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Summary 

 

Currently, benznidazole and nifurtimox are the only drugs available for the specific 

treatment of Chagas’ disease. Both are limited by low efficacy in the chronic stage of the 

disease and considerable toxicity, which is why there is an urgent need for drugs that 

provide safe and efficient treatment for Chagas’ disease. Trypanosoma cruzi, the 

causative agent of Chagas’ disease, requires specific endogenous sterols and is therefore 

very sensitive to sterol biosynthesis inhibitors (SBIs). SBIs are widely used as 

antifungals and lend themselves to drug repurposing. Sterols are an essential class of 

lipids in eukaryotes, where they serve as structural components of membranes and play 

important roles as signaling molecules. The most abundant sterol in vertebrates is 

cholesterol, whereas fungi synthesize ergosterol, which has a greater degree of 

unsaturation and an additional methyl group at C24. Like fungi, trypanosomes require 

the presence of ergosterol and other 24-alkylated sterols; their similar sterol content is 

the rationale for testing inhibitors of ergosterol synthesis against trypanosomes.  

In the framework of this PhD thesis various aspects of sterol anabolism in eukaryotes 

and its potential exploitation as drug target in parasites were analysed. First, using 

genome profiling, I did a comparative genomics study of sterol biosynthesis (SB) 

focusing on eukaryotic parasites. In vitro testing of known SBIs and quantifying the 

expression levels of SB genes during the different life stages of T. cruzi and Trypanosoma 

brucei completed this part of the thesis. Then, I used genetically modified yeast strains 

as a tool to assess selectivity of SBIs to ergosterol-containing cells. Finally, integrating 

the results from my work led to a specific proposition how to advance drug 

development in Chagas’ disease. 

 

For the genome profiling an in silico pipeline was developed to globally evaluate sterol 

metabolism and perform comparative genomics. Hidden Markov model-based profiles 

for 42 SB enzymes allowed to represent the genomic makeup of a given species as a 

numerical vector. Hierarchical clustering of these vectors functionally grouped 

eukaryote proteomes and revealed convergent evolution, in particular metabolic 

reduction in obligate endoparasites. The only obligate endoparasites found to possess 

SB genes were the trypanosomatids, Trypanosoma spp. and Leishmania spp. However, 
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the origin of SB genes in trypanosomatids remains obscure, as there was no evidence for 

horizontal transfer. 

SBIs are generally thought to act by inhibition of ergosterol anabolism. To investigate 

this more closely, I developed an assay using genetically modified yeast strains that 

either synthesize ergosterol or cholesterol. Different efficiencies of a given molecule in 

inhibiting ergosterol- or cholesterol-producing yeast can thus be attributed to sterol 

content. Nystatin concentrations required to inhibit growth in the cholesterol-producing 

yeast strain were 10-fold higher than in the ergosterol-producing strain, demonstrating 

the validity of the approach. Like amphotericin B, nystatin binds to ergosterol and forms 

pores in the membrane that lead to death of the target cell. This clear-cut result was only 

observed for molecules that bind to the finished end product of SB. Inhibitors of 

enzymes involved in SB did not exclusively inhibit growth of ergosterol-producing yeast 

strain, showing that the selectivity of SBIs for fungi is not based on differences between 

cholesterol and ergosterol anabolism. Two possible explanations why SBIs are selective 

inhibitors of fungal and trypanosomatid growth are brought forward: i) mammalian 

cells can salvage cholesterol from the environment and thus circumvent inhibition of 

sterol de novo synthesis whereas trypanosomatids and fungi require the presence of 

ergosterol and other 24-alkylated sterols, which cannot be replaced by the host’s sterols 

or ii) fungal and protozoan orthologs of SB enzymes are more susceptible to SBIs than 

the respective mammalian orthologs. 

Even though azoles have been used as antifungals for decades, their use against 

trypanosomatids is still not implemented. Even worse, the most advanced candidate – 

posaconazole – could not confirm its initial potential in a recent phase II clinical trial for 

chronic Chagas’ disease. Based on my findings and integrating the work of others, 

posaconazole should not be abandoned but partnered with another drug for 

combination therapy. In the concluding chapter I elaborate on why a sphingolipid 

biosynthesis inhibitor is probably the best match. 
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General Introduction 

 

1 American Trypanosomiasis 

 

American trypanosomiasis, also known as Chagas’ disease, was discovered in 1909 by 

Carlos Chagas’, who characterized the etiologic agent Trypanosoma cruzi, its life cycle 

and vector as well as the transmission process (1). Apart from natural transmission in 

endemic areas through contact with the faeces of vector insects (triatomine bug) or 

ingestion of contaminated food, T. cruzi infection can also occur through contaminated 

blood transfusion, organ transplant, congenital transmission from mother to foetus, or 

laboratory accidents. Infection from mother to child may occur in all endemic countries 

but is diagnosed only in a few. According to conservative estimates, at least three 

percent of new-borns from T. cruzi-infected mothers acquire the infection through the 

placenta (2). Debilitating and often fatal, this neglected tropical disease ranks high in 

terms of disability-adjusted years of life loss in Latin America, where it is a major public 

health problem and thus also a significant economic burden. Among infectious and 

parasitic diseases only HIV/AIDS, diarrheal diseases and tuberculosis account for more 

DALYs lost in this region. In many rural areas Chagas’ is by far the most common cause 

of heart disease. 

American Trypanosomiasis is endemic in 21 South American countries but as an 

enzootic disease, it is more widely distributed than apparent from human infections. It 

extends approximately from latitude 42° N in northern California and Maryland, to 

latitude 43° S in southern parts of Argentina and Chile (2). Every year, American 

Tryponosomiasis causes between 23’000 and 43’000 deaths (2). As a result of 

population mobility, Chagas’ disease now also occurs outside Latin America. Migration, 

but also travelling to endemic countries, has caused the disease to spread to non-

endemic countries. With an estimated 400,000 T. cruzi infected individuals outside of 

Latin America, control of Chagas’ disease has become a worldwide challenge (3). 

The life cycle of T. cruzi consists of three extracellular stages and one intracellular stage 

which are morphologically and metabolically different from each other: Epimastigotes 

are found in the gut of the insect vector and they transform into the metacyclic 

trypomastigotes which are infectious to the mammalian host. Metacyclic 
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trypomastigotes are transmitted through the faeces of the insect vector upon a blood 

meal and infect a plethora of mammalian host cells. Inside the cells they transform into 

amastigotes which multiply through binary fission in the host cell’s cytosol. Finally, 

intracellular amastigotes transform into trypomastigotes which burst out of host cells 

into the blood stream and are able to infect new cells (4). 

 

2 Human African Trypanosomiasis 

 

Human African Trypanosomiasis (HAT) is caused by two subspecies of Typanosoma 

brucei: T. b. gambiense, which causes endemic disease in central and west Africa and T. b. 

rhodesiense, which is prevalent in east and southern Africa and causes acute HAT (5). 

More than 90% of all reported HAT cases are attributed to T. b. gambiense infection. The 

parasites are transmitted between mammalian hosts by the blood-feeding tsetse flies of 

the genus Glossina. In the fly, the parasites undergo several differentiation steps: In the 

midgut dividing procyclic trypomastigote forms develop to the epimastigote forms, 

which migrate to the salivary glands where they develop into the infective metacyclic 

forms, which are injected with the saliva before the blood meal into the mammalian 

host. In man there are three distinctive bloodstream forms: dividing slender forms, 

intermediate forms, and stumpy forms. The latter are non-proliferative and, when 

ingested by the tsetse fly, transform to diving midgut forms to complete the cycle (6). 

The disease appears in two stages: the first haemolymphatic stage with non-specific 

symptoms like headache and fever and the second neurologic stage, after parasites have 

crossed the blood brain barrier. Invasion of the central nervous system causes the 

typical symptoms associated with sleeping sickness: serious sleep cycle disruptions, 

paralysis and progressive mental deterioration. If left untreated, HAT is lethal.  

 

3 Leishmaniasis 

 

Leishmaniasis is caused by protozoan parasites of the genus Leishmania. Transmission 

between vertebrate hosts usually occurs by the bite of the blood-sucking female 

phlebotomine sand fly (7). During a blood meal on an infected host, sand fly vectors take 

up macrophages infected with amastigotes. In the fly midgut, amastigotes transform into 

promastigotes, where they divide and then migrate to the proboscis. With the next blood 
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meal, the infective promastigotes are injected into mammalian skin where they are 

phagocytized by macrophages. Inside the mononuclear phagocyte the progmastigotes 

transform into the amastigotes, the proliferative form of the parasite in the mammalian 

host (8). Many of the more than 20 Leishmania species infective to mammals can cause 

human disease. Parasite species, host, and other factors affect whether the infection 

becomes symptomatic and whether cutaneous or visceral leishmaniasis results. 

Cutaneous leishmaniasis usually presents as ulcers on exposed body parts. Worldwide, 

the causative agents of most human visceral leishmaniasis (VL) are Leishmania donovani 

and Leishmania infantum (9). VL, also known as kala azar, is fatal without treatment. 

 

4 Available Drugs against Trypanosomatids 

 

Currently available drugs to treat Trypanosoma and Leishmania infections are listed in 

Table 1 together with their associated key problems and limitations. The first drugs 

against American Trypanosomiasis were discovered not until 60 years after the initial 

description of the disease in 1909. Nifurtimox (Lampit®, Bayer) and benznidazole 

(Rochagan®, Radanil®, Roche) remain to date the only available drugs for the specific 

treatment of Chagas’ disease (10). Both, nifurtimox and benznidazole, are 

nitroheterocyclic drugs and were originally registered to treat acute T. cruzi infections. 

Benznidazole is generally used as first-line treatment because it has the best safety and 

efficacy profile (11). Treatment is effective during the acute stage of infection with an 

estimated parasitological cure of at least 60% (12) but there is insufficient evidence to 

support the efficacy of nifurtimox or benznidazole in the late chronic stage of Chagas’ 

disease (13-15). Moreover, both drugs display high rates of adverse reactions. 

Patients infected with T. brucei gambiense are treated with pentamidine if they are in the 

first stage of the disease; Nifurtimox-Eflornithine Combination Therapy (NECT) is used 

for second stage HAT. T. brucei rhodesiense patients are treated with suramin (first 

stage) and melarsoprol (second stage). All currently used drugs have their limitations: 

pentamidine, suramin and melarsoprol show limited to severe toxicity and NECT is not 

effective against T. brucei rhodesiense infections (16). 

The recommended treatment against visceral and cutaneous leishmaniasis relies on 

antimonials. These drugs have been the treatment of choice for many decades and 

emergence of resistance has been reported and reached epidemic dimensions in Bihar, a 
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region in India endemic for visceral leishmaniasis (17-19). Alternative drugs to treat 

leishmaniasis are amphotericin B, pentamidine, and recently also miltefosine. But also 

against these second-line drugs resistance was observed (20) and side effects as well as 

high costs of treatment limit their use, especially in low-income countries. 

There is an urgent need for safe, efficient and easy-to-use drugs to treat HAT, American 

Trypanosomiasis and Leishmaniasis. Current drugs are often toxic, not orally available 

and difficult to administer, too expensive, or becoming impotent due to drug resistance. 

There are a few drug candidates in development, the most promising and advanced 

being fexinidazole for HAT and posaconazole for Chagas’ disease. But especially for 

Chagas’ disease the situation is not satisfactory as there would be a huge gap in the drug 

research and development (R&D) pipeline if posaconazole was not able to meet the high 

expectations. The most promising candidates to date are inhibitors of sterol 

biosynthesis (SB). Such inhibitors, already widely used as antifungals, are also being 

developed for Chagas’ disease because trypanosomatid and fungal sterol anabolism 

show striking similarities. 
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Table 1. Currently available drugs to treat human Trypanosoma and Leishmania infections and their 
associated key problemsa 

 

Disease Drugs/Treatment Associated Problems/Issues 

Chagas’ 
Disease 

Nifurtimox & 
Benznidazole  

Low effectiveness in the chronic phase, limited 
effectiveness in the acute phase, regional variations in 
efficacy due to tolerant T. cruzi strains, high number of 
side effects, long period of treatment (30-90 days), high 
rate of patient non-compliance, dose-dependent toxicity, 
no paediatric strengths, contraindicated during pregnancy, 
need for monitoring under specialized medical supervision 

Stage 1 HAT  Pentamidine 7-10 daily intramuscular injections; only efficacious for 
stage 1 HAT 

 Suramin Used primarily for stage 1 T.b. rhodesiense HAT, toxicity 

Stage 2 HAT Melarsoprol 10 painful daily intravenous injections, highly toxic with 
~5% treatment-related mortality, increasing number of 
treatment failures (up to 30% in some regions) 

 Eflornithine Difficult administration – 4 intravenous infusions per day 
required for 14 days, primarily used as second line drug for 
T.b. gambiense HAT 

 Nifurtimox Oral drug developed for Chagas’ disease, not registered for 
HAT, sometimes used compassionately after melarsoprol 
relapse, probably about 70% efficacy 

 Nifurtimox-
eflornithineb 

Simplified stage 2 treatment combining 7 days eflornithine 
(2 infusions/day) and 10 days oral nifurtimox 

Visceral 
Leishmaniasis 
(VL) 

Pentostam & 
Glucantime 

Quality control, availability, length of treatment (20-30 
days), painful injection, toxicity, resistance in India 

 Amphotericin B Need for slow intravenous infusion, dose-limiting 
nephrotoxicity, heat instability 

 Liposomal 
amphotericin B 

High cost, need for slow intravenous infusion, heat 
instability (stored <25° C) 

 Miltefosine High cost, possible teratogenicity, potential for resistance, 
patient non-compliance 

 Paromomycin 
sulphate 

Efficacy variable between and even within regions 

Cutaneous 
Leishmaniasis 
(CL) 

Sodium 
stibogluconate & 
meglumine 
antimonite 

Difficult administration in poor rural areas: intramuscular, 
intravenous, or intralesional injections, serious side 
effects, long treatment regime, not affordable for most 
patients  

 Liposomal 
amphotericin-B 

See VL, has not been fully tested on CL, high cost 

 Miltefosine See VL, side effects make it unsuitable to treat CL 

 Thermotherapy & 
cryotherapy  

High cost 

 

a Adapted from www.dndi.org 
b Included in WHO's List of Essential Medicines (EML) in May 2009 

  

http://www.dndi.org/
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5 Sterol Anabolism in Eukaryotes 

 

Sterols are ubiquitous in eukaryotes but largely absent from archaea and bacteria. 

