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Introduction

The Cremona group is the group of algebraic symmetries of the affine n-dimensional
space. More mathematically, the Cremona group is the group of birational transforma-
tions of the n-dimensional affine space An which are defined over some field k, i.e. "maps"
of the form

f : An 99K An, (x1, . . . , xn) 99K
(
f1(x1, . . . , xn)

g1(x1, . . . , xn)
, . . . ,

fn(x1, . . . , xn)

gn(x1, . . . , xn)

)

for some polynomials f1, . . . , fn, g1, . . . , gn ∈ k[x1, . . . , xn], g1, . . . , gn 6= 0, such that there
exists a "map" g of the same form and f ◦ g = g ◦ f = IdAn . These "maps" are not maps
at all, since they are not defined at the points where all gi vanish. However, they are well
defined outside the common zero set of the gi and there exist Zariski-open dense sets
U, V ⊂ An such that f |U : U 99K V is an isomorphism. These sets are in fact the open sets
where the determinant of the differential of f (resp. g) does not vanish.

By homogenising, we obtain birational transformations of the n-dimensional projec-
tive space Pn. Depending on the situation when studying such a birational transforma-
tion, it is useful to work with affine or projective coordiantes. We denote the Cremona
group by

Cremona group = Birk(Pn),

although Crn(k), Crk(n), Bir(Pnk) or Birk(An) are common notations as well.
Being the symmetry group of the simplest type of variety, the Cremona group is quite

large and its group theoretic properties are closely related to the geometric properties of
its elements. To work out properties of transformations, one has to study the geometric
behaviour of the transformation on Pn. The study of the Cremona group thus combines
group theory and algebraic geometry. One big aim of algebraic geometry is to classify all
algebraic varieties. Two varieties whose groups of birational self-maps are not isomorphic
are not birational. Exploring the groups of birational transformations is therefore one way
to check that two varieties are not in the same birational class. Studying large groups of
birational self-maps is challenging, and the Cremona group is the most accessible large
group of birational self-maps because one can use projective coordiantes. It is thus not
surprising that it has been studied almost continuously for over hundred years; the Cre-
mona group has become an object of its own interest and many questions are still open.
For instance, no non-trivial generating set is known for n ≥ 3. The Cremona groups can
be endowed with the Zariski-topology, which allows to define morphisms from varieties
to the Cremona group [Dem1970, Ser2008]. This opens the path to study the Cremona
group in a topological setting. If the field is a local field (e.g. R, C), the Zariski topology
can be refined to the Euclidean topology, which makes the Cremona group a Hausdorff
topological group, and which restricted to any linear algebraic subgroup is the Euclidean
topology [BlaFur2013]. This opens the path to study the Cremona group from the point
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of view of geometric group theory.

This thesis explores the plane Cremona group from the view point of generating sets
and relations. Writing the Cremona group as quotient of a free group may make way to
find quotients of the Cremona group itself or to study it from a geometric group theoret-
ical aspect. Many generating sets and generating relations have been presented, the most
fundamental one being the Noether-Castelnuovo theorem that first yielded a generat-
ing set of the plane Cremona group [Cas1901]: If k is algebraically closed, then Birk(P2)

is generated by Autk(P2) and the standard Cremona involution. Presentations can for in-
stance be found in [Giz1983, Isk1985, Isk1991, Wri1992, Bla2012], which may even come in
the form of a structure theorem involving amalgamated products of two or three groups
(see overview in Chapter II).

In this thesis, presentations of two plane Cremona groups are given; one for the field
of complex numbers and one for the field of real numbers. The first is a presentations
at the end of a long list of presentations and solely serves the purpose to show that
BirC(P2) is compactly presented when endowed with the Euclidean topology, which is
a property of Lie groups (see Chapter III, corresponding to [Zim2016]). It shows that, al-
though BirC(P2) is not finite dimensional in any sense (see Example I.0.4), it is not far
from being a Lie group. The second presentation is rather technical and is cooked up
to find quotients of BirR(P2); it allows in fact to find the abelianisation homomorphism
BirR(P2) → ⊕

R Z/2Z, from which one deduces that BirR(P2) cannot be generated by
AutR(P2) and countably many transformations, and obtains an infinite number of non-
trivial proper normal subgroups for free (see Chapter IV, corresponding to [Zim2015]).
That any plane Cremona group contains non-trivial proper normal subgroups had been
a long open question and was recently proven in [CanLam2013, ShB2013, Lon2015], for
respectively algebraically closed, finite and any fields, the last reference also giving ex-
plicit examples. The questions is still open for higher dimensions.

For n ≥ 3, no non-trivial generating set of Birk(Pn) is known, although it is known
that it cannot be generated by Autk(Pn) and a countable number of elements, or any
subset of bounded degree [Pan1999]. Currently, the only option to perhaps obtain in-
formation about the whole group is to study large families of transformations, specific
subgroups or transformations whose properties stand out among the general throng of
blurriness.

In this spirit, the last chapter leaves the plane and studies the family of punctual in
Birk(Pn), n ≥ 2, which are geometrically similar to plane Cremona transformations and
for which there exist easy formulae for the degree and multiplicities of compositions, just
like for n = 2. Any plane Cremona transformation is punctual, and for n ≥ 3, the family
of punctual transformation is a very small subset of Birk(Pn). Their similarity to plane
transformations makes it seems plausible that for n ≥ 3, any punctual transformation is
the composition of linear maps and the standard Cremona involution, as is the case for
n = 2, and as was claimed in [Kan1897], although with an incomplete proof. The collec-
tion of properties listed in the last chapter might be a step towards proving or disproving
the conjecture, and a tentative step towards understanding the geometry of birational
maps of Pn, n ≥ 3.

The thesis is organised as follows: In Chapter I, a we remind of a few basic techniques
to study birational transformations are recalled. Chapter II then reviews what is known
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about generating sets and relations of Cremona groups. The third chapter consists of
the article [Zim2016] describing that the plane Cremona group over the field of complex
numbers is compactly presented when endowed with the Euclidean topology. The fourth
chapter consists of the article [Zim2015] that presents the abelianisation of the plane Cre-
mona group over the field of real numbers. Chapter V then studies the set of punctual
transformations and lists a few of their properties.
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I Preliminaries

Throughout this chapter, k is any field, and any variety and rational map will be defined
over k unless stated otherwise. By k we denote the algebraic closure of k.

Most definitions and lemmata in this chapter are classical and can be found in almost
any introduction to algebraic geometry or surfaces.

Definition I.0.1. The group Birk(Pn) is the group of birational transformations of the
n-dimensional projective space Pn.

An element of f ∈ Birk(Pn) is by definition given by

f : [x0 : · · · : xn] 799K [f0(x0, . . . , xn) : · · · : fn(x0, . . . , xn)]

for some homogeneous polynomials f0, . . . , fn ∈ k[x0, . . . , xn] of equal degree with no
common factors, such that there exists a transformation

g : [x0 : · · · : xn] 799K [g0(x0, . . . , xn) : · · · : gn(x0, . . . , xn)]

where g1, . . . , gn ∈ k[x0, . . . , xn] are homogenous of equal degree without common fac-
tors, and f ◦ g = g ◦ f = IdPn is the identity map. We write g = f−1 and define the degree
of f to be

deg(f) := deg(fi), i = 0, . . . , n.

The subvariety of Pn given by f0 = · · · = fn = 0 is called the indeterminacy-locus of f . It is
invariant by Gal(k/k) and of codimension≥ 2 [Sha1998, Vol. 1, Chapter II, §3.1, Theorem
3]. (The reference proves this for the algebraic closure k of k. However, codimension does
not change when descending to k.) Composition of transformations makes Birk(P2) a
group.

To obtain properties of the group and its elements, we study the associated linear
system of an element f (see definition in Chapter I.2).

Example I.0.2. Any linear element of Birk(Pn) is given by an element of PGLn+1(k) and,
vice versa, any element of PGLn+1 yields a linear transformation of Pn:


[x0 : · · · : xn] 7→ [

n∑

j=0

a0jxj : · · · :
n∑

j=0

anjxj ]


←→ (aij)

n
i,j=0 ∈ PGLn+1.

They are defined everywhere on Pn and are thus contained in the automorphism group

Autk(Pn) := {f ∈ Birk(Pn) | f, f−1 are defined everywhere}

of Pn. On the other hand, any element of Autk(Pn) has empty base-locus, which means
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CHAPTER I. PRELIMINARIES I.1. BLOWING UP AND INTERSECTING

that it is given by linear polynomials. In other words,

Autk(Pn) ' PGLn+1(k).

If n = 1, Birk(P1) = Autk(P1) = PGL2(k) because the base-locus of a birational transfor-
mation of P1 is of codimension≥ 2 and thus empty.

Example I.0.3. The most simple non-linear transformation is the standard Cremona invo-
lution

[x0 : · · · : xn] 799K [
1

x0
: · · · : 1

xn
] = [x1x2 . . . xn : · · · : x0 . . . x̂i . . . xn : · · · : x0 . . . xn−1]

It is of degree n and its base-locus is the union of the zero sets xi = xj = 0, i 6= j. Further,
it contracts the hyperplane given by xi = 0 onto the i-th coordinate point [0 : · · · : 0 : 1 :

0 : · · · : 0] which has zero everywhere except at the i-th coordinate.

Example I.0.4. For any p ∈ k[x2, . . . , xn], the transformation

(x1, . . . , xn) 7→ (x1 + p(x2, . . . , xn), x2, . . . , xn)

is an automorphism of An and therefore contained in Birk(Pn). In particular, if n ≥ 2, we
have an injection k[x2, . . . , xn] ↪→ Birk(Pn) and so Birk(Pn) is not finite dimensional for
n ≥ 2.

I.1 Blowing up and intersecting

We present some classical definitions and lemmata used throughout the thesis.

