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1. Introduction

In a seminal contribution to the theory of voter turnout,1 Palfrey and
Rosenthal (1983) consider a participation game in which each voter decides
whether to cast a vote for her favorite among two candidates or abstain.
Participation costs and the benefit of the favored candidate winning the
election, with the latter normalized to one, are the same for all voters and
there is complete information about the numbers of voters favoring each of
the two candidates. While a substantial part of the formal analysis and much
of the discussion in Palfrey and Rosenthal (1983) considers the case in which
both candidates have the same number of supporters and ties are broken
with a coin toss, surprisingly little is known about the Nash equilibria of
this symmetric voter participation game. In particular, the precise condition
under which totally mixed symmetric equilibria exist, whether there can be
more than two such equilibria, and their comparative statics in the size of
the electorate are open questions. In this note we settle these questions.

Our first main result (Corollary 1) shows that for a given size of the
electorate the number of totally mixed symmetric equilibria is either zero,
one, or two, and provides the necessary and sufficient conditions for each
of these cases, thereby verifying a corresponding conjecture in Palfrey and
Rosenthal (1983, p. 29). Our second main result (Corollary 2) shows that
for any participation cost in the interval (0, 1/2) the number of totally mixed
symmetric equilibria is two if and only if the size of the electorate is above
a critical threshold. Further, the voting probability in the low turnout
equilibrium is strictly decreasing in the size of the electorate and converges
to zero, whereas the voting probability in the high turnout equilibrium is
strictly increasing in the size of the electorate and converges to one. The
convergence properties of these equilibria are again in line with the conjecture
in Palfrey and Rosenthal (1983, p. 29); the monotonicity results go beyond
their conjecture.

There is no denying that the model we consider is a very stark and special
one. However, understanding the structure of the equilibria in the model
of Palfrey and Rosenthal (1983) is not only of interest from a historical
perspective but provides information about more refined models of rational
voting behavior. As explained in Kalandrakis (2007, 2009) the equilibria we
consider here are robust to slight variations in the payoff structure of the

1See Dhillon and Peralta (2002) and Feddersen (2004) for surveys.
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game and survive in nearby games with incomplete information about players’
participation costs or the number of players. Further, it is clear that any
of the mixed strategy equilibria we study here also induces an equilibrium
in a game in which the two teams supporting the two different candidates
have different sizes: if these team sizes are, say, s1 and s2 with s2 > s1, then
assuming that s2 − s1 voters of the second team abstain and all other voters
play one of the mixed strategy equilibria for team size s1 that we identify here,
yields an equilibrium for the overall game. We also note that the correctness
of the conjecture in Palfrey and Rosenthal (1983) is often taken for granted
in discussions of their model, either implicitly (as in the surveys mentioned
in Footnote 1) or explicitly (as in Demichelis and Dhillon (2010)).

In the following section we briefly describe the symmetric version of the
voter participation game from Palfrey and Rosenthal (1983) and introduce
our notation. Section 3 presents results. We conclude with a brief discussion.
All proofs are in the Appendix.

2. Model

There are 2s voters divided into two teams of equal size s ≥ 2. Let T1 =
{1, . . . , s} be the members of the first team and T2 = {s+ 1, . . . , 2s} be the
members of the second team. There are two alternatives (candidates, policy
proposals) denoted by A1 and A2. Members of team T1 prefer alternative
A1 and members of T2 prefer alternative A2. All players i = 1, . . . , 2s
simultaneously decide whether to vote in favor of their preferred alternative
(ai = 1) or to abstain (ai = 0). The election is decided by simple majority
rule with ties being broken by a fair coin toss. Players receive a benefit
equal to 1 if their favored alternative wins and 0 otherwise. Voting entails
a participation cost of c ∈ (0, 1/2). Players are risk neutral. Hence, for any
player i if k other members of her own team and ` members of the other team
vote and she chooses action ai ∈ {0, 1}, her payoff is

π(k, `, ai) =


1− ai · c if k + ai > `

1/2− ai · c if k + ai = `

−ai · c if k + ai < `.