Eukaryotic organisms require sterols as essential structural components of membranes 

and precursors for biologically active molecules that regulate growth and development. 

The most abundant sterol in vertebrates is cholesterol, where it is an essential 

component of cell membranes (bulk function) and acts as a precursor to vitamin D and 

steroid hormones (sparking function). In smaller eukaryotes, these functions are carried 

out by different kinds of sterols: Fungi synthesize ergosterol, which has a greater degree 

of unsaturation than cholesterol and an additional methyl group at C24. Similar to fungi, 

protozoa require the presence of ergosterol and other 24-alkylated sterols, rendering 

the latter potentially susceptible to antifungals targeting ergosterol synthesis. This 

group of unicellular organisms shows a high sterol diversity, involving cholesterol and 

stigmasterol in Paramecium (21), ergosterol and stigmasterols in Acanthamoeba (22), 

cycloartenol and cyclolaudenol in Dicytostelium (23), and ergosterol in trypanosomatids 

(24, 25). Plants make a large variety of phytosterols, such as the 24-alkylated 

campesterol, sitosterol, or stigmasterol whereas invertebrates such as Caenorhabditis 

elegans or Drosophila melanogaster are sterol auxotrophs that rely on uptake of 

exogenous sterols (26-28). 

Sterol anabolism either starts with acetyl-CoA and follows the mevalonate (MEV) 

pathway or proceeds from pyruvate via the deoxyxylulose 5-phosphate (DOXP/MEP) 

pathway to synthesize isopentenyl diphosphate, the building block of isoprenoids. The 

condensation of two molecules of farnesyl diphosphate to produce squalene is the first 

committed step of sterol synthesis. From there, the synthesis proceeds via lanosterol 

and zymosterol to cholesterol and ergosterol derivatives or via cycloartenol to the 

various kinds of phytosterols. All in all, more than 40 enzymes are involved in terpenoid 

synthesis and SB. Figure 1 shows the pathway of biosynthesis of cholesterol, ergosterol 

and plant sterols including the molecular structures of important sterol intermediates. 
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Figure 1. Overview on sterol biosynthesis. Key metabolites are spelled out and their molecular 
structures are depicted. 

 

6 Sterols in Protozoa  

 

Parasitic protozoa such as Giardia lamblia and Plasmodium spp. typically do not 

synthesize their own sterols (29, 30) and predominantly contain host derived 

cholesterol. However, there are a few exceptions: Trypanosoma, Leishmania and 

Acanthamoeba are capable of de novo sterol but not cholesterol synthesis (31-33). These 

protozoa have a sterol content similar to that of fungi. Major sterols found in 

trypanosomatids are ergosterol and other C24-alkylated Δ5,7-sterols (reviewed in (34)). 

Figure 1. Overview on sterol biosynthesis. Key metabolites are spelled out and their molecular structures 
are depicted. 
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Sterol content in any given organism is the result of de novo synthesis as well as uptake 

and metabolism of exogenous sterols. In the case of parasitic protozoa, the pool of de 

novo synthesized sterols – if present at all – is always complemented by sterols derived 

from the host or the culture medium. Thus it is questionable if sterol biosynthesis 

inhibitors (SBIs) already in use as fungicides can be repurposed as antiparasitic drugs, 

considering sterol import might circumvent the drugs’ effects. However, sterols have 

dual functions as membrane insert (‘bulk function’) and signal molecules (‘sparking 

function’) and – for the latter – trypanosomatids need specific C24-alkylated sterols such 

as ergosterol. This two-fold role of sterols explains why trypanosomatids have an 

essential need for de novo sterol synthesis even though they can import cholesterol 

from their host. 

 

6.1 Sterols in Trypanosoma cruzi and Leishmania spp. 

 

In T. cruzi the major sterols are ergosterol and other 24-alkylated sterols (35). In 

addition to the ergostane- (C28) and stigmstane-based (C29) sterols, T. cruzi also contains 

traces of cholesterol (C27) which is derived either from the host or the culture medium 

(31, 36), as demonstrated for T. brucei, imported cholesterol cannot replace endogenous 

ergosterol (37) and T. cruzi requires the specific 24-alkylated sterols for cell viability 

and proliferation (38, 39). Amastigotes of T. cruzi produce no Δ5,7-sterols, indicating the 

absence of Δ5-desaturase activity in the intracellular life stage of the parasite (36). 

Leishmania species are similar to T. cruzi in their sterol content as they mainly contain 

C28- and C29-sterols with ergostane-based C28-sterols being the most abundant in both 

amastigotes and promastigotes (40). Leishmania can take up and metabolize exogenous 

sterols (cholesterol) and seem to be rather tolerant of drug-induced alterations in their 

sterol content (34). 

 

6.2 Sterols in Trypanosoma brucei 

 

T. brucei procyclic forms (PCF) are capable of de novo SB (41) and 24-alkylated sterols 

are present, whereas bloodstream forms (BSF) almost exclusively contain cholesterol. 

Even though T. brucei BSF rely on absorption of host cholesterol via a receptor mediated 

LDL uptake mechanism – a process that was thought to inhibit de novo synthesis of C28 
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sterols (42), it has recently been shown that endogenous SB does occur in this form of 

the parasite (43). This finding is also supported by Northern blot analysis showing the 

presence of sterol 24-C-methyltransferase (24-SMT) mRNA as well as Western blot and 

activity determinations documenting the expression of the active enzyme in BSF 

parasites (44).  

 

7 Sterol biosynthesis inhibitors – From Blockbusters to neglected 

tropical diseases 

 

Sterols are of high pharmacological significance because there are several drug targets 

in sterol anabolism (Tab. 2): Cholesterol-lowering drugs (statins) are blockbusters in 

human health; there are a number of statins available on the market, including 

atorvastatin, which by 2003 became the best-selling pharmaceutical in history. Statins 

prevent the formation of mevalonate by inhibiting 3-hydroxy-3-methyl-glutaryl-

coenzyme A reductase (HMG-CoA reductase) leading to reduced cholesterol anabolism 

(45). Bisphosphonates inhibit the enzyme farnesyl diphosphate synthase curtailing 

isoprenoid synthesis and are used for the treatment of osteoporosis and other bone 

resorption diseases (46). Inhibition of squalene synthase (SQS) with zaragozic acids (47, 

48) or quinuclidine-based molecules (49, 50) blocks sterol synthesis without interfering 

with synthesis of isoprenoids. Intermediate metabolites that accumulate due to SQS 

inhibition can be metabolized and excreted (51) making SQS an attractive target for 

cholesterol-lowering drugs.  
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Table 2. Compound classes of molecules known to interfere with sterol metabolism. Target enzymes and mechanisms of action are indicated, as well as clinical 
indications where molecules are already on the market. The molecular structure of a representative compound is compared to the substrate of the target 
enzyme. For structural mimics, similar parts in the molecular structure are highlighted in red. 
 

Class Target/Mechanism of action Molecular structure Target enzyme substrate Uses Reference 

Statins Statins are competitive inhibitors of 
HMG-CoA reductase preventing the 
formation of mevalonate from HMG-
CoA. They occupy the HMG-binding 
pocket and part of the binding 
surface for CoA.  

 

Simvastatin 

 

HMG-CoA 

Used as 
cholesterol-
lowering 
drugs in 
humans 

(45, 52) 

Bisphosphonates 
(BPs) 

BPs are potent inhibitors of bone 
resorption. The selective action on 
bone is based on the binding of the 
BP moiety to the bone mineral. 
Nitrogen-containing BPs bind to and 
inhibit the activity of farnesyl 
diphosphate synthase. 

 

Alendronate 

 

  

Pyrophosphate (Geranyl 
diphosphate + isopentenyl 
diphosphate)  

Used to treat 
osteoporosis 
and other 
bone 
resorption 
diseases 

(46, 53, 54)  

Quinuclidines/ 
zaragozic acids 

Inhibition of squalene synthase 
(SQS). Quinuclidines may inhibit SQS 
by acting as carbocation mimics for 
farnesyl pyrophosphate (FPP) to 
squalene conversion. The aryl units 
may act as isosteres for the isoprenyl 
subunits in the farnesyl chain. 

 

3-Biarylquinuclidine 

 

SQS assembles two molecules of 
FPP into squalene 

Not in use as 
sterol 
biosynthesis 
inhibitor 
(SBI) 

(49)  
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Allylamines Allylamines specifically inhibit fungal 
squalene epoxidase (= squalene 
monooxygenase). 

 

Terbinafine 

 

Squalene 

Used for the 
topical 
treatment of 
fungal 
infections 

(55, 56)  

Azoles Azoles bind as the sixth ligand to the 
FeII of the heme cofactor in 
lanosterol 14 α-demethylase (= 
CYP51) thus occupying the active site 
and acting as non-competitive 
inhibitors. Blocking the synthesis of 
ergosterol leads to the accumulation 
of methylated sterol precursors. 

 

Itraconazole 

 

Lanosterol 

Used to treat 
fungal 
infections. 

(57, 58)  

Azasterols Evidence from yeast shows that 
azasterols inhibit the enzyme sterol 
24-C-methyltransferase (24-SMT). 

 

22,26-azasterol 

 

Zymosterol 

Not in use as 
SBI 

(59)  
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The allylamine drugs terbinafine is used for the topical treatment of fungal infections. 

Terbinafine inhibits fungal squalene epoxidase (= squalene monooxygenase) but not the 

orthologous enzyme in mammals leading to a depletion of ergosterol in fungi without 

affecting cholesterol biosynthesis in humans (56). Azoles, inhibitors of sterol 14α-

demethylase, are widely used as antifungals – both in human health and crop protection. 

Finally, azasterols inhibit the ergosterol-synthetic enzyme 24-SMT, which is not 

involved in cholesterol synthesis and thus not found in mammalian cells. This 

potentially renders azasterols highly selective for fungi and trypanosomatids. 

Given the close resemblance of trypanosomatids and fungi regarding their sterol 

metabolism, the repurposing of fungicides as anti-parasitic drugs is a promising 

approach. Indeed, many candidates that are currently investigated as new drugs against 

Leishmania and Trypanosoma infections have initially been developed as anti-fungal 

agents, markedly the azoles, especially posaconazole and ravuconazole (phase II clinical 

trials for Chagas’ disease) or Amphotericin B, which is already in use for CL and VL. 

 

8 Sequence Comparison of Drug Targets in Sterol Biosynthesis  

 

To determine exactly how similar trypanosomatids and fungi are on an enzymatic level, 

I compared their amino acid sequences of seven SB enzymes that are known drug 

targets (Fig. 2). I also included sequences from E. coli, P. falciparum, A. thaliana and H. 

sapiens. HMG-CoA reductase, squalene synthase, squalene monooxygenase (squalene 

epoxidase) and sterol 14-demethylase are absent in bacteria and apicomplexa but 

present in plants, trypanosomatids, yeast and humans as shown in the respective 

triangle plots. The DOXP/MEP pathway has been identified in plants (chloroplast), many 

eubacteria and apicomplexan parasites, whereas the MVA pathway is found in animals, 

plants (cytosol), fungi, and archaea (60). Consequently, orthologs of DOXP 

reductoisomerase, which catalyses the reductive isomerization of DOXP to MEP and is 

the target of the antibiotic fosmidomycin, were only found in P. falciparum, A. thaliana 

and E. coli. 
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P.f.* 0  HMG-CoA-reductase  P.f.* 18  Squalene monooxygenase 

A.t. 0 16       A.t. 23 17      

L.m. 0 15 51      L.m. 21 15 34     

T.c. 0 16 50 65     T.c. 21 16 35 58    

T.b. 0 14 53 63 78    T.b. 20 16 34 55 58   

S.c. 0 17 46 50 51 51   S.c. 21 20 36 32 32 33  

H.s. 0 17 45 50 50 50 40  H.s. 21 18 41 33 34 31 37 

 E.c. P.f.* A.t. L.m. T.c. T.b. S.c.   E.c.* P.f.* A.t. L.m. T.c. T.b. S.c. 

                 

P.f. 36  DOXP reducto-isomerase  P.f. 0  Sterol 14-demethylase 

A.t. 44 38       A.t. 0 0      

L.m. 0 0 0      L.m. 0 0 31     

T.c.* 13 16 15 0     T.c. 0 0 30 75    

T.b. 0 0 0 0 0    T.b. 0 0 32 77 83   

S.c.* 18 19 23 0 17 0   S.c. 0 0 31 29 28 28  

H.s.* 16 14 21 0 21 0 15  H.s. 0 0 38 32 32 32 37 

 E.c. P.f. A.t. L.m. T.c.* T.b. S.c.*   E.c. P.f. A.t. L.m. T.c. T.b. S.c. 

                 

P.f.a 20  Farnesyl-PP-synthase  P.f.* 21 Sterol 24-C-methyltransferase 

A.t.b 43 22       A.t. 18 20      

L.m. 22 28 22      L.m. 16 19 47     

T.c. 21 26 19 64     T.c. 17 21 47 66    

T.b. 21 29 22 63 70    T.b. 18 18 45 63 67   

S.c. 24 36 21 35 32 33   S.c. 17 21 51 44 43 41  

H.s. 22 31 19 37 33 38 45  H.s.* 18 17 21 20 19 19 21 

 E.c. P.f.a A.t.b L.m. T.c. T.b. S.c.   E.c.* P.f.* A.t. L.m. T.c. T.b. S.c. 

                 

P.f. 0  Squalene synthase  * No true homolog but the best hit that 
matched the inclusion criteria, even though it is 
not annotated as the enzyme the profile was 
built for. 
"0" indicates that there was no sequence found 
that matched the inclusion criteria (E value < 
10). 
 

A.t. 0 0       

L.m. 0 0 43      

T.c. 0 0 43 58     

T.b. 0 0 42 54 62    

S.c. 0 0 40 37 39 35   

H.s. 0 0 42 39 40 39 43  

 E.c. P.f. A.t. L.m. T.c. T.b. S.c.  
 