Let πX : X → Pn and πY : Y → Pn be sequences of blow-ups of points.

Remark I.1.1. There exist sequences of blow-ups of points ηX : Z → X and ηY : Z → Y

such that the following diagram is commutative.

Z
ηX

~~

ηY

  
X

πX   

Y

πY~~
Pn

We define an equivalence relation on the set of points of blow-ups of Pn.

Definition I.1.2 ((Punctual) bubble space). Two triples (p,X, πX) and (q, Y, πY ), where
p ∈ X and q ∈ Y , are equivalent if the birational map ηY (ηX)−1 is an isomorphism in a
neighbourhood of p that sends p onto q.

We call the space of equivalence classes (punctual) bubble space of Pn and denote it by
B(Pn).

A point in B(Pn) is simply a point in a blow-up of points of Pn. Actually, it would
be more general to define an equivalence relation on the set of points in blow-ups of Pn

5



I.1. BLOWING UP AND INTERSECTING CHAPTER I. PRELIMINARIES

along varieties of codimension≥ 2, and to define the bubble space of Pn to be the set of
these equivalence classes. For n = 2, this is exactly what we just defined, but for n ≥ 3

the more general version is much larger than the punctual bubble space. However, the
punctual bubble space is all we need in this thesis.

We use the following conventions (cf. [AC2002]):
Let π : Xk

πk→ Xk−1
πk→ · · · π1→ X0 = Pn be a sequence of blow-ups of points p1, . . . , pk ∈

B(Pn), where p1 ∈ Pn and pi ∈ π−1
i (pi−1) ⊂ Xi.

Definition I.1.3.

1. A point in B(Pn) is called proper point of X if it is equivalent to a point of X .

2. We say that points in (πk · · ·πi+1)−1(pi) are infinitely near pi or in the (k − i)th neigh-
bourhood of pi.

3. A point in the strict transform of the exceptional divisor of pi is called proximate to
pi.

4. Let πW : W → X be a sequence of blow-ups of points q1, . . . , qm and D ⊂ X an
irreducible hypersurface. We denote by I ⊂ {q1, . . . , qm} the set of proper points of
X and

D
πW := (πW )∗(D) ⊂W, D̃πW := (πW )−1(D \ I) ⊂W

the total transform and the strict transform of D. Analogously, we define for D =∑
aiDi ∈ Pic(X) the strict and total transform to be

D
πW :=

∑
aiDi

πW , D̃πW :=
∑

aiD̃i
πW
.

5. For a curve c ⊂ X , we denote by

c̃πW := (π−1
W )(c \ {q1, . . . , qk}) ⊂W

the strict transform of c.

Definition I.1.4. Let n ≥ 2 and 0 ∈ S ⊂ An a hypersurface given by the equation g = 0.
We write g = gd + gd−1 + · · · + ge, where gi ∈ k[x1, . . . , xn] are homogeneous of degree
deg(gi) = i, e ≤ i ≤ d and ge 6= 0. We define

e =: multiplicity of S in 0 =: m0(S).

Suppose that πX : X := Xk
πk→ Xk−1

πk→ · · · π1→ X0 = Pn is the blow-up of q1, q2, . . . , qk ∈
B(Pn) and Ei ⊂ X the total transform of the exceptional divisor of qi. The Picard group
of X is the group of divisors on X up to linear equivalence and is isomorphic to

Pic(X) = H
πXZ⊕ E1Z⊕ · · · ⊕ EkZ,

whereH ⊂ Pn is a hyperplane not passing through any qi. Similarly, the group of 1-cycles
on X (formal finite sums of curves up to numberical equivalence) is isomorphic to

N1(X) = l̄πXZ⊕ e1Z⊕ . . . ekZ,

6



CHAPTER I. PRELIMINARIES I.1. BLOWING UP AND INTERSECTING

where l̄πX ⊂ X is the pre-image of a line l ⊂ Pn not passing through any of the qi and
ei ⊂ Ẽi is a general line in the strict transform Ẽi of the exceptional divisor of qi.

The projection formula

(πi · · ·πj)∗(D) · c = D · (πi · · ·πj)∗(c), ∀ D ∈ Pic(Pn), ∀ c ∈ N1(X)

states how to intersect divisors and curves on blow-ups [Deb2001, §1.2.1.9].
The following classical statement explains the geometrical relation between the strict

and the total transform of a divisor.

Lemma I.1.5. Let S ⊂ Pn be hypersurface. Then SπX is linearly equivalent to

S
πX ∼ S̃πX +

k∑

i=1

mpi(S)Ei.

Further, for any general line l ⊂ Pn and general hyperplane H ⊂ Pn, we have

H̄η1ei = 0, Eiej = 0, Eiei = −1

for all i, j = 1, . . . , n and i 6= j.

Proof. We look at the first blown-up point in local coordinates: The blow-up η : Y → An

of 0 ∈ An is given by

η : (u1, . . . , un) 7→ (u1, u1u2, . . . , u1un).

Let S be given by the equation g = 0, where g ∈ k[x1, . . . , xn]. We write g = gd + gd−1 +

· · ·+ ge, where gi ∈ k[x1, . . . , xn] is homogenous of degree deg(gi) = i with e ≤ i ≤ d and
ge 6= 0. Then the pull-back η∗(S) ⊂ Y of S is given by the equation

ue1

(
ud−e1 gd(1, u2, . . . , un) + ud−e−1

1 gd−1(1, u2, . . . , un) + · · ·+ ge(1, u2, . . . , un)
)

= 0

Therefore, since we defined e = m0(S), we obtain that η∗(S) is linearly equivalent to the
divisor

η∗(S) ∼ S̃πX +m0(S)E1.

Proceeding like this for all points blown up by πX , we obtain the claimed equivalence.
The first intersection follows from the projection formula. We prove the other two by

induction. LetH ⊂ An be a hyperplane through 0. With the above, the projection formula
implies

0 = H
η
e1 = (H̃η + E1)e1 = H̃ηe1 + E1e1 = 1 + E1e1.

Let ηk : YN → Y be the blow-up of qk. We obtain that for i < k, the general lines ei ⊂ Ẽi
do not intersect Ek, hence Ekei = 0 for i < k. The projection formula implies that for all
i < k, j = 1, . . . , k

Eiej = (ηk)
∗((ηk)∗(Ei))ej = (ηk)∗(Ei) · (η2)∗(ej),

which implies Eiei = 1 for i < k and Eiej = 0 for i < k, j = 1, . . . , k, i 6= j. Suppose
that qk is a proper point of the exceptional divisor of qk−1. Then Ek and Ẽk−1 intersect in

7



I.2. LINEAR SYSTEMS CHAPTER I. PRELIMINARIES

a hyperplane of Ek and so every line in Ek intersects Ẽk−1 in one point, hence

0 = Ek−1ek = (Ẽk−1 + Ek)ek = Ẽk−1ek + Ekek = 1 + Ekek.

I.2 Linear systems

Let X be a smooth projective variety and D a divisor on it. We define

L(D) = {D′ ∈ Pic(X) | D′ ∼ D, D′ ≥ 0} ∪ {0},

the set of effective divisors linearly equivalent to D, which is a finite dimensional vector
space and isomorphic to {f ∈ K(X) | f = 0, or (f) + D ≥ 0} [Mum1976, §6]. If L 6= 0,
its projectivisation exists and is called the linear system of D and is denoted by |D|. A
complete linear system is the linear system of some divisor D, and a linear system Λ is a
linear subspace of a complete linear system. We call Ind(Λ) := ∩D∈Λsupp(D) ⊂ Pn the
set of indeterminacy point of the linear system Λ.

For X = Pn and D = H a hyperplane, |H| is the projective variety of all hyperplanes
in Pn, which is the dual space P̂n and isomorphic to Pn, and its set of indeterminacy
points is empty.

Definition I.2.1 (Linear system of a transformation). Let X be a projective variety and
f : X 99K Pn a rational map. The linear system of f is defined as closure of the set of
pre-images by f of general hyperplanes H ⊂ Pn.

We call Ind(f) := Ind(Λf ) ⊂ Pn the set of indeterminacy points of f .

It is a linear system but in general not a complete linear system.

Remark I.2.2. Let f ∈ Birk(Pn) be the transformation given by

f : [x0 : · · · : xn] 99K [f0 : · · · : fn]

for some homogenous f0, . . . , fn ∈ k[x0, . . . , xn] without common factors and of equal
degree.

Denote by Hi ⊂ Pn the hyperplane given by xi = 0. Then f−1(Hi) is given by fi = 0.
More generally, the pre-image of the hyperplane H[a0:···:an] given by

∑n
i=0 aixi = 0 is the

hypersurface S[a0:···:an] given by
∑n

i=0 aifi = 0. In other words, any general element of Λf
is a hypersurface of degree deg(f) passing through Ind(f).

Definition I.2.3. We denote by Base(f) ⊂ B(Pn) the set of points in B(Pn) where all fi
simultanously vanish, which is the set of points where f is not defined, and call it the set
of base-points of f . Further, we define

deg(Λf ) := deg(f).

Definition I.2.4. Let f ∈ Birk(Pn) and p ∈ B(Pn). Any S ∈ Λf is given by a0f0 + · · · +
anfn = 0 for some [a0 : · · · : an] ∈ Pn. Then there exists m ∈ N>0 and an open dense
subset U ⊂ Λf such that any element of U has multiplicity m in p. For p ∈ B(Pn), we
define m to be the multiplicity of f in p, and denote it by mp(Λf ).

8



CHAPTER I. PRELIMINARIES I.2. LINEAR SYSTEMS

Let η : X1 → Pn be the sequence of blow-ups of p1, . . . , pl−1, pl and Ei the total trans-
form of the exceptional divisor of pi. For a general element S ∈ Λf Lemma I.1.5

S
η

= S̃η +

l∑

i=1

mpi(Λf )Ei.

