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Preface 
“As many more individuals of each species are born than can 
possibly survive; and as, consequently, there is a frequently 
recurring struggle for existence, it follows that any being, if it 
vary however slightly in any manner profitable to itself, under 
the complex and sometimes varying conditions of life, will 
have a better chance of surviving, and thus be NATURALLY 
SELECTED. From the strong principle of inheritance, any 
selected variety will tend to propagate its new and modified 
form.”

Charles Darwin, 1859. 
(On the Origin of Species by Means of Natural Selection, p.5, 1st edition)

Darwin revolutionized how we see the world and our place therein. In 1859, 23 years after returning with 
the H.M.S. Beagle from the Galapagos, he published his idea1 of evolutionary change through natural 
selection on more than 400 pages. In fact, Darwin regarded this work only a summary of all the evidence 
he had gathered. On the Origin of Species by Means of Natural Selection caused an outrage in the 
civilized world. The book coherently describes ubiquitous natural principles derived from meticulously 
reflected observations, which also changed the view on the origin of our own species.

In the first half of the 20th century, Darwin’s evolutionary principles were integrated with early insights in 
genetics. This ‘modern evolutionary synthesis’ is regarded as one of the major leaps (evolutionary) biology 
has taken since the Darwinian revolution. In particular, this synthesis emphasized biology as an integrative, 
yet independent science with a pervasive evolutionary thinking. The so far observational principles of 
evolutionary change through natural selection had become, to a certain degree, testable and measurable. 

Darwin’s principles also withstand biology’s current technical revolution. Clearly, I am part of this 
modern era of ‘technically enabled biologists’. My every day’s work and my insights are much determined 
by the availability and use of powerful technologies. In the current scientific world, it is easy to forget about 
past accomplishments, which have brought us technologically as well as ideologically to where we are 
today. We are standing on the shoulders of giants allowing us to see further than we have ever seen before 
(Newton 1676).

I am often confronted with the question ‘why do you do science?’. To me, being a scientist means to 
be an explorer, an explorer who is insatiably curious about what might or might not be, and ideally, who 
has the freedom to be creative in the way he reaches new grounds for a better understanding of the world. 
“To make a contribution to this better understanding”, as Ernst Mayr (1998) puts it, “is a source of great 
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satisfaction to a scientist; indeed it is an occasion for exhilaration. The emphasis is often on discovery, 
where luck sometimes plays a role, but the joy is perhaps even greater when one succeeds in the difficult 
intellectual achievement of developing a new concept, a concept that can integrate a mass of previously 
disparate facts, or one that is more successful as the basis of scientific theories.” 

Another important question to me is ‘why biology?’. I feel deep joy when I explore and ponder upon 
the living world with all its so diverse beauty and hidden principles. Even though my scientific explorations 
into this living world have inevitably a relatively specific focus, they make only sense in context of the 
‘bigger picture’, to which they hopefully add. And, it is likely the (non-scientific) fascination for nature I have 
since I remember (and which I can hardly put into words) that brought me to finally become a biologist.

Marius Roesti, November 2014 

1 Alfred Russel Wallace should be credited with co-discovering, together with Darwin, the principles of evolutionary change through 
natural selection. Even though it seems that Darwin had gathered a more complete and larger body of evidence, the first ever publi-
cation on natural selection appeared as a co-authored manuscript by Darwin and Wallace (1858).
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Thesis Summary
Natural selection is the ultimate, but not only force underlying organismal diversity. Despite this general 
biological insight, our understanding of how selection targets and shapes the genome during adaptation 
remains incomplete and is the central quest of this thesis. My main model organism is the threespine 
stickleback fish (Gasterosteus aculeatus). Stickleback provide an outstanding opportunity to study 
adaptive evolutionary change, because marine ancestors have repeatedly colonized and adapted to 
different freshwater environments all over the northern hemisphere since the last glacial retreat about 
12,000 years ago. Besides wild populations, I also make use of lab-raised stickleback hybrids from 
controlled crosses for this thesis work.

Thousands of genome-wide genetic polymorphisms (i.e., genetic markers) called in marine, but 
predominantly in distinct lake and stream stickleback populations from different geographic locations 
allow me to decipher the number and position of genomic targets of selection in the early phase of 
adaptive divergence. I find that selection acts on many loci distributed widely across the genome. On a 
genomic scale, the recombination landscape along chromosomes proves to be – in concert with selection 
– an important factor in driving heterogeneous genetic differentiation among populations.

To investigate the rate of recombination across the stickleback’s genome in more detail, I use an 
artificially crossed second-generation (F2) population. This reveals constraints in the frequency and 
location of detectable recombination events (i.e., cross-overs) within the genome. For example, cross-
overs prove to be more frequent in chromosome peripheries than centers. This, together with selection, 
results in decreased within-population genetic diversity and increased between-population differentiation 
in the centers of chromosomes as opposed to the peripheries. Furthermore, I show that the cessation 
of recombination between the heterogametic sex chromosomes occurred in independent bouts. As 
a consequence, I find extended genomic regions distinct in their degree of degeneration between the 
X and Y chromosome, so called evolutionary strata. Finally, recombination reveals to be an important 
determinant of other aspects of a genome, such as its nucleotide composition.

Integrating theoretical modeling with targeted and genome-wide sequencing, my research further 
demonstrates that the inference and interpretation of genomic regions exhibiting particularly high and 
low population differentiation is not as straightforward as commonly believed. This is because the type 
of genetic variation available to selection (i.e., pre-existing vs. de novo variation) as well as the mode of 
adaptation (i.e., divergent vs. parallel adaptation) influence the way neutral variation is shaped by selection 
across the genome. I demonstrate that a genomic region of high differentiation may not necessarily be 
indicative of divergent selection when populations adapt in parallel to similar environments from a shared 
pool of genetic variation.

Based on several hundreds of F2 specimens reared under standardized conditions in the laboratory, I 
also link variation in heritable phenotypic traits to genetic variation, a research program generally referred 
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to as quantitative trait locus (QTL) mapping. Corroborating with the results from my genome scans within 
and between wild populations (indicating that adaptive divergence involves many loci widespread across 
the genome), QTL mapping reveals that most phenotypic traits are controlled by numerous genetic loci. In 
general, each of these loci explains a small fraction of the entire phenotypic trait variation.

I also use high resolution SNP data to infer the demographic history of several lake and stream 
stickleback populations from the Lake Constance watershed (Central Europe) and demonstrate that the 
repeated occurrence of similar stream phenotypes are, in this particular system, better explained by an 
evolutionary scenario of ‘ecological vicariance’ rather than repeated parallel divergence. I then show how 
selection has shaped local and broad-scale linkage, diversity and differentiation across the genome in 
these populations. Interestingly, I find evidence for strong divergent selection acting on large chromosomal 
rearrangements I had previously detected to be important for marine vs. freshwater adaptation. This finding 
provides a strong case for the re-use of pre-existing genetic variation in stickleback and demonstrates 
that the same genomic regions can be involved in adaptive divergence between disparate ecotype pairs. 

Overall, I come to conclude that signatures of selection are – at various physical scales – frequent 
within the stickleback genome. Stickleback repeatedly use pre-existing genetic variation, shared across 
various geographic ranges, to adapt to similar or disparate environments. Yet, there is a substantial 
degree of genetic non-parallelism – at least at the level of neutral markers – that goes along with parallel 
phenotypic evolution. My thesis emphasizes that the reliable detection and interpretation of genomic 
signatures of selection requires integrating many replicate study populations within a clear-cut ecological 
and demographic framework, as well as complementary analytical approaches. Controlled crossing 
experiments and theoretical modeling are key to deriving predictions about the genomics of adaptation in 
the wild and to facilitate our understanding of complex biological processes and patterns.
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Thesis Introduction
(i) Adaptation and Speciation Research

Adaptation is the evolutionary response of an organism to fit its proximate environment. A locally adapted 
population should thus perform best in its native environment and become distinct from any other 
population occupying a foreign environment (Kawecki & Ebert 2005). Ultimately, this process can lead to 
the build-up of reproductive isolation between initially interbreeding populations, to which we then refer to 
as distinct ‘species’ (Schluter 2000, Nosil 2012). – Even though Charles Darwin and Alfred Russell Wallace 
laid the basis of this ecological (adaptive) idea of speciation more than 150 years ago (Darwin & Wallace 
1858; Darwin 1859), a non-ecological view of the speciation process dominated evolutionary biology over 
the majority of the last century (Mayr 1997). For a long time, spatial isolation was considered essential for 
population divergence and speciation. However, the relatively recent and rapid accumulation of empirical 
and theoretical evidence in favor of ecological speciation demonstrates that ecology only – that is, in 
the absence of geographical barriers, can reduce gene flow between populations. In fact, ecological 
speciation appears to be the dominant mode of speciation (Schluter 2000; Rundle & Nosil 2005; Nosil 
2012). This emphasizes natural selection’s prime role in the origin of organismal diversity.

Speciation research has thus shifted its focus to investigating the relevance of ecology (adaptation) for 
evolutionary change. Ideally, we examine closely related populations or species that have diverged multiple 
times independently between ecologically distinct habitats in the recent evolutionary past. This is because 
(i) we are interested in the factors driving the initial phase of adaptive divergence between populations, 
(ii) the presence (or absence) of repeated evolutionary patterns among independent, but ecologically 
comparable populations provides evidence whether the ultimate force underlying these patterns has been 
adaptive or rather stochastic, and (iii) relatively recent population divergence provides insights into the rate 
of adaptive evolution in the wild.

(ii) Evolutionary Genomics and its Questions

For a long time, evolutionary biology has been technically constrained to investigations at the phenotype-
level. In the past two decades, however, we have witnessed a revolution in the methodological toolkit 
available to evolutionary biologists. Enabled by advances in high-throughput nucleic acid sequencing 
technologies, many of us are currently trying to understand adaptation at the genomic level. The screening 
of entire genomes, or representative subsets thereof, has become standard in the pursuit of answering 
some key questions in (evolutionary) biology:

•	 Is genome divergence between differentiating populations homo- or heterogeneous?
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•	 How many genomic regions are targeted by selection during adaptation, and where are they 
located in the genome?

•	 Are the same genetic loci repeatedly involved when populations adapt in parallel to similar 
environments?

•	 What type of genetic variation (pre-existing vs. de novo variation) does selection act upon during 
early adaptation?

•	 How does selection impact neutral genetic variation within the genome?
•	 What is the genetic basis of heritable phenotypic variation? How many loci control a phenotypic 

trait and what is the relative contribution of each of these loci to the overall trait variation? 
•	 What is the role of selection relative to, or in concert with other processes and factors involved 

in genome evolution, such as the rate of crossing over along the genome, or the demographic 
history of populations?

Finding answers to the above questions will shed light on the predictability of adaptive evolution in general. 
To what extent would evolution take the same path, if we replayed the tape of life (Gould 1989)?

(iii) Evolutionary Genomics Approaches

Genome scans in natural populations 
Different analytical approaches can be taken to screen the genome of wild populations for signatures of 
selection (Oleksyk et al. 2010). A promising and now broadly applied approach is ‘divergence mapping’, 
which investigates the extent of differentiation between populations inhabiting different environments 
(Nielsen 2005; Storz 2005). Ideally, we can rely on a well-assembled reference genome of the focal 
species allowing us to integrate single point estimates of divergence along the genome. The premise 
of divergence mapping is that natural selection influences the extent of population differentiation around 
selected loci in contrast to the neutrally evolving remainder of the genome (Wu 2001). Regions exhibiting 
strong population divergence are thought to hold loci where different variants (alleles) are selectively 
favored between populations – that is, they are under divergent selection. In this case, increased genetic 
differentiation should extend beyond the selected locus. This is because not only the locus directly targeted 
by selection, but also its physically linked genomic neighborhood experiences allele frequency shifts 
(Maynard Smith & Haigh 1974). Regions of particularly low genetic differentiation, on the other hand, are 
generally interpreted as either being under balancing selection (i.e., selection favoring genetic diversity), or 
to represent regions in the genome where lineage sorting between populations is (yet) incomplete (e.g., 
due to ongoing gene flow). A traditional measure to quantify molecular population divergence is the ‘fixation 
index’ (FST), which ranges from 0 (no differentiation) to 1 (complete differentiation) and is calculated based 
on allele frequencies within and between populations (Wright 1950; Weir & Cockerham 1984; Holsinger 
et al. 2009). More recently, and complementary to FST-like measures, phylogenetic methods have become 
popular to infer population structure along the genome (e.g., Heliconius Genome Consortium 2012; Jones 
et al. 2012).

Divergence mapping makes explicit use of comparing populations occupying different habitats. 
Nevertheless, genomic footprints of selection can also be detected within single populations (which 
potentially inhabit similar habitats). For instance, a local reduction in genetic diversity or an increased 
extent of linkage disequilibrium (LD) within a population can point to a selected region within a genome 
(Sabeti et al. 2006; Oleksyk et al. 2010). This is because a positively selected variant is expected to 
increase, together with its physically linked neutral genomic neighborhood, in frequency, thereby locally 
reducing genetic variation and increasing the extent of linkage-segments. The problem here is that other 
processes besides selection can alter diversity and LD patterns within a genome. Most of them, however, 
should impact the entire genome (e.g., genetic bottlenecks) instead of only localized genomic regions. It 
further proves difficult, when the focus is on a single population only (or several populations that inhabiting 
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a similar environment), to link detected regions under selection to a specific ecological context. This in 
turn can be an advantage of within-population selection measures, as we do not have to make pre-
assumptions about an ecological contrast (i.e., rely on divergent selection pressures) among populations. 
Within-population measures for selection thus provide a strong means for detecting any kind of selected 
regions within a genome. Between- and within-population measures also differ in other aspects, such as 
in the use of different polymorphisms as genetic markers (possibly resulting in different study resolutions). 
For example, polymorphisms with a relatively low minor allele frequency (MAF) may be informative when 
we are interested in investigating diversity or linkage within a genome, but can be uninformative in a 
divergence mapping approach (Bhatia et al. 2013). 

Pedigree data from artificial populations
Besides divergence scans, where we investigate genomes of wild populations, experimental approaches 
can be powerful to decipher certain aspects important to the genomics of adaptation. Many such 
experimental genomics approaches are based on controlled crosses in the laboratory, as it is the case 
for ‘quantitative trait locus’ (QTL) mapping. The objective here is to link genetic marker data with inherited 
trait variation in second-generation hybrids from an artificial cross-population raised under standardized 
laboratory conditions (to control for phenotypic plasticity). This allows connecting focal phenotypic traits to 
certain genomic regions and thus to uncover the genetic architecture of phenotypic variation selection acts 
upon in the wild. QTL mapping provides a means to answer questions about the number and location of 
genomic regions, as well as their relative contributions to trait variation underlying (adaptive) phenotypes. 
Nevertheless, there are some inherent limitations to QTL mapping, such as the limited genomic mapping 
resolution (given by a single generation of recombination from the F1 to the F2 generation), or the possibility 
to have a non-representative subset of allelic variants present in an artificial cross relative to the wild 
population (Rockman 2010; Savolainen et al. 2013). 

Pedigree data, as provided by a QTL hybrid-cross, can further be used to study genomic recombination, 
that is – the process of genetic exchange between chromosomes during meiosis. Recombination is an 
important evolutionary mechanism (Butlin 2005). Through the shuffling and breaking of chromosomal 
DNA segments, it increases genetic diversity and allows selection to operate more efficiently. On the other 
hand, the suppression of recombination is pivotal for the evolution of heterogametic sex chromosomes 
(Charlesworth et al. 2005). Based on genetic markers fixed for different alleles between the two parental 
individuals of a hybrid-cross, we can infer properties about recombination, such as the cross-over rate 
along chromosomes, when screening the same markers again in the F2 or a later generation.

Association mapping
‘Association mapping’ provides a solution to some of the above-mentioned limitations given by QTL 
mapping (Balding 2006; Oleksyk et al. 2010). As in QTL mapping, the goal in association mapping is to 
find a statistical association between genetic markers and quantitative trait variation. Contrary to QTL 
mapping, however, association mapping relies on closely related wild individuals (ideally from the same 
population or a hybrid zone), exhibiting variation in the phenotypic trait(s) of interest. The approach relies 
on genomic linkage between genetic markers and the actual causative polymorphisms – that is, the actual 
polymorphisms responsible for the observed phenotypic trait variation. Because LD normally extends 
on relatively short genomic distances in wild populations (some hundred to a few thousand base pairs), 
association mapping provides a much higher mapping-resolution than QTL mapping, commonly down 
to one or few candidate genes. Because association mapping relies on wild individuals, the naturally 
occurring allelic richness available to selection is much better represented in this approach compared 
to QTL mapping. Nevertheless, the available number of individuals and genetic markers commonly limit 
the power of association mapping studies. Furthermore, because the focus is on natural samples, other 
factors such as population genetic structure or population history can lead to false-positive results.
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(iv) Reduced Representation Genome Sequencing

Evolutionary genomics approaches rely on abundant genetic polymorphisms (markers) within a genome. 
Despite the staggering amount of data we are now able to produce by next-generation sequencing 
technologies, obtaining DNA sequences of entire genomes for genetic non-model organisms is still 
prohibitively expensive. This is especially the case when studying organisms with relatively large genomes 
and when we aim for a sufficiently extensive sample number that is representative of a large natural or 
experimental population rather than few individuals only. Depending on the study objectives, obtaining 
sequence data from every nucleotide in the genome can provide more data than necessary. Researchers 
in the field of population genomics thus often employ reduced representation genome sequencing 
approaches, which provide relatively high-resolution molecular data across a subset of the genome (Davey 
et al. 2011; Narum et al. 2013). A now widely applied technique is ‘Restriction-site Associated DNA’ (RAD) 
sequencing (Baird et al. 2008). Here, the entire DNA of single individuals is cut by a restriction enzyme at 
specific and abundant genomic sequence-motifs. After this enzymatic digest, unique barcodes are ligated 
to the resulting DNA-fragments’ sticky ends. In a final step, a next-generation sequencing platform, such 
as Illumina sequencing, is used to obtain around 150 bp-long sequence-reads from either side of all the 
genome-wide restriction enzyme cutting sites. Based on the barcode information sequenced together 
with the genomic DNA, each of the many millions of obtained reads can be assigned back to a specific 
individual. Overall, RAD sequencing allows us to individually sequence ‘representative’ parts of a genome 
at thousands of homologous sites to a relatively high coverage in many individuals (Davey et al. 2011). 
Furthermore, by choosing different enzymes with different cutting frequencies, we can effectively alter the 
number of represented sites within a genome.

(v) Evolutionary Model: Threespine Stickleback Fish

The threespine stickleback (Gasterosteus aculeatus) is a relatively small teleost fish with a well-understood 
natural history: marine ancestors have repeatedly invaded freshwater all over the northern hemisphere 
since the last glaciation period about 12,000 years ago (Münzing 1963; Bell & Foster 1994) (Figure 1). 
Following this initial freshwater colonization and adaptation, stickleback have – despite the opportunity 
for gene flow – further diversified between different habitats such as lakes and streams (Figure 1), or 
the benthic and limnetic niche within single lakes. These features make the threespine stickleback an 
outstanding model to study the early stages of adaptive divergence in many natural replicates.

Within ecologically similar habitats, distinct phenotypic shifts in morphology, behavior, physiology, and 
life history have repeatedly evolved in stickleback, suggesting that they are adaptive and thus shaped by 
natural selection (Figure 1). For example, stream fish generally exhibit fewer or shorter gill rakers (bony 
structures projecting from the branchial arches used to acquire and retain prey) and are deeper-bodied 
than lake fish (Berner et al. 2008, 2010). These phenotypes are thought to reflect differences in foraging 
habitats between lakes and streams: slender bodies and more numerous or longer gill rakers aid in feeding 
on zooplankton in the open water column of lakes, while deeper bodies and fewer or shorter gill rakers 
aid in feeding on benthic macroinvertebrates in streams. Yet, different stickleback populations also show 
ample variation in traits unrelated to foraging. Marine stickleback, for instance, exhibit instead of common 
fish scales numerous bony plates along their body axes (Bell & Foster 1994) (Figure 1). On the contrary, 
most freshwater stickleback have a reduced number of these plates. These plate-morph differences are 
thought to represent adaptations to contrasting predation regimes in these habitats. In fact, shifts in plate 
morphology are not unique across the marine-freshwater transition, but they are also found between 
some lake and stream populations of the same watershed (Berner et al. 2010). 

Although often reproductively isolated in nature, stickleback from different habitats and locations can 
still be crossed and kept in the laboratory. Furthermore, there is a wealth of molecular tools available for 
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stickleback, most notably a reference genome assembled to the quality of entire chromosomes (Jones et 
al. 2012). These features make stickleback, together with all the above-mentioned ecological advantages, 
particularly well suited to address evolutionary genomics questions. 

Taken together, threespine stickleback offer a remarkable opportunity to study adaptation, and insights 
gained from research on this organism have played a critical role in shaping our understanding of evolution. 

(vi) Thesis Outline

In this thesis, I address some fundamental questions in evolutionary genomics (see above). I use a 
combination of different genomic approaches and apply them to wild as well as experimental populations 
of threespine stickleback. The thesis is structured in six Main Chapters and three Outreach Chapters 
followed by an overall discussion of the results obtained from the Main Chapters. I emphasize that all the 
work I here present comes from collaborations with different people (see Thesis Acknowledgements and 
study-specific authors contributions sections). 

For Chapter 1 (Roesti et al. 2012a), I established and refined the RAD sequencing protocol as well 
as the bioinformatics pipeline to type genome-wide markers in stickleback. I used divergence mapping 
to investigate the way the genome differentiates in the course of early adaptive divergence between four 
pairs of lake and stream stickleback populations from Vancouver Island (BC, Canada). I find population 
differentiation to be highly heterogeneous along the genome. The study shows that overall genome-
wide divergence is reflected in the magnitude of divergence in phenotypes known to be under divergent 
selection across the population-pairs. Chromosomal centers are generally strongly accentuated in 
divergence as compared to the peripheries, suggesting an important role of recombination for genome 
evolution. I argue that accounting for this chromosome-wide effect is important if we are interested in 
finding the actual genomic targets of selection. Generally, the study reveals a great number of strongly 
differentiated regions widely distributed across the genome between lake and stream stickleback. Even 

Figure 1 The left picture shows juvenile stickleback in their natural stream habitat (Rhine, Switzerland). On the upper right picture a 
typical marine male stickleback in its breeding color is shown (Vancouver Island, BC, Canada). Note the full set of lateral bony plates 
along the body. The lower right picture shows two full-grown male stickleback, the one on top from a stream population and the one 
below from the lake from the Lake Constance watershed. All pictures were taken by M. Roesti.
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though this finding indicates that adaptation involves many genetic loci, I also demonstrate that high-
divergence genomic regions may be challenging to interpret and may, in fact, sometimes be unrelated to 
the focal ecological contrast. The insights from this study, presented as Chapter 1, led to three follow-up 
investigations (Chapters 2-4). 

Chapter 2 (Roesti et al. 2012b) explores the commonly overlooked problem of ‘uninformative markers’ 
(i.e., genetic polymorphisms with a low ‘minor allele frequency’, MAF) in divergence mapping approaches. 
The reason why low-MAF markers should be discarded is that they represent relatively ‘young’ mutations 
(or sequencing artifacts) that do not adequately capture the focal processes of divergence mapping at 
the molecular level (i.e., hitchhiking with a selected locus and drift). I empirically demonstrate the bias of 
uninformative markers on the inference of overall genomic and more localized genetic differentiation within 
the genome.

Chapter 3 (Roesti et al. 2013) uses an artificial stickleback cross-population to investigate the genome-
wide patterns of crossing over (recombination) and their biological consequences and methodological 
implications. Even though stickleback offer a powerful model system in evolutionary biology, a detailed 
analysis of recombination in these fish had been missing to that point. In a first step, the study resulted 
in the improvement of the threespine stickleback reference genome, which is now widely used as the 
standard reference for genomics investigations. Overall, the study points to strong functional constraints 
in the rate and distribution of cross-overs along chromosomes. I demonstrate that heterogeneity in cross-
over events along chromosomes results in decreased genetic dversity, but increased genetic differentiation 
in chromosomal centers as opposed to peripheries. Furthermore, I detect a strong association between 
cross-over rate and GC nucleotide content within the genome, highlighting the general importance of 
recombination for genome evolution. Finally, recombination has ceased in different bouts along the sex 
chromosomes in stickleback. For the first time in a fish species, I provide high-resolution evidence that this 
process has resulted in distinct ‘evolutionary strata’ (i.e., large genomic regions exhibiting distinct degrees 
of genetic differentiation) between the heterogametic sex chromosomes. 

Chapter 4 (Roesti et al. 2014) is a study that presents theory for parallel adaptation, a process believed 
to be widespread in nature with ample evidence coming from animals, plants, and bacteria. I focus on the 
situation where multiple populations have used the same genetic variation to adapt to selectively similar 
environments. Although a common process, the genomic signature of parallel adaptation from shared 
genetic variation had not been investigated by theoreticians or empiricists to that point. For this work, 
I integrated theoretical modeling and empirical work (performed in stickleback). The findings offer novel 
interpretations of genome scans (i.e., for high and low divergence outlier regions). Furthermore, I introduce 
a new way on how to calculate phylogenetic separation along the genome in the empirical part of this 
study.

Chapter 5 (Berner et al. 2014) uses QTL mapping to explore the genetic architecture of (adaptive) 
phenotypic traits in stickleback. Close to 500 F2-hybrids from a cross between a phenotypically divergent 
lake male and stream female stickleback were genotyped at more than 2,000 genome-wide genetic 
markers. The study specifically focuses on the genetic basis of skeletal traits (i.e., plate number, vertebrae 
number, gill raker length, snout and head length). Even though I find evidence for two genetic loci that 
account for a large proportion of the observed trait variation, most QTLs prove to have only small 
phenotypic effects. To draw the link between the laboratory-raised QTL cross population and the wild, 
SNP data from the natural source populations of the two parental individuals demonstrate that some 
SNPs linked to QTLs in the cross also exhibit striking allele frequency differences in the wild, suggesting a 
causal role of these QTLs in adaptive population divergence.

Chapter 6 (Roesti et al. 2015) presents high-resolution genome scans conducted with European lake 
and stream populations from the Lake Constance watershed. The study first infers the demographic 
history of the lake and its adjacent stream populations. I find that multiple, phenotypically similar stream 
populations are the result of ‘ecological vicariance’ and not parallel (i.e., repeated) evolution. In the light 
of these demographic insights and by integrating different analytical approaches, I demonstrate the way 
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selection has shaped the genome between and within the divergent lake and stream populations. In 
particular, I focus on the extent of selective sweeps and their impact on linkage disequilibrium and genetic 
diversity. I also use an association mapping approach to reveal the genomic architecture of variation 
in lateral plate morphology, pointing to a yet unknown genomic region that harbors a promising novel 
candidate gene controlling this trait. Finally, the study demonstrates the successful detection of large 
chromosomal arrangements (i.e., inversions), which I find to be involved in lake-stream as well as marine-
freshwater adaptation. This provides striking evidence for the re-use of globally shared variation to adapt 
across different habitat transitions in stickleback. 

The Outreach Chapters 7-9 include additional work I was involved in during my time as a PhD 
student. Chapter 7 is a study that investigates genomic differentiation in lampreys (Mateus et al. 2013). 
We demonstrate, for the first time, that European river (Lampetra fluviatilis) and brook (Lampetra planeri) 
lampreys are strongly differentiated within their genomes and thus comprise well-separated fish species. 
Chapter 8 is a perspective published on a recent Nature paper (Arnegard et al. 2014). Arnegard et al. used 
an experimental approach to reveal the genetic basis of habitat divergence between benthic and limnetic 
stickleback. Chapter 9 includes three studies for all of which I was heavily-involved in field sampling. [I 
further contributed to the acquisition of phenotype data for Muschick et al. (2014), to the study design 
and data acquisition for Moser et al. (2012), and to the study design and paper writing for Dittmann & 
Roesti et al. (2012).] Moser et al. (2012) investigate divergence in life history traits between lake and 
stream stickleback in the European Lake Constance watershed. Dittmann & Roesti et al. (2012) is a study 
conducted during a field excursion to Central America, which looks at the depth-dependent abundance 
of Midas cichlid fish between two crater lakes in Nicaragua. Finally, Muschick et al. (2014) investigate 
whether the adaptive radiation of cichlid fish in the East African Lake Tanganyika has occurred in distinct 
stages based on a large set of phenotypic trait data. 
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Abstract

Evolutionary diversification is often initiated by adaptive divergence between

populations occupying ecologically distinct environments while still exchanging genes.

The genetic foundations of this divergence process are largely unknown and are here

explored through genome scans in multiple independent lake–stream population pairs of

threespine stickleback. We find that across the pairs, overall genomic divergence is

associated with the magnitude of divergence in phenotypes known to be under divergent

selection. Along this same axis of increasing diversification, genomic divergence

becomes increasingly biased towards the centre of chromosomes as opposed to the

peripheries. We explain this pattern by within-chromosome variation in the physical

extent of hitchhiking, as recombination is greatly reduced in chromosome centres.

Correcting for this effect suggests that a great number of genes distributed widely across

the genome are involved in the divergence into lake vs. stream habitats. Analyzing

additional allopatric population pairs, however, reveals that strong divergence in some

genomic regions has been driven by selection unrelated to lake–stream ecology. Our

study highlights a major contribution of large-scale variation in recombination rate to

generating heterogeneous genomic divergence and indicates that elucidating the genetic

basis of adaptive divergence might be more challenging than currently recognized.

Keywords: FST outlier, Gasterosteus aculeatus, gene flow, next generation sequencing, population

genomics, RAD, speciation
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Introduction

Speciation often begins with the adaptive divergence of

populations into selectively different ecological environ-

ments despite the presence of initially high gene flow

(Endler 1977; Schilthuizen 2000; Coyne & Orr 2004;

Gavrilets 2004; Via 2009; Sobel et al. 2010). The molecu-

lar underpinnings of this process remain poorly under-

stood (Wu 2001; Via 2009; Nosil & Schluter 2011). One

fundamental unresolved question is how genetic differ-

entiation that builds up between diverging populations

is distributed across the genome. Adaptive divergence

between populations certainly implies that selection is

strong enough to overcome the homogenizing effect of

gene flow at ecologically relevant loci (hereafter ‘QTLs’)

(Wu 2001; Nosil et al. 2009; Via 2009). But how many

QTLs are involved, how are they arranged across the

genome, and how does their divergence influence selec-

tively neutral parts of the genome? Opinions differ

widely. At one extreme, some studies argue that,

because of hitchhiking, divergence at a few QTLs of

major effect can protect large genomic regions from

gene flow between selective environments (Turner et al.

2005; Via & West 2008; Via 2009). Within these regions,

divergence between environments will be elevated rela-

tive to the rest of the genome, and additional QTLs can

become recruited for further adaptive divergence. At

the other extreme, adaptive divergence might involve

numerous QTLs of relatively small effect, in which case
Correspondence: Daniel Berner, Fax: +41 (0)61 267 0301;
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the hitchhiking of neutral regions along with selected

QTLs is predicted to be greatly restricted physically

(Barton & Bengtsson 1986; Feder & Nosil 2010). In this

case, genetic divergence will either be highly localized

or will build up homogeneously throughout the entire

genome if reproductive barriers associated with adap-

tive divergence restrict gene flow effectively enough.

Evaluating the generality of these extreme (as well as

intermediate) views on genomic divergence during spe-

ciation with gene flow is currently precluded by the

scarcity of empirical evidence. The most powerful

empirical solutions to this problem are expected to

emerge from studies providing high-resolution genome-

wide data from multiple replicate population pairs in

the initial stages of ecological divergence. These ‘species

in waiting’ are particularly informative because the

genomic footprints of selection will not yet have been

obscured by evolutionary processes acting after the com-

pletion of reproductive isolation (Coyne & Orr 2004;

Via 2009; Nosil & Schluter 2011). Moreover, the incor-

poration of multiple population pairs differing in their

magnitude of divergence allows an explicit examination

of how genomic divergence builds up, as opposed to

providing only a single temporal snapshot. Our study

adopts this approach by combining the power of high-

throughput sequencing technology with the availability

of an emerging model for studying divergence with

gene flow: replicate lake and stream populations of

threespine stickleback fish (Gasterosteus aculeatus).

Threespine stickleback inhabit contiguous lake and

stream habitats in many watersheds that were colonized

independently by marine ancestors following the last

glacial retreat (Reimchen et al. 1985; Lavin & McPhail

1993; Thompson et al. 1997; Hendry & Taylor 2004;

Berner et al. 2009, 2010; Deagle et al. 2011). Different

lake and stream population pairs typically exhibit simi-

lar directions of phenotypic divergence in a number of

traits as a response to similar divergent selection (Reim-

chen et al. 1985; Lavin & McPhail 1993; Hendry & Tay-

lor 2004; Berner et al. 2009; Kaeuffer et al. 2011; Deagle

et al. 2011). This adaptive divergence likely represents

the initial stage of speciation because it frequently coin-

cides with the emergence of at least partial reproductive

isolation. (Although it does not necessarily imply that

divergence will ever become complete.) In particular,

strong shifts in neutral marker allele frequencies occur

across lake–stream transitions of just a few hundred

metres, even in the absence of physical dispersal barri-

ers (Berner et al. 2009). Here, we examine four evolu-

tionarily independent lake and outlet stream stickleback

population pairs (‘systems’) from Vancouver Island,

Canada. These systems differ in their magnitude of

divergence because of differences in the strength of

divergent selection, the time for divergence and ⁄ or

differences in available genetic variation (Hendry &

Taylor 2004; Moore et al. 2007; Berner et al. 2009; Ka-

euffer et al. 2011). Importantly, this variation among

systems allows us to investigate genomic patterns along

a gradient of divergence (Nosil & Schluter 2011). We

here present genome scans for all four lake–stream sys-

tems based on thousands of markers obtained through

Illumina sequencing of restriction site-associated DNA.

Material and methods

Study populations and phenotypic analysis

Our study builds on stickleback sampled from one lake

and one outlet stream site in the Boot, Joe’s, Misty, and

Robert’s watersheds on Vancouver Island, British

Columbia, Canada (sites Boot ‘L’ and ‘S2’, Joe’s ‘L’ and

‘S2’, Misty ‘L’ and ‘S6’, and Robert’s ‘L’ and ‘S2’ in

Berner et al. 2009). The population pair in each of these

systems derives from independent postglacial coloniza-

tion by marine ancestors (Hendry & Taylor 2004; Berner

et al. 2009). Absolute barriers to dispersal between lakes

and streams are absent in all systems, providing the

opportunity for gene flow between the habitats. Details

on sampling methods and the populations are provided

in Berner et al. (2009). This analysis is based on 27 indi-

viduals per site (216 in total).

For phenotypic traits, we quantified gill raker number

and length, and landmark-based body size and relative

body depth, as described in Berner et al. (2008, 2011).

These traits are known to show strong genetically based

divergence between lake and stream populations (Lavin

& McPhail 1993; Sharpe et al. 2008; Berner et al. 2011).

We here combined these data into a single multivariate

summary metric of within-system phenotypic diver-

gence by mean-scaling each trait and then calculating

the Euclidean distance between the lake and the stream

sample (univariate patterns are shown in Appendix S1,

Supporting information).

Marker generation and quantification of population
divergence

To obtain genetic markers, we first prepared libraries of

individually barcoded, restriction site-associated DNA

(RAD; Baird et al. 2008) by largely following the proto-

col in Hohenlohe et al. (2010). Each of the 12 total

libraries combined RAD from 18 individuals and was

single-end sequenced with 76 cycles in a separate lane

on an Illumina genome analyzer IIx. The resulting reads

(NCBI short read archive accession number SRP007695)

were sorted individually by barcode and then aligned

to the reference stickleback genome (Ensembl database

version 63.1, assembly Broad S1) by using Novoalign

GENOME DIVERGENCE IN LAKE–STREAM STICKLEBACK 2853
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v2.07.06 (http://novocraft.com). We tolerated an equiv-

alent of approximately six high-quality mismatches or

gaps and enforced unique alignment, thereby excluding

data from repeated elements. Alignments were BAM-

converted using Samtools v0.1.11 (Li et al. 2009).

For each individual and RAD locus, we then deter-

mined the consensus diploid genotype if ten or more

replicate reads were available or a haploid consensus

genotype if replication was below ten. This threshold

was chosen because we identified heterozygote diploids

for variable nucleotide positions by a binomial test with

insufficient power at low replication. This test involved

calculating the binomial likelihood of the observed vari-

ant frequency distribution under the null hypothesis of

heterozygosity (i.e. assuming a probability of 0.5 for

both variants) and accepted heterozygosity if the likeli-

hood was >0.01. Consensus genotyping was quality

aware in that bases with a >0.01 error probability were

ignored.

To identify single nucleotide polymorphisms (includ-

ing a small fraction of microindels, hereafter simply

subsumed under ‘SNPs’), we pooled the individual con-

sensus genotypes from both habitats within a system at

each RAD locus. If a locus was represented by at least

27 consensus genotypes from each habitat (i.e. each

individual contributed at least one haplotype on aver-

age), we screened every nucleotide position of the locus

for variants. Otherwise, the locus was ignored because

the quantification of population differentiation was con-

sidered unreliable.

Before detected SNPs could be used as genetic mark-

ers for analysis, we had to eliminate those lacking the

potential to adequately capture the signatures of drift

and selection because of a low minor allele frequency.

We did so by discarding SNPs with a minor allele fre-

quency of <0.25 (justification and details given in

Appendix S2, Supporting information). This filter also

effectively eliminated sequencing errors and PCR arte-

facts from the data but reduced the number of polymor-

phic RAD loci substantially (e.g. from 12 495 to 4127 in

the Boot system). Summary statistics on library size,

read coverage, alignment success and marker numbers

are provided in Appendix S3 (Supporting information).

The remaining (informative) SNPs were then used to

calculate FST based on haplotype diversity (Nei & Taj-

ima 1981, equation 7). For loci harbouring multiple

SNPs, we retained for analysis only the one yielding

the highest FST value. However, working with FST aver-

aged over all SNPs at a given RAD locus, or drawing a

single SNP at random, produced similar results sup-

porting identical conclusions in all analyses. Further-

more, using as an alternative divergence metric the chi-

square ratio calculated from allele frequencies within a

population pair also produced consistent results

throughout, highlighting the robustness of our FST-

based strategy.

Differentiation and recombination rate within
chromosomes

Genome-wide FST patterns suggested a systematic bias

of lake–stream divergence towards the chromosome

centres (hereafter called ‘chromosome centre-biased

divergence’, CCBD; see Results). To formally quantify

this observation, we divided each chromosome physi-

cally into its ‘centre’ (inner 50% of a chromosome’s

sequence) and its ‘peripheries’ (outer 25% on each

side). We then subtracted mean FST of all markers in

the periphery from mean FST of the markers in the cen-

tre and calculated the mean and 95% confidence inter-

val for this CCBD metric within each lake–stream

system by using all chromosomes as data points

(N = 21).

To explore whether CCBD was associated with

recombination rate, we extracted information on genetic

(linkage) distance (in cM) and physical distance (in mb)

for the SNPs and microsatellite markers underlying the

stickleback linkage maps presented in Albert et al.

(2008) and Greenwood et al. (2011). The ratio of genetic

by physical distance for neighbouring markers then

provided an estimate of the average recombination rate

for that marker interval (Appendix S4, Supporting

information). In addition, we used information on the

physical location of the centromere on each chromo-

some (Urton et al. 2011) to evaluate whether heteroge-

neity in divergence and recombination rate along

chromosomes was related to centromere position.

Sliding window analysis screening for outlier regions

The magnitude of population divergence at a given

locus proved dependent on chromosome position at a

large physical scale (CCBD). Screening for localized

regions of high divergence (FST ‘outliers’), potentially

indicating hitchhiking along with QTLs under divergent

selection (Storz 2005; Nielsen 2005), thus first required

an adjustment of FST values to account for CCBD (see

Discussion). To do so, we subjected system- and chro-

mosome-specific FST data to locally weighted scatterplot

smoothing (‘LOESS’, a nonparametric regression) with

chromosome position as predictor. (The polynomial

degree was zero in all analyses; hence, LOESS produced

a moving average). We used a relatively high band-

width (0.3) to capture only the coarse heterogeneity in

divergence within a chromosome. We then calculated

‘residual divergence’ at each marker as the difference

between the raw and the fitted FST values. Because

CCBD increased with overall divergence (see below),

2854 M. ROESTI ET AL .
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this procedure had a large effect in the Boot system but

a relatively minor effect in the other systems.

To explore the number and physical arrangement of

outlier regions, residual divergence within each system

was subjected to sliding window analysis using LOESS

with a narrow bandwidth (0.03) facilitating visualiza-

tion while adequately conserving small-scale divergence

heterogeneity along each chromosome. We excluded the

Misty system from this analysis because we suspected a

low signal to noise ratio in this barely differentiated

lake–stream pair. Outlier significance thresholds were

determined empirically based on a resampling strategy

(Appendix S5, Supporting information). In addition to

the ‘parapatric’ lake–stream comparisons within each

system, we also performed ‘allopatric’ comparisons

between populations of the same habitat type (i.e. lake–

lake and stream–stream population pairings). Parapatric

vs. allopatric comparisons then allowed us to compare

patterns of genomic divergence across different ecologi-

cal settings.

All analyses except for sequence alignment were per-

formed in R (R Development Core Team 2010), making

use of the R-Bioconductor packages ShortRead (Morgan

et al. 2009), Rsamtools, and Biostrings.

Results

We found dramatic differences among systems in the

magnitude of overall baseline genomic divergence

(Fig. 1), and this paralleled the magnitude of differ-

ences among systems in phenotypic divergence (see red

and blue bars in Fig. 2). In particular, approximately

0.6% of the markers in the most divergent system

(Boot) reached fixation of alternative variants between

the habitats. By contrast, no locus reached appreciable

divergence in the Misty system. Furthermore, heteroge-

neity in divergence along the genome increased with

increasing baseline divergence (Fig. 1).

As noted earlier, a striking pattern towards higher

FST values in the chromosome centres than in the chro-

mosome peripheries was evident, particularly in the

Boot system. A metric based on the difference in mean

FST between markers from the centre and from the

peripheries of each chromosome confirmed this pattern

(Fig. 2), which we call ‘chromosome centre-biased

divergence’ (CCBD). CCBD averaged across chromo-

somes within systems was related to the overall magni-

tude of phenotypic and baseline genetic lake–stream

divergence in those systems: that is, CCBD was absent

in the undifferentiated Misty system but was very
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Fig. 1 Genome-wide divergence in four

independent population pairs (systems)

of lake and stream stickleback. The dots

show FST values for each marker on

each chromosome; the chromosomes are

separated by white and grey back-

ground shading. [‘Un’ is the artificial

chromosome consisting of concatenated

unanchored scaffolds. Also, chromo-

some XIX was corrected for misassem-

bly (Ross & Peichel 2008) in all

analyses.] Total marker coverage per

system ranges between 4127 and 8417

(Appendix S3, Supporting information).

The blue horizontal line represents base-

line divergence defined as genome-wide

median FST (Misty: 0; Joe’s: 0.027; Rob-

ert’s: 0.030; Boot: 0.149). Moving from

the bottom (Misty) to the top (Boot),

note increasing magnitudes of baseline

divergence, and increasing heterogene-

ity in divergence across the genome.
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strong in the Boot system exhibiting greatest progress

in divergence (the top row in Fig. 3 shows a fine-scale

illustration of CCBD for two exemplary chromosomes

in the Boot system; patterns on all chromosomes for

that system are presented in supporting online Appen-

dix S6a, Supporting information).

All chromosomes for which enough data were avail-

able exhibited a valley of reduced recombination

around their centre (Fig. 3, middle row; Appendix S4,

Supporting information). The variation in recombination

rate was often dramatic, with a 10 fold or higher reduc-

tion in the centre of some chromosomes relative to their

peripheries (see e.g. chromosome VII, Fig. 3). Both

CCBD and physical variation in recombination rate

were unrelated to the position of the centromere

(Fig. 3; Appendix S4, Supporting information).

After adjusting raw FST values for CCBD (‘residual

FST’; Fig. 3, bottom), our sliding window analyses

found outlier regions in relatively high numbers

throughout the genome in all three systems (Fig. 4;

Misty excluded owing to the overall lack of differentia-

tion). A qualitative comparison indicated that outlier

regions were relatively inconsistent across the systems.

For instance, we found no peak exceeding the P < 0.01

threshold in all three systems. Significant outliers were

also observed in allopatric population comparisons,

with an exemplar allopatric comparison shown in

Fig. 4 (bottom). Interestingly, some outlier regions
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Fig. 2 The emergence of chromosome centre-biased diver-

gence (CCBD). CCBD is expressed as the difference between

the chromosome centre (inner 50% of the sequence) and the

chromosome peripheries (outer 50%) in the magnitude of dif-

ferentiation (FST) between the lake and stream habitat within

each system. Dots and error bars are means and 95% confi-

dence intervals across the 21 chromosomes. Positive values

indicate relatively greater divergence in the centre of the chro-

mosomes as opposed to their peripheries. CCBD emerges

when divergence becomes substantial, as quantified by pheno-

typic divergence and genome-wide median FST (dashed red

and solid blue horizontal bars, both referring to the right axis).

Phenotypic divergence integrates four ecologically important

and genetically based morphological traits (Appendix S1, Sup-

porting information).
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Fig. 3 Top panels. Lake–stream divergence in the Boot system

along chromosomes seven and eight. Black dots give the raw

FST value at each marker, the grey line connects FST values pre-

dicted by a fine-scale smoother (LOESS, bandwidth = 0.03),

and red dots represent FST values predicted by a coarse

smoother (bandwidth = 0.3). These data illustrate that popula-

tion divergence is greater in the chromosome centres than in

their peripheries (CCBD). Divergence profiles for all other

chromosomes in the Boot system are presented in Appen-

dix S6a (Supporting information). Middle panels. Recombination

rates for marker intervals along the same two chromosomes

show that recombination is dramatically lower in the chromo-

some centres relative to the peripheries. Note that heterogene-

ity along the chromosomes in both FST and recombination rate

is independent from the position of the centromere, indicated

by the dashed blue vertical line (chromosome seven is meta-

centric, whereas chromosome eight is telocentric; Urton et al.

2011). Recombination rates and centromere positions for the

other chromosomes are presented in Appendix S4 (Supporting

information). Bottom panels. Separating locus-specific signatures

of selection from CCBD. The plotting conventions are as in the

top row, except that the underlying data points are residual

FST obtained by subtracting the values predicted by the coarse

smoother (red dots) in the top panels from the raw FST values

(black dots) in the top panels.
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suggested by the parapatric lake–stream comparisons

also emerged in allopatric comparisons. A particularly

clear case involves the two high-divergence peaks flank-

ing the low-divergence Ectodysplasin (Eda) locus at a dis-

tance of 1–2 mb (Fig. 5).

Discussion

We used stickleback population pairs from lake and

stream habitats in multiple independent watersheds to

characterize how genomes diverge when populations

diversify in the face of gene flow. One major finding is

that striking differences are evident among systems in

the overall magnitude of lake–stream genomic diver-

gence (Fig. 1) and that these differences match those

previously documented for phenotypes and microsatel-

lites (Berner et al. 2009). In particular, while baseline

divergence is substantial and a number of markers have

reached fixation for alternative variants in the Boot sys-

tem, divergence is weaker in the Robert’s and Joe’s sys-

tems, and negligible in the Misty system. Given that

gene flow is known to be very high from Misty Lake

into the Misty outlet stream, despite evidence for strong

divergent selection (Hendry et al. 2002; Moore et al.

2007; Berner et al. 2009), our analysis here provides a

robust demonstration of genome-wide constraints on

adaptive divergence as a result of homogenizing gene

flow. That is, gene flow in the Misty system over-

whelms divergence even for the loci likely subject to

the strongest divergent selection.

Chromosome centre-biased divergence (CCBD)

Another major finding is that increasing phenotypic

and genetic divergence leads to relatively stronger

divergence in chromosome centres than towards their

peripheries (CCBD), which contributes to increasing

heterogeneity (or variance) in divergence across the

genome. The most straightforward explanation for

CCBD is the coincidence of adaptive divergence at mul-

tiple QTLs and reduced recombination rate in the chro-

mosome centres. The reason is that, for a given

magnitude of divergence at a QTL, associated hitchhik-

ing will extend deeper into the neutral neighbourhood

if the QTL is located in a genomic region where the

recombination rate is relatively reduced (Barton & Ben-

gtsson 1986; Kaplan et al. 1989; Charlesworth et al.

1997; Feder & Nosil 2010). Moreover, CCBD will be par-

ticularly pronounced if a chromosome harbours multiple

QTLs under divergent selection, because the hitchhiking

effect of the QTLs will tend to cumulate more strongly

in the centre than in the periphery. Our analysis of

recombination rate based on stickleback linkage maps is

consistent with this hypothesized mechanism: stickle-

back chromosomes consistently display reduced recom-

bination in their centres relative to their peripheries (see

also Hohenlohe et al. 2012). Similar within-chromosome

variation in recombination rate has recently been

reported from several genetic model organisms [C. ele-

gans: Rockman & Kruglyak (2009); zebrafish: Bradley

et al. (2011); mice, rats, humans: Jensen-Seaman et al.
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bottom panel shows an exemplary allo-

patric population comparison (Boot

Lake-Robert’s Lake; 8735 markers, med-

ian FST = 0.266). The divergence profiles

are based on residual (CCBD-corrected)
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Supporting information). Note that the
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and Joe’s systems are plotted on a two-
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(2004); Borodin et al. (2008); Chowdhury et al. (2009)].

The emergence of CCBD during adaptive divergence

might thus be a common phenomenon.

While the reason for within-chromosome variation in

recombination rate remains unclear—it appears unre-

lated to the position of the centromere—the phenome-

non has at least two important implications. First, the

associated CCBD challenges the conceptual dichotomy

between divergence beginning with the emergence of a

few large and isolated differentiated regions associated

with large-effect QTLs (Via & West 2008; Via 2009), vs.

more homogeneous genome-wide divergence associated

with numerous QTLs of minor effect (Feder & Nosil

2010). That is, given reduced recombination in chromo-

some centres, even minor-effect QTLs might drive

strong marker divergence over large genomic regions

when they happen to co-localize in chromosome cen-

tres, whereas large-effect QTLs might not generate

much hitchhiking when located in the highly recombin-

ing peripheries. Our study thus highlights a key role of

variable recombination rate in generating heterogeneous

genomic divergence during evolutionary diversification

and indicates that the prevailing focus on pericentric

regions and inversions (Butlin 2005; Kirkpatrick & Bar-

ton 2006; Hoffmann & Rieseberg 2008; Feder & Nosil

2009; Noor & Bennett 2009) misses important variation

in recombination rate at a much larger physical scale.

A second implication of within-chromosome variation

in recombination rate and CCBD is methodological.

Because hitchhiking is expected to be more extensive in

chromosome centres, the probability of a particular

marker detecting the signature of a locus under selec-

tion is relatively higher in the chromosome centres. In

addition, genomic regions under divergent selection in

nonmodel organisms are often identified by anonymous

genome scans that do not map markers to a reference

genome or a linkage map (e.g. Beaumont & Balding

2004; Foll & Gaggiotti 2008; Excoffier et al. 2009). These

approaches assume that locus-specific FST values can be

evaluated against a genome-wide baseline. CCBD under-

mines this assumption and hence leads to a systematic

bias towards identifying outliers at markers located

near chromosome centres. That is, anonymous genome

scans cannot separate localized signatures of hitchhik-

ing associated with specific selected QTLs from diffuse,

large-scale heterogeneity in divergence along chromo-

somes driven by multiple selected QTLs and large-scale

reduced recombination. Our strategy to address this

problem was to express divergence at each marker as

the deviation of the raw FST value from the FST value
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predicted by a coarse smoothing function capturing

CCBD (yielding ‘residual divergence’; Fig. 3). We do

not claim that this ad hoc empirical standardization is

optimal. Until more sophisticated methods are devel-

oped, however, localized signatures of selection in sys-

tems exhibiting CCBD are certainly better inferred

based on residual FST than on raw FST.

Outlier analysis

Our sliding window analyses based on residual (CCBD-

adjusted) divergence suggested the presence of dozens of

outliers spread throughout the genome within each sys-

tem. Many loci thus appear to contribute to adaptive

divergence, as has also recently been inferred for Anophe-

les mosquitoes (Lawniczak et al. 2010), and marine vs.

freshwater stickleback (Hohenlohe et al. 2010). This find-

ing contradicts the idea that during the early stages of

speciation, divergence builds up in only a few genomic

hotspots associated with major QTLs (Via & West 2008;

Via 2009). Our inference of numerous selected QTLs is

also consistent with the observation of CCBD; if only a

few loci were targeted by selection, strong and consistent

CCBD would not be expected to emerge.

We also found that divergence profiles were rather

inconsistent among our systems, making it difficult to

identify genetic regions of general importance to lake–

stream stickleback divergence. A similar conclusion was

reached in a recent lower-resolution genome scan using

several lake–stream stickleback populations from another

region of British Columbia (Deagle et al. 2011). Possible

explanations include differences in the nature of diver-

gent lake–stream selection among the systems (Berner

et al. 2008, 2009; Kaeuffer et al. 2011), or the possibility

that responses to similar divergent selection involve dif-

ferent QTLs in the different systems (Arendt & Reznick

2008; Kaeuffer et al. 2011). The latter would not be sur-

prising, as many traits involved in adaptive divergence

between lakes and streams are likely polygenic (Peichel

et al. 2001; Albert et al. 2008; Greenwood et al. 2011).

It is also possible, however, that the inconsistency in

outliers among systems reflects a fundamental limitation

of genome scans. Drawing on theory (Slatkin & Wiehe

1998; Barton 2000; Bierne 2010), we predict that the recur-

rent fixation of an unconditionally favourable QTL allele

from the standing genetic variation will generate peaks

of high population divergence in neutral regions flanking

the QTL on both sides, while the QTL itself will remain

undifferentiated. The reason is that different copies of the

favourable allele will share their immediate neutral

neighbourhood, while potentially being associated with

different neutral variants further away from the QTL.

The pattern we found at the Eda locus across parapatric

and allopatric population comparisons (Fig. 5) is consis-

tent with this scenario. Eda is the key genetic factor

underlying adaptive lateral plate reduction following

freshwater colonization by stickleback, and all of our

(low-plated) populations are likely fixed for the same

derived Eda allele available in the ancestral standing vari-

ation of the colonizing marine fish (Colosimo et al. 2005).

The twin peaks flanking Eda therefore reflect hitchhiking

with a single unconditionally favourable allele (i.e. an

allele favoured in both lakes and streams) rather than two

separate signatures of divergent lake–stream selection.

Interestingly, Deagle et al. (2011) inferred a locus pre-

sumably influenced by divergent lake–stream selection

almost exactly at the tip of the left peak flanking Eda in

our analysis (at 12 mb; see the first marker in their Table

2). Similarly, Jones et al. (2012) interpreted two outlier

regions flanking Eda (at 11.4 mb and 15.7 mb; see their

Fig. 3) as indicating loci involved in the divergence of

sympatric benthic–limnetic stickleback. In the light of our

findings, these interpretations need to be revised.

Overall, the conclusion that lake–stream divergence

involves numerous QTLs is probably robust. However,

the above-mentioned considerations (Slatkin & Wiehe

1998; Bierne 2010) and results highlight that regions of

high divergence identified in (replicate) genome scans

are not necessarily related to divergent selection medi-

ated by the causal factor of interest (here lake–stream

ecology). Allele frequency shifts at QTLs driven by any

type of selection within a local population can generate

outliers in linked markers between populations

(Charlesworth et al. 1997; Charlesworth 1998).

Conclusions

Our genome scan comparisons of multiple lake–stream

stickleback population pairs have shown that increasing

phenotypic divergence coincides with increasing overall

genomic divergence, and with increasing large-scale

heterogeneity in divergence across the genome. Hetero-

geneous divergence is strongly driven by within-chro-

mosome variation in recombination rate, a phenomenon

that might be common and hence requires conceptual

integration in speciation genetics. Large-scale heteroge-

neous divergence also represents an unappreciated

methodological challenge to genome scans in search for

selected loci. Our study further suggests that lake–

stream divergence involves shifts at numerous QTLs

throughout the genome but also cautions that inferring

the selective context underlying regions of high diver-

gence is less straightforward than generally recognized.
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Supporting Appendix S1 to Roesti et al. 2012 
 
 

Univariate divergence in morphology between lake and stream stickleback (gray and 

black symbols) from the four lake-stream systems. Error bars are 95% confidence 

intervals. After mean-scaling these phenotypes, Euclidean distance was calculated to 

obtain the multivariate divergence metric used in Fig. 2. 
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Supporting Appendix S2 to Roesti et al. 2012 
 

Polymorphisms with a low minor allele frequency are constrained to exhibit low Fst 

values irrespective of the evolutionary processes operating in their genomic 

neighborhood, and therefore introduce bias into genome scan studies. To find an 

adequate strategy to exclude such SNPs from our data sets, we examined how the 

correlation in the magnitude of lake-stream divergence (Fst; Nei & Tajima 1981) 

between SNPs on ‘sister’ RAD loci (i.e., SNPs associated with the same genomic 

restriction site and hence separated physically by between 9 and 135 bases only) 

was influenced by imposing increasingly severe minor allele frequency filters. The 

rationale was that due to the extreme physical proximity of sister RAD loci, drift and 

hitchhiking should influence polymorphisms on these loci similarly, leading to similar 

Fst values. A poor correlation in Fst between SNPs on sister loci would therefore 

indicate a relatively high proportion of uninformative SNPs that estimate divergence 

imprecisely. This was examined in the Boot system, displaying the widest range of 

Fst values. 

 Indeed, we found a poor correlation (r = 0.386, N = 2103) between Fst values 

estimated from SNPs on sister loci when accepting SNPs with any minor allele 

frequency (including singletons) in the analysis (Fig. A1a). Successive elimination of 

SNPs through increasingly restrictive minor allele frequency thresholds improved the 

correlation dramatically (Fig. A1b). We finally settled on a frequency filtering 

threshold of 0.25 for the minor allele. That is, the minor allele had to account for at 

least 25% of the total base count (minor and major allele combined) at a SNP (lake 

and stream sample pooled). This rule, leading to a high Fst correlation between sister 

loci (r = 0.842, N = 356) (Fig. A1C), represented a reasonable compromise between 

high marker coverage and reliable divergence estimation by the markers. 
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Fig. A1. Accepting SNPs without restriction on the minor allele frequency leads to a 

high proportion of uninformative polymorphisms in the data set, and hence to a poor 

correlation in Fst estimated by SNPs located on sister RAD loci (a). By applying 

increasingly restrictive minor allele frequency filters, this correlation increases rapidly 

(b, open dots, left axis; note that here an absolute threshold is used, i.e., independent 

from sample size underlying a SNP) while the number of available markers declines 

(b, filled dots, right axis). Imposing a minor allele frequency threshold of 0.25, the 

strategy chosen for our study, produces a high correlation in Fst between sister loci 

(c), indicating reasonably reliable Fst estimation by the SNPs.  
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Supporting Appendix S3 to Roesti et al. 2012 
 

Summary statistics describing the sequence data used for the study of genomic 

divergence between lake and stream stickleback. Values in parentheses are 

standard deviation, minimum, and maximum. 
 

• Number of 76-cycle Illumina lanes: 12 
 

• Average number of short reads per lane: 33,238,333 (3,311,888; 23,121,522; 

40,385,124) 
 

• Total number of individuals: 216 
 

• Average number of filtered Illumina reads per individual: 1,497,549 (735,613; 

30,288; 3,182,934) 
 

• Percentage of Illumina reads successfully aligned to the stickleback genome: 71.6 

(2.3; 65.4; 76.8) 
 

• Average number of RAD loci per individual producing a consensus genotype 

(haploid or diploid): 38,175 (6,953; 6,546; 45,676) 
 

• Average read coverage per consensus genotype and individual: 26.7 (12.1; 1.9; 

54.7) 
 

• Number of RAD loci with adequate genotype representation (>= 27 consensus 

haplotypes) per lake-stream system. Given are the total number of loci, and the 

number and proportion of loci containing informative polymorphisms that were 

considered as markers for analysis. The latter includes only SNPs satisfying a 

minor variant threshold of 0.25 across the lake and stream population combined. 

 Boot: total 22,167; polymorphic 4,127 (18.6%) 

 Joe’s: total 36,188; polymorphic 5,427 (15.0%) 

 Misty: total 38,062; polymorphic 8,284 (21.8%) 

 Robert’s: total 36,093; polymorphic 8,417 (23.3%) 
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Supporting Appendix S4 to Roesti et al. 2012 
 

 Recombination rate along the chromosomes of threespine stickleback. Gray dots 

represent recombination rates calculated for intervals between pairs of adjacent 

markers underlying the linkage maps in Albert et al. (2008) and Greenwood et al. 

(2011). Black lines are LOESS-fits (degree: 2, bandwidth: 0.85) to these data. 

Dashed blue vertical lines indicate the location of the centromere, as given in 

Urton et al. (2011). The abscissa always spans the entire sequence of a 

chromosome, but in some cases data are missing for one end of the 

chromosome (e.g. chromosome 17). Recombination rates for nine of the 21 total 

chromosomes are not presented because of insufficient data (<14 data points) 

and/or incorrect reference chromosome assembly (or collinearity problems) 

suggested by directional disagreement between genetic and physical distance 

over large segments (chrV, IX, XII, XIV). Directional disagreement on a small 

scale was resolved by haphazardly eliminating closely contiguous markers. Five 

total outlier data points on the chromosomes 2, 7, 11, and 19 are not plotted. 
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Supporting Appendix S5 to Roesti et al. 2012 
 
 

Statistical significance thresholds for outlier regions in sliding window analyses of 

lake-stream stickleback (and an allopatric lake-lake stickleback comparison) were 

determined through a resampling approach taking into account the correlation in 

divergence among SNPs due to physical linkage. Specifically, residual divergence 

(i.e., raw Fst corrected for chromosome center-biased divergence) was subjected to 

sliding window analysis by locally-weighted scatterplot smoothing (LOESS, moving 

average with bandwidth of 0.03), with physical chromosome position as predictor. 

The divergence predicted for every SNP in this real data set (‘observed predicted 

divergence’) was saved. Next, residual divergence was permuted 9999 times at 

random over the SNPs’ genomic position, leading to random data sets. These new 

data sets were again subjected to LOESS to obtain the ‘random predicted 

divergence’ for each SNP. In each iteration, we recorded whether the random 

predicted divergence was greater than the observed predicted divergence. The 

counts across all iterations were then used to derive for each locus the probability (P-

value) of observing by chance a LOESS-predicted divergence as extreme as the 

observed predicted divergence. Finally, we LOESS-fitted (bandwidth 0.03) the 

obtained P-values of the SNPs by using their observed magnitude of divergence as 

predictor, and screened this relationship for the magnitude of divergence required to 

be significant at the P < 0.01 level. 
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Supporting Appendix S6 to Roesti et al. 2012 
 

Genome-wide divergence between lake and stream stickleback in the Boot 

system (a). The lines indicate the divergence predicted for each marker on all 

chromosomes (including the artificial ‘ChrUn’) by coarse (red; bandwidth = 0.3) 

and fine (black; bandwidth = 0.03) LOESS applied to raw Fst values (as in Fig. 3, 

top). Both line fits highlight the general tendency toward greater divergence in the 

chromosome centers than in their peripheries. We refer to this pattern as 

chromosome center-biased divergence (CCBD), emphasizing that the ‘Toblerone 

of speciation’ metaphor might be equally appropriate (b). Because CCBD is a 

large-scale phenomenon arising from the combined influence of multiple QTLs, 

screening Fst data for localized outlier signatures associated with specific QTLs 

benefits from a correction for CCBD (c; for details see Fig. 3). 
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Uninformative polymorphisms bias genome scans
for signatures of selection
Marius Roesti, Walter Salzburger and Daniel Berner*

Abstract

Background: With the establishment of high-throughput sequencing technologies and new methods for rapid and
extensive single nucleotide (SNP) discovery, marker-based genome scans in search of signatures of divergent
selection between populations occupying ecologically distinct environments are becoming increasingly popular.