We focus on symmetric mixed strategy profiles in which all voters partic-
ipate with probability x ∈ [0, 1]. The assumption c < 1/2 ensures that the
strategy profile in which all agents participate (x = 1) is a symmetric Nash

3



equilibrium, whereas the strategy profile in which all agents abstain (x = 0)
is not.2 In the following we consider the case of a totally mixed symmetric
strategy profile in which all players vote with probability x ∈ (0, 1). As shown
in Palfrey and Rosenthal (1983, eq. (13)) such a strategy profile is a Nash
equilibrium if and only if

2c = P (x, s) (1)

where P (x, s) is the pivot probability:

P (x, s) =
s−1∑
k=0

(
s− 1

k

)(
s

k

)
x2k(1− x)2s−2k−1

+
s−1∑
k=0

(
s− 1

k

)(
s

k + 1

)
x2k+1(1− x)2s−2k−2. (2)

The logic behind the equilibrium conditions (1) – (2) is familiar. For any
player i, (2) gives the probability that player i casts the decisive vote when
each of the other players votes with probability x: The first sum covers the
cases in which k members of the opposing team as well as k other members
of player i’s own team vote, so that if i participates, her votes resolves a
tie and her favored alternative will be selected with probability 1 (rather
than 1/2). The second sum covers the cases in which k + 1 members of the
opposing team as well as k other members of i’s own team vote, so that if i
participates her vote induces a tie and her favored alternative will be selected
with probability 1/2 (rather than 0). Because player i gains an expected
benefit of 1/2 whenever her vote is pivotal (and a benefit of zero when it is
not), the indifference condition for a Nash equilibrium in which i’s mixed
strategy assigns strictly positive probability to both pure strategies is that her
probability of casting the decisive vote is twice the cost of participation. This
yields (1) as the necessary and sufficient condition for the strategy profile
in which all voters participate with probability x ∈ (0, 1) to be a symmetric
Nash equilibrium.

2It is easy to see that for c > 1/2 the only Nash equilibrium (either in pure or mixed
strategies) is the symmetric one in which no agent participates. In the knife-edge case
c = 1/2 there is one additional symmetric Nash equilibrium in which all agents participate
(and also a multitude of asymmetric equilibria).
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3. Results

3.1. Preliminaries

We begin by observing that the pivot probability P (x, s) can be rewritten
in a way that is more conducive to further analysis. For this purpose it will
be convenient to define

φ(k, `, s) =

(
s−1
k

)(
s
`

)(
2s−1
k+`

) , k = 0, . . . , s− 1, ` = 0, . . . , s. (3)

The expression in (3) is the probability (as determined by the hypergeometric
distribution) of k successes in s − 1 draws, without replacement, from a
population of size 2s− 1 containing k + ` successes. Hence, given that the
total number of voters among all players but i is k + `, φ(k, `, s) is the
probability that of these voters exactly k are in i’s team and exactly ` are in
the other team. Letting

p(j, s) =

{
φ(j/2, j/2, s) if j = 0, 2, . . . 2s− 2

φ((j − 1)/2, (j + 1)/2, s) if j = 1, 3, . . . 2s− 1
(4)

then gives the probability that player i is pivotal conditional on there being
exactly j voters among all the other players —indeed, if j is even, then player
i is pivotal if and only if the same number of other players vote in both teams
and if j is odd she is pivotal if and only if there is one less voter among the
other players in her team than there are voters in the other team. Throughout
the following we will refer to p(j, s) as the conditional pivot probability.

With the above definitions a simple manipulation of the two sums appear-
ing in equation (2) yields the following result.

Lemma 1. For all x ∈ [0, 1] and n ≥ 2, the pivot probability is given by

P (x, s) =
2s−1∑
j=0

(
2s− 1

j

)
xj(1− x)2s−1−jp(j, s). (5)

Expression (5) has a simple interpretation. Fix some player i. Given that
all other players independently choose to vote with probability x, the term(
2s−1
j

)
xj(1− x)2s−1−j is nothing but the probability that there will be exactly

j voters among all the other players. Multiplying this with the conditional
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pivot probability p(j, s) and summing over all j gives the pivot probability
P (x, s).

The representation of the pivot probabilities obtained in Lemma 1 is
useful because much can be said about the structure of the conditional pivot
probabilities p(j, s). The following lemma summarizes some key properties
that are of relevance for our subsequent analysis. The proof uses well-known
properties of the probability mass function of the hypergeometric distribution
(cf. Johnson et al. 2005). Alternatively, the results can be verified by
straightforward (but tedious) calculations using (3) and (4).