Now, let Λ be any linear system in Pn and S ∈ Λ a general element. Then S
η

= S̃η +∑l
i=1miEi for some m1, . . . ,ml ∈ N that do not depend on S. We write mp(Λ) := ml and

call it the multiplicty of Λ in p.

Next, we define the image of a variety or a linear system by a birational transforma-
tion.

Definition I.2.5 (Image by transformation). For a birational transformation f : X 99K Y
between smooth projective varieties and Z ⊂ X a subvariety, we call

f(Z) := f(Z \ Ind(f))

the image of Z by f .

The following well-known theorem presents a base to dealing with plane Cremona
transformations and is the reason why we defined the linear system associated to a bira-
tional transformation in the first place.

Theorem I.2.6 ([Sha1998, Vol. 1, Chapter IV, §3.4,Theorem 4]). Let f : X 99K Y be a bi-
rational map between smooth, projective surfaces defined over some field k. Then there exist two
sequences of blow-ups η : Z → Y and π : Z → X of points defined over k such that the following
diagram is commutative

Z
π

~~

η

��
X

f // Y

Remark I.2.7. The proof of the theorem is done in two steps:
First, we blow up the base-points of f and show that we arrive at a birational mor-

phism η : Z → Y [Sha1998, Vol. 1, Chapter IV, §3.3, Theorem 3].
Then, one shows that any birational morphism η : Z → X between smooth projec-

tive surfaces decomposes into a sequence of blow-ups [Sha1998, Vol. 1, Chapter IV, §3.4,
Theorem 5].

Remark I.2.8. If k is perfect, then for any base-point p ∈ B(P2) of f , also all its Galois-
conjugates are base-points of f . By grouping the blow-ups of the Galois conjugates of p,
we obtain a sequence of blow-ups defined over k.

Remark I.2.9. In general, the theorem is false in higher dimensions. For a birational trans-
formation f : Pn 99K Pn defined over a field k of char(k) = 0, there still exists a sequence
of blow-ups π : Z → Pn of varieties of codimension≥ 2 such that f ◦ π : Z → Pn is
a morphism because a resolution of singularities can still be found [Hir1964], but the
birational morphism f ◦ π is in general not a sequence of blow-ups of subvarieties of
codimension≥ 2.

9
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Example I.2.10. Lets look at the linear system of the standard Cremona involution of P2,
which is given by

σ : [x0 : x1 : x2] 799K [x1x2 : x0x2 : x0x1]

Its base-points are p0 = [1 : 0 : 0], p1 = [0 : 1 : 0], p2 = [0 : 0 : 1] and it contracts the line li
given by xi = 0 onto pi. The blow-up of the three points p0, p1, p2 is

X := {([x0 : x1 : x2], [y0 : y1 : y2]) ∈ P2 × P2 | x0y0 = x1y1 = x2y2}
pr1−→ P2.

As for general elements of X , we have

([x0 : x1 : x2], [y0 : y1 : y2]) = ([x0 : x1 : x2], [x1x2 : x0x2 : x0x1])

hence σ lifts to the isomorphism σ̂

σ̂ : ([x0 : x1 : x2], [y0 : y1 : y2])
'7→ ([y0 : y1 : y2], [x0 : x1 : x2])

which exchanges the the exceptional divisor of pi with l̃i
pr1 . Take a general line l ⊂ P2

(thin, dotted in Figure I.1). Its strict transforms intersect once each li, which are the ex-
ceptional divisors of p0, p1, p2. Therefore, σ−1(l) passes through p0, p1, p2. This way, we
see geometrically that Λf consists of all conics passing through p0, p1, p2.

l0

l1

l2

l1

l0

l2

p0

p1

p2 p2

p0

p1

σ

P2 P2

π

X

π

π−1(p0) = l̃0
π

π−1(p2) = l̃2
π

π−1(p1) = l̃0
π

π−1(p2) = l̃2
π

σ̂

l

l̃π

σ−1(l)

Figure I.1: The resolution of [x : y : z] 799K [yz : xz : xy].

Definition I.2.11. Let f ∈ Bir(P2) and p ∈ B(P2) not a base-point of f . Let ν1 : S → P2

and ν2 : S′ → P2 respectively be the blow-ups of the base-points of f and f−1. Then f lifts
to an isomorphism f̂ : S

'→ S′, making the following diagram commutative.

S

ν1
��

f̂ // S′

ν2
��

P2 f // P2

The point p corresponds via ν1 to a proper or infinitely near point of S. Its image via f̂ is
a point of S′, proper or infinitely near, which corresponds via ν2 to a point f•(p) ∈ B(Pn).

Lets look at an example to understand f•(p) and f(p):

10
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Example I.2.12. Consider the standard quadratic involution σ ∈ Bir(P2) and q = [0 : 1 :

1]. Let l be the line given by x = 0, which is contracted by σ onto the point [1 : 0 : 0], i.e.
σ(q) = [1 : 0 : 0]. The line h given by y = z passes through q and [1 : 0 : 0], and σ(h) = h.

By definition, σ•(p) is the point in the first neighbourhood of [1 : 0 : 0] corresponding
to the tangent direction h at [1 : 0 : 0]. In conclusion, σ(p) is a proper point of P2, whereas
σ•(p) is not. Figure I.2 illustrates the situation; the dotted and undotted lines in X are the
exceptional divisors of the dotted and undotted points respectively (compare Figure I.1).

σ

h : x1 = x2

[0 : 0 : 1]

[1 : 0 : 0]

[0 : 1 : 0]P2

X

[0 : 1 : 0]

[0 : 0 : 1]

[1 : 0 : 0] = σ(q)

P2

σ•(q)

q

Figure I.2: The points σ(q) and σ•(q).

Remark I.2.13. Note that f• is a one-to-one correspondence between the sets

B(P2) \ {base-points of f} f•←→ B(P2) \ {base-points of f−1}.

I.3 Composition of transformations

In this chapter, we recall the classical formulae for degree and multiplicities of composi-
tions of plane Cremona transformations.

Lemma I.3.1 ([AC2002, Proposition 2.1.12], [Hud1927, §I.1.3]). For any f ∈ Birk(P2), f
and f−1 have the same degree.

The proof given in the reference works over any field because the resolution of a
birational map of P2 exists for any field (cf. Theorem I.2.6).

Remark I.3.2. The above lemma is false in general for birational maps of Pn, n ≥ 3: For
any n ≥ 1, the inequalities

n−1
√

deg(f) ≤ deg(f−1) ≤ deg(f)n−1

hold [BCW1982, Theorem 1.5, p. 292]. For any n ≥ 3, any d ∈ N and any
√
d ≤ D ≤ dn−1,

there exist examples of birational maps of degree d with inverse of degree D. Examples
can be found in [Pan2000, Pan2013].

The following classical formulae are called Noether equations or equations of condition
and relate the degree of a transformation to its multiplicities (see for instance [AC2002,
§2] or [Hud1927, §I.6]).

11
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Lemma I.3.3 (Noether equations). Let f ∈ Birk(P2) of degree deg(f) = d. Then

d2 − 1 =
∑

p∈B(P2)

mp(Λf )2, 3(d− 1) =

n∑

p∈B(P2)

mp(Λf )

Note that mp(Λf ) 6= 0 if and only if p ∈ Base(f).

Proof. By Theorem I.2.6 there exist two sequences of blow-ups π : Z → P2, η : Z → P2

defined over k such that the following diagram commutes

Z
π

~~

η

  
P2 f // P2

and which blow-up the base-points of f and f−1.
Pick a general line l ⊂ P2, i.e. a line that does not contain any base-points of f−1.

Lemma I.1.5 implies that
l
η

= l̃η ∼ dlπ −
∑

mp(Λf )Ep

on Z. The intersection formula in Lemma I.1.5 implies that

1 = l2 = (l
η
)2 = (dh

π −
∑

mp(Λf )Ep)
2

= d2 −
∑

mp(Λf )2

Further, we have KP2 ∼ −3l and KZ ∼ η∗(KP2) +
∑n

i=1Ei. Hence

−3 = KP2 · l = η∗(KP2) · lη = (KZ −
∑

Ep) · l̃η

= KZ · l̃η

= (π∗(KP2) +
∑

Ep)(dl
π −

∑
mp(Λf )Ep)

= −3d+
∑

mp(Λf )

As mp(Λf ) 6= 0 if and only if p ∈ Base(f), we can safely sum over all points in B(P2).

To study relations among Cremona transformations by exploring their linear systems,
it is essential to be able to deduce information about the linear system of a composition
of two transformations from the two factors. What follows are the classical formulae for
degree and multiplicity of compositions (see for instance [AC2002, Corollary 4.2.12]).

Lemma I.3.4 (Composition). Let f, g ∈ Birk(P2). Then

deg(fg) = deg(f) deg(g)−
∑

p∈B(Pn)

mp(Λf )mp(Λg−1)

and Base(fg) ⊂ Base(g) ∪ (g−1)•(Base(f) \ Base(g−1)).
If p ∈ Base(fg) ∩ (g−1)•(Base(f) \ Base(g−1)), then mp(Λfg) = mg•(p)(Λf ).

Proof. By Theorem I.2.6 and Remark I.2.7 we find sequences of blow-ups π1, η
′
1 : Z1 → P2

and π′1, η1 : Z2 → P2 such that fπ′1 = η1 and gπ1 = η′1. Again for h := η−1
1 fgπ1 : Z1 99K Z2

12
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we find sequences of blow-ups π2 : W → Z1 and η2 : W → Z2 such that hπ2 = η2. The
situation is summarised in the following commutative diagram:

W
η2

  

π2

~~
Z1

π1

~~

η′1

  

h // Z2

η1

  

π′1

~~
P2 g // P2 f // P2

In fact, π2 blows up the base-points of f , viewed on Z1, which are not blown up by η′1,
and η2 blows up the base-points of g−1, viewed on Z2, which are not blown up by π′1.

