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Abstract

Homonuclear diatomic molecules, such as H2 or N2, are usually not expected to show
a vibrational spectrum. Although this is true within the electric-dipole approximation,
higher-order terms in the interaction of matter and radiation give rise to very weak
spectroscopic transitions. These “electric-dipole-forbidden” transitions are spectrally
extremely narrow and thus of interest to precision spectroscopy and tests of fundamen-
tal physical theories by high-precision measurements.

Until recently, such forbidden transitions have only been observed in neutral molecules,
but not in molecular ions. In this thesis, we report the observation of electric-quadrupole
rotation-vibration transitions in the molecular nitrogen cation N+

2 —to our knowledge
the first observation of a dipole-forbidden vibrational transition in a molecular ion.

For this observation, N+
2 ions produced state-selectively by photoionization of neutral

N2 molecules were trapped in a radio-frequency ion trap (linear Paul trap) and cooled
to millikelvin temperatures through interaction with cotrapped, laser-cooled atomic
Ca+ ions (sympathetic cooling). Vibrational excitation of N+

2 was achieved with high-
intensity mid-infrared radiation from a frequency-stabilized quantum cascade laser.
Vibrationally excited ions were detected through a state-dependent charge-transfer
reaction of N+

2 with Ar atoms.

Addressing these extremely narrow transitions in a molecular ion enables the applica-
tion of techniques developed for manipulation and control of atomic ions that exploit
the long-range Coulomb interaction of charged particles, such as trapping, sympathetic
cooling and non-destructive state detection through mapping of the quantum state to
a cotrapped, experimentally more easily accessible ion (quantum logic spectroscopy).

Besides reporting the observation of electric-quadrupole rotation-vibration transitions
in a molecular ion, this thesis gives a detailed description of the mechanism underlying
these transitions and a derivation of their line strengths in fine- and hyperfine-resolved
spectra based on spherical tensor algebra.

Moreover, a model for fine- and hyperfine-structure effects in molecular photoionization,
an essential method for production of molecular ions, is presented. The model was
successfully applied to analyze photoelectron spectra from the literature and is used to
study future hyperfine-state-selective molecular photoionization schemes.

Finally, a quantum-logic state-detection method for molecular ions is discussed. The
method is based on state-dependent optical dipole forces acting on a hybrid molecular-
atomic two-ion system. By inducing a geometric quantum phase, these forces map the
state of the molecular ion onto the atomic one, from which it may be detected through
interrogation of a closed optical cycling transition. Here, feasibility of this method
for the N+

2 -Ca+ system is positively assessed by estimating the relevant experimental
parameters.

Our observation and the theoretical framework developed here might considerably in-
crease the precision and accuracy of molecular spectroscopy and therefore open up a
new route to study fundamental scientific questions by means of high-precision molec-
ular spectroscopy, such as a possible variation of fundamental physical constants or the
search for yet unknown fundamental interactions.





Felix, qui potuit rerum cognoscere causas.
Lucky who was able to understand the causes of things.
(Publius Vergilius Maro)
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Chapter 1

Introduction

Understanding nature

The goal of science is to understand the causes behind the phenomena observed in nature. Under-
standing, in physics means to describe these phenomena with mathematical models. Such models are
regarded correct, when they properly predict the results of quantitative observations, or measure-
ments.

In the endeavour to achieve ever deeper insights, new models are tested that have been suggested to
incorporate new observations or observations so far not described by a unified model. The previous
models are not wrong—they have been proven correct by observation—but they may not be applicable
in regimes they were not tested for and where discrepancies between predictions and measurements
hence were not noticed. Moreover, even in the regime in which a model was tested discrepancies
between measurements and predictions of the model could also have been too small for having been
discovered at the uncertainty of the measurements done as tests.

We may, e.g., use the model of classical mechanics to describe mechanical phenomena of our everyday
life, say, the dynamics of a bicycle. This means, predictions of that model will closely reproduce
observations. However, we know that classical mechanics is not the whole truth. At speeds much higher
than reached with a bicycle, we would notice deviations between measurements and predictions. So, we
had to replace the model of classical mechanics by relativistic mechanics. The former is not wrong, but
just not applicable for such high velocities. We would notice the same, if we were to study phenomena
at everyday-life velocities with classical mechanics, but measure physical quantities with uttermost
precision: we would encounter discrepancies between theory and observations not noticed previously
and hence not covered by the model of classical mechanics.

So, to test established physical models for deviations between predictions and observations and to
search for more fundamental models, we may either perform experiments in a regime not yet or hardly
examined or we may increase the precision of our measurements to unveil discrepancies so far obscured
by measurement uncertainties. A situation similar to the one described here, prevails currently at the
level of fundamental models in physics.
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The present view on the world in physics

The two big pillars our most fundamental understanding of the world in terms of physics lies on are
the standard model of particle physics and the general theory of relativity. According to the standard
model, matter consists of fundamental particles, quarks and leptons. Quarks make up hadrons and as
such protons and neutrons in atomic nuclei that form together with the electron, a lepton, the matter
around us [1]. Between these particles, four fundamental interactions are observed, the electromagnetic,
the “weak” and the “strong” interaction as well as gravity. The former three are covered by the
standard model, the latter is described by the general theory of relativity [2]. These models have been
proven correct in numerous observations.

This picture, however, is challenged by astrophysics and cosmology as well as theoretical considerations.
For example, the nature of the “dark matter”, introduced in cosmological models to account for the
dynamics of visible matter, as well as the one of “dark energy”, proposed to describe the accelerated
expansion of the universe, are unknown [3, 4]. Concerning gravity, a generally accepted model unifying
gravity with the other three fundamental forces has not yet been found [2, 5].

Furthermore, the “fundamental constants”, meaning the free parameters used to fit the predictions of
these models to experimental results, cannot be predicted within these models. Hence, rationalizing
their values by a more fundamental description is desirable. Also, the values of these constants, or
more precisely their low-energy limits, are assumed to be the same—or “constant”—everywhere and
at every moment in time—an assumption that might be questioned given that we live in a changing,
steadily expanding universe.

Therefore, theories beyond these established models involving additional particles, presently unknown
forces or extra dimensions have been developed. Hence, experimental data to test such theories are
desired.

Following the scheme described above, such tests may either be done by searching for new phenomena
in a regime established models were not tested for, say, at very high, so far hardly explored or un-
reached interaction energies—the approach followed in elementary particle physics—or by increasing
the precision of measurements in well studied regimes to search for signatures of phenomena so far
concealed by measurement uncertainties. The latter approach is the one followed in high-precision
atomic and molecular spectroscopy. Effects beyond the standard model are expected to manifest in
the low-energy limit probed by spectroscopic experiments as tiny changes in the frequencies of spec-
troscopic transitions. Although these deviations are tiny, the overwhelming precision and accuracy
achieved in spectroscopy and frequency metrology over the last decades might enable their detection
and renders these techniques promising ways to search for such “new physics”.

Among the phenomena studied by high-precision experiments and particularly among those benefitting
from the properties of high-precision molecular spectroscopy are investigations of possible variations
of fundamental constants and the search for yet unknown fundamental interactions.

Many cosmological models and models unifying gravity with the other fundamental interactions predict
a change of fundamental constants over the evolution of the universe. Among others, variations of the
fine-structure constant α or the proton-to-electron mass ratio µ = mp/me are claimed. Indeed, data
from quasar absorption spectra, from the Oklo natural nuclear reactor as well as other observations
suggest values for these constants over the evolution of the universe and during the history of earth
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different from their present-day figures. However, no conclusive evidence has been found so far [6, 7,
8, 9].

Variations in both of these constants, α and µ, have been investigated using high-precision spectro-
scopic experiments (recent measurements include [10, 11, 12]). Molecular experiments are particularly
suited to search for possible variations in µ, since the frequencies of molecular rotation and vibration
transitions show a more prominent dependence on the mass ratio µ than transitions in atoms. Hence,
molecules have been proposed as probes for µ-variation already four decades ago [13] and have been
employed in various astrophysical studies (see [14, 15] for two recent investigations). High-precision
laboratory studies with molecules are hence promising [16, 17, 18].1

Certain extensions of the standard model suggest additional fundamental interactions, known as a
“fifth force” [20, 21]. Thus, searches for unknown forces are an interesting route to look for new
physics. High-precision spectroscopy on simple systems, such as the hydrogen or the helium atom,
treatable with ab-initio quantum-electrodynamics (QED) calculations may provide a test for such
unknown forces. If existing, they might manifest as deviations of the measured transition frequencies
from ab-initio predictions. Whereas the H and He atom provide a test ground for unknown hadron-
lepton and lepton-lepton interactions, respectively, simple molecules also treatable with ab-initio QED
such as the hydrogen molecule H2 and the molecular hydrogen cation H+

2 as well as their deuterated
cousins HD, HD+ and D2, D+

2 may be used as probes to search for unknown hadron-hadron interactions
[20].

Contributions of high-precision molecular spectroscopy to fundamental science besides these two ex-
amples include measurements of the electric-dipole moment of the electron [22, 23, 24] or the search
for signs of parity violation in stereoisomers due to the weak interaction [25], whose parity-violating
character is well-known from nuclear and elementary particle physics [26, 27]. Considerable interest
in this effect exists because of a possible link to the homochirality of biomolecules [28].

Spectroscopy: Allowed and forbidden transitions

For high-precision measurements, the atomic or molecular transitions examined need to be spectrally
narrow, i.e., they must exhibit a small natural linewidth. This is only possible for “weak” transi-
tions, meaning transitions hardly excited by electromagnetic radiation—in the language of quantum
mechanics, transitions with a small transition matrix element.2

The excitation of spectroscopic transitions by electromagnetic radiation occurs via the coupling of the
charges in an atom or a molecule to the electromagnetic radiation field. Usual transitions are driven
by the coupling of the system to the field via the quantum mechanical electric-dipole operator. These
“electric-dipole-allowed” transitions are often “too strong” for high-precision studies, meaning their
linewidths are too large. Therefore, high-precision measurements rely on transitions with either an
exceptionally low or even a vanishing electric-dipole transition matrix element. The latter are known

1Strictly speaking, measurements of rotational-vibrational transition frequencies in most molecules do not probe the
proton-to-electron mass ratio directly, but rather the ratio of some effective mass of the molecule, depending on the
masses of the nuclei in the molecule, to the mass of the electron. In general, it is assumed that the neutron mass follows
the same behaviour as the one of the proton and that no effects depending on quark structure persist such that molecular
rotational-vibrational frequencies may be used to probe the proton-to-electron mass ratio [19].

2The transition matrix element is in general a complex quantity and “small” thus refers to its absolute value.
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as “electric-dipole-forbidden” transitions. Though dubbed “forbidden”, these transitions do occur due
to the coupling of the charges to the electromagnetic field via higher-order terms in the respective
multipole expansion, most prominently via the magnetic-dipole and the electric-quadrupole term.
However, forbidden transitions are very weak. Typical transition rates are several orders of magnitude
lower than those of electric-dipole-allowed transitions.

Although their low intensity renders these forbidden transitions challenging to observe, they also
exhibit natural linewidths orders of magnitude smaller than those of allowed ones, rendering them
well suited for high-precision measurements. Indeed, spectroscopic experiments aimed at fundamental
effects largely rely on such forbidden transitions. For example, measurements of forbidden transitions
in atomic ions have been used to search for a variation in the fine-structure constant α [11, 12].

Electric-quadrupole rotation-vibration transitions

The mechanism of forbidden transitions is particularly well conceivable in the case of vibrational
transitions in diatomic molecules. According to the usual tenet of molecular spectroscopy, a diatomic
molecule may only exhibit a vibrational spectrum, if the molecular electric-dipole moment changes as a
function of the internuclear separation. For homonuclear diatomic molecules, such as H2, N2, etc., the
electric-dipole moment vanishes due to symmetry reasons for all internuclear distances. Consequently,
it does not change with distance and thus vibrational transitions are not supposed to occur.

This reasoning, however, is only valid within the electric-dipole approximation. Higher-order terms
in the multipole expansion of the charge distribution of homonuclear diatomics, such as the electric-
quadrupole term do exist and couple to electromagnetic radiation. This coupling may excite vibrational
transitions. However, the intensities of these transitions are reduced by roughly a factor 10−8 compared
to dipole-allowed transitions [29, 30].

The first observation of electric-quadrupole vibrational transitions, or “lines” in the jargon of spec-
troscopy, dates back over half a century to an absorption experiment of H2 done by Herzberg [31].
Because of the extreme weakness of electric-quadrupole lines, an equivalent absorption path length of
several kilometres was needed for this measurement. Later on, electric-quadrupole rotation-vibration
spectra of other species such as O2 and N2 have been reported [32, 33]. Recently, such experiments
attracted renewed interest in view of precision studies. With the technique of cavity ring-down spec-
troscopy, spectra of electric-quadrupole rotation-vibration lines were recorded with high precision
[34, 35, 36, 37, 38]—some of them subsequently being interpreted in terms of fifth-force searches
[20].

Advantages of ions: trapping, shielding, cooling, detection

For high-precision spectroscopy, the narrow forbidden lines must also not be impaired by additional
broadening mechanisms such as thermal motion (Doppler broadening) or collisions (pressure broaden-
ing). These effects are reduced by observation in a well controlled, shielded, collision-free environment
at low temperatures.
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Ions, and particularly molecular ions, offer a couple of advantages to achieve this control compared to
their neutral counterparts. Because of their charge, ions may be electrically trapped, allowing for long
interrogation times in the largely collision-free environment of an ultra-high vacuum. The Coulomb
interaction between ions also allows “sympathetic cooling”: the ions to be investigated, known as the
“spectroscopy ions”, are cooled via the exchange of kinetic energy with nearby, laser-cooled ions of
another species, known as the “refrigerator ions”. Since laser cooling is a well-established technique
for atomic ions but—apart from a very few exceptions—is not applicable to molecules, sympathetic
cooling of molecular spectroscopy ions with atomic refrigerator ions offers a method to significantly
reduce Doppler broadening of molecular transitions and as such represents an important technique for
high-precision molecular spectroscopy.

Finally, the Coulomb interaction between a pair of trapped ions may be used for indirect state-detection
schemes. In such schemes, the quantum state of a spectroscopy ion is mapped to another ion, known
as the “logic ion”, which is more easily accessible for state detection. This technique is known as
“quantum logic spectroscopy”, since it is based on techniques borrowed from trapped-ion quantum
information processing experiments. Concerning molecular spectroscopy, the method allows to detect
the quantum state of a molecular ion in a non-destructive way, which is otherwise prevented by the lack
of closed optical cycling transitions used for state detection in atomic ions [39, 40, 41, 42, 43, 44].

Because of these advantages, some of the most precise measurements in physics have been achieved
with electric-dipole-forbidden transitions in trapped atomic ions [11, 12].

Forbidden transitions in molecular ions

Concerning molecular ions, however, no electric-dipole forbidden rotation-vibration spectra have been
observed until recently. The advantages of ions have thus not fully been exploited in precision molecular
spectroscopy. For example, the above-mentioned studies on a possible time variation of the proton-to-
electron mass ratio have been carried out either with weak, electric-dipole-allowed transitions or have
been restricted to neutral species.

In this thesis, we show that electric-dipole-forbidden rotation-vibration transitions in a molecular ion
may be addressed. More precisely, we report the observation of electric-quadrupole infrared funda-
mental lines in trapped and cooled molecular nitrogen cations N+

2 . To the best of our knowledge, this
is the first observation of an electric-dipole-forbidden vibrational transition in a molecular ion.

On the basis of our measurement as well as theoretical estimates based on ab-initio calculations from
the literature [45], we estimated the natural linewidth of the observed transitions to reach down to
the nanohertz range. Correspondingly, lifetimes of the vibrationally excited states of several months
are expected.

Therefore, our measurements open the way to study fundamental questions such as those mentioned
above with a novel, promising approach. Indeed, dipole-forbidden rotation-vibration transitions have
been proposed as molecular clocks and to search for variations in the proton-to-electron mass ratio µ
[46, 47]. In particular, transitions in N+

2 have been shown promising for such studies based on estimates
for the sensitivity of transition frequencies on spurious electromagnetic fields [16, 48] and given that
N+

2 ions are well suited for sympathetic cooling by Ca+ ions.
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As usual for a new observation, our findings not only open up new opportunities, but also raise new
questions: how can we understand the measured spectrum, particularly its fine and hyperfine structure?
Which effects of our experimental approach do we need to take into account when analyzing our data?
Do we, e.g., understand the details of our ion production method? Which new tools do we need for
further experiments to exploit the full potential of our discovery?

Apart from reporting the first observation of electric-dipole-forbidden rotation-vibration transitions
in a molecular ion, the goal of this thesis is to provide the theoretical framework for discussing these
questions and to explore possible routes for future experiments fully exploiting the potential of these
narrow transitions—with the goal of opening up a new route for investigating questions of fundamental
physics.

Outline of this thesis

The points just mentioned already give an overview of the contents of this thesis. In the follow-
ing chapter, the general theory of spectroscopic transitions and in particular of electric-quadrupole,
rotation-vibration transitions in diatomic molecules is developed. There, the ideas outlined above
about the “weakness” of electric-quadrupole transitions are formulated in an exact way. In Ch. 3, this
theory is applied to the N+

2 molecular cation and extended to cover the fine and hyperfine structure
of this species. The experimental setup for the observation of electric-quadrupole rotation-vibration
transitions in N+

2 is described in Ch. 4. The results of the measurements with this setup are presented
and critically discussed. In Ch. 5, a model for the photoionization of diatomic molecules covering fine-
and hyperfine-structure effects is developed. In view of open questions raised in the analysis of the
experimental results in the previous chapter as well as of future high-precision experiments, this model
provides essential insights into molecular photoionization. In Ch. 6, a non-destructive state-detection
method, a form of quantum logic spectroscopy, for molecular ions is presented. Finally, the findings
of this thesis are summarized and discussed as well as an outlook on a possible continuation of the
experiments is given.



Chapter 2

Theory of rotation-vibration

transitions in diatomic molecules

2.1 Introduction

In the introductory chapter, we have already mentioned electric-dipole and electric-quadrupole transi-
tions and emphasized the weakness of the latter. In this chapter, these concepts are discussed rigorously
by working out the fundamental principles of spectroscopic transitions.

First, the theory of spectroscopic transitions is developed for a generic single-particle system. Essential
concepts and the corresponding terminology, such as the formulation of the interaction of matter and
radiation in a series expansion, which leads to the classification of spectroscopic transitions in electric-
dipole lines, magnetic-dipole lines, electric-quadrupole lines, etc., are introduced. The corresponding
transition rates are calculated for excitation by a plane electromagnetic wave as well as by isotropic
radiation. Based on the latter, the Einstein rate coefficients are worked out leading to a phenomenolog-
ical treatment of spontaneous emission. We deduce these concepts in a clean and consistent way based
on time-dependent quantum mechanical perturbation theory as an underlying principle. After having
developed this theory for a single-particle system, we apply it in an appropriately extended form to
spectroscopic transitions in diatomic molecules, particularly rotation-vibration transitions.

Obviously, this theory has not been developed originally in this thesis but rather has been around for
quite some time already. However, it seems that a complete and consistent text treating electric-dipole-
forbidden rotation-vibration transitions in molecules is hardly readily available. Even though forbidden
transitions are discussed in a couple of textbooks on atomic spectroscopy (among others [49, 50, 51]),
these treatments are not directly applicable to molecular spectroscopy. Textbooks on molecular spec-
troscopy, on the other hand, present forbidden transitions usually only in a brief way—if at all. In the
theory and review articles available on the subject (e.g., [52, 53, 54]), the results presented are not de-
rived from first principles, which hinders a profound understanding of the underlying physical concepts
and comprises the risk of applying expressions wrongly for lack of understanding of the underlying
definitions and assumptions. Furthermore, many of the texts mentioned above were published several
decades ago—some of them even less than a decade after the advent of quantum physics in its present
form—which does not ease accessibility. Therefore, we give here a clear and consistent description of
these concepts as a theoretical basis of this thesis.
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2.2 Interaction of a quantum mechanical system with electromag-

netic radiation

2.2.1 The quantum mechanical system

In spectroscopic experiments, the reaction of a quantum mechanical system (an atom, a molecule,
a crystal, a quantum dot, etc.) exposed to electromagnetic radiation is studied. On one hand, the
system may influence the radiation field, as by absorption of radiation or inducing a phase shift, on
the other hand, the radiation may change the population of the different quantum states of the system
as well as affect the relative quantum phases between them. States not populated prior to exposition
to radiation can, e.g., get populated. This change can be detected, e.g. by the fluorescence when the
population in such an excited state decays to a lower state or—as in the experiment described in
Ch. 4—by a change in the chemical reactivity of the system. In the following, the dynamics of the
simplest quantum mechanical system exhibiting these effects, a two-level single-particle system, under
the influence of an external perturbation will be studied.1

We begin with a two-level quantum mechanical system governed by a time-independent Hamiltonian
Ĥ0 with two known eigenstates, the energetically lower one |ψa〉 and the energetically higher one |ψb〉.
They are solutions of the time-independent Schrödinger equation of the system with the corresponding
energies Ea and Eb (with Eb > Ea),

Ĥ0 |ψa〉 = Ea |ψa〉 , (2.1a)

Ĥ0 |ψb〉 = Eb |ψb〉 . (2.1b)

As noted above, we are interested in the reaction of the system when affected by an external time-
dependent perturbation described by the Hamiltonian Ĥ ′(t) with t denoting the time variable. The
total Hamiltonian (system and perturbation) thus reads,

Ĥ(t) = Ĥ0 + Ĥ ′(t), (2.2)

and we would like to find a solution |Ψ(t)〉 for the Schrödinger equation,

Ĥ(t) |Ψ(t)〉 = i~
∂

∂t
|Ψ(t)〉 . (2.3)

Because the states |ψa〉 and |ψb〉 form a basis of the relevant Hilbert space, we may express the solution
as a linear combination of them with time-dependent coefficients and use the ansatz:

|Ψ(t)〉 = ca(t) |ψa〉 exp(−iEat/~) + cb(t) |ψb〉 exp(−iEbt/~). (2.4)

The solution is thus obtained when having found expressions for the coefficients ca(t) and cb(t). In
particular, the populations in the lower and upper state P a(t) and P b(t) are given by these coefficients
as P a(b)(t) = |ca(b)(t)|2.

This problem is discussed in many physics and spectroscopy textbooks (see, e.g., [55]) and is thus not

1The following treatment is mainly based on the texts by Griffiths [55] and by Park [56] as well as to a minor extent
on the one by Bransden and Joachain [57].
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reproduced here. With the abbreviation H ′ij = 〈ψi|Ĥ ′|ψj〉 for i, j = a, b and the additional assumption
of vanishing diagonal elements of the perturbing Hamiltonian2 (H ′aa = H ′bb = 0), the solution is given
in the form of two coupled, first-order differential equations as,

ċa(t) = − i
~
H ′ab exp(−iωbat)cb(t), (2.5a)

ċb(t) = − i
~
H ′ba exp(iωbat)ca(t), (2.5b)

with ωba = (Eb − Ea)/~ and dotted symbols (˙) denoting the respective temporal derivatives.

As for every temporal differential equation, initial conditions are needed to solve equation (2.5). They
are assumed here as ca(0) = 1 and cb(0) = 0, meaning that the system is in the lower state at
t = 0. For a vanishing perturbation (Ĥ ′ = 0), this state would be preserved forever. We obtain an
approximate solution for equation (2.5), within first-order perturbation theory (known as the “weak
field solution”), when substituting this “zeroth-order” result into the right-hand side of equation (2.5).
Integration then yields,

cb(t) = − i
~

∫ t

0
H ′ba(t′) exp(iωbat

′)dt′. (2.6)

Within first-order perturbation theory, the whole dynamics of the system is described by this coeffi-
cient.

2.2.2 The radiation field

So far the physical meaning of the perturbing Hamiltonian Ĥ ′ has not been specified. It could represent
any effect influencing the system. In spectroscopic experiments, this perturbation is usually caused by
electromagnetic radiation. Here, this radiation is treated as a classical electromagnetic field. Although
this treatment fails in describing phenomena involving few-photon effects and restricts our treatment
of spontaneous emission to a phenomenological one, it is appropriate for describing many spectroscopic
experiments.

The electromagnetic field is therefore governed by Maxwell’s equations, which read in free space,

∇ ·E = 0, (2.7a)

∇ ·B = 0, (2.7b)

∇×E = −∂B
∂t
, (2.7c)

∇×B =
1
c2

∂E
∂t
, (2.7d)

with E and B the electric and magnetic field respectively, c the speed of light in vacuum and ∇ the
nabla operator.

Solutions for these equations can be given in terms of a vector potential A and a scalar potential V

2If this condition is not met, the solution retains a similar form but with additional phase factors [55]. For simplicity,
here, this assumption is assumed to hold.
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according to:

B = ∇×A, (2.8a)

E = −∇V − ∂A
∂t

. (2.8b)

In the experiments described in Ch. 4, the electromagnetic field used to study the system (a molecular
ion) is the electromagnetic field of a laser beam. For a region of the size of a molecule, the electro-
magnetic field in such a beam is described to a good approximation by a plane electromagnetic wave.3

The vector potential A of a linearly polarized plane wave may be written as,

A(r, t) = A0e0 cos(k · r− ωt), (2.9)

and the scalar potential is chosen to vanish (V = 0). Here, the independent variable r represents
the position vector, A0 is the amplitude of the field and e0 a unit vector describing the direction of
polarization. Moreover, k is the wavevector that points in direction of propagation and is perpendicular
to the polarization vector (e0 · k = 0). Finally, ω is the angular frequency of the wave and is related
to k by |k| = k = ω/c. The vector potential given above is divergence free, i.e., ∇ ·A = 0.

The electric field corresponding to this vector potential is,

E(r, t) = −∂A(r, t)
∂t

= E0e0 sin(k · r− ωt), (2.10)

with E0 = −A0ω and the magnetic field is,

B(r, t) = ∇×A(r, t) = B0 sin(k · r− ωt), (2.11)

with B0 = A0e0 × k.

2.2.3 Interaction of matter and radiation

After having found the general dynamics of a quantum mechanical system affected by an external
perturbation as well as the description of the electromagnetic field generating this perturbation, we
may set up the interaction Hamiltonian and study the dynamics of the system in this particular
case.

The interaction Hamiltonian of a single charged particle in an electromagnetic field is given by
[56],

Ĥ =
1

2m
[p̂− qA]2 + qV (r̂). (2.12)

Here, m and q are the mass and the charge of the particle, p̂ represents the momentum operator, A

designates the vector potential introduced in the last section and V (r̂) is the potential appearing in
Ĥ0, i.e., the potential of the quantum mechanical system of its own (if, e.g., the system studied is the
electron of a hydrogen atom, V (r̂) would be the Coulomb potential of the proton). This potential is

3In a more accurate (but yet idealized) model, the laser beam could, e.g., be described as a “Gaussian beam” [58].
In such a description, the wavefronts are curved (instead of plane) and the intensity of the radiation varies over space.
However, as these effects are taking place on length scales much larger than the size of an atom or molecule, it is sufficient
to describe the electromagnetic radiation as a plane wave with the intensity of the beam at the relevant position.
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not to be confused with the scalar potential V from the last section, which has been set to zero. As
the scalar potential of the last section will no more appear below, no confusion should arise.

Expanding the Hamiltonian yields:

Ĥ =
1

2m
[
p̂2 − qp̂ ·A− qA · p̂ + q2A2

]
+ qV (r̂) (2.13)

≈ Ĥ0 + Ĥ ′(t). (2.14)

The term q2A2 may be neglected as it is small for usual radiation intensities [56].4 The Hamiltonian
then has the form of equation (2.2) with the Hamiltonian of the unperturbed system,

Ĥ0 =
p̂2

2m
+ qV (r̂), (2.15)

and the perturbing Hamiltonian,

Ĥ ′(t) = − q

2m
[p̂ ·A(r̂, t) + A(r̂, t) · p̂] . (2.16)

The matrix element of Ĥ ′ for the two states of the two-level system is given by:〈
ψb

∣∣∣ Ĥ ′(t) ∣∣∣ψa

〉
= − q

2m

∫
ψ∗b(r)[p̂ ·A(r, t) + A(r, t) · p̂]ψa(r)d3r, (2.17)

with ψa(r) = 〈r |ψa〉 and ψb(r) = 〈r |ψb〉 the wavefunctions belonging to the states |ψa〉 and |ψb〉,
respectively, and the integral extending over the entire space. The term in brackets in (2.17) can be
simplified when using p̂ = −i~∇ and that A is divergence free (∇ ·A = 0), yielding:〈

ψb

∣∣∣ Ĥ ′(t) ∣∣∣ψa

〉
= − q

m

∫
ψ∗b(r)A(r, t) · p̂ψa(r)d3r. (2.18)

Inserting this expression into equation (2.6), we obtain the coefficient cb(t) that contains the complete
description of the dynamics of the system within first-order perturbation theory:

cb(t) =− i

~

∫ t

0
H ′ba(t′) exp(iωbat

′)dt′ (2.19)

=− i

~

∫ t

0

〈
ψb

∣∣H ′(t′) ∣∣ψa

〉
exp(iωbat

′)dt′ (2.20)

=
iq

m~

∫ t

0

∫
ψ∗b(r)A(r, t′) · p̂ψa(r)d3r exp(iωbat

′)dt′ (2.21)

=
iqA0

m~

∫ t

0

∫
ψ∗b(r)e0 · p̂ cos(k · r− ωt′)ψa(r)d3r exp(iωbat

′)dt′ (2.22)

=
iqA0

2m~

[
〈ψb | e0 · p̂ exp(ik · r̂) |ψa〉

∫ t

0
exp(i(ωba − ω)t′)dt′

+ 〈ψb | e0 · p̂ exp(−ik · r̂) |ψa〉
∫ t

0
exp(i(ωba + ω)t′)dt′

]
. (2.23)

As shown above, the spatial and temporal integrals can be separated and the former has been written

4At high intensities, this term may give rise to “two-photon transitions”, see [50], p. 76 and 95.
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in bra-ket notation as,

〈ψb | e0 · p̂ exp(±ik · r̂) |ψa〉 =
∫
ψ∗b(r)e0 · p̂ exp(±ik · r)ψa(r)d3r. (2.24)

Moreover, the temporal integral can be given explicitly,∫ t

0
exp(i(ωba ± ω)t′)dt′ =

exp(i(ωba ± ω)t)− 1
i(ωba ± ω)

, (2.25)

such that we arrive at:

cb(t) =
qA0

2m~

[
〈ψb | e0 · p̂ exp(ik · r̂) |ψa〉

exp(i(ωba − ω)t)− 1
ωba − ω

+ 〈ψb | e0 · p̂ exp(−ik · r̂) |ψa〉
exp(i(ωba + ω)t)− 1

ωba + ω

]
. (2.26)

In spectroscopic experiments, the frequency ω of the radiation lies typically close to the resonance
frequency ωba. In this case, the expression above is dominated by the first summand and the second
one may be neglected. In this “rotating wave approximation” we get:

cb(t) =
iqA0

m~
〈ψb | e0 · p̂ exp(ik · r̂) |ψa〉

sin[(ωba − ω)t/2]
ωba − ω

exp[i(ωba − ω)t/2]. (2.27)

The population in the upper state at time t is hence given as,

P b(t) = |cb(t)|2 =
q2A2

0

m2~2
|〈ψb | e0 · p̂ exp(ik · r̂) |ψa〉|2

sin2[(ωba − ω)t/2]
(ωba − ω)2

. (2.28)

In principle, equation (2.27) describes the whole dynamics of a single-particle two-level system in a
single-photon spectroscopic experiment within first-order perturbation theory. However, for evaluating
it, the actual spatial forms of the wavefunctions ψa(r) and ψb(r) are needed. A simpler treatment,
providing also more physical insight, is obtained when expanding the exponential function in (2.27)
in a Taylor series around the origin, i.e.,

exp(ik · r̂) = 1 + ik · r̂− 1
2

(k · r̂)2 − i

6
(k · r̂)3 + . . . (2.29)

The wavelength λ of electromagnetic radiation at a frequency close to resonance with a usual transition
in a quantum mechanical system, such as an atom or a molecule, is much larger than the size of such
a system. The extent of an electronic orbital in an atom, e.g., is on the order of a few Å (1 Å =
10−10 m). The radiation inducing electronic transitions is usually in the optical or ultraviolet part of
the electromagnetic spectrum, i.e., the wavelength is & 100 nm = 10−7m. Therefore, the wavelength
accounts for ≈ 1000 times the size of the system. In molecular vibrational spectroscopy, the length
of typical bonds being vibrationally excited, is also on the order of a few Å and the radiation at
resonance with vibrational transitions typically lies in the infrared spectral region with wavelengths
& 1 µm. Thus, the wavelength of the radiation is about 10000 times the size of the system.

Saying that the size of the system is considerably smaller than the wavelength λ of the radiation
means, in a quantum mechanical description, that the absolute values of the wavefunctions ψa(r)
and ψb(r) appearing in the integral in (2.24) (and in bra-ket notation in (2.27) and (2.28)) differ only
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significantly from zero in a region, which is small compared to the wavelength λ (and essentially vanish
outside of this region). This means there exists some length scale rmax characterizing the extent of
that region with rmax � λ.

When choosing the origin of the coordinate system at the position of the quantum mechanical system,
we may thus restrict the integral (2.24) to a cube around the origin with edge length 2rmax:∫

ψ∗b(r)e0 · p̂ exp(±ik · r)ψa(r)d3r

=
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ψ∗b(r)e0 · p̂ exp(±ik · r)ψa(r)drxdrydrz (2.30)

≈
∫ rmax

−rmax

∫ rmax

−rmax

∫ rmax

−rmax

ψ∗b(r)e0 · p̂ exp(±ik · r)ψa(r)drxdrydrz. (2.31)

Because the magnitude of the wavevector k is proportional to 1/λ and because5 |r| ≤
√

3rmax � λ for
all possible values of r in the integral (2.31), the scalar product k · r in (2.31) is much smaller than 1.
Therefore, only the first few terms of the Taylor series (2.29) contribute significantly to this integral
and each following term in (2.29) is significantly smaller than the previous one for values of r relevant
for this integral.

If, e.g., we assume the maximal length of r relevant for the integral in (2.24) to be 1 Å and λ = 100 nm,
we obtain k · r < 6.3 · 10−3. Therefore, each term in (2.29) only amounts for less than a fraction of
about 6 · 10−3 of the previous one. A rather accurate value for the integral in (2.24) can thus be
obtained by just considering the first few terms of this expansion.6

2.2.4 Electric-dipole approximation

For the description of many spectroscopic experiments, it is even sufficient to just consider the first
term of the Taylor series in (2.29). Physically, this means that the whole spatial dependence of the
electromagnetic wave is neglected and that it is simply regarded as a spatially constant, oscillating
field. This is the well-known “electric-dipole approximation”.

Applying it, we obtain the matrix element in (2.27) approximately as,

〈ψb | e0 · p̂ exp(ik · r̂) |ψa〉 ≈ 〈ψb | e0 · p̂ |ψa〉 . (2.32)

For further simplification, we would like to take advantage of |ψa〉 and |ψb〉 being eigenstates of the
Hamiltonian Ĥ0 of the unperturbed system. This is achieved by expressing the momentum operator
in terms of the commutator of Ĥ0 with the position operator r̂ as [56],

p̂ =
im

~
[Ĥ0, r̂]. (2.33)

Thus, we get,

e0 · p̂ =
im

~

(
Ĥ0r̂ · e0 − r̂ · e0Ĥ

0
)
, (2.34)

5The factor
√

3 stems from the space diagonal of the cube and is not relevant for our reasoning.
6 This argument can be formulated analytically for hydrogen-atom-like systems. The expansion (2.29) then corresponds

to an expansion in powers of the fine-structure constant α ≈ 1/137 (see [59, 56]).
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and, when using that |ψa〉 and |ψb〉 are eigenstates of Ĥ0,

〈ψb | e0 · p̂ |ψa〉 = im
Eb − Ea

~
〈ψb | e0 · r̂ |ψa〉 = imωba 〈ψb | e0 · r̂ |ψa〉 . (2.35)

Substituting this result into (2.27) and using the label “E1” for electric-dipole transitions, we ob-
tain:

c
(E1)
b (t) = −A0

~
ωba

ωba − ω
q 〈ψb | e0 · r̂ |ψa〉 sin[(ωba − ω)t/2] exp[i(ωba − ω)t/2] (2.36)

= −A0

~
ωba

ωba − ω
e0 · 〈ψb | µ̂ |ψa〉 sin[(ωba − ω)t/2] exp[i(ωba − ω)t/2] (2.37)

= −A0

~
ωba

ωba − ω
e0 · µba sin[(ωba − ω)t/2] exp[i(ωba − ω)t/2]. (2.38)

Here, we have used the “electric-dipole operator” defined as,7

µ̂ = qr̂, (2.39)

and its matrix element for the states |ψb〉 and |ψa〉, the “electric-dipole transition matrix element”
given by:

µba = 〈ψb | µ̂ |ψa〉 . (2.40)

In the electric-dipole approximation, the population in the upper state at time t is obtained as:

P
(E1)
b (t) = |c(E1)

b (t)|2 =
A2

0ω
2
ba

~2
|e0 · µba|2

sin2[(ωba − ω)t/2]
(ωba − ω)2

. (2.41)

The amplitude of the vector potential A0 used here to specify the “strength” of the radiation field
is not a quantity usually measured in the laboratory or widely used in spectroscopy, it is thus worth
replacing it by the time-averaged spatial energy density u given as [55],

u =
1
2
ε0E

2
0 =

1
2
ε0ω

2A2
0, (2.42)

with ε0 the vacuum permittivity. We then get the upper-state population as:

P
(E1)
b (t) =

2uω2
ba

ε0~2ω2
|e0 · µba|2

sin2[(ωba − ω)t/2]
(ωba − ω)2

. (2.43)

Until now, it has been assumed that the electromagnetic wave is purely monochromatic. In reality,
electromagnetic radiation is never completely monochromatic, but rather shows a non-vanishing spec-
tral (and spatial) energy density ρ(ω) for some range of angular frequencies ω. Therefore, we replace
the spatial energy density of a monochromatic wave u with ρ(ω)dω and integrate over the whole
spectrum. The population in the upper state is then:

P
(E1)
b (t) =

2ω2
ba

ε0~2
|e0 · µba|2

∫ ∞
0

ρ(ω)
ω2

sin2[(ωba − ω)t/2]
(ωba − ω)2

dω. (2.44)

7From here on, the Greek, small letter µ (in several typographical variations) is used for the electric-dipole moment
(operator) instead of for the proton-to-electron mass ratio as in Ch. 1. As we will no more refer to the latter, no confusion
should arise.
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The second factor in the integral above exhibits a narrow peak at ω ≈ ωba, whereas the term ρ(ω)/ω2

does not change much over this narrow frequency interval. We may thus replace ω by the constant ωba

in the first factor and take this factor out of the integral. By the same argument we may also extend
the lower limit of the integral to −∞ such that it may be given in analytical form (namely as tπ/2),
i.e,

P
(E1)
b (t) ≈ 2

ε0~2
|e0 · µba|2 ρ(ωba)

∫ ∞
0

sin2[(ωba − ω)t/2]
(ωba − ω)2

dω (2.45)

≈ 2
ε0~2

|e0 · µba|2 ρ(ωba)
∫ ∞
−∞

sin2[(ωba − ω)t/2]
(ωba − ω)2

dω (2.46)

=
tπ

ε0~2
|e0 · µba|2 ρ(ωba). (2.47)

The transition rate is given by the derivative of the population with respect to time, i.e.,

R
(E1)
a→b =

dP (E1)
b

dt
≈ π

ε0~2
|e0 · µba|2 ρ(ωba). (2.48)

2.2.5 Electric-dipole-forbidden transitions

As seen in the previous section, every term in the series expansion of exp(ik · r̂) is considerably smaller
than the previous one, and it is thus sufficient to just take into account the first (constant) term of
this expansion for the description of many spectroscopic experiments, i.e., to use the electric-dipole
approximation.

However, if the transition moment calculated within the electric-dipole approximation vanishes, the
next-higher-order term in (2.29), the term ik · r̂, gets important, as this term may give rise to a non-
vanishing transition moment. Such transitions are called “forbidden transitions” or more precisely
“electric-dipole-forbidden” transitions. As mentioned in Ch. 1, they may be observed, but their tran-
sition rates are several orders of magnitude lower than those of electric-dipole-allowed transitions (i.e.,
those with a non-vanishing transition moment in the electric-dipole approximation).

In the following, such dipole-forbidden transitions are studied. Hence, we assume the transition moment
due to first term in the expansion (2.29), the electric-dipole term, to vanish and study only the effect
of the second term in this expansion. We obtain for the transition matrix element:

〈ψb | e0 · p̂ exp(ik · r̂) |ψa〉 ≈ i 〈ψb | (e0 · p̂)(k · r̂) |ψa〉 . (2.49)

Substituting this expression into (2.27) yields:

cb(t) = −qA0

m~
〈ψb | (e0 · p̂)(k · r̂) |ψa〉

sin[(ωba − ω)t/2]
ωba − ω

exp[i(ωba − ω)t/2]. (2.50)

We want again take advantage of |ψa〉 and |ψb〉 being eigenstates of the Hamiltonian Ĥ0. To this
end, we express the transition operator in a similar way as we did for the dipole operator using the
commutator with Ĥ0. This can be achieved with the two relations [56],

im

~
[Ĥ0, (e0 · r̂)(k · r̂)] = (e0 · p̂)(k · r̂) + (k · p̂)(e0 · r̂), (2.51)



16 2 Theory of rotation-vibration transitions in diatomic molecules

and,
k× e0 · L̂ = (e0 · p̂)(k · r̂)− (k · p̂)(e0 · r̂), (2.52)

where L̂ := r̂× p̂.

Adding (2.51) and (2.52), we obtain,

(e0 · p̂)(k · r̂) =
1
2

(
k× e0 · L̂ +

im

~
[Ĥ0, (e0 · r̂)(k · r̂)]

)
, (2.53)

and thus for the transition matrix element (with L̂ = ~L̂)

〈ψb | (e0 · p̂)(k · r̂) |ψa〉 =
1
2

(
~k× e0 · 〈ψb|L̂|ψa〉+

im

~
〈ψb|[Ĥ0, (e0 · r̂)(k · r̂)]|ψa〉

)
(2.54)

=
1
2

(
~k× e0 · 〈ψb|L̂|ψa〉+

im

~
(Eb − Ea) 〈ψb|(e0 · r̂)(k · r̂)|ψa〉

)
(2.55)

=
1
2

(
~k× e0 · 〈ψb|L̂|ψa〉+ imωba 〈ψb|(e0 · r̂)(k · r̂)|ψa〉

)
. (2.56)

When inserting this expression for the transition matrix element into (2.50), we obtain,

cb(t) =− qA0

2m~

[
~k× e0 · 〈ψb|L̂|ψa〉+ imωba 〈ψb|(e0 · r̂)(k · r̂)|ψa〉

]
sin[(ωba − ω)t/2]

ωba − ω
exp[i(ωba − ω)t/2]. (2.57)

The second term in brackets is treated in a componentwise notation. Denoting the Cartesian compo-
nents of e0, k and r̂ with Greek letter indices α and β (where α, β = x, y, z), we may write,

(e0 · r̂)(k · r̂) =
(∑

α

e0,αr̂α

)(∑
β

kβ r̂β

)
=
∑
α

∑
β

e0,αkβ r̂αr̂β (2.58)

= k
∑
α

∑
β

e0,ακβ r̂αr̂β =
ω

c

∑
α

∑
β

e0,ακβ r̂αr̂β, (2.59)

where in the second line a unit vector κ in direction of k was introduced such that k = kκ = ω
cκ. We

thus obtain for the second matrix element appearing in (2.57),

〈ψb|q(e0 · r̂)(k · r̂)|ψa〉 =
ω

c

∑
α

∑
β

e0,ακβ 〈ψb|qr̂αr̂β|ψa〉 (2.60)

=
ω

c

∑
α

∑
β

εαβ 〈ψb|Q̃αβ|ψa〉 . (2.61)

Here, the two symbols εαβ and Q̃αβ defined as εαβ := e0,ακβ and Q̃αβ := qr̂αr̂β have been introduced.
They are components of the two Cartesian tensors (matrices) ε and Q̃, respectively.8

The tensor ε describes the direction of the variation of the electric-field in space. It is related to the

8In this text, Cartesian tensors are typeset in bold upright symbols, their components in italic symbols with Greek
small letter indices.
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Jacobian matrix of the electric field (loosely speaking, the electric-field gradient)9 by the relation,

dE
dr

= ε
E0ω

c
cos(k · r− ωt), (2.62)

which reads in a componentwise notation:

∂Eα
∂rβ

= εαβ
E0ω

c
cos(k · r− ωt). (2.63)

Equation (2.62) for the electric-field “gradient” corresponds to equation (2.10) for the electric field
itself: both of these equations consist of a scalar factor for the “strength” of these two quantities (E0 in
(2.10) and E0ω/c in (2.62)), a directional factor (e0 and ε, respectively) and finally a factor expressing
the time-dependence.

As suggested by the notation, Q̃αβ is related to the electric-quadrupole tensor operator. However, the
calculations below are simplified by defining the quadrupole tensor in a traceless form. Because the
polarization vector of an electromagnetic wave in free space is always perpendicular to the direction
of propagation, we have:

k · e0 = kκ · e0 = k
∑
α

καe0,α = 0. (2.64)

We may thus add an arbitrary operator f̂ to the diagonal elements of Q̃αβ without changing the sum
in (2.61), i.e., using the Kronecker delta δαβ, we may write:∑

α

∑
β

εαβ 〈ψb|Q̃αβ|ψa〉 =
∑
α

∑
β

εαβ 〈ψb|Q̃αβ + δαβ f̂ |ψa〉 . (2.65)

Making use of this freedom, we define the electric-quadrupole tensor operator Q̂ with the components
Q̂αβ as:10

Q̂αβ := q

(
r̂αr̂β − δαβ

r̂2

3

)
, (2.66)

with r̂2 = r̂2
x + r̂2

y + r̂2
z . This tensor is traceless, meaning that

tr Q̂ =
∑
α

Q̂αα = 0. (2.67)

Furthermore, Q̂ is symmetric: Q̂αβ = Q̂βα.

Using this definition for the electric-quadrupole operator, the matrix element in (2.61) is given as

〈ψb|q(e0 · r̂)(k · r̂)|ψa〉 =
ω

c

∑
α

∑
β

εαβ 〈ψb|Q̂αβ|ψa〉 . (2.68)

Substituting this expression into (2.57) and also using the relation B0 = A0e0×k between the vector

9Mathematically, the gradient of a vector field is not defined and we should rather speak of the Jacobian matrix.
Physically, however, “gradient” might give a better picture of what is meant.

10Several definitions for the electric-quadrupole tensor are used in the literature differing by constant factors and
whether or not they are given in traceless form. Relations between different definitions are discussed in Appendix A.1.
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potential A and the magnetic field amplitude B0, we obtain the coefficient cb(t) as,

cb(t) =
1

2m

qB0 · 〈ψb|L̂|ψa〉 −
iA0mωbaω

~c
∑
α

∑
β

εαβ 〈ψb|Q̂αβ|ψa〉


sin[(ωba − ω)t/2]

ωba − ω
exp[i(ωba − ω)t/2], (2.69)

and the population in the upper state as,

P b(t) =
1

4m2

∣∣∣∣∣∣qB0 · 〈ψb|L̂|ψa〉 −
iA0mωbaω

~c
∑
α

∑
β

εαβ 〈ψb|Q̂αβ|ψa〉

∣∣∣∣∣∣
2

sin2[(ωba − ω)t/2]
(ωba − ω)2

. (2.70)

The first term within the absolute value in this equation describes the interaction of the quantum
mechanical system with the magnetic field (a first-rank tensor) of the electromagnetic wave. It gives
rise to the “magnetic-dipole” transitions. The second term describes the interaction of the system with
the “gradient” of the electric-field at the position of the system (represented by the second-rank tensor
εαβ). This term entails the “electric-quadrupole” transitions. In the frame of this thesis, the electric-
quadrupole transitions are primarily of interest and we will in the following only study those. Since
these two kind of transitions are due to different radiative processes, no interference term between
them exists [56] and we may simply omit the magnetic-dipole term. We get for the population excited
to the upper state due to an electric-quadrupole transition (labelled as “E2”):

P
(E2)
b (t) =

A2
0ω

2
baω

2

4~2c2

∣∣∣∣∣∣
∑
α

∑
β

εαβ 〈ψb|Q̂αβ|ψa〉

∣∣∣∣∣∣
2

sin2[(ωba − ω)t/2]
(ωba − ω)2

(2.71)

=
A2

0ω
2
baω

2

4~2c2

∣∣∣∣∣∣
∑
α

∑
β

εαβQba,αβ

∣∣∣∣∣∣
2

sin2[(ωba − ω)t/2]
(ωba − ω)2

. (2.72)

Here, the symbol Qba,αβ denotes the electric-quadrupole transition matrix element for the states |ψb〉
and |ψa〉, i.e.,

Qba,αβ = 〈ψb|Q̂αβ|ψa〉 . (2.73)

Upon substituting the amplitude A0 of the vector potential A with the spatial energy density u (see
equation (2.42)), we obtain,

P
(E2)
b (t) =

uω2
ba

2ε0~2c2

∣∣∣∣∣∣
∑
α

∑
β

εαβ 〈ψb|Q̂αβ|ψa〉

∣∣∣∣∣∣
2

sin2[(ωba − ω)t/2]
(ωba − ω)2

. (2.74)

Likewise as for electric-dipole transitions, we are again interested in the reaction of the system to a
radiation field with a certain spectral profile instead of an (unphysical) monochromatic wave. Thus we
replace u by ρ(ω)dω and integrate over the whole spectrum. Once more, we make use of ρ(ω) varying
slowly with the angular frequency ω, whereas the other frequency-dependent term shows a steep peak
around ω ≈ ωba. Therefore, ρ(ω) may be substituted by ρ(ωba) and taken out of the integral. By the
same argument, the lower limit of the integral is again extended to −∞ such that it can be given in
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an analytical form:

P
(E2)
b (t) =

ω2
ba

2ε0~2c2

∣∣∣∣∣∣
∑
α

∑
β

εαβ 〈ψb|Q̂αβ|ψa〉

∣∣∣∣∣∣
2 ∫ ∞

0
ρ(ω)

sin2[(ωba − ω)t/2]
(ωba − ω)2

dω (2.75)

≈
ω2

ba

2ε0~2c2

∣∣∣∣∣∣
∑
α

∑
β

εαβ 〈ψb|Q̂αβ|ψa〉

∣∣∣∣∣∣
2

ρ(ωba)
∫ ∞
−∞

sin2[(ωba − ω)t/2]
(ωba − ω)2

dω (2.76)

=
tπω2

ba

4ε0~2c2

∣∣∣∣∣∣
∑
α

∑
β

εαβ 〈ψb|Q̂αβ|ψa〉

∣∣∣∣∣∣
2

ρ(ωba). (2.77)

The transition rate is obtained, as before, by the derivative of the upper-state population with respect
to time:

R
(E2)
a→b =

dP (E2)
b

dt
≈

πω2
ba

4ε0~2c2

∣∣∣∣∣∣
∑
α

∑
β

εαβ 〈ψb|Q̂αβ|ψa〉

∣∣∣∣∣∣
2

ρ(ωba). (2.78)

2.2.6 Excitation by isotropic radiation and spherical tensor formalism

Until now, we have assumed the transitions to be induced by an electromagnetic field described by
a vector potential A pointing into one particular direction e0, in other words, by a plane-polarized
electromagnetic wave. Now we are considering a system in an isotropic radiation field. To this end,
the expression for the excitation rate is averaged over all possible orientations of the vector e0 with
respect to the transition matrix element.

Below, we will show this averaging separately for electric-dipole and electric-quadrupole transitions. At
the same time, we will introduce the spherical tensor formalism—a very useful tool for the description
of spectroscopic transitions in molecules, particularly when several angular momenta are involved, as
we will see in Sec. 2.3 and Ch. 3.

Electric-dipole transitions

For an electric-dipole transition, we need to average the expression,

R
(E1)
a→b =

π

ε0~2
|e0 · µba|2 ρ(ωba), (2.79)

for all possible orientations of µba relative to e0. This is done below using the spherical tensor formal-
ism.

In general, for every Cartesian vector v a first-rank spherical tensor T1
p [v] (where p = 0,±1) can be

defined as [60]:

T1
0 [v] = vz, (2.80a)

T1
±1 [v] = ∓ 1√

2
(vx ± ivy). (2.80b)

These spherical tensors behave with respect to rotations exactly as quantum mechanical angular mo-
mentum states |j,m〉 with the angular momentum quantum number j, which describes the magnitude
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of the angular momentum, corresponding to the rank of the spherical tensor, here 1, and the projection
angular momentum quantum number m corresponding to p.

The scalar product of two Cartesian vectors v and w is written in spherical tensor notation as,

v ·w =
∑

α=x,y,z

vαwα =
1∑

p=−1

(−1)pT1
−p [v] T1

p [w] . (2.81)

Using this relation, the transition rate for an electric-dipole transition is

R
(E1)
a→b =

π

ε0~2

∣∣∣∣∣∣
1∑

p=−1

(−1)pT1
−p [e0] T1

p [µba]

∣∣∣∣∣∣
2

ρ(ωba). (2.82)

In the following, we assume the polarization vector e0 to be aligned along z-axis of the coordinate
system, i.e., e0 = (0, 0, 1), and the normalized wavevector κ along the x-axis, i.e., κ = (1, 0, 0). As we
will average over all possible orientations, this assumption does not imply any loss of generality. We
then have T1

0 [e0] = 1 and T1
±1 [e0] = 0.

Additional to the frame of reference (x,y,z) used so far, whose orientation is chosen such that the
electromagnetic field adopts a simple form, we now introduce an additional frame of reference (x′,y′,z′)
with an origin coinciding with the that one of the previously used frame of reference, but which is
oriented such that the vector of the transition dipole matrix element is oriented along the z′-axis.
Denoting the triple of the components of this vector in the primed coordinate system as µ′ba, we thus
have

µ′ba = (0, 0, µba). (2.83)

In spherical tensor notation, this implies T1
q [µ′ba] = 0 for q = ±1 and T1

0 [µ′ba] = µba.

Here, we have assumed µba to be real. This is true for the vibrational transitions in molecules of prime
interest here that are discussed further below. In the general case of complex µba, the calculation may
be separated into a real and a complex part as shown in [55].

The components of the dipole transition matrix element in spherical tensor notation in the original
coordinate system are expressed in terms of the respective ones in the primed system by a Wigner
rotation matrix D

(1)
pq (φ, θ, χ), with the Euler angles11 φ, θ, χ describing the relative orientation of the

two frames of reference [60, 61], as:

T1
p [µba] =

1∑
q=−1

[
D (1)
pq (φ, θ, χ)

]∗
T1
q

[
µ′ba

]
(2.84)

=
[
D

(1)
p0 (φ, θ, χ)

]∗
T1

0

[
µ′ba

]
(2.85)

=
[
D

(1)
p0 (φ, θ, χ)

]∗
µba. (2.86)

11The third Euler angle χ is not defined due to the symmetry. As we integrate over all values for the Euler angles this
does not pose any difficulties.
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Using the above results, the scalar product relevant for the transition rate is,

e0 · µba =
1∑

p=−1

(−1)pT1
−p [e0]

[
D

(1)
p 0 (φ, θ, χ)

]∗
µba =

[
D

(1)
00 (φ, θ, χ)

]∗
µba. (2.87)

To obtain the orientation-averaged transition rate, we need to calculate the average of the squared
absolute magnitude of this term. This is done by integrating over all Euler angles and normalizing
accordingly. Indicating this orientational average by a bar, we have,

|e0 · µba|2 =

∫ 2π
0

∫ 2π
0

∫ π
0 |e0 · µba|2 sin θdθdφdχ∫ 2π

0

∫ 2π
0

∫ π
0 sin θdθdφdχ

. (2.88)

These integrals are readily calculated when making use of the properties of the Wigner rotation
matrices [62, 60] or by just noting that D

(1)
00 (φ, θ, χ) = cos θ. They yield:

|e0 · µba|2 =
8π2

3 µba
2

8π2
. (2.89)

The transition rate for an electric-dipole transition driven by isotropic radiation is therefore:

R
(E1, iso.)
a→b =

π

3ε0~2
|µba|2 ρ(ωba). (2.90)

Here, the z′-component of the transition dipole matrix element has been replaced by the norm of
this vector and the absolute magnitude has been taken to allow for complex transition matrix ele-
ments.

Electric-quadrupole transitions

For an electric-quadrupole transition, the averaging of the transition rate over all possible orientations
of the polarization vector e0 relative to the quadrupole-transition moment is done along the same
lines as for an electric-dipole transition. However, as the quadrupole tensor is a second-rank tensor,
the calculations tend to be more involved.

The transition rate to be averaged is:

R
(E2)
a→b =

πω2
ba

4ε0~2c2

∣∣∣∣∣∣
∑
α

∑
β

εαβ 〈ψb|Q̂αβ|ψa〉

∣∣∣∣∣∣
2

ρ(ωba) (2.91)

=
πω2

ba

4ε0~2c2

∣∣∣∣∣∣
∑
α

∑
β

εαβQba,αβ

∣∣∣∣∣∣
2

ρ(ωba). (2.92)

Here, we have used the symbol Qba,αβ for the αβ-component of the transition matrix element of the
corresponding component of quadrupole operator Q̂αβ for the particular states |ψb〉 and|ψa〉. Likewise
as for the quadrupole operator, the quadrupole transition matrix element12 Qba,αβ is the αβ-component
of the Cartesian tensor Qba.