Lemma 2. For each s ≥ 2 the conditional pivot probabilities satisfy3

p(0, s) = 1 (6)

p(j, s) = p(2s− 1− j, s), j = 0, 1, . . . , 2s− 1 (7)

p(2k, s) = p(2k − 1, s), k = 1, . . . , s− 1 (8)

p(2k, s) > p(2k + 1, s), k = 0, . . . , d(s− 1)/2e − 1 (9)

Equation (6) is obvious: if there are no voters among the other agents, then
the player under consideration is surely pivotal. The equalities in (7) assert
that the conditional pivot probabilities are symmetric in the sense that a
player is equally likely to be pivotal when there are exactly j voters or exactly j
abstainers among the other agents. In particular, we also have p(2s−1, s) = 1.
The meaning of (8) is that the conditional pivot probability is unaffected
when, starting from an even j, the number of voters among the other players
is reduced by one. In contrast, (9) states that increasing an even number of
voters among the other players by one strictly decreases the conditional pivot
probability if the resulting odd numbers of voters is strictly smaller than the
team size. Observe that it follows from the symmetry property in (7) that
the inequality in (9) is reversed when 2k + 1 > s holds.

Figure 1 illustrates the shape properties of the conditional pivot probabil-
ities p(j, s) established in Lemma 2 and also shows the corresponding pivot
probability P (x, s) for the case s = 8. The close resemblance between the
two functions illustrated in Figure 1 suggests that shape properties of P (x, s)

3In (9) the expression d(s− 1)/2e denotes the ceiling of (s− 1)/2, that is, the smallest
integer greater or equal than (s− 1)/2. Consequently, d(s− 1)/2e − 1 is the largest integer
strictly smaller than (s− 1)/2.

6



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
number of voters among all other players, j

0.0

0.2

0.4

0.6

0.8

1.0

(c
on

di
tio

na
l)

pi
vo

tp
ro

ba
bi

lit
y

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
probability of voting, x

p(j, 8)

P (x, 8)

Figure 1: Conditional pivot probabilities p(j, s) and corresponding pivot probability P (x, s)
for s = 8.

can be inferred from the shape properties of p(j, s). The following subsection
verifies this.

3.2. Existence, number, and comparative statics with respect to participation
cost

As totally mixed symmetric equilibria are given by the solutions to the
equation 2c = P (x, s), their existence, number and comparative statics are
determined by the shape of the pivot probability P (x, s). Our main result in
this subsection (Proposition 1) describes how the pivot probability depends
on x for any given team size s. As an immediate corollary, we obtain a precise
characterization of the number of totally mixed symmetric equilibria (which
can range from zero to two) and a comparative static result describing how
the location of the equilibria varies with the participation cost.

The expression for the pivot probability P (x, s) obtained in Lemma 1
is a polynomial in Bernstein form (cf. Farouki, 2012) of degree 2s− 1 with
coefficients given by the finite sequence of conditional pivot probabilities
p(j, s). To obtain the following proposition we make use of three properties
of such polynomials: (1) they preserve symmetry, (2) their derivatives can be

7



again written as polynomials in Bernstein form, and (3) they are variation di-
minishing.4 In particular, we apply the symmetry property to infer symmetry
of the pivot probability P (x, s) in x from the symmetry of the conditional
pivot probabilities established in Lemma 2. Using the derivative property
we can express the derivative of P (x, s) with respect to x as a polynomial in
Bernstein form with coefficients given by a positive multiple of the difference
between adjacent conditional pivot probabilities. Due to (8) and (9) in the
statement of Lemma 2 we know that this finite sequence of coefficients has
exactly one sign change (from negative to positive). An application of the
variation diminishing property then implies that the derivative of P (x, s) has
exactly one root. By symmetry, this root is located at x = 1/2. We thus
obtain:

Proposition 1. For each s ≥ 2, the pivot probability P (x, s) satisfies P (0, s) =
P (1, s) = 1 and is (1) symmetric in x: P (x, s) = P (1− x, s) for all x ∈ [0, 1]
and (2) strictly decreasing in x in the interval [0, 1/2] and strictly increasing
in x in the interval [1/2, 1].