Figure 2. Triangle plots showing the percent sequence idendity from a global alignment between 
representatives of bactaria (Escherichia coli, E.c.), apicomplexa (Plasmodium falciparum, P.f.), plants 
(Arabidopsis thaliana, A.t.), trypanosomatids (Leishmania major, L.m.; Trypanosoma cruzi, T.c.; 
Trypanosoma brucei, T.b.), fungi (Saccharomyces cerevisiae, S.c.) and human (Homo sapiens, H.s.) for 
n=7 enzymes involved in sterol anabolism. Colour code: <20%, white; between 20% and 80%, 
gradually from white to black; >80%: black. a In P. falciparum 3D7 no farnesyl pyrophosphate 
synthase (FPPS) is annotated, only geranylgeranyl pyrophosphate synthase (GGPPS) which returned 
the highest score. In P. cynomolgy and P. yoelii there is a FPPS. b In A. thaliana FPPS1 is annotated, 
but GGPP1 returned a higher score. 
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In humans, trypanosomatids and yeast DOXP reductoisomerase is absent as are all other 

enzymes that belong to the MEP/DOXP pathway (61). Farnesyl/geranyl diphosphate 

synthase was found in all genomes analysed including E. coli. Finally, sterol 24-

methyltransferase orthologs were found in the A. thaliana, L. major, T. cruzi, T. brucei 

and Saccharomyces cerevisiae genome, confirming the absence of this protein in humans.  

 

8.1 Sequence Similarity 

 

Not surprisingly, for all enzymes (except DOXP reductoisomerase) the highest sequence 

similarity observed was between T. brucei and T. cruzi attaining over 80% in the case of 

sterol 14-demethylase. Sequences are remarkably conserved even across kingdoms. 

Generally, trypanosomatids’ sequences are – in decreasing order – most similar to A. 

thaliana, human and yeast sequences. Whereas the sequence identity between yeast and 

trypanosomatid orthologs is not particularly high, it is noteworthy that they show the 

same genomic makeup of SB enzymes, i.e. the same enzymes are present or absent in 

both, yeast and trypanosomatids. This is indication of convergent evolution. However, 

the underlying selective forces remain obscure as the biology of trypanosomatids and 

fungi is so different. Could it just be a coincidence that both rely on ergosterol as major 

sterol?  

 

9 Research and development (R&D) project portfolios for neglected 

tropical diseases 

 

The WHO currently lists 17 diseases as Neglected Tropical Diseases (NTDs) resulting 

from four different classes of pathogens: viruses, protozoa, helminths and bacteria. 

Control of these diseases can only be achieved by an integrated approach including i.a. 

vector control, strengthening of public health systems, improving access to treatment, 

and drug and vaccine development. For NTDs there is no incentive for the development 

of new diagnostic tools, drugs and vaccines because these diseases only affect people in 

low income countries. In the last ten to twenty years Product Development Partnerships 

(PDPs) have been created that focus on pharmaceutical product development for NTDs. 

Thanks to PDPs such as Medicines for Malaria Venture, Roll Back Malaria, the Global 
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Fund and many others there has been considerable progress in the fight against 

infectious diseases such as AIDS, tuberculosis and malaria. The Drugs for Neglected 

Diseases Initiative (DNDi) was founded in 2003 and aims to develop new treatments for 

neglected diseases. DNDi’s main focus is on the three protozoan NTDs Chagas’ disease, 

HAT and leishmaniasis. Figure 3 summarizes their portfolio including all current R&D 

projects that aim to develop and provide access to new drugs for these three diseases.  

For HAT, the focus lies on fexinidazole (62, 63) which is currently undergoing two phase 

II/III clinical trials, one for early second stage and first stage adults and another for 

children between 6 and 14 years of age. Earlier trials looked very promising and hopes 

are high that fexinidazole becomes the first new drug to be approved for the treatment 

of HAT in over thirty years. Since fexinidazole has also shown potent activity against L. 

donovani in vitro and in vivo in a VL mouse model, a phase II proof-of-concept study 

plans to evaluate fexinidazole for the treatment of primary VL patients in Sudan. Other 

projects in the HAT portfolio include development of SCYX-7158 (Jacobs et al., 2011) – a 

molecule belonging to the unique boron-based chemical class of the oxaboroles – or 

facilitating the implementation of NECT. 

The portfolio for leishmaniasis is dominated by development and implementation of 

new treatments for VL. Large-scale studies are conducted to demonstrate the feasibility 

of implementing new treatment modalities recommended by the WHO (miltefosine-

paromomycin, AmBisome®-miltefosine, AmBisome®-paromomycin, singledose 

AmBisome®) in primary healthcare settings in Bangladesh and India. In Africa several 

projects are on-going with the aim to facilitate implementation of and access to sodium 

stibogluconate & paromomycin combination therapy (SSG&PM) in key endemic areas of 

East Africa. Safety and effectiveness of SSG&PM is monitored post-implementation in a 

pharmacovigilance study. Another study evaluates the efficacy of a combination regimen 

of AmBisome® with miltefosine, and of AmBisome® (at a higher dose) monotherapy in 

Ethiopian patients co-infected with VL and HIV.  

The pipeline for new treatments for Chagas’ disease looks less auspicious. Posaconazole 

and E1224 (a prodrug of ravuconazole) – both triazolic molecules – are the only new 

candidates that entered clinical trials. K777, which inhibits cruzain, a key protease 

required for the survival of T. cruzi, as well as two interesting candidates from the 

fenarimol series are only in the pre-clinical phase. A population pharmacokinetic study 

of the newly registered paediatric dosage form of benznidazole is underway with the 
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objective to facilitate implementation of and access to this treatment. Posaconazole is 

thus the most promising new chemical entity (NCE) for the treatment of Chagas’ disease 

and discontinuation of this candidate would seriously aggravate the situation in the 

already slim Chagas’ portfolio. 
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 New Chemical Entity (NCE) 

 Fexinidazole (for HAT and VL) = 1 NCE 

Figure 3. DNDi R&D project 
portfolio for Human African 
Trypanosomiasis (HAT), 
Leishmaniasis (CL, 
cutaneous leishmaniasis; 
VL, visceral leishmaniasis) 
and Chagas’ Disease. As of 
2013, four new treatments 
have been made available 
and eleven new chemical 
entities () were in the 
pipeline. Adapted from 
dndi.org. 

Nitroimidazole
backup

Oxaborole backup

Oxaborole
SCYX-7158 

Fexinidazole NECT
Nifurtimox-Eflornithine
Combination Therapy

Nitroimidazole
backup (VL)

Anfoleish (CL)

VL-2098 Fexinidazole (VL) New VL 
treatments
for Africa

New 
treatments
for HIV/VL 
co-infection
for Africa

New VL 
treatments
for Latin
America

New VL 
treatments
for
Bangladesh

SSG&PM 
Sodium Stibogluconate & 
Paromomycin Combination
Therapy for VL in Africa

New treatments
for VL in India

Nitroimidazole Fenarimol
series

K777

Biomarkers

Azoles
E1224

Benznidazole
Pediatric dosage from

Hit to lead Lead Opt. Pre-clinical Phase I Phase IIa/PoC Phase IIb/III Registration Access

HAT

Leishmaniasis

Chagas



























20 

 

10 Bioinformatics 

 

Today, thousands of genome sequences from all domains of life are available. The wealth 

of genomic data allows the comparison of different genomes covering the whole 

spectrum from inter-domain to intra-species level. With the human genome published, it 

was feasible to compare genomes of model organisms to Homo sapiens in order to learn 

about evolution and human diseases. Ever since, researchers have used comparative 

genomics to aid drug development. In particular, identification of drug targets can be 

facilitated by identifying similarities and differences between host and pathogen on a 

genomic level. A promising strategy to pinpoint vulnerable points for chemotherapeutic 

attack in parasites is to look for essential parasite enzymes that are not present in the 

host (64). It is important to keep in mind, however, that even though genome analyses 

can contribute to efficient drug development, they do not replace the wet lab 

experiment. As will be shown in Chapter 2 in silico results are not always predictive for 

in vitro or in vivo outcome. 
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11 Aims and Objectives 

 

The overall aim of this PhD thesis was to scrutinize the potential of sterol anabolism as a 

target for new drugs against trypanosomatids. I was focussing on Chagas’ disease caused 

by T. cruzi because for this disease there is an especially urgent need for new drugs. The 

thesis’ structure reflects the process of progressing differentiation I went through 

during my work. Chapter 2 presents a holistic view on sterol metabolism in eukaryotes 

albeit with a clear focus on parasites and trypanosomes in particular. The next chapter 

describes the probing of different SBIs on yeast strains as well as parasites and 

mammalian cells in an attempt to shed light on the mechanism of action of these drugs: 

The specificity of a set of SBIs was assessed using three genetically modified S. cerevisiae 

strains: (i) wild type producing ergosterol, (ii) a cholesterol producing strain and (iii) a 

strain that produces an intermediate sterol (cholesta-5,7,24-trienol). In the concluding 

chapter I summarize the lessons learned in this PhD thesis and present the quintessence 

of the work which ultimately resulted in a proposed way forward for the top-candidate 

in the drug discovery for Chagas’ disease, posaconazole. The following specific objectives 

were achieved during my PhD thesis: 

 

(i) Development of an in silico pipeline to globally evaluate sterol metabolism 

and perform comparative genomics (Chapter 2) 

(ii) Investigation of ergosterol-specificity in the mechanism of action of SBIs, 

especially azoles and azasterols (Chapter 3) 

(iii) Proposing a combination partner for posaconazole in order to improve 

efficacy of a new therapy to treat Chagas’ disease (Chapter 4) 
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associated with two main purposes: as structural compo-
nents of membranes (bulk function) and as precursors to 
signaling molecules that regulate growth and development 
(sparking function). The sterol biosynthetic pathways en-
compass phylum-specifi c branches that yield distinctive end 
products. Cholesterol is the most abundant sterol in verte-
brates, where it is an essential component of cell membranes 
and acts as a precursor to vitamin D and steroid hormones. 
Invertebrates such as  Caenorhabditis elegans  or  Drosophila mel-
anogaster  are sterol auxotrophs that rely on uptake of exog-
enous sterols ( 1–3 ). Fungi synthesize ergosterol, which has 
a greater degree of unsaturation than cholesterol and an 
additional methyl group at C-24. Plants make a large variety 
of phytosterols, such as the 24-alkylated campesterol, sitos-
terol, or stigmasterol. Sterol diversity may be equally high in 
the protozoa, involving cholesterol and stigmasterol in  Para-
mecium  ( 4 ), ergosterol and stigmasterols in  Acanthamoeba  
( 5 ), cycloartenol and cyclolaudenol in  Dicytostelium  ( 6 ), and 
ergosterol in trypanosomatids ( 7, 8 ). 

 The sterol biosynthetic pathways involve more than 40 
enzymes (  Table 1  ).  Isopentenyl diphosphate, the building 
block of isoprenoids, is made either from acetyl-CoA via 
the MEV pathway or from pyruvate plus glyceraldehyde 
3-phosphate via the deoxyxylulose 5-phosphate (DOXP) 
pathway (  Fig. 1  ).  The condensation of two molecules of 
farnesyl diphosphate to produce squalene is the commit-
ting step of sterol synthesis. From there, the synthesis pro-
ceeds via lanosterol and zymosterol to cholesterol and 
ergosterol derivatives, or via cycloartenol to the various 
kinds of phytosterols ( Fig. 1 ). The enzymes that mediate 
sterol biosynthesis are of dual interest: First, there is 
a pharmacological interest because sterol biosynthesis 

       Abstract   Sterols are an essential class of lipids in eukary-
otes, where they serve as structural components of mem-
branes and play important roles as signaling molecules. 
Sterols are also of high pharmacological signifi cance: cho-
lesterol-lowering drugs are blockbusters in human health, 
and inhibitors of ergosterol biosynthesis are widely used as 
antifungals. Inhibitors of ergosterol synthesis are also being 
developed for Chagas’s disease, caused by  Trypanosoma 
cruzi . Here we develop an in silico pipeline to globally evalu-
ate sterol metabolism and perform comparative genomics. 
We generate a library of hidden Markov model-based pro-
fi les for 42 sterol biosynthetic enzymes, which allows express-
ing the genomic makeup of a given species as a numerical 
vector. Hierarchical clustering of these vectors functionally 
groups eukaryote proteomes and reveals convergent evolu-
tion, in particular metabolic reduction in obligate endop-
arasites. We experimentally explore sterol metabolism by 
testing a set of sterol biosynthesis inhibitors against trypano-
somatids,  Plasmodium falciparum ,  Giardia , and mammalian 
cells, and by quantifying the expression levels of sterol bio-
synthetic genes during the different life stages of  T. cruzi  
and  Trypanosoma brucei      .  The phenotypic data correlate with 
genomic makeup for simvastatin, which showed activity 
against trypanosomatids.   Other fi ndings, such as the ac-
tivity of terbinafi ne against  Giardia , are not in agreement 
with the genotypic profi le.  —Fügi, M. A., K. Gunasekera, T. 
Ochsenreiter, X. Guan, M. R. Wenk, and P. Mäser.  Genome 
profi ling of sterol synthesis shows convergent evolution in 
parasites and guides chemotherapeutic attack.  J. Lipid Res . 
2014.  55:  929–938.   
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because the evolution of eukaryotes is thought to be inter-
linked with that of the sterols ( 21 ). 

 Here we present an in silico pipeline for comparative 
genomics of eukaryotes based on prediction of sterol bio-
synthetic enzymes. Our aim is to shed light on the evolu-
tionary relationships of these enzymes and to identify new 
antiparasitic drug target candidates. Focusing on trypano-
somatids, we further compare the stage-specifi city of ex-
pression of the sterol biosynthetic enzymes, and we probe 
the potential of selected SBIs against a panel of parasites. 