Let p ∈ Base(fg). If p is not a base-point of g, then q := g•(p) is not blown up by η1

and is a base-point of f . Let l ⊂ P2 be a general line and. Then f−1(l) passes through q

with multiplicity mq(f). As η′1 does not blow up q, the f̃−1(l)
η′1

has multiplicity mq(Λf )

in (η′−1
1 )•(q). The map π1 does not contract any curve onto the point p (else p would be a

base-point of g), hence π1 sends f̃−1(l)
η′1

onto a curve passing through pwith multiplicity
mp(Λf ).

The degree of fg is equal to the degree of a general element S ∈ Λfg, which is the
intersection of S with a general line l ⊂ P2. Furthermore, S is the the pre-image by fg of
a general line h ⊂ P2, i.e. S = g−1(f−1(h)), and g(l) ∈ Λg−1 . With Lemma I.1.5 and the
intersection formula in Lemma I.1.5 we obtain

deg(fg) = deg(S) = S · l = S
π2π1 · lπ2π1

= S̃π2π1 · l̃π2π1

= ˜(f−1(h))
π2η′1 · g̃(l)

π2η′1

=
(

deg(f)l̄η2η1 −
∑

mp(Λf )Ep

)(
deg(g)l̄π2η

′
1 −

∑
mp(Λg−1)Ep

)

= deg(f) deg(h)−
∑

mp(Λf )mp(Λg−1)

where Ep ⊂W is the total transform of the exceptional divisor of p. As mp(Λf ) 6= 0 if and
only if p is a base-point of f , we can safely sum over all points in B(P2).
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II Generating sets and relations

To work with the Cremona groups it is helpful to know a generating set that is easy to
work with. A generating set of the plane Cremona group over an algebraically closed
field has been known for over hundred years, whereas for the Cremona groups of higher
dimensional projective spaces, no non-trivial generating set is known.

In this chapter, we recall some theorems about generating sets of the Cremona groups
of the plane.

Recall that we denote by Autk(Pn) ⊂ Birk(Pn) the group of transformations that are
defined at every point of P2. It is the group of linear transformations of Pn and is isomor-
phic to PGLn+1(k).

The following definition specifies what is meant by the terms generating set, generat-
ing relations and presentation of a group.

Definition II.0.1. Let G be a group. A presentation 〈S | R〉 of G is a triple made up of a set
S, a surjective homomorphism π : FS � G of the free group FS on S onto G and a subset
R of FS generating ker(π) as a normal subgroup.

The relations of the presentation are the elements of ker(π) and the elements of R are
the relators (or generating relations) of the presentation. The set S is called generating set of
G. We write G ' 〈S | R〉.

II.1 The plane Cremona groups

II.1.1 Algebraically closed fields

Suppose that k is an algebraically closed field. Then we know a superbly nice generating
set of Birk(P2):

Theorem II.1.1 (Noether-Castelnuovo theorem, [Cas1901]). Let k be an algebraically closed
field. Then Birk(P2) is generated by Autk(P2) and the standard Cremona involution.

See [Sha1967, §V.5, Theorem 2, p.100] for a proof working over any algebraically
closed field.

The theorem implies that Birk(P2) is generated by the two algebraic groups Autk(P2)

and the group of order 2 generated by the standard Cremona involution. It does not give
any information about the generating relations.

The Noether-Castelnuovo theorem implies that Birk(P2) is generated by the set of
all linear and quadratic transformations and a first presentation was given using this
generating set:

14
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Theorem II.1.2 ([Giz1983, Theorem 10.7, p.267]). Let k be an algebraically closed field and
denote by Q ⊂ Birk(P2) the set of quadratic transformations. Then Birk(P2) ' 〈Q | R〉 and all
relators r ∈ R are of the form

r = q1q2q3.

The standard Cremona involution preserves the pencil of lines through [0 : 0 : 1] and
this leads to the following definition:

Definition II.1.3 (de Jonquières transformations). By J∗ ⊂ Birk(P2) we denote the sub-
group of elements preserving the pencil of lines through [1 : 0 : 0]. In other words,

J∗ = {f ∈ Birk(P2) | ∃α ∈ PGL2(k) : π∗f = απ∗}

where π∗ : P2 99K P1, [x : y : z] 799K [y : z], whose fibres are the lines through [1 : 0 : 0]. An
element of J∗ is called de Jonquières transformation.

Writing the de Jonquières tranformations in local coordinates, we see that J∗ is given
by

J∗ =

{
(x, y) 799K

(
ax+ b

cx+ d
,
α(x)y + β(x)

γ(x)y + δ(x)

)∣∣∣∣∣

(
a b

c d

)
∈ PGL2(k),

(
α(x) β(x)

γ(x) δ(x)

)
∈ PGL2(k[x])

}

' PGL2(k(x)) o PGL2(k)

and is not an algebraic group as PGL2(k(x)) is not an algebraic group over k.
As the standard Cremona involution is contained in J∗, the Noether-Castelnuovo

theorem implies that for algebraically closed fields, Birk(P2) is generated by Autk(P2) and
J∗. Of course, this is a much weaker statement than the Noether-Castelnuovo theorem
but allows the following structure theorem:

Theorem II.1.4 ([Bla2012, Theorem 1]). Let k be an algebraically closed field. Then Birk(P2)

is the amalgamated product of Autk(P2) and J∗ along their intersection, divided by one relation,
which is

στ = τσ

where τ ∈ Autk(P2) is given by τ([x : y : z]) = [y : x : z]) and σ is the standard Cremona
involution.

The birational transformation

ψ : P2 99K P1×P1, [x : y : z] 799K ([x : z], [y : z]), ([u0 : u1], [v0 : v1])
ψ−1

L997 [u0v1 : u1v0 : u1v1]

is blow-up of the two point [1 : 0 : 0] and [0 : 1 : 0] followed by the contraction of
the line given by z = 0. Further, it conjugates J∗ to the subgroup of Birk(P1 × P1) that
preserves the projection onto the second factor. The above theorem was preceded by a
similar statement on P1 × P1.

Theorem II.1.5 ([Isk1985, Theorem]). Let k be an algebraically closed field. Then the group
Birk(P1 × P1) is the amalgamated product of Autk(P1 × P1) and J∗ along their intersection,
divided by the relation

(ρτ)3 = ψσψ−1,

where ρ : (x, y) 799K (x, x/y) and τ : (x, y) 7→ (x, y), and σ the standard Cremona involution.
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Both statements yield an almost amalgamated structure of the plane Cremona group
and it is as close as one can get, as Birk(P2) is not isomorphic to a non-trivial amalgam
if k is algebraically closed [CanLam2013, Appendix]. However, it is isomorphic to the
generalised amalgamated product of three groups, meaning that it is isomorphic to the
free product of three groups amalamated along all pairwise intersections.

Theorem II.1.6 ([Wri1992, Theorem 3.13]). Let k be an algebraically closed field. Then Birk(P2)

is isomorphic to the free group of the three groups

Autk(P2), PGL2(k)× PGL2(k), J∗,

amalgamated along their pairwise intersections in Birk(P2), where the second group is the group
of automorphisms of Birk(P1×P1) respecting the projections onto the two factors and is embedded
into Birk(P2) via the birational map ψ : P2 99K P1 × P1.

All these presentations have in common that they do not use linear algebraic groups
as generating groups. On the other hand, the Noether-Castelnuovo theorem states that
Birk(P2) can be generated by two linear algebraic groups, although without giving a pre-
sentation. The following theorem combines the idea of Theorem II.1.6 with linear alge-
braic generating groups, having to make a compromise by modding one further relation.

Theorem II.1.7 ([Zim2016, Theorem B]). Let k be algebraically closed. Then Birk(P2) is iso-
morphic to the free product of the linear algebraic groups

Autk(P2), Autk(P1 × P1), Autk(F2)

amalgamated along their pairwise intersections and divided by the relation

τ13στ13σ = 1

where τ13 : [x : y : z] 7→ [z : y : x] and σ is the standard Cremona involution.

This structure theorem does not stand out among the presentations given in this chap-
ter. However, it allows to approach the plane Cremona group from a topological point of
view. Endowed with the Euclidean topology as defined in [BlaFur2013, Theorem 3, §5]
the Cremona group becomes a Hausdorff topological group and the restriction of the
topology to any linear algebraic subgroup is the Euclidean topology on it. For k = C
and k = R, any linear algebraic group endowed with the Euclidean topology is a Lie
group and as such compactly generated, i.e. it has a compact generating set. The Noether-
Castelnuovo theorem then implies that BirC(P2) is compactly generated as well. Theo-
rem II.1.7 enables us to prove that we can even find a presentation BirC(P2) = 〈S | R〉
where S is compact and R has bounded length with respect to the word length given by
S.

More generally, a Hausdorff topological group G is called compactly presented if there
exists a presentation 〈S | R〉 where S ⊂ G is compact and R is of bounded word length.
Being compactly presented is a property usually associated to Lie groups with finitely
many connected components (cf. Chapter III, §6). Although the Cremona group is con-
nected [Bla2010], it is not a Lie group, as it is not finite dimensional in any sense (see
Example I.0.4).
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Theorem II.1.8 ([Zim2016, Theorem A]). Endowed with the Euclidean topology, BirC(P2)

is compactly presented by any compact generating set of AutC(P2) and the standard Cremona
involution.

Theorem II.1.17 implies that BirC(P2) is not so far from being a Lie group, albeit not
being finite dimensional.

Note that Theorem II.1.2 yields a presentation with all relators of length three but the
generating set is not compact because the set of quadratic transformations is not closed
[BlaCal2016, Theorem 1] and hence not compact.

