi, 2002) (Fig. 2.6 C). Combined with our observation that only a subset of 
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HDA6 targets were affected in hda6-8 suggests that the mutated amino acid in the ER 

motif may play an important role in targeting HDA6 to specific loci. More 

specifically, our data supports observations made in yeast that the first amino acid of 

the ER motif is not required for the enzymatic activity of histone deacetylases 

(Adachi, 2002), since hda6-8 retained its histone deacetylase activity at the RdDM-

independent targets. The ER motif may therefore be involved in recognition of 

specific DNA sequence contexts and/or chromatin modifications and thereby defining 

the target specificity of HDA6. Alternatively, the mutation in the ER motif may 

influence protein-protein interactions that are required for proper targeting of HDA6 

to specific regions in the genome. In yeast, RPD3 the ortholog of Arabidopsis HDA6, 

has been shown to be part of large protein complex that includes transcriptional 

repressors such as SIN3 and UME1 (Grzenda et al., 2009). It is thus possible that the 

hda6-8 mutation in the ER motif affects the interaction of HDA6 with such 

transcriptional repressors. 

 

HDA6	has	distinct	activities	in	euchromatin	and	heterochromatin	
The strong mutant alleles of HDA6 have been shown to release silencing of 

heterochromatic transcripts (Blevins et al., 2014; Liu et al., 2012; Probst, 2004; To et 

al., 2011b). A striking difference we observed in the hda6-8 transcriptome was that it 

had only very little effect on TEs and heterochromatic transcripts (Fig. 2.10 A and B). 

This suggests that the amino acid change in the highly conserved ER domain only 

plays a role in silencing euchromatic genes and that it has little to no role in 

heterochromatin silencing, probably because this mutation does not affect the 

interaction of HDA6 with MET1 (Liu et al., 2012; To et al., 2011b). This observation 

is intriguing because it suggests that depending on the chromosomal location HDA6 

may interact with different proteins to silence genes or conversely, that interacting 

proteins define HDA6 target specificity.  

It has been documented that epigenetic changes caused by defects in met1-3 and ddm1 

can cumulate over generations of inbreeding (Kakutani et al., 1996; Mathieu et al., 

2007). We analyzed hda6-8 directly after the second backcross, thus excluding 

potential inbreeding effects as they might have accumulated in hda6-6 and hda6-7. 

These mutants have been discovered more than a decade ago and likely have been 

inbred over multiple generations since their initial discovery (Aufsatz et al., 2002b; 
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Murfett et al., 2001). We thus cannot exclude that some of the differences between the 

mutant alleles that we observe may also be caused by such inbreeding effects. 

Interestingly, hda6-8 efficiently released the GFP transgene in silex, even thought it 

had acquired heterochromatic properties. This observation might be due to the 

insertion of the transgene in euchromatin and is therefore under less repressive state 

then bona fide heterochromatic regions.  

 

The	HDA6	ER	motif	represses	de	novo	DNA	methylation	
HDA6 is implicated in silencing diverse endogenous targets, either via RdDM 

(Aufsatz et al., 2002b) and in interaction with MET1(Liu et al., 2012; To et al., 

2011b). An interesting group of targets has been described previously (Blevins et al., 

2014). The described group E targets lose DNA methylation in hda6-6 however this 

methylation is not recovered in hda6-6 plants rescued with HDA6, showing that 

HDA6 is required to maintain DNA methylation. We found the same to be true at the 

AT5G41660 locus. However when we complemented hda6-7 with the hda6-8 allele of 

HDA6 we reproducibly found that CG methylation could be restored. This 

observation is in line with experiments that were carried out in animal cells where 

inhibition of histone deacetylases lead to an increase in CG methylation at certain 

targets (Jia et al., 2015). It suggests that even thought DNA methylation is lost in 

hda6-7 plants and not restored in the complementation assay, an epigenetic memory, 

either in the form of histone modifications or small RNAs is still present allowing 

DNA methylation to come back under certain circumstances. Notably the mutation in 

hda6-8 is located within the C-terminal region of HDA6 that has been shown to 

interact with MET1 (Liu et al., 2012). It is therefore possible that the ER motif is 

involved in regulating MET1 activity. It is currently unclear how hda6-8 may target 

de novo methylation and it will be interesting to investigate this activity in more detail 

in the near future. 
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Conclusions	
The processes of cell specialization and differentiation depend on a complex network 

of highly controlled expression of gene sets in space and time. Chromatin 

modifications and epigenetic regulation of gene expression play important roles in the 

regulation of cell fate. However, our understanding about the mechanisms involved in 

these processes is currently limited. The results presented here open the door to tissue 

and cell-type specific analysis of epigenetic regulation of gene expression. It will be 

very interesting to further investigate these aspects since it may answer one of the 

most fundamental questions in molecular biology: How do genes know when and 

where to be expressed? 
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Materials	and	methods	

Plant	material,	mutagenesis	and	mapping	
All plants used in this study come from the Columbia accession. The silex reporter line was 

obtained from a collection created by The Institute for Genomic Research (J. Craig Venter 

Institute, line AGRAC-60-1-1) (Xiao et al., 2010). Mutants used in this work were: mom1-2 

(Habu et al., 2006), nrpe1-2 (formerly nrpd1b-2; (Pontier et al., 2005), met1-3 (Saze et al., 

2003), axe1-5 (Murfett et al., 2001) and rts1(Aufsatz et al., 2002b). EMS mutagenesis was 

carried out as described previously (Weigel and Glazebrook, 2002) and plants were grown 

in Sanyo MLR-350 chambers at 24°C with 16 hours light. 

Causal EMS mutations were mapped by whole genome sequencing combined with classical 

mapping by crossing the mutants with the Wassilewskija accession (WS). Reads were 

mapped against the reference genome and SNPs called in Geneious (Biomatters Ltd.). 

Using R SNPs were filtered for EMS mutations (G:C->A:T) and zygosity called based on 

the variant frequency provided by Geneious (>=80% homozygous mutation, >=45% and 

<=55% heterozygous mutation). Plots were then created by calculating the ratio of the 

number of homozygous and heterozygous and mutations in a 500 kb window.  

 

Transgenic	lines	
Promoter and rescue constructs were all cloned into the pCAMBIA1304 plasmid. The 

HDA6 promoter (including 1057 bp upstream of the transcription start site) and the full 

length HDA6 gene including the promoter (4044 bp) were PCR amplified from genomic 

DNA of wild-type (rescue and promoter constructs) or hda6-8 plants (rescue constructs). 

The obtained PCR products cloned into pGEM-T easy (Promega), sequenced and then 

cloned into pCAMBIA1304.  

 

DNA	methylation	analysis	
For methylation sensitive PCR, genomic DNA from fresh leaf tissue was isolated using the 

DNeasy Plant Mini Kit (Qiagen). 50 ng of DNA was then digested with DdeI and HpaII 

restriction endonucleases (NEB) overnight. It was then PCR-amplified using specific 

primers for the promoter regions of target genes. 

Bisulfite analyses were carried out as previously described (Yokthongwattana et al., 2010) 

with the following modification: to be able to differentiate between the endogenous and 
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transgenic ROMANIAT5 LTR, genomic DNA was digested with SspI (NEB) and re-ligated 

prior to bisulfite treatment. This resulted in an inverse PCR-like approach allowing specific 

amplification of the LTR present in the transgene.  

 

Real-time	PCR	and	transcriptome	analysis	
Total RNA from 100 mg of fresh leaf tissue of Arabidopsis plants was isolated with 

innuPREP Plant RNA Kit (Analytik Jena). 500 ng of RNA were used for cDNA synthesis 

(iScript cDNA synthesis kit, Bio-Rad). Expression of target genes was measured by 

quantitative PCR (qPCR) in a Light-Cycler 480 (Roche), using SYBR Green I Master Mix. 

Steady state mRNA levels were calculated with the Light-Cycler 480 software (Roche) 

using ACT2 for normalization. 

Transcription profiling on the silex reporter line and epic1 was carried out on RNA 

extracted from leaves of 17 days old plants as described previously on one biological 

replicate (Yokthongwattana et al., 2010). The raw data has been submitted to the GEO 

repository as study GSE65640. 