For x ∈ (0, 1) let
c(x, s) = P (x, s)/2. (10)

denote the participation cost that solves (1) and let

c(s) = c(1/2, s) =

(
1

2

)2s−1(
2s− 1

s

)
<

1

2
, (11)

where the second equality is from Proposition 6 (a) in Palfrey and Rosenthal
(1983) and the inequality is immediate from P (1/2, s) < P (0, s) = P (1, s) = 1.
It is a trivial implication of Proposition 1 that with participation cost c(s)
the unique totally mixed symmetric equilibrium is given by x = 1/2 and
that c(x, s) = c(1 − x, s) > c(s) holds for all x 6= 1/2 in (0, 1). Hence, we
have proven the first two parts of the conjecture in Palfrey and Rosenthal
(1983, p. 29). Observing that P (0, s) = P (1, s) = 1 implies c(0, s) = c(1, s) =
1/2, we may reformulate these observations in terms of the following result,

4Roughly speaking, a transformation is variation diminishing if it reduces the number
of sign changes (from positive to negative or vice versa). See Karlin (1968) for precise
definitions and Brown et al. (1981) for a gentle introduction in a statistical context. For
previous applications in economics, see Jewitt (1987) and Chakraborty (1999).
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characterizing the number and location of totally mixed symmetric equilibria
in terms of the participation costs.

Corollary 1. For each s ≥ 2 the following holds:

1. If c < c(s), there exists no totally mixed symmetric Nash equilibrium.

2. If c = c(s), x = 1/2 is the unique totally mixed symmetric Nash
equilibrium.

3. If c ∈ (c(s), 1/2), there exist exactly two totally mixed symmetric
Nash equilibria xL(c, s) and xH(c, s), satisfying 0 < xL(c, s) < 1/2 <
xH(c, s) < 1. Further, xL(c, s) + xH(c, s) = 1 holds for all c in the indi-
cated interval and xL(c, s) is strictly decreasing in c with limc→c(s) xL(c, s) =
1/2 and limc→1/2 xL(c, s) = 0.

Because c(s) < 1/2 holds, the range of cost values such that both the low
participation equilibrium xL(c, s) and the high participation equilibrium
xH(c, s) exist is non-empty for all team sizes s ≥ 2. Further, as lims→∞ c(s) =
0 holds (cf. Palfrey and Rosenthal, 1983, Proposition 6 (c)), it follows from
Corollary 1.3 that for all c ∈ (0, 1/2) there exists S such that for all s ≥ S
both the low participation equilibrium xL(c, s) and the high participation
equilibrium xH(c, s) (and no other totally mixed symmetric Nash equilbria)
exist. While this observation closely resembles the third part of the conjecture
in Palfrey and Rosenthal (1985), these authors claim more: namely, that
for any given cost level c ∈ (0, 1/2) the equilibria xL(c, s) and xH(c, s) not
only exist for s sufficiently large but also satisfy lims→∞ xL(c, s) = 0 and
lims→∞ xH(c, s) = 1. In the following subsection we confirm this last part of
the conjecture and, in addition, address the more general question of how a
change in team size affects the location of equilibria.

3.3. Team-size effect

We proceed as in the previous subsection by first exploiting Lemmas
1 and 2 to determine how the pivot probability P (x, s) depends on team
size s (Propositions 2 and 3) and then exploiting these results to determine
the team-size effect, that is, how the location of totally mixed symmetric
equilibria depends on the size of the teams.

The results we obtain for the pivot probability are very intuitive: given
any symmetric strategy profile in which all players mix with probability
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Figure 2: Conditional pivot probabilities p(j, s) for s = 4 and s = 5. As established in
Lemma 3, p(j, s) > p(j, s + 1) holds true for all j = 1, . . . , 2s− 1.

x ∈ (0, 1), a larger team size results in a lower pivot probability and this
pivot probability converges to zero as team size goes to infinity. Establishing
these results, however, is a non-trivial task and requires a number of steps.
We begin with the observation that conditional pivot probabilities satisfy a
monotonicity property.

Lemma 3. For each s ≥ 2 the conditional pivot probabilities satisfy

p(j, s) > p(j, s+ 1), j = 1, . . . , 2s− 1 (12)

p(2s− 1− j, s) > p(2s+ 1− j, s+ 1) j = 1, . . . , 2s− 1 (13)