Presentations do not only exist for Birk(P2) but also for some of its subgroups, as
for instance the classical presentation of Autk(A2) ' Affk(A2) ∗Affk(A2)∩E E, where k is
any field and Affk(A2) ⊂ Autk(A2) is the subgroup of affine automorphisms and E ⊂
Autk(A2) is the subgroup of elementary automorphisms (automorphisms of the form
(x, y) 7→ (ax+P (y), by+ c) for some P ∈ k[x], a, b, c ∈ k∗) [VdK1053]. Further, non-trivial
generating sets are known for the decomposition groups of plane curves c ⊂ P2, that is
Dec(c) = {f ∈ Birk(P2) | f |c : c 99K c is birational}; [HedZim2016] shows that, just like
Birk(P2) itself, the decomposition group of a line is generated by its linear subgroup and
one quadratic element, and that it does not have the structure of a non-trivial amalgam.
The decomposition group of curves of genus≥ 1 have been closely studied in [BPV2009].

II.1.2 Non algebraically-closed fields

For fields that are not algebraically closed the Noether-Castelnuovo theorem never holds.
The standard Cremona involution has three base-points, each defined over k, and con-
tracts three lines, also each defined over k. In fact, the group generated by Autk(P2) and
the standard involution is equal to the subgroup of Birk(P2) consisting of elements that
contract only k-rational curves, which is equal to the subgroup of transformations hav-
ing all base-points defined over k [BlaHed2014, Proposition 7.4]. However, if k is not
algebraically closed, Birk(P2) always contains transformations contracting non-rational
curves. For instance, let p ∈ k[X] be irreducible and of degree d > 1. The de Jonquières
transformation

T : [x : y : z] 799K [zdx : yzdp(
x

z
) : zd+1]

contracts the curve given by zdp(xz ) = 0, which is not rational over k. (Over k, it is a union
of lines.)

Even more, the following statement holds:

Lemma II.1.9. Let k be a field whose algebraic closure k does not have finite degree over k. Then
Birk(P2) is not generated by a set of bounded degree.

Proof. The idea of the proof is the same as in [Can2015, Proposition 3.6] where it is shown
that for any field, Birk(P2) is not finitely generated.

Let d ∈ N and denote by S ⊂ Birk(P2) the set of transformations of degree ≤ d and by
〈S〉 ⊆ Birk(P2) the subgroup generated by S. An element of S is of the form

[x : y : z] 799K [s0(x, y, z) : s1(x, y, z) : s2(x, y, z)]
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for some homogenous s0, s1, s2 ∈ k[x, y, z] of equal degree deg(s) = deg(si) ≤ d. Let ks
be the smallest field extension of k over which the base-points of s and s−1 are defined.
The Galois group Gal(ks/k) permutes the coefficients of the base-points, whose minimal
polynomials have degree at most d. Therefore, [ks : k] ≤ |Gal(k2/k)| ≤ d ! =: D for all
s ∈ S. Let s, s′ ∈ S. By Lemma I.3.4, the base-points of s′s are contained in Base(s) ∪
((s−1)•(Base(s′))). As s is defined over k, it follows that every base-point of s′s is defined
over ks or ks′ . Inductively, we obtain that for any s1, . . . , sn ∈ S, every base-point of the
composition sn · · · s1 is defined over one of the ksi .

Let p > D be a prime number and q(x) ∈ k[x0, . . . , xn] an irreducible polynomial of
degree p, and consider the de Jonquières transformation

T : [x : y : z] 799K [xq(
x

z
)zd : yzd : q(

x

z
)zd+1]

Its base-points are [0 : 1 : 0] and [αi : 0 : 1], where the αi are the roots of q(x) in the
algebraic closure k of k, and hence have degree p > D. Therefore, the [αi : 1 : 0] are not
defined over ks for any s ∈ S. It follows that T is not contained in 〈S〉.

For certain fields k, non-trivial generating sets of Birk(Pn) are known. The involution

σ′ : [x : y : z] 799K [xz : yz : x2 + y2]

is not contained in the group generated by AutR(P2) and the standard Cremona invo-
lution σ, as it has two non-real conjugate base-points. The following theorem presents a
generating set of BirR(P2).

Theorem II.1.10 ([BlaMan2014, Theorem 1.1]). The group BirR(P2) is generated by AutR(P2),
σ, σ′ and the (uncountable) family of standard quintic transformations of P2 (see Definition II.1.11).

In particular, BirR(P2) is generated by a set of bounded degree.

Definition II.1.11. We define a type of real birational transformation called standard quin-
tic tranformation.

Let q1, q̄1, q2, q̄2, q3, p̄3 ∈ P2 be three pairs of non-real conjugate points of P2, not lying
on the same conic. Denote by π : X → P2 the blow-up of these points, which induces an
isomorphism X(R) → P2(R). The set of strict transforms of the conics passing through
five of the six points correspond to three pairs of non-real conjugate (−1)-curves. Their
contraction yields a birational morphism η : X → P2, inducing an isomorphism X(R)→
P2(R), which contracts the curves onto three pairs of non-real points r1, r̄1, r2, r̄2, r3, r̄3 ∈
P2. We choose the order so that ri is the image of the conic not passing through qi. The
map ψ := ηπ−1 is a birational map P2 99K P2 inducing an isomorphism P2(R)→ P2(R).

Let L ⊂ P2 be a general line of P2. The strict transform of L on X by π−1 has self-
intersection 1 and intersects the six curves contracted by η in two points (because these
are conics). The image of ψ(L) has then six singular points of multiplicty 2 and self-
intersection 25; it is thus a quintic passing through the ri with multiplicity 2. The con-
struction of ψ−1 being symmetric to the one of ψ, the linear system of ψ consists of quin-
tics of P2 having multiplicity 2 at q1, q̄1, q2, q̄2, q3, q̄3.

One can moreover check that ψ sends the pencil of conics through q1, q̄1, q2, q̄2 onto
the pencil of conics through r1, r̄1, r2, r̄2 (and the same holds for the two other real pencils
of conics, through q1, q̄1, q3, q̄3 and through q2, q̄2, q3, q̄3).
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The generating set in Theorem II.1.10 is not far from being minimal in the sense that
it is not possible to generate BirR(P2) by AutR(P2) and only countably many elements
[Zim2015, Theorem 1].

A more general statement of Theorem II.1.10 can be found in [Isk1991, Theorem]
where a generating set of Birk(Pn) for any perfect field k is given. As the statement is
much more general, the list of non-linear generators is much more diverse than the one
given in Theorem II.1.10. In [IKT94], generating relations are given for the generating set
found in [Isk1991].

The standard quintic transformations send a real conic bundle onto a real conic bun-
dle and this leads to the following definition:

Definition II.1.12. Fixing two points p1 = [1 : i : 0], p2 = [0 : 1 : i], we denote by
J◦ ⊂ BirR(P2) the subgroup of transformations preserving the pencil of conics through
p1, p̄1, p2, p̄2. In other words,

J◦ = {f ∈ BirR(P2) | ∃α ∈ PGL2(R) : π◦f = απ◦},

where π◦ : P2 99K P1, [x : y : z] 799K [y2 + (x + z)2 : y2 + (x − z)2], whose fibres are the
conics through p1, p̄1, p2, p̄2.

Remark II.1.13 ([Zim2015, Lemma 2.5]). For any standard quintic transformation f ∈
Birk(P2) there exist α, β ∈ Autk(P2) such that βfα ∈ J◦.

Extending the scalars to C, the two groups J◦ and J∗ are conjugate; for instance, by
any quadratic transformation having base-points p1, p̄1, p2 and sending p̄2 onto [1 : 0 : 0]

(cf. Chapter II.4.2). It is not true over R [Zim2015, Remark 4.11].
Denote by η1 : X5 → P2 the blow-up of p1, p̄1, p2, p̄2. Then, because no three of the

four points are collinear, X5 is a real del Pezzo surface of degree 5, and π◦η1 : X5 → P1 is
a real conic bundle whose fibres are the strict transforms of the conics through p1, . . . , p̄2

and which has exactly three singular fibers, which are the strict transforms of the three
reducible conics C1 := Lp1,p̄2 ∪Lp̄1,p2 , C2 := Lp1,p2 ∪Lp̄1,p̄2 , C3 := Lp1,p̄1 ∪Lp2,p̄2 . The only
singular fibre having real components is C1 and the contraction of one of its components,
for instance the strict transform of Lp2,p̄2 , yields a birational morphism η2 : X5 → X6 onto
a real del Pezzo surface of degree 6, and π′◦ := π◦η1(η2)−1 : X6 → P1 is a minimal real
conic bundle. The group J◦ is conjugate via (η2η

−1
1 ) to the group of birational transfor-

mations of X6 preserving the conic bundle structure. This is summarised in Figure II.1;
the exceptional divisors of p2, p̄2 are not drawn, the circle in X6 is the image of L̃p2,p̄2 , and
the numbers in the square brackets are self-intersection numbers.

From this point of view, a standard quintic transformation is conjugate via (η2η
−1
1 ) to

an elementary link of X6 defined over R; it is the composition of the blow-up of two non-
real conjugate points onX6 contained in two non-real conjugate fibres and the contraction
of the strict transform of these fibres.

The image of the exceptional divisors of p1, p̄1 are non-real conjugate (−1)-sections
on the real conic bundle X6 → P1. Contracting these, we obtain the rational fibration
Q3,1 99K P1, where Q3,1 ⊂ P3 is given by w2 = x2 + y2 + z2 and whose real chapter
Q3,1(R) ' S2 is diffeomorphic to the real 2-sphere.

Lemma II.1.14 ([Zim2015, Corollary 2.6]). The group BirR(P2) is generated by its subgroups
AutR(P2), J∗ , J◦.
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Figure II.1: The birational action of J◦ on the real conic bundle π′◦ : X6 → P1.