 

Chromatin	Immunoprecipitation	
ChIP experiments were performed on chromatin extracted from leaves of three weeks old 

plants as described by (Jaskiewicz et al., 2011) using anti-H4 tetra-acetylation antibody 

(06-866) from Milipore (To et al., 2011a). Relative histone acetylation were calculated 

using the comparative CT method (Schmittgen and Livak, 2008) by normalizing against 

input and ACT2.  
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Chapter	3		

epic3:	Uncovering	a	novel	role	of	the	nuclear	pore	complex	in	RNA	export	

	

Abstract	
The nuclear-cytoplasmic export of mRNAs plays an essential role in the regulation of gene 

activity in eukaryotes. Eukaryotes have evolved specialized RNA export pathways that 

mediate the export of the different RNAs: tRNAs, micro RNAs (miRNAs), small nuclear 

RNAs (snRNAs), messenger RNAs (mRNAs) and ribosomal RNAs (rRNAs). Each type of 

RNA associates with specific proteins in ribonucleoproteins complexes, which as such are 

exported to the cytoplasm. While numerous studies have been carried out in order to 

elucidate the export mechanisms of the aforementioned RNAs, little is currently known 

about the export of antisense RNAs (asRNAs). Here we show that AtSAC3B, a component 

of the nuclear-pore associated complex TREX-2 complex, is required for efficient poly(A) 

RNA export. At the transcriptional level we found that atsac3b mutant plants resembled 

heat stressed plants. We found that heat stress efficiently represses poly(A) RNA export in 

Arabidopsis. Using transcriptomics on nuclear and cytoplasmic RNAs we identified the 

nature the RNAs retained in the nucleus and found that AtSAC3B is mediating the export 

of antisense RNAs (asRNAs), while heat stress did not display such a bias. Our data shows 

that AtSAC3B is required for the export of asRNAs suggesting that these RNAs must play 

important functions in eukaryotic cells. 
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Introduction		
	
Nuclear-cytoplasmic export of messenger RNAs (mRNAs) is an indispensable step of the 

regulation of gene activity, ensuring occurrence of the final step in gene expression, namely 

protein synthesis. mRNAs are exported to the cytoplasm as ribonucleoprotein particles 

(RNPs), small complexes composed of the nascent mRNAs and RNA-binding proteins 

(Erkmann, 2004). On their way to the nuclear membrane the RNPs are additionally 

accompanied by general export factors and the transcription-export (TREX) complex 

(Sträßer et al., 2002). The subunits of the nuclear-pore complexes (NPCs) recognize and 

bind to the general export factors. This process is not random, but affinity based and the 

NPC subunits display higher affinity towards some of the export factors compared to 

others. Thereby the NPCs not only facilitate the export of mRNAs but also contribute to 

selectivity of the export process. In addition to all these factors that determine or influence 

the mRNA export process, the environment, especially stress conditions such as high 

temperatures and ethanol were shown to have an effect on the process (Názer et al., 2012; 

Saavedra et al., 1997). 

The nuclear-cytoplasmic export via the NPC is an intensively studied process, and the 

number of factors involved in it is constantly increasing. Among them is the transcription 

and export complex-2 (TREX-2). Initially identified in yeast (Fischer et al., 2002), the 

complex also known as Thp1-Sac3-Cdc31-Sus1 was shown to be associated with the 

nuclear pore complex (NPC), and its members to be involved in transcriptional elongation, 

thereby coupling transcription and export of mRNAs into the cytoplasm.  Mutations in the 

TREX-2 complex members Sac3 and Thp1 in yeast result in impaired cytoplasmic mRNA 

export and drastic, microscopically detectable accumulation of polyadenylated (poly(A)) 

RNAs in the nucleus (Faza et al., 2009; Jani et al., 2009; Fischer et al., 2002). The 

Arabidopsis TREX-2 homologue has been identified recently. It consists of: AtSAC3B, 

AtSAC3A, AtTHP1, AtCEN1 and AtCEN2 (Lu et al., 2009).  

Whereas the export pathways of different RNAs, such as: t-RNAs, miRNAs and mRNAs 

have been intensively studied, little is known about the export of the antisense RNAs 

(asRNAs). This is due to the fact that for a long time they have been considered as 

transcriptional noise, and their regulatory potential was underestimated. Recent studies 

however, have shown that more than 30% of the annotated human transcripts have 

antisense transcripts (Pelechano and Steinmetz, 2013). This high abundance of antisense 

transcripts is only an indicator of the potential that these transcripts have in the regulation 



 

	
59	

of the gene expression. The asRNAs originate from independent, bidirectional or cryptic 

promoters and they can regulate gene expression at the transcriptional, and 

posttranscriptional level (Sigova et al., 2013; Xu et al., 2011). In plants the best-studied 

asRNA regulated gene is the FLOWERING LOCUS C (FLC), where the transcription of 

the FLC is suppressed on a transcriptional initiation level, by changes in the chromatin 

organization induced by the asRNA-COOLAIR (COLD-ASSISTED INTRONIC NON 

CODING-RNA)(Swiezewski et al., 2009). Most of the asRNAs localize in the nucleus, but 

some of them were reported to go to the cytoplasm where they regulate gene expression on 

posttranscriptional level (Derrien et al., 2012). In yeast asRNAs utilize the general export 

factors (such as Mex67) that are also used by the mRNAs for export. How are asRNAs 

exported in plants is not known yet.  

In the forward genetic screen for epigenetic regulators introduced in Chapter 2, we 

recovered new alleles of AtSAC3B, a component of the TREX-2 complex. We confirmed 

that AtSAC3B is required for poly(A)s RNA export and found that plants deficient in 

AtSAC3B resemble heat stressed plants at the transcriptional level. Finally, we show 

TREX-2 to be required for the export of antisense RNAs, which has implications on 

transcriptional regulation and genome stability.  

	

Results	
	

Mapping	and	characterization	of	epic3	
	
The GFP-based reporter line-silex, introduced in Chapter 2, allowed us monitoring of the 

epigenetically controlled APUM9 expression. In the mutant screen for regulators of silex 

we recovered couple of epigenetic regulators that are influencing the tissue localization of 

the reporter GFP. In Chapter 2 I introduced epic1 (epigenetic control 1), a mutant deficient 

in the histone deacetylase HDA6 leading to a release of GFP expression in young leaves 

(Chapter 2, Fig. 2.4). Another mutant that was recovered in the mutant screen was epic3 

(epigenetic control 3). This mutant carries a recessive mutation, which activates the 

transgene in the leaf margins (Fig.3.1 A).  

In order to map the causal mutation in epic3, whole genome sequencing and classical 

genetic mapping were employed as previously described ((Hristova et al., 2015) and 

Chapter 2). The mapping data showed that the epic3 mutation was located on chromosome 

3, in AT3G06290 encoding for the SUPRESSOR FOR ACTIN 3-B (AtSAC3B) gene. The 
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mutation in AtSAC3B was confirmed with the identification of two additional alleles: epic3-

2 and epic3-3 (Fig. 3.1A) that were recovered in complementation tests (crosses). Since we 

validated the causal epic3 mutation to be located in AtSAC3B, the recovered epic3-1, epic3-

2 and epic3-3 alleles were renamed into: atsac3b-3, atsac3b-4 and atsac3b-5, respectively. 

In two of the alleles (atsac3b-3 and atsac3b-5) the mutation is located in the conserved 

SAC/GANP domain (Fig. 3.1B). For further characterization the atsac3b-3 allele was used, 

after it was backcrossed twice to the parental line (silex). 

The tissue specific transcriptional activation of the transgene registered in atsac3b-3 was 

analyzed with QT-PCR. When the levels of the transgene transcripts in atsac3b-3 were 

compared to the parental silex line, we observed weak but significant difference that can 

explain the observed phenotype. However, no significant difference was detected in the 

levels of the endogenous APUM9 transcripts in atsac3b-3 (Fig. 3.2 A).   

In order to understand the mechanism underlying the transcriptional activation of the 

transgene in atsac3b-3, we analyzed some of the histone marks at transgene promoter. 

Using ChIP, we measured the levels of H3K27me3 (associated with transcriptional 

repression), H3K9me2 (transcriptional repression of transposable elements) and H4-tetra-

acetylation (associated with transcriptional activation). We measured reduction in the 

H3K27me3 and H4 tetra-acetylation, but no significant change in the H3K9me2 levels 

(Fig. 3.2 B).  
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A  

             
B 

 
Figure 3.1 The mutation in epic3 

(A) Fluorescence images of the different epic3 alleles and the type of mutations that 
they carry (B) Schematic representation of the AtSAC3B protein and the location of 

the mutations discussed in this chapter. 
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Figure 3.2 Transcriptional activation of the GFP based transgene in epic3 is 
associated with changes in the histone modification at the transgene promoter 

(A) Steady-state levels of GFP and APUM9 transcripts show that the mutation in atsac3b-3 
causes transcriptional activation of the GFP based transgene and has no effect on the 

endogene. (B) ChIP analyses of the silex transgene promoter detected significant changes 
in H4tetra-acetylation and H3K27me3 levels but not for H3K9me2. The error bars 

represent s.e.m of three biological replicates. 