 MATERIALS AND METHODS 

 Sequences 
 Proteome fi les were downloaded from Uniprot ( 22 ), Eu-

PathDB ( 23 ), and Integr8 ( 24 ). The predicted proteomes were 
tested for completeness against the 100 most conserved pro-
teins of the Core Eukaryotic Genes Mapping Approach data-
base ( 25 ), which we had determined based on HMMer 3.0 profi le 
( 26, 27 ) searches of eukaryote reference proteomes ( C. elegans ,  

inhibitors (SBIs) are widely deployed as chemotherapeu-
tics. As indicated in  Fig. 1 , human HMG-CoA reductase 
serves as the target of cholesterol-lowering statins such as 
simvastatin ( 9 ). Human farnesyl diphosphate synthase is 
the target of bisphosphonates (e.g., tiludronate), used 
against osteoporosis ( 10 ). Squalene epoxidase and sterol 
24-methyltransferase are antifungal targets, inhibited by 
allylamines (e.g., terbinafi ne) and azasterols, respectively 
( 11–14 ). A particularly promising target is sterol 14-dem-
ethylase (CYP51). Azole inhibitors of CYP51 (e.g., keto-
conazole) are widely used for fungal infections and, 
because trypanosomatid parasites also make ergosterol 
( 15–17 ), lend themselves for a piggyback approach toward 
the urgently required new drugs for Chagas’s disease. The 
latest antifungal approved by the U.S. Food and Drug Ad-
ministration, posaconazole, was shown to be highly active 
against  Trypanosoma cruzi  in culture and in vivo ( 18–20 ), 
and it is currently undergoing phase 2 clinical trials for the 
treatment of Chagas’s disease. Second, sterol biosynthetic 
enzymes are of phylogenetic importance. Sterols were pro-
posed to hold a key to understanding eukaryote phylogeny 

 TABLE 1. Sterol biosynthetic enzymes     

# EC KEGG Enzyme Name

1 2.3.1.9 K00626 Acetyl-CoA C-acetyltransferase
2 2.3.3.10 K01641 Hydroxymethylglutaryl-CoA synthase
3 1.1.1.34 K00021 Hydroxymethylglutaryl-CoA reductase (NADPH)
4 1.1.1.88 K00054 Hydroxymethylglutaryl-CoA reductase
5 2.7.1.36 K00869 Mevalonate (MEV) kinase
6 2.7.4.2 K00938 Phospho-MEV kinase
7 4.1.1.33 K01597 Diphospho-MEV decarboxylase
8 2.2.1.7 K01662 1-Deoxy- D -xylulose-5-phosphate synthase
9 1.1.1.267 K00099 1-Deoxy- D -xylulose-5-phosphate reductoisomerase
10 2.7.7.60 K00991 2-C-methyl- D -erythritol 4-phosphate cytidylyltransferase
11 2.7.1.148 K00919 4-Diphosphocytidyl-2-C-methyl- D -erythritol kinase
12 4.6.1.12 K01770 2-C-methyl- D -erythritol 2,4-cyclodiphosphate synthase
13 1.17.7.1 K03526 ( E )-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase
14 1.17.1.2 K03527 4-Hydroxy-3-methylbut-2-enyl diphosphate reductase
15 5.3.3.2 K01823 Isopentenyl-diphosphate delta-isomerase
16 4.2.3.27 K12742 Isoprene synthase
17 2.5.1.1 K00787 Geranyl diphosphate synthase
18 2.5.1.68 K12503 Short-chain  Z -isoprenyl diphosphate synthase
19 2.5.1.86 K14215  Trans ,poly cis -decaprenyl diphosphate synthase
20 2.5.1.10 K00787 Farnesyl diphosphate synthase
21 2.5.1.21 K00801 Farnesyl-diphosphate farnesyltransferase
22 1.14.13.132 K00511 Squalene monooxygenase
23 5.4.99.7 K01852 Lanosterol synthase
24 1.14.13.70 K05917 Cytochrome P450, family 51 (CYP51; sterol 14-demethylase)
25 1.3.1.70 K00222 Delta14-sterol reductase
26 1.14.13.72 K07750 Methylsterol monooxygenase
27 1.1.1.170 K07748 Sterol-4 � -carboxylate 3-dehydrogenase (decarboxylating)
28 1.1.1.270 K09827 3-Keto steroid reductase
29 5.3.3.5 K01824 Cholestenol delta-isomerase
30 1.3.1.72 K09828 Delta24-sterol reductase
31 1.14.21.6 K00227 Lathosterol oxidase
32 1.3.1.21 K00213 7-Dehydrocholesterol reductase
33 3.1.1.13 K01052 Lysosomal acid lipase/cholesteryl ester hydrolase
34 2.3.1.26 K00637 Sterol  O -acyltransferase
35 1.14.13.13 K07438 Calcidiol 1-monooxygenase
36 1.14.13.126 K07436 Vitamin D3 24-hydroxylase
37 2.1.1.41 K00559 Sterol 24-C-methyltransferase
38 5.-.-.- K09829 C-8 sterol isomerase
39 1.3.1.71 K00223 Delta24[24 (1)]-sterol reductase
40 5.4.99.8 K01853 Cycloartenol synthase
41 2.1.1.143 K08242 24-Methylenesterol C-methyltransferase
42 n.a. K09832 Cytochrome P450, family 710, subfamily A

EC, Enzyme Commission number; KEGG  , Kyoto Encyclopedia of Genes and Genomes identifi er.
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purchased from Sigma-Aldrich (R7017-1G), and Chlorophenol 
red galactopyranoside (CPRG)   from Roche (10884308001). 

 Cell lines 
 The cell lines used for in vitro drug sensitivity determination 

were rat L6 myoblasts,  T. brucei rhodesiense  STIB 900,  T. cruzi  Tula-
huen C2C4 (expressing  Escherichia coli   � -galactosidase),  Leishma-
nia donovani  MHOM-ET-67/L82 axenic amastigotes,  Giardia 
intestinalis  strain G1, and  P. falciparum  strain K1. 

 Bioinformatics 
 Multiple alignments were performed with ClustalW 2.0.10 

( 29 ). All profi le constructions and searches were carried out with 
HMMer 3.0 ( 26 ). The heat map was produced with the R library 
 gplots  ( 30 ). Hierarchical clustering was performed with the R li-
brary  Pvclust , using Canberra distance and the McQuitty algo-
rithm ( 31 ). Pvclust assesses uncertainty in hierarchical cluster 

Chlamydomonas reinhardtii ,  D. discoideum ,  D. melanogaster ,  D. rerio ,  
E. cuniculi ,  Entamoeba histolytica ,  G. lamblia ,  Homo sapiens ,  K. lactis ,  
L. major ,  M. musculus ,  Plasmodium falciparum ,  S. cerevisiae ,  S. pombe ,  
Trypanosoma brucei ,  T. cruzi ,  T. parva ,   and  T. vaginalis ). Additional 
proteomes were included only if  hmmscan  of HMMer 3.0 returned 
a hit for at least 99 profi les with an expectancy ( E ) value  � 10  � 30 . 
Redundancy-reduced sets of reference sequences for the enzymes 
of interest ( Table 1 ) were downloaded from UniRef90 ( 28 ). 

 Chemicals 
 Simvastatin (S6196-25MG), tiludronate disodium salt hydrate 

(T4580-10MG), terbinafi ne hydrochloride (T8826-100MG), and 
ketoconazole (K1003-100MG) were purchased from Sigma-Aldrich. 
Fenpropimorph was kindly offered by M. Witschel from BASF. The 
test compounds were dissolved in dimethyl sulfoxide at 10 mg/ml 
and stored at  � 20°C. Resazurin sodium salt (Alamar Blue) was 

  Fig.   1.  Overview on sterol biosynthesis. Enzymes are represented by triangles, metabolites by circles. In-
hibitors are indicated in bold. Key metabolites are spelled out. See  Table 1  for enzyme name EC classifi ers.   
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 The known differences among the analyzed eukaryotes 
were obvious. The absence of the MEV pathway (enzyme 
nos. 2 to 7 of  Table 1 ) and the presence of the MEP  /
DOXP pathway (enzyme nos. 8 to 14) were apparent in 
most apicomplexan species, with the exception of  Cryp-
tosporidium parvum , which lacked either pathway ( Fig. 2 , 
top). This is in agreement with  C. parvum  having lost the 
plastid genome in the course of evolution ( 38 ). It was in-
teresting to note that  E. histolytica  was also defi cient in ei-
ther pathway, a fi nding that, to our knowledge, had not 
been reported before ( 39 ).  Entamoeba  was reported to be 
capable of limited cholesterol synthesis ( 40 ). Our data, 
however, support earlier reports suggesting an absolute 
requirement for cholesterol by  Entamoeba  ( 41 ). The vascu-
lar plants possessed both pathways, but the green algae  C. 
reinhardtii  and  Ostreococcus tauri  only had the MEP/DOXP 
arm, a fact that had been elegantly demonstrated for  C. 
reinhardtii  and other green algae by feeding experiments 
with radiolabeled glucose ( 42 ). 

 As expected, the sterol 24-C-methyltransferases SMT1 
and SMT2 (enzyme nos. 37 and 41), characteristic of er-
gosterol synthesis, were absent in all vertebrates. The ge-
nome-wide screen also confi rmed the presence of a set 
of sterol synthetic enzymes, including 24-C-methyltrans-
ferases, in trypanosomatids. Surprisingly, though, the try-
panosomatids lacked sterol  O -acyltransferase as well as 
cholesteryl ester hydrolase (enzyme nos. 34 and 33, re-
spectively), and yet,  T. brucei  had been shown to be capable 
of sterol esterifi cation ( 43 ), suggesting that trypanosoma-
tids might use unusual enzymes for ester synthesis and 
hydrolysis. 

 Only 2 of the 42 sterol metabolic enzymes were present 
in all the analyzed proteomes: geranyl/farnesyl diphos-
phate synthase (enzyme nos. 17 and 20, respectively). 
Thus, our proteome-wide profi ling approach indicates 
that the synthesis of farnesylpyrophosphate is essential to 
all eukaryotes and that farnesylpyrophosphate is a metabo-
lite of central importance to organisms, whether they use 
the MEV or the MEP/DOXP pathway. A possible explana-
tion is that farnesylation and geranylation of proteins is 
essential to eukaryotes. This hypothesis is in agreement 
with the fact that farnesyltransferases (EC 2.5.1.29, 2.5.1.58, 
and 2.5.1.60) occur in all the analyzed eukaryotes as deter-
mined with a profi le search analogous to those for sterol 
biosynthetic enzymes (data not shown). 

 Hierarchical clustering reveals convergent evolution 
 To detect less obvious and possibly new relationships 

regarding sterol metabolism of eukaryotes, we subjected 
the sterol metabolic profi les ( Fig. 2 ) to hierarchical 
clustering. Every analyzed species was represented by a 
42-tuple vector consisting of the best scores of the re-
spective proteome to each profi le. Hierarchical cluster-
ing of these vectors produced the “sterol biosynthesis 
tree” shown in   Fig. 3  ,  which basically subdivided the eu-
karyotes into species that make their own sterols (sterol 
prototrophs, left side) and species that do not (sterol 
auxotrophs, right side). The tree locally mirrored the 
phylogeny of the analyzed eukaryotes. The green plants 

analysis by implementing multiscale bootstrap resampling (n = 
10,000) to estimate “approximately unbiased” ( au ) errors, where 
 P  = (100 –  au )/100. For principal component (PC) analysis we 
used basic R functions and  ggplot2 . The analyses were automated 
with Unix shell scripts and with Perl scripts. The phylogenetic 
trees were constructed from amino acid sequences with Mega 5, 
using the neighbor-joining algorithm and Jones-Taylor-Thornton   
substitution model. The number of bootstrap replications was 
1,000. 

 Gene expression 
 Tag counts of the sterol biosynthesis enzymes were extracted 

from three published  T. brucei  short-read libraries (long slender 
bloodstream forms, short stumpy bloodstream forms, and procy-
clic tsetse fl y midgut forms) and from four  T. cruzi  short-read li-
braries (intracellular amastigotes, trypomastigotes, epimastigotes, 
and metacyclics). The libraries had been produced by Illumina 
sequencing using the spliced-leader trapping (SLT) protocol 
( 32 ). Numbers of reads were normalized by using the DESeq 
( 33 ) bioconductor package. The gene expression data were mod-
eled with  prcomp  as a numerical matrix of  M  genes times  N  librar-
ies. Eigenvalues and orthogonal eigenvectors were computed 
based on the square-symmetrical correlation matrix. 

 In vitro drug sensitivity 
 In vitro drug sensitivity assays were performed as described 

( 34–37 ). The tests were done over 72 h of incubation, except for 
the  T. cruzi  assay, which lasted 96 h. For L6 cells,  L. donovani ,  T. 
brucei , and  G. intestinalis , the redox-sensitive dye resazurin (Ala-
mar Blue) served as an indicator of cell viability. For  P. falciparum , 
incorporation of  3 H-hypoxanthine was used. For  T. cruzi ,  � -
galactosidase activity was quantifi ed with the substrate CPRG/
Nonidet. IC 50    values were estimated by linear interpolation based 
on the semilogarithmic dose-response curves. 

 RESULTS AND DISCUSSION 

 Sterol metabolic profi ling of eukaryote genomes 
 Aiming for a broad overview on sterol metabolism, we 

assembled a list of 42 relevant enzymes ranging from ter-
penoid backbone synthesis over squalene synthase to the 
formation of the different sterols and vitamin D derivatives 
as outlined in  Fig. 1 . For each enzyme, all the amino acid 
sequences that had been annotated in the manually cu-
rated section of UniProt with the corresponding EC num-
ber were retrieved ( Table 1 ). Each of these sequence sets 
was redundancy reduced to 90%. Then a ClustalW multi-
ple alignment was performed and converted to a position-
dependent scoring matrix with  hmmbuild  of HMMer 3.0. 
The resultant 42 profi les were concatenated to a hidden 
Markov model (HMM) library for terpenoid backbone 
and sterol biosynthetic enzymes. This library was used for 
an in silico screen of eukaryote proteomes. For each pro-
teome and each enzyme, we retrieved the profi le-alignment 
score of the protein that had returned the lowest expec-
tancy ( E ) value. This approach allowed organizing the data 
in an unbiased, quantitative way, by plotting the obtained 
high scores as a two-dimensional heat map where the hori-
zontal cross-sections represent the “sterol biosynthetic 
profi le” of a given organism (  Fig. 2  ).   
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species located on the sterol prototrophic arm of the 
tree ( Fig. 3 ). 