Methods and Results: On the basis of genome-wide SNP marker data generated by RAD sequencing of lake and
stream stickleback populations, we show that the outcome of such studies can be systematically biased if markers
with a low minor allele frequency are included in the analysis. The reason is that these ‘uninformative’
polymorphisms lack the adequate potential to capture signatures of drift and hitchhiking, the focal processes in
ecological genome scans. Bias associated with uninformative polymorphisms is not eliminated by just avoiding
technical artifacts in the data (PCR and sequencing errors), as a high proportion of SNPs with a low minor allele
frequency is a general biological feature of natural populations.

Conclusions: We suggest that uninformative markers should be excluded from genome scans based on empirical
criteria derived from careful inspection of the data, and that these criteria should be reported explicitly. Together,
this should increase the quality and comparability of genome scans, and hence promote our understanding of the
processes driving genomic differentiation.

Keywords: Allele frequency distribution, FST, Gasterosteus aculeatus, Genetic marker, Hitchhiking,
Population differentiation, Singleton

Background
A major challenge in evolutionary biology is to under-
stand how natural selection acts on molecular genetic
variation [1-4]. One approach to studying the conse-
quences of selection at the genomic level is the applica-
tion of genome scans that screen a collection of
polymorphic genetic marker loci for their extent of dif-
ferentiation between multiple (typically two) populations
occupying ecologically distinct environments. Loci or
genomic regions displaying particularly high population
differentiation (usually quantified by an FST estimator
[5]) relative to some differentiation baseline (reflecting
primarily neutral drift) are interpreted as either being
directly under divergent selection, or exhibiting genetic
hitchhiking along with a quantitative trait locus (QTL)
under divergent selection [6-9]. Genome scans therefore
have the potential to illuminate the link between

ecological selection and molecular variation, and hence
to contribute to our understanding of adaptive diversifi-
cation. This is particularly true if information from gen-
ome scans is integrated with complementary lines of
evidence such as QTL mapping [10].
Genome scans can be performed in different ways, de-

pending on the genomic resources available for a focal
research system. On the one hand, reference-free (an-
onymous) scans are carried out without information on
the physical genomic position of a marker locus. Here
the FST value for each locus is treated as an independent
data point and is evaluated against a baseline distribu-
tion derived from the entire data set e.g., [11-14]. Loci
exhibiting extreme FST values relative to the baseline
(‘outlier loci’) are then interpreted as being directly or
indirectly influenced by divergent selection. (Note that
we here use divergent selection in a broad sense, includ-
ing situations where an allele is selected in one environ-
ment but neutral in the other.) On the other hand,
reference-based genome scans map loci physically to an
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available genome e.g., [15-18]. This offers a great advan-
tage: loci occurring in the same genomic neighbourhood,
and consequently exhibiting some physical linkage, will
tend to display correlated FST values that can be inte-
grated by taking a sliding window approach. This allows
not only the identification of genomic regions displaying
exceptionally high population differentiation, but also
exploring the number and physical extent of such
regions [3]. Moreover, depending on the marker reso-
lution, outlier regions may be screened for candidate
genes potentially targeted by divergent selection.
Inferences drawn from both reference-free and

reference-based genome scans obviously depend on the
availability of reliable polymorphism data. The objective
of our study is to highlight a potential problem with
polymorphism data sets that can introduce bias to gen-
ome scans and lead to incorrect interpretations of gen-
omic differentiation, or the lack thereof. The problem
lies in FST being sensitive not only to the extent of gen-
etic differentiation among populations, but also to the
allele frequency distribution. Specifically, very low FST
values (i.e., near zero, or even negative values, depending
on the formula used for calculation) at a polymorphic
marker locus can arise for two different reasons: first,
when the locus’ polymorphism involves alleles segregat-
ing at relatively even frequencies in both populations,
but the frequency distribution of the alleles does not dif-
fer between the populations (upper example in Table 1).
For such a locus, inferring the absence of population dif-
ferentiation would generally be reasonable.
Second, a very low (or negative) FST value will also

arise if the alleles at a marker locus exhibit an extremely
skewed frequency distribution. That is, if a locus is
nearly monomorphic in both populations but contains
an alternative allele segregating at very low frequency
such that this allele occurs only once or a few times in
the entire data set (lower example in Table 1). Such a
locus is constrained to display a very low FST value be-
tween the populations [11]. However, inferring the ab-
sence of population differentiation from this FST value is

problematic. The reason is that such rare alleles primar-
ily represent relatively recent mutations, most of which
will experience rapid stochastic loss [20]. Markers with a
very low minor allele frequency therefore lack the ad-
equate sensitivity to capture the historical signatures of
drift and hitchhiking, the key processes in genome
scans.
To illustrate this point, imagine that a novel QTL al-

lele arises in the neighborhood of a nearly monomorphic
marker. This QTL allele is unlikely to be linked to the
rare allele at the marker. If the QTL allele is favored by
selection and increases in frequency within the popula-
tion where it arose, hitchhiking along with the QTL will
produce only a very minor (if any) allele frequency shift
at the marker locus (Figure 1A). Population differenti-
ation at the QTL will therefore not be visible at the
linked marker. A clear signature of hitchhiking, however,
will be seen if the marker displays a more balanced allele
frequency distribution (Figure 1C; or if the QTL allele
happens to be linked to the rare marker allele, Figure 1B).
A similar inconsistency in differentiation between
selected QTL and associated markers with highly
skewed allele frequency distribution also occurs in the
situation where selection acts on standing variation (soft
sweep; [21]).
Of course, in addition to the situation where a natural

allele segregates at very low frequency within popula-
tions, a highly skewed allele frequency distribution at a
locus can also arise artificially during marker data acqui-
sition. For instance due to PCR replication or sequen-
cing error. The locus then produces a minimal FST value
although correctly no FST value would be calculated be-
cause the locus is not polymorphic. However, many
strategies exist to avoid such technical errors (including
achieving high sequencing coverage, or re-sequencing;
see also [23] and references therein). Our paper is there-
fore primarily concerned with biological polymorphisms.
To summarize, there are two fundamentally different

causes for minimal FST values in genome scan data sets:
polymorphisms with relatively even allele frequency dis-
tribution, but without population differentiation, versus
polymorphisms with extremely skewed allele frequency
distribution unable to pick up population differentiation.
Hereafter, we refer to these forms of polymorphisms as
‘informative’ versus ‘uninformative’. We emphasize, how-
ever, that we restrict this crude classification to genome
scans searching for signatures of selection in the form of
elevated differentiation. Markers with highly skewed al-
lele frequency distributions might well be informative in
other analytical contexts, such as the estimation of mu-
tational or demographic parameters based on allele fre-
quency spectra [24,25].
If uninformative polymorphisms are abundant in a

marker data set used for a genome scan (and they

Table 1 Differentiation between two populations, as
quantified by Weir and Cockerham’s FST estimator theta
[19]

Genotypes
population A

Genotypes
population B

FST

Informative
polymorphism

TT TC CC TT TC CC

5 10 5 5 10 5 -0.026

Uninformative
polymorphism

TT TC CC TT TC CC

20 0 0 19 1 0 0.000

Other FST estimators produce qualitatively similar results), given informative
and uninformative single nucleotide polymorphism at a marker locus (two
alleles are present, T and C).
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generally will, see below), we can predict a number of
undesirable consequences: in both reference-free and
reference-based approaches, the estimated overall base-
line differentiation, which is considered to reflect the ef-
fect of drift, will be biased downward. As a consequence
of this bias in the baseline, the number of loci consid-
ered outliers driven by divergent selection in reference-
free genome scans may be inflated. By contrast, in sliding
window type of scans, the magnitude of among-population
differentiation in genomic regions influenced by selection
will be weakened, or in the worst case erased. Both effects
can lead to incorrect conclusions about the genomic con-
sequences of divergent selection. We emphasize that
these problems will arise irrespective of the specific esti-
mator used to quantify population differentiation, or
the method chosen for outlier detection. That is, unin-
formative marker loci will also influence sophisticated

methods that estimate FST for a locus by taking into ac-
count genome-wide differentiation and locus-specific
sample size [14], or approaches based on P-values from
locus-specific significance tests (e.g., [16]).
It would thus seem straightforward to eliminate unin-

formative marker loci from polymorphism data sets
prior to performing a genome scan, as reflected in Beau-
mont and Nichols’ [11] recommendation to preferably
use loci with high heterozygosity for such analyses.
However, a screen of 24 recent genome scan papers
based on single nucleotide polymorphisms (SNPs), in-
cluding most such studies currently available, suggests
that the above issue is not generally recognized. (Note
that our paper focuses on SNPs because this marker type
is becoming standard in population genomics; but the
conclusions hold for any type of marker.) Only three
studies report marker filtering according to some minor
allele frequency threshold ([18,26,27]; the latter study
excluded singleton loci only, i.e., markers with the minor
allele occurring only a single time). It is therefore pos-
sible that patterns reported and conclusions drawn in
many genome scan studies are unreliable to some extent.
Given that genome scans are becoming increasingly easy
to perform owing to the advent of high-throughput se-
quencing technology [28], new techniques for extensive
SNP discovery (in particular restriction site associated
DNA (RAD) sequencing [29]), and automated data ana-
lysis pipelines, the problem of bias arising from

A

C

B

t0 t1
Figure 1 Informative and uninformative markers in genome
scans. Two populations derived from the same ancestral population
occupy ecologically distinct environments (white and gray boxes) at
t0,. Circles represent an ecologically important QTL with two alleles
under divergent selection; white and gray alleles are favored in the
white and gray environment. Squares represent a neutral marker
with two alleles (yellow and blue). The marker is tightly physically
linked to the QTL. In A), both initial (t0) populations display a very
low frequency for the blue marker allele. A novel adaptive QTL allele
arising in the gray habitat will therefore likely be associated with the
frequent yellow marker allele. When sampling the populations at t1,
after a period of selection that has increased the frequency of the
gray QTL allele in the gray environment, no signature of selection is
visible at the marker locus because hitchhiking along with the
favored QTL allele has not materially changed the allele frequency
distribution at the marker (FST [22] approximates zero at both t0 and
t1). In B), the initial conditions (t0) are as in A), except that the novel
adaptive QTL allele happens to be linked to the rare blue marker
allele. At t1, selection at the QTL will be visible at the marker
(FST = 0.22) because the blue allele has hitchhiked to high frequency.
In C), the initial (t0) allele frequency distribution at the marker is
relatively even in both populations (FST = 0). At t1, the marker
exhibits a clear signature of selection (FST = 0.13) because the yellow
allele has increased in frequency by hitchhiking. In both B) and C)
but not in A), we would consider the marker locus informative at t1
based on its minor allele frequency across both samples, and
consider the marker for a genome scan for the signature of
selection (see text).
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uninformative marker loci deserves wide recognition. A
first goal of our study is therefore to use extensive SNP
data from lake and stream population of stickleback fish
to demonstrate that uninformative marker loci indeed
have the potential to bias results from genome scans.
Our second goal is to show that such bias can be
avoided through careful inspection of the data set and
subsequent exclusion of uninformative marker loci based
on empirical criteria.

Methods
Our study uses SNP data from threespine stickleback
(Gasterosteus aculeatus) populations occurring in lake
and stream habitats within two independently colonized
drainages. The first is the Lake Constance drainage in
Switzerland (the ‘COW’ lake-stream population pair
from [30]), hereafter called the ‘Constance system’. The
divergence between the lake and stream population in
this system appears to be recent (a few hundred years).
The second is the Boot Lake drainage on Vancouver Is-
land, Canada (the Boot sites ‘L’ and ‘S2’ in [31]), here-
after called the ‘Boot system’. Lake-stream divergence in
this system is more ancient (thousands of years). Lake
and stream stickleback are known to experience diver-
gent selection [31,32], and the specific population pairs
were chosen because they differ in the magnitude of
habitat-related phenotypic and neutral genetic (microsat-
ellite) divergence (stronger divergence in the older Boot
system than in the younger Constance system). For fur-
ther details on the locations and populations see [30,31].
All samples were taken with permission from the British
Columbia Ministry of Environment (permit number
NA06-20791), and the fisheries authority of the canton
Thurgau.
For SNP detection, we Illumina-sequenced RAD [29]

derived from 27 stickleback specimens from each of the
four sites (i.e., one lake and one stream site in two drai-
nages; total N = 108). Library preparation essentially fol-
lowed the method described in [17]. In short, DNA was
digested by using the Sbf1 restriction enzyme and
barcode-ligated for each individual separately. Amplified
barcoded DNA was then single-end sequenced on an
Illumina genome analyzer IIx with 76 cycles in libraries
of 18 pooled individuals each. The Illumina short reads
(sequenced RAD sites; deposited at the NCBI Short
Read Archive, accession number SRP007695) were
parsed by individual barcode, and for each individual
separately aligned to the stickleback genome (Ensembl
database version 63.1, assembly Broad S1) using Novoa-
lign v2.07.06 (http://novocraft.com). Alignment to a
unique genome position was enforced, effectively elimin-
ating sequences derived from repeated elements. The
average sequence coverage per individual and RAD site
was 27 and 31 for the lake and stream sample in the

Constance system, and 30 and 11 for the Boot system.
Alignments were converted to BAM format using Sam-
tools v0.1.11 [33]. For each individual and RAD site, we
then determined the consensus diploid genotype if ten
or more replicate reads were available, or a haploid con-
sensus genotype if replication was below ten. This
threshold was chosen because for polymorphic nu-
cleotide positions, we identified heterozygote diploids
based on a binomial test with insufficient power at
low replication. This test involved calculating the bino-
mial likelihood of the observed frequency distribution
of the SNP alleles under the null hypothesis of hetero-
zygosity (i.e., assuming a probability of 0.5 for both
alleles). Positions were considered heterozygous if the
likelihood was greater than 0.01. Consensus genotyping
was quality-aware in that bases with a greater than
0.01 calling error probability were excluded from the
binomial test.
To find SNP markers and calculate genome-wide lake-

stream population differentiation within each of the two
systems, we pooled individual consensus genotypes from
the lake and stream sample for each RAD site. If at least
27 genotypes were available from each of the two habi-
tats, we proceeded with FST calculation. In other words,
a RAD site was considered only if each individual con-
tributed at least one haploid consensus genotype on
average to the site’s genotype pool. For FST calculation,
the genotype pool for each RAD site was screened base
by base for polymorphisms. If a variable position oc-
curred, we calculated FST based on haplotype diversity
(equation 7 in [22]). For RAD sites exhibiting multiple
SNPs, we retained only the highest FST value observed
across all variable base positions. (Using the average FST
value across all positions, or selecting a single SNP at
random, produced very similar results supporting identi-
cal conclusions.) Negative FST values were rounded to
zero, as commonly done.
The above FST calculation considered any type of

SNPs. To explore the effect of informative versus unin-
formative markers, we repeated the above FST calculation
protocol by imposing the restriction that the minor (less
frequent) allele had to occur at least n times in the lake-
stream genotype pool, where n spanned the range from
two to ten in increments of one. (The above default FST
calculation represents the case with n= 1.) For each cal-
culation series, we then computed the number of result-
ing SNPs, and the mean FST value across all SNPs. We
also visualized genomic differentiation by a sliding win-
dow approach using local polynomial fitting (LOESS)
implemented in R (R Development Core Team [34]; 2nd

order polynomial with band width of 0.4; using simpler
polynomials and different band widths did not alter our
conclusions). All post-sequencing analysis except for
alignment and file conversion was coded in the R
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language, making use of the Bioconductor packages
ShortRead [35], Biostrings, and Rsamtools.

Results
In both the Constance and Boot stickleback population
pair, raising the threshold for the minimal required
count of the minor SNP allele (n) had a dramatic influ-
ence on the number of polymorphic marker loci avail-
able for FST calculation. Most strikingly, the number of
SNPs dropped by 46.5% (from 19,729 to 10,546) and
34% (from 16,729 to 7,546) in the Constance and Boot
system when singleton loci were excluded by setting n to
two (Figure 2A). Increasing n from two to ten, however,
had a relatively minor effect on the number of poly-
morphic loci. Our stickleback data sets thus exhibit a
very high proportion of singleton loci, as generally found
in empirical studies (e.g., [36-39]). The genomic location
of these singleton loci did not show any systematic asso-
ciation with chromosome position (details not).
Including these uninformative marker loci in the gen-

ome scan led to the consequences predicted above. First,
baseline differentiation was substantially lower than the
differentiation obtained when setting n to two or greater
(Figure 2B). For instance, genome-wide FST increased by
17% and 20% in the Constance and Boot system when
raising n from one to two. In absolute terms, this shift
was more dramatic in the Boot system displaying the
higher overall differentiation between the populations.
Second, FST profiles obtained from sliding window

analyses including all markers (n= 1) were strikingly flat-
ter than those from analyses excluding uninformative
polymorphisms. These two consequences are visualized
for a segment of chromosome seven (Figure 3), which is
representative of what we found throughout the genome.
For that specific genomic region, analyses with and with-
out uninformative marker loci might lead to qualitatively
different conclusions about the magnitude and physical
extent of population differentiation. For example, in the
Constance system, a large segment ranging approxi-
mately from 12–14 mb displays elevated differentiation,
as revealed when using informative markers only. This
differentiation is certainly substantial, given the low
baseline differentiation in that young system (Figure 2B),
and might indicate ongoing divergent selection in that
genomic region. Nevertheless, elevated differentiation
within that region would probably not be recognized
when tolerating uninformative markers in the sliding
window analysis.
Note that in Figure 3, we define informative marker

loci as those with the minor allele occurring at least four
times (n= 4), resulting in an average inter-locus distance
of 53 kb and 63 kb for the Constance and Boot system.
This minor allele threshold eliminated bias associated
with uninformative marker loci relatively effectively;
choosing higher thresholds had a relatively minor influ-
ence on the sliding window profiles.

Discussion
Our empirical analysis demonstrates that abundant un-
informative polymorphisms in a genome scan data set
can bias the estimated baseline differentiation, and hence
affect conclusions about the genomic signatures of
selection.

Figure 2 The number of polymorphic loci (x 103) (A), and mean
FST across all loci (B), for different minor allele count thresholds
(n) in the Constance (black) and Boot (gray) lake-stream
stickleback system. This threshold specifies the minimum number
of times the minor SNP allele at a locus had to occur in the pooled
lake and stream sample for a polymorphic locus to remain in the
data set.
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Figure 3 Differentiation along a segment of chromosome
seven between the lake and stream stickleback population
from the Constance (black) and Boot (gray) system. Sliding
window analysis was performed by local polynomial fitting of FST
values for data sets with the allele frequency threshold n set to one
(all SNPs in the data sets considered; dotted lines), and n set to four
(at least four copies of the minor allele required across the pooled
lake and stream sample in each system; solid lines). Note the
relatively flat differentiation profiles with n= 1.
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In our stickleback data set, uninformative polymorph-
isms (essentially in the form of singleton loci) were very
abundant. Illumina sequencing type one errors (i.e.,
wrong base calls despite high indicated base call quality)
in RAD sequences poorly replicated at the individual
level might contribute to this pattern [23,39]. To exam-
ine this possibility, we inspected 50 randomly chosen
SNPs exhibiting zero FST from the full data set accepting
any type of polymorphisms (i.e., minor allele count
threshold n= 1) for each lake-stream system. As
expected, a high proportion of these markers were
singleton loci (Constance: 28 [56%]; Boot: 35 [70%]). For
the Boot system with lower replication per locus in the
stream sample (see above), 15 of the 35 singleton loci
represented unreplicated RAD sequences. For these loci,
the minor allele is likely a sequencing error.
However, all but one of the singleton alleles in the

Constance system represented consensus genotypes inte-
grating multiple (2–26, mean: 9.1) replicate RAD
sequences. Hence, the bulk of the uninformative marker
loci in our data clearly cannot be attributed to sequen-
cing error, because the probability of multiple identical
errors at a specific nucleotide position at a given RAD
site is practically zero. The abundance of rare SNP
alleles therefore represents a real biological feature of
the studied stickleback populations (acknowledging a
small potential contribution from PCR artefacts). This is
not unexpected: theory consistently predicts a skew to-
ward polymorphisms with low minor allele frequency,
and hence a high proportion of singleton polymorph-
isms, under a broad range of demographic and selective
conditions [24,36,40-44]. Bias associated with unin-
formative polymorphisms is therefore of general import-
ance to genome scan studies, and not specific to our
empirical system. Our analysis also raises a caveat
regarding marker densities; the effective number of mar-
kers providing relevant information in genome scans
might often be dramatically lower than the number
reported.
In the present study, excluding singleton polymorph-

isms had the greatest influence on the results. Reliable
quantification of differentiation patterns, however, might
require substantially more stringent minor allele fre-
quency thresholds. (Note that such marker filtering also
effectively eliminates any sequencing and PCR error
from the data.) Bradbury et al. [27], for instance,
excluded SNPs exhibiting an overall minor allele fre-
quency of 0.25 or less, and a similar threshold was
adopted in a recent lake-stream stickleback study carried
out in our lab [45]. To obtain a guideline for marker fil-
tering, the latter RAD-based study evaluated the
strength of the correlation in FST values between ‘sister’
RAD sites (i.e., DNA sequences flanking the same re-
striction site in the genome) in relation to increasingly

stringent minor allele frequency thresholds (see Appen-
dix S2 in the Supporting information to [45]). The ra-
tionale was that if an FST value provided by a given
marker reliably quantifies the consequences of drift and
selection in a genomic region, then another extremely
tightly linked marker should yield a similar FST value.
This approach, however, requires tightly physically
linked markers data and substantial population differen-
tiation (otherwise the correlation in FST between linked
will remain poor even with stringent marker filtering).

Conclusions
Given the rapidly increasing feasibility and popularity of
genome scans for signatures of selection, researchers
should be aware that uninformative polymorphisms need
to be excluded from data sets. This is not achieved by
just avoiding technical errors, as a high prevalence of
nearly monomorphic loci is a general biological feature
of samples from natural populations. We suggest that a
reasonable strategy to define and eliminate uninforma-
tive polymorphisms should be chosen by inspecting the
allele frequency distribution of the polymorphisms, and
by assessing the influence of different marker filtering
thresholds on the genomic patterns of interest, or appro-
priate statistics (such as the correlation of FST between
sister RAD sites). Also, the approach taken to eliminate
uninformative polymorphisms should be reported ex-
plicitly. Together, this should increase the quality and
comparability of genome scans, and hence promote
our understanding of the processes shaping genomic
differentiation.
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Abstract

Heterogeneity in recombination rate may strongly influence genome evolution and

entail methodological challenges to genomic investigation. Nevertheless, a solid under-

standing of these issues awaits detailed information across a broad range of taxa.

Based on 282 F2 individuals and 1872 single nucleotide polymorphisms, we character-

ize recombination in the threespine stickleback fish genome. We find an average

genome-wide recombination rate of 3.11 cM/Mb. Crossover frequencies are dramatically

elevated in the chromosome peripheries as compared to the centres, and are consistent

with one obligate crossover per chromosome (but not chromosome arm). Along the sex

chromosome, we show that recombination is restricted to a small pseudoautosomal

domain of c. 2 Mb, spanning only 10% of that chromosome. Comparing female to male

RAD sequence coverage allows us to identify two discrete levels of degeneration on

the Y chromosome, one of these ‘evolutionary strata’ coinciding with a previously

inferred inverted region. Using polymorphism data from two young (<10 000 years

old) ecologically diverged lake-stream population pairs, we demonstrate that recombi-

nation rate correlates with both the magnitude of allele frequency shifts between pop-

ulations and levels of genetic diversity within populations. These associations reflect

genome-wide heterogeneity in the influence of selection on linked sites. We further

find a strong relationship between recombination rate and GC content, possibly driven

by GC-biased gene conversion. Overall, we highlight that heterogeneity in recombina-

tion rate has profound consequences on genome evolution and deserves wider recogni-

tion in marker-based genomic analyses.

Keywords: evolutionary strata, Gasterosteus aculeatus, GC content, genetic diversity, pseudoaut-

osomal region, RAD sequencing, sex chromosome
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Introduction

Meiotic recombination is a fascinating process because

of its pivotal role in multiple biological contexts. For

instance, recombination is generally considered instru-

mental to the proper segregation of homologous

chromosomes during meiosis (Mather 1938; Baker et al.

1976; Roeder 1997; Smith & Nicolas 1998; Hassold &

Hunt 2001). At the same time, recombination breaks the

linkage between DNA segments located on the same

chromosome. This allows selection to operate more effec-

tively on multiple loci, and hence promotes adaptation

(Hill & Robertson 1966; Felsenstein 1974; Otto & Barton

1997; Burt 2000; Otto & Lenormand 2002). Conversely,

the suppression of recombination can initiate chromo-

some degeneration, a process believed to be common

during sex chromosome evolution (Bull 1983; Charles-

worth & Charlesworth 2000; Charlesworth et al. 2005;

Wilson & Makova 2009).

Variation in recombination rate may also explain

genome-wide heterogeneity in the magnitude of genetic

divergence between populations, and genetic diversity

within populations. The reason is that linkage between

selected loci and their physical neighbourhood is tighter

in regions exhibiting relatively low recombination rate.

Selectively neutral polymorphisms will therefore be

affected by selection more often and more strongly
Correspondence: Daniel Berner, Fax: +41 (0) 61 267 0301;

E-mail: daniel.berner@unibas.ch

© 2013 John Wiley & Sons Ltd

Molecular Ecology (2013) 22, 3014–3027 doi: 10.1111/mec.12322



68

when located in low-recombination regions. As a conse-

quence, hitchhiking under positive and background

selection is predicted to increase allele frequency shifts

between populations, and to reduce genetic diversity

within populations, in low-relative to high-recombina-

tion genomic regions (Maynard Smith & Haigh 1974;

Kaplan et al. 1989; Begun & Aquadro 1992; Nordborg

et al. 1996; Charlesworth et al. 1997; Charlesworth 1998;

Nachman 2002). Similarly, loci under divergent

selection between ecologically distinct habitats should

impede neutral gene flow more extensively in low-

recombination regions (Barton & Bengtsson 1986; Feder

& Nosil 2010). Finally, recombination may have direct

effects on the constitution of chromosomes, for instance

through biased gene conversion or mutagenesis (Galtier

et al. 2001; Duret & Galtier 2009; Webster & Hurst

2012).

Despite the recognition of recombination as a major

evolutionary factor, our understanding of both the mech-

anisms governing the process, and its consequences on

genome evolution, remains highly incomplete (Nachman

2002; Smukowski & Noor 2011; Webster & Hurst 2012).

Moreover, detailed investigations of recombination out-

side genetic model organisms are needed for the discov-

ery of general patterns. The goal of our study is to

provide the first comprehensive analysis of meiotic

recombination in threespine stickleback fish (Gasterosteus

aculeatus).

A thorough understanding of recombination in this

powerful model organism for ecological genetics is par-

ticularly valuable for two reasons. First, the species has

been shown to display a relatively young (<10 Myr old)

XY (male-heterogametic) sex determination system

(Peichel et al. 2004). Information on the extent of XY

recombination and associated patterns of Y degenera-

tion, however, remains highly incomplete, but promises

exciting insights into sex chromosome evolution (Pei-

chel et al. 2004; Ross & Peichel 2008; Shikano et al.

2011). Second, performing genome scans in stickleback

populations residing contiguously in selectively distinct

lake and stream habitats, we have shown recently that

population divergence (FST) is elevated in chromosome

centres and argued that this effect is caused by a lower

recombination rate within these regions (Roesti et al.

2012a). Because robust information on recombination

was lacking, however, this hypothesis could not be

evaluated definitively. Our study therefore combines

single nucleotide polymorphism (SNP) data from a lab-

oratory F2 cross and natural populations to characterize

the stickleback recombination landscape; to explore the

role of recombination in sex chromosome evolution; to

examine the relationship between recombination rate

and the magnitude of divergence among and genetic

diversity within populations; and to investigate the

association between recombination rate and nucleotide

composition.

Materials and methods

Laboratory cross

We generated an F2 population for linkage map con-

struction by artificially crossing a male and a female

from the Central European ROM and CHE populations

(described in Berner et al. 2010; Moser et al. 2012; Roesti

et al. 2012b) in the spring 2009. The resulting F1 were

raised in two 50-L tanks on a mixed Artemia (live,

decapsulated cysts, frozen) and bloodworm diet under

‘summer’ laboratory conditions (18–20 °C with a 16:8-h

day/night photoperiod). After a ‘winter’ phase (15 °C,
8:16-h photoperiod) of 3 months, summer conditions

were re-established in the spring 2010 to initiate repro-

duction. The F2 population was generated by perform-

ing 20 artificial F1 full-sib crosses, each involving a

unique male–female combination. After 1 year, 282

adult F2 (140 males, 142 females) were haphazardly

chosen, killed with an overdose of MS-222 and stored

in absolute ethanol.

Marker generation

DNA was extracted from pectoral fin tissue on a

MagNA Pure LC278 extraction robot (Roche) by using

the tissue Isolation Kit II. We then prepared restriction

site–associated DNA (RAD; Baird et al. 2008) libraries,

involving Sbf1 restriction, the fusion of 5-mer individual

barcodes and pooling DNA of 62 individuals per

library. The final enrichment PCR was performed in

duplicate to reduce random amplification variation.

Each library was single-end sequenced to 100 base

reads in a separate Illumina HiSeq lane. In addition to

the F2 individuals, the two founder individuals of the

cross were also sequenced, each twice in different

libraries.

The Illumina sequences were sorted according to bar-

code and aligned to the stickleback reference genome

(release Broad S1; Jones et al. 2012) by using Novoalign

v2.07.06 (http://novocraft.com), accepting a total of

approximately eight high-quality mismatches and/or

indels along a read. Alignments were converted to

BAM format using SAMtools (Li et al. 2009). Each repli-

cate alignment of each grandparent was then screened

independently for homozygous RAD loci. A locus qual-

ified as homozygous if it was either invariant or if the

binomial probability for the two dominant haplotypes

to reflect a heterozygous locus was <0.001. We here

ignored loci with <129 coverage (average coverage per

locus varied between 31 and 47 among the grandparents

© 2013 John Wiley & Sons Ltd
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and replicate alignments). RAD loci proving homozy-

gous in both replicates of a given grandparent were then

screened for SNPs (here subsuming both SNPs and

microindels) fixed for different alleles between the

grandparents, accepting only one SNP per RAD locus.

This conservative SNP detection strategy yielded a total

of 2223 markers.

The F2 population was then genotyped at each SNP

detected in the grandparents. We considered a SNP

homozygous when only one grandparent allele was

present and occurred in at least 20 copies, or heterozy-

gous when both alleles were present in at least 20 copies

each (average sequence coverage per RAD locus was

55.6 among the F2 individuals). Loci not satisfying these

criteria received an ambiguous genotype based on the

dominant allele or were treated as missing data when

the total allele count was below six (<0.5% of all geno-

types). Next, we eliminated 58 SNPs displaying clearly

skewed allele frequencies across the F2 and ordered the

remaining 2165 markers according to their physical posi-

tion in the Broad S1 stickleback reference genome.

Genome reassembly

Visual inspection of the genotypes ordered according to

the reference genome indicated marker intervals exhib-

iting extremely high crossover frequency. Without

exception, these intervals coincided perfectly with scaf-

fold boundaries, indicating genome assembly errors.

This conclusion was also supported by comparing

physical and genetic map positions in a low-resolution

data set extracted by Roesti et al. (2012a) from genetic

maps available for North American stickleback (Albert

et al. 2008; Greenwood et al. 2011): markers on scaffolds

found to be inverted in the current study showed oppo-

site genetic and physical map order in the latter data

set as well (details not presented).

An accurate characterization of recombination thus

required genome reassembly. For this, we created

de novo linkage groups in R/qtl (Broman & Sen 2009)

by including markers unanchored to any linkage group

in the Broad S1 genome. We used a maximum recombi-

nation frequency of 0.3 or less and a LOD score of 8 or

greater and further optimized marker order along link-

age groups through permutation within a sliding

window of seven markers. The resulting genetic map

allowed us to invert 13 total scaffolds (size range:

0.7–17.1 Mb; 98.2 Mb in total) within the known linkage

groups (hereafter ‘chromosomes’) and to incorporate 18

previously unanchored scaffolds with a total length of

20.1 Mb into the chromosomes. We ignored unanchored

scaffolds smaller than 140 kb, as this was below our

average marker resolution. We then recalculated the

physical position for every marker. These assembly

corrections are described in Appendix S1 (Supporting

information). All physical map positions in this study

refer to our improved genome assembly, which is avail-

able in FASTA format on the Dryad digital repository

(doi:10.5061/dryad.846nj).

For final genetic map construction, we first corrected

genotyping errors and ambiguous calls by hand, mak-

ing the common and well-supported assumption that

the vast majority of tight double-recombinants reflect

genotyping errors. We then clipped the most peripheral

marker at each chromosome end because here phase

shifts were most difficult to distinguish from genotyp-

ing errors. Next, we discarded all markers not assigned

to linkage groups, and one (redundant) marker in cases

where two SNPs formed a pair derived from sister

RAD loci (i.e. loci flanking the same Sbf1 restriction

site). The final data set used for genetic mapping com-

prised 1872 markers (59–150 per chromosome), with an

average spacing of 217 kb. The genotype data are pro-

vided as Appendix S2 (autosomes) and S3 (sex chromo-

some, Supporting information), and linkage map and

corresponding physical map positions (the latter before

and after reassembly) are listed in Appendix S4 (Sup-

porting information). We note that this data set is

expected to slightly underestimate recombination rate

along chromosomes. The reason is that with our marker

resolution, a few tight double-crossovers may have

escaped detection altogether, and a few others may

have been captured by one or two markers but taken as

genotyping error and eliminated. Moreover, our mark-

ers never covered the full physical chromosome span

because of the randomness of Sbf1 restriction sites;

because we ignored unanchored scaffolds mapping to

one or both ends of many chromosomes when these

scaffolds were small and represented by only one to

three markers; and because we discarded the peripheral

marker on each end of the initially generated linkage

groups.

Analysis of recombination

Genetic distances along the 20 autosomes were esti-

mated in R/qtl using the Kosambi map function

(assuming crossover interference) and the full F2 panel.

For the sex chromosome (chromosome 19; Peichel et al.

2004), final map construction used genotype data from

females only (N = 142). The reason is that sequence

degeneration of the Y relative to the X chromosome pre-

cluded reliable genotyping in males (the reference sex

chromosome sequence is the X). R/qtl was also used to

count the number of crossovers for each individual and

chromosome.

We visualized recombination rate along the chromo-

somes by plotting genetic distance (cM) against physical
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distance (Mb). Moreover, we calculated the average

recombination rate for every interval between adjacent

markers as the ratio of genetic distance to physical

distance (cM/Mb) and plotted this rate against the

physical midpoint of the marker interval. We also calcu-

lated average recombination rate across each chromo-

some, and across each chromosome arm, using for the

latter information on centromere positions extracted

from Urton et al. (2011). Throughout this paper, effec-

tive physical chromosome (and chromosome arm) spans

are defined by the position of our most peripheral

markers. The only exception is Appendix S1 (Support-

ing information) where we show the full physical

chromosome lengths.

Crossover counts were used to examine the relation-

ship between recombination frequency and chromo-

some length. We here determined for each chromosome

the average crossover number across the 282 F2 (or the

142 females for chromosome 19) and calculated the

correlation coefficient r between this variable and chro-

mosome length. The magnitude of this test statistic was

evaluated against its empirical random distribution

established by permuting the crossover data 9999 times

(Manly 2007; all statistical tests in this study are based

on analogous permutation tests). A similar analysis was

performed by using chromosome arm length, rather

than total chromosome length, as a predictor of cross-

over number. In this latter analysis, six chromosome

arms with low marker coverage were excluded, which

had a trivial influence on the results. Also, these analy-

ses were performed with and without the sex chromo-

some. As this did not materially influence the results,

we report the former.

Individual crossover counts across all autosomes

were used to test for a difference in overall recombi-

nation rate between the sexes, using as test statistic

the F-ratio of a linear model with crossover count as

response and sex as fixed factor. Analogous tests

were also performed to explore sex differences in

crossover number for each chromosome separately.

Finally, individual crossover counts were used to scan

the genome (including chromosome 19) for the pres-

ence of quantitative trait loci (QTL) determining

recombination rate. We emphasize that our data are

not ideal for this purpose; quantifying the recombina-

tion phenotype in the F2 generation would have

required crossover data from the F3 generation or

from F2 gametes. Our scan was thus limited to detect-

ing QTL heterozygous in one or both of the grand-

parents. The QTL scan was performed in R/qtl using

the extended Haley–Knott method (other methods

produced very similar results). Significance of LOD

peaks was established based on 9999 permutations,

following Broman & Sen (2009).

Recombination and divergence within the sex
chromosome

Recombination between the X and Y chromosomes was

studied by determining which of the 69 SNPs along

chromosome 19 occurred homozygous for the grandfa-

ther allele in F2 females. This female genotype necessar-

ily requires XY crossover in the F1 father.

To explore degeneration of the Y chromosome, we

haphazardly selected 100 males and 100 females from

the F2 population. For each sex separately, we deter-

mined for every RAD locus along chromosome 19 the

total sequence coverage across all individual align-

ments. For each RAD locus, we then calculated the ratio

of female to male coverage. A RAD locus not or little

differentiated between the gametologs would display

an expected ratio of one because both the X and Y

sequences would align to the X reference. At a locus

substantially diverged between X and Y, the latter

would no longer align to the reference, producing twice

the sequence coverage in females relative to males. To

reduce noise, we restricted this analysis to RAD loci

displaying a minimal total sequence coverage of 4000 in

each sex, yielding a total of 1556 informative loci along

the X chromosome (average intermarker distance:

13 kb). This analysis of Y degeneration was additionally

performed by using a natural population sample from

Europe (CHE) and Canada (Boot Lake, see below).

These populations are derived independently from

Atlantic and Pacific ancestors. Because here sample size

was much smaller (N = 13–14 per sex and population),

we used a minimal sequence coverage threshold of 50

per sex.

Genetic divergence, genetic diversity and GC content
in relation to recombination rate

We tested the prediction of a negative genome-wide

correlation between recombination rate and the magni-

tude of allele frequency shifts by using divergence data

from two independent replicate lake–stream population

pairs studied in Roesti et al. (2012a) (the Boot and

Robert’s pair; see also Berner et al. 2008, 2009). These

young (postglacial, <10 000 years old) population pairs

are those among the four pairs investigated in Roesti

et al. (2012a) displaying the strongest divergence in phe-

notypes and genetic markers between the selectively

distinct habitats (genome-wide median FST is 0.15 and

0.03 for Boot and Robert’s; Roesti et al. 2012a). Each of

the four samples was represented by 27 individuals

(balanced sex ratio). Polymorphism data were generated

through RAD sequencing, yielding 3930 and 7992

genome-wide SNPs for the Boot and Robert’s pair

(details on library preparation, sequencing, genotyping,
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SNP detection and access to the raw data are given in

Roesti et al. 2012a,b). The magnitude of divergence

between the lake and stream population was quantified

by FST based on haplotype diversity (Nei & Tajima

1981; formula 7), tolerating only informative SNPs with

a minor allele frequency of 0.25 or greater (Roesti et al.

2012b). FST was then averaged across the intervals

defined by adjacent markers from the mapping cross,

resulting in the same resolution as our recombination

rate data (see Fig. 1). This allowed us to explore the

genome-wide correlation between the magnitude of

divergence and recombination rate, using r as statistic

for significance testing.

Next, we examined the prediction of a positive corre-

lation between recombination rate and levels of genetic

diversity within each population. For this, we screened

each of the four population samples separately for poly-

morphisms and calculated genetic diversity (haplotype

diversity, Nei & Tajima 1981; singletons were omitted

to exclude technical artefacts). RAD loci were allowed

to contribute a single SNP only, keeping the one with

the highest diversity at loci with multiple SNPs (draw-

ing a SNP at random produced very similar results).

The resulting total number of SNPs varied between

4938 and 17 649 among the populations. As a comple-

mentary analysis, we also counted the number of poly-

morphisms (excluding singletons) on each RAD locus,

with the number of RAD loci varying between 6440 and

25 186 among the populations. We considered these

data, hereafter referred to as SNP density, a valuable

alternative genetic diversity metric because selection

should not only skew allele frequencies in linked

regions, but also reduce the density of polymorphisms

in those regions. Both the genetic diversity and SNP

density data were averaged to the resolution of the

genetic map and tested for an association with recombi-

nation rate as described for FST.

Finally, we investigated a possible association

between recombination rate and GC content in an an-

alogous way. However, to maximize precision, we

calculated the proportion of GC nucleotides for each

marker interval based on the full reference genome

sequence rather than our RAD sequences. Moreover,

we here detected a clear nonlinear relationship and

therefore used as test statistic the ratio of residual to

total sum of squares of a nonparametric regression

(LOESS—robust locally weighted scatterplot smoothing;

Cleveland 1979; a linear fit with r as test statistic pro-

duced similar results). We note that this analysis

assumes that patterns of nucleotide composition in the

reference genome, which was built based on a Pacific-

derived freshwater stickleback, are also representative

of Atlantic-derived European populations. This assump-

tion is justified; repeating the correlation analysis using

genome-wide GC content estimated from consensus

sequences at 27 396 RAD loci derived from the cross

grandmother produced similar results (details not

presented).

In the above correlation analyses (FST, genetic diver-

sity, SNP density, GC content), marker intervals with

an extreme recombination rate (below 0.01 and above

40) were excluded, although analyses including all

intervals produced very similar results. The final data

sets thus comprised 1783 genome-wide marker inter-

vals. Also, including or excluding the sex chromosome

did not materially influence the analyses; we thus

report the former. Apart from sequence alignment and

BAM conversion, all analyses and plotting were carried

out in the R language (R Development Core Team

2012), benefiting greatly from the Bioconductor pack-

ages ShortRead (Morgan et al. 2009), Rsamtools and

Biostrings. Data smoothing was performed with R’s

implementation of LOESS.

Results

The 21 stickleback chromosomes accounted for a total

genetic map length of 1251 cM, yielding a genome-wide

average recombination rate of 3.11 cM/Mb (this number

is based on the total physical genome length effectively

covered by our markers: 401.8 Mb). However, recombi-

nation rate proved highly heterogeneous across the

genome: crossovers occurred primarily in the chromo-

some peripheries, with a greatly reduced rate in the

chromosome centres (Fig. 1). Except for two of the

smallest chromosomes (5, 21), this pattern was consis-

tent and was particularly pronounced in the larger

ones. For instance, the average recombination rate in

the first and last 5 Mb of the largest chromosome (4)

was 7.8 and 6.8 cM/Mb, whereas the segment ranging

from 10 to 25 Mb exhibited an c. 20-fold lower rate

(0.4 cM/Mb). The general pattern of periphery-biased

recombination proved essentially insensitive to centro-

mere position (e.g. compare chromosomes 7 and 8 in

Fig. 1). Our data also suggested a tendency for the

recombination rate to drop again right at the chromo-

some ends (e.g. chromosomes 1, 2, 4, 17 in, Fig. 1). For-

mally testing this observation, however, would have

required higher-resolution data, sampling the terminal

domains more densely.

Comparing mean crossover number per meiosis

among chromosomes revealed a lower limit of approxi-

mately one crossover for the chromosomes at the lower

end of the size range (around 15 Mb) (Fig. 2A). With

increasing chromosome length, the crossover number

also increased (r = 0.92, permutation P = 0.0001), with

the largest chromosomes (around 30 Mb) displaying

c. 1.5 crossovers per meiosis. We also found a positive
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Fig. 1 Recombination along the 20 threespine stickleback autosomes (based on 1872 total markers and 282 F2 individuals) and along

the X chromosome (chromosome 19; based on 142 females). Marker number per chromosome is given in parentheses. The open

circles (referring to the left axis) indicate the genetic map position of the markers in Kosambi centimorgan, plotted against their phys-

ical position in the genome (in megabases). The smaller grey dots (right axis) represent the average recombination rate in cM/Mb for

the intervals defined by pairs of adjacent markers, plotted against the intervals’ physical midpoint. The grey curves show the latter

data smoothed by LOESS, with a polynomial degree of one and the smoothing span decreasing from 0.33 to 0.149 from the smallest

to the largest chromosome to ensure a constant smoothing resolution across the panels. Dashed vertical lines specify centromere posi-

tions. Note the striking trend towards elevated recombination rate in the peripheral chromosome regions.
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association between chromosome arm length and

crossover number (r = 0.87, P = 0.0001) (Fig. 2B). Along

the short arms of telocentric and acrocentric chromo-

somes, crossovers occurred rarely. These relationships

caused the average recombination rate to be higher on

short chromosomes and chromosome arms than on

longer ones (Fig. 2C, 2D; chromosomes: r = �0.66,

P = 0.0026; arms: r = �0.76, P = 0.0001).

We found no indication of an overall difference in

recombination rate between the sexes (P = 0.982); total

autosomal map length was almost identical (1190 cM)

for males and females. Analysing each chromosome

separately also revealed only trivial sex-related differ-

ences in recombination rate (none of them remained

significant when correcting for multiple testing). We

further detected no significant QTL driving overall

recombination rate on any of the 21 chromosomes (max-

imum LOD = 2.98; P = 0.261), keeping in mind the

methodological limitations mentioned above.

Recombination and degeneration along the sex
chromosome

In our F2 population, XY recombination never occurred

beyond the marker located at 1.75 Mb (Fig. 3). We thus

demonstrate the presence of a small pseudoautosomal

region (PAR), spanning c. 10% of the entire X chromo-

some only. The comparison of female with male RAD

sequence coverage along the sex chromosome clearly

revealed Y degeneration outside the PAR (Fig. 3).

Moreover, the extent of degeneration was not uniform

outside the PAR: within the segment from c. 12 Mb to

the chromosome end opposed to the PAR, Y sequences

generally did not align to the X reference. By contrast,

the segment ranging from c. 2 to 12 Mb showed weaker

degeneration. Despite small sample size and hence

more random noise, analogous analyses in the two

natural populations produced very similar results

supporting identical conclusions (Appendix S5, Sup-

porting information).

Genetic divergence, genetic diversity and GC content

The prediction of a negative genome-wide association

between recombination rate and FST was clearly con-

firmed (Table 1; Fig. 4A). Shifts in allele frequencies

between populations were thus greater in low-recombi-

nation regions. As expected, this effect was stronger in

the Boot lake–stream pair showing greater overall

divergence (and hence higher variance in FST) than the

Robert’s pair (see Roesti et al. 2012a). The two comple-

mentary analyses of genetic diversity within popula-

tions also agreed with the prediction: all correlations

were positive and generally highly significant (Table 1;

Fig. 4B). Genetic diversity was thus reduced in marker

intervals exhibiting a relatively low recombination rate.

Finally, we found a striking positive broad-scale associ-

ation between recombination rate and GC content

across the genome (Fig. 5; P = 0.0001). Marker intervals

showing relatively high recombination rates (around

10 cM/Mb or greater) displayed an c. 10% higher aver-

age GC content than intervals at the lower end of

recombination rates (around 1 cM/Mb or lower).

Discussion

A major finding of our analysis of recombination in the

threespine stickleback genome is the strong bias of

crossover to occur primarily in the chromosome periph-

eries. This pattern confirms preliminary evidence from
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low-resolution analyses in the species (Hohenlohe et al.

2012; Roesti et al. 2012a) and is consistent with results

from genome-wide recombination studies in other

vertebrates (Borodin et al. 2008; Chowdhury et al. 2009;

Backstr€om et al. 2010; Wong et al. 2010; Bradley et al.

2011; Auton et al. 2012; Sandor et al. 2012; Tortereau

et al. 2012), invertebrates (Rockman & Kruglyak 2009;

Niehuis et al. 2010), plants (Akhunov et al. 2003; Ander-

son et al. 2003; but see Salom�e et al. 2012) and yeast

(Barton et al. 2008). This striking consistency across taxa

implies a common mechanistic basis: crossovers seem

to be initiated from the peripheries. Indeed, peripheral

clustering of chromosomes during the meiotic prophase

I is believed to play a key role in proper homolog pair-

ing and probably also in crossover initiation (Scherthan

et al. 1996; Roeder 1997; Harper et al. 2004; Brown et al.

2005; Naranjo & Corredor 2008). Peripheral crossover

might also favour proper homolog dissociation

(Colombo & Jones 1997; Hassold & Hunt 2001). What-

ever the exact cause, the observed periphery bias in the

distribution of crossovers in the stickleback genome

(and many other genomes) implies strong mechanistic

constraints on the distribution of recombination. There-

fore, genetic information is reshuffled much more

effectively in some genomic regions than in others.

Moreover, taking into account a slight underestima-

tion of recombination (see Materials and methods), our

data indicate that stickleback chromosomes display at

least one crossover per meiosis. This is consistent with
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position along the reference X chromosome. The centromere is indicated by the dashed grey vertical line. The domain on the left

shaded in grey indicates the extent of the pseudoautosomal region (PAR) where the gametologs still recombined in our cross (the

PAR boundary lies between 1.75 and 2.22 Mb). The dots show the ratio of female to male sequence coverage across 100 individuals
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many RAD loci display twofold higher sequence coverage in females than males (upper grey horizontal line), consistent with strong

degeneration or loss of the X sequence on the Y. Note that two levels of Y degeneration (‘evolutionary strata’) are indicated (abutting

at 12 Mb), the left one coinciding with the minimal size of a pericentric inversion on the Y inferred by Ross & Peichel (2008; visual-

ized as heavy grey horizontal bar). On the bottom, we present the patterns of XY divergence inferred from our data in schematic

form. Highly consistent patterns were also found when analysing natural population samples from Europe and Canada (see Appen-

dix S5, Supporting information).

Table 1 Genome-wide associations between recombination

rate and genetic population divergence, and between recombi-

nation rate and within-population genetic diversity. Divergence

was quantified as FST between the lake and stream sample

within the Boot and Robert’s population pair. Genetic diversity

within each of the four populations was expressed as both

haplotype diversity (capturing allele frequency shifts) and the

density of single nucleotide polymorphisms (SNPs) per RAD

locus. All these metrics were averaged within the physical

intervals defined by adjacent markers in the SNP panel used

for genetic mapping (N = 1783 intervals)

Population(s) r P

Genetic

divergence (FST)

Boot lake—stream �0.2699 0.0001

Robert’s lake—stream �0.1127 0.0001

Haplotype

diversity

Boot lake 0.1184 0.0001

Boot stream 0.0925 0.0022

Robert’s lake 0.0400 0.0929

Robert’s stream 0.0665 0.0113

SNP density Boot lake 0.1873 0.0001

Boot stream 0.1810 0.0001

Robert’s lake 0.2593 0.0001

Robert’s stream 0.1882 0.0001
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the notion that one crossover per chromosome and

meiosis is generally required for proper homolog segre-

gation (Mather 1938; Baker et al. 1976; Roeder 1997;

Smith & Nicolas 1998; Hassold & Hunt 2001), and

reflects another mechanistic constraint on recombina-

tion. The widely accepted idea of one obligate crossover

per chromosome arm, however, is not supported by our

data (see also Borodin et al. 2008; Fledel-Alon et al.

2009): on acrocentric and telocentric stickleback chromo-

somes, the shorter arm rarely crosses over. We further

find that the number of crossovers beyond one is a

function of chromosome length. Standardized by their

length, however, large chromosomes still exhibit a

lower recombination rate than small chromosomes, the

same also being true for chromosome arms.

Sex chromosome evolution

Sex chromosomes are generally thought to evolve from

an ordinary pair of homologous autosomes that partly

stop crossing over to prevent alleles at loci with sexu-

ally antagonistic effects from recombining (Bull 1983;

Charlesworth & Charlesworth 2000; Charlesworth et al.

2005; Wilson & Makova 2009). This cessation of recom-

bination should initiate the differentiation of the

gametologs. While early karyotypic investigations in

threespine stickleback found no evidence of heteromor-

phic sex chromosomes (Chen & Reisman 1970; Cu~nado

et al. 2002), recent investigations have indicated reduced

recombination, chromosomal rearrangements and

sequence divergence between the X and Y (Peichel et al.

2004; Ross & Peichel 2008; Shikano et al. 2011; Natri

et al. 2013). These observations, based on a small num-

ber of markers, are greatly refined and extended by our

sex chromosome analysis. We confirm that XY recombi-

nation is restricted to a small PAR, as suggested by

Ross & Peichel (2008). The requirement of at least one

crossover per meiosis thus implies a very high average

recombination rate (c. 25 cM/Mb) across the PAR in

males. This agrees with the estimation by Peichel et al.

(2004) of a much greater distance between markers

lying within the PAR in male than in female genetic

maps (e.g. the genetic distance in the Paxton cross

between the microsatellites Stn303 and Stn186, located

at 0.4 and 1.9 Mb, is 27.3 cM in females and 47.7 cM in

males).

A consequence of the cessation of recombination

along most of the sex chromosome is that the region on

the Y outside the PAR occurs in permanently

0

5

10

15

0

5

10

15

0.3

0.2

0.1

0.0

–0.1

–0.2

–0.15

–0.10

–0.05

0.00

0.05

0.10

0.15

0.20

G
en

et
ic

 d
iv

er
ge

nc
e 

(F
  ) ST

G
en

et
ic

 d
iv

er
si

ty
 

(S
N

P 
de

ns
ity

)

R
ecom

bination rate (cM
/M

b)
R

ecom
bination rate (cM

/M
b)

A

B

Position (Mb)
0 5 10 15 20 25 30

Fig. 4 Genetic divergence and genetic diversity in relation to
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right axis in both panels) in natural lake and stream stickleback

populations, exemplified for the largest chromosome (4). In

(A), we show the smoothed (degree = 0, span = 0.35) magni-

tude of lake–stream divergence (FST) for the Boot (black) and

Robert’s (blue) population pair (for the sake of clarity, the

underlying raw data points are not shown). To facilitate

comparison, the data were centred to a mean of zero before

smoothing. Note that divergence is greatest in the chromosome

centre where recombination rate is lowest, an effect more pro-

nounced in the Boot population pair showing much stronger

overall divergence. In (B), we display smoothed genetic diver-

sity, quantified as single nucleotide polymorphism density, for

the lake (solid line) and stream (dashed line) population in the
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heterozygous state and at lower population size than

the X. Both conditions are predicted to make selection

on the Y less effective and hence to promote its degen-

eration (Felsenstein 1974; Charlesworth & Charlesworth

2000; Otto & Lenormand 2002; Charlesworth et al. 2005;

Wilson & Makova 2009). Our results strongly support

this view: outside the PAR, RAD loci often display only

half the sequence coverage in males relative to females,

consistent with substantial sequence degeneration (or

loss) on the Y. Interestingly, our analysis further indi-

cates two discrete levels of Y degeneration, with much

stronger degeneration along the c. 8 Mb towards the

chromosome end opposed to the PAR than along the

c. 10 Mb adjacent to the PAR. Such ‘evolutionary strata’

(Lahn & Page 1999) have been found in mammals (Lahn

& Page 1999; Sandstedt & Tucker 2004; Pearks Wilkerson

et al. 2008), birds (Lawson Handley et al. 2004; Nam &

Ellegren 2008) and plants (Bergero et al. 2007; Wang

et al. 2012). To our knowledge, we here provide the first

evidence for evolutionary strata in fish.

Evolutionary strata are generally taken as evidence

that XY recombination ceased simultaneously across

large domains of the evolving sex chromosome. An

obvious way how this may happen is through chromo-

somal inversion. Indeed, a recent study using in situ

fluorescent hybridization argued for a large pericentric

inversion on the Y relative to the X, with breakpoints at

c. 3 and 12 Mb (Ross & Peichel 2008). The evolutionary

stratum adjacent to the PAR identified in our work

matches this inversion almost perfectly and allows us to

refine its physical boundaries. Threespine stickleback

thus reinforce the view that recombination suppression

along evolving sex chromosomes will primarily occur

through inversion rather than crossover rate modifier

genes (Charlesworth et al. 2005).

It would now be interesting to date the two bouts of

recombination suppression underlying the evolutionary

strata in the species based on sequence divergence

between homologous loci on the X and Y (Lahn & Page

1999; Lawson Handley et al. 2004; Nam & Ellegren

2008; Pearks Wilkerson et al. 2008; Wang et al. 2012).

We note that this might be difficult for stratum 2 if the

remarkably strong degeneration detected in our analysis

actually reflects deletion (Peichel et al. 2004). Clearly,

however, patterns of XY divergence were already estab-

lished prior to the split into Pacific and Atlantic stickle-

back clades (Appendix S5, Supporting information).

Consequences of heterogeneous recombination rate on
genome evolution

The rate of recombination within a genomic region

determines to which extent selection on a locus influ-

ences allele frequencies at neutral loci, and interferes

with selection on other loci, in its physical neighbour-

hood (Hill & Robertson 1966; Maynard Smith & Haigh

1974; Barton & Bengtsson 1986; Kaplan et al. 1989;

Begun & Aquadro 1992; Nordborg et al. 1996; Charles-

worth et al. 1997; Charlesworth 1998; Nachman 2002;

Feder & Nosil 2010). Several types of selection

(divergent, positive and background) should therefore

increase divergence among populations and reduce

genetic diversity within populations in low-recombina-

tion genomic regions relative to regions where recombi-

nation rate is higher.

Consistent with these predictions, we have recently

shown that the magnitude of divergence between

neighbouring lake and stream stickleback populations

is dramatically biased towards chromosome centres

(Roesti et al. 2012a). (Note that divergence in these

young populations essentially reflects differential sort-

ing of standing variation rather than novel mutations.)

Using robust recombination rate data, we here demon-

strate that elevated divergence in these population pairs

is related to reduced recombination. Because lake and

stream stickleback occupy selectively distinct envi-

ronments (Berner et al. 2008, 2009), the divergence–

recombination association almost certainly arises from

within-chromosome variation in hitchhiking and/or

introgression.

The present study further demonstrates reduced

within-population genetic diversity in the chromosome

centres relative to the peripheries, resulting in a genome-

wide positive correlation between diversity and recombi-

nation rate. A similar correlation has previously been

reported in a broad range of organisms (Begun & Aqua-

dro 1992; Kraft et al. 1998; Nachman 2001; Tenaillon et al.

2001; Takahashi et al. 2004; Roselius et al. 2005; McGaugh

et al. 2012). Given that a positive correlation between

recombination rate and genetic diversity may also arise if

recombination is directly mutagenic (Spencer et al. 2006;

Webster & Hurst 2012; but see McGaugh et al. 2012),

caution is generally warranted when inferring from the

above correlation that recombination rate modulates the

influence of selection on linked sites across the genome.

In our lake–stream stickleback systems, however, the

colocalization of elevated population divergence and

reduced genetic diversity within young populations

residing in selectively distinct environments provides

clear support for such an indirect influence of recombina-

tion on genome evolution (see also Stoelting et al. 2013).

The precise selective processes driving these patterns,

however, remain to be elucidated.

In addition to these indirect (selective) effects, our

study perhaps also points to a direct effect of recombi-

nation on stickleback genome evolution: large-scale bias

in nucleotide composition. Across the genome, GC con-

tent is higher in regions displaying relatively elevated

© 2013 John Wiley & Sons Ltd
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recombination rate—that is, in the chromosome periph-

eries. Interestingly, the positive association between GC

content and recombination rate seems as widespread as

periphery bias in recombination rate; it has been

reported in mammals (Jensen-Seaman et al. 2004; Spen-

cer et al. 2006; Duret & Arndt 2008; Auton et al. 2012;

Tortereau et al. 2012), birds (ICGSC 2004; Backstr€om

et al. 2010), insects (Niehuis et al. 2010; Stevison & Noor

2010; but see Comeron et al. 2012), plants (Muyle et al.

2011) and yeast (Gerton et al. 2000; Birdsell 2002). As

hypothesized in other organisms, elevated GC content

in the stickleback genome might represent a direct

causal consequence of elevated recombination rate,

given evidence of GC bias in the machinery correcting

nucleotide mismatch in heteroduplex DNA formed dur-

ing crossover initiation (GC-biased gene conversion;

Brown & Jiricny 1987; Bill et al. 1998; Galtier et al. 2001;

Birdsell 2002; Meunier & Duret 2004; Mancera et al.

2008; Duret & Galtier 2009; Muyle et al. 2011). Our

correlational data, however, cannot address this causal

hypothesis conclusively; direct experimental evidence is

needed.

Methodological implications

In addition to the above influences on genome evolution,

heterogeneous recombination rate within the genome

has important methodological implications. Marker-

based genome scans searching for signatures of diver-

gent selection in the form of locally elevated divergence

between ecologically distinct populations (Lewontin &

Krakauer 1973; Beaumont & Nichols 1996; Luikart et al.

2003; Beaumont 2005; Nielsen 2005; Storz 2005) are

becoming commonplace. What is generally ignored is

that the distortion between physical and genetic maps

will dilute the link between the selection coefficient on a

locus and the magnitude of hitchhiking produced in its

neutral neighbourhood (Roesti et al. 2012a; this study).

In other words, a locus under selection is more likely to

be detected when located in a low-recombination region

where hitchhiking is more extensive. This bias should

increase with decreasing marker resolution and with

increasing sliding window size. The generality of chro-

mosome periphery-biased recombination rate across taxa

therefore raises a potential caveat to the interpretation of

differentiation outliers in genome scans when combined

physical and genetic map information is missing (i.e.

‘anonymous’ approaches; for one strategy to alleviate

this difficulty when a physical map is available, see Ro-

esti et al. 2012a). An analogous issue arises when inter-

preting the number and effect size of mapped QTL:

within low-recombination regions, multiple loci of small

effect are more likely to emerge as a single large-effect

locus (Noor et al. 2001).

Finally, our study highlights the need for a reliably

assembled genome for investigations of recombination

and linkage. Assembly errors will inflate the

genome-wide average crossover frequency, distort the

recombination landscape and bias analyses of linkage

disequilibrium along chromosomes. For instance, we

find that a high-recombination island on chromosome 4

inferred in Hohenlohe et al. (2012; Fig. 2b in that study)

coincides with the boundary of a scaffold anchored in

the wrong sense within that chromosome (see our

Appendix S1, Supporting information) and hence repre-

sents an artefact. The same assembly error also mimics

long-distance linkage disequilibrium along this chromo-

some (Fig. 4a in Hohenlohe et al. 2012).