 

AtSAC3B	is	required	for	proper	nuclear-cytoplasmic	poly(A)	RNA	export	in	Arabidopsis	
Since AtSAC3B is a component of the TREX-2 mRNA export complex, we performed 

mRNA whole-mount in situ hybridization for localization of poly(A) RNAs in the different 

AtSAC3B mutant alleles. For the purpose leaves from two weeks old plants were fixed and 
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hybridized with a fluorescent cyanine 3 (cy3) labeled oligo dT(50) probe, which recognizes 

and binds to the poly(A) tails of the mRNAs. To identify the cells nuclei, the samples were 

counterstained with DAPI. In all three recovered alleles, strong cy3 fluorescence signal was 

detectable that colocalized with the DAPI signal, indicating that the bulk mRNAs were kept 

in the cells nuclei. In contrast to this in the parental silex line, the cy3 signal was dispersed 

through the entire cells (Fig. 3.3). We also tested the previously reported atsac3b-2 allele 

(Lu et al., 2009) and we obtained similar results as for our EMS alleles, albeit the intensity 

of the detected signal was weaker. This data establishes that AtSAC3B is required for 

proper nuclear-cytoplasmic poly(A) RNA export in Arabidopsis.  

 

 
  

Figure 3.3 Cytoplasmic mRNA export in Arabidopsis requires functional AtSAC3B 

Whole-mount mRNA in situ localization of the mRNAs in silex and atsac3b alleles. The 
cy3 flurofore is reporting on the localization of the mRNAs in the cells. The strong cy3 
signal in atsac3b alleles indicated on dense subcellular mRNAs accumulation. DAPI 
represents a nuclear marker, binding specifically to the DNA in the nucleus. The 
colocalization of the cy3 signal and the signal from DAPI in atsac3b alleles indicates that 
the mRNAs accumulate in the nucleus of the cells. The fluorescent microscopy pictures are 
taken with confocal system. Scale bares= 40µm. 
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Transcription	profiling	
In order to identify the genes whose steady-state transcript levels are affected in atsac3b, 

we performed RNA-seq based transcription profiling using RNA extracted from areal parts 

of young seedlings (silex and atsac3b-4). Compared to silex, 486 protein-coding genes 

were up-regulated and 604 down-regulated in atsac3b-4. Gene ontology analyses 

(MAPMAN) allowed us to group the miss-expressed genes into distinct classes. The main 

affected categories belonged to RNA metabolism, regulation of transcription, protein 

degradation and heat stress (Table 3.1). Notably, 23 of the up-regulated genes belonged to 

the “abiotic heat stress” category. Because the overall transcriptome resembled that of a 

heat stressed plant, we decided to investigate the effect of heat stress on poly(A) RNA 

export. 

GeneID MapMan GO Symbol Expression (log2) P-value 

AT2G26150 20.2.1 stress.abiotic.heat HSFA2 7.96 2.2E-14 

AT5G12030 20.2.1 stress.abiotic.heat HSP17.6 5.51 1.2E-107 

AT1G07400 20.2.1 stress.abiotic.heat 

 

3.51 7.4E-87 

AT5G51440 20.2.1 stress.abiotic.heat 

 

3.30 9.3E-108 

AT2G19980 20.2.99 stress.abiotic.unspecified 

 

3.20 4.0E-05 

AT5G12020 20.2.1 stress.abiotic.heat HSP17.6II 3.01 3.7E-48 

AT1G53540 20.2.1 stress.abiotic.heat 

 

2.91 2.8E-18 

AT5G52640 20.2.1 stress.abiotic.heat ATHSP90.1  2.72 1.1E-174 

AT3G12580 20.2.1 stress.abiotic.heat HSP70 2.55 8.5E-189 

AT1G56300 20.2.1 stress.abiotic.heat 

 

1.99 4.8E-08 

AT3G46230 20.2.1 stress.abiotic.heat ATHSP17.4 1.99 1.2E-27 

AT4G25200 20.2.1 stress.abiotic.heat ATHSP23.6-MITO  1.94 3.44E-04 

AT1G74310 20.2.1 stress.abiotic.heat ATHSP101, HOT1 1.84 1.7E-84 

AT2G20560 20.2.1 stress.abiotic.heat 

 

1.76 6.4E-52 

AT5G37670 20.2.1 stress.abiotic.heat 

 

1.66 7.7E-14 

AT2G40330 20.2.99 stress.abiotic.unspecified PYL6 1.54 2.3E-11 

AT1G59860 20.2.1 stress.abiotic.heat 

 

1.45 1.4E-11 

AT3G14200 20.2.1 stress.abiotic.heat 

 

1.40 3.2E-45 

AT1G11360 20.2.99 stress.abiotic.unspecified 

 

1.39 5.01E-04 

AT4G19590 20.2.1 stress.abiotic.heat 

 

1.33 8.3E-06 

AT4G18880 20.2.1 stress.abiotic.heat HSFA4A 1.26 1.5E-27 
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AT3G09440 20.2.1 stress.abiotic.heat 

 

1.15 7.3E-13 

AT4G11660 20.2.1 stress.abiotic.heat HSFB2B 1.05 6.9E-22 

 

Table 3.1 Transcripts related to heat stress that are up regulated in atsac3b-4 

	

Heat	stress	causes	a	block	of	mRNAs	export	in	wild-type	plants	
The compromising effect of high environmental temperatures on mRNA export has already 

been reported in Saccharomyces cerevisiae (Saavedra et al., 1997; Saavedra et al., 1996) 

and in Trypanosoma cruzi (Názer et al., 2012). Because the atsac3b-3 transcriptome 

indicated that heat stress might affect mRNA export in plants we analyzed if mRNA export 

in wild type plants can be affected by heat stress. For this purpose wild type (Col-0) and 

silex seedlings were heat stressed at 37 °C for 24 hours. Immediately after heat stress in 

situ detection of poly(A) RNAs was performed using the aforementioned whole-mount 

method. In parallel whole-mount poly(A) RNA in situ localization was performed with 

wild type and silex seedlings grown at 24 °C (Fig. 3.4 A and B). In heats stressed wild type 

and silex seedlings we observed strong Cy3 signal in the nuclei of the cells. This nucleus 

specific cy3 signal was not present in the non-stressed control seedlings. This data indicates 

that heat stress compromised the export of the bulk of the poly(A) RNAs in wild-type 

plants.  
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A 

 
B 

 
Figure 3.4 Heat stress leads to the accumulation of poly(A) RNAs in the nuclei of wild 

type Arabidopsis plants. 

Whole mount poly (A) RNAs in situ localization in control plants grown at 24 °C (A) and 
in plants grown at 37 °C for 24 hours shows the compromising effects of high temperatures 
in the poly (A) RNAs export in wild type plants (B). DAPI staining was used for the nuclei 
localization. Scale bares= 40µm. 
 



 

	
67	

 

 

AtSAC3B	is	required	for	selective	nuclear	poly(A)	RNA	export	
The selective poly(A) RNA export we observed in heat stressed wild-type plants (Col-0) 

and heat stressed silex plants as well as in atsac3b raised the question about the nature/type 

of the transcripts that are kept in the nucleus or exported into the cytoplasm. To address 

this, we performed nuclear-cytoplasmic RNA fractioning of three weeks old plants 

followed by strand-specific microarray based transcription profiling of the two fractions 

using three biological replicates for each sample. The purity of the created fractions was 

confirmed by Western blots of the proteins extracted from the very same fractions that were 

used for the RNA isolation. Antibodies against a nuclear protein (tetra-acetylated histone 

H4) and a cytoplasmic protein (UGPase) were used for the detection of the proteins in the 

different fractions. The results showed little to no contamination present in the separate 

fractions, indicating that we were able to obtain highly enriched fractions (Fig. 3.5).  