12In this context the term “matrix element” refers to the value of a quantum mechanical operator “sandwiched” in
between a bra and a ket. It does not refer to the component of a Cartesian tensor for some particular indices α and β.
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As before, we use spherical tensor notation to orientationally average equation (2.92). Generally, for a
second-rank Cartesian tensor A (a matrix) with Cartesian components Aαβ for α, β = x, y, z, spherical
tensors of zeroth, first and second rank are defined as [60]:

T0
0 [A] = − 1√

3
(Axx +Ayy +Azz) , (2.93a)

T1
0 [A] =

i√
2

(Axy −Ayx) , (2.93b)

T1
±1 [A] = ∓ i

2
(Ayz −Azy ± i(Azx −Axz)) , (2.93c)

T2
0 [A] =

1√
6

(2Azz −Axx −Ayy) , (2.93d)

T2
±1 [A] = ∓1

2
(Axz +Azx ± i(Ayz +Azy)) , (2.93e)

T2
±2 [A] =

1
2

(Axx −Ayy ± i(Axy −Ayx)) . (2.93f)

For two second-rank Cartesian tensors A and B with Cartesian components Aαβ and Bαβ (with
α, β = x, y, z), respectively, the sum of all products of their components13 is obtained in spherical
tensor notation as,

∑
α=x,y,z

∑
β=x,y,z

AαβBαβ =
2∑

u=0

u∑
p=−u

(−1)u−pTu
−p [A] Tu

p [B] . (2.94)

With this relation, the sum appearing in (2.92) may be written as,

∑
α

∑
β

εαβQba,αβ =
2∑

u=0

u∑
p=−u

(−1)u−pTu
−p [ε] Tu

p [Qba] =
2∑

p=−2

(−1)pT2
−p [ε] T2

p [Qba] . (2.95)

As the quadrupole tensor Qba is traceless, the zeroth-rank spherical tensor defined by (2.93a) vanishes:
T0

0 [Qba] = 0. Since it is also symmetric, the first-rank spherical tensors defined by (2.93b) and (2.93c)
vanish, too: T1

0,±1 [Qba] = 0. The double sum in (2.95) is therefore equal to a single one.

Substitution of this result into (2.92) yields the electric-quadrupole transition rate in spherical tensor
notation:

R
(E2)
a→b =

πω2
ba

4ε0~2c2

∣∣∣∣∣∣
2∑

p=−2

(−1)pT2
−p [ε] T2

p [Qba]

∣∣∣∣∣∣
2

ρ(ωba). (2.96)

The term to be orientationally averaged in order to obtain the excitation rate in an isotropic radiation
field is the sum given in (2.95). With the assumption e0 = (0, 0, 1) and κ = (1, 0, 0), we get for the
components of the Cartesian electric field tensor,

εαβ = 1 for α = z and β = x, (2.97a)

εαβ = 0 else. (2.97b)

13This expression is known as the “Frobenius product” of A and B and written as 〈A,B〉F or A : B (see, e.g., [63]).
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In spherical tensor notation, this implies:

T2
0 [ε] = 0, (2.98a)

T2
±1 [ε] = ∓1

2
, (2.98b)

T2
±2 [ε] = 0. (2.98c)

Equation (2.95) then becomes,

∑
α

∑
β

εαβQba,αβ =
1
2
(
T2
−1 [Qba]− T2

1 [Qba]
)
. (2.99)

If we proceed in the same way as for electric-dipole transitions and assume that Qba is real (or, if
not, can be separated into a real and an imaginary part that may be treated separately), we have
T2
−1 [Qba] = −

(
T2

1 [Qba]
)∗ and hence,

∑
α

∑
β

εαβQba,αβ = −1
2

[(
T2

1 [Qba]
)∗ + T2

1 [Qba]
]
. (2.100)

Again we introduce a new coordinate system (x′,y′,z′) aligned such that Qba takes a simple form. As
Qba is a real, symmetric matrix, a coordinate system can be found (the system of eigenvectors), in
which it yields a diagonal form, i.e.,

Q′ba =

Q
′
ba,x′x′ 0 0

0 Q′ba,y′y′ 0
0 0 Q′ba,z′z′

 . (2.101)

In spherical tensor notation this implies: T2
±1 [Q′ba] = 0. To obtain the transition matrix element in the

original coordinate system, we again use a Wigner rotation matrix with the Euler angles describing
the relative orientation of the two systems. Using the properties just worked out, we get:

T2
p [Qba] =

2∑
q=−2

[
D (2)
pq (φ, θ, χ)

]∗
T2
q

[
Q′ba

]
(2.102)

=
∑

q=−2,0,2

[
D (2)
pq (φ, θ, χ)

]∗
T2
q

[
Q′ba

]
. (2.103)

Substituting this result into equation (2.100) yields:

∑
α

∑
β

εαβQba,αβ = −1
2

∑
q=−2,0,2

(
D

(2)
1q (φ, θ, χ)

[
T2
q

[
Q′ba

]]∗ +
[
D

(2)
1q (φ, θ, χ)

]∗
T2
q

[
Q′ba

])
. (2.104)

To obtain the transition rate in an isotropic radiation field, the squared absolute magnitude of this
expression is integrated over the Euler angles and normalized accordingly. The integral is once more



24 2 Theory of rotation-vibration transitions in diatomic molecules

calculated using the properties of the Wigner rotation matrices [62]. The result is:

∣∣∣∑
α

∑
β

εαβQba,αβ

∣∣∣2 =

∫ 2π
0

∫ 2π
0

∫ π
0 |
∑

α

∑
β εαβQba,αβ|2 sin θdθdφdχ∫ 2π

0

∫ 2π
0

∫ π
0 sin θdθdφdχ

(2.105)

=
4π2

5 (|T2
−2 [Q′ba] |2 + |T2

0 [Q′ba] |2 + |T2
2 [Q′ba] |2)

8π2
(2.106)

=
1
10
(
|T2
−2

[
Q′ba

]
|2 + |T2

0

[
Q′ba

]
|2 + |T2

2

[
Q′ba

]
|2
)

(2.107)

=
1
10
(
|Q′ba,x′x′ |2 + |Q′ba,y′y′ |2 + |Q′ba,z′z′ |2

)
(2.108)

=
1
10

Qba, (2.109)

where the sum of the squared absolute magnitude of the diagonal elements of Q′ba, i.e., of the eigen-
values of the matrix Qba, has been denoted Qba.

The excitation rate for an electric-quadrupole transition driven by isotropic radiation is therefore:

R
(E2, iso.)
a→b =

πω2
ba

40ε0~2c2
Qbaρ(ωba). (2.110)

2.2.7 Einstein coefficients and spectroscopic line strength

A neat way to express the “strength” of a spectroscopic line is the Einstein A-coefficient of spontaneous
emission. Stemming from a model presented by Einstein in 1916 [64], this coefficient describes the
interaction of a large number of two-level quantum mechanical systems such as the one discussed
above. When we let Na and Nb be the number of systems in the lower and upper state, respectively,
the change of Nb is given in this model as (see, e.g., [55]):

dNb

dt
= −NbAba −NbBbaρ(ωba) +NaBabρ(ωba). (2.111)

Here, ρ(ωba) is the spectral and spatial energy density at the angular frequency ωba, Bab the Ein-
stein coefficient of stimulated (or induced) absorption, Bba the coefficient of stimulated (or induced)
emission and Aba the coefficient of spontaneous emission. Even though a causal understanding of
spontaneous emission is beyond the semiclassical model used here, this coefficient can be determined
in a phenomenological treatment.

As the quantum mechanical systems are supposed to be in thermal equilibrium with the radiation
field, the number of systems in the upper state is constant: dNb/dt = 0. Furthermore, the ratio of the
number of systems in the lower and upper state is given by a Boltzmann factor,

Na

Nb
=

exp(−Ea/kBT )
exp(−Eb/kBT )

= exp(~ωba/kBT ), (2.112)

and the energy density by Planck’s law,

ρ(ω) =
~

π2c3

ω3

exp(~ω/kBT )− 1
, (2.113)

with T the absolute temperature of the system and the radiation field and kB the Boltzmann con-
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stant.

From (2.111), (2.112) and (2.113) the following relations can be deduced (see, e.g., [55]):

Bab = Bba, (2.114)

Aba =
~ω3

ba

π2c3
Bba. (2.115)

The Einstein Bba-coefficient can be readily obtained from the result for the excitation rate in an
isotropic radiation field. For an electric-dipole transition it is according to equation (2.90):

B
(E1)
ba =

π

3ε0~2
|µba|2. (2.116)

Hence, the Einstein Aba-coefficient for an electric-dipole transition is:

A
(E1)
ba =

ω3
ba

3πε0~c3
|µba|2. (2.117)

Likewise, the Einstein Bba-coefficient for an electric-quadrupole line is obtained from equation (2.110)
as,

B
(E2)
ba =

πω2
ba

40ε0~2c2
Q′ba, (2.118)

and the Einstein Aba-coefficient is:

A
(E2)
ba =

ω5
ba

40πε0~c5
Q′ba. (2.119)

For the calculation above, the energy levels of the two-level system studied (i.e., of the Hamiltonian
Ĥ0) with energies Ea and Eb have been assumed to be non-degenerate. In general, these levels are
degenerate and characterized by some statistical weights ga and gb. The states |ψa〉 and |ψb〉 are
thus replaced by the states |ψa,ma〉 and |ψb,mb〉 with ma and mb quantum numbers distinguishing
between the several degenerate states.

In this case, the relation between the two Einstein B-coefficients is [65]:

Bab =
gb

ga
Bba. (2.120)

A system in a particular upper state |ψb,mb〉 may decay into any of the lower states |ψa,ma〉. The
total decay rate is therefore obtained as the sum of these individual rates and is in the case of an
electric-dipole transition,

A
(E1)
ba =

ω3
ba

3πε0~c3

∑
ma

|µb,mb,a,ma |
2 , (2.121)

with the transition matrix element,

µb,mb,a,ma = 〈ψb,mb | µ̂ |ψa,ma〉 . (2.122)

The expression (2.121) must be independent of the quantum number mb as the lifetime of degenerate
states must be equal in an isotropic environment [65]. Thus, it may be written in a more symmetric
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form as,

A
(E1)
ba =

ω3
ba

3πε0~c3

1
gb

∑
ma,mb

|µb,mb,a,ma |
2 (2.123)

=
ω3

ba

3πε0~c3

1
gb
S

(E1)
ba . (2.124)

The double sum appearing above is known as the “line strength” S(E1)
ba of the transition. In spherical

tensor notation, it may be given as,

S
(E1)
ba =

∑
ma,mb

1∑
p=−1

∣∣T1
p [µb,mb,a,ma ]

∣∣2 . (2.125)

When substituting the angular frequency ωba by the corresponding wavelength λba, we get,

A
(E1)
ba =

16π3

3ε0hλ3
bagb

S
(E1)
ba , (2.126)

as found, e.g., in [66].

Likewise as shown above for an electric-dipole transition, the Einstein A-coefficient for an electric-
quadrupole transition between degenerate levels is:

A
(E2)
ba =

ω5
ba

40πε0~c5

1
gb

∑
ma,mb

Qb,mb,a,ma (2.127)

=
ω5

ba

40πε0~c5

1
gb

∑
ma,mb

∣∣Q′b,mb,a,ma,x′x′
∣∣2 +

∣∣Q′b,mb,a,ma,y′y′
∣∣2 +

∣∣Q′b,mb,a,ma,z′z′
∣∣2 (2.128)

=
ω5

ba

40πε0~c5

1
gb
S

(E2)
ba . (2.129)

Here, S(E2)
ba denotes the line strength of the electric-quadrupole transition, which may be written in

spherical tensor notation as,

S
(E2)
ba =

∑
ma,mb

2∑
p=−2

∣∣T2
p [Qb,mb,a,ma ]

∣∣2 . (2.130)

In terms of the transition wavelength λba, we get for the Einstein A-coefficient,

A
(E2)
ba =

8π5

5ε0hλ5
ab

1
gb
S

(E2)
ba , (2.131)

the value for the Einstein A-coefficient of an electric-quadrupole line given in [66] or, in CGS units,
in [49], for which, however, a clear, quantum mechanical derivation seems hardly available in the
literature. The Einstein A-coefficient of an electric-quadrupole line scales with 1/λ5, whereas the one of
an electric-dipole line scales only with 1/λ3. This is due to the fact that electric-quadrupole transitions
are driven by the “gradient” of the electric field rather than just the field strength. For a smaller
wavelength, this gradient increases as evident from the factor ω/c = 2π/λ in equation (2.62).
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2.3 Rotation-vibration transitions in diatomic molecules

In the last section, the interaction of a single-particle quantum mechanical system with electromag-
netic radiation was studied. We have shown that this radiation might induce transitions between the
eigenstates |ψa〉 and |ψb〉 of the unperturbed system and that these transitions are governed by the
matrix element 〈ψb | (e0 · p) exp(ik · r) |ψa〉. Furthermore, we have found that this matrix element
can be expanded in a Taylor series with terms of rapidly decreasing magnitude, since the wavelength
of the radiation is typically several orders of magnitude larger than the extent of the wavefunction
of the particle and thus k · r is considerably smaller than one in the relevant range. Therefore, our
discussion was restricted to only the first and second term of this Taylor expansion, corresponding to
electric-dipole and electric-quadrupole transitions, respectively.

Here, we will apply these findings to rotation-vibration transitions in diatomic molecules. As a diatomic
molecule is a many-particle system, both the states |ψa〉 and |ψb〉 as well as the electric-multipole
operators µ̂ and Q̂ will involve many degrees of freedom. However, it can be shown that the problem
might be described approximately by only a few independent variables. In the first part of this section,
approximate expressions for the quantum states of a diatomic molecule when not perturbed by external
electromagnetic radiation will be developed. They represent the molecular counterparts to the single-
particle states |ψa〉 and |ψb〉 from the last section. Thereafter, we will study how transitions between
these states are driven by the interaction with electromagnetic radiation. In particular, rotation-
vibration transitions will be studied. In order to work out similarities as well as differences between
the electric-dipole-forbidden transitions that are at the focus of this work and ordinary electric-dipole-
allowed transitions, the theory of the latter is developed along with that one of the former.

2.3.1 Quantum states of a diatomic molecule

The Hamiltonian of a molecule with two nuclei, 1 and 2, at positions R(a)
1 and R(a)

2 , with masses M1

and M2 and charges q1 = Z1e and q2 = Z2e as well as N electrons at r(a)
1 , r(a)

2 , ..., r(a)
N with charge −e

and mass m is given in position representation and without spin interactions in an arbitrary (hence
the superscript (a)) inertial frame of reference as:

Ĥtot = − ~2

2m

N∑
j=1

∇2

r
(a)
j

− ~2

2M1
∇2

R
(a)
1

− ~2

2M2
∇2

R
(a)
2

+ V (a)
(
R(a)

1 ,R(a)
2 , r(a)

1 , r(a)
2 , ..., r(a)

N

)
, (2.132)

with the potential energy:

V (a)
(
R(a)

1 ,R(a)
2 , r(a)

1 , r(a)
2 , ..., r(a)

N

)
=− 1

4πε0

N∑
j=1

(
Z1e

2

|r(a)
j −R(a)

1 |
+

Z2e
2

|r(a)
j −R(a)

2 |

)

+
Z1Z2e

2

4πε0|R(a)
1 −R(a)

2 |
+

1
4πε0

N∑
j=1

N∑
l=j

e2

|r(a)
j − r(a)

l |
.

(2.133)

This Hamiltonian is too complex to be solved analytically and even if a solution could be found
numerically, it would probably be hard to gain physical insight from it because of its complexity.
Therefore, we need to find approximate solutions. To this end, several coordinate transformations and
approximations are made, which separate the Hamiltonian in several terms, whose mutual couplings are
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small and can be neglected for an approximate treatment. These transformations and approximations
are rather involved in all their details. Here, we only describe them in a shortened and simplified way.
Particularly, all effects of electron and nuclear spin are neglected and the orbital angular momentum
of the electrons is also treated in a simplified manner, i.e., only molecules in 1Σ states are considered.
A complete treatment can be found in several textbooks [67, 68, 60, 69]. For the discussion below, the
texts by Levine [70], Bransden and Joachain [57] and Bunker [68] have served as a basis.

First, we separate the translational motion of the molecule as a whole from the relative motion of its
constituents by expressing all coordinates relative to the center of mass of the molecule. This means
we define R1 = R(a)

1 −Rcm, R2 = R(a)
2 −Rcm and r1 = r(a)

1 −Rcm, r2 = r(a)
2 −Rcm, ..., rN = r(a)

N −Rcm

with Rcm the center-of-mass position. If we follow the treatment in [57] and neglect the influence of
the electrons, Rcm is given approximately as,

Rcm ≈
M1R

(a)
1 +M2R

(a)
2

M1 +M2
, (2.134)

and the positions of the two nuclei are given by,

R1 ≈ Rcm +
M2

M1 +M2
R, (2.135a)

R2 ≈ Rcm −
M1

M1 +M2
R, (2.135b)

with R = R(a)
2 −R(a)

1 = R2 −R1 their relative position vector.

As a quantum mechanical description of the translational motion of the molecule is usually not needed
in spectroscopy,14 Rcm is set equal to zero by switching to a frame of reference moving with the
molecule in a way that the molecular center of mass remains always at the origin. This moving (but
not rotating) frame is called the “space-fixed” or “laboratory-fixed” frame. The total internal molecular
Hamiltonian Ĥ int (i.e., the Hamiltonian without translation15) can be approximately16 written as a
sum of the electronic kinetic energy operator, the nuclear kinetic energy operator and the potential
energy function,

Ĥ int = T̂ elec + T̂ nucl + V (R, r1, r2, ..., rN ), (2.136)

with

T̂ elec = − ~2

2m

N∑
j=1

∇2
rj , (2.137)

T̂ nucl = − ~2

2M eff
∇2

R, (2.138)

14The translational motion causes the Doppler broadening of spectral lines and is thus important, but this effect
is usually treated by a classical description of the translational motion. A situation, in which a quantum mechanical
description of the translational degrees of freedom is needed, is, e.g., a spectroscopic experiment with a trapped ion
cooled close to the absolute motional ground state such that the coupling of the motional and the internal states can be
observed as “side-band transitions”.

15Here, “internal” refers to all degrees of freedom but the translational ones and thus includes also the rotational ones.
Strictly speaking, the latter could be understood as external, but because of their coupling to the electronic and nuclear
spin considered in the following chapter, it seems reasonable to regard them as internal here.

16In a more detailed treatment (see, e.g., [68, 67, 60]) small additional terms appear. They are neglected here for
brevity and comprehensibility.
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V (R, r1, r2, ..., rN ) =− 1
4πε0

N∑
j=1

(
Z1e

2

|rj −R1|
+

Z2e
2

|rj −R2|

)

+
Z1Z2e

2

4πε0R
+

1
4πε0

N∑
j=1

N∑
l=j

e2

|rj − rl|
,

(2.139)

and M eff = M1M2/(M1 +M2) the “effective” or “reduced” mass of the two nuclei.17

The corresponding internal Schrödinger equation is:

Ĥ intψint(R, r1, r2, ..., rN ) = Eintψint(R, r1, r2, ..., rN ). (2.140)

To solve this equation, we use the ansatz ψint(R, r1, r2, ..., rN ) = ψelec(R, r1, r2, ..., rN )ψnucl(R). When
this ansatz is inserted into (2.140), T̂ nucl operates on both, ψnucl as well as ψelec. However, because
the factor 1/M eff in T̂ nucl is considerably smaller than the factor 1/m in T̂ elec, we may neglect the
former at first such that we arrive at the purely electronic Schrödinger equation,[

T̂ elec + V (R, r1, r2, ..., rN )
]
ψelec,n(R, r1, r2, ..., rN ) = Eelec,nψelec,n(R, r1, r2, ..., rN ). (2.141)

Here, we have added the index n to distinguish between the different solutions of this equation. In
equation (2.141) no operator acting on R appears, hence R can be regarded as a mere parameter,
meaning that there is a different solution for each value of R.

Supposed we have found a solution for the electronic Schrödinger equation (2.141), we substitute it
into (2.140). By the aforementioned approximation of neglecting the effect of T̂ nucl on ψelec, we get
the following purely nuclear Schrödinger equation:[

T̂ nucl + Eelec,n(R)
]
ψnucl(R) = Eintψnucl,n(R). (2.142)

In this equation the electronic energy Eelec,n(R), i.e., the eigenvalue appearing in (2.141) for an eigen-
function ψelec,n and a given value of the parameter R, plays the role of an effective potential for the
motion of the nuclei. Neglecting the effect of T̂ nucl on ψelec means that the electrons will—due to
their low mass—always immediately follow the motion of the nuclei. This is the well-known Born-
Oppenheimer approximation [71]. For studying energetically low-lying vibrational states of a stable
molecule in its electronic ground state, this is a reasonable approximation.

In order to solve the nuclear equation (2.142), we will express R in spherical coordinates (R, θ, φ) with
θ and φ its polar and azimuthal angle, respectively, and write T̂ nucl as a sum of a radial, i.e., vibrational,
part T̂ vib and an angular, i.e. rotational, part T̂ rot according to T̂ nucl = T̂ vib + T̂ rot with

T̂ vib = − ~2

2M effR2

∂

∂R

(
R2 ∂

∂R

)
, (2.143)

T̂ rot = − ~2

2M effR2

[
1

sin2 θ

∂2

∂φ2
+

1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]
(2.144)

≈ − ~2

2M effRe
2

[
1

sin2 θ

∂2

∂φ2
+

1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]
. (2.145)

17We use the symbol Meff for the effective mass instead of µ, as often found in the literature, in order to avoid confusion
with the electric-dipole moment.
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Besides switching to spherical coordinates, we have also replaced the variable R in T̂ rot by the constant
Re. The meaning of Re will be explained below where this approximation will also be justified.

Correspondingly, we express the nuclear wavefunction in spherical coordinates and use an ansatz for
ψnucl(R, θ, φ) as a product of a radial, i.e, vibrational, and an angular, i.e., rotational, function:

ψnucl(R, θ, φ) =
1
R
ψvib(R)YJM (θ, φ), (2.146)

with YJM (θ, φ) a spherical harmonic.

Upon substituting (2.143), (2.145) and (2.146) into (2.142), we arrive at the vibrational Schrödinger
equation, [

− ~2

2M effR2

∂2

∂R2
+

~2J(J + 1)
2M effRe

2
+ Eelec,n(R)

]
ψvib(R) = Evib(R)ψvib(R). (2.147)

The solution of this equation depends on the form of Eelec,n(R), the “potential curve” or “potential
surface” of the particular electronic state n. However, for a bound state of a stable molecule Eelec,n(R)
has a minimum at some value Re for R and only the shape of the potential curve in vicinity of this
minimum is relevant. This can be understood in a classical picture by realizing that the amplitude of the
vibrational motion of the nuclei around this “equilibrium” position accounts for just a small fraction
of Re. Quantum mechanically speaking, the vibrational wavefunction exhibits values significantly
different from zero only for R ≈ Re. The potential curve Eelec,n(R) can thus be expanded into a
Taylor series around Re:

Eelec,n(R) ≈ Eelec,n(Re) + (R−Re)
∂Eelec,n

∂R

∣∣∣∣
R=Re

+
1
2

(R−Re)2 ∂
2Eelec,n

∂R2

∣∣∣∣
R=Re

(2.148)

= Eelec,n(Re) +
1
2
knζ

2, (2.149)

where we have used that Eelec(R) has a minimum at R = Re, i.e., its first derivative vanishes,
as well as the definitions ζ = R − Re, the displacement from the equilibrium position, and kn =
∂2Eelec/∂R

2|R=Re , the “force constant” of the chemical bond formed by the two nuclei.

Based on the same argument, namely that R deviates only sightly from Re, we have also replaced
R in (2.144) by Re and thus treat the diatomic molecule as a rigid rotating object (“rigid rotor
approximation”).

By defining a shifted vibrational function ψ̃vib according to ψvib(R) = ψ̃vib(R − Re) and the vari-
able,

W = Eint − Eelec,n(Re)−
~2J(J + 1)
2M effRe

2
, (2.150)

we get the following vibrational equation:[
− ~2

2M eff

∂2

∂ζ2
+

1
2
knζ

2

]
ψ̃vib(ζ) = Wψ̃vib(ζ). (2.151)

This is the Schrödinger equation of a harmonic oscillator with the solutions (see, e.g., [72, 70]):

ψ̃vib,v(ζ) =
(
ξ2

π

)1/4 1
(2vv!)1/2

Hv(ξζ) exp
(
−ξ

2ζ2

2

)
, (2.152)
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where the “vibrational quantum number” v = 0, 1, 2, . . . has been introduced to label the different
solutions.18 Hv denotes the Hermite polynomial [72] of order v and ξ is,

ξ =

√
M effωe,n

~
, (2.153)

with the (angular) vibration frequency,

ωe,n =

√
kn
M eff

. (2.154)

Collecting these results, we may conclude that the internal quantum state of a diatomic molecule in
a 1Σ electronic state can be approximately represented by the wavefunction,

ψint(R, r1, r2, ..., rN ) = ψelec,n(R, r1, r2, ..., rN )
1
R
ψvib,v(R)YJM (θ, φ) (2.155)

with θ and φ the polar and azimuthal angles of R when expressed in spherical coordinates and ψvib

a (shifted) harmonic oscillator wavefunction.

2.3.2 Rotation-vibration transitions due to the electric-dipole operator

Having found suitable approximate internal quantum states for a diatomic molecule, we can now study
transitions between these states due to the interaction with electromagnetic radiation. The separation
of the different degrees of freedom of a diatomic molecule—rotational, vibrational and electronic—
turns out to be very fruitful and will considerably simplify the description of such transitions. In
particular, we will study here rotation-vibration transitions. First, electric-dipole transitions will be
treated, thereafter transitions due to the electric-quadrupole operator.

To describe electric-dipole transitions in a molecule, the single-particle electric-dipole operator µ̂

introduced in Sec. 2.2.4 needs to be replaced by a many-particle operator, which is given by the sum
of the single-particle position operators multiplied with the corresponding charges. For a diatomic
molecule, this many-particle electric-dipole operator can be written (using the notation from above)
as,

µ̂(s) = −e
N∑
j=1

r̂j + q1R̂1 + q2R̂2. (2.156)

The superscript (s) has been added to make clear that this definition is given in the space-fixed
coordinate system.

The states of the unperturbed molecule, i.e., the counterparts of the states |ψa〉 and |ψb〉 from Sec. 2.2.1,

18Strictly speaking, the vibrational equation for a diatomic molecule differs from the one-dimensional harmonic-
oscillator equation by the boundary conditions. For the latter, the wavefunction is supposed to vanish for ±∞, whereas
for the former this should be the case for 0 (i.e., both nuclei are at the same position) and +∞ (nuclei at infinite
distance). Since the harmonic approximation is only applicable to energetically low-lying vibrational states and as their
wavefunctions decrease quickly in magnitude unless R ≈ Re, this does not pose a problem (see also [70]).
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are given by the internal molecular wavefunction just determined, i.e.,

〈R, r1, r2, ..., rN |ψa〉 = ψelec,n(R, r1, r2, ..., rN )R−1ψvib,v′′(R)YJ ′′M ′′(θ, φ) (2.157a)

〈R, r1, r2, ..., rN |ψb〉 = ψelec,n(R, r1, r2, ..., rN )R−1ψvib,v′(R)YJ ′M ′(θ, φ), (2.157b)

where the angles θ = θ(R) and φ = φ(R) are understood as functions of R. The labels “a” and “b”
stand now for the two tuples of quantum numbers (n, v′′, J ′′,M ′′) and (n, v′, J ′,M ′), where we have
adopted the common spectroscopic notation with double primed (′′) and single primed (′) symbols for
the lower and upper quantum state, respectively. Transitions between these states due to the electric-
dipole operator are given by the transition matrix element that takes the form of a multiple integral
over the full space of all nuclear and electronic coordinates,

〈
ψb

∣∣∣ µ̂(s)
∣∣∣ψa

〉
=
∫ ∫

···

∫
ψ∗elec,n(R, r1, r2, ..., rN )R−1ψ∗vib,v′(R)Y ∗J ′M ′(θ, φ)µ̂(s)

ψelec,n(R, r1, r2, ..., rN )R−1ψvib,v′′(R)YJ ′′M ′′(θ, φ) d3r1 d3r2 ...d3rN d3R, (2.158)

where again the angles θ = θ(R) and φ = φ(R) depend on R. The transition matrix element can be
simplified when collecting the electronic terms:〈

ψb

∣∣∣ µ̂(s)
∣∣∣ψa

〉
=
∫
R−1ψ∗vib,v′(R)Y ∗J ′M ′(θ, φ)[∫
···

∫
ψ∗elec,n(R, r1, r2, ..., rN )µ̂(s)ψelec,n(R, r1, r2, ..., rN ) d3r1 d3r2 ...d3rN

]
R−1ψvib,v′′(R)YJ ′′M ′′(θ, φ) d3R. (2.159)

Because the electronic state n is equal for the lower and the upper state of a rotation-vibration
transition, the term in brackets is exactly the dipole moment of the molecule in the electronic state n
or, more precisely, the expectation value of the dipole operator in the electronic state n at a certain
value for R. Thus we get for the transition matrix element,〈

ψb

∣∣∣ µ̂(s)
∣∣∣ψa

〉
=
∫
R−1ψ∗vib,v′(R)Y ∗J ′M ′(θ, φ)µ(s)

n (R)R−1ψvib,v′′(R)YJ ′′M ′′(θ, φ) d3R, (2.160)

with the expectation value,

µ(s)
n (R) =

〈
ψelec,n(R)

∣∣∣ µ̂(s)
∣∣∣ψelec,n(R)

〉
(2.161)

=
∫
···

∫
ψ∗elec,n(R, r1, r2, ..., rN )µ̂(s)ψelec,n(R, r1, r2, ..., rN ) d3r1 d3r2 ...d3rN . (2.162)

Because R is treated as a parameter in the electronic states, we replace in the dipole operator from
equation (2.156) the position operators of the nuclei R̂1 and R̂2 by the corresponding vectors R1 and
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R2 multiplied with the identity operator on the electronic coordinates Îelec, i.e., we redefine19

µ̂(s) = −e
N∑
j=1

r̂j + Îelecq1R1 + Îelecq2R2 (2.163)

= −e
N∑
j=1

r̂j + ÎelecR
(
q1

M2

M1 +M2
− q2

M1

M1 +M2

)
, (2.164)

where R1 and R2 have been substituted using equation (2.135).

To exploit the symmetry of a diatomic molecule, we switch to a coordinate system with the z-axis
aligned with the internuclear axis of the molecule. This is known as the “molecule-fixed” system. In
this system the dipole operator is given as,

µ̂(m) = µ̂
(m)
elec + ÎelecRe(m)

z

(
q1

M2

M1 +M2
− q2

M1

M1 +M2

)
, (2.165)

with e(m)
z a unit vector along the z-axis and the purely electronic dipole operator given by,

µ̂
(m)
elec = −e

N∑
j=1

r̂(m)
j , (2.166)

where r̂(m)
j denote the position operators of the electrons in the molecule-fixed system.

The electronic contribution to the dipole moment is given by the expectation value of the electronic
dipole operator, namely:

µ
(m)
elec,n(R) =

〈
ψ

(m)
elec,n(R)

∣∣∣ µ̂(m)
elec

∣∣∣ψ(m)
elec,n(R)

〉
(2.167)

=
∫
···

∫
ψ

(m)∗
elec,n(R, r(m)

1 , r(m)
2 , ..., r(m)

N )µ̂(m)
elecψ

(m)
elec,n(R, r(m)

1 , r(m)
2 , ..., r(m)

N ) d3r(m)
1 d3r(m)

2 ...d3r(m)
N .

(2.168)

Here, we have omitted the explicit vector notation of the internuclear vector because it is always
aligned with the z-axis in the molecule-fixed system.

Because the dipole operator is a sum of position operators and because the position operators in
a position basis merely appear as a multiplication by the corresponding position vectors, the above
expression is just a sum of integrals of the squared absolute value of the electronic wavefunction
multiplied by the electronic position vectors. As the absolute value of a many-particle wavefunction
does not change upon permutation of its arguments, this expression may be rewritten in a more
compact and easier comprehensible form using the particle density of the electrons ρ(r). This density
is given by the square of the absolute value of the many-particle wavefunction integrated over all but

19We adopt the usual convention that in single-particle operators acting in a many-particle tensor product Hilbert
space, identity operators are understood for all but the explicitly mentioned particles (see, e.g., [72], pp. 135ff.). Therefore,
the electron position operators r̂j implicitly embody identity operators for all electrons with indices 6= j as well as for the
nuclear coordinates. However, due to the Born-Oppenheimer approximation, no quantum mechanical operators appear
in the middle and the right most summand in (2.163), therefore the identity operator for the electronic coordinates has
been written explicitly in these terms.
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one of the single-particle position vectors [73, 74]:

ρ(R, r(m)) = N

∫
···

∫
ψ

(m)∗
elec,n(R, r(m), r(m)

2 , ..., r(m)
N )ψ(m)

elec,n(R, r(m), r(m)
2 , ..., r(m)

N ) d3r(m)
2 d3r(m)

3 ...d3r(m)
N .

(2.169)

Using this definition, the electronic contribution to the dipole moment is calculated as,

µ
(m)
elec,n(R) = −e

∫
r(m)ρ(R, r(m)) d3r(m), (2.170)

and the total dipole moment takes on the form:

µ(m)
n (R) = −e

∫
r(m)ρ(R, r(m)) d3r(m) +Re(m)

z

(
q1

M2

M1 +M2
− q2

M1

M1 +M2

)
. (2.171)

Molecular dipole moments are usually calculated in this form, see, e.g., [75].

For a diatomic molecule, the charge density in molecule-fixed coordinates is invariant under an inver-
sion of the coordinates perpendicular to the internuclear axis:

ρ(R, (r(m)
x , r(m)

y , r(m)
z )) = ρ(R, (−r(m)

x , r(m)
y , r(m)

z )) = ρ(R, (r(m)
x ,−r(m)

y , r(m)
z )). (2.172)

In other words, the electron density is an even function with respect to the x- and y-argument. As the
position vector r(m) is an odd function, the integrals for the x- and y-components of µ

(m)
elec,n vanish.

Because the nuclear part of the dipole moment, too, only exhibits a z-component, the total dipole
moment does also only posses a z-component, the x- and y-component vanish.

Expressed in spherical tensor notation, this means that all but the zero component of the dipole
moment in molecule-fixed coordinates vanish, whereas the former is equal to the z-component in
Cartesian coordinates, i.e.,

T1
±1

[
µ(m)
n (R)

]
= 0, (2.173a)

T1
0

[
µ(m)
n (R)

]
= µ(m)

z,n (R). (2.173b)

For the subsequent calculation, the dipole moment must be expressed in space-fixed coordinates be-
cause the radiation field driving spectroscopic transitions is described in this frame of reference. This
is accomplished by a Wigner rotation matrix D with the two Euler angles φ and θ [67, 60, 61]

T1
p

[
µ(s)
n (R)

]
=

1∑
q=−1

[
D (1)
pq (φ, θ, 0)

]∗
T1
q

[
µ(m)(R)

]
(2.174)

=
[
D

(1)
p0 (φ, θ, 0)

]∗
T1

0

[
µ(m)(R)

]
(2.175)

=

√
4π
3
Y1 p(θ, φ)µ(m)

z,n (R). (2.176)

The third Euler angle is of no relevance due to symmetry and is thus set to zero. The Wigner rotation
matrix is therefore proportional to a spherical harmonic.

If we substitute this result into equation (2.160), adopt spherical tensor notation and use spherical
coordinates for the integration (d3R = R2 sin θ dθ dφdR), we get the following expression for the
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electric-dipole transition matrix element:

〈
ψb

∣∣∣T1
p

[
µ̂(s)

] ∣∣∣ψa

〉
=

√
4π
3

∫ ∞
0

∫ 2π

0

∫ π

0
R−2 ψ∗vib,v′ µ

(m)
z,n (R)ψvib,v′′(R)

Y ∗J ′M ′(θ, φ)Y1p(θ, φ)YJ ′′M ′′(θ, φ)R2 sin θ dθ dφ dR (2.177)

=A (J ′,M ′, J ′′,M ′′, p) R(v′, v′′). (2.178)

As indicated above, this expression factorizes into an angular (rotational) term

A (J ′,M ′, J ′′,M ′′, p) =

√
4π
3

∫ 2π

0

∫ π

0
Y ∗J ′M ′(θ, φ)Y1p(θ, φ)YJ ′′M ′′(θ, φ) sin θ dθ dφ (2.179)

and a radial (vibrational) term

R(v′, v′′) =
∫ ∞

0
ψ∗vib,v′(R)µ(m)

z,n (R)ψvib,v′′(R) dR. (2.180)

The angular term can be conveniently calculated with the Wigner-Eckart theorem [61, 62, 76]. Using
this theorem together with the particular value of A for vanishing projection quantum numbers,

A (J ′, 0, J ′′, 0, 0) =
√

2J ′ + 1
√

2J ′′ + 1

(
J ′ 1 J ′′

0 0 0

)2

, (2.181)

to get the reduced matrix element, we obtain the result:

A (J ′,M ′, J ′′,M ′′, p) = (−1)M
′√

2J ′ + 1
√

2J ′′ + 1

(
J ′ 1 J ′′

−M ′ p M ′′

)(
J ′ 1 J ′′

0 0 0

)
. (2.182)

Here, the double-row symbols in parentheses are Wigner 3j-symbols [77, 61, 62, 76]. Based on their
properties, we obtain the angular momentum selection rules for an electric-dipole rotation-vibration
transition within an electronic 1Σ state. The 3j-symbols vanish if their upper row does not fulfill the
“triangle condition” or if the sum of the lower row is not equal to zero. We thus get the following
well-known selection rules for the change in the magnitude of the angular momentum ∆J = J ′ − J ′′

and its projection on the space-fixed z-axis ∆M = M ′ −M ′′:

∆J = ±1, (2.183)

∆M = 0,±1. (2.184)

In order to calculate the radial term, we need to know the electric-dipole moment as a function of the
internuclear separation R. For an approximate treatment, however, we may proceed in a similar way
as we have done for the potential energy curve in the last section and make use of R being normally
restricted to values close to Re. Thus, we expand the dipole moment in a Taylor series up to linear
order around Re:

µ(m)
z,n (R) ≈ µ(m)

z,n (Re) + (R−Re)
dµ(m)

z,n

dR

∣∣∣∣∣
R=Re

. (2.185)
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In this approximation, we get:

R(v′, v′′) = µ(m)
z,n (Re)

∫ ∞
0

ψ∗vib,v′(R)ψvib,v′′(R) dR

+
dµ(m)

z,n

dR

∣∣∣∣∣
R=Re

∫ ∞
0

ψ∗vib,v′(R) (R−Re)ψvib,v′′(R) dR. (2.186)

The first integral in this expression vanishes because vibrational wavefunctions with v′ 6= v′′ (which
is given by definition in a vibrational transition) are orthogonal to each other. The second integral
can be approximated using the harmonic vibrational states introduced in the last section. With the
variable ζ = R−Re and the corresponding position operator ζ̂ we obtain∫ ∞

0
ψ∗vib,v′(R) (R−Re)ψvib,v′′(R) dR =

∫ ∞
−Re

ψ̃∗vib,v′(ζ) ζ ψ̃vib,v′′(ζ) dζ (2.187)

≈
∫ ∞
−∞

ψ̃∗vib,v′(ζ) ζ ψ̃vib,v′′(ζ) dζ (2.188)

=
〈
ψ̃vib,v′

∣∣∣ ζ̂ ∣∣∣ ψ̃vib,v′′

〉
, (2.189)

where we have used that the vibrational wavefunction rapidly decreases in magnitude for |R−Re| =
|ζ| � 0 such that the integral may be extended to −∞. The radial integral is thus approximated
as,

R(v′, v′′) ≈ dµ(m)
z,n

dR

∣∣∣∣∣
R=Re

〈
ψ̃vib,v′

∣∣∣ ζ̂ ∣∣∣ ψ̃vib,v′′

〉
. (2.190)

The position operator ζ̂ may be written with the raising and lowering operators, â† and â, and the
constant ξ from (2.153) as [72]:

ζ̂ =
1√
2ξ

(
â† + â

)
. (2.191)

Because the raising and lowering operators â† and â change the vibrational quantum number v by
±1, the following selection rule for the change in the vibrational quantum number ∆v = v′ − v′′ for
an electric-dipole rotation-vibration transition is obtained:

∆v = ±1. (2.192)

Note that this selection rule is only valid within the so-called “double-harmonic approximation”,
meaning that we have assumed harmonic oscillator states for the vibrational states (“mechanical
harmonicity”) and have neglected all terms higher in order than the linear one in the Taylor expansion
of the dipole moment (“electrical harmonicity”) [78, 79, 30].

The line strength for an electric-dipole rotation-vibration transition is given, as for a single-particle
system discussed in Sec. 2.2.7, by the squared absolute magnitude of the transition matrix element
summed over all spherical tensor components and all degenerate states in the upper and lower level,
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i.e.,

S
(E1)
ba =

J ′∑
M ′=−J ′

J ′′∑
M ′′=−J ′′

1∑
p=−1

∣∣∣〈ψb

∣∣∣T1
p

[
µ̂(s)

] ∣∣∣ψa

〉∣∣∣2 (2.193)

=
J ′∑

M ′=−J ′

J ′′∑
M ′′=−J ′′

1∑
p=−1

∣∣A (J ′,M ′, J ′′,M ′′, p)
∣∣2 ∣∣R(v′, v′′)

∣∣2 (2.194)

= (2J ′ + 1)(2J ′′ + 1)

(
J ′ 1 J ′′

0 0 0

)2 ∣∣R(v′, v′′)
∣∣2 . (2.195)

To derive the last equation, the orthogonality properties of the 3j-symbols have been used.

Concluding, we have shown that a rotation-vibration transition in a diatomic molecule within a certain
electronic state can only be induced by the electric-dipole operator, if the dipole moment (meaning the
expectation value of the dipole operator in that particular electronic state) does change as a function
of the internuclear separation (see equation (2.186)).

For a homonuclear diatomic molecule, an additional symmetry, besides those discussed above, exists:
the electron density is not only invariant under an inversion of the coordinates perpendicular to the
molecular axis (x- and y-coordinates), but also for the coordinate along the internuclear axis (z-
coordinate), i.e. ρ(R, (r(m)

x , r
(m)
y , r

(m)
z )) = ρ(R, (r(m)

x , r
(m)
y ,−r(m)

z )). In the same way as shown above for
the x- and y-components, the electronic contribution to the z-component of the dipole moment thus
vanishes, too. Furthermore, the nuclear contribution to the dipole moment vanishes as well because
we have in the homonuclear case, M1 = M2 and q1 = q2 in (2.171), i.e., the total molecular dipole
moment vanishes.

As this argument holds for all possible internuclear separations, the dipole moment does also not
change as a function of the internuclear distance. We thus arrive at the tenet mentioned in Ch. 1,
saying that a diatomic molecule does not show rotation-vibration transitions within the electric-dipole
approximation. However, as we have discussed further above, the electric-dipole operator represents
just the first term in a series expansion of the Hamiltonian describing the interaction between matter
and radiation, thus a discussion of the next-higher-order term is of interest.

2.3.3 Rotation-vibration transitions due to the electric-quadrupole operator

After having described how the interaction of the electromagnetic radiation with the charged parti-
cles in a diatomic molecule mediated by the electric-dipole operator may induce rotation-vibration
transitions in this molecule, we now show, how such transitions may also be driven by the electric-
quadrupole operator. Again, the separation of the many-particle wavefunction of a molecule into a
rotational, a vibrational and an electronic function considerably simplifies the treatment—and jus-
tifies the terminology used. Also the symmetry of the molecule, once more, substantially simplifies
the transition operator. The crucial result of this section is that the quadrupole operator may induce
rotation-vibration transitions even in homonuclear, diatomic molecules where they do not occur due
to the electric-dipole operator as we have shown in the last section.

Similar to the electric-dipole operator, the single-particle electric-quadrupole operator introduced in
Sec. 2.2.5 needs to be replaced by the corresponding many-particle operator to describe electric-
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quadrupole transitions in a molecule. When we use the same notation as above, the electric-quadrupole
operator for a diatomic molecule reads:

Q̂αβ = −e
N∑
j=1

(
r̂j,αr̂j,β − δαβ

r̂2
j

3

)
+ q1

(
R̂1,αR̂1,β − δαβ

R̂2
1

3

)
+ q2

(
R̂2,αR̂2,β − δαβ

R̂2
2

3

)
. (2.196)

In contrast to the last section, where the dipole-operator was treated as a vector operator, a compo-
nentwise notation is adopted here, i.e., the transition matrix element of one particular component of
the quadrupole tensor operator Q̂αβ (with α, β = x, y, z) is studied.

The matrix element of this operator for a transition between the molecular rovibronic quantum states
|ψa〉 and |ψb〉 from (2.157) is given by,

〈
ψb

∣∣∣ Q̂αβ ∣∣∣ψa

〉
=
∫ ∫

···

∫
ψ∗elec,n(R, r1, r2, ..., rN )R−1ψ∗vib,v′(R)Y ∗J ′M ′(θ, φ) Q̂αβ

ψelec,n(R, r1, r2, ..., rN )R−1ψvib,v′′(R)YJ ′′M ′′(θ, φ) d3r1 d3r2 ...d3rN d3R, (2.197)

where the angles θ = θ(R) and φ = φ(R) are understood as functions of R.

The terms involving the electronic coordinates may again be collected into a separate integral. Because
we are interested in rotation-vibration transitions within the same electronic state, this integral repre-
sents the electric-quadrupole moment of the molecule in the electronic state n, or, more precisely, the
expectation value of the electric-quadrupole operator in the electronic state n. Doing so, the transition
matrix element reads,〈

ψb

∣∣∣ Q̂αβ ∣∣∣ψa

〉
=
∫
R−1ψ∗vib,v′(R)Y ∗J ′M ′(θ, φ)Qαβ,n(R)R−1ψvib,v′′(R)YJ ′′M ′′(θ, φ) d3R, (2.198)

with the electric-quadrupole moment in the electronic state n given by:

Qαβ,n(R) =
〈
ψelec,n(R)

∣∣∣ Q̂αβ ∣∣∣ψelec,n(R)
〉

(2.199)

=
∫
···

∫
ψ∗elec,n(R, r1, r2, ..., rN ) Q̂αβ ψelec,n(R, r1, r2, ..., rN ) d3r1 d3r2 ...d3rN . (2.200)

Similar as in the case of the electric-dipole moment, the electric-quadrupole moment, too, is a function
of the internuclear vector R, since both, the contribution to the quadrupole moment due to the nuclei
as well as the one due to the electrons (via the dependence of the electronic wavefunctions), depend on
R. As R appears as a parameter in the electronic wavefunction, we treat the position operators R̂1 and
R̂2 in the quadrupole operator in the same way as we did for the dipole operator in the last section,
i.e., we replace them by the corresponding vectors R1 and R2 multiplied with the identity operator
for the electronic coordinates Îelec. Hence we rewrite the electric-quadrupole operator as:

Q̂αβ =− e
N∑
j=1

(
r̂j,αr̂j,β − δαβ

r̂2
j

3

)

+ Îelecq1

(
R1,αR1,β − δαβ

R2
1

3

)
+ Îelecq2

(
R2,αR2,β − δαβ

R2
2

3

)
. (2.201)
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Substituting, R1 and R2 by equation (2.135) we obtain:

Q̂αβ =− e
N∑
j=1

(
r̂j,αr̂j,β − δαβ

r̂2
j

3

)

+ Îelec

(
RαRβ − δαβ

R2

3

)(
q1

M2

M1 +M2
+ q2

M1

M1 +M2

)
. (2.202)

In order to take advantage of the symmetry of diatomic molecules, we again switch to molecule-fixed
coordinates and separate the quadrupole operator into an electronic and a nuclear part,

Q̂
(m)
αβ = Q̂

(m)
elec,αβ + Q̂

(m)
nucl,αβ. (2.203)

Since the nuclei are located along the molecule-fixed z-axis, the nuclear part can be simplified, yield-
ing

Q̂
(m)
nucl,αβ = ÎelecR

2δαβ

(
δαz −

1
3

)(
q1

M2

M1 +M2
+ q2

M1

M1 +M2

)
. (2.204)

As indicated by the Kronecker delta δαβ, the nuclear part of the electric-quadrupole operator exhibits
only diagonal Cartesian components in molecule-fixed coordinates. Furthermore, the xx- and yy-
components are equal: Q̂(m)

nucl,xx = Q̂
(m)
nucl,yy.

The electronic part of the electric-quadrupole operator is given by,

Q̂
(m)
elec,αβ = −e

N∑
j=1

(
r̂j,αr̂j,β − δαβ

r̂2
j

3

)
, (2.205)

and the electronic quadrupole moment is obtained as the expectation value of this operator in the
electronic state n, i.e.,

Q
(m)
elec,n,αβ(R) =

〈
ψ

(m)
elec,n(R)

∣∣∣ Q̂(m)
elec,αβ

∣∣∣ψ(m)
elec,n(R)

〉
(2.206)

=
∫
···

∫
ψ

(m)∗
elec,n(R, r(m)

1 , r(m)
2 , ..., r(m)

N ) Q̂(m)
elec,αβ

ψ
(m)
elec,n(R, r(m)

1 , r(m)
2 , ..., r(m)

N ) d3r(m)
1 d3r(m)

2 ...d3r(m)
N . (2.207)

This expectation value can be expressed in terms of the electron density in a similar manner as we
have done for the electric-dipole moment, namely as:

Q
(m)
elec,n,αβ(R) = −e

∫ (
r(m)
α r

(m)
β − δαβ

(
r(m)

)2
3

)
ρ(R, r(m)) d3r(m) (2.208)

Again, we can make use of the symmetries of the electron density in molecule-fixed coordinates. Doing
so, we notice that the off-diagonal Cartesian components of the electronic part of the quadrupole
moment tensor, i.e., Q(m)

elec,n,αβ with α 6= β, vanish: as ρ(R, r(m)) is an even function with respect to

r
(m)
x and r

(m)
y , i.e.,

ρ(R, (r(m)
x , r(m)

y , r(m)
z )) = ρ(R, (−r(m)

x , r(m)
y , r(m)

z )) = ρ(R, (r(m)
x ,−r(m)

y , r(m)
z ), (2.209)

whereas the terms r(m)
α and r(m)

β in (2.208) are odd functions and because α 6= β implies that at least
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one of the indices α or β is x or y, the integral in (2.208) vanishes for α 6= β. Furthermore, because ρ
is invariant under permutation of the x- and y-coordinate, i.e.,

ρ(R, (r(m)
x , r(m)

y , r(m)
z )) = ρ(R, (r(m)

y , r(m)
x , r(m)

z )), (2.210)

the first two diagonal components are equal: Q(m)
elec,n,xx(R) = Q

(m)
elec,n,yy(R).

As the same properties have already been shown for the nuclear part, we may conclude that the total
quadrupole moment of the molecule shows these properties. The molecule-fixed coordinate system
corresponds thus to the system of eigenvectors of the electric-quadrupole moment tensor mentioned in
Sec. 2.2.6. Because the quadrupole moment tensor is also traceless, only one independent parameter
appears in the quadrupole moment of a diatomic molecule in molecule-fixed coordinates. This is usually
chosen to be Q(m)

n,zz, which is then called the quadrupole moment of a certain molecule (in the electronic
state n, which is often implicitly assumed as the ground state) [52]. Examples for electric-quadrupole
moments of some diatomic molecules can be found in [80] and [75]. The particular values for N+

2 are
given in [45] based on a computational study.

Summarizing, we have,
Q

(m)
n,αβ(R) = 0 for α 6= β, (2.211)

and,

Q(m)
n,xx(R) = Q(m)

n,yy(R) = −1
2
Q(m)
,n,zz(R), (2.212)

or written as a matrix,

Q(m)
n (R) =

−
1
2Q

(m)
n,zz(R) 0 0

0 −1
2Q

(m)
n,zz(R) 0

0 0 Q
(m)
n,zz(R)

 . (2.213)

In spherical tensor notation, these symmetries cause all but the zeroth component of the quadrupole
moment to vanish in molecule-fixed coordinates, i.e.,

T2
q

[
Q(m)
n

]
= 0 for q = ±1,±2, (2.214a)

T2
0

[
Q(m)
n

]
=

√
3
2
Q(m)
n,zz. (2.214b)

The quadrupole moment in space-fixed coordinates is obtained, likewise as for the dipole moment,
by a Wigner rotation matrix with the Euler angles φ and θ, which again is expressed as a spherical
harmonic:

T2
p

[
Q(s)
n (R)

]
=

2∑
q=−2

[
D (2)
pq (φ, θ, 0)

]∗
T2
q

[
Q(m)
n (R)

]
(2.215)

=
[
D

(2)
p0 (φ, θ, 0)

]∗
T2

0

[
Q(m)
n (R)

]
(2.216)

=

√
4π
5
Y2p(θ, φ)

√
3
2
Q(m)
n,zz(R). (2.217)

Upon substituting this result into (2.198), adopting spherical tensor notation and switching to spherical
coordinates for the integration over R, we obtain the following expression for the transition matrix
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element: 〈
ψb

∣∣∣T2
p

[
Q̂(s)
n

] ∣∣∣ψa

〉
=

√
4π
5

√
3
2

∫ ∞
0

∫ 2π

0

∫ π

0
R−2 ψ∗vib,v′ Q

(m)
n,zz(R)ψvib,v′′(R)

Y ∗J ′M ′(θ, φ)Y2p(θ, φ)YJ ′′M ′′(θ, φ)R2 sin θ dθ dφ dR (2.218)

=

√
3
2
A (J ′,M ′, J ′′,M ′′, p) R(v′, v′′). (2.219)

Here, again a separation into an angular (rotational) part,

A (J ′,M ′, J ′′,M ′′, p) =

√
4π
5

∫ 2π

0

∫ π

0
Y ∗J ′M ′(θ, φ)Y2p(θ, φ)YJ ′′M ′′(θ, φ) sin θ dθ dφ, (2.220)

and radial (or vibrational) part,

R(v′, v′′) =
∫ ∞

0
ψ∗vib,v′(R)Q(m)

n,zz(R)ψvib,v′′(R) dR, (2.221)

has been achieved.

The angular part is again readily calculated using the Wigner-Eckart theorem with the reduced matrix
element obtained from the particular value for vanishing projection quantum numbers. The result
is

A (J ′,M ′, J ′′,M ′′, p) = (−1)M
′√

2J ′ + 1
√

2J ′′ + 1

(
J ′ 2 J ′′

−M ′ p M ′′

)(
J ′ 2 J ′′

0 0 0

)
. (2.222)

From the properties of the 3j-symbols appearing in the above expression, the angular selection rules
for an electric-quadrupole rotation-vibration transition within an electronic 1Σ state are obtained,
namely:

∆J = 0,±2 (but not J ′ = J ′′ = 0), (2.223)

∆M = 0,±1,±2. (2.224)

So, in contrast to electric-dipole transitions, the angular momentum quantum number may change by
two in an electric-quadrupole transition. Formally, this reflects the character of the quadrupole tensor
as a second-rank spherical tensor. Physically, the transfer of two units of angular momentum to (or
from) the molecule is possible, because the molecule interacts with the “gradient” of the electric field
over an extended region. If the interaction of the molecule with the electric field is pictured as an
absorption (or emission) of a photon, this photon carries orbital angular momentum additional to its
spin (with magnitude one) and the total angular momentum transferred to or from the molecule may
thus be higher than one angular momentum unit [30].20

The radial term in (2.219) is calculated along the same lines as for an electric-dipole transition: in
absence of precise information about the molecular electric-quadrupole moment as a function of the
internuclear separation R, the quadrupole moment is expanded into a Taylor series up to the linear

20However, as mentioned at the beginning of this chapter, the electric field is treated here as a classical field. The
concept of a photon does not fit in this description. Therefore, this pictures goes beyond the theory described here.
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term around R = Re:

Q(m)
n,zz(R) ≈ Q(m)

n,zz(Re) + (R−Re)
dQ(m)

n,zz

dR

∣∣∣∣∣
R=Re

. (2.225)

This treatment is justified by calculations of the quadrupole moment of diatomic molecules showing
a smooth variation with the internuclear separation (see e.g. [45] or [81]).

If, moreover, we approximate the vibrational states by the states of a shifted harmonic oscillator and
extend the lower bound of the radial integral to −∞, we get,

R(v′, v′′) ≈ dQ(m)
n,zz

dR

∣∣∣∣∣
R=Re

〈
ψ̃vib,v′

∣∣∣ ζ̂ ∣∣∣ ψ̃vib,v′′

〉
. (2.226)

In the double-harmonic approximation, we therefore obtain the same vibrational selection rule as for
an electric-dipole rotation-vibration transition, i.e.,

∆v = ±1. (2.227)

Within this approximation, we thus have v′ = v′′+1 and the matrix element in (2.226) can be calculated
explicitly by expressing the position operator ζ̂ in terms of the raising and lowering operator:〈

ψ̃vib,v′′+1

∣∣∣ ζ̂ ∣∣∣ ψ̃vib,v′′

〉
=

1√
2ξ

〈
ψ̃vib,v′′+1

∣∣∣ (â† + â
) ∣∣∣ ψ̃vib,v′′

〉
(2.228)

=
1√
2ξ

(√
v′′ + 1

〈
ψ̃vib,v′′+1

∣∣∣ ψ̃vib,v′′+1

〉
+
√
v′′
〈
ψ̃vib,v′′+1

∣∣∣ ψ̃vib,v′′−1

〉)
(2.229)

=
1√
2ξ

√
v′′ + 1. (2.230)

Here, as before, ξ denotes the characteristic constant of the harmonic oscillator wavefunctions given
in (2.153). As ξ is not a quantity usually found in the spectroscopic literature, it is worth expressing it
in terms of quantities usually given in the literature, such as the rotational constant Be, the harmonic
vibrational frequency ωe and the equilibrium internuclear distance Re of a molecule. Substituting the
relation between the rotational constant Be (in units of energy) and the effective mass M eff [57],

Be =
~2

2M effR2
e

, (2.231)

into equation (2.153), we get,

ξ =

√
~ωe

2BeR2
e

, (2.232)

and thus: 〈
ψ̃vib,v′′+1

∣∣∣ ζ̂ ∣∣∣ ψ̃vib,v′′

〉
= Re

√
Be

~ωe

√
v′′ + 1. (2.233)

In molecular spectroscopy, spectroscopic constants are often expressed in units of inverse length by
referring to the inverse of the wavelength (“wave number”) of electromagnetic radiation with a corre-
sponding photon energy. The constants B̃e and ω̃e in these units are related to those defined above
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by,

B̃e =
Be

2π~c
, (2.234)

ω̃e =
ωe

2πc
, (2.235)

such that we get: 〈
ψ̃vib,v′′+1

∣∣∣ ζ̂ ∣∣∣ ψ̃vib,v′′

〉
= Re

√
B̃e

ω̃e

√
v′′ + 1. (2.236)

The radial part of the transition matrix element of an electric-quadrupole rotation-vibration transition
is thus given in the double-harmonic approximation as:

R(v′, v′′) =
dQ(m)

n,zz

dR

∣∣∣∣∣
R=Re

Re

√
B̃e

ω̃e

√
v′′ + 1. (2.237)

This result is given in equation (18) of [82].21 It is usually used to estimate the intensity of an electric-
quadrupole rotation-vibration transition, such as in [83, 33, 84].