To summarize, our analysis of recombination in three-

spine stickleback indicates strong constraints on the

frequency and location of crossovers imposed by the

mechanistic requirements of meiosis. At the same time,

we demonstrate that recombination influences the ge-

nome profoundly, both by modulating the consequences

of selection across the genome and perhaps by directly

influencing nucleotide composition. We anticipate that

our characterization of the recombination landscape will

facilitate interpretations of genome scans and QTL map-

ping in the species, promote further investigations on sex

chromosome evolution and pave the way for more

detailed investigations of the determinants and conse-

quences of recombination.
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Supplementary material

Appendices S2-S4 to Roesti et al. (2013) can be obtained online under: 
http://onlinelibrary.wiley.com/doi/10.1111/mec.12322/suppinfo

Recombination in the threespine stickleback
genome—patterns and consequences





85

Appendix S1, Roesti et al. 2013 

Reassembly of the Broad S1 threespine stickleback reference genome according to a de 
novo linkage map based on 282 F2 individuals and 2,165 genome-wide single nucleotide 
polymorphisms (SNPs). Each bar represents a chromosome (1 - 21); the length of the bar 
gives the total chromosome span (in megabase). Correctly assembled chromosome regions 
are shown in white. Scaffolds originally placed in the correct chromosome but in incorrect 
sense are shown in gray. Previously unanchored scaffolds that were integrated into the 
chromosomes are shown in blue (if incorporated in normal sense) and red (if incorporated in 
reverse sense). Each scaffold that was reversed and/or relocated is named (e.g., Sc22). For 
relocated scaffolds, we also provide the name of the flanking scaffold on each side. Note that 
scaffolds shorter than 140 kb were ignored. These scaffolds were generally represented by 1 
- 3 SNPs only and typically mapped to chromosome ends. 
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Appendix S5, Roesti et al. 2013 

Degeneration of the threespine stickleback Y chromosome revealed by female versus male 
RAD sequence coverage, compared across analyses based on different populations. The top 
panel is a copy of the graphic shown in Fig. 3, drawn based on data from our F2 population 
(100 individuals per sex). The middle and bottom panels were drawn by following the same 
plotting conventions, but are based on samples from two natural populations independently 
evolved in geographic isolation and from different marine ancestors (Atlantic, CHE; Pacific, 
Boot Lake). Sample size in these latter analyses was 13 -14 per sex and population. Note 
the striking consistency in female to male coverage across the different analyses. 
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Chapter 4

The genomic signature of parallel adaptation from
shared genetic variation





91

Information on this journal can be accessed at http://wileyonlinelibrary.com/journal/mec

The journal is covered by AGRICOLA, Chemical Abstracts, Current Awareness Biological Sciences
and Current Contents.

This journal is available at Wiley Online Library. Visit http://wileyonlinelibrary.com to search
the articles and register for table of contents e-mail alerts.

Ecological Genomics
4035 A high-density linkage map enables a second-generation

collared flycatcher genome assembly and reveals the
patterns of avian recombination rate variation and
chromosomal evolution
T. Kawakami, L. Smeds, N. Backström, A. Husby, 
A. Qvarnström, C. F. Mugal, P. Olason & H. Ellegren

4059 Population genomic variation reveals roles of history,
adaptation and ploidy in switchgrass
P. P. Grabowski, G. P. Morris, M. D. Casler & J. O. Borevitz

Speciation and Hybridization
4074 Theoretical models of the influence of genomic architecture

on the dynamics of speciation
S. M. Flaxman, A. C. Wacholder, J. L. Feder & P. Nosil

4089 Untangling the hybrid nature of modern pig genomes: a
mosaic derived from biogeographically distinct and highly
divergent Sus scrofa populations
M. Bosse, H.-J. Megens, O. Madsen, L. A. F. Frantz, 
Y. Paudel, R. P. M. A. Crooijmans & M. A. M. Groenen

Phylogeography
4103 Niche divergence promotes rapid diversification of East

African sky island white-eyes (Aves: Zosteropidae)
S. C. Cox, R. P. Prys-Jones, J. C. Habel, B. A. Amakobe & 
J. J. Day

4119 Interglacial genetic diversification of Moussonia deppeana
(Gesneriaceae), a hummingbird-pollinated, cloud forest
shrub in northern Mesoamerica
J. F. Ornelas & C. González

4137 Phylogeography of Heliconius cydno and its closest relatives:
disentangling their origin and diversification
C. F. Arias, C. Salazar, C. Rosales, M. R. Kronforst, 
M. Linares, E. Bermingham & W. O. McMillan

4153 Invasion genetics of a human commensal rodent: the black
rat Rattus rattus in Madagascar
C. Brouat, C. Tollenaere, A. Estoup, A. Loiseau, 
S. Sommer, R. Soanandrasana, L. Rahalison, M. Rajerison,
S. Piry, S. M. Goodman & J.-M. Duplantier

4168 Global biogeography of the ectomycorrhizal /sebacina
lineage (Fungi, Sebacinales) as revealed from comparative
phylogenetic analyses
L. Tedersoo, M. Bahram, M. Ryberg, E. Otsing, U. Kõljalg
& K. Abarenkov

MOLECULAR
ECOLOGY VOLUME 23, NUMBER 16, AUGUST 2014

M
O

L
E

C
U

L
A

R
E

C
O

L
O

G
Y

V
O

L
U

M
E

 23, N
U

M
B

E
R

 16, A
U

G
U

ST
 2014, pp.3935–4184

NEWS AND VIEWS
Perspectives

3935 Standing and flowing: the complex origins of adaptive
variation
J. J. Welch & C. D. Jiggins

3938 The genomics of adaptation, divergence and speciation: a
congealing theory
S. Tittes & N. C. Kane

3941 Mixed signals from hybrid genomes
P. A. Orozco-Terwengel & M. W. Bruford

FROM THE COVER
3944 The genomic signature of parallel adaptation from shared

genetic variation
M. Roesti, S. Gavrilets, A. P. Hendry, W. Salzburger 
& D. Berner

INVITED REVIEWS AND SYNTHESES
3957 Critical review of NGS analyses for de novo genotyping

multigene families
J. Lighten, C. van Oosterhout & P. Bentzen

ORIGINAL ARTICLES
Population and Conservation Genetics

3973 The gravity of pollination: integrating at-site features 
into spatial analysis of contemporary pollen 
movement
M. F. Dileo, J. C. Siu, M. K. Rhodes, A. López-Villalobos, 
A. Redwine, K. Ksiazek & R. J. Dyer

3983 Landscape resistance and habitat combine to 
provide an optimal model of genetic structure 
and connectivity at the range margin of a small 
mammal
R. R. Marrotte, A. Gonzalez & V. Millien

3999 Global population structure and demographic history of the
grey seal
A. Klimova, C. D. Phillips, K. Fietz, M. T. Olsen, 
J. Harwood, W. Amos & J. I. Hoffman

4018 Genetic structure of an introduced paper wasp, Polistes
chinensis antennalis (Hymenoptera, Vespidae) in 
New Zealand
K. Tsuchida, K. Kudô & N. Ishiguro

MOLECULAR
ECOLOGY

VOLUME 23
NUMBER 16

AUGUST
2014

Published by 

ISSN 0962-1083

FROM THE COVER: The genomic signature of parallel adaptation from shared
genetic variation. See pp. 3944–3956.

mec_23_16_oc_Layout 1  8/1/2014  11:18 AM  Page 1





93

FROM THE COVER

The genomic signature of parallel adaptation from
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Abstract

Parallel adaptation is common and may often occur from shared genetic variation, but

the genomic consequences of this process remain poorly understood. We first use indi-

vidual-based simulations to demonstrate that comparisons between populations

adapted in parallel to similar environments from shared variation reveal a characteris-

tic genomic signature around a selected locus: a low-divergence valley centred at the

locus and flanked by twin peaks of high divergence. This signature is initiated by the

hitchhiking of haplotype tracts differing between derived populations in the broader

neighbourhood of the selected locus (driving the high-divergence twin peaks) and

shared haplotype tracts in the tight neighbourhood of the locus (driving the low-diver-

gence valley). This initial hitchhiking signature is reinforced over time because the

selected locus acts as a barrier to gene flow from the source to the derived populations,

thus promoting divergence by drift in its close neighbourhood. We next empirically

confirm the peak-valley-peak signature by combining targeted and RAD sequence data

at three candidate adaptation genes in multiple marine (source) and freshwater

(derived) populations of threespine stickleback. Finally, we use a genome-wide screen

for the peak-valley-peak signature to discover additional genome regions involved in

parallel marine-freshwater divergence. Our findings offer a new explanation for hetero-

geneous genomic divergence and thus challenge the standard view that peaks in popu-

lation divergence harbour divergently selected loci and that low-divergence regions

result from balancing selection or localized introgression. We anticipate that genome

scans for peak-valley-peak divergence signatures will promote the discovery of adapta-

tion genes in other organisms.

Keywords: barrier to gene flow, evolutionary genomics, Gasterosteus aculeatus, genetic hitchhiking,

genome scan, population divergence

Received 21 January 2014; revision received 12 March 2014; accepted 12 March 2014

Introduction

Understanding how selection shapes the genome and

identifying the loci underlying adaptive divergence are

major goals of biology (Wu 2001; Nielsen 2005; Stinch-

combe & Hoekstra 2008; Nosil & Schluter 2011; Feder

et al. 2012). Recent studies have indicated that genomic

differentiation between diverging populations can be

highly heterogeneous and can involve selection on

numerous loci throughout the genome, with some of

these loci now having been identified (e.g. Hohenlohe

et al. 2010; Lawniczak et al. 2010; Fournier-Level et al.

2011; Jones et al. 2012b; Nadeau et al. 2012; Roesti et al.

2012a; Renaut et al. 2013; Streisfeld et al. 2013). Never-

theless, understanding how evolutionary processes

cause heterogeneous genomic divergence remains

challenging (e.g. Slatkin & Wiehe 1998; Barton 2000;
Correspondence: Daniel Berner, Fax: +41 (0) 61 267 0301;

E-mail: daniel.berner@unibas.ch

© 2014 John Wiley & Sons Ltd
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Hermisson & Pennings 2005; Excoffier & Ray 2008; Bi-

erne 2010; Feder & Nosil 2010; Bierne et al. 2011; Roesti

et al. 2012a, 2013; reviewed in Wu 2001; Nosil et al.

2009). Traditional population genetic theory has primar-

ily focused on a scenario in which a new genetic variant

arises by mutation in a population colonizing a new

environment (hereafter called a ‘derived’ population)

where the variant is beneficial (Orr 1998; Barrett & Sch-

luter 2008; Messer & Petrov 2013). The new genetic var-

iant is then expected to fix in the derived population,

whereas the initial genetic variant remains favoured

and is thus retained in the ‘source’ population inhabit-

ing the ancestral environment. Consequently, the source

and derived populations are differentiated at the locus

under divergent selection and, due to genetic hitchhik-

ing, also in the selectively neutral genetic neighbour-

hood of that locus (Maynard Smith & Haigh 1974;

Kaplan et al. 1989). Genomic regions of high population

divergence, as identified in marker-based genome scans,

are thus generally assumed to harbour genes involved

in adaptive divergence (Nielsen 2005; Storz 2005).

This traditional theoretical scenario might not be ade-

quate when adaptation occurs from standing (pre-exist-

ing) genetic variation rather than from novel mutations

(Hermisson & Pennings 2005; Barrett & Schluter 2008;

Pritchard et al. 2010). This realization has stimulated

theory focusing on ‘soft’ selective sweeps, where a

novel genetic variant is segregating in an ancestral

source population before becoming selected in a

derived population. In this case, the divergence signa-

ture driven by the selective sweep will be weakened

relative to the classical ‘hard’ sweep expected from a

novel mutation (Hermisson & Pennings 2005; Barrett &

Schluter 2008; Messer & Petrov 2013). The reason is that

the derived variant can become associated through

recombination with diverse genetic backgrounds in the

ancestral population before the derived population

becomes established in the new environment. This

diversity reduces the selective sweep in the locus’ geno-

mic neighbourhood when the variant eventually

becomes selected. Although hard and soft sweep mod-

els differ in the age (or origin) of the selected variant

and in the expected strength of the associated selective

signature, they share the focus on comparing popula-

tions inhabiting selectively different environments (i.e.

source vs. derived).

In this study, we consider the patterns of genomic

divergence that might be expected among multiple

derived populations adapting in parallel to selectively

similar environments. We scrutinize these genomic pat-

terns through theoretical modelling and through tar-

geted and genome-wide sequencing in multiple natural

populations of threespine stickleback fish (Gasterosteus

aculeatus) that have adapted in parallel to freshwater

environments from a common marine source popula-

tion. We find that a locus involved in parallel adapta-

tion from shared genetic variation generates a novel

and characteristic pattern of genomic divergence, which

provides a new perspective on how to interpret high-

and low-divergence outliers detected in genome scans.

Materials and methods

Models of parallel adaptation from shared genetic
variation

We developed individual-based simulation models in

which multiple derived populations diverge indepen-

dently into a selectively novel environment from a

shared source population inhabiting a selectively differ-

ent, ancestral environment. A detailed description of

these simulations is provided in the Methods S1 (Sup-

porting information), so that we here give a brief over-

view only. Individuals are represented by a single

haploid chromosome. The centre of the chromosome

holds a locus under divergent selection between the

ancestral and novel environment, with the allele

favourable in the novel environment occurring at low

frequency in the source population. The selected locus

is flanked on each side by 100 evenly spaced, selec-

tively neutral polymorphic loci, in analogy to single

nucleotide polymorphisms (SNPs) used in genome

scans. After the colonization of the novel environments,

the derived populations evolve, with each generation

including migration from the source population,

followed by reproduction with fertility selection and

recombination.

Our simulations started with a default parameteriza-

tion tailored to empirical data from the Ectodysplasin

(Eda) locus in threespine stickleback, the genomic

region where the observation of twin peaks flanking a

divergence valley (peak-valley-peak) stimulated our

hypothesis of a novel genomic signature of adaptation

from shared genetic variation (Roesti et al. 2012a). The

default model was then expanded to explore the influ-

ence of migration rate, time, the number of founder

individuals, the strength of divergent selection and

recombination rate on the molecular signatures of adap-

tation, as captured by the magnitude of population

divergence (FST; Weir & Cockerham 1984) across the

neutral loci. We also modified the default model to

include two selected loci located at equal distances from

the centre of the chromosome, which now harboured

400 total neutral loci. Our models first considered

divergence between the source and the derived popula-

tions. These comparisons represent the standard ecolog-

ical genome scan, as described earlier, and hence

served to validate our general simulation approach. In

© 2014 John Wiley & Sons Ltd
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all subsequent simulations, we focused on divergence

among derived populations.

Stickleback populations for empirical investigation

Our empirical analyses used marine and freshwater

(hereafter M and FW) populations of threespine stickle-

back. These populations provide an excellent natural sys-

tem for studying the genomics of parallel adaptation

from shared variation because numerous FW populations

have been derived independently and recently

(<10 000 years ago) from a common M source population

(Bell & Foster 1994). Moreover, FW stickleback display

relatively consistent phenotypic shifts from their M ances-

tors as a response to shared selective conditions among

FW habitats – that is, parallel adaptation (e.g. Taylor &

McPhail 1986; Walker 1997; Walker & Bell 2000; Schluter

et al. 2004; Berner et al. 2010a). Our study considered M

stickleback sampled from two estuarine sites on the east

coast of Vancouver Island (British Columbia, Canada),

and FW samples from a lake and a stream population

within each of four independently colonized drainages

on Vancouver Island (Berner et al. 2008, 2009; Roesti et al.

2012a) (Fig. 1; Methods S2, Supporting information).

Each of the ten total samples comprised 27 individuals.

Targeted sequencing and haplotype networks at M-FW
candidate genes and reference loci

We Sanger-sequenced DNA segments at three stickle-

back candidate genes thought to be under strong diver-

gent selection between M and FW environments. These

genes included (i) Eda, the major gene underlying the

reduction in lateral plate number typically observed

when M stickleback colonize FW (Colosimo et al. 2005);

(ii) Atp1a1, a key player in physiological adaptation to

osmotically different environments in many organisms

(McCormick 2001); and (iii) Spg1, which encodes a pre-

sumably pH and salinity sensitive glue-like protein

used by stickleback males to build their nests (Kawaha-

ra & Nishida 2007) (further details on these genes is

given in Methods S3, Supporting information). We

additionally sequenced a ‘reference locus’ approxi-

mately one megabase away from each of the above

three genes. Details on primers and Sanger sequencing

are provided in Table S1 and Methods S4 (Supporting

information). SNPs derived from these sequences were

used to construct haplotype genealogies for each candi-

date gene and reference locus (Methods S5, Supporting

information). We predicted that if adaptation to the rep-

licate derived FW environments at each candidate gene

occurred through the parallel fixation of a derived vari-

ant present at low frequency in a common M source, all

lake and stream samples should form a cluster of clo-

sely related haplotypes distinct from the M haplotypes

at these loci. Moreover, if M-FW divergence occurred in

the face of gene flow, such genealogical structure

should not be seen at the three reference loci.

Broad-scale genetic divergence in the candidate regions

To explore divergence at a broader scale around each

candidate gene (i.e. across 3–4 Mb ‘candidate regions’

centred at the genes), we derived SNPs from consensus

sequences at genome-wide RAD loci (Baird et al. 2008)

generated for all 27 individuals from the M and FW

samples. (For details on the wet laboratory and consen-

sus genotyping protocols, see Roesti et al. 2012a and

Methods S6, Supporting information.) These SNPs were

used to quantify genetic divergence (FST based on hap-

lotype diversity; Nei & Tajima 1981 eq. 7) for all possi-

ble pairwise comparisons between the two M samples

and the eight FW samples (16 total comparisons). We

here used only one SNP per RAD locus. We further

ensured robust divergence estimation by including a

SNP only if both populations in a comparison contrib-

uted at least 27 nucleotides to the common nucleotide

pool, and if the minor allele frequency across this pool

was ≥0.25, thereby eliminating polymorphisms with

low information content (Roesti et al. 2012b). Moreover,

20 km

Sayward

Robert’s

Boot

Cluxewe

Joe’s
Misty

N

Fig. 1 Origin of the stickleback samples used for the empirical

analysis. The map shows Vancouver Island (British Columbia,

Canada), with the lake and stream populations from four inde-

pendently colonized freshwater (FW) drainages shown as light

and dark coloured circles. The two sites where the marine (M)

source population was sampled are shown as black circles.

© 2014 John Wiley & Sons Ltd
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we corrected for inflated population divergence in chro-

mosome centres relative to their peripheries due to het-

erogeneous recombination rate along the stickleback

chromosomes (Roesti et al. 2012a, 2013) by calculating

residual divergence (details in Roesti et al. 2012a),

although qualitatively similar conclusions emerged

without this correction. Following these same conven-

tions, we also calculated FST for pairwise comparisons

between the derived FW populations. We here consid-

ered comparisons between samples from ecologically

similar FW environments only (i.e. six lake–lake and six

stream–stream comparisons, 12 in total). The rationale

was to avoid capturing selective signatures of lake–

stream divergence, which is known to be strong (Berner

et al. 2008, 2009, 2010b; Deagle et al. 2012; Roesti et al.

2012a). However, analyses based on all possible FW

comparisons produced very similar results.

Finally, we generated overall M-FW and FW-FW

divergence values by averaging residual FST at each

RAD locus across all pairwise M-FW and all pairwise

FW-FW comparisons. On average, 6.9 and 6.4 replicate

estimates were available per RAD locus for the overall

M-FW and FW-FW comparisons, and we achieved a

median and mean marker spacing of 12 and 25 kb

across the candidate regions (Methods S6, Supporting

information). For visualization, we produced sliding

window divergence profiles for each candidate region

by using the R (R Development Core Team 2013) imple-

mentation of LOESS (robust locally weighted scatterplot

smoothing; Cleveland 1979) (R was also used for all

other operations unless stated otherwise). We chose a

polynomial degree of two and adjusted the smoothing

span to achieve equal smoothing resolution across all

chromosomes. All genomic positions in this study refer

to the improved assembly of the initial (Jones et al.

2012b) stickleback reference genome (Roesti et al. 2013;

http://datadryad.org/resource/doi:10.5061/dryad.

846nj.2).

Delta divergence and genealogical sorting in the
candidate regions

Parallel divergence between source and derived envi-

ronments based on shared variation drives opposed

patterns of genomic divergence in source–derived ver-

sus derived–derived population comparisons (see

Results). Calculating the difference between overall

M-FW and FW-FW divergence, hereafter called ‘delta

divergence’, should thus maximize the ability to detect

genomic regions underlying parallel divergence (for a

proof of principle using simulated data see Fig. S1, Sup-

porting information). We therefore complemented our

standard FST-based divergence analyses described

above by generating delta divergence profiles for each

of the three candidate regions (Methods S6, Supporting

information).

As an alternative to quantifying genetic divergence

between M and FW stickleback based on FST, we addi-

tionally assessed the extent of reciprocal M-FW mono-

phyly captured by phylogenetic trees within the

candidate regions. Specifically, we moved a sliding win-

dow across the SNPs, calculated a distance matrix for

each window, translated each distance matrix to a

neighbour joining tree and finally extracted the genea-

logical sorting index (gsi; Cummings et al. 2008) from

each tree (details in Methods S6, Supporting informa-

tion). This index ranges from 0 to 1 and quantifies the

extent of exclusive ancestry of individuals from defined

groups (here M and FW stickleback). The gsi data

showed a similar physical resolution as the FST data,

and smoothed profiles were generated as described

above.

Genome-wide search for signatures of parallel
adaptation

To discover additional genomic regions potentially

involved in parallel M-FW divergence from shared vari-

ation, we performed genome-wide screens of popula-

tion divergence and genealogical sorting using the

RAD-based SNP data and analytical approaches

described above. The genome-wide M-FW and FW-FW

divergence analyses based on FST used 16 687 and

16 269 data points (each representing the average of

multiple pairwise population comparisons), while the

gsi-based analysis used 14 890 data points integrating

29 787 phylogenetic trees across the 21 chromosomes.

Both types of analyses achieved an approximate gen-

ome-wide median and mean marker spacing of 14 kb.

We considered a genome region a new candidate if

smoothed delta divergence was >0.2 and smoothed gsi

exceeded 0.6. For each region meeting these criteria, we

retrieved all genes located within a window of 400–

600 kb centred at the delta divergence peak (generally

coinciding exactly with the gsi peak) from the Ensembl

Genome Browser and assessed whether these genes

were known from other (mostly fish) species to be

important to saltwater versus freshwater adaptation.

Heterogeneity among chromosomes in M-FW
divergence

The presence versus absence of barriers to gene flow

(i.e. genes under divergent selection) on specific chro-

mosomes could lead to heterogeneity among chromo-

somes in the magnitude of population divergence. We

considered this possibility by testing for a difference in

overall divergence between autosomes under strong

© 2014 John Wiley & Sons Ltd
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versus weak M-FW selection. The difference between

these two chromosome types was defined as those dis-

playing ≥2 versus no candidate regions for parallel

adaptation from shared variation, as defined in the pre-

vious paragraph. For each chromosome, we calculated

median raw (not residual, as above) FST and gsi for

each M-FW comparison and averaged these replicate

values. We then tested whether the magnitude of diver-

gence differed between the two chromosome categories

by permuting FST and gsi over the chromosomes 9999

times and using the absolute difference between the

chromosome categories as test statistic.

Results

Models of parallel adaptation from shared genetic
variation

Our models of multiple derived populations diverging

from a shared source population into selectively similar

environments produced a single peak of high diver-

gence around the selected locus when comparing the

source to the derived populations (Fig. 2A). This con-

trast is the type typically considered in divergence map-

ping studies. However, our main interest was in

derived–derived population comparisons, where we

found that the parallel fixation of a shared variant leads

to a valley of reduced divergence (hereafter ‘divergence

valley’) around the locus under selection (Fig. 2B). The

divergence valley was initially flanked by regions of

slightly elevated divergence that then declined towards

the chromosome peripheries. In the absence of migra-

tion (hence no gene flow), this decline became less strik-

ing over time as overall baseline divergence increased

owing to drift (Fig. 2B). By contrast, source–derived

migration caused the divergence valley to be flanked on

either side by striking peaks of high divergence (‘Migra-

tion’ in Fig. 2C). Although these ‘divergence twin

peaks’ emerged consistently across our simulations

when comparing derived populations, their height and

width were influenced by several factors. First, the

peaks grew higher and sharper with increasing time

(‘Time’ in Fig. 2C) and with a decreasing number of

founder individuals (‘Founders’ in Fig. 2C). Second, the

physical extent of the divergence twin peaks and of the

divergence valley was greater – and could be quite

extensive (kilobases to megabases) – when divergent

selection was strong and/or recombination was low

(‘Selection’ and ‘Recombination’ in Fig. 2C).

In our simulations with two loci under divergent

selection, separate peak-valley-peak signatures emerged

when the selected loci were far apart (‘Distant’ in

Fig. 2D). When the loci were closer together, the entire

chromosome segment between them reached high
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divergence (‘Closer’ in Fig. 2D). Finally, when the

selected loci occurred in very close proximity to each

other, the two divergence valleys collapsed to a single

large valley flanked by particularly pronounced diver-

gence twin peaks (‘Linked’ in Fig. 2D).

Signatures of parallel adaptation from shared variation
at stickleback candidate genes

Haplotype genealogies generated from targeted

sequence data at three candidate genes for M-FW adap-

tation (Eda, Atp1a1, Spg1) consistently revealed the pat-

tern that our simulations suggested should characterize

parallel adaptation from shared genetic variation. That

is, lake and stream FW samples shared closely related

haplotypes that were clearly distinct from the haplo-

types predominant in M stickleback (‘Candidate gene’

in Fig. 3A). In marked contrast, the reference loci

approximately one megabase away from the candidate

genes showed little or no habitat-related haplotype

structure (‘Reference locus’ in Fig. 3A). This result indi-

cates the parallel fixation of shared alleles at the candi-

date genes in FW, despite high M-FW gene flow in

other parts of the genome.

We next used SNPs generated through RAD

sequencing to assess broad-scale divergence (FST and

genealogical sorting index, gsi) around the three candi-

date genes for the overall M-FW (source vs. derived)

and FW-FW (derived vs. derived) comparison. As

expected from the above small-scale targeted Sanger

sequencing, M-FW divergence was exceptionally strong

close to the three candidate genes (black lines in

Fig. 3B), and gsi indicated striking phylogenetic separa-

tion between M and FW stickleback in these regions
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(Fig. 3D). Importantly, however, the comparison

between the derived FW populations revealed a valley of

low divergence around each candidate gene, as predicted

by our simulations (red lines in Fig. 3B). Moreover, these

divergence valleys in the FW-FW comparisons were

often flanked by striking divergence peaks – some of

which were absent in the M-FW comparison, a pattern

specifically predicted by our simulations with gene flow.

We also found that these signatures of adaptation from

shared variation were particularly obvious when M-FW

and FW-FW divergence was combined into delta diver-

gence profiles, yielding peaks exactly at the candidate

genes (Fig. 3C).

Genome-wide signatures of parallel adaptation from
shared variation

We used (delta) divergence and gsi profiles to search

the stickleback genome for additional regions likely

involved in parallel adaptation from shared variation.

This screen discovered 15 such regions on eight chro-

mosomes. Details on these regions, including strong

candidates genes for M-FW adaptation (some of which

have been suggested previously for stickleback; Hohen-

lohe et al. 2010; Jones et al. 2012a,b), are provided in

Table S2 (Supporting information), and (delta)

divergence and gsi profiles for seven representative

new candidate regions are presented in Fig. 4. Full

genome-wide divergence and genealogical sorting pro-

files are provided in Fig. S2 (Supporting information).

Chromosome-level relationship between candidate
regions and divergence

The six autosomes displaying multiple genomic signa-

tures of parallel adaptation from shared variation (i.e.

the chromosomes 1, 4, 7, 11, 12, 20) also exhibited exag-

gerated overall divergence (45% higher FST on average,

P = 0.0023; 35% higher gsi, P = 0.0186) between M and

FW populations compared with the 12 chromosomes

lacking such signatures (Fig. 5).

Discussion

We combined simulations and empirical data to shed

light on the genomic patterns that arise when multiple

populations diverge into selectively similar environ-

ments by using shared genetic variation from the ances-

tral source population. Our main finding is that the

immediate neighbourhood of the selected genetic locus

underlying parallel adaptation will remain undifferenti-

ated among the derived populations, whereas the

broader neighbourhood around the locus will be driven

to high divergence. In combination, this produces a

characteristic peak-valley-peak signature of genomic

divergence among derived populations.
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Distinct mechanisms drive the peak-valley-peak
divergence signature

The peak-valley-peak signature of divergence among

derived populations arises from an interaction between

two distinct evolutionary mechanisms operating at dif-

ferent timescales. The first mechanism is hitchhiking

(Maynard Smith & Haigh 1974; Kaplan et al. 1989) of

different genomic regions surrounding the genetic vari-

ant that is selected in parallel within the derived

populations (Fig. 6A). This process halts as soon as the

adaptive variant reaches fixation (or some other migra-

tion-selection balance) within the derived populations.

During this phase, the opportunity for the derived vari-

ant to become associated with new genetic backgrounds

through recombination is limited. Therefore, in the close

neighbourhood of the selected locus, the derived popu-

lations become fixed for the same haplotype tract linked

to the shared adaptive variant. Comparing populations

adapted in parallel will thus reveal a low-divergence

valley surrounding the locus under common selection

(Fig. 6B). In the broader neighbourhood of the selected

locus, however, recombination during the hitchhiking

phase will occur sufficiently frequently to associate the

adaptive variant with genetic backgrounds specific to

each derived population. These population-specific

haplotypes increase in frequency along with the adap-

tive variant, causing elevated divergence among derived

populations on either side of the divergence valley. Even

further away from the selected locus, divergence

declines again because recombination increasingly asso-

ciates the derived variant with random haplotypes from

the source population. This first hitchhiking phase thus

establishes a divergence valley surrounded by a broad

region of elevated divergence among the derived popu-

lations (Fig. 6B; also see Fig. 2B).

The second mechanism shaping the peak-valley-peak

signature is a long-term barrier to gene flow caused by

the locus under selection (Barton & Bengtsson 1986;

Gavrilets & Cruzan 1998; Bierne 2010; Feder & Nosil

2010). Specifically, the selected locus blocks introgression

from the source to the derived populations in its chro-

mosomal neighbourhood, while recombination makes

introgression increasingly easy with increasing distance

from the locus (Fig. 6C). In other words, effective popu-

lation size is reduced around the selected locus, promot-

ing localized divergence by genetic drift. The divergence

valley persists despite elevated drift, however, because

the derived populations continue to share the same hap-

lotype tract around the adaptive variant (Fig. 6C). This

second mechanism – the barrier to gene flow – thus rein-

forces and sharpens the broad peak-valley-peak diver-

gence signature that is initiated by hitchhiking.

Determinants of the peak-valley-peak signature

The physical extent of the peak-valley-peak divergence

signature is influenced by several factors (Fig. 2C). First,

decreasing gene flow between the source and the

derived populations causes the peak-valley-peak to

become more extensive – because the overall opportu-

nity for introgression decreases. In the extreme case of

no gene flow at all, relatively elevated divergence

around the divergence valley produced initially by

hitchhiking is rapidly eroded because drift causes diver-

gence among the derived populations across the entire

chromosome (Fig. 2B). Second, in the presence of gene

flow, the peak-valley-peak signature becomes narrower

over time as genetic homogenization through introgres-

sion moves closer to the selected locus. (Note that a

narrower divergence valley is also expected when the

derived variant recombines extensively while standing

in the source population prior to parallel adaptation;

see Discussion S1, Supporting information.) Third, the

divergence twin peaks become higher with a decreasing

number of individuals founding the derived popula-

tions, which increases stochasticity in the haplotypes

linked to the derived variant, hence promoting drift.

Finally, the peak-valley-peak signature becomes more
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extensive with an increasing strength of divergent

selection between the source and the derived popula-

tions, and with decreasing recombination rate. The rea-

son is that both factors render the barrier to gene flow

associated with the selected locus more effective (Barton

& Bengtsson 1986; Feder & Nosil 2010).

In our simulations with a single selected locus, the

physical extent of the peak-valley-peak divergence signa-

ture can be quite substantial – many kilobases to a few

megabases. Our two-locus models, however, indicate

that even more extensive signatures can emerge when

multiple loci are simultaneously under selection.

Interestingly, the divergence patterns driven in this latter

situation vary qualitatively as a function of the recombi-

nation distance between the two loci under selection.

When these loci are relatively close to each other, a large

region of high divergence can arise between them

(‘Closer’ in Fig. 2D), although this region does not hold

either of the selected loci. This pattern arises because the

barriers to gene flow associated with the two loci overlap

in this region, making introgression particularly difficult.

When the selected loci occur in even closer proximity to

each other, however, they together bring to fixation a lar-

ger genomic segment shared among the derived popula-

tions, resulting in a remarkably wide region of low

divergence (‘Linked’ in Fig. 2D). Also, the divergence

twin peaks flanking this divergence valley are higher

than the peaks driven by each locus alone (‘Distant’ in

Fig. 2D), because the two tightly linked loci together

drive a single, stronger barrier to gene flow.

Empirical insights from stickleback

Our empirical system provides an appropriate natural

analogue for the conditions specified in our simulations.

First, no appreciable genetic divergence was present

between our two M samples taken 100 km apart (Fig. 1)

(median and mean FST for all pairwise population com-

parisons are provided in Table S3, Supporting informa-

tion). This result is consistent with previous reports of

very weak genetic structure within M stickleback
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Fig. 6 Mechanisms generating the peak-valley-peak signature

of parallel adaption from shared genetic variation. (A) Multiple

novel, selectively similar environments are colonized by a

source population occupying a selectively different environ-

ment. Individuals are represented by a single haploid chromo-

some, with different colours indicating different genetic

backgrounds. The centre of the chromosome holds a locus

under divergent selection, with the white variant favoured in

the source population, and the black variant favoured in the

derived populations but standing at low frequency in the

source population as well. (B) Immediately after the parallel

fixation of the selected variant, the derived populations share

identical haplotype tracts (grey) near the selected locus,

whereas population-specific haplotypes (blue, yellow) have

hitchhiked further away from the locus [(B) and (C) show the

locus and one side of the chromosome only]. As a result, com-

parisons between derived populations (red line in the bottom

panel) show minimal divergence around the selected locus,

flanked by a region of elevated divergence. By contrast, com-

parisons between the source and derived populations reveal

the classical signature of a selective sweep (black line). (C)

Continuous migration from the source population causes intro-

gressive hybridization in the derived populations. Introgres-

sion is impeded in the neighbourhood of the locus, however,

where divergent selection produces a barrier to gene flow that

locally promotes population divergence by drift. Consequently,

comparisons between derived populations reveal a characteris-

tic genomic signature including a divergence valley (‘V’ in the

bottom panel) caused by haplotype sharing flanked by a diver-

gence peak (‘P’) reflecting elevated drift. Further away from

the locus, population divergence decays to the genome-wide

migration-drift baseline level (‘B’).
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(Hohenlohe et al. 2010; Jones et al. 2012a; Catchen et al.

2013), and it generally supports the established idea

that present-day M stickleback provide an appropriate

surrogate for the ancestors of derived FW populations.

Second, haplotype genealogies confirmed that our FW

stickleback populations adapted in parallel at three can-

didate genes involved in M-FW adaptive divergence,

specifically by recycling shared variants from a com-

mon M source population (see also Colosimo et al. 2005;

Jones et al. 2012b; Deagle et al. 2013). Given these

results, we scrutinized patterns of genetic divergence

around the three candidate genes to empirically test for

the signatures of parallel adaptation from shared varia-

tion that were suggested by the simulations.

All three candidate regions exhibited the expected

genomic signature of parallel adaptation from shared

variation: in comparisons between the derived (FW) pop-

ulations, the selected loci showed low-divergence valleys

that were flanked by high-divergence twin peaks. At the

same time, classical source–derived (M-FW) comparisons

revealed the expected strong divergence at the candidate

genes. Combining these opposed FW-FW and M-FW pro-

files into ‘delta divergence’ proved a particularly effec-

tive way to reveal parallel adaptation from shared

variation. One reason is that these profiles reduce hetero-

geneity in genomic divergence unrelated to a focal eco-

logical factor (here M vs. FW), such as selective sweeps

driven by genetic variants favoured in all types of habi-

tats (Bierne 2010). An excellent complementary method

was to use genealogical sorting in phylogenetic trees (gsi;

Cummings et al. 2008) to confirm shared ancestry among

the FW populations but exclusive ancestry between M

and FW populations. Generally, our ability to detect sig-

natures of parallel adaptation from shared variation was

greatly enhanced by high replication at the population

level. That is, FST profiles from single pairwise population

comparisons (M-FW, FW-FW) exhibited substantial noise

(details not presented), which would have made inter-

pretations difficult in the absence of multiple such pairs.

The physical scales of the signatures of parallel adap-

tation from shared variation were extensive – and simi-

lar to those suggested by the simulations. For instance,

almost full genealogical sorting occurred over several

hundred kilobases around each candidate gene. More-

over, the divergence valley around Eda was remarkably

wide and displayed two divergence minima separated

by a small rebound in divergence (at ca. 12.5 Mb in

Fig. 3B), as well as massive divergence peaks on either

side. This pattern strikingly resembles our simulations

with two closely linked loci under selection (‘Linked’ in

Fig. 2D). We therefore propose that the broad

neighbourhood of Eda is influenced by selection on two

genes (or gene clusters) that together produce a particu-

larly effective barrier to gene flow from the M source

population. Consistent with this idea, the second diver-

gence minimum near Eda coincides with the ATP-bind-

ing cassette Abcb7 (at 12.0 Mb in Fig. 3B), a gene

recently suggested to be under divergent selection

between M and FW stickleback (Jones et al. 2012b). Sim-

ilarly, a second M-FW adaptation gene near Spg1 likely

influences divergence profiles in that region (Fig. 3B).

A screen of the whole stickleback genome for the joint

occurrence of peak-valley-peak signatures of divergence

and strong M-FW genealogical sorting identified addi-

tional regions on multiple chromosomes likely involved

in parallel adaptation from shared variation. As was the

case with our initial three candidate genes, these new

regions were often flanked by striking divergence twin

peaks in the FW-FW comparison, but not in the M-FW

comparison (Fig. 4), as predicted by our simulations

with gene flow. (Gene flow is known to occur between

M and FW populations; Hagen 1967; Jones et al. 2006.)

Our study thus provides further molecular evidence for

divergence in the face of gene flow between contempo-

rary M and FW populations (Catchen et al. 2013; Deagle

et al. 2013). Furthermore, our genome-wide analysis

makes a strong case for the notion that adaptation

involves numerous loci (e.g. Hohenlohe et al. 2010; Law-

niczak et al. 2010; Fournier-Level et al. 2011; Jones et al.

2012b; Roesti et al. 2012a; Renaut et al. 2013), although

our methods certainly underestimate the number of loci

involved in adaptive divergence between M and FW

stickleback (Discussion S2, Supporting information).

Finally, our empirical analysis indicated that loci under

divergent selection may hinder introgression and drive

heterogeneous genomic divergence at the scale of entire

chromosomes (Fig. 5).

Implications for ecological genomics

Our results add complexity to the interpretation of

regions of low and high divergence discovered in gen-

ome scans for signatures of selection. On the one hand,

we demonstrate that the common interpretation of

regions exhibiting exceptionally low population diver-

gence – that is, localized introgression and balancing

selection (Nielsen 2005; Storz 2005) – is potentially prob-

lematic; the same pattern can arise when populations

use shared genetic variation for parallel adaptation. On

the other hand, we also demonstrate that peaks of high

population divergence do not necessarily indicate diver-

gent selection. They might instead reflect selectively

neutral regions under the influence of neighbouring loci

involved in parallel adaptation from shared variation to

similar environments (for related caveats see Excoffier &

Ray 2008; Bierne 2010; Bierne et al. 2011). Inference in

ecological genomics thus benefits strongly from the

integration of multiple complementary analytical
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approaches (e.g. source–derived vs. derived–derived

comparisons, delta divergence, genealogical sorting; see

also Grossman et al. 2010), requiring extensive popula-

tion-level replication within a clear-cut ecological con-

text. On the bright side, genome scans specifically

looking for the signature described in our study might

help discover adaptation genes in empirical systems

where ecological divergence is likely to have occurred

repeatedly by recycling genetic variation (e.g. Terai et al.

2006; Renaut et al. 2011; Tennessen & Akey 2011; Do-

mingues et al. 2012; Nadeau et al. 2012; Gross & Wilkens

2013).
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Supplementary material

Appendices S2 & S3 to Roesti et al. (2014) can be obtained online under: 
http://onlinelibrary.wiley.com/doi/10.1111/mec.12720/suppinfo
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Supporting Methods 
Methods S1. Simulation models of parallel adaptation from shared genetic variation  

General model of parallel adaptation from shared genetic variation  

We developed individual-based models in which multiple populations diverge independently from 

the same source population into a selectively novel environment. This scenario was inspired by 

threespine stickleback, a species where numerous populations in freshwater environments have 

been founded from a common marine source population, but is likely relevant to many other 

biological systems (e.g., Terai et al. 2006; Renaut et al. 2011; Tennessen & Akey 2011; Domingues 

et al. 2012; Nadeau et al. 2012; Gross & Wilkens 2013; Streisfeld et al. 2013). For consistency with 

our empirical study (see below), we model eight derived populations. Individuals are monoecious 

and represented by a single haploid chromosome. A locus with two alleles under divergent selection 

between the environments is located in the center of that chromosome. The ancestral allele ‘0’ is 

favored in the environment of the source population whereas the derived allele ‘1’ is favored in the 

novel environment. The selected locus is flanked on each side by 100 evenly spaced and selectively 

neutral loci, in analogy to single nucleotide polymorphisms (SNPs) used in genome scans. Among 

the n colonizers initially founding each of the derived populations, one individual has a haplotype 

represented by a uniform sequence of 1’s. The other colonizers and the source population display 

the ancestral 0 allele at the selected locus and 0 and 1 alleles drawn at random with equal 

probability at the neutral loci. We thus explicitly assume that the derived allele at the selected locus 

is initially embedded in a specific genetic background shared among the derived populations 

(details on this assumption are discussed in the Discussion S1). Because our interest is in the early 

stages of population divergence and because the freshwater stickleback populations used for our 

empirical work are young (postglacial), our models ignore novel mutation. 

After initial colonization, each derived population grows according to the Beverton-Holt 

model in non-overlapping generations (Kot 2001). Specifically, the number of offspring produced 

by each  female  is  taken from a   Poisson distribution with parameter                          , where   b  is   the  

 

expected number of offspring (set to 10 in all simulations), N is the current population size, K is the 

environment’s carrying capacity, and w is the female’s fitness. For computational efficiency, we 

choose K = 1,000, emphasizing that additional exploratory simulations with K = 10,000 produce 

similar results supporting identical conclusions. Females with the ancestral 0 or the derived 1 allele 

have a fitness of w = 1 – s and 1 in the novel environment, where s represents the strength of 

divergent selection between the environments. Males are assigned to females at random. During 
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reproduction, the female and male chromosomes recombine. The number of recombination events is 

drawn independently for each offspring from a Poisson distribution with parameter R. 

Recombination occurs with uniform probability across the chromosome. In the beginning of each 

generation, the derived populations each receive Nm migrants from the source population. After t 

generations, we calculate the magnitude of population divergence (FST; Weir & Cockerham 1984) at 

all neutral loci (we never calculate divergence at the selected locus itself), including all K 

individuals from all focal populations. (FST is calculated globally; however, averaging across 

pairwise population comparisons produced similar results.) The resulting values are averaged across 

100 replicate simulations for every parameter combination. 

 

Parameter space and modeling scenarios  

The default parameterization of our model is tailored to empirical data from the Ectodysplasin 

(Eda) locus in threespine stickleback, the genomic region where the observation of twin peaks 

flanking a divergence valley (peak-valley-peak) stimulated our hypothesis of a novel signature of 

adaptation from shared genetic variation (Roesti et al. 2012a). The default settings include s = 0.2 

(Barrett et al. 2008), R = 0.05 (Roesti et al. 2013), and t = 5000 (Bell & Foster 1994). With the 

default recombination rate of 0.05, the simulated chromosome approximates a 10 - 15 megabase 

(Mb) segment harboring Eda on chromosome IV. Phylogenetic evidence from the Eda locus 

justifies our modeling of the derived allele in a single shared genetic background at the onset of the 

simulations: present-day freshwater stickleback populations still share nearly identical haplotypes at 

Eda, even across continents (Colosimo et al. 2005; Berner et al. 2010b). We further assume n = 

100. 

Modifications of the default model are used to explore the influence of each parameter on 

the molecular signatures of adaptation. First, we track population divergence between the source 

population and the derived populations over time (t = 100, 200, 500, 1000, 2500, 5000). These 

comparisons represent the standard ecological genome scan and hence can serve to validate our 

general simulation approach. In all subsequent simulations, divergence is calculated among the 

derived populations. Here, we first set Nm = 0 to study how divergence builds up over time in the 

absence of gene flow. In reality, however, gene flow will often occur between source and derived 

populations in the early stages of divergence (Wu et al. 2001; Nosil et al. 2009; Feder et al. 2012). 

Our main modeling effort is therefore devoted to divergence with gene flow, exploring all possible 

combinations of Nm (1, 5, 10, 15; default = 5), t (100, 200, 500, 1000, 2500, 5000), n (50, 100, 200, 

400), s (0.05, 0.1, 0.2, 0.5), and R (0.01, 0.02, 0.05, 0.1). 
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 Finally, we modify the default model to include two selected loci located at equal distances 

d/2 from the center of the chromosome, which now harbors 400 total neutral loci. The two derived 

alleles (one per selected locus) beneficial in the derived environment are initially linked (i.e., within 

a single neutral background), although they rapidly become dissociated by recombination when 

their frequency in the derived populations is still low. We perform simulations with different values 

of d (350, 300, 250, 200, 100, 50, 20, 10) and maintain Nm = 10 throughout. To achieve a similar 

overall selection strength as in the single-locus model, we set s = 0.1 for each selected locus. 

Divergence is calculated at t = 400, 800, 1200, 1600, 2000. All other parameter values are the same 

as in the default single-locus model.  

 

Methods S2. Stickleback populations for empirical investigation 

Our study uses stickleback samples from two marine (‘M’) sites and from a lake and stream 

(freshwater, ‘FW’) site within each of four independently colonized watersheds (Boot, Joe’s Misty, 

Robert’s) on Vancouver Island, British Columbia, Canada (Fig. 1). Sample size was 27 individuals 

per site. The FW populations are identical to those studied in Roesti et al. 2012a. The M fish were 

collected with minnow traps from the Cluxewe River estuary (50° 36' 42" N, 127° 11' 02’’ W) and 

the Sayward River estuary (location described in Berner et al. 2010a) on the east coast of 

Vancouver Island. All our estuarine individuals exhibited full plating along their body and a caudal 

keel, clearly identifying them as M fish (Bell & Foster 1994). In general, marine stickleback are 

phenotypically highly stable over space and time, exhibit large population sizes, and show little 

genetic structure over large geographic distances (Bell & Foster 1994; Walker & Bell 2000; 

Hohenlohe et al. 2010). Present-day marine stickleback are thus considered good surrogates for the 

ancestor of recently established FW populations (e.g., Walker & Bell 2000; Berner et al. 2010a). 

Consistent with this view, the two M samples in the present study did not appreciably differ 

genetically in any of our analyses: first, haplotype data showed no structure between the two M 

samples (data not shown). Second, median FST between the two M samples was zero in the genome-

wide analysis (mean and median FST values for all pairwise population comparisons are presented in 

Table S3). We therefore pooled the two M samples for the haplotype network analysis (Fig. 3). 

 

Methods S3. Stickleback candidate genes for parallel M-FW divergence 

To empirically validate the signature of adaptation from shared genetic variation discovered in the 

simulations, we required loci showing clear signs of parallel divergence in stickleback. We thus 

focused on three genes suggested to be under strong divergent selection between M and FW 
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environments. The first candidate gene was Eda (Ectodysplasin). M stickleback have a complete 

plate row along their body, whereas FW populations typically display greatly reduced plating (Bell 

& Foster 1994). This divergence is thought to primarily reflect differential exposure to predation 

between the two environments (Reimchen 1992, 1994; Marchinko 2009) and is driven mainly by 

the repeated fixation of a derived Eda allele shared among FW populations (Colosimo et al. 2005, 

Berner et al. 2010b).  Despite selection for the fully plated phenotype (and thus the ancestral M Eda 

allele) in the ocean, individuals heterozygous at Eda do still occur at low frequency (Barrett et al. 

2008) in the ocean due to recurrent introgression of derived alleles from FW populations (Colosimo 

et al. 2005; Schluter & Conte 2009). We sequenced a (mainly intronic) 640 bp segment of Eda 

(Table S1). 

The second candidate gene was Atp1a1 (sodium pump subunit alpha-1). This gene is 

involved in the maintenance of the ion balance and electrolyte homeostasis in different 

osmoregulatory epithelia (Evans et al. 2005), and has been identified as a physiological key gene in 

the adaptation to different osmotic environments in many fish species (e.g., stickleback: Hohenlohe 

et al. 2010; McCairns & Bernatchez 2010; DeFaveri et al. 2011; Shimada et al. 2011; Jones et al. 

2012a; killifish: Scott et al. 2004; bull shark: Reilly et al. 2011; brown trout: Larsen et al. 2008; 

whitefish: Renaut et al. 2011; reviewed in McCormick 2011). We sequenced a (mainly intronic) 

380 bp segment of Atp1a1 (Table S1). 

The third candidate gene was Spg1 (Spiggin). Spg1 produces a glue-like protein in the 

kidneys of male stickleback used to stick nesting material together (Wootton 1976; Jakobsson et al. 

1999). This glue seems under divergent selection between M and FW environments because of its 

sensitivity to salinity, pH, and/or temperature (Kawahara & Nishida 2007), and because strong 

allele frequency shifts between M and FW stickleback have been found at genetic markers in the 

close neighbourhood of the gene (Hohenlohe et al. 2010; DeFaveri et al. 2011; Shimada et al. 

2011). We sequenced a 356 bp segment of Spg1 (Table S1). This segment was intergenic but 

directly adjacent to one of the Spg1 gene copies. 

For each of the three candidate genes, we performed Sanger sequencing (see Methods S4), 

screened these sequences for polymorphisms, and derived haplotype networks (see Methods S5). 

We then followed the same steps to Sanger sequence an additional ‘reference locus’ (mainly 

intergenic, length ranging from 326 – 767 bp) approximately one megabase away from each 

candidate gene. We predicted that if adaptation to the replicate derived FW environments at each 

candidate gene occurred through the parallel fixation of a derived variant present at low frequency 

in a common M source, all lake and stream samples should form a cluster of closely related 



114

! 6!

haplotypes distinct from the M haplotypes at these loci. Moreover, if M-FW divergence occurred in 

the face of gene flow, such genealogical structure should not be seen at the three reference loci.  

 

Methods S4. Targeted Sanger sequencing at candidate genes and reference loci 

PCR amplification primers for the three candidate genes and their associated reference loci (i.e., six 

total DNA segments) were designed based on the improved assembly (Roesti et al. 2013) of the 

stickleback reference genome (Jones et al. 2012b), and based on RAD sequences available from 

previous work (Roesti et al. 2012a). The primer sequences and amplification conditions are 

provided in Table S1. The resulting sequences were read on an ABI3130xl capillary sequencer 

(Applied Biosystems). Each sequence was run at least twice for each individual, usually with both 

the forward and reverse primer. This allowed unambiguously identifying the diploid genotype of 

each individual at each candidate gene and reference locus. On average, each candidate and 

reference locus was sequenced in 64 FW individuals (128 haplotypes), averaging eight fish per FW 

sample, and in 23 M individuals (46 haplotypes), including fish from both M samples. 

 

Methods S5. Haplotype genealogies for candidate genes and reference loci 

To construct haplotype genealogies for the candidate genes and reference loci, we first used 

CodonCode Aligner v.3.5.6 (CodonCode Corporation) to call diploid consensus sequences and to 

find SNPs. All polymorphisms were then concatenated (treating indels as a single mutational steps) 

and phased using PHASE 2.1 (Stephens et al. 2001; Stephens & Donnelly 2003), optimizing the 

procedure by specifying the polymorphisms’ physical positions. Finally, we used jModelTest v0.1.1 

(Posada 2008) to identify GTR as the best model of sequence evolution for all polymorphisms, used 

the maximum-likelihood method implemented in PAUP* v4.0 (Swofford 2003) to determine the 

most probable genealogical relationship among all individuals at each of the six loci, and visualized 

these haplotype genealogies following Salzburger et al. (2011).  

 

Methods S6. Broad-scale analyses around the candidate genes  

To generate broad-scale profiles of divergence and genealogical structure around the three 

candidate genes, we used consensus sequences from genome-wide RAD (Baird et al. 2008) loci 

previously generated for all 27 individuals from each of the eight FW samples (details on the wet 

lab and consensus genotyping protocols are given in Roesti et al. 2012a). We also generated new, 

comparable RAD data for the M samples based on the same wet lab protocol, with just two 

modifications: the final library amplification was performed in seven replicate PCRs to reduce 

amplification variance, and all 54 M individuals were single-end sequenced on a single Illumina 
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HiSeq lane with 100 cycles. For the M individuals, consensus genotype sequences at the RAD loci 

were called as in Mateus et al. (2013). After combining the consensus sequences across all M and 

FW individuals, each RAD locus was screened for SNPs, including a small fraction of micro-indels. 

All genomic positions in this study refer to the reference genome re-assembly of Roesti et al. 

(2013).  

SNPs in the three ‘candidate regions’, defined as a 3 - 4 Mb segment around each gene, 

were used to quantify genetic divergence between M and FW stickleback (FST based on haplotype 

diversity; equation 7 in Nei & Tajima 1981). Divergence was calculated for all possible pairwise 

comparisons between the two M samples and the eight FW samples (16 total comparisons). Robust 

divergence estimation was ensured by including a SNP only if both populations in a comparison 

contributed at least 27 nucleotides to the common nucleotide pool, and if the frequency of the minor 

allele across the nucleotide pool was at least 0.25. The latter criterion eliminated polymorphisms 

with low information content (Roesti et al. 2012b). In addition, we used only one SNP per RAD 

locus. Following these same conventions, we then calculated FST for pairwise comparisons among 

the derived FW populations. We here considered comparisons among samples from ecologically 

similar FW environments only (i.e., six lake-lake and six stream-stream comparisons, for 12 

comparisons in total). The rationale for excluding lake-stream comparisons was to avoid capturing 

selective signatures of lake-stream divergence, which is known to be strong (Berner et al. 2008, 

2009; Deagle et al. 2012; Roesti et al. 2012a). However, analyses based on all possible FW 

comparisons produced very similar results supporting identical conclusions. 

The interaction between selection and heterogeneous recombination rate along stickleback 

chromosomes can inflate population divergence in chromosome centers relative to their peripheries 

(Roesti et al. 2012a, 2013). Correcting for this effect by calculating residual divergence facilitates 

the search for signatures of selection (details given in Roesti et al. 2012a). This correction was 

performed here, although qualitatively similar conclusions emerged either way. Finally, to obtain 

overall M-FW and FW-FW divergence profiles, we averaged divergence estimates at each RAD 

locus (residual FST values) across all pairwise M-FW and all pairwise FW-FW comparisons. This 

procedure yielded, on average, 6.9 and 6.4 replicate values per RAD site for the overall M-FW and 

FW-FW contrast. For the Eda candidate region (4 Mb in size), the final resolution was 178 and 168 

data points for the overall M-FW and FW-FW comparison. The corresponding values for Atp1a1 (4 

Mb) were 193 and 187, and for Spg1 (3 Mb) 106 and 100. Thus, the median and mean marker 

spacing in the candidate gene and control regions was 12 and 25 kb respectively (treating markers 

on sister RAD loci as individual data points).  

Parallel divergence between source and derived environments based on shared variation 
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drives a divergence peak close to the selected locus in source-derived comparisons, but a valley in 

derived-derived comparisons (see Results). Calculating the difference between overall M-FW and 

FW-FW divergence, hereafter called ‘delta divergence’, should thus maximize the ability to detect 

genomic regions underlying parallel divergence (for a proof of principle using simulated data, see 

Fig. S1). We therefore complemented our standard divergence analyses described above by creating 

delta divergence profiles for each candidate region. We first averaged overall M-FW and FW-FW 

divergence separately across non-overlapping 5 kb windows, and then, for each window, we 

subtracted the resulting FW-FW value from its M-FW counterpart. Working with windows 

enhanced the power of this analysis because divergence data from both the M-FW and FW-FW 

comparison were not available from all RAD loci. 

 As a complementary approach to quantifying genetic divergence between M and FW 

stickleback, we assessed the extent of reciprocal M-FW monophyly captured by phylogenetic trees 

within the candidate regions. Specifically, we moved a sliding window across the SNPs and, for 

each window, calculated a distance matrix based on the ‘F84’ nucleotide substitution model 

(Felsenstein 1984). We here accepted multiple SNPs on a RAD locus and used a window size of 33 

SNPs, which was the smallest number of markers consistently allowing distance matrix calculation 

across all windows. The genomic position of a window was defined as the RAD locus position of 

its central SNP. The distance matrices were then translated to midpoint-rooted neighbor joining 

trees, which in turn allowed calculating the genealogical sorting index (gsi; Cummings et al. 2008). 

This index ranges from 0 to 1 and quantifies the extent of exclusive ancestry of individuals from 

defined groups (here M and FW stickleback) in a phylogenetic tree. If multiple gsi values were 

available for a RAD locus (owing to multiple SNPs at that locus), they were averaged to a single 

data point. This analysis yielded 167, 178, and 103 gsi values for the Eda, Atp1a1, and Spg1 

candidate regions, thus resulting in a similar physical resolution as the FST-based divergence 

analysis. The gsi analysis was performed using the R (R Development Core Team 2013) packages 

APE (Paradis et al. 2004) and genealogicalSorting (http://www.genealogicalsorting.org). 
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Supporting Discussions 

Discussion S1. How are our theoretical models influenced by more complex haplotype 

structure around the selected variant?  

Our simulations assume that the genetic variant adaptive in the derived populations has a single 

origin and is thus initially embedded in a single genetic background in all derived populations. 

Indeed, for the Eda locus inspiring our theoretical analysis, phylogenetic data have amply 

demonstrated extensive sharing among multiple FW populations of the same haplotype linked to a 

derived variant (Colosimo et al. 2005; top left haplotype network in Fig. 3A in this study). This 

strongly suggests a single origin of the derived variant (Colosimo et al. 2005). Our phylogenetic 

data from the two other candidate genes further indicate that this conclusion is not restricted to Eda 

(see Fig. 3A, middle and bottom left haplotype networks). Indeed, whole-genome re-sequencing 

supports the view that most of the genetic variation used for parallel FW adaptation has a common 

origin (Jones et al. 2012b). Extensive haplotype sharing among the derived populations is thus an 

adequate assumption in our models. We also highlight that with the simulation parameters chosen, 

the ‘chromosome’ in our models actually corresponds to a relatively narrow segment of a 

(stickleback) chromosome only. 

Nevertheless, it should be kept in mind that the opportunity for a derived FW-adaptive 

variant to segregate in the M source population prior to selection (and hence to recombine into M 

genetic backgrounds) will influence the signature of parallel adaptation. Specifically, recombination 

of the derived variant in the source population will reduce the physical extent of haplotype sharing 

around the derived variant, eventually causing a more narrow divergence valley among the derived 

populations. This effect is analogous to the erosion of genetic divergence around a selected locus 

observed in soft sweep models focusing on ancestral versus derived populations (e.g., Hermisson & 

Pennings 2005; Barrett & Schluter 2008; Messer & Petrov 2013). We can thus make the qualitative 

predication that loci under strong divergent selection should exhibit a wider divergence valley than 

weakly selected loci. The reason is that in the former case, a derived variant introduced from a 

derived population back into the source population by hybridization will be eliminated relatively 

rapidly from the source population, thus reducing the opportunity for recombination. Similarly, loci 

situated in low-recombination regions of the genome should exhibit wider divergence valleys (see 

Discussion S2). We emphasize, however, that the emergence of the flanking divergence twin peaks 

is unaffected by the extent of haplotype sharing around the derived variant (see Fig. 6). 

While our models assume a single origin of the derived variant, parallel adaptation among 

populations can also be based on multiple genetic variants produced independently by mutation 
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(Barrett & Schluter 2008; Messer & Petrov 2013). This scenario was not the focus of our 

investigation because parallel M-FW divergence from repeated de novo mutation is certainly not 

frequent in stickleback (see above). We can nevertheless make the qualitative predictions that, first, 

the availability of several independent derived variants in the source population prevents the 

emergence of a divergence valley among derived populations. This is because the selective sweeps 

will bring distinct haplotypes to fixation among the derived populations. Second, as above, the 

emergence of high divergence around the selected locus should still be observed because the barrier 

to gene flow mechanism operates irrespectively of the initial haplotype structure around the derived 

variant. 

 

Discussion S2."Objective and limitations of the genome-wide screen for signatures of parallel 

adaptation from shared variation. 

The goal of our genome-wide analysis was primarily to illustrate how the signature of parallel 

adaptation from shared variation can serve as a tool for the genome-wide detection of genes or 

chromosome regions involved in parallel adaptation – we did not attempt a complete quantitative 

investigation of the genetic architecture of M-FW divergence in stickleback. A first limitation is 

that our RAD marker data lack the physical (basepair) resolution to determine whether a selective 

signature is driven by a single gene, as opposed to multiple genes clustered within a few kb (our 

median and mean marker spacing is 14 kb, considering both sister tags associated with a restriction 

site). Nevertheless, our study exhibits an unprecedented biological resolution, as we include 8 FW 

and 2 M population samples, each represented by 27 individuals (Table S3). Overall FW-FW and 

M-FW divergence estimates at our SNP markers are thus exceptionally robust."

 The power of detecting parallel adaptation regions is further complicated by heterogeneous 

recombination rate. As our models show, the genomic signature of adaptation from shared variation 

becomes physically more extensive (and hence easier to detect given limited marker resolution) 

with decreasing recombination rate (‘Recombination’ in Fig. 2C). Since recombination rate is much 

higher in the stickleback chromosome peripheries than in chromosome centres (Roesti et al. 2012a, 

2013), we certainly overlook small-scale selective signatures in the chromosome peripheries. 

Although not widely appreciated, this bias potentially also affects other types of genome-wide scans 

relying on linkage (Roesti et al. 2013).  

Furthermore, the selective signature at a locus is weakened when the same FW-beneficial 

variant is used for adaptation in a subset of the replicate FW populations only. This may occur 

because this allele simply failed to invade some FW watersheds, or because an adaptive phenotypic 
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change was achieved in some populations through a different genetic pathway. Like previous 

genomic analyses in the species (Hohenlohe et al. 2010; Jones et al. 2012a,b), our genome-wide 

screen is thus biased toward discovering signatures of M-FW divergence caused by alleles recycled 

with high fidelity among FW populations. 

Finally, if a variant adaptive in FW managed to recombine effectively into diverse M 

genetic backgrounds prior to selection, we expect a narrow divergence valley only (see Discussion 

S1). Given relatively coarse marker resolution, this locus might thus escape our screen for the full 

signature of parallel adaptation from shared variation introduced in this paper (divergence valley 

and twin peaks). For all these reasons, the candidate regions identified in our genome-wide screen 

certainly represent only a subset of the M-FW adaptation genes in our study populations. 
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Supporting Tables 
Table S1. Sanger sequencing of the stickleback candidate genes and their reference loci  

Amplification PCR reaction volume was 12.5 µl, with 1 µl of genomic DNA (concentration: 20 

ng/µl) using RedTaq (Sigma-Aldrich) (default) or AmpliTaq (Applied Biosystems) polymerase. 