The nuclear transcriptomes confirmed our previous results that we obtained with non-strand 

specific total RNA sequencing. Indeed, almost 30% of all up-regulated nuclear protein-

coding sense transcripts were shared between atsac3b-3 and heat stressed silex (Fig. 3.6 A, 

top). We observed very similar activation of sense and antisense transcripts in the nucleus 

(Fig. 3.6 B, top). In the cytoplasmic transcriptome we did not observe an overlap between 

atsac3b-3 and heat-stressed silex plants (Fig. 3.6 A, bottom). A very surprising result 

however was obtained when we analyzed the ratio between sense and antisense transcripts 

in the cytoplasm. While heat stressed plants did not display any bias for one or the other, in 

atsac3b-3 the vast majority of down-regulated transcripts were of the antisense orientation 

and the up-regulated transcripts were almost exclusively sense transcripts (Fig. 3.6 B, 

bottom).  
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Figure 3.5 Enrichment of the nuclear and the cytoplasmic fractions 

Western blot with cytoplasmic (UGPase) and nuclear (tetra-acetylated histone H4) markers, 
show high enrichment and no contamination of the cytoplasmic (C) and the nuclear (N) 
fractions respectively. Coomassie staining of the membrane is shown as a loading control.  
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Figure 3.6 Graphical representation of the nuclear (top) and cytoplasmic (bottom) 

transcriptomes . 
(A) Venn diagrams indicating the number of up-regulated protein-coding sense transcripts 
compared to wild type untreated plants.  (B) Stacked bar plots indicating the number of up 

or down-regulated transcripts and their orientation (antisense in blue, sense in red).
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Discussion	and	conclusion	

		
Recently, we have reported on a tissue-specific epigenetically regulated GFP reporter line 

(silex), suitable for studying different epigenetic regulators and tissue-specific epigenetic 

regulation of gene expression (Hristova et al., 2015). In the forward genetic mutant screen 

for novel epigenetic regulators that was performed on this line we recovered epic3 (atsac3b-

3) that caused transcriptional activation of GFP expression. The microscopically detectable 

GFP signal was restricted to the edges of the leaves, indicating a highly tissue-specific 

activation pattern of the transgene.  

In order to elucidate the mechanism underlying the transcriptional activation of the 

transgene we analyzed the histone marks occupancy at the transgene promoter. The data 

showed a reduction in the levels of the repressive histone mark H3K27me3. This can be the 

cause for the transcriptional activation of the transgene in atsac3b-3 (epic3). The possibility 

that other chromatin modifications that were not tested here also contribute to the 

transgene’s transcriptional activation can’t be excluded.  Another possibility may be an 

indirect regulation of the transgene by AtSAC3B, where AtSAC3B regulates an upstream 

factor that influences transgene expression. However, we have data that indicates that 

AtSAC3B could be involved in regulation of the dynamics of the histone marks on a global 

nuclear scale (discussed in Chapter 4). 

In a previous study (Lu et al., 2009), three possible Sac3 homologues in Arabidopsis were 

identified-AtSAC3A, AtSAC3B and AtSAC3C, but none of the respective mutants 

displayed the sac3∆ specific nuclear poly(A) RNA export defect that was reported in yeast, 

indicating that in plants these proteins might have evolved to fulfill different functions. 

However, using a more sensitive approach based on confocal microscopy, we were able to 

confirm that atsac3b-2 (the allele used in the aforementioned study), displays a poly(A) 

RNA export defect thus  validating that AtSAC3B is required for proper RNA export in 

Arabidopsis. Furthermore, we found atsac3b-2 to be a weak allele compared to our EMS 

alleles. This may be due to the fact that atsac3b-2 is a SALK line carrying the T-DNA in an 

intron, thus potentially still producing functional SAC3B protein. Our findings are well in 

accordance with the reports on the Sac3 homologues in Drosophila (Kurshakova et al., 

2007) and humans (Wickramasinghe et al., 2010) where the importance of the respective 

homologues in the mRNA export process are shown.  
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Taking into consideration the involvement of AtSAC3B in the export of the poly(A) RNAs, 

the finding that atsac3b-2 causes up-regulation of heat-stress related genes, raised the 

question of whether heat stress may have an impact on poly(A) RNA export. We show here 

that poly(A) RNAs export is compromised in wild type plants following heat stress. To our 

knowledge this has not been shown in plants before, but it is a well known phenomenon in 

yeast (Saavedra et al., 1996). Since the in situ hybridization method used was not 

quantitative, we couldn’t identify if additional heat stress on atsac3b-2 and atsac3b-3 

intensifies the severity of mRNA export defect.  

The genome-wide analyses of the nuclear and cytoplasmic RNAs originating from heat-

stressed silex plants, showed that high temperatures cause strong transcriptional activation 

of heat stress related genes, whose transcripts are predominantly kept in the nucleus and 

only small portion of those transcripts appears to be exported. Upon heat stress, 

transcriptional reprogramming occurs in the cells, including fast activation of heat 

responsive genes. However our data suggest that most of these newly synthesized transcripts 

remain in the nucleus.  

We also measured increased levels of heat-stress related mRNAs in the nuclear fraction of 

astac3b-3, but the activation was moderate compared to the heat stressed wild type plants. 

This together with the fact that we found that 700 of the up-regulated genes (out of 1781 for 

atsac3b-3 and 2663 for silex-hs) were in common for the nuclear fractions of atsac3b-3 and 

silex-hs indicated a substantial but not complete overlap of the two conditions. Therefore 

heat stress does most likely not simply result in a complete inhibition or inactivation of 

SAC3B. Also, whereas in silex-hs the heat stress genes are activated transiently as a 

response to the new conditions, in atsac3b-3 these genes seem to be activated in a long term 

manner, without any external stimuli.  

The nuclear and cytoplasmic compartment transcriptomes revealed a striking difference in 

the amount of antisense transcripts that exported between atsac3b-3 and silex-hs (Fig.3.6).  

The impaired export of the antisense transcripts in atsac3b-3 implied that there might be a 

specialized antisense transcript export pathway in Arabidopsis. While the specificity for 

antisense transcripts may be surprising, the specificity of TREX-2 for the export of certain 

classes of RNAs is not. It has been reported previously that the human homologue of Sac3-

GANP is required for the export of a specific subset of mRNAs, therefore playing a role in 

selective export of transcripts (Wickramasinghe et al., 2014).  

The nuclear pore complex and the complexes that are associated to it (eg. TREX-2) are 

clearly very important component in the gene expression regulatory network. We show 
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here that the regulatory potential of the nuclear pore is exquisite and still not completely 

understood. 
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Materials	and	methods		

Plant	material,	mutagenesis	and	mapping	
 All plants used in this study are in Col-0 background. The plants were grown in growth 

chambers Sanyo MLR-350 at 24°C with 16 hours light. The silex reporter line was 

obtained from a collection created by The Institute for Genomic Research (J. Craig Venter 

Institute, line AGRAC-60-1-1) (Xiao et al., 2010).  

Causal EMS mutations were mapped by whole genome sequencing combined with classical 

mapping by crossing the mutants with the Wassilewskija accession (WS). Reads were 

mapped against the reference genome and SNPs called in Geneious (Biomatters Ltd.). 

Using R SNPs were filtered for EMS mutations (G:C->A:T) and zygosity called based on 

the variant frequency provided by Geneious (>=80% homozygous mutation, >=45% and 

<=55% heterozygous mutation). Plots were then created by calculating the ratio of the 

number of homozygous and heterozygous and mutations in a 500 kb window. 

Real	time	PCR	and	transcriptome	analysis		
Total RNA from 100 mg of fresh leaf tissue of Arabidopsis plants was isolated with 

innuPREP Plant RNA Kit (Analytik Jena). 500 ng of RNA were used for cDNA synthesis 

(iScript cDNA synthesis kit, Bio-Rad). Expression of target genes was measured by 

quantitative PCR (qPCR) in a Light-Cycler 480 (Roche), using SYBR Green I Master Mix. 

Steady state mRNA levels were calculated with the Light-Cycler 480 software (Roche) 

using ACT2 for normalization. 

Transcription profiling on the silex reporter line and atsac3b-4 was carried out on RNA 

extracted from leaves of 17 days old plants as described previously on three biological 

replicates (Yokthongwattana et al., 2010).  

Chromatin	Immunoprecipitation	
Chromatin Immunoprecipitation was performed as previously described by Jaskiewicz et 

al., 2011. In our study we used one-gram roseate leaves from three weeks old plants as a 

starting material for nuclei preparation. For the pull downs two antibodies were used: anti-

H4 tetra-acetylation antibody (06-866) from Milipore and anti H3K27me3 (A299-001) 

from Diagenode. Relative histone acetylation and histone H3K27 trimethylation levers 

were calculated using the comparative CT method (Schmittgen and Livak, 2008) by 

normalizing against input and ACT2. The experiment was performed in three biological 

replicates.  
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Whole	mount	mRNA	in	situ	hybridization		
The whole mount mRNA in situ hybridization was performed as previously described by 

(Germain et al., 2010) with slight modifications.  