The line strength of an electric-quadrupole rotation vibration-transition is, likewise as for a dipole
transition, obtained by summing the squared absolute magnitude of the transition matrix element
over all spherical tensor components of the quadrupole operator and all degenerate states in the upper
and lower level, i.e.,

S
(E2)
ba =

J ′∑
M ′=−J ′

J ′′∑
M ′′=−J ′′

2∑
p=−2

∣∣∣〈ψb

∣∣∣T2
p

[
Q̂(s)
n

] ∣∣∣ψa

〉∣∣∣2 (2.238)

=
J ′∑

M ′=−J ′

J ′′∑
M ′′=−J ′′

2∑
p=−2

3
2

∣∣A (J ′,M ′, J ′′,M ′′, p)
∣∣2 ∣∣R(v′, v′′)

∣∣2 (2.239)

=
3
2

(2J ′ + 1)(2J ′′ + 1)

(
J ′ 2 J ′′

0 0 0

)2 ∣∣R(v′, v′′)
∣∣2 , (2.240)

where we have once more made use of the orthogonality properties of the 3j-symbols.

The most remarkable difference between the electric-dipole and the electric-quadrupole operator from
the point of view of molecular rotation-vibration spectroscopy is that the latter may induce rotation-
vibration transitions even in homonuclear diatomic molecules. As mentioned in the last section, the
electron density of a homonuclear diatomic molecule is an even function with respect to the inversion
of the z-coordinate (as well as with respect to the x- and y-coordinates). However, as the prefactor
rαrα = r2

α for the diagonal terms of the quadrupole matrix element in (2.208) is an even function too,
this does not imply the diagonal terms to vanish. Furthermore, the nuclear part of the quadrupole
moment also contributes to the transition matrix element: since the two terms in (2.204) related
to nucleus 1 and 2 are summed—instead of subtracted from each other, as in the corresponding
expression for an electric-dipole transition—this term, too, yields a non-vanishing contribution. If the
total molecular quadrupole moment does also change as a function of the internuclear distance (which

21Note that there is a slight inconsistency with the units in the article of Karl and Poll [82]. The rotational constant
B used there is defined exactly as our Be, i.e., in units of energy. Furthermore, their ω “denotes the harmonic-oscillator
frequency”, which implies the dimension of inverse time. However, the ratio B/ω is then not dimensionless as it is
supposed to be. So strictly speaking, an additional factor ~ should appear in their expression, as it does here in (2.233).
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it does in general), the quadrupole operator may induce rotation-vibration transitions. However, as
discussed in the preceding chapter in the context of the general interaction between matter and
radiation, the intensity of rotation-vibration transitions driven by the electric-quadrupole operator
is very low, since the extent of the molecular wavefunction is small compared to the wavelength
of electromagnetic radiation at resonance. Hence, the “gradient” of the electric field—the quantity
relevant for electric-quadrupole transitions—is small over the extension of the molecule.

2.4 An intuitive picture

In this chapter, the physics of electric-dipole and electric-quadrupole rotation-vibration transitions
in hetero- and homonuclear diatomic molecules has been described quantum mechanically. These
transitions may also be described in an intuitive, less mathematical way: as the electronic state does
not change in these transitions, they are governed by the diagonal matrix elements of the electric-
dipole or quadrupole operator with respect to electronic states. These diagonal elements describe the
expectation value of the respective electric multipole moments in a particular electronic state. We
may thus think of the vibrational excitation of a molecule in an electric field in a similar way as of
a classical electric charge distribution and we may equally well speak of different multipole moments
of the charge distribution as of the multipole moments of the interaction operator of matter and
radiation. In contrast, spectroscopic transitions in atoms are driven by the off-diagonal elements of
the transition operator that lack an obvious intuitive meaning.

In a heteronuclear diatomic molecule, the charge distribution may in general be divided into a more
positively and a more negatively charged part, an electric dipole. In an electric field these two parts
experience a force parallel and antiparallel to the field, respectively. In an oscillating field, the molecule
vibrates. For a homonuclear molecule such a partition into a region with a positive and a negative
(relative) charge cannot be achieved. However, a partition into four regions, two of them more positively
and two of them more negatively charged, i.e., an electric quadrupole, is usually possible. This electric
quadrupole may be considered as two spatially separated electric dipoles (such as an electric dipole
may be regarded as two separated electric monopoles, i.e., charges). If the electric field were uniform,
these two dipoles would oscillate in phase and the relative motion of the two nuclei in the molecule,
the vibration, would not be excited. However, because the field of an electromagnetic wave is not
uniform but rather exhibits a phase shift over the extent of the molecule, these two dipoles oscillate
slightly out of phase and thus the vibration is excited. As the molecule is considerably smaller than
the wavelength of the wave, this phase shift is rather small and hence electric-quadrupole vibrational
transitions are weak.



Chapter 3

Theory of electric-quadrupole

rotation-vibration transitions in the

molecular nitrogen cation

3.1 Introduction

In this chapter, the particular system used in this work to probe electric-quadrupole rotation-vibration
transitions in a molecular ion is introduced, namely the infrared fundamental transition within the
electronic ground state of the molecular nitrogen cation N+

2 . First, the general properties of the
nitrogen cation and particularly, the energy level structure in the electronic ground state are presented.
Emphasis is placed on the fine and hyperfine structure of 14N+

2 because this structure allowed us
to assign the observed spectrum unambiguously as due to electric-quadrupole vibration transitions
in the nitrogen cation. Subsequently, the theory of electric-quadrupole transitions presented in the
previous chapter is extended to include fine- and hyperfine-structure effects. As we are not aware of
any treatment covering hyperfine-structure effects in electric-quadrupole rotation-vibration spectra,
this theory has been newly developed as part of this work and represents a major result of this thesis.
The theory is not limited to the N+

2 ion, but may be applied to other molecular ions or neutral
molecules showing a similar angular momentum coupling structure as well. A shortened version of this
chapter has been published in Molecular Physics [85].

3.2 Spectroscopic investigation of the molecular nitrogen cation

The molecular nitrogen cation is one of the most extensively studied molecular ions in spectroscopy.
The investigation may be traced back to the first half of the twentieth century with the observations
of Fassbender [86], Coster and Brons [87] and Childs [88], among others (see [89]), and has continued
until today. The interest in the N+

2 ion was driven by natural phenomena such as aurorae or comet
tails [90, 91] which show the spectroscopic signature of this molecule as well as technical applications
such as the atmospheric reentry of space probes [92, 93]. Compilations of the spectroscopic data on
the N+

2 ion may be found in the review articles by Lofthus and Krupenie [94] and Gilmore, Laher and
Espy [95].
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The electronic ground state X2Σ+
g of N+

2 shows the dominant molecular orbital configuration [96]
1σ2

g1σ2
u2σ2

g2σ2
u3σ1

g1π4
u and is thus obtained from the ground state of the neutral N2 molecule X1Σ+

g

with the dominant configuration [94] 1σ2
g1σ2

u2σ2
g2σ2

u3σ2
g1π4

u upon removal of an electron from the 3σg

orbital. For the spectroscopic investigation, two excited electronic states are of particular importance,
the A2Πu state and the B2Σ+

u state. Rovibronic transitions between the X and the A state lie mostly
in the visible and near infrared part of the electromagnetic spectrum and form the “Meinel system”,
those of the X-B or “first negative” system also reach into the ultraviolet. Both of these systems
have been extensively studied with ever increasing precision. Relatively recent studies include the
ones from Miller, Suzuki and Hirota [97], Ferguson et al. [98] and Harada, Wada and Tanaka [90] for
the Meinel system, as well as the ones by Dick et al. [99], Gottscho et al. [100] and Michaud et al.
[92, 93] for the first negative system. From these measurements, a set of spectroscopic constants for the
rotational and vibrational terms in the Hamiltonian of the electronic ground state of N+

2 is available
(see Tab. 3.1).

Beginning in the 1980s, the hyperfine structure of the N+
2 ion has also been extensively investigated

using Doppler-tuned laser fluorescence spectroscopy, e.g., in the studies by Rosner, Gaily and Holt
[91, 101] and the one by Scholl, Holt and Rosner [102]. These investigations culminated in a laser-rf-
laser double-resonance study by Berrah Mansour et al. [96] that yielded a set of molecular hyperfine-
structure parameters with precisions in the kHz range or even better (Tab. 3.2).

The ion sources used in these experiments, such as electrical discharge sources, hollow cathode lamps,
etc., produce N+

2 ions with thermally populated internal quantum states. However, N+
2 ions may also

be produced by the method of resonance-enhanced multiphoton ionization (REMPI) as in the exper-
iments by Vrakking, Bracker and Lee [103], Lykke and Kay [104] and Hanisco and Kummel [105].
This technique was refined by Mackenzie et al. into a two-colour REMPI scheme and combined with
the method of delayed pulsed-field ionization to produce N+

2 ions in selected rotational-vibrational
quantum states [106]. A similar technique known as “pulsed-field-ionization zero-kinetic-energy pho-
toelectron spectroscopy” (PFI-ZEKE) was later utilized by Seiler et al. [107] to precisely determine
the ionization potential of the N2 molecule. Finally, the method of threshold REMPI was employed by
Tong, Winney and Willitsch [108] and Tong, Wild and Willitsch [109] and combined with ion trapping
and sympathetic cooling to produce rotational-vibrational state-selected, translationally cold and spa-
tially confined N+

2 ions. This state preparation was achieved in the same laboratory as the experimental
data for this thesis were taken. The N+

2 ion also is particularly suited for such experiments, because a
well-studied charge transfer reaction of N+

2 with Ar atoms [110] may be used for state detection (see
Ch. 4). For these reasons, the N+

2 ion was chosen as a test system to demonstrate the addressability
of electric-quadrupole rotation-vibration transitions in a molecular ion.

3.3 Energy level structure of the molecular nitrogen cation

The Hamiltonian of the 14N+
2 ion in the electronic ground X2Σ+

g state consists of several terms de-
scribing the vibration, the rotation, the fine and the hyperfine structure:

Ĥint(N+
2 ,X

2Σ+
g ) = Ĥvib + Ĥrot + Ĥ fs + Ĥhfs. (3.1)
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The vibrational and rotational Hamiltonians are treated by common models for diatomic molecules
[60, 79] and are thus only briefly discussed here. The contributions due to the electronic spin (fine
structure) and the nuclear spin (hyperfine structure) are more involved and the relevant expressions
are given below.

For the vibrational Hamiltonian, the anharmonic oscillator model may be used (as in [97, 98]) with
the corresponding term values G(v) (in units of cm−1) given as [79],

G(v) = ωe(v + 1/2)− ωexe(v + 1/2)2 + ωeye(v + 1/2)3. (3.2)

Some of the most accurate measurements of relative vibrational term values ∆G(v) = G(v)−G(0) of
N+

2 are reported in [93]. These values are shown in Tab. 3.1.

The angular part of the N+
2 Hamiltonian involves several angular momenta, which are due to the

rotation of the nuclear frame of the molecule, the electronic and the nuclear spin. As a doublet state,
the X2Σ+

g state exhibits a total electronic spin of S = 1/2. Furthermore, each of the two 14N nuclei in
14N+

2 exhibits a nuclear spin of I14N = 1 giving rise to a total nuclear spin of I = 0 or 2 (ortho-N+
2 )

and I = 1 (para-N+
2 ). The spin-rotational part of the Hamiltonian may be well described with a

Hund’s case (bβJ ) coupling scheme [111, 112, 60] meaning that the rotational angular momentum of
the molecular frame1 N̂ is first coupled with the electronic spin Ŝ to form Ĵ = N̂+ Ŝ, the total angular
momentum excluding nuclear spin.2 The resultant angular momentum Ĵ is then coupled to the total
nuclear spin Î to form the total angular momentum F̂ according to F̂ = Ĵ+ Î. The basis states related
to this coupling scheme are the states |NSJIFMF 〉 with N , S, J , I and F the eigenvalues of the
above-mentioned angular momentum operators and MF the eigenvalue of F̂z, the projection of the
total angular momentum on the space-fixed z-axis.3

These quantum numbers are associated with energy levels of the molecular Hamiltonian on different
levels of precision. The rotational levels labelled by N are spaced by more than hundred GHz between
each other for low values of N . J labels the fine-structure (fs) levels with spacings of a few hundreds
of MHz and F the hyperfine-structure (hfs) levels, lying only a few tens to about one hundred MHz
next to each other. This hierarchy is depicted in Fig. 3.1.

The rotational Hamiltonian up to the fourth order in N̂ reads [97, 42]

Ĥrot = BvN̂2 −DvN̂4. (3.3)

Here, Bv denotes the rotational constant and Dv the centrifugal distortion constant for a particular
vibrational quantum state v (both in units of cm−1). This Hamiltonian is diagonal in the Hund’s case

1The projection of the electronic angular momentum on the internuclear axis Λ vanishes, as we are considering a Σ
state.

2The symbols used here for the different angular momenta, follow the usual conventions for the Hund’s case (b) angular
momentum coupling scheme. In the previous chapter, J was used for the angular momentum quantum number of the
nuclear frame of the molecule following the usual terminology in angular momentum theory of closed-shell molecules.
Here, N is the analogue to J from Ch. 2.

3Other nuclear spin coupling cases include the (aβJ ) scheme, where F̂ is also the resultant of Ĵ and Î but with Ĵ
obtained according to the Hund’s case (a) coupling hierarchy, and the (bβS ) scheme, where the nuclear spin is first coupled
to the electron spin and subsequently their resultant to N̂. In principle, quantizing the nuclear spin in the molecule-fixed
frame is also possible. Such schemes are known as case (aα) and (bα), for Hund’s case (a) and (b), respectively. In
practice, these cases are unlikely to occur because of the low coupling energies of nuclear magnetic moments as compared
to electron moments. A systematic treatment of nuclear spin coupling cases is given in [112].
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Figure 3.1. Energy level scheme of the angular quantum states of ortho-14N+
2 in the electronic

ground state. The rotational levels are denoted by the rotational quantum number N . The level scheme
is shown here for the rotational ground state (N = 0), the first rotational excited state allowed by the Pauli
principle for ortho-14N+

2 (N = 2) and for a general state with N ≥ 4. For N > 0, the rotational levels are
split into two spin-rotation components, observable in a spectrum as the fine structure (fs), corresponding
to the two possible values of J : J = N−1/2 and J = N+1/2. For N = 0, only one spin-rotation component
exists and no fs splitting occurs. The spin-rotation components are further split by the interaction with the
nuclear spin giving rise to hyperfine-structure (hfs) levels which are labelled by the quantum number F .
Because the hfs Hamiltonian is not diagonal in the Hund’s case (bβJ

) basis, each hfs state exhibits a small
admixture of the state belonging to the other of the two spin-rotation components with the same value
for F . This effect is indicated by the dashed lines connecting these levels. No mixing occurs for the state
F = 9/2, N = 2 as well as for the states with F = N − 5/2 and F = N + 5/2 for N ≥ 4 as they exist only
for one of the two spin-rotation components of the respective rotational state.
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Table 3.1. Vibrational term values, rotational and centrifugal constants for the X2Σ+
g state of 14N+

2 .

v ∆G(v) Bv Dv × 105

0 0 1.922316(5) 0.5919(1)
1 2174.746(1) 1.903380(5) 0.5958(1)
2 4316.977(1) 1.884265(5) 0.5996(1)
3 6426.445(2) 1.864985(5) 0.6039(1)
All values in units of cm−1 and taken from [93].
Values in parentheses correspond to one-standard-deviation (1σ) uncer-
tainties and apply to the last digits (converted from the 2σ uncertainties
given in [93] and rounded to the original number of significant digits).

(bβJ )-basis and exhibits the matrix elements (see Appendix B in [42]),

〈N ′S′J ′I ′F ′M ′F |Hrot|NSJIFMF 〉 = δNN ′δSS′δJJ ′δII′δFF ′δMFM
′
F

[BvN(N + 1)−Dv[N(N + 1)]2].
(3.4)

One of the most recent measurements of the rotational and centrifugal distortion constant for N+
2 is

the one by Michaud et al. [93]. Their results for the X2Σ+
g state have been compiled in Tab. 3.1.

The fine structure in the spectrum of N+
2 is described by the coupling of the electronic spin Ŝ with

the rotation of the molecule N̂,
Ĥ fs = γvN̂ · Ŝ, (3.5)

with γv the (effective)4 spin-rotation coupling constant for a particular vibrational quantum number
v which is given in Tab. 3.2 for v = 0 and v = 1. The fine-structure Hamiltonian is also diagonal in
the chosen basis with the matrix elements (see Appendix B in [42]),5

〈N ′S′J ′I ′F ′M ′F |Ĥ fs|NSJIFMF 〉 = δNN ′δSS′δJJ ′δII′δFF ′δMFM
′
F

γv
2

[J(J + 1)−N(N + 1)− S(S + 1)].
(3.6)

In molecular spectroscopy, the rotational and fine-structure terms of the Hamiltonian are sometimes
merged into a spin-rotational Hamiltonian with the eigenvalues [97],

F1(N) = BvN(N + 1)−Dv[N(N + 1)]2 + 1/2γvN, (3.7a)

F2(N) = BvN(N + 1)−Dv[N(N + 1)]2 − 1/2γv(N + 1), (3.7b)

for the two spin-rotation components F1 corresponding to J = N + 1/2 and F2 for J = N − 1/2. (The
symbols F1 and F2 are not to be confused with the angular momentum quantum number F and are
not related to the latter.)

The hyperfine-structure Hamiltonian exhibits several contributions and may be written as [96],

Ĥhfs = ĤbF + Ĥt + ĤeqQ + ĤcI , (3.8)

with HbF describing the Fermi-contact interaction, Ht the dipolar hyperfine interaction, HeqQ the
quadrupolar hyperfine interaction and HcI the magnetic nuclear spin-rotation interaction. The latter

4Physically, the effective spin-rotation constant mainly incorporates second-order spin-orbit and rotation-electronic
couplings to nearby 2Π states [101, 96].

5The spin-rotation constant shows itself a slight dependence on N . In [96], γv is thus replaced by a sum consisting of
a constant part and a part dependent on N : γv → γv + γNN(N + 1), where γN is an additional spectroscopic constant.
Because of the low value of |γN| (≈ 400 Hz or 1.4 ppm of γv for v = 1), this term may be neglected for the values of N
considered and the level of accuracy aimed at here.
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Table 3.2. Fine- and hyperfine-structure coupling constants for the X2Σ+
g state of 14N+

2 .

Constant Value for v = 1 [MHz]a Value for v = 0 [MHz]b

γv 276.92253(13) 280.25(45)
bF,v 100.6040(15) 102.4(1.1)
tv 28.1946(13) 23.3(1.0)
eqQv 0.7079(60) –
Values in parentheses represent 1σ-uncertainties and apply to the last digits.
a from [96]
b from [102]

is neglected here as the corresponding coupling constant of ≈ 11 kHz is far below our experimental
precision (see Ch. 4). The coupling constants bF,v, tv and eqQv appearing in ĤbF , Ĥt and ĤeqQ,
respectively, are given in Tab. 3.2 for the 14N+

2 ion in the vibrational ground state and the first
vibrational excited state of the electronic X2Σ+

g state.

In the basis introduced above, the matrix elements of the Fermi-contact Hamiltonian are given by
[96]:

〈N ′S′J ′I ′F ′M ′F |ĤbF |NSJIFMF 〉

= bF,vδN ′NδS′SδI′IδF ′F δM ′FMF
(−1)F+I+J ′+J+N+S+1

√
I(I + 1)(2I + 1)√

S(S + 1)(2S + 1)(2J + 1)(2J ′ + 1)

{
I J ′ F

J I 1

}{
S J ′ N

J S 1

}
.

(3.9)

Here, the two-row expressions in curly brackets are Wigner 6j-symbols [61, 76, 77, 62]. The Fermi-
contact Hamiltonian is not diagonal in this basis but rather mixes states differing in their J quantum
numbers but identical in the other quantum numbers.

The matrix elements of the dipolar hyperfine Hamiltonian are [96]:6

〈N ′S′J ′I ′F ′M ′F |Ĥt|NSJIFMF 〉

= tvδS′SδI′IδF ′F δM ′FMF
(−1)J+I+F+N ′+1

√
30I(I + 1)(2I + 1)√

S(S + 1)(2S + 1)(2J + 1)(2J ′ + 1)(2N + 1)(2N ′ + 1){
I J ′ F

J I 1

}
N ′ N 2
S S 1
J ′ J 1


(
N ′ 2 N

0 0 0

)
,

(3.10)

where the three-row expressions in curly brackets are Wigner 9j-symbols [61, 76, 77, 62]. This Hamil-
tonian, too, is not diagonal in the chosen basis and mixes states with different N and J quantum
numbers.

Finally, the Hamiltonian describing the electric-quadrupole hyperfine interaction is given by the matrix

6Like γv, also tv shows a slight dependence on N . Therefore, an additional N -dependent term is incorporated in tv in
[96], i.e., tv → tv + tNN(N + 1). As the value of tN, too, is very small (≈ 74 Hz or 2.6 ppm of tv for v = 1), it is neglected
here as well.
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elements [96]:

〈N ′S′J ′I ′F ′M ′F |ĤeqQ|NSJIFMF 〉

=
eqQv

2
δS′SδF ′F δM ′FMF

(−1)I + (−1)I
′

2

√
(2I + 1)(2I ′ + 1)(2J + 1)(2J ′ + 1)

√
(2N + 1)(2N ′ + 1)(−1)F+2J+I′(−1)2I1+S+2N ′

{
I ′ 2 I

J F J ′

}{
I1 2 I1

I I1 I ′

}
{
N ′ 2 N

J S J ′

}(
N ′ 2 N

0 0 0

)(
I1 2 I1

−I1 0 I1

)−1

,

(3.11)

where I1 = I14N = 1. This Hamiltonian shows off-diagonal elements with regard to the N , J and I

quantum numbers.

Concluding, we see that the rotation and the fine-structure Hamiltonian are diagonal within the
|NSJIFMF 〉 basis, but that the hyperfine-structure Hamiltonian contains off-diagonal elements that
mix states with different N , J and I quantum numbers.

Therefore, the Hamiltonian needs to be diagonalized to obtain term values and frequencies of spectro-
scopic transitions. Mixing of different rotational states (i.e., matrix elements off-diagonal in N) was
not considered here, because interactions between them were found to be negligible in [96], as were
matrix elements off-diagonal in the nuclear spin I. For the rotational ground state (N = 0), the hfs
Hamiltonian then only shows the Fermi-contact term that is diagonal in the chosen basis, because only
J = N + 1/2 is possible for N = 0. For rotational excited states (N > 0), the Hamiltonian is block
diagonal with each value of the total angular momentum F exhibiting contributions of either value of
J : J = N + 1/2 and J = N − 1/2. Diagonalization within the Hilbert subspace of a certain rotational
state N may then be achieved analytically with a computer algebra package (Wolfram Mathematica
8.0, Wolfram Research, Inc., Champaign, IL, USA).

In terms of Fig. 3.1, mixing of the two possible values of J for a given N means that each state in the
set belonging to J = N +S is mixed with the corresponding state of the set J = N −S with the same
value of F , if such a state exists, as indicated by the dashed lines in Fig. 3.1. These mixed states are
expressed as linear combinations of Hund’s case (bβJ ) basis states. The state lying second highest in
energy for N = 2, e.g., is expressed in Hund’s case (bβJ ) basis as

|φexample〉 = 0.9837
∣∣N = 2, S = 1

2 , J = 5
2 , I = 2, F = 7

2

〉
+0.1800

∣∣N = 2, S = 1
2 , J = 3

2 , I = 2, F = 7
2

〉
. (3.12)

Obviously, when taking this mixing into account, J is no more a good quantum number. However,
as seen from the expansion above, one of the two values of J dominates in this linear combination.
Therefore, J may still be used as a near “quantum number” [67] and may serve as a label to distinguish
the two states. For this near quantum number the symbol J̃ is used here and the eigenstates of the
Hamiltonian are written as |NSJ̃IFMF 〉. The above-mentioned state is thus written as

|φexample〉 = |N = 2, S = 1
2 , J̃ = 5

2 , I = 2, F = 7
2〉 . (3.13)

In general, the expansion of the eigenstates of the hfs Hamiltonian in the Hund’s case (bβJ ) basis may
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Table 3.3. Expansion coefficients for the eigenstates of the hfs Hamiltonian of 14N+
2 (v = 1, N = 2) in a

Hund’s case (bβJ
) basis.

State Coefficients

J̃ F c eJ,J=N−S,F c eJ=N+S,J,F

5/2 9/2 0.0000 1.0000
3/2 1/2 -0.9946 0.1033
5/2 1/2 0.1033 0.9946
3/2 7/2 -0.9837 0.1800
5/2 7/2 0.1800 0.9837
3/2 3/2 -0.9846 0.1748
5/2 3/2 0.1748 0.9846
3/2 5/2 -0.9793 0.2024
5/2 5/2 0.2024 0.9793

be written as ∣∣∣NSJ̃IFMF

〉
=

N+S∑
J=|N−S|

c eJJF |NSJIFMF 〉 . (3.14)

Here, c eJJF are real expansion coefficients, normalized such that
∑N+S

J=|N−S| c
2eJJF = 1. They are given

for all hyperfine states of 14N+
2 with N = 2 and v = 1 in Tab. 3.3 as obtained by the diagonalization of

the Hamiltonian with Wolfram Mathematica using the fine- and hyperfine-structure coupling constants
from Tab. 3.2. States with a value for F , which does only appear for one of the two values of J , do
not mix. For N = 2, this applies only for the F = 9/2 state, for higher N , this is true for the states
with the maximal (minimal) F for J = N + S (J = N − S).

3.4 Fine- and hyperfine-structure effects in electric-quadrupole

rotation-vibration transitions

As shown in the preceding section, electronic and nuclear spin play an important role in the 14N+
2

ion via the fine- and hyperfine-structure Hamiltonian and need to be considered for high-precision
spectroscopic experiments. Therefore, the theory of electric-quadrupole rotation-vibration transitions
from the previous chapter is extended here to include effects of electronic and nuclear spin. At the
same time, our treatment is extended to cover electronic orbital angular momentum appearing in
non-Σ states. We will first consider the approximation of completely separable quantum states and
subsequently regard spin-rotation coupling (fine structure) and coupling of the electronic and rotational
angular momenta to the nuclear spin (hyperfine structure). Fine- and hyperfine-structure effects will
be discussed in a Hund’s case (b) and (bβJ ) angular momentum coupling scheme, respectively. Finally,
the influence of the mixing of the Hund’s case (bβJ ) states by the hfs Hamiltonian on the line strength
is studied.

3.4.1 Electric-quadrupole rotation-vibration transitions in the approximation of

completely separable quantum states

In the approximation of completely separable quantum states, a molecular state is regarded as a tensor
product of an electronic state |nΛ〉, a vibrational state |v〉, a rotational state |NΛMN 〉, as well as an
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electronic |SMS〉 and nuclear |IMI〉 spin state. Here, n is a label for the electronic quantum state
of the molecule, v stands for the vibrational quantum number and Λ denotes the quantum number
of the projection of the electronic orbital angular momentum on the internuclear axis. The quantum
number N describes the magnitude of the total molecular angular momentum N̂ excluding electronic
and nuclear spin and MN the corresponding projection on the space-fixed z-axis. S and I are the
quantum numbers for the magnitudes of the electronic and nuclear spin, respectively, and MS and MI

their projections on the space-fixed z-axis.

Denoting the quantum numbers for the upper and lower state as in the previous chapter by ′ and ′′,
respectively, the upper and lower quantum states are represented by,

|nΛ〉 |v′〉 |N ′ΛM ′N 〉 |S′M ′S〉 |I ′M ′I〉 = |nΛ, v′, N ′ΛM ′N , S
′M ′S , IM

′
I〉 , (3.15a)

|nΛ〉 |v′′〉 |N ′′ΛM ′′N 〉 |S′′M ′′S〉 |I ′′M ′′I 〉 = |nΛ, v′′, N ′′ΛM ′′N , S
′′M ′′S , I

′′M ′′I 〉 , (3.15b)

where the tensor product states have been written as single kets for brevity. As we are regarding
rotation-vibration transitions, the electronic quantum numbers n and Λ are identical in the upper and
lower state.

The line strength is calculated as before by the squared absolute value of the electric-quadrupole
operator summed over all spherical tensor components and all degenerate states contributing to the
upper and lower level, i.e.,7

S
(sep.)
nΛ
v′N ′S′I′
v′′N ′′S′′I′′

=
∑

M ′I ,M
′′
I

∑
M ′S ,M

′′
S

∑
M ′N ,M

′′
N

2∑
p=−2∣∣∣〈nΛ, v′, N ′ΛM ′N , S
′M ′S , I

′M ′I

∣∣∣T2
p

[
Q̂(s)

] ∣∣∣nΛ, v′′, N ′′ΛM ′′N , S
′′M ′′S , I

′′M ′′I

〉∣∣∣2 . (3.16)

Here, the sums over the projection quantum numbers include all possible values, i.e. M ′N = −N ′,−N ′+
1, ...,+N ′ and likewise for M ′′N , M ′S , M ′′S , M ′I and M ′′I . As indicated in the above equation, we will
first calculate the line strength for two particular nuclear spin quantum numbers I ′ and I ′′ and later
sum over all contributions of the several possible nuclear spin values allowed for particular rotational
levels by the Pauli principle.

Since the electric-quadrupole operator does not act on the electronic and nuclear spin states, they
may be separated from the transition matrix element, yielding:

〈
nΛ, v′, N ′ΛM ′N , S

′M ′S , IM
′
I

∣∣∣T2
p

[
Q̂(s)

] ∣∣∣nΛ, v′′, N ′′ΛM ′′N , S
′′M ′′S , I

′′M ′′I

〉
=
〈
I ′M ′I

∣∣ I ′′M ′′I 〉 〈S′M ′S ∣∣S′′M ′′S〉 〈nΛ, v′, N ′ΛM ′N
∣∣∣T2

p

[
Q̂(s)

] ∣∣∣nΛ, v′′, N ′′ΛM ′′N
〉
. (3.17)

Assuming orthonormal spin states, we have 〈I ′M ′I | I ′′M ′′I 〉 = δI′I′′δM ′IM
′′
I

and 〈S′M ′S |S′′M ′′S〉 =
δS′S′′δM ′SM

′′
S

.

In the same way as in the last chapter, the electric-quadrupole operator in the space-fixed frame is

7Following usual conventions, a capital letter S is used as a symbol for both, the total electronic spin as well as the
line strength. Confusion is avoided by the different sub- and superscripts.
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expressed in terms of the molecule-fixed frame by a Wigner rotation matrix:

T2
p

[
Q̂(s)

]
=

2∑
q=−2

[
D̂(2)
pq

]∗
T2
q

[
Q̂(m)

]
. (3.18)

As we are using bra-ket notation and abstract operators here, the Euler angles are not written and
rather appear only when evaluating this operator for particular quantum states. The matrix element of
the abstract D̂kpq operator is then given by the concrete Wigner rotation matrix used in the preceding
chapter according to,

〈φ1θ1χ1|D̂kpq|φ2θ2χ2〉 = δ(φ1 − φ2)δ(θ1 − θ2)δ(χ1 − χ2)D (k)
pq (φ1, θ1, χ1), (3.19)

where δ is the Dirac delta distribution.

We thus get for the rovibronic transition matrix element:

〈
nΛ, v′, N ′ΛM ′N

∣∣∣T2
p

[
Q̂(s)

] ∣∣∣nΛ, v′′, N ′′ΛM ′′N
〉

=
2∑

q=−2

〈
nΛ, v′, N ′ΛM ′N

∣∣∣ [D̂(2)
pq

]∗
T2
q

[
Q̂(m)

] ∣∣∣nΛ, v′′, N ′′ΛM ′′N
〉
. (3.20)

As the Wigner rotation matrix depends only on the Euler angles and since the angular dependence of
the molecular state is described by the rotational wavefunction, whereas the molecule-fixed quadrupole
operator involves only the vibronic coordinates that appear only in the vibronic function, the transition
matrix element may be factorized as follows [67, 60]:

〈
nΛ, v′, N ′ΛM ′N

∣∣∣T2
p

[
Q̂(s)

] ∣∣∣nΛ, v′′, N ′′ΛM ′′N
〉

=
2∑

q=−2

〈
nΛ, v′

∣∣∣T2
q

[
Q̂(m)

] ∣∣∣nΛ, v′′
〉〈

N ′ΛM ′N
∣∣∣ [D̂(2)

pq

]∗ ∣∣∣N ′′ΛM ′′N〉 . (3.21)

To calculate the angular matrix element, we notice that the angular functions are themselves repre-
sented by Wigner rotation matrices, i.e. [60],

〈φ θ χ|N ′′ΛM ′′N 〉 =

√
2N ′′ + 1

8π2

[
D

(N ′′)
M ′′NΛ

(φ, θ, χ)
]∗
, (3.22a)

〈N ′ΛM ′N |φ θ χ〉 =

√
2N ′ + 1

8π2
D

(N ′)
M ′NΛ

(φ, θ, χ). (3.22b)

Hence, the angular matrix element is a product of three Wigner rotation matrices integrated over the
Euler angles. Integration is readily achieved when exploiting the properties of the Wigner matrices
[62]:〈

N ′ΛM ′N
∣∣∣ [D̂(2)

pq

]∗ ∣∣∣N ′′ΛM ′′N〉
=
√

2N ′′ + 1
√

2N ′ + 1
8π2

∫ 2π

0

∫ 2π

0

∫ π

0
D

(N ′)
M ′NΛ

(φ, θ, χ)
[
D (2)
pq (φ, θ, χ)D (N ′′)

M ′′NΛ
(φ, θ, χ)

]∗
sin θdθdφdχ

=
√

2N ′′ + 1
√

2N ′ + 1(−1)M
′
N−Λ

(
N ′ 2 N ′′

−M ′N p M ′′N

)(
N ′ 2 N ′′

−Λ q Λ

)
.

(3.23)
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Because of the selection rule −Λ + q + Λ = 0 for the second Wigner 3j-symbol, the above expression
vanishes for all values of q but q = 0. Therefore, only the term with q = 0 contributes to the sum in
equation (3.20). The transition matrix element appearing in (3.17) is thus:〈

nΛ, v′, N ′ΛM ′N , S
′M ′S , IM

′
I

∣∣∣T2
p

[
Q̂(s)

] ∣∣∣nΛ, v′′, N ′′ΛM ′′N , S
′′M ′′S , I

′′M ′′I

〉
(3.24)

= δI′I′′δM ′IM
′′
I
δS′S′′δM ′SM

′′
S

√
2N ′′ + 1

√
2N ′ + 1(−1)M

′
N−Λ(

N ′ 2 N ′′

−M ′N p M ′′N

)(
N ′ 2 N ′′

−Λ 0 Λ

)〈
nΛ, v′

∣∣∣T2
0

[
Q̂(m)

] ∣∣∣nΛ, v′′
〉
.

(3.25)

Substituting this result into (3.16), we obtain for the line strength:

S
(sep.)
nΛ
v′N ′S′I′
v′′N ′′S′′I′′

= δS′S′′δI′I′′
∑

M ′I ,M
′′
I

δM ′IM
′′
I

∑
M ′S ,M

′′
S

δM ′SM
′′
S

(2N ′ + 1)(2N ′′ + 1)

(
N ′ 2 N ′′

−Λ 0 Λ

)2 ∣∣∣〈nΛ, v′
∣∣∣T2

0

[
Q̂(m)

] ∣∣∣nΛ, v′′
〉∣∣∣2

∑
M ′N ,M

′′
N

2∑
p=−2

(
N ′ 2 N ′′

−M ′N p M ′′N

)2

. (3.26)

The sum over M ′′N , M ′N and p is calculated using the orthogonality properties of the 3j-symbols (see,
e.g., [61]), yielding: ∑

M ′N ,M
′′
N

2∑
p=−2

(
N ′ 2 N ′′

−M ′N p M ′′N

)2

= 1. (3.27)

The sum over the total electron spin projection quantum numbers accounts for,∑
M ′S ,M

′′
S

δM ′SM
′′
S

= 2S′′ + 1, (3.28)

and similarly the one over the projections of the nuclear spins is,∑
M ′I ,M

′′
I

δM ′IM
′′
I

= 2I ′′ + 1. (3.29)

Thus, the contribution to the line strength of an electric-quadrupole rotation-vibration transition
between two states of particular nuclear spin quantum numbers I ′ and I ′′ is:

S
(sep.)
nΛ
v′N ′S′I′
v′′N ′′S′′I′′

=δS′S′′δI′I′′(2I ′′ + 1)(2S′′ + 1)(2N ′ + 1)(2N ′′ + 1)(
N ′ 2 N ′′

−Λ 0 Λ

)2 ∣∣∣〈nΛ, v′
∣∣∣T2

0

[
Q̂(m)

] ∣∣∣nΛ, v′′
〉∣∣∣2 . (3.30)

As expressed by the two Kronecker delta symbols, electronic as well as nuclear spin does not change
in such a transition and the two selection rules

∆S = 0, (3.31)

∆I = 0, (3.32)
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for ∆S = S′ − S′′ and ∆I = I ′ − I ′′ apply.

The selection rule for the change in the rotational quantum number ∆N = N ′ −N ′′ is less restrictive
for non-Σ states than the one deduced in Ch. 2 and reads in general,

∆N = 0,±1,±2, (3.33)

with ∆N = ±1 forbidden in Σ states as well as ∆N = 0 forbidden for N ′′ = 0.

The vibronic transition matrix element in equation (3.30) may be separated into a vibrational and an
electronic part. The integration over the electronic coordinates may be formally carried out. Because
the electronic quantum numbers do not change in a rotation-vibration transition, the result of this
integration is—as discussed in the preceding chapter—the electric-quadrupole moment of the molecule
in the electronic quantum state considered, i.e.,

〈
nΛ, v′

∣∣∣T2
0

[
Q̂(m)

] ∣∣∣nΛ, v′′
〉

=
〈
v′
∣∣∣T2

0

[
Q̂

(m)
nΛ

] ∣∣∣ v′′〉 =

√
3
2

〈
v′
∣∣∣ Q̂(m)

nΛ,zz

∣∣∣ v′′〉 . (3.34)

Here, Q̂
(m)
nΛ stands for the electric-quadrupole moment of the molecule in the electronic state |n,Λ〉

understood as an operator acting on the vibrational state (i.e., the internuclear distance R appearing
in the quadrupole operator is replaced by the corresponding quantum mechanical operator R̂ acting
on the vibrational state |v′′〉). Within the double-harmonic approximation, the vibrational transition
matrix element may be calculated according to equation (2.237) of the previous chapter.

When the hyperfine structure is not resolved in a spectrum, the line strength is the sum over all
hfs components. In other words, transitions differing only in the nuclear spin quantum number, but
identical in the others (such as, e.g., N ′′ = 0, I ′′ = 0 → N ′ = 2, I ′ = 0 vs. N ′′ = 0, I ′′ = 2 → N ′′ =
2, I ′ = 2) are not resolved and observed as a single spectral line. The observed line strength is thus
the sum of the contributions of all these transitions:

S
(sep.)
nΛ
v′N ′S′
v′′N ′′S′′

=
∑
I′,I′′

S
(sep.)
nΛ
v′N ′S′I′
v′′N ′′S′′I′′

, (3.35)

where the sums over the nuclear spin quantum numbers I ′ and I ′′ include all values for I ′ (I ′′) that
are allowed by the Pauli principle for a given N ′ (N ′′), (see [29], pp. 130ff. and [66]). Because of the
Kronecker delta δI′I′′ appearing in (3.30), the double sum turns into a single one, which is commonly
absorbed together with the factor (2I ′′+1) from (3.29) into a nuclear spin statistical weight factor gns

[67]. For 14N+
2 in the electronic ground state X2Σ+

g , we have I = 0 or 2 for even values of N and I = 1
for odd ones. Therefore, the nuclear statistical weight factor is gns(N) = (2× 0 + 1) + (2× 2 + 1) = 6
for even N and gns(N) = (2× 1 + 1) = 3 for odd N .

In conclusion, the line strength of an electric-quadrupole rotation-vibration line in the approximation
of completely separable quantum states is:

S
(sep.)
nΛ
v′N ′S′
v′′N ′′S′′

= δS′S′′gns(2N ′ + 1)(2N ′′ + 1)(2S′′ + 1)

(
N ′ 2 N ′′

−Λ 0 Λ

)2 ∣∣∣〈v′ ∣∣∣T2
0

[
Q̂

(m)
n,Λ

] ∣∣∣ v′′〉∣∣∣2 . (3.36)

In order to verify this result, the line strength for transitions in the particular case of vanishing
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electronic and nuclear spin has been calculated and compared with the values obtained from the
expressions derived by Farley and Cattolica [113] for the Hund’s case (a) coupling scheme (which
corresponds to Hund’s case (b) for vanishing electron spin). Using the expressions from Tab. 2 in [113]
for ∆P = 0 (corresponding to ∆Λ = 0 in our notation), perfect agreement was found for both, Σ and
non-Σ states.

3.4.2 Fine-structure effects in electric-quadrupole rotation-vibration transitions

As outlined in Sec. 3.3, the rotation of a molecule may couple to its spin. If so, the tensor product states
|NΛMN 〉 |SMS〉 used in the preceding section are no more eigenstates of the molecular Hamiltonian.
The eigenstates are rather the states |NΛSJMJ〉 belonging to the coupled angular momentum Ĵ =
N̂ + Ŝ. They may be expressed as linear combinations of the previously used tensor product states
with Clebsch-Gordan coefficients or 3j-symbols according to,

|NΛSJMJ〉 =
N∑

MN=−N

S∑
MS=−S

(−1)N−S+MJ
√

2J + 1

(
N S J

MN MS −MJ

)
|NΛMN 〉 |SMS〉 . (3.37)

Whereas the quantum numbers N and S, describing the magnitude of the rotational angular momen-
tum and the spin, respectively, are still good quantum numbers, the corresponding projection quantum
numbers MN and MS are not well-defined, because the coupled states are linear combinations of states
with different MN and MS quantum numbers.

The upper and lower states for a rotation-vibration transition considering spin-rotation interaction
are thus,

|nΛ〉 |v′〉 |N ′ΛS′J ′M ′J〉 |I ′M ′I〉 = |nΛ, v′, N ′ΛS′J ′M ′J , I
′M ′I〉 , (3.38a)

|nΛ〉 |v′′〉 |N ′′ΛS′′J ′′M ′′J 〉 |I ′′M ′′I 〉 = |nΛ, v′′, N ′′ΛS′′J ′′M ′′J , I
′′M ′′I 〉 . (3.38b)

Accordingly, the line strength for an electric-quadrupole rotation-vibration line is calculated as,

S
(fs)
nΛ
v′N ′S′J ′I′
v′′N ′′S′′J ′′I′′

=
∑

M ′I ,M
′′
I

∑
M ′J ,M

′′
J

2∑
p=−2∣∣∣〈nΛ, v′, N ′ΛS′J ′M ′J , I

′M ′I

∣∣∣T2
p

[
Q̂(s)

] ∣∣∣nΛ, v′′, N ′′ΛS′′J ′′M ′′J , I
′′M ′′I

〉∣∣∣2 . (3.39)

Like in the previous section, we will first calculate the line strength for specific nuclear spin values I ′

and I ′′ and will later include all possible nuclear spin components allowed by the Pauli principle for
particular rotational states.

As in the previous section, the electric-quadrupole operator does not act on the nuclear spin states
such that the transition matrix element may be factorized:

〈
nΛ, v′, N ′ΛS′J ′M ′J , I

′M ′I

∣∣∣T2
p

[
Q̂(s)

] ∣∣∣nΛ, v′′, N ′′ΛS′′J ′′M ′′J , I
′′M ′′I

〉
=
〈
I ′M ′I

∣∣ I ′′M ′′I 〉 〈nΛ, v′, N ′ΛS′J ′M ′J
∣∣∣T2

p

[
Q̂(s)

] ∣∣∣nΛ, v′′, N ′′ΛS′′J ′′M ′′J
〉
, (3.40)

with 〈I ′M ′I | I ′′M ′′I 〉 = δI′I′′δM ′IM
′′
I

.



58 3 Theory of electric-quadrupole rotation-vibration transitions in the molecular nitrogen cation

Expressing the electric-quadrupole operator in the molecule-fixed frame and exploiting that the Wigner
rotation matrix involves only the Euler angles, whereas the molecule-fixed quadrupole operator acts
only on the vibronic coordinates, the transition matrix element on the right-hand side of the above
equation is: 〈

nΛ, v′, N ′ΛS′J ′M ′J
∣∣∣T2

p

[
Q̂(s)

] ∣∣∣nΛ, v′′, N ′′ΛS′′J ′′M ′′J
〉

=
2∑

q=−2

〈
nΛ, v′, N ′ΛS′J ′M ′J

∣∣∣ [D̂(2)
pq

]∗
T2
q

[
Q̂(m)

] ∣∣∣nΛ, v′′, N ′′ΛS′′J ′′M ′′J
〉

(3.41)

=
2∑

q=−2

〈
nΛ, v′

∣∣∣T2
q

[
Q̂(m)

] ∣∣∣nΛ, v′′
〉〈

N ′ΛS′J ′M ′J
∣∣∣ [D̂(2)

pq

]∗ ∣∣∣N ′′ΛS′′J ′′M ′′J〉 . (3.42)

The spin-rotational matrix element appearing in the last equation is evaluated with the Wigner-Eckart
theorem [61, 62, 76]. The matrix element is thus expressed as a product of a prefactor depending on
the three space-fixed projection quantum numbers (M ′J , M ′′J , p) and a “reduced” (double-bar) matrix
element independent of them:

〈
N ′ΛS′J ′M ′J

∣∣∣ [D̂(2)
pq

]∗ ∣∣∣N ′′ΛS′′J ′′M ′′J〉
= (−1)J

′−M ′J

(
J ′ 2 J ′′

−M ′J p M ′′J

)〈
N ′ΛS′J ′

∥∥∥ [D̂(2)
·q

]∗ ∥∥∥N ′′ΛS′′J ′′〉 . (3.43)

Here, we have adopted the notation from [60] with a dot in the subscript of the Wigner rotation
matrix indicating that this matrix element is reduced with respect to the space-fixed, but not to the
molecule-fixed coordinates.

As shown in (3.37), the spin-rotational states may be expressed in the tensor product basis of spin
and rotational states. The Wigner rotation matrix D̂(2)

pq acts only on the rotational part of this tensor
product states. We may thus employ the relation for reduced matrix elements of operators acting only
on one part of coupled angular momentum states (equation (5.72) in [61]) to factorize the reduced
matrix element:

〈
N ′ΛS′J ′

∥∥∥ [D̂(2)
·q

]∗ ∥∥∥N ′′ΛS′′J ′′〉
= δS′S′′(−1)N

′+S′+J ′′+2
√

2J ′ + 1
√

2J ′′ + 1

{
N ′ J ′ S′

J ′′ N ′′ 2

}〈
N ′Λ

∥∥∥ [D̂(2)
·q

]∗ ∥∥∥N ′′Λ〉 . (3.44)

In this way, spin quantum numbers have been eliminated from the reduced matrix element, leaving
only the rotational and electronic orbital angular momenta. The resultant reduced matrix element
may be calculated by comparing the value obtained from the integration of the three Wigner rotation
matrices from the previous section (equation (3.23)) with the corresponding expression given by the
Wigner-Eckart theorem. The result is:

〈
N ′Λ

∥∥∥ [D̂(2)
·q

]∗ ∥∥∥N ′′Λ〉 = (−1)N
′−Λ
√

2N ′ + 1
√

2N ′′ + 1

(
N ′ 2 N ′′

−Λ q Λ

)
. (3.45)

As in the preceding section, the expression above vanishes for all values of q but q = 0 and thus only
the term with q = 0 contributes to the sum in (3.42). Substituting equations (3.42), (3.43), (3.44) and
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(3.45) into (3.40), we get for the complete transition matrix element,

〈
nΛ, v′, N ′ΛS′J ′M ′J , I

′M ′I

∣∣∣T2
p

[
Q̂(s)

] ∣∣∣nΛ, v′′, N ′′ΛS′′J ′′M ′′J , I
′′M ′′I

〉
= δI′I′′δM ′IM

′′
I
δS′S′′(−1)S

′+J ′+J ′′−M ′J−Λ
√

2N ′ + 1
√

2N ′′ + 1
√

2J ′ + 1
√

2J ′′ + 1(
N ′ 2 N ′′

−Λ 0 Λ

)(
J ′ 2 J ′′

−M ′J p M ′′J

){
N ′ J ′ S′

J ′′ N ′′ 2

}〈
nΛ, v′

∣∣∣T2
0

[
Q̂(m)

] ∣∣∣nΛ, v′′
〉
. (3.46)

Taking the squared absolute value of this expression and evaluating the sums appearing in (3.39), we
obtain for the line strength for particular nuclear spin values I ′ and I ′′:

S
(fs)
nΛ
v′N ′S′J ′I′
v′′N ′′S′′J ′′I′′

= δS′S′′δI′I′′(2N ′ + 1)(2N ′′ + 1)(2J ′ + 1)(2J ′′ + 1)(2I ′′ + 1)(
N ′ 2 N ′′

−Λ 0 Λ

)2{
N ′ J ′ S′

J ′′ N ′′ 2

}2 ∣∣∣〈nΛ, v′
∣∣∣T2

0

[
Q̂(m)

] ∣∣∣nΛ, v′′
〉∣∣∣2 . (3.47)

Here, the orthogonality properties of the 3j-symbols have been used again, i.e.,

∑
M ′J ,M

′′
J

2∑
p=−2

(
J ′ 2 J ′′

−M ′J p M ′′J

)2

= 1. (3.48)

As seen from (3.47), the selection rules for ∆N , ∆S and ∆I are exactly as before, namely,

∆N = 0,±1,±2, (3.49)

∆S = 0, (3.50)

∆I = 0, (3.51)

with the aforementioned constraints on ∆N for Σ states and for transitions involving the rotational
ground state. The selection rule for the change in the total angular momentum excluding nuclear spin
∆J = J ′ − J ′′ is,

∆J = 0,±1,±2, (3.52)

and is thus in the case of Σ states less restrictive than the one for ∆N .

As in the last section, the observed line strength when only resolving the fine and not the hyperfine
structure is given as a sum over all possible values for the nuclear spins I ′ (I ′′) for certain values of N ′

(N ′′). Again, this sum of the terms depending on I ′′ in (3.47) is usually expressed as a nuclear spin
statistical weight factor gns such that the total line strength is:

S
(fs)
nΛ
v′N ′S′J ′
v′′N ′′S′′J ′′

=δS′S′′gns(2N ′ + 1)(2N ′′ + 1)(2J ′ + 1)(2J ′′ + 1)(
N ′ 2 N ′′

−Λ 0 Λ

)2{
N ′ J ′ S′

J ′′ N ′′ 2

}2 ∣∣∣〈nΛ, v′
∣∣∣T2

0

[
Q̂(m)

] ∣∣∣nΛ, v′′
〉∣∣∣2 . (3.53)

The vibronic matrix element appearing above may again be expressed as shown in equation (3.34) of
the previous section.

In order to verify this result, the particular case S′ = S′′ = 0 is considered. In this case, we have
J ′ = N ′ and J ′′ = N ′′. For quadrupole-allowed transitions, the squared Wigner 6j-symbol is then
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N′ = N″ + 2!

F2 (J″ = N″ – 1/2)!
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Figure 3.2. Scheme of electric-quadrupole rotation-vibration transitions in a 2Σ state with
spin-rotation interaction. The lines are labelled by O, Q and S according to ∆N = −2, 0,+2. Two
subscripts 1 or 2 are used to denote the spin-rotation component F1 and F2 in the upper (v′) and lower
(v′′) vibrational state.

equal to 1/[(2N ′′ + 1)(2N ′ + 1)] such that, when multiplied with the prefactor (2J ′′ + 1)(2J ′ + 1) =
(2N ′′ + 1)(2N ′ + 1), the result from the previous section is reproduced. For S′ = S′′ > 0, the same is
true, when the total line strength of all fine-structure lines belonging to a certain rotation-vibration
line is considered, i.e., when the above expression is summed over all J ′ and J ′′ values belonging to
certain values for N ′ and N ′′: using the orthonormality of the Wigner 6j-symbols (equation (4.11)
in [61]), it may be shown that the result from the last section is reproduced again. Hence, upon
resolving the fine structure in a spectrum, the line strength is distributed among the several fine-
structure transitions belonging to one rotational-vibrational line with the total line strength of that
line remaining constant.

To label the fine-structure-resolved lines, we use the notation S11(4), Q12(2), etc. Here, the number
given in parentheses is the lower-level rotational quantum number N ′′, the code letters O, P, Q, R
and S stand for ∆N = −2,−1, 0,+1 and +2, respectively, and the two subscripts 1 or 2 refer to the
fine-structure component F1 or F2 in the upper and lower state (with F1 corresponding to J = N +S

and F2 to J = N − S as mentioned earlier).

For a 2Σ state, there could be in principle twelve fine-structure transitions for a given N ′′ (with
N ′′ ≥ 3): with P and R lines being forbidden for Λ = 0, each of the three possible rotational transitions
O, Q and S could in principle be combined with any of the four possible subscripts for the fine-structure
components 11, 12, 21 and 22. From these twelve possibilities, the O21 and S12 lines are forbidden as
they imply |∆J | = 3. The allowed transitions are illustrated in Fig. 3.2. The spin-rotational factor
appearing in the expression for the line strength (known as “Hönl-London factor”) of these transitions
is given in Tab. 3.4. For Q12 and Q21 transitions, the line strength is equal due to the symmetry
properties of the Wigner 6j-symbol [77].

From dipole-allowed transitions, it is known [60] that the lines fulfilling the relation,

∆J = ∆N, (3.54)

i.e., transitions between states of the same fine-structure component (such as O11, S22, etc.), show
considerable higher intensities than those violating this condition. The former are known as “principal
lines”, the latter as “satellite lines”. Thus, the question arises, if this propensity rule holds for electric-
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Figure 3.3. Relative line strength of “principal” and “satellite” lines in fine-structure-resolved
electric-quadrupole spectra. (a) Infrared fundamental S(6) transitions due to the I = 0 nuclear spin
isomer in 14N+

2 : the principal lines S11(6) and S22(6), which fulfill the propensity rule ∆N = ∆J , are
intense, whereas the satellite line S21(6), which violates this rule, shows considerably reduced intensity. (b)
S(0) transitions in the same system: both, the S11(0) line, which satisfies ∆N = ∆J , as well as the S21(0)
line, which does not, show roughly comparable intensity, i.e., for N ′′ = 0 no clear propensity is observable.
(Intensities have been normalized to unity for the most intense peak in each spectrum. Line frequencies
are given relative to the pure rotational-vibrational term value and have been calculated as described in
Sec. 3.3 using the spin-rotation constants given in Tab. 3.2. Gaussian line shapes have been assumed for
the peaks with a full width at half maximum (FWHM) of 10 MHz.)
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Figure 3.4. Scaling of the line strength of fine-structure-resolved electric-quadrupole rotation-
vibration transitions as a function of the rotational quantum number. Relative line strength of
S11 (circles) vs. S21 (crosses) transitions within the X2Σ+

g state of ortho- (a) and para-N+
2 (b) as a function

of the lower-level rotational quantum number N ′′. In accordance with the propensity rule ∆N = ∆J , the
S11 transitions (“principal lines”) show considerably higher line strength than the S21 transitions (“satellite
lines”) for all but the lowest values of N ′′. For N ′′ = 0, however, no clear propensity is observed. (Values
have been normalized to unity for the lowest possible N ′′.)

quadrupole lines as well. In general it does, as illustrated in Fig. 3.3 (a) by the example of the fine-
structure transitions of the S(6) line due to the I = 0 nuclear spin isomer of 14N+

2 : the principal lines
S11(6), S22(6) that fulfill the rule (3.54) are intense, whereas the satellite line S21(6) that violates (3.54)
shows considerably reduced intensity. For low N ′′, however, also lines not fulfilling the propensity rule
(3.54) show significant intensity as illustrated with the S(0) line in the same system in Fig. 3.3 (b).
The transition between these two regimes is shown in Fig. 3.4.

Physically, the low line strength of transitions connecting the two spin-rotation components reflects
the spin flip they involve and are hindered by. With the electric field, which drives rotation-vibration
transitions, not coupling directly to the electron spin, this spin flip is only possible via coupling of the
electronic spin to the rotational angular momentum. Mathematically, this effect is represented by the
Wigner 6j-symbol expressing the recoupling of spin and rotational angular momentum.
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For example, in the case of the S11(N ′′) transitions the squared 6j-symbol is,{
N ′ J ′ S′

J ′′ N ′′ 2

}2

=

{
N ′′ + 2 N ′′ + 5/2 1/2
N ′′ + 1/2 N ′′ 2

}2

=
1

4N ′′2 + 14N ′′ + 10
, (3.55)

and thus exhibits a factor N ′′2 as a leading order in the denominator. The prefactor in (3.53) accounts
in that example for,

(2N ′ + 1)(2N ′′ + 1)(2J ′ + 1)(2J ′′ + 1) = N ′′4 + 9N ′′3 + 113
4 N ′′2 + 36N ′′ + 63

4 , (3.56)

and thus contains N ′′4 as the highest-order term in N ′′. Furthermore, the Wigner 3j-symbol appearing
in (3.53) is, (

N ′ 2 N ′′

0 0 0

)2

=
3(N ′′ + 1)(N ′′ + 2)

2(2N ′′ + 1)(2N ′′ + 3)(2N ′′ + 5)
, (3.57)

and thus scales asymptotically as 1/N ′′. The product of the terms (3.55), (3.56) and (3.57) therefore
scales as N ′′ and hence asymptotically shows the linear increase of the line strength noticeable in
Fig. 3.4.