The following cycling conditions were used for PCR amplification: 1 x 94 °C for 3 min; followed 

by 30 x 94 °C for 30 sec, X °C for 45 sec and 72 °C for 45 sec; followed by 1 x 72 °C for 7 min and 

finally hold at 4 °C. Annealing temperatures (X) for particular primer pairs were (in °C): A/B=52.0, 

C/D=52.0, E/F=53.0, E/G=55.0, H/I=53.0, J/K=54.0, L/M=51.5, N/O=51.0, P/Q=53.5. Each PCR 

product was then purified by following the ExoSAP-IT (Affymetrix) standard protocol. For the 

sequencing PCR, we used the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) 

and added 0.5 µL primer (forward or reverse) and 1.0 µL BigDye Terminator Reaction Mix to each 

purified PCR product. The conditions for the subsequent sequencing PCR were: initial denaturation 

(1 min, 94 °C) followed by 25 cycles of denaturation (10 s, 94 °C), annealing (20 s, 52 °C) and 

elongation (4 min, 60 °C). Unincorporated BigDye terminators were removed with the BigDye 

XTerminator™ Purification Kit (Applied Biosystems), by adding 14.5 µL ddH2O, 22.5 µL SAM™ 

solution and 5.0 µL XTerminator™ beads to the sequencing products. After shaking for 30 min at 

2000 rpm, the mix was centrifuged (2 min, 1500 rpm).  
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Table S2. Regions in the stickleback genome identified as candidates for M-FW divergence 

based on the molecular signature of parallel adaptation from shared variation with gene flow 

A genomic region qualified as M-FW candidate if smoothed delta divergence reached at least 0.2 

and smoothed gsi was at least 0.6 (see Figure S2). The last column lists strong candidate genes for 

M-FW divergence contained in these regions, based on evidence from studies in stickleback 

(references with double asterisk) and/or other (mostly fish) species (references with single asterisk). 

Some of these candidate regions are visualized in Figure 4. 
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Table S3. Genome-wide magnitude of divergence in all focal population comparisons 

 Divergence is expressed as median FST (mean FST in parentheses) calculated across all SNPs. For 

details on the stringent SNP filtering conventions applied to maximize the robustness of divergence 

estimation see main text. 
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Supporting Figures 
 

 
Figure S1. Delta divergence calculated from simulated data 

The rationale for using delta divergence to identify genomic regions involved in parallel adaptation 

from shared variation, illustrated using simulated data generated by the default model (Fig. 2C). 

Delta divergence is calculated by subtracting the divergence among derived populations (i.e., 

overall FW-FW divergence in our study) from the divergence between source and derived 

populations (overall M-FW divergence). The benefit is that the resulting delta divergence peak is 

higher and sharper than the source-derived peak and the derived-derived valley. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2. Divergence and genealogical sorting profiles for all autosomes (presented on the 10 

pages that follow) 

 Genetic divergence (based on residual FST; see Materials and Methods) between M and FW 

stickleback populations (top panel, black line) and among FW populations (top panel, red line), 

resulting delta divergence (middle panel), and M-FW genealogical sorting (bottom panel) plotted 

for all autosomes. Plotting conventions are as in Fig. 3 (B - D) and Fig. 4. 



124

! 16!

Figure S2 (chromosomes 1 and 2) 
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Figure S2 (chromosomes 3 and 4) 
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Figure S2 (chromosomes 5 and 6) 
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Figure S2 (chromosomes 7 and 8) 
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Figure S2 (chromosomes 9 and 10) 
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Figure S2 (chromosomes 11 and 12) 
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Figure S2 (chromosomes 13 and 14) 
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Figure S2 (chromosomes 15 and 16) 
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Figure S2 (chromosomes 17 and 18) 
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Figure S2 (chromosomes 20 and 21) 
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Advances in genomic techniques are greatly facilitating the study of molecular signatures of selection in diverging natural pop-

ulations. Connecting these signatures to phenotypes under selection remains challenging, but benefits from dissections of the

genetic architecture of adaptive divergence. We here perform quantitative trait locus (QTL) mapping using 488 F2 individuals and

2011 single nucleotide polymorphisms (SNPs) to explore the genetic architecture of skeletal divergence in a lake-stream stickleback

system from Central Europe. We find QTLs for gill raker, snout, and head length, vertebral number, and the extent of lateral

plating (plate number and height). Although two large-effect loci emerge, QTL effect sizes are generally small. Examining the

neighborhood of the QTL-linked SNPs identifies several genes involved in bone formation, which emerge as strong candidate

genes for skeletal evolution. Finally, we use SNP data from the natural source populations to demonstrate that some SNPs linked

to QTLs in our cross also exhibit striking allele frequency differences in the wild, suggesting a causal role of these QTLs in adaptive

population divergence. Our study paves the way for comparative analyses across other (lake-stream) stickleback populations, and

for functional investigations of the candidate genes.

KEY WORDS: Effect size, Gasterosteus aculeatus, lateral plate, QTL mapping, RAD sequencing, vertebral number.

Exploring the genetic basis of adaptation promises to illuminate

several long-standing issues in biological diversification. These

include the number and genomic location of genetic changes

underlying adaptation, their role in developmental pathways,

their phenotypic effects and resulting ecological consequences,

and their predictability (Orr 1998; Barton and Keightley 2002;

Phillips 2005; Hoekstra and Coyne 2007; Mitchell-Olds et al.

2007; Wray 2007; Arendt and Reznick 2008; Stern and Orgogozo

2008; Mackay et al. 2009; Rockman 2011; Wake et al. 2011;

Yeaman and Whitlock 2011). Currently, perhaps the most popular

approach to investigating the genetics of adaptation is divergence

mapping (Nielsen 2005; Storz 2005; Oleksyk et al. 2010). Here

a large set of genome-wide molecular markers is screened for

putative signatures of divergent selection between ecologically

distinct populations. In well-developed empirical systems, this is

proving a powerful method for the discovery of genomic regions

or candidate genes involved in adaptive divergence (e.g., Akey

et al. 2002; Voight et al. 2006; Hohenlohe et al. 2010; Lawniczak

et al. 2010; Jones et al. 2012; Nadeau et al. 2012; Roesti et al.

2012a, 2014; Mateus et al. 2013; Stölting et al. 2013). A shortcom-

ing of divergence mapping, however, is that in general molecular

signatures alone cannot tell us much about the traits actually tar-

geted by selection (Mitchell-Olds et al. 2007; Stinchcombe and

Hoekstra 2008; Storz and Wheat 2010). In the years to come, we

can thus anticipate a surge of information about genome regions

putatively influenced by divergent selection in many organisms,

but knowledge about the phenotypes transferring selection to the

molecules is likely to lag behind. Understanding the genetics

of adaptation will thus benefit greatly from the combination of

purely genomic investigations with extensive data on the genetic

architecture of phenotypic divergence, as for instance obtained by

quantitative trait locus (QTL) mapping.

In the present study, we report a QTL mapping experiment

performed in a powerful system for studying adaptive divergence:

1
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lake and stream populations of threespine stickleback fish (Gas-
terosteus aculeatus). Following the retreat of the last Pleis-

tocene ice sheets, the colonization of freshwater by ancestral

marine stickleback has resulted in the establishment of numer-

ous populations occurring in adjacent lake and stream habitats

(Reimchen et al. 1985; Lavin and McPhail 1993; Thompson

et al. 1997; Hendry and Taylor 2004; Berner et al. 2008, 2010a;

Aguirre 2009; Bolnick et al. 2009; Deagle et al. 2012; Moser

et al. 2012; Lucek et al. 2013; Ravinet et al. 2013). Lake and stream

stickleback are often ecologically divergent, with the most consis-

tent difference concerning their foraging modes: lake stickleback

partly or exclusively exploit pelagic food resources (zooplankton),

whereas stream stickleback generally use benthic prey (macroin-

vertebrates; Gross and Anderson 1984; Berner et al. 2009;

Kaeuffer et al. 2012; Moser et al. 2012; Ravinet et al. 2013).

This divergence in foraging modes is associated with relatively

consistent phenotypic differences in traits presumably important

for prey capture and handling, such as overall body shape and gill

raker structure (Reimchen et al. 1985; Lavin and McPhail 1993;

Berner et al. 2008, 2009, 2010a; Kaeuffer et al. 2012; Lucek

et al. 2013; Ravinet et al. 2013). The existence of replicate, eco-

logically and phenotypically divergent population pairings makes

lake-stream stickleback an appealing system for the search of

molecular signatures of divergent selection. Indeed, divergence

mapping has already been performed in some lake-stream stick-

leback systems (Deagle et al. 2012; Roesti et al. 2012a).

By contrast, very little is known about the genetics of phe-

notypic divergence between lake and stream stickleback. Quanti-

tative genetic (common-garden) experiments have demonstrated

a genetic basis to divergence in some foraging traits (Lavin and

McPhail 1993; Sharpe et al. 2008; Berner et al. 2011), but QTL

dissections of the genetic architecture of phenotypic divergence

have yet to be performed. We here take up this challenge by us-

ing QTL mapping to explore the genetic basis of divergence in

skeletal features between lake and stream stickleback populations

from Central Europe.

Materials and Methods
CROSS

Our study is based on an F2 intercross population derived from a

single in vitro cross of a male from Lake Constance (sampled at

the ROM lake site described in Berner et al. 2010a) with a female

from a stream draining into Lake Geneva (the CHE stream site

in Berner et al. 2010a). The F2 panel comprises 492 individuals

(251 males, 237 females) selected haphazardly at one year of

age from 35 separate F1 crosses, each produced by a unique full-

sib pairing. All details on crossing, husbandry, and handling are

exactly as described in Roesti et al. (2013), a recombination study

based on a subset of 282 individuals from the full F2 population

used here for QTL mapping.

All fish were euthanized with an overdose of MS-222, pho-

tographed immediately as described in Berner et al. (2009), and

stored in absolute EtOH. After six months of preservation, a fin

clip was taken for genetic analysis and each individual was sub-

jected to a digital X-ray scan of the whole body and a higher

resolution scan of the head. This was performed by using a Fax-

itron Digital Specimen Radiography System LX-60 (tube voltage

35 kV, tube current 0.3 mA), including a reference size scale in

all scans.

PHENOTYPING

Our study focuses on aspects of skeletal morphology, here defined

broadly as bone traits. The first trait of interest was the length of

the gill rakers (bony tubercles) located on the first branchial arch

(Fig. 1). Gill rakers are important to foraging because they in-

fluence prey retention and handling performance (Gerking 1994;

Sanderson et al. 2001). In particular, longer gill rakers gener-

ally promote foraging on small prey items (such as zooplankton),

whereas shorter gill rakers are favored in fish foraging on larger

prey (such as macroinvertebrates). Indeed, the natural source pop-

ulations of our cross are highly divergent in this trait, with the

lake population displaying 25% longer size-corrected gill rakers

than the stream population (standardized mean difference: 0.99;

see Fig. 2 in Berner et al. 2010a), and this divergence coincides

with distinct foraging modes: Lake Constance stickleback forage

pelagically on zooplankton (Lucek et al. 2012; Moser et al. 2012),

whereas their conspecifics from the CHE stream site feed on larger

benthic macroinvertebrates (Berner et al. 2010a). Given that such

concurrent divergence in gill raker length and prey utilization has

also been found in other (lake-stream) stickleback systems (Gross

and Anderson 1984; McPhail 1984; Schluter and McPhail 1992;

Bolnick 2004; Berner et al. 2008, 2010a,b; Matthews et al. 2010;

Ravinet et al. 2013), and even in distantly related fish species

(Kahilainen and Ostbye 2006; Pfaender et al. 2011), the diver-

gence between ROM and CHE stickleback is very likely adap-

tive. We note that benthic versus pelagic resource specialization

often coincides with additional divergence in gill raker number,

but because the source populations are not divergent in this trait

(Berner et al. 2010a), we did not include this trait in the current

analysis. Gill raker length was measured on the left first branchial

arch of the preserved specimens under a stereomicroscope fitted

with an ocular micrometer at 50× magnification (precision: 0.01

mm). We measured and then averaged the length of the rakers

two to five (counted from the joint with the dorsal arch bone, see

Berner et al. 2008).

Next, we considered two aspects of head morphology: snout

length and overall head length (Fig. 1). The pelagic ROM lake

population displays lower values for both traits relative to the
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Figure 1. Traits subjected to QTL mapping in lake and stream stickleback. (A) X-ray scan of a partially plated stickleback visualizing snout

length (SL), head length (HL), the vertebrae, and the lateral plates. Plate height was measured on the plates 11 and 13 posterior to the

pelvic girdle (PG). (B) Detail of the head, showing the gill rakers (GR) on the first lower branchial arch (BA). The subpanels (C) and (D)

display, on the same scale as (B), the gill rakers of two size-matched individuals from the upper and lower end of the gill raker length

distribution.

CHE stream population foraging on benthic prey (Berner et al.

2010a), and similar foraging-related divergence is also seen in

other stickleback systems (Caldecutt and Adams 1998; Albert

et al. 2008). Moreover, head morphology typically shows sex-

ual dimorphism (Caldecutt and Adams 1998; Kitano et al. 2007;

Albert et al. 2008; Aguirre and Akinpelu 2010; Berner et al.

2010a, 2011; Ravinet et al. 2013). This dimorphism is possibly

also related to differential foraging modes. The reason is that

in stickleback, males tend a nest and provide parental care. The

(presumably ancestral) necessity of males to forage on benthic

resources during the breeding season while females can con-

tinue to exploit pelagic prey may have driven divergence in head

structure between the sexes (Bentzen and McPhail 1984; Bentzen

et al. 1984). Both snout length and head length were measured

from the head X-ray scans. The former was defined as the distance

from the joint to the tip of the lower jaw, the latter as the distance

from the tip of the lower jaw to the dorsal posterior edge of the

cranium.

The next trait quantified was vertebral number. Stickleback

populations often differ in the number of vertebrae (Hagen and

Gilbertson 1972; Moodie and Reimchen 1976; Reimchen et al.

1985). Although the functional basis of this variation remains

poorly understood (but see Swain 1992), genetic analysis in stick-

leback may provide insights into vertebral diversification in other

fish (Ward and Brainerd 2007; McDowall 2008) and vertebrates in

general. As a first step, we thus produced whole-body X-ray scans

of 14 specimens from each natural source population, counted all

vertebrae excluding the urostyle (Fig. 1), and tested for a popu-

lation difference in mean count using 9999 random permutations

of the trait over the populations (Manly 2007; all significance

testing in this study was performed using analogous permutation

procedures). This analysis made clear that ROM stickleback have

a higher number of vertebrae than CHE fish (see Results). Follow-

ing the same methods, we therefore quantified vertebral number

for the full F2 panel. Because of skeletal anomalies, 18 individuals

could not be scored unambiguously, leaving 474 datapoints.

Finally, our phenotypic analysis included elements of lateral

plating. Ancestral marine stickleback display a complete series of

bony plates along their body, whereas the number of plates is typ-

ically greatly reduced in freshwater populations (Bell and Foster

1994). This difference is presumably attributable to differential

exposure to predators (Hagen and Gilbertson 1972; Reimchen

1994; Bergstrom 2002; Leinonen et al. 2011a), although other

ecological factors targeting plate number or other traits correlated

with plate number due to pleiotropy or genetic linkage might influ-

ence plate evolution as well (e.g., Heuts 1947; Giles 1983; Barrett

et al. 2009; Myhre and Klepaker 2009; Leinonen et al. 2011b;

Roesti et al. 2014). Interestingly, Lake Constance stickleback are

a rare example of a freshwater population almost completely fixed

for the fully plated phenotype (Berner et al. 2010a; Moser et al.

2012). Because plating is reduced in several tributary streams to

Lake Constance, the persistence of full plating in the lake likely

reflects an adaptation to high predator exposure associated with

a pelagic life style. By contrast, CHE stickleback represent a
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typical low-plated freshwater population (Berner et al. 2010a),

thus providing the opportunity to map variation in lateral plat-

ing in the F2 cross. Consistent with previous work (Berner et al.

2010a; Moser et al. 2012), we scored the extent of lateral plating

using three discrete phenotypic classes (low, partially, and fully

plated).

Previous mapping efforts and subsequent functional anal-

ysis in Pacific marine and freshwater stickleback have already

identified the Ectodysplasin (EDA) gene as a major driver of evo-

lutionary shifts in the extent of lateral plating (Colosimo et al.

2004, 2005; Cresko et al. 2004; Baird et al. 2008). Moreover,

targeted sequencing of the entire EDA coding region revealed dis-

tinct haplotypes in fully plated Lake Constance versus low-plated

CHE stream fish (Berner et al. 2010a). Our primary objective in

mapping plate morph was therefore to assess if genomic regions

beyond EDA contribute to plating divergence between these Euro-

pean freshwater populations. To this end, we additionally counted

the total number of lateral plates posterior to the pelvic girdle

(including the plates forming the caudal keel) across both body

sides in the subset of F2 individuals genotyped unambiguously as

heterozygotes at our single SNP marker located within EDA. Fo-

cusing on this particular subset (N = 209) allowed us to screen for

loci influencing the extent of plating while controlling rigorously

for the effect of the known major locus.

As an alternative to reducing the extent of lateral plating via

a reduction in the number of plates (see above), stickleback some-

times appear to evolve shallower plates (Leinonen et al. 2012).

Although differences in plate size between ROM and CHE stick-

leback could not be examined adequately because the latter are

low-plated, a preliminary inspection of the F2 population indi-

cated substantial variation in plate height. We therefore measured

the maximal height of the plates 11 and 13, as counted from the

pelvic girdle, perpendicular to the anterior-posterior axis on the

left body side (Fig. 1). Measurements were taken with a digital

caliper (precision: 0.01 mm) handled under a stereomicroscope at

10–30× magnification. As plate height could only be quantified

in the fully and most of the partially plated individuals, sample

size was 358 and 342 for plate 11 and 13.

All metric (length) traits considered in our study scaled

strongly with overall body size (Pearson’s r: 0.49–0.84), whereas

the meristic (count) traits did not (vertebral number: r = 0.042;

lateral plate number: r = 0.045). Prior to QTL mapping, we there-

fore subjected the former traits to size correction by regressing

each trait separately against body size, and treating the residuals

as size-independent variables (Reist 1985; Berner 2011). These

variables were shifted back into the original measurement range

by adding the trait value predicted by the regression at mean body

size across all individuals. To obtain a robust size metric for these

procedures, we used tpsDig (Rohlf 2001) to digitize 16 landmarks

as described in Berner et al. (2010a) on the digital photographs

of all individuals, and extracted geometric morphometric centroid

size using TpsRelw (Rohlf 2001).

Finally, we assessed measurement precision for all traits by

remeasuring 30 haphazardly selected individuals on a second oc-

casion, and calculating the repeatability (Lessells and Boag 1987).

Repeatability was consistently very high, ranging from 0.96 (plate

number) to 1 (vertebral number, plate morph). The complete phe-

notype matrix used for mapping in R/qtl is available on the Dryad

Digital Repository (doi:10.5061/dryad.b2534).

MARKER GENERATION

As markers for mapping, we used single nucleotide polymor-

phisms (SNPs) discovered by RAD sequencing (Baird et al. 2008).

In brief, this involved DNA restriction with the Sbf1 enzyme, and

sequencing pools of 62 barcoded individuals in eight lanes with

100 cycles on an Illumina HiSeq 2000 instrument. RAD library

preparation and the bioinformatics pipeline used for SNP dis-

covery and genotyping were exactly as described in Roesti et al.

(2013). From the 2165 markers thus obtained, we excluded 154

to avoid Sbf1 restriction sites being represented by more than one

SNP. We also discarded four individuals exhibiting more than

10% missing genotypes across all markers. Our final mapping

dataset thus comprised 488 F2 individuals (recall that sample size

was lower for some traits) and 2011 SNPs. The genotype matrix

used for mapping is available on the Dryad Digital Repository

(doi:10.5061/dryad.b2534).

QTL MAPPING

All SNPs were ordered physically according to the stickleback

genome reassembly performed in Roesti et al. (2013; available at

http://datadryad.org/resource/doi:10.5061/dryad.846nj.2), result-

ing in 61–152 markers per chromosome and a median marker

spacing of 118 kb. Next, we excluded 111 individuals with rel-

atively low genotyping quality, as judged by clearly inflated

genome-wide crossover count (we here used 2.5 times the me-

dian autosomal crossover count across all 488 individuals as

threshold). The remaining 377 individuals were used to estimate

the genetic map in R/qtl (Broman and Sen 2009), applying the

Kosambi map function (assuming crossover interference). The re-

sulting genetic map proved highly consistent with that provided in

Roesti et al. (2013) based on fewer individuals but with genotype

errors corrected manually, and was used to specify the genetic

marker distances for QTL mapping. Mapping with genetic dis-

tances estimated by using the full F2 panel produced very similar

results (details not presented).

All phenotypes were subjected to single-QTL interval map-

ping in R/qtl using the extended Haley–Knott regression method

(Broman and Sen 2009) and the full F2 panel. Head length was

mapped both with and without snout length entered as covariate,

as our head length measure included the snout tip. We present
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the former analysis only, noting that both approaches produced

quantitatively very similar results. QTL significance was estab-

lished based on the distribution of genome-wide maximum LOD

(logarithm of the odds ratio for QTL likelihood) scores scores

across 1000 random permutations of the phenotype data over the

genotype data (Broman and Sen 2009). In the Results, we present

only QTLs significant at the 0.05 level, but additional loci are con-

sidered in the Discussion, and a table including suggestive QTLs

(0.05 � P < 0.1) is provided as Table S1. QTL effect sizes were

quantified both as the percentage of the total phenotypic variance

in the F2 cross explained by the QTLs (percent variance explained,

PVE), and as their allelic substitution effect (i.e., the phenotypic

difference between the two homozygous genotype classes). We

present the latter both in the traits’ original measurement scale

(millimeter for all length traits), and standardized by the average

standard deviation within the homozygous genotype classes. All

statistics and plotting were carried out with the R language (R

Development Core Team 2013).

EXPLORING QTLs

Following QTL detection, we retrieved from the Ensembl Genome

Browser all genes located in the physical window spanned by the

two SNPs flanking the marker displaying the LOD peak (this

interval usually coincided with the 1.5 LOD support interval). We

then scanned these gene lists for strong causative candidates, as

judged by information on protein function in vertebrate model

organisms (chicken, mice, rats, humans) compiled in the UniProt

database (The UniProt Consortium 2013).

In addition, the availability of RAD sequences generated

previously for the ROM and CHE population allowed us to in-

spect the magnitude and direction of allele frequency shifts in

the wild at QTLs discovered in the F2 population. Although this

type of follow-up analysis has, to our knowledge, not previously

been carried out, it promised stronger QTL inference because

a genotype–phenotype association shared between a cross and

its natural source populations suggests that the focal QTL is ef-

fectively contributing to divergence in the wild, as opposed to

being specific to the cross. As a caveat, we note that this ap-

proach assumes that the tight linkage detected between marker

and QTL alleles in the cross also persists in the wild. Specifically,

we here capitalized on RAD sequence data from 27 individuals

sampled from each source population. Details on the wet labo-

ratory protocol, the analysis pipeline, and access to the sequence

data are provided in Roesti et al. (2012b; this reference describes

data generation for the ROM population only; the CHE dataset

has not previously been analyzed but was generated in exactly

the same way). Because the RAD libraries of both the cross and

the natural populations were generated using the Sbf1 restriction

enzyme, all RAD loci of interest were shared among the two

datasets. However, the latter libraries were Illumina-sequenced to

76 bases as opposed to 100 bases for the cross, thus precluding

the examination of allele frequencies in the natural populations at

QTL-linked SNPs located distal to the restriction site. We further

ignored SNPs linked to lateral plate height QTLs because we here

lacked information on the direction and magnitude of divergence

between the natural populations (see above).

For those SNPs represented in both the cross and the natu-

ral population datasets (four SNPs in total), we first determined

from which population each of the two alleles present in the cross

originated. This assignment was unambiguous because our study

considered only markers homozygous within each grandparent

(Roesti et al. 2013). Next, we arbitrarily converted the two alle-

les to integers (0, 1) and tested for frequency shifts by random

permutation, using the difference in the population means as test

statistic. While providing a formal test for population divergence

at QTL-linked SNPs, this approach yielded no information re-

garding the potential cause of divergence at these SNPs. To gain

insights into the latter, we performed a second analysis comparing

the SNP allele frequency shifts between the natural populations

to the magnitude of genome-wide baseline divergence between

the populations. The rationale was that an allele frequency shift

clearly exceeding baseline divergence—reflecting the magnitude

of differentiation by drift—offers evidence for divergent selection

having acted in the close neighborhood of the QTL-linked marker.

We recognize the possibility, however, that selection may not have

target the detected QTL itself, but a nearby locus unrelated to the

mapped phenotype.

We thus translated allele frequency differences at the QTL-

linked SNPs to FST (Nei and Tajima 1981, eq. 7), and estimated

the confidence interval for FST as the 95 percentile of the distribu-

tion produced by bootstrap resampling the observed alleles 10,000

times within each population (Manly 2007). This confidence inter-

val was then evaluated against the magnitude of baseline differen-

tiation between the ROM and CHE population samples, defining

baseline differentiation as genome-wide median FST (Roesti et

al. 2012a). Following Roesti et al. (2012a,b), the estimation of

baseline differentiation ignored SNPs with a minor allele fre-

quency <0.25 to avoid polymorphisms with low information

content, and for RAD sites harboring multiple polymorphisms

used only the one SNP yielding the highest FST value. Baseline

differentiation thus calculated was 0.37 across 5429 informative

SNPs.

Results
GILL RAKER LENGTH

We found two significant QTLs influencing gill raker length

(Table 1; an additional suggestive QTL is described in Table S1;
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Table 1. Characterization of the QTLs for skeletal divergence between lake and stream stickleback.

Trait Marker Chromosome Position (bp) LOD P PVE HSE Direction Candidate gene

Gill raker length chrVI_12733534 6 13,735,445 4.52 0.027 6.5 0.19 (0.73) L∗
chrIV_570692 4 570,692 4.60 0.019 4.3 0.08 (0.33) S BAPX1 (15)

Snout length chrXIX_19432535 19 69,077 (contig 1730) 45.13 0.001 42.9 0.38 (1.87) M
Head length chrXIX_19432535 19 69,077 (contig 1730) 5.70 0.002 7.7 0.33 (0.58) M

chrUn_11709633 5 464,792 5.57 0.004 6.9 0.45 (0.72) S∗
chrXV_11777081 15 11,777,081 5.01 0.015 4.4 0.38 (0.58) S∗
chrXIV_6849438 14 6,849,438 4.55 0.031 3.2 0.24 (0.37) S∗

Vertebral number chrXXI_2306628 21 4,955,041 7.82 0.001 9.2 0.43 (0.85) L∗ COL11A1 (6)
chrXVII_1670571 17 1,670,571 7.64 0.001 6.4 0.44 (0.78) L∗ ASPN, OGN (11)

Plate morph chrIV_12797213 4 12,797,213 155.45 0.001 76.0 – L∗ EDA (15)
Plate 11 height chrXI_10140558 11 10,140,558 9.69 0.001 12.7 0.79 (1.04) S AXIN2 (36)

chrXI_6239999 11 6,239,999 8.94 0.001 12.0 0.71 (0.97) S PHOSPHO1 (36)
chrIV_4185607 4 4,185,607 4.54 0.041 5.5 0.47 (0.6) L

Plate 13 height chrIV_6474941 4 6,474,941 8.20 0.001 11.8 0.58 (1.07) L
chrXI_10140558 11 10,140,558 5.96 0.002 9.4 0.6 (0.8) S AXIN2 (36)
chrXI_6239999 11 6,239,999 5.79 0.002 8.4 0.47 (0.69) S PHOSPHO1 (36)
chrIX_9659641 9 12,543,749 4.99 0.012 7.7 0.53 (0.71) L

The marker names specify genomic locations (chromosome and base pairs) according to the Broad S1 genome assembly, whereas the chromosome numbers

and positions given in separate columns refer to the improved assembly (Roesti et al. 2013). The position of the marker on chromosome 19 (sex chromosome)

is unclear (it proved linked relatively loosely to the other markers within the nonrecombining domain of this chromosome), hence we provide the position

within its contig. Effect sizes are expressed as percent variance explained (PVE), and as homozygous substitution effect (HSE; in measurement unit, and

standardized in parentheses). HSE is not given for plate morph, as this trait has an ordinal scale, and effect sizes for the two plate height QTLs on chromosome

11 are probably inflated because of linkage. The QTLs are ordered by PVE within each trait. The Direction column indicates whether ROM lake (L), CHE stream

(S), or male (Y-linked; M) alleles cause higher trait values, and asterisks indicate allelic effects in the direction expected from the divergence between the

natural populations (note that this could not be determined for the plate height QTL). The last column lists candidate genes found in the marker intervals

around the QTL SNPs, with the numbers in parentheses indicating the total number of genes in each interval (including predicted genes). This table reports

only QTLs reaching P < 0.05; additional suggestive loci are presented in Table S1.

genome-wide LOD profiles for all traits are presented as Fig. S1).

Both showed a modest effect size. The SNP associated with the

QTL exhibiting the greater effect size (located on chromosome 6)

produced a phenotypic shift in the predicted direction (longer gill

rakers associated with the ROM lake allele), while the other one

did not. Only the chromosome 6 marker could be analyzed for al-

lele frequency shifts in the natural populations, revealing almost

complete fixation of the expected SNP allele within the ROM

and CHE sample (permutation P = 0.0001). This frequency shift

(FST = 0.77, lower and upper 95% confidence limits: 0.65, 0.92)

was much stronger than expected from the populations’ baseline

divergence.

HEAD MORPHOLOGY

The analysis of snout length detected a single large-effect QTL

only (43 PVE; Table 1, Fig. S1). This QTL mapped to the do-

main on the sex chromosome (19) where the X and Y gametologs

do not recombine (Roesti et al. 2013). Males of the F2 pop-

ulation further displayed strikingly longer snouts than females

(Fig. 2). Together, these observations indicated very strong sex-

linked control of snout length. Indeed, mapping sex as a binary

trait produced a single significant QTL (LOD = 380) coincid-

ing exactly with the snout length QTL, whereas mapping snout

length separately within each sex produced no QTL (details not

presented).

Some sex-linked control was observed for overall head length

as well, as the snout length QTL was also the strongest QTL af-

fecting head length (Tables 1, S1, Fig. S1; recall that head length

was mapped with snout length as covariate, so this finding is not

a methodological artifact). Three additional minor head length

QTLs were detected on the autosomes, all of them (and also the

suggestive locus) exhibiting an effect in the direction predicted

from previous phenotypic work (a larger head associated with

the CHE stream alleles). Allele frequencies in the natural popu-

lations could be inspected for the marker linked to the QTL on

chromosome 15 only, which again revealed a shift in the predicted

direction (P = 0.0001; FST = 0.51, CLs: 0.35, 0.68) and exceeding

the baseline level.
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Figure 2. Distribution of size-adjusted snout length in male (dark

gray, pointing upward) and female (light gray, pointing down-

ward) stickleback from the F2 panel.
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Figure 3. Vertebral number in ROM lake and CHE stream stickle-

back. The left panel shows vertebral count histograms based on

a sample (N = 14) from the lake population (dark gray, pointing

upward) and the stream population (light gray, pointing down-

ward). The right panel displays the distribution of vertebral num-

ber in individuals from the F2 cross concurrently homozygous for

either the lake alleles (dark gray; N = 14) or the stream alleles

(light gray; N = 13) at the two QTLs identified on chromosomes 17

and 21.

VERTEBRAL NUMBER

Most stickleback from the ROM lake sample displayed 32 verte-

brae, as opposed to 31 vertebrae predominating in CHE stream

fish (P = 0.0085; Fig. 3). In the cross, vertebral number mapped to

two QTLs, with their effects being in the expected direction (ROM

lake alleles associated with greater vertebral number; the same is

true for the suggestive loci; Tables 1, S1, Fig. S1). Despite mod-

erate effect sizes of the two QTLs when estimated separately (9.2

and 6.4 PVE), their joint effect was striking: individuals homozy-

gous for the ROM lake or CHE stream alleles at both QTL-linked

SNPs simultaneously exhibited almost consistently 32 versus 31

vertebrae (Fig. 3). Comparing a subset of F2 individuals with 31

and 32 vertebrae (N = 30 each) showed unambiguously that the

variation was in the number of caudal as opposed to abdominal

vertebrae (details not presented). Moreover, testing for a differ-

ence in mean body size between individuals with 31 versus 32

vertebrae (together accounting for 97% of all F2 individuals) re-

vealed clearly that vertebral number and body size were unrelated

(P = 0.36, standardized mean difference in size between the two

groups: 0.06; visualized in Fig. S2). Allele frequency shifts could

be examined for the marker linked to the QTL on chromosome 21

only, revealing divergence in the expected direction (P = 0.0001;
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Figure 4. (A) LOD profile for the segment on chromosome 4 con-

taining the detected QTL for lateral plate morph. The gray vertical

lines indicate, from left to right, the position of EDA and the two

candidate genes PDLIM7 and ANXA6. The two LOD peaks (>150)

are separated by two markers. (B) Distribution of the total num-

ber of lateral plates posterior to the pelvic girdle in F2 individuals

heterozygous at the EDA marker.

FST = 0.41, CLs: 0.15, 0.71), but not stronger than expected from

the baseline.

LATERAL PLATING

Mapping lateral plate morph detected a locus of large effect (76

PVE) on chromosome 4, located precisely in the EDA region

(LOD = 155.4 for the SNP 3 kb from the start position of EDA,

and LOD = 155.2 for the SNP within EDA; Table 1, Fig. 4A).

An almost equally strong marker-phenotype association (LOD =
154.6), however, occurred at 13.35 Mb. Inspecting the genotype

frequencies at the two SNPs separating these high-LOD regions

indicated that the drop in the strength of marker-phenotype as-

sociation was not due to low genotyping quality (details not pre-

sented). At the EDA SNP, the natural populations were relatively

close to fixation for the expected alternative alleles (P = 0.0001;

FST = 0.60, CLs: 0.42–0.79), a shift clearly exceeding the base-

line divergence level. No additional plate morph QTL was found

(Fig. S1).

Lateral plate number was variable among the F2 individ-

uals heterozygous at EDA, but never lower than 29 (Fig. 4B).

Hence, EDA heterozygotes in our cross always classified as either

partially or fully plated. We found no significant QTL for plate
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number when only considering EDA heterozygotes (Fig. S1; a

single suggestive QTL is described in Table S1).

The height of lateral plate 11 mapped to two QTLs (Tables 1,

S1, Fig. S1). The locus on chromosome 11 displayed a substantial

effect size (12.7 PVE), with the ROM lake allele associated with

shorter plates. However, this effect size was probably slightly

inflated, as inspecting the LOD profile along chromosome 11

revealed the presence of an additional, nearly equally strong QTL

4 Mb (9.4 cM) away (LOD = 8.94; this second QTL is included in

Table 1). Lacking information on plate height divergence between

the natural populations, we did not investigate population-level

shifts in allele frequencies.

The genetic architecture of lateral plate 13 height overlapped

partly with that of plate 11 (Table 1, Fig. S1), which is not surpris-

ing, given the relatively strong phenotypic correlation of the two

plate height traits within the F2 population (r = 0.84). Specifically,

we detected exactly the same two QTLs located on chromosome

11. However, the strongest effect (11.8 PVE) was now seen in a

QTL on chromosome 4. This locus was 2.3 Mb away from the

QTL on the same chromosome driving plate 11 height (Fig. S1),

and thus perhaps represents a distinct locus, although this cannot

be determined with confidence. In addition, plate 13 height was

influenced by a QTL on chromosome 9.

Discussion
We have used an F2 intercross to investigate the genetic archi-

tecture of divergence in skeletal traits between lake and stream

stickleback. A first suite of traits considered included gill raker,

snout, and head length, traits believed to mediate trophic special-

ization. In particular, gill raker length displays a highly predictable

association with prey use in stickleback and other fish species. To

our knowledge, variation in gill raker length has not previously

been mapped in any species, but common-garden experiments in

stickleback indicated a heritable basis to the phenotypic diver-

gence between benthic and pelagic populations (McPhail 1984;

Day et al. 1994; Wund et al. 2008). In line with these quantitative

genetic observations, our study discovered QTLs for gill raker

length. Despite a mutation screen in zebrafish, implicating the

Ectodysplasin (EDA) signaling pathway in gill raker formation

(Harris et al. 2008), the detected QTLs showed no obvious rela-

tionship to that pathway. However, screening the marker interval

around the QTL on chromosome 4 suggested BAPX1 as a strong

candidate gene, given that BAPX1 is crucial to the formation of

the first branchial arch in zebrafish (Miller et al. 2003).

We also found several autosomal QTLs explaining variation

in head length. The effect sizes were consistently in the direc-

tion expected from the phenotypic divergence between the source

populations (Berner et al. 2010a) and other benthic-pelagic stick-

leback systems (Caldecutt and Adams 1998; Albert et al. 2008).

Nevertheless, in accordance with greater male than female over-

all head length found in many stickleback studies (Caldecutt and

Adams 1998; Kitano et al. 2007; Albert et al. 2008; Aguirre and

Akinpelu 2010; Berner et al. 2010a, 2011; Ravinet et al. 2013),

the strongest head length QTL was sex-linked and also turned out

to be the only (large-effect) locus driving snout length. Hence,

while contrasting foraging habitats likely drive the evolution of

stickleback head morphology among populations, the footprint of

sex-specific selection is much stronger.

VERTEBRAL NUMBER

The source populations of the cross showed clear divergence in

the number of vertebrae, with a higher average count in lake

than stream fish. This trend has also been found in other studies

comparing lake and stream stickleback (Hagen and Gilbertson

1972; Reimchen et al. 1985) and thus likely represents an adap-

tive response to divergent selection on locomotion (Swain 1992).

Although further functional evidence is needed, our finding that

vertebral number is genetically unrelated to body size (as also

found in a different stickleback system; Alho et al. 2011) indi-

cates that population divergence in the number of vertebrae is

unlikely to reflect a correlated response to selection on size (note

that the ROM lake and CHE stream populations differ in size;

Moser et al. 2012).

In our cross, vertebral number mapped to two QTLs. These

loci explained a moderate proportion of the total phenotypic vari-

ance when considered in isolation, but in combination had a high

explanatory power: their joint homozygous substitution accounted

for an approximate shift of one vertebra, roughly the magnitude of

divergence between the natural populations. To our knowledge,

vertebral number has previously been mapped only in two fish

species (medaka and trout) and in pigs. The former studies de-

tected QTLs but were performed with a marker resolution too

low to allow candidate gene identification (Nichols et al. 2004;

Kimura et al. 2012). QTLs also emerged in pigs, where fine map-

ping produced strong candidate genes (NR6A1, VRTN, PROX2,

FOS; Mikawa et al. 2007, 2011; Ren et al. 2012). The stickleback

homologues of these genes, however, are not located on the chro-

mosomes 17 and 21 where we found QTLs for vertebral number.

Instead, screening the target marker interval on chromosome 17

identified OGN (Madisen et al. 1990) and ASPN as candidate

genes. Both genes are involved in bone formation. In particu-

lar, ASPN regulates osteoblast collagen mineralization in vitro
(Kalamajski et al. 2009) and is implicated in human degenerative

diseases of skeletal joint regions, including intervertebral disks

(Kizawa et al. 2005; Song et al. 2008). Also, a strong candidate

gene (COL11A1) emerged in the focal chromosome 21 segment.

Mutations in COL11A1 cause skeletal disorders, including the

malformation of vertebrae (Li et al. 1995; Tompson et al. 2010;

Koyama et al. 2012).
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LATERAL PLATING

At first glance, our mapping of lateral plate morph produced an

expected result: the LOD maximum mapped to the EDA gene,

and the corresponding SNP explained 76% of the total variance,

a value very similar to that reported in Colosimo et al. (2004)

for the plate morph QTL on chromosome 4 (77.6 PVE). Inter-

estingly, however, a nearly equally strong LOD score emerged at

13.35 Mb (roughly 0.5 Mb from EDA), a region identified as high

differentiation outlier in a divergence mapping study using fully

plated marine and low-plated freshwater stickleback from Alaska

(Hohenlohe et al. 2010). Our marker interval in that region con-

tains two strong candidate genes, PDLIM7 and ANXA6 (see also

Hohenlohe et al. 2010). PDLIM7 has been shown to initiate bone

formation de novo, and also to interact with bone morphogenetic

protein (BMP) signaling (Boden et al. 1998; Liu et al. 2002).

Similarly, ANXA6 plays a critical role during the calcification of

skeletal tissue (Kirsch et al. 2000; Wang and Kirsch 2002; Thou-

verey et al. 2009). It is thus possible that the strong effect seen

at the EDA marker in our cross captures variation in lateral plat-

ing driven by polymorphism in one or more additional genes in

its close neighborhood. Unfortunately, the paucity of crossovers

between the SNPs at these QTLs in our cross precludes disentan-

gling their relative effect sizes.

Outside chromosome 4, we found no QTL substantially influ-

encing plate morph or number. This is surprising, given that such

QTLs were discovered previously on chromosomes 7, 10, and 21

(Colosimo et al. 2004; but see Baird et al. 2008). This difference

in genetic architecture likely explains why EDA heterozygotes in

our cross were never low-plated, although low-plated heterozy-

gotes occurred in the mapping panel studied by Colosimo et al.

(2004).

As a complementary route to the adaptive reduction in lateral

plating, stickleback might evolve shallower plates (Leinonen et

al. 2012). Mapping the height of the plates 11 and 13 posterior to

the pelvic girdle, we found QTLs on chromosomes 4, 9, and 11.

These results differ from the previous report of plate height QTLs

on the chromosomes 4 (at around 2 Mb, hence in a different region

than in our cross), 7, and 20 (Colosimo et al. 2004). However,

that study measured plates immediately adjacent to the pelvic

girdle. Combined with our observation that the relative influence

of the QTLs on chromosomes 4 and 11 on the height of the plates

11 and 13 was inverted, and that the QTL on chromosome 9

(and the additional suggestive QTLs) influenced one of the plates

only, we conclude that plate height has a fairly complex genetic

architecture, with several loci acting relatively locally.

Examining the plate height QTL regions produced strong

candidate genes. Notably, the marker interval around the highest

LOD peak observed (chromosome 11) included AXIN2. Loss of

function mutations in AXIN2 lead to ectodermal dysplasia in hu-

mans (Lammi et al. 2004; Mostowska et al. 2006; Callahan et al.
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Figure 5. Distribution of effect sizes (in percent variance ex-

plained) across all QTLs (including in light gray the suggestive

ones with 0.05 � P < 0.1; see Table S1) and all traits except plate

number in EDA heterozygotes. The latter trait was excluded be-

cause mapping was performed with substantially reduced power

(N = 209).

2009; Bergendal et al. 2011)—the same disorder also observed

for disruptions of the EDA pathway (Kere et al. 1996; Bayes

et al. 1998; Monreal et al. 1999; Headon et al. 2001; Chassaing

et al. 2006). The SNP interval around 6.2 Mb on the same chro-

mosome, in turn, proved close to PHOSPHO1, a gene involved in

skeletal tissue mineralization (Houston et al. 1999, 2004; Roberts

et al. 2007). Candidate genes involved in bone formation also

emerged at the suggestive plate height QTLs on chromosomes 5

(PLEKHM1; Van Wesenbeeck et al. 2007) and 17 (ALPL; Weiss

et al. 1988; Henthorn et al. 1992; Table S1).

QTL EFFECT SIZES

Mapping lateral plate morph and snout length identified QTLs of

very large effect (acknowledging that the effect size of the plate

morph QTL is possibly confounded by the presence of multiple

tightly linked loci, see above). The majority of our detected QTLs,

however, had a relatively minor effect, a typical result in QTL

mapping studies (Mackay et al. 2009). Moreover, for some traits

(e.g., gill raker length, head length), inspecting the genome-wide

LOD profile (Fig. S1) suggested the presence of additional loci

with even smaller effect that were missed in our experiment due to

insufficient power—a well-known issue in QTL mapping (Lande

and Thompson 1990; Beavis 1994; Xu 2003; Rockman 2011).

To explore this issue further, we compiled the effect sizes of all

the QTLs (including marginally significant ones) detected in our

study across all traits. This revealed that despite relatively large F2

sample size, we lacked the power to identify QTLs with an effect

size below 3–4 PVE (Fig. 5). (We are aware of the additional

complication that the effect sizes of our detected minor QTLs

are likely to be biased upward; Beavis 1994; Göring et al. 2001;

Xu 2003.) We thus argue that although QTL mapping provides

interesting insights into the genetic architecture of phenotypic

divergence among stickleback populations, our understanding of

adaptive variation in many traits will continue to benefit from

quantitative genetic investigation.
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ALLELE FREQUENCY SHIFTS IN THE SOURCE

POPULATIONS

The availability of marker data from the natural populations un-

derlying our cross made it possible to assess if associations be-

tween trait values and QTL-linked SNP alleles were replicated at

the population level. Such an association is expected under two

conditions. First, SNP alleles must tag QTL alleles reliably at the

population level (as opposed to merely in the grandparents used

for the cross). Second, allele frequency shifts at the focal QTL

need to make some contribution to the trait divergence between

the natural populations. Moreover, a shift at an SNP tightly linked

to a QTL is expected to exceed the level of baseline population

divergence attributable to drift if the QTL has been influenced by

divergent selection between the populations.

All these conditions are indeed met by the EDA locus: phy-

logenetic analysis revealed that alleles at SNPs within EDA are

tightly linked to their corresponding causative variants (which

remain unknown) in the two study populations, and that adap-

tive population divergence in plate morph frequency is paralleled

by frequency shifts at these SNPs (Berner et al. 2010a; see also

Colosimo et al. 2005). We thus predicted very strong population-

level shifts at our EDA maker, which were indeed observed. Simi-

lar analyses could be performed only in a small subset of the other

QTL-linked SNPs, because some relevant markers were missing

at the population level due to a different sequencing protocol, and

because plate height could not be quantified in the (low-plated)

stream population. Nevertheless, all three additional SNPs that

were examined (associated with gill raker length, head length,

and vertebral number) showed clear enrichment for the expected

allele within each source population. Moreover, in three of the

four total cases (including EDA), the observed allele frequency

shifts were stronger than baseline divergence. We thus conclude

that the phenotypic divergence between our study populations is

probably attributable at least partly to allele frequency shifts at

the QTL discovered in the cross, and that some of these shifts

have been driven by divergent selection.

Conclusions
We subjected skeletal traits in European lake and stream stickle-

back to QTL mapping. Although this revealed a few large-effect

QTLs, the majority of the loci detected across all traits exhib-

ited a modest to small effect size. At least for some traits, QTL

mapping seems to permit a relatively incomplete characteriza-

tion of genetic architecture. Nevertheless, the close neighborhood

around the QTLs that were discovered often contained genes in-

volved in bone formation, which thus emerge as strong candidate

drivers of skeletal evolution. Manipulative functional experiments

are now needed to confirm the causative role of these genes, and

comparisons across numerous phenotypically well-characterized

stickleback populations should investigate how consistently these

genes are involved in diversification. Excitingly, a region con-

taining two novel candidate genes for lateral plate morph evo-

lution in our study coincided with an outlier region identified

in a divergence scan using geographically independent stickle-

back populations divergent in lateral plating (Hohenlohe et al.

2010). This illustrates how understanding adaptation can benefit

from the combination of phenotype-based and purely molecular

genome scans. Finally, we attempted to move beyond mere QTL

identification within a cross by screening for QTL-linked SNP

allele frequency shifts in the natural source populations. These

analyses indicated that at least some of our identified QTLs may

indeed contribute to population divergence, and suggested that

allele frequency shifts have been driven by divergent selection.

A deeper understanding of the nature of this selection, however,

will require extensive ecological investigation.
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Alho, J. S., T. Leinonen, and J. Merilä. 2011. Inheritance of vertebral num-
ber in the three-spined stickleback (Gasterosteus aculeatus). PLoS One
6:e19579.

Arendt, J., and D. Reznick. 2008. Convergence and parallelism reconsidered:
what have we learned about the genetics of adaptation? Trends Ecol.
Evol. 23:26–32.

Baird, N. A., P. D. Etter, T. S. Atwood, M. C. Currey, A. L. Shiver, Z. A.
Lewis, E. U. Selker, W. A. Cresko, and E. A. Johnson. 2008. Rapid SNP
discovery and genetic mapping using sequenced RAD markers. PLoS
One 3:e3376.

Barrett, R. D. H., S. M. Rogers, and D. Schluter. 2009. Environment specific
pleiotropy facilitates divergence at the ectodysplasin locus in threespine
stickleback. Evolution 63:2831–2837.

Barton, N. H., and P. D. Keightley. 2002. Understanding quantitative genetic
variation. Nat. Rev. Genet. 3:11–21.

Bayes, M., A. J. Hartung, S. Ezer, J. Pispa, I. Thesleff, A. K. Srivastava,
and J. Kere. 1998. The anhidrotic ectodermal dysplasia gene (EDA) un-
dergoes alternative splicing and encodes ectodysplasin-A with deletion
mutations in collagenous repeats. Hum. Mol. Genet. 7:1661–1669.

Beavis, W. D. 1994. The power and deceit of QTL experiments: lessons from
comparative QTL studies. Pp. 250–266 in Proceedings of the 49th annual
corn and sorghum industry research conference. American Seed Trade
Association, Washington, DC.

Bell, M. A., and S. A. Foster. 1994. The evolutionary biology of the threespine
stickleback. Oxford Univ. Press, Oxford, U.K.

Bentzen, P., and J. D. McPhail. 1984. Ecology and evolution of sympatric
sticklebacks (Gasterosteus): specialization for alternative trophic niches
in the Enos Lake species pair. Can. J. Zool. 62:2280–2286.

Bentzen, P., M. S. Ridgway, and J. D. McPhail. 1984. Ecology and evolution of
sympatric sticklebacks (Gasterosteus)—spatial segregation and seasonal
habitat shifts in the Enos Lake species pair. Can. J. Zool. 62:2436–2439.

Bergendal, B., J. Klar, C. Stecksen-Blicks, J. Norderyd, and N. Dahl. 2011.
Isolated oligodontia associated with mutations in EDARADD, AXIN2,
MSX1, and PAX9 genes. Am. J. Med. Genet. Part A 155A:1616–1622.

Bergstrom, C. A. 2002. Fast-start swimming performance and reduction in
lateral plate number in threespine stickleback. Can. J. Zool. 80:207–
213.

Berner, D. 2011. Size correction in biology: how reliable are approaches based
on (common) principal component analysis? Oecologia 166:961–971.

Berner, D., D. C. Adams, A.-C. Grandchamp, and A. P. Hendry. 2008. Nat-
ural selection drives patterns of lake-stream divergence in stickleback
foraging morphology. J. Evol. Biol. 21:1653–1665.

Berner, D., A.-C. Grandchamp, and A. P. Hendry. 2009. Variable progress
toward ecological speciation in parapatry: stickleback across eight lake-
stream transitions. Evolution 63:1740–1753.

Berner, D., M. Roesti, A. P. Hendry, and W. Salzburger. 2010a. Constraints on
speciation suggested by comparing lake-stream stickleback divergence
across two continents. Mol. Ecol. 19:4963–4978.

Berner, D., W. E. Stutz, and D. I. Bolnick. 2010b. Foraging trait (co)variances
in stickleback evolve deterministically and do not predict trajectories of
adaptive diversification. Evolution 64:2265–2277.

Berner, D., R. Kaeuffer, A.-C. Grandchamp, J. A. M. Raeymaekers, K.
Räsänen, and A. P. Hendry. 2011. Quantitative genetic inheritance of

morphological divergence in a lake-stream stickleback ecotype pair:
implications for reproductive isolation. J. Evol. Biol. 24:1975–1983.

Boden, S. D., Y. S. Liu, G. A. Hair, J. A. Helms, D. Hu, M. Racine, M. S.
Nanes, and L. Titus. 1998. LMP-1, a LIM-domain protein, mediates
BMP-6 effects on bone formation. Endocrinology 139:5125–5134.

Bolnick, D. I. 2004. Can intraspecific competition drive disruptive selection?
An experimental test in natural populations of sticklebacks. Evolution
58:608–618.

Bolnick, D. I., L. K. Snowberg, C. Patenia, W. E. Stutz, T. Ingram, and O.
L. Lau. 2009. Phenotype-dependent native habitat preference facilitates
divergence between parapatric lake and stream stickleback. Evolution
63:2004–2016.

Broman, K. W., and S. Sen. 2009. A guide to QTL mapping with R/qtl.
Springer, New York.

Caldecutt, W. J., and D. C. Adams. 1998. Morphometrics of trophic osteology
in the threespine stickleback, Gasterosteus aculeatus. Copeia 1998:827–
838.

Callahan, N., A. Modesto, R. Meira, F. Seymen, A. Patir, and A. R. Vieira.
2009. Axis inhibition protein 2 (AXIN2) polymorphisms and tooth age-
nesis. Arch. Oral Biol. 54:45–49.

Chassaing, N., S. Bourthoumieu, M. Cosse, P. Calvas, and M. C. Vincent.
2006. Mutations in EDAR account for one-quarter of non-ED1-related
hypohidrotic ectodermal dysplasia. Hum. Mutat. 27:255–259.

Colosimo, P. F., C. L. Peichel, K. Nereng, B. K. Blackman, M. D. Shapiro, D.
Schluter, and D. M. Kingsley. 2004. The genetic architecture of parallel
armor plate reduction in threespine sticklebacks. PLoS Biol. 2:635–641.

Colosimo, P. F., K. E. Hosemann, S. Balabhadra, G. Villareal Jr., M. Dickson,
J. Grimwood, J. Schmutz, R. M. Myers, D. Schluter, and D. M. Kingsley.
2005. Widespread parallel evolution in sticklebacks by repeated fixation
of ectodysplasin alleles. Science 307:1928–1933.

Cresko, W. A., A. Amores, C. Wilson, J. Murphy, M. Currey, P. Phillips, M. A.
Bell, C. B. Kimmel, and J. H. Postlethwait. 2004. Parallel genetic basis
for repeated evolution of armor loss in Alaskan threespine stickleback
populations. Proc. Natl. Acad. Sci. USA 101:6050–6055.

Day, T., J. Pritchard, and D. Schluter. 1994. Ecology and genetics of pheno-
typic plasticity: a comparison of two sticklebacks. Evolution 48:1723–
1734.

Deagle, B. E., F. C. Jones, Y. F. Chan, D. M. Absher, D. M. Kingsley, and T. E.
Reimchen. 2012. Population genomics of parallel phenotypic evolution
in stickleback across stream-lake ecological transitions. Proc. R. Soc.
Lond. B 279:1277–1286.

Gerking, S. D. 1994. Feeding ecology of fish. Academic, San Diego, CA.
Giles, N. 1983. The possible role of environmental calcium levels during the

evolution of phenotypic diversity in Outer Hebridean populations of the
three-spined stickleback, Gasterosteus aculeatus. J. Zool. 199:535–544.
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Figure S1. Genome-wide LOD profiles for all eight traits.
Figure S2. Body size (quantified as geometric morphometric centroid size, in millimeters) in relation to vertebral number.
Table S1. Characterization of additional, suggestive (0.05 � P < 0.1) QTLs for skeletal divergence between lake and stream stickleback.
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Supporting Fig. S1. Genome-wide LOD profiles for all eight traits. The chromosomes are separated by white and gray background shading. Tick marks 

along the X-axis indicate 5 Mb intervals, drawn separately for each chromosome. Horizontal lines represent genome-wide 0.05 (solid) and 0.1 (dashed) 

LOD significance thresholds based on 1000 random permutations. Note that the Y-axes are scaled differently among the traits. 

Supporting Fig. S1. Genome-wide LOD profiles for all eight traits. The chromosomes are separated by white and gray background shading. Tick marks 

along the X-axis indicate 5 Mb intervals, drawn separately for each chromosome. Horizontal lines represent genome-wide 0.05 (solid) and 0.1 (dashed) 

LOD significance thresholds based on 1000 random permutations. Note that the Y-axes are scaled differently among the traits. 
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Supporting Fig. S2. Body size (quantified as geometric morphometric centroid size, in 

mm) in relation to vertebral number. Shown are only individuals with 31 (N = 197) and 

32 (N = 258) vertebrae. The graph type is a boxplot with the whiskers representing 1.5 

times the interquartile range.
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Supporting Table S1. Characterization of additional, suggestive (0.05  P < 0.1) QTL for skeletal divergence between lake and stream stickleback. 

The presentation follows Table 1. Plate number was mapped using only individuals unambiguously heterozygous at the Ectodysplasin (EDA) locus. 

Trait Marker Chromosome Position (Mb) LOD P PVE HSE Direction Candidate gene 

Gill raker length chrIII_13014992 3 13,014,992 4.06 0.07 4.4 0.14 (0.52) L*  

          

Head length chrXIII_18688122 13 19,444,640 4.05 0.086 4.6 0.40 (0.60) S*  

          

Vertebral number chrII_5665753 2 5,665,753 4.05 0.076 3.6 0.31 (0.57) L*  

 chrV_6319659 5 4,509,573 3.96 0.089 3.6 0.11 (0.21) L*  

          

Plate number  chrXIII_18503873 13 19,628,889 4.4 0.091 9.7 2.97 (0.75) S  

          

Plate 11 height chrXVII_2292374 17 2,292,374 4.12 0.098 5.8 0.36 (0.53) L ALPL (31) 

          

Plate 13 height chrV_3764951 5 7,064,281 4.15 0.069 5.6 0.33 (0.54) L PLEKHM1 (12) 
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Populations occurring in similar habitats and displaying similar phenotypes are increasingly

used to explore parallel evolution at the molecular level. This generally ignores the possibility

that parallel evolution can be mimicked by the fragmentation of an ancestral population

followed by genetic exchange with ecologically different populations. Here we demonstrate

such an ecological vicariance scenario in multiple stream populations of threespine

stickleback fish divergent from a single adjacent lake population. On the basis

of demographic and population genomic analyses, we infer the initial spread of a

stream-adapted ancestor followed by the emergence of a lake-adapted population, that

selective sweeps have occurred mainly in the lake population, that adaptive lake–stream

divergence is maintained in the face of gene flow from the lake into the streams, and that this

divergence involves major inversion polymorphisms also important to marine-freshwater

stickleback divergence. Overall, our study highlights the need for a robust understanding of

the demographic and selective history in evolutionary investigations.
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P
arallel (or convergent1) phenotypic evolution—that is, the
repeated independent emergence of a specific phenotype
associated with a specific habitat, can provide important

insights into the determinism of natural selection. The reason is
that similar phenotypes are unlikely to evolve repeatedly in
association with an environment by chance. An aspect of parallel
evolution now made amenable to investigation through advances
in molecular techniques is to what extent the repeated evolution
of similar phenotypes involves the same genetic loci1–3.
A common analytical framework adopted to address this
question is to compare multiple population pairs, each believed
to represent an independent replicate of adaptive population
divergence between two ecologically different habitats. The
evolutionary independence of these population pairs is generally
established by demonstrating that the genetic relatedness between
the populations within pairs, as inferred from markers little
influenced by selection (for simplicity hereafter called ‘neutral
markers’), exceeds that seen among the pairs. If so, the population
pairs are assumed to represent replicates of independent
ecological divergence and are screened for genomic loci
exhibiting signatures of divergent selection between the habitats
(for example, high divergence relative to some genome-wide
baseline). Finally, the resulting lists of such loci are compared to
draw conclusions about the extent of parallel evolution at the
genomic level (for example, refs 4–9; for closely related inferential
approaches see refs 10–12).

A possibility rarely considered in such investigations is that the
demographic and selective history of the study populations may
complicate or preclude inferences about parallel evolution. Such a
situation occurs when multiple patches of two ecologically
different habitats are initially colonized by a single ancestor
already adapted to one habitat type. Subsequently, local
adaptation in the alternative habitat drives ecologically based
reproductive isolation between the habitats, although some
genetic exchange across habitat boundaries will continue in the
absence of absolute geographic barriers. The outcome of such
‘ecological vicariance’13 with genetic exchange will mimic parallel
evolution14. The reason is that gene flow between ecologically
different populations in contact will cause genetic differentiation
at neutral markers to be lower within than among population
pairs—the pattern also expected under parallel divergence.
Moreover, under both scenarios, loci under divergent selection
will be relatively protected from exchange between the
populations in contact and can therefore maintain stronger
differentiation between the habitats than neutral loci12,15–17. In
situations involving ecological vicariance with gene flow,
comparing multiple population pairs can permit the reliable
identification of selected loci and thus confirm divergent
selection, but inference about the genetic basis of independent
parallel evolution will be inappropriate because divergence did
not occur repeatedly.

Distinguishing parallel divergence from ecological vicariance
scenarios is thus crucial when attempting to explore how
deterministically selection acts at the genomic level during
evolution. While this distinction is not possible based on
phylogenetic relationships at neutral markers18,19, it can be
achieved by combining thorough analyses of molecular signatures
around the loci under divergent selection with robust
reconstructions of the populations’ demographic history14,20.
We here present such an investigation based on populations of
threespine stickleback fish (Gasterosteus aculeatus) adapted to
lake and stream habitats within the Lake Constance basin in
Central Europe.

This stickleback system comprises a large and genetically
well-mixed population residing in Lake Constance—with 571 km2

the third largest lake in Central Europe—and multiple adjoining

stream-resident populations inhabiting the lake’s
tributaries21–23. The lake and stream habitats are ecologically
different, as mirrored by the lifestyles of the stickleback
populations: lake fish forage pelagically (that is, in the open
water) on zooplankton, whereas the stream populations feed on
benthic (substrate-dwelling) macroinvertebrates. This different
resource use is paralleled by divergence in foraging morphology
and life history21,23,24. Lake and stream populations in the
Lake Constance basin also differ predictably in their extent of
lateral plating21,23. Just like marine stickleback25, pelagic Lake
Constance fish exhibit a series of bony plates covering their entire
flank, providing protection from vertebrate predators in the
open water26. By contrast, multiple stream populations show a
reduction in the extent of lateral plating, the phenotype
predominant in freshwater stickleback on a global scale.
Although the Lake Constance stickleback system has certainly

formed postglacially (that is, within the last 12,000 years27), its
origin is not resolved. One view is that a human introduction
during the nineteenth century initially led to the establishment
of a large lake population, and that subsequently multiple
stream populations diverged independently from the lake
population21,23. This scenario thus implies parallel divergence.
An alternative is a more ancient natural colonization of the Lake
Constance region by an already stream-adapted ancestral
population from the Danube drainage23 (now draining into the
Black Sea, hence disconnected from the Lake Constance basin),
providing the potential for an ecological vicariance scenario.
The first goal of our study is to combine multiple lines of

molecular evidence, based on dense genome-wide single-nucleo-
tide polymorphisms (SNPs) obtained through restriction site-
associated (RAD) sequencing28, to resolve the demographic and
selective history of lake–stream divergence in the Lake Constance
stickleback system. We demonstrate that adaptive divergence has
occurred in the face of gene flow in an unexpected historical
context, pointing to limitations in the standard interpretation of
repeated phenotypic evolution. Based on these insights, we then
dissect the molecular consequences of divergent selection in
target regions, including the prime locus underlying divergence in
lateral plating, and finally examine the role of chromosomal
inversions in adaptive divergence.