Leaves from two weeks old plans, (where indicated seedlings were used) were harvested in 

small petri dishes and immersed with 5ml fixation cocktail (50% Fixation buffer: 120 mM 

NaCl, 7mM Na2HPO4, 3 mM NaH2PO4, 2.7 mM KCl, 0.1% Tween-20, 80 mM EGTA, 5% 

formaldehyde and 10% DMSO, and 50% of the fixation cocktail consists of heptane). The 

leaves (seedlings) were vacuum infiltrated for 10 min and room temperature, and than 

gently agitated at room temperature for 30min. The samples were than dehydrated twice for 

5 min each in 100% methanol, and three times, each five minutes in 100% ethanol, after 

which they were incubated for 30 min in ethanol:xylene (1:1) with agitation at room 

temperature. The samples were washed twice with 100% ethanol; each of the washes is for 

5 min, and two times with 100% methanol (5 min each). After a 5 min incubation in 

methanol:fixation buffer without formaldehyde (1:1) the samples  were post fixed in 

fixation buffer with formaldehyde for 30 min at room temperature. Samples were rinsed 

twice (5 min each) in fixation buffer without formaldehyde, and pre hybridized in 1ml 

PerfectHyb Plus (Sigma) at 50°C for 1 hour, with a gentle agitation. After this the 

PerfectHyb Plus buffer was exchanged with fresh 1ml and 5 pmol 5’ end-labeled cy3 oligo 

dT(50) (Microsynth )was added to the samples and incubated at 50°C in dark overnight. The 

samples were washed in 2X SSC and 0.1% SDS at 50°C in dark for one hour, and 0.2X 

SSC and 0.1% SDS for another 20 min.  

Before the DAPI staining the samples were mounted in 1X PBS for 5 min. Than DAPI 

staining solution was applied in concentration, and the samples were incubated in dark and 

room temperature for 5 min. The DAPI staining solution was washed away with 3 washes 

in 1X PBS (5 min each). The fluorescence was observed with confocal microscope Zeiss 

LSM700. 

Nuclear-cytoplasmic	fractioning	
The nuclear-cytoplasmic fractioning was performed as previously described by (Wang et 

al., 2011) with slight modifications. Roseate leaves (approximately 3 gr.) from three weeks 

old plants were harvested, grinded to fine powder in liquid nitrogen and mixed with 2ml/g 

lysis buffer (20 mM Tris-HCl, pH 7.5, 20 mM KCl, 2mM EDTA, 2.5 mM MgCl2, 25% 

glycerol, 250 mM Suc and 5 mM DTT) supplemented with protease inhibitor cocktail 
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(Roche) in a final concentration of 1X. The homogenate was incubated on an overall shaker 

at 4°C for 15min. The homogenate was than filtered through a double layer of Miracloth. 

The flow-through was spun at 1500g for 10 min, and the supernatant, which contains the 

cytoplasmic fraction, was collected, and centrifuged at 12,000g for 15 min at 4°C. The 

supernatant was collected, and used as a cytoplasmic fraction. The pellet that was obtained 

after the centrifugation at 1500 g, was washed four times with 5ml of nuclear resuspension 

buffer-NRBT (20 mM Tris-HCl, pH 7.4, 25%glycerol, 2.5 mM MgCl2 and 0.2%Triton X-

100), supplemented with protease inhibitor cocktail (Roche) in a final concentration of 1X. 

After the last wash, the pellet was resuspended in 500µl of buffer NRB2 (20 mM Tris-HCl, 

pH 7.5, 0.25M Suc, 10mM MgCl2, 0.5%Triton X-100 and 5mM β-merkaptoethanol) 

supplemented with protease inhibitor cocktail (Roche) in a final concentration of 1X. The 

suspension was carefully overplayed on top of 500 µl NRB3 buffer (20 mM Tris-HCl, pH 

7.5, 1.7 M Suc, 10 mM MgCl2, 0.5% Triton X-100 and 5mM β-merkaptoethanol) 

supplemented with protease inhibitor cocktail (Roche) in a final concentration of 1X. The 

tubes were centrifuged at 16,000g for 45 min. at 4°C. The final nuclear pellet was 

resuspended in 400 µl lysis buffer.  

For the RNA extraction TRI Reagent (Sigma) was used, following the instructions for the 

manufacturer. After the RNA extraction the rest of the homogenate was kept and used for 

protein extraction again following the instructions from the manufacturer.   

Western	Blots	
The concentration of the proteins from the nuclear and the cytoplasmic fractions was 

determined using Bradford assay, and the amount of proteins used for the nuclear and the 

cytoplasmic fractions were adjusted accordingly. The proteins were loaded on 12% SDS-

polyacrylamide gel. Antibodies against UGPase and H4-tetra-acetylation ((06-866) from 

Milipore) were used for detection of the proteins. 
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Chapter	4	

	The	role	of	TREX-2	in	maintaining	the	chromatin	structure	
	
	
	
	
	
	

Abstract	
 
In addition to the canonical functions in providing a barrier between the cytoplasm and the 

nucleus and regulation of the transport between the two compartments, the nuclear pore 

complexes-NPCs also play a pivotal role in the regulation of the chromatin organization. 

Whereas the role of nucleoporins, components of NPCs, in chromatin organization has 

been extensively studied, little is currently known about the exact role of the TREX-2, a 

complex associated with NPC in this process. TREX-2 is a highly conserved protein 

complex that has been found from yeast to humans and plants. In order to better understand 

the role of TREX-2 in regulating chromatin organization we studied Arabidopsis plants that 

are defective in AtSAC3B, a component of the TREX-2 complex. For this purpose we 

assessed the global heterochromatin levels and the levels of several specific histone 

modifications in atsac3b and compared them with wild type plants. We found that 

AtSAC3B is involved in the maintenance of the heterochromatin levels, and has a general 

effect on the maintenance of repressive histone modifications. Our results show that it may 

also influence euchromatic histone marks. The data presented here further confirm the very 

close links between transcription, RNA export and chromatin structure.  
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Introduction		
	
Chromatin is a higher organizational level of the genome in which the genomic DNA 

interacts with histone proteins, creating highly compact structures that allow the 

accommodation of the long genomic DNA into the space-limited nucleus.  The level of 

chromatin condensation is not ubiquitous within the nucleus and two major structurally and 

functionally distinguishable territories can be observed: euchromatin and heterochromatin 

(Heitz, 1928). The euchromatin is less compact, transcriptionally active and enriched in 

protein coding genes, whereas the (constitutive) heterochromatin is condensed, 

transcriptionally inactive and rich in repetitive sequences (satellite sequences and 

transposable elements) and pseudo genes.  

Euchromatin can undergo organizational changes in a developmental stage-dependent 

manner when it becomes more compact. This type of chromatin is termed “facultative” 

heterochromatin and is defined as a cytological manifestation of epigenetic events that 

cause changes in gene expression (Gilbert et al., 2003). The distribution of the euchromatin 

and the heterochromatin within the nucleus is precisely organized. Along the chromosomes, 

constitutive heterochromatin is predominantly confined to the pericentomeric regions, at 

the so called “chromocenters” (CCs), but also at the nucleolus organizer regions (NORs) 

(Dvořáčková et al., 2015; Huisinga et al., 2006; Lermontova et al., 2015; Schoeftner and 

Blasco, 2009; Schueler and Sullivan, 2006; Slotkin and Martienssen, 2007).  

Euchromatin and heterochromatin are also distinguishable by the different histone 

modifications for which they are enriched in. Higher eukaryotes’ euchromatin is enriched 

in acetylated histones (H3ac and H4ac), as well as methylation of lysine residues 

(H3K4me, H3K36 and H3K79) (Martin and Zhang, 2005; Schübeler et al., 2004), which 

relax the chromatin structure and make it accessible for different transcriptional factors and 

RNA polymerase II. Heterochromatin on the other hand is enriched in methylated histone 

three (H3K9me) and the heterochromatin protein 1 (HP1) (Gilbert et al., 2003; Ho et al., 

2014; Lachner et al., 2001).   