 What is the origin of trypanosomatid ergosterol synthesis? 
 The sterol biosynthesis tree ( Fig. 3 ) is based on func-

tional predictions and cannot serve for phylogenetic mod-
els. To investigate the evolutionary origin of the sterol 
biosynthetic genes in trypanosomatids, we constructed 
phylogenetic trees for two key enzymes of ergosterol syn-
thesis: lanosterol 14 � -demethylase (enzyme no. 24 in 
 Table 1 ), the target of azoles, and sterol 24-C-methyltrans-
ferase (enzyme no. 37), the dedicative enzyme for ergos-
terol synthesis. Both trees had a similar topology (except 
that sterol 24-C-methyltransferase does not occur in ani-
mals) with distinct branches for the major groups of eu-
karyotes and a highly signifi cant separate branch for the 
included trypanosomatid sequences ( Fig. 4 ). It was impos-
sible to root the trees because there are no suitable out-
groups for the two enzymes such as orthologs from 
bacteria. Acquisition of foreign genes by trypanosomes 
from plants has been suggested for glycosomal enzymes of 
 T. brucei  ( 44, 45 ). The phylogenetic trees of lanosterol 14 � -
demethylase and sterol 24-C-methyltransferase clearly do 
not support such a scenario for the sterol biosynthetic 
enzymes. Based on this bioinformatic analysis, one would 
exclude horizontal transfer as the evolutionary origin of 
trypanosomatid ergosterol synthesis. 

cosegregated, as did the trypanosomatids, the protos-
tomes, and the deuterostomes where the sea urchin 
 Strongylocentrotus purpuratus    clearly clustered with the 
chordates. The fungi formed a cluster except for  E. cuniculi , 
and the apicomplexans formed a cluster except for  C. par-
vum . These two outliers segregated with  G. lamblia  and 
 E. histolytica  in a phylogenetically diverse branch of ami-
tochondriates ( Fig. 3 ). The analyzed ciliates clustered 
with the insects; however, this association was not sig-
nifi cant, and clearly, a larger number of ciliate genomes 
would be desirable to better resolve their position in the 
sterol biosynthesis landscape. 

 We interpret cases where clustering based on sterol 
biosynthesis enzymes does not coincide with eukaryote 
phylogeny as indicative of convergent evolution. Thus, 
the amoebazoon  Entamoeba  and the fungus  Encephalito-
zoon , both obligate endoparasites, clustered together on 
the sterol-auxotrophic branch of the tree, whereas the 
free-living amoebazoa  D. discoideum  and  P. palladium  
segregate on the sterol-prototrophic branch together 
with the free-living, or facultative parasitic, fungi ( Fig. 3 ). 
A likely explanation of this clustering is that the eukary-
ote progenitor synthesized sterols de novo, whereas the 
obligate endoparasites independently lost the corre-
sponding genes in adaptation to a parasitic lifestyle. 
The trypanosomatids are a notable exception: of all 
the included obligate endoparasites, they were the only 

  Fig.   2.  Sterol biosynthetic profi les. The heat map denotes the best scores achieved by each proteome (rows, n = 46) against each profi le 
for a sterol biosynthetic enzyme (columns, n = 42). See  Table 1  for enzyme name and  Fig. 1  for its position in the pathway.   
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embryonic fi broblast and also against lovastatin, with the 
same result: IC 50  values clearly below 1 µM. Apparently, 
cholesterol synthesis was essential under our test condi-
tions. Tiludronate was inactive against all the tested cells. 
The most potent compound against  T. cruzi  was ketocon-
azole, followed by simvastatin, which also showed a moder-
ate activity against  T. brucei  (IC 50  = 4.6 µM) and  L. donovani  
(IC 50  = 4.7 µM). The activity against  T. cruzi  was not con-
clusive due to the toxicity of simvastatin to L6 host cells 
(hence the parentheses in Table 2). Terbinafi ne, keto-
conazole, and fenpropimorph were moderately active 

 Susceptibility of parasites to SBIs 
 Given the antichagasic potential of azoles, we tested a 

panel of further known inhibitors of sterol biosynthesis, as 
indicated in  Fig. 1 , against parasites ( P. falciparum ,  L. dono-
vani ,  T. cruzi ,  T. brucei , and  G. lamblia ) and mammalian 
cells (rat L6 myoblasts). IC 50  values were determined in 
vitro (  Table 2  ).  As expected, the mammalian cells were 
rather tolerant to most of the tested drugs, except for sim-
vastatin, which had an IC 50  of 0.70 µM against the L6 cells. 
This result was surprising because simvastatin is widely 
used as a cholesterol-lowering agent. We also tested mouse 

  Fig.   3.  Sterol biosynthetic tree of eukaryotes. The numerical vectors (rows of  Fig. 2 ) were clustered based on Canberra distance and the 
McQuitty algorithm. Gray numbers are “approximately unbiased” errors ( au ), where  P  = (100  �   au )/100.   

  Fig.   4.  Phylogenetic trees of key enzymes. Neighbor-joining trees of sterol 14-demethylase (enzyme no. 
24), the target of azoles (A), and sterol 24-C-methyltransferase (enzyme no. 37), the dedicative enzyme of 
ergosterol synthesis (B). The scale bars indicate number of substitutions per site.   
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correlated with PC-2 ( Fig. 6 ). Taken together, PC analysis 
of the steady-state expression levels of sterol biosynthetic 
genes singled out the insect stages of  T. brucei  as well as 
 T. cruzi  ( Fig. 6 ), demonstrating parallel metabolic adapta-
tions in African and South American trypanosomes. 

 CONCLUSION 

 Starting from the assumption that sterol synthesis is 
intrinsically linked to the evolution of eukaryotes, we per-
formed comparative genomics based on the profi ling 
of sterol biosynthetic enzymes ( Fig. 1 ). The aim was to in-
vestigate convergent evolution in eukaryotes and possibly 
link this to chemotherapeutic strategies against parasites. 
We refrained from functionally annotating the analyzed 

against  P. falciparum  with IC 50  below 10 µM. Terbinafi ne 
was the only tested compound that showed a considerable 
effect on  Giardia  (IC 50  = 0.62 µM). However, terbinafi ne 
inhibits squalene monooxygenase (enzyme no. 22), an en-
zyme that is absent in  Giardia  ( Fig. 2 ). Comparing the in 
silico data of  Fig. 2  with the in vitro data of  Table 2 , we 
would expect a negative correlation between the score of 
the profi le search for a given enzyme and species and the 
IC 50  of a known inhibitor of the same enzyme. As shown in 
  Fig. 5  ,  this was the case with simvastatin (Spearman rank 
order correlation coeffi cient  r  S  =  � 0.89,  P  < 0.05). For 
other compound-target pairs, there was either no correla-
tion (ketoconazole and sterol 14-demethylase,  r  S  = 0.06) or 
a positive, albeit nonsignifi cant, correlation (tiludronate 
and farnesyl diphosphate   synthase,  r  S  = 0.31; fenpropi-
morph and lathosterol oxidase,  r  S  = 0.64). For terbinafi ne 
and its presumed target squalene epoxidase (enzyme no. 
22), there was even a signifi cant positive correlation be-
tween profi le score and IC 50  ( r  S  = 0.89,  P  < 0.05;  Fig. 5 ). 

 Stage-specifi c regulation of sterol biosynthetic enzymes 
in trypanosomes 

 A possible reason for the lack of correlation between ge-
nomic makeup and drug susceptibility is that a particular 
target enzyme may be differently expressed across the life-
cycle stages of a parasite. We investigated the expression of 
sterol biosynthetic enzymes at the mRNA level in the try-
panosomatids  T. brucei  and  T. cruzi  using previously pub-
lished SLT data. SLT takes advantage of the conserved 
miniexon that is spliced in  trans  to all trypanosomal mRNA 
( 46 ). We analyzed data from different stages of  T. brucei  
(slender bloodstream form, stumpy bloodstream form, and 
procyclic tsetse-midgut form) and  T. cruzi  (intracellular 
amastigote form, trypomastigote form, and epimastigote tri-
atomine-midgut form) ( 32, 47 ). For both species, we found 
marked differences between the life-cycle stages regarding 
the steady-state expression levels of sterol biosynthetic genes. 
Generally, we detected higher mRNA levels of genes in-
volved in sterol biosynthesis in the insect stages than in the 
mammalian stages of the organisms. This is in good agree-
ment with the availability of sterols for the parasite in a mam-
malian host. PC analysis was performed for genes with 
orthologs in both species (n = 31). Plotting the fi rst two PCs 
revealed the proliferating insect stages of both  T. brucei  and 
 T. cruzi  to more closely align with PC-2 than with PC-1, and 
to positively correlate with either PC (  Fig. 6  ).  In contrast, the 
proliferating mammalian stages, as well as all the nonprolif-
erating stages, more closely aligned with PC-1 and oppositely 

 TABLE 2. Sensitivity  a   of mammalian cells  b   and parasites  c   to sterol antimetabolites        

L6  Pfa Ldo Tcr Tbr Gla

Simvastatin 0.70 28.43 4.66 (1.78  ) 4.58 45.20
Tiludronate 204.00 21.04 119.07 169.82 120.66 64.22
Terbinafi ne 40.59 6.07 15.95 21.32 88.45 0.62
Ketoconazole 22.25 4.01 28.93 0.01 26.28 10.67
Fenpropimorph 33.59 3.22 35.60 8.95 25.18 4.88

  a   IC 50  in µM.
  b   L6 rat skeletal muscle cells.
 c Gla,  G. lamblia , Ldo,  L. donovani ; Pfa,  P. falciparum ; Tbr,  T. brucei ; Tcr,  T. cruzi .

  Fig.   5.  Correlation of genotype and phenotype. For each species, 
the in vitro IC 50  (in µM) of the drugs simvastatin (A) and terbin-
afi ne (B) is plotted versus the highest score attained of the species’ 
proteome against the HMM profi le of the presumed target of that 
drug. Gla,  G. lamblia ; L6, rat L6 myoblasts; Ldo,  L. donovani ; Pfa, 
 P. falciparum ; Tbr,  T. brucei ; Tcr,  T. cruzi .   
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which belong to the amoebozoa but have been proposed 
to have algal ancestry based on their capability to synthe-
size cycloartenol ( 6 ). An unrooted phylogenetic tree of 
sterol 24-C-methyltransferase (  Fig. 4      ) did not shed light 
on the ancestry of the enzyme (it was not possible to root 
the tree due to the lack of an ortholog from prokaryotes 
to use as an outgroup). The main conclusion from the 
phylogenetic analysis is that there is no evidence for hori-
zontal transfer as the origin of sterol biosynthetic genes in 
trypanosomatids. 

 Apart from their enigmatic history, a major question 
brought forward by the sterol biosynthetic enzymes of try-
panosomatids is to what extent they are exploitable for 
chemotherapy. Azoles are in development as antichagasic 
agents because they exhibit selective activity against  T. 
cruzi . Their target is sterol 14-demethylase (enzyme no. 
24), and in a phylogenetic tree of the enzyme, the trypano-
somatid orthologs form a clearly distinct branch ( Fig. 4 ). 
We tested other known inhibitors of sterol biosynthesis 
against trypanosomatids and other parasites ( Table 2 ). In 
general, the in vitro activity of the inhibitors did not cor-
relate with the presence of their presumed target enzyme 
( Fig. 5 ). Although the activity of ketoconazole against  T. 
cruzi  was unmatched, simvastatin also showed activity against 
trypanosomatids. However, the results were not conclusive 
because, surprisingly, simvastatin was toxic to mammalian 
cell lines even though it is widely used as a cholesterol-
lowering drug. Furthermore, simvastatin was successfully 
used for the treatment of mouse ( 49 ) and dog ( 50 ) models 
of Chagas’s disease. 

 Comparing the stage-specifi city of expression of the ste-
rol biosynthetic enzymes in  T. brucei  and  T. cruzi  revealed 
interesting parallels. The sterol metabolic enzymes were 
differentially regulated across the different life stages, and 
the expression patterns were similar for both species. The 

proteomes because our in silico pipeline did not furnish 
proof of function. It provided quantitative scores for all 
enzymes and proteomes ( Fig. 2 ), which lent itself for clus-
tering. The resulting tree’s principal subdivision was be-
tween the sterol-prototrophs and the sterol-auxotrophs 
( Fig. 3 ). The latter included all of the analyzed protos-
tomes, the former the deuterostomes (i.e., the vertebrates 
plus the sea urchin  S. purpuratus ). 

 The interesting branches of the sterol metabolic tree 
were those where the grouping deviated from evolution-
ary descent. This was observed for unicellular obligate en-
doparasites, which appeared to have independently lost 
genes for sterol biosynthetic enzymes, presumably in adap-
tation to a parasitic lifestyle. Thus, the microsporidian 
 Encephalitozoon  did not group with the free-living and fac-
ultative parasitic fungi but with parasitic protozoa such 
as  Giardia . The same was observed for  Entamoeba , which 
did not group with the free-living amoebozoa but with the 
apicomplexan  Cryptosporidium . In fact, both  Entamoeba  and 
 Cryptosporidium  exhibited extreme cases of metabolic re-
duction, lacking the sterol biosynthetic enzymes as well as 
either pathway, MEV or non-MEV, for isoprenoid synthe-
sis. The only enzymes present in all the analyzed proteomes 
were the farnesyl/geranyl diphosphate synthases and the 
protein farnesyl transferase complex, indicating that pro-
tein prenylation is indispensable to all eukaryotes. 