For an S21(N ′′) transition, on the other hand, the Wigner 6j-symbol is,{
N ′ J ′ S′

J ′′ N ′′ 2

}2

=

{
N ′′ + 2 N ′′ + 3/2 1/2
N ′′ + 1/2 N ′′ 2

}2

=
1

4N ′′4 + 24N ′′3 + 49N ′′2 + 39N ′′ + 10
, (3.58)

and hence exhibits a factor N ′′4 as a leading-order term in the denominator. When multiplied with the
other N ′′-dependent terms in (3.53), this results in a scaling of the line strength according to 1/N ′′,
which for increasing N ′′ thus asymptotically approaches zero. As evident from Fig. 3.4, significant
deviations from this asymptotic behaviour occur only for N ′′ = 0, in which case the expressions (3.55)
and (3.58) are equal.

In a similar form, this effect is also observed for O and Q lines as can be seen from Tab. 3.4: the
line strengths of transitions within the same spin-rotation component (first and last row) scale as N ′′,
whereas the line strengths of those connecting these two components (second and third row) scale as
1/N ′′.

3.4.3 Hyperfine-structure effects in electric-quadrupole rotation-vibration transi-

tions

With the techniques developed in the last section, the line strength of an electric-quadrupole rotation-
vibration line with resolved hyperfine structure is now readily calculated. As outlined in Sec. 3.3,
the angular momentum related to the hyperfine structure is the total angular momentum including
nuclear spin F̂, which is formed by coupling the spin-rotational angular momentum Ĵ to the total
nuclear spin Î: F̂ = Î + Ĵ. The corresponding eigenstates |NΛSJIFMF 〉 are related to the previously
introduced ones by a Clebsch-Gordan expansion:

|NΛSJIFMF 〉 =
J∑

MJ=−J

I∑
MI=−I

(−1)J−I+MF
√

2F + 1

(
J I F

MJ MI −MF

)
|NΛSJMJ〉 |IMI〉 . (3.59)
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The upper and lower states for a rotation-vibration transition are thus given by,

|nΛ〉 |v′〉 |N ′ΛS′J ′I ′F ′M ′F 〉 = |nΛ, v′, N ′ΛS′J ′I ′F ′M ′F 〉 , (3.60a)

|nΛ〉 |v′′〉 |N ′′ΛS′′J ′′I ′′F ′′M ′′F 〉 = |nΛ, v′′, N ′′ΛS′′J ′′I ′′F ′′M ′′F 〉 . (3.60b)

The line strength for a hyperfine-structure-resolved electric-quadrupole rotation-vibration line is then
calculated as:

S
(hfs)
nΛ
v′N ′S′J ′I′F ′
v′′N ′′S′′J ′′I′′F ′′

=
∑

M ′F ,M
′′
F

2∑
p=−2

∣∣∣〈nΛ, v′, N ′ΛS′J ′I ′F ′M ′F
∣∣∣T2

p

[
Q̂(s)

] ∣∣∣nΛ, v′′, N ′′ΛS′′J ′′I ′′F ′′M ′′F
〉∣∣∣2 .
(3.61)

In contrast to the two previous sections, sums over different I ′ and I ′′ values are not needed here, as
the transitions belonging to them are all observed as separate lines in a hyperfine-structure-resolved
spectrum. Accordingly, a nuclear spin statistical weight factor gns will not appear either.

Expressing the electric-quadrupole operator in terms of molecule-fixed coordinates and separating
spin-rotational from vibronic terms yields:〈

nΛ, v′, N ′ΛS′J ′I ′F ′M ′F
∣∣∣T2

p

[
Q̂(s)

] ∣∣∣nΛ, v′′, N ′′ΛS′′J ′′I ′′F ′′M ′′F
〉

=
2∑

q=−2

〈
nΛ, v′

∣∣∣T2
q

[
Q̂(m)

] ∣∣∣nΛ, v′′
〉〈

N ′ΛS′J ′I ′F ′M ′F
∣∣∣ [D̂(2)

pq

]∗ ∣∣∣N ′′ΛS′′J ′′I ′′F ′′M ′′F〉 . (3.62)

The spin-rotational matrix element is again calculated by the Wigner-Eckart theorem yielding,

〈
N ′ΛS′J ′I ′F ′M ′F

∣∣∣ [D̂(2)
pq

]∗ ∣∣∣N ′′ΛS′′J ′′I ′′F ′′M ′′F〉
= (−1)F

′−M ′F

(
F ′ 2 F ′′

−M ′F p M ′′F

)〈
N ′ΛS′J ′I ′F ′

∥∥∥ [D̂(2)
·q

]∗ ∥∥∥N ′′ΛS′′J ′′I ′′F ′′〉 . (3.63)

As the Wigner rotation matrix elements do not act on the nuclear spin, the same relation (equa-
tion (5.72) in [61]) as used before for the electronic spin, may now be applied to eliminate the quantum
numbers related to the nuclear spin (I ′, I ′′ and F ′, F ′′) from the reduced matrix element:

〈
N ′ΛS′J ′I ′F ′

∥∥∥ [D̂(2)
·q

]∗ ∥∥∥N ′′ΛS′′J ′′I ′′F ′′〉
= δI′I′′(−1)J

′+I′+F ′′+2
√

2F ′ + 1
√

2F ′′ + 1

{
J ′ F ′ I ′

F ′′ J ′′ 2

}〈
N ′ΛS′J ′

∥∥∥ [D̂(2)
·q

]∗ ∥∥∥N ′′ΛS′′J ′′〉 . (3.64)

The resulting reduced matrix element is calculated exactly as shown in the previous section, i.e., by
applying the above mentioned relation once more but with S′, S′′, J ′, J ′′ playing the roles of I ′, I ′′,
F ′, F ′′,

〈
N ′ΛS′J ′

∥∥∥ [D̂(2)
·q

]∗ ∥∥∥N ′′ΛS′′J ′′〉
= δS′S′′(−1)N

′+S′+J ′′+2
√

2J ′ + 1
√

2J ′′ + 1

{
N ′ J ′ S′

J ′′ N ′′ 2

}〈
N ′Λ

∥∥∥ [D̂(2)
·q

]∗ ∥∥∥N ′′Λ〉 , (3.65)
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and recalling the value of the corresponding rotational reduced matrix element:

〈
N ′Λ

∥∥∥ [D̂(2)
·q

]∗ ∥∥∥N ′′Λ〉 = (−1)N
′−Λ
√

2N ′ + 1
√

2N ′′ + 1

(
N ′ 2 N ′′

−Λ q Λ

)
. (3.66)

As before, only the term with q = 0 contributes to the sum in (3.62) because of the Wigner 3j-symbol
in the above expression.

Substituting equations (3.63) to (3.66) into (3.62), we obtain for the transition matrix element of an
electric-quadrupole rotation-vibration transition,〈

nΛ, v′, N ′ΛS′J ′I ′F ′M ′F
∣∣∣T2

p

[
Q̂(s)

] ∣∣∣nΛ, v′′, N ′′ΛS′′J ′′I ′′F ′′M ′′F
〉

= δS′S′′δI′I′′(−1)S
′+I′+J ′+J ′′+F ′+F ′′−M ′F−Λ

√
2N ′ + 1

√
2N ′′ + 1

√
2J ′ + 1

√
2J ′′ + 1

√
2F ′ + 1

√
2F ′′ + 1

(
N ′ 2 N ′′

−Λ 0 Λ

)(
F ′ 2 F ′′

−M ′F p M ′′F

)
{
N ′ J ′ S′

J ′′ N ′′ 2

}{
J ′ F ′ I ′

F ′′ J ′′ 2

}〈
nΛ, v′

∣∣∣T2
0

[
Q̂(m)

] ∣∣∣nΛ, v′′
〉
.

(3.67)

The line strength for a hyperfine-structure-resolved electric-quadrupole rotation-vibration line is thus:

S
(hfs)
nΛ
v′N ′S′J ′I′F ′
v′′N ′′S′′J ′′I′′F ′′

= δS′S′′δI′I′′(2N ′ + 1)(2N ′′ + 1)(2J ′ + 1)(2J ′′ + 1)(2F ′ + 1)(2F ′′ + 1)(
N ′ 2 N ′′

−Λ 0 Λ

)2{
N ′ J ′ S′

J ′′ N ′′ 2

}2{
J ′ F ′ I ′

F ′′ J ′′ 2

}2

∣∣∣〈nΛ, v′
∣∣∣T2

0

[
Q̂(m)

] ∣∣∣nΛ, v′′
〉∣∣∣2 , (3.68)

where the orthogonality properties of the 3j-symbols,

∑
M ′F ,M

′′
F

2∑
p=−2

(
F ′ 2 F ′′

−M ′F p M ′′F

)2

= 1, (3.69)

have been used once more. Equally as in the two preceding sections, the vibronic matrix element
appearing in the expression for the line strength may be calculated with equation (3.34) and estimated
within the double-harmonic approximation by equation (2.237) from Ch. 2.

The selection rules for ∆N , ∆S, ∆J and ∆I are exactly as in the previous section. For ∆F = F ′−F ′′

the same selection rule as for ∆J applies, i.e.,

∆F = 0,±1,±2. (3.70)

For molecules with non-vanishing electronic and nuclear spin, quite a few different combinations of J ′,
J ′′ and F ′, F ′′ quantum numbers are obtained for a transition with particular N ′ and N ′′ quantum
numbers. For ortho-14N+

2 in the electronic ground state X2Σ+
g , e.g., we have S = 1/2 and I = 0 or

2. Thus, as discussed in Sec. 3.3, all rotational excited states (N > 0) are split into two spin-rotation
components, one with J = N + 1/2 and one with J = N − 1/2. For I = 2 and J ≥ 5/2, each of
them is further split into 5 hyperfine-structure states with values for F reaching from Fmin = J − 2
in unit steps upto Fmax = J + 2 (see Fig. 3.1). In total, there are therefore 2× 5 = 10 hfs levels in the
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upper and equally many in the lower rotational-vibrational state, resulting in 10×10 = 100 potentially
possible transitions. For a Q transition, 74 thereof are allowed by the selection rule |∆F | ≤ 2. For
O and S transitions, 48 out of the total of 100 transitions fulfill the ∆J and ∆F selection rules, the
others exhibit |∆J | > 2 or |∆F | > 2 and are thus forbidden. So, even with the restrictions imposed
by the selection rules, the number of possible hyperfine-structure lines is rather substantial and some
kind of ordering principle seems desirable.

For electric-dipole allowed transitions, the propensity rule,

∆N = ∆J = ∆F, (3.71)

is well established ([60], p. 21). Likewise as in the case of fine-structure-resolved spectra, lines satisfying
this rule are called “principal lines” and show significantly higher line strength than those violating
it, which are known as “satellite lines” [91, 101, 96, 102]. The question arises, if such a propensity rule
is also applicable for electric-quadrupole rotation-vibration lines. If so, it could substantially simplify
the interpretation of a hfs-resolved spectrum, as only 10 out of the 74 (48) lines allowed in a certain
Q (O, S) transition fulfill this rule.

Calculations of the line strengths given by equation (3.68) for particular values of N ′ and N ′′ show
that the propensity rule (3.71) is indeed applicable to electric-quadrupole transitions. In Fig. 3.5,
the line strength for different hyperfine-structure transitions of the infrared fundamental S(6) line in
ortho-14N+

2 is shown: Fig. 3.5 (a) shows an ordered chart of the line strength of the 28 most intense
lines belonging to the I = 2 nuclear spin isomer. The propensity towards lines obeying the rule (3.71)
is clearly visible. Furthermore, the lines group in categories with decreasing intensity, fulfilling at least
one of the equalities in (3.71). Fig. 3.5 (b) and (c) show simulated spectra of the S(6) line in the
same system. Here, too, the propensity is clearly visible. For low N ′′, however, no clear propensity
is observable as illustrated in Fig. 3.6 by the example of the S(0) infrared fundamental transition in
14N+

2 .

Physically, the propensity rule (3.71) may be understood on the same grounds as the fine-structure
propensity rule presented in the previous section: transitions not fulfilling (3.71) involve a flip of the
electronic and/or nuclear spin. With the electric field not directly coupling to these spins, spin flips
may only occur via the recoupling of the several angular momenta expressed by the Wigner 6j-symbols.
As a consequence, the relative intensities of transitions violating (3.71) are small.

3.4.4 Intensity alteration due to mixing of Hund’s case (bβJ) states

In the preceding section, the line strength of electric-quadrupole rotation-vibration transitions for pure
Hund’s case (bβJ ) angular momentum states has been calculated. For this result to be applicable, the
molecular Hamiltonian must commute with the angular momentum operators N̂, Ŝ, Ĵ, Î, F̂ and F̂z,
i.e., the Hamiltonian must be diagonal in the Hund’s case (bβJ ) basis. As shown in Sec. 3.3, this is not
true for the hyperfine-structure Hamiltonian of 14N+

2 . This Hamiltonian exhibits off-diagonal matrix
elements with respect to the N , J and I quantum numbers. Whereas the matrix elements off-diagonal
in the N and I quantum numbers may have been neglected at the level of accuracy appropriate for
the interpretation of our experiments (see Ch. 4), mixing of states with different J quantum numbers
needs to be considered. Each eigenstate of the hfs Hamiltonian in 14N+

2 is thus given according to
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Figure 3.5. Line strengths of hyperfine-structure-resolved electric-quadrupole rotation-
vibration transitions of the infrared fundamental S(6) line in ortho-14N+

2 . (a) Bar chart of
the normalized line strengths of the 28 most intense transitions belonging to the I = 2 nuclear spin isomer
in decreasing order (labelled as (J ′′, F ′′) → (J ′, F ′) below the chart). The 10 transitions in accordance
with the propensity rule ∆N = ∆J = ∆F (bars with bold edges) are most intense. They are followed by
transitions fulfilling at least one of the equalities in this propensity rule. The remaining 20 lines (not shown)
out of the total of 48 electric-quadrupole-allowed lines exhibit almost negligible line strength. (b) Simulated
spectrum of the S(6) line in ortho-14N+

2 as seen at lower resolution (FWHM: 10 MHz). The labels indicate
the positions of the lines belonging to the I = 0 nuclear spin isomer. The principal hfs lines belonging to
the I = 2 nuclear spin isomer lie close to the I = 0 lines. They are accompanied by satellite lines visible
as small humps next to them. (c) Detailed view showing the gray-marked area in (b) at higher resolution
(FWHM: 0.25 MHz). The different hyperfine-structure lines are resolved. The principal lines (∆F = 2)
show again considerably higher line strength than the satellite lines (∆F = 1). The peaks due to the I = 2
nuclear spin isomer are labelled by the corresponding F ′′ quantum numbers below the assignment bars.
The peak next to the one of the ∆F = 2, F ′′ = 15/2 transition is due to the J ′′ = 13/2 → J ′ = 17/2,
I = 0 transition. (The frequencies in (b) and (c) are given relative to the pure rotational-vibrational term
value and have been calculated as described in Sec. 3.3 using the molecular constants given in Tab. 3.2.
The intensities are normalized to unity for the most intense peaks. Gaussian line shapes are assumed.)
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Figure 3.6. Line strengths of hyperfine-structure-resolved electric-quadrupole rotation-
vibration transitions of the infrared fundamental S(0) line in ortho-14N+

2 . (a) Bar chart of the
normalized line strengths of all electric-quadrupole-allowed S(0) transitions (labelled as (J ′′, F ′′)→ (J ′, F ′)
below the chart). The two transitions fulfilling the propensity rule ∆N = ∆J = ∆F are marked with bold
edges. Despite one of these two transitions (J ′′ = 1/2, F ′′ = 5/2→ J ′ = 5/2, F ′ = 9/2) showing the highest
line strength among all of them, the other one (J ′′ = 1/2, F ′′ = 3/2 → J ′ = 5/2, F ′ = 7/2) does not
exhibit particularly high line strength and seven other transitions not satisfying this propensity rule show
higher or equal line strength. (b) Simulated spectrum of the S(0) line in ortho-14N+

2 : in contrast to the
spectrum of the S(6) line shown in Fig. 3.5, no clear propensity is recognizable and both, lines satisfying
the propensity rule (3.71) as well as those that do not, show considerable line strength. Peaks due to the
I = 2 nuclear spin isomer are labelled with the F ′′ and J ′ quantum numbers of the respective transitions
above and the F ′ quantum numbers below the assignment bars. The peaks near −400 MHz and +300 MHz
are due to the J ′′ = 1/2 → J ′ = 3/2 and the J ′′ = 1/2 → J ′ = 5/2 transitions of the I = 0 nuclear spin
isomer, respectively. (Line frequencies have been calculated as described in Sec. 3.3 using the molecular
constants given in Tab. 3.2 and are given relative to the pure rotational-vibrational term value. Intensities
are normalized to unity for the most intense peak. Gaussian line shapes are assumed for the peaks with a
FWHM of 10 MHz.)
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equation (3.14) as a linear combination of the two Hund’s case (bβJ ) basis states that correspond to
the two possible values of J for a given rotational quantum number N . The upper and lower states
for a rotation-vibration transition when taking into account the mixing of the Hund’s case (bβJ ) basis
states due to the hfs Hamiltonian are thus given as,

|nΛ, v′, N ′ΛS′J̃ ′I ′F ′M ′F 〉 =
N ′+S′∑

J ′=|N ′−S′|

c′eJ ′J ′F ′ |nΛ, v′, N ′ΛS′J ′I ′F ′M ′F 〉 , (3.72a)

|nΛ, v′′, N ′′ΛS′′J̃ ′′I ′′F ′′M ′′F 〉 =
N ′′+S′′∑

J ′′=|N ′′−S′′|

c′′eJ ′′J ′′F ′′ |nΛ, v′′, N ′′ΛS′′J ′′I ′′F ′′M ′′F 〉 , (3.72b)

with normalized expansion coefficients c′eJ ′J ′F ′ , c′′eJ ′′J ′′F ′′ ∈ R. The near quantum numbers J̃ ′ and J̃ ′′

are used to label such transitions.

The line strength of an electric-quadrupole transition between these states is calculated in a similar
way as in the preceding section. The upper and lower quantum states used so far in the transition
matrix element with well-defined J ′ and J ′′ quantum numbers are replaced by the expansions (3.72a)
and (3.72b). The terms depending on J ′ and J ′′ are thus weighted by the coefficients c′eJ ′J ′F ′ and
c′′eJ ′′J ′′F ′′ . The line strength obtained in this way is:

S
(mixed)
nΛ
v′N ′S′ eJ ′I′F ′
v′′N ′′S′′ eJ ′′I′′F ′′

= δS′S′′δI′I′′(2N ′ + 1)(2N ′′ + 1)(2F ′ + 1)(2F ′′ + 1)(
N ′ 2 N ′′

−Λ 0 Λ

)2 ∣∣∣〈nΛ, v′
∣∣∣T2

0

[
Q̂(m)

] ∣∣∣nΛ, v′′
〉∣∣∣2∣∣∣∣∣

N ′+S′∑
J ′=|N ′−S′|

N ′′+S′′∑
J ′′=|N ′′−S′′|

c′eJ ′J ′F ′c′′eJ ′′J ′′F ′′(−1)J
′+J ′′

√
2J ′ + 1

√
2J ′′ + 1

{
N ′ J ′ S′

J ′′ N ′′ 2

}{
J ′ F ′ I ′

F ′′ J ′′ 2

}∣∣∣∣∣
2

. (3.73)

For the particular case of S(0) transitions, only one value for J ′′ (namely J ′′ = S′′) is possible and no
mixing in the lower state occurs. Equation (3.73) may thus be simplified (for a Σ state) to:

S
(mixed)
nΛ=0
v′N ′S′ eJ ′I′F ′
v′′N ′′=0S′′J ′′=S′′I′′F ′′

= δS′S′′δI′I′′(2N ′ + 1)(2J ′′ + 1)(2F ′ + 1)(2F ′′ + 1)(
N ′ 2 0
0 0 0

)2 ∣∣∣〈n 0, v′
∣∣∣T2

0

[
Q̂(m)

] ∣∣∣n 0, v′′
〉∣∣∣2∣∣∣∣∣∣

N ′+S′∑
J ′=|N ′−S′|

c′eJ ′J ′F ′(−1)J
′√

2J ′ + 1

{
N ′ J ′ S′

J ′′ 0 2

}{
J ′ F ′ I ′

F ′′ J ′′ 2

}∣∣∣∣∣∣
2

. (3.74)

In order to verify this result, we derived the analogue of equation (3.74) for the electric-dipole, rotation-
vibration-electronic R(0) line (N ′′ = 0, J ′′ = 1/2 → N ′ = 1, J̃ ′ = 1 ± 1/2) of the X2Σ+

g , v
′′ = 0 →
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Figure 3.7. Effect of the mixing of the Hund’s case (bβJ
) basis states by the hfs Hamiltonian

on the line strength in an electric-quadrupole rotation-vibration spectrum. Simulated spectrum
of the electric-quadrupole infrared fundamental S(0) line in ortho-14N+

2 . The red, solid curve shows the
spectrum with intensities calculated from (3.74), i.e. with mixing of the Hund’s case (bβJ

) basis states
taken into account. For the blue, dashed curve, intensities have been calculated using equation (3.68) from
the previous section, i.e., mixing of basis states has been neglected. The mixing of the basis states results in a
significant redistribution of intensity among the lines. Peaks due to the I = 2 nuclear spin isomer are labelled
with the F ′′ and J̃ ′ quantum numbers of the respective transitions above and the F ′ quantum numbers
below the assignment bars. The peaks near −400 MHz and +300 MHz are due to the J ′′ = 1/2→ J ′ = 3/2
and the J ′′ = 1/2 → J ′ = 5/2 transitions of the I = 0 nuclear spin isomer, respectively. (Line frequencies
are given relative to the pure rotational-vibrational term value and have been calculated as described in
Sec. 3.3 using the molecular constants given in Tab. 3.2. Intensities are normalized to unity for the most
intense peak. Gaussian line shapes are assumed for the peaks with a FWHM of 10 MHz).

B2Σ+
u , v

′ = 1 band in 14N+
2 :

S
(E1, mixed)
X→B,R(0)eJ ′I′F ′
I′′F ′′
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1 1 0
0 0 0
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∣∣∣T1

0

[
µ̂(m)

] ∣∣∣X2Σ+
g , v
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〉∣∣∣2∣∣∣∣∣∣

3/2∑
J ′=1/2

c′eJ ′J ′F ′(−1)J
′√

2J ′ + 1

{
1 J ′ 1/2

1/2 0 1

}{
J ′ F ′ I ′
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Comparison of the relative line strength of different R(0) hfs transitions calculated using this formula
with the simulated spectrum in Fig. 4 from Rosner, Gaily and Holt [101] shows good agreement within
the precision of their data.

The effect of the mixing of the Hund’s case (bβJ ) states by the hfs Hamiltonian is illustrated in Fig. 3.7,
showing a simulated spectrum of the S(0) line in 14N+

2 with and without taking into account the
admixture of the non-dominant term in the expansion (3.72a). Considerable redistribution of intensity
among the several hfs transitions due to mixing is observed. For higher rotational states, mixing of
Hund’s case (bβJ ) states becomes negligible because of the increasing energetic separation of the two
spin-rotation components, which scales linearly with N : F1(N)− F2(N) = γv(N + 1/2).

Concluding, we see that with the material presented in this chapter, the whole theory of electric-
quadrupole rotation-vibration transitions in the N+

2 molecular cation, including fine- and hyperfine-
structure effects, has been developed. The fs and hfs Hamiltonian—determining the line frequencies—
has been given, line strengths have been calculated and selection, as well as propensity rules have been
derived and their applicability has been discussed. In the following chapter, we will show how such
transitions were observed experimentally.



Chapter 4

Observation of electric-quadrupole

rotation-vibration transitions in the

molecular nitrogen cation

4.1 Introduction

As mentioned in the preceding chapters, a major result of this thesis is the observation of electric-
quadrupole rotation-vibration transitions in a molecular ion. To our knowledge, this is the first such
observation reported so far. In this chapter our observations of electric-quadrupole rotation-vibration
transitions in the N+

2 molecular cation are presented. First, our experimental setup is portrayed.
The physical backgrounds of the experimental techniques employed are explained qualitatively and
the technical details of their implementation are shortly discussed. For more detailed explanations,
references to the relevant literature are given. Thereafter, the measurement of infrared fundamental
S(0) transitions in N+

2 with this setup is described. The measured spectrum is presented and discussed
within the frame of the theory of electric-quadrupole rotation-vibration transitions presented in the two
preceding chapters. The results presented in this chapter have been published originally in a “letter”
having appeared in Nature Physics [114] as well as in a subsequent invited article in CHIMIA [115].
Therefore, this chapter is partly based on these two publications written jointly by Stefan Willitsch,
Xin Tong and the author of this thesis.

4.2 Experimental setup and experimental techniques

4.2.1 Overview

An overview of the experimental setup is shown in Fig. 4.1. In contrast to the experiments addressing
electric-dipole-forbidden transitions in neutral molecules discussed in Ch. 1, our experiment is not
based on high particle densities or a long absorption path. We rather made use of long interrogation
times combined with a highly sensitive detection technique to observe even single absorption events.
The N+

2 ions were trapped in a radio frequency (rf) ion trap, which forms the centre of our experimental
setup. N+

2 ions were produced by photoionization of neutral N2 molecules from a molecular beam
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Figure 4.1. Experimental setup for the observation of electric-quadrupole rotation-vibration
transitions in N+

2 ions. Transitions were observed with N+
2 ions trapped in a linear radio frequency ion

trap. N+
2 ions were loaded into this trap by state-selective photoionization of neutral N2 from a molecular

beam and sympathetically cooled by simultaneously trapped laser-cooled Ca+ ions to form bicomponent
Coulomb crystals. The electric-quadrupole S(0) rotational-vibrational transition was excited with mid-IR
radiation produced by a quantum cascade laser (QCL). The fluorescence light of the Ca+ ions was collected
by a CCD camera to image the crystals. The frequency of the mid-IR radiation is monitored and stabilized
with an IR wavemeter calibrated to N2O absorption lines (see text for details).

with ultraviolet (UV) radiation from two pulsed dye lasers (202 nm and 375 nm). Within the ion
trap, the N+

2 ions thermalized with cotrapped, laser cooled Ca+ ions by the Coulomb interaction
and were cooled to millikelvin temperatures. For laser cooling, diode lasers at 397 nm and 866 nm
were used. The fluorescence light due to laser cooling was captured by an imaging system consisting
of a microscope and an electron multiplying CCD camera (Andor Luca R, Andor Technology Ltd.,
Belfast, UK). Electric-quadrupole rotation-vibration transitions in N+

2 were excited by mid-infrared
(mid-IR) radiation produced by a quantum cascade laser (QCL) [116, 58]. Excited ions were detected
by a state-selective charge transfer reaction with Ar atoms. Vibrationally excited ions are neutralized
in this reaction and were lost from the trap, which was observable as a change in the structure of
the Coulomb crystal as seen with the camera. By comparing images of the crystal taken before and
after the IR-excitation-CT-reaction sequence, the quadrupole transition was probed at the frequency
addressed with the QCL. Repeated application of this scheme while scanning the QCL frequency
enabled us to take a spectrum of the electric-quadrupole infrared fundamental transition in N+

2 .

4.2.2 Ion trapping

In our setup, N+
2 and Ca+ ions were trapped in a radio frequency quadrupole trap. Charged particles

may not be trapped by purely electrostatic fields in charge free space as may be seen from the first
of Maxwell’s equation. In free space, the charge density vanishes and the first of Maxwell’s equation
describing the electric field corresponds to the Laplace equation for the electrostatic potential. The
sum of the second derivatives of the electrostatic potential thus vanishes. This is contradictory to the
properties of a continuous function exhibiting a minimum at this position. The electrostatic potential
may thus not exhibit a minimum in free space, as would be needed for trapping—a tenet known as
Earnshaw’s theorem [117]. One solution to this issue is trapping of charged particles by oscillatory
(instead of static), inhomogeneous electric fields. A type of apparatus exploiting this technique was
developed by Paul [118] and is known as a “Paul trap”. The theory of charged particle trapping
by this and similar setups is well-known and described in many monographs and review articles
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[119, 120, 121, 118, 122, 123, 124, 125]. In short, for suitable chosen experimental parameters, the
motion of a charged particle in an inhomogeneous, oscillatory electric field may be separated into two
components: a fast oscillation at the frequency of the field evolving around an equilibrium position,
which itself moves considerably slower. The oscillatory motion at the frequency of the electric field is
known as “micromotion”, the comparatively slow motion of the mean position as “secular motion”.
For suitably chosen experimental conditions, the time-averaged kinetic energy of the charged particle
is conserved (which is in general not true for a system with time-varying external forces). Furthermore,
the time-averaged micromotion amplitude (observed on time scales � rf period) solely depends on
the position of the particle and not on other variables such as the time, etc. Hence, the part of
the kinetic energy associated with the micromotion may be expressed mathematically in terms of a
scalar potential. This potential is known as the“effective potential” or “pseudopotential”. In regions
of higher electric field strength, the micromotion amplitude and, correspondingly, the pseudopotential
energy increases. Accordingly, the kinetic energy associated with the secular motion decreases—and
vice versa in regions of lower electric field strength. An inhomogeneous electric rf field thus creates a
pseudopotential for the secular motion of the ion pushing it in direction of decreasing rf amplitude in
the inhomogeneous electric field.

Unlike electrostatic potentials, for the pseudopotential electrode geometries may be found creating a
pseudopotential minimum in free space. Hence, ions may be trapped in free space in such a pseudopo-
tential. In our setup, this was achieved with an apparatus known as a “linear Paul trap”. This trap
consists of four cylindrical stainless steel rods with a diameter of 8 mm arranged as the four long edges
of an elongated cuboid at a distance of 3.5 mm from the symmetry axis of the trap (see [109, 126] for
details). On these rods, sinusoidally oscillating voltages with an amplitude of Vrf, zero-to-peak = 120 V
and a frequency of Ωrf = 2π× 3.2 MHz with opposite polarity on neighboring rods were applied. Each
rod is segmented into three isolated electrodes, with additional dc voltages of ≈ 1.5 V applied to the
end-segment electrodes for axial confinement. For this configuration, the pseudo and the electrostatic
end-segment potential form together a nearly harmonic potential well with respect to all three dimen-
sions in vicinity of the trap centre. The equations of motion for a single trapped ion may then be
solved analytically [124, 123, 125]. For large ensembles of ions, the equations of motion are integrated
numerically (see Sec. 4.3.2).

4.2.3 Laser cooling of Ca+ ions

As mentioned above, the N+
2 ions were sympathetically cooled using Doppler laser-cooled Ca+ ions.

Doppler laser cooling is a well-established method of atomic physics and has been described in several
textbooks (e.g. [127, 128, 119, 120]). In essence, an atomic ensemble is exposed to a laser beam
with a frequency slightly red-detuned from an atomic transition. Due to the Doppler effect, the laser
frequency is shifted closer to resonance for atoms moving against the direction of propagation of the
laser beam in the moving frame of reference of the atoms and away from resonance for those moving
along with the laser light. Atoms exhibiting a velocity component antiparallel to the laser beam—or
more precisely, to the wavevector of the optical wave—experience thus an increased probability for
absorbing a photon compared to those without such a component or with a component parallel to the
wavevector. In an absorption event, the momentum of the photon is transferred to the atom, which
thus looses momentum and is decelerated. The subsequent emission is isotropic and therefore the
momentum antiparallel to the direction of propagation of the laser is diminished effectively in average
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over many absorption-emission cycles. Although a single laser beam in principle only decelerates atoms
in one direction, the coupling of the motion along different directions by the Coulomb interaction in
an ensemble of trapped ions results in an efficient cooling along all directions. A prerequisite for laser
cooling is a closed optical cycling transition being addressable in the particle to be cooled. This restricts
laser cooling usually to simple atoms or atomic ions (mostly alkali atoms and alkaline earth ions) and
excludes molecules (aside from a few very particular species [129, 130]). Therefore, N+

2 ions may not
be laser-cooled and sympathetical cooling by atomic Ca+ ions was used for our experiments.

In our setup, the 4s2S1/2 → 4p2P1/2 transition in Ca+ at 397 nm was used for Doppler laser cooling.
The trap was loaded with Ca+ ions by photoionization of the skimmed effusion from a Ca oven heated
to 300 − 350 ◦C. Ca atoms were non-resonantly photoionized using the same laser (375 nm) as for
the third photon in the ionization of N+

2 (see below). During laser cooling, Ca+ ions excited to the
4p2P1/2 state may decay with a small probability to the metastable 3d2D3/2 state. These ions were
repumped into the cooling cycle with an additional laser at 866 nm addressing the 3d2D3/2 → 4p2P1/2

transition. Both, the cooling and the repumper beams were introduced along the trap axis. The cooling
beam (397 nm) was reflected with a mirror behind the vacuum chamber and reinserted into the trap
in order to balance radiation pressure forces on the Ca+ ions. Using this setup, the Ca+ ions were
Doppler laser cooled to a secular temperature of TCa+ ≈ 18 mK and a secular temperature for the
sympathetically cooled N+

2 ions of TN+
2
≈ 20 mK was achieved (as determined by comparison with

numerical simulations of the ion dynamics, see Sec. 4.3.2).

4.2.4 State-selective production of N+
2 ions

In order to observe the extremely weak electric-quadrupole transitions in N+
2 , the N+

2 ions were pro-
duced state-selectively in the rotational-vibrational ground state. This way, the N+

2 population is
confined to the to the lower rovibrational quantum state of the electric-quadrupole transition studied.
This state-selective production is achieved with a two-colour resonance-enhanced multiphoton ioniza-
tion (REMPI) scheme (see Fig. 4.2). In this scheme, neutral N2 molecules in the rovibronic ground
state (X1Σ+

g , J ′′ = 0, v′′ = 0) are first excited to the a′′ 1Σ+
g J ′ = 2, v′ = 0 state of neutral N2 by two

photons at ≈ 202 nm. From this intermediate state, N2 is ionized by a third photon at ≈ 375 nm. The
ionization process is governed by the selection rule ∆N = N+′′ − J ′ = even [131, 132] and the strong
propensity rule ∆N = N+′′−J ′ = 0,±2 ([105, 106], see also Ch. 5). Therefore, only the ionic rotational
states N+′′ = 0 and N+′′ = 2 are accessible from the J ′ = 0 level in the neutral a′′ 1Σ+

g state. Here,
J ′′ (J ′) and v′′ (v′) stand for the rotational and vibrational quantum numbers in the X1Σ+

g ground
(a′′ 1Σ+

g excited) state of neutral N2. N+′′ denotes the rotational quantum number in the vibrational
ground state (v+′′ = 0) of the N+

2 ion. The energy for the third photon is chosen to reach just above the
ionization threshold for the rotational ground state, but not above the threshold for N+′′ = 2, the ener-
getically lowest accessible rotational excited state. Hence, state-selective production is achieved.

UV radiation for photoionization was produced by two pulsed, 532 nm-Nd:YAG-pumped dye lasers: a
“Radiant Dyes NarrowScan” (Radiant Dyes Laser & Accessories GmbH, Wermelskirchen, Germany)
and a “FindeAdjustment Pulsare” (ERÜ Kunststofftechnik GmbH, Radevormwald, Germany) for
375 nm and 202 nm, respectively. For 375 nm, the frequency-doubled emission from a Styryl 8 dye
solution was used, whereas 202 nm radiation was generated by the frequency-tripled emission from a
Rhodamine B / Rhodamine 101 dye mixture.



4.2 Experimental setup and experimental techniques 75

J′"

J′′"
0!1!
2!

0!1!
2!

N+′′"
0!1!
2!

ex
ci

ta
tio

n 
!

la
se

r!
io

ni
za

tio
n!

la
se

r!

X 1!+g

a'' 1!+g

X+ 2!+g

X 1!+g

a'' 1!+g

X+ 2!+g

v+′′  = 0!

X 1!+g

a'' 1!+g

X+ 2!+g

X 1!+g

a'' 1!+g

X+ 2!+g

v′  = 0!

X 1!+g

a'' 1!+g

X+ 2!+g

X 1!+g

a'' 1!+g

X+ 2!+g

v′′  = 0!

Figure 4.2. REMPI scheme for state-selective production of molecular nitrogen ions.
Resonance-enhanced [2+1’]-photon threshold ionization scheme used to produce N+

2 ions state-selectively in
the rotational-vibrational ground state (v+′′ = 0, N+′′ = 0): neutral N2 molecules in the rovibronic ground
state (v′′ = 0, J ′′ = 0) are excited by two photons at 202 nm to the a′′ 1Σ+

g v′ = 0, J ′ = 2 state. From this
intermediate state, N2 is ionized by a third photon at 375 nm. State selectivity is ensured by setting the
energy of the third photon to reach just slightly above the lowest ionization threshold (dotted line).

The two counterpropagating laser beams were focused to beam diameters of a few hundred micrometers
inside the ion trap, where they intersected with each other as well as with a double skimmed N2

molecular beam. The molecular beam was formed by the supersonic expansion of N2 gas from a pulsed
valve (pulse duration 10 ms, repetition rate 10 Hz, stagnation pressure ≈ 1 bar) into a high-vacuum
vessel (base pressure 10−8−10−7mbar). The supersonic expansion internally cooled the N2 molecules to
typical rotational temperatures of ≈ 10 K [133] increasing the population in the rovibrational ground
state addressed by our REMPI scheme. The skimmers collimated the beam and separated three
differential pumping stages to sustain ultra high vacuum conditions in the trap region (background
pressure ≈ 3× 10−10 mbar). In order to avoid state changing collisions of previously loaded N+

2 ions
with neutral N2 molecules from the molecular beam, the beam passed the trapping region ≈ 250 µm
beside the trap centre.

The intensities of the two REMPI laser beams were chosen such that non-resonant, one-colour ioniza-
tion of N2, which depreciates state-selectivity, is suppressed. Typical pulse energies were about 0.15 mJ
per pulse and 3 mJ per pulse for 202 nm and 375 nm, respectively. The ratio of the one- to the two-
colour ionization rate was periodically checked between measurements of N+

2 quadrupole transitions.
As shown in [108, 109], high state-selectivity in the production of N+

2 ions may be achieved with this
scheme.

4.2.5 Mid-infrared radiation source

Electric-quadrupole vibrational transitions in N+
2 were excited with mid-IR radiation from an external-

cavity continuous-wave QCL (Daylight Solutions 21045-MHF, Daylight Solutions, Inc., San Diego,
CA, USA) delivering an effective power of ≈ 170 mW at a wavelength of 4574 nm (2186 cm−1) with
a nominal bandwidth < 0.001 cm−1 [134]. The mid-IR beam was focused to a spot size of ≈ 140 µm
FWHM at the position of the N+

2 ions resulting in a IR irradiance of ≈ 7.7× 106 W m−2.

The frequency of the QCL was monitored with a mid-IR wavelength meter (Bristol Instruments 621-
A IR, Bristol Instruments, Inc., Victor, NY, USA) with a quoted resolution of 9 MHz which was
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calibrated with an accuracy of 8 MHz against absorption lines of N2O with frequencies known from
the HITRAN database [135]. Absorption spectra of N2O were taken using a 15 cm long absorption
cell filled with N2O at a pressure of a roughly 1 mbar. The transmitted intensity was measured with
a PbSe photoconductive detector (Hamamatsu P9696-03, Hamamatsu Photonics K. K., Hamamatsu
City, Shizuoka, Japan). For suppressing electrical as well as optical noise present on the photodetector
signal, the IR beam was mechanically chopped at a frequency of about 250 Hz and the photodetector
voltage was capacitively coupled to a digital oscilloscope. The amplitude of this modulated signal was
used to detect the relative IR intensity nearly background- and noise-free.

Active stabilization of the QCL frequency was achieved with a PI (proportional integral) feedback
loop. The frequency measurements of the wavelength meter were processed on a personal computer
and compared to a given set point. Based on the observed deviation, a correction voltage was applied
to a piezo element acting on the external cavity grating of the QCL. The piezo voltage was updated
about once every second. In order to sweep the QCL frequency, the set point was slowly scanned by
the control program with the locked laser frequency following accordingly. For QCL frequency locking
and scanning, a control program based on the LabVIEW software package (National Instruments
Corporation, Austin, TX, USA) has been developed.

4.3 Measurement of hyperfine-structure-resolved IR fundamental

S(0) transitions in N+
2

Using the experimental setup and the experimental techniques presented above, the spectrum of the
IR fundamental S(0) transition, i.e., the transition (v+′′ = 0, N+′′ = 0)→ (v+′ = 1, N+′ = 2) within
the electronic ground state X2Σ+

g of N+
2 was measured. More precisely, the principal hfs-resolved

transitions, meaning those fulfilling the propensity rule ∆N = ∆J = ∆F , were probed. There are in
total three transitions fulfilling this rule: two for the I = 2 nuclear spin isomer of N+

2 , namely the
F+′′ = 3/2 → F+′ = 7/2 and the F+′′ = 5/2 → F+′ = 9/2 transition, as well as one belonging to
the I = 0 nuclear spin isomer, namely the J+′′ = 1/2→ J+′ = 5/2 transition (see Fig. 4.3 for a level
scheme). Here, N+′′ (N+′), J+′′ (J+′) and F+′′ (F+′) denote the rotational angular momentum, the
total angular momentum without nuclear spin and the total angular momentum including nuclear spin
in the vibrational ground (first excited) state of N+

2 (see Sec. 3.3 for details on the angular momentum
coupling in N+

2 ).

Though, in view of the theory of hfs-resolved electric-quadrupole rotation-vibration transitions from
Ch. 3, there are in the particular case of the S(0) line other transitions exhibiting similar or even
higher line strengths than these “principal” transitions, they were chosen here in lack of any detailed
knowledge about the strength of the different hfs-resolved line components—the theory presented in
Ch. 3 was only developed after having measured this spectrum in the process of interpreting the
experimental data.

4.3.1 Experimental procedure

In a typical experiment, first a pure Ca+ crystal of ≈ 1000 ions was loaded, followed by the loading
of about 20− 25 N+

2 ions. Due to the dependence of the pseudopotential on the ion mass (lighter ions
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Figure 4.3. Level scheme for S(0) electric-quadrupole rotation-vibration transitions in N+
2 . (a)

I = 0 nuclear-spin isomer: the excited level is split by the spin-rotation interaction into two fine-structure
components associated with different J+′ quantum numbers. (b) I = 2 nuclear-spin isomer: the levels are
further split by the hyperfine interaction into several hfs levels labelled by F+′′ and F+′ quantum numbers.
The principal electric-quadrupole transitions (those in accordance with ∆N = ∆J = ∆F ) are indicated by
vertical arrows. (See Sec. 3.3 in the preceding Ch. for details about the fine and hyperfine structure in N+

2 .)

show a larger micromotion amplitude and therefore experience a steeper pseudopotential), the N+
2

ions accumulated at the centre of such a bicomponent Coulomb crystal, observable as a dark, non-
fluorescent core (Fig. 4.4 (a)). Immediately after loading N+

2 , mid-IR radiation was irradiated on the
crystal to excite electric-quadrupole rotation-vibration transitions in N+

2 . Simultaneously, Ar gas was
introduced into the chamber through a leak valve at a partial pressure of about 2 to 4× 10−8 mbar.
Ar atoms react with vibrationally excited N+

2 ions in a charge transfer (CT) reaction according to (see
[110])

N+
2 (v+ ≥ 1) + Ar→ N2 + Ar+. (4.1)

Neutral N2 molecules formed in this reaction were lost from the trap, whereas the newly produced
Ar+ ions diffused into the Ca+-Coulomb crystal because of the similar masses of these two species.
The CT reaction was thus observable as a shrinking of the dark N+

2 -core in the Coulomb crystal. For
ions in the vibrational ground state, the above reaction is endothermic and thus suppressed [110].
The number of lost N+

2 ions therefore directly resembles the number of vibrationally excited N+
2 ions.

After ≈ 2 min, the Ar leak valve was closed and the pressure in the chamber dropped to ultrahigh
vacuum levels again. Loss of ions due to other processes than laser excitation was excluded by “blind”
experiments with the QCL beam blocked done regularly in between actual measurements. In the very
rare cases (only two out of 136 individual measurements comprising the spectrum shown in Fig. 4.5),
in which such background ion loss was observed, a background loss rate was determined and the data
were corrected accordingly.

To pin down the frequency of the IR fundamental S(0) line in N+
2 , the QCL frequency was first scanned

over adjacent frequency intervals in vicinity of the theoretically predicted transition frequencies (see
Sec. 3.3 and 4.3.4). Upon indication of CT, the interval was split and the procedure repeated to
subsequently further constraining the transition frequency. Finally, the electric-quadrupole IR funda-
mental S(0) hyperfine transitions were probed by scanning the QCL frequency in steps of 0.0003 cm−1

(9 MHz).
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Figure 4.4. Fluorescence images of bicomponent Ca+/N+
2 Coulomb crystals. (a) Images taken

during one experimental cycle before and after IR irradiation and charge-transfer (CT) detection of N+
2 ions.

The N+
2 ions appear as a non-fluorescent core in the centre of the crystals. Slight changes in the structure of

the core indicate the removal of N+
2 ions by CT reactions following their excitation (see highlighted regions).

(b) Synthetic images obtained from numerical simulations of the ion dynamics containing different numbers
of N+

2 ions. The simulated images with 21 and 17 N+
2 ions best fit the experimental images taken before

and after CT, respectively.

4.3.2 Data analysis

In order to accurately determine the number of CT events, i.e., of vibrationally excited N+
2 ions,

the experimental images of the Coulomb crystals were compared to synthetic images generated from
numerical simulations of the ion dynamics (see, e.g., [136] for details on these methods) with known
numbers of N+

2 ions. Trajectories of the ions were calculated by numerical integration of the classi-
cal equations of motion incorporating the relevant forces for ion trapping and cooling as well as the
Coulomb interaction between ions. These simulations were done with the ProtoMol software package
[137] combined with custom-written extensions. From the simulated ion trajectories, three-dimensional
histograms were generated, which, when projected onto an imaging plane, reproduce the experimental
fluorescence images of the Coulomb crystals. The blurring of the experimental images, caused by the
finite depth of focus of the imaging system, was emulated by Gaussian smoothing of the synthetic
images implemented as a post-processing code based on MATLAB (The MathWorks, Inc., Natick,
MA, USA) and MathWorks’ Image Processing Toolbox. By careful tuning of simulation parameters,
synthetic images were obtained, which reproduce even subtle details in the experimental ones. Com-
paring experimental with synthetic images allowed the determination of the number of vibrationally
excited N+

2 ions with an accuracy of ±1 (see Fig. 4.4) [108, 109].

4.3.3 Measured spectrum

The spectrum of electric-quadrupole IR fundamental S(0) hfs-resolved transitions in N+
2 obtained

by this method is shown in Fig. 4.5. Each data point represents the mean number of CT events
averaged over 8 or 16 individual measurements shown as a function of the excitation frequency. The
spectrum shows two well-separated peaks: a broader one around 2186.173 cm−1 (65 539.82 GHz) and
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Figure 4.5. Spectrum of hyperfine components of the S(0) electric-quadrupole rotation-
vibration IR fundamental transition in ortho-N+

2 represented as the mean number of CT events
per experimental cycle as a function of the excitation frequency. Data points marked with squares (circles)
were averaged over 16 (8) experiments. The horizontal and vertical error bars correspond to the relevant 1σ
uncertainties. The dotted lines represent Gaussian fits of the three spectral transitions to the data points,
the solid blue line shows their sum. The theoretically predicted positions of the hyperfine transitions be-
longing to the I = 2 (I = 0) nuclear spin isomer indicated in Fig. 4.3 are shown by solid green (pink)
vertical lines. These values were calculated as outlined in Sec. 3.3 and 4.3.4 based on the spectroscopic
constants taken from [96, 102, 93]. The shaded areas represent their 1σ uncertainties.

a narrower one at 2186.1804(4) cm−1 (65 540.039(12) GHz). The higher-frequency peak is assigned to
the F+′′ = 3/2→ F+′ = 7/2 (I = 2) transition based on theoretically predicted transition frequencies
(see Sec. 4.3.4) that are shown as solid vertical lines in Fig. 4.5. The width of this peak (≈ 19 MHz
FWHM) is attributed to the bandwidth of the IR laser radiation (specified to be < 30 MHz [134] as
mentioned above). Collisional broadening is widely suppressed for trapped ions in an ultra high vacuum
environment and the Doppler width of ≈ 1.3 MHz at the secular ion temperature of TN+

2
≈ 20 mK

as well as the natural linewidth (nanohertz range, see Appendix B) are considerably smaller. The
lower-frequency peak is assigned to the two overlapping transitions F+′′ = 5/2 → F+′ = 9/2 (I = 2)
and J+′′ = 1/2 → J+′ = 5/2 (I = 0), which are not resolved at the present laser bandwidth. This
overlap is reflected in the higher width of this peak of ≈ 30 MHz FWHM.

The frequencies of these transitions were determined by fitting a model consisting of three Gaussian
peaks to the measured spectrum. The individual peaks of this model are shown as dotted lines in
Fig. 4.5 and their sum as a blue, solid line. The line intensities are constrained by the theory of
hyperfine-structure-resolved electric-quadrupole rotation-vibration transitions presented in Ch. 3. For
fitting this model to the experimental spectrum, the frequency of each transition was treated as an
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individual free parameter. The integrated intensity, the linewidth and the ratio of the populations
in the two hfs levels of the I = 2 nuclear spin manifold, which are not thermal but rather reflect
the photoionization dynamics of the REMPI process the ions are produced with (see Ch. 5), were
treated as common free parameters for all peaks. The ratio of the total population in the I = 2 to
the I = 0 nuclear spin manifold was fixed at 5:1 according to nuclear spin statistics. From this fit, the
transition frequencies of the F+′′ = 5/2 → F+′ = 9/2 (I = 2) and the J+′′ = 1/2 → J+′ = 5/2 (I =
0) transitions were determined as 2186.1729(4) cm−1 [65539.815(12) GHz] and 2186.1734(4) cm−1

[65539.831(12) GHz], respectively. The relative positions of the peaks, i.e., the hyperfine splittings of
the rovibrational line, have been obtained as 16(1) MHz, 209(17) MHz and 225(17) MHz.

4.3.4 Comparison with theoretical predictions

Line positions (transition frequencies)

The fine and hyperfine splittings of the S(0) IR fundamental line may be calculated using the Hamilto-
nian from [96] and the molecular constants compiled in Tab. 3.2 as explained in Sec. 3.3. The absolute
transition frequencies are obtained when adding the rovibrational term value using the spectroscopic
constants from Tab. 3.1. The frequencies obtained from this calculation are given in Tab. 4.1 and
shown as vertical lines in Fig. 4.5. Their 1σ-uncertainties are indicated by shaded areas in Fig. 4.5 as
obtained by propagating the uncertainties in the spectroscopic constants from the respective sources
[96, 102, 93].

As evident from Fig. 4.5, all transitions appear at slightly (≈ 1 standard uncertainty) lower abso-
lute frequencies than predicted. This deviation might indicate the vibrational frequency and/or the
rotational constant of N+

2 in the excited state being slightly lower than the values used in our calcu-
lations. Vibrational frequencies of N+

2 have so far only been determined indirectly from the analysis
of electronic spectra. The values from such studies reported in the literature [97, 98, 90, 93] differ by
a few hundreds of MHz. Though, one of the most accurate and latest studies [93] was used for our
calculations, deviations from the calculated values are to be expected at the level of precision of our
measurements. Put into that perspective, the observed deviations between measured and predicted
absolute transition frequencies thus seem acceptable.

For the relative line positions, i.e., hyperfine splittings, the values of 18(1) MHz, 187(2) MHz and
206(3) MHz were predicted. The observed splittings are thus in reasonable agreement with these
predictions and allowed the aforementioned assignment of the observed features in the spectrum.
Together with the control experiments described above, we may thus conclude that we indeed did
observe electric-quadrupole rotation-vibration transitions of N+

2 and that we were able to assign the
features in the measured spectrum to the different fs and hfs components as mentioned above.

Line intensities (excitation rates)

The observed excitation rates (CT events per unit time interval) are considerably lower than expected
from the theory developed in Ch. 2 and 3. When using for the derivative of the electric-quadrupole
moment the result from the computational study by Bruna and Grein [45], we obtain an excitation
rate of ≈ 9.1× 10−2 s−1 per ion for the F+′′ = 3/2→ F+′ = 7/2 (I = 2) transition at our experimental
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Table 4.1. Transition frequencies for principle S(0) IR fundamental hfs line components in N+
2 .

Rovibrational transition frequencies (absolute line positions)

Transition Measured [cm−1]a Predicted [cm−1]a,b

F+′′ = 5/2→ F+′ = 9/2 (I = 2) [Peak 1] 2186.1729(4) 2186.1747(10)
J+′′ = 1/2→ J+′ = 5/2 (I = 0) [Peak 2] 2186.1734(4) 2186.1753(10)
F+′′ = 3/2→ F+′ = 7/2 (I = 2) [Peak 3] 2186.1804(4) 2186.1816(10)

Hyperfine splittings (relative line positions)

Splitting Measured [MHz]a Predicted [MHz]a,b

Peak 1 to Peak 2 c 16(1) 18(1)
Peak 1 to Peak 3 225(17) 206(3)
Peak 2 to Peak 3 209(17) 187(2)
a Values in parentheses correspond to one standard uncertainty and apply to the last digits.
b Based on spectroscopic constants from [96, 102, 93] compiled in Tab. 3.1 and 3.2.
c The higher precision in this splitting was achieved because the data this value is based on were taken in
close succession (for the most part within a few days). The other splittings involve measurements over a more
extended period of time (a few weeks). As a result, their uncertainties include estimates for additional long-term
drifts in the IR frequency.

conditions (see Appendix B). This translates into a total excitation rate of ≈ 0.76 s−1 for 25 ions when
a fraction of 1/3 of them is supposed to be in the F+′′ = 3/2 (I = 2) state (according to the degeneracy
of the three N+′′ = 0 levels). Therefore, almost all N+

2 ions addressed are expected to undergone CT
reactions during the experimental period of ≈ 2 min. Observed were, however, only about 1.5 excitation
events during that period, corresponding to an excitation rate of ≈ 1.5/120 s ≈ 1.3× 10−2 s−1. This
experimental excitation rate accounts for only roughly 1/60 of the theoretically expected value. In
addition to the absolute excitation rate being lower than expected, also the relative excitation rates
for the different hfs transitions, i.e., the ratio of the peak heights in the spectrum of Fig. 4.5, deviates
from the theoretical calculations presented in Ch. 3 (cf. Fig. 3.7).

The reason for this discrepancy has been investigated quite extensively but no definite answer has been
found so far. The deviation might be either due to an erroneous or inadequate theoretical calculation
or unconsidered or wrongly determined experimental factors. In general, determination of line inten-
sities from “action spectroscopy” experiments, such as the laser-induced charge-transfer spectroscopy
used here, is difficult because the measured signal (here the number of neutralized N+

2 ions) is only
indirectly linked to the actual spectroscopic excitation (see Fig. 4.6). The processes linking the initial
spectroscopic excitation to the measured signal compete with other processes diminishing this signal.
Deviations of the observed from the theoretically expected excitation rate may thus result from the
interplay of these processes.

In detail, the following factors have been considered as possible reasons for the observed discrep-
ancy:

Electric-quadrupole transition matrix element. The dominating uncertainty in the theoreti-
cally calculated excitation rate lies in the value of the derivative of the molecular electric-quadrupole
moment with respect to the internuclear separation. In lack of any experimental data, we used the
above-mentioned value obtained by Bruna and Grein [45] from an ab-initio calculation. Generally,
ab-initio calculations of accurate values for molecular multipole moments and their derivatives are
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N+
2 , v

+ = 0, N+ = 0 IR excitation−−−−−−−−−→ N+
2 , v

+ = 1, N+ = 2 CT−−−−−−−−−→ neutral N2 (+ Ar+)

rot. inel. coll.

−−−−−−−−−→

vib. quenching

−−−−−−−−−→

N+
2 , v

+ = 0, N+ > 0 N+
2 , v

+ = 0

Figure 4.6. Processes involved in N+
2 CT spectroscopy. The actual spectroscopic excitation (labelled

“IR excitation”) is not observed directly, but is indirectly linked to the observed signal (number of neutral-
ized N+

2 ions). The processes forming this link (horizontal arrows) compete with other processes (vertical
arrows), such as rotationally inelastic collisions or vibrational quenching (see text for other potentially pos-
sible processes), diminishing the number of neutralized N+

2 ions and thus reducing the apparent excitation
rate. Hence, this apparent rate does not only depend on the actual spectroscopic excitation rate, but also
on the rate constants (and associated particle densities) of these competing processes.

challenging and assessing the accuracy of the result in [45] is difficult in absence of other theoretical
studies or experimental measurements. Indeed, even the authors of this study admit that their “N+

2

value is probably about 10% too high” ([45], p. 73).

On the other hand, many diatomic molecules (see [80]) exhibit electric quadrupole moment derivatives
on the order of roughly ea0 = 8.5× 10−30 C m (e: elementary charge, a0: Bohr radius) such that at least
the order of magnitude of the value used might be assumed correct. Nevertheless, as the excitation rate
depends quadratically on this quantity, still, a too high value for the quadrupole moment derivative
could at least partially explain the observed discrepancy.

Besides on the derivative of the molecular quadrupole moment, the predicted excitation rate also de-
pends on how the rovibrational transition matrix element is derived from this quantity and particularly,
if the double-harmonic approximation (equation (2.237)) is applicable. In general, this approximation
is reasonable for calculations of electric-quadrupole rovibrational line strengths between low-lying vi-
brational states in the electronic ground state of stable molecules (see, e.g., [83, 33, 84]). On the
contrary, deviations from this approximation are known for electric-dipole vibrational transitions in
certain heteronuclear molecules ([70], p. 165). Nonetheless, it seems unlikely that higher-order terms
in the expansions (2.225) and (2.148) shall substantially diminish the harmonic contributions.

Over estimation of the IR intensity at the position of the N+
2 ions. The intensity of the

IR radiation to which the N+
2 ions were exposed depends on the diameter of the IR beam as well

as on the position of the ions within the beam. As the mid-IR radiation is neither visible by the
naked eye, nor with the CCD camera and because the centre of the ion trap is not directly accessible,
these quantities are not easily determined. The beam diameter was determined from a beam profile
recorded by measuring the transmitted power when introducing an absorbing mechanical target in the
beam path. Despite some uncertainty in the beam diameter inherent to this method, a deviation in the
diameter large enough to fully explain the discrepancy in the excitation rate seems unlikely. Alignment
of the IR beam was verified on a daily basis using the same target. The accuracy of this alignment
method was found to be better than ≈ 50 µm (at a beam diameter of 140 µm FWHM). Concluding,
misalignment of the IR laser beam and underestimation of the beam diameter may possibly partially,
but not fully account for the observed discrepancy in the excitation rate.