From a nuclei-spatial perspective, heterochromatin tends to accumulate at the nuclear 

periphery (Bühler and Gasser 2009; Dillon, 2008). This was confirmed in gene 

translocation studies in yeast and animals, which showed that some genes can undergo 

transcriptional silencing when they are brought into close proximity to the nuclear envelope 

(Kosak et al., 2002). This repressive effect of the nuclear envelope was considered to be 

locus-specific, since it wasn’t observed at some inducible yeast genes (such as INO1, 
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GAL1, GAL2, SUC2, FIG2, HXK1, HSP104). Thorough studies of these genes, showed 

that they undergo translocation upon transcriptional activation and get anchored to the 

NPCs (Van de Vosse et al., 2010; Casolari et al., 2004; Mendjan et al., 2006; Taddei, 

2007). This suggests that despite the preferential association of heterochromatin with the 

nuclear periphery, there are regions (at the NPCs) free of heterochromatin that stimulate 

transcription. 

While the spatial distribution of the genes and the role of the nuclear envelope and the 

nuclear pore complexes received attention in yeast and higher eukaryotes, in plants little 

research has been conducted on this topic. In the previous chapter, we showed that the 

atsac3b-3 caused transcriptional activation of the GFP based reporter construct. 

Concomitant to the release of silencing we observed reduced levels of the repressive 

H3K27me3 and H3K9me2 marks at the transgene promoter. AtSAC3B is a member of 

TREX-2 (Transcription Export Complex 2), a complex associated to the nuclear pore, 

whose role in chromatin organization is well known in yeast and animals (Brown and 

Silver, 2007; Ptak et al., 2014; Sood and Brickner, 2014; Taddei, 2007; Taddei et al., 2006). 

Since we observed changes in the chromatin constitution at specific targets in atsac3b we 

wanted to asses if AtSAC3B also played a more global and genome-wide role in 

maintaining these chromatin marks.  

Using whole mount immune assays we revealed here the role of AtSAC3B in 

heterochromatin organization, and present data that shows that this protein influences the 

levels of repressive histone modifications such as H3K27me3 and H3K9me1. 
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Results		
 

Heterochromatin	levels	are	reduced	in	atsac3b-3	
In order to study the role of the AtSAC3B in the chromatin organization we first assessed 

the state of the heterochromatin in the mutant. For this purpose, we carried out quantitative 

analyses of global heterochromatin levels in atsac3b  (atsac3b-3 and atsac3b-2). We 

measured the relative heterochromatin fraction (RHF), an indicator for chromatin 

compaction (van Zanten et al., 2012) in 10 days old seedlings stained with propidium 

iodide PI (whole-mount DNA staining). High-resolution images, acquired with a confocal 

laser scanning microscope were used for the assessment of the RHF, which was determined 

by the area and fluorescence intensity of all chromocenters (CCs) in relation to the area and 

the fluorescence intensity of the entire nucleus (She et al., 2013; Soppe et al., 2002; 

Tessadori et al., 2007). Interestingly we detected a significant reduction in RHF levels in 

both atsac3b-2 and atsac3b-3 compared to the respective wild type plants (Fig. 4.1), 

suggesting that defects in AtSAC3B caused heterochromatin decondensation. 

CCs are discrete nuclear domains of mainly pericentromeric heterochromatin. They are the 

main representatives of heterochromatin, and are rich in repetitive sequences, methylated 

DNA and dimethylated histone H3K9 (Fransz et al., 2006; Soppe et al., 2002). To exclude 

the possibility that the observed reductions of the RHF values in the mutant were not a 

result of a reduced number of chomocenters we also assessed the numbers of 

chromocenters (CC) in the mutant and wild type cells. A tendency for a slight increase of 

the number of CCs was observed in the atsac3b-3, that wasn’t present in the atsac3b-2 

(Fig. 4.1). Since atsac3b-3 causes transcriptional activation of the transgene in the edges of 

the leaves, we wanted to identify if the mutation had a stronger effect in those cells. We 

measured the heterochromatin content and the number of CCs in the cells at the marginal 

cell layer. The data we obtained showed the same tendency as we had observed in the 

central mesophyll cells: reduction of the heterochromatin content, and slight increase in the 

number of the chromocenters (Fig.4.1).  
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Figure 4.1 Quantification of the heterochromatin levels in atsac3b 
(A) Graphical representation of the heterochromatin levels (relative heterochromatin 

fractions-RHF, left panels) and number of chromocenters (CC, right panels) in atsc3b-3 
and atsac3b-2 (B) quantified with PI staining. (C) Heterochromatin levels and number of 

chromocenters in the leaves edges of atsac3b-3 and silex. The error bars represent s.e.m of 
50 and 10 individual cells, respectively. Differences between the wild type and the mutant 
plants were assessed using a two-tailed Welch’s test (* p<0.05, **p<0.01, ***p<0.001). 
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atsac3b	influences	the	levels	of	the	histone	marks	in	plants	
The finding that atsac3b displayed decondensation of the heterochromatin, prompted us to 

investigate if the mutation is also influencing the global levels of two repressive histone 

marks: H3K9me1 and H3K27me3. We addressed this question by performing cytological 

staining (whole mount immunostaining) in 10 days old seedlings. The seedlings were fixed 

and labeled with fluorescent antibodies against the aforementioned histone modifications. 

As a control to the experiment, a hybridization with antibody against histone three (H3) 

was carried out in order to exclude the possibility that defects in AtSAC3B may affect the 

global level of H3.  

In order to visualize the DNA, the cells were counterstained with propidium iodide (PI) and 

the signal was detected with confocal laser scanning microscope. The acquired high-

resolution serial images were reconstructed in 3D, and the borders of the objects of interest 

were defined. The fluorescence from both channels (Alexa 488-for the antibodies against 

the histone modifications and the PI) was measured as sum of pixel intensities in each 

object. The antibody fluorescence signals were normalized against the respective PI signal 

and these values were used for statistical analyses.  

We did not detect significant differences in the amount of H3 in the two tested alleles 

compared to the wild type plants (atsac3b-3 compared to silex and the atsac3b-2 compared 

to Col-0) (Fig. 4.2). This wasn’t the case with the histone modifications we assessed. We 

detected significant reduction in the levels of H3K27me3 and H3K9me1 in both tested 

alleles (Fig. 4.3).  
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Figure 4.2. H3 levels are not affected in atsac3b 
(A) H3 levels quantified with whole-mount immunostaining in atsac3b and wild type 
plants. The error bars represent s.e.m of 170 cells. (B) Microscopy pictures of the H3 

antibody channel (Ab- Alexa 488), the propidium iodide (PI), and the bight field 
channel (DIC). Objective 63x. 
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Fig.4.3 atsac3b causes global reduction in the H3K27me3 and H3K9me1 levels in 

Arabidopsis 
H3K27me3 and H3K9me1 levels in two mutant alleles were quantified with whole mount 
immunostaining and compared it to the respective wily type. The error bars represent s.e.m 

of 80 and 40 cells respectively. 
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Discussion	and	conclusion		
In the work presented here we investigated the role of AtSAC3B, a TREX-2 member in 

chromatin organization in plants. Using two independent alleles (atsac3b-3 carrying a SNP, 

atsac3b-2 containing a T-DNA insertion), we were able to show that loss of function of 

AtSAC3B led to a significant global reduction of the RHF index. Since RHF represents an 

indicator for the degree of condensation of the heterochromatin (van Zanten et al., 2012), 

and we didn’t detect change in the number of the CCs, this finding implied that the 

mutation in AtSAC3B is causing relaxation of heterochromatin, which eventually leads to 

global transcriptional activation that we also observed with the transcriptome of atsac3b-2 

(discussed in chapter 3). The thorough analyses of the heterochromatin levels in both, the 

central mesophyll cells and the most outer single cell layer of the leaf margin showed that 

AtSAC3B doesn’t influence heterochromatin levels in a spatial manner.  

We also measured significant reduction in H3K9me1 and H3K27me3 levels (Fig. 4.3), but 

observed no changes in the levels of the H3 histone (Fig.4.2), indicating that the mutation 

in AtSAC3B directly influences specific histone modifications, and has no effect on the 

global nucleosome incorporation. AtSAC3B is not known to have an enzymatic activity; 

therefore, the observed reduced levels of H3K9me1 and H3K27me3 are not a result of 

disturbed equilibrium in the placement and/or the removal of the specific modifications, but 

rather an indirect effect. One possibility could be that the AtSAC3B has an effect on the 

establishment on the so-called “chromatin boundary activities”. Notably, when put in 

proximity heterochromatin and euchromatin can influence each other and assign properties 

of the oppose chromatin state to one another.  Boundary activates are assigned to proteins 

that can prevent the spreading of the influence between the heterochromatin and 

euchromatin (Capelson and Corces, 2012; Kellum and Elgin, 1998).  