Results and Discussion
Demography and population genomic analyses. Our investiga-
tion focuses on four stickleback populations, including the
panmictic (Supplementary Fig. 1) Lake Constance population
(hereafter simply ‘lake’) and three stream populations residing in
tributaries (referred to as Bohlingen (BOH), Nideraach (NID)
and Grasbeuren (GRA); see also refs 21,23) (Fig. 1a), each
represented by 22–25 individuals. To reconstruct the
demographic history of these populations, we parameterized a
divergence with gene flow model by using coalescent simulations
based on the populations’ joint allele frequency spectra29 derived
from 14.8 million nucleotide positions on 166,711 RAD loci
across the 460-Mb stickleback genome. This analysis indicated
that the study populations—exhibiting relatively small estimated
effective population sizes (extremely small in the lake, largest in
GRA)—split from an at least 20 times larger ancestral population
a few thousand generations (and years, since the typical life span
of stickleback in this system is 1–2 years23,24) ago (Fig. 1b).
Qualitatively similar estimates were obtained with an alternative
model including only two stream populations (Supplementary
Fig. 2). Also, long-term rates of lake–stream gene flow differed
approximately tenfold, being highest between the lake and the
BOH population, and lowest between the lake and the GRA
population.
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Next, we compared population-specific allele frequency spectra
and found that across almost all minor allele frequency (MAF)
classes, the lake exhibited the lowest and GRA the highest
number of polymorphisms, with BOH and NID being inter-
mediate (Supplementary Fig. 3). The lake also displayed the
highest proportion of monomorphic SNPs, and the lowest
proportion of tri-allelic SNPs (Supplementary Table 1). These
findings clearly demonstrate that genetic diversity is lowest in the
lake and increases from BOH to NID to GRA. Moreover, because
the divergence among our study populations is recent (Fig. 1b,
Supplementary Fig. 2) and the sharing of polymorphisms is
extensive (Supplementary Table 1), most of the genetic variation
in the present populations must have been standing in their
common ancestor.

Calculating genome-wide baseline differentiation (that is,
median FST) for each of the three lake–stream pairings revealed
an increase in population differentiation from 0.005 in the
lake–BOH comparison to 0.013 and 0.061 in the lake–NID and
lake–GRA comparisons, whereas no stream–stream population
comparison yielded baseline FST higher than 0.056 (BOH–GRA;
NID–GRA: 0.047; BOH–NID: 0.012). In a rooted phylogeny,
the lake population emerged as a distal branch nested within
the more basal stream fish (Fig. 1c, Supplementary Fig. 4). An
unrooted phylogeny further confirmed the close relatedness of the
lake and BOH populations and the lower genetic diversity in the
lake than in the streams (Supplementary Fig. 5).

Finally, we quantified linkage disequilibrium (LD) between all
pairwise combinations of SNPs within all chromosomes in each
population and found that strong allelic associations between
SNPs occurred only over a scale of 1 kb or less; beyond this
distance, LD was much weaker (Fig. 2a). The peak in LD at the
smallest physical scale was driven by those SNPs exhibiting a
high MAF; low-MAF SNPs exhibited more homogeneous and

generally weaker LD at all distances (Fig. 2a, insert). Another
striking result was that the extent of LD across the genome was
substantially greater in the lake population (and the two stream
populations little divergent from the lake, that is, BOH and NID)
than in GRA. A similar result was obtained by exploring average
LD among marker pairs within non-overlapping chromosome
windows: across most of the genome, LD was much stronger in
the lake than in GRA (Fig. 2b), a result insensitive to the MAF
threshold (Supplementary Fig. 6). Finally, the similarity in the
local magnitude of linkage across the genome between the lake
and each stream population, expressed as the correlation of LD
between the chromosome windows, declined from the lake–BOH
(r¼ 0.17) to the lake–NID (r¼ 0.15) and the lake–GRA pairing
(r¼ 0.12) (all Po0.001).
In combination, the above analyses resolve the demographic

and selective history of stickleback in the Lake Constance basin.
First, the demography is inconsistent with the view that the
populations originate from a recent introduction of (presumably
few) founder individuals, and instead supports an earlier
postglacial and extensive natural colonization, presumably via
the Danube drainage23. Second, the demographic estimates of
effective population size and all metrics of genetic variation make
clear that the stream populations—and not the lake—represent
the main reservoirs of genetic variation. This result is unexpected
because Lake Constance is very large, and even conservative
estimates of the present census size of its stickleback population
range in the millions (personal communications from fishermen
and fisheries authorities), which is certainly much greater than
the size of any single stream population. (The streams
investigated here are small, with an approximate average depth
and width of 0.5 and 4metres) Third, we observe the strongest
genome-wide differentiation (FST) between a stream and the
adjoining lake population, and not in any of the comparisons
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Figure 1 | Geographic context, demography and phylogeny of the study populations. (a) Location of the study populations from the Lake Constance

basin, including the panmictic lake population and the three tributary stream populations (BOH, NID and GRA; the same colour coding and line types

identifying the populations are used throughout the paper). Numbers in parentheses indicate the water distance between each stream site and the lake.
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mutation rate of 6.8� 10�8. Numbers in parentheses are 95% bootstrap confidence intervals. (c) Phylogenetic relationship among the study populations
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between the stream populations separated by dozens of
kilometres of lake habitat. Fourth, the lake population proves to
be phylogenetically derived from stream fish. All these
observations can be brought in line by the biogeographically
plausible perspective that the Lake Constance basin was initially
colonized by ancestral stream-adapted stickleback. This
colonization gave rise to multiple stream-resident populations
isolated from each other by the adjoining, ecologically different
lake habitat—that is, an ecological vicariance scenario.
Subsequently, the lake fish started to adapt to their novel
habitat and thereby experienced strong genome-wide selection.
This selection should not only have reduced genetic variation in
the lake relative to the streams, but also have driven relatively
elevated LD within the lake, predictions clearly borne out by our
analyses.

A key implication of this ecological vicariance scenario
(visualized in Fig. 3d–f) is that the stream populations cannot
be considered independent products of parallel divergence from
an ancestral lake population. The stream fish are closer to the
ancestral state while the lake population is the most derived.
(Note that the phylogeny in Fig. 1c also rules out the possibility
that the lake population results from a secondary colonization; in
this case, the lake fish would branch basally from the stream
populations.) Variation in the magnitude of genetic and
phenotypic lake–stream divergence thus reflects different levels
of homogenizing gene flow (that is, introgressive hybridization)
from the large lake to the stream populations rather than variable
progress in repeated parallel divergence (Fig. 3a–c). Supporting
this view, typical lake phenotypes can sometimes be found at our
BOH stream sample site during the breeding season (personal
communication from fishermen). This highlights the potential for
extensive genetic exchange in the one lake–stream pairing also
exhibiting the highest migration rate estimates and the lowest
genetic differentiation.

The strong genome-wide footprint of selection in the lake
population, observed as relatively reduced genetic diversity
and elevated LD, also raises an important methodological
caveat. Marker-based approaches to demographic inference
generally assume that allele frequencies reflect selectively neutral
processes29–31. In our study, the reduction of genetic variation by
widespread selection in the lake clearly dissociates marker-based
estimates of effective population size from biologically plausible
census population sizes; the lake population, and to a lesser extent
also the two stream populations strongly influenced by gene
flow from the lake (BOH and NID), certainly have their estimated

effective population sizes biased downward relative to the GRA
stream population. This highlights the benefit of backing up
genetic inferences of demography with analyses of the selective
history and with qualitative information from the field.

Genomically localized characterization of selection. The above
genome-wide analyses indicated that the lake population has been
particularly strongly influenced by widespread selective sweeps.
To confirm this asymmetry in selection at a finer scale, we
inspected localized signatures of selection at two classes of loci
within the genome. The first, called FST extremes, included the
25 independent SNPs displaying the strongest lake–stream
differentiation across all three lake–stream FST scans combined
(79,770 total SNPs). None of these extreme SNPs showed fixed
allelic differences between the habitats, but nearly so: FST ranged
from 0.94 to 0.75—remarkably high values given the low baseline
differentiation (Fig. 4a; genome-wide FST profiles visualizing the
strikingly heterogeneous genomic divergence in all three
lake–stream comparisons are provided in Supplementary Fig. 7).
The FST extremes were found on 11 different chromosomes
and derived mostly from the lake–GRA comparison that also
produced the greatest baseline differentiation. Inspecting allele
frequencies at the FST extremes showed that the MAF was
generally lower in the lake population (14 out of the 25
SNPs were monomorphic) than in the corresponding stream
population (with only four monomorphic SNPs; binomial test for
similar occurrence of monomorphic SNPs: P¼ 0.007; Fig. 4a),
suggesting that selection has mainly occurred, or has been more
effective, in the lake. At the FST extremes, those alleles near
fixation in one of the stream populations were generally also
present in the other stream populations, with the frequency of
these stream alleles increasing from BOH to NID to GRA
(Fig. 4a). Finally, we found that haplotype decay around the
FST extremes was slower in the lake than in the focal stream
population (binomial P¼ 0.004; Fig. 4b).

The FST extremes represented genomic regions with
nearly complete lake–stream allele frequency divergence, hence
reflecting strong selection. To search for weaker or ongoing
selective sweeps, we delimited a second class of loci based on
haplotype structure32,33. Specifically, we used Rsb34 to compare
the rate of haplotype decay between the lake and the streams at
87,738 SNPs for each lake–stream comparison. Following the
convention that positions with an absolute Rsb value 44 provide
compelling evidence of selection (for example, ref. 35), we
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identified a total of 22 such ‘Rsb extremes’ on 11 chromosomes
across all three lake–stream comparisons (lake–stream Rsb
profiles are presented as Supplementary Fig. 8; in contrast to
the FST extremes, Rsb extremes emerged from all lake–stream
contrasts, Supplementary Fig. 9). Interestingly, examining
allele-specific haplotype structure revealed that within both
habitats, the lake alleles were surrounded by relatively longer
haplotype tracts than the alternative stream alleles (Fig. 4c). This
indicates that alleles selected positively in the lake, but
presumably negatively in the streams, are maintained at

substantial frequency in the streams by gene flow from the lake
population. Finally, our haplotype-based analysis also revealed
signatures of selective sweeps that have occurred in the stream
habitat (Fig. 4d, Supplementary Fig. 9).
Overall, our analyses of localized signatures of selection

provide strong support for the selective scenario indicated by
the genome-wide signatures: selection is wide-spread across the
genome and is asymmetric, with more extensive sweeps having
occurred in the lake than in the stream populations. Moreover,
lake–stream divergence in the Lake Constance basin has clearly
occurred in the face of gene flow. Consistent with the census size
(but not the estimated effective population size) of the Lake
Constance population being orders of magnitude larger than the
stream populations, introgression occurs primarily from the lake
into the streams. Nevertheless, many loci resist gene flow and
maintain substantial differentiation from the lake12,15–17, thereby
generating heterogeneous genomic divergence between the lake
and the stream populations36.

Signatures of selection around a known adaptation locus. Our
analyses of localized signatures of selection within the genome
focused on regions likely important to adaptation to the lake and
stream habitats, yet it is unknown what phenotypes the poly-
morphisms in these regions influence. For the extent of lateral
plating, however, it was possible to take an alternative route and
to investigate the molecular signatures produced by selection on a
trait known a priori to be important to lake–stream divergence.
We started at the phenotypic level by establishing that lake
individuals were mostly completely plated, whereas plating was
relatively reduced in all stream populations, most clearly so in
NID and GRA (lake–BOH permutation test for similar plating:
P¼ 0.420; lake–NID: P¼ 0.002; lake–GRA: Po0.001) (Fig. 5a).
This agrees with earlier work using different populations and/or
samples from the same basin21,23. Next, we performed a bulk
segregant analysis (BSA) by pooling all completely and all
low-plated stream fish into two separate groups. Genetic
differentiation between these groups across genome-wide SNPs
revealed a region on chromosome four (ChrIV) harbouring
markers with a very strong association between allelic state and
phenotype (Fig. 5b). The peak association (FST¼ 0.78) occurred
immediately downstream of the Ectodysplasin (Eda) gene. This
locus is known as major determinant of lateral plating37,38, with a
causative cis-regulatory polymorphism having been identified
1 kb downstream of the coding region39. No SNP outside this
region on ChrIV displayed FST40.38.

Combined, the phenotypic data and BSA indicate that
differentiation in plating among our study populations involved
adaptive lake–stream divergence at the Eda locus. We thus
predicted molecular footprints of selection at this locus. To
evaluate this prediction, we inspected all three lake–stream FST
scans for the magnitude of differentiation around Eda (Fig. 5c).
As expected from the plate morph distribution (Fig. 5a), the
strongest differentiation occurred in the lake–GRA comparison
(FST¼ 0.40), just 5.7 kb downstream of Eda. However, in this
particular comparison, the most divergent SNP near Eda ranked
only within the upper 3.5 percentile of the genome-wide FST
distribution (lake–BOH and lake–NID comparisons: 8.8 and 2.3
percentile). Similarly, the highest absolute Rsb value around Eda
(1.17) also emerged from the lake–GRA comparison but fell
only within the upper 23 percentile of the genome-wide Rsb
distribution. Hence, thousands of SNPs displayed a stronger
deviation from selective neutrality than the Eda locus.
Accordingly, subjecting the lake–GRA pairing to a standard
selection outlier detection analysis (BayeScan40) failed to
provide any evidence of selection at SNPs surrounding Eda
(Supplementary Fig. 10).

Parallel divergence

a d

b e
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Variable progress in parallel divergence Variable retention of ancestral state

f
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Figure 3 | Alternative demographic scenarios explaining repeated

population divergence. The alternatives are exemplified by multiple stream

populations divergent from the adjacent lake population in the Lake

Constance basin. In the ‘parallel divergence’ scenario (panels a–c),

a (stream-adapted) ancestor enters the lake (a) and becomes locally

adapted (b). Subsequently, multiple stream populations derive

independently via parallel evolution from the lake population (c), the latter

thus representing their most recent common ancestor. The magnitude of

lake–stream divergence in (c) (visualized as different grey shades) is

determined by a combination of the time since colonization of each stream,

the strength of local selection within each stream, and the extent of

homogenizing gene flow from the lake into each stream. In this scenario,

genetic variation available to local adaptation in the streams has been

filtered during the adaptation of the lake population. Predictions here

include greater genetic diversity in the lake than the stream populations,

that FST is highest in stream–stream as opposed to lake–stream

comparisons (due to founder events and relatively strong drift in these

small populations), and that LD is highest in the streams (due to selective

sweeps during adaptive divergence from the lake). In contrast, the

‘ecological vicariance’ scenario (panels d–f) involves the colonization of the

entire study region by an already stream-adapted ancestor (d), followed by

local adaptation in the lake (e). The magnitude of lake–stream divergence is

then primarily determined by the extent to which the stream populations

can maintain their genetic integrity in the face of gene flow from the large

lake population (f). Predictions here include greater genetic diversity in the

streams than in the lake, highest FST in lake–stream as opposed to stream–

stream comparisons, and strongest LD in the lake due to extensive

selection. All these latter predictions are confirmed by our analyses.
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More nuanced insights into the evolution of lateral plating
were obtained by analysing haplotype structure around the Eda
locus: in the streams, where both Eda alleles (still) occur at
substantial frequencies, haplotype decay was slower around the
allele associated with complete plating (Fig. 5d, top). Moreover,
the haplotype structure around the completely plated allele in the
streams matched the haplotype structure around this allele in the
lake (where the low-plated allele was too rare to characterize LD)
(Fig. 5d, bottom). Together, this indicates that selection for
complete plating in the lake has been more effective than
selection against plates in the streams, and again suggests the
maintenance of an unfavourable variant—and the associated
phenotype—in the streams by gene flow from the lake (see also
Fig. 4c). To fully appreciate the extent of LD driven by selection
on lateral plating, we again took a bulk segregant approach by
treating all completely and low-plated stream fish as separate
groups, and looked for distortions between these groups in the
rate of haplotype decay along ChrIV. This confirmed that
selection on the Eda variant driving complete plating has been
much more intense than selection on the low-plated variant, and
showed that the associated sweep has influenced haplotype
structure at the scale of megabases (Fig. 5e). Unexpectedly, this

scan also detected a second, similarly strong selective sweep in
completely plated stickleback centred at 11.4Mb. This latter
region also exhibited a clear signature of divergence in the
FST-based BSA (Fig. 5b, top): the differentiation peak in this
region (FST¼ 0.31) fell within the top 0.06 per cent of the
genome-wide distribution.
Together, the investigations at the Eda locus highlight our

limited ability to elucidate the genetic basis of adaptive
population divergence based on genetic markers when selective
sweeps are incomplete. Neither the magnitude of differentiation
(FST) nor haplotype structure (Rsb) among populations
allowed the major plate locus to emerge as an obvious selection
candidate—despite substantial evolution in the associated
ecologically important phenotype, and despite an extensive
selective sweep visible when comparing haplotype structure
among individuals grouped by phenotype. Given that stronger
signatures than those around Eda are numerous in our data sets,
we conclude that hundreds of genomic regions must be involved
in the adaptive divergence into lake and stream habitats. We
further propose that lateral plate evolution in the Lake Constance
basin is governed by at least one other locus besides Eda.
Inspecting the newly detected region on ChrIV indeed produces a
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strong candidate gene, Col23a1 (bp-position 11,443,468–
11,468,190; this specific segment contained the highest-FST SNP
observed across the new candidate region in the BSA). Like Eda,
this gene encodes a transmembrane collagen involved in the
development of the epidermis41. Since the new candidate region
and Eda occur in close proximity (c. 1.4Mb apart) in a low-
recombination chromosome region42, it is tempting to speculate
that the coupling of alleles in the two regions might facilitate
divergence in plating relative to the situation where each locus
segregates independently12,43.

Detection and characterization of inversions. Our genetic data
indicate that lake–stream divergence in the Lake Constance basin
has occurred in the face of gene flow. Genetic polymorphisms
predicted by theory to resist homogenizing gene flow and to
diverge between populations particularly well are chromosomal
inversions43–45. The reason is that different inversion types can
physically couple alleles promoting adaptation to different
habitats across multiple loci. The integrity of these allele
clusters is easily maintained, because a single crossover within
the inversion generally produces unbalanced meiotic products
in inversion heterozygotes (that is, heterokaryotypes), thus
effectively suppressing recombination46,47. Consequently, alter-
native inversion types can be considered single large-effect alleles.

To test this idea, we examined if lake–stream divergence in the
Lake Constance basin was promoted by chromosomal inversions.
For this, we scanned the genome for extended distortions in the
relative RAD sequence coverage between the lake and each
stream population (Supplementary Fig. 11). This produced three
strong candidates, located on ChrI (approximate length: 500 kb),
ChrXI (450 kb) and ChrXXI (2.1Mb) (Fig. 6a)—all coinciding
with inversions recently identified in a comparison of marine and
freshwater stickleback11. For two of these candidate inversions
(ChrI and ChrXI), we designed PCR primers across expected
inversion breakpoints based on our RAD sequences, and the
presence/absence of PCR products confirmed that these regions

were inversions (Supplementary Fig. 12). We then performed
several complementary analyses to characterize the three
inversion polymorphisms in our populations. Inspecting
inversion-specific allele frequencies revealed that the lake
population was consistently fixed for one inversion type,
whereas the stream populations were polymorphic at two
(NID) or all three inversions (BOH and GRA). However, only
at the ChrI inversion were lake–stream frequency shifts strong
enough to drive clearly elevated FST relative to baseline
differentiation (Fig. 6b). Consistent with only the stream
populations being polymorphic for the inversions, the allelic
diversity at polymorphic sites within the inversions tended to be
elevated in the stream populations relative to the lake (Fig. 6c).
However, the segregation of an inversion type at very low
frequency within a population sometimes generated an excess of
SNPs displaying reduced diversity relative to the genomic baseline
within that population (BOH and NID at the ChrXI and ChrXXI
inversions, Fig. 6c). The stream populations also exhibited a clear
excess of SNPs falling into the specific MAF class mirroring
the relative frequency of the minor inversion type (Fig. 6d).
SNPs within this MAF class—but not those from other MAF
classes—revealed extended blocks of nearly perfect LD caused by
the inversion polymorphisms in the streams (Fig. 6e).
For the ChrI inversion, we experimentally confirmed sup-

pressed recombination in inversion heterozygotes by inspecting
crossover frequencies in an F2 intercross derived from two
parental individuals homozygous for either inversion type38,42.
Not a single crossover occurred within the inversion, but
recombination immediately adjacent to the inversion was
frequent (Fig. 6f; see Supplementary Fig. 13 for a negative
control of this analysis). Nevertheless, for large inversions, theory
predicts that occasional double crossovers should allow some
genetic exchange between the inversion types, albeit not near the
inversion breakpoints47,48. We examined this prediction for the
ChrI inversion by comparing homozygotes for one inversion type
to homozygotes for the other type, considering individuals from
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all populations. We found that while these two groups were
fixed for different SNP alleles across most of the inversion,
differentiation decayed in a narrow region in the centre of the
inversion (Fig. 6g). This region was also relatively enriched for
polymorphisms shared between the two inversion types, but
contained relatively few SNPs unique to either of the two types
(Fig. 6g, bottom).

To learn more about the history and ecology of the three
inversion polymorphisms, we next established the phylogenetic
relationship among our study individuals using haplotype
information based on SNPs located within the inverted regions
only. For each inversion, this revealed the presence of two
haplotype clusters separated by a deep split (Fig. 7a). In line with
our findings from the allele frequencies at putative loci under
selection (Fig. 4a), Lake Constance fish consistently harboured
haplotypes from one of these clusters only, whereas all stream
populations contained haplotypes from both clusters. Repeating
the phylogenetic analysis by including SNPs extracted from 21
previously sequenced marine and freshwater stickleback sampled
across the species’ global distribution11 produced a striking result:
haplotypes representing the inversion type for which the Lake
Constance population was fixed clustered consistently or
were even identical with haplotypes recovered in marine
stickleback (Fig. 7b). Conversely, haplotypes representing the
inversion type found exclusively in the streams were closely
related to, or identical with, haplotypes from global freshwater
populations. To further explore how consistently these inversion
polymorphisms are recruited for lake–stream divergence, we
investigated SNP data for individuals sampled from Lake
Geneva and from one of its tributary streams, waters
documented to have been colonized by stickleback very recently
(nineteenth century) and independently from the Lake Constance
basin (see references in refs 21,22; genome-wide divergence in
this lake–stream pair is described in Supplementary Fig. 14). We

here again recovered all three inversion polymorphisms (Fig. 7c,
Supplementary Fig. 14). At the ChrI inversion, the direction of
lake–stream divergence was congruent between the Lake
Constance and Lake Geneva basins, whereas the ChrXI showed
no divergence in the latter. Surprisingly, the direction of lake–
stream divergence at the ChrXXI inversion was reversed between
the two basins.
Overall, a first insight emerging from our analyses of inversions

is that the relative frequencies of inversion types need to be taken
into account when scanning population genomic data for the
presence of such polymorphisms. Characteristic signatures like
extended blocks of SNPs displaying exceptional levels of
population differentiation or strong LD can become evident only
when restricting SNPs to the appropriate MAF class. Second, our
analysis of the ChrI inversion shows that genetic exchange
between inversion types can occur despite effective overall
recombination suppression, and that this exchange is biased
towards the inversion centre. To our knowledge, this has
previously been demonstrated only for much larger inversions
in Drosophila and Anopheles49,50. Our data from the laboratory
cross further suggest exceptionally high recombination rates in
the collinear segments immediately flanking the inversion
(Fig. 6f). This is unexpected—double crossover encompassing
a single inversion breakpoint should produce unbalanced
chromatids, hence one would predict relatively reduced
recombination in these regions47.

Finally, the distribution of inversion haplotypes in the Lake
Constance basin suggests divergent lake–stream selection on
these chromosomal rearrangements. Specifically, the occurrence
of shared haplotypes at both inversion types within multiple,
presently unconnected stream populations, and the consistent
presence of only a single inversion type in the lake, indicate
particularly effective sorting of ancestral standing variation in the
lake population. This reinforces our conclusion of asymmetric
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selection based on the genome-wide analyses and the inspection
of FST and Rsb extremes, and supports the view that inversion
polymorphisms are ecologically relevant44. (We note that we
could not find any indication of intrinsic incompatibility or
transmission disequilibrium between the inversion types, as their
frequencies did not deviate from Hardy–Weinberg expectation in
any inversion-population combination. Details not presented, but
see Fig. 7c.)

All inversion haplotypes occurring within Lake Constance
further coincide with haplotypes predominant in marine stickle-
back. This suggests the presence of shared selective features
between the ocean and large lakes—possibly mediated by a
pelagic lifestyle in both habitats (see ref. 51 for similar evidence
from trout)—driving genuine parallel evolution at a much larger
geographic scale than our focal lake–stream system. In any case,
these inversions are not (only) relevant to saltwater–freshwater
adaptation11. To further complicate functional conclusions, the
ChrXXI inversion has diverged in opposed directions between
lake and stream stickleback in the Lake Constance and the Lake
Geneva systems. This unexpected trend is unlikely to arise from
drift in the young Geneva system: among the 50 most extreme
genome-wide FST values in this exceptionally weakly divergent
lake–stream pair (genome-wide median FST¼ 0), 22 (44%) map
to the ChrXXI inversion, including the top value observed overall
(FST¼ 0.338) (Supplementary Fig. 14). This suggests intense
selection on this inversion polymorphism in the Geneva system.
However, given the great number of genes coupled by each
inversion (B24, 25 and 109 genes for the ChrI, ChrXI and
ChrXXI inversions), dissecting the precise target(s) of selection in
different ecological contexts will remain a serious challenge.
Finally, the detected sharing of haplotypes between our study
populations (derived from Atlantic ancestors) and worldwide
stickleback populations (including Pacific-derived fish), along
with the vast mutational differentiation observed between the
inversion types (Fig. 6g and Fig. 7b), indicates that all three
inversion polymorphisms must be ancient.

To summarize, a main goal of our study was to dissect the
demographic and selective history of adaptive diversification
in lake and stream stickleback populations within a single lake
basin. Combining demographic inference with broad scale and
localized analyses of genetic differentiation and diversity, linkage
disequilibrium and haplotype structure within the genome allows
us to reject a standard scenario of parallel divergence of multiple
stream populations from a shared ancestral lake population
(Fig. 3a–c). Instead, our results support a history of ecological
vicariance with gene flow. This latter scenario involves the
widespread colonization of the Lake Constance basin by a
stream-adapted ancestor, the subsequent emergence of a derived
lake–adapted population through intense selection of standing
variation and sustained gene flow across the lake–stream
boundaries (Fig. 3d–f). Consequently, different magnitudes
of overall divergence among the lake–stream pairings, and
heterogeneous lake–stream divergence across the genome, do
not mirror how strongly gene flow from the lake has constrained
the emergence of adaptation in the streams, but how effectively
introgression from the lake has eroded initial stream adaptation.
Our work thus underscores that investigations of patterns of
divergence consistent with parallel evolution should consider
an alternative—that is, the repeated retention of shared ancestral
variation, and should be rooted in detailed knowledge about the
demographic and selective history of populations14. Nevertheless,
nested within a vicariance background, our investigation of
inversion polymorphisms indicates the recycling of the same
genetic variants for adaptive divergence in seemingly different
ecological contexts, and hence real parallel evolution on a large
geographic scale.

Furthermore, our finding of highly heterogeneous genomic
divergence conflicts with the recent theoretical prediction that
adaptive divergence in the face of gene flow involving selection on
extensive standing variation should produce genome-wide
reproductive isolation and therefore limit heterogeneity in
genome divergence52. Given the numerous factors influencing
adaptive divergence in natural populations, we believe that it will
remain very difficult to predict how fast and to what extent
heterogeneous genomic divergence should build up. However,
our study clearly supports the notion that heterogeneity in
genome divergence is promoted by sustained gene flow
between young populations adapting to ecologically different
environments (for example, ref. 53). We challenge the claim that
such heterogeneity represents the divergence of populations after
reproductive isolation has become complete54.

Finally, our study adds molecular evidence to the idea that
chromosomal inversions promote adaptive divergence by acting
as loci of large effect44. However, lake–stream stickleback
divergence certainly also involves numerous loci not located
within chromosomal rearrangements, and selection on some of
these loci appears at least as strong as selection on the inversions.
Determining the importance of inversions relative to other
adaptive polymorphisms in evolutionary diversification remains
an important empirical issue.

Methods
Stickleback samples and marker generation. Specimens from the Lake
Constance population were sampled at two localities (Romanshorn, Switzerland,
N¼ 12, and Unteruhldingen, Germany, N¼ 13; for geographic details see ref. 23).
Genetic structure is absent at any scale within this large lake (Supplementary Fig. 1
and refs 21,23), so the two lake samples were combined to a single ‘lake’ pool
for all analyses. Stream stickleback were sampled from three geographically
well-separated tributaries connected through the lake only (Fig. 1a). The stream
sites correspond to the Bohlingen (BOH, N¼ 22), Nideraach (NID, N¼ 24) and
Grasbeuren (GRA, N¼ 24) localities in ref. 23 (for details on all specimens see
Supplementary Table 2). Natural dispersal barriers are absent in all streams, but
low man-made dams have likely restricted gene flow from the lake to the NID and
GRA sites over the last decades. All work in this study was approved by the
Veterinary Office of the Canton of Basel-Stadt (permit number: 2383).

DNA was extracted from stickleback fin and muscle tissue using either a
MagNA Pure LC278 extraction robot (Roche, Basel, Switzerland) with the tissue
Isolation Kit II, or the DNeasy Blood & Tissue Kit (Qiagen, Valencia, USA). After
an RNase treatment, the extracts were standardized to 18 ngml� 1 based on
multiple NanoDrop photospectrometer readings (Thermo Scientific, Wilmington,
USA), and used to generate RAD DNA libraries essentially following the protocol
described in ref. 5. The main modification was that we used the Nsi1 enzyme for
DNA restriction, exhibiting a 7.5 times higher recognition site density (that is,
c. 164,000 sites across the 460-Mb stickleback genome) compared with the
commonly used Sbf1 restriction enzyme. We prepared 12 total RAD libraries, each
combining individually 5mer-barcoded DNA from seven or eight of the 95 total
individuals. For final enrichment, we pooled six replicate PCRs per library to
reduce amplification bias.

Each library was single-end sequenced with 100 cycles on a separate Illumina
HighSeq2000 lane. Raw sequence reads were parsed by individual barcodes and
aligned to the improved assembly42 of the threespine stickleback reference
genome11 by using Novoalign v2.07.06 (http://www.novocraft.com/products/
novoalign; sequencing and alignment statistics are provided in Supplementary
Table 2). We enforced unique alignment, tolerating an equivalent of B8
high-quality mismatches or gaps (flags: -t236, -g40, -x15). Alignments were BAM-
converted in Samtools v0.1.11 (ref. 55). For individual consensus genotyping, we
first applied two effective filters to further exclude RAD loci located on repeated
elements. First, loci were excluded if they displayed a read coverage exceeding three
times the mean coverage across all loci within an individual. Second, if a RAD locus
was polymorphic, it was excluded if the two dominant haplotypes failed to account
for 470% of all reads.

Loci passing the above filters were subjected to consensus genotyping using
a refinement of our earlier haplotype-based algorithm5, which has been
demonstrated to perform highly accurately56. The main novelty was that instead of
building genotypes quality-aware base-by-base, we discarded sequence quality and
treated the entire read as the genotyping unit. A diploid genotype was called if the
read coverage contributed by the two dominant haplotypes, or the total coverage
for monomorphic loci (‘effective coverage’), was 15 or greater (median total
coverage across all RAD loci and individuals was 38.5� ). Because we observed in
our previous work that the distribution of the two haplotypes for heterozygous loci
was over-dispersed relative to the binomial expectation, we avoided distinguishing
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homozygote from heterozygote genotypes based on a theoretical distribution.
Instead, a locus was considered heterozygous if the ratio of the second most
frequent haplotype to the sum of the first and second was 40.25. Otherwise,
a locus was considered homozygous. If the effective coverage was below 15 but at
least two, we called a haploid genotype only, based on the dominant haplotype.
Loci with single-read coverage were discarded. Inspection of the haplotype
distribution at RAD loci showed that with our sequence data, this defensive
algorithm maximized both the detection of truly heterozygote loci and the
exclusion of polymorphisms reflecting technical artifacts (Supplementary Fig. 15).
To create the raw SNP matrix for downstream analyses, we pooled the consensus
genotypes across all populations and extracted a maximum of six SNPs per RAD
site, provided the haploid consensus genotype coverage across all individuals and
populations was at least 80� .

Demography and phylogenetics. To explore the evolutionary history of our four
study populations, we reconstructed their demography using the coalescent
simulator fastsimcoal2.1 (ref. 29). As input, we computed the observed joint site
frequency spectrum (SFS) for each of the six pairwise population combinations. For
this, we first sampled at random exactly 30 haploid consensus genotypes per RAD
locus from each population. Loci with sparser coverage and those harbouring more
than two polymorphisms with an identical frequency of the less common allele
(that is, the ‘minor allele frequency’ (MAF)) across the last 30 positions were
ignored. The latter excluded uninformative sequential pseudo-SNPs from RAD loci
harbouring a micro-indel polymorphism, and hence ensured that only true SNPs
were considered. Next, we counted the occurrence of the minor allele at each of the
89 positions per RAD locus in each population to populate the SFS. This
considered both monomorphic positions and bi-allelic SNPs. For the latter, the
minor allele was defined based on the pool of all four populations. If the MAF of a
SNP was exactly 0.5, both alleles were treated as minor and entered the SFS, but
with a weight of 0.5 only (personal recommendation by L. Excoffier). The resulting
joint SFS were based on 14.837 million base positions on 166,711 RAD loci.
We additionally computed all population-specific SFS with the same resolution.

Using the observed joint SFS, we then performed simulations with
fastsimcoal2.1 to estimate the most likely parameter values for an evolutionary
scenario in which the four focal populations split under gene flow from an
ancestral population colonizing the Lake Constance basin. We here assumed that
the populations in the different habitats established rapidly, justifying a single
splitting time. We estimated the age of the split, all effective population sizes
(including the ancestor), migration rates between the lake and each stream
population (but not among stream populations) and the SNP mutation rate. The
simulation was run in 80 replicates, each including 40 estimation loops with
100,000 coalescent simulations. To determine the best parameter estimates, we
selected the 10 most likely replicate runs (that is, those with the smallest difference
between the estimated and observed likelihood) and used this subset to calculate
the mean for all parameters, along with their 95% confidence intervals (95
percentiles from bootstrap distributions based on 100,000 resamples). Because the
lake population turned out to be particularly strongly influenced by selection, we
explored an analogous model in which just the two stream populations most
divergent from the lake (NID and GRA) split from an ancestor under gene flow.
The joint SFS, the simulation template files, the parameter estimation files, and the
command line settings used to run fastsimcoal2.1 are provided as Supplementary
Data 1–12.

To explore phylogenetic relationships among populations, we first reduced
individual genotypes to single-letter code and eliminated individuals with 475%
and SNPs with415% missing data. We then used the R (ref. 57) package phangorn
(ref. 58) to infer the most appropriate model of sequence evolution59

(‘GTRþGþ I’). (The R language was used for all analytical procedures in this
paper, unless noted otherwise.) Finally, we constructed unrooted maximum
likelihood trees to infer the phylogeny of all four populations (based on 51,188
SNPs) and of the two lake samples only (55,561 SNPs). These analyses used no
more than one SNP per RAD locus and required a MAF 40.2 across all
populations (MAF 40.05 resulted in very similar results). Node support was
assessed with 200 bootstrap replicates. The same data were also used to visualize
genetic structure based on a principal coordinates analysis as implemented in the R
package ape (ref. 60). Rooted phylogenies were constructed analogously by
incorporating genotype data from geographically distant outgroup stickleback
individuals, including the Pacific BEPA reference genome individual, at 14,429
SNPs ascertained in the populations from the Lake Constance basin.

Genetic diversity. Two analyses were conducted to compare genetic diversity
among the populations. For both, we only considered SNPs from our raw SNP
matrix that occurred alone on a given RAD locus (that is, data from RAD loci
harbouring multiple polymorphisms were ignored). Using only such ‘loner SNPs’
avoided potential bias in the estimation of genetic diversity due to pseudo-SNPs
caused by micro-indels. We further ignored those loner SNPs displaying a minor
allele counto2 across all individuals pooled, thereby avoiding sequencing artifacts.
We thus obtained a total of 62,332 genome-wide loner SNPs. As a first measure of
diversity, we determined for each population the proportion of the total loner SNPs
actually being polymorphic. To obtain a second diversity measure, we screened all
loner SNPs for the presence of three alleles across all individuals pooled (‘tri-allelic

loner SNPs’; the least frequent allele had to occur at least twice across all
individuals). On average, one out of 169 loner SNPs proved tri-allelic
(genome-wide total: 368). We then determined for each population the proportion
of the total tri-allelic loner SNPs actually displaying all three alleles.

Genome-wide LD. We quantified LD within each population using the squared
correlation coefficient (R2) between pairs of SNPs. From the raw SNP matrix,
we excluded SNPs that were tri-allelic or had 425% missing genotypes, and
individuals with 475% missing diploid genotype calls. The remaining SNPs were
filtered for two different MAF ranges (0.05–0.275 and 0.275–0.5). Only a single
randomly chosen SNP was retained if multiple SNPs passed these thresholds for a
pair of sister RAD loci (that is, the two RAD loci flanking the same restriction site).
The final number of SNPs was 16,088 and 18,787 for the former and latter MAF
range (marker number was adjusted to be equal for all populations). We then ran
PLINK (ref. 61) with the command line ’--ld-window 100 --ld-window-kb 100 --ld-
window-r2 0’ to calculate R2, enabling R2 values even below the default threshold of
0.2 to be reported. On average, this resulted in 142,249 R2 values for the 0.05–0.275
MAF range, and in 241,154 R2 values for the 0.275–0.5 MAF range. We then
assigned the R2 values to 1-kb bins according to the physical distance between the
two focal SNPs, and plotted the mean R2 for each bin from 1 to 100 kb. For the
analysis of genome-wide LD decay with the full MAF range (0.05–0.5), we pooled
the two MAF range specific PLINK outputs (one generated for the 0.05–0.275 and
one for the 0.275–0.5 MAF range) before binning. Setting a MAF range of
0.05–0.5 right at the filtering step of the raw SNP matrix produced very similar
results. To investigate more localized LD along chromosomes, we considered only
R2 values between SNPs42 kb buto50 kb apart (a range between 2 kb and 30 kb,
or considering pairwise R2 values only produced similar results supporting
identical conclusions). We determined the physical midpoints for all SNP pairs,
binned the respective R2 values in non-overlapping 200-kb windows along the
genome, and calculated average R2 for each window and population. Different
window sizes (that is, 50 or 100 kb) yielded similar results supporting identical
conclusions. To visualize localized differences in LD along the genome between the
lake and GRA populations, we subtracted for each window the GRA R2 value from
its lake counterpart, yielding a metric referred to as ’Delta R2’. We further
calculated the correlation of R2 values between the lake and each stream
population, using the above windows as data points. The magnitude of this
correlation was evaluated against its empirical random distribution generated
by permuting the R2 data over the windows 10,000 times.

FST-based identification of selected regions. Scans for genomic regions exhi-
biting strong differentiation were performed for each lake–stream combination. (We
decided to refer to particularly high differentiation values as ‘extremes’ rather than
‘outliers’, as the outlier terminology implies a distinct class of loci.) Consistent with
refs 5,12, FST was calculated based on haplotype diversity. We considered only
polymorphisms exhibiting a nucleotide coverage of at least 21� in each population.
To achieve adequate information to calculate genetic differentiation62, we
further ignored SNPs with a MAF o0.2 across the focal lake and stream population
pool. If multiple SNPs derived from the same RAD locus, we selected only the single
one yielding the highest FST value (selecting instead based on maximum MAF, or at
random, had no material influence on the results). Applying these stringent filters,
we obtained 55,476, 57,119 and 60,052 genome-wide FST values for the BOH–lake,
NID-lake and GRA-lake comparisons. To obtain regions suited for a detailed
characterization of signatures of selection, we chose the 25 autosomal SNPs
displaying the highest FST values across the three FST data sets combined (that is,
172,647 FST estimates from 79,770 unique SNPs). To ensure that each of these
differentiation extremes represented an independent genomic region, SNPs were
ignored if they were closer than 200 kb to a SNP already accepted as extreme.

Haplotype-based identification of selected regions. Our FST-based search for
evidence of positive selection was complemented with haplotype-based statistics
proving particularly powerful to detect incomplete selective sweeps32,33. However,
they rely on relatively high marker resolution and robust sequence coverage in
many individuals; requirements met by our study (see above and Supplementary
Table 2). From the raw SNP matrix, we first excluded SNPs that were tri-allelic, had
440% missing genotypes, or did not reach a MAF of 0.05. We further excluded
individuals with 475% missing diploid genotype calls after SNP-filtering.
fastPHASE (ref. 63) was then used to reconstruct haplotypes and missing genotypes
separately for each chromosome. We classified individuals according to their
population (-u option) and increased the number of iterations of the EM algorithm
to 50 (-C option; default is 25) and the number of sampled haplotypes
to 100 (-H option; default is 20). fastPHASE output files were then imported into
the R package rehh (ref. 64) to obtain the following haplotype-based statistics:
EHH65 (allele-specific ‘Extended Haplotype Homozygosity’), EHHS65 (population-
specific weighted average of EHH across both alleles), iHH66 (’integrated
Haplotype Homozygosity’), iHS66 (‘integrated Haplotype Score’) and Rsb34 (the
standardized ratio of integrated EHHS from two populations). iHS was calculated
separately for each of the four populations using the ’scan_hh’ and ’ihh2ihs’
commands (’minmaf’, the MAF threshold, was set to 0.05; ’-freqbin’ was set to 0,
but setting this option to 0.05 or 0.1 resulted in qualitatively similar results
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supporting identical conclusions). Rsb was calculated for each of the three possible
lake–stream comparisons by applying default parameters (’ies2rsb’ command). We
obtained a total of 87,738 Rsb values (corresponding to an average marker distance
of 4.8 kb), which were screened for extremes (that is, values below � 4 or above 4
(refs 34,35)). Haplotype decay around FST and Rsb extremes was calculated
and visualized using the ’calc_ehh’ and the ’calc_ehhs’ option at default.

Analyses specific to lateral plating. To screen the genome for loci influencing
the lateral plate phenotype, we performed a BSA by assigning 24 completely plated
stream individuals to one phenotypic group, and 24 low-plated stream individuals
to another group (lateral plate phenotyping followed ref. 23 and is presented in
Supplementary Table 2). This assignment considered all three stream populations
but ignored the (mostly completely plated) lake fish, thus avoiding confounding
signals of lake–stream divergence (that is, signals unrelated to plate phenotype).
Based on 61,822 SNPs, we then carried out a genome-wide FST scan by treating the
phenotypic groups as populations, but otherwise following all conventions
described above for the population-based FST calculations.

To examine if Eda was recognized as a selected locus in a standard FST scan, we
applied BayeScan40 to the SNP data set from the GRA-lake comparison (60,052
markers), that is, the population pair with the strongest differentiation at Eda.
BayeScan was run with default settings except that we used 300 as prior odds for
neutrality—according to the software manual an appropriate value for this data set.
However, a second analysis was performed with the default prior odds of 10, which
is expected to produce more liberal results.

For the Eda-specific analyses of haplotype structure, we created three pools: a
first pool with all completely plated stream individuals, a second pool
with all low-plated stream individuals (both N¼ 24), and a third pool
with all completely plated lake individuals (N¼ 19). We calculated and plotted
EHHS for each pool around the SNP exhibiting the highest FST value in the above
bulk segregant genome scan (bp-position 12,832,658 on chromosome IV). Finally,
we subtracted iHS values from the completely plated stream individuals from the
corresponding values in the low-plated stream individuals (’Delta iHS’) across
chromosome IV (N¼ 5,626; average marker distance¼ 6 kb). Delta iHS was
then averaged and plotted in non-overlapping 100-kb windows (different window
sizes led to identical conclusions).

Identification and characterization of inversions. Our approach to detecting
inversions was based on the expectation that the two inversion types (collinear and
inverted), representing two isolated populations, differ in their magnitude of
divergence from the reference genome. This should cause differential read alignment
success across inverted genomic regions. Inversions should thus be revealed by a
physically extended distortion of the relative RAD locus sequence coverage between
two populations if these populations differ in the frequency of the inversion types
(Supplementary Fig. 11). The same logic recently enabled the identification of
evolutionary strata on the stickleback sex chromosome42. We therefore screened all
372,884 RAD loci for population-specific sequence coverage, excluding those with a
total sequence coverage below 200 across all populations and those located in
genomic regions unanchored to chromosomes, thus obtaining 290,170 informative
loci. For each stream population, we calculated the RAD locus-specific stream to lake
coverage ratio. Next, we divided the chromosomes in non-overlapping 20-kb
windows (21,048 in total) and calculated the average coverage ratio among the RAD
loci for each one of them (using the coverage variance among RAD loci within
windows produced very similar results). The median number of RAD loci per
window was 13. Finally, we looked for distortions in the coverage ratio extending
over multiple adjacent windows, suggesting the presence of an inversion. We note
that this analysis based on read coverage was limited to the detection of relatively
large inversions exhibiting substantial sequence divergence.

To confirm that the above sequence coverage method reliably detects
inversions, we used RAD loci near an expected inversion breakpoint in two of
the three emerging candidate regions to design PCR primer pairs across the
breakpoint boundaries. These primer pairs were expected to yield a PCR product
only for the inversion type occurring in the streams. Ten to 13 individuals
representing a given inversion type were subjected to long-range PCR and
inspected for the presence or absence of amplification (further details are given in
Supplementary Fig. 12).

Next, we examined allelic diversity and minor allele frequencies (MAFs) around
the three detected inversions. For this, we screened each of the four population
samples separately for polymorphisms with 450% available genotype calls
(singletons were omitted to exclude technical artifacts) and calculated haplotype
diversity (that is, an analogue of heterozygosity ranging from 0 to 0.5) and the
MAF at each SNP. RAD loci were allowed to contribute a single SNP only, keeping
the one with the highest diversity when multiple SNPs occurred on the same locus
(drawing a SNP at random or averaging diversity estimates of multiple SNPs per
RAD locus yielded very similar results). Diversity was visualized using R’s
implementation of LOESS (locally weighted scatterplot smoothing; LOESS was
used for all smoothing in this paper). The MAF frequency distribution within the
inversions was plotted for the lake and for the stream population displaying the
strongest inversion frequency shift from the lake. For this population, we also
plotted the genome-wide MAF distribution.

To investigate LD patterns around the three inversions and to refine their
physical boundaries, we calculated LD as the correlation among unphased SNP
alleles using the R2 statistic implemented in mcld (ref. 67). Only bi-allelic SNPs
with o25% missing data and individuals witho50% missing diploid genotype calls
were considered. When multiple SNPs were located on sister RAD loci, only a
single randomly picked SNP was retained. For the calculation of LD, we applied
different MAF filters, including a 0.15 MAF range centred on the MAF peak
reflecting the relative frequency of the two variants at each inversion (see MAF
analysis above). Patterns of LD around the inversions were visualized using the
LDheatmap (ref. 68) R package for the stream population displaying the strongest
inversion frequency shift from the lake (analysing the other stream populations
yielded very similar estimates of the inversion breakpoint positions).

To construct haplotype genealogies for the inversions using individuals from
the Lake Constance basin only, we first extracted the SNPs in each inversion, (SNPs
closer than 20 kb to the inversion breakpoints identified in the LD analysis above
were not considered). Next, we excluded SNPs with a MAFo0.05 and with 425%
missing genotypes. Different MAF ranges (that is, 0.1–0.5 or 0.2–0.4) led to
identical conclusions. Individuals with 475% missing diploid genotypes after
removing low-quality SNPs were excluded. When multiple SNPs per sister RAD
loci passed the above filters, we only retained the one with the highest MAF
(choosing a random SNP yielded similar results). For the largest inversion (located
on ChrXXI), we randomly subsampled the resulting SNP panel to a total of 173
SNPs to reduce complexity. Haplotype reconstruction used PHASE 2.1 (ref. 69),
optimized by specifying the physical position of all polymorphisms and increasing
the number of search iterations to 499. Five independent runs were performed with
different seeds to confirm consistency among the results. Haplotype alignments
were used to infer phylogenetic trees with RAxML v.8.0.0 (ref. 70), using the
GTRCAT model of sequence evolution with rate heterogeneity among sites. Based
on sequence alignments and phylogenetic trees, we constructed and visualized
haplotype genealogies with Fitchi (Matschiner, M.: Fitchi: Haplotype genealogy
graphs based on Fitch distances. http://www.evoinformatics.eu/fitchi, 2015), using
a minimal node size of two haplotypes for display (-n option). To construct
haplotype networks including individuals from across the stickleback’s geographic
range, we randomly selected 20 SNPs from the Lake Constance-specific haplotype
genealogies, and inferred the genotypes at these SNPs for a total of 11 freshwater
and 10 marine stickleback specimens11 based on the ENSEMBL and the UCSC
Stickleback Genome Browsers. The resulting SNPs (12, 13 and 14 for the ChrI,
ChrXI and ChrXXI inversions) were used for haplotype network construction and
visualization as described above.

The Lake Constance-specific haplotype networks allowed us to unambiguously
infer diploid genotypes at all three inversions for our main study individuals.
Of these individuals, 33 had already been RAD sequenced previously using the Sbf1
restriction enzyme62, allowing us to determine SNPs on Sbf1 RAD loci diagnostic
for the two variants at each inversion. At these diagnostic SNPs, we then
determined the diploid genotypes in 27 lake and 27 stream stickleback from the
Lake Geneva basin21. For the stream individuals, Sbf1 RAD data were already
available38. For the Lake Geneva individuals, however, RAD sequence data were
generated specifically for this study, following the protocol described in ref. 5.
The SNP data from all individuals from the Lake Geneva basin were then used to
search for the presence of inversion polymorphisms in this lake–stream system,
to determine the frequencies of the inversion types in each population, and
additionally to conduct an FST-based lake–stream genome scan.

To explore the short-term recombination rate at the inversions, we inspected
genotype data from an F2 laboratory intercross42. This revealed that the two
parental stickleback individuals used to initiate the cross (a male from Lake
Constance and a female from a tributary stream of Lake Geneva) were fixed for
different inversion types at the ChrI inversion (but not at the two other inversions).
We therefore counted crossovers between SNPs across the ChrI inversion region in
all 282 F2 individuals. As a negative control, we did the same around the ChrXI
and ChrXXI inversions. To address the theoretical prediction that large inversions
should maintain some genetic exchange due to double crossovers (gene conversion
is considered less important)47, we assigned stream individuals from the Lake
Constance basin homozygous for one or the other inversion type at the ChrI
inversion to separate groups (N¼ 15 and 20 for the stream and lake inversion type,
defined according to Fig. 7c). These groups were then used to perform an FST-based
differentiation scan. Additionally, using the same groups, we determined the
number and location of loner SNPs specific to each inversion type, or shared
between the types, within and around the ChrI inversion. Analogous analyses for
the ChrXI and ChrXXI inversions were not possible because here individuals
homozygous for the stream inversion type were too rare (Fig. 7c).
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The recombination rate around the chromosomal inversion in Fig. 6f of this Article was inadvertently omitted during the production
process. The correct version of Fig. 6f appears below.
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SUPPLEMENTARY	
  FIGURES	
  

Supplementary	
  Figure	
  1	
  

	
  

Supplementary	
   Figure	
   1.	
   Phylogenetic	
   analysis	
   restricted	
   to	
   the	
   two	
   stickleback	
   samples	
  

from	
  Lake	
   Constance.	
  The	
   unrooted	
  maximum	
   likelihood	
   tree	
   is	
   based	
   on	
   55,561	
   genome-­‐wide	
  

SNPs	
   in	
   fish	
   sampled	
   from	
   two	
   lake	
   sites	
   approximately	
   20	
   km	
   apart.	
   The	
   sites	
   are	
  Romanshorn	
  

(ROM),	
   Switzerland,	
  western	
   lake	
   shore,	
   and	
  Unteruhldingen	
   (UNT),	
   Germany,	
   eastern	
   shore	
   (for	
  

geographic	
  details	
  see	
  ref.	
  1).	
  Consistent	
  with	
  a	
  genome-­‐wide	
  median	
  FST	
  of	
  zero	
  between	
  ROM	
  and	
  

UNT,	
  the	
  phylogeny	
  reveals	
  the	
  absence	
  of	
  genetic	
  structure	
  between	
  the	
  two	
  sites,	
  indicating	
  that	
  

Lake	
  Constance	
  is	
  inhabited	
  by	
  a	
  single	
  panmictic	
  stickleback	
  population.	
  The	
  same	
  conclusion	
  was	
  

drawn	
   earlier	
   based	
   on	
   microsatellite	
   markers	
   and	
   stickleback	
   samples	
   from	
   four	
   different	
   lake	
  

sites1.



190

2	
  

	
  

Supplementary	
  Figure	
  2	
  

	
  	
  	
  

	
  	
  	
  	
  	
  	
  

Supplementary	
  Figure	
  2.	
  Demographic	
  analysis	
  based	
  on	
  a	
  reduced	
  model	
  including	
  the	
  GRA	
  

and	
  NID	
  stream	
  populations	
  only.	
  Plotting	
  conventions	
  are	
  as	
  in	
  the	
  full	
  model	
  including	
  all	
  study	
  

populations	
  (Fig.	
  1b).	
  The	
  GRA	
  and	
  NID	
  populations	
  are	
  the	
  genetically	
  most	
  variable	
  of	
  our	
  study	
  

populations	
  (see	
  main	
  text).	
  In	
  the	
  reduced	
  model,	
  the	
  split	
  between	
  GRA	
  and	
  NID	
  from	
  a	
  common	
  

ancestor	
   is	
   estimated	
   to	
   have	
   occurred	
   more	
   recently	
   compared	
   to	
   the	
   full	
   model,	
   although	
   the	
  

confidence	
  intervals	
  overlap	
  widely	
  between	
  the	
  models.	
  A	
  potential	
  reason	
  for	
  the	
  deeper	
  splitting	
  

time	
  in	
  the	
  full	
  model	
  is	
  upward	
  bias	
  due	
  to	
  extensive	
  genome-­‐wide	
  selective	
  sweeps	
  experienced	
  

by	
   the	
   lake	
   population.	
   We	
   thus	
   consider	
   the	
   splitting	
   time	
   estimate	
   from	
   the	
   reduced	
   model	
   a	
  

better	
   approximation	
   of	
   the	
   true	
   time	
   since	
   stickleback	
   colonized	
   the	
   Lake	
   Constance	
   basin.	
  

However,	
   both	
  models	
   support	
   qualitatively	
   similar	
   conclusions	
   about	
   the	
   colonization	
  history	
   of	
  

the	
  Lake	
  Constance	
  basin.	
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Supplementary	
  Figure	
  3	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  

Supplementary	
  Figure	
  3.	
  Observed	
  site	
  frequency	
  spectra	
  (SFS)	
  of	
  the	
  four	
  study	
  populations.	
  

The	
  X-­‐axis	
  indicates	
  the	
  occurrence	
  of	
  the	
  minor	
  allele	
  among	
  30	
  randomly	
  sampled	
  nucleotides	
  at	
  a	
  

given	
  genome	
  position	
   (the	
  minor	
  allele	
   frequency	
   (MAF)	
  would	
   thus	
  be	
  obtained	
  by	
  dividing	
   the	
  

counts	
  by	
  30).	
  The	
  Y-­‐axis	
  gives	
  the	
  number	
  of	
  sites	
  falling	
  into	
  each	
  minor	
  allele	
  count	
  class	
  in	
  each	
  

population.	
   Like	
   the	
   joint	
   SFS	
   used	
   for	
   demographic	
   inference,	
   these	
   population-­‐specific	
   SFS	
   are	
  

based	
   on	
   14.8	
   million	
   nucleotide	
   positions,	
   although	
   for	
   the	
   ease	
   of	
   presentation,	
   only	
   the	
  

polymorphic	
  sites	
  (i.e.,	
  minor	
  allele	
  count	
  >	
  0)	
  are	
  shown.	
  Note	
  the	
  low	
  number	
  of	
  polymorphisms	
  

across	
  most	
  minor	
   allele	
   count	
   classes	
   in	
   the	
   lake	
   population	
   relative	
   to	
   the	
   stream	
   populations	
  

(especially	
  GRA).	
  Accordingly,	
  the	
  lake	
  population	
  exhibited	
  the	
  highest	
  proportion	
  of	
  monomorphic	
  

sites	
  (minor	
  allele	
  count	
  =	
  0);	
  in	
  millions,	
  lake:	
  14.770;	
  BOH:	
  14.765;	
  NID:	
  14.764;	
  GRA:	
  14.745.	
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Supplementary	
  Figure	
  4	
  

	
  

	
  
	
  

Supplementary	
   Figure	
   4.	
   Phylogenetic	
   relationships	
   among	
   the	
   Lake	
   Constance	
   study	
  

populations	
   rooted	
   using	
   different	
   outgroups.	
   To	
   verify	
   the	
   robustness	
   of	
   the	
   rooted	
   ML	
  

phylogeny	
  by	
  using	
  the	
  reference	
  genome	
  individual	
  (a	
  freshwater	
  individual	
  from	
  the	
  Pacific,	
  see	
  

Fig.	
  1c)	
  as	
  an	
  outgroup,	
  we	
  generated	
  additional	
  trees	
  using	
  several	
  other	
  outgroups,	
  including	
  (a)	
  a	
  

marine	
  Pacific	
  (sampling	
  population:	
  ‘Rabbit	
  Slough’,	
  Alaska),	
  (b)	
  an	
  freshwater	
  Atlantic	
  (sampling	
  

population:	
   ‘Norway	
   Stream’,	
   Norway),	
   and	
   (c)	
   a	
  marine	
   Atlantic	
   (sampling	
   population:	
   ‘Gjögur’,	
  

Iceland)	
  stickleback	
  individual.	
  Genotypes	
  for	
  these	
  individuals	
  were	
  retrieved	
  from	
  the	
  ‘Stickleback	
  

Genome	
   Browser’	
   (http://sticklebrowser.stanford.edu/)2.	
   These	
   analyses	
   consistently	
   resulted	
   in	
  

very	
  similar	
  tree	
  topologies	
  supporting	
  identical	
  conclusions.	
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Supplementary	
  Figure	
  5	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  

	
  

Supplementary	
   Figure	
   5.	
   Phylogenetic	
   and	
   principal	
   coordinate	
   analysis	
   of	
   the	
   four	
  

stickleback	
  populations	
  from	
  the	
  Lake	
  Constance	
  basin.	
  The	
  unrooted	
  maximum	
  likelihood	
  tree	
  

(based	
  on	
  51,188	
  SNPs;	
  bootstrap	
  support	
  in	
  percent	
  is	
  given	
  for	
  the	
  key	
  nodes)	
  reveals	
  reciprocal	
  

monophyly	
  of	
   the	
   four	
  populations.	
  Both	
   the	
   tree	
  and	
  the	
  principal	
  coordinate	
  ordination	
  (insert)	
  

further	
  show	
  the	
  close	
  relatedness	
  of	
   the	
   lake	
  and	
   the	
  BOH	
  population,	
  and	
   that	
  genetic	
  diversity	
  

increases	
  from	
  the	
  lake	
  population	
  to	
  the	
  BOH,	
  NID,	
  and	
  GRA	
  stream	
  populations.	
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Supplementary	
  Figure	
  6	
  

	
  

	
  

	
  

Supplementary	
  Figure	
  6.	
  Influence	
  of	
  using	
  SNPs	
  from	
  different	
  MAF	
  classes	
  on	
  the	
  difference	
  

in	
  LD	
  between	
  the	
  lake	
  and	
  the	
  GRA	
  population.	
  Shown	
  is	
  Delta	
  R2	
  (see	
  Fig.	
  2b)	
  based	
  on	
  low-­‐

MAF	
  (top)	
  and	
  high-­‐MAF	
  (bottom)	
  SNPs.	
  The	
  MAF	
  classes	
  are	
  separated	
  using	
  the	
  same	
  thresholds	
  

as	
  used	
  in	
  the	
   insert	
  of	
  Fig.	
  2a.	
   Irrespective	
  of	
  the	
  MAF	
  class,	
  LD	
  is	
  higher	
   in	
  the	
   lake	
  than	
  in	
  GRA	
  

along	
  most	
  of	
  the	
  genome.	
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Supplementary	
  Figure	
  7	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  

	
  

Supplementary	
  Figure	
  7.	
  Genome-­wide	
  divergence	
  (FST)	
  for	
  all	
  lake-­stream	
  comparisons.	
  The	
  

black	
  vertical	
   lines	
   represent	
   the	
   raw	
  FST	
  values,	
   the	
   red	
  profiles	
   show	
   these	
  values	
   smoothed	
  by	
  

LOESS,	
  and	
  the	
  background	
  shading	
  separates	
  the	
  21	
  chromosomes.	
  Note	
  the	
   increase	
   in	
  baseline	
  

differentiation	
  from	
  BOH	
  (median	
  FST	
  =	
  0.005;	
  55,476	
  SNPs)	
  to	
  NID	
  (0.013;	
  57,119	
  SNPs)	
  and	
  GRA	
  

(0.061;	
  60,052	
  SNPs).	
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Supplementary	
  Figure	
  8	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  

Supplementary	
   Figure	
   8.	
   Difference	
   in	
   haplotype	
   decay	
   around	
   genome-­wide	
   SNPs,	
   as	
  

captured	
  by	
  Rsb,	
   for	
  each	
   lake-­stream	
  population	
  pairing.	
  The	
  background	
  shading	
  separates	
  

the	
  21	
  chromosomes.	
  A	
  total	
  of	
  87,738	
  SNPs	
  were	
  used	
  in	
  all	
  lake-­‐stream	
  comparisons.	
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Supplementary	
  Figure	
  9	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  
	
  
Supplementary	
  Figure	
  9.	
  Allele	
  frequencies	
  within	
  each	
  population	
  at	
  the	
  top	
  22	
  lake-­stream	
  

Rsb	
  extremes.	
  At	
  each	
  Rsb	
  extreme	
  (columns),	
  the	
  stream	
  population	
  producing	
  an	
  absolute	
  Rsb	
  >	
  

4	
  in	
  comparison	
  to	
  the	
  lake	
  is	
  framed	
  in	
  red.	
  On	
  the	
  bottom,	
  the	
  genomic	
  position	
  and	
  the	
  highest	
  

Rsb	
   value	
   observed	
   across	
   all	
   lake-­‐stream	
   comparisons	
   are	
   given	
   for	
   each	
  Rsb	
   extreme.	
  Negative	
  

Rsb	
   extremes	
   generally	
   display	
   relatively	
   balanced	
   polymorphism	
   in	
   the	
   lake,	
   but	
   strong	
   bias	
  

toward	
   a	
   specific	
   allele	
   in	
   the	
   stream(s),	
   hence	
   suggesting	
   stream-­‐specific	
   selective	
   sweeps.	
   By	
  

contrast,	
  positive	
  Rsb	
  extremes	
  tend	
  to	
  exhibit	
  relatively	
  balanced	
  polymorphism	
  in	
  the	
  streams	
  but	
  

are	
  near	
  fixation	
  for	
  a	
  specific	
  allele	
  in	
  the	
  lake,	
  thus	
  indicating	
  lake-­‐specific	
  selective	
  sweeps.	
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Supplementary	
  Figure	
  10	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  

Supplementary	
  Figure	
  10.	
  BayeScan	
  divergence	
  outlier	
   analysis	
   in	
   the	
  Lake	
  Constance	
  and	
  

GRA	
   stream	
  population	
  pair.	
   Analysis	
   to	
   explore	
   if	
  markers	
   near	
   the	
  Ectodysplasin	
   (Eda)	
   gene,	
  

known	
   to	
   be	
   under	
   divergent	
   selection	
   between	
   these	
   populations,	
   are	
   recognized	
   as	
   selection	
  

outliers	
  by	
  a	
  popular	
  outlier	
  detection	
  program	
  not	
  requiring	
  a	
  reference	
  genome.	
  The	
  analysis	
  used	
  

60,052	
   SNPs,	
   and	
  was	
   run	
   both	
  with	
   default	
   settings	
   (a),	
   and	
  with	
   the	
   prior	
   odds	
   for	
   neutrality	
  

increased	
  to	
  300	
  (b)	
  (default	
  is	
  10).	
  According	
  to	
  the	
  software	
  manual,	
  the	
  latter	
  setting	
  should	
  be	
  

more	
   appropriate	
   for	
   our	
   large	
   marker	
   data	
   set,	
   while	
   the	
   default	
   is	
   perhaps	
   too	
   liberal.	
   The	
  

graphics	
  display	
  the	
  results	
  of	
  these	
  two	
  outlier	
  scans,	
  with	
  the	
  five	
  markers	
  near	
  Eda	
  exhibiting	
  the	
  

highest	
  FST	
   in	
  our	
  differentiation	
  scan	
  printed	
   in	
  red	
  (see	
   top	
  panel	
   in	
  Fig.	
  5c;	
  positions	
  on	
  ChrIV:	
  

12,815,791;	
  12,818,350;	
  12,818,237;	
  12,820,744;	
  12,822,878).	
  SNPs	
  on	
  the	
  right	
  of	
  the	
  vertical	
  line	
  

(244	
  and	
  4	
  in	
  the	
  two	
  scans)	
  qualify	
  as	
  differentiation	
  outliers	
  at	
  a	
  false	
  discovery	
  rate	
  of	
  0.05.	
  None	
  

of	
  the	
  markers	
  near	
  Eda	
  are	
  identified	
  as	
  outliers	
  by	
  BayeScan.	
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Supplementary	
  Figure	
  11	
  

	
  

 
 

Supplementary	
  Figure	
  11.	
  Strategy	
  for	
  the	
  detection	
  of	
  inversion	
  polymorphisms	
  using	
  RAD	
  

locus	
   coverage.	
   (a)	
   An	
   individual	
   harboring	
   the	
   inverted	
   inversion	
   type	
   ('Inv';	
   dark	
   gray	
  

background	
   shading)	
   relative	
   to	
   the	
   reference	
   sequence	
   ('Ref';	
   light	
   gray	
   background)	
   (for	
  

simplicity,	
   individuals	
   are	
   haploid	
   in	
   this	
   figure).	
   The	
   small	
   squares	
   represent	
   the	
   two	
   RAD	
   loci	
  

flanking	
  restriction	
  enzyme	
  cutting	
  sites	
   to	
  either	
  side	
  (sister	
  RAD	
  loci).	
   If	
   the	
   ‘Inv’	
   inversion	
  type	
  

shows	
  substantial	
  divergence	
  from	
  the	
  reference,	
   individuals	
  carrying	
  this	
  type	
  will	
   lack	
  sequence	
  

coverage	
  at	
  many	
  RAD	
   loci	
  when	
  aligned	
   to	
   the	
  reference	
   (RAD	
   loci	
   too	
  strongly	
  differentiated	
   to	
  

align	
  to	
  the	
  reference	
  are	
  shown	
  as	
  yellow	
  squares).	
  The	
  bottom	
  panel	
  shows	
  the	
  resulting	
  pattern	
  

of	
   sequence	
   coverage	
   across	
   RAD	
   loci	
   for	
   this	
   inversion	
   type.	
   (b)	
   An	
   individual	
   carrying	
   the	
  

inversion	
  type	
  collinear	
  (‘Col’)	
  to	
  the	
  reference	
  (top),	
  and	
  the	
  resulting	
  sequence	
  coverage	
  along	
  this	
  

chromosomal	
  segment	
  (bottom).	
  