We can offer a partial intuition for the result in Lemma 3. First, observe
that by the symmetry of the conditional pivot probabilities (equation (7)
in Lemma 2) the two statements in (12) and (13) are actually equivalent.
(We state both sets of inequalities as both will be used in subsequent steps
of the argument.) Hence, we may focus on the inequalities in (12) that we
illustrate in Figure 2. Consider the extreme case j = 2s− 1. In this case the
conditional pivot probability is 1 when team size is s because all other players
vote, whereas it is strictly below one when team size is s+ 1 as there is the
possibility that the two abstainers among the other agents happen to be in
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the same team. This implies p(2s − 1, s) > p(2s − 1, s + 1). At the other
extreme, there is only one voter among the other players (j = 1). Because
there is one less other player in the own team of any player i than in the
other team, the probability that the voter is in the other team, which is the
case in which player i is pivotal, exceeds one-half for any team size s. Indeed
the relevant probability is simply given by p(1, s) = s/(2s− 1) > 1/2, i. e. ,
the probability that a randomly sampled co-player is in the other team rather
than in player i’s team. This yields p(1, s) > p(1, s+ 1). Considering these
extreme cases identifies two distinct effects of an increase in team size on
the conditional pivot probabilities. For j between these extremes one would
expect both of these effects to be at work and hence, as both effects tend to
lower the conditional pivot probabilities when team size increases, the result
in (12).

The monotonicity of the conditional pivot probabilities established in
Lemma 3 is suggestive but does not immediately imply a corresponding
monotonicity property for the pivot probability P (x, s). The difficulty is that
for given x the binomial distribution governing j depends, of course, on team
size. To establish the following proposition, we thus exploit a further result for
polynomials in Bernstein form, namely the degree elevation formula (Farouki,
2012, p. 391). This allows us to write P (x, s) as a polynomial of degree 2s+ 1
featuring the same binomial probabilities as those appearing in P (x, s+ 1)
and coefficients p∗(j, s+ 1) that are convex combinations of the conditional
pivot probabilities p(j, s). Lemmas 2 and 3 imply that for j = 1, . . . , 2s
these transformed coefficients are strictly lower than the conditional pivot
probabilities p(j, s + 1) (see Figure 3 for an illustration). Since decreasing
the coefficients of a polynomial in Bernstein form with given degree clearly
decreases the polynomial, we thus obtain:

Proposition 2. For every x ∈ (0, 1) the pivot probability P (x, s) is strictly
decreasing in team size s.

Having established that pivot probabilities are strictly decreasing in team
size for any totally mixed symmetric strategy profile, we turn to establish
that these pivot probabilities converge to zero. The argument here is fairly
standard. It proceeds by (i) showing that the probability that the ratio
j/(2s− 1) lies outside a δ-neighbourhood of x converges to zero as team size
goes to infinity and (ii) providing an upper bound for the conditional pivot
probabilities when the ratio j/(2s− 1) lies in the neighbourhood that also
converges to zero as team size goes to infinity.
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Figure 3: Conditional pivot probabilities p(j, s + 1) and degree-elevated conditional pivot
probabilities p∗(j, s + 1) for s = 4.

Proposition 3. For every x ∈ (0, 1) the pivot probability P (x, s) satisfies
lims→∞ P (x, s) = 0.

Consider now any c ∈ (0, 1/2) and recall the definitions of the critical cost
levels c(x, s) and c(s) from equations (10) and (11). From Propositions 2 and
3 we know that c(s) is strictly decreasing in s with lims→∞ c(s) = 0.5 It is then
an immediate implication of Corollary 1 that there exists a critical team size
S such that two totally mixed symmetric equilibria exist if and only if team
size is at least S. Further, provided that s ≥ S holds, the low participation
equilibrium xL(c, s) is given by the unique solution of the equation c = c(x, s)
in the interval (0, 1/2) and the high participation equilibrium is given by
the unique solution of the same equation in the interval (1/2, 1). Combining
the monotonicity properties of the pivot probabilities P (x, s) established in
Proposition 1 and 2 it is then immediate that an increase in team size causes
both the low participation and the high participation equilibrium to move
away from 1/2, so that xL(c, s) is a strictly decreasing and xH(c, s) is a strictly
increasing function of team size. It then follows from Proposition 3 that

5As noted after the statement of Corollary 1 the result lims→∞ c(s) = 0 has already
been established in Palfrey and Rosenthal (1983).
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xL(c, s) converges to 0 and xH(c, s) converges to 1 as team size converges to
infinity. We have thus established:

Corollary 2. For every c ∈ (0, 1/2) there exists a team size S such that c >
c(s) holds if and only if s ≥ S, so that the two totally mixed symmetric Nash
equilibria xL(c, s) and xH(c, s) described in Corollary 1.3 exist if and only if s ≥
S. Further, these equilibria satisfy xL(c, s′) < xL(c, s) < xH(c, s) < xH(c, s′)
for all team sizes s′ > s ≥ S, lims→∞ xL(c, s) = 0, and lims→∞ xH(c, s) = 1.