4.3 Measurement of hyperfine-structure-resolved IR fundamental S(0) transitions in N+
2 83

Accidental excitation of electronic transitions in N+
2 . N+

2 exhibits a dipole-allowed electronic
transition at 391 nm due to the X2Σ+

g , v
+′′ = 0 → B2Σ+

u , v
+′ = 0 band (see Ch. 3 and 6). Possibly,

this transition could have been excited by the weak, broadband background emission of the 397 nm
laser used for Ca+ cooling. Decay of ions from the excited B2Σ+

u state then resulted in rovibrational
redistribution of the population from the in initially prepared rovibrational quantum state to other
rovibrational levels of the electronic ground state, i.e., in a diminished population in the level addressed
by the QCL. This process, however, was ruled out, because the decay of the excited electronic state had
resulted in populating vibrationally excited states of the electronic ground state (according to known
Franck-Condon factors [94, 95]). Therefore, CT reactions would have been observed even without IR
excitation. Such reactions were not observed in several dozens of “background” measurements with
the QCL beam blocked done regularly in between actual measurements.

Effective Ar particle density. The CT reaction rate depends directly on the Ar particle density
at the position of the N+

2 ions. The pressure in the vacuum chamber while leaking in Ar gas was
monitored with a cold cathode vacuum gauge (IKR 270, Pfeiffer Vacuum Technology AG, Aßlar,
Germany) mounted at the side of the chamber. As the distribution of the gas is subject to the so-called
“molecular flow”, meaning that gas molecules fly in straight lines in between collisions with surfaces
(mean free path length� chamber dimensions), a deviation between the particle density inferred from
the pressure reading and the actual Ar particle density within the trapping volume, which is partially
screened by the trap electrodes, might be suspected. However, a rough model of the gas flow with the
ion trap approximated as a one-side-open cuboid showed in and outside pressure to equilibrate within
milliseconds. Hence, these effects are negligible on the time scale of our experiments.

Vibrational quenching of N+
2 by Ar. Quenching of vibrationally excited N+

2 competes with CT
and hence could result in a lower apparent excitation rate (see Fig. 4.6). With the CT rate constant
accounting for about half of the Langevin collision rate, a decrease by a factor of two in the apparent
excitation rate could be reached when assuming all non-CT-reactive collisions being vibrationally
inelastic. However, previous measurements of the vibrational quenching rate constant of N+

2 in Ar by
Kato et al. [138] yielded an upper bound of kvib. quench. ≤ 1.2× 10−11 cm3 s−1 or less than 1.7 % of the
Langevin rate constant. Therefore, this effect seems not to be an issue.

Rotationally inelastic collisions of N+
2 with Ar. Collisions of N+

2 ions with Ar atoms prior to
IR excitation would result in a redistribution of the population from the initially prepared rotational-
vibrational quantum state (see Fig. 4.6). Similar as for accidental electronic excitation, part of the
population would then no more be addressed by the QCL resulting in a diminished apparent excitation
rate.

The rotationally-inelastic N+
2 -Ar collision rate constant was measured by Schlemmer et al. [110] to

account for ≈ 1/50 of the Langevin rate constant. Using their value, we found rotationally inelastic
collisions to play a minor role in our experiment, based on a simple kinetic rate model (see Fig. 4.7 (a)).
To asses the sensitivity of the apparent excitation rate on the rotationally-inelastic collision rate, we
repeated this calculation for a rotationally-inelastic collision rate constant higher by about one order of
magnitude. For that value, a considerable decrease in the vibrationally excited population is observed
in our model (Fig. 4.7 (b)).
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The low rotationally-inelastic rate constant found in [110] has already by the authors of this publication
been considered a “surprising result”, because N+

2 and Ar may form a strongly bound intermediate
complex [110] and reaction mechanisms based on such an intermediate complex usually result in a
mixing of all accessible product channels (see, e.g., [133]). Hence, a rotationally-inelastic collision
rate close to the Langevin rate would be expected and no explanation for the considerably lower
value reported in [110] has been found. Indeed, simulations of N+

2 + Ar collisions motivated by our
observations that were done in the Computational Chemistry Group of Prof. Markus Meuwly at the
University of Basel showed rotationally inelastic collisions to occur considerably more frequently at
our experimental conditions [139].

Moreover, rotationally inelastic collisions may already partially explain the observed discrepancy be-
tween the measured and the expected excitation rate—even when as infrequent as found in [110]—if
also a reduced vibrational excitation rate is assumed. A reduction of the electric-quadrupole excitation
rate constant (e.g., due to an overestimated IR intensity or transition matrix element) by just a factor
of 1/30 (instead of the above mentioned 1/60) yields the experimentally observed result of about 1.5
excitation events during a period of ≈ 2 min, if rotationally inelastic collisions with the rate constant
given in [110] are taken into account (Fig. 4.7 (c)).

Therefore, we may speculate that rotationally inelastic collisions may—at least partially—account for
the low apparent excitation rate measured. This effect could possibly explain both, the discrepancy in
the absolute excitation rate as well as the deviation of the relative intensities of the several hfs transi-
tions probed from the theoretical expectations. Measurements to investigate this issue and eventually
support this hypothesis are in preparation at the time of this writing.

4.4 Conclusion

The observations reported in this chapter show that very weak electric-quadrupole rotation vibration
transitions in N+

2 may be addressed with our experimental approach. This is—as mentioned earlier—
to our knowledge the first such observation in a molecular ion. It was achieved by a combination
of advanced and partly just recently developed techniques of atomic and molecular physics, namely
state-selective production, trapping and sympathetic cooling of molecular ions as well as detection of
excited ions by a state-selective charge transfer reaction and the use of a frequency-stabilized QCL as
an IR radiation source.

The features observed in our spectrum were successfully assigned to hyperfine-structure components
of the S(0) IR fundamental transition of N+

2 . The reasonable agreement of the observed hfs splittings
with theoretical predictions as well as the exclusion of other loss-mechanisms than laser induced CT by
numerous background experiments prove that indeed electric-quadrupole rotation vibration transitions
were addressed in our experiments. The mentioned discrepancies in the vibrational excitation rate are
not yet fully understood but a thorough analysis of this issue yielded strong hints to possible reasons
causing this discrepancy.

The observation of electric-dipole-forbidden rotation-vibration transitions in a molecular ion opens up
numerous new applications such as those discussed in Ch. 1 due to the ultra small natural linewidth
of these transitions and—correspondingly—the extremely high lifetime of their excited states.
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Figure 4.7. Evolution of the N+
2 population during an electric-quadrupole-excitation/CT-

reaction experiment. The evolution was studied by means of a kinetic model based on the reaction
pathways shown in Fig. 4.6 (with neglected vibrational quenching). The initial population in the F+′′ = 3/2
level is depleted by two competing processes: rovibrational excitation with subsequent CT and inelastic
collisions with Ar atoms. The evolution of the populations in the initial level ninit.(t), in other rovibrational
states nother(t) and in the vibrationally excited (and hence CT-reacting) state nexc.(t) are given as a function
of time t by the equations,

dninit.(t)/dt = −(kvib. exc. + kinel. coll.)ninit(t),
dnexc.(t)/dt = kvib. exc.ninit(t),
nother(t) = ntot − ninit.(t)− nexc.(t),

with ntot the total number of N+
2 . (a) When using the excitation rate constant kvib. exc. = 9.1× 10−2 s−1

as calculated in Appendix B and the rotationally-inelastic collision rate constant kinel. coll. = 1.0× 10−2 s−1

(based on the value of 1.4× 10−11 cm3 s−1 from [110] and an Ar particle density of 7.2× 108 cm−3), nearly
the whole population addressed by the QCL is expected to become vibrationally excited and undergo
CT reactions. (b) Assumption of an inelastic collision rate constant higher by one order of magnitude
considerably diminishes the number of vibrationally excited ions, even with the same vibrational excitation
rate constant as in (a) because of the noticeable competition between these two processes. (c) If, on the
other hand, the inelastic collision rate constant from [110] is used, a reduction of the vibrational excitation
rate by a just a factor of 1/30 (instead of the ratio between measured and calculated excitation rates of
1/60) reproduces our experimental finding of ≈ 1.5 ions being excited during a period of 2 min. Hence,
rotationally inelastic collisions may partially explain the observed discrepancy in the excitation rate, even
at this low value for the inelastic collision rate constant, if at the same time a reduced vibrational excitation
rate is assumed.
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A prerequisite for such applications are stable, spectrally narrow mid-IR radiation sources. In view
of recent developments in this area, such as mid-IR frequency combs [140] or novel frequency stabi-
lization techniques that provide spectrally exceptionally narrow emission, high frequency stability and
frequency accuracy by linking a quantum cascade laser to a near-infrared frequency comb [141] or even
directly to primary frequency standards [142], such applications may soon come into reach.

The full potential of electric-dipole-forbidden transitions in molecular ions will be exploited when
these narrow radiation sources are combined with non-destructive, coherent quantum-state-detection
techniques based on the long-range Coulomb interaction—unique to ions and not present in neutrals—
such as the one described in Ch. 6.



Chapter 5

Fine- and hyperfine-structure effects in

molecular photoionization

5.1 Introduction

Molecular photoionization, as a major method to produce molecular ions for trapped-particle exper-
iments, represents a crucial technique for high-precision studies of molecular ions. Particularly, the
ability to produce molecular ions state-selectively and hence to initialize them for subsequent exper-
iments renders molecular photoionization a valuable technique for high-precision studies. A detailed
understanding of the photoionization process is thus essential for precision experiments with molecular
ions.

With the electronic, vibrational and rotational structure being investigated for several decades in
molecular photoionization and photoelectron spectra, models describing the rovibronic effects in
photoionization are nowadays well established. These models, i.e., their selection and propensity
rules, laid the basis for the production of rovibronic state-selected molecular ions by photoioniza-
tion [106, 143, 108, 109].

In contrast to the rovibronic effects, the roles of the electron and the nuclear spin, associated with
the spin-rotational fine structure and the hyperfine structure, respectively, are not covered by com-
mon photoionization models, as these features are usually—we will encounter exceptions below—not
resolved in (traditional) photoionization or photoelectron spectra. The limited knowledge about these
effects is reflected in the electric-quadrupole rotation-vibration spectrum of the N+

2 ion presented in
the preceding chapter: with the relative populations in the hfs levels of the N+

2 ions produced in our
REMPI scheme being unknown, they had to be described by a free parameter.

Motivated by this issue and in view of the importance of photoionization for future high-precision
experiments, we have developed a model for fine- and hyperfine-structure effects in molecular pho-
toionization which is presented in this chapter.

Besides the application in high-precision experiments, our model is also of interest from a general point
of view in molecular physics. Photoionization and photoelectron spectroscopy provided valuable infor-
mation on central aspects of molecular structure theory, supporting the development of such essential
concepts as, e.g., molecular orbital theory (see, e.g., [144], p. 415 or [145]). Since the first photoelectron
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spectroscopic studies of molecules in the 1960s, their resolution has steadily been improved, such that
vibrational and thereon rotational structure were resolved during the following decades [146]. Along
with experimental progress, the theoretical models have been refined. Vibrational structure has been
understood in terms of the Franck-Condon principle (see, e.g., [147]). Concerning rotational structure,
Buckingham, Orr and Sichel presented in 1970 in a seminal paper [148] a model to describe rotational
line intensities in photoelectron spectra, now known as the “BOS model”. During the 1980s and 1990s,
extended models, such as to describe resonance-enhanced multiphoton ionization (e.g., [149]) or to in-
terpret not only the total ionization intensity but also the angular distribution of the photoelectrons
(e.g., [150, 151]) have been developed. Also, the BOS model has been rephrased in terms of spherical
tensor algebra [132], the form it is used here, and extended to asymmetric rotors [143].

However, spin-rotational fine structure has been resolved only in a few photoionization experiments,
e.g., in the ionization spectra of O2 from Palm and Merkt [152] and of H2O from Merkt et al. [153],
and we are not aware of any hyperfine-structure-resolved direct photoelectron spectrum of a molecule.
As a consequence, models for direct photoionization so far do not cover these effects.

Studying fine and hyperfine structure in molecular photoionization is the domain of PFI-ZEKE (pulsed-
field-ionization zero-kinetic-energy) and Rydberg spectroscopy [152, 153, 154, 155, 156, 157]. In these
techniques, data obtained from electronic transitions to highly excited neutral states are interpreted
as series converging to certain ionic states. Results from these experiments are well understood within
the framework of multichannel quantum-defect theory (MQDT) and provide detailed information on
the fine and hyperfine structure of molecular ions [154, 155, 156, 158, 157]. For the direct ionization
process utilized in trapped-ion experiments, a less involved treatment is possible by including fine- and
hyperfine-structure effects into the BOS model. This is the approach pursued in this chapter.

The chapter is structured as follows: first, a model for the spin-rotational fine structure in direct, i.e.
one-photon, photoionization is developed. Then this model is extended to cover transitions between
individual hfs levels in photoionization. To validate our model, we apply it to the fine-structure-resolved
photoelectron spectrum of O2 recorded by Palm and Merkt [152]. The implications of our model for
hfs-resolved ionization transitions are illustrated with the example of the photoionization of molecular
nitrogen.

Thereafter, we consider the three-photon, two-colour REMPI process used in the experiment of the
previous chapter to produce N+

2 ions. This [2+1’] REMPI scheme is regarded as two subsequent
processes: a two-photon excitation step, followed by a one-photon ionization step. For both of these
steps, a hfs-resolved description is developed. The REMPI model obtained from these descriptions
is first applied to the non-hfs-state-selective ionization technique described in the previous chapter.
After that, implications of our model for possible future hfs-state-selective ionization schemes are
discussed. The chapter finishes by concluding the findings obtained and discussing the suitability of
the approximations employed in our model.

5.2 Direct photoionization

We consider the ionization of a diatomic molecule AB yielding the molecular ion AB+ by ejection of
a photoelectron e− through interaction with electromagnetic radiation via the electric-dipole opera-
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tor µ̂:

AB
µ̂−−−→ AB+ + e−. (5.1)

In the language of quantum mechanics, this process is described by the transition matrix element

(〈ψAB+ | 〈ψe− |)µ̂ |ψAB〉 , (5.2)

with the symbols |ψAB〉 and |ψAB+〉 standing for the internal quantum states of the neutral molecule AB
and the molecular ion AB+, respectively, and |ψe−〉 for the quantum state of the photoelectron.

In analogy to the spectroscopic line strength for transitions between bound states, we define the
quantity P (AB → AB+), proportional to the ionization probability per unit time, as the squared
absolute value of the transition matrix element summed over all the quantum states contributing to
the observed ionization rate, i.e.,

P (AB→ AB+) =
∑
ψAB

∑
ψAB+

∑
ψe−

|(〈ψAB+ | 〈ψe− |)µ̂ |ψAB〉|2 . (5.3)

Here, the sums over ψAB and ψAB+ include all degenerate (or unresolved) states of the neutral molecule
and the molecular ion, respectively, belonging to the neutral and the ionic energy level of the transition
studied. The sum over ψe− includes the orbital angular momentum and the spin state of the emitted
photoelectron. We suppose that neither the energy, nor the angular distribution or the spin state of
the photoelectron is detected in the photoionization experiment.

The quantity of interest here is the ionization rate. This rate R(AB → AB+) is proportional1 to the
above-defined transition probability multiplied by the population ρ(EAB) in the addressed neutral
level and divided by the degeneracy g(EAB) of that level,

R(AB→ AB+) ∝ 1
g(EAB)

P (AB→ AB+)ρ(EAB), (5.4)

with EAB the energy of the neutral level.

For a neutral-state population following a Boltzmann distribution (with the temperature T and the
Boltzmann constant kB),

ρ(EAB) ∝ g(EAB) exp(−EAB/kBT ), (5.5)

the ionization rate thus accounts for,

R(AB→ AB+) ∝ P (AB→ AB+) exp(−EAB/kBT ). (5.6)

In the following, explicit expressions for the ionization probability P (AB → AB+) for particular
neutral and ionic fs and hfs levels will be derived. That way, the roles of the electron and the nuclear
spin in molecular photoionization are studied.

1See the relation between the line strength and Einstein B-coefficient of excitation discussed in Ch. 2 as well as
equation (1) in [148].
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Table 5.1. Angular momentum quantum numbers relevant to the photoionization of diatomic molecules.

Magnitude
quant. num.

Mol.-fixed
projection

Space-fixed
projection Description

N Λ MN Orbital-rotational angular momentum of the neutral molecule (AB)

S – MS Total electron spin of the neutral molecule

J – MJ Total angular momentum of the neutral molecule excluding nuclear
spin

I – MI Nuclear spin of the neutral molecule†

F – MF Total angular momentum of the neutral molecule†

N+ Λ+ M+
N Orbital-rotational angular momentum of the molecular ion (AB+)

S+ – M+
S Total electron spin of the molecular ion

J+ – M+
J Total angular momentum of the molecular ion excluding nuclear

spin

I+ – M+
I Nuclear spin of the molecular ion†

F+ – M+
F Total angular momentum of the molecular ion†

l – ml Orbital angular momentum (partial wave) of the photoelectron

s – ms Spin of the photoelectron (s = 1/2)

1 – µ0 Angular momentum due to the electric-dipole interaction
with the electromagnetic field

k q p Total orbital angular momentum transferred to/from the molecule
in the ionization process (p = −ml + µ0)

u – w Total angular momentum transferred to/from
the molecule in the ionization process (w = −ms + p)

†Only used in the hfs-resolved photoionization model (Sec. 5.2.2).

5.2.1 Fine-structure effects in molecular photoionization

In order to study spin-rotational, i.e. fine-structure effects, in molecular photoionization, we express
the quantum states of the neutral molecule |ψAB〉 and the molecular ion |ψAB+〉 in Hund’s case (b)
bases as |nΛ, v,NΛSJMJ〉 and

∣∣n+Λ+, v+, N+Λ+S+J+M+
J

〉
, respectively. Here, n (n+) and v (v+)

denote electronic and the vibrational quantum number in the neutral molecule (molecular ion). The
angular momentum quantum numbers have their usual meanings summarized in Tab. 5.1. The state
of the photoelectron |ψe−〉 is expressed as |s,ms〉 |l,ml〉, a tensor product of its spin state and its
orbital angular momentum state. The former is characterized by the single-electron spin s = 1/2 with
associated space-fixed projection ms. The latter, which is also referred to as the electron “partial
wave” in the terminology of scattering processes, is given by the quantum number l for the magnitude
of the electron orbital angular momentum and the corresponding projection ml on the space-fixed
z-axis.

The quantity P (J, J+) may then be written as2

P (J, J+) =
∞∑
l=0

l∑
ml=−l

s∑
ms=−s

J∑
MJ=−J

J+∑
M+
J =−J+

∣∣∣ 〈n+Λ+, v+, N+Λ+S+J+M+
J

∣∣ 〈s,ms| 〈l,ml|

µ̂ |nΛ, v,NΛSJMJ〉
∣∣∣2. (5.7)

We follow the approach of Xie and Zare [132] and identify the electric-dipole operator µ̂ with a spherical
tensor T1

µ0
as well as the photoelectron state 〈l,ml| with a spherical tensor Tl

−ml . We then contract

2From here on, the parentheses around the bras to the left of the transition operator are omitted, as it is clear from
their physical meaning that they are to be regarded as a single entity.
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the product of these two spherical tensors according to spherical tensor algebra [61, 77, 60],

Tl
−ml ⊗ T1

µ0
=

l+1∑
k=|l−1|

Ckpl−ml1µ0
Tk
p, (5.8)

where p = −ml + µ0. Here and in the following, symbols as Cjmj1m1j2m2
stand for the Clebsch-Gordan

coefficient 〈j1m1, j2m2|j1j2jm〉, which is expressed in terms of a Wigner 3j-symbol as

Cjmj1m1j2m2
= 〈j1m1, j2m2|j1j2jm〉 = (−1)j1−j2+m

√
2j + 1

(
j1 j2 j

m1 m2 −m

)
. (5.9)

The spherical tensor operator Tk
p newly introduced in (5.8) describes the combined effect of absorbing

electromagnetic radiation via the electric-dipole operator and ejecting a photoelectron in the state
|l,ml〉.

The term with k = l does not contribute to the sum in (5.7) because of parity selection rules and may
be omitted [132, 131]. The matrix element in (5.7) is thus expressed as,

〈
n+Λ+, v+, N+Λ+S+J+M+

J

∣∣ 〈s,ms| 〈l,ml| µ̂ |nΛ, v,NΛSJMJ〉

=
∑
k=l±1

Ckpl−ml1µ0

〈
n+Λ+, v+, N+Λ+S+J+M+

J

∣∣ 〈s,ms|Tk
p |nΛ, v,NΛSJMJ〉 , (5.10)

where negative values for k are to be excluded.

Since the tensor Tk
p does not operate on the spin state, we decouple spin and orbital-rotational angular

momenta in the molecular quantum states, i.e., we express the spin-rotational state of the molecular
ion and its neutral precursor in the tensor product basis of pure spin and rotational-vibronic states
according to

|nΛ, v,NΛSJMJ〉 =
∑

MN ,MS

CJMJ
NMNSMS

|nΛ, v,NΛMN , SMS〉 , (5.11a)

〈
n+Λ+, v+, N+Λ+S+J+M+

J

∣∣ =
∑

M+
N ,M

+
S

C
J+M+

J

N+M+
NS

+M+
S

〈
n+Λ+, v+, N+Λ+M+

N , S
+M+

S

∣∣ . (5.11b)

The transition matrix element in (5.10) then reads,

〈
n+Λ+, v+, N+Λ+S+J+M+

J

∣∣ 〈s,ms|Tk
p |nΛ, v,NΛSJMJ〉

=
∑

MN ,MS

∑
M+
N ,M

+
S

CJMJ
NMNSMS

C
J+M+

J

N+M+
NS

+M+
S〈

n+Λ+, v+, N+Λ+M+
N , S

+M+
S

∣∣ 〈s,ms|Tk
p |nΛ, v,NΛMN , SMS〉 .

(5.12)

Exploiting that Tk
p does not operate on the spin states, we separate the matrix element on the last

line of the above expression into a rotational-vibronic and a pure spin factor:

〈
n+Λ+, v+, N+Λ+M+

N , S
+M+

S

∣∣ 〈s,ms|Tk
p |nΛ, v,NΛMN , SMS〉

=
〈
n+Λ+, v+, N+Λ+M+

N

∣∣∣Tk
p

∣∣∣nΛ, v,NΛMN

〉 (〈
S+M+

S

∣∣ 〈s,ms|
)
|SMS〉 . (5.13)
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In order to calculate the rotational-vibronic factor, we transform the spherical tensor operator Tk
p from

space-fixed to molecule-fixed coordinates using a Wigner rotation matrix,

Tk
p =

k∑
q=−k

[D̂kpq]∗T′
k
q , (5.14)

where the superscript ′ has been added to indicate that this tensor refers to molecule-fixed coordi-
nates.

The Wigner rotation matrix involves only the angular coordinates, whereas the tensor T′kq operates
only on the vibronic state. Therefore, we have:〈

n+Λ+, v+, N+Λ+M+
N

∣∣∣Tk
p

∣∣∣nΛ, v,NΛMN

〉
=

k∑
q=−k

〈
n+Λ+, v+, N+Λ+M+

N

∣∣∣ [D̂kpq]∗T′kq ∣∣∣nΛ, v,NΛMN

〉
(5.15)

=
k∑

q=−k

〈
n+Λ+, v+

∣∣∣T′kq ∣∣∣nΛ, v
〉〈

N+Λ+M+
N

∣∣∣ [D̂kpq]∗ ∣∣∣NΛMN

〉
. (5.16)

Upon substituting the angular states of the neutral molecule and the ion, which are themselves given
by Wigner rotation matrices,

〈φ θ χ |NΛMN 〉 =

√
2N + 1

8π2

[
D

(N)
MNΛ(φ, θ, χ)

]∗
, (5.17a)

〈
N+Λ+M+

N

∣∣φ θ χ〉 =

√
2N+ + 1

8π2
D

(N+)

M+
NΛ+

(φ, θ, χ), (5.17b)

we obtain for the angular part in (5.16) an integral over a product of three Wigner rotation matrices,
which accounts for [62, 60]:

〈
N+Λ+M+

N

∣∣∣ [D̂kpq]∗ ∣∣∣NΛMN

〉
=
√

2N+ + 1
√

2N + 1(−1)M
+
N−Λ+

(
N+ k N

−M+
N p MN

)(
N+ k N

−Λ+ q Λ

)
. (5.18)

Because of the second Wigner 3j-symbol, this expression vanishes for all values of q but q = Λ+ − Λ =: ∆Λ.
Hence, only this value contributes to the sum in (5.16) and we may write〈
n+Λ+, v+, N+Λ+M+

N

∣∣∣Tk
p

∣∣∣nΛ, v,NΛMN

〉
=
〈
n+Λ+, v+

∣∣∣T′k∆Λ

∣∣∣nΛ, v
〉√

2N+ + 1
√

2N + 1(−1)M
+
N−Λ+

(
N+ k N

−M+
N p MN

)(
N+ k N

−Λ+ ∆Λ Λ

)
.

(5.19)

Having calculated the rotational-vibronic part of (5.13), we now turn to the spin part. To this end, we
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couple the spin of the ion and the photoelectron to get the total electronic spin after ionization,

〈
S+M+

S , sms

∣∣ =
S++s∑

Stot=|S+−s|

Stot∑
MStot=−Stot

C
StotMStot

S+M+
S sms

〈StotMStot | , (5.20)

Assuming orthonormal spin states, we thus obtain for the spin factor in (5.13):

〈
S+M+

S , sms

∣∣SMS

〉
=

S++s∑
Stot=|S+−s|

Stot∑
MStot=−Stot

C
StotMStot

S+M+
S sms

〈StotMStot |SMS〉 (5.21)

=
S++s∑

Stot=|S+−s|

Stot∑
MStot=−Stot

C
StotMStot

S+M+
S sms

δStotSδMStotMS
(5.22)

= CSMS

S+M+
S sms

. (5.23)

Collecting these results and substituting them into (5.10), the complete matrix element for spin-
rotation-resolved photoionization transitions is:

〈
n+Λ+, v+, N+Λ+S+J+M+

J

∣∣ 〈s,ms| 〈l,ml| µ̂ |nΛ, v,NΛSJMJ〉

=
√

2N+ + 1
√

2N + 1
√

2S + 1
√

2J+ + 1
√

2J + 1(−1)l−1+p+N+N+−Λ+−S−s+M+
J +MJ

∑
k=l±1

√
2k + 1

(
l 1 k

−ml µ0 −p

)〈
n+Λ+, v+

∣∣∣T′k∆Λ

∣∣∣nΛ, v
〉( N+ k N

−Λ+ ∆Λ Λ

)
∑

M+
S ,MS

∑
M+
N ,MN

(−1)M
+
N+MS

(
N+ S+ J+

M+
N M+

S −M+
J

)(
N S J

MN MS −MJ

)
(
N+ k N

−M+
N p MN

)(
S+ s S

M+
S ms −MS

)
,

(5.24)

where the Clebsch-Gordan coefficients have been replaced by Wigner 3j-symbols.

In principle, this matrix element completely describes the fine-structure-resolved photoionization pro-
cess and could (when substituted in (5.7)) be used for analyzing measured photoionization and pho-
toelectron spectra and predicting fine-structure-resolved photoionization line intensities.

However, the complexity of the above expression hinders a deeper insight into the physics of the
photoionization process and the multiple sums render the evaluation of this expression time consuming
even when working with a computer algebra system.

Fortunately, the matrix element may be simplified considerably when exploiting the properties of the
Wigner 3j-symbols. Moreover, the expression obtained in this way may be further simplified when
calculating its absolute value summed over the projection quantum numbers appearing in (5.7). In
that way, an expression more convenient for numerical evaluation as well as better comprehensible
regarding its physical insight is obtained.

We first consider the sums over M+
S ,MS ,M

+
N ,MN on the last and next-to-last line in (5.24). Using

the symmetries (equation (2.29) and (2.30) in [61]) and the selection rules of the Wigner 3j-symbols,
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the phase factor appearing in this term may be separated from the sums:

∑
M+
S ,MS

∑
M+
N ,MN

(−1)M
+
N+MS

(
N+ S+ J+

M+
N M+

S −M+
J

)(
N S J

MN MS −MJ

)
(
N+ k N

−M+
N p MN

)(
S+ s S

M+
S ms −MS

)

= (−1)p+N
++k+S+J+MJ

∑
M+
S ,MS

∑
M+
N ,MN

(
J+ N+ S+

−M+
J M+

N M+
S

)(
J N S

MJ −MN −MS

)
(
N+ k N

M+
N −p −MN

)(
S+ s S

M+
S ms −MS

) (5.25)

Applying now the relation between Wigner 9j- and 3j-symbols given in Appendix C.2, the quadruple
sum in (5.25) is expressed in form of a 9j-symbol as

∑
M+
S ,MS

∑
M+
N ,MN

(
J+ N+ S+

−M+
J M+

N M+
S

)(
J N S

MJ −MN −MS

)(
N+ k N

M+
N −p −MN

)(
S+ s S

M+
S ms −MS

)

=
k+s∑

u=|k−s|

(2u+ 1)

(
J+ u J

−M+
J w MJ

)(
u k s

w −p ms

)
J+ u J

N+ k N

S+ s S

 . (5.26)

Here, the angular momentum quantum number u with the associated space-fixed projection w (given
by w = −ms + p) has been introduced. u represents the resultant of the coupling of k and s. Its
physical meaning is described further below.

Substituting these results into (5.24), we obtain for the transition matrix element

〈
n+Λ+, v+, N+Λ+S+J+M+

J

∣∣ 〈s,ms| 〈l,ml| µ̂ |nΛ, v,NΛSJMJ〉

=
√

2N+ + 1
√

2N + 1
√

2S + 1
√

2J+ + 1
√

2J + 1(−1)l−1−Λ++N+J−s+2MJ+M+
J∑

k=l±1

(−1)k
√

2k + 1

(
l 1 k

−ml µ0 −p

)〈
n+Λ+, v+

∣∣∣T′k∆Λ

∣∣∣nΛ, v
〉( N+ k N

−Λ+ ∆Λ Λ

)

k+s∑
u=|k−s|

(2u+ 1)

(
J+ u J

−M+
J w MJ

)(
u k s

w −p ms

)
J+ u J

N+ k N

S+ s S

 .

(5.27)
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According to (5.7), the transition probability is thus:

P (J, J+) = (2N+ + 1)(2N + 1)(2S + 1)(2J+ + 1)(2J + 1)
∑
l

∑
ml

∑
ms

∑
MJ ,M

+
J∣∣∣∣∣∣∣

∑
k=l±1

(−1)k
√

2k + 1

(
l 1 k

−ml µ0 −p

)〈
n+Λ+, v+

∣∣∣T′k∆Λ

∣∣∣nΛ, v
〉( N+ k N

−Λ+ ∆Λ Λ

)

k+s∑
u=|k−s|

(2u+ 1)

(
J+ u J

−M+
J w MJ

)(
u k s

w −p ms

)
J+ u J

N+ k N

S+ s S


∣∣∣∣∣∣∣
2

. (5.28)

When calculating the square of the absolute magnitude in the expression above, several cross terms
due to the sums over k and u appear. However, since we are summing over all possible values of MJ

and M+
J , these cross terms vanish because of the orthogonality of the 3j-symbols (equation (2.32) in

[61]). Equation (5.28) hence may be simplified3 to:

P (J, J+) = (2N+ + 1)(2N + 1)(2S + 1)(2J+ + 1)(2J + 1)∑
l

∑
k=l±1

(2k + 1)

(
N+ k N

−Λ+ ∆Λ Λ

)2 ∣∣∣〈n+Λ+, v+
∣∣∣T′k∆Λ

∣∣∣nΛ, v
〉∣∣∣2

k+s∑
u=|k−s|

(2u+ 1)


J+ u J

N+ k N

S+ s S


2∑
ml

(
l 1 k

−ml µ0 −p

)2∑
ms

(
u k s

w −p ms

)2

. (5.29)

For linearly polarized radiation (as in our experiment), we have µ0 = 0 in a suitably chosen coordinate
system. The sums over ml and ms then account for 1/(3(2k + 1)) and we get:

P (J, J+) =
1
3

(2N+ + 1)(2N + 1)(2S + 1)(2J+ + 1)(2J + 1)
∑
l

∑
k=l±1

(
N+ k N

−Λ+ ∆Λ Λ

)2

∣∣∣〈n+Λ+, v+
∣∣∣T′k∆Λ

∣∣∣nΛ, v
〉∣∣∣2 k+s∑

u=|k−s|

(2u+ 1)


J+ u J

N+ k N

S+ s S


2

. (5.30)

The physics described by equation (5.30) may be understood as follows: the photoelectron ejected in
the ionization process is described as a partial wave l. The probability of a transition from a certain
neutral to a certain ionic state is given by a sum over all partial waves. The partial waves possible
for a particular electronic state of the ion and the neutral precursor are constrained by the parity of
these states. If neutral and ionic states have the same parity (± ↔ ± transitions), only odd values
of l occur, i.e., terms with l = 1, 3, 5, . . . appear in the sum in (5.30). In case of unequal parities of
neutral and ionic state (± ↔ ∓), only even values are allowed for l, i.e., the sum over l includes the
values l = 0, 2, 4, . . . [132].

3The complete derivation of this simplification is rather lengthy and thus not reproduced here. In essence, the sums
over u and k are expanded and the relation |x1z1 + x2z2|2 = x2

1|z1|2 + x2
2|z2|2 + x1x2|z1z

∗
2 − z∗1z2| for x1, x2 ∈ R and

z1, z2 ∈ C is applied. Then, the sums over MJ , M+
J are evaluated and the orthogonality of the 3j-symbols is used to show

that the cross terms vanish.
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Additional to the angular momentum carried by the departing photoelectron, the molecule also ex-
changes angular momentum with the electric field as described by the electric-dipole operator. The
angular momenta associated with the photoelectron partial wave and the electric-dipole excitation are
thus coupled to form k. Since the dipole operator is a first-rank spherical tensor, k exhibits the values
k = l − 1 or k = l + 1 with k = l forbidden because of parity selection rules [132, 131]. We thus have
k = 0, 2, 4, . . . for ± ↔ ± transitions and k = 1, 3, 5, . . . for ± ↔ ∓ transitions [132].

The value of k determines the maximal change of the orbital-rotational angular momentum in the
photoionization process, i.e., |∆N | = |N+−N | ≤ k, as may be seen from the 3j-symbol or the middle
row of the 9j-symbol in (5.30). Transitions with k = 0, e.g., do not allow any change in the orbital-
rotational angular momentum, i.e., N+ = N . For transitions with k = 2, the values ∆N = 0,±1 and
±2 are possible (with ∆N = ±1 forbidden for Σ-Σ transitions). Which transitions occur, as well as
their relative abundance is determined by the absolute value of the vibronic transition matrix elements〈
n+v+

∣∣∣T′k∆Λ

∣∣∣n, v〉. To calculate these matrix elements, the electronic structure of the molecular ion
and its precursor must be known. Thus, they either may be obtained from an ab-initio calculation
or treated as free parameters when describing a measured photoelectron spectrum. Usually, only the
vibronic transition matrix elements with the few lowest values of k (such as k = 0 and k = 2)
contribute substantially to the total transition probability and for higher k-values they essentially
vanish. Hence, only a few free parameters are needed to describe the intensities in a rotationally
resolved photoelectron spectrum of a diatomic molecule.

As the (squared) absolute values of the vibronic transition matrix elements have first appeared as free
parameters in the photoionization model by Buckingham, Orr and Sichel (“BOS model”, [148]) they
are known as the “BOS coefficients” Ck, i.e.,

Ck =
∣∣∣〈n+v+

∣∣∣T′k∆Λ

∣∣∣n, v〉∣∣∣2 . (5.31)

For our purposes, the vibronic transition matrix elements are just treated as free parameters. If the
electronic structure of the system considered is known, they may be calculated by expressing the
electronic state of the molecular ion and its neutral precursor as well as the photoelectron partial
wave and the electric-dipole operator in the molecule-fixed frame [148]. An intuitive understanding
of the vibronic transition matrix elements is achieved when approximately describing the electronic
state of the molecule by a single Slater determinant in the Hartree-Fock formalism and assuming that
the photoelectron is ejected from one particular molecular orbital, while the others are not affected by
the ionization process (Koopman’s theorem). We may then picture the removal of an electron within
a set of occupied electron states as creating a “hole” among these states. The quantum number k may
then be associated with the angular momentum of this hole [143].

As well as the orbital angular momentum l, the photoelectron also carries its spin s = 1/2. This spin
is coupled to k to form u. The possible values for u are thus u = |k− 1/2| and u = k+ 1/2. Similar to
k determining the change in the orbital-rotational angular momentum, u determines the change in the
total angular momentum (excluding nuclear spin) according to the selection rule |∆J | = |J+−J | ≤ u,
as inferred from the first row of the 9j-symbol in (5.30). For k = 0, e.g., only u = 1/2 is possible and
thus only transitions with |∆J | = 1/2 are allowed. For k = 2, on the other hand, u = 3/2 and u = 5/2
are possible, allowing values of |∆J | up to 5/2.
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Since the values of u are determined by the values of k, the vibronic transition matrix elements〈
n+v+

∣∣∣T′k∆Λ

∣∣∣n, v〉 describing the relative intensities of different rotational lines in a photoelectron
spectrum also determine the relative intensities of transitions of different fine-structure components.
Hence, our model describes the spin-rotational effects in photoionization without additional free pa-
rameters.

Summarizing, we see that the whole interplay between the different angular momenta is expressed by
the 9j-symbol in (5.30) in a compact way: the couplings in the ionic and the neutral state are expressed
by the first and the last column, respectively. The coupling of the angular momenta transferred to or
from the molecule is described by the middle column: the spin of the photoelectron s is coupled to k
(the angular momentum associated with the photoelectron and the interaction with the electromag-
netic field) to form u. The rows of the 9j-symbol represent the angular momentum transfer during
photoionization: according to the first row, u determines the change in the total angular momentum
(excluding nuclear spin), whereas k decides on the change in the orbital-rotational angular momentum
(second row). Finally, s describes the spin removed from the molecule in the ionization process, as
seen from the last row in the 9j-symbol.

Besides elucidating the role of the electron spin in molecular photoionization and its effect on the
probability of transitions between particular fine-structure levels in photoionization, equation (5.30)
also provides an efficient way for numerical calculation of these transition probabilities as compared
to direct evaluation of the transition matrix element in (5.24) and summation over projection angular
momentum quantum numbers (as in (5.7)), since the computationally demanding multiple sums are
largely avoided.

Our result may be compared with the findings of Dixit et al. [159]. Indeed, when taking the squared
absolute value of their matrix element (equation (6) in [159]), integrating over the entire unit sphere
and making use of orthogonality properties of Wigner symbols and spherical harmonics, the result in
our equation (5.30) may be reproduced in essence.

Often, the neutral molecule AB is in a singlet state, i.e, S = 0. If so, we have J = N and S+ =
s = 1/2 and our result may be simplified even further. The 9j-symbol then equals a 6j-symbol (see
equation (4.25) in [61]),


J+ u N

N+ k N

S+ s 0


2

=
1

2(2N + 1)

{
J+ u N

k N+ s

}2

, (5.32)

and equation (5.30) becomes,

PS=0(N, J+) =
1
6

(2N + 1)(2N+ + 1)(2J+ + 1)
∑
l

∑
k=l±1

(
N+ k N

−Λ+ ∆Λ Λ

)2

∣∣∣〈n+Λ+, v+
∣∣∣T′k∆Λ

∣∣∣nΛ, v
〉∣∣∣2 k+s∑

u=|k−s|

(2u+ 1)

{
J+ u N

k N+ s

}2

. (5.33)
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5.2.2 Hyperfine-structure effects in molecular photoionization

Having developed a photoionization model describing the relative intensity of transitions between fine-
structure levels in Hund’s case (b), i.e., spin-rotation components, we now extend this model to cover
transitions between different hyperfine levels in the photoionization process. To that end, we need to
consider the role of the nuclear spin in the neutral and ionic levels. We assume that both of these
levels may be described with the Hund’s case (bβJ ) angular momentum coupling scheme as discussed
in Ch. 3. The transition probability is then proportional to the quantity

P (F, F+) =
∞∑
l=0

l∑
ml=−l

s∑
ms=−s

F∑
MF=−F

F+∑
M+
F =−F+

∣∣ 〈n+Λ+, v+, N+Λ+S+J+I+F+M+
F

∣∣ 〈s,ms| 〈l,ml|

µ̂ |nΛ, v,NΛSJIFMF 〉
∣∣2. (5.34)

Here, I and F (I+ and F+) denote the nuclear spin and the total angular momentum quantum number,
respectively, in the neutral (ionic) state. MF and M+

F denote the projection angular momentum
quantum numbers with respect to the space-fixed z-axis associated with F and F+ .

As outlined in Ch. 3, the coupled angular momentum states are expressed in the (decoupled) tensor
product basis of the spin-rotational-vibronic and the nuclear spin states as

|nΛ, v,NΛSJIFMF 〉 =
∑
MI

∑
MJ

CFMF
JMJIMI

|nΛ, v,NΛSJMJ , IMI〉 , (5.35a)

〈n+Λ+, v+, N+Λ+S+J+I+F+M+
F | =

∑
M+
I

∑
M+
J

C
F+M+

F

J+M+
J I

+M+
I

〈n+Λ+, v+, N+Λ+S+J+M+
J , I

+M+
I | .

(5.35b)

In this basis, the transition matrix element appearing in (5.34) accounts for

〈
n+Λ+, v+, N+Λ+S+J+I+F+M+

F

∣∣ 〈s,ms| 〈l,ml| µ̂ |nΛ, v,NΛSJIFMF 〉

=
∑

M+
I ,MI

∑
M+
J ,MJ

C
F+M+

F

J+M+
J I

+M+
I

CFMF
JMJIMI

〈n+Λ+, v+, N+Λ+S+J+M+
J , I

+M+
I | 〈s,ms| 〈l,ml|

µ̂ |nΛ, v,NΛSJMJ , IMI〉 .

(5.36)

Since the nuclear spin is neither affected by the absorption of electromagnetic radiation, nor by the
ejection of the photoelectron, we may separate the nuclear spin states from the remaining transition
matrix element, obtaining

〈
n+Λ+, v+, N+Λ+S+J+M+

J , I
+M+

I

∣∣ 〈s,ms| 〈l,ml| µ̂ |nΛ, v,NΛSJMJ , IMI〉

=
〈
I+M+

I

∣∣ IMI

〉 〈
n+Λ+, v+, N+Λ+S+J+M+

J

∣∣ 〈s,ms| 〈l,ml| µ̂ |nΛ, v,NΛSJMJ〉 (5.37)

= δI+IδM+
I MI

〈
n+Λ+, v+, N+Λ+S+J+M+

J

∣∣ 〈s,ms| 〈l,ml| µ̂ |nΛ, v,NΛSJMJ〉 . (5.38)

For orthonormal nuclear spin states, the first factor, as indicated above, simply results in two Kronecker
deltas, expressing the conservation of the nuclear spin. The remaining transition matrix element is
known from equation (5.27) in the previous section. Substituting this result into (5.38), replacing the
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Clebsch-Gordan coefficients by 3j-symbols and evaluating the sum over M+
I yields:

〈
n+Λ+, v+, N+Λ+S+J+I+F+M+

F

∣∣ 〈s,ms| 〈l,ml| µ̂ |nΛ, v,NΛSJIFMF 〉

=
√

2N+ + 1
√

2N + 1
√

2S + 1
√

2J+ + 1
√

2J + 1
√

2F+ + 1
√

2F + 1δII+

(−1)l−1−Λ+−s+N+2J+J+−2I+MF+M+
F

∑
k=l±1

(−1)k
√

2k + 1

(
l 1 k

−ml µ0 −p

)

〈
n+Λ+, v+

∣∣∣T′k∆Λ

∣∣∣nΛ, v
〉( N+ k N

−Λ+ ∆Λ Λ

)
k+s∑

u=|k−s|

(2u+ 1)

(
u k s

w −p ms

)
J+ u J

N+ k N

S+ s S


∑

M+
J ,MJ ,MI

(−1)2MJ+M+
J

(
J+ u J

−M+
J w MJ

)(
J+ I F+

M+
J MI −M+

F

)(
J I F

MJ MI −MF

)
.

(5.39)

As in the previous section, we aim at a simpler expression for the product of 3j-symbols summed over
projection quantum numbers. The selection rules for the 3j-symbols imply the relations MJ = MF−MI

and M+
J = M+

F −MI . Therefore, the phase factor in the last line above is

(−1)2MJ+M+
J = (−1)2MF+M+

F −3MI = (−1)2MF+M+
F (−1)−2MI (−1)−MI . (5.40)

The nuclear-spin quantum number I may either be integer or half-integer. If I is integer, so are all
possible values for MI (MI = −I,−I + 1, ..., I), and vice versa if I is half-integer. For integer I (and
thus integer MI), we have (−1)−2MI = 1 for all possible MI . For half-integer I, we have (−1)−2MI = −1
for all possible MI .4 In either case, the value of (−1)−2MI does not depend on MI but only on I. We
may thus define a function η(I) according to,

η(I) :=

1 for integer I

−1 for half-integer I
(5.41)

and write the phase factor in (5.40) as (−1)2MJ+M+
J = (−1)2MF+M+

F η(I)(−1)−MI .

With these manipulations, the last line of equation (5.39) equals

∑
M+
J ,MJ ,MI

(−1)2MJ+M+
J

(
J+ u J

−M+
J w MJ

)(
J+ I F+

M+
J MI −M+

F

)(
J I F

MJ MI −MF

)
(5.42)

= (−1)2MF+M+
F η(I)

∑
M+
J ,MJ ,MI

(−1)−MI

(
J+ u J

−M+
J w MJ

)(
J+ I F+

M+
J MI −M+

F

)(
J I F

MJ MI −MF

)
,

where we made use of η(I) being independent of MI such that it may be put in front of the sums.

The term within the sums on the right-hand side of the above equation has the form of the general
relation between Wigner 3j- and 6j-symbols shown in Appendix C.1. Applying equation (C.2) from

4Proof: let I = k/2 be half-integer with some odd integer number k. The possible values for MI are then MI =
−k/2,−k/2 + 1,−k/2 + 2, ..., k/2 or generally MI = −k/2 + n with n ∈ N. Therefore, (−1)−2MI = (−1)k−2n =
(−1)k(−1)−2n = −1× 1 = −1, since n is integer and k is integer and odd.
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this appendix, we obtain for the transition matrix element in (5.39)

〈
n+Λ+, v+, N+Λ+S+J+I+F+M+

F

∣∣ 〈s,ms| 〈l,ml| µ̂ |nΛ, v,NΛSJIFMF 〉

=
√

2N+ + 1
√

2N + 1
√

2S + 1
√

2J+ + 1
√

2J + 1
√

2F+ + 1
√

2F + 1δII+

(−1)l−1−Λ+−s+N+J+2J+−3I−F+−F+3MF+2M+
F η(I)∑

k=l±1

(−1)k
√

2k + 1

(
l 1 k

−ml µ0 −p

)〈
n+Λ+, v+

∣∣∣T′k∆Λ

∣∣∣nΛ, v
〉( N+ k N

−Λ+ ∆Λ Λ

)

k+s∑
u=|k−s|

(−1)−u+w(2u+ 1)

(
u k s

w −p ms

)
J+ u J

N+ k N

S+ s S


{
u J J+

I F+ F

}(
F+ u F

−M+
F w MF

)
.

(5.43)

Substituting this result into (5.34) and employing |η(I)| = 1 yields

P (F, F+) = (2N+ + 1)(2N + 1)(2S + 1)(2J+ + 1)(2J + 1)(2F+ + 1)(2F + 1)δII+

∑
l

∑
ml

∑
ms

∑
MF ,M

+
F∣∣∣∣∣ ∑

k=l±1

(−1)k
√

2k + 1

(
l 1 k

−ml µ0 −p

)〈
n+Λ+, v+

∣∣∣T′k∆Λ

∣∣∣nΛ, v
〉( N+ k N

−Λ+ ∆Λ Λ

)

k+s∑
u=|k−s|

(−1)−u+w(2u+ 1)

(
u k s

w −p ms

)
J+ u J

N+ k N

S+ s S

{
u J J+

I F+ F

}(
F+ u F

−M+
F w MF

)∣∣∣∣∣
2

. (5.44)

Like in the previous section, the cross terms in the above equation vanish when summed over all possible
values for MF and M+

F due to the orthogonality of the Wigner 3j-symbols.5 Hence, we obtain

P (F, F+) = (2N+ + 1)(2N + 1)(2S + 1)(2J+ + 1)(2J + 1)(2F+ + 1)(2F + 1)δII+∑
l

∑
k=l±1

(2k + 1)
∣∣∣〈n+Λ+, v+

∣∣∣T′k∆Λ

∣∣∣nΛ, v
〉∣∣∣2( N+ k N

−Λ+ ∆Λ Λ

)2

k+s∑
u=|k−s|

(2u+ 1)


J+ u J

N+ k N

S+ s S


2{

u J J+

I F+ F

}2

∑
ml

(
l 1 k

−ml µ0 −p

)2∑
ms

(
u k s

w −p ms

)2

. (5.45)

The terms on the last line above account for 1/(3(2k + 1)) for linearly polarized radiation (µ0 = 0),

5Similarly as in the previous section, this can be shown in a rather lengthy calculation, where the sums inside the
absolute value function in (5.44) are written explicitly. Then the terms are summed over MF and M+

F while applying
the orthogonality properties of the Wigner 3j-symbols (equation (2.32) in [61]).
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i.e.,

P (F, F+) =
1
3

(2N+ + 1)(2N + 1)(2S + 1)(2J+ + 1)(2J + 1)(2F+ + 1)(2F + 1)δII+

∑
l

∑
k=l±1

∣∣∣〈n+Λ+, v+
∣∣∣T′k∆Λ

∣∣∣nΛ, v
〉∣∣∣2( N+ k N

−Λ+ ∆Λ Λ

)2

k+s∑
u=|k−s|

(2u+ 1)


J+ u J

N+ k N

S+ s S


2{

u J J+

I F+ F

}2

. (5.46)

In essence, we have reproduced in (5.46) the result from (5.30) with an additional Wigner 6j-symbol
describing the influence of the nuclear spin, i.e., the hyperfine-structure effects. Since the photoelectron
does not carry nuclear spin, the same selection rule as for ∆J applies also for ∆F , namely |∆F | = |F+−
F | ≤ u. Once more, due to the separability of the transition matrix element, the relative intensities
of transitions between particular hyperfine levels in the neutral molecule and the molecular ion are
determined by the magnitude of the vibronic transition matrix elements, which also determine the
intensity of different rotational lines in a photoelectron spectrum. Thus, no additional free parameters
need to be introduced when extending the BOS model for the rotational structure in photoelectron
spectra to hyperfine-structure effects.

Expressions related to those derived above have been found for high-resolution Rydberg spectra of
rare gas atoms and hydrogen molecules within the frame work of MQDT (see, e.g., [154, 155]).

5.2.3 Example 1: Fine-structure effects in the photoionization of oxygen

In order to validate our model and to illustrate its physical content, we applied it to a measured
photoelectron spectrum. One of the few spin-rotation-resolved photoelectron spectra reported in the
literature is the PFI-ZEKE spectrum of oxygen recorded by Palm and Merkt [152]. They presented
a spectrum of the O2 X3Σ−g → O+

2 b4Σ−g band with several spin-rotation-resolved lines. Since both,
the neutral as well as the ionic state of the oxygen molecule exhibit a non-vanishing electron spin, this
species is well-suited for testing our model.

Often, PFI-ZEKE spectra are affected by channel interactions and models for direct photoionization
are not necessarily applicable to them [160]. For the transitions studied in [152], however, the authors
state that “the observed line intensities are not dominated by channel interactions” and we may thus
attempt to interpret this spectrum with our model.

The energy level structure of neutral O2 in the electronic ground state X3Σ−g and of the O+
2 molecular

ion in the b4Σ−g state is shown in Fig. 5.1. We are interested in the Q(1) line of the v = 0 → v+ = 0
band, i.e., in the transition v = 0, N = 1 → v+ = 0, N+ = 1, as this transition has been measured
with the highest resolution. Neutral O2 exhibits an electron spin S = 1 in the X3Σ−g state, such that
there are three spin-rotation components for N = 1: J = 0, 1 and 2. For O+

2 in the b4Σ−g state, the
total electron spin is S+ = 3/2 giving rise to three spin-rotation components with J+ = 1/2, 3/2 and
5/2. Hence, there are in total nine different transitions between the fine-structure components of the
neutral and ionic state making up the Q(1) line.
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Figure 5.1. Energy level structure of the oxygen molecular ion and the neutral oxygen
molecule. The electron spin gives rise to spin-rotational fine structure in both, the ionic b4Σ−g as well
as the neutral X3Σ−g state. Levels are labelled by their total angular momentum quantum number, J and
J+, for the neutral and ionic state, respectively, as well as their relative term value (adapted from [152]).

The photoelectron spectrum of the fine-structure-resolved Q(1) line measured by Palm and Merkt
[152] is reproduced in Fig. 5.2 (a). This spectrum shows three well-separated peaks spaced by about
2 cm−1. These peaks reflect the spin-rotation splitting in the X3Σ−g state of neutral O2 with a spacing
of about 2 cm−1 between adjacent spin-rotation components. The peaks are themselves composed of
three partially overlapping lines, which stem from the spin-rotation components of the ionic b4Σ−g
state that are spaced by about 0.4 cm−1, totaling to the nine spin-rotation transitions of the Q(1)
line.

To compare the measured spectrum with our model, the experimental line intensities have been ex-
tracted from the spectrum by fitting it with a set of Gaussian peaks. The empirical intensities found
this way are shown as blue circles in the stick spectrum of Fig. 5.2 (b).

Even without any further calculations, we may rationalize this spectrum with our model. From the
analysis of rotationally, but not fine-structure-resolved spectra [161], it is known that the photoion-
ization of oxygen mainly occurs via the vibronic transition matrix element

〈
n+Λ+, v+

∣∣∣T′k∆Λ

∣∣∣nΛ, v
〉

with k = 0 and to a smaller extent via the one with k = 2 indicating that ionization occurs out of a
molecular orbital with a predominant s character. The absolute value of the vibronic transition matrix
elements in equation (5.30) is thus large for k = 0 and substantially smaller for k = 2. For k > 2, the
matrix element essentially vanishes.

According to our model, we have for k = 0, the value u = 1/2, allowing lines with ∆J = ±1/2 and we
may thus infer that such lines might show high intensities. Indeed the lines with the highest intensity
within each of three peaks for J = 0, 1 and 2 obey this criterion. On the contrary, transitions with
|∆J | > 1/2 are only possible via the k = 2 vibronic matrix element with a considerably reduced
magnitude. Indeed, such lines show only low to medium intensities.

For a more in-depth analysis and in order to validate our model, we fitted the normalized intensities
shown as blue circles in the stick spectrum of Fig. 5.2 (b) to the relative ionization rates as given by the
transition probabilities from equation (5.30) substituted into equation (5.6). For the Boltzmann factor
in (5.6), we used the relative term values shown in Fig. 5.1 together with the rotational temperature
of 7 K reported in [152]. The two squared absolute values of the vibronic transition matrix elements∣∣∣〈n+Λ+, v+

∣∣∣T′k∆Λ

∣∣∣nΛ, v
〉∣∣∣2 for k = 0, 2, i.e., the two BOS coefficients C0 and C2 were treated as free

parameters. The intensities obtained from our model with this fit are shown as green diamonds in
Fig. 5.2 (b). As seen from this figure, our model reproduces the measured photoionization intensities



5.2 Direct photoionization 103

�4 �2 0 2 4 6

0

1

2

3

4

relative wavenumber �cm�1�

in
te
ns
ity
�arb.

un
its
�

J � 1

J � 2

J � 0

J� � 1�2 5�2 3�2

J� � 1�2 5�2 3�2

J� � 1�2 5�2 3�2

�a�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

� �

�

�

� �

�

�

�

�

�

�

�

�4 �2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

relative wavenumber �cm�1�

no
rm
al
iz
ed

in
te
ns
ity

�b�

Figure 5.2. Fine-structure effects in molecular photoionization. (a) Measured fine-structure-
resolved photoelectron spectrum of the O2 X3Σ−g (v = 0, N = 1)→ O+

2 b4Σ−g (v+ = 0, N+ = 1) transition
recorded by Palm and Merkt (reproduced from [152]). Peaks are labelled with the total neutral-state angu-
lar momentum quantum number J above and the corresponding ionic one J+ below the assignment bars.
The spectrum shows three well-separated peaks reflecting the three spin-rotation components in the neu-
tral X3Σ−g state. These peaks are themselves composed of three partially overlapping lines associated with
the spin-rotation levels in the ionic b4Σ−g state. (b) Stick spectrum showing the normalized intensities of
individual spin-rotation-resolved transitions. The experimental intensities extracted from the spectrum in
(a) are shown as blue circles. The green diamonds show a fit of our photoionization model to the measured
intensities with the two BOS coefficients C0 and C2 treated as free parameters. Good agreement between
measured and theoretically calculated intensities is observed. The red squares show the spin-rotation re-
solved intensities as obtained from our model when using the values of C0/C2 = 0.6/0.4 determined in [161]
from intensities of a rotationally, but not fine-structure-resolved spectrum. Although, no free parameter
affecting the relative intensities is left, these are well reproduced by our model. (For clarity, the sticks
showing the theoretically calculated line intensities are horizontally offset by 0.06 cm−1 and 0.12 cm−1. All
intensities are normalized to unity for the most intense transition.)
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well. Furthermore, the ratio of the two BOS coefficients, which entails the relative line intensities,6

obtained from our fit accounts for C2/C0 = 0.3/0.7. This result is in agreement with the values of
C2 = 0.4 ± 0.1, C0 = 0.6 ± 0.1 found by Hsu et al. (Fig. 7 in [161]) in the analysis of the relative
intensities of different rotational—instead of fine-structure—lines.

As a further test of our model, we directly substituted the BOS coefficients from [161] into equa-
tion (5.30). Though, in this way no free parameter affecting the relative intensities of the lines appears
in the model and the only free parameter left is a global normalization factor, the line intensities
predicted by our model (red squares in Fig. 5.2 (b)) reproduces well the measured intensities. This
supports our assumption that the influence of the electron spin on transition probabilities in molecular
photoionization may be described without additional free parameters, i.e., that the transition matrix
element may be separated into a spin and a rovibronic factor according to angular momentum coupling
theory (see also [162]).