If	
   the	
   different	
   inversion	
   types	
   segregate	
   at	
   different	
   frequencies	
  within	
   two	
   populations,	
  

mean	
  sequence	
  coverage	
  across	
  chromosome	
  windows	
  within	
  the	
  inversion	
  will	
  be	
  biased	
  toward	
  

the	
  population	
  in	
  which	
  the	
  ‘Inv’	
  type	
  is	
  less	
  common,	
  relative	
  to	
  chromosome	
  segments	
  outside	
  the	
  

inversion.	
   An	
   analogous	
   signature	
   emerges	
   when	
   comparing	
   the	
   variance	
   in	
   sequence	
   coverage	
  

across	
  chromosome	
  windows	
  within	
  and	
  outside	
  inversions	
  between	
  populations.	
  Both	
  signals,	
  i.e.,	
  

bias	
  in	
  the	
  ratio	
  of	
  mean	
  sequence	
  coverage	
  and	
  coverage	
  variance	
  between	
  populations	
  along	
  the	
  

genome,	
  were	
  exploited	
  in	
  our	
  study	
  and	
  both	
  consistently	
  detected	
  the	
  three	
  inversions,	
  although	
  

only	
   the	
   former	
   is	
   presented	
   (Fig.	
   6a).	
   (Note	
   that	
   distortions	
   in	
   mean	
   coverage	
   and	
   coverage	
  

variance	
  along	
  chromosomes	
  can	
  also	
  be	
  used	
  to	
  detect	
  inversions	
  in	
  a	
  single	
  population,	
  although	
  

the	
  comparison	
  of	
  populations	
  provides	
  additional	
  information	
  on	
  shifts	
  in	
  inversion	
  frequencies.)	
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   The	
  prerequisites	
  for	
  the	
  above	
  inversion	
  detection	
  approaches	
  are	
  that	
  the	
  inverted	
  

and	
   collinear	
   segments	
   display	
   substantial	
   sequence	
   divergence	
   (recent	
   inversions	
   cannot	
   be	
  

detected),	
  and	
  that	
  the	
  density	
  of	
  restriction	
  sites	
  is	
  high	
  enough	
  to	
  allow	
  calculating	
  the	
  bias	
  in	
  the	
  

ratio	
  of	
  mean	
  sequence	
  coverage	
  or	
  the	
  coverage	
  variance	
  between	
  populations	
  in	
  relatively	
  small	
  

chromosome	
  windows	
  while	
  still	
  integrating	
  coverage	
  data	
  from	
  a	
  reasonably	
  large	
  number	
  of	
  RAD	
  

loci	
   (a	
   low-­‐frequency	
   restriction	
   enzyme	
   digest	
   will	
   allow	
   detecting	
   large	
   inversions	
   only).	
  

Moreover,	
  comparing	
  coverage	
  statistics	
  between	
  populations	
  will	
  detect	
  inversion	
  only	
  when	
  these	
  

populations	
  have	
  diverged	
  sufficiently	
  in	
  the	
  frequency	
  of	
  the	
  inversion	
  types.	
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Supplementary	
  Figure	
  12	
  

Supplementary	
   Figure	
   12.	
   Confirming	
   inversions	
   by	
   inversion	
   type-­specific	
   PCR	
   across	
  

expected	
   breakpoints.	
   For	
   the	
   putative	
   ChrI	
   and	
   ChrXI	
   inversions	
   detected	
   based	
   on	
   RAD	
  

sequence	
  coverage,	
  we	
  used	
  RAD	
  loci	
  flanking	
  one	
  inversion	
  breakpoint	
  to	
  design	
  PCR	
  primer	
  pairs	
  

expected	
  to	
  yield	
  a	
  PCR	
  product	
  for	
  the	
  inversion	
  type	
  specific	
  to	
  the	
  streams,	
  but	
  no	
  product	
  for	
  the	
  

inversion	
   type	
   fixed	
   in	
   the	
   lake	
   (see	
   Fig.	
   7c).	
   The	
   underlying	
   RAD	
   loci	
   were	
   required	
   to	
   display	
  

robust	
  alignment	
  to	
  the	
  reference	
  genome	
  in	
  all	
  populations,	
  thus	
  ensuring	
  that	
  any	
  absence	
  of	
  PCR	
  

amplification	
  was	
  due	
  to	
  the	
  physical	
  relocation	
  of	
  a	
  primer	
  site,	
  and	
  not	
   to	
  the	
  degeneration	
  of	
  a	
  

primer	
  site.	
  For	
  the	
  ChrI	
  inversion,	
  we	
  assessed	
  13	
  individuals	
  homozygous	
  for	
  the	
  stream	
  type,	
  of	
  

which	
   nine	
   (70%)	
   amplified	
   successfully,	
   and	
   ten	
   individuals	
   homozygous	
   for	
   the	
   lake	
   type,	
   of	
  

which	
  none	
  amplified	
   (five	
   individuals	
  of	
   each	
  group	
  are	
   shown	
  on	
   the	
  gel	
   image).	
   For	
   the	
  ChrXI	
  

inversion,	
  we	
   assessed	
   five	
   individuals	
   homozygous	
   for	
   the	
   stream	
   type	
   and	
   seven	
   heterozygous	
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individuals,	
  all	
  of	
  which	
  amplified	
  successfully.	
  By	
  contrast,	
  none	
  of	
  the	
  ten	
  individuals	
  homozygous	
  

for	
  the	
  lake	
  type	
  amplified	
  (six	
  individuals	
  of	
  each	
  group	
  are	
  visualized;	
  the	
  individuals	
  5	
  and	
  6	
  in	
  

the	
   stream	
   inversion	
   group	
   are	
   heterozygous).	
   These	
   analyses	
   thus	
   confirm	
   that	
   the	
   candidate	
  

regions	
  are	
  truly	
  inversions.	
  Note	
  that	
  the	
  ChrI	
  (and	
  also	
  the	
  ChrXXI)	
  inversion	
  has	
  been	
  confirmed	
  

independently	
   through	
   PCR,	
   using	
   different	
   primer	
   pairs	
   than	
   in	
   the	
   present	
   study2.	
   The	
   ChrXI	
  

inversion,	
  however,	
  has	
  not	
  previously	
  been	
  verified	
  by	
  PCR.	
  

As	
  representatives	
  of	
  both	
  inversion	
  types,	
  our	
  PCRs	
  considered	
  primarily	
  individuals	
  from	
  

the	
   stream	
   populations	
   in	
   the	
   Lake	
   Constance	
   basin	
   (these	
   populations	
   are	
   polymorphic	
   for	
   the	
  

inversions;	
  Fig.	
  7).	
  A	
  few	
  individuals	
  from	
  the	
  Lake	
  Geneva	
  basin	
  (Fig.	
  7c),	
  however,	
  were	
  included	
  

in	
  all	
   reactions,	
  which	
  showed	
   that	
  geographic	
  origin	
  did	
  not	
   influence	
  amplification	
  success.	
  The	
  

primer	
   combinations	
   used	
   for	
   this	
   analysis	
  were	
  5'-­‐	
  GCTGGTCAATATGTCCACTC-­‐'3	
   (forward)	
   and	
  

5'-­‐	
  GTTACAATATGCCAATTACATGTC-­‐'3	
  (reverse)	
  for	
  ChrI	
  (approximate	
  expected	
  product	
  size:	
  6.2	
  

kb),	
   and	
   5'-­‐GGAGAAGCCTCAACCTATACG-­‐'3	
   (forward)	
   and	
   5'-­‐GGTGAGCAACTTGAACCAAG-­‐'3	
  

(reverse)	
  for	
  ChrXI	
  (6.8	
  kb).	
  Long-­‐range	
  PCRs	
  were	
  performed	
  with	
  37	
  cycles	
  using	
  Phusion	
  High-­‐

Fidelity	
  PCR	
  chemistry	
  (New	
  England	
  BioLabs),	
  following	
  the	
  manufacturer’s	
  protocol.	
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Supplementary	
  Figure	
  13.	
  Recombination	
  rate	
  around	
  the	
  ChrXI	
  and	
  ChrXXI	
  inversions	
  in	
  a	
  

laboratory	
   cross	
   population.	
   Plotting	
   conventions	
   are	
   as	
   in	
   Fig.	
   6f.	
   For	
   the	
   ChrXI	
   and	
   ChrXXI	
  

inversion,	
   the	
   cross	
   population	
   underlying	
   the	
   recombination	
   analysis	
   reported	
   in	
   Fig.	
   6f	
   is	
  

monomorphic.	
  We	
  here	
  show	
  that,	
  as	
  expected,	
  recombination	
   in	
   these	
  regions	
   is	
  not	
  suppressed,	
  

thus	
  providing	
  a	
  negative	
  control	
  for	
  the	
  analysis	
  presented	
  in	
  Fig.	
  6f.	
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Supplementary	
  Figure	
  14	
  

	
  

	
  

	
  

Supplementary	
  Figure	
  14.	
  Genetic	
  differentiation	
  (FST)	
  between	
  the	
  Lake	
  Geneva	
  population,	
  

and	
  a	
  stream	
  population	
  from	
  a	
  tributary	
  of	
  this	
  lake.	
  The	
  black	
  vertical	
  lines	
  represent	
  the	
  raw	
  

lake-­‐stream	
  FST	
  values,	
  the	
  red	
  profiles	
  show	
  these	
  values	
  smoothed	
  by	
  LOESS,	
  and	
  the	
  background	
  

shading	
  separates	
  the	
  21	
  chromosomes.	
  The	
  genome	
  region	
  displaying	
  the	
  strongest	
  differentiation	
  

is	
   located	
   on	
   ChrXXI	
   and	
   coincides	
   with	
   the	
   large	
   inversion	
   on	
   that	
   chromosome	
   (right	
   insert;	
  

average	
  FST	
  across	
  this	
  inversion:	
  0.160).	
  Relative	
  to	
  the	
  low	
  genome-­‐wide	
  baseline	
  differentiation	
  

(given	
  in	
  top-­‐left	
  corner),	
  the	
  ChrI	
  inversion	
  also	
  exhibits	
  strong	
  lake-­‐stream	
  divergence	
  (left	
  insert;	
  

average	
  FST	
  across	
  this	
  inversion:	
  0.084).	
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Supplementary	
   Figure	
   15.	
   Determining	
   an	
   appropriate	
   threshold	
   for	
   distinguishing	
  

homozygote	
   and	
   heterozygote	
   RAD	
   loci	
   during	
   consensus	
   genotyping.	
   To	
   identify	
   this	
  

threshold,	
  we	
  determined	
  the	
  frequency	
  of	
  all	
  haplotypes	
  occurring	
  at	
  250	
  haphazardly	
  chosen	
  RAD	
  

loci	
  in	
  each	
  of	
  three	
  individuals	
  displaying	
  low,	
  medium,	
  and	
  high	
  raw	
  Illumina	
  sequence	
  coverage.	
  

Among	
   these	
   750	
   total	
   RAD	
   loci,	
  we	
   discarded	
   those	
   in	
  which	
   the	
   two	
  most	
   frequent	
   haplotypes	
  

together	
  failed	
  to	
  account	
  for	
  >	
  70%	
  of	
  all	
  haplotypes	
  and/or	
  to	
  reach	
  a	
  sum	
  of	
  15	
  (see	
  Methods).	
  

Across	
  the	
  remaining	
  562	
  RAD	
  loci,	
  we	
  then	
  calculated	
  the	
  minor	
  haplotype	
  frequency,	
  defined	
  as	
  

the	
   count	
   of	
   the	
   second	
   most	
   frequent	
   haplotype	
   divided	
   by	
   the	
   sum	
   of	
   the	
   two	
   most	
   frequent	
  

haplotypes.	
  The	
  distribution	
  of	
  this	
  statistic	
  indicated	
  that	
  a	
  cutoff	
  around	
  0.25	
  effectively	
  separated	
  

truly	
  heterozygous	
  RAD	
  loci	
  from	
  those	
  appearing	
  variable	
  because	
  of	
  a	
  technical	
  artifact.	
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Supplementary	
  Table	
  1.	
  Genetic	
  diversity	
  within	
  each	
  of	
  the	
  four	
  study	
  populations.	
  Diversity	
  

is	
   calculated	
   based	
   exclusively	
   on	
   ‘loner	
   SNPs’	
   (i.e.,	
   SNP	
   occurring	
   alone	
   on	
   their	
   RAD	
   locus,	
   see	
  

Methods).	
  The	
  first	
  two	
  data	
  columns	
  indicate	
  the	
  number	
  and	
  corresponding	
  proportion	
  of	
  the	
  total	
  

loner	
   SNPs	
   (N	
   =	
   62,332)	
   actually	
   being	
   polymorphic	
   within	
   each	
   population	
   (in	
   parentheses	
   the	
  

proportions	
  are	
  scaled	
  such	
  that	
  the	
  lake	
  is	
  100%).	
  This	
  proportion	
  is	
  lowest	
  in	
  the	
  lake	
  population.	
  

Analogously,	
   the	
  third	
  and	
  fourth	
  data	
  columns	
  report	
  the	
  number	
  and	
  proportion	
  of	
  the	
  total	
   tri-­‐

allelic	
   loner	
   SNPs	
   (N	
   =	
   368)	
   actually	
   being	
   tri-­‐allelic	
   within	
   each	
   population	
   (in	
   parentheses	
   the	
  

proportions	
  are	
  scaled	
  as	
  above).	
  This	
  latter	
  diversity	
  index	
  is	
  again	
  lowest	
  in	
  the	
  lake	
  population.	
  

	
  

Population	
  

Number	
   of	
   loner	
  

SNPs	
  polymorphic	
  in	
  

focal	
  population	
  

Proportion	
   of	
   loner	
  

SNPs	
  polymorphic	
  in	
  

focal	
  population	
  

Number	
  of	
   tri-­allelic	
  

loner	
   SNPs	
  

polymorphic	
  in	
  focal	
  

population	
  

Proportion	
   of	
   tri-­

allelic	
   loner	
   SNPs	
  

polymorphic	
  in	
  focal	
  

population	
  

Lake	
   44,070	
   0.707	
  (100.0%)	
   103	
   0.280	
  (100.0%)	
  

BOH	
   45,838	
   0.735	
  (104.0%)	
   97	
   0.264	
  (94.2%)	
  

NID	
   46,632	
   0.748	
  (105.8%)	
   126	
   0.342	
  (122.3%)	
  

GRA	
   56,280	
   0.903	
  (127.7%)	
   188	
   0.511	
  (182.5%)	
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Supplementary	
  Table	
  2.	
  Descriptive	
  statistics	
  for	
  the	
  study	
  individuals.	
  

Illumina	
  
library	
  

Barcode	
  
Specimen	
  
ID	
  

Population	
   Sex	
  

Lateral	
  
plate	
  
phenotype	
  
(l	
  =	
  low;	
  p	
  
=	
  partial;	
  f	
  
=	
  full)	
  

Number	
  of	
  
raw	
  
Illumina	
  
reads	
  

Alignment	
  
success	
  

Number	
  of	
  
RAD	
  loci	
  
yielding	
  a	
  
consensus	
  
genotype	
  

Mean	
  
sequence	
  
coverage	
  
across	
  the	
  
RAD	
  loci	
  
yielding	
  a	
  
consensus	
  
genotype	
  

Ga_lib_21	
   CGATA	
   Ga1085	
   GRA	
   f	
   p	
   16'123'901	
   0.83	
   287'145	
   43.1	
  

Ga_lib_21	
   CGGCG	
   Ga1170	
   BOH	
   f	
   p	
   7'024'520	
   0.81	
   276'801	
   18.0	
  

Ga_lib_21	
   CTAGG	
   Ga1172	
   BOH	
   f	
   N.A.	
   9'782'486	
   0.82	
   283'283	
   25.4	
  

Ga_lib_21	
   CTGAA	
   Ga1426	
   GRA	
   m	
   p	
   9'224'793	
   0.82	
   284'721	
   24.1	
  

Ga_lib_21	
   GAAGC	
   Ga1082	
   GRA	
   m	
   l	
   14'974'371	
   0.82	
   287'020	
   39.2	
  

Ga_lib_21	
   GAGAT	
   Ga1152	
   BOH	
   f	
   f	
   4'456'312	
   0.82	
   259'253	
   12.1	
  

Ga_lib_21	
   GCATT	
   Ga1173	
   BOH	
   f	
   N.A.	
   20'910'550	
   0.81	
   285'786	
   53.5	
  

Ga_lib_21	
   GCGCC	
   Ga1119	
   UNT	
   m	
   f	
   27'416'119	
   0.78	
   283'349	
   67.5	
  

Ga_lib_22	
   GGAAG	
   Ga1156	
   BOH	
   m	
   f	
   16'926'683	
   0.70	
   286'303	
   36.6	
  

Ga_lib_22	
   GTACA	
   Ga1081	
   GRA	
   f	
   l	
   27'433'412	
   0.62	
   287'802	
   53.3	
  

Ga_lib_22	
   TAATG	
   Ga1078	
   GRA	
   m	
   f	
   5'127'972	
   0.74	
   257'782	
   12.3	
  

Ga_lib_22	
   TAGCA	
   Ga1110	
   UNT	
   f	
   p	
   5'164'073	
   0.70	
   266'488	
   12.1	
  

Ga_lib_22	
   TCAGA	
   Ga1103	
   UNT	
   m	
   f	
   39'406'778	
   0.61	
   285'140	
   74.1	
  

Ga_lib_22	
   TCGAG	
   Ga1106	
   UNT	
   f	
   f	
   2'848'858	
   0.71	
   221'902	
   7.6	
  

Ga_lib_22	
   TGACC	
   Ga0312	
   NID	
   f	
   p	
   23'161'376	
   0.58	
   288'084	
   42.3	
  

Ga_lib_22	
   TGGTT	
   Ga1120	
   UNT	
   m	
   f	
   20'280'307	
   0.54	
   279'849	
   35.0	
  

Ga_lib_23	
   CGCGC	
   Ga0070	
   NID	
   f	
   l	
   36'334'680	
   0.63	
   274'580	
   73.6	
  

Ga_lib_23	
   CGTAT	
   Ga0314	
   NID	
   m	
   l	
   23'496'158	
   0.64	
   288'445	
   47.9	
  

Ga_lib_23	
   CTCTT	
   Ga1168	
   BOH	
   m	
   f	
   26'380'282	
   0.63	
   290'415	
   51.8	
  

Ga_lib_23	
   CTTCC	
   Ga0087	
   ROM	
   f	
   f	
   38'114'299	
   0.61	
   276'609	
   73.8	
  

Ga_lib_23	
   GACTA	
   Ga0337	
   NID	
   m	
   p	
   27'011'624	
   0.65	
   274'782	
   56.3	
  

Ga_lib_23	
   GATCG	
   Ga1154	
   BOH	
   m	
   f	
   11'986'012	
   0.66	
   282'398	
   25.3	
  

Ga_lib_23	
   GCCGG	
   Ga1114	
   UNT	
   m	
   p	
   11'363'641	
   0.67	
   281'197	
   24.2	
  

Ga_lib_23	
   GCTAA	
   Ga0090	
   ROM	
   m	
   f	
   24'690'056	
   0.65	
   274'506	
   51.7	
  

Ga_lib_24	
   GGCCT	
   Ga1155	
   BOH	
   m	
   l	
   6'711'057	
   0.73	
   252'208	
   16.4	
  

Ga_lib_24	
   GGTTC	
   Ga0144	
   NID	
   f	
   p	
   30'968'137	
   0.67	
   278'899	
   66.1	
  

Ga_lib_24	
   GTCAC	
   Ga1100	
   UNT	
   f	
   f	
   19'294'137	
   0.72	
   281'433	
   44.5	
  

Ga_lib_24	
   GTTGT	
   Ga1427	
   GRA	
   m	
   l	
   6'193'909	
   0.71	
   262'212	
   14.0	
  

Ga_lib_24	
   TATAC	
   Ga1160	
   BOH	
   m	
   f	
   25'348'324	
   0.70	
   286'704	
   54.5	
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Ga_lib_24	
   TCCTC	
   Ga0159	
   NID	
   f	
   f	
   35'699'372	
   0.69	
   279'026	
   79.2	
  

Ga_lib_24	
   TGCAA	
   Ga1166	
   BOH	
   m	
   p	
   18'887'595	
   0.71	
   284'320	
   42.4	
  

Ga_lib_24	
   TGTGG	
   Ga1076	
   GRA	
   m	
   p	
   6'508'538	
   0.69	
   260'893	
   14.7	
  

Ga_lib_25	
   CGATA	
   Ga1104	
   UNT	
   f	
   f	
   19'778'122	
   0.68	
   284'455	
   42.4	
  

Ga_lib_25	
   CGGCG	
   Ga0094	
   ROM	
   m	
   f	
   23'777'863	
   0.63	
   276'723	
   48.3	
  

Ga_lib_25	
   CTAGG	
   Ga0074	
   NID	
   m	
   l	
   36'507'287	
   0.64	
   280'769	
   75.7	
  

Ga_lib_25	
   CTGAA	
   Ga0228	
   NID	
   m	
   p	
   39'198'188	
   0.63	
   279'035	
   80.2	
  

Ga_lib_25	
   GAAGC	
   Ga1074	
   GRA	
   m	
   p	
   14'214'345	
   0.68	
   283'572	
   30.2	
  

Ga_lib_25	
   GAGAT	
   Ga1158	
   BOH	
   m	
   l	
   10'332'558	
   0.68	
   279'500	
   22.1	
  

Ga_lib_25	
   GCATT	
   Ga1098	
   UNT	
   m	
   f	
   20'686'598	
   0.67	
   286'410	
   43.8	
  

Ga_lib_25	
   GCGCC	
   Ga0075	
   NID	
   m	
   f	
   33'589'851	
   0.62	
   275'988	
   68.4	
  

Ga_lib_26	
   GTACA	
   Ga1080	
   GRA	
   f	
   l	
   14'841'946	
   0.66	
   282'456	
   31.1	
  

Ga_lib_26	
   CGATA	
   Ga0120	
   NID	
   m	
   p	
   49'283'123	
   0.64	
   277'554	
   102.7	
  

Ga_lib_26	
   GAGAT	
   Ga1167	
   BOH	
   m	
   f	
   20'724'513	
   0.66	
   286'797	
   42.1	
  

Ga_lib_26	
   TCGAG	
   Ga0078	
   NID	
   f	
   f	
   53'009	
   0.54	
   1'097	
   2.1	
  

Ga_lib_26	
   ACACG	
   Ga0146	
   ROM	
   f	
   f	
   29'091'722	
   0.64	
   276'402	
   60.6	
  

Ga_lib_26	
   AGAGT	
   Ga1107	
   UNT	
   f	
   f	
   32'492'310	
   0.66	
   285'290	
   67.5	
  

Ga_lib_26	
   CATGA	
   Ga1083	
   GRA	
   f	
   p	
   8'164'759	
   0.72	
   278'025	
   18.4	
  

Ga_lib_26	
   ATGCT	
   Ga0201	
   ROM	
   f	
   f	
   37'919'120	
   0.63	
   279'504	
   76.2	
  

Ga_lib_27	
   TAATG	
   Ga0114	
   ROM	
   m	
   p	
   24'970'277	
   0.60	
   289'170	
   45.8	
  

Ga_lib_27	
   CGATA	
   Ga1084	
   GRA	
   m	
   l	
   13'537'909	
   0.63	
   283'001	
   26.7	
  

Ga_lib_27	
   CATGA	
   Ga0122	
   NID	
   f	
   f	
   18'837'281	
   0.64	
   273'140	
   39.7	
  

Ga_lib_27	
   GAGAT	
   Ga1163	
   BOH	
   m	
   l	
   17'815'656	
   0.53	
   286'542	
   29.3	
  

Ga_lib_27	
   GTCAC	
   Ga0077	
   NID	
   f	
   f	
   13'431'633	
   0.59	
   273'935	
   25.9	
  

Ga_lib_27	
   AGAGT	
   Ga0336	
   NID	
   m	
   p	
   33'777'653	
   0.60	
   277'001	
   64.9	
  

Ga_lib_27	
   ATGCT	
   Ga0286	
   ROM	
   m	
   p	
   35'918'356	
   0.57	
   284'520	
   63.7	
  

Ga_lib_27	
   TCGAG	
   Ga1079	
   GRA	
   m	
   f	
   11'471'522	
   0.61	
   285'134	
   21.8	
  

Ga_lib_28	
   TAGCA	
   Ga1077	
   GRA	
   m	
   l	
   24'159'978	
   0.60	
   261'321	
   46.1	
  

Ga_lib_28	
   GGAAG	
   Ga1165	
   BOH	
   m	
   p	
   11'467'443	
   0.65	
   198'943	
   29.9	
  

Ga_lib_28	
   TCGAG	
   Ga0082	
   NID	
   f	
   l	
   28'028'659	
   0.63	
   261'961	
   57.9	
  

Ga_lib_28	
   GTCAC	
   Ga0099	
   ROM	
   m	
   f	
   20'048'656	
   0.66	
   245'333	
   45.6	
  

Ga_lib_28	
   ACACG	
   Ga1431	
   GRA	
   f	
   l	
   7'167'002	
   0.65	
   151'191	
   24.0	
  

Ga_lib_28	
   AGTCA	
   Ga0121	
   NID	
   m	
   l	
   24'008'515	
   0.60	
   260'951	
   46.2	
  

Ga_lib_28	
   CATGA	
   Ga1118	
   UNT	
   f	
   f	
   16'869'124	
   0.55	
   256'994	
   29.2	
  

Ga_lib_28	
   CGATA	
   Ga0293	
   ROM	
   f	
   f	
   36'304'322	
   0.59	
   267'543	
   68.2	
  

Ga_lib_29	
   TCAGA	
   Ga1429	
   GRA	
   f	
   f	
   38'662	
   0.45	
   427	
   2.1	
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Ga_lib_29	
   TTCCG	
   Ga0157	
   ROM	
   m	
   f	
   30'258'306	
   0.49	
   285'983	
   45.3	
  

Ga_lib_29	
   AGTCA	
   Ga1164	
   BOH	
   m	
   p	
   41'196'483	
   0.60	
   288'512	
   77.4	
  

Ga_lib_29	
   ATGCT	
   Ga0160	
   NID	
   f	
   l	
   35'216'672	
   0.58	
   287'895	
   62.5	
  

Ga_lib_29	
   CGATA	
   Ga0073	
   NID	
   f	
   p	
   34'578'247	
   0.57	
   286'229	
   62.1	
  

Ga_lib_29	
   GAGAT	
   Ga1424	
   GRA	
   f	
   l	
   5'868'636	
   0.58	
   264'874	
   10.8	
  

Ga_lib_29	
   GTCAC	
   Ga1420	
   GRA	
   f	
   l	
   6'131'229	
   0.55	
   264'470	
   10.6	
  

Ga_lib_29	
   TGTGG	
   Ga1171	
   BOH	
   f	
   f	
   1'515'400	
   0.56	
   155'540	
   4.0	
  

Ga_lib_30	
   TCGAG	
   Ga1125	
   UNT	
   m	
   f	
   61'344	
   0.70	
   6'371	
   2.5	
  

Ga_lib_30	
   TTCCG	
   Ga1430	
   GRA	
   f	
   f	
   19'369'795	
   0.74	
   289'519	
   43.5	
  

Ga_lib_30	
   ACACG	
   Ga1161	
   BOH	
   m	
   f	
   24'148'648	
   0.74	
   285'231	
   57.0	
  

Ga_lib_30	
   AGTCA	
   Ga0313	
   NID	
   m	
   f	
   52'994'326	
   0.70	
   281'502	
   118.5	
  

Ga_lib_30	
   GTCAC	
   Ga1425	
   GRA	
   f	
   l	
   28'300'487	
   0.71	
   283'839	
   63.3	
  

Ga_lib_30	
   ATATC	
   Ga0233	
   NID	
   m	
   p	
   23'387'686	
   0.74	
   288'891	
   54.3	
  

Ga_lib_30	
   CGATA	
   Ga1157	
   BOH	
   f	
   f	
   28'724'046	
   0.74	
   286'499	
   64.9	
  

Ga_lib_31	
   TGACC	
   Ga1075	
   GRA	
   m	
   l	
   104'698	
   0.29	
   762	
   2.1	
  

Ga_lib_31	
   TCGAG	
   Ga0081	
   NID	
   f	
   p	
   24'323'290	
   0.47	
   240'663	
   37.6	
  

Ga_lib_31	
   ACTGC	
   Ga1162	
   BOH	
   m	
   f	
   4'933'837	
   0.56	
   226'296	
   9.3	
  

Ga_lib_31	
   AGTCA	
   Ga0234	
   NID	
   m	
   l	
   22'305'914	
   0.54	
   252'085	
   40.0	
  

Ga_lib_31	
   CATGA	
   Ga1418	
   GRA	
   f	
   l	
   4'870'606	
   0.58	
   229'118	
   9.4	
  

Ga_lib_31	
   GAGAT	
   Ga0145	
   ROM	
   f	
   l	
   16'475'686	
   0.48	
   239'448	
   26.5	
  

Ga_lib_31	
   GTCAC	
   Ga1099	
   UNT	
   m	
   f	
   14'728'702	
   0.56	
   257'067	
   26.8	
  

Ga_lib_31	
   ATATC	
   Ga1169	
   BOH	
   m	
   f	
   3'332'506	
   0.59	
   206'238	
   6.9	
  

Ga_lib_32	
   TGGTT	
   Ga1159	
   BOH	
   m	
   f	
   53'619	
   0.32	
   357	
   2.1	
  

Ga_lib_32	
   TATAC	
   Ga1422	
   GRA	
   f	
   l	
   33'707'043	
   0.58	
   275'175	
   64.6	
  

Ga_lib_32	
   CGATA	
   Ga0232	
   NID	
   m	
   p	
   23'694'642	
   0.46	
   273'891	
   35.6	
  

Ga_lib_32	
   GAGAT	
   Ga1153	
   BOH	
   m	
   l	
   25'959'379	
   0.62	
   287'120	
   50.4	
  

Ga_lib_32	
   GTCAC	
   Ga0084	
   NID	
   f	
   f	
   17'661'738	
   0.61	
   270'380	
   35.1	
  

Ga_lib_32	
   ACTGC	
   Ga1073	
   GRA	
   m	
   p	
   7'825'103	
   0.64	
   273'226	
   15.7	
  

Ga_lib_32	
   AGTCA	
   Ga1436	
   ROM	
   f	
   p	
   27'512'614	
   0.49	
   271'700	
   44.3	
  

Ga_lib_32	
   CATGA	
   Ga1421	
   GRA	
   m	
   f	
   7'438'624	
   0.58	
   270'517	
   13.7	
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lampreys, which is why they have 
been described as distinct species. 
On the other hand, the larvae of the 
two forms are indistinguishable, the 
adults co-occur on breeding grounds 
and often spawn in common nests 
[8], and they produce viable offspring 
when crossed artificially [4], lending 
support to the plasticity hypothesis. 
Importantly, no genetic evidence is 
available to date that would suggest 
their separation (e.g., [6,7]). Sympatric 
European L. fluviatilis and L. planeri 
even share mitochondrial haplotypes, 
which was suggested to reflect 
ongoing gene flow or, alternatively, 
incomplete sorting of ancestral 
polymorphisms [6]. 

To address this ‘paired species’ 
conundrum in lampreys, we examined 
one pair in detail by means of Illumina-
sequenced RAD. We considered 17 
specimens of L. fluviatilis (Figure 
1A) and 18 specimens of L. planeri 
(Figure 1B) collected from a common 
spawning site in the Sorraia River, a 
tributary of the Tagus River in Portugal, 
the southern limit of their distribution 
(see Supplemental Information 
published with the online version 
of this article). Sequences from one 
individual were used to build a pseudo-
reference genome spanning 39,865 
RAD loci (3.79 Mb), against which all 
individuals were aligned. Screening 
the alignments recovered 8,826 
polymorphic RAD loci, yielding a total 
of 14,691 informative SNPs. 

Global FST based on all SNPs 
between the two sympatric lampreys 
was no less than 0.37, suggesting 
strong genome-wide genetic 
differentiation despite the shared 
mitochondrial DNA haplotypes reported 
earlier for the exact same system 
[6]. Likewise, a genetic assignment 
test using Structure unambiguously 
separated the surveyed individuals into 
two distinct clusters (Figure 1C). The 
same result was obtained when the 
SNPs were analyzed in a phylogenetic 
context (Figure 1D). We thus provide the 
first genetic evidence for the taxonomic 
validity of the two European lamprey 
species L. fluviatilis and L. planeri. 
At the same time, we highlight the 
power of next generation sequencing 
technologies to resolve old questions in 
biology. Our data further agree with the 
assumption that resident lampreys are 
derived from migratory ones [2,3]. The 
genome scan revealed much greater 
genetic diversity in L. fluviatilis than 
in L. planeri. For instance, L. fluviatilis 

Strong genome-
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between sympatric 
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brook lampreys

Catarina S. Mateus1,2,3,4,6,*, 
Madlen Stange1,6, Daniel Berner1, 
Marius Roesti1,  
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Lampreys, together with hagfishes, 
are the only extant representatives of 
jawless vertebrates and thus of prime 
interest for the study of vertebrate 
evolution [1]. Most lamprey genera 
occur in two forms with divergent life 
histories: a parasitic, anadromous and 
a non-parasitic, freshwater resident 
form [2–8]. The taxonomic status of 
such ‘paired species’ is disputed, 
however. While indistinguishable at 
larval stages, but clearly distinct as 
adults, they cannot be differentiated 
with available genetic data [6,7], which 
has fuelled speculations that the two 
forms may in fact represent products 
of phenotypic plasticity within a single 
species. Here, we use restriction site-
associated DNA sequencing (RADseq) 
to examine the genetic population 
structure of sympatric European river 
(Lampetra fluviatilis L., 1758) and 
brook (Lampetra planeri Bloch, 1784) 
lampreys. We find strong genetic 
differentiation and identify numerous 
fixed and diagnostic single nucleotide 
polymorphisms (SNPs) between the 
two species, 12 of which can be 
unequivocally assigned to specific 
genes.

Lampreys — often referred to as 
cyclostomes because of their circular 
mouth — commonly occur as species 
pairs with distinct post-larval life 
histories. The so-called brook lampreys 
spend their entire life in freshwater, 
whereas their parasitic counterparts, 
the river lampreys, spend most of their 
adult life in the ocean or in estuaries 
and return to freshwater only for 
reproduction [2–8]. Whether these 
two forms are real species or are 
products of phenotypic plasticity in a 
single species has puzzled biologists 
for decades [2–4]. In the adult stage, 
river lampreys are much larger and 
morphologically distinct from brook 

displayed a 42% higher density of 
private SNPs than L. planeri (7,399 
versus 5,198; binomial p < 0.001; see 
also branch-lengths in Figure 1D). In 
addition, the greater genetic diversity 
in the migratory species might also 
reflect the larger effective population 
size and less restricted gene flow. By 
contrast, we expect resident species to 
be more prone to genetic bottlenecks 
and genetic drift due to their reduced 
mobility. 

To gain insight into genes potentially 
underlying the divergence between 
the sympatric lampreys, we screened 
the marker data for loci fixed for 
different alleles between the two 
species (FST = 1), identifying 166 such 
distinctive SNPs. Making use of the 
recently published genome of the 
sea lamprey [1], a distant relative of 
the species under investigation, we 
subjected these loci to reciprocal 
BLAST searches. This allowed us 
to link 12 of these loci to annotated 
genes. Interestingly, most of the genes 
showing fixed allelic differences 
between the two lampreys are related 
to functions that have previously 
been implicated in the adaptation 
to a migratory versus resident life-
style in lampreys and bony fishes. 
For instance, fixed differences 
were found in the vasotocin gene, a 
major player in saltwater–freshwater 
osmoregulation and also involved 
in life history divergence [9], and in 
the gonadotropin-releasing hormone 
(GnRH), a key gene in gonadal 
development and differentiation [10]. 
We also found fixed genetic differences 
in four genes related to immune 
functions, three axial patterning 
genes, a pineal-gland-specific opsin, 
a sodium channel gene, and a tyrosine 
phosphatase gene. These genes are 
likely to contribute to ecologically 
based reproductive isolation in this 
lamprey system, paving the way for 
subsequent functional and evolutionary 
analyses. A more detailed discussion 
of the species-distinctive loci and their 
possible ecological role is provided in 
the Supplemental Information, along 
with a screen for large-scale genomic 
divergence between males and 
females in L. planeri.

In summary, we show that the 
sympatric lampreys L. fluviatilis and 
L. planeri are genetically highly distinct, 
and that the regions of strongest 
divergence contain several candidate 
genes for adaptation to a migratory 
versus resident life-style. 
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Supplemental Information
Supplemental Information including experi-
mental procedures, a figure and a table can be 
found with this article online at http://dx.doi.
org/10.1016/j.cub.2013.06.026.
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Figure 1. Genetic divergence in a lamprey species pair.
The European river lamprey (Lampetra fluviatilis) (A) and the brook lamprey (Lampetra planeri) (B) are morphologically distinct in the adult stage. 
(C) A Bayesian population assignment test with Structure and a subsequent evaluation with Structure Harvester reveal the existence of two 
clusters (K = 2) in our SNP dataset, corresponding to the two sympatric species L. fluviatilis and L. planeri. Each bar represents the assignment 
probability (0 to 1) of a single specimen to one of these two clusters (color coded in red and purple, respectively). (D) Phylogeny of the 35 lamprey 
specimens from the Sorraia River in Portugal based on 14,691 SNPs and maximum parsimony in PAUP* (heuristic search with stepwise addi-
tion, TBR branch swapping and allowing polymorphisms). The specimens are grouped into two clades, which exactly match the two species 
L. fluviatilis and L. planeri (the bootstrap value for the basal branch is provided). 
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Supplemental Figures and Tables 
 
 

Figure S1. Analysis of genomic divergence between males and females based on sex-
specific read coverage across RAD loci in the lamprey L. planeri (A) and in threespine 
stickleback (Gasterosteus aculeatus) (B). 
The existence of a relatively large genomic region highly differentiated between males and 
females will cause RAD loci within these regions to show sex-biased read coverage (details in 
[S1]). In a male-heterogametic system, for instance, read coverage for X-linked loci will be 
twofold higher in females than males as compared to autosomal loci for which read coverage 
between the sexes should be equal. The reason is that Y-linked sequences align poorly to their 
X-counterpart. Exactly this situation is found in stickleback: while most data points lie within 
the region predicted for autosomal loci (shown as yellow line in the plot), an additional 
cluster is visible along the line predicted for X-linked loci (green line; the expectation for W-
linked loci in a female-heterogametic system is shown as blue line). By contrast, no deviation 
from the autosomal expectation is evident in L. planeri, indicating the absence of physically 
extensive genomic differentiation between males and females. Hence, if sex determination in 
this lamprey species is genetically based, the underlying system evolved without major 
chromosome divergence. Alternatively, sex determination might be under strong 
environmental influence, as generally assumed to occur in lampreys [S2–S4]. 
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Table S1. Genes and gene families attained after BLAST of the SNPs with FST = 
1. 
 
 
Gene/Gene family Function References 
Neurohypophysial gene (vasotocin) Osmoregulation [S5-S8]  
Gonadotrophin-releasing hormone 2 
precursor (GnRH2) 

Gonadal maturation and 
migratory behavior 

[S8-S11]  

Pineal gland-specific opsin gene (P opsin) Photoreception [S12-S17]  
Mannose-binding lectin-associated serine 
protease-1 (MASP-1) gene 

Immunity [S18, S19]  

Ikaros-like genes (IKLF2) Immunity [S20, S21]  
Variable lymphocyte receptor (VLR) gene Immunity [S22-S25]  
CD45 gene (PTPRC, Protein tyrosine 
phosphatase, receptor type C) 

Immunity [S26, S27] 

Homeobox genes (HoxW10a, Hox7, Emx) Axial patterning and 
segmental identity 

[S28-S31] 

Voltage-gated sodium channel gene Conduction of electrical 
signaling in nerves and 
muscles 

[S32, S33] 

Protein tyrosine phosphatase receptor type 
A precursor (PTPRA) gene 

Regulation of cellular 
processes 

[S5, S34] 
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Supplemental Experimental Procedures 
 
Sampling 
We collected (by electric fishing) 17 juvenile specimens of the anadromous L. 
fluviatilis at the start of their downstream trophic migration in January of two 
consecutive years (2009 and 2010), and 18 adult specimens of the resident L. planeri 
during the breeding season between late November 2009 and January 2010. All 
samples were collected in the Sorraia River, a tributary of the left bank of the Tagus 
River basin, where both species occur in sympatry. On the Iberian Peninsula, Tagus is 
the only river where the anadromous L. fluviatilis is known to occur, and it represents 
the southern range limit of both species [S35]. Tissue samples were preserved in 
100% ethanol and deposited in the zoological collection ‘Museu   Bocage’   of   the  
Museu Nacional de História Natural e da Ciência (MUHNAC) (Lisbon, Portugal). 
Sampling was performed under the permission of the Instituto da Conservação da 
Natureza e das Florestas. 
 
Restriction-site associated DNA (RAD) library preparation 
RAD library preparation followed the protocol of Baird et al. [S36] and further 
modifications [S37, S38]. Briefly, DNA was extracted with the ‘DNeasy Blood & 
Tissue Kit’ (Qiagen)  following  the  manufacturer’s  protocol.  Genomic  DNA  from 
each individual was digested with the Sbf1 restriction enzyme. Each digest was then 
5-mer barcoded for sample identification, and the 35 total samples were multiplexed 
into a single library. Final PCR enrichment was performed in 8 separate reactions to 
reduce amplification bias. Finally, the library was single-end sequenced with 100 
cycles in a single Illumina HiSeq 2000 genome analyzer lane at D-BSSE Basel. 
Illumina reads are available from the Sequence Read Archive (SRA) at NCBI under 
the accession number PRJNA206554. 
 
Marker generation 
The reads were first quality-filtered and demultiplexed according to the individual 
barcodes. Using sequence data from the one individual with the highest read number, 
the reads were clustered by tolerating a maximum of two mismatches. For each 
cluster (representing a RAD locus), the consensus sequence was derived, and the 
unique consensus sequences were concatenated to form a 3.79 Mb pseudo-reference 
genome. These steps were carried out using Stacks v0.9996 [S39]. Next, data from 
each of the 35 individuals were aligned against the pseudo-reference genome using 
Novoalign v2.08.03 (http://www.novocraft.com), tolerating approximately six high-
quality mismatches (-t ‘flag’  =  180). We enforced unique alignment, thereby avoiding 
that distinct loci in the pseudo-genome actually derived from the same locus in the 
true genome because of substantial polymorphisms. The alignments were then 
converted to bam format using Samtools v0.1.18 [S40]. Next, each RAD locus was 
genotyped at the whole-haplotype level. We here called a homozygous genotype 
when the dominant haplotype occurred in at least 18 copies and the second most 
frequent haplotype occurred less than six times. A heterozygote was called when the 
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two most frequent haplotypes occurred in at least 18 copies each. A locus not 
matching these criteria received a haploid genotype based on the dominant haplotype 
if that haplotype occurred in at least six copies, or were scored as missing data 
otherwise. As genotyping used fixed coverage thresholds, loci with excessive read 
coverage were down-sampled at random to 70x before genotyping (average read 
coverage per individual and RAD locus was 114.2, sd = 59.8). Finally, we combined 
the consensus sequences of all individuals to screen each RAD locus for SNPs. To 
exclude polymorphisms with low information content and technical artifacts [S41], 
SNPs displaying a minor allele frequency of 0.06 or lower were excluded from the 
data set. The resulting SNP panel for analysis included 34,267 SNPs. Genotyping and 
SNP calling was carried out using the R language [S42], benefiting from the 
bioconductor packages Biostrings and Rsamtools.  
 
Population genetic and phylogenetic analyses 
Prior to the analyses of genetic differentiation we eliminated SNPs with insufficient 
representation across individuals (threshold: 15 nucleotide calls from each 
population). The SNPs were used to calculate the haplotype-based fixation index 
(FST) [see S38] between the two samples. We then used Structure 2.3.4 [S43] to 
determine the number of genetic clusters (K) in our dataset and to estimate, for each 
individual, the assignment probability to these clusters. First, structure was run for 
100,000 generations, with a burnin of 10,000 generation, and applying the admixture 
model for K = 1 to K = 5 and three independent replicates for each K. Using Structure 
Harvester [S44], we found that the most likely number of K was 2. We then repeated 
the Structure analysis for K = 2, running it for 500,000 generations (Figure 1C) and 
applying a burnin of 50,000. PAUP* [S45] was used to perform a phylogenetic 
analysis with the SNP dataset under maximum parsimony applying a heuristic search 
(stepwise addition and TBR branch swapping and allowing polymorphisms). 
Confidence assessment was performed with a bootstrap analysis and 1000 replicates. 
The resulting tree (Figure 1D) had a length of 22,632 steps. We also performed a 
neighbor-joining tree search (not shown), which produced a highly similar topology. 
 
Screening fixed polymorphisms for candidate genes 
For the 166 SNPs fixed for different alleles (FST = 1) between the samples, a 
homology search was first completed by performing a BLAST [S46] search on the 
NCBI public database. BLAST hits were then mapped to annotated genes in the 
Ensembl database [S47] making use of the recently released genome of the sea 
lamprey (Petromyzon marinus) [S48]. The hits were then confirmed by a reciprocal 
BLAST search, i.e., blasting the respective sea lamprey contig against all RAD tags. 
In total, we could link twelve RAD loci to annotated genes (Table S1). We found 
fixed differences in vasotocin, which is involved in many aspects of fish physiology 
and behavior, including circadian and seasonal biology, metabolism, reproduction and 
osmoregulation [S5-S8]; in the gonadotropin-releasing hormone 2 (GnRH2), a key 
gene in gonadal development and differentiation, and regulation of the reproductive 
and migratory behavior, by controlling secretion of pituitary hormones [S8-S11]; in 
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the non-visual pineal gland-specific opsin gene (P opsin), which is key in 
photoreception in lamprey larvae, controlling the changes in body coloration and 
metamorphosis, and in adults through control of sexual maturation [S12-S17]. We 
found four genes implicated with immune functions: a mannose-binding lectin-
associated serine protease (MASP), the ikaros factor-like 2 gene (IKFL2), variable 
lymphocyte receptor (VLR), and the protein tyrosine phosphatase receptor type C 
(PTPRC or CD45) [see S18-S27]. We also found hits with three homeobox genes 
(HoxW10a, Hox7, Emx), which are known to be involved in the specification and 
patterning of different regions along the body axes [S28-S31]. In particular, Emx is 
known to play a major role in forebrain development. Hits were also found with the 
voltage-gated sodium channel gene, known to play an essential role in physiology 
through the initiation and propagation of action potentials in neurons and other 
electrically excitable cells such as myocytes and endocrine cells [S32, S33], and 
finally, in the protein tyrosine phosphatase receptor type A precursor (PTPRA). The 
protein encoded by PTPRA is a member of the protein tyrosine phosphatase (PTPase) 
family. PTPases are involved in a variety of cellular processes including cell 
activation, growth and differentiation, mitotic cycle, and oncogenic transformation 
[S5, S34]. 
 
Genomic screen for large sex-specific regions  
We here used a subsample of five females and seven males from the resident species 
L. planeri. This included all lamprey individuals for which sex was known (note that 
L. fluviatilis were sampled as migrating juveniles, precluding the phenotypic 
identification of sex). The full alignments of these 12 individuals were used to screen 
visually for the presence of a major sex-linked genomic region (Figure S1). For this, 
the total number of reads was counted separately across all males and all females at 
each of the 38,308 total RAD loci. For each locus, the total female count was then 
plotted against the total male count. The rationale was that RAD loci in sex-specific 
regions should exhibit systematic read coverage bias between males and females 
relative to loci in autosomal regions, because of differential alignment success to the 
reference sequence [for details see S1]. This approach should thus allow detecting at 
least large-scale differentiation between males and females visually. For comparison, 
we performed an analogous investigation with exactly the same sample size using 
RAD data from threespine stickleback [S1], a species with a major XY chromosomal 
system [S48]. 
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the sparse code extends into the time
domain, in this case with a relevant
time resolution of tens to hundreds
of milliseconds. Extending into the
time domain naturally increases the
coding capacity at this stage of
processing.

The Gupta and Stopfer paper [13]
is also important because it sheds
light on the read-out of sparse
representations. While we have a
reasonable understanding of sparse
representations in the insect
mushroom bodies and the vertebrate
cortex, the read-out is still poorly
understood. The authors clearly
show that the representation changes
from dense in the sensory system to
sparse in the Kenyon cells and again to
dense at the level of the output
neurons. Changing coding schemes
might be a common principle,
because recent work in the mammalian
cortex has shown that sparse
representation in cortical input layers is
transformed to a dense representation
in output layers (for review see [4,17]).
Notably, both cortex and insect
mushroom bodys are involved in
associative learning and theoretical
studies have shown that sparse
representations improve learning of
associative representations (for
example, [18,19]).

While the precise role of the
mushroom body output neurons is
currently not clear, it is unlikely that
they constitute a ’simple’ continuation
of the olfactory pathway providing
just another olfactory code. The
mushroom bodies are centers for
multimodal processing and associative
memory, and reward-based
mechanisms of plasticity have been
shown in the synapses between
Kenyon cells and output neurons
[20]. Thus, the output neurons might
be involved in recoding sensory
representations to an
experience-dependent value code
that represents the behavioral
relevance of sensory input. This
notion would be in line with previous
work, which found little odor identity
coding, but strong odor-reward
association encoding after memory
consolidation at the mushroom body
output [14]. A rapid representation
of the behaviorally relevant stimuli
might be a prerequisite for behavioral
decision making based on
experience-dependent memory.

While this new study [13] shows
the importance of the time domain

for sparse coding in biological
systems, this concept might also be
inspiring for computer science. In
the field of machine learning
high-dimensional sparse projections
of inputs are used to improve
stimulus classification with
reinforcement learning. Since this
analogy between sparse coding in
biological systems and in machine
learning has been repeatedly outlined
(for example, [18]), it might be of
interest to better explore temporal
coding schemes for machine
learning algorithms, for example, in
order to increase the capacity of
artificial object recognition systems.
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Natural Selection: It’s a Many-Small
World After All

Understanding adaptive phenotypic change and its genetic underpinnings
is a major challenge in biology. Threespine stickleback fish, experimentally
exposed to divergent semi-natural environments, reveal that adaptive
diversification can happen readily, affects many traits and involves numerous
genetic loci across the genome.

Marius Roesti* and Walter Salzburger

Populations exposed to contrasting
environments typically become
different in phenotype and may
ultimately split into distinct,
reproductively isolated species [1].

The genetic basis of phenotypic
change during this process remains
poorly understood. Major drawbacks
are that most research focuses on a
few traits in lab-reared specimens,
targets phenotypes with a simple
genetic architecture or uses indirect
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inference from population genomic
surveys that lack functional trait
information. To better understand the
genetics underlying ecological
divergence, we should therefore
investigate the complete set of traits
that bring whole individuals closer to
their performance optimum in a
particular natural environment [2,3].
This task has proven extremely
difficult, and uncovering the genetic
basis of adaptation remains a
challenge. In a recent study, Arnegard
and co-workers [4] take on this
challenge by using genetic mapping to

study niche divergence in threespine
stickleback under semi-natural
conditions.

Stickleback fish are an important
model system for speciation research,
especially in a few postglacial lakes
in British Columbia, Canada, where
both inshore (benthic) and offshore
(limnetic) stickleback species
(sometimes referred to as ‘ecomorphs’)
have evolved repeatedly in less than
12,000 years (Figure 1A) [5]. These
co-occurring species are
reproductively isolated through
different morphological, behavioral

and physiological adaptations to their
contrasting habitats (Figure 1B).
Hybrids with intermediate phenotypes
are occasionally found, but their
performance is relatively low in both
habitats as compared to the pure
species [6,7]. These aspects make
benthic and limnetic stickleback one of
the most explicit examples of natural
selection’s predominant role in the
origin of new species.
In their experiment, Arnegard et al. [4]

released F1 hybrids from artificial
crosses between benthic and limnetic
stickleback collected fromPaxton Lake
(Figure 1A,B) into a large experimental
pond (Figure 1C). This pond, which
includes both shallow-water benthic
and deep-water limnetic zones,
approximates the distinct habitats the
two species occupy in the wild. The
authors allowed the F1s to mate freely
and, after six months, sampled more
than 600 second-generation F2 hybrids
throughout the pond. Among these
F2s, stable isotope profiles and
stomach content analyses indicated
extensive variation in niche exploitation
along the benthic–limnetic axis.
Importantly, hybrids at both ends of
the benthic–limnetic diet spectrum
(those close to pure species
phenotypes) grew larger, suggesting
that they performed better than other
hybrids (those deviating from pure
species phenotypes). Variation in
niche use was further associated
with functional and morphological
divergence in their feeding apparatus
and body shape.
To decipher the genetic architecture

of this divergence, Arnegard et al. [4]
used quantitative trait locus (QTL)
mapping, an approach that provides
a strong test for causality by linking
phenotypic to genetic variation within
an experimental cross population.
The authors found that many loci
across the stickleback’s genome,
each with a small to moderate effect
at the phenotype level, underlie
benthic–limnetic divergence.
Moreover, several QTLs contributed
additively and more or less evenly to
whole-organism niche performance.
That is, the addition of a favorable
allele at any of these QTLs brought
an individual’s overall phenotype
a similarly small step closer to its
fitness optimum. In contrast to the
well-adapted benthic and limnetic
hybrids, F2 individuals with an
intermediate diet signature were
smaller, had a mixed combination of
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Figure 1. Co-occurring benthic and limnetic stickleback, and their natural and reconstructed
habitats.

(A) Four benthic-limnetic species pairs have been officially listed by the Committee on the
Status of Endangered Wildlife in Canada (COSEWIC) so far, of which Hadley Lake stickleback
went extinct in the 1990s and the species pair in Enos Lake has collapsed into a hybrid swarm.
Both these events are associated with invasive species. A fifth species pair was discovered
in Little Quarry Lake in 2007. (B) The shallow-water benthic habitat of Paxton Lake, the
contrasting deep open-water limnetic habitat (pictures courtesy of Jenny Boughman [benthic],
Gina Conte [limnetic]), and a representative adult male stickleback from each habitat type
(pictures courtesy of Gerrit Velema; note that the benthic specimen originates from close-by
Priest Lake). (C) Bird’s eye view of the experimental pond facility at the University of British
Columbia (Vancouver, Canada). Each pond measures 25 by 15 meters, holds 750,000 liters
of water, and mimics a natural lake with both a benthic and limnetic zone (picture courtesy
of Thor Veen).

Current Biology Vol 24 No 19
R960



235

benthic and limnetic alleles and were
intermediate in phenotype. Finally,
F2 individuals showing the strongest
growth deficits exhibited conflicting
combinations of the ecologically
relevant traits, making them
particularly maladapted for either of
the two trophic habitats. Arnegard et al.
[4] thus provide an elegant and rare
demonstration for how variation in
the genotype translates, through the
phenotype, to fitness differences
among individuals.

The study also confirms a general
finding emerging from high-resolution
genome scans between ecologically
divergent populations [8–12]:
adaptation is a complex process
involving many genetic loci. A first
reason is that adaptation is likely to
require shifts atmany phenotypic traits,
including behavior, morphology,
physiology and life history. A second
reason is that even single ecologically
relevant traits are commonly controlled
by many genetic loci, each with a small
phenotypic effect [2]. Although some
traits certainly do have an underlying
simple (nearly Mendelian) genetic basis
[13,14], high-resolution sequencing
technology has revealed that some
of these ‘single locus with large
phenotypic effect’ examples are in
reality much more genetically complex
than initially thought [15,16]. These
insights raise an important question: to
what extent are the few straightforward
cases of genotype-to-phenotype
relationships for single traits
representative of adaptation’s
complexity as a whole?

When studying something as
complex as adaptation, it is essential to
choose an appropriate methodology
and to recognize its possible limitations
[17]. For example, the crux with
traditional QTLmapping is the focus on
a few traits and only a single cross —
that is, all F2 individuals derive from the
same two grandparents. The genetic
variation in such a cross does not
capture the allelic richness available to
selection in a natural population and is
likely to limit the available phenotypic
variation. Furthermore, most QTL
studies cannot easily connect
their results to the natural context
(but see, e.g., [18,19]). Arnegard et al.
[4] reduced these limitations by using
semi-natural ponds and
first-generation F1 hybrids from four
independent crosses. In this way,
instead of having a maximum of four
allelic variants per locus, as is the case

in a single F2 QTL cross (two alleles
from each grandparent), up to 16
possible variants were exposed to
selection in their study. In addition,
all individuals were free to choose their
mating partners, habitat, and diet.
This puts the study by Arnegard and
colleagues [4] far beyond traditional
QTL mapping. Most notably, the
authors are able to link their phenotypic
and genetic findings to adaptive
population divergence, and hence,
fitness consequences within distinct
semi-natural habitats.

Nevertheless, some limitations
associated with QTL mapping remain.
The relatively low marker density used
to genotype the individuals (less than
500 markers) and the constraints given
by only a single generation of genetic
admixture (from first to second
generation hybrids) inevitably result in
a relatively limited resolution when
inferring genomic regions associated
with phenotypic traits [2,17]. These
limitations make it impossible to
determine whether mapped genomic
regions contain multiple close-by loci,
each with a very small and possibly
non-additive contribution to trait
variation, or a single locus with a
relatively larger phenotypic effect.
Improvements could include sampling
a QTL cross population after more
generations, increasing marker
resolution and adding association
mapping in natural, highly variable
populations. Even so, these
approaches remain constrained to
finding loci with relatively large
phenotypic effects [20]. Also,
because F2 hybrids were exposed
to ecologically different habitats
throughout their lives, some portion
of their trait variation might reflect
phenotypic plasticity, which could
confound QTL inference. A solution
here would be to re-map the focal traits
in an F2-cross raised under the same
standardized conditions. Finally,
we need to establish to what extent
our current methodological toolkit is
biased towards detecting additive
over more complex non-additive
genetics [2].

Interestingly, the experiment also
yielded an unpredicted outcome: the
smallest F2 individuals, which showed
mismatches in functional traits, were
feeding on springtails, a food resource
fortuitously abundant within the
experimental pond but largely absent
in the natural habitat. We can only
speculate as to how this new resource

could have influenced evolution in the
pond if the experiment had been run
for more generations. Despite the
availability of this alternative food type,
the springtail-feeders might not persist
through future generations. It is also
possible, although rather unlikely, that
this group becomes well-adapted to
the new springtail-foraging niche,
resulting in a brand new ecomorph next
to the limnetic and benthic stickleback.
Finally, these small intermediate
phenotypes could facilitate gene flow
between the benthics and limnetics,
allowing some combinations of benthic
and limnetic alleles to be relatively fit.
This in turn might hinder further
adaptive divergence between the
pure ecomorphs and counteract any
possible experimental speciation. The
occurrence of the springtail-feeders
shows how difficult it is to precisely
reconstruct the ecological conditions
shaping divergence in the wild.
Furthermore, it highlights that learning
about the predictability of evolution
requires comparable and replicated
studies, within and across organisms.
Overall, the study by Arnegard et al.

[4] demonstrates that, despite
involving many traits and loci,
important fitness variation can
emerge immediately when the right
allelic variants are available to
selection. Another interesting finding is
that the genetic architecture underlying
reduced environment-dependent
hybrid viability and thus reproductive
isolation might be largely additive.
This contrasts with the idea of
environment-independent
reproductive isolation (i.e., due to
intrinsic genetic incompatibilities)
that is mainly caused by deleterious
non-additive gene interactions. These
exciting novel insights point to the
future promise of taking experimental
(genetic) approaches out into nature.
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Pericentrin: Critical for Spindle
Orientation

Mutations in the pericentrin (PCNT) gene cause Majewski osteodysplastic
primordial dwarfism type II (MOPDII). Recent work reveals that a discrete set of
centrosome proteins require PCNT for their robust localization to mitotic
spindle poles. Critically, this complex is crucial for mitotic spindle orientation
and involved in the pathogenesis of MOPDII.