As suggested in Palfrey and Rosenthal (1983, p. 31) we may interpret the
last part of Corollary 2 as the statement that with large number of voters
there are exactly two totally mixed symmetric strategy equilibria, one with
essentially everyone voting and one with essentially no voting.

4. Discussion

We have characterized the symmetric Nash equilibria of the symmetric
voter participation game with complete information introduced by Palfrey and
Rosenthal (1983), confirming their conjecture about the existence, multiplicity,
and comparative statics properties of totally mixed symmetric equilibria and
providing additional comparative statics results. As mentioned in Palfrey
and Rosenthal (1985, p. 33), the truth of their conjecture implies further
results for the case in which the participation cost is lower than the critical
value required for the existence of a totally mixed symmetric equilibrium.
In particular, for this case our results imply the existence of exactly two
equilibria in which all members of team T1 vote with probability 0 < x1 < 1
and all members of team T2 vote with probability x2 = 1− x1.

The key insight underlying our analysis is that for any symmetric strategy
profile the pivot probability (which determines voter’s incentive to participate)
can be represented as a polynomial in Bernstein form with coefficients given
by conditional pivot probabilities. While the results we obtain here hinge
on the specific properties of the conditional pivot probabilities, the theory of
polynomials in Bernstein form is of broader game-theoretic relevance. For
instance, in Peña et al. (2014) we use the shape-preservation properties of
polynomials in Bernstein form to determine the number and evolutionary
stability of symmetric equilibria in a broad class of binary contribution games.6

6In Peña et al. (2015) we extend these insights to the biologically relevant cases of
interactions in spatially structured populations and hence between relatives.
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We are confident that further applications to the analysis of other symmetric,
two-action games with many players can be developed.

Appendix

Proof of Lemma 1. Setting j = 2k and using (4), we have

s−1∑
k=0

(
s− 1

k

)(
s

k

)
x2k(1− x)2s−2k−1

=
∑

j=0,2,...,2s−2

(
s− 1

j/2

)(
s

j/2

)
xj(1− x)2s−1−j

=
∑

j=0,2,...,2s−2

(
2s− 1

j

)
xj(1− x)2s−1−jp(j, s)

Similarly, setting j = 2k + 1 and using (4), we have

s−1∑
k=0

(
s− 1

k

)(
s

k + 1

)
x2k+1(1− x)2s−2k−2

=
∑

j=1,3,...2s−1

(
s− 1

(j − 1)/2

)(
s

(j + 1)/2

)
xj(1− x)2s−1−j

=
∑

j=1,3,...,2s−1

(
2s− 1

j

)
xj(1− x)2s−1−jp(j, s).

Substituting the above identities into the definition of P (x, s) in (2) yields
(5).

Proof of Lemma 2. From (4) we have p(0, s) = φ(0, 0, s) and from (3) we
have φ(0, 0, s) = 1, so that p(0, s) = 1 holds for all s ≥ 2, thus establishing
identity (6).

For the remainder of the proof we refer to properties of the probability
mass function of the hypergeometric distribution listed in Johnson et al. (2005,
p. 265–266). Consequently, it is useful to observe that in their notation for the
probability mass function of the hypergeometric distribution the definition of
φ in (3) becomes

φ(k, `, s) = f(k | k + `, s− 1, s)
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and the definition of p in (4) becomes

p(j, s) =

{
f(j/2 | j, s− 1, s) if j = 0, 2, . . . 2s− 2

f((j − 1)/2 | j, s− 1, s) if j = 1, 3, . . . 2s− 1.
(14)

Suppose j is even. Then 2s− j − 1 is odd, so that using (14) the equality
in (7) becomes

f(j/2 | j, s− 1, s) = f(s− 1− j/2 | 2s− 1− j, s− 1, s),

which is immediate from Johnson et al. (2005, eq. (6.56), second line). The
argument when j is odd is analogous.

Using (14) the equality in (8) becomes

f(k | 2k, s− 1, s) = f(k − 1 | 2k − 1, s− 1, s).

To establish this, it suffices to note that from equation (6.54) in Johnson et al.
(2005) we have

f(k − 1 | 2k, s− 1, s) =
k

k + 1
f(k − 1 | 2k − 1, s− 1, s)

and from equation (6.52) in Johnson et al. (2005) we have

f(k | 2k, s− 1, s) =
k + 1

k
f(k − 1 | 2k, s− 1, s).