5.2.4 Example 2: Hyperfine-structure effects in the photoionization of nitrogen

We are not aware of any hyper-fine-structure-resolved photoelectron spectrum reported in the lit-
erature that could serve as a benchmark for our photoionization model. So, in order to illustrate
the implications of our model in its hfs-resolved form (equation (5.46)), we calculated the relative
intensities of hfs-resolved photoionization transitions of nitrogen. In particular, we studied the hfs
lines of the transition N2 X1Σ+

g N = 2 → N+
2 X2Σ+

g N+ = 4 as an illustrative example. A level
scheme is shown in Fig. 5.3. As the neutral electronic ground state of N2 is a singlet state, the to-
tal electron spin vanishes and we have N = J . The nuclear spin, by contrast, does not necessarily
vanish and we expect hyperfine levels characterized by the total angular momentum quantum num-
ber F = N + I,N + I − 1, . . . , |N − I|. According to the Pauli principle, the values I = 0 or 2 are
possible for N = 2. Being interested in hyperfine-structure effects, we study the later case here. The
N+

2 ion exhibits fine and hyperfine structure as discussed in Ch. 3, i.e., the rotational levels are split
by the spin-rotation interaction into two spin-rotation components labelled by the quantum number
J , which may take the two values J+ = N+ + 1/2 and J+ = N+ − 1/2. The spin-rotation lev-
els are split further into hyperfine levels associated with the quantum number F+ with the values
F+ = J+ + I+, J+ + I+ − 1, . . . , |J+ − I+|.

Like in the previous example of O2, the photoelectron spectrum of N2 is dominated by the vibronic
transition matrix elements

〈
n+Λ+, v+

∣∣∣T′k∆Λ

∣∣∣nΛ, v
〉

with k = 0 and k = 2. Transition matrix elements
with k > 2 show considerable reduced magnitude [166, 167] and are neglected here. For the N = 2→
N+ = 4 transitions, we have J = N = 2 and J+ = 9/2 or 7/2. Since for both of these transitions
we have |∆J | > 1/2, they may solely occur due to the k = 2 vibronic transition matrix element.
Hence, the relative magnitude of the two vibronic transition matrix elements with k = 0 and k = 2
is not relevant to predict relative intensities of these hyperfine-structure transitions and their relative
intensities are not subject to any free parameters.

The intensities calculated from equation (5.46) are shown in Fig. 5.4. Obviously, a propensity towards
transitions obeying the relation ∆J = ∆F is observed in these line intensities, i.e., the hyperfine-
structure-resolved ionizing transitions studied here are governed by a similar propensity rule as the

6The values of the BOS coefficients on an absolute scale are of no significance when analyzing relative line intensities.
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Figure 5.3. Level structure of the nitrogen molecular ion and the neutral nitrogen molecule.
The X2Σ+

g electronic ground state of N+
2 exhibits fine- and hyperfine-structure levels as discussed in Ch. 3. In

the X1Σ+
g ground state of neutral N2, the total electron spin vanishes and spin-rotational fine structure does

not occur. Coupling of the rotational angular momentum to the nuclear spin (I = 2 nuclear spin manifold
shown here) results in hyperfine levels denoted by F = 1, . . . , 4. (The energetic order of the hyperfine levels
in the neutral N2

1Σ+
g state has been estimated using electric-quadrupole coupling constants extrapolated

from spectroscopic data on the neutral N2 A3Σ+
u state and from N2 complexes [163, 164, 165].)

electric-quadrupole bound-bound transitions studied in Ch. 3. This finding reflects the similar treat-
ment of the hyperfine structure in our models for both of these processes: in both cases the hyperfine-
structure states are expressed in the tensor product basis of the fine-structure (spin-rotational) and
the nuclear spin states according to angular momentum algebra. As both, the electric-quadrupole
operator studied in Ch. 3, and the photoionization operator T′kq with k = 2 are second-rank spherical
tensors, the same angular momentum coupling coefficients (expressed as a Wigner 6j-symbols) appear
in the formulae governing the respective line intensities.
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Figure 5.4. Hyperfine-structure effects in molecular photoionization shown by the example of
the relative intensities of the N2 X1Σ+

g N = 2 → N+
2 X2Σ+

g N+ = 4 ionization transitions: chart of the
relative intensities of transitions between different hyperfine levels in the neutral N2 molecule and the
N+

2 molecular ion labelled by their total angular momentum quantum number F and F+, respectively.
(a) J+ = 9/2 spin-rotation component, (b) J+ = 7/2 spin-rotation component. The photoionization
transitions follow the propensity rule ∆J = ∆F , similar to the propensity found for electric-quadrupole
transitions between bound states discussed in Ch. 3. (For clarity, transitions with relative intensities < 10−3

have been suppressed.)
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5.3 Resonance-enhanced multiphoton ionization

5.3.1 Introduction

In the preceding section, a model for fine- and hyperfine-structure-resolved photoionization intensities
has been developed. Although this model describes the one-photon ionization satisfactorily, it is not
directly applicable to the [2+1’] REMPI scheme used in the experiments presented in Ch. 4 to produce
N+

2 ions.

Such a three-photon, two-colour REMPI scheme is sketched in Fig. 5.5: the neutral, diatomic molecule
AB is first excited from the electronic ground state to some neutral, electronically excited state (AB*)
by absorption of two photons at some (angular) frequency ω1. Thereafter, the molecule is ionized by
absorption of a third photon at a different frequency ω2 forming the molecular ion AB+.

Following this picture, we describe the [2+1’] REMPI scheme as a sequence of two independent pro-
cesses: a transition from the electronic-ground-state molecule AB to the neutral, electronic-excited
molecule AB* and a subsequent ionization of this molecule yielding the molecular ion AB+.

For the excitation step (AB → AB*), a model for hfs-resolved two-photon transitions between bound
states will be developed. With this model we may calculate the excitation rate R(AB → AB*) and
hence the population ρ′ of excited molecules AB*. The ionization of the excited molecules is then
described by our ionization model developed in the preceding section, with the excited-state population
ρ′ used in lieu of the thermal ground-state population (equation (5.5)) having appeared in the model
for direct ionization.

The excitation of the neutral molecules AB to AB* by polarized radiation leads to an aligned popula-
tion ρ′, meaning that the several Zeeman states of a certain spin-rotational or hfs level in the excited
state are unequally populated. Since so far isotropic populations have been implicitly assumed in our
photoionization model, the model needs to be adapted for these anisotropic populations.

These two effects, hfs-resolved two-photon transitions and ionization of molecules from anisotropic
populations, are first treated separately and later combined to a model for the [2+1’] REMPI process.
Finally, the implications of this model are illustrated by a couple of representative examples.

ρ+
!

ρ″!

ρ′ !

AB!

AB*!

AB+!

ω1!

ω2!

ω1!

Figure 5.5. Schematic view of a [2+1’] resonance-enhanced multiphoton ionization process.
The neutral, electronic-ground-state molecules AB are excited by absorption of two photons at some (an-
gular) frequency ω1 yielding electronic excited molecules AB*. Those are then ionized by absorption of a
third photon at a different frequency ω2, resulting in the molecular ions AB+. The populations associated
with AB, AB* and AB+ are denoted ρ′′, ρ′ and ρ+, respectively.



108 5 Fine- and hyperfine-structure effects in molecular photoionization

5.3.2 Excitation step: Hfs-resolved two-photon transitions

Two- and multiphoton transitions in diatomic molecules have been discussed in several publications,
e.g., by Bray and Hochstrasser [168], Mäınos [169], Lefebvre-Brion and Field [170] or Hippler [171].
These transitions follow the so-called “Göppert-Meyer mechanism” first described by Göppert-Meyer
in [172, 173]. Here, we will extend these results to cover hyperfine-structure-resolved transitions. Our
treatment covers 1Σ states as found in the [2+1’] REMPI of N2.

In essence, in a two-photon transition following the Göppert-Meyer mechanism, ground and excited
state are connected by two virtual one-photon transitions via an intermediate state. As excitation is
possible via different intermediate states, the several virtual transition routes are summed, weighted
by the inverse mismatch between the energy of the photons absorbed and the one-photon transition
energies.

Like for one-photon transitions, the transition rate Rg→e for the excitation of the molecule from the
ground state |g〉 to the excited state |e〉 is expressed as a factor depending on the intensity of the
radiation field and a factor specific to the transition addressed, namely the two-photon line strength
Sge [171]:

Rg→e ∝ (I0)2Sge. (5.47)

In contrast to one-photon transitions, the square of the radiation intensity I0 enters in the two-photon
transition rate.

The two-photon line strength factor Sge is given according to [171] as

Sge =
∑

Me,Mg

∣∣∣∣∣∑
i

1
ωig − ω1

〈e | eσ · µ̂ | i〉 〈i | eσ · µ̂ | g〉

∣∣∣∣∣
2

. (5.48)

Here, |i〉 is the intermediate state of the virtual one-photon transition route with the sum over i
including all accessible intermediate states. Mg and M e label the different Zeeman states in the
ground and the excited state, respectively, and ~ωig is the energy difference between the ground and
the intermediate state. Therefore, the term ωig − ω1 represents the mismatch between the ground-
intermediate-state transition energy ~ωig and the photon energy ~ω1 (see Fig. 5.6 (a)). Moreover, µ̂ is
the electric-dipole operator and eσ the unit polarization vector of the radiation. The index σ indicates
the polarization: σ = 0 stands for linear, σ = ±1 for circular polarization.

Assuming that all the molecular states involved may be written as a tensor product of an electronic-
vibrational state (labelled “ev”) and a nuclear-spin-rotational state (labelled “nsr”),

|g〉 = |gev〉 |gnsr〉 = |gev, gnsr〉 , (5.49a)

|i〉 = |iev〉 |insr〉 = |iev, insr〉 , (5.49b)

|e〉 = |eev〉 |ensr〉 = |eev, ensr〉 , (5.49c)

the two-photon line strength in (5.48) takes the form:

Sge =
∑

Me,Mg

∣∣∣∣∣∑
iev

∑
insr

1
ωig − ω1

〈eev, ensr | eσ · µ̂ | iev, insr〉 〈iev, insr | eσ · µ̂ | gev, gnsr〉

∣∣∣∣∣
2

. (5.50)
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|g〉!

|e〉!

|i〉!
|i〉!
|i〉!

ω1! ωig!

ωig – ω1!

|i〉!

ω1!

!n″ Λ″ = 0, v″〉!

!n′Λ′ = 0, v′〉!

!niev Λiev, viev〉!

μ‖′!

Σ!

Σ!

τ1 = 0!

τ2 = 0!μ‖!

Σ!

μ+!

μ–′!

Σ!

Π!

Σ!

τ1 = –1!

τ2 = +1!

Σ!

Π!

Σ!

μ–″!

μ+″! τ1 = +1!

τ2 = –1!

(a)! (b)!

Figure 5.6. Mechanism of two-photon transitions. (a) Two-photon transitions are described by vir-
tual one-photon transition routes connecting the ground state |g〉 to an excited state |e〉 via an intermediate
state |i〉. The two-photon line strength is given by a weighted sum of the several one-photon transition routes
via different intermediate states |i〉. Their weights—illustrated here by different grey tones—are determined
by the inverse of the energy mismatch ~(ωig−ω1) between the photon energy ~ω1 and the transition energy
~ωig. (b) Two-photon transitions between two Σ states may occur via Σ or Π intermediate states. Transition
routes are labelled by the effective electric-dipole matrix element (µ||µ′||, µ+µ

′
−, µ′′−µ

′′
+, see equation (5.80))

and the relevant spherical tensor component of the electric-dipole operator in the molecule-fixed frame
(τ1,2 = 0,±1).

Here the sum
∑

i over all intermediate states has been written as a sum over all electronic-vibrational
intermediate states

∑
iev

and all nuclear-spin-rotational intermediate states
∑

insr
.

Expressing the scalar product eσ ·µ̂ using spherical tensor notation and changing to the molecule-fixed
frame by the aid of Wigner rotation matrices as well as factorizing the two transition matrix elements
into purely angular and purely vibronic matrix element, yields

〈eev, ensr | eσ · µ̂ | iev, insr〉

=
1∑

τ1=−1

〈
eev, ensr

∣∣∣ [D̂(1)
στ1

]∗
T1
τ1 [µ̂]

∣∣∣ iev, insr

〉
(5.51)

=
1∑

τ1=−1

〈
eev

∣∣T1
τ1 [µ̂]

∣∣ iev

〉 〈
ensr

∣∣∣ [D̂(1)
στ1

]∗ ∣∣∣ insr

〉
(5.52)

and

〈iev, insr | eσ · µ̂ | gev, gnsr〉

=
1∑

τ2=−1

〈
iev, insr

∣∣∣ [D̂(1)
στ2

]∗
T1
τ2 [µ̂]

∣∣∣ gev, gnsr

〉
(5.53)

=
1∑

τ2=−1

〈
iev

∣∣T1
τ2 [µ̂]

∣∣ gev

〉 〈
insr

∣∣∣ [D̂(1)
στ2

]∗ ∣∣∣ gnsr

〉
, (5.54)

such that we obtain:

Sge =
∑

Me,Mg

∣∣∣∣∣∑
iev

∑
insr

1
ωig − ω1

∑
τ1,τ2

〈
eev

∣∣T1
τ1 [µ̂]

∣∣ iev

〉 〈
iev

∣∣T1
τ2 [µ̂]

∣∣ gev

〉
〈

ensr

∣∣∣ [D̂(1)
στ1

]∗ ∣∣∣ insr

〉〈
insr

∣∣∣ [D̂(1)
στ2

]∗ ∣∣∣ gnsr

〉 ∣∣∣∣∣
2

. (5.55)

The energy difference between ground and intermediate level ~ωig depends in principle on both, the
vibronic and the nuclear-spin-rotational state of the intermediate level, i.e., ωig = ωievinsrg. However,
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since the nuclear-spin-rotational contribution to ωig is small compared to the vibronic one, we may
neglect the latter and approximate the energy mismatch for far-off-resonant excitation as ωig − ω1 =
ωievinsrg − ω1 ≈ ωievg − ω1. Doing so, the term 1/(ωig − ω1) ≈ 1/(ωievg − ω1) may be put in front of
the sum over the nuclear-spin-rotational intermediate states (

∑
insr

) and the expression for the line
strength separates into a product of two independent sums,

∑
iev

and
∑

insr
:

Sge =
∑

Me,Mg

∣∣∣∣∣ ∑
τ1,τ2

(∑
iev

1
ωievg − ω1

〈
eev

∣∣T1
τ1 [µ̂]

∣∣ iev

〉 〈
iev

∣∣T1
τ2 [µ̂]

∣∣ gev

〉)
(∑

insr

〈
ensr

∣∣∣ [D̂(1)
στ1

]∗ ∣∣∣ insr

〉〈
insr

∣∣∣ [D̂(1)
στ2

]∗ ∣∣∣ gnsr

〉) ∣∣∣∣∣
2

. (5.56)

Without any weighting factors, the sum over the intermediate nuclear-spin-rotational states boils down
to a sum of projection operators. Since this sum includes all nuclear-spin-rotational states, the sum
of the projection operators is equal to the identity operator for the nuclear-spin-rotational states,
i.e., ∑

insr

|insr〉 〈insr| = Însr, (5.57)

such that we arrive at

Sge =
∑

Me,Mg

∣∣∣∣∣ ∑
τ1,τ2

〈
ensr

∣∣∣ [D̂(1)
στ1

]∗ [
D̂(1)
στ2

]∗ ∣∣∣ gnsr

〉
∑
iev

1
ωievg − ω1

〈
eev

∣∣T1
τ1 [µ̂]

∣∣ iev

〉 〈
iev

∣∣T1
τ2 [µ̂]

∣∣ gev

〉 ∣∣∣∣∣
2

. (5.58)

To proceed, we need to choose a basis for the molecular states. As we only consider 1Σ states, Hund’s
case (a) or (b) basis sets are equally well suited. We chose the Hund’s case (b) notation here and write
the electronic-vibrational ground, intermediate and excited states as,

|gev〉 =
∣∣n′′Λ′′, v′′〉 , (5.59a)

|iev〉 = |nievΛiev , viev〉 , (5.59b)

|eev〉 =
∣∣n′Λ′, v′〉 . (5.59c)

Here, n′′, niev , n′ denote the electronic state in the ground, intermediate and excited level, respectively.
v′′, viev , v′ stand for the corresponding vibrational states and Λ′′, Λiev , Λ′ are the projections of the
total electron orbital angular momenta on the internuclear axis.

The angular part of the ground and excited state are written as

|gnsr〉 =
∣∣N ′′Λ′′I ′′F ′′M ′′F 〉 , (5.60a)

|ensr〉 =
∣∣N ′Λ′I ′F ′M ′F 〉 , (5.60b)

with N ′′ and N ′ the rotational quantum numbers in the ground and the excited state, I ′′ and I ′ the
respective nuclear spin quantum numbers, F ′′ and F ′ the total angular momentum quantum numbers
as well as M ′′F , M ′F the corresponding angular momentum projection quantum numbers. (For reference,
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Table 5.2. Symbols used in the model of the [2+1’] REMPI process.

Quantum number

(Magnitude)

Mol.-fixed

projection

Space-fixed

projection Description

n′′ - - Electronic quantum number in the neutral ground state (AB)

v′′ - - Vibrational quantum number in the neutral ground state

N ′′ Λ′′ M ′′N Orbital-rotational angular momentum in the neutral ground state

I ′′ - M ′′I Nuclear spin in the neutral ground state

F ′′ - M ′′F Total angular momentum in the neutral ground state

niev - - Electronic quantum number in the intermediate state of the
two-photon transition in the excitation step (AB→ AB*)

viev - - Vibrational quantum number in the intermediate state of the
two-photon transition in the excitation step

n′ - - Electronic quantum number in the neutral, excited state (AB*)

v′ - - Vibrational quantum number in the neutral, excited state

N ′ Λ′ M ′N Orbital-rotational angular momentum in the neutral, excited state

I ′ - M ′I Nuclear spin in the neutral, excited state

F ′ - M ′F Total angular momentum in the neutral, excited state

n+ - - Electronic quantum number of the molecular ion (AB+)

v+ - - Vibrational quantum number of the molecular ion

N+ Λ+ M+
N Orbital-rotational angular momentum of the molecular ion

S+ - M+
S Electron spin of the molecular ion

J+ - M+
J Total angular momentum of the molecular ion excluding nuclear spin

I+ - M+
I Nuclear spin of the molecular ion

F+ - M+
F Total angular momentum of the molecular ion

1 τ1 (= τ) σ Angular momentum of the first photon in the excitation step

1 τ2 σ Angular momentum of the second photon in the excitation step

κ τ1 + τ2 2σ Total angular momentum transferred to/from the molecule in the
excitation step

1 - µ0 Angular momentum of the photon in the ionization step (AB*→ AB+)

l - ml Orbital angular momentum of the photoelectron

s - ms Spin of the photoelectron (s = 1/2)

k q p Total orbital angular momentum transferred to/from the molecule
in the ionization step (p = −ml + µ0)

u - w Total angular momentum transferred to/from the molecule in the
ionization step (w = −ms + p)

important symbols used in our REMPI model are compiled in Tab. 5.2.)

As we are assuming Σ states for the ground and the excited state, we have Λ′′ = Λ′ = 0. For the
intermediate state, also states with Λiev 6= 0 need to be considered (Fig. 5.6 (b)).

In this notation, the line strength for the two-photon transition is,

S′′↔′ =
∑

M ′F ,M
′′
F

∣∣∣∣∣ ∑
τ1,τ2

〈
N ′Λ′I ′F ′M ′F

∣∣∣ [D̂(1)
στ1

]∗ [
D̂(1)
στ2

]∗ ∣∣∣N ′′Λ′′I ′′F ′′M ′′F〉
∑
iev

1
ωievg − ω1

〈
n′Λ′, v′

∣∣T1
τ1 [µ̂]

∣∣nievΛiev , viev

〉 〈
nievΛiev , viev

∣∣T1
τ2 [µ̂]

∣∣n′′Λ′′, v′′〉 ∣∣∣∣∣
2

.

(5.61)

To exploit that the nuclear spin states are not affected in rovibronic transitions, we decouple the
nuclear spins from the total angular momenta in the ground and the excited state by expressing them
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as,

∣∣N ′′Λ′′I ′′F ′′M ′′F 〉 =
∑

M ′′N ,M
′′
I

C
F ′′M ′′F
N ′′M ′′N I

′′M ′′I

∣∣N ′′Λ′′M ′′N , I ′′M ′′I 〉 , (5.62a)

〈
N ′Λ′I ′F ′M ′F

∣∣ =
∑

M ′N ,M
′
I

C
F ′M ′F
N ′M ′N I

′M ′I

〈
N ′Λ′M ′N , I

′M ′I
∣∣ , (5.62b)

with the Clebsch-Gordan coefficients CF
′′M ′′F

N ′′M ′′N I
′′M ′′I

and C
F ′M ′F
N ′M ′N I

′M ′I
.

The angular matrix element in (5.61) thus accounts for:〈
N ′Λ′I ′F ′M ′F

∣∣∣ [D̂(1)
στ1

]∗ [
D̂(1)
στ2

]∗ ∣∣∣N ′′Λ′′I ′′F ′′M ′′F〉
=

∑
M ′N ,M

′
I

∑
M ′′N ,M

′′
I

C
F ′M ′F
N ′M ′N I

′M ′I
C
F ′′M ′′F
N ′′M ′′N I

′′M ′′I

〈
N ′Λ′M ′N , I

′M ′I

∣∣∣ [D̂(1)
στ1

]∗ [
D̂(1)
στ2

]∗ ∣∣∣N ′′Λ′′M ′′N , I ′′M ′′I 〉
=

∑
M ′N ,M

′
I

∑
M ′′N ,M

′′
I

C
F ′M ′F
N ′M ′N I

′M ′I
C
F ′′M ′′F
N ′′M ′′N I

′′M ′′I

〈
N ′Λ′M ′N

∣∣∣ [D̂(1)
στ1

]∗ [
D̂(1)
στ2

]∗ ∣∣∣N ′′Λ′′M ′′N〉 〈I ′M ′I ∣∣ I ′′M ′′I 〉
=

∑
M ′N ,M

′
I

∑
M ′′N ,M

′′
I

C
F ′M ′F
N ′M ′N I

′M ′I
C
F ′′M ′′F
N ′′M ′′N I

′′M ′′I

〈
N ′Λ′M ′N

∣∣∣ [D̂(1)
στ1

]∗ [
D̂(1)
στ2

]∗ ∣∣∣N ′′Λ′′M ′′N〉 δI′I′′δM ′IM ′′I
= δI′I′′

∑
M ′N

∑
M ′′N ,M

′′
I

C
F ′M ′F
N ′M ′N I

′′M ′′I
C
F ′′M ′′F
N ′′M ′′N I

′′M ′′I

〈
N ′Λ′M ′N

∣∣∣ [D̂(1)
στ1

]∗ [
D̂(1)
στ2

]∗ ∣∣∣N ′′Λ′′M ′′N〉
= δI′I′′(−1)N

′−I′′+M ′F (−1)N
′′−I′′+M ′′F

√
2F ′ + 1

√
2F ′′ + 1∑

M ′N ,M
′′
N

〈
N ′Λ′M ′N

∣∣∣ [D̂(1)
στ1

]∗ [
D̂(1)
στ2

]∗ ∣∣∣N ′′Λ′′M ′′N〉∑
M ′′I

(
N ′ I ′′ F ′

M ′N M ′′I −M ′F

)(
N ′′ I ′′ F ′′

M ′′N M ′′I −M ′′F

)
.

(5.63)

The product of the Wigner rotation matrices may be expanded in a Clebsch-Gordan series according
to equation (3.116) in [61],

D̂(j1)
m′1m1

D̂(j2)
m′2m2

=
j1+j2∑

j3=|j1−j2|

(2j3 + 1)

(
j1 j2 j3

m′1 m′2 m′3

)(
j1 j2 j3

m1 m2 m3

)
[D̂(j3)

m′3m3
]∗. (5.64)

Applying this relation to the product
[
D̂(1)
στ1

]∗ [
D̂(1)
στ2

]∗
and using the properties of the Wigner rotation

matrices (equation (4.2.7) in [62]) as well as those of the Wigner 3j-symbols (equation (2.30) and
(2.31) in [61]) yields,

[
D̂(1)
στ1

]∗ [
D̂(1)
στ2

]∗
=

2∑
κ=0

(2κ+ 1)

(
1 1 κ

−σ −σ 2σ

)(
1 1 κ

−τ2 −τ1 τ1 + τ2

)
D̂(κ)
−2σ, −τ1−τ2 . (5.65)

The rotational matrix element in (5.63) is thus

〈
N ′Λ′M ′N

∣∣∣ [D̂(1)
στ1

]∗ [
D̂(1)
στ2

]∗ ∣∣∣N ′′Λ′′M ′′N〉 =
2∑

κ=0

(2κ+ 1)

(
1 1 κ

−σ −σ 2σ

)(
1 1 κ

−τ2 −τ1 τ1 + τ2

)
〈
N ′Λ′M ′N

∣∣∣ D̂(κ)
−2σ, −τ1−τ2

∣∣∣N ′′Λ′′M ′′N〉 . (5.66)
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Inserting appropriately normalized Wigner rotation matrices for the rotational states (with the three
Euler angles φ, θ, χ),

〈φ θ χ|N ′′Λ′′M ′′N 〉 =

√
2N ′′ + 1

8π2

[
D

(N ′′)
M ′′NΛ′′(φ, θ, χ)

]∗
, (5.67a)

〈N ′Λ′M ′N |φ θ χ〉 =

√
2N ′ + 1

8π2
D

(N ′)
M ′NΛ′(φ, θ, χ), (5.67b)

we obtain for the matrix element in (5.66) an integral over three Wigner rotation matrices that may
be expressed in form of 3j-symbols as〈

N ′Λ′M ′N
∣∣∣ D̂(κ)
−2σ, −τ1−τ2

∣∣∣N ′′Λ′′M ′′N〉 =
√

2N ′ + 1
√

2N ′′ + 1(−1)M
′′
N−Λ′′(

N ′ κ N ′′

M ′N −2σ −M ′′N

)(
N ′ κ N ′′

Λ′ −τ1 − τ2 −Λ′′

)
, (5.68)

where we made use of equation (4.2.7) and (4.6.2) from [62].

Substituting this expression into (5.66) yields,〈
N ′Λ′M ′N

∣∣∣ [D̂(1)
στ1

]∗ [
D̂(1)
στ2

]∗ ∣∣∣N ′′Λ′′M ′′N〉
=
√

2N ′ + 1
√

2N ′′ + 1(−1)M
′′
N−Λ′′

2∑
κ=0

(2κ+ 1)

(
1 1 κ

−σ −σ 2σ

)(
1 1 κ

−τ2 −τ1 τ1 + τ2

)
(
N ′ κ N ′′

M ′N −2σ −M ′′N

)(
N ′ κ N ′′

Λ′ −τ1 − τ2 −Λ′′

)
, (5.69)

and subsequent substitution into (5.63) gives〈
N ′Λ′I ′F ′M ′F

∣∣∣ [D̂(1)
στ1

]∗ [
D̂(1)
στ2

]∗ ∣∣∣N ′′Λ′′I ′′F ′′M ′′F〉
= δI′I′′(−1)N

′−I′′+M ′F (−1)N
′′−I′′+M ′′F (−1)−Λ′′

√
2F ′ + 1

√
2F ′′ + 1

√
2N ′ + 1

√
2N ′′ + 1

2∑
κ=0

(2κ+ 1)

(
1 1 κ

−σ −σ 2σ

)(
1 1 κ

−τ2 −τ1 τ1 + τ2

)(
N ′ κ N ′′

Λ′ −τ1 − τ2 −Λ′′

)
∑

M ′N ,M
′′
N ,M

′′
I

(−1)M
′′
N

(
N ′ κ N ′′

M ′N −2σ −M ′′N

)(
N ′ I ′′ F ′

M ′N M ′′I −M ′F

)(
N ′′ I ′′ F ′′

M ′′N M ′′I −M ′′F

)
.

(5.70)

To simplify the matrix element in equation (5.70), we seek for a more compact form for the terms
on its last line using a Wigner 6j-symbol. With the properties of the 3j-symbols, these terms may be
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expressed as follows:

∑
M ′N ,M

′′
N ,M

′′
I

(−1)M
′′
N

(
N ′ κ N ′′

M ′N −2σ −M ′′N

)(
N ′ I ′′ F ′

M ′N M ′′I −M ′F

)(
N ′′ I ′′ F ′′

M ′′N M ′′I −M ′′F

)

= (−1)N
′+κ+N ′′+M ′′F

∑
M ′N ,M

′′
N ,M

′′
I

(−1)−M
′′
I

(
N ′ κ N ′′

−M ′N 2σ M ′′N

)(
N ′ I ′′ F ′

M ′N M ′′I −M ′F

)(
N ′′ I ′′ F ′′

M ′′N M ′′I −M ′′F

)
(5.71)

= (−1)M
′′
F−I

′′−F ′−F ′′
{
κ N ′′ N ′

I ′′ F ′ F ′′

}(
F ′ κ F ′′

−M ′F 2σ M ′′F

)
, (5.72)

where equation (C.2) from Appendix C.1 has been used to derive the last equation.

Substituting into (5.70) yields for the matrix element,〈
N ′Λ′I ′F ′M ′F

∣∣∣ [D̂(1)
στ1

]∗ [
D̂(1)
στ2

]∗ ∣∣∣N ′′Λ′′I ′′F ′′M ′′F〉
= δI′I′′(−1)N

′+N ′′−Λ′′−3I′′−F ′−F ′′+M ′F+2M ′′F
√

2F ′ + 1
√

2F ′′ + 1
√

2N ′ + 1
√

2N ′′ + 1
2∑

κ=0

(2κ+ 1)

(
1 1 κ

−σ −σ 2σ

)(
1 1 κ

−τ2 −τ1 τ1 + τ2

)(
N ′ κ N ′′

Λ′ −τ1 − τ2 −Λ′′

)
{
κ N ′′ N ′

I ′′ F ′ F ′′

}(
F ′ κ F ′′

−M ′F 2σ M ′′F

)
.

(5.73)

The two-photon line strength from (5.61) thus accounts for:

S′′↔′ = (2F ′ + 1)(2F ′′ + 1)(2N ′ + 1)(2N ′′ + 1)δI′I′′
∑

M ′F ,M
′′
F

∣∣∣∣∣
2∑

κ=0

(2κ+ 1)

(
1 1 κ

−σ −σ 2σ

)
{
κ N ′′ N ′

I ′′ F ′ F ′′

}(
F ′ κ F ′′

−M ′F 2σ M ′′F

)∑
τ1,τ2

(
1 1 κ

−τ2 −τ1 τ1 + τ2

)(
N ′ κ N ′′

Λ′ −τ1 − τ2 −Λ′′

)
∑
iev

1
ωievg − ω1

〈
n′Λ′, v′

∣∣T1
τ1 [µ̂]

∣∣nievΛiev , viev

〉 〈
nievΛiev , viev

∣∣T1
τ2 [µ̂]

∣∣n′′Λ′′, v′′〉 ∣∣∣∣∣
2

. (5.74)

The first 3j-symbol vanishes for κ = 1 and we may thus omit the κ = 1 term in the sum over κ. By
writing the sum over κ explicitly, it may be shown that the cross terms (appearing when expanding the
absolute magnitude) vanish when summed over all values for M ′F and M ′′F because of the orthogonality
properties of the 3j-symbols.

Moreover, the terms in the double sum over τ1, τ2 not fulfilling the relation τ1 + τ2 = Λ′ − Λ′′ vanish.
As we consider transitions between Σ states, we have Λ′ = Λ′′ = 0 and hence τ2 = −τ1. Skipping the
subscript 1 on τ1 by setting τ = τ1, we thus obtain,

S′′↔′ = (2F ′ + 1)(2F ′′ + 1)(2N ′ + 1)(2N ′′ + 1)δI′I′′
∑
κ=0,2

(2κ+ 1)

(
1 1 κ

−σ −σ 2σ

)2

{
κ N ′′ N ′

I ′′ F ′ F ′′

}2(
N ′ κ N ′′

0 0 0

)2

U(κ), (5.75)
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with

U(κ) =

∣∣∣∣∣
1∑

τ=−1

(
1 1 κ

τ −τ 0

)∑
iev

1
ωievg − ω1

〈
n′ Λ′ = 0, v′

∣∣T1
τ [µ̂]

∣∣nievΛiev , viev

〉
〈
nievΛiev , viev

∣∣T1
−τ [µ̂]

∣∣n′′ Λ′′ = 0, v′′
〉 ∣∣∣∣∣

2

. (5.76)

We study the expression U(κ) separately for κ = 0 and κ = 2. For κ = 0, evaluation of the 3j-symbol
yields

U(0) =
∣∣∣∣ 1∑
τ=−1

(
1 1 0
τ −τ 0

)∑
iev

1
ωievg − ω1

〈
n′Λ′, v′

∣∣T1
τ [µ̂]

∣∣nievΛiev , viev

〉
〈
nievΛiev , viev

∣∣T1
−τ [µ̂]

∣∣n′′Λ′′, v′′〉 ∣∣∣∣2 (5.77)

=
1
3

∣∣∣µ||µ′|| − µ+µ
′
− − µ′′−µ′′+

∣∣∣2 (5.78)

=
1
3
µ2

I , (5.79)

with the abbreviations [168, 105]7

µ||µ
′
|| =

∑
iev

1
ωievg − ω1

〈
n′Λ′, v′

∣∣T1
0 [µ̂]

∣∣nievΛiev , viev

〉 〈
nievΛiev , viev

∣∣T1
0 [µ̂]

∣∣n′′Λ′′, v′′〉 , (5.80a)

µ+µ
′
− =

∑
iev

1
ωievg − ω1

〈
n′Λ′, v′

∣∣T1
+1 [µ̂]

∣∣nievΛiev , viev

〉 〈
nievΛiev , viev

∣∣T1
−1 [µ̂]

∣∣n′′Λ′′, v′′〉 , (5.80b)

µ′′−µ
′′
+ =

∑
iev

1
ωievg − ω1

〈
n′Λ′, v′

∣∣T1
−1 [µ̂]

∣∣nievΛiev , viev

〉 〈
nievΛiev , viev

∣∣T1
+1 [µ̂]

∣∣n′′Λ′′, v′′〉 , (5.80c)

and
µ2

I =
∣∣∣µ||µ′|| − µ+µ

′
− − µ′′−µ′′+

∣∣∣2 . (5.81)

For κ = 2, we obtain similarly

U(2) =
1
30

∣∣∣2µ||µ′|| + µ+µ
′
− + µ′′−µ

′′
+

∣∣∣2 =
1
30
µ2

S, (5.82)

where we have set µ2
S =

∣∣∣2µ||µ′|| + µ+µ
′
− + µ′′−µ

′′
+

∣∣∣2.

The hfs-resolved two-photon line strength between 1Σ states is thus:

S′′↔′ = (2F ′ + 1)(2F ′′ + 1)(2N ′ + 1)(2N ′′ + 1)δI′I′′1
3

1
2N ′′ + 1

(
1 1 0
−σ −σ 2σ

)2{
0 N ′′ N ′

I ′′ F ′ F ′′

}2

µ2
I

+
1
6

(
N ′ 2 N ′′

0 0 0

)2(
1 1 2
−σ −σ 2σ

)2{
2 N ′′ N ′

I ′′ F ′ F ′′

}2

µ2
S

 . (5.83)

7For the signs of µ+µ
′
− and µ′′−µ

′′
+ different conventions are found in the literature. Here, the same sign convention as

in [105] has been chosen, differing from the one used in [168].
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For circular polarized radiation, we have σ = ±1. As σ denotes the projection associated with κ on the
space-fixed z-axis, we must have κ ≥ σ. Hence, the term with κ = 0 in (5.75), i.e., the first summand
in the brackets in (5.83), does not apply for circular polarization. With the last 3j-symbol accounting
for 1/5, we thus obtain:

S
(circ)
′′↔′ =

1
30

(2F ′ + 1)(2F ′′ + 1)(2N ′ + 1)(2N ′′ + 1)δI′I′′

(
N ′ 2 N ′′

0 0 0

)2{
2 N ′′ N ′

I ′′ F ′ F ′′

}2

µ2
S. (5.84)

For linear polarization, we have σ = 0 for a suitable chosen space-fixed frame of reference. The two
squared 3j-symbols involving σ then account for 1/3 and 2/15, respectively, and the line strength
is

S
(lin)
′′↔′ = (2F ′ + 1)(2F ′′ + 1)(2N ′ + 1)(2N ′′ + 1)δI′I′′[

1
9

1
2N ′′ + 1

{
0 N ′′ N ′

I ′′ F ′ F ′′

}2

µ2
I +

1
45

(
N ′ 2 N ′′

0 0 0

)2{
2 N ′′ N ′

I ′′ F ′ F ′′

}2

µ2
S

]
. (5.85)

In order to validate these results, the total line strength for all hfs-resolved transitions belonging to
the same rotational line,

S
(circ, tot)
′′↔′ =

N ′+I′∑
F ′=|N ′−I′|

N ′+I′′∑
F ′′=|N ′′−I′′|

S
(circ)
′′↔′ (5.86)

and

S
(lin, tot)
′′↔′ =

N ′+I′∑
F ′=|N ′−I′|

N ′+I′′∑
F ′′=|N ′′−I′′|

S
(lin)
′′↔′ (5.87)

are considered. Evaluating these sums, using the symmetry and orthogonality properties of the 6j-
symbols (equation 9.8(3) in [77]) yields,

S
(circ, tot)
′′↔′ =

1
30

(2N ′ + 1)(2N ′′ + 1)(2I ′′ + 1)δI′I′′

(
N ′ 2 N ′′

0 0 0

)2

µ2
S (5.88)

and

S
(lin, tot)
′′↔′ = (2N ′ + 1)(2N ′′ + 1)(2I ′′ + 1)δI′I′′

[
1
9
δN ′N ′′

1
2N ′′ + 1

µ2
I +

1
45

(
N ′ 2 N ′′

0 0 0

)2

µ2
S

]
. (5.89)

Apart from the factor 2I ′′+ 1, reflecting the degeneracy due to the nuclear spin, these are exactly the
expressions given in Tab. 3 of [168] (for Ω = 0). Hence, our expressions for hfs-resolved two-photon
line strengths correctly reproduce the results for the rotationally resolved two-photon line strength
derived in [168].

So far, the line strength associated with the total population in a (N ′, I ′, F ′) level has been considered.
This is the quantity usually of interest for transitions between bound states. For our particular purpose,
namely to describe the REMPI process, the population in a certain Zeeman state |N ′, I ′, F ′,M ′F 〉 is
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needed. The relevant quantity is thus:8

Sge(M e) =
∑
Mg

∣∣∣∣∣∑
i

1
ωig − ω1

〈e|eσ · µ̂|i〉 〈i|eσ · µ̂|g〉

∣∣∣∣∣
2

. (5.90)

For hfs-resolved transitions, this quantity is written in our notation as

S(F ′′, F ′,M ′F ) =
∑
M ′′F

∣∣∣∣∣ ∑
τ1,τ2

〈
N ′Λ′I ′F ′M ′F

∣∣∣ [D̂(1)
στ1

]∗ [
D̂(1)
στ2

]∗ ∣∣∣N ′′Λ′′I ′′F ′′M ′′F〉
∑
iev

1
ωievg − ω1

〈
n′Λ′, v′

∣∣T1
τ1 [µ̂]

∣∣nievΛiev , viev

〉 〈
nievΛiev , viev

∣∣T1
τ2 [µ̂]

∣∣n′′Λ′′, v′′〉 ∣∣∣∣∣
2

,

(5.91)

where, as before, the nuclear-spin-rotational contribution to the energy mismatch has been neglected.

Substituting the angular transition matrix element from (5.73) and applying the above-mentioned
restrictions and substitutions for τ1, τ2 yields for Σ-Σ transitions:

S(F ′′, F ′,M ′F ) = (2F ′ + 1)(2F ′′ + 1)(2N ′ + 1)(2N ′′ + 1)δI′I′′
∑
M ′′F

∣∣∣∣∣ ∑
κ=0,2

(2κ+ 1)

(
N ′ κ N ′′

0 0 0

)(
1 1 κ

−σ −σ 2σ

){
κ N ′′ N ′

I ′′ F ′ F ′′

}(
F ′ κ F ′′

−M ′F 2σ M ′′F

)
∑
τ

(
1 1 κ

τ −τ 0

)∑
iev

1
ωievg − ω1

〈
n′ Λ′ = 0, v′

∣∣T1
τ [µ̂]

∣∣nievΛiev , viev

〉
〈
nievΛiev , viev

∣∣T1
−τ [µ̂]

∣∣n′′ Λ′′ = 0, v′′
〉 ∣∣∣∣∣

2

. (5.92)

In contrast to the total line strength considered before, the above expression does not include a sum
over the excited-state projection angular momentum quantum number M ′F . As a consequence, the
orthogonality of the 3j-symbols may not be used to get rid of the cross terms. Hence, evaluating (5.92)
is in general only possible when knowing both, the magnitude and the phase of the vibronic transition
matrix elements. If the phases are unknown, angular terms may not be separated from vibronic ones
and relative nuclear-spin-rotational intensities may not be determined.

Fortunately, the schemes commonly used for state-selective preparation of molecular ions (as discussed
in Ch. 4 of this thesis and in the literature [106, 108, 109]) are based on O or S lines in the excitation

8The quantity S(Me) defined in (5.90) does not fully comply with the usual definition of a line strength, which
involves sums over all degenerate states of the initial and the final level. S(Me) is rather just a quantity proportional
to the excitation rate populating a certain Me-Zeeman state and hence to the population in this state after a given
excitation period. Nonetheless, the symbol S is used for this quantity here as well.
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step. As those exhibit |∆N | = 2, only the κ = 2 term in (5.92) is relevant for them and we obtain:

SS, O(F ′′, F ′,M ′F ) =
5
6

(2F ′ + 1)(2F ′′ + 1)(2N ′ + 1)(2N ′′ + 1)δI′I′′

(
1 1 2
−σ −σ 2σ

)2

{
2 N ′′ N ′

I ′′ F ′ F ′′

}2∑
M ′′F

(
F ′ 2 F ′′

−M ′F 2σ M ′′F

)2(
N ′ 2 N ′′

0 0 0

)2

µ2
S, (5.93)

with µ2
S as in (5.82).

In the case of linearly polarized radiation (σ = 0), this results in

S
(lin)
S, O(F ′′, F ′,M ′F ) =

1
9

(2F ′ + 1)(2F ′′ + 1)(2N ′ + 1)(2N ′′ + 1)δI′I′′{
2 N ′′ N ′

I ′′ F ′ F ′′

}2(
F ′ 2 F ′′

−M ′F 0 M ′F

)2(
N ′ 2 N ′′

0 0 0

)2

µ2
S. (5.94)

5.3.3 Ionization step: Effects of anisotropic populations

Having developed a model for the excitation step AB→ AB* of the [2+1’] REMPI process, we will now
consider the ionization step AB* → AB+. The population of the excited molecules AB* produced by
the two-photon excitation is in general anisotropic, i.e., different Zeeman states of the spin-rotational
or hfs levels are unequally populated.

This effect is illustrated in Fig. 5.7 with hyperfine structure and fine structure in the neutral molecule
omitted for clarity: diatomic molecules AB in the neutral ground state are excited by absorption
of electromagnetic radiation at an (angular) frequency ω1 yielding a population ρ′ of neutral, excited
molecules AB*. These excited molecules AB* are then ionized by electromagnetic radiation at another
frequency ω2 forming the molecular ions AB+. In the case of excitation with linearly, z-polarized
radiation, only transitions without change in the projection angular momentum quantum number,
i.e., with M ′N = M ′′N , are allowed. Therefore, the entire excited-state population ρ′ is confined to the
M ′N = 0 Zeeman state. As a consequence, ionization may only occur from this particular Zeeman
state and the strengths of ionization transitions from other Zeeman states of the excited level do not
contribute to the ionization process.

For other polarizations or more complicated level schemes (fine and hyperfine structure), this effect
is similar: the population ρ′ of the neutral, excited molecules AB* to be ionized is subject to the
polarization of the radiation in the excitation step and thus in general anisotropic. Therefore, the
strength of the ionization transitions addressing particular Zeeman states must be weighted by the
population in these states. In the following, we develop a model for ionization of anisotropically
populated states based on this weighting. First, we only consider spin-rotational fine structure, next,
the model is extended to cover hyperfine structure.

Denoting the population of excited molecules AB* in a certain Zeeman state by ρ′(J ′,M ′J), the quantity
P (J ′, J+), proportional to the photoionization transition probability between fine-structure levels, is



5.3 Resonance-enhanced multiphoton ionization 119

J+ = 1/2!

N″ = 0!

N′ = 2!

MN″ = 0!

MN′ = -2! -1! 0! 1! 2!

MJ
+ = -1/2! 1/2!

ω1!

ω1!

ω2!

ρ+
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ρ′ !

AB!

AB*!

AB+
!

Figure 5.7. Anisotropic population in the excited state of REMPI. Example of the N ′′ = 0 →
N ′ = 2 → N+ = 0 REMPI scheme with linear polarization for excitation: because of the selection rule
M ′N = M ′′N only the M ′N = 0 Zeeman state of the neutral, excited level is populated. Ionization may thus
only occur from this particular Zeeman state.

given by

P (J ′, J+) =
∑
l

∑
ml

∑
ms

∑
M ′J ,M

+
J

ρ′(J ′,M ′J)
∣∣〈n+Λ+, v+, N+Λ+S+J+M+

J

∣∣ 〈s,ms| 〈l,ml| µ̂

∣∣n′Λ′, v′, N ′Λ′S′J ′M ′J〉∣∣2 . (5.95)

For a normalized, isotropic population, this expression is identical to equation (5.7) of Sec. 5.2.1.

Substituting the matrix element from (5.27), we obtain

P (J ′, J+) = (2N ′ + 1)(2N+ + 1)(2S′ + 1)(2J ′ + 1)(2J+ + 1)
∑
l

∑
ml

∑
ms

∑
M ′J ,M

+
J

ρ′(J ′,M ′J)

∣∣∣∣∣∣∣
∑
k=l±1

(−1)k
√

2k + 1

(
l 1 k

−ml µ0 −p

)〈
n+Λ+, v+

∣∣∣T′k∆Λ

∣∣∣n′Λ′, v′〉( N+ k N ′

−Λ+ ∆Λ Λ′

)

k+s∑
u=|k−s|

(2u+ 1)

(
J+ u J ′

−M+
J w MJ

)(
u k s

w −p ms

)
J+ u J ′

N+ k N ′

S+ s S′


∣∣∣∣∣∣∣
2

(5.96)

As the terms in the sum over M ′J are weighted by the populations ρ′(J ′,M ′J), we may not use the
orthogonality properties of the Wigner 3j-symbols to get rid of the cross terms in the above expression.
Hence, the vibronic transition matrix elements

〈
n+Λ+, v+

∣∣∣T′k∆Λ

∣∣∣nΛ, v
〉

may not be isolated from the
other terms in (5.96) and, since these matrix elements are in general complex quantities, the transition
probability may not be calculated unless the magnitudes and the phases of these matrix elements are
known. In other words, for ionization of an anisotropic level, interference effects between different
vibronic transition matrix elements become important.

In order to illustrate this effect, we study the transition probability for a 1Σ→ 2Σ ionization process
for the spin-rotation levels N ′ = J ′ = 2→ N+ = 2, J+ = 3/2 and N ′ = J ′ = 2→ N+ = 2, J+ = 5/2
under the assumption of a population in the J ′ = 2 level confined to the M ′J = 0 Zeeman state (i.e.,
ρ′(J ′ = 2,M ′J = 0) = 1 and ρ′(J ′ = 2,M ′J 6= 0) = 0) as it results from two-photon excitation from the
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rovibronic ground state with linearly polarized radiation. When writing the vibronic transition matrix
elements as complex numbers in polar form,9〈

n+Λ+ = 0, v+
∣∣∣T′k=0

0

∣∣∣n′Λ′ = 0, v′
〉

=
√
C0 exp(iφ0), (5.97a)〈

n+Λ+ = 0, v+
∣∣∣T′k=2

0

∣∣∣n′Λ′ = 0, v′
〉

=
√
C2 exp(iφ2), (5.97b)

with C0, C2 ∈ R, C0, C2 ≥ 0 and φ0, φ2 ∈ [0, 2π) and assuming the matrix elements with k > 2 to
vanish, evaluation of (5.96) yields

P (J ′ = 2, J+ = 3/2) = 0.13C0 + 0.07C2 − 0.11
√
C0C2 cos(φ0 − φ2) (5.98)

and
P (J ′ = 2, J+ = 5/2) = 0.20C0 + 0.10C2 − 0.16

√
C0C2 cos(φ0 − φ2). (5.99)

The transition probability for ionization of an anisotropic populated level thus clearly depends not
only on the magnitude, but also on the relative phase φ0−φ2 of the vibronic transition matrix elements
(unless the ionization process is dominated by only one of these matrix elements, i.e. C0 � C2 or vice
versa). This effect is illustrated in Fig. 5.8. The relative strength of the ionization transitions may
therefore in general not be calculated without information about the relative phases of the vibronic
transition matrix elements. Despite rendering the description of intensities in the REMPI process
complicated, this effect, on the other hand, means that measuring REMPI intensities could in principle
provide a probe, not only for the magnitude, but also for the phase of these matrix elements.

Besides the above mentioned transitions with N ′ = 2 → N+ = 2, Fig. 5.8 also shows the strength
of the N ′ = J ′ = 2 → N+ = 0, J+ = 1/2 transition. Since this transition exhibits |∆N | = 2, the
k = 0 term in (5.96) vanishes and it occurs entirely due to the k = 2 term in equation (5.96). Hence,
interference effects are not present and a dependency on the phase of the matrix elements is not
observed.

To describe the state-selective preparation of molecular ions with REMPI, we may once more exploit
that usually S and O lines (i.e., |∆N | = 2) are employed in these ionization schemes such that
interference effects, as in the example above, are not an issue. We will therefore focus on these lines
in the following.

The transition probability for such lines between Σ states may be simplified to:

P (S, O)(J ′, J+) = 5(2N ′ + 1)(2N+ + 1)(2S′ + 1)(2J ′ + 1)(2J+ + 1)
∑
l

∑
ml

∑
ms

∑
M ′J ,M

+
J

ρ′(J ′,M ′J)

∣∣∣〈n+Λ+ = 0, v+
∣∣∣T′k=2

0

∣∣∣n′Λ′ = 0, v′
〉∣∣∣2( l 1 2

−ml µ0 −p

)2(
N+ 2 N ′

0 0 0

)2

∣∣∣∣∣∣∣
5/2∑

u=3/2

(2u+ 1)

(
J+ u J ′

−M+
J w MJ

)(
u 2 1/2
w −p ms

)
J+ u J ′

N+ 2 N ′

S+ 1/2 S′


∣∣∣∣∣∣∣
2

. (5.100)

9The square root in the magnitude of the vibronic transition matrix element has been introduced in order that the

relation Ck =
˛̨̨D
n+Λ+, v+

˛̨̨
T′
k
∆Λ

˛̨̨
n′Λ′, v′

E˛̨̨2
still holds.



5.3 Resonance-enhanced multiphoton ionization 121

0 Π�2 Π 3Π�2 2Π
0.0

0.2

0.4

0.6

0.8

1.0

�Φ � Φ0 � Φ2

no
rm
al
iz
ed

tra
ns
iti
on

in
te
ns
ity

N��0, J��1�2
N��2, J��3�2
N��2, J��5�2

Figure 5.8. Interference effects in photoionization of anisotropically populated states. When
ionizing a neutral molecule from an anisotropically populated level, interference effects between different
vibronic transition matrix elements may occur. The intensity of different ionization transitions may then
not only depend on the magnitude of the vibronic transition matrix element (i.e., the BOS coefficients),
but also on their relative phase. Here, this effect is shown for the N ′ = 2→ N+ = 2, J+ = 5/2 (solid, red
line) and the N ′ = 2→ N+ = 2, J+ = 3/2 (dashed, red line) transitions, when assuming the entire neutral
population being confined to the N ′ = 2,M ′N = 0 Zeeman state. Because of the interference of the vibronic
matrix elements with k = 0 and k = 2, the transition probability depends on the relative phase ∆φ between
these matrix elements. For the N ′ = 2 → N+ = 0, J+ = 1/2 transition (solid, blue line), on the contrary,
no interference effects are observed, as this transition may only occur due to the k = 2 vibronic transition
matrix element. (For the values shown, the BOS coefficients have been assumed as C0 = 0.8, C2 = 0.2 and
all other BOS coefficients are supposed to vanish.)
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The effects discussed so far for spin-rotation-resolved transitions are analogously found in hfs-resolved
lines. Particularly, interference effects may occur when ionizing a molecule from a hfs level with
anisotropically populated Zeeman states. As a consequence, transition probabilities may in general
only be calculated when knowing both, the magnitude and the phase, of the vibronic transition matrix
elements.

The transition probability for photoionization of excited molecules with populations ρ′(F ′,M ′F ) of the
Zeeman states of the hfs levels is given by:

P (J ′, F ′, J+, F+) =
∑
l

∑
ml

∑
ms

∑
M ′F ,M

+
F

ρ′(F ′,M ′F )
∣∣ 〈n+Λ+, v+, N+Λ+S+J+I+F+M+

F

∣∣ 〈s,ms| 〈l,ml|

µ̂
∣∣n′Λ′, v′, N ′Λ′S′J ′I ′F ′M ′F 〉 ∣∣2. (5.101)

When substituting the matrix element from (5.43), we obtain (with ∆Λ = Λ+ − Λ′),

P (J ′, F ′, J+, F+) = (2N ′ + 1)(2N+ + 1)(2S′ + 1)(2J ′ + 1)(2J+ + 1)(2F ′ + 1)(2F+ + 1)δI′I+

∑
l

∑
ml

∑
ms

∑
M ′F ,M

+
F

ρ′(F ′,M ′F )

∣∣∣∣∣∣∣
∑
k=l±1

(−1)k
√

2k + 1

(
l 1 k

−ml µ0 −p

)

〈
n+Λ+, v+

∣∣∣T′k∆Λ

∣∣∣n′Λ′, v′〉( N+ k N ′

−Λ+ ∆Λ Λ′

)
k+s∑

u=|k−s|

(−1)−u(2u+ 1)

(
u k s

w −p ms

)
J+ u J ′

N+ k N ′

S+ s S′


{
u J ′ J+

I ′ F+ F ′

}(
F+ u F ′

−M+
F w M ′F

)∣∣∣∣∣∣∣
2

. (5.102)

Again, interference effects do not occur for transitions with |∆N | = 2 under the assumption that
all vibronic transition matrix elements with k > 2 essentially vanish. In this case, equation (5.102)
simplifies to:

PS, O(J ′, F ′, J+, F+) = 5(2N ′ + 1)(2N+ + 1)(2S′ + 1)(2J ′ + 1)(2J+ + 1)(2F ′ + 1)(2F+ + 1)δI′I+∣∣∣〈n+Λ+ = 0, v+
∣∣∣T′k=2

0

∣∣∣n′Λ′ = 0, v′
〉∣∣∣2(N+ 2 N ′

0 0 0

)2

∑
l=1,3

∑
ml

∑
ms

∑
M ′F ,M

+
F

ρ′(F ′,M ′F )

(
l 1 2
−ml µ0 −p

)2
∣∣∣∣∣∣∣

5/2∑
u=3/2

(−1)−u(2u+ 1)

(
u 2 1/2
w −p ms

)
J+ u J ′

N+ 2 N ′

S+ 1/2 S′


{
u J ′ J+

I ′ F+ F ′

}(
F+ u F ′

−M+
F w M ′F

)∣∣∣∣∣∣∣
2

.

(5.103)

If the neutral, excited molecules AB* are in a singlet state (such as for N2 in the a′′ 1Σ+
g state), we

have S′ = 0 and J ′ = N ′. The 9j-symbol may then be substituted by a 6j-symbol and equation (5.103)
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takes the form,

P
(S′=0,lin)
S, O (N ′, F ′, J+, F+) =

5
2

(2N+ + 1)(2N ′ + 1)(2J+ + 1)(2F+ + 1)(2F ′ + 1)δI′I+(
N+ 2 N ′

0 0 0

)2 ∣∣∣〈n+Λ+ = 0, v+
∣∣∣T′k=2

0

∣∣∣n′Λ′ = 0, v′
〉∣∣∣2

∑
l=1,3

∑
ml

∑
ms

∑
M ′F ,M

+
F

ρ′(F ′,M ′F )

(
l 1 2
−ml 0 ml

)2 ∣∣∣∣∣
5/2∑

u=3/2

(2u+ 1)

(
u 2 1/2

−ml −ms ml ms

){
J+ u N ′

2 N+ 1/2

}{
u N ′ J+

I ′ F+ F ′

}
(

F+ u F ′

−M+
F −ml −ms M ′F

)∣∣∣∣∣
2

. (5.104)

Here, linear polarization (µ0 = 0, i.e., p = −ml and w = −ml −ms) has been assumed.

When including the mixing of the pure Hund’s case (bβJ ) basis states by the hfs Hamiltonian occurring
in low rotational states of N+

2 as discussed in Sec. 3.3, the ionic states are expressed as

〈n+Λ+, v+, N+Λ+S+J̃+I+F+M+
F | =

N++S+∑
J+=|N+−S+|

cfJ+,J+,F+ 〈n+Λ+, v+, N+Λ+S+J+I+F+M+
F | .

(5.105)
The transition probability then becomes:

P
(S′=0,lin)
S, O (N ′, F ′, J̃+, F+) =

5
2

(2N+ + 1)(2N ′ + 1)(2F+ + 1)(2F ′ + 1)δI′I+(
N+ 2 N ′

0 0 0

)2 ∣∣∣〈n+Λ+ = 0, v+
∣∣∣T′k=2

0

∣∣∣n′Λ′ = 0, v′
〉∣∣∣2

∑
l=1,3

∑
ml

(
l 1 2
−ml 0 ml

)2∑
M ′F

ρ′(F ′,M ′F )
∑
M+
F

∑
ms

∣∣∣∣∣
N++S+∑

J+=|N+−S+|

cfJ+,J+,F+

√
2J+ + 1(−1)2J+

5/2∑
u=3/2

(2u+ 1)

(
u 2 1/2

−ml −ms ml ms

)
{
J+ u N ′

2 N+ 1/2

}{
u N ′ J+

I ′ F+ F ′

}(
F+ u F ′

−M+
F −ml −ms M ′F

)∣∣∣∣∣
2

.