Yi Luo1 and Laurence Pelletier1,2,*

The centrosome is the major
microtubule-organizing center of
animal cells. It is composed of a
centriole pair, which recruits more
than 100 proteins, collectively referred
to as pericentriolar material (PCM). It
participates in the regulation of cell
motility, adhesion, intracellular
transport and mitotic spindle
assembly. During mitosis,
centrosomes undergo a dramatic
increase in size and nucleation
capacity, a process called centrosome
maturation. Centrosome maturation
potentiates robust mitotic spindle
assembly and is a prerequisite for the
accurate segregation of chromosomes
to progeny cells. Indeed, centrosome
and spindle abnormalities are
frequently observed in human tumors
and are associated with genomic
instability.

PCNT is a large, elongated coiled-
coil molecule that plays a crucial role in
centrosome biogenesis and mitotic
spindle assembly [1,2]. PCNT acts as

a scaffold for the recruitment and
anchoring of a plethora of PCM
proteins including CDK5RAP2, NEDD1
and g-tubulin ring complexes.
Mutations in PCNT are associated
with several human disorders including
the primordial dwarfism MOPDII [3].
A study published in this issue of
Current Biology by Chen et al. [4]
reports a novel role for PCNT in the
control of spindle orientation through
the recruitment of a specific subset of
centrosome components.

Previous genetic linkage analysis
revealed that biallelic loss-of-function
mutations in PCNT caused MOPDII in
all 25 patients [3]. However, the precise
molecular mechanisms underlying
MOPDII pathology had remained
unclear. To address this issue, Chen
and colleagues generated PCNT-/-

mice and mouse embryonic fibroblasts
(MEFs). PCNT-/- mice exhibited known
features of MOPDII including small
body size, microcephaly, craniofacial
developmental anomalies, structural
kidney defects and vascular
development anomalies. Detailed

analyses of PCNT-/- MEFs and
patient-derived epithelial cells revealed
a dramatic reduction in the amount of
astral microtubules and consequently
defects in spindle positioning.
Moreover, careful examination of
PCNT-/- mice revealed that brain, heart
and kidney tissues displayed defects
consistent with abnormal asymmetric
division and diminished cell
proliferation. This phenotype is
analogous to microcephaly, where
asymmetric divisions produce
differentiating cells instead of stem
cells, which yields a sharp reduction in
the total number of neurons [5].
To provide molecular insights into

the spindle positioning defects in
PCNT-/- cells, Chen et al. surveyed
the levels of known centriole and
centrosome proteins at spindle poles.
Three proteins (CDK5RAP2, Ninein
and Centriolin) were most drastically
reduced in absence of PCNT.
Mutations in Ninein and CDK5RAP2
have been associated with
microcephaly, suggesting that these
proteins contribute to the MOPDII
syndrome though their interplay with
PCNT [6,7]. Consistently, the
Drosophila homologue of CDK5RAP2,
Centrosomin (Cnn), is required to
maintain mitotic PCM in the vicinity
of centriole and to promote astral
microtubule formation [8]. Ninein is also
required for the maintenance of spindle
pole integrity through spatial control of
Astrin distribution [9]. In their study,
Chen and colleagues show that
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Repeated Lake-Stream Divergence in Stickleback Life
History within a Central European Lake Basin
Dario Moser, Marius Roesti, Daniel Berner*

Zoological Institute, University of Basel, Vesalgasse 1, Basel, Switzerland

Abstract

Life history divergence between populations inhabiting ecologically distinct habitats might be a potent source of
reproductive isolation, but has received little attention in the context of speciation. We here test for life history divergence
between threespine stickleback inhabiting Lake Constance (Central Europe) and multiple tributary streams. Otolith analysis
shows that lake fish generally reproduce at two years of age, while their conspecifics in all streams have shifted to a primarily
annual life cycle. This divergence is paralleled by a striking and consistent reduction in body size and fecundity in stream fish
relative to lake fish. Stomach content analysis suggests that life history divergence might reflect a genetic or plastic
response to pelagic versus benthic foraging modes in the lake and the streams. Microsatellite and mitochondrial markers
further reveal that life history shifts in the different streams have occurred independently following the colonization by Lake
Constance stickleback, and indicate the presence of strong barriers to gene flow across at least some of the lake-stream
habitat transitions. Given that body size is known to strongly influence stickleback mating behavior, these barriers might
well be related to life history divergence.
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Introduction

Speciation is often initiated by adaptation to ecologically distinct

habitats in the face of gene flow [1–4]. This process is typically

inferred from concurrent divergence in phenotypes and genetic

marker frequencies across habitat transitions in the absence of

physical dispersal barriers (e.g., [5–13]). Patterns aside, the actual

mechanisms constraining gene flow in the early stages of ecological

divergence generally remain poorly understood [4,14,15] (but see

[16,17]). At least partial reproductive isolation is often assumed to

result directly from performance trade-offs associated with

adaptive divergence. That is, divergence in ecologically important

traits causes selection against maladapted migrants and hybrids

between habitats [14,18–20]. Further reductions in gene flow

between populations can arise readily as indirect (correlated)

consequences of adaptive divergence [4,14,21,22], for instance

when traits under ecological divergence also influence reproduc-

tive behavior [23–25]. Understanding speciation thus benefits

greatly from a thorough understanding of adaptive divergence.

In animals, the traits receiving greatest attention in the context

of ecological divergence and reproductive isolation are typically

those related to resource acquisition and predator avoidance

[14,18]. By contrast, divergence in life history is less frequently

considered as a driver of speciation, despite its potential to

contribute to reproductive isolation at multiple levels simulta-

neously: first, adaptive divergence in life history traits in response

to ecologically distinct habitats [26,27] might directly reduce gene

flow between populations through reduced performance of

migrants and hybrids between the habitats. Second, life history

divergence often involves shifts in reproductive timing, thereby

potentially causing phenological assortative mating as a correlated

response. Evidence of this mechanism exists but is mostly limited

to insects (e.g., [28–30]; but see [31]). Third, life history divergence

commonly involves body size shifts [26,27]. Because body size is

also frequently involved in sexual selection [32], life history

divergence might drive sexual assortative mating as an additional

correlated response. Finally, life history traits generally display

higher levels of phenotypic plasticity than morphological, physi-

ological, and behavioural traits, because the former represent

greater targets for environmental perturbation [33,34]. Life history

shifts might thus follow rapidly upon the colonization of new

habitats, and hence contribute to reproductive isolation well before

genetically-based divergence in less plastic traits has occurred

[35,36].

The objective of this study is to initiate an investigation of life

history divergence in a natural model system for studying

speciation with gene flow – lake and stream populations of

threespine stickleback fish (Gasterosteus aculeatus L.). Marine

(ancestral) stickleback have colonized freshwater environments

all across the Northern Hemisphere after the last glacial retreat,

thereby establishing numerous evolutionarily independent popu-

lation pairs residing in adjacent lake and stream habitats [37–46].

Lake and stream populations typically display predictable and at

least partly genetically-based [39,47,48] divergence in morpho-

logical traits, presumably reflecting adaptation to distinct foraging

environments. This phenotypic divergence often coincides with

striking divergence in genetic markers on a small spatial scale

[12,46,49,50], indicating the presence of strong reproductive
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barriers associated with lake-stream transitions. The nature of

these barriers, however, remains poorly understood (reviewed in

[51]).

A contribution of life history divergence to reproductive

isolation in lake-stream stickleback, through one or several of the

mechanisms described above, is plausible because life history

evolution is reported from other stickleback systems. This includes

divergence in age at reproduction and reproductive investment

within and among lake populations [52–56], and divergence in

body size within and among lake populations [52,53,56–59] and

between freshwater and marine stickleback [60,61]. At least some

of this divergence is partly genetically based [58,62]. Furthermore,

body size divergence is generally a strong contributor to mating

isolation in the species ([59–61,63–66]; but see [67]. Nevertheless,

investigations of life history divergence in lake-stream stickleback

are lacking.

Our study focuses on stickleback inhabiting contiguous lake and

stream habitats within a single lake basin in Central Europe. We

focus on multiple replicate lake-stream sample pairs to assess

whether life history divergence has occurred repeatedly in a similar

direction. Finally, we include nuclear and mitochondrial genetic

marker data to search for signatures of habitat-associated barriers

to gene flow, and to gain insight into the origin of lake and stream

stickleback populations within the lake basin.

Materials and Methods

Stickleback Samples
The main focus of this life history investigation lies on

stickleback in Lake Constance (LC) and its tributaries in Central

Europe (Fig. 1, Table 1). The geographic distance between the

different lake-stream pairs (‘systems’) was maximized to reduce the

opportunity for gene flow among systems, and to provide

phenotypic and genetic information representative of the entire

lake basin. The systems include two lake-stream pairs subjected

previously to an analysis of foraging morphology and population

genetics (‘Constance South’, COS, and ‘Constance West’, COW;

[44]; see also [68]). The majority of the study sites, however, have

not been investigated before. The new systems include ‘Constance

North’ (CON) and ‘Constance East’ (COE). In the latter, the

stream site was sampled at two different locations (Grasbeuren,

7.6 km from the lake, and Mühlhofen, 4 km from the lake). These

samples proved very similar phenotypically and genetically (e.g.,

FST= 0.002, P = 0.40; further details not presented), so that they

were pooled to represent a single stream site (COE stream).

Further, we sampled an additional stream for the COS system

(‘COS1 stream’). Because this stream drains into LC at almost the

same location as COS2 stream, these two systems share their lake

counterpart.

The origin of stickleback in the LC basin is unknown, but

commonly attributed to human introduction (e.g., [44,69]). The first

report of the species’ wide-spread occurrence within the basin dates

back to the mid 19th century ([70], p. 320). To obtain new genetic

insights into the populations’ possible origin, we complemented our

paired lake-stream samples by samples from two solitary (allopatric)

stream-resident populations. The first solitary population was

sampled from a small creek draining into the River Rhine (the

outlet stream of LC, draining into the Atlantic) near Basel,

Switzerland (Fig. 1, Table 1). This sample is hereafter called the

Rhine (RHI) sample. A recent study indicates strong differentiation

in neutral markers between stickleback occurring in the Rhine

catchment downstreamof LC and the lake itself [69], suggesting that

the latter was not colonized via the Rhine. Our Rhine sample

allowed an independent evaluation of this hypothesis. The second

solitary stream population (DAN) was sampled in the headwaters of

the Danube River drainage near Kirchbierlingen, Germany. This

sample was included because of the close proximity of the Danube

drainage to the LC basin, and because the LC region drained into

the Danube (and eventually into the present-day black sea region) in

postglacial times [71].

All new samples were collected in the spring 2011 (late April,

May; i.e., during the stickleback breeding season). The samples

taken in previous years, and a few specimens collected in 2012

exclusively for the analysis of fecundity and egg size (see below),

were also collected within that seasonal time frame. All samples

were taken with permission from the corresponding fisheries

authorities (Austria: Landesfischereizentrum Vorarlberg, A. Lu-

nardon; Germany: Fischereiforschungsstelle Baden-Württemberg,

S. Blank, M. Bopp, C. Wenzel; Switzerland: Jagd- und Fischer-

eiverwaltung Thurgau, R. Kistler; Amt für Umwelt und Energie

Basel-Stadt, H.-P. Jermann). Sampling occurred on breeding

grounds using unbaited minnow traps. All individuals used for this

study were in reproductive stage because the males consistently

displayed breeding coloration, and gravid females were frequent at

every site. The specimens were euthanized with an overdose of

MS-222, taking all efforts to minimize suffering, and immediately

weighed, photographed with a reference scale as described in [12],

and stored in absolute ethanol. For most sites, a minimum sample

of 12 individuals per sex could be achieved (Table 1). Unless noted

otherwise, all analyses are based on the full sample from a given

site. All work in this study was approved by the Veterinary Office

of the Canton of Basel-Stadt (permit number: 2383).

Analysis of Lake-stream Divergence in Life History
Our prime interest was to investigate lake-stream divergence in

age and size at reproduction. To quantify age at reproduction, we

retrieved the left and right sagittal otolith from all specimens in

each lake-stream pair. The otoliths were cleaned mechanically

using fine forceps, dried, mounted in 20 ml Euparal on a micro-

scope slide, and inspected under a stereomicroscope at 50x

magnification by a single person (DM) blind to the specimens’

origin. Illumination was from above on a black background to

optimally visualize the opaque and transparent ring zones used for

age determination following [72] (representative otoliths from

different age classes are shown in Appendix S1). Left and right

otoliths always produced consistent results. A total of 4 specimens

(,2% of all specimens investigated) displayed unclear otolith ring

patterns and could thus not be aged unambiguously. Excluding

these specimens from analysis did not affect any conclusions;

hence we present results based on the full data set. Differences in

age composition between lake and stream fish were tested

separately for each system through non-parametric permutation

tests randomizing the response variable (age) 9999 times over the

predictor (habitat) [73], and using the lake-stream difference in

average age as test statistic. All statistical inference in this study is

based on analogous permutation tests.

To quantify body size at reproduction, we digitized 16

homologous landmarks [44] on the photograph of each specimen

by using TpsDig [74]. TpsRelw [74] was then used to calculate

centroid size from the landmark configurations. This size metric,

hereafter referred to as ‘body size’, was considered more robust to

variation in overall body shape and feeding or reproductive status

than size metrics such as standard length or linearized body mass.

(Using the latter as body size metric, however, produced very

similar results in all analyses.) To test for lake-stream divergence in

body size, we used the difference in average size between the

habitats as test statistic.

Life History Divergence in Lake-Stream Stickleback
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Figure 1. Geographical situation of the stickleback study sites. Shown are the five lake-stream stickleback pairs (‘systems’) in the Lake
Constance basin (CON, COE, COS1, COS2, COW; colored circles, stream sites lighter), and the two solitary sample sites outside the basin (RHI, DAN;
black and white circle). The black rectangle in the inset map locates the study area in Central Europe. Distances indicate the approximate water
distance between the lake and stream site within each system, and the approximate map distance between Lake Constance and the solitary sample
sites. Note that the COS1 and COS2 stream samples were not collected from the Rhine (the major inlet to Lake Constance), but from two small
streams draining separately into Lake Constance. Further details on the samples and locations are given in Table 1.
doi:10.1371/journal.pone.0050620.g001

Table 1. Localities, geographical coordinates, sampling year, and sample size for the five lake-stream stickleback systems in the
Lake Constance basin (CON, COE, COS1, COS2, COW), and the two solitary stream populations (RHI, DAN).

Locality System or site code Habitat Latitude (North) Longitude (East) Sampling year Sample size

Iznang (DE) CON lake 47u4393.360 8u57942.480 2011 22 (10/12)

Bohlingen (DE) CON stream 47u43918.840 8u53901.680 2011 23 (15/7)

Unteruhldingen (DE) COE lake 47u43925.320 9u13937.560 2011 33 (18/15)

Grasbeuren (DE) COE stream 47u43939.720 9u18923.40 2011 13 (9/4)

Mühlhofen (DE) COE stream 47u44911.760 9u15949.680 2011 12 (7/5)

Fussach (AT) COS1 & COS2 lake 47u29929.70 9u39940.370 2008 24 (3/21)

Hohenems (AT) COS1 stream 47u21918.550 9u40910.220 2008 25 (11/14)

Rankweil (AT) COS2 stream 47u16919.280 9u35932.720 2008 24 (12/12)

Romanshorn (CH) COW lake 47u33922.50 9u22948.250 2008/2009 24 (12/12)

Niederaach (CH) COW stream 47u33929.250 9u16942.380 2008/2009 25 (11/14)

Basel (CH) RHI stream 47u32944.340 7u33951.840 2011 24 (12/12)

Kirchbierlingen (DE) DAN stream 48u14904.030 9u43930.860 2011 34 (15/19)

The localities are situated in Germany (DE), Austria (AT), and Switzerland (CH). Sample sizes are total, and males and females in parentheses. Note that the same lake
sample was used for both the COS1 and COS2 system, and that the COE stream site combines two samples (for details see text).
doi:10.1371/journal.pone.0050620.t001
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In addition to age and size at reproduction, we investigated

divergence in fecundity and egg size. For this, clutches of gravid

females ready for spawning were collected in the field by gently

squeezing the females’ abdomen, and preserved in ethanol. We

then counted the total number of eggs (fecundity) under

a stereomicroscope, dried all eggs at 50uC for 48 h, and

determined their total dry mass. Egg size was then expressed as

the total clutch dry mass divided by total egg number (i.e., the

average dry mass of a single egg). This investigation used mainly

females collected in 2012 for this specific purpose only (and hence

not included in Table 1; lake: COE, COW, N=11 each; stream:

COW, CON, COE, N=9, 1, 1), but additionally involved a few

females also used for the other analyses (details given in Table S1).

Testing for lake-stream divergence in fecundity and egg size was

then performed in a single analysis for each trait by pooling data

across the two lake sites and the three stream sites. (Restricting the

analysis to the COW system with sufficient data from each habitat

produced similar results.) As above, the difference in trait means

between the habitats was used as test statistic.

Comparison of Body Size Among Global Populations
To interpret the body size patterns revealed in our lake-stream

and solitary stickleback populations from Central Europe in

a broader geographic and ecological context, we performed

a comparison of reproductive body size by including a total of 21

additional stickleback populations from different geographic

regions and habitats. We hereafter call this the ‘global’ data set,

acknowledging that these samples do not represent the species’ full

body size diversity (e.g., [52]). These additional samples comprised

lake populations from Beaver, Boot, Joe’s, Misty, Morton, Pye,

and Robert’s Lake (sites described in [43]), and from Hope Lake

(coordinates: 50u34900 N, 127u209300 W), on Vancouver Island

(British Columbia, Canada). Additional stream-resident popula-

tions were from the Beaver, Boot, Joe’s, McCreight, Pye, and

Robert’s systems [43], and from the inlet stream to Misty Lake

[39,75], on Vancouver Island. These freshwater samples were

complemented by collections of marine stickleback from two

estuaries on the east coast of Vancouver Island (Cluxewe:

50u369510 N, 127u119100 W; Sayward [76]), from the Japan Sea

and Pacific [77], from the Atlantic Coast in Norway [78], and

from the coast of the White Sea in Russia [79]. All these additional

samples were also collected during the reproductive season on

breeding grounds. Body size was quantified from available

photographs as described above. Sample size was 20–36 individ-

uals per site, with both sexes well represented.

For the global comparison of body size at reproduction, we first

pooled all samples from the LC basin within each habitat type.

This was done to avoid pseudo-replication, and because body size

within each habitat type was highly consistent (see below).

Interestingly, visual inspection of the data from the global samples

suggested differences among the three habitat types (lake, stream,

marine) in the variability of average body size across populations.

This was tested formally through separate lake-stream and marine-

stream tests using the variance in population means as test statistic.

Additional Phenotypic Analyses
The above analyses were complemented by investigating two

additional variables potentially relevant to life history evolution.

First, as life history divergence might be driven by differential food

resources, we analyzed prey items in stomachs of stickleback from

one system (COW lake and stream; N=20 and 7). Because lake

stickleback might exploit different prey resources during the

reproductive period spent in littoral (near-shore) breeding habitat

than during non-reproductive life stages (e.g., [80]), we addition-

ally acquired a small sample (N= 5) of stickleback caught by LC

fishermen in offshore drift nets targeting pelagic whitefish. This

sample was taken off the COS lake site in April 2011. To ensure

adequate quality of stomach content for analysis, all specimens

(lake offshore, lake littoral, and stream) were preserved within 5 h

upon setting the capturing device (minnow trap, drift net). Prey

items were identified to order, family, or genus, and assigned to

broad taxonomic groups (e.g., pelagic cladocera, vermiform insect

larvae; see Table 2). For every stickleback, we determined the

relative proportion of the total prey items accounted for by each

taxonomic group, calculated summary statistics for each of the

three habitat types, and interpreted these statistics qualitatively.

This approach was preferred to a formal analysis because of the

relatively small sample sizes.

The second additional variable was the lateral plate phenotype.

Ancestral marine stickleback are protected from vertebrate

predators in their pelagic environment by bony lateral plates

along their entire body [81]. This phenotype is disfavoured in most

freshwater environments, as stickleback in lakes and streams

generally display an adaptive, genetically-based reduction in the

number of lateral plates [81]. We considered this trait here

because the major genetic factor determining plate phenotype (the

ectodysplasin gene, EDA; [82]) might pleiotropically influence

growth rate [83], and because stickleback in the LC basin are

polymorphic for both plate phenotype and the underlying EDA
alleles [44]. Following this latter study, we assigned all individuals

to one of three lateral plate phenotype morphs (full, partial, low).

We then tested for lake-stream divergence in plate morph

frequency within each system by using the Chi-square ratio as

test statistic (extending similar tests already performed for the

COW and one of the COS systems; [44]). Next, sufficiently

polymorphic samples (i.e., the stream samples of CON, COE, and

COW) were used to test for an association between plate morph

and body size by using the F ratio from analysis of variance as test

statistic [73]. All statistical analyses and plotting were performed in

R ([84]; codes available on request). All phenotypic data are

provided in Table S1.

Genetics
The major goal of our genetic investigation based on nuclear

and mitochondrial markers was to quantify population structure

within and among the replicate lake-stream systems in the LC

basin. Of particular interest was the detection of strong genetic

divergence within lake-stream systems, suggesting effective habitat-

related barriers to gene flow. An additional goal was to explore the

relationship between stickleback in the LC basin and fish from

nearby water bodies. The present work greatly extends a previous

population genetic study partly involving fish from the LC basin

[44] in that new lake-stream pairs are analyzed, samples from the

Rhine and Danube are included, and a greater number of genetic

markers are used.

We first extracted DNA from pectoral and caudal fin tissue on

a MagNA Pure LC extraction robot (Roche) by using the Isolation

Kit II (tissue). Next, we amplified eight microsatellites with labelled

primers in two separate multiplex PCRs by using the QIAGEN

multiplex kit and following the manufacturer’s protocol. All PCRs

included a negative control to check for contamination. The

microsatellite markers were chosen to be far from known

quantitative trait loci in stickleback, and to lie on different

chromosomes. They included the markers Stn67, Stn159, Stn171,

and Stn195 used previously [12,44], and additionally Stn28,

Stn99, Stn119, and Stn200 [85]. For the latter, we designed our

own primer pairs (primer sequences for all eight markers are

provided in Table S2). PCR products were run on an ABI3130xl
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sequencer (Applied Biosystems), and alleles scored manually in

PeakScanner v1.0. Input files for the different population genetic

programs were prepared by using CREATE [86].

The microsatellite data were first used to estimate differentiation

among all 11 samples by Weir & Cockerham’s FST [87] calculated

with GENETIX v4.0.5.2 [88] (P-values based on 999 permuta-

tions). To account for variation in heterozygosity within popula-

tions [89], we also calculated standardized FST after data trans-

formation with RECODEDATA v0.1 [90]. Next, we tested

whether neighboring lake and stream samples qualified as

genetically distinct populations by performing a genetic clustering

analysis using STRUCTURE (v2.3.1; [91,92]) separately in each

lake-stream pair (note that the COS system represents two pairs,

both involving the same lake sample). The assumed number of

populations (K) ranged from one to three, with each level

replicated five times under the admixture and independent allele

model with 100’000 iterations (209000 iterations burnin). An

additional analysis examined population structure among the 11

pooled samples, using K=1–12. STRUCTURE results were

combined using Structure Harvester v.0.6.92 [93], and interpreted

following [94,95]. The microsatellite data set is provided in

Table S3.

The above analyses using rapidly evolving microsatellites were

complemented by a more coarse-grained investigation of genetic

relationships based on single nucleotide polymorphisms (SNPs)

within a 305 bp segment of the mitochondrial D-loop. Sample size

was 18–32 individuals per site, 256 in total. Primers and PCR

amplification conditions were as in [44]. Products were sequenced

on an ABI3130xl sequencer (Applied Biosystems). We used

jModelTest v0.1.1 [96] to determine the most appropriate model

of sequence evolution (‘F81’; [97]), identified the most probable

genealogical relationship by the maximum-likelihood method

implemented in PAUP* v4.0 [98], and generated a haplotype

genealogy for visualization following [99]. All D-loop sequences

are deposited in GenBank (accession numbers JX436521-

JX436776).

Results

Phenotypic Analyses
The otolith analysis revealed strong and highly consistent lake-

stream divergence in age at reproduction in all replicate systems in

the LC basin (all P,0.0015). Generally, stickleback on breeding

grounds in the lake were in their third calendar year (i.e.,

approximately two years old), with a few individuals breeding in

their second or fourth calendar year (Fig. 2). By contrast, stream

stickleback essentially displayed an annual life cycle; individuals in

their third calendar year were rare, and no single fish was found to

breed in its fourth calendar year.

Lake-stream shifts in age at reproduction were paralleled by

strong divergence in body size, with lake fish on average exhibiting

27% greater size than stream fish (lake mean centroid size across

all systems: 80.4 mm; stream: 63.2 mm; P= 0.0001 in all systems)

(Fig. 2). Translated to fresh body mass, the average size difference

was more than twofold (lake: 2.53 g; stream 1.19 g; a photograph

of a representative lake and stream individual is shown in

Appendix S1). Body size divergence was further associated with

dramatic divergence in fecundity (Fig. 3): on average, the (larger)

lake females displayed a threefold higher number of eggs than the

stream females (284 versus 94; P= 0.0001). Egg size, however, did

not differ between the habitats (P = 0.51).

Our comparison of body size across global stickleback samples

from lakes, streams, and the sea indicated a clear difference in the

variance in population average size among the habitats. Strikingly,

all stream populations investigated displayed relatively similar

average size, whereas the lake samples were much more variable

(lake-stream difference in variance: P= 0.002; Fig. 4). The latter

included very small-bodied populations (Morton, Pye, and

Robert’s) as well as large-bodied populations (Boot, Joe’s). Body

size among marine stickleback also tended to be more variable

than among stream populations (marine-stream difference in

variance: P= 0.065; note the small sample size for marine fish, and

hence low statistical power in this test).

In addition to the above life history patterns, our analysis of

stomach content revealed a very clear difference in prey utilization

by lake and stream stickleback, despite the modest sample sizes. In

particular, our pelagic sample showed clearly that LC stickleback

forage on zooplankton outside the breeding grounds; the stomachs

of these specimens contained exclusively small pelagic crustacea

(Table 2). By contrast, the stomachs of the stream fish contained

exclusively benthic prey (predominantly chironomid larvae and

benthic cladocera), highly consistent with data from streams on

Vancouver Island [43]. Similar benthic prey was also found in the

lake fish collected on (littoral) breeding grounds, indicating

a reproductive shift in foraging mode in stickleback residing

within LC.

Table 2. Stomach content of stickleback from the Lake Constance offshore site, and from the lake and stream site in the COW
system.

Pelagic Pelagic or benthic Benthic

Cladocera1 Copepods Cladocera2 Other crustacea3
Vermiform insect
larvae4

Other insect
larvae5 Stickleback eggs

Lake offshore 0.34 (0.21) 0.66 (0.21) – – – – –

COW lake 0.01 (0.02) 0.07 (0.1) 0.33 (0.29) 0.03 (0.08) 0.42 (0.37) 0.15 (0.24) 0.03 (0.11)

COW stream – 0.17 (0.18) 0.2 (0.25) – 0.57 (0.27) 0.06 (0.08) 0.09 (0.2)

1Daphnia, Ceriodaphnia, Bosmina.
2Chydoridae.
3mainly Ostracoda.
4Chironomidae, Ceratopogonidae.
5mainly Ephemeroptera and Plecoptera.
The values represent the proportion of the total prey items accounted for by each prey class, averaged across individuals within each site (standard deviation in
parentheses). The copepods category subsumes pelagic, benthic, and/or generalist taxa difficult to distinguish; strictly pelagic calanoid copepods, however, were found
in the offshore lake specimens only. Sample size is 5, 20, and 7 for offshore, COW lake, and COW stream.
doi:10.1371/journal.pone.0050620.t002
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In all three new lake-stream systems subjected to lateral plate

morph analysis (CON, COE, COS1), we found a trend toward

plate reduction in the stream as compared to the lake where fully

plated fish predominated clearly. The shift in plate morph

frequency was particularly striking in the COE system

(P= 0.0001), paralleling a similar pattern found previously in the

COW system [44] (details given in Appendix S1). However, we

found no relationship between plate morph and body size at

reproduction in any of the three investigated stream samples

(CON, COE, COW; all P.=0.35).

Genetics
A striking pattern revealed by our eight microsatellite markers

was the absence of population structure among the four geo-

graphically distant LC samples. None of the six total pairwise FST
values among these lake samples exceeded 0.01 (all P.=0.07)

(Table 3). Genetic differentiation within the lake-stream pairs was

mostly modest as well, but sometimes reached substantial values

despite a much shorter geographic distance between the paired

lake and stream sites than among the lake sites (COE: FST= 0.18,

P= 0.001; COS2: FST= 0.08, P = 0.001). Microsatellite differen-

tiation among the stream samples was generally substantial, with

FST averaging 0.10 (all P,0.004 except CON-COS1, P= 0.13).

Furthermore, our Rhine sample (RHI) displayed strong differen-

tiation from all samples in the LC basin (FST = 0.16–0.29), whereas

differentiation between the Danube sample (DAN) and stickleback

from the LC basin was rather low. For instance, all five

comparisons between DAN and LC samples produced

FST ,=0.04 (P= 0.001–0.023).

The results from the STRUCTURE analysis agreed well with

the FST-based patterns. First, analyzing each system separately,

STRUCTURE identified the system displaying the highest lake-

stream differentiation (COE) as consisting of two genetically

distinct populations. The four other systems qualified as a single

population (details not presented). Analyzing all 11 samples

together suggested two distinct genetic clusters. The first cluster

involved RHI and the stream site of COE, the second involved all

other populations from the LC basin plus the DAN sample.

Figure 2. Age and body size at reproduction in lake and stream
stickleback from the Lake Constance basin. The top panels show
body size (quantified as landmark-based centroid size) histograms for
each lake-stream system separately, with the lake data pointing upward
and the stream data pointing downward. Proportions are shaded
according to age class; individuals in their second, third, and fourth
calendar year are drawn in light gray, dark gray, and black. The bottom
panel follows the same drawing conventions, except that here the data
are pooled across all systems within each habitat type, and smoothed

by LOESS (locally weighted scatterplot smoothing) for each age class
separately. Note the striking shift toward greater age and size at
reproduction in lake stickleback as compared to their conspecifics from
streams.
doi:10.1371/journal.pone.0050620.g002

Figure 3. Fecundity in relation to body size in female
stickleback from Lake Constance and its tributary streams.
Fecundity is expressed as number of eggs per clutch. Within each
habitat class, samples were pooled across different locations (lake:
N= 22; stream: N= 11).
doi:10.1371/journal.pone.0050620.g003
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However, the STRUCTURE algorithm can perform poorly when

faced with highly imbalanced sample sizes [100]. Indeed, most

samples from the LC basin were genetically so similar that they

essentially formed one single large sample, which probably caused

RHI and COE stream to cluster together despite strong genetic

differentiation (FST = 0.16). However, when analyzing only RHI,

COE stream, and a single lake sample together, three distinct

populations were indicated, as expected based on FST.

Our mitochondrial D-loop sequencing identified six total SNPs,

defining five distinct haplotypes (Fig. 5). One of these haplotypes

was clearly predominant; it was either the only one discovered, or

at least very frequent, in all samples from the LC basin. Notably,

this haplotype was also the only one found in the DAN sample. By

contrast, all individuals from RHI exhibited a different haplotype

shared only with some individuals from three stream samples of

the LC basin. Three additional haplotypes occurred at low

frequency, mainly in stream fish.

Discussion

Life History Divergence and Implications for
Reproductive Isolation
Divergence in life history traits might strongly contribute to

reproductive isolation, and yet its role in speciation is little

explored. We here investigated life history in stickleback residing

in Lake Constance and multiple tributary streams, revealing

dramatic divergence between the two habitats: lake fish reproduce

at much greater age and size than their conspecifics in the streams,

Figure 4. Body size at reproduction in the global stickleback populations from lake, stream, and marine habitats. Samples from the
Lake Constance basin are pooled for each habitat type (further details on the samples are given in the text). Error bars are one standard deviation in
each direction. The shaded boxes behind the symbols indicate the body size range spanned by the standard deviations in each habitat. Note the low
variance in population mean size among the stream populations as compared to lake and marine fish.
doi:10.1371/journal.pone.0050620.g004

Table 3. Pairwise genetic differentiation among the nine lake and stream stickleback samples from the Lake Constance basin, and
the two solitary samples, based on eight microsatellite markers.

CON
lake

CON
stream

COE
lake

COE
stream

COS
lake

COS1
stream

COS2
stream

COW
lake

COW
stream RHI DAN

CON lake 0.00
(0.676)

0.01 (0.071) 0.18 (0.001) 0.01 (0.240) 0.02 (0.041) 0.10 (0.001) 0.00
(0.305)

0.05 (0.001) 0.27 (0.001) 0.03 (0.002)

CON stream 0.00 0.00 (0.587) 0.15 (0.001) 0.00 (0.386) 0.01 (0.132) 0.06 (0.001) 0.00 (0.759) 0.03 (0.004) 0.25 (0.001) 0.02 (0.011)

COE lake 0.02 0.00 0.18 (0.001) 0.00 (0.543) 0.02 (0.003) 0.07 (0.001) 0.00 (0.744) 0.04 (0.001) 0.28 (0.001) 0.03 (0.001)

COE stream 0.55 0.46 0.50 0.20 (0.001) 0.17 (0.001) 0.21 (0.001) 0.17 (0.001) 0.13 (0.001) 0.16 (0.001) 0.17 (0.001)

COS lake 0.02 0.00 0.00 0.56 0.01 (0.160) 0.08 (0.001) 0.00 (0.478) 0.03 (0.001) 0.28 (0.001) 0.04 (0.001)

COS1 stream 0.05 0.02 0.05 0.47 0.02 0.06 (0.001) 0.02 (0.053) 0.03 (0.002) 0.24 (0.001) 0.08 (0.001)

COS2 stream 0.22 0.13 0.15 0.52 0.17 0.12 0.08 (0.001) 0.11 (0.001) 0.29 (0.001) 0.12 (0.001)

COW lake 0.00 0.00 0.00 0.48 0.00 0.05 0.17 0.02 (0.007) 0.26 (0.001) 0.02 (0.023)

COW stream 0.13 0.08 0.10 0.40 0.07 0.07 0.25 0.05 0.21 (0.001) 0.06 (0.001)

RHI 0.69 0.64 0.66 0.46 0.66 0.56 0.62 0.62 0.54 0.26 (0.001)

DAN 0.08 0.05 0.07 0.50 0.00 0.19 0.27 0.05 0.16 0.65

The upper semimatrix gives Weir & Cockerham’s FST estimator [87], with P-values based on 999 permutations in parentheses (bold if P,0.01). The lower semimatrix
presents FST standardized by the maximum differentiation possible given the observed magnitudes of within-population heterozygosity [89].
doi:10.1371/journal.pone.0050620.t003
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and these patterns coincide with much greater fecundity in females

from the lake. These findings parallel concurrent shifts in age and

size at reproduction and in reproductive investment reported from

North American lake populations [52,55,56]. The only life history

trait that proved stable between lake and stream stickleback was

egg size, possibly indicating similar stabilizing offspring viability

selection in both habitats [101,102].

Divergence in age and size at reproduction was highly

consistent across multiple replicate habitat pairs in the LC basin,

and our genetic data indicate clearly that this results from repeated

evolution in stream stickleback. The reason is that the stream

samples consistently displayed strong mutual microsatellite differ-

entiation, contrary to the lake samples exhibiting negligible

differentiation. This pattern clearly rules out the possibility that

the different stream populations originate from a common

ancestral stream stickleback population. Moreover, the rare D-

loop haplotypes found in the LC basin were mostly unique to

specific stream samples (Fig. 5), consistent with independent

founder events (i.e., haplotype frequency shifts caused by strong

genetic drift in the small stream founder populations). Together,

our life history and genetic data thus argue strongly for the

independent colonization of the different tributaries by an

essentially panmictic LC population, followed by repeated life

history evolution in stream stickleback.

Given the great magnitude of lake-stream divergence in body

size, and the general importance of this trait in mate choice and

male aggressive interactions in the species [59–61,63–66], the

observed life history shifts might well contribute to reducing gene

flow across the lake-stream habitat transitions. Indeed, our FST-

based analysis revealed substantial lake-stream differentiation

within some systems (with values reaching 0.18), and STRUC-

TURE identified two distinct populations in one of them. This

allows us to infer the presence of strong reproductive barriers at

a small spatial scale, consistent with findings from lake-stream

systems in Pacific North America [12,46,49,50]. Note that the weak
marker divergence seen in some of our systems (CON, COS1; FST
,=0.01) does not conflict with this conclusion; because the

colonization of the LC basin is presumably relatively recent (see

below), detecting reproductive isolation with neutral markers is

expected to be difficult [44,103]. The presence of effective habitat-

related reproductive barriers is also supported by the consistent

and sometimes substantial (COE, COW) lake-stream divergence

in plate morph frequency (Appendix S1). This divergence has

a strong genetic basis [44] and would not have arisen, or be

maintained, in the absence of effective barriers to gene flow.

Nevertheless, the extent to which the observed lake-stream shifts in

life history actually contribute to reproductive isolation cannot be

evaluated based on the present data.

Mechanisms of Life History Divergence
In many organisms, the transition of resource allocation from

growth to reproductive life is governed by critical maturation size

thresholds (reviewed in [104,105]). Although not investigated in

detail, this seems to hold for stickleback as well [106,107]: as long

as an individual has not attained this threshold, environmental

cues signalling spring conditions will not trigger maturation and

reproductive behavior. On the basis of this maturation control, we

propose two not mutually exclusive hypotheses explaining life

history divergence in lake-stream stickleback in the LC basin. First,

assuming similar growth rates in both habitats, lake fish might

exhibit a relatively higher maturation size threshold (due to genetic

divergence and/or phenotypic plasticity) that they generally

cannot attain within one year. Only after two years of growth,

lake fish would exceed their maturation threshold and start

reproducing – and at that time also be much larger than the

stream fish reaching their threshold size within one year [105].

This hypothesis is plausible: body size divergence among

populations of ninespine stickleback is attributable to genetically-

based divergence in maturation size thresholds [108,109].

Alternatively, maturation size thresholds might be similar

among the populations, but growth rates might be lower in lake

fish than in tributary stream populations (again due to genetic

divergence, phenotypic plasticity, or both). The consequence

would be the same as above: lake fish would require two years of

growth to attain their maturation threshold, but mature larger

[105]. Indeed, our study provides evidence of differential growth

rates between the habitats. As the analysis of stomach content

suggests, stickleback inhabiting LC exploit exclusively zooplankton

prey outside the breeding grounds. These fish are also an

occasional by-catch in off-shore drift nets (personal communica-

tions from LC fishermen), and are absent from littoral habitat

outside the breeding season (D. Moser, personal observation).

Moreover, for a freshwater population, stickleback in LC display

extremely long gill rakers [44], a character state generally

associated with zooplankton exploitation [110] and typical of

pelagic marine stickleback [76]. Stickleback residing within LC

thus display a pelagic life style, with a foraging niche shift during

the reproductive period (see also [80]). Note also that the LC fish

provide a rare example of a freshwater population almost fixed for

the full lateral plate morph (Appendix S1), a phenotype pre-

sumably favored in pelagic populations highly exposed to

vertebrate predation [111]. (We found no evidence, however, for

a direct relationship between plate phenotype and life history

traits.).

By contrast, stream populations in the LC basin exploit

exclusively benthic resources. Within the LC basin, we thus find

similarly strong divergence in foraging modes as seen in the most

ecologically divergent lake-stream pairs on Vancouver Island,

Canada [12,43,49]. This difference in resource use might directly

induce differential growth performance between the habitats, as

benthic foraging generally seems to allow for a higher growth rate

than pelagic foraging [112,113]. Direct evidence for divergence in

growth rates comes from a small sample of juvenile stickleback

captured during the breeding season at the edge of the breeding

ground at the COE lake site (non-reproductive status was

confirmed by dissection; testes and ovaries were poorly developed).

These fish displayed body sizes clearly below those of stream

stickleback (43–49 mm, N=3), and yet otolith analysis confirmed

that they were already one year old (data presented in Table S1). It

Figure 5. Haplotype network for the lake-stream stickleback
pairs in the Lake Constance basin and the solitary populations.
The network is based on six single nucleotide polymorphisms in the
mitochondrial D-loop. The numbers give the total count for each
haplotype. Color codes are as in Fig. 1.
doi:10.1371/journal.pone.0050620.g005
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thus appears plausible that a lower growth rate in lake stickleback,

induced by a relatively poor pelagic resource base, underlies the

lake-stream divergence in life history observed within the LC basin

(acknowledging the possibility that differential growth rates in the

two habitats has a genetic component).

The direct induction or genetically based evolution of an annual

life cycle in response to more profitable benthic resources in

streams would explain the relatively low variance in average body

size across stream populations from different geographic regions

(Fig. 4). The reason is that the resource spectrum used by stream

stickleback is highly consistent across global populations, while

lake populations are more variable in resource use [12,43,49,114].

If variation in population mean size was (at least partly)

a consequence of resource-dependent variation in growth rate,

we would indeed expect lake population means to be more

variable than stream means. We note, however, that small-sized
lake populations are not necessarily benthic-foraging. For instance,

the lake population with the smallest average size in Fig. 4 (Pye

Lake, Vancouver Island) exploits a strictly pelagic food base [43].

Hence, factors other than food resources (e.g., predation [57,58])

likely contribute to the presumably greater life history diversity in

lake (and perhaps marine) stickleback than in stream stickleback.

Body size divergence through resource-mediated plasticity in

growth rate might play a particularly important role in re-

productive isolation. The reason is that this divergence would

occur, and potentially influence sexual interactions, within a single
generation after the colonization of a stream by lake fish [35,36]. It

would therefore be crucial to quantify environmental and genetic

contributions to life history divergence in stickleback from the LC

basin and elsewhere.

Origin of Stickleback in the Lake Constance Basin
Consistent with a previous population genetic investigation [69],

our genetic analyses indicate that the populations in the LC basin

do not originate from colonization by stickleback residing in the

Rhine downstream of LC. However, we find that stickleback in the

LC basin are genetically very closely related to those occurring in

the nearby Danube drainage: pairwise differentiation between

Lake Constance samples and DAN was consistently low (FST
,=0.04), and the only D-loop haplotype found in DAN was the

one also predominant in the LC basin. Is it possible that LC

stickleback derive from a source population from the Black Sea

region that colonized naturally via the Danube? A population

genetic study in European perch (Perca fluviatilis) [71] and

geological data [115] suggest the existence of such a temporary

colonization route during the last glacial retreat. In fact,

a connection between the Danube drainage and the LC basin

still persists today, as the source of the stream sampled at the CON

stream site is formed by water captured from the Danube

headwaters through a sinkhole and a 12 km underground stream

[116]. Whether this allows for fish dispersal has not been

investigated.

A scenario of colonization via the Danube, however, is

challenged by the absence of stickleback from the entire Danube

drainage reported in the nineteenth century ([70], p. 319; the

species was already present in the LC basin at that time), although

the reliability of this information is unknown. Moreover, stream-

resident stickleback are generally low-plated (e.g., [38,42,117–

119]). The incomplete shifts toward the low-plated morph in our

stream samples from the LC basin, along with the low haplotype

diversity within the basin, might thus be taken as tentative support

of a relatively recent origin, perhaps due to human introduction.

More extensive phylogeographic data from Central and Eastern

European populations are needed for a better understanding of the

origin and age of stickleback in the LC basin and the Danube

drainage.

Conclusions
We have shown strong, repeated, and possibly rapid life history

divergence between lake and stream stickleback in the Lake

Constance basin, sometimes coinciding with substantial differen-

tiation in neutral markers. Our comparison of body size patterns

across global populations and habitats, combined with data from

other stickleback systems, further suggests that life history di-

vergence is very common in this species. Our study opens up

several important avenues for further investigation: first, experi-

mental work should uncover the mechanistic basis of life history

shifts; are they due to differences in maturation size thresholds, in

growth rate, or both? Second, the relative contribution of

phenotypic plasticity versus genetic change to life history divergence
should be quantified, and the ecological basis of divergence (e.g.,

contrasting trophic environments, differential predation regimes)

should be identified. Finally, great efforts will be needed to

understand whether life history divergence is primarily an aspect

of adaptive divergence facilitated by already existing barriers to

gene flow, or whether life history divergence itself is a major source

of reproductive isolation between lake and stream populations.
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Supporting Tables S1-S3 to Moser et al. (2012) can be obtained online under: 
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0.2 mm

4th cy2nd cy 3rd cy

 

Representative sagittal otoliths of stickleback from Lake Constance in their second, 

third, and fourth calendar year (cy), photographed at 50x magnification. The dark 

(transparent) ring zones, accreted in spring [72] and used for age determination, are 

indicated by white arrows. 
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Representative male stickleback from COW lake (bottom) and COW stream 
(top). Photo credit: Daniel Berner. 
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Proportion of fully (F), partially (P), and low-plated (L) stickleback morphs in the five 

lake-stream pairs (A; lake samples on top, stream samples on the bottom), and in the 

two solitary stream-resident populations (B). Sample site codes are given in Table 1. 

P-values are from permutation tests for lake-stream shifts in plate morph frequency 

within each system. Note the general trend toward plate reduction in the stream 

samples as compared to the lake samples. P-values and plate morph frequencies for 

the COW and COS2 system already investigated previously [44] are slightly different 

from those reported in that study because of random permutation, and because the 

present study analyzed subsamples of the previous study. 
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Abstract The Midas Cichlid species complex

(Amphilophus spp.) in Central America serves as a

prominent model system to study sympatric speciation

and parallel adaptive radiation, since small arrays of

equivalent ecotype morphs have evolved independently

in different crater lakes. While the taxonomy and

evolutionary history of the different species are well

resolved, little is known about basic ecological param-

eters of Midas Cichlid assemblages. Here, we use a line

transect survey to investigate the depth-dependent abun-

dance of Amphilophus spp. along the shores of two

Nicaraguan crater lakes, Apoyo and Xiloá. We find a

considerable higher density of Midas cichlids in Lake

Xiloá as compared to Lake Apoyo, especially at the

shallowest depth level. This might be due to the higher

eutrophication level of Lake Xiloá and associated

differences in food availability, and/or the presence of a

greater diversity of niches in that lake. In any case,

convergent forms evolved despite noticeable differences

in size, age, eutrophication level, and carrying capacity.

Further, our data provide abundance and density esti-

mates for Midas Cichlid fish, which serve as baseline for

future surveys of these ecosystems and are also relevant

to past and future modeling of ecological speciation.

Keywords Sympatric speciation �
Parallel adaptive radiation � Fish density estimates �
Crater Lake Apoyo � Crater Lake Xiloá � Ecology

Introduction

The species flocks of cichlid fishes in the East African

Great Lakes Victoria, Malawi, and Tanganyika are

prime model systems in evolutionary biology and,

particularly, in research focusing on speciation,
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adaptive radiation, and parallel evolution (reviewed in

Kocher, 2004; Salzburger, 2009; Sturmbauer et al.,

2011). One of the most outstanding features of the East

African cichlid assemblages is their species richness,

with each of the Great Lakes harboring hundreds of

endemic species. The downside of this unparalleled

diversity is that these species flocks are notoriously

difficult to study in their entirety, which makes it

attractive to study simpler cichlid communities in

smaller water bodies. In the last years surveys of crater

lakes cichlids proved especially fruitful, mostly due to

the degree of isolation of their cichlid assemblages

(Schliewen et al., 1994; Barluenga & Meyer, 2004;

Barluenga et al., 2006). The probably best-studied

cichlids in volcanic crater lakes belong to the Midas

Cichlid species complex (Amphilophus spp.), which is

native to Central America. Midas cichlids are abun-

dant in the large lakes of Nicaragua (Lake Nicaragua

and LakeManagua) and associated rivers in Nicaragua

and northern Costa Rica. Interestingly, Midas Cichlids

have also colonized various volcanic crater lakes in the

area (Barlow, 1976; Barluenga &Meyer, 2004, 2010),

which emerge when calderas of extinct volcanoes of

the ‘Pacific Ring of Fire’ become filled with water.

This study focuses on the Amphilophus assemblages

in two of these crater lakes, Apoyo and Xiloá, which

contain two independent, yet ecologically and morpho-

logically very similar sets of Midas cichlid species

(Elmer et al., 2010; Geiger et al., 2010a). The lakes are

similar in someaspects, such as their volcanic origin, but

they do differ in others (Barlow, 1976; Sussman, 1985;

Waid et al., 1999; McKaye et al., 2002; Barluenga &

Meyer, 2010): With a surface area of 21.1 km2 and a

maximum depth of 142 m, Lake Apoyo is larger and

deeper than Lake Xiloá, which has a surface area of

3.8 km2 and amaximum depth of 89 m (Table 1). Also,

compared to the nutrient-rich Lake Xiloá, Lake Apoyo

is oligotrophic. Furthermore, they differ in the number

of cichlid species. Crater Lake Apoyo is suggested to

harbor six endemic species of theAmphilophus complex

(Barlow, 1976; Stauffer et al., 2008; Geiger et al.,

2010b) (Supplementary Table 1), which most likely go

back to a seeding lineage from adjacent Lake Nicaragua

(Barluenga et al., 2006); together with Parachromis

managuense and the recently introduced African

species Oreochromis aureus and O. niloticus, these

are the only cichlids found in this lake. In Lake Xiloá

three to four endemic species of the Amphilophus

species complex are described (McKaye et al., 2002;

Stauffer & McKaye, 2002) (Supplementary Table 1),

which derive from the close-by Lake Managua stocks

(Barluenga & Meyer, 2010). In addition to the Midas

Cichlid fish, Lake Xiloá is inhabited by eight additional

cichlid species, which either migrated naturally from

nearby Lake Managua, or were introduced by humans,

as might be the case for Parachromis managuense

(Kullander & Hartel, 1997).

Here, we present a comparative study of cichlid

abundance and density estimates in the two Central

American calderas Lake Apoyo and Lake Xiloá. The

set-up consisting of two rather similar crater lakes

seeded independently by more or less the same

ancestral line that subsequently radiated in parallel

appears ideal to disentangle the biotic and abiotic factors

influencing parallel adaptive radiation, particularly

in its early stages. Many adaptive radiations appear

to proceed in discrete stages starting with an initial

diversification into macrohabitats (Streelman &

Danley, 2003; Gavrilets & Losos, 2009), which—in

fishes—is often associated with differentiation along

the benthic-limnetic (pelagic) axis (Schluter & McP-

hail, 1992; Gı́slason et al., 1999; Barluenga et al., 2006;

Rutschmann et al., 2011). That independent adaptive

radiations of the same group of organisms in similar

ecological settings often result in similar morphologies

is generally taken as strong evidence for natural

selection (and the importance of ecology in speciation)

(see Schluter &Nagel, 1995; Losos et al., 1998). On the

other hand, the degree of similarity observed in

convergent species pairs of cichlids has led some

authors to question whether natural selection alone is

sufficient to produce such matching morphologies, or

whether genetic or developmental constraints have

Table 1 General descriptors of size, depth, age, visibility, fish

density, and population size of the crater lakes Apoyo and

Xiloá

Apoyo Xiloá

Surface area (km2) 21.1a 3.8a

Maximum depth (m) 142a 89a

Age (year) \23.000a ca. 10.000a

Secchi depth (m) 5–7 3

Cichlid density along shore

(individuals per 10 m transect)

11.3 19.9

Total number of Amphilophus spp.
along shore (estimated)

83.000 66.000

a Barluenga & Meyer (2010)
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contributed to the evolution of convergent forms (see,

e.g., Brakefield, 2006). Even in the genomic era it is

difficult to determine the relative contribution of natural

selection and developmental channeling to parallel

evolution. One possibility is to apply genetic and

genomic experiments (reviewed in: Brakefield, 2006;

Arendt & Reznick, 2008). In addition, one should

inspect parallel radiationswith respect to key ecological

parameters. Under the assumption that ecology is the

driving force behind parallel adaptive radiation, it is

expected that not only the outcome of the radiations

should be the same, but that the radiations should also

follow the same steps and should show the same

(ecological) characteristics. In the case of the parallel

radiations of the Midas Cichlid in crater lakes Apoyo

and Xiloá, the outcome in form of morphologically

equivalent species is obviously quite similar (Fig. 1)

and there is evidence that the radiations progressed in a

similar fashion (Barluenga et al., 2006; Barluenga &

Meyer, 2010; Elmer et al., 2010). It is not known,

however, whether the communities in the seemingly

similar crater lakes Apoyo and Xiloá are also similar in

terms of ecological parameters such as fish densities

and depth distributions.

In this study, we applied transect surveys to record

the abundance of Amphilophus spp. in crater lakes

Apoyo and Xiloá. Applying SCUBA diving and

snorkeling, fish were counted at different locations

and depth levels to provide data on densities of

cichlids in both lakes. We hypothesized that the

Fig. 1 Convergent phenotypes that evolved independently in

the two Nicaraguan crater lakes Apoyo and Xiloá. Three species

pairs are shown: benthic species using the shallow areas of the

lakes; benthic species using the deeper areas of the lakes; and

limnetic species inhabiting the open water column

Hydrobiologia (2012) 686:277–285 279
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density and distribution of Midas cichlids should be

rather similar in both crater lakes due to their similar

mode of origin and structure. In addition, this study

aims to add ecological data in the form of abundance

estimates for Amphilophus spp. to theoretical studies

on sympatric and/or ecological speciation. Gavrilets

et al. (2007), for example, investigated under which

biological conditions rapid colonization of a new

niche followed by sympatric or parapatric speciation

in Lake Apoyo is theoretically possible. However, in

their models, Gavrilets et al. (2007) were lacking

empirical data on several important biological param-

eters (including abundance estimates). Finally, knowl-

edge of the natural abundance of a population, species,

or species group is fundamental not only to biological

research but also to the management of wildlife

populations. This is important in the case of crater

lakes Apoyo and Xiloá, too, where cichlid fishes make

up the main fraction of the ichthyofauna and provide a

valuable food resource for local people (Schuster,

1957; Lin, 1961; Barlow, 1976). Importantly, through

the recent introduction of African tilapiine cichlid

species (Oreochromis spp.), the endemic cichlids of

Lake Apoyo are thought to be threatened (McKaye

et al., 1995; McCrary et al., 2001; Barluenga &Meyer,

2004), calling for an evaluation of the conservation

status of the endemic faunas in the two crater lakes.

Our data should, thus, provide important baseline

references, with which upcoming impacts on the

native cichlid abundance can be assessed.

Materials and methods

Study area and period

Field work was carried out in the two crater lakes

Apoyo and Xiloá in Nicaragua, Central America, in

September 2009. Diving was performed during the

day by almost invariably good weather conditions. At

the time of the study, water temperatures ranged

between 29 and 31�C on all surveyed depth levels in

both lakes. Transect sites were chosen randomly in

both lakes, balanced, however, for different geograph-

ical locations within each lake (Supplementary

Table 2). As crater lakes have a relatively homoge-

nous habitat structure, the transects are representative

of the habitat composition in each lake.

Transect surveys

We used fish counts along line transects to compare

the depth-dependent abundance and density of Am-

philophus spp. between the two lakes. Six transects

were studied in the larger Lake Apoyo and four

transects in the smaller Lake Xiloá. The start and end

coordinates of each transect were taken with a

handheld GPS from a boat (Supplementary Table 2).

Depth levels at 10, 15, and 20 mwere covered for each

transects by a SCUBA diving buddy pair, whereas the

5 m depth level was covered by snorkelers (whenever

the visibility was sufficient).

Transect length was determined by the distance

covered during 10–15 min of diving (depending on the

available air). Diving pace was moderate but varied

between transects according to visibility and the quan-

tity of fish that had to be counted, leading to variation in

the lengths of the different transects. After having

covered a transect one way, buddy pairs remained at

their set depth level for 10 min to leave enough time for

the fish to restore an undisturbed distribution. The end of

each transect was marked with a buoy, which enabled

the recording of the GPS coordinates. Buddy pairs then

returned along the line transect back to the starting point.

Diving was performed at 2 m above the substrate

whereby dive buddies were swimming beside each

other, individually counting all Amphilophus spp.

individuals larger than ca. 5 cm within a visual field of

about 4 m distance and 2 m to either side of the transect

line. Snorkelers covering the 5 m depth used the same

method and tried to remain at a depth of 3 m asmuch as

possible. Owing to the difficulty to clearly identify

species in sub-adult or non-breeding life stages under-

water and the ongoing debate and steady changes in

species classification, the overall number of Amphilo-

phus spp. individuals was counted and no attempts were

made to distinguish species, hybrids, or morphotypes

(e.g., Barlow, 1976; McKaye et al., 2002; Bunje et al.,

2007; Stauffer et al., 2008). In this visual survey a

minimal bias among and within observers is expected

due to individual survey differences (Thompson &

Mapstone, 1997). To remove such potential confound-

ing effects, observers alternated between different depth

levels and in buddy pair partners at consecutive

transects. The total number of dives over all transects

was 36 (including each two persons diving back and

forth), resulting in 144 single transect records.
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In addition, Secchi depth measurements were taken

from a boat to determine the water transparency at

several random locations in both lakes.

Data analysis

To determine the average number of Amphilophus spp.

individuals for every transect at each depth level

separately, we averaged the fish counts by the two

buddy team partners including the replicates from

diving back and forth (Supplementary Table 3). We

then calculated the average numbers of individuals per

10 m transect length for each depth level for every

transect (Fig. 2), which we tested for normal distribu-

tion by applying a Shapiro–Wilk test. Using this data

we tested for an overall difference in the density of

Amphilophus spp. between lakes using Mann–Whit-

ney U tests. We further applied a linear mixed model

(LMM, LME4 package, Bates et al., 2011) to test for a

difference in number and depth-distribution of indi-

viduals between the lakes by including the number of

individuals counted per 10 m as the dependent vari-

able, and lake and depth level as predictors. Assump-

tions of the LMM were visually checked. Since we

assumed a potential difference in the depth-distribu-

tion of individuals between lakes, we included the

interaction of lake and depth in the model. Further-

more, to correct for dependence in our data, we

included transect as random factor. To further explore

the data for effects not captured by the LMM, we

applied separate Mann–Whitney U Tests for each

depth level to test for depth-dependent differences in

fish abundance between lakes. To roughly estimate the

total number of Midas cichlids for both lakes, the

numbers of fish per 10 mwere extrapolated to the total

circumference of the lake. This was calculated by

summing up the average number of individuals at all

four depth levels (Suppl. Table 3) multiplied by the

circumference of the lake. All analyses was performed

using R 2.9.2 (R Foundation for Statistical Computing,

Vienna, Austria).

Results

The average number of Amphilophus spp. individuals

per 10 m transect length in Apoyo across all transects

and depth levels was 11.3 (min = 0, max = 37,

SD = 9.5), which did not differ significantly from

Lake Xiloá with 19.9 fish per 10 m transect length

(min = 3, max = 55, SD = 15.7) (Mann–Whitney U

test, N = 36, p = 0.112). The LMM did not reveal a

significant interaction between lake and depth

(t = 0.1692, p = 0.169) (Fig. 2). However, testing

for single depth levels between the lakes revealed a

marginally significant difference at the 5 m depth

level (Mann–Whitney U test, N = 10, W = 18,

p = 0.050). The pairwise comparison of numbers of

fish per 10 m transect at the other depth levels

exhibited no significant difference between the lakes

(Mann–Whitney U test, 10 m: N = 10, p = 0.394;

15 m: N = 10, p = 0.796; 20 m: N = 8, p = 0.180).

Extrapolating the average number of Amphilophus

spp. individuals of all transects and depth levels to the

total circumference in both lakes (Apoyo approx.

18.2 km; Xiloá approx. 8.3 km) revealed a similar

Fig. 2 Average number of

Amphilophus spp.
individuals per 10 m

transect at each depth level

for Lake Xiloá and Lake

Apoyo. ‘‘*’’ denotes a

marginally significant

difference in cichlid fish

density between the lakes

(Mann–Whitney U test,

N = 10, p = 0.050)

Hydrobiologia (2012) 686:277–285 281

123



266

total number of fish in both lakes along the shoreline:

ca. 83.000 individuals (13.000 to 150.000) in Lake

Apoyo and ca. 66.000 individuals (13.000 to 120.000)

in Lake Xiloá.

The Secchi depth, measured randomly several

times in both lakes, ranged between 5 and 7 m in

Lake Apoyo, compared to an approximately constant

Secchi depth of 3 m in Lake Xiloá.

Discussion

Benefits of fish abundance estimates are diverse. The

comparison of fish abundances between comparable

ecosystems (e.g., between lakes) that differ in only few

and well-defined ecological factors, allows to draw

general conclusions on the possible impact of these

factors on fish abundances and the composition and

evolution of communities. This is especially the case

when members of the same lineage radiated in

parallel. Furthermore, in conservation biology and

wildlife management, for example, changes in abun-

dance of a fish species or population in a specific area

may give an estimate for its ‘‘ecological health’’. This

allows to define appropriate conservation strategies as

well as to evaluate the (long-term) effects of habitat or

species-specific conservation actions (Cheal &

Thompson, 1997; Witmer, 2005). To estimate the

impact of naturally induced (e.g., by a hurricane) or

human-induced (e.g., by industrial fishery) changes on

fish abundance, a baseline abundance needs to be

established against which future levels of impact can

be assessed (Jennings & Blanchard, 2004; Silvano

et al., 2009). Then, abundance estimates are valuable

to evaluate the relative importance and status of a fish

species in an ecosystem, such as in a predator–prey

relationship in the food web. Finally, mathematical

modeling in fields such as evolutionary biology

provides more accurate, theoretical insights into

biological processes. Most often, however, theoretical

approaches lack data from empirical work such as

abundance estimates that would allow to make

biologically reasonable assumptions and to apply

mathematical models to particular case studies (see,

e.g., Gavrilets et al., 2007).

The above reasons have been the motivation for this

comparative study of Midas cichlid fish (Amphilophus

spp.) abundance and density estimates in the two

comparable Nicaraguan crater lakes, Apoyo and

Xiloá. Despite the lack of statistical significance, our

data reveal an almost twofold higher density of cichlid

fish along the shoreline in Lake Xiloá as compared to

Lake Apoyo. At a depth of 5 m, we found a more than

fourfold higher density of Midas cichlids in Lake

Xiloá (Fig. 2). Overall, however, as a consequence of

the higher density of fish in the smaller lake Xiloá, the

absolute numbers of Amphilophus spp. are relatively

similar in both lakes—at least along the shore habitat

covered by our survey.

Differences in food availability could explain the

different densities of Amphilophus spp. between the

two crater lakes. Indeed, the two lakes differ in their

level of eutrophication: Lake Apoyo is an oligotrophic

environment, whereas Lake Xiloá is relatively more

eutrophic. But why would higher fish densities then

only be found at shallow areas and not throughout

Lake Xiloá? Eutrophication leads to a considerable

reduction of ambient light at deeper waters (e.g. Koch,

2001), which can restrict photosynthesis to the shallow

waters where sufficient ambient light is available for

primary production (see Secchi depth in Table 1). This

can directly (e.g., algae-feeders) or indirectly (e.g.,

through the food web) lead to higher fish densities in

the shallow area. Higher fish densities in more turbid

waters may also be explained by the reduced perfor-

mance of predators, such as birds, which under turbid

conditions have more difficulties to spot fish. It has

previously been shown that reduced visibility can

influence color-recognition in cichlids, and, hence,

may have an impact on intraspecific (and interspecific)

species recognition and communication (see, e.g.,

Seehausen, 1997, 2008). Whether this is also the case

in Nicaraguan crater lakes remains to be tested.