Proof. By Theorem II.1.10 and Remark II.1.13, BirR(P2) is generated by AutR(P2), σ, σ′ and
the family of standard quintic transformations contained in J◦. Observing that σ ∈ J∗
and σ′ ∈ J◦, the claim follows.

We also obtain a structure theorem similar to Theorem II.1.6 and Theorem II.1.7.
Define S := AutR(P2) ∪ J∗ ∪ J◦ and let FS be the free group generated by S. Let

w : S → FS be the canonical word map.

Definition II.1.15. We denote by G be the following group:

FS/

〈 w(f)w(g)w(h), f, g, h ∈ AutR(P2), fgh = 1 in AutR(P2)

w(f)w(g)w(h), f, g, h ∈ J∗, fgh = 1 in J∗
w(f)w(g)w(h), f, g, h ∈ J◦, fgh = 1 in J◦
the relations in the list below

〉

1. Let θ1, θ2 ∈ J◦ be standard quintic transformations and α1, α2 ∈ AutR(P2).

w(α2)w(θ1)w(α1) = w(θ2) in G if α2θ1α1 = θ2.

2. Let τ1, τ2 ∈ J∗ ∪ J◦ both of degree 2 or of degree 3 and α1, α2 ∈ AutR(P2).

w(τ1)w(α1) = w(α2)w(τ2) in G if τ1α1 = α2τ2.

3. Let τ1, τ2, τ3 ∈ J∗ all of degree 2, or τ1, τ2 of degree 2 and τ3 of degree 3, and
α1, α2, α3 ∈ AutR(P2).

w(τ2)w(α1)w(τ1) = w(α3)w(τ3)w(α2) in G if τ2α1τ1 = α3τ3α2.

Note that the group G is isomorphic to the free product of AutR(P2), J∗, J◦ amalga-
mated along all pairwise intersections and divided by the relations in the above list.
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Since BirR(P2) is generated by AutR(P2),J∗,J◦ (Lemma II.1.14), there exists a natural
surjective group homomorphism FS → BirR(P2) which gives rise to a group homomor-
phism G → BirR(P2), since all relations above hold in BirR(P2).

Theorem II.1.16 ([Zim2015, Proposition 2.9]). The group BirR(P2) is isomorphic to G.

This structure theorem is rather technical and ugly to look at, but it allows us to prove
the following theorem.

Theorem II.1.17 ([Zim2015, Theorem 2]). The group BirR(P2) is not perfect: its abelianisation
is isomorphic to

BirR(P2)/[BirR(P2),BirR(P2)] '
⊕

R
Z/2Z.

Moreover, the commutator subgroup [BirR(P2),BirR(P2)] is the normal subgroup generated by
AutR(P2) = PGL3(R), and contains all elements of BirR(P2) of degree ≤ 4.

The situation for BirC(P2) is quite different: The group BirC(P2) is perfect [CerDes2013,
Corollary 5.15], i.e BirC(P2) = [BirC(P2), BirC(P2)], and the normal subgroup generated
by any non-trivial element of degree≤ 4 is the whole group [Giz1994, Remark on Lemma
2, p. 42] (see also [Zim2015, Lemma 4.13]).

Remark II.1.18 ([Zim2015, §3.2, §4]). Let ϕ : BirR(P2) → ⊕
R Z/2Z be the abelianisa-

tion homomorphism from Theorem II.1.17. Then the image of the set of standard quintic
transformations in J◦ is a generating set of

⊕
R Z/2Z.

For a deeper discussion of this theorem and its implications, see Chapter IV, §4, §5.

II.2 Higher dimensions

For n ≥ 3 and any field k, Birk(Pn) is not generated by Autk(Pn) and the standard Cre-
mona involution. In fact, we have even more than just the Noether-Castelnuovo theorem
being false:

Theorem II.2.1 ([Pan1999, Théorème 1]). For any field k and n ≥ 3, Birk(Pn) is not generated
by Autk(Pn) and a countable number of elements of degree d > 1.

The proof of the theorem presents a family of counter examples, which relies on the
following: Every irreducible curve is birational to a plane curve [Har1977, §IV.3.11], and
C × P2 is birational to C ′ × P2 if and only if C and C ′ are birational [Kan1987, Theorem
3].

Let p ∈ k[X,Y ] be irreducible and of degree d > 1. It defines a curve C in A2. The de
Jonquières map

T : [x0 : · · · : xn] 799K [x0p(
x1

x3
,
x2

x3
)xd3 : x1x

d
3 : · · · : xnxd3]

contracts the hypersurface given by p(x1x3 ,
x2
x3

)xd3 = 0, which is birational to C×Pn−2. Thus
we need at least as many generators Birk(Pn) of degree> 1 as birational classes of curves.

Until now, no non-trivial generating set of Birk(Pn) is known for n ≥ 3.
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II.3 Birational diffeomorphisms

Recall that every automorphism of Pn defined over k is linear and vice versa. However, if
k is not algebraically closed, the Cremona group might contain elements that are defined
at every k-point of Pn and yet is not linear.

Definition II.3.1. For a variety X , we denote by X(k) its set of k-points and define

Aut(X(k)) = {f ∈ Birk(X) | f, f−1 are defined at every point of X(k)} ⊂ Birk(P2).

For k = R, the group also called the group of birational diffeomorphisms of X .

We always have the inclusion Autk(X) ⊂ Aut(X(k)), which is strict in general, as we
see from the following theorems presenting the generating sets of the groups of birational
diffeomorphisms of the three minimal real rational surfaces P2, F0 = P1 × P1 and Q3,1 =

{[w : x : y : z] ∈ P3 | w2 = x2 + y2 + z2}. Their real points are respectively P2(R), the real
torus S1 × S1 and the real 2-sphere S2.

Theorem II.3.2 ([RonVus2005, Teorema II],[BlaMan2014, Theorem 1.2]). The group Aut(P2(R))

is generated by AutR(P2) ' PGL2(R) and the family of standard quintic transformations (see
Definition II.1.11).

Theorem II.3.3 ([KolMan2009, Theorem 1],[BlaMan2014, Theorem 1.3]). The group Aut(Q3,1(R))

is generated by AutR(Q3,1) = PO3(R) and the standard cubic transformations (see definition
below).

Let us quickly recall the definition of standard cubic transformations on Q3,1, which
is quite similar to the definition of standard quintic transformations on P2.

Definition II.3.4. Let p1, p̄1, p2, p̄2 ∈ Q3,1 ⊂ P3 be two conjugate pairs of non-real points,
not all lying on the same plane of P3. Let π : X → Q3,1 be the blow-up of these points.
The non-real plane of P3 passing through p1, p̄1, p2 intersects Q3,1 onto a conic, having
self-intersection 2: two general different conics on Q3,1 are the trace of hyperplanes, and
intersect then into two points, being on the line of intersection of the two planes. The strict
transform of this conic on X is thus a (−1)-curve. Doing the same for the other conics
passing through three of the points p1, p̄1, p2, p̄2, we obtain four disjoint (−1)-curves on
X , that we can contract in order to obtain a birational morphism η : X → Q3,1; note
that the target is Q3,1 because it is a smooth projective rational surface of Picard rank
1. We obtain then a birational map ψ = ηπ−1 : Q3,1 99K Q3,1 inducing an isomorphism
Q3,1(R)→ Q3,1(R).

Denote by H ⊂ Q3,1 a general hyperplane section. The strict transform of H on X by
π−1 has self-intersection 2 and has intersection 2 with the four curves contracted by η.
The image ψ(H) has thus multiplicity 2 and self-intersection 18; it is then the trace of a
cubic section. The construction of ψ and ψ−1 being similar, the linear system of ψ consists
of cubic sections with multiplicity 2 at p1, p̄1, p2, p̄2.

Theorem II.3.5 ([BlaMan2014, Theorem 1.4]). The group Aut(F0(R)) is generated by AutR(F0) '
PGL2(R)2 o Z/2Z and by the involution

τ0 : ([x0 : x1], [y0 : y1]) 799K ([x0 : x1], [x0y0 + x1y1 : x1y0 − x0y1])
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Remark II.3.6. The generating sets of Aut(P2(R)) and Aut(Q3,1(R)) are not far from being
minimal; they are not generated by their automorphism groups countably many trans-
formations [Zim2016, Corollary 1.4]. This follows from the fact that the abelianisation
homomorphism BirR(P2) → ⊕

R Z/2Z in Theorem II.1.17 restricted to these groups is
surjective and that the image of their generators is a generating set of

⊕
R Z/2Z.

For Aut(A2(R)) no non-trivial generating set known. Yet, we have the following state-
ment: Every standard quintic transformation in J◦ is contained in Aut(A2(R)), so, by
Remark II.1.18, the abelianisation homomorphism restricted to Aut(A2(R)) is surjective.
Hence also Aut(A2(R)) cannot be generated by its linear elements and countably many
elements [Zim2015, Corollary 1.4].

II.4 Relations in the plane Cremona group

To study the plane Cremona transformations over an algebraically closed field, it is quite
useful to have certain relations between quadratic transformations at hand. For k = R it
is useful to know some relations among elements of J◦. In this chapter, we present the
most obvious and most commonly used relations in Chapter III and Chapter IV.

II.4.1 Quadratic transformations

If k is algebraically closed, then Birk(P2) is generated by the standard Cremona involu-
tion, which is of degree 2, and the linear group Autk(P2). Therefore, to study relations
in the Cremona group, we just have to know what happens to the linear system of a
transformation when we compose it with a quadratic transformation.