(5.106)

5.3.4 A Model for the [2+1’] REMPI process

Having discussed the ionization of anisotropically populated levels as well as derived the line strength
of hyperfine-structure-resolved two-photon transitions, we may now combine these results to a model
for the [2+1’] REMPI process. This model then may be used to calculate the relative hfs populations
of N+

2 ions produced by the [2+1’] REMPI scheme described in Ch. 4.

The populations of the hfs levels of the neutral, electronically excited molecules AB* in the REMPI
process (a′′ 1Σ+

g state in the case of N+
2 ) are proportional to the excitation rates of the transitions
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populating these levels multiplied with the populations of the relevant levels of the electronic ground
state:

ρ′(F ′,M ′F ) ∝
J ′′+I′′∑

F ′′=|J ′′−I′′|

RF ′′→F ′,M ′F ρ
′′(F ′′). (5.107)

Here, the sum over all the ground-state hfs levels has been included since hyperfine structure is
supposed to be unresolved in the two-photon excitation step. The electronic-ground-state populations
are given by a Boltzmann distribution according to the relevant thermal energies kBT ,

ρ′′(F ′′) = gF ′′ exp (−EF ′′/kBT ), (5.108)

with EF ′′ the energy of the level F ′′ and gF ′′ its degeneracy. Since the hfs splittings are usually small
compared to the thermal energies (∆Ehfs � kBT ), the energies EF ′′ are almost equal for all hfs levels
belonging to the same rotational level and the above exponential factor is nearly constant for them.
The relative hfs populations within the same rotational level are thus approximately given by the
degeneracy of the hfs levels: ρ′′(F ′′) ∝ gF ′′ . The excitation rate RF ′′→F ′,M ′F , on the other hand, is

proportional10 to the line strength S
(lin)
S, O(F ′′, F ′,M ′F ) of this transition multiplied with 1/gF ′′ . Thus,

these degeneracy factors cancel and the populations in the electronically excited state are proportional
to the line strength of the transitions populating these levels:

ρ′(F ′,M ′F ) ∝
J ′′+I′′∑

F ′′=|J ′′−I′′|

S
(lin)
S, O(F ′′, F ′,M ′F ), (5.109)

where S(lin)
S, O(F ′′, F ′,M ′F ) is the line strength of the two-photon transition in the excitation step given

by equation (5.94) of Sec. 5.3.2.

To obtain the relative populations ρ+(J+, F+) of the molecular ions AB+ we are finally interested in,
we may thus substitute the neutral, excited-state populations ρ′(F ′,M ′F ) appearing in our ionization
model for anisotropic populations (equation (5.104) of Sec. 5.3.3) by the total two-photon excitation
line strength from (5.109) and (5.94). With this substitution, the relative populations in the ionic hfs
levels are given by:

ρ+
F ′(J

+, F+) ∝ (2N+ + 1)(2N ′ + 1)2(2N ′′ + 1)(2J+ + 1)(2F+ + 1)(2F ′ + 1)2(
N+ 2 N ′

0 0 0

)2(
N ′ 2 N ′′

0 0 0

)2 ∣∣∣〈n+Λ+ = 0, v+
∣∣∣T′k=2

0

∣∣∣n′Λ′ = 0, v′
〉∣∣∣2 µ2

S

J ′′+I′′∑
F ′′=|J ′′−I′′|

(2F ′′ + 1)

{
2 N ′′ N ′

I ′′ F ′ F ′′

}2∑
M ′F

(
F ′ 2 F ′′

−M ′F 0 M ′F

)2

∑
l=1,3

∑
ml

(
l 1 2
−ml 0 ml

)2∑
ms

∑
M+
F

∣∣∣∣∣
5/2∑

u=3/2

(2u+ 1)

(
u 2 1/2

−ml −ms ml ms

)
{
J+ u N ′

2 N+ 1/2

}{
u N ′ J+

I ′′ F+ F ′

}(
F+ u F ′

−M+
F −ml −ms M ′F

)∣∣∣∣∣
2

. (5.110)

As these populations are calculated for ionization via a particular hfs level of the neutral, excited

10See remarks to equation (5.4) on p. 89.
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state, the subscript F ′ has been added.

If the polarization vectors of the radiation used for excitation and ionization are not parallel, but tilted
by some angle α relative to each other, we need to take into account that the projection quantum
numbers used in the excitation and the ionization step are not referring to the same frame of refer-
ence.11 This is achieved by multiplying the populations calculated in the excitation frame (labelled
below by projection quantum numbers M ′F as arguments) with a squared Wigner rotation matrix
DF ′

M
′
FM

′
F

(0, α, 0) and summing over the projection quantum numbers in the excitation frame M ′F (see

[150, 174]):

ρ′α(F ′,M ′F ) =
F ′∑

M
′
F=−F ′

[
DF ′

M
′
FM

′
F

(0, α, 0)
]2
ρ′(F ′,M ′F ) (5.111)

∝
F ′∑

M
′
F=−F ′

[
DF ′

M
′
FM

′
F

(0, α, 0)
]2

J ′′+I′′∑
F ′′=|J ′′−I′′|

S
(lin. pol.)
S, O (F ′′, F ′,M ′F ) (5.112)

Substituting this expression into (5.104) and again using (5.94) for the two-photon excitation yields
the following result for the ionic populations:

ρ+
F ′ α(J+, F+) ∝ (2N+ + 1)(2N ′ + 1)2(2N ′′ + 1)(2J+ + 1)(2F+ + 1)(2F ′ + 1)2(

N+ 2 N ′

0 0 0

)2(
N ′ 2 N ′′

0 0 0

)2 ∣∣∣〈n+Λ+ = 0, v+
∣∣∣T′k=2

0

∣∣∣n′Λ′ = 0, v′
〉∣∣∣2 µ2

S
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(2F ′′ + 1)

{
2 N ′′ N ′

I ′′ F ′ F ′′

}2∑
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(
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)2∑
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DF ′

M
′
FM

′
F

(0, α, 0)
]2

∑
l=1,3

∑
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(
l 1 2
−ml 0 ml

)2∑
ms

∑
M+
F

∣∣∣∣∣
5/2∑

u=3/2

(2u+ 1)

(
u 2 1/2

−ml −ms ml ms

)
{
J+ u N ′

2 N+ 1/2

}{
u N ′ J+

I ′′ F+ F ′

}(
F+ u F ′

−M+
F −ml −ms M ′F

)∣∣∣∣∣
2

. (5.113)

11For both, the excitation and the ionization step, the polarization of the radiation has been assumed parallel to
the z-axis of the space-fixed frame. Allowing for an angle between the two polarization vectors thus implies that the
calculations for these two steps refer to two different space-fixed frames.
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Mixing between Hund’s case (bβJ ) basis states is taken into account when substituting the excited-state
populations from (5.112) into (5.106) and results in:

ρ+
F ′ α(J̃+, F+) ∝ (2N+ + 1)(2N ′ + 1)2(2N ′′ + 1)(2F+ + 1)(2F ′ + 1)2(
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0 0 0

)2(
N ′ 2 N ′′
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0
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2J+ + 1(−1)2J+

5/2∑
u=3/2

(2u+ 1)

(
u 2 1/2

−ml −ms ml ms

){
J+ u N ′

2 N+ 1/2

}
{
u N ′ J+

I ′′ F+ F ′

}(
F+ u F ′

−M+
F −ml −ms M ′F

)∣∣∣∣∣
2

. (5.114)

Below, the implications of our model are shown by a couple of representative examples for the [2+1’]
REMPI scheme of nitrogen with the N2 a′′ 1Σ+

g as the neutral, excited state, i.e., for the scheme
discussed in Ch. 4. First, we apply our model to study the relative populations in different hfs levels
when not resolving the hyperfine structure in the ionization step. This means, the contributions owing
to all the transitions from the several hfs levels in the neutral, excited a′′ 1Σ+

g state leading to the
same hfs level in the ion are summed. In other words, the total ionic populations given by

ρ+
tot(J

+, F+) =
∑
F ′

ρ+
F ′(J

+, F+), (5.115)

ρ+
totα(J+, F+) =

∑
F ′

ρ+
F ′ α(J+, F+), (5.116)

ρ+
totα(J̃+, F+) =

∑
F ′

ρ+
F ′ α(J̃+, F+), (5.117)

for parallel or tilted polarization vectors when neglecting mixing of Hund’s case (bβJ ) states, as well
as with this mixing taken into account, are studied.

This treatment reflects the current state of the experiment described in Ch. 4: since the bandwidth
of the ionization laser is too large to resolve individual hfs transitions between the N2 a′′ 1Σ+

g and the
N+

2 X2Σ+
g state, all of them contribute to the population of a certain hfs level in the ion. Only after

ionization, these populations are probed in a hfs-resolved way by vibrational spectroscopy of the N+
2

ion.

Thereafter, the populations obtained when only addressing particular hfs transitions between the N2

a′′ 1Σ+
g and the N+

2 X2Σ+
g state are shown. This scenario may not be realized at present with our

experimental setup because of the bandwidth of the pulsed dye laser used for ionization, but might
become feasible when employing a spectrally narrower radiation source for ionization.
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Figure 5.9. Level diagram for the S(0)-O(2) REMPI of nitrogen showing the relevant fs and hfs
levels as well as the Zeeman states for the REMPI sequence N ′′ = 0 → N ′ = 2 → N+ = 0 of the I = 2
nuclear spin manifold of N2/N+

2 . (As the exact hyperfine structure of the a′′ 1Σ+
g state is unknown, levels

of this state are ordered by their degeneracy.)

5.3.5 Non-hfs-resolved photoionization of molecular nitrogen

S(0)-O(2) REMPI sequence As a first application of our model, the ionization scheme presented
in Ch. 4 to produce N+

2 ions state-selectively in the rovibrational ground state, i.e., the REMPI
sequence N ′′ = 0→ N ′ = 2→ N+ = 0 for the I = 2 nuclear spin manifold of N2/N+

2 is studied. The
hyperfine structure is supposed to be unresolved in both, the excitation and the ionization step, as it
is currently the case in our experiment. The energy levels and corresponding Zeeman states involved
are shown in Fig. 5.9. As evident from this diagram, quite a few hfs levels and Zeeman states are
involved even in this relatively simple case. This complexity is reflected in the calculation of the ionic
hfs populations with our model.

The results obtained are shown in Fig. 5.10 and 5.11. Fig. 5.10 shows the populations in the neutral,
excited N2 a′′ 1Σ+

g state. In the left column, these populations are shown with reference to the excitation
frame, in the right one, the corresponding values after transformation to the ionization frame are
given. The effect that only a subset of the Zeeman states may be populated by excitation with linearly
polarized radiation is clearly visible in the left column of Fig. 5.10: Zeeman states with M

′
F > 2 are

not populated due to the selection rule M ′F = M ′′F for excitation with linearly polarized radiation
(polarization vector parallel to quantization axis).

For the right column of Fig. 5.10, an angle of α = 90◦ between the two polarization vectors of
excitation and ionization has been assumed. Such an angle may result when using a frequency tripled
laser for excitation and a frequency doubled one for ionization. The frame transformation described by
equation (5.111) leads to a redistribution of the population such that previously unpopulated Zeeman
states are populated, when regarded with respect to this frame of reference.

The relative populations in the different hfs levels of the N+
2 ions produced in this REMPI process are

shown in Fig. 5.11 as blue and red bars for parallel (α = 0◦) and perpendicular (α = 90◦) polarization
vectors, respectively.



128 5 Fine- and hyperfine-structure effects in molecular photoionization

�4 �3 �2 �1 0 1 2 3 4

0.2
0.4
0.6
0.8
1

excitation frame

F' � 4

�4 �3 �2 �1 0 1 2 3 4

0.2
0.4
0.6
0.8
1

ionization frame

�3 �2 �1 0 1 2 3

0.2
0.4
0.6
0.8
1 F' � 3

�3 �2 �1 0 1 2 3

0.2
0.4
0.6
0.8
1

�2 �1 0 1 2

0.2
0.4
0.6
0.8
1 F' � 2

�2 �1 0 1 2

0.2
0.4
0.6
0.8
1

�1 0 1

0.2
0.4
0.6
0.8
1 F' � 1

�1 0 1

0.2
0.4
0.6
0.8
1

0

0.2
0.4
0.6
0.8
1 F' � 0

0

0.2
0.4
0.6
0.8
1

Figure 5.10. Populations in the neutral, excited state of the S(0)-O(2) REMPI scheme of
nitrogen. Bar charts of the relative populations in the a′′ 1Σ+

g state for the REMPI sequence N ′′ = 0 →
N ′ = 2→ N+ = 0 of N2. The charts in the left column show the relative populations in the Zeeman states
of the hfs levels with F ′ = 4 to 0 (top to bottom) with respect to the excitation frame of reference. In
the right column, the same populations are shown in the ionization frame of reference, when assuming an
angle of α = 90◦ between the polarization vectors of excitation and ionization. The bars are labelled by
the projection angular momentum quantum numbers below the horizontal axis.
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Figure 5.11. Populations in the rovibrational ground state of N+
2 produced by S(0)-O(2)

REMPI. Relative populations of the two hfs levels of N+
2 ions produced by the REMPI sequence N ′′ =

0 → N ′ = 2 → N+ = 0. The blue bars show the populations as obtained for parallel polarization vectors
for excitation and ionization (α = 0◦), for the red ones an angle of α = 90◦ between the two polarization
vectors has been assumed. For reference, the populations expected from the “pseudo-thermal” model (see
text) are indicated by the white, dash-edged bars. For the example shown, our REMPI model predicts the
same relative populations for parallel and perpendicular polarization vectors. Moreover, identical relative
populations are also obtained by the “pseudo-thermal” model. These coincidences, however, do in general
not occur, as illustrated in Fig. 5.14. (Values are normalized to yield equal total populations for parallel
and perpendicular polarization, as well as for the “pseudo-thermal” model, then normalized to unity for
the highest value.)
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For reference, the white, dash-edged bars show the relative populations when assuming them to be
proportional to the degeneracy of the levels. We refer to them as the “pseudo-thermal” populations,
since these are the relative hfs populations of a thermal ensemble in the limit of the thermal energy
kBT large compared to the hfs splittings.

Surprisingly, the pseudo-thermal model yields identical results as our ionization model. As a conse-
quence, the deviations from the expected relative line intensities observed in the electric-quadrupole
spectrum of N+

2 in Ch. 4 may not be explained by the relative populations of the hfs levels of the ionic
rovibrational ground state prior to vibrational excitation, but rather seem to be caused by the same
effects the total intensity deviations are attributed to (see Sec. 4.3.4).

However, as shown below, this coincidence is particular for the S(0)-O(2) ionization sequence and does
in general not occur for other ionic rotational levels.

S(2)-O(4) REMPI sequence As an example with a richer structure, the ionization sequence
N ′′ = 2 → N ′ = 4 → N+ = 2 in the same system as before is analyzed. The relevant energy levels
and Zeeman states are depicted in Fig. 5.12. Compared to the previous example, even more levels and
Zeeman states are involved.

The populations in the neutral, excited N2 a′′ 1Σ+
g and the ionic N+

2 X2Σ+
g state are shown in Fig. 5.13

and Fig. 5.14, respectively. Like in the previous example, the left column of Fig. 5.13 shows the
populations in the Zeeman states belonging to the hfs levels of the a′′ 1Σ+

g state with respect to the
excitation frame of reference, whereas the right column shows them with respect to the ionization
frame. As before, an angle of α = 90◦ is assumed between the two polarization vectors. The effect
of diminished populations in Zeeman states with high absolute values for the projection angular
momentum quantum number due to the selection rules for the excitation step is observed once more.
Also observed again is the redistribution of population in course of the frame transformation described
by equation (5.111). The relative hfs populations in the J+ = 3/2 and J+ = 5/2 spin-rotational levels
are shown in Fig. 5.14 (a) and 5.14 (b), respectively. Here, pure Hund’s case (bβJ ) states are assumed
and the mixing among them is neglected. The populations are shown for both, parallel (blue bars)
and perpendicular (red bars) polarization vectors for ionization and excitation. For comparison, also
the pseudo-thermal populations are indicated (white, dash-edged bars). In the lower row of Fig. 5.14
(panels (c) and (d)), the corresponding values are shown, when taking into account the mixing of the
Hund’s case (bβJ ) states with the mixing coefficients given in Tab. 5.3.

In contrast to the previous example, the relative hfs populations obtained by our REMPI model now
deviate from the pseudo-thermal populations. The deviations, however, are rather small and might
only have a minor influence on experiments with molecular ions produced by REMPI. The differences
between the values calculated for pure Hund’s case (bβJ ) states to those obtained when taking into
account the mixing of the two spin-rotation components by the hfs Hamiltonian are as small as they
are hardly noticeable in Fig. 5.14.

5.3.6 Hfs-resolved photoionization of molecular nitrogen

So far, we have analyzed hfs-state populations of N+
2 ions generated by hfs-unresolved photoionization.

This means, ions were assumed as being produced in a REMPI process, in which the hyperfine structure
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Figure 5.12. Level diagram for the S(2)-O(4) REMPI of nitrogen showing the relevant fs and hfs
levels as well as the Zeeman states for the REMPI sequence N ′′ = 2 → N ′ = 4 → N+ = 2 of the I = 2
nuclear spin manifold of N2/N+

2 . (For details on the hfs of neutral N2, see Fig. 5.3 and 5.9.)

Table 5.3. Expansion coefficients for the eigenstates of the hfs Hamiltonian of 14N+
2 (v+ = 0, N+ = 2) in

the Hund’s case (bβJ
) basis.

State Coefficients

J̃+ F+ cfJ+,J+=3/2,F+ cfJ+,J+=5/2,F+

5/2 9/2 0.0000 1.0000
5/2 7/2 0.1756 0.9845
3/2 7/2 -0.9845 0.1756
5/2 5/2 0.2003 0.9797
3/2 5/2 -0.9797 0.2003
5/2 3/2 0.1752 0.9845
3/2 3/2 -0.9845 0.1752
5/2 1/2 0.1046 0.9945
3/2 1/2 -0.9945 0.1046
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Figure 5.13. Populations in the neutral, excited state of the S(2)-O(4) REMPI scheme of
nitrogen. Bar charts of the relative populations in the a′′ 1Σ+

g state for the REMPI sequence N ′′ = 2 →
N ′ = 4→ N+ = 2 of N2. The charts in the left column show the relative populations in the Zeeman states
of the hfs levels with F ′ = 6 to 2 (top to bottom) with respect to the excitation frame of reference. In
the right column, the same populations are shown in the ionization frame of reference, when assuming an
angle of α = 90◦ between the polarization vectors of excitation and ionization. The bars are labelled by
the projection angular momentum quantum numbers below the horizontal axis.
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Figure 5.14. Ionic populations due to S(2)-O(4) REMPI of nitrogen. Relative populations of the
fs and hfs levels of the N+ = 2 rotational state of N+

2 produced by the REMPI sequence N ′′ = 2→ N ′ =
4 → N+ = 2. Upper row: values for the J+ = 3/2 (panel (a)) and J+ = 5/2 (panel (b)) spin-rotation
component when assuming pure Hund’s case (bβJ

) states. The blue bars show the populations obtained for
parallel polarization vectors for excitation and ionization (α = 0◦), for the red ones an angle of α = 90◦

between the two polarization vectors is assumed. For reference, the populations expected from the pseudo-
thermal model (see text) are indicated by the white, dash-edged bars. Lower row: corresponding values,
when taking into account the mixing of the Hund’s case (bβJ

) states. (Values are normalized to yield equal
total populations for parallel and perpendicular polarization, as well as for the “pseudo-thermal” model,
then normalized to unity for the highest value in each diagram.)
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Figure 5.15. Populations in the rovibrational ground state of N+
2 due to S(0)-O(2) REMPI

for specific ionizing hfs transitions. Relative contributions to the two ionic hfs populations F+ = 3/2
and F+ = 5/2 from individual hfs levels of the neutral a′′ 1Σ+

g state (F ′ = 0, ..., 4) for parallel (a) and
perpendicular (b) polarization vectors. Ionization from all neutral hfs levels populates both ionic hfs states,
no clear propensity is observed.

is not resolved, but the ionic populations were then supposed to be probed in a hfs-resolved manner,
e.g., by hfs-resolved vibrational spectroscopy as discussed in Ch. 4.

Having achieved control over the vibronic and spin-rotational degrees of freedom [108, 109], extending
state-selectivity to the hfs domain, i.e., producing molecular ions also in a hfs-state-selective manner,
is appealing. Particularly, for future non-destructive and coherent spectroscopic techniques [42] hfs-
state-selective preparation might become important. As mentioned above, such a hfs-state-selective
production is not achievable with our current setup, because of the limits imposed by the bandwidth
of the dye lasers used for REMPI. This limitation could be overcome by using a spectrally narrower
radiation source for the ionization step of the REMPI sequence, e.g., a cw-seeded pulsed dye amplifier
(see, e.g., [175]) or a pulsed titanium:sapphire oscillator-amplifier system (see, e.g., [176]).

Here, we study the implications of our REMPI model for such a hfs-state-selective preparation scheme
by analyzing the relative populations of N+

2 ions for hfs-resolved ionization transitions. This means, we
suppose the same neutral, excited populations as before (Fig. 5.10 and 5.13), but calculate the relative
ionic populations for particular F ′ → F+ transitions. We are interested, if certain propensity rules for
these hfs-resolved ionization transitions exist. Such propensity rules could help achieving considerable
state-selectivity, even with the hyperfine structure not entirely resolved in the ionization step.

The results obtained for the S(0)-O(2) REMPI sequence are shown in Fig. 5.15. As seen from this figure,
ionization from all hfs levels of the neutral, excited N2 a′′ 1Σ+

g state leads to ionic populations in both
hfs levels of the rovibronic ground state of N+

2 . In other words, no clear propensity is observed.

Hfs-state-selective production of N+
2 in the rovibronic ground state hence would have to be achieved

almost entirely by spectroscopic addressing. If this is possible, depends on the bandwidth of the
radiation used for ionization and the hfs splitting in the N2 a′′ 1Σ+

g state. On the latter, no information
seems available, as the spectroscopic investigation of this state [177, 104, 103, 178] has not yet achieved
the resolution needed to resolve the hyperfine structure.

The hfs-resolved results from our model for the S(2)-O(4) REMPI scheme are shown in Fig. 5.16 and
5.17 with and without considering the mixing of Hund’s case (bβJ ) basis states, respectively. For the
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Figure 5.16. Ionic populations due to S(2)-O(4) REMPI of nitrogen for specific ionization
hfs transitions. Upper row: contributions to the relative hfs populations of N+

2 ions for the J+ = 3/2
(panel (a)) and J+ = 5/2 (panel (b)) spin-rotation components from individual hfs levels of the neutral
a′′ 1Σ+

g state assuming parallel polarization vectors of excitation and ionization (α = 0◦). Lower row:
corresponding values for perpendicular polarization vectors (α = 90◦). For most transitions, a distinct
propensity is observed: ionization from a particular neutral hfs level (F ′ = 2, ..., 4) preferentially results
in a population in only one, eventually two, ionic hfs levels. For all ionic states, pure Hund’s case (bβJ

)
coupling has been assumed, mixing of the two spin-rotational states has been neglected. Values < 10−2

have been suppressed for clarity.

N+ = 2 state produced in this scheme, the relative populations exhibit a pattern remarkably different
from that seen in the previous example. Certain hfs levels of the neutral, excited a′′ 1Σ+

g state populate
almost exclusively certain particular hfs levels in the N+

2 ion. In other words, a clear propensity is
observed. For the majority of the transitions, this characteristics is summarized by the propensity rule
∆J = ∆F (with ∆J = J+ − N ′ and ∆F = F+ − F ′). Deviations from this rule are observed for
J+ = 3/2 at low values of F ′.

As a consequence of this propensity, reasonable hfs-state-selectivity might be achieved even without
full spectroscopic addressing of individual hfs transitions.

5.4 Summary and Conclusion

In this chapter, a model for fine- and hyperfine-structure effects in molecular photoionization has been
developed. With this model, relative populations of fine- and hyperfine-structure levels of molecular
ions produced either by direct, one-photon ionization or by resonance-enhanced multiphoton ionization
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Figure 5.17. Ionic populations due to S(2)-O(4) REMPI of nitrogen for specific ionization
hfs transitions including spin-rotation mixing. Same contributions to the relative hfs populations
of N+

2 for the two spin-rotation levels J̃+ = 3/2 (panel (a) and (c)) and J̃+ = 5/2 (panel (b) and (d))
as in Fig. 5.16, but with the mixing of the two spin-rotation components by the hfs Hamiltonian taken
into account. Charts in the upper (lower) row apply for parallel (perpendicular) polarization vectors of
ionization and excitation. Values < 10−2 have been suppressed for clarity.
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may be estimated. Our model has been successfully applied to describe and interpret the fine-structure-
resolved photoelectron spectrum of oxygen recorded by Palm and Merkt [152]. Furthermore, it has
been employed to calculate the relative populations of N+

2 ions produced by the [2+1’] REMPI scheme
used in experiments with rovibrational state-selected nitrogen ions, such as the one described in Ch. 4
of this thesis or in the literature [108, 109, 133]. Finally, the implications of our model for future
ionization schemes to produce hfs-state-selected molecular ions have been studied.

Regarding the present non-hfs-resolved production of N+
2 , the relative populations of the hfs levels

deviate only slightly from those expected on the basis of the degeneracy of these levels (“pseudo-
thermal” populations). For future hfs-state-selective ionization schemes, the propensity rule ∆J = ∆F
has been found, which might be exploited to achieve reasonable state-selectivity even without fully
resolving the hyperfine structure in the ionization process.

Our photoionization model involves several approximations. In particular, the model is based on
the separation of the quantum states of the molecular ion and its neutral precursor into a vibronic
and an angular state. Moreover, the angular state is expressed as a tensor product of a rotational,
an electron spin and a nuclear spin state according to angular momentum algebra. In the case of
REMPI, we describe the [2+1’] REMPI process as two independent steps: an excitation step providing
electronically excited, neutral molecules, which is described as a two-photon bound-bound transition,
and a subsequent ionization step, in which these excited molecules are ionized.

The separation of the molecular quantum state is validated by the successful description of the mea-
sured fine-structure-resolved photoelectron spectrum of oxygen. In the case of nitrogen, applicability
of this approximation is assumed to be correct, as spectra between bound states in N2 and N+

2 do not
show substantial rotational-vibronic interactions. The description of the REMPI process as a two-step
sequence has proved correct before [150, 149, 179] and therefore is assumed to be applicable for the
[2+1’] REMPI of nitrogen as well. However, to prove the veracity of our model, validating its predic-
tions by comparison with experimental data is desirable. Measurements for such a validation are in
preparation at the time of this writing.



Chapter 6

Non-destructive state detection and

quantum logic spectroscopy

6.1 Introduction

A challenge in high-precision experiments with molecular ions is quantum-state detection. As molecular
ions do in general not exhibit closed optical cycling transitions, their quantum state is usually detected
either by state-dependent photodissociation [180, 181, 182, 18] or—as described in Ch. 4 of this
thesis—by a state-dependent reaction. Both of these methods are destructive: as soon as the quantum
state of an ion has been detected, the ion is lost. Repeated measurements on the same ion are not
possible.

Destructive detection limits experimental efficiency and requires reloading of the ion trap after each
measurement, potentially impairing the well-controlled, isolated environment of trapped ions. More-
over, to compensate for the limited efficiency, destructive measurements are performed on ensembles
of several dozens to hundreds of ions. This averaging of measured quantities might imply an increased
measurement uncertainty due to inhomogeneities in the environment of the ions such as electromag-
netic stray fields or blackbody radiation.

To get around these limitations, a non-destructive quantum-state-detection technique to be employed
in an experiment with just a single molecular ion would be ideal. Such a technique allows repeated
measurements of the same ion without these disturbances.

Molecular ions exhibit a remarkable potential advantage towards this goal over neutral molecules
thanks to their Coulomb interaction. The Coulomb interaction couples the motion of several ions
trapped in the same ion trap. This coupling may be used to circumvent the lack of optical cycling
transitions in molecules. Exploiting it, we may realize an experiment for repeated, non-destructive
interrogation of a single molecular ion by use of a hybrid two-ion system: a single molecular ion,
which is of spectroscopic interest—referred to as the “spectroscopy ion”—and a cotrapped atomic
ion—denoted the “logic ion”—used for state detection. When perturbing the motional state of the
spectroscopy ion, that one of the logic ion is perturbed as well. If such a perturbation is made dependent
on the internal—say electronic or rotational-vibrational—state of the spectroscopy ion, the motional
state of the logic ion becomes dependent on the internal quantum state for the spectroscopy ion as
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well. This change in the motional state may be mapped on the internal state of the logic ion, which
finally can be detected via a closed optical cycling transition.

Such a scheme—known as “quantum logic spectroscopy”, since techniques from trapped-ion quantum
information processing are borrowed—has first been demonstrated by Schmidt et al. [39] with two
atomic ions. In that experiment, the quantum state of the spectroscopically favorable Al+ ion was
mapped on a Be+ ion for detection. That way, the lack of accessible optical cycling transitions in Al+

was circumvented. This and similar methods were subsequently used in ultrahigh-precision experiments
with atomic ions [183, 184, 185, 186].

Several schemes have been proposed [187, 40, 188, 189, 41, 190, 42, 43]—and one recently realized
[44]—to employ similar techniques for detecting the quantum state of a molecular ion by means of an
atomic ion. Here, we discuss a scheme originally proposed by Mur-Petit et al. [42]. This scheme is based
on “geometric quantum phases” rendering it largely independent of the ion temperature and resilient
to certain ambient disturbances. In the language of quantum information processing, it consists of a
“controlled phase gate” [191, 192, 193, 194] controlled by the spectroscopy ion and acting on the logic
ion. In combination with a Ramsey type interferometric measurement, such a phase gate may be used
to map the state of the molecular ion onto the atomic ion and hence to detect it.

This chapter is structured as follows: in the next section, we explain the general theory of our state-
detection method. We begin with an overview on the state-detection protocol. Then, the dynamics
and in particular the quantum phases of trapped ions subject to transient forces are derived. They
are first discussed for a single ion modeled as a forced harmonic oscillator. Subsequently, the theory is
extended to two ions. We will see that a controlled phase gate may be realized with time-dependent
forces acting on the two-ion system and we will calculate the relevant contribution to the phase of such
a system. In the penultimate section, we discuss a concrete implementation of the proposed scheme
for N+

2 and Ca+ as a spectroscopy and a logic ion, respectively, driven by optical dipole forces induced
with Gaussian laser beams. Experimental parameters, such as beam intensities, beam radii and laser
frequency detunings are estimated. Moreover, effects of experimental imperfections and disturbances
are qualitatively discussed. The chapter finishes with a concluding summary.

6.2 Theory

6.2.1 State-detection protocol

An overview on the proposed state-detection method may be obtained from Fig. 6.1. The two ions, a
molecular N+

2 ion as a spectroscopy ion and an atomic Ca+ ion as a logic ion, are trapped in a linear
rf ion trap. Two focused Gaussian laser beams are inserted perpendicular to the trap axis. Each of
them addresses a strong, electric-dipole transition in one of the two ions. They induce a shift of the
ionic energy levels known as “light shift” or “ac Stark shift”. With the ions located in the flank of the
beams, the light intensity and hence the energy shift is inhomogeneous. Thus, a force is exerted on
each ion, known as “optical dipole force”. These forces are used to manipulate the motion of the ions
along the trap axis.

The relevant level schemes are shown in Fig. 6.2. The transition ultimately of interest is the
X2Σ+

g , v = 0 − X2Σ+
g , v = 1 electric-quadrupole vibrational transition in N+

2 (v is the vibrational
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Figure 6.1. Experimental setup for molecular quantum logic spectroscopy. Sketch of the exper-
imental setup for detection of the quantum state of a molecular ion via an atomic ion through quantum
logic operations. Both ions are trapped in the same linear quadrupole trap. Their motion along the trap
axis is manipulated with optical dipole forces exerted by Gaussian laser beams. The coupling of the motion
of the ions is used to map the quantum state of the molecular “spectroscopy ion” on the atomic “logic ion”,
from where it may be readout.
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Figure 6.2. Energy level scheme for the proposed quantum logic spectroscopy experiment.
(a) Ca+ ion, (b) N+

2 ion. Both ions exhibit a weak, electric-quadrupole transition between the ground state
|g〉 and a metastable state |e〉 as well as a strong, electric-dipole transition connecting the ground state to
an auxiliary excited state |aux〉.

quantum number). We assume a spectroscopic experiment addressing this transition has been made
prior to employing the state-detection method. Our goal is to determine the quantum state of the N+

2

ion after this experiment with respect to that vibrational transition. To exert the optical dipole force
needed for state detection, the strong, electric-dipole X2Σ+

g , v = 0 − B2Σ+
u , v = 0 transition is used.

This electronic and the aforementioned vibrational transition originate from the common N+
2 ground

state and form a V-shaped three-level system.

In the Ca+ ion, a similar V-shaped system is formed by the electric-quadrupole transition connecting
the 42S1/2 ground to the metastable 32D5/2 state (lifetime ≈ 1 s, see [195], p. 146) together with the
strong, electric-dipole 42S1/2 − 42P1/2 transition.

We will refer to the ground state of either ion as |g〉, the excited (metastable) state of the quadrupole
transition as |e〉 and the upper state of the dipole transition, which serves as an auxiliary state, as
|aux〉.1

In short, the proposed state-detection method works by mapping the population ratio of the |g〉 − |e〉
system in the spectroscopy ion to the |g〉−|e〉 system in the logic ion and to then probe this population
ratio by observing the fluorescence through optical cycling on the |g〉− |aux〉 transition in Ca+.

To this end, the motion of the ions along the trap axis is controlled with optical dipole forces exerted by
the Gaussian laser beams, which address the dipole-allowed |g〉 − |aux〉 transitions. They are detuned
from resonance to (largely) avoid excitation.

1The |g〉, |e〉 and |aux〉 states are of course different ones for the logic and the spectroscopy ion. Emphasizing their
corresponding roles, we use the same symbols for both of them here. From context it will always be clear, which state
we are actually referring to.
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Spectroscopy ion!

Logic ion! !ψ(l)〉 = !g〉!

!ψ(s)〉 = ?! (recycled)!

Û(l)
comp!Ûcphase!

Û(s)
comp!

H†
Had!ˆ!HHad!ˆ!

Figure 6.3. State-detection protocol visualized as a circuit diagram. After having initialized the
logic ion in the ground state |g〉, a superposition of the |g〉 and the |e〉 state is generated by the Hadamard
transformation ĤHad = e−iσ

(l)
y π/4. A controlled phase gate Û cphase acting on the ground state of the logic

ion senses the state of the spectroscopy ion. Neglecting single-particles phases, the effect of this controlled
phase gate may be written as Û cphase = P̂

(s)
g (P̂ (l)

g eiφ + P̂
(l)
e ) + P̂

(s)
e Î(l). The former can be compensated

by appropriate single-particle operations Û (l,s)
comp. Thereafter, the Hadamard transformation is reversed to

translate the phase into a population difference that is finally measured. Here, P̂ (·)
g = |g〉〈g| and P̂ (·)

e = |e〉〈e|
are the projectors on the ground and the excited state of the logic (l) and the spectroscopy (s) ion. Î(l) and
σ

(l)
y = i(|e〉〈g| − |g〉〈e|) are the identity operator and the Pauli y matrix of the logic ion, respectively.

The forces exerted on the ions give rise to a non-trivial phase in the quantum state of the two-ion
system. For properly tailored forces, a controlled phase gate may be realized. This controlled phase
gate is used together with single-particle manipulations for the above-mentioned mapping.

In detail, the proposed state-detection protocol consists of the following steps (see Fig. 6.3):

1. The logic ion is initialized to the |g〉 state by optical pumping.

2. A “π/2” laser pulse on the |g〉 − |e〉 transition of the logic ion generates an equal superposition
state of the |g〉 and the |e〉 state.

3. Gaussian laser beams addressing the |g〉 − |aux〉 transitions of the logic and the spectroscopy
ion are employed to exert optical dipole forces on both ions. The forces give rise to a non-trivial
phase acquired by the two-ion system. This phase includes a contribution due to the Coulomb
interaction of the two ions.

4. With appropriate individual manipulations on both ions, spurious single-particle phases induced
in the previous step are canceled.

5. Using another laser pulse addressing the |g〉 − |e〉 transition of the logic ion, the transformation
of step 2 is reversed.

6. The state of the logic ion is measured by probing the population in its |g〉 state on the |g〉−|aux〉
transition.

In step 1, the internal quantum state of the logic ion |ψ(l)〉 is initialized to the ground state: |ψ(l)〉 = |g〉.
The spectroscopy ion is assumed to be in a superposition state of its ground and excited state as a result
of the spectroscopic experiment done prior to state detection. Its internal quantum state |ψ(s)〉 hence
is: |ψ(s)〉 = a |g〉+ b |e〉 with unknown coefficients a and b (normalized such that: |a|2 + |b|2 = 1).

In step 2, the logic ion is taken to the superposition state ψ(l) = 1√
2

(|g〉+ |e〉). The transformation
done in this step is known as a “Hadamard gate” in the context of quantum information processing
[196]. It distributes the population in the logic ion equally between the ground state |g〉 and the
excited state |e〉. As the optical dipole force in the following step only acts on the ground state |g〉,
the excited state |e〉 provides a phase reference for the subsequent measurement of the ground-state
quantum phase.
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Step 3 represents the actual controlled phase gate. The force on the logic ion results in a phase acquired
by its |g〉 state relative to the |e〉 state. This phase is altered by a force acting simultaneously on the
spectroscopy ion owing to the coupling of the motion of both ions via their Coulomb interaction. The
phase therefore depends on the quantum state of the spectroscopy ion.

In step 4, the single-ion phases induced in the previous step are compensated, such that the total
phase acquired in the gate operation only consists of the contribution caused by the interaction of the
two ions.

In step 5, depending on the relative phase between the |g〉 and the |e〉 state of the logic ion, a different
fraction of the logic-ion population is transferred to the ground state. Hence, the phase difference is
translated into a population difference.

Finally, in step 6, the population in the |g〉 state of the logic ion is measured. As the |g〉−|aux〉 system
of the logic ion forms a (nearly) closed cycling transition, the population may be probed by repeated
laser-excitation-spontaneous-decay cycles while observing the fluorescence. A bright logic ion indicates
population in the |g〉 state, a dark one a populated |e〉 state. In other words, the two-ion wavefunction
collapses and the previously unknown coefficients in the state of the spectroscopy ion are obtained as
either (|a|, |b|) = (1, 0) or (|a|, |b|) = (0, 1).

The crucial point is the change of the phase acquired in step 3, as a consequence of a force acting
simultaneously on the spectroscopy ion while the one on the logic ion is exerted. Since the force on the
spectroscopy ion only acts, when it is in the ground state |g〉 and does not occur in the excited state
|e〉, there is a contribution to the relative phase between the |g〉 and |e〉 state of the logic ion dependent
on the state of the spectroscopy ion. For suitably chosen forces, the state of the spectroscopy ion is
mapped on the logic ion, where it is detected.

By analogy with the “electron shelving” method used for atomic ions, we may refer to the method pro-
posed here as “vibrational shelving spectroscopy”, since it is based on the screening of the spectroscopy
ion from the optical dipole force dependent on its vibrational state.

6.2.2 Dynamics of a trapped ion subject to a time-dependent force

We begin the quantitative discussion of our proposed state-detection method by studying the dynamics
of a single ion in a linear rf ion trap subject to a time-dependent force. We assume that the confining
potential is weakest along the symmetry axis of the trap and considerably stronger perpendicularly.
The ion is supposed to be as cold as no relevant motion perpendicular to the symmetry axis occurs.
Furthermore, the axial trapping potential is assumed to be harmonic.

We may then describe the motional degrees of freedom of the ion in essence by a one-dimensional har-
monic oscillator. For an ion of mass m, confined in a potential characterized by the angular frequency
ω, the relevant Hamiltonian is:

ĤHO =
p̂2

2m
+
mω2x̂2

2
, (6.1)

with x̂ and p̂ the position and momentum operator, respectively.2

2In accordance with the usual terminology of the one-dimensional harmonic oscillator, we use the symbol x̂ for the
operator of the ion position along the symmetry axis of the trap. In the context of charged particle trapping, this axis
is usually chosen as the z-axis. As no other directions than the axial one are relevant here, no confusion should arise.
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With an additional time-dependent force F (t) acting along the trap axis, the Hamiltonian becomes,

Ĥ(t) =
p̂2

2m
+
mω2x̂2

2
− F (t)x̂. (6.2)

Using the dimensionless operators x̃ = βx̂ and p̃ = 1
~β p̂ with3 β =

√
mω
~ as well as expressing the force

in units of energy as f(t) = 1
βF (t), this Hamiltonian equals to:

Ĥ(t) =
~ω
2
(
p̃2 + x̃2

)
− f(t)x̃. (6.3)

In terms of the ladder operators, â = 1√
2

(x̃+ ip̃) and â† = 1√
2

(x̃− ip̃) , it is written as,

Ĥ(t) = ~ω
(
â†â+

1
2

)
− f(t)√

2

(
â† + â

)
, (6.4)

or when ignoring zero-point energy as,

Ĥ ′(t) = ~ωâ†â− f(t)√
2

(
â† + â

)
. (6.5)

To solve the time-dependent Schrödinger equation,

i~
∂

∂t
|ψm(t)〉 = H ′(t) |ψm(t)〉 , (6.6)

for the motional state |ψm(t)〉 of the ion, it is convenient to use the “quasi-classical” or “coherent”
states |z〉 (see, e.g., [197] or [72] pp. 509 ff.). These states are defined in terms of the phonon-number
states |n〉 as

|z〉 = e−|z|
2/2

∞∑
n=0

zn√
n!
|n〉 (6.7)

and are eigenstates of the lowering operator â with complex eigenvalue z. They form a “complete
set” meaning that any state of the relevant Hilbert space can be written as a (continuous) expan-
sion of them. Restricting our discussion to quasi-classical states therefore does not imply any loss of
generality.

The quasi-classical states exhibit a remarkable time evolution in a purely harmonic potential: for
f(t) = 0 in (6.5), a quasi-classical state |z0〉 characterized by the complex parameter z0 at time t = 0,
remains a quasi-classical state |z(t)〉 with the parameter z(t) evolving on a circle in the complex
plane:

z(t) = z0e
−iωt. (6.8)

The real and the imaginary part of z are proportional to the expectation value of the position and
momentum operator, respectively. Hence, z is often written as z = X + iP with X,P ∈ R. Due to
the evolution of z(t) according to (6.8), these expectation values oscillate sinusoidally with time—
exactly as for a classical harmonic oscillator—while the position-momentum uncertainty product is
minimal. Moreover, the curve in the complex plane described by z(t) corresponds to the classical phase
portrait.

3The quantity 1/β is the “characteristic length” of the harmonic oscillator.
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If an additional time-dependent force is applied (f(t) 6= 0 in (6.5)), a solution of (6.6) is found in the
form of a quasi-classical state with an additional time-dependent phase factor,4

|ψm(t)〉 = eiφ(t) |z(t)〉 , (6.9)

where the parameter z(t) and the phase φ(t) follow the equations [194]:

dz(t)
dt

= −iωz(t) + i
1√
2~
f(t), (6.10)

dφ(t)
dt

=
1

2
√

2~
f(t)(z(t) + z(t)∗). (6.11)

Equation (6.10) is solved by [194]:

z(t) = e−iωt
(
z0 +

i√
2~

∫ t

0
eiωτf(τ) dτ

)
. (6.12)

The first factor on the right-hand side above is due to the evolution of the harmonic oscillator without
an additional force (cf. equation (6.8)). We may get rid of this factor when regarding z(t) with respect
to a corotating frame in phase space by defining zr(t) = eiωtz(t). Equation (6.10) then becomes,

dzr
dt

=
i√
2~
eiωtf(t), (6.13)

and the phase φ(t) evolves according to,

dφ(t)
dt

= Im
[

dzr(t)
dt

zr(t)∗
]
, (6.14)

with Im[ ] denoting the imaginary part of the term in brackets.

Integrating this expression, we obtain the phase at time t as,

φ(t) = Im
[
iz∗0√
2~

∫ t

0
eiωτf(τ) dτ +

1
2~2

∫ t

0

∫ τ1

0
eiω(τ1−τ2)f(τ1)f(τ2) dτ2dτ1

]
, (6.15)

for a state initially given as |z0〉 at time t = 0.

Further below, we will use state-dependent forces to generate a phase depending on the internal state
of the ion. In order to neither entangle the internal and the motional degrees of freedom, nor to
permanently affect the motional state, we require the force to cease after some fixed point in time tfin

and to fulfill the condition: ∫ tfin

0
eiωτf(τ) dτ = 0. (6.16)

The quasi-classical state then arrives at tfin at the same phase-space position, as it had without the
force f(t), as may be seen when substituting (6.16) into (6.12) and comparing with (6.8).

4The phase factor eiφ(t) appearing in the quantum mechanical treatment of the forced harmonic oscillator is not to
be confused with the constant of integration, called “phase” too, appearing in the solution of the classical equation of
motion of a harmonic oscillator, such as x(t) = x0 cos(ωt+ θ). This “classical phase” θ corresponds here to the argument
of the complex parameter z characterizing the quasi-classical state |z〉.
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The phase accumulated up to then is independent of z0 and accounts for,

φ(tfin) =
1

2~2
Im
∫ tfin

0

∫ τ1

0
eiω(τ1−τ2)f(τ1)f(τ2) dτ2dτ1, (6.17)

as obtained when substituting (6.16) into (6.15).

The independence of the acquired phase from the initial phase-space position z0 is crucial for our state-
detection technique being resilient to experimental imperfections and environmental disturbances.
Moreover, it ensures that an ion in any initial motional state, not only in a quasi-classical state,
acquires the same phase. In particular, for an ion in a thermal state, the phase acquired is independent
of the ion-temperature owing to this independence.

Being independent of z0, equation (6.17) may easily be adapted for the more general case of a transient
force acting in the interval from tinit to tfin (and vanishing otherwise), which fulfills the condition,∫ tfin

tinit

eiωτf(τ) dτ = 0. (6.18)

We obtain the phase acquired upon such a force has been exerted as,

φ(tfin) =
1

2~2
Im
∫ tfin

tinit

∫ τ1

tinit

eiω(τ1−τ2)f(τ1)f(τ2) dτ2dτ1. (6.19)

This phase is interpreted in a neat way when regarding the curve described by zr(t) in phase space with
respect to the rotating frame introduced above. Since the quasi-classical state returns at t = tfin to the
initial phase-space position, zr(t) describes a closed curve: zr(tinit) = zr(tfin). Writing equation (6.14)
in terms of the real and the imaginary part of zr = Xr + iPr, we get:

φ̇(t) = Im [żr(t)zr(t)∗] = Ṗr(t)Xr(t)− Pr(t)Ẋr(t), (6.20)

where the dots (˙) indicate time-derivatives. Integrating this equation over the closed curve zr(t) for
t ∈ [tinit, tfin], we obtain the phase as:

φinit→fin =
∮ tfin

tinit

Ṗr(t)Xr(t)− Pr(t)Ẋr(t) dt = 2A. (6.21)

By means of “Leibniz’s sector formula” (see, e.g., [198], pp. 246ff.), we can understand the above
integral as twice the area A enclosed by the curve of zr(t) in phase space. Fig. 6.4 shows an example for
the evolution of a quasi-classical state in phase space subject to a transient force fulfilling (6.18).

Regarding the experimental realization, a convenient time-dependence for the force is a Gaussian
time-profile:

f(t) = f (0)e−(2t/T )2
. (6.22)

For such a Gaussian “force pulse”, the condition (6.18) is not exactly fulfilled. However, for times long
before and long after the peak value of the force (compared to the pulse duration T ), i.e., in the limit
tinit → −∞, tfin → +∞, this condition is approximately met for a pulse duration considerably longer
than the harmonic-oscillator period. Mur-Petit et al. [42] found the lower limit T ≥ 5π/ω. The phase
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Figure 6.4. Phase portrait of a forced harmonic oscillator. (a) Evolution of a quasi-classical
harmonic-oscillator state in position-momentum phase space subject to a force F (t) ∝ sin(2ωt) (solid
trace) as opposed to unperturbed, pure harmonic evolution (dashed trace). The force complies to the con-
dition (6.18) and the oscillator returns to the initial phase-space position (small, black circle). (b) Evolution
with respect to a rotating frame. The curve described by the forced oscillator is closed and the quantum
mechanical phase acquired due to forcing equals twice the area enclosed by this curve. (Adapted from
[194].)

acquired in this asymptotic limit5 is obtained as,

φfin =
1
2

(
f (0)

~

)2

Im
∫ ∞
−∞

∫ τ1

−∞
eiω(τ1−τ2)e−(2τ1/T )2

e−(2τ2/T )2
dτ2dτ1. (6.23)

This integral may be given in analytical form within the “adiabatic approximation”. Here, this approx-
imation implies that the pulse is sufficiently long, and hence “smooth”, that the condition 1

~ω
df(t)

dt ≈ 0
is met [194]. Integration by parts then yields,

φfin =
√
π

2
T

4ω

(
f (0)

~

)2

=
√
π

2
T

4ω

(
F (0)

~β

)2

, (6.24)

with F (0) = f (0)β.

Forces with an arbitrary time profile may be treated by numerical integration of equation (6.18) and
(6.19).

6.2.3 Two ions: Normal mode decomposition

If there are two ions in the same ion trap, they both localize on the trap axis when being cooled
for suitably chosen experimental parameters, i.e., they form a Coulomb crystal in form of an ion
string. Thus, we may still treat their motion as a one-dimensional problem. The motion of both ions,
however, is coupled and in order to apply the theory developed above, we need to decouple it using
the concept of “normal modes” [200, 201, 202, 203]. Below, this normal mode decomposition is first
presented for the classical motion of two ions in a pure harmonic potential, i.e., without additional
forces. Thereafter, the problem is treated quantum mechanically and the effect of additional forces on
the two-ion quantum state is studied.

5Here, the analogy of the problem of a harmonic oscillator with a transient force to a scattering problem becomes
evident—a point nicely worked out by Carruthers and Nieto [199], who solved it using the Green’s function formalism.
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The classical Lagrangian for two ions with masses m1, m2 and charge Q at positions x1, x2 reads,

L(x1, ẋ1, x2, ẋ2) =
1
2
m1ẋ

2
1 +

1
2
m2ẋ

2
2 − V (x1, x2), (6.25)

with the potential energy,

V (x1, x2) =
1
2
m1ω

2
1x

2
1 +

1
2
m2ω

2
2x

2
2 +

Q2

4πε0 |x1 − x2|
, (6.26)

and ẋ1, ẋ2 the temporal derivatives of x1 and x2, respectively, as well as ε0 the vacuum permittiv-
ity.

Obviously, the equations of motion for x1 and x2,

d
dt
∂L
∂ẋ1

=
∂L
∂x1

, (6.27a)

d
dt
∂L
∂ẋ2

=
∂L
∂x2

, (6.27b)

are coupled by the Coulomb interaction term in the potential V (x1, x2). In the following, we will show
that decoupled equations of motion may be obtained under certain conditions.

As both ions are trapped by the same external potential, we have m1ω
2
1 = m2ω

2
2 and hence,

V (x1, x2) =
1
2
m1ω

2
1

(
x2

1 + x2
2

)
+

Q2

4πε0 |x1 − x2|
. (6.28)

Without loss of generality, we assume m1 ≥ m2 and define the mass ratio µ = m1/m2 ≥ 1. Dropping
the index 1, we then write m = m1 and m2 = m/µ as well as ω = ω1.

When the two ions are cooled to a sufficiently low temperature, they form a Coulomb crystal and
locate at the minima of the potential energy, namely at the positions:

x
(0)
1 = −

(
Q2

16πε0mω2

)1/3

, (6.29a)

x
(0)
2 =

(
Q2

16πε0mω2

)1/3

. (6.29b)

Assuming the ions to only exhibit small excursions from these equilibrium positions, we may ap-
proximate the potential energy in their vicinity by a Taylor expansion up to second order in the
displacements x̄1 = x1 − x(0)

1 and x̄2 = x2 − x(0)
2 :

V (x1, x2) ≈ V
(
x

(0)
1 , x

(0)
2

)
+

∂V

∂x1

∣∣∣∣“
x

(0)
1 , x

(0)
2

” x̄1 +
∂V

∂x2

∣∣∣∣“
x

(0)
1 , x

(0)
2

” x̄2

+
1
2
∂2V

∂x2
1

∣∣∣∣“
x

(0)
1 , x

(0)
2

” x̄2
1 +

1
2
∂2V

∂x2
2

∣∣∣∣“
x

(0)
1 , x

(0)
2

” x̄2
2 +

∂2V

∂x1∂x2

∣∣∣∣“
x

(0)
1 , x

(0)
2

” x̄1x̄2 (6.30)

= V
(
x

(0)
1 , x

(0)
2

)
+mω2x̄2

1 +mω2x̄2
2 −mω2x̄1x̄2, (6.31)

where we have used that the first derivatives of the potential vanish at the minima.
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Using matrix notation, we may write this expression for the potential energy as,

V (x̄1, x̄2) = V0 +
1
2

(
x̄1 x̄2

)(2mω2 −mω2

−mω2 2mω2

)(
x̄1

x̄2

)
, (6.32)

with the constant term V0 = V
(
x

(0)
1 , x

(0)
2

)
.

Defining the mass-weighted displacements,

q1 =
√
m1x̄1 =

√
mx̄1, (6.33a)

q2 =
√
m2x̄2 =

√
m

µ
x̄2, (6.33b)

we may furthermore write (6.32) as,

V (q1, q2) = V0 +
1
2

(
q1 q2

)( 2ω2 −√µω2

−√µω2 2µω2

)(
q1

q2

)
. (6.34)

Ignoring constant terms, the Lagrangian in these new coordinates q1, q2 is given as

L(q1, q̇1, q2, q̇2) =
1
2
q̇2

1 +
1
2
q̇2

2 − V (q1, q2), (6.35)

where as before the dots indicate time derivatives.

Decoupling the equations of motion for q1 and q2 hence boils down to diagonalizing the matrix in
(6.34). This matrix is diagonalized when using the coordinates qIP and qOP defined as

qIP = uq2 + vq1, (6.36a)

qOP = vq2 − uq1 (6.36b)

with

u =

1 +

(
1− µ−

√
1− µ+ µ2

)2

µ


−1/2

, (6.37a)

v = (1− u2)1/2. (6.37b)

The potential energy then becomes,

V (qIP, qOP) = V0 +
1
2

(
qIP qOP

)(ω2
IP 0
0 ω2

OP

)(
qIP

qOP

)
(6.38)

with

ωIP = ω

√
1 + µ−

√
1− µ+ µ2, (6.39a)

ωOP = ω

√
1 + µ+

√
1− µ+ µ2. (6.39b)
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The Lagrangian in these “normal coordinates” is thus,

L(qIP, q̇IP, qOP, q̇OP) =
1
2
q̇2

IP +
1
2
q̇2

OP −
1
2
ω2

IPq
2
IP −

1
2
ω2

OPq
2
OP, (6.40)

and the equations of motion for qIP and qOP are decoupled. Furthermore, they are both solved by the
usual harmonic-oscillator ansatz.

The two coordinates qIP and qOP correspond to the two normal modes of oscillation, the “in-phase
mode” and the “out-of-phase mode”. If, e.g., the initial conditions at time t = 0 are qIP(t = 0) 6= 0 and
qOP(t = 0) = 0, the two ions oscillate in phase at angular frequency ωIP. In the case, qOP(t = 0) 6= 0 and
qIP(t = 0) = 0, they oscillate out of phase at angular frequency ωOP. For arbitrary initial conditions,
a solution of the equations of motion is found as a combination of these two normal modes.

In order to work with quantities of familiar dimension, we define the variables xIP = qIP/
√
m and

xOP = qOP/
√
m. The Lagrangian then takes the form

L(xIP, ẋIP, xOP, ẋOP) =
1
2
mẋ2

IP +
1
2
mẋ2

OP −
1
2
mω2

IPx
2
IP −

1
2
mω2

OPx
2
OP. (6.41)

In view of the quantum mechanical problem, we now switch from the Lagrangian to the Hamilton
formalism. The classical Hamiltonian function is given as the Legendre transform of the Lagrangian,
which yields:

H(xIP, pIP, xOP, pOP) =
p2

IP

2m
+
p2

OP

2m
+
mω2

IPx
2
IP

2
+
mω2

OPx
2
OP

2
, (6.42)

with the momenta pIP = ∂L
∂ẋIP

= mẋIP and pOP = ∂L
∂ẋOP

= mẋOP.