 The only obligate endoparasites that possessed sterol 
biosynthetic genes were the trypanosomatids,  Trypanosoma  
spp. and  Leishmania  spp. ( Fig. 2 ). Ergosterol has long been 
known to occur in trypanosomatids ( 48 ), and all the ana-
lyzed species scored positive for the key enzyme in ergos-
terol synthesis, sterol 24-C-methyltransferase (enzyme no. 
37 in  Figs. 1 and 2  and  Table 1 ). In the sterol metabolic 
tree of  Fig. 3 , all the trypanosomatids grouped together, 
sister to the slime molds  Dictyostelium  and  Polysphondylium , 

  Fig.   6.  Expression profi les in  Trypanosoma  spp. Loading plots based on PC-1 and PC-2 of the steady-state mRNA levels of sterol biosyn-
thetic genes expressed in count per million. A:  T. brucei  procyclic forms (PC) and long slender (LS) and short stumpy (SS) bloodstream 
forms. B:  T. cruzi  epimastigotes (epi), metacyclics (meta), trypomastigotes (trypo), and amastigotes (ama).   
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bloodstream forms correlated positively with each other 
and negatively with the insect forms ( Fig. 6 ). The expres-
sion levels of the sterol biosynthetic genes were generally 
higher in the insect stages than in the mammalian stages 
of both  T. cruzi  and  T. brucei . Sterol 24-C-methyltransferase 
(enzyme no. 37) might be a good drug target because it is 
highly expressed and thus probably essential in all the life-
cycle stages. Finally, the trypanosomatids lacked the bona 
fi de genes for sterol esterifi cation ( Fig. 2 , enzyme nos. 33 
and 34), and yet they had been shown to build sterol esters 
( 43 ). Thus, we hypothesize that trypanosomatids possess 
atypical sterol ester synthase and esterase, which represent 
another possible point for chemotherapeutic interven-
tion. In summary, we conclude that sterol metabolism of-
fers further potential drug targets for selective inhibition 
of trypanosomes.  
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Abstract 

 

Sterols are an essential class of lipids in eukaryotes, where they serve as structural 

components of membranes and play important roles as signaling molecules. Sterols are 

also of high pharmacological significance: cholesterol-lowering drugs are blockbusters 

in human health, inhibitors of ergosterol biosynthesis are widely used as antifungals. 

Similar to fungi – and in contrast to mammals, where the most abundant sterol is 

cholesterol –, trypanosomatids require the presence of ergosterol and other 24-

alkylated sterols, which cannot be replaced by the vertebrate or plant host’s sterols. 

Spearheaded by azoles, different inhibitors of ergosterol synthesis are being developed 

for Chagas' disease, caused by Trypanosoma cruzi. Azoles are very potent inhibitors of 

lanosterol 14 α-demethylase (CYP51) in fungi and trypanosomes. However, as CYP51 is 

also present in humans, the question of how azoles exhibit their selectivity is raised. 

Here, we use genetically modified Saccharomyces cerevisiae yeast strains as a tool to 

asses ergosterol-specific action of two different classes of sterol biosynthesis inhibitors 

(SBIs) – azoles and azasterols. Integrating the results with in vitro drug sensitivity tests 

on trypanosomatids and mammalian cells suggests an ergosterol-independent 

mechanism of action for these SBIs. 
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Introduction 

 

The azoles are an important class of aromatic molecules that feature a five-membered 

nitrogen heterocyclic ring stemming from pyrrole. Azoles are widely used as antifungal 

agents, e.g. the diazoles ketoconazole and miconazole, or the even more effective 

triazoles such as fluconazole, posaconazole, and ravuconazole. These drugs inhibit the 

synthesis of ergosterol, an essential component of fungal cell membranes. Like fungi, 

trypanosomatids also make ergosterol (reviewed in (1)). Given the close resemblance of 

trypanosomatids and fungi regarding their sterol metabolism, fungicides have been 

successfully repurposed as antitrypanosomal drug candidates. Trypanosoma cruzi and T. 

brucei are very sensitive to ergosterol biosynthesis inhibitors (2, 3). Posaconazole and 

ravuconazole can cure mice infected with T. cruzi (4, 5). Posaconazole and E1224, a 

prodrug of ravuconazole, have entered clinical trials where they were shown to be very 

well tolerated and active, but not curative for chronic Chagas’ disease (6). 

Azoles inhibit lanosterol 14 α-demethylase (CYP51) (7), a cytochrome P450 enzyme 

which catalyzes the removal of the C14 α-methyl group from lanosterol. The interaction 

between azoles and CYP51 has been extensively studied in fungi (8, 9) and T. cruzi (10). 

The correlation between ergosterol anabolism and susceptibility to azoles strongly 

suggests a functional link, i.e. that T. cruzi and fungal pathogens are both hypersensitive 

to azoles because they make ergosterol. However, CYP51 orthologs are present in all 

sterol-prototrophic eukaryotes, including mammals, which make cholesterol and not 

ergosterol. CYP51 lies upstream of the branching point of cholesterol and ergosterol in 

the sterol biosynthetic pathway (Figure 1). Why then, are azoles selective for fungi and 

trypanosomes over mammalian cells? Structural differences between fungal CYP51 (11-

13) and trypanosomal CYP51 (14-16) on the one hand, vs. human CYP51 on the other 

hand, favor binding of azoles to the former and may account for the therapeutic window. 

In this case, the hypersensitivity of fungi and trypanosomes towards azoles would be 

coincidental because there is no particular evolutionary relationship between fungal and 

trypanosomatid CYP51 orthologs (17). However, the selective toxicity of azoles could 

also be linked to sterol salvage. Blocking sterol synthesis might thus not be lethal to 

mammalian cells, which can still import cholesterol from their environment, whereas 

fungal and trypanosomal pathogens die because there is no ergosterol available inside 

their hosts. 
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Here, we use genetically modified Saccharomyces cerevisiae yeast strains as a tool to 

interrogate the ergosterol-dependence of sterol biosynthesis inhibitors (SBIs). The yeast 

strains used in this study are listed in Table 1. RH6825 (erg5Δ/erg6Δ) lacks C22 sterol 

desaturase and sterol 24-C-methyltransferase (24-SMT), both enzymes specific to the 

ergosterol branch in the sterol biosynthetic pathway (Figure 1). S. cerevisiae RH6825 

accumulates an intermediate sterol, cholesta-5,7,24-trienol (Figure 2). S. cerevisiae 

RH6829 has been transfected with 24-dehydrocholesterol reductase (DHCR24) and 

DHCR7 initially obtained by reverse transcription from Danio rerio mRNA, encoding 24- 

and 7-dehydrocholesterol reductase, respectively. These enzymes are specific to the 

cholesterol branch of sterol synthesis (Figure 1). Thus RH6829 is a stable yeast strain 

that efficiently produces cholesterol instead of ergosterol (18). These yeast mutants 

allowed to correlate sensitivity to selected SBIs with sterol content of the target cell. We 

have integrated the results with in vitro drug sensitivity tests on trypanosomatids and 

mammalian cells to better understand the reasons for selectivity of SBIs. 
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Materials and Methods 

 

Chemicals 

 

Tiludronate disodium salt hydrate (T4580-10MG), Terbinafine hydrochloride (T8826-

100MG), Ketoconazole (K1003-100MG), Nystatin (N6261-500KU) and (±)-Miconazole 

nitrate salt (M3512-1G) were purchased from Sigma-Aldrich. Azasterols were kindly 

offered by BASF. The test compounds were dissolved in dimethyl sulfoxide (DMSO) at 10 

mg/ml (except for miconazole, of which a stock solution of 250 KU was prepared) and 

stored at -20°C. Resazurin sodium salt (Alamar Blue) was purchased from Sigma-Aldrich 

(R7017-1G), and chlorophenol red galactopyranoside (CPRG) from Roche 

(10884308001). Yeast Nitrogen Base was purchased from Sigma-Aldrich (Y0626). 

 

Yeast strains and drug tests 

 

The Saccharomyces cerevisiae strains used in this study (Table 1) were kindly provided 

by Howard Riezman. Cultivation was performed in yeast nitrogen base medium (6.8 g/l) 

supplemented with glucose (5 g/l), uracil (20 mg/l) and the appropriate amino acid (30 

mg/l leucine for all strains, 20 mg/l histidine for RH6825 and RH2881 and 30 mg/l 

tryptophane for RH2881. Drug sensitivity assays were performed in 96-well plates as 

follows: Yeast liquid cultures were incubated in the appropriate drop out medium at 

30°C over night with shaking at 220 rpm to yield stationary phase cultures (OD600 > 1.5). 

These cultures were diluted 1:10 and incubated for another 4 hours to yield mid-log 

phase cultures. A further dilution step yielded cultures with an OD600 = 0.1. Per well 50 

µl of these yeast cultures were added to each drug titrated in 50 µl-duplicates over a 16-

fold range. Plates were read in a Sunrise Basic Tecan ELISA reader (measurement λ = 

570 nm) at time points t = 0 hours (baseline) and after 24 hours incubation at 30°C. Data 

from the ELISA reader were collected with Magellan software V5.03. The experimental 

dimethyl sulfoxide (DMSO) concentration in the assay never exceeded 0.5% (except for 

the high drug concentration (100 µg/ml) assays) and had no inhibitory effect on cell 

growth. 
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Cell lines and drug tests 

 

The cell lines used for in vitro drug sensitivity determination were rat L6 myoblasts, 

Trypanosoma brucei rhodesiense STIB 900, Trypanosoma cruzi Tulahuen C2C4 

(expressing Escherichia coli β-galactosidase) and Leishmania donovani MHOM-ET-

67/L82 axenic amastigotes. In vitro drug sensitivity assays with parasites and 

mammalian cells were performed as described (19, 20). The tests were done over 72 h 

of incubation, except for the Trypanosoma cruzi assay, which lasted 96 h. For L6 cells, 

Leishmania donovani and Trypanosoma brucei the redox-sensitive dye resazurin (Alamar 

Blue) served as an indicator of cell viability. For T. cruzi, β-galactosidase activity was 

quantified with the substrate CPRG. IC50 values were estimated by linear interpolation 

based on the semilogarithmic dose-response curves. 
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Results 

 

We assessed the selectivity of a set of SBIs using genetically modified Saccharomyces 

cerevisiae yeast mutants. Compounds that specifically block ergosterol synthesis, or that 

rely on the presence of ergosterol in the target cell, will be more active against the 

parental, ‘wildtype’ strain RH2881 than against the cholesterol-producing RH6829. The 

test was validated with nystatin, a natural polyene fungicide produced by Streptomyces 

noursei. Nystatin binds to ergosterol and creates pores in the target cell’s membrane 

(21-23). The growth of RH2881 was completely blocked at nystatin concentrations as 

low as 15 U/ml whereas RH6829 inhibition required concentrations above 100 U/ml 

(Figure 2). This is in agreement with previous findings (18). The erg5, erg6 double 

mutant RH6825 had an intermediate susceptibility to nystatin (Figure 2). 

The azoles ketoconazole and miconazole were tested the same way. Neither exhibited 

selective activity against the ergosterol-producing strain RH2881 (Figure 3). In fact, 

RH2881 was less sensitive to ketoconazole than the cholesterol-producing strain 

RH6829. Interestingly, RH6825, which makes neither ergosterol nor cholesterol, was the 

least sensitive to the azoles, growing at concentrations above 10 µM (Figure 3). This 

could be due to a compensatory mechanism, possibly involving other classes of lipids 

(24), that has been selected for in the absence of bulk ergosterol or cholesterol. We also 

tested the non-azole SBIs terbinafine and tiludronate (not shown), both acting upstream 

of CYP51 (Figure 1). They had no effect on any of the strains at concentrations up to 30 

µM (not shown). 

Azasterols were shown to inhibit the enzyme 24-SMT in S. cerevisiae (25) and Candida 

albicans (26, 27), but not necessarily in trypanosomatids (28). In S. cerevisiae, 24-SMT is 

encoded by the gene Erg6; there is no 24-SMT ortholog in mammalian cells as the 

methylation at C24 is specific to the synthesis of ergosterol (Figure 1). We therefore 

expected azasterols to be more active against the parental RH2881 than against the 

Erg6-negative strains RH6825 and RH6829. A selection of four azasterols was tested 

against the three yeast strains, at concentrations >15 µM because none was active at 

lower concentrations. Surprisingly – and analogous to the azoles – none of the tested 

azasterols was selective for RH2881 (Figure 4). For two of the azasterols, the ergosterol-

producing strain was even the least susceptible (Figures 4A, 4C). 
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All compounds were also tested against mammalian cells (rat L6 myoblasts) and 

trypanosomatid parasites: amastigote intracellular Trypanosoma cruzi, bloodstream-

form Trypanosoma brucei rhodesiense, and axenic amastigote Leishmania donovani. 

Table 2 shows the 50% growth inhibitory concentrations (IC50) as determined in vitro. 

Nystatin had a selectivity of about ten-fold towards the extracellular T. brucei and axenic 

L. donovani over mammalian cells, but not towards the intracellular T. cruzi. As expected, 

miconazole and ketoconazole were highly active and selective against T. cruzi. 

Tiludronate was inactive against all tested organisms while terbinafine exhibited 

moderate selectivity towards L. donovani. One of the azasterols, LS5761450, had a 

submicromolar IC50 against T. brucei. The general trend of LS5761450 and LS5761453 

being more active than LS390509 and LS5879325 in yeast, was also seen in 

trypanosomatids and mammalian cells. Azasterols containing a hydroxyl group in their 

side chain were most active against T. brucei and decreasingly so against L6, T. cruzi and 

L. donovani. Remarkably, the molecules that had been inactive in the yeast assay, 

LS390509 and LS5879325, showed the highest selectivity for T. cruzi compared to L6 

mammalian cells. These azasterols, in spite of their weak activity as compared to the 

azoles, nevertheless provide proof-of-concept for selective activity against T. cruzi 

(Table 2). 
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Discussion 

 

The question whether the selectivity of azoles towards fungi and trypanosomes is (a) 

coincidental and caused by drugable differences in their CYP51 orthologs as compared 

to human CYP51, or (b) intrinsically linked to the fact that fungi and trypanosomes both 

make ergosterol and not cholesterol, is of pharmacological importance because the 

repurposing of fungicides against T. cruzi has been the main avenue towards new drugs 

for Chagas’ disease. There is an urgent need for such new drugs as there is currently no 

satisfactory treatment for chronic Chagas’ disease. 

The validity of the used yeast mutants (18) to address ergosterol-dependence of drug 

action was demonstrated by nystatin, a pore-forming toxin that binds to plasma 

membrane ergosterol. Nystatin was clearly more toxic to the parental, ergosterol-

producing yeast strain than to the ergosterol-deficient mutants (Figure 2). In 

accordance, nystatin was active against bloodstream-form T. brucei and axenic 

amastigote L. donovani, but not against mammalian L6 myoblasts (Table 2). Nystatin 

was also inactive against the intracellular, amastigote forms of T. cruzi (Table 2), which 

it may be unable to contact. In contrast to nystatin, the tested azoles were not 

preferrentially toxic to the ergosterol-producing yeast (Figure 3). This disagrees with 

the model that the selectivity of azoles is intrinsically linked to ergosterol anabolism and 

is in agreement with the finding, that fungal CYP51 is more sensitive to azoles than 

human CYP51 (11). Since the amino acid sequence identity between mammalian and S. 

cerevisiae CYP51 is higher than between S. cerevisiae and trypanosomatid CYP51, the 

selectivity of the fungicidal azoles towards T. cruzi over L6 cells (Table 2) may in fact be 

coincidental. 
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Tables 

 

Table 1. Strains used in this study. 