Using (14) the inequality appearing in (9) becomes

f(k | 2k, s− 1, s) > f(k | 2k + 1, s− 1, s).

From equation (6.54) in Johnson et al. (2005) this inequality is equivalent to

(s− k)(2k + 1)

(k + 1)(2s− 1− 2k)
< 1⇔ k <

s− 1

2
,

which is the desired result.

Proof of Proposition 1. From (5) in Lemma 1 it is immediate that P (0, s) =
p(0, s) and P (1, s) = p(2s− 1, s) holds, so that P (0, s) = P (1, s) = 1 follows
from Lemma 2.
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By the symmetry of the Bernstein basis polynomials (Farouki, 2012, p. 389)
and the symmetry of the conditional pivot probabilities, that is (7) in Lemma
2, we have(

2s− 1

j

)
xj(1−x)2s−1−jp(j, s) =

(
2s− 1

2s− 1− j

)
(1−x)2s−1−jxjp(2s−1− j, s)

for all x ∈ [0, ] and j = 0, . . . , 2s− 1 and thus

2s−1∑
j=0

(
2s− 1

j

)
xj(1− x)2s−1−jp(j, s) =

2s−1∑
j=0

(
2s− 1

j

)
(1− x)jx2s−1−jp(j, s).

for all x ∈ [0, 1]. From equation (5) in Lemma 1 this implies the symmetry
property P (x, s) = P (1− x, s) for all x ∈ [0, 1].

Let P ′(x, s) denote the derivative of P (x, s) with respect to x. From the
derivative property of polynomials in Bernstein form (Farouki, 2012, p. 391)
we have

P ′(x, s) =
2s−2∑
j=0

(
2s− 2

j

)
xj(1− x)2s−2−j [(2s− 1)∆p(j, s)] , (15)

where for j = 0, 1 . . . , 2s− 2

∆p(j, s) = p(j + 1, s)− p(j, s).

From (8) in Lemma 2 the equality ∆p(j, s) = 0 holds whenever j is odd.
From (9) we have ∆p(j, s) < 0 whenever j is even and j < s − 1 holds,
whereas (by symmetry) ∆p(j, s) > 0 holds whenever j is even and j > (s− 1)
holds. If j = s− 1 is even, then ∆p(j, s) = 0 is implied by the symmetry of
the conditional pivot probabilities. It follows that the finite sequence of the
coefficients ∆p(j, s) has exactly one sign change (when zero coefficients are
ignored). Consequently, the variation diminishing property of polynomials in
Bernstein form (Farouki, 2012, p. 390) implies that the equation P ′(x, s) = 0
has exactly one solution in the interval (0, 1). By the symmetry of P (x, s)
in x this solution must occur at x = 1/2. Finally, as (15) implies P ′(0, s) =
(2s − 2)∆p(0, s) < 0 we obtain P ′(x, s) < 0 for all x ∈ [0, 1/2) and (by
symmetry) P ′(x, s) > 0 for all x ∈ (1/2, 1].
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Proof of Lemma 3. From (7) it suffices to prove (12). Further, from (8) it
suffices to establish the inequalities in (12) for odd j. Setting j = 2k + 1 and
using (3) and (4) we thus have to show(

s−1
k

)(
s

k+1

)(
2s−1
2k+1

) >

(
s
k

)(
s+1
k+1

)(
2s+1
2k+1

)
⇔
(
s− 1

k

)(
s

k + 1

)(
2s+ 1

2k + 1

)
>

(
s

k

)(
s+ 1

k + 1

)(
2s− 1

2k + 1

)
for k = 0, 1, . . . , s−1. Using the factorial formula for the binomial coefficients
and eliminating identical factorials this is

(s− 1)!(2s+ 1)!

(s− 1− k)!(s− 1− k)!(2s− 2k)!
>

(s+ 1)!(2s− 1)!

(s− k)!(s− k)!(2s− 2k − 2)!

⇔(2s+ 1)2s(s− k)(s− k) > (s+ 1)s(2s− 2k)(2s− 2k − 1)

⇔(2s+ 1)(s− k) > (s+ 1)(2s− 2k − 1)

⇔k + 1 > 0,

establishing the desired result.