The quadratic transformations of P2 are the easiest transformations to deal with and
there are just three types of them, their prototypes being the involutions

σ3 : [x : y : z] 799K [yz : xz : xy]

σ2 : [x : y : z] 799K [xy : z2 : yz]

σ1 : [x : y : z] 799K [−xy + z2 : y2 : yz],

The first is the standard Cremona involution. The second has two base-points [1 : 0 :

0], [0 : 1 : 0] and the point p on the exceptional divisor of [1 : 0 : 0] that corresponds to the
line given by y = 0. The third has base-points [1 : 0 : 0], p and a point on the exceptional
divisor of p that is not on the intersection of the strict transform of the exceptional divisor
of [1 : 0 : 0] and the exceptional divisor of p.

Lemma II.4.1 ([AC2002, §2.8]). Let k be algebraically closed and τ ∈ Birk(P2) a quadratic
transformation. Then there exists α, β ∈ Autk(P2) and i ∈ {1, 2, 3} such that

τ = βσiα.

Of course, if k is not algebraically closed, such α, β exist but might only be defined
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over the algebraic closure k of k. For instance, the involution

σ′3 : [x : y : z] 799K [xz : xz : x2 + y2]

is defined over k = R and has base-points [0 : 0 : 1], [1 : i : 0], [1 : −i : 1], but there is no
linear transformation defined over R sending these points onto [1 : 0 : 0], [0 : 1 : 0], [0 : 0 :

1]. However, since any quadratic element τ ∈ BirR(P2) with three proper base-points has
either three real base-points or two non-real conjugate base-points and one real one, we
can find α, β ∈ AutR(P2) such that τ = βσ3α or τ = βσ′3α. If τ has at least one infinitely
near base-point, then all its base-points are real points and we can find α, β ∈ AutR(P2)

and i ∈ {1, 2} such that τ = βσiα.
The following lemma tells us just how easy it is to calculate the degree and multiplic-

ities of the composition of any transformation with a quadratic transformation.

Lemma II.4.2 ([AC2002, Proposition 4.2.5]). Let τ, f ∈ Birk(P2) be transformations of degree
2 and d respectively. Let p1, p2, p3 be the base-points of τ and q1, q2, q3 the base-points of τ−1.
Define

ε = mq1(Λf ) +mq2(Λf ) +mq3(Λf ).

Then
deg(fτ) = 2d− ε, mpi(Λfτ ) = d− ε+mqi(Λf )

and m(τ−1)•(r)(Λfτ ) = mr(Λf ) if r is not a base-point of τ−1.

Remark II.4.3. We get the following consequence of the above lemma: Let τ, τ ′ ∈ Birk(P2)

be two quadratic transformations. If τ−1, τ ′ have 3, 2, 1 or zero common base-points, then
deg(τ ′τ) is respectively 1, 2, 3 or 4.

Remark II.4.4. By writing σ3 = τ12σ2τ12σ2, we see that Bir(P2) is also generated by
Aut(P2) and σ2.

The following proposition emerged form a discussion with ISAC HEDÉN.

Proposition II.4.5 (cf. [Giz1999, p. 122] for n = 3). For any field k of char(k) = 0 and any
n > 1, the set

Birk(Pn)(n+1) := {f ∈ Birk(Pn) | Jac(f) = apn+1, p ∈ k[x0, . . . , xn], a ∈ k∗}

is a proper subgroup of Birk(Pn). In particular, Birk(P2) is not generated by σ1 and Autk(P2).

Proof. Let f ∈ Birk(Pn) be given by

f : [x0 : · · · : xn] 799K [f0(x0, . . . , xn) : · · · : fn(x0, . . . , xn)]

for some f0, . . . , fn ∈ k[x0, . . . , xn] homogenous without common factors. We define the
Jacobian of f to be

Jac(f) := det

(
∂fi
∂xj

)n+1

i,j=1

∈ k[x0, . . . , xn]

For the composition of two elements f, g ∈ Birk(P2), we get

Jac(fg) =
Jac(f)(g0, . . . , gn) · Jac(g)

hn+1
,
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where h is the largest factor of f0(g0, . . . , gn), . . . , fn(g0, . . . , gn) [BlaHed2014, Lemma 2.3].
If Jac(f) = apn+1 and Jac(g) = bqn+1 for some p, q ∈ k[x0, . . . , xn] and a, b ∈ k∗, then

Jac(fg) =
apn+1(g0, . . . , gn) · bqn+1

hn+1
= ab

(
p(g0, . . . , gn) · q

h

)n+1

∈ k[x0, . . . , xn]

and hence fg ∈ Birk(Pn)(n+1). Similarly, one shows that if f ∈ Birk(Pn)(n+1), then f−1 ∈
Birk(Pn)(n+1). The group Birk(Pn)(n+1) is a proper subgroup of Birk(Pn) because by [BlaHed2014,
Corollary 2.4], the Jacobian of the standard Cremona involution σ is

Jac(σ) = (−1)nn

n∏

i=0

(xi)
n−1,

which is not a (n + 1)-th power of a polynomial. The quadratic transformation σ1 has
Jacobian Jac(σ1) = −2y3, hence σ1 ∈ Birk(P2)(3). Further, the Jacobian of any element in
Autk(Pn) is a non-zero constant, hence Autk(Pn) ⊂ Birk(Pn)(n+1).

II.4.2 Standard quintic transformations

For k = R, the group BirR(P2) is generated by AutR(P2), σ3, σ
′
3 and the family of stan-

dard quintic transformations (Theorem II.1.10, see Definition II.1.11). Therefore, we have
to study the image of linear systems of transformations by standard quintic transforma-
tions.

Lemma II.4.6. Let θ, f ∈ Birk(P2) be a standard quintic transformation and a transformation of
degree d respectively. Let p1, p̄1, p2, p̄2, p3, p̄3 be the base-points of θ and q1, . . . , q̄3 the base-points
of θ−1. Define

ε = 2mq1(Λf ) + 2mq2(Λf ) + 2mq3(Λf ).

Then
deg(fθ) = 5d− 2ε, mpi(Λfθ) = 2d− ε+mqi(Λf )

and m(θ−1)•(r)(Λfθ) = mr(Λf ) if r is not a base-point of θ−1.

Proof. Recall that mq̄i(Λθ−1) = mqi(Λθ−1) = 2 and mqi(Λf ) = mq̄i(Λf ) for any i = 1, 2, 3.
Then the formula for deg(fθ) follows from Lemma I.3.4.

Lemma I.3.4 also states that any base-point of fθ is contained in Base(θ)∪(θ−1)•(Base(f)\
Base(θ−1)) ⊂ B(P2), and if p ∈ Base(Λfθ) \ Base(θ), then mp(Λfθ) = m(θ−1)•(p)(Λf ).

For i = 1, 2, let ηi : Xi → P2 respectively be the blow-ups of the points p1, . . . , p̄3 and
q1, . . . , q̄3. By definition of the standard quintic transformation, there exists an isomor-
phism α : X1 → X2 such that the following diagram is commutative

X1

η1
��

α
'
// X2

η2
��

P2 θ // P2

If p = pi ∈ Base(θ), then p is the image by θ−1 of the conic Cqi ⊂ P2 passing through all
of q1, . . . , q̄3 except through qi (see Definition II.1.11). Let c ∈ Λf be a general element.
As η1α contracts only Cqi onto p, the multiplicity of the general element θ−1(c) ∈ Λfθ is
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exactly
mp(fθ) = C̃qi

η2 · c̃η2 = 2 deg(f)− ε+mqi(Λf ).

It is no surprise that the formulae for composing with a standard quintic transfor-
mation look so similar to the ones for composing with a quadratic transformation. By
Lemma II.4.1 there exist quadratic transformations τ, τ ′ ∈ BirC(P2) with base-points
p1, p̄1, p2 and q1, q̄1, q2 respectively. Denote by r1, r2, r3 and s1, s2, s3 the base-points of
their respective inverse and consider the following commutative diagram, where the
points are the base-point of the corresponding map

P2

τ

[p1,p̄1,p2]

[r1,r2,r3] ��

θ[p1,...,p̄3] [q1,...,q̄3] // P2

τ ′
[q1,q̄1,q2]

[s1,s2,s3]��
P2 τ ′θτ−1

// P2

Using the formula for degree and multiplicity in Lemmata I.3.4 and II.4.2, we get deg(θτ−1) =

4 and has base-points q1, q̄1, q2 of multiplicity 2 and q̄2, q3, q̄3 of multiplicity 1. Then, by
using the same formulae, deg(τ ′(θτ−1)) = 2 with base-points τ•(q̄2), τ•(q3), τ•(q̄3).

Over k = R this is not possible, because by the construction of the abelianisation
ϕ : BirR(P2)→⊕

R Z/2Z (see Chapter IV, §3.2), the standard quintic transformations are
sent onto generators of

⊕
R Z/2Z, whereas all quadratic maps are in the kernel of ϕ.

It is possible to compute the elements of J◦ in an explicit way, although, of course,
the calculations get complicated very fast. What follows now is a manual at whose end
are the formulas needed for the explicit calculation.

Definition II.4.7. Let π : X → P1 be a real conic bundle. We denote by

BirR(X,π) = {f ∈ BirR(X) | ∃α ∈ PGL2(R) such that πf = απ}

the group of real birational transformations of X that respect the conic bundle structure.

We fix p1 = [1 : i : 0], p2 = [0 : 1 : i]. Let X5 → P2 be the blow-up of p1, p̄1, p2, p̄2,
which is the real conic bundle π̃◦ : X5 → P1, whose fibres are the strict transforms of
the conics passing through p1, p̄1, p2, p̄2. Via this blow-up, J◦ is conjugate to BirR(X5, π̃◦).
The real conic bundle π̃◦ : X5 → P1 is not minimal because the strict transforms of the
conic Lp1,p̄1 ∪Lp2,p̄2 is a singular fibre with two real components. Contracting one of these
components, we obtain the minimal real conic bundle π̃◦ : X6 → P1, the surface X6 being
a del Pezzo surface of degree 6. Via this morphism, J◦ is conjugate to BirR(X6, π̃◦). The
conic bundle X6 is in fact the blow-up of the sphere Q3,1 = {[w : x : y : z] ∈ P3 | w2 =

x2 + y2 + z2} in a pair of non-real conjugate points p, p̄, as indicated in Figure II.2.
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Figure II.2: The real conic bundle
π̃◦ : X6 → P1 obtained by blowing up
p, p̄ ∈ Q3,1.
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Figure II.3: The map ε : X6 → P1 × P1.