Boundary activities were reported to the several export factors in yeast (Mex67, Cse1p, 

etc.), which were shown to be blocking the spreading of heterochromatin by interactions 

with the nucleoporin Nup2 (reviewed in (Gerasimova and Corces, 2001) ). The TREX-2 

complex in Arabidopsis is anchored to the NPC via the Nup2 (Lu et al., 2009). It is possible 

therefore that AtSAC3B has a similar mechanism of action.  
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Materials	and	methods	
 

Plant	material	
All plants used in this chapter are in Col-0 background. The mutants used in the study are 

the atsac3b-2, a SALK line that caries a T-DNA insertion (Lu et al., 2009), and atsac3b-3, 

an EMS mutant, with a point mutation in the conserved SAC/GANP domain. The seeds 

were surface sterilized with sterilization buffer (70%EtOH supplied with 0.05% Triton X-

100), for 25 min on an overall rotator. The tubes were centrifuged for 5min at 5000 rpm 

and room temperature. The sterilization buffer was exchanged with 1ml absolute ethanol, 

and the tubes with the seeds were incubated for another 20 min in an overall rotator. The 

seeds were dried in sterile conditions. The dried seed were sown on plates with ½ 

Murashige & Skoog (MS) basal media. The plates were kept in dark at 4°C for 24 hours for 

stratification of the seeds and afterwards germinated in long day (16 hours light and 8 hours 

dark) conditions for 10 days.   

 
 

Tissue	fixation,	embedding	and	permeabilization	
These procedures were performed as previously described by (She et al., 2013). 

Briefly, 3-4 leaves from the 10 days old seedlings grown on MS media were harvested on 

ice in 2ml tubes containing freshly prepared fixative BVO (1xPBS, 2mM EGTA, 1% 

formaldehyde, 10% DMSO, 0.1% Tween-20). The leaves were fixed for 30min at room 

temperature with a gentle agitation. The tubes were centrifuged for 1 min at 400g. The 

fixative was replaced with 1ml fresh PBT (1x PBS, 0.1% Tween-20) and the tubes were 

kept on ice until the embedding step.  

The fixed leaves were transferred on Superfrost slides (Thermo Scientific cat. No. 

J1800AMNZ). Using fresh razor blade, the leaves were fine-sliced without disturbing the 

leaf integrity. This step increased the cells’ permeability and led to better PI staining. After 

finishing the dissection the remaining PBT was removed with fine paper and 100 µL - 

embedding mixture (5% acrylamide mix, prepared in 1xPBS, 20% APS and 20% NaS) was 

applied on the leaves, and carefully covered with 20 mm x 20 mm cover slips, avoiding the 

formation of bubbles. The glass slides were incubated at room temperature until the 

acrylamide polymerizes (45min-60min). The cover slips were removed and the embedded 

leaves were transferred into coupling jars in order to achieve clarification and post-fixation 

of the tissue (5 min in methanol, 5 min in absolute ethanol, 30 min in absolute 
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ethanol:xylene, (1:1), 5 min in absolute ethanol, 5 min in methanol, 15 min in PBT:2.5% 

formaldehyde (1:1) and final washing for 5 min in PBT).  

The glass slides were dried with fine paper and a digestion mix (0.5% cellulose, 1% 

driselase, 0.5% pectolyase, all dissolved in 1xPBS) was applied over the leaves for 

degradation of the cell wall. The glass slides were incubated in moist chamber at 37°C for 

one hour. Two-steps wash (5 min each) with PBT was performed, and the glass slides were 

dried before an RNase A solution (100 µg/ml RNase A in 1xPBS, supplemented with 

1%Tween-20) was applied to the fixed leaves, followed by incubation in moist chamber at 

37°C for one hour. Glass slides were again washed in PBT (two times, 5 min each), before 

the final post-fixation for 20 min in PBT-F (PBT with 2.5% formaldehyde) and the two 

hours permeabilization at 4°C in 1xPBS supplemented with 2% Tween-20. Before 

proceeding to immunostaining the glass slides were washed twice (for 5 min) in PBT.   

Immunostaining	
Dilutions 1:1000 for H3K4me3 (Upstate-ab32356) and 1:200 for H3 (Abcam-ab1791), 

H3K9me1 (Upsate-07-450) and H3K27me3 (Upstate)) of the primary antibodies were 

prepared in PBS supplemented with 0.2% Tween20, and each glass slide was incubated in 

wet chamber with 100 µL primary antibodies for 24 hrs at 4°C. The primary antibodies 

were washed with PBT for 2-4 hrs at room temperature with a gentle agitation, and a 

secondary antibody was applied (1:200 dilution in PBS supplemented with 0.2% Tween20) 

for 24 hrs in wet chambers at 4°C. The secondary antibody was washed with PBT for 2 

hours at room temperature. 

Propidium	Iodide	(PI)	staining		
The aforementioned procedure of fixation, embedding, clearing and permebealization of 

the tissue was also followed when PI staining was performed for the determination of the 

heterochromatin content.  

After the immunostaining the cells were counterstained with PI. In both cases-

immunostaining and heterochromatin quantification, the PI was applied in a concentration 

of 10µg/mL in PBS, for 15 min at room temperature. The slides were washed with PBS for 

15min. The staining and the washing were performed in dark.  
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Image	acquisition	and	processing		
Confocal laser scanning microscope system Leica SP5 was used for the detection of the 

fluorescence signal. Parameters like: laser intensity, gain, pinhole, voxel size and zoom 

factor were kept constant through the entire experiment. Serial, three-dimensional images 

(Z-stacks) were acquired with two times oversampling, following the Nyquist’s rule of 

oversampling. The images were processed with the Imaris software (Bitplane). 
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Chapter	5		

General	discussion	and	outlook	
 

 

Epigenetic regulation of gene expression is a fast developing research field, and even though 

many aspects of it are extensively studied, the complexity of the field makes it attractive research 

topic. The main aim of this thesis was to identify novel players and mechanisms involved in the 

tissue-specific epigenetic regulation of gene expression in Arabidopsis. We established a forward 

genetic screen that not only led to the recovery of already known epigenetic players, it also 

provided interesting novel insights. One chapter in the thesis discusses a new allele of hda6 that 

we recovered in the screen. The core of the thesis evolves on the mutant epic3 that I have 

identified and that lead to the discovery of yet unknown mechanisms influencing transcription 

and epigenetic marks.  

	

State	of	the	art	and	concept	of	the	project	
In the last decade numerous mechanisms involved in the epigenetic regulation of gene 

expression have been discovered. The most fruitful approaches that led to the discovery of 

proteins playing important roles in transcriptional gene silencing (TGS) were forward genetic 

mutant screens. The approaches taken in order to identify TGS factors evolved over the decades. 

One of first mutant screens that led to the identification of novel factor required for the 

maintenance of DNA methylation was done by Southern blots on individual plants (Vongs et al., 

1993). A few years later, the discovery of silenced transgenes provided a much more effective 

tool for mutant screens. For instance, transcriptionally silenced antibiotic resistance genes were 

ideal for such screens. These plants contained the transgene in a methylated state thus repressing 

its expression resulting in antibiotic susceptible plants. Such plants were mutagenized and then 

grown on plates containing the respective antibiotic. Plants deficient in TGS release transgene 

expression rendering them resistant to the antibiotic. In such a way several mutants could be 

identified (Amedeo et al., 2000). Such screens have limitations because the transgene needs to be 

strongly activated in all tissues to allow plants to survive on media containing the antibiotic 

thereby rendering them not very sensitive. Aiming to identify subtler epigenetic regulators, 

possibly acting only in specific tissues, we moved to a different system based on a very sensitive 
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epigenetically controlled GFP reporter line (silex). The silex reporter line is based on APUM9, 

an essential developmental gene that is under complex epigenetic regulation by at least two 

independent silencing pathways (MOM1 and NRPE1) (Yokthongwattana et al., 2010). 

Introgressions of mom1 and nrpe1 into silex showed that similar to the endogene GFP transgene 

expression was epigenetically controlled, thereby showing that the reporter transgene adequately 

reported on APUM9 and was suitable for further studies on it’s regulation mechanisms.  

 

The	mutant	screen	
The forward genetic mutant screen that was performed on silex resulted in mutants that released 

GFP expression in numerous different tissues, a result that was quite intriguing.  