An alternative explanation for the higher density of

cichlids in Lake Xiloá could be the availability of

ecologically more diverse niches in this lake, e.g., in

the shallow area where differences in the densities of

Amphilophus spp. are greatest. This could also explain

the higher variance in fish counts at the 5 m depth

level in Lake Xiloá compared to the other depth levels.

Perhaps it is a combination of both factors, eutrophi-

cation and habitat complexity, that leads to higher fish

densities in Lake Xiloá. A more thorough analysis of

the habitat structure would be necessary to clarify this

point. Furthermore, there is no knowledge on fish

densities in deeper and open waters, which would

allow a comprehensive comparison of both lakes.

Such fish counts at deeper waters seem particularly
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interesting, since we observed a distinct and clear

water layer below a depth of 35 m in Lake Xiloá.

Crater lakes Apoyo and Xiloá are inhabited by a

similar set of convergent Amphilophus ecotype mor-

phs (Fig. 1) making the Midas Cichlid complex an

ideal system to study parallel evolution (see, e.g.,

McKaye et al., 2002; Barluenga et al., 2006; Elmer

et al., 2010). While taxonomy, morphology, and

evolutionary history of the species complex is largely

resolved (see Barluenga et al., 2006; Barluenga &

Meyer, 2010; Elmer et al., 2010; Geiger et al., 2010a,

b), little is known about basic ecological parameters

such as the relative densities of the different species.

Our study is the first to provide such data. We uncover

a rather similar overall number of Amphilophus spp.

individuals in both lakes, but also account differences

in densities, especially in the shallow area (see above).

Interestingly, the shallow areas of Lake Xiloá are not

only characterized by larger densities of Midas

cichlids, but also by the presence of additional cichlid

species (see Supplementary Table 1). It remains

unclear whether these never arrived in Lake Apoyo

(e.g., because of the larger distance to a large lake), or

whether these could not establish themselves there

(e.g., because of the eutrophic situation). In any case,

convergent phenotypes evolved in both crater lakes

despite noticeable differences in size and age of the

respective lake (see Table 1), in community structure

(the presence/absence of other cichlid species; Sup-

plementary Table 1), and in fish densities (Fig. 2).

This corroborates the view that the initial steps of

ecological speciation in fish species flocks follow

similar pathways in form of a splitting into benthic and

limnetic types (see, e.g., Schluter & McPhail, 1992;

Salzburger, 2009), which does not seem to be depen-

dent on phylogenetic background and parameters such

as size or age of a lake or level of eutrophication.

Apparently, it is enough that a benthic-limnetic axis is

present in a lake (see Barluenga et al., 2006).

The Midas cichlid fauna from Lake Apoyo repre-

sents one of the most famous examples for sympatric

speciation (Barluenga et al., 2006), and has attracted

theoretical modeling work. Gavrilets et al. (2007), for

example, investigated whether at all and under which

ecological conditions sympatric speciation is likely to

have occurred in lake Apoyo. One of the parameters

incorporated into the model of Gavrilets et al. (2007)

was the carrying capacity (K) of Lake Apoyo.

Carrying capacity stands for the maximum number

of individuals that can live in a particular environment

given the available nutrients and without causing

detrimental effects. Gavrilets et al. (2007) concluded

that intermediate carrying capacities (K = 16.000) are

propensive for sympatric speciation, whereas large

carrying capacities (K = 32.000–51.200, depending

on the model) would rather lead to the evolution of a

single, generalistic species. Our estimates of K (ca.

83.000 and ca. 66.000 individuals in Lakes Apoyo and

Xiloá, respectively) lie above these numbers, although

these estimates refer to counts at four depth levels

along the shoreline only and nothing is known about

fish densities below 20 m. One also has to consider

that Gavrilets et al. (2007) assumed the presence of a

single age class (i.e., generation) at a given time. Our

counts certainly included members from different age

classes, although we lack detailed information on age

distribution. Taken together, the carrying capacities

assumed by Gavrilets et al. (2007) to model sympatric

speciation in Lake Apoyo seem to be slightly—

however not substantially—underestimated compared

to our findings and it would now be interesting to

evaluate what effect this has on available models.

Although a reproducing population of invasive

Oreochromis spp. (tilapias) has been reported for Lake

Apoyo in previous studies (McKaye et al., 1995;

McCrary et al., 2001), we did not observe any tilapiine

species during our fieldwork. These African cichlids

were reported to feed on stonewort beds (Chara spp.)

and are likely to account for the temporal elimination

of these algae in Lake Apoyo (McKaye et al., 1995;

McCrary et al., 2001, Canonico et al., 2005). However,

we found extensive stonewort beds in Lake Apoyo.

This suggests that tilapia populations might have

failed to establish permanently in an oligotrophic

environment such as Lake Apoyo.

Conclusions

Our study gives estimates of cichlid fish densities in

two crater lakes in Nicaragua, Apoyo and Xiloá. We

find that parallel ecotype morphs evolved despite

noticeable differences in size, age, eutrophication

level, and carrying capacity. We provide ecological

data for understanding the carrying capacity of the

systems in order to apply it to modeling sympatric/

parapatric speciation. Furthermore, it sets baseline

abundance estimates for cichlid fish in Nicaraguan
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crater lakes, to which future ecological health assess-

ments of these lakes can be compared.
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Supplementary Table 1: Cichlid fish diversity in lakes Apoyo and Xiloá.  

Lake Apoyo – Midas cichlid species (endemic) 

Amphilophus zaliosus Barlow and Munsey 1976�

Amphilophus flaveolus Stauffer et al. 2008 

Amphilophus chancho Stauffer et al. 2008 

Amphilophus astorquii Stauffer et al. 2008 

Amphilophus globosus Geiger et al. 2010 

Amphilophus supercilius Geiger et al. 2010 

 

Lake Apoyo – other cichlid species (introduced) 

Parachromis managuense Kallander 1997 

Oreochromis aureus Steindachner 1864 

Oreochromis niloticus Linnaeus 1758 

 

Lake Xiloá – Midas cichlid species (endemic) 

Amphilophus xiloaensis Stauffer and McKaye 2002 

Amphilophus amarillo Stauffer and McKaye 2002 

Amphilophus sagittae Stauffer and McKaye 2002 

Amphilophus sp. “Fat lips” (Stauffer and McKaye  2002, 

undescribed) 

 

Lake Xiloá – other cichlid species (native) 

Astatoheros longimanus Jordan et al. 1930 

Archocentrus centrarchus Jordan et al. 1930�

Amphilophus rostratus Kullander 1996 

Parachromis dovii Kullander et al. 1997 

Hypsophrys nicaraguensis Kullander et al. 1997 

Parachromis managuense Kullander et al. 1997 

Hypsophrys nematopus Chakrabarty et al. 2007 

Amantitlania siquia Schmitter-Soto 2007 
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Supplementary Table 2: Coordinates and length of the transects in lakes Apoyo and Xiloá. Lengths 

were calculated by measuring start and end coordinates of each transect with a GPS device. 

Lake Transect Start coordinate Length [m] 

Apoyo 

1 11°54,554’ N / 86°02,467’ W 120 

2 11°54,183’ N / 86°01.791’ W 115 

3 11°55,626’ N / 86°00,854’ W 80 

4 11°56,196’ N / 86°01,371’ W 80 

5 11°56,002’ N / 86°03,391’ W 80 

6 11°92,538’ N / 86°05,557’ W 80 

Xiloá 

1 12°23,120’ N / 86°31,857’ W 40 

2 12°23,081’ N / 86°32,259’ W 40 

3 12°21.483’ N / 86°32,548’ W 50 

4 12°21.428’ N / 86°31,510’ W 50 
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Supplementary Table 3: Averaged numbers of cichlid fish per 10 m transect for each transect and 

depth level. Numbers are the averaged fish counts by the two buddy team partners including the 

replicates from diving back and forth. 

Lake Transect 
Depth [m] 

5 10 15 20 total 

Apoyo 

1 - 7.0 6.6 5.7 6.4 

2 12.3 21.7 9.9 13.2 14.3 

3 2.4 23.0 37.3 - 20.9 

4 16.2 21.8 20.4 20.1 19.6 

5 4.3 0.0 0.6 3.2 2.0 

6 1.6 6.9 6.8 7.2 5.6 

total 7.4 14.7 15.0 8.7 11.4 

Xiloá 

1 43.3 12.6 29.1 9.6 23.7 

2 55.0 5.5 - 37.3 32.6 

3 19.4 20.9 11.2 - 17.2 

4 9.7 3.2 6.4 15.1 8.6 

total 31.9 10.6 15.6 20.7 19.7 

 

 

�
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Adaptive radiation (AR) is a key process in the origin of organismal diversity.
However, the evolution of trait disparity in connection with ecological special-
ization is still poorly understood. Available models for vertebrate ARs predict
that diversification occurs in the form of temporal stages driven by different
selective forces. Here, we investigate the AR of cichlid fishes in East African
Lake Tanganyika and use macroevolutionary model fitting to evaluate
whether diversification happened in temporal stages. Six trait complexes, for
which we also provide evidence of their adaptiveness, are analysed with com-
parative methods: body shape, pharyngeal jaw shape, gill raker traits, gut
length, brain weight and body coloration. Overall, we do not find strong evi-
dence for the ‘stages model’ of AR. However, our results suggest that trophic
traits diversify earlier than traits implicated in macrohabitat adaptation and
that sexual communication traits (i.e. coloration) diversify late in the radiation.

1. Introduction
Adaptive radiation (AR) is the rapid diversification of an evolutionary lineage into
an array of species as a consequence of their adaptation to various ecological niches
and is thought to be responsible for a great deal of the taxonomic, morphological
and ecological diversityonEarth [1–3].ARsare triggeredbyecological opportunity
through the colonizationof novel environments or the evolutionof key innovations,
opening up new adaptive zones for organisms to specialize and diversify into [1].
Darwin’s finches on the Galapagos archipelago [4], anole lizards on the islands
of the Caribbean [5] and the species-flock of cichlid fishes in the East African
Great Lakes [6] are famous examples of extant ARs. Studying such outbursts of
organismal diversification has revealed a number of putatively general features
of AR (reviewed in [2]). Among those is the observation that diversification some-
times proceeds more rapidly in the initial phases of an AR (‘early burst’, EB
scenario), but slows down with the filling up of ecological niche space as more
species form. However, the generality, or even frequency, of this pattern was
recently called into question [7]. Another observation is that the invasion of niche
space by diversifying organisms is not random. Different aspects of the environ-
ment have been proposed to influence diversification in different phases
throughout the course of an AR. Accordingly, there should be temporal stages of
AR, in which specialization to available niches, and hence diversification, is
predominantly based on different adaptive traits or trait complexes [8].

In vertebrates, for example, it is regularly observed that clades forming early
in an AR are subdivided ecologically with respect to macrohabitat specializations
[2,8]. Here, we define macrohabitat as a geographically extensive part of the
environment encompassing considerable ecological variation, e.g. the benthic
or limnetic zones of a lake. This first ‘stage’ is evident in established ARs, such

& 2014 The Author(s) Published by the Royal Society. All rights reserved.
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as Lake Malawi cichlids [9], and also in very recent, incipient
ARs, like crater-lake cichlids [10] or three-spine stickleback
[11]. Subsequently, in a second stage, specialization occurs
primarily with respect to either more spatially restricted micro-
habitats or resources therein, as found in e.g. someAnolis lizards
[5] and Darwin’s finches [12]. According to Streelman &
Danley’s [8] general vertebrate model, the most closely related
species within an AR often differ in little else than signalling
characters, like nuptial coloration. This third and final stage of
an AR is observed, for example, in parrotfish [13], Lake
Malawi cichlids [9] and elephantfish [14]. It is important to
note that these stages are not necessarily discrete and
that selection pressures which dominate in one period of a radi-
ation are probably also acting at other times, albeit to a lesser
degree [9]. While these hypothesized stages are apparent in
some groups, the existence of stages is less clear in other ARs
such as Hawaiian drosophilids [15], potentially emphasizing
this feature to beunique tovertebrate radiations anddefinitively
calling for further in-depth quantitative evaluations of the
‘stages model’.

In vertebrate ARs, it also appears that the sequence of
stages relative to another might differ. In Phylloscopus Old
World leaf warblers [16] or extinct actinopterygians [17], for
example, habitat divergence followed trophic divergence.
Overall, it is unclear how pervasive the phenomenon of
‘AR in stages’ actually is in nature. Although theoretical
work [18–20] points to the model having merit, empirical
testing is hampered by the need to obtain data for a
number of traits for many member species of an AR. Synthe-
sizing different studies of trait evolution into a test of the
‘stages model’ is further complicated by the lack of taxonomic
overlap between studies, unclear phylogenetic relationships,
the study of different traits, and/or the application of
different analytical approaches.

Nonetheless, several predictions can be derived from the
hypothesis of ‘AR in stages’ and tested given the appropriate
data: (i) adaptive traits or trait complexes will differ in their
amount of phylogenetic signal and time-dependence of
their diversification; (ii) the ordering of traits or trait com-
plexes by their time-dependence of diversification should
mirror the hypothesized order of stage-wise dominating
selection pressures (first: macrohabitat, second: microhabitat
and resources, third: sexually selected characters; [8]); and
(iii) traits or trait complexes that are involved in specialization
to available ecological niches early in an AR should have
attained a larger between-species difference, if standardized
by the variation within species.

Here, we test these predictions in the AR of cichlid fishes
of Lake Tanganyika (LT), East Africa. We investigate the
evolution of ecologically and reproductively relevant traits
in 51 representative species using phylogenetic comparative
methods. Our dataset comprises the majority of cichlid
tribes present in LT and a reasonable fraction of the species,
including the most abundant ones coexisting in the lake’s
southern basin. It also covers most of the ecological special-
izations found in LT cichlids, e.g. epilithic algae grazing,
scale eating, fish hunting, invertebrate picking, as well as
sand, rock or open water dwelling species. Trait data for
body shape, size and weight, lower pharyngeal jaw (LPJ)
bone shape and weight, as well as stable isotope data,
and a robust multi-marker phylogeny are available from
the study of Muschick et al. [21]. For this study, we com-
bined these previous data with new data on gut length,

brain weight, gill raker structure and coloration. Trait evol-
ution in LT cichlids has been the focus of previous studies
[21–28]. However, most studies considered only one or
few traits in isolation and did not comprehensively compare
multiple traits in the context of ecology and phylogeny (but
see [25]), and the ‘stages model’ has not yet been tested
explicitly in LT cichlids.

In this study, we first test for a phenotype–environment
correlation in the traits and in the trait complexes under
examination by using stable isotope ratios as a proxy for
macrohabitat and trophic niche. Such a phenotype–environ-
ment correlation is an inert feature of an AR and informs
about the adaptive nature of the traits in question [1]. We
then quantify the overlap between species in morphological
trait space as proxy for their degree of specialization in the
respective trait or trait complex. Correlations among trait com-
plexes that take into account phylogenetic relationships are
also examined. Finally, by explicitly fitting models of trait evol-
ution to the trait data and molecular phylogeny, we evaluate
the merit of the ‘stages model’ of AR for LT cichlids.

2. Material and methods
(a) Sampling
We collected trait data for 51 LT cichlid species, which is approxi-
mately one-quarter of the endemic species of this lake. The dataset
comprises 36 genera (of 53) and 10 of the 16 tribes [29] (see the
electronic supplementary material) described for LT cichlids and
is thus representative of the phylogenetic, morphological, ecologi-
cal and behavioural diversity. In subsets of specimens (electronic
supplementary material, table S1), we measured six trait ‘com-
plexes’: body shape, the LPJ apparatus, the gill raker apparatus,
brain weight, intestine tract length and colour. The data for
body and LPJ shape, stable isotopes and phylogenetic relation-
ships were taken from [21]. Measurements of gill raker traits,
gut length, brain weight and scoring for coloration were newly
generated for this study.

(b) Choice of traits and their ecological relevance
Body shape is important in swimming performance andmanoeuvr-
ability and has been shown to correlate with macrohabitat (i.e. on a
benthic–limnetic axis) in cichlids [21]. The LPJ is part of the cichlids’
pharyngeal jaw apparatus, i.e. a second set of jaws in the cichlids
throat used to manipulate the food items taken up by the oral
jaws [30,31]. Another important component of the feeding appar-
atus are gill rakers, which are used to filter and sort food items in
the buccal cavity in many groups of fishes [32,33–35] (see electronic
supplementary material, figure S1). These bony protrusions on the
gill arches have been little studied in cichlids, as opposed to other
evolutionary model systems such as stickleback [32]. After uptake,
mastication and filtering, food items reach the intestinal tract
where enzymatic digestion takes place and nutrients are absorbed.
Herbivorous species specialized on resources of low digestibility,
e.g. algae and plants, usually have longer intestines resulting in a
longer retention time for improved digestion [27]. Brain size is
known to show a strong allometric relationship with body size
over a large range of organisms [36], but residual variation and
shifts in relative sizes of brain parts have been hypothesized to
have adaptive value [37,38]. Body coloration in cichlids can differ
greatly between species, even between closely related ones or popu-
lations of the same species [39], and is important not only in mate
recognition, reproductive behaviour, intraspecific aggression, but
also camouflage and mimicry [40].
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(c) Trait data
The gill raker trait assessments essentially followed previous
investigations in three-spine stickleback [32,34]. Brain tissue
was removed from the neurocranium in the field and stored in
ethanol or RNAlater; in the laboratory, preserved fish brains
were drained and dried at 608C overnight and subsequently
weighed to the nearest milligram. To investigate gut length, we
removed the entire alimentary canal (‘gut’) from the anus to
the posterior end of the stomach and measured its length to
the nearest millimetre. In order to evaluate body coloration, we
adopted and modified an existing colour-scoring scheme for
cichlids [41].

In the following, we describe data re-used from Muschick
et al. [21]: phylogenetic relationships were derived from the
enforced molecular-clock phylogeny by pruning it to the 51
species included here. Body shape information was assessed on
the basis of landmarks derived from photographs using TPSDIG

[42], procrustes aligned in MORPHOJ [43] and analysed in R [44];
LPJ shape information was obtained in a similar way, but includ-
ing a sliding process of semi-landmarks in TPSRELW [45]. Stable
isotope data were used as proxies for macrohabitat-related special-
ization on a benthic–limnetic axis (d13C) and for specialization to
the trophic niche (‘microhaitat’, d15N; e.g. [46]).

Prior to statistical analyses, we log transformed all trait
values, apart from landmark procrustes coordinates, gill raker
counts and coloration scores, using the phyl.resid function of
the R package PHYTOOLS [47]. Further details to trait data
and their statistical treatment are provided in the electronic
supplementary material.

(d) Correlations between traits and the ecological niche
As a test for ecological specialization, we evaluated the correlation
of trait values with ecological niches, where stable isotope ratios of
carbon and nitrogenwere used as niche proxies. The relationship of
body and LPJ shape and gut length with stable isotope ratios has
been investigated before [21,27], but for gill raker morphology in
cichlids this is the first demonstration to our knowledge. We corre-
lated the first principal component (PC) of a PC analysis (PCA)
comprising both stable isotope ratios, as well as each element
separately, with the first PC for each trait (respective scaled trait
values for univariate traits, neither corrected for phylogenetic
relationships) and accounted for phylogenetic relationships
between species using phylogenetic generalized linear models as
implemented in the R package CAPER [48].

(e) Ecological specialization and overlap between
species

We used plots of linear discriminants (LDs) to illustrate each
species’ position in morphospace for the multivariate data, and
boxplots to illustrate the univariate data. Next, we calculated the
between-species distances for each trait (see the electronic sup-
plementary material for details). To compare the relative overall
separation of species for each trait, we used ‘species’ as the
independent variable in multivariate analyses of variance
(MANOVA) for multivariate traits and in analyses of variance
(ANOVA) for univariate traits, respectively. Here, we could not
include colour as a trait, as no within-species measurements
were available. We used Wilks’ l to assess species overlap in the
MANOVA, and F-values in the ANOVA. As Mahalanobis dis-
tances are scaled by the within-group variance, we used them as
a generalized measure of trait divergence, which can be compared
among traits. To reveal the ordering of traits by their attained trait
distance, we implemented breakpoint regression models following
[14]. We estimated breakpoints and respective linear relationships
for segments using the function segmented in the SEGMENTED

R package [49]. For multivariate traits, we calculated the

Mahalanobis distances as described above. Univariate trait
values were scaled with the averaged within-species variance.

( f ) Phylogenetic tests for stages of adaptive radiation
To test for apparent stages in diversification, we fitted models of
trait evolution to the trait axes derived from our transformation
of raw trait values (see above) using the fitContinuous function
in the R package GEIGER [50] (number of random starting
points ¼ 1000, simultaneous estimation of standard error). To
describe the more general process of trait evolution, we fitted
three macroevolutionary models to our data: (i) the Brownian
motion model assumes trait values to evolve according to a diffu-
sion process, resulting in trait similarity between species being
mainly dependent on the amount of shared ancestry; (ii) the
Ornstein–Uhlenbeck model of trait evolution simulates attraction
to a single optimum of trait values, with the alpha parameter indi-
cating the strength of this attraction; and (iii) the white noise
model does not assume a covariance structure in the data owing
to phylogeny, it is equivalent to drawing trait values from a
single normal distribution. We also assessed the time-dependence
of trait evolution using two models. The d model by Pagel [51]
was used to assess the relative contribution of trait evolution
early in the radiation versus late in the radiation. Here, values
below 1 indicate that trait evolution occurred primarily along
the more basal branches in the phylogeny, whereas values greater
than 1 indicate trait evolution predominantly in younger sub-
clades. Second, the a parameter of the EB model (also known as
ACDC, for ‘accelerating–decelerating’ [52]) implemented in
GEIGER was used to test for accelerating or decelerating rates of
trait evolution across the phylogeny. Negative values indicate a
slowdown in trait evolution, while positive values identify accel-
eration. For an estimate of phylogenetic signal in the data, we
calculated Pagel’s l [51], where l ranges from 0 to 1 and higher
l values mean stronger phylogenetic signal in the trait data. As
a second measure of the pervasiveness of phylogenetic signal in
our trait data, we calculated Blomberg’s K statistic [52,53] using
the phylosignal function in the R package PICANTE v. 1.6–1 [54];
K. 1 indicates stronger resemblance of species than expected
under a Brownian model of trait evolution, while values less
than 1 point to a greater evolutionary malleability of the trait.

If the diversification of LT cichlids was indeed driven by
different selection pressures in the hypothesized order of
stages, we would expect this to be reflected in parameter esti-
mates and the fit of the macroevolutionary models to the data.
The time-dependent models should fit reasonably well and
differ in their parameter estimates between traits, pointing to
different temporal maxima of divergence. To robustly deduct
a temporal dependence of diversification, however, the
Ornstein–Uhlenbeck model of trait evolution would need to be
rejected [7], as selection to a single trait optimum with differing
strength could mimic such time-dependence.

3. Results
(a) Correlations between traits and the ecological niche
The ecological relevance of traits can be assessed by their cor-
relation with parameters describing the ecological niche. Here,
we used stable isotope ratios of carbon (C) and nitrogen (N) as
proxies for macrohabitat preference and trophic position of
species, respectively (figure 1 and table 1). Body shape is sig-
nificantly correlated with d13C, but not with d15N. The
correlation with d13C becomes weaker and insignificant
when phylogenetic relationships are taken into account (by
phylogenetic generalized least squares (PGLS)). LPJ shape
and gill raker morphology correlate significantly with both
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isotopic signatures, but more strongly with d13C. Phylogenetic
correction decreases these correlations in LPJ for both isotopes
and in gill rakers for d15N, while it reinforces the correlation
between d13C and gill rakers. Gut length correlates very
strongly with both isotopic signatures. Here, both correlations
are even more pronounced in the PGLS analysis. Brain weight
and coloration stand in stark contrast to the aforementioned
traits in that they either do not correlate with ecological
niche proxies, or, in the case of d13C and colour, only with
marginal significance.

Between traits, partial Mantel tests using phylogenetic
distance as a covariate revealed weak to moderate and predo-
minantly positive relationships (table 2). However, after
correction for multiple comparisons, only a subset of the
correlations remained statistically significant. The strongest
correlations were found between gut length and brain
weight (partial Mantel statistic¼ 0.5, p, 0.0001), and between
gill raker traits and LPJ traits (0.42, p, 0.0001). Gut length and
LPJ shape correlated positive with a coefficient of 0.24. No
correlation was evident between colour and any other trait.
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Figure 1. Phenotype–environment correlations. Species means of trait values (see ‘Material and methods’ for details) were plotted against species means of d13C
and d15N. d13C is considered to be an indicator of macrohabitat use, with higher or lower values reflecting a benthic or limnetic carbon source, respectively. d15N is
a proxy for trophic level, with larger values reflecting a higher trophic position.
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(b) Ecological specialization and overlap between
species

The LT cichlid species examined are at least somewhat, and
often strongly, separated in the traits studied here (figure 2).
The axes along which species are most separated (scaled by
within-species variance) were highlighted by a LD analysis.
In body shape space (figure 2a), species show fewer areas of
between-species overlap than in the other two multivariate
traits, LPJ (figure 2b) and gill rakers (figure 2c). The
between-species overlap is most apparent in gill raker space.
Gut length (figure 2d) and brain weight (figure 2e) also separ-
ate species in morphospace, with overlap between species
being less pronounced in gut length. The 14 algae-eating
species in the dataset clearly show increased relative gut
lengths compared with the non-algae-eating species. Overlap
in colour space could not be examined, but some clustering
is apparent (figure 2f ). On the tribe-level, traits also do
show separation, with partitioning of morphospaces being
most apparent between the most species-rich LT tribes
Lamprologini, Tropheini and Ectodini.

MANOVA and ANOVA show that means of trait axes are
significantly different between species for all traits (electronic
supplementary material, table S2). Wilks’ l indicates that
almost all the variance in the multivariate traits is accounted
for by species identity. Compared with body and LPJ shape,
gill rakers show increased, but still minor, unexplained

variance, interpretable as niche overlap (Wilks’ l ¼ 0.0121).
The lower F-value in the analysis of relative brain weight
compared to gut length corroborates the larger overlap
between species in this trait (electronic supplementary
material, table S2). In summary, the collective results indicate
that the species are well differentiated in all traits, but most
strongly in body shape.

(c) Trait evolution and test for the ‘stages model’
Recall that the ‘stages model’ of AR predicts that macrohabitat-
related traits, such as body shape, diversify early in the radiation
(stage 1). Successively, trophic traits (stage 2) and then traits
involved in sexual communication (stage 3) would come to
dominate diversification. By fitting models of trait evolution
to our data, we evaluated the plausibility of a scenario of
diversification in stages in LT cichlids. We assessed which
macroevolutionary model fits the data best by comparing the
sample-size corrected Akaike information criterion (AICc). The
different body shape dimensions derived from the phylogenetic
PCA (pPCA) show the best fit to different models of trait evol-
ution: body shape dimension 1 is best approximated by the
Pagel’s l model, whereas dimensions 2 and 3 are best approxi-
mated by Ornstein–Uhlenbeck and Pagel’s d models,
respectively. However,while themodel fit difference for dimen-
sion 1 is moderately pronounced (min. DAICc ¼ 1.47), the
model selection is ambivalent in the other body shape

Table 1. Phenotype–environment correlation. (Correlations of species means for the first principal component of residual trait data (phylogeny not accounted
for) and the stable isotope ratio of either carbon or nitrogen (Pearson’s correlation coefficient). Phylogenetically generalized least-squares (PGLS) analysis was
used to remove the phylogenetic signal potentially present in this correlation. Correlations that remained significant after table-wide adjustment of p-values
(after Bonferroni) are given in italics.)

body shape LPJ shape gill raker gut length brain weight colour

d13C Pearson’s correlation 20.41 0.51 0.53 0.63 0.12 0.28

p-value 0.0031 0.0002 0.0001 0.0000 0.3878 0.0497

PGLS correlation 20.12 0.38 0.72 2.03 0.02 0.59

p-value 0.3752 0.0278 0.0203 0.0011 0.9817 0.0591

d15N Pearson’s correlation 0.22 20.35 20.37 20.77 20.22 20.18

p-value 0.1197 0.0137 0.0076 0.0000 0.1216 0.2165

PGLS correlation 20.06 20.12 20.31 21.06 20.21 0.01

p-value 0.1940 0.0563 0.0040 0.0000 0.3718 0.9611

Table 2. Trait complex covariation among Tanganyikan cichlids. (Results of partial Mantel tests accounting for phylogenetic distance. Mahalanobis distances
were calculated for traits with intraspecific variance, and Manhattan distance was calculated for body coloration. Correlations are given below the diagonal,
p-values above. Comparisons that are significant after adjustment for multiple comparisons (after Bonferroni) are given in italics.)

p-value

Mantel statistic body shape LPJ shape gill raker gut length brain weight colour

body shape 0.0004 0.0044 0.0035 0.0286 0.595

LPJ shape 0.22 0.0001 0.0002 0.0015 0.5824

gill raker 0.15 0.42 0.1744 0.0027 0.7944

gut length 0.15 0.24 0.05 0.0001 0.2837

brain weight 0.11 0.19 0.18 0.5 0.7686

colour 20.02 20.02 20.06 0.03 20.06
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dimensions. This is similar for LPJ shape, where themin.DAICc

is 0.47 for dimension 1 and even lower for dimensions 2 and
3. Gill raker traits, gut length and brain weight all show a phy-
logenetic signal very similar to that produced by a Brownian
motion-like trait evolution (electronic supplementary material,
table S3), evidenced by Blomberg’s K and Pagel’s l parameter
being close to 1, and best fit of the Brownian motion model of
trait evolution. Coloration appears to be best fitted by a model
of Brownian trait evolution, too. However, in contrast to most
other traits, coloration dimensions are reasonably well fitted
by the ‘white noise’ model, as well. This might indicate a lack
of phylogenetic covariance structure in this trait. We used
Pagel’s d model and the EB model to reveal variation in the
rate of trait evolution across the timeframe of the radiation. All
traits show an acceleration in trait evolution as evidenced by
positive a values, as well as a concentration of trait evolution
comparatively early in the radiation, shown by d values more
than 1 (electronic supplementary material, table S3). Among
the six trait complexes, colour appears to be most rapidly evol-
ving. Of the remaining traits, body shape evolution appears to
accelerate in the course of the radiation, followed by LPJ
shape. Gill rakers, gut length and brain weight show com-
paratively little acceleration. However, in no case was the fit of
a time-dependent model significantly better than either the
Brownian motion or the Ornstein–Uhlenbeck model of trait
evolution (DAICc . 2). Thus, we have to limit our tentative
conclusions about time dependency of trait evolution to the
above-stated fits of macroevolutionary scenarios with our data.

In quantifying phylogenetic signal, our results are in
agreement with those of Wagner et al. [27], who reported a
Pagel’s l of 0.995 for gut length, and of Gonzalez-Voyer
et al. [24] who reported a Pagel’s l of 0.71 for brain weight.
Both studies have investigated LT cichlids, but included less
and different species than this study. Clabaut et al. [22] find
that body shape is best predicted by trophic niche and
water depth, which is corroborated by our analyses here.

Breakpoint regression models for distances of residual
trait values (phylogeny not being accounted for) scaled by
within-species variance against phylogenetic distance show
the initial increase in trait divergence with evolutionary
divergence. After the estimated breakpoint, linear models
indicate no further increase in trait divergence, and trait dis-
tance appears to be uncorrelated to phylogenetic distance
(electronic supplementary material, figure S3).

4. Discussion
Our examination of the stages model of AR in LT cichlids is
based on data for six trait complexes analysed within a phy-
logenetic framework using 51 representative species. We also
examined the ecological relevance of these traits using stable
isotope data, specialization to ecological niches and niche
overlap, as well as trait covariation.

(a) Phenotype–environment correlation
All traits apart from brain size and coloration showed corre-
lation with the ecological niche as approximated by stable
isotope data. Overall residual brain size as measured in this
study does not appear to correlate with ecological niche.
However, it seems likely that cognitive demands regarding
specialization to macrohabitats and trophic niches differ
such that an effect on brain evolution would be expected

[55]. For a smaller dataset of LT cichlids, a significant corre-
lation between diet and brain weight was found [56], but
their approximation of the ecological niche differs consider-
ably from ours as it relied on qualitative descriptions from
the literature. In general, specialization to available niches
might involve changes in the relative sizes of brain substruc-
tures [57,58] such that the measure of whole brain weight is
too crude to characterize differences.

In contrast to brain weight, gut length is strongly corre-
lated with the trophic niche, and also with our proxy for
the macrohabitat niche, d13C. This is not surprising given
the demands of a herbivore’s diet on the digestive system.
Herbivores are also more likely to acquire their carbon signa-
ture from the littoral realm, as this is where epilithic algae
occur, explaining the correlation with our macrohabitat
proxy. An example of an exception to this is Cyathopharynx
furcifer (Cyafur), a plankton feeder with a limnetic carbon sig-
nature. Figure 2e illustrates this clearly with herbivorous
species being those with the highest relative gut length. The
gill raker data also meet the expectation of a significant corre-
lation with ecological niche. Coloration does correlate with
marginal significance with the macrohabitat niche. The
colour dimorphism found in some species has been corre-
lated with microhabitat specializations [59,60], so this
pattern could also be expected on the species level. However,
convergence through mimicry might obscure patterns [61,62].
More precise quantification of colour and its relationship to
niche specialization is thus required.

(b) Ecological specialization and overlap between
species

By scaling trait values by the average within-species variance,
we standardized our measurements to allow comparisons
across traits and to infer the relative contribution to niche
specialization. We find that traits varied in their overlap
between species. While body shape shows signs of a more
recent divergence compared with trophic traits, it is the
trait attaining the largest between-species trait distances if
scaled by within-species variance. Also, species overlap less
in body shape morphospace compared to trophic traits.
This suggests a higher degree of specialization of species in
their macrohabitat niche than in trophic characters, such as
the pharyngeal jaw apparatus. Trophic traits attain less
between-species standardized trait distance, which could be
interpreted as trophic traits being less evolutionarily con-
strained. Another possible explanation is that the adaptive
landscape of microhabitats differs between geographically
separated sites, which might inflate the morphospace taken
up by a given species if individuals from different sites are
analysed together.

(c) Trait covariation
Analysing trait covariation while controlling for phylogenetic
relatedness reveals several pairwise comparisons to be signifi-
cantly correlated. Gut length and brain weight covary—most
probably due to both being trophic adaptations, for example
to herbivory, which could also impose specific cognitive
demands due to habitat complexity. The weaker correlation
of body and LPJ shape is somewhat unexpected, as body
shape is thought of conferring adaptation to macrohabitat,
whereas the pharyngeal jaw apparatus is mainly involved in
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trophic adaptation. However, food types and abundances
differ not only between microhabitats but also between macro-
habitats, and, thereby, macrohabitat and trophic adaptations
might covary. The correlation between LPJ shape and gill
raker traits is not surprising, given that both traits together
are responsible for the uptake and the processing of food
items, possibly leading to functional constraints. In addition,
developmental constraints may further limit independency of
trait evolution in the case of LPJ and gill rakers, as both trait
complexes derive from gill arch constituents.

(d) Trait evolution and test for the ‘stages model’
The predictions derived from the ‘stages model’ were met to
different degrees. In general, we did not find definitive evi-
dence for the existence of discrete stages in the AR of
cichlids in LT, because the time-dependent models of pheno-
typic evolution (EB model and Pagel’s d) were not supported
over others. However, some of the patterns observed were
nonetheless consistent with the ‘stages model’. For example,
traits were found to exhibit different amounts of phylogenetic
signal and the timing of diversification varied among traits
(supporting our prediction (i)). The ordering of trait diver-
sification (prediction (ii)), with the caveat of not being able
to reject the Ornstein–Uhlenbeck model, did not mirror
our expectations in the amount of phylogenetic signal. The
ordering of the relative amounts of attained relative
between-species divergence (scaled by within-species diver-
gence) is in agreement with our prediction from the ‘stages
model’ and the findings of the phylogenetic model fitting.

The time-dependence of traits analysedherewas notunequi-
vocally evident. Simpler models, not invoking a change in the
rate of phenotypic evolution within the timeframe of the AR,
received greater support. That said, the time-dependent
models (EB model and Pagel’s d) often did fit reasonably well
even compared to the respective best-fitmodel (DAICc , 2). Par-
ameter estimates for those two models differed between traits,
but did not conform to the expectation of an apparent ordering
of trait evolution in the form of macrohabitat-related traits first,
then microhabitat-related (in our case: trophic) traits, and,
finally, sexual communication traits. Instead, our parameter esti-
mates revealed a different, tentative ordering of trait evolution in
LT cichlids thatwas sometimes but not unambiguously corrobo-
rated by the fit of the respective macroevolutionary models: it
appears that the evolution of trophic traits is less accelerated
across the radiation than either body shape or coloration,
suggesting that there are temporal stages of phenotypic evol-
ution in the AR. The ordering, however, is somewhat different
to the ‘stagesmodel’, with trophic traits diverging first, followed
bymacrohabitat-related traits, and, finally communication traits.

The same conclusion can be drawn from the comparison of
the amount of phylogenetic signal in each trait complex. Traits
characterized by their functionality in feeding (LPJ, gill raker,
gut) showed a stronger phylogenetic signal than traits used
in macrohabitat adaptation (body shape) or communication
(colour). In fact, coloration showed no significant phylogenetic
signal at all, which is in agreement with the stages model [8]
and is to be expected given current arguments that the evol-
ution of sexual characters is often rapid and unconstrained.
On the other hand, the temporal patterns of phenotypic evol-
ution in trophic relative to macrohabitat-related traits do not
conform to the ‘stages model’. All results of our model fitting
approach point to less phylogenetic signal and, hence, a more

recent divergence in body shape traits compared with trophic
traits. A similar scenario, with diversification into macro-
habitats coming second, has been suggested for Phylloscopus
warblers [16], and, more recently, for two extinct fish
radiations [17]. The latter authors presented a ‘head-first’ scen-
ario, in which fish head morphology consistently diversified
prior to trunk morphology. Assuming head morphology to
be a predominantly trophic trait, and trunk morphology
responding mainly to selection pressures exerted by macroha-
bitats, the order of trait evolution in those radiations appears to
follow the same trend as we uncover here. Note, however, that
such trait complexes are probably not independent. Body
shape, for example, also includes information on head shape,
so that a signal of adaptation to diet in head shape is probably
captured by body shape data too. Thus, the signal in body
shape is perhaps biased towards a higher similarity with
trophic traits, a possibly general problem in analyses like
this. An alternative interpretation of our results is that color-
ation was a target of selection throughout the radiation,
whereas body shape and, especially, the trophic trait com-
plexes LPJ, gill rakers and gut length were involved in
certain (initial) stages only [63].

Yet another explanation for our findings is that convergent
evolution within the AR of LT cichlids [21] caused an ‘erosion’
of the phylogenetic signal in certain trait complexes, possibly
accumulating with time since the climax of divergence. Con-
vergence might also be a potential explanation of why
divergence with respect to macrohabitat was suggested as
the initial stage of morphological evolution in the first place
[8,9]. Low within-species but large between-species variance
in body shape make this trait appear well suited for taxonomic
inference, but a lack of phylogenetic signal would lead to
erroneous taxonomic groupings. In cases where convergent
evolution has in this way hampered the traditional reconstruc-
tion of phylogenetic relationships that did not include
molecular data, stages of AR could have been suggested spur-
iously. By relying on taxonomic affiliations derived from
characters implicated in, for example, habitat or resource
specializations, recurrent adaptations would not be recognized
as such. In this case, the impression of a temporal order of phe-
notypic evolution within ARs would be an artefact, as has
been shown in bower-building cichlids of Lake Malawi [64]:
molecular phylogenetic analyses revealed that some genera
were actually not monophyletic to the result that the revised
trait distribution suggested trophic morphology to diverge
consistently earlier in the AR compared to mate recognition
traits (i.e. bower shape). Similarly, in LT cichlids such sys-
tematic revisions have been common as reliable molecular
phylogenies have become available that uncovered cases of
convergent evolution (e.g. [21,65]).

(e) Limitations of our approach
The inability of our study to conclusively reject or support a
model of AR in stages in LT cichlids has several plausible expla-
nations, including study design, methodological limitations or
biological processes. Concerning study design, the basal tribes
Trematocarini and Bathybatini, both predominantly inhabiting
the open waters, are under-represented in our dataset. Includ-
ing more species of those tribes might help generate more
definitive results with respect to the ‘stages model’.

Methodologically, our approach analysed body shape as a
whole, not discriminating between head- and trunk shapes.
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Therefore, trophic adaptations in head shape could be rep-
resented in our assessment of body shape evolution (see
above). However, Muschick et al. [21] have shown that the
major axis of body shape evolution in LT cichlids discrimi-
nates deep-bodied versus elongated morphs, reflecting
macrohabitat adaptation also in other fish groups [10,66].
Additionally, although our dataset is certainly rich relative
to today’s standards and can readily address questions
about ecological specialization and the order of divergence
of traits early in the radiation, the number of taxa used
might be insufficient to reliably discriminate between scen-
arios of recent trait evolution (e.g. [67]). Also in terms of
methodology, the fitting of evolutionary models implicitly
uses reconstructed ancestral phenotypes, which may be inac-
curate. Additional information from fossils would be highly
useful to verify these estimates [68]. Furthermore, evolution-
ary change might be underestimated in cases where later
changes curb earlier ones, to the end that differences in the
rate of evolution between traits might become blurred [69].

5. Conclusion
In this study, we examined the time- dependence of trait evol-
ution and diversification in the species-flock of cichlid fishes
in East African LT to test whether this AR proceeded in
discrete stages, as has been proposed earlier for vertebrate
ARs. Although we do not find strong evidence for the classic
stages model of AR in LT cichlids, we find that—contrary to
earlier predictions—trophic traits diversified earlier in the

radiation than traits related to macrohabitat specializations,
whereas sexual communication traits (i.e. coloration) appear
to have diversified late. The lack of power in our approach to
discriminate between plausible macroevolutionary hypotheses
emphasizes the need forevenmore comprehensive comparative
studies, which would benefit from the addition of fossil data.
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Supplementary Methods 11"

Sampling 12"

Sampling was performed between 2008 and 2012 in the southern basin of Lake Tanganyika 13"
and under the permission of the Lake Tanganyika Research Unit, Department of Fisheries, 14"
Republic of Zambia. Specimens were caught with gillnets set by snorkelling and scuba 15"
diving, by harpooning, by angling, or, in a few cases, were obtained from local fishermen. For 16"
sample preparation, we followed our standard operating procedure [described in 21]. In short, 17"
all specimens were photographed, measured and weighted; a fin-clip or a piece of muscle-18"
tissue preserved in ethanol was taken as DNA and stable isotope sample. In total, we collected 19"
trait data for 51 LT cichlid species, which is about one quarter of the endemic species of this 20"
lake and covers 36 of the 53 genera and 10 of the 16 tribes. The choice of species was 21"
restricted to those occurring in the Southern part of the lake, where sampling took place. We 22"
used a number of sampling techniques to avoid methodical bias. Species were chosen from a 23"
larger data set solely on grounds of data completeness, i.e. data for all traits had been obtained 24"
for a given species. Efforts had been made to complete the data set also for less abundant 25"
species, in order to reduce representation bias towards more abundant species. 26"

Trait data new to this study 27"

The gill raker apparatus was investigated for four morphological traits: we separately counted 28"
the number of gill rakers on the dorsal and ventral bone of the first gill arch. Gill raker length 29"
was determined as the average length of rakers two, three and four on the ventral gill arch, 30"
counted from the joint with the dorsal arch bone onwards. We further measured the ventral 31"
gill arch length, as proxy for the spacing between gill rakers along the gill arch [32, 34]. 32"
These traits were measured to the nearest 0.01 mm and counted on one side within each 33"
specimen using a Leica MZ7.5 stereomicroscope. All gill raker trait assessments essentially 34"
followed previous investigations in threespine stickleback [32].  35"

Brain tissue was removed from the neurocranium in the field and stored in either Ethanol or 36"
RNAlater (Sigma-Aldrich, Saint Louis, USA). In the laboratory, preserved fish brains were 37"
drained and dried at 60°C overnight in an incubator and subsequently weighed to the nearest 38"
milligram. A systematic bias between the two preserving liquids was apparent, with salt 39"
residues from RNAlater increasing the brain weight relative to fish body weight. We therefore 40"
adjusted the RNAlater sample measurements to fit the linear model of brain weight and body 41"
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weight for ethanol-preserved samples. To investigate gut length, we removed the entire 42"
alimentary canal (‘gut’) from the anus to the posterior end of the stomach from freshly caught 43"
specimens. Each gut was unwound, stretched out, and measured to the nearest millimetre.  44"

In order to evaluate overall body colouration, we adopted and modified an existing colour-45"
scoring scheme developed for Lake Tanganyika cichlids [41] using representative 46"
photographs. We used the 12 landmarks described in Salzburger et al. [41] plus information 47"
on lips (light/dark/yellow/blue), facial pattern (uniform colouration/stripes/dots), caudal fin 48"
pattern (uniform/stripes/blotches), caudal fin colouration (light/dark/yellow/orange/ 49"
blue/brown/red), as well as sexual dimorphism (yes/no) and polychromatisms (yes/no). From 50"
these 101 binary-coded colouration traits we retained the 83 that showed variation across 51"
species and had each character state found in at least two species. As no information on 52"
within-species variance was available, colour was not included in analyses requiring such 53"
variation. 54"

Data re-used from a previous study 55"

Phylogenetic relationships were derived from the enforced molecular-clock phylogeny of 56"
Muschick et al. [21] by pruning it to the 51 species included in this study. This phylogeny is 57"
based on one mitochondrial marker (ND2, alignment length: 1047 bp), and two nuclear 58"
markers (ednrb1 and phpt, with alignment lengths of 542 bp and 424 bp, respectively). Body 59"
shape was assessed by using Cartesian coordinates of landmarks derived from lateral, 60"
standardized photographs using TPSDIG [42]. Seventeen homologous landmarks covered the 61"
whole body and captured ecologically important shape features such as fin insertion points, 62"
body depth and length and relative size of head and trunk. Landmark coordinates were 63"
procrustes aligned in MORPHOJ [43] and, together with centroid size, analysed in R [44]. LPJ 64"
shape information was obtained similar to body shape. Twenty-eight landmark positions were 65"
recorded on scans of excised and cleaned lower pharyngeal jawbones in occlusal perspective. 66"
Twenty of these landmarks were semi-landmarks and subjected to a sliding process in 67"
TPSRELW [45] to more accurately capture the curved shapes of LPJ outlines. Of this set, 8 68"
landmarks and 6 semi-landmarks were used for analysis. Procrustes alignment was performed 69"
in MORPHOJ and the symmetric component of shape variation and the centroid size exported 70"
for analysis in R.  71"

Stable isotope data were used as proxies for habitat preference and trophic niche (δ13C and 72"
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δ15N, respectively). Stable isotope ratios of carbon (δ13C) are related to the source of carbon 73"

in the diet and thereby reveal approximate habitat preference on a limnetic-benthic axis [46]. 74"

The heavier stable isotope of nitrogen accumulates with trophic level making δ15N values can 75"

a good proxy for the trophic level of a species. Muschick et al. [21] used mass spectrometry 76"

on dried and pulverized white muscle tissue to reveal the isotopic composition. It is expressed 77"

in the conventional δ notation as permil (‰) deviation versus atmospheric N2 and Pee Dee 78"

Belemnite. 79"

Data transformation prior to statistical analyses 80"

Prior to statistical analyses we log transformed all trait values, apart from landmark procrustes 81"
coordinates, gill raker counts, and colouration scores. We then regressed all trait values 82"
(excluding colouration traits) onto log transformed body weight using regression coefficients 83"
from the phyl.resid function of the R package PHYTOOLS version 0.2-40 [47]. Retained 84"
residuals of species means or individual trait values were used for subsequent analyses. Brain 85"
weight and gut length data were univariate, and hence treated accordingly. Data collected for 86"
the other traits were multivariate. We therefore reduced dimensionality within each trait 87"
complex using scaling, centring and principal components analysis (PCA). We calculated 88"
eigenvectors of species means of multivariate residuals using phylogenetic Principal 89"
Component Analysis (pPCA) as implemented in PHYTOOLS and retained principal 90"
components (PC) that each explained at least 10% of the total variance. Eigenvectors derived 91"
from the pPCA on species means were used to calculate PC scores of individuals. Residuals 92"
of univariate traits were scaled and centred only. As the colouration matrix consisted of 93"
binary coded data, colouration scores were reduced in dimensionality using detrended 94"
correspondence analysis. We kept the first three detrended correspondence axes (DFA) for 95"
further analyses.  96"

Ecological specialization and overlap between species 97"

We used plots of linear discriminants (LD) to illustrate each species’ position in morphospace 98"
for the multivariate data (body and lower pharyngeal jaw shape, gill rakers), and boxplots to 99"
illustrate the univariate data (gut length, brain weight). In the first case, we plotted LD1 100"
against LD2, representing each species as polygons defined by the most extreme individuals, 101"
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to illustrate the subdivision of the morphospace among species and to indicate niche overlap 102"
between species. The boxplots show the log transformed, regressed, scaled, and centred trait 103"
values for each species, sorted by median. 104"

Next, we calculated the between-species distances for each trait. Traits for which within-105"
species variance information was available were used to calculate the Mahalanobis distance 106"
from the within-species covariance matrix. Since Mahalanobis distances are scaled by the 107"
within-group variance, we used them as a generalized measure of trait divergence, which can 108"
be compared among traits. Conceptually, this approach is similar to measuring evolutionary 109"
rate in haldanes by using the pooled standard variation to standardize character change over 110"
time [S1]. 111"

Since no such data were available for colour, we used the absolute (Manhattan) distance in the 112"
ordinated colour space derived from the presence/absence colour trait matrix. Distance 113"
matrices from different traits were then tested for correlations between each other using three-114"
way partial Mantel tests, correcting for phylogenetic distance. The phylogenetic distance 115"
matrix was calculated using the cophenetic function in R on the molecular phylogeny. 116"
Significance of the Mantel statistic was tested with 9999 permutations. 117"

 118"

Supplementary Reference: 119"
Gingerich PD. 1993 Quantification and comparison of evolutionary rates. Am. J. Sci. 293, 453–478. 120"
(doi:10.2475/ajs.293.A.453)   121"
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Table S1 Number of specimens measured per species per trait. 122"

 123"
 124"
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Table S2. Statistical analyses of species’ separation in morphospace. MANOVA and 125"
ANOVA results for multivariate traits and univariate traits, respectively. 126"

 127"
  128"
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Table S3. Macroevolutionary models fitted to a molecular phylogeny and trait data of 129"
Tanganyikan cichlid fishes. Parameter estimates and quality of model fit for 130"
macroevolutionary models, and estimation and significance of Blomberg’s K. Sample-size 131"
corrected Akaike Information Criterion (AICc) indicates model fit, with a smaller score being 132"
a better fit. The best fitting model for each trait among the evolutionary process and rate 133"
variation models is indicated by italicized AICc score.  134"
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  135"
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Figure S1. Gill raker structures on a ventral gill arch of Simochromis diagramma (tribe 136"
Tropheini).  137"

 138"
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Figure S2. Phenotype-environment correlations. Species means for PC 1 (or DCA 1, in the 139"
case of colour) of traits was plotted against species means of δ13C, δ15N, and the first principal 140"
component of both. δ13C is considered to be an indicator of macrohabitat choice, while δ15N is 141"
a proxy for trophic level.   142"
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Figure S3. Breakpoint regressions of trait distances on phylogenetic distance. Between-144"
species Mahalanobis distances for multivariate traits, and Manhattan distances scaled by 145"
within-species variance plotted against phylogenetic distance derived from the ultrametric 146"
phylogeny of [21]. Breakpoint regression models were fitted for each trait, partitioning the 147"
correlation of distances into two phases of trait-divergence build-up. A linear model without 148"
breakpoint was the best fit for brain weight distances. The lack of correlation in the second 149"
phase indicates little change in average between-species trait distances over evolutionary time 150"
for all traits. Attained average trait distances can be compared across traits as they are 151"
standardized by within-species variance.  152"

153"
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Thesis Conclusion
This thesis leads to general insights into the genomics of adaptation that exceed the discussions in the 
different main chapters. In what follows, I will address these insights as well as their implications (I here 
focus mainly on the Main Chapters).

Genome Divergence is Heterogeneous

A general finding of this thesis is that divergence between populations in the face of gene flow is highly 
heterogeneous along the genome (Chapters 1, 3, 4, 6, 7). This implies that the strength of genetic isolation 
between populations also differs along the genome. Genomic heterogeneity in divergence can be found 
at various scales such as along entire chromosomes (Chapters 1, 3, 4), or within only a few kilobases 
(Chapters 1, 4, 6). Besides selection, variation in recombination within the genome is important to explain 
some of this heterogeneity (Chapter 3; Butlin 2005). Importantly, the detected physical extent and intensity 
of a divergence region does not necessarily reflect the strength with which divergent selection has acted 
on that region. This is because large adaptive structural rearrangements (e.g., inversions, Chapters 4 & 
6) usually appear prominently in genome scans and can already be detected with a limited number of 
markers. In contrast, an equally strong (or stronger) selected single point mutation is likely to be missed 
when we screen a genome. The main reason for this ‘detection problem’ is that the extent and intensity 
of a selective sweep around a selected locus strongly depends on its location within the genome (e.g., 
whether it is close to other selected loci, or located in a high/low recombination region) (Chapters 1, 3, 
4). A bias in the occurrence of cross-overs along chromosomes together with selection can result in an 
uneven ‘neutral’ divergence-baseline along chromosomes (Chapters 1 & 3). This heterogeneity in baseline 
divergence has to be accounted for when we are interested in the inference of actual targets and the 
strength of selection along the genome (Chapters 1 & 3). The intensity and extent of selective sweeps also 
strongly depend on the type of genetic variation available to selection (i.e., ancestral standing vs. young 
de novo variation) and on the time selection has acted. As an additional complication, genomic divergence 
hot spots may not necessarily indicate a region under divergent selection (Chapter 4). Overall, I conclude 
that patterns of genomic divergence can only be understood within a rigorous ecological framework and 
with extensive knowledge about the demographic and selective history of populations. 

Adaptation is Complex

My thesis work adds evidence from different methodological angles (Chapters 1, 3-6, 8) to the emerging 
perspective that adaptation is a complex multi-locus process (e.g., Burke et al. 2010; Lawniczak et al. 
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2010; Fournier-Level et al. 2011; Soria-Carrasco et al. 2014): A first reason is that adaptation as a whole 
is likely to require shifts at many phenotypic traits, including behavior, morphology, physiology, and life 
history (Chapters 8 & 9). At a second level, even single ecologically relevant traits are commonly under 
the control of many genetic loci with small phenotypic effects (Chapter 5). This concept of adaptation as 
a complex process involving many traits and loci with small phenotypic effects has important implications: 

(i) Our theoretical understanding of the localized and genome-wide signatures of selection proves 
incomplete. This is because our expectations of how selection should become manifest in the genome 
is still much influenced by theoretical insights from (historic) single-locus models. Clearly, we should 
generate new theory that explicitly incorporates our most recent understanding from empirical evolutionary 
genomics research (see e.g., Chapter 4; Flaxman et al. 2014). 

(ii) The characterization of some genes with a large phenotypic effect in population divergence has put 
a strong research focus on finding ‘speciation genes’ (Orr et al. 2004; Nosil & Schluter 2011). Intriguingly, 
this trend seems to bias our perception of the complexity of adaptation, and to impair our scientific 
methodology and terminology. For example, studies often classify genetic polymorphisms (markers) 
either as ‘outliers’ or ‘non-outliers’. However, in the light of our current understanding of the genomics 
of adaptation, such classification is misleading as it implies the possibility to clearly distinguish between 
neutrally and non-neutrally evolving loci (Butlin 2010). For instance, there is no indication for a biologically 
justified threshold in the distribution of FST values between populations to distinguish between such distinct 
marker classes. Also, if hundreds of loci underlie the divergence of populations, one can question if the 
category ‘speciation gene’ is valid and useful.

(iii) Studies have recently tried to estimate the fitness effect of single genes or traits (e.g., Barrett et 
al. 2008; Terekhanova et al. 2014). Surprisingly, these studies often find high selection coefficients (up to 
0.5) for single loci or traits. Nevertheless, these estimates provide us with only little information about the 
selective situation in the wild (in fact, such estimates are likely biased). The reason is that a fitness effect 
of a single locus or trait is never independent of the rest of an organism in the wild – that is, it is never 
independent from all other loci and traits relevant for adaptation.

Genomic Parallelism in Adaptation 

To what extent is parallel phenotypic evolution mirrored by parallel genetic changes within a genome? To 
this point, there is no clear answer to this fundamental question. Stickleback repeatedly use pre-existing 
genetic variation to adapt to similar environments (Chapters 4 & 6). The quantification of the degree of 
parallelism at the genome level, however, remains challenging and imposes high requirements on the 
quality and amount of data (see below). More fundamentally, our perception of parallelism is probably 
biased: those loci identified with the highest certainty as loci under selection are often necessarily those 
displaying parallelism, because adaptation genomics studies often use parallelism as a confidence 
criterion (e.g., Chapter 4; Jones et al. 2012). Furthermore, the loci recycled by selection with high fidelity 
might be of relatively large effect and hence easiest to detect. It is also unclear to which degree our 
findings in stickleback allow for general conclusions, as most other non-genetic model organisms do not 
(yet) provide comparable data sets. 

Another crucial point concerns our thinking about ‘parallelism’ as such. Can evolution still said to be 
‘parallel’ when it is not exactly the same mutation that affects a phenotype, but different mutations in the 
same gene (e.g., Linnen et al. 2013) or the same genetic pathway (e.g., Manceau et al. 2010)? Chapter 6 
of this thesis also demonstrates a striking case of repeated selection of globally shared variants in different 
ecological contexts. This provides evidence for genetic parallelism in the absence of ecological parallelism 
(notably, the ecologically different environments might well have shared selection pressures). Another 
important question to be considered concerning parallelism is whether we are looking at causal variants 
or at neutral markers, as the latter might often not be parallel while the former are (Chapter 4).
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Complementary Approaches and a Reference Genome

My research emphasizes the need to integrate conceptually and analytically complementary approaches 
in adaptation genomics research. QTL and association mapping (Chapters 5 & 6), for example, start with 
information at the phenotype-level and work down to the genotype. This top-down approach provides a 
strong test for causality between a phenotypic trait and certain genomic regions (Chapter 8). Nevertheless, 
QTL and association mapping alone do not tell us much about the degree to which a phenotype and 
its underlying genetics are relevant to adaptation. In contrast to top-down investigations, bottom-up 
approaches can identify putatively adaptive loci by searching for molecular signatures of selection in the 
absence of phenotype information. The archetypal bottom-up approach is divergence mapping in natural 
populations (Chapters 1 & 6). Bottom-up approaches generally provide a better picture of selection at the 
genomic level than top-down approaches, since they are not biased by focusing on a few measurable 
traits only. Once selected genomic regions are identified, however, inferring their function in the absence 
of phenotypic information is very challenging. Nevertheless, the combination of mapping approaches 
with bottom-up methods (and phenotypic investigations in wild populations) allows us to link genetics, 
phenotypes, and selection (fitness) at least for some loci. In this thesis, I take on this challenge (Chapters 
5 & 6), where either QTL mapping or association mapping is combined with genomic data from natural 
populations. Furthermore, we should integrate complementary analytical tools in adaptation genomics 
research. The reason is that there is no ideal single measure or statistics to detect footprints of selection at 
the molecular level (Thesis Introduction; Oleksyk et al. 2010). For instance, LD-based tests are most useful 
for the identification of recent, incomplete selective sweeps (Chapter 6), whereas divergence tests are 
powerful to detect genomic regions where different allelic variants are  (nearly) fixed between populations 
(Chapters 1, 2, 4, 6, 7). In summary, we should combine different approaches (e.g., QTL with divergence 
mapping, Chapter 5) as well as tests (e.g., LD with divergence tests, Chapter 6) to address quantitative 
and qualitative aspects of selection within the genome. This is challenging because different approaches 
and tests rely on different kinds of data. The quantitative inference of selection at the genome-level in wild 
populations requires particularly high bp-resolution, sequence coverage, and a decent number of study 
individuals and replicate populations.

This thesis work also clearly highlights the importance of a reliably assembled reference genome. For 
example, inferences about recombination (Chapter 3) or linkage (Chapters 4 & 6) demand knowledge 
about the physical position of markers along a genome. Otherwise the powerful integration of single point-
estimates of divergence through sliding window approaches is impossible (as applied in Chapters 1-6). 
In brief, most questions of greatest interest in adaptation genomics (see Thesis Introduction) cannot be 
addressed in the absence of a well-assembled reference genome 

Speciation from the Genomics Perspective

Speciation can be considered a continuous process covering a range from ‘no’ to ‘complete’ reproductive 
isolation (Nosil 2012). Evolutionary genomics casts a new light on this process by quantifying the extent 
of genomic divergence to infer the strength of isolating barriers between populations and species. The 
heterogeneity in genome divergence suggests that gene flow between populations happens more easily 
in some genomic regions than in others. This indicates that the extent of reproductive isolation between 
populations and species can vary strongly along the genome, adding further complexity to the long-
standing discussion of how to define a ‘species’ and a ‘population’ (Mallet 1995; De Queiroz 2007).

The moment we study different populations, we can only speculate whether or not they will move further 
along the speciation continuum in the evolutionary future. The concept of speciation as a continuum or 
even as a process with distinct ‘stages’ (Feder et al. 2012) is delicate, since it implies a certain directionality 
in the course of evolution. Importantly, however, adaptive population divergence with ongoing gene flow 
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may itself constitute an evolutionary stable state. Even though divergence might progress directionally 
at the phenotype level, it is well conceivable that small and fluctuating selection coefficients of the many 
adaptive loci might never lead to fixed differences between some species (Buerke et al. 2010). 

‘Understanding’ the Genomics of Adaptation and Future Perspectives

Many of the sequencing, molecular and bioinformatics techniques and approaches used in genomics 
research have just been developed and are thus still in their infancy. Consequently, most current 
evolutionary genomics studies are yet explorative (but see Chapters 3 & 4), and many of our conceptual 
and methodological ideas and challenges are stimulated trough (unexpected) empirical findings (Chapters 
1-3). Nevertheless, the progress in our understanding of the genetics and genomics of adaptation, and 
evolution in general, has been overwhelming in the past decade.

A major challenge for the field of evolutionary genomics is how to deal with the genomic complexity 
of adaptive evolution and the many associated methodological and conceptual challenges. It thus seems 
necessary to consider (i) how much molecular detail we need to illuminate for an adequate understanding 
of evolution, and (ii) our inherent limits in understanding and interpreting genomic patterns. Because 
evolutionary biology is in essence a historical science, we have to concede that the identification of all 
causative processes underlying present-day (genomic) patterns is likely to be impossible. At the same time, 
general principles can only emerge by integrating many different and replicate case studies from various 
organisms. At its best, this thesis makes such a contribution and adds to our general understanding of 
the genomics of adaptation and evolution in general. 
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