 

Strain Genotype Major free sterol (18) 

RH2881 MATa ura3 leu2 his3 trp1 bar1 Ergosta-5,7,22-trienol (ergosterol) 
(80%)a  

RH6825 MATa ura3 leu2 his3 trp1 bar1 
erg5Δ::TRP1 erg6Δ::TRP1 

Cholesta-5,7,24-trienol (80%) 

RH6829 MATa ura3 leu2 his3 trp1 bar1 
erg5Δ::HIS5-GPD-DHCR24 
erg6Δ::TRP1-GPD-DHCR7 

Cholesta-5-enol (cholesterol) (96%) 

 

a Determined for strain RH6822 (MATa ura3 leu2 his3 can1 bar1) 
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Table 2. Sensitivitya of mammalian cellsb and parasitesc to sterol antimetabolites. 

 

 L6 Tcr Tbr Ldo 

Nystatin 263 272 24 29 

Miconazole 25 0.004 40 5.3 

Ketoconazole 16 0.002 24 28 

Simvastatin 0.92 2.2d 3.4 2.0 

Tiludronate >275 >275 217 >275 

Terbinafine 41 24 143 9.4 

LS5761450 4.4 5.9 0.42 19 

LS5761453 3.2 4.5 1.6 35 

LS390509 34 3.9 4.7 93 

LS5879325 139 19 119 48 

 

a 50% inhibitory concentration (IC50) in µM 

b L6 rat skeletal muscle cells 

c Ldo, L. donovani; Tcr, T. cruzi; Tbr, T. brucei 

d The activity of simvastatin against T. cruzi was not conclusive due to its toxicity to L6 

host cells. 
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Figures 

 

 

 

Figure 1. Steroid anabolic pathway. Enzymes are represented by rectangular boxes, 

metabolites by circles. Boxes are labelled with the EC number of the reaction catalysed by the 

respective enzyme. The presence of any given enzyme is colour-coded: H. sapiens (black), S. 

cerevisiae (dark grey), T. cruzi (light gray). Key metabolites are spelled out. Inhibitors are 

indicated in bold. Enzymes genetically manipulated in RH6825 and RH6829 are double framed. 

, null mutants were inviable in large scale yeast survey; , null mutants were viable in large 

scale yeast survey. 
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Figure 2. Effect of nystatin on growth of RH2881, RH6825 and RH6829. Bars represent 

percentage of growth compared to positive control. The values are averages (error bars = SD) 

form three independent biological replicates. Drug concentrations are indicated in U/ml. The 

structures of the major free sterol in the three strains are shown: black: RH2881, ergosterol; 

hatched: RH6825, cholesta-5,7,24-trienol; grey: RH6829, cholesterol. 
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Figure 3. Effect of the imidazoles miconazole (A) and ketoconazole (B) on growth of 

RH2881, RH6825 and RH6829. Bars represent percentage of growth compared to positive 

control. The values are averages (error bars = SD) form three independent biological replicates. 

Drug concentrations are indicated in µM. 
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Figure 4. Effect of azasterols on growth of RH2881, RH6825 and RH6829. Bars represent 

percentage of growth compared to positive control. The values are averages (error bars = SD) 

form three independent biological replicates. Drug concentrations are indicated in µM. A, 

LS5761450; B, LS5761453; C, LS390509; D, LS5879325. 
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Opinion
Currently available drugs for Chagas’ disease are limited
by toxicity and low efficacy in the chronic stage. Posa-
conazole, the most advanced new anti-chagasic drug
candidate, did not fully confirm its initial potential in a
Phase II clinical trial for chronic Chagas’ disease. Given
that posaconazole is highly active against Trypanosoma

cruzi in vitro, and was very well tolerated in clinical trials,
it should not be abandoned. Rather, a combination
therapy may provide a highly promising outlook. Sys-
tems-scale approaches facilitate the hunt for a combina-
tion partner for posaconazole, which acts by blocking
sterol biosynthesis. Mounting evidence suggests the
functional interactions between sterols and sphingoli-
pids in vivo. Here, we propose combining sterol and
sphingolipid biosynthesis inhibitors to advance drug
development in Chagas’ disease.

Chagas’ disease: a global burden and the unmet need
for new drugs
Worldwide, an estimated 7 million–8 million people are
infected with the protozoan parasite Trypanosoma cruzi
[1]. Chagas’ disease is endemic in 21 South American
countries but, as a result of population mobility, also occurs
outside the continent [2]. Chagas’ disease poses a global
challenge due to the lack of safe and effective treatment.
Efforts towards the urgently needed new drugs have cul-
minated in the clinical development of triazolic antifungals
for Chagas’ disease. The most advanced drug candidates
were posaconazole and E1224, a prodrug of ravuconazole.
Unfortunately, although very well tolerated, both com-
pounds failed to meet the high expectations in recent
clinical Phase II trials: they did not cure chronic Chagas’
disease as indicated by the high relapse rates observed
during follow-up. Considering that posaconazole and
E1224 are highly active against T. cruzi and well tolerated
in clinical trials, we propose not to abandon the triazoles
but to find a suitable partner for combination therapy.
Combination therapy is an attractive approach because it
may improve treatment efficacy while decreasing the
1471-4922/
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likelihood of resistance development [3]. Systems biology
aims at revealing interconnections of biological networks
and these works serve as useful resources for rational
identification of potential interacting partners for chemo-
therapy. Based on genetic, physical, and functional inter-
actions between sterols and sphingolipids [4] and due to
the synthetic lethality of Saccharomyces cerevisiae double
mutants of sterol and sphingolipid anabolism [5], our
opinion is that inhibitors of sphingolipid biosynthesis
are promising combination partners for posaconazole or
ravuconazole.

Current drugs for the treatment of Chagas’ disease
Chagas’ disease remained without an effective treatment
for several decades after its original description in 1909
[6]. Nifurtimox and benznidazole, discovered over 40 years
ago and still the only available drugs for the specific
treatment of Chagas’ disease, are limited by toxicity and
low efficacy in the established chronic form of the disease
[7]. These major drawbacks, along with upcoming reports
of resistant T. cruzi [8] and the spread of the disease to
nonendemic countries [2], spurred renewed drug research
and development (R&D) for Chagas’ disease. The triazoles
posaconazole and E1224 were the only candidates to pass
the preclinical phase and enter clinical proof-of-concept
trials. However, the results in Phase II clinical trials were
disappointing. While the parasitemia dropped below de-
tection limit after treatment, 10 months later, most
patients again tested positive for T. cruzi [9]. Either can-
didate was less efficacious than benznidazole. This out-
come is arguably attributable to limited systemic exposure
resulting from the liquid suspension of the drug and sub-
optimal treatment duration [10]. Even so, these results
have aggravated the situation in the already slim Chagas’
portfolio, where the most advanced alternatives to the
triazoles have not yet reached clinical Phase I.

Quo vadis posaconazole?
In 1995, V.M. Girijavallabhan described posaconazole
(SCH 56592) as a novel, orally active, broad-spectrum
antifungal agent [11]. Posaconazole (Nofaxil) was devel-
oped by Schering-Plough and was approved by the US Food
and Drug Administration (FDA) for the treatment of inva-
sive fungal infection in humans in 2006 [12]. Similar to
other triazoles, posaconazole is a potent inhibitor of the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.pt.2014.11.004&domain=pdf
http://dx.doi.org/10.1016/j.pt.2014.11.004
mailto:xueli.guan@unibas.ch
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Cyp450-dependent lanosterol 14a-demethylase (Cyp51) in
yeasts and molds [13]. Inhibition of Cyp51 blocks the
synthesis of ergosterol, which is an essential component
in the cell membrane of fungal pathogens. Accumulation of
methylated sterol precursors and disruption of the close
packing of acyl chains of phospholipids in ergosterol-de-
pleted cell membranes ultimately leads to growth inhibi-
tion of the fungi [14]. Similar to fungi, T. cruzi synthesizes
ergosterol and is sensitive to sterol biosynthesis inhibitors
[15]. Posaconazole exhibited excellent in vitro and in vivo
efficacy against both drug-sensitive and -resistant isolates
[16,17]. Suitable combination partners for posaconazole
might be found in the sterol biosynthesis pathway to
enhance the blockade of this highly interconnected meta-
bolic network. The links between distinct steps of the sterol
biosynthesis pathway can be exemplified in S. cerevisiae: in
the presence of erg6 deletion, the erg2 gene product works
inefficiently [4], resulting in an erg6 single deletion mutant
exhibiting a partial phenotype of an erg2erg6 double mu-
tant. Furthermore, cells have evolved compensatory mech-
anisms within metabolic pathways such that accumulating
substrates resulting from inhibition of a specific enzymatic
step can be alternatively metabolized as a salvage mecha-
nism. Clearly, sterol biosynthesis is of proven druggability
and targeting multiple steps in the same pathway can
potentiate antiparasitic activity. Lovastatin, a blockbuster
used for hypercholesterolemia, enhanced the antiprolifera-
tive effects of ketoconazole and terbinafine against T. cruzi
in vitro and in vivo [18]. Evidence from yeast points in the
same direction because at least a dozen proteins interact-
ing with Erg11 (Cyp51 ortholog in S. cerevisiae) can be
found in the sterol metabolic pathway [19]. Druggable
pathways that interact with sterol metabolism also repre-
sent complementary targets. Glycerophospholipid biosyn-
thesis inhibitors, such as ajoene or alkyl-lysophospholipids
(ALP, e.g., miltefosine), have been shown to have antipro-
liferative effects on T. cruzi epimastigotes and amastigotes
[20–22]. Growth inhibition correlated with a decrease in
the phosphatidylcholine to phosphatidylethanolamine ra-
tio (PC:PE) and, in the case of ALP, also with a marked
effect on sterol composition due to inhibition of sterol 22-
desaturase (Erg5), a finding that probably explains the
antiproliferative synergism of these drugs with the Cyp51
inhibitor ketoconazole against both proliferative stages
(epimastigotes and intracellular amastigotes) of the para-
site [21,22]. Here, we propose to combine the anti-chagasic
triazoles with inhibitors of sphingolipid synthesis, as sug-
gested by systems approaches.

Systems-based matchmaking
Systems approaches were pioneered in model organisms to
understand how biological systems act as a whole. Emer-
gence of complex behavior is observed when the biological
systems are treated as networks. These can be protein
interaction networks, metabolic networks, or genetic net-
works. All are amenable to large-scale interaction studies,
particularly in S. cerevisiae, where global approaches such
as chemical genetics screens, mutant library screens, pro-
tein–protein interactions, and other -omics technologies
can be automated. These have led to the availability of
databases containing a wealth of information that can be
mined to generate new hypotheses of cellular and system
functions. It can also guide drug discovery in modern
medicine by providing a rational basis to pinpoint interre-
lated pathways. The interacting partners for CYP51 in S.
cerevisiae, for instance, are found on the BioGRID database
[23], containing 103 physical and 184 genetic interactions.
Candidate pathways can be further narrowed by pheno-
types and functionality. Specifically, interactors of Cyp51
that cause synthetic lethality will be appealing.

Capitalizing on sterol–sphingolipid interactions as a
combinatorial treatment
Posaconazole blocks sterol biosynthesis; thus, druggable
pathways interacting with sterol metabolism and func-
tions represent highly complementary matches for posa-
conazole. Sterols have been shown to modulate membrane
thickness in artificial membranes and this property has
been proposed to have a role in membrane protein localisa-
tion in vivo [24]. It is increasingly known that proteins and
lipids do not freely diffuse over the entire surface of the cell
and it has been proposed that eukaryotic plasma mem-
branes contain micro- and/or nanodomains (reviewed in
[25–27]) that act as platforms creating membrane hetero-
geneities with many proposed functions. There is clear
biophysical evidence that sterols and sphingolipids can
segregate from other lipids in simple artificial membrane
systems to form liquid ordered domains [28].

Sterol–sphingolipid interactions have also been demon-
strated in vivo. Evidence in the budding yeast, S. cerevi-
siae, suggests a genetic interaction between mutants in
sterol and sphingolipid biosynthesis [4,5,29,30]. For exam-
ple, mutants that affect the hydroxylation pattern of sphin-
golipids display synthetic growth defects with mutations in
late-acting ergosterol biosynthetic genes [4]. By contrast,
mutations that affect the synthesis of the sphingolipid-
specific very-long chain C26 fatty acid display strong syn-
thetic lethality with mutations in ERG6, a methyltransfer-
ase that catalyzes the addition of a fungal-specific methyl
group at position C24 in the aliphatic side chain or ergos-
terol [5]. Figure 1 summarizes experimental evidence on
genetic interactions between the sterol and sphingolipid
synthetic genes. While the bulk of experimental evidence
comes from high throughput screens and needs to be
treated with caution, there is solid support for synthetic
lethality between ELO3 and ERG6 [5], and for synthetic
growth defects of sterol synthetic genes with ISC1, SUR2,
and SCS7 [4]. Strikingly, synthetic lethality has been
demonstrated between CYP51 and SCS7 [31].