The quantum mechanical Hamiltonian operator is obtained by substituting the position and momen-
tum variables in the classical Hamiltonian function (6.42) by the corresponding quantum mechanical
operators x̂IP, x̂OP and p̂IP, p̂OP:

Ĥ =
p̂2

IP

2m
+
p̂2

OP

2m
+
mω2

IPx̂
2
IP

2
+
mω2

OPx̂
2
OP

2
. (6.43)

This Hamiltonian is the sum of the Hamiltonians of two harmonic oscillators. Therefore, we may apply
the well-known formalism of the quantum mechanical harmonic oscillator. In particular, we may define
the dimensionless operators,

x̃IP,OP = βIP,OPx̂IP,OP, (6.44a)

p̃IP,OP =
1

~βIP,OP
p̂IP,OP, (6.44b)

with βIP,OP =
√

mωIP,OP

~ as well as the ladder operators,

âIP,OP =
1√
2

(x̃IP,OP + ip̃IP,OP) , (6.45a)

â†IP,OP =
1√
2

(x̃IP,OP − ip̃IP,OP) , (6.45b)
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to bring the Hamiltonian in the standard form,

Ĥ = ~ωIP

(
â†IPâIP +

1
2

)
+ ~ωOP

(
â†OPâOP +

1
2

)
, (6.46)

which, when ignoring the zero-point energy, is equivalent to:

Ĥ ′ = ~ωIPâ
†
IPâIP + ~ωOPâ

†
OPâOP. (6.47)

6.2.4 Two ions: Effect of time-dependent forces

Having discussed the problem of two ions in a pure harmonic potential, we now include additional
time-dependent forces acting on the ions. As before, we start with the classical Lagrangian that reads
in this case,

L(x1, ẋ1, x2, ẋ2) =
1
2
m1ẋ

2
1 +

1
2
m2ẋ

2
2 − V (x1, x2) + F1(t)x1 + F2(t)x2, (6.48)

with F1(t) and F2(t) the forces acting on ion 1 and 2, respectively, and V (x1, x2) defined in (6.26).
Applying the same “small-displacement approximation” as above and ignoring constant terms, we see
that this expression corresponds to:

L(x̄1, ˙̄x1, x̄2, ˙̄x2) =
1
2
m1 ˙̄x2

1 +
1
2
m2 ˙̄x2

2 − V (x̄1, x̄2) + F1(t)x̄1 + F2(t)x̄2. (6.49)

The terms in this Lagrangian not involving the forces F1(t), F2(t) may be treated by exactly the same
normal mode decomposition as above. The quantities x̄1 and x̄2 in the force terms are expressed by
inverting equation (6.33) and (6.36) as x̄1 = vxIP − uxOP and x̄2 =

√
µ (uxIP + vxOP). In that way,

we obtain the Lagrangian:

L(xIP, ẋIP, xOP, ẋOP) =
1
2
mẋ2

IP +
1
2
mẋ2

OP −
1
2
mω2

IPx
2
IP −

1
2
mω2

OPx
2
OP

+ F1(t) (vxIP − uxOP) + F2(t)
√
µ (uxIP + vxOP) . (6.50)

As in the previous section, the two equations of motion for xIP and xOP have thus been separated.
However, a force acting on only one of the two ions affects both normal modes and hence also both
ions. It is exactly this coupling that lies at the heart of the phase gate described here.

The Legendre transform of the Lagrangian (6.50) yields the classical Hamiltonian function as:

H(xIP, pIP, xOP, pOP) =
p2

IP

2m
+
p2

OP

2m
+
mω2

IPx
2
IP

2
+
mω2

OPx
2
OP

2
− F1(t) (vxIP − uxOP)− F2(t)

√
µ (uxIP + vxOP) . (6.51)

For a quantum mechanical description, the Hamiltonian operator is again obtained by substituting
the position and momentum variables by the corresponding operators, i.e.,

Ĥ =
p̂2

IP

2m
+
p̂2

OP

2m
+
mω2

IPx̂
2
IP

2
+
mω2

OPx̂
2
OP

2
− F1(t) (vx̂IP − ux̂OP)− F2(t)

√
µ (ux̂IP + vx̂OP) . (6.52)

Rearranging terms and switching to the dimensionless operators defined in (6.44) and then to the
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ladder operators from (6.45), the Hamiltonian becomes:

Ĥ =
1
2

~ωIP

(
p̃2

IP + x̃2
IP

)
+

1
2

~ωOP

(
p̃2

OP + x̃2
OP

)
−
(
F1(t)v + F2(t)

√
µu
) x̃IP

βIP
+
(
F1(t)u− F2(t)

√
µv
) x̃OP

βOP
(6.53)

= ~ωIP

(
â†IPâIP +

1
2

)
+ ~ωOP

(
â†OPâOP +

1
2

)
− 1√

2βIP

(
F1(t)v + F2(t)

√
µu
)(

âIP + â†IP

)
+

1√
2βOP

(
F1(t)u− F2(t)

√
µv
)(

âOP + â†OP

)
. (6.54)

Neglecting zero-point energy, we realize that this Hamiltonian has the form of a sum of two single-
particle, forced-harmonic-oscillator Hamiltonians, ĤIP and ĤOP, discussed in Sec. 6.2.2 (cf. equa-
tion (6.5)),

Ĥ ′ = ~ωIPâ
†
IPâIP −

f IP(t)√
2

(
âIP + â†IP

)
+ ~ωOPâ

†
OPâOP −

fOP(t)√
2

(
âOP + â†OP

)
(6.55)

= ĤIP + ĤOP, (6.56)

when setting

f IP(t) =
1
βIP

(F1(t)v + F2(t)
√
µu) , (6.57a)

fOP(t) =
1
βOP

(F2(t)
√
µv − F1(t)u) . (6.57b)

The time-dependent Schrödinger equation associated with the Hamiltonian (6.55) can thus be solved
by a tensor product ansatz for the motional state |ψm(t)〉 = |ψIP(t)〉 |ψOP(t)〉 with |ψIP(t)〉 only
evolving according to ĤIP and |ψOP(t)〉 only according to ĤOP.

Moreover, when using the complete set of quasi-classical states, we may find a solution of the Schrödinger
equation as,

|ψm(t)〉 = eiφIP(t)eiφOP(t) |zIP(t)〉 |zOP(t)〉 , (6.58)

with the parameter zIP(t) evolving according to equation (6.10) and the phase φIP(t) according to
(6.11), when substituting f(t) therein by f IP(t) from (6.57a). Equivalently, zOP(t) and φOP(t) evolve
according to (6.10) and (6.11), respectively, when using fOP(t) from (6.57b).

For transient forces, satisfying the two criteria,∫ tfin

tinit

eiωIPτf IP(τ) dτ = 0, (6.59a)∫ tfin

tinit

eiωOPτfOP(τ) dτ = 0, (6.59b)

the quasi-classical states return to their initial phase-space positions at tfin: zIP,OP(tinit) = zIP,OP(tfin),
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and the phases accumulated are:

φIP,OP(tfin) =
1

2~2
Im
∫ tfin

tinit

∫ τ1

tinit

eiωIP,OP(τ1−τ2)f IP,OP(τ1)f IP,OP(τ2) dτ2dτ1. (6.60)

When we express the acquired phase in terms of a single phase factor, according to

|ψm(t)〉 = eiφtot(t) |zIP(t)〉 |zOP(t)〉 , (6.61)

with φtot = φIP(t) + φOP(t), this total phase is given as,

φtot(tfin) =
1

2~2
Im
∫ tfin

tinit

∫ τ1

tinit

eiωIP(τ1−τ2)f IP(τ1)f IP(τ2)

+ eiωOP(τ1−τ2)fOP(τ1)fOP(τ2) dτ2dτ1. (6.62)

6.2.5 State-dependent forces

In the previous two sections, we have only discussed the motional degrees of freedom of the ions.
Primarily of interest, however, are the internal degrees of freedom. As outlined in Sec. 6.2.1, the
internal degrees of freedom may be treated effectively as a two-level system. The internal states of ion
1 and 2 are thus given as,

|ψ(1)
int 〉 = c(1)

e |e〉+ c(1)
g |g〉 , (6.63a)

|ψ(2)
int 〉 = c(2)

e |e〉+ c(2)
g |g〉 , (6.63b)

with coefficients c(j)
e , c

(j)
g ∈ C fulfilling |c(j)

g |2 + |c(j)
e |2 = 1 (j = 1, 2) and |g〉, |e〉 the ground and excited

state of the respective ion. The complete effective quantum state of the two-ion system is thus formed
as a tensor product of the motional and the internal states: |ψtot〉 = |ψm〉 |ψ(1)

int 〉 |ψ
(2)
int 〉.

Expressing the motional state in terms of normal modes and using the complete set of quasi-classical
states, we may write the effective total quantum state as:

|ψtot〉 = |zIP〉 |zOP〉 |ψ(1)
int 〉 |ψ

(2)
int 〉 . (6.64)

As explained in Sec. 6.2.1, the forces only act on the ions, when these are in their ground state and
vanish in the excited state. Mathematically, this state dependence is expressed by multiplying the
forces with the projection operators P̂ (1,2)

g = |g〉〈g|, which are 1, if the respective ion is in the ground
state |g〉, and 0, if it is in the excited state |e〉, i.e, by the substitutions:6

F1(t)→ P̂ (1)
g F1(t), (6.65a)

F2(t)→ P̂ (2)
g F2(t). (6.65b)

The quantum mechanical Hamiltonian for the two-ion system with state-dependent forces hence

6As before, we use the same symbols for the ground and the excited state of both ions. The corresponding states are
to be understood in the definitions of the projection operators.
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is:

Ĥ =
p̂2

1

2m1
+

p̂2
2

2m2
+ V (x̂1, x̂2)− P̂ (1)

g F1(t)x̂1 − P̂ (2)
g F2(t)x̂2. (6.66)

By means of normal mode decomposition, we may bring this Hamiltonian in the form of (6.55), but
with f IP(t) and fOP(t) therein substituted by:

f̂ IP(t) =
1
βIP

(
P̂ (1)

g F1(t)v + P̂ (2)
g F2(t)

√
µu
)
, (6.67a)

f̂OP(t) =
1
βOP

(
P̂ (2)

g F2(t)
√
µv − P̂ (1)

g F1(t)u
)
. (6.67b)

Provided the conditions (6.59) are met, the motional quantum state returns at tfin to the initial one,
except for an additional phase. This phase φtot(tfin) is, as before, given by (6.62), but with f IP(t) and
fOP(t) therein substituted by their counterparts from (6.67). The phase thus involves the projection
operators.

Realizing that the projectors acting on different ions commute (P̂ (1)
g P̂

(2)
g = P̂

(2)
g P̂

(1)
g ) and that they

are idempotent (P̂ (1,2)
g P̂

(1,2)
g = P̂

(1,2)
g ), we see that the phase φtot(tfin) decomposes into a sum of three

terms according to:
φ̂tot(tfin) = φ1P̂

(1)
g + φ2P̂

(2)
g + φ12P̂

(1)
g P̂ (2)

g . (6.68)

Here, we are first of all interested in the term φ12. This is the contribution to the phase relevant for a
controlled phase gate. To clarify this point, we may rewrite the phase factor using the above-mentioned
properties of projection operators to simplify the matrix exponential as,

eiφ12P̂
(1)
g P̂

(2)
g = P̂ (2)

g

[
P̂ (1)

g eiφ12 + P̂ (1)
e

]
+ P̂ (2)

e Î(1), (6.69)

with P̂ (1,2)
e = |e〉〈e| the projectors on the excited state of ion 1 and 2, respectively, and Î(1) the identity

operator belonging to ion 1.7 The term in brackets in (6.69) gives rise to a phase shift of the ground
state of ion 1 (the logic ion) relative to its excited state, i.e., it describes a phase gate. The projector
P̂

(2)
g constrains the phase gate operation to the case where ion 2 (the spectroscopy ion) is in the ground

state. Thus, the overall effect on the two-ion system is that of a controlled phase gate.

From (6.62) and (6.67) we obtain the relevant phase φ12 for given forces F1(t) and F2(t) as,

φ12 =
uv
√
µ

2~2
Im
∫ tfin

tinit

∫ τ1

tinit

(
eiωIP(τ1−τ2)

β2
IP

− eiωOP(τ1−τ2)

β2
OP

)(
F1(τ1)F2(τ2) + F1(τ2)F2(τ1)

)
dτ2dτ1. (6.70)

For forces following a Gaussian time profile,

F1(t) = F
(0)
1 e−(2t/T )2

, (6.71a)

F2(t) = F
(0)
2 e−(2t/T )2

, (6.71b)

the conditions (6.59) are approximately met for T ≥ 5π/ωIP.8 Within the adiabatic approximation, the

7The identity operator of one part of a tensor product Hilbert space is of course the identity operator of the whole
space and hence could be omitted. For clarity, it is explicitly written in (6.69).

8If so, the analogous criterion for ωOP is met as well, since ωOP > ωIP.
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integral in (6.70) can then be given analytically for the asymptotic limit tinit = −∞, tfin = +∞:

φ12 =
uv
√
µ

2~2

√
π

2
F

(0)
1 F

(0)
2 T

(
1

β2
IPωIP

− 1
β2

OPωOP

)
. (6.72)

Using the definitions of βIP and βOP together with the relation,

uv
√
µ =

(
3ω2

(
1
ω2

IP

− 1
ω2

OP

))−1

, (6.73)

we may express the quantity φ12 in terms of the single-particle axial trapping frequency ω and the
mass m of ion 1 as:

φ12 =
√
π

2
F

(0)
1 F

(0)
2 T

6~ω2m
. (6.74)

6.3 Implementation

6.3.1 Optical dipole force

Having studied the dynamics of a two-ion system subject to state-dependent, transient forces, we
may now turn to the implementation of our state-detection method based on optical dipole forces
as outlined in Sec. 6.2.1, i.e., forces induced by off-resonant Gaussian laser beams addressing the
|g〉 − |aux〉 transitions in the two ions.

In general, the optical dipole force is given as ([128], p. 199):

F(r) = −~∆
2

Ω(r)
∆2 + Ω(r)2/2 + Γ2/4

∇Ω(r). (6.75)

Here, ∆ is the detuning of the laser frequency from the |g〉 − |aux〉 transition, Γ the natural linewidth
of this transition, Ω(r) the Rabi frequency and ∇Ω(r) its gradient at position r, respectively.

The Rabi frequency—a quantity usually encountered in the context of the coherent evolution of two-
level systems—serves here as a measure for the laser intensity with the same dimension as the detun-
ing.9 The squared Rabi frequency is proportional to the laser intensity I(r) and hence to the total
laser beam power P tot divided by the squared beam radius w:

Ω(r)2 ∝ I(r) ∝ P tot

w2
. (6.76)

Typical Rabi frequencies for the |g〉 − |aux〉 transition in the Ca+ and N+
2 ion as a function of the

laser beam radius are shown in Fig. 6.5 for a number of beam powers.

For detunings large compared to the Rabi frequency (|∆| � Ω) and the latter also large relative to

9When studying the dynamics of two-level systems perturbed by electromagnetic radiation, as we have done in Ch. 2,
but for nearly monochromatic instead of broadband radiation, the population is found to oscillate between the two levels.
The Rabi frequency corresponds to the frequency of this oscillation for a radiation field in resonance with the two-level
transition. Here, we study off-resonant radiation, almost not exciting any population. The Rabi frequency just serves as
a convenient measure for the radiation intensity.
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Figure 6.5. Typical Rabi frequencies. Rabi frequencies for the 42S1/2 − 42P1/2 transition in Ca+ (left
panel) and the X2Σ+

g v = 0, N = 0 − B2Σ+
u v = 0, N = 1 transition in N+

2 (right panel) as a function of
the 1/e2 beam radius w for a total beam power of 10, 20, 50, and 100 mW at the position of maximum
intensity gradient. (v and N denote the vibrational and the rotational quantum number, respectively. See
Appendix D for the calculation of the values shown.)
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Figure 6.6. Transverse intensity profile of a Gaussian laser beam. Normalized intensity I(r)/I0
as a function of the radial position in units of the 1/e2 beam radius w. The intensity follows the relation
I(r) = I0 exp(−2r2/w2) with I0 the intensity at the beam centreline and r the radial distance from the
centreline. At r = ±w/2 the intensity gradient is maximal, resulting in a maximum optical dipole force.

the natural linewidth (Ω� Γ), the dipole force may be approximated as,

F(r) = − ~
4∆
∇Ω(r)2. (6.77)

In our proposed setup, the intensity gradient is formed by the transverse beam profile of a Gaussian
laser beam (see Fig. 6.6). For the ions being in the plane of the beam waist of a Gaussian laser beam,
the tangential and the axial derivative of Ω(r) vanish due to symmetry reasons. The optical dipole
force hence only exhibits a component radial to the beam,10 which is given by,

F rad(r) = − ~
4∆

∂

∂r
Ω(r)2. (6.78)

The Rabi frequency of an ion in a Gaussian laser beam, same as the intensity, follows a Gaussian
profile,

Ω(r) = Ω0e
− r2

w2 , (6.79)

10If the ion is not exactly in the plane of the beam waist, the optical dipole force also acts in direction of the beam.
The radial component, however, still dominates and the present treatment is a fairly good approximation. Moreover, the
beam radius w that corresponds to the “waist size” (hence the symbol w) in the plane of the beam waist, increases with
increasing distance from this plane and the intensity is lowered accordingly.
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where Ω0 is the Rabi frequency at the beam centre and r the radial distance from the beam centre-
line.

The radial component of the gradient of the squared Rabi frequency at the position of maximum
intensity gradient (r = ±w/2) hence is,

∂

∂r
Ω(r)2

∣∣∣∣
r=±w/2

= ∓2Ω2
0

w
e−

1
2 = ∓2Ω′2

w
, (6.80)

with Ω′ = Ω(r = w/2) = Ω0e
− 1

4 the Rabi frequency at this position. Substituting these results
into (6.78), we obtain the magnitude of the optical dipole force at maximum intensity gradient of a
Gaussian beam as,

|F rad(r = ±w/2)| = ~Ω′2

2w∆
. (6.81)

With the Rabi frequencies of the Ca+ and N+
2 ions at these positions denoted as ΩCa+ and ΩN+

2
as

well as the respective detunings and beam radii as ∆Ca+ , ∆N+
2

and wCa+ , wN+
2

, the magnitude of the
optical dipole forces exerted on the ions are:

FCa+ =
~Ω2

Ca+

2wCa+∆Ca+

, (6.82a)

FN+
2

=
~Ω2

N+
2

2wN+
2

∆N+
2

. (6.82b)

For the phase-gate operation discussed in the previous section, we want the forces to follow a Gaussian
time-profile according to (6.71). To this end, the laser intensities are attenuated appropriately, e.g., by
means of an acousto-optic modulator (see [58], pp. 804ff.). The quantities FCa+ and FN+

2
from (6.82)

then correspond to the time-independent coefficients F (0)
1 and F

(0)
2 in (6.74), respectively.11

Substituting them into (6.74), we obtain the relevant contribution to the phase of the two-ion system
as,

φ12 =
√
π

2
~T

24mω2

Ω2
Ca+Ω2

N+
2

∆Ca+∆N+
2

1
wCa+wN+

2

. (6.83)

Here, m and ω and are the mass and the single-particle axial secular trapping frequency of the Ca+

ion, respectively.

6.3.2 Photon scattering

An issue with optical dipole forces is photon scattering. If photons from the laser beams exerting these
forces are absorbed by the ions through excitation of the |g〉−|aux〉 transition, their coherent evolution
is disturbed. Therefore, photon scattering must be avoided.

Scattering events of photons from a coherent light source follow a Poisson distribution [204]. The
probability that at most n scattering events occur during a period T is given by the cumulative

11Because of the choice m1 ≥ m2 in Sec. 6.2.3, quantities with index 1 from the previous section correspond to the
Ca+ ion, those with index 2 to the N+

2 ion.
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distribution function,

P (n) = e−n̄
n∑
k=0

n̄k

k!
, (6.84)

with n̄ the mean number of scattering events during this period T . The probability of no photons
being scattered during this period thus is: P (n = 0) = e−n̄.

The mean number of photons scattered is the product of the scattering rate Rsc and the duration of
laser irradiation T : n̄ = RscT . 12 The scattering rate is given by ([128], p. 180),

Rsc =
Γ
2

Ω′2/2
∆2 + Ω′2/2 + Γ2/4

≈ Γ
4

(
Ω′

∆

)2

, (6.85)

where, as before, the approximation |∆| � Ω� Γ has been used.

The probability that no photon is scattered within T is thus:

P (n = 0) = e
−T Γ

4

“
Ω′
∆

”2

. (6.86)

As we want this probability to be near unity, the opposite probability ε of scattering at least one
photon while exerting the optical dipole force is close to zero and may be approximated as,

ε = 1− P (n = 0) ≈ ΓT
4

(
Ω′

∆

)2

. (6.87)

With the values ΓCa+ = 132× 106 s−1 and ΓN+
2

= 3.80× 106 s−1 from Appendix D, we may calculate
this scattering probability for both ions for any given Rabi frequency and detuning ΩCa+ , ∆Ca+ or
ΩN+

2
, ∆N+

2
and irradiation time T . Vice versa, we may work out the mutual dependencies of these

quantities for a given scattering probability ε.

6.3.3 Parameter estimation and feasibility

Having worked out the relevant formulae for our state-detection scheme with optical dipole forces, we
may now estimate the parameters relevant for an experimental implementation and asses feasibility
of our method. The stage is set by the equations (6.83) and (6.87) that yield the phase φ12 and
the scattering probability ε, respectively, as well as (6.76) that relates the Rabi frequencies to the
experimentally accessible quantities of beam power and beam radius.

There are in total eight parameters, we need to choose such that the required phase is obtained,
the scattering probability ε is acceptable and technical limitations are not exceeded: the laser pulse
duration T , the axial secular trapping frequency ω, the Rabi frequencies ΩCa+ , ΩN+

2
, the detunings

∆Ca+ , ∆N+
2

and the beam radii wCa+ , wN+
2

.

Before calculating actual values, we shortly analyze the mutual dependencies and the scaling behaviour
of these parameters. For the two-ion system to accumulate the geometric phase needed, the optical
dipole force must be high enough, while the scattering rate must be kept low. As the inverse detuning

12Here, we assume the laser intensity to be constant during the period T . For the Gaussian time profile of equa-
tion (6.71), this is not the case. In an exact calculation, the value of ε is reduced by a factor

√
π/2 ≈ 0.89 for otherwise

identical parameters. This factor being close to unity, we neglect it for simplicity in the order-of-magnitude estimation
done here.
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appears linear in the force (see equation (6.81)), but squared in the scattering probability (see equa-
tion (6.87)), while the Rabi frequency appears squared in both of them, a force sufficiently large as
well as a low scattering probability, may be achieved by a large Rabi frequency together with a large
detuning.

A large Rabi frequency may be either achieved with a high beam intensity or a small beam radius.
Both of these quantities are constrained by technical limitations such as available laser power, quality
of focusing and beam shaping optics and beam pointing stability. Therefore, a trade-off between these
conflicting requirements must be found. The beam radius is a particularly crucial parameter as it
affects both, the Rabi frequency at the position of the ions as well as its gradient.

For a quantitative analysis, we need to reduce the number of parameters. We proceed as follows:

• We chose the secular trapping frequency as ω = 2π × 100 kHz, a typical value for our trap,
corresponding to ωIP = 2π × 108 kHz for the Ca+-N+

2 -system.

• We chose a value for the scattering probability ε. Here, the values ε = 0.1 and ε = 0.01 are
studied. Together with the pulse duration T , the ratio of the Rabi frequency ΩCa+ (ΩN+

2
) to the

detuning ∆Ca+ (∆N+
2

) then is fixed by equation (6.87) and we may eliminate the detunings from
equation (6.83).

• We assume the radii of the two beams addressing the Ca+ and the N+
2 ion to be equal, wCa+ =

wN+
2

=: w, as these two beams are to be focused by the same optics and their wavelengths differ
by less than two percent.

• As the phase φ12 depends only on the product of the two Rabi frequencies ΩCa+ and ΩN+
2

, rather
then on their individual values, we substitute them by the mean Rabi frequency Ω defined as
the geometric mean of the Rabi frequencies of the Ca+ and the N+

2 ion: Ω =
√

ΩCa+ΩN+
2

In so doing, we have eliminated all but the two parameters w and Ω from the right-hand side of
equation (6.83). In particular, we have eliminated the pulse duration T , meaning that our results will
be independent of T . Hence, we may use the shortest pulse allowed by the condition in Sec. 6.2.5,
namely T = 5π/ωIP = 23.2 µs, in order to minimize the requirement for the coherence time and thus
the sensitivity to magnetic field fluctuations.13 We set φ12 = π, as needed for a population inversion in
the Ca+ ion depending on the N+

2 quantum state, and solve the equation obtained from the parameter
reduction to get the mean Rabi frequency Ω as a function of the beam radius w.

As can be seen from the red curves in Fig. 6.7, a linear dependence of the mean Rabi frequency Ω on
the beam radius w is obtained. Along with this required mean Rabi frequency, we also show in Fig. 6.7
the achievable mean Rabi frequency (blue curves), i.e., the mean Rabi frequency achieved for a given
beam radius at a certain beam power as obtained from the values shown in Fig. 6.5.

For a point on one of the blue curves to the left of the intersection with a chosen red one, the required
Rabi frequency is lower than the one achievable for the respective beam power. Hence, realization
is possible under these conditions. On the contrary, for points to the right of this intersection, the

13From equation (6.83), the reader might be tempted to infer that the same phase could be achieved with a lower Rabi
frequency (and hence lower beam power) when increasing the pulse duration T . However, since the ions then are exposed
to radiation for a longer period of time, the ratio of the detuning to the Rabi frequency must be increased as well in order
to keep the scattering probability ε at a given value. Therefore, no reduction in the Rabi frequency is accomplished.
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Figure 6.7. Mean Rabi frequencies as a function of the beam radius. The two red lines show
the mean Rabi frequency Ω needed to accumulate a phase of φ12 = π as a function of the beam radius
w (= wCa+ = wN+

2
) for a scattering probability of ε = 0.1 and ε = 0.01, respectively. As the intensity

gradient—and hence the optical dipole force—decreases with increasing beam radius, the Rabi frequency
required for the given phase increases with the beam radius. The blue curves show the mean Rabi frequencies
obtained as a function of the beam radius for the given laser beam power. A beam radius smaller than at
the intersection of a red with a blue curve indicates that the Rabi frequency is high enough to realize the
geometric phase gate for the respective beam power and the scattering probability. For a beam radius larger
than this limiting value, the achievable Rabi frequency is too low for the two-ion system to accumulate the
phase needed without exceeding the chosen scattering probability, i.e., realization is not possible for the
given parameters.

required mean Rabi frequency exceeds the one achievable with the given beam power, i.e., the proposed
phase gate cannot be realized under these conditions.

For an eligible beam radius and beam power, the mean Rabi frequency Ω needed, can be realized with
various individual Rabi frequencies for the two ions and these are associated with different detunings.
As two representative examples, we study here the laser beam powers of 50 mW and 100 mW at
ε = 0.01. The maximum possible beam radii for these values are 8.1 µm and 9.7 µm, respectively.
These values lie in a regime feasible when using frequency doubled, amplified diode lasers and common
optical components for beam shaping and focusing. The mean Rabi frequencies at these maximum
beam radii are Ω = 3.75 GHz and Ω = 4.46 GHz, for 50 mW and 100 mW, respectively. These mean
Rabi frequencies may be achieved by any combination of individual Rabi frequencies ΩCa+ and ΩN+

2

obeying ΩCa+ΩN+
2

= Ω2. This mutual inverse-proportional dependence of the two Rabi frequencies is
shown in Fig. 6.8.

Having chosen suitable Rabi frequencies, appropriate detunings ∆Ca+ , ∆N+
2

are to be determined.
Owing to equation (6.87), the detunings of both ions depend linearly on the respective Rabi frequencies
for a chosen scattering probability ε: ∆Ca+ ∝ ΩCa+ , ∆N+

2
∝ ΩN+

2
. However, since the Rabi frequencies

of the two ions are inversely proportional to each other, the same is true for the detunings: ∆Ca+ ∝
1/∆N+

2
. These dependencies are depicted in Fig. 6.9 showing the detuning for the Ca+ ion (left

vertical axis) with respect to the Rabi frequency for that ion (bottom horizontal axis) together with
the respective quantities for the N+

2 ion on the non-linear top and right axis.14

14Here, the detunings are assumed to be positive. As seen from equation (6.83), a change in the sign of one of the two
detunings results in a sign change of the acquired phase φ12, which is of no relevance. Hence, our discussion is also valid
for negative detunings, when the figures given are understood as absolute values. In an actual implementation, detunings
are to be chosen such that the coupling to levels beside those described by the two-level model are minimized.
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Figure 6.9. Detunings for the logic and the spectroscopy ion as a function of Rabi frequencies.
The detuning for the Ca+ ion is proportional to the Rabi frequency of that ion, as shown here by the bottom
and the left axis. The same holds for the N+

2 ion, as seen from the top and right axis. The Rabi frequency
and the detuning of the N+

2 ion, however, are inversely proportional to the respective quantities of the Ca+

ion, as may be seen by the non-linear top and right axis. Values shown apply for Ω = 2π × 3.75 GHz.

Finally, we may analyze the scaling of the experimental parameters with the secular axial trapping
frequency ω. As may be derived from equation (6.83) and the definition of Ω, the mean Rabi frequency
Ω scales linearly with ω (and so do ΩCa+ , ΩN+

2
, ∆Ca+ and ∆N+

2
). Therefore, the above results may be

easily adapted for different axial trapping frequencies. By reducing ω, the required Rabi frequencies—
and so the beam powers needed—could be decreased. However, as the value used above is already at
the lower end of the typical range ion traps are operated with, a further reduction might affect stable
trapping and laser cooling. Also, the wave packet size of the ions at a given temperature increases for
less tight trapping, rendering them prone to spatial inhomogeneities of optical dipole forces induced
by Gaussian laser beams (see below).
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6.3.4 Experimental imperfections

So far we have studied our proposed state-detection method by means of one-dimensional harmonic
oscillators, quasi-classical states and spatially constant forces. In reality, the ions move in three-
dimensional space and are trapped by time-varying electric fields that only on time-average result
in a (nearly) harmonic effective potential. Moreover, following Doppler laser cooling, motional degrees
of freedom of the ions are described by a thermal density operator rather than by quasi-classical
states [205]. We will shortly discuss these experimental imperfections, namely finite-temperature and
micromotion effects, in a qualitative way.

In principle, ions in thermal states evolve in our state-detection scheme as shown here for quasi-classical
states, as can be shown by expressing the thermal states in terms of quasi-classical states and exploiting
the independence of the acquired phase from the initial phase-space position. Therefore, our state-
detection technique is temperature-independent. This reasoning, however, only applies for spatially
constant forces. The optical dipole forces exerted by Gaussian laser beams are only (approximately)
constant within a region around r = ±w/2 small compared to the beam radius w (see Fig. 6.6).15 So,
for our model to be applicable, the spread of the ion wave packets must be small compared to the beam
radii. For a thermal state, this wave packet size increases with temperature. At the Doppler cooling
limit of Ca+ (0.5 mK), the root-mean-square wave packet size is roughly half a micrometer.16 Therefore,
this limit is met for the beam radii studied above.17 Insensitivity to ion temperature might be improved
by using less tightly focused laser beams—at the expense of a higher beam power needed.

As explained in Ch. 4, ions are trapped in an rf ion trap by oscillating electric fields creating on time
average a confining effective potential. Ions trapped that way always oscillate at the rf drive frequency
except if they are exactly at the rf null line. In other words, they exhibit “micromotion”. In case of
parasitic electric fields (known as “patch potentials” [206]) or spurious phase shifts between rf voltages
on different trap electrodes, the equilibrium positions of the ions might be offset from the rf null line
resulting in “excess micromotion”. Unless such effects are perfectly canceled [123], the ions in practice
steadily exhibit a non-vanishing micromotion amplitude. In our state-detection scheme, micromotion
results in a modulation of the forces exerted on the ions—and hence of the phase acquired—at the
rf frequency. Since the rf period is short compared to the laser pulse duration and since the laser
intensity is continuously increased and decreased, the total accumulated phase is averaged over many
micromotion cycles, reducing the effect of micromotion on the accumulated phase.

Concluding, we see that the simplified discussion of our proposed state-detection method given here
describes the relevant effects adequately. Deviations from this simplified model should not pose any
serious issues for an actual implementation.

15Since the second derivative of the intensity vanishes at the point of maximum intensity gradient, this position is not
only optimal in terms of the magnitude of the force, but also regarding its spatial homogeneity.

16The root-mean-square wave packet size of a harmonic oscillator with angular frequency ω and mass m in thermal
equilibrium at absolute temperature T abs is ([72], p. 577),

p
〈x̂2〉 =

r
~

2mω
coth

~ω
2kBT abs

,

with kB the Boltzmann constant.
17An analogous criterion applies for the wave packet size in direction of the laser beam. Here, the relevant beam

parameter is the Rayleigh range ([58], pp. 76 f.), which accounts for a few hundred micrometers for the parameters
studied above, and hence results in an even less restrictive limit than the radial criterion.
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6.4 Summary and conclusion

In this chapter, a non-destructive state-detection technique for trapped molecular ions has been stud-
ied. The proposed method is based on geometric quantum phases induced by transient, state-dependent
forces. Non-destructive state detection is essential for future high-precision experiments with trapped
molecular ions, as it allows efficient detection of their quantum state, eliminates the need for trap
reloading and renders single-ion experiments possible.

Implementation of the proposed scheme with optical dipole forces induced by off-resonant, focused
Gaussian laser beams has been found feasible. Effects of finite ion temperature and micromotion
amplitude have been qualitatively discussed. As far as may be judged from this discussion, they do
not seem to pose serious difficulties for an actual realization.

Our proposed state-detection technique competes with other proposed [187, 40, 188, 189, 41, 190, 42,
43] or even already realized [44] non-destructive state-detection methods for molecular ions. Future
developments will tell, which of these turn out to be most suitable for actual high-precision experiments
with molecular ions.





Chapter 7

Conclusion and Outlook

In this thesis, electric-dipole-forbidden rotation-vibration transitions in homonuclear diatomic molec-
ular ions have been studied. As these transitions are very weak, their observation is challenging. On
the other hand, they exhibit extremely low natural linewidths and, correspondingly, long lifetimes
of excited states. Therefore, they are of interest to precision spectroscopy and studying fundamental
scientific questions, most prominently a possible variation of the proton-to-electron mass ratio.

We have started our discussion of forbidden transitions with their underlying physical mechanism.
Based on quantum mechanical perturbation theory, we have discussed the physics of electric-quadrupole
transitions in a clear and consistent way. We have compiled knowledge distributed in the atomic and
molecular spectroscopy literature and rigorously derived results usually only found without derivation.
Moreover, we have given a description of rotation-vibration transitions in terms of the multipole mo-
ments of the molecular charge distribution—a description without an analogue in atomic spectroscopy
and hence not found in common textbook explanations of forbidden transitions.

Concerning fine and hyperfine structure in electric-quadrupole rotation-vibration spectra, we have
calculated the relative intensities of fine- and hyperfine-resolved lines. These calculations are based
on the separability of angular and vibronic coordinates and the treatment of the former by spherical
tensor algebra.

At the heart of this thesis lies the observation of electric-quadrupole rotation-vibration transitions in
the homonuclear molecular nitrogen cation N+

2 —to our knowledge the first observation of a dipole-
forbidden vibrational transition in a molecular ion. This observation has been achieved by combining
a number of advanced techniques from atomic and molecular physics, such as trapping, sympathetic
cooling and state-selective production of molecular ions, use of a frequency-stabilized quantum cascade
laser for rotational-vibrational excitation as well as of a highly sensitive charge transfer reaction for
detection of vibrationally excited ions.

By analyzing the measured spectrum with the known fine- and hyperfine-structure Hamiltonian of N+
2

and spectroscopic constants from the literature [96, 102], we were able to assign the observed spectral
features and thus to prove observation of electric-quadrupole rotation-vibration transitions.

Therefore, we may conclude that the extremely weak electric-quadrupole rotation-vibration transitions
in trapped and cooled homonuclear diatomic molecular ions may be addressed with our experimental
approach.
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The intensity of the lines remains an open issue. The measured spectrum shows deviations in the
line intensities from theoretical expectations, both in absolute as well as relative terms. An in-depth
analysis has revealed possible reasons for this discrepancy, first and foremost rotationally inelastic
N+

2 -Ar collisions prior to excitation. However, further investigation is needed to draw a definitive
conclusion on this issue.

Spectra of molecular ions produced by photoionization, such as the N+
2 electric-quadrupole rotation-

vibration spectrum presented here, depend on the ionic fine and hyperfine ground-state population,
i.e., on the ion production method. We have developed a model to predict these populations for ions
produced by molecular photoionization. This model is based on incorporation of fine- and hyperfine-
structure effects in the model for rotationally resolved photoionization from Buckingham, Orr and
Sichel [148]. Concerning its physical content, our model capitalizes on the separability of electron and
nuclear spin states from the vibronic photoionization matrix element.

We have first developed our ionization model for direct, one-photon, ionization. In that form it has been
successfully applied to the fine-structure-resolved photoelectron spectrum of oxygen from Palm and
Merkt [152]. Thereafter, we have extended our model to the [2+1’] resonance-enhanced multiphoton
ionization (REMPI) of nitrogen used in our experiment. In the particular case of N+

2 produced in the
rotational ground state with the present non-hfs-resolved ionization scheme, we found an identical
distribution of the N+

2 population on the ionic hfs-levels as for a thermal ion population. For other
ionic rotational states, we found propensities for preferential formation of ions in certain hfs levels
for ionization from particular hfs levels of the neutral electronically excited state utilized in REMPI.
Employing spectrally narrower lasers for REMPI, we might be able to exploit these propensities for
preparation of N+

2 ions in selected ionic hyperfine levels.

Finally, we have studied a novel, non-destructive state-detection technique for repeated interrogation
of a single molecular ion by a cotrapped atomic ion. This technique is based on geometric quantum
phases induced by optical dipole forces acting on the hybrid atomic-molecular two-ion system. With
tailored forces, the quantum state of the molecular ion is mapped onto the atomic one. From the
latter, the state is detected through probing a closed optical cycling transition.

By estimating the relevant experimental parameters, such as laser powers, laser beam radii and laser
frequency detunings, we have assessed feasibility of the proposed method. Moreover, we have qualita-
tively discussed experimental imperfections, in particular finite-temperature and micromotion effects,
and found them not to impose serious issues for an experimental implementation.

The path to follow for future experiments is as obvious as it is challenging: with spectrally narrower
mid-IR radiation sources, the exceptionally small natural linewidth of electric-quadrupole vibrational
transitions might be exploited. By means of a non-destructive state-detection method, repeated mea-
surements of such a transition in a single molecular ion should be within reach. Ultimately, we could
then become able to achieve the accuracy and precision needed to investigate effects of interest to
fundamental physics, such as a possible variation of the proton-to-electron mass ratio, through mea-
surement of electric-dipole-forbidden rotation-vibration transitions in a trapped, cooled molecular ion.
Obviously, this is a project for years, if not decades, and represents a formidable challenge—but one
worth the effort.



Appendix A

Definitions of and units for the

electric-quadrupole moment

A.1 Definitions

There are several different definitions for the Cartesian electric-quadrupole moment tensor used in
the literature. They differ by constant factors and whether or not they are given in traceless form.
Furthermore, different authors either use the form for a set of discrete, pointlike charges or for a
continues charge distribution. The following three definitions are among the most often used ones.
They are given here for a tuple of N pointlike particles with charges qj (j = 1, ..., N) and position
vectors rj with Cartesian components rj,α, rj,β, (α, β = x, y, z):

Q
(I)
αβ =

N∑
j=1

qj

(
rj,αrj,β − δαβ

r2
j

3

)
, (A.1)

Q
(II)
αβ =

1
2

N∑
j=1

qj
(
3rj,αrj,β − δαβr2

j

)
, (A.2)

Q
(III)
αβ =

N∑
j=1

qj
(
3rj,αrj,β − δαβr2

j

)
. (A.3)

Definition (I) is used by Bunker and Jensen [67]1 and Condon and Shortly [49]2. This definition has
been adopted for this text. Definition (II) is also used frequently in the spectroscopic literature, such
as in [80, 75]. Definition (III) is found in general textbooks on electromagnetism [207].

These definitions are related to each other according to:

Q
(I)
αβ =

2
3
Q

(II)
αβ =

1
3
Q

(III)
αβ . (A.4)

Apart from different definitions used, the value of the molecular quadrupole moment might also depend

1In the definition of the quadrupole moment in [67] (equation (14-108) on p. 460) the charge is squared, which
obviously is a misprint.

2In [49] the quadrupole moment is first defined in a non-traceless form ([49], p. 85). Later the traceless form is adopted
for the calculation of spectroscopic transitions ([49], pp. 94 ff.).
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on the origin of coordinates the calculation refers to, since only the lowest-order non-vanishing moment
of a multipole expansion is independent of the point of origin. The quadrupole moment thus depends
on the origin chosen, if the molecule posses a monopole (as for a molecular ion) or a dipole moment.
For the calculation of vibrational line strengths, the origin should be chosen at the molecular centre
of mass, as this is the origin resulting from the separation of the translational motion of the molecule
(see [67], p. 416). Nonetheless, molecular multipole moments are sometimes calculated with respect
to the geometrical centre of the molecule (e.g. in [75]). In the case of N+

2 , these two possible points of
origin coincide for symmetry reasons.

A.2 Units

The SI unit for an electric-quadrupole moment is 1 C m2. As typical molecular quadrupole moments
are many orders of magnitude smaller than this unit, they are usually reported in atomic units, i.e.,
in multiples of ea2

0 (e: elementary charge, a0: Bohr radius). Another unit used for electric-quadrupole
moments is 1 DÅ (1 Debye Ångström), also known as “one Buckingham” (1 B).

Expressed in SI units, these units account for:

1 ea2
0 = 4.487× 10−40 C m2, (A.5)

1 DÅ = 0.7435 ea2
0 = 3.336× 10−40 C m2. (A.6)
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Excitation rate calculation

In the following, the electric-quadrupole excitation rate for the IR fundamental S(0) transition1 F ′′ =
3/2 → J̃ ′ = 5/2, F ′ = 7/2 in N+

2 and the lifetime of the excited v′ = 1, J̃ ′ = 5/2, F ′ = 7/2 state is
calculated.

Numerical evaluation of equation (3.74) for this transition using the coefficients from Tab. 3.3 yields

S
F ′′=3/2, eJ ′=5/2,F ′=7/2

= 0.3186
∣∣∣〈X, v′ = 1

∣∣∣T2
0

[
Q̂(m)

] ∣∣∣X, v′′ = 0
〉∣∣∣2 . (B.1)

The vibrational transition matrix element in Cartesian tensor notation (see equation (3.34)) is given
by 〈

X, v′ = 1
∣∣∣T2

0

[
Q̂(m)

] ∣∣∣X, v′′ = 0
〉

=

√
3
2

〈
v′ = 1

∣∣∣ Q̂(m)
X,zz

∣∣∣ v′′ = 0
〉
. (B.2)

According to equation (2.237) the above matrix element is evaluated in the double-harmonic approx-
imation as 〈

v′ = 1
∣∣∣ Q̂(m)

X,zz

∣∣∣ v′′ = 0
〉

=
dQ(m)

X,zz

dR

∣∣∣∣∣∣
R=Re

Re

√
B̃e

ω̃e
. (B.3)

Since we are not aware of any experimental data for the derivative of the electric quadrupole moment
in N+

2 , we used the value from the theoretical study by Bruna and Grein [45]. They reported a value
of dQ(m, B&G)

X,zz /dR|Re = 2.63 ea0 (p. 73 in [45]). Unfortunately, it is not clearly stated which definition
(see Appendix A.1) for the molecular quadrupole moment has been used in [45]. By comparing the
values for the quadrupole moment of neutral N2 also given in [45] with those reported in [80], it may be
inferred that the same definition has been used in these two studies, namely Def. (II) in Appendix A.1.
When converted to the definition used in Ch. 2 (Def. (I) in Appendix A.1), this value corresponds to
dQ(m)

X,zz/dR|Re = 1.75 ea0.

Using this value together with the quantities Re = 2.13 a0, ω̃e = 2140 cm−1 (from Tab. 1 in [45]) and
B̃e = 1.93 cm−1 (from [98]), we obtain〈

v′ = 1
∣∣∣ Q̂(m)

X,zz

∣∣∣ v′′ = 0
〉

= 0.112 ea2
0. (B.4)

1To keep the notation simple, the + superscript is omitted in this section. As no states of neutral N2 are considered,
no confusion should occur.
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The line strength for the F ′′ = 3/2↔ J̃ ′ = 5/2, F ′ = 7/2 transition thus accounts for

S
F ′′=3/2, eJ ′=5/2,F ′=7/2

= 6.01× 10−3 e2a4
0 = 1.21× 10−81 C2m4. (B.5)

The Einstein A-coefficient is given by the line strength according to equation (2.131) as

A eJ ′,F ′→F ′′ =
8π5

5ε0hλ5

1
g′
S
F ′′, eJ ′,F ′ , (B.6)

and the Einstein B(ν)

F ′′→ eJ ′,F ′-coefficient2 is calculated from the Einstein A eJ ′,F ′→F ′′-coefficient according
to

B
(ν)

F ′′→ eJ ′,F ′ =
g′

g′′
λ3

8πh
A eJ ′,F ′→F ′′ . (B.7)

Here, g′ and g′′ denote the degeneracy in the upper and lower level, respectively. For the transition
studied, we have λ = 1/(2186.1804 cm−1) = 4574 nm, g′ = 2F ′+ 1 = 8 and g′′ = 2F ′′+ 1 = 4 resulting
in

A eJ ′=5/2,F ′=7/2→F ′′=3/2
= 6.30× 10−9 s−1 (B.8)

and
B

(ν)

F ′′=3/2→ eJ ′=5/2,F ′=7/2
= 7.24× 107 s−1(Jm−3Hz−1)−1. (B.9)

The vibrational excitation rate R
F ′′→ eJ ′,F ′ per ion is given by the Einstein B-coefficient multiplied

with the spatial and spectral energy density ρ(ν):

R
F ′′→ eJ ′,F ′ = B

F ′′→ eJ ′,F ′ρ(ν). (B.10)

As mentioned in Sec. 4.2.5, the effective IR beam power of 170 mW at a FWHM beam diameter of
140 µm yields an irradiance of 7.7× 106 W m−2 at the beam centre. Assuming a Gaussian spectral
profile with a FWHM bandwidth of 19 MHz (as obtained from the measured spectrum) this translates
into a spectral irradiance of 0.38 W m−2 Hz−1 or, when divided by the speed of light, to a spectral and
spatial energy density3 of ρ(ν) = 1.3× 10−9 J m−3 Hz−1.

Substituting this value into (B.10) yields an excitation rate for the electric-quadrupole S(0), v′′ =
0, F ′′ = 3/2→ v′ = 1, J̃ ′ = 5/2, F ′ = 7/2 transition of

R
F ′′=3/2→ eJ ′=5/2,F ′=7/2

= 9.14× 10−2 s−1 (B.11)

per ion.

In order to estimate the natural linewidth and the lifetime of the excited F ′ = 7/2, J̃ ′ = 5/2 state,
the total decay rate, including the decay to both hyperfine components of the ground state, has to be
considered. This results in a life time of τ

F ′=7/2, eJ ′=5/2
= 3.16× 107 s or 366 days, corresponding to a

natural linewidth of 5.03 nHz FWHM.

2Contrary to Ch. 2, the Einstein B-coefficient used here is defined with respect to the energy density per frequency
interval instead for per angular frequency interval. This is indicated by the superscript (ν). Denoting the coefficient used
in Ch. 2 as B(ω) and using the equations B(ν)ρ(ν) = B(ω)ρ(ω) and ρ(ω)dω = ρ(ν)dν (with ρ the spatial and spectral
energy density and ω = 2πν), the relation B(ν) = B(ω)/(2π) is found.

3In accordance with the Einstein B-coefficient, the energy density is given per frequency interval and not per angular
frequency interval, as indicated by the superscript (ν).



Appendix C

Relations from tensor algebra

C.1 Relations for the Wigner 6j-symbol

Based on the definition of the 6j-symbol, one may show the relation (see equation (4.15) in [61]):

{
j1 j2 j3

j4 j5 j6

}(
j5 j1 j6

m5 m1 m6

)

=
∑

m2,m3,m4

(−1)j1+j2−j3+j4+j5+j6−m1−m4

(
j1 j2 j3

m1 m2 −m3

)(
j4 j5 j3

m4 m5 m3

)(
j2 j4 j6

m2 m4 −m6

)
.

(C.1)

Using the symmetries of the 3j-symbols the following expression is derived:{
j1 j2 j3

j4 j5 j6

}(
j5 j1 j6

m5 m1 m6

)
(−1)−j1−j2+j3−j4−j5−j6+m1

=
∑

m2,m3,m4

(−1)−m4

(
j3 j1 j2

−m3 m1 m2

)(
j3 j4 j5

m3 m4 m5

)(
j2 j4 j6

m2 m4 −m6

)
. (C.2)

C.2 Relation for the Wigner 9j-symbol

According to [76], p. 144, the following relation holds for the 9j-symbol:

∑
m6,m9,m4,m7

(
j3 j6 j9

m3 m6 m9

)(
j1 j4 j7

m1 m4 m7

)(
j4 j5 j6

m4 m5 m6

)(
j7 j8 j9

m7 m8 m9

)

=
∑
j2

(2j2 + 1)

(
j1 j2 j3

m1 m2 m3

)(
j2 j5 j8

m2 m5 m8

)
j1 j2 j3

j4 j5 j6

j7 j8 j9

 . (C.3)





Appendix D

Calculation of Rabi frequencies

D.1 Definition

Regarding a quantum mechanical two-level system with lower state |a〉 and upper state |b〉 that couples
via the electric-dipole operator µ̂ to an electric field E(t) = E0e0 cos (ωt) oscillating as a function of
time t at angular frequency ω with amplitude E0 > 0 and unit polarization vector e0, we define the
Rabi frequency [200, 208, 128] as:

Ω =
∣∣∣∣E0

~
〈b | µ̂ · e0 | a〉

∣∣∣∣ . (D.1)

Assuming linearly, z-polarized radiation, i.e., e0 = (0, 0, 1), we have µ̂ · e0 = µ̂z = T1
0 [µ̂] with T1

0 [µ̂]
the zero component of the space-fixed electric-dipole operator understood as a first-rank spherical
tensor operator.

The Rabi frequency hence is:

Ω =
E0

~
∣∣〈b ∣∣T1

0 [µ̂]
∣∣ a〉∣∣ . (D.2)

In the context of the state-detection method discussed in Ch. 6, the state |a〉 corresponds to the ground
state |g〉 and the state |b〉 to the auxiliary excited state |aux〉.

Usually the upper and lower level are degenerate and particular states of these levels are characterized
by the space-fixed projections m′ and m′′ belonging to the upper and lower angular momentum
quantum numbers j′ and j′′, respectively. The Rabi frequency may then be written as,

Ω =
E0

~
∣∣〈j′m′ ∣∣T1

0 [µ̂]
∣∣ j′′m′′〉∣∣ . (D.3)

In this notation, angular momentum and spherical tensor algebra may be used to derive the electric-
dipole operator matrix elements from tabulated quantities such as Einstein A-coefficients or pure
vibronic dipole-operator matrix elements.

As the Rabi frequency scales linearly with the electric field amplitude E0, we will below calculate the
quantity Ω/E0 corresponding to the Rabi frequency at unit electric field amplitude. Thereafter, we
derive the field amplitude at a certain position in a Gaussian laser beam and get the actual Rabi
frequency as the product of these two quantities.
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D.2 Calcium ion

The optical dipole force exerted on the Ca+ ion is (mainly) induced through the coupling of the ground
level 42S1/2 by the electromagnetic radiation to the excited 42P1/2 level.1 Hence, the states |j′′m′′〉
and |j′m′〉 in (D.3) are Zeeman states of these two levels. The magnitude of the dipole matrix ele-
ments between them is obtained from the known Einstein A-coefficient as follows: the matrix elements
appearing in (D.3) for different projection quantum numbers are related among each other by the
Wigner-Eckart theorem [61],

〈
j′m′

∣∣T1
p [µ̂]

∣∣ j′′m′′〉 = (−1)j
′−m′

(
j′ 1 j′′

−m′ p m′′

)〈
j′
∥∥T1
· [µ̂]

∥∥ j′′〉 , (D.4)

with
〈
j′
∥∥T1
· [µ̂]

∥∥ j′′〉 the “reduced matrix element”.

From the definition of the Einstein A-coefficient,

Aj′→j′′ =
8π2

3ε0~λ3

1∑
p=−1

j′′∑
m′′=−j′′

∣∣〈j′m′ ∣∣T1
p [µ̂]

∣∣ j′′m′′〉∣∣2 , (D.5)

together with the Wigner-Eckart theorem and the properties of the Wigner 3j-symbols [61], the mag-
nitude of the reduced matrix element may be expressed as:

∣∣〈j′ ∥∥T1
· [µ̂]

∥∥ j′′〉∣∣2 =
3ε0~λ3

8π2
(2j′ + 1)Aj′→j′′ . (D.6)

Here, λ is the wavelength of the transition and ε0 the vacuum permittivity.

Substituting these results into (D.3), we obtain the Rabi frequency for linearly polarized radiation
(and hence m′ = m′′) as,

Ω = E0

∣∣∣∣∣
(

j′ 1 j′′

−m′′ 0 m′′

)∣∣∣∣∣
√

3ε0λ3

8π2~
(2j′ + 1)Aj′→j′′ . (D.7)

For the 42S1/2− 42P1/2 transition, we have j′ = j′′ = 1/2 and m′′ = ±1/2. Since the magnitude of the
3j-symbol in (D.7) is invariant under a change of the lower-row signs (see equation (2.31) in [61]), we
may chose without loss of generality m′′ = 1/2.

Using the values λ = 396.958 65 nm and A42P1/2→42S1/2
= 132× 106 s−1 from [195], p. 146, we obtain

the Rabi frequency at unit electric field amplitude as,

ΩCa+

E0
= 9.4× 104 s−1(Vm−1)−1. (D.8)

1We neglect here the optical dipole force due to the coupling of the ground level to the 42P3/2 level. The relative
contribution to the total optical dipole force due to that transition increases with the (blue) detuning and accounts
for roughly 10 to 20 % of the total force for the parameters used in Sec. 6.3. Given the uncertainty of the Einstein
A-coefficient our calculation is based on of 10 % [195], this approximation seems reasonable.
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D.3 Nitrogen ion

The dipole force exerted on the N+
2 ion is induced by the coupling of the rovibronic ground level X2Σ+

g ,
v′′ = 0, N ′′ = 0 to the auxiliary excited level B2Σ+

u , v
′ = 1, N ′ = 1. Here, v′′ and N ′′ (v′ and N ′) are

the vibrational and rotational quantum number in the ground (auxiliary excited) state.

The excited level is split into two spin-rotation components with total angular momenta J ′ = 1/2 and
J ′ = 3/2. Since the optical dipole force is induced with electromagnetic radiation far detuned from
resonance, we may add the forces created by the coupling to both spin-rotation components. We will
do so by first working out the Rabi frequency of both components separately and later combining
them into an effective Rabi frequency to describe the total force.

The electric-dipole operator matrix elements of the X2Σ+
g , v

′′ = 0 − B2Σ+
u , v

′ = 1 transition are
calculated in a similar way as shown for electric-quadrupole transitions in Ch. 3. Their squared absolute
magnitude is:∣∣∣〈B2Σ+

u , v
′ = 1, N ′, J ′,M ′J

∣∣∣T1
p

[
µ̂(s)

] ∣∣∣X2Σ+
g , v

′′ = 0, N ′′, J ′′,M ′′J
〉∣∣∣2

= (2N ′ + 1)(2N ′′ + 1)(2J ′ + 1)(2J ′′ + 1)

(
N ′ 1 N ′′

0 0 0

)2(
J ′ 1 J ′′

−M ′J p −M ′′J

)2

{
N ′ J ′ 1/2
J ′′ N ′′ 1

}2 ∣∣∣〈B2Σ+
u , v

′ = 1
∣∣∣T1

0

[
µ̂(m)

] ∣∣∣X2Σ+
g , v

′′ = 0
〉∣∣∣2 .

(D.9)

Here, T1
0

[
µ̂(s)

]
and T1

0

[
µ̂(m)

]
are the zero component of the electric-dipole operator in spherical tensor

notation with respect to the space-fixed and the molecule-fixed frame, respectively. J ′′ and J ′ are the
quantum numbers of the total angular momenta without nuclear spin in the ground and the auxiliary
excited state and M ′J , M ′′J the quantum numbers of the respective space-fixed projections.

The angular factors in (D.9) account for 1/9 for the transition J ′′ = 1/2 → J ′ = 1/2 and for 2/9 for
the transition J ′′ = 1/2→ J ′ = 3/2.

The absolute magnitude of the vibronic matrix element is obtained in the “r-centroid approximation”
[95] as, ∣∣∣〈B2Σ+

u , v
′
∣∣∣T1

0

[
µ̂(m)

] ∣∣∣X2Σ+
g , v

′′
〉∣∣∣2 = qv′, v′′

∣∣Re(rv′, v′′)
∣∣2 , (D.10)

with the Franck-Condon factor qv′, v′′ and the electronic transition moment Re(rv′, v′′). Using the values
from [95] (Tab. 15, p. 1072), we obtain:∣∣∣〈B2Σ+

u , v
′ = 0

∣∣∣T1
0

[
µ̂(m)

] ∣∣∣X2Σ+
g , v

′′ = 0
〉∣∣∣2 = 0.337e2a2

0. (D.11)

The Rabi frequency at unit field amplitude for the two relevant transitions hence are,

ΩJ ′=1/2

E0
= 0.194

ea0

~
, (D.12a)

ΩJ ′=3/2

E0
= 0.274

ea0

~
. (D.12b)
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The effective Rabi frequency for the N+
2 ion defined as ΩN+

2
=
√

Ω2
J ′=1/2 + Ω2

J ′=3/2 thus is:

ΩN+
2

E0
= 0.335

ea0

~
= 2.7× 104 s−1(Vm−1)−1. (D.13)

The same result is obtained when entirely ignoring the electron spin and treating the transition as if it
occurred between two 1Σ states. Following the same argument, the effective Rabi frequency at a large
detuning also is equal whether or not hyperfine structure is overlying spin-rotational structure.

Along the same lines as shown above for the Rabi frequency, the line strength and hence the nat-
ural linewidth of the transitions in the N+

2 ion may be calculated. Using the value of λ = 1/ν̃ =
1/(25 564.7 cm−1) for the transition wavelength from [95], we obtain ΓN+

2
= 3.80× 106 s−1.

D.4 Electric field amplitude in a Gaussian laser beam

The electric field amplitude E0 at a certain position of an electromagnetic wave is related to the
intensity I at that position via,

I =
1
2
ε0cE

2
0 . (D.14)

For a Gaussian laser beam, the intensity within the beam profile is given by ([58], p. 79):

I(r) =
2P tot

πw2
e−

2r2

w2 , (D.15)

with r the distance from the beam centreline, P tot the total beam power and w the 1/e2 beam radius
(the distance from the beam centreline, at which the intensity is reduced by a factor of 1/e2 from the
value at the centreline).

The ions are assumed to be at the positions of maximum intensity gradient, r = ±w/2, of the two
beams. The intensity at these positions is,

I
(
r = ±w

2

)
=

2P tot

πw2
e−

1
2 , (D.16)

corresponding to an the electric field amplitude of

E0

(
r = ±w

2

)
=

2
w

√
P tot

πε0c
e−

1
4 . (D.17)

Multiplying equations (D.8) and (D.13) by this value, we get the Rabi frequency for both, the Ca+

and N+
2 ion, for a given beam power P tot and beam radius w.
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