Proof of Proposition 2. Define, for convenience, p(−2, s) = p(−1, s) = 1
and p(2s + 1, s) = p(2s, s) = 1, so that p(−2, s) = p(−1, s) = p(0, s) and
p(2s + 1, s) = p(2s, s) = p(2s − 1, s) holds. Applying the degree elevation
formula for polynomials in Bernstein form (Farouki, 2012, p. 391) twice we
can write

P (x, s) =
2s+1∑
j=0

(
2s+ 1

j

)
xj(1− x)2s+1−jp∗(j, s+ 1), (16)

where the elevated coefficients p∗(j, s+ 1) are determined from the formula
in the last line of Farouki (2012, p. 391). In particular, for all j = 0, 1, . . . , s
there exists λ−2 > 0, λ−1 > 0, and λ0 > 0 such that λ−2 + λ−1 + λ0 = 1 and

p∗(j, s+ 1) = λ−2p(j − 2, s) + λ−1p(j − 1, s) + λ0p(j, s) (17)

holds. Similarly, for all j = 0, 1, . . . s there exists µ0 > 0, µ1 > 0, and µ2 > 0
such that µ0 + µ1 + µ2 = 1 and

p∗(2s+1−j, s+1) = µ0p(2s−1−j, s)+µ1p(2s−j, s)+µ2p(2s+1−j, s) (18)
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holds. Lemma 2 implies that for all j = 0, 1, . . . , s we have

p(j − 2, s) ≥ p(j − 1, s) ≥ p(j, s)

p(2s− 1 + j, s) ≥ p(2s− j, s) ≥ p(2s− 1− j, s).

Applying these inequalities on the right sides of (17) and (18) we obtain

p∗(j, s+ 1) ≥ p(j, s) and p∗(2s+ 1− j, s+ 1) ≥ p(2s− 1− j, s)

for j = 0, 1, . . . , s. Lemma 3 then implies

p∗(j, s+ 1) > p(j, s+ 1) and p∗(2s+ 1− j, s+ 1) > p(2s+ 1− j, s+ 1) (19)

for j = 1, . . . , s. As we also have p∗(0, s + 1) = p(0, s + 1) = 1 and p∗(2s +
1, s+ 1) = p(2s+ 1, s+ 1) = 1, (19) implies

2s+1∑
j=0

(
2s+ 1

j

)
xj(1−x)2s+1−jp∗(j, s+1) >

2s+1∑
j=0

(
2s+ 1

j

)
xj(1−x)2s+1−jp(j, s+1)

for all x ∈ (0, 1). Using (16) and (5) from Lemma 1 this is equivalent to
P (x, s) > P (x, s+ 1) for all x ∈ (0, 1).

Proof of Proposition 3. Given any x ∈ (0, 1), there exists δ > 0 and ε > 0
such that ε < x− δ < x+ δ < 1− ε holds. Fix such a δ and ε. From Lemma
1 we can then write

P (x, s) =
∑

{j:| j
2s−1

−x|≥δ}

(
2s− 1

j

)
xj(1− x)2s−1−jp(j, s)

+
∑

{j:| j
2s−1

−x|<δ}

(
2s− 1

j

)
xj(1− x)2s−1−jp(j, s).

As p(j, s) ≤ 1 holds for all j and s, a standard bound for the binomial
probability distribution (e.g. Chang and Sederberg, 1997, Theorem 25.5)
implies that the first sum in the above expression is smaller than 1/(4(2s−1)δ2)
for all s ≥ 2. Letting ks denote the largest integer satisfying the inequality
2k/(2s − 1) ≤ ε, we further have from Lemma 2 that the second sum in
the above expression is bounded above by p(2ks, s). Therefore, to prove the
proposition it suffices to show that p(2ks, s) converges to zero as s converges
to infinity.
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It is clear that for s→∞ we also have ks →∞ with lims→∞ ks/s = ε ∈
(0, 1). We may write

p(2ks, s) =

(
s−1
ks

)(
s
ks

)(
2s−1
2ks

) =

(
2ks
ks

)∏ks
i=1(s+ 1− i)

∏ks
i=1(s− i)∏2ks

i=1(2s− i)
.

Multiplying and dividing the fraction in the above expression by 2s it is easy
to see that ∏ks

i=1(s+ 1− i)
∏ks

i=1(s− i)∏2ks
i=1(2s− i)

≤
(

1

2

)2ks s

s− ks
holds. Because s/(s−ks) converges to the finite limit 1/(1−ε), it then suffices
to establish

lim
ks→∞

(
2ks
ks

)(
1

2

)2ks

= 0

to obtain the desired result. But this is immediate from Stirling’s approxima-
tion for binomial coefficients of the form

(
2n
n

)
for large n.
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