In yeast and higher eukaryotes, it has further been shown
that sterols and sphingolipids are important for proper
trafficking of transporters (amino acids and proton pumps)
to the cell surface and their stability at the plasma mem-
brane [32–35]. Adaptation to changes in sterol composition
by adjusting sphingolipid levels and variants is not unique
to the unicellular eukaryotes but is also present in Metazoa,
exemplified by the fruit fly, Drosophila melanogaster. As a
sterol auxotroph, D. melanogaster cannot synthesize sterols
but this lipid is required for larval growth and development.
A drop in sterol levels caused developmental arrest but cells
remain viable, possibly due to a compensatory increase in
sphingolipid levels and composition [36].
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Figure 1. Genetic interactions between sterol and sphingolipid biosynthetic genes

in yeast. Only genes for which an interaction has been experimentally documented
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Opinion Trends in Parasitology February 2015, Vol. 31, No. 2
Figure 2 shows the structures of mannosyl diinositol
phosphoryl ceramide [M(IP)2C] and ergosterol, which is
the most abundant sphingolipid and sterol species in yeast.
Together with glycerophospholipids, sterols and sphingo-
lipids comprise the major classes of eukaryotic membrane
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Figure 2. Structures of ergosterol and the sphingolipid, mannosyl diinositol phosphor
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lipids. Many membrane characteristics, such as composi-
tion and integrity, turnover or trafficking, and signaling,
fulfill the requirements for bona fide drug targets in para-
sites: they must be (i) essential for parasite survival; (ii)
druggable; and (iii) sufficiently different from the host.
Indeed, ‘membrane-lipid therapy’ was coined by Pablo
Escribá and is defined as the therapeutic approach based
on the regulation of the membrane-lipid composition and
structure to modulate cell functions [37]. In a broader
sense, we think of membrane therapy as interfering with
membranes directly or via curtailing lipid biosynthesis.

While there currently is no evidence in T. cruzi on the
interactions of sterols and sphingolipids, it is intuitive that
the simultaneous inhibition of both sterol and sphingolipid
metabolism will have a major impact on membrane homeo-
stasis. Moreover, there are several lines of evidence that
these lipids have critical roles in trypanosomatids. Endoge-
nous sterols and sphingolipids are required for proliferation
of trypanosomes [38–40]. Interestingly, reduced inositolpho-
sphoceramide (IPC) levels due to inhibition of serine palmi-
toyltransferase (Spt2) in T. brucei have been shown to be
compensated for by increased levels of phosphatidylcholine
and cholesterol, demonstrating a tight interaction of sterol
and sphingolipid homeostasis [41]. As in yeast, IPC rather
than glycerophospholipids is utilized as lipid anchor con-
stituent of glycoproteins and free glycosylinositolphospho-
lipids (GIPLs) in T. cruzi [42]. Furthermore, inhibition of
IPC synthesis impaired T. cruzi differentiation [43].
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yl ceramide [M(IP)2C]. Genes shown encode enzymes that catalyze major steps in
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Table 1. Sphingolipid biosynthesis inhibitors in clinical trials or on the market

Compound name Clinical phase or drug

name (if on the market)

Mechanism of action Indication Refs

N-butyldeoxynojirimycin Miglustat, Zavesca1 Glucosylceramide synthase inhibitor Gaucher disease

FTY720 Gilenya Sphingosine-1-phosphate receptor inhibitor Multiple sclerosis [49]

Safingol Phase I Sphingosine kinase inhibitor Cancer [50]

Phenoxodiol Phase III Sphingosine kinase inhibitor Cancer [51]

ABC294640 Phase I Sphingosine kinase inhibitor Cancer [52]

Sphingomab Preclinical Anti-sphingosine-1-phosphate antibody Cancer [53]

Fenretinide Phase I Ceramide desaturase inhibitor Cancer [54]

Desipramine Treyzafagit, Norpramin,

and Pertofrane

Acid sphingomyelinase inhibitor Antidepressant

Imiglucerase Cerezyme b-glucocerebrosidase replacement Gaucher disease

Amitriptyline Phase IIb Acid sphingomyelinase inhibitor Cystic Fibrosis [55]

Elavil, Endep, and Vanatrip Antidepressant

Analgesic

Fluoxetine ROzac, PROzac Weekly,

Sarafem, Rapiflux, Selfemra,

and PROzac Pulvules

Acid sphingomyelinase inhibitor Antidepressant

Aureobasidin Aa Phase I Inositol phosphorylceramide synthase inhibitor Antifungal [56]

aFailed in clinical Phase I.
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The relation between sterols and sphingolipids, evident
in yeast and the fruit fly, could indicate a potential evolu-
tionarily conserved adaption mechanism for membrane
homeostasis. Thus, concomitant perturbation of these
two classes of lipids may promote synergistic lethality.
Therefore, it will be interesting to test the interactions
between posaconazole or ravuconazole and sphingolipid
inhibitors on T. cruzi focusing on 100% cidality rather than
potential synergism.

Concluding remarks and outstanding questions
Sterile cidality also against nonproliferating trypanosomes
is imperative to Chagas’ disease chemotherapy. To this
aim, three different strategies have been proposed to select
a suitable combination partner for azoles. The partner
could be a drug such as benznidazole, which is 100% cidal
itself and additive in action with posaconazole [44–46]. It
could also be a drug that is not 100% cidal itself but shows
synergistic interaction with posaconazole, such as amio-
darone, amlodipine, or clemastine [46,47]. In addition,
Table 2. Sterol biosynthesis inhibitorsa

Class Target and/or mechanism of action 

Statins Competitive inhibitors of HMG-CoA reductase, 

mevalonate from HMG-CoA; they occupy the HM

the binding surface for CoA

Bisphosphonates (BPs) Potent inhibitors of bone resorption. The selectiv

the binding of the BP moiety to the bone mineral;

to, and inhibit the activity of, farnesyl diphosph

Quinuclidines and/

or zaragozic acids

Inhibition of squalene synthase (SQS); quinucli

acting as carbocation mimics for FPP to squale

may act as isosteres for the isoprenyl subunits 

Allylamines Specific inhibition of fungal squalene mono-ox

Azoles Bind as the sixth ligand to the haem in lanostero

thus occupying the active site and acting as no

blocking the synthesis of ergosterol leads to the

sterol precursors

Azasterols Evidence from yeast shows that azasterols inhi

methyltransferase

aCompound classes of molecule known to interfere with sterol metabolism. Target enzy

molecules are already on the market.
aiming to completely block sterol synthesis, the combina-
tion partner could be another sterol biosynthesis inhibitor
[15,18]. Here, we propose as an additional strategy the
partnership between posaconazole and sphingolipid inhi-
bitors. This is based on the hypothesis that such a combi-
nation will be most effective in disrupting membrane
integrity and functions, which is critical also for quiescent
cells. Exploration of the chemotherapeutic potential of this
proposed partnership will require: (i) systems knowledge of
T. cruzi lipid physiology; (ii) sphingolipid biosynthesis
inhibitors; and (iii) a test for 100% sterile cidality on the
relevant T. cruzi stages.

Currently, there is no evidence that sterols and
sphingolipids functionally interact in T. cruzi. The ad-
vancing technologies for system-scale analyses of genes,
transcripts, proteins, and metabolites (including lipids)
accompanied by high throughput genetic and chemical
screening, will revolutionize our understanding of T. cruzi
biology and identify possible pathways for combination
therapies. Concomitant chemotherapeutic attack of sterol
Indication Refs

preventing the formation of

G-binding pocket and part of

Used as cholesterol-

lowering drugs in humans

[57,58]

e action on bone is based on

 nitrogen-containing BPs bind

ate synthase

Used to treat osteoporosis

and other bone resorption

diseases

[59–61]

dines may inhibit SQS by

ne conversion. The aryl units

in the farnesyl chain.

Not in clinical use [62]

ygenase Used for topical treatment

of fungal infections

[63,64]

l 14 a-demethylase (= CYP51),

ncompetitive inhibitors;

 accumulation of methylated

Used to treat fungal

infections

[65,66]

bit the enzyme C24-sterol Not in clinical use [67]

mes and mechanisms of action are indicated, as well as clinical indications where
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and sphingolipid biosynthesis is facilitated by the avail-
ability of sphingolipid inhibitors [48], owing to the inter-
ests in their functions in human health. As with every drug
candidate, consideration must be given to the potential
toxicity of sphingolipid biosynthesis inhibitors. Toxicity is
one reason why most of the numerous existing sphingoli-
pid inhibitors remain experimental compounds [48]. None-
theless, this class of compounds is promising, because
there are several in clinical use or in clinical trials for a
spectrum of human diseases (Table 1) and, given the role of
sphingolipids in many other human diseases, efforts to
discover novel compounds are ongoing. The same applies
for sterol biosynthesis inhibitors (Table 2). A crucial re-
quirement for R&D of next-generation anti-chagasic
agents will be an in vitro test that is amenable to medium
throughput and that can demonstrate 100% cidality
against nonproliferating intracellular amastigote T.
cruzi. Such an assay must be able to predict the lack of
sterile cidality of posaconazole and ravuconazole.

In summary, we argue that the potential of posacona-
zole must be further explored with a view of rational target
identification and achieving combination therapy through
systems-scale approaches. Based on evidence in model
organisms, particularly the budding yeast, the matching
of sphingolipid synthesis inhibitors as partners of triazoles
can impair membrane functionality and, thus, may kill
proliferating as well as dormant parasites.
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Discussion and Conclusion 

 

Sterols are an essential class of lipids in eukaryotes, where they serve as structural 

components of membranes and play important roles as signaling molecules. Sterols are 

also of high pharmacological significance: cholesterol-lowering drugs are blockbusters 

in human health and inhibitors of ergosterol biosynthesis are widely used as antifungals. 

Routine screening procedures unearthed many of these antifungals. Their mechanism of 

action has only subsequently been found to be linked to sterol biosynthesis (SB). Today, 

the SB pathway is well characterized as drug target in fungi but also in humans (1). In 

addition to its pharmacological significance, SB is of phylogenetic importance. Despite 

their ubiquity in eukaryotes, sterols generally do not occur in prokaryotes, raising the 

question of their evolutionary origin. Finally, sterols and other lipids are important 

modulators of host-pathogen interactions (2). Despite their high significance in biology, 

lipids have long been neglected and compared to other “-omics” such as genomics and 

proteomics, lipidomics has only recently become an emerging field of research (3). With 

this PhD thesis I contribute to a better understanding of some of the aforementioned 

aspects of lipid biology focusing on SB in Trypanosoma cruzi.  

Several lines of evidence show that lipids play critical roles in trypanosomatids. 

Specifically, in T. cruzi the major sterols are ergosterol and other 24-alkylated sterols 

(4). In addition to the ergostane- (C28) and stigmstane-based (C29) sterols, T. cruzi also 

contains traces of cholesterol (C27) which is derived either from the host or the culture 

medium (5, 6). However, imported cholesterol cannot replace endogenous ergosterol as 

T. cruzi requires these specific sterols for cell viability and proliferation (7, 8). On the 

other hand, growth of Trypanosoma brucei blood stream from (BSF) disrupted by a 

specific inhibitor of sterol 24-methylation was not rescued by cholesterol absorption 

from the host, suggesting an essential role for ergosterol in cell proliferation (9). Thus, 

trypanosomatids have a sterol content similar to that of fungi (10) which makes 

repurposing of antifungals a promising approach in parasite chemotherapy. 

In this thesis, first, an in silico pipeline was developed that allowed for systematic 

investigation of SB in eukaryotes (11). The only obligate endoparasites that possessed 

SB genes were the trypanosomatids, Trypanosoma spp. and Leishmania spp. However, 

the origin of SB genes in trypanosomatids remains obscure as the phylogenetic analysis 

provided no evidence for horizontal gene transfer.  
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Then, I developed an assay based on genetically modified yeast strains in order to 

investigate more closely if the activity of sterol biosynthesis inhibitors (SBIs) is linked to 

ergosterol. The results obtained suggest that the tested azoles and azasterols exhibit an 

ergosterol-independent mechanism of action. 

Together with glycerophospholipids and sterols, sphingolipids represent the major 

classes of eukaryotic membrane lipids. Integrating several lines of evidence on the 

importance of sphingolipids in trypanosomatids (12, 13), knowledge gained in the 

framework of this PhD thesis and learning from yeast where sterol-sphingolipid 

interactions have been amply demonstrated (14-16), I conclude that combining sterol 

and sphingolipid biosynthesis inhibitors is a promising approach to advance drug 

development in Chagas' disease. 
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Outlook 

 

Taken together, this thesis makes a significant contribution to lipid research and 

parasite chemotherapy. Nevertheless, outstanding questions are manifold: First, the 

proposed drug combinations have to be tested in T. cruzi to prove the concept. While 

most sphingolipid and SBIs are experimental compounds, there are a number in clinical 

use or in clinical trials for a spectrum of human diseases. Therefore drug repurposing is 

feasible, especially for SBIs where azoles have already reached proof of concept trials for 

Chagas’ disease. I believe it is promising to also consider other combination partners for 

posaconazole. E.g., the results of pharmacogenomic and pharmacokinetic studies 

suggest combining azoles with benznidazole (17, 18). Also, simultaneous 

chemotherapeutic attack at different sites of the same pathway provides a highly 

potential outlook. As we have shown, sterol metabolism offers further potential drug 

targets for selective inhibition of trypanosomes (11). In particular, trypanosomatids lack 

the bona fide genes for sterol esterification and yet they had been shown to build sterol 

esters (19). Trypanosomatids might possess atypical sterol ester synthase and esterase, 

which represent a possible point for chemotherapeutic intervention.  

Rational match-making in drug development as described in Chapter 4 can be broadly 

applied, e.g. to develop antimalarias, where combination therapies are paramount. 

There, data repositories (such as BioGRID) can assist decision-making when drug 

combinations have to be found for clinical trials. On the one hand, interacting pathways 

can be found where simultaneous targeting might enhance effectiveness. On the other 

hand, if selectivity is an issue, because a drug target is also present in humans, partners 

that do not interact with this specific target might be sought after. Genomic profiling 

(Chapter 2) is widely applicable as well, as our approach can readily be adapted to 

different metabolic pathways.  

The use of SBIs against T. cruzi is a form of membrane therapy. Indeed, ‘membrane-lipid 

therapy’ was coined by Pablo Escribá and is defined as the therapeutic approach based 

on the regulation of the membrane-lipid composition and structure to modulate cell 

functions (20). In a broader sense, I think of membrane therapy as interfering with 

membranes directly or via curtailing synthesis of lipid synthetic enzymes. SBIs have the 

potential to impair membrane functionality and thus may kill not only proliferating but 

also dormant parasites. As currently available drugs lack sufficient efficacy in the 
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chronic stage of for Chagas’ disease, targeting lipid metabolism is a highly promising 

approach to advance drug discovery for Chagas’ disease.  
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