In this thesis two independent lines are presented. epic1 and epic3 were found to be defective in 

HISTONE DEACETYLASE6 (HDA6) and SUPRESSOR FOR ACTIN 3B (AtSAC3B) 

respectively. Already at this point there was a peculiar observation: while mom1 nrpe1 plants 

released GFP expression only in veins on the abaxial side of the leaf, hda6-8 (epic1) released it 

in young emerging leaves, and atsac3b-3 (epic3) in the leaf margin. That suggested that each of 

these proteins (MOM1, NRPE1, HDA6 and AtSAC3B) affected the reporter transgene 

expression in a different tissue. Why that is the case currently remains unclear but we could 

confirm that HDA6 was expressed specifically in the young emerging leaves, the same tissue 

where we observed release of GFP expression. That might suggest that in the case studied here, 

it is not epigenetic marks that guide tissue specific gene expression. It rather seems to be the 

tissue specific expression of the epigenetic regulators that results in developmentally regulated 

patterning of chromatin marks. 

	

RNA	export	and	heat	stress	
In the mutant screen, I identified that a defect in the AtSAC3B protein in Arabidopsis, lead to 

transcriptional activation of the GFP reporter transgene and local release of GFP expression 

limited only to the leaf margin. AtSAC3B is a member of the TREX-2 (transcription and export 

complex 2), a complex that is associated with the nuclear pore complex via the nucleoporin 

Nup2 and which couples the transcription and export process (Fischer et al., 2002; Jani et al., 

2014; Köhler and Hurt, 2007; Lu et al., 2009).  

Even though the mutation appeared to have different effects on the transcriptional activities of 

the transgene and the endogenous gene, the fact that AtSAC3B is associated with the nuclear 

pore complex, a complex that is a powerful regulator not only for the nuclear-cytoplasmic 
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trafficking, but also the nuclear organization, prompted me to investigate it into more details. In 

this thesis I showed the versatility of AtSAC3B and it’s potential to regulate gene expression on 

several levels.  

First, I demonstrate here that AtSAC3B is required for the export of poly(A) RNAs in 

Arabidopsis. The involvement of the yeast AtSAC3B homologue in the poly(A) RNAs export 

process was well know (Fischer et al., 2002), however in plants this is the first study showing the 

role of the AtSAC3B in the nuclear-cytoplasmic export of poly(A) RNAs. With this I showed 

that this function of the protein is conserved across kingdoms and that AtSAC3B has the 

potential to directly regulate gene expression by controlling the export of transcripts. There are 

several possibilities how this regulation is achieved. In this context, structural studies in yeast 

have shown that the export phenotype in TREX-2 mutants is primarily caused by the 

disassociation of the TREX-2 from the nuclear pore (Jani et al., 2014; 2009). However, recent 

work of (Schneider et al., 2015), showed that in yeast the role of TREX-2 into regulation of gene 

expression is even more direct. Namely, they showed that Sac3 could directly interact with the 

transcription machinery and, together with other factors control transcription initiation and 

thereby regulate the balance of the Pol II CTD phosphorylation. It remains unknown which 

mechanism is utilized by the plant TREX-2 complex.  

Surprisingly, the transcriptomic data of plants defective in AtSAC3B showed transcriptional 

activation of heat-responsive genes. This prompted me to study the poly(A) RNAs export in wild 

type plants under heat stress conditions. I showed that likewise in yeast, exposure to high 

temperatures compromises the export process in wild type plants. The accumulation of poly(A) 

RNAs in yeast under heat stress conditions was associated to transcriptional reprograming that 

occurs upon the heat stress, which results in fast production of heat stress related transcripts that 

are exported and help the cells to better and faster cope with the new conditions, whereas the 

export of all the other transcripts in the cells is paused (Saavedra et al., 1997). Another study on 

the nature of the accumulated transcripts went further and suggested that this preferential export 

of heat stress related transcripts in yeast under heat stress conditions was achieved through the 

activity of the RNA surveillance system. Namely, they have observed that the majority of the 

accumulated transcripts in the nucleus are improperly processed and have hyperpolyadenylated 

tails (Jensen et al., 2001). These findings imply on the existence of a general poly(A) RNAs 

export pathway and suggest that the selectivity of the export process is determined by the RNA 

processing machinery  and surveillance system.  
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Export	of	antisense	RNAs	
Assuming that the TREX-2 export pathway would only be involved in general poly(A) RNA 

export pathways, then one would expect mutations in this complex to have strong developmental 

defects. However, we observed only late flowering in atsac3b indicating that only the export of 

some of the poly (A) RNAs is affected.  

Assuming that the TREX-2 displays a certain level of selectivity in poly(A) RNA export, we 

studied the nature of the exported transcripts and those retained in the nucleus in atsac3b. The 

results presented here suggest the existence of several poly(A) RNA export pathways, which are 

specialized in export of specific subsets of poly(A) RNAs. The assessment of transcript 

accumulation in the different compartments (nucleus and cytoplasm) showed that in the 

population of transcripts showing export defects in the mutant, there was a bias towards 

antisense transcripts, implying that AtSAC3B is required for the export of antisense transcripts. 

Therefore, we assume that AtSAC3B plays a selective role in the poly(A) RNA export process. 

A certain selectivity of TREX-2 was already reported in humans, where it was attributed to the 

GANP, a homologue of Sac3 (Wickramasinghe et al., 2014). In the same direction was also the 

reported interaction of the TREX-2 complex with the chromatin modifying complex SAGA. The 

SAGA complex acts as a transcriptional co-activator of inducible and stress related genes in 

yeast. It was shown that a member of the SAGA complex-Sus1 interacts with the Sac3 in yeast 

and thereby couples transcription to export. Considering this, it can be speculated that TREX-2 

favors export of the stress-related transcripts (García-Oliver et al., 2012). 

AtSAC3B	and	chromatin	organization	
Even though the AtSAC3B homologues have been well studied and much is know about their 

role in the poly(A) RNA export process, up until now the protein wasn’t put into a connection 

with epigenetic regulation of gene expression. Here for the first time it was shown that 

AtSAC3B is a general epigenetic factor that regulates the organization of the heterochromatin in 

plants and to certain extend the dynamics of the heterochromatin associated chromatin marks. 

The mechanism of action remains unknown and further work is required to be shown if this 

feature of the protein is unique for plants.  
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Conclusions	and	outlook	
In this thesis I showed that a nuclear pore associated protein-AtSAC3B regulates gene 

expression by regulation of the export of poly (A) RNAs and is required for the export of 

antisense transcripts, therefore it contributes to the selectivity of the export process. Up until 

now, a connection between the TREX-2 complex and the export of the antisense transcripts 

hasn’t been made. To my knowledge this is the first report on a protein that is most likely 

involved in the specific export of antisense transcripts. In yeast TREX-2 defective cells were 

shown to have increased genome instability, that is associated with increased numbers of R-

loops (Aguilera and García-Muse, 2012; Bhatia et al., 2014; Santos-Pereira et al., 2014). On the 

other hand genome wide analyses in yeast have shown that the distribution of the R-loops across 

the yeast genome is limited to some transposons, telomeric regions, and subsets of ORF, which 

often have high CG content and/or are associated with antisense transcripts (Chan et al., 2014; 

Faghihi and Wahlestedt, 2009).  Furthermore, a regulatory role for R-loops in the expression of 

antisense RNAs (asRNAs) was reported in mouse (Powell et al., 2013) but also in plants.  In 

plants it was shown that the expression of the antisense transcript COOLAIR, which regulates 

the expression of the FLC flowering gene, is regulated by an R-loop which is formed at the 

promoter of the COOLAIR thereby preventing its’ transcription (Sun et al., 2013).   

Based of these findings, the connection between the TREX-2 and asRNAs that we made is 

consistent. We suggest that in atsac3b, the export of the asRNAs is affected. 	We expect atsac3 

to have more R-Loops at regions where the asRNA is not exported anymore. This in turn can 

affect the chromatin structure and sense gene expression. Indeed, it was proposed that asRNAs 

act as scaffold molecules for different histone-modifying enzymes. Many of these enzymes don’t 

have specific DNA-binding domains, and asRNAs facilitate their interaction with DNA and 

chromatin in a locus specific manner (Magistri et al., 2012). This can explain the changes in the 

heterochromatin organization and in the dynamics of the heterochromatin modifications that we 

observed in atsacb3 in chapter 4, even though AtSAC3B presumably has no enzymatic activity.  

Taken together the results presented here emphasizes once again the complexity of the epigenetic 

regulation of gene expression and draws the attention to the nuclear pore complex as a powerful 

epigenetic regulator, which so far was neglected in the plant epigenetic research field. I show 

here that the different epigenetic regulatory pathways can be better understood when the problem 

is looked upon from a broader perspective. 
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