The real surface Q3,1 is isomorphic to P1 × P1 endowed with the anti-holomorphic invo-
lution

σS : ([u0 : u1], [v0 : v1]) 7→ ([v̄0 : v̄1], [ū0 : ū1]).

Lemma II.4.8 ([RobZim2016, Definition 4.1]).

1. The real conic bundle X6 is isomorphic to

X6 ' ({([x0 : x1 : x2], [y0 : y1 : y2]) ∈ P2 × P2 | x0y0 = x1y1 = x2y2}, σX6)

where σX6 : ([x0 : x1 : x2], [y0 : y1 : y2]) 7→ ([ȳ1 : ȳ0 : ȳ2], [x̄1 : x̄0 : x̄2]) is the
anti-holomorphic involution inherited from Q3,1.

2. The morphism δ : (X6, σX6)→ (P1 × P1, σS),

([x0 : x1 : x2], [y0 : y1 : x2])
δ7→ ([x0 : x2], [x2 : x1]) = ([y2 : y0], [y1 : y2])

([u0v0 : u1v1 : u1v0], [u1v1 : u0v0 : u0v1]
δ−1

L99 7 ([u0 : u1], [v0 : v1])

is the blow-up of the two non-real points p = ([0 : 1], [1 : 0]), p̄ = ([1 : 0], [0 : 1]) on
(P1 × P1, σS).

Definition II.4.9 (Descending to a non-real surface). Contracting the (−1)-curves fp̄ and
fp on X6 indicated in Figure II.2 yields a non-real birational map ε : X6 → P1 × P1

([x0 : x1 : x2], [y0 : y1 : y2])
ε7→ ([x0 : x1], [x2 : x0]) = ([y1 : y0], [y0 : y2])

([u0v1 : u1v1 : u0v0], [u1v0 : u0v0 : u1v1])
ε−1

L997 ([u0 : u1], [v0 : v1])

which respects the conic bundle structure of either surface (cf. [RobZim2016, Definition
4.4]). The two contracted components are contracted onto ([0 : 1], [1 : 0]) and ([1 : 0], [0 :

1]), as indicated in Figure II.3. The anti-holomorphic involution σX6 on X6 descends via
ε to the rational involution

σC : ([u0 : u1], [v0 : v1]) 799K ([ū0 : ū1], [ū1v̄1 : ū0v̄0]).
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Here, on (P1 × P1, σC) it is rather straight forward to do any calculations. Then, con-
jugating with εδ−1, we can get explicit formulas on the sphere (P1 × P1, σS).

X6

δ
�� ε ((

(P1 × P1, σS)
εδ−1

// (P1 × P1, σC)

More explicitly:

Manual II.4.10 (Computation of elements of J◦).
• Pick an element of J◦

• Compute its explicit form on (P1 × P1, σC)

• Conjugate with εδ−1 : (P1 × P1, σS) 99K (P1 × P1, σC), which is given by

([u0 : u1], [v0 : v1])
εδ−1

799K ([u0v0 : u1v1], [u1 : u0])

([v1 : v0], [u0v0 : u1v1])
δε−1

L99 7 ([u0 : u1], [v0 : v1])

to obtain a real birational transformation of the real surface (P1 × P1, σS) ' Q3,1.

The following question was asked by I. CHELTSOV during one of my talks about the
real plane Cremona group.

Question: Is the real plane Cremona group generated by AutR(P2) and involutions,
just like the complex plane Cremona group is generated by AutR(P2) and involutions?

The answer is yes and given in Corollary II.4.12.

Lemma II.4.11. If a standard quintic involution induces the identity map on P1, it is conjugate
to an involution of the sphere (P1 × P1, σS) of the form

([x0 : x1], [y0 : y1]) 799K
([x0 (µx1y0 −A(x0y0, x1y1)) : x1 (A(x0y0, x1y1) + λx0y1)], [y0 (A(x0y0, x1y1) + λx0y1) : y1 (µx1y0 −A(x0y0, x1y1))])

where A ∈ C[u, v] is linear homogeneous and |λ| = |µ|, Ā = − µ̄
λA.

Proof. As explained above, we can see a standard quintic transformation as elementary
link θ of the real surface X6 (see Definition II.4.8). By Definition II.1.11, the pair of non-
real conjugate points that is blown up by the link is not contained in any of the (−1)-
curves of X6. The link θ descends to a link θ′ of the surface (P1 × P1, σC) preserving
the fibration of the projection onto the first component, and its base-points q, q̄ are not
contained in any of the lines x0x1y0y1 = 0. [Zim2015, Lemma 3.7] states that a standard
quintic transformation in J◦ induces the identity map or [x0 : x1] 7→ [x1 : x0] on P1.
Furthermore, the image of a fiber of the second projection is mapped by θ′ onto a curve
intersecting a general fibre of the second projection in one point. Therefore, θ′ is of the
form

θ′ : ([x0 : x1], [y0 : y1]) 799K ([xi : xj ], [A(x0, x1)y0 +B(x0, x1)y1 : C(x0, x1)y0 +D(x0, x1)y1])

where {i, j} = {0, 1} and A,B,C,D ∈ C[x0, x1] are homogeneous of degree 1. We focus
on the case (i, j) = (0, 1). The property θ̄ = Id2 imposes that A2 = D2 and B(A + D) =
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C(A+D) = 0. The option B = C = 0 yields an automorphism, so θ′ is of one of the two
forms

θ′ : ([x0 : x1], [y0 : y1]) 799K ([x0 : x1], [B(x0, x1)y1 : C(x0, x1)y0])

θ′ : ([x0 : x1], [y0 : y1]) 799K ([x0 : x1], [A(x0, x1)y0 +B(x0, x1)y1 : C(x0, x1)y0 −A(x0, x1)y1]), ABC 6= 0.

Further, θ′ commutes with σC . For the first option, it imposes that q, q̄ are on the lines
x0x1y0y1 = 0, which contradicts our assumptions on θ′. For the second option, we get
B = λx1, C = µx0, |λ| = |µ| and Ā = − µ̄

λA.

θ′ : ([x0 : x1], [y0 : y1]) 799K ([x0 : x1], [Ay0 + λx1y1 : µx0y0 −Ay1]), |λ| = |µ|, Ā = − µ̄
λ
A.

Conjugating as instructed in Manual II.4.10, we get the involution

([x0 : x1], [y0 : y1]) 799K
([x0 (µx1y0 −A(x0y0, x1y1)) : x1 (A(x0y0, x1y1) + λx0y1)], [y0 (A(x0y0, x1y1) + λx0y1) : y1 (µx1y0 −A(x0y0, x1y1))])

of (P1 × P1, σS).

Corollary II.4.12. For each non-real conic C ⊂ P2 through p1 = [1 : i : 0], p̄1, p2 = [0 : 1 :

i], p̄2, there exists a standard quintic involution in J◦ with a base-point on C \ {p1, p̄1, p2, p̄2}.
In particular, BirR(P2) is generated by AutR(P2), the quadratic involutions

σ : [x : y : z] 799K [yz : xz : xy], σ′ : [x : y : z] 799K [xz : yz : x2 + y2]

and the set of standard quintic involutions.

Proof. Finding such a standard quintic involution is equivalent to finding for each non-
real a ∈ C∗ an involution as in Lemma II.4.11 that contracts the fibres of [a : 1], [ā : 1] of
the conic bundle π̃◦δ−1 : (P1 × P1, σS) 99K P1.

Let a ∈ C∗ non-real and A ∈ iR[u, v] linear and homogeneous such that A(a, 1) 6=
−A(a, 1). Plugging λ = µ̄ = −A(a,1)

a into the involution in Lemma II.4.11, we see that it
has base-points

q := ([a : 1], [−A(a, 1)ā : A(a, 1)]), q̄,

which is a pair of non-real conjugate points because of A(a, 1) 6= A(ā, 1). Furthermore,
the condition Aµ̄ + Āλ = 0 is satisfied, so we have obtained an involution of the conic
bundle π̃◦δ−1 : (P1 × P1, σS) 99K P1 that contracts the fibres of [a : 1], [ā : 1]. In particular,
for any non-real conic C ⊂ P2 through p1 = [1 : i : 0], p̄1, p2 = [0 : 1 : i], p2 there exists a
standard quintic involution in J◦ with a base-point on C \ {p1, p̄1, p2, p̄2}.

The group BirR(P2) is generated by AutR(P2), σ, σ′ and the family of standard quin-
tic transformations. Any quadratic transformation in BirR(P2) is contained in the group
generated by AutR(P2), σ and σ′. [Zim2015, Lemma 5.6] implies that any two standard
quintic transformations in J◦ that have the same image in BirR(P2)/〈〈AutR(P2)〉〉 can be
obtained form one another by composing with linear and/or quadratic transformations
from the left and the right. It follows that BirR(P2) is generated by AutR(P2), σ, σ′ and
the set of standard quintic involutions.
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The Cremona group of the plane is compactly presented

Susanna Zimmermann

Abstract

This article shows that the Cremona group of the plane is compactly presented. To do this,
we prove that it is a generalized amalgamated product of three of its algebraic subgroups
(automorphisms of the plane and Hirzebruch surfaces) divided by one relation.

1. Introduction

Let k be a field. The Cremona group Bir(Pn) is the group of birational transformations of
the projective space Pnk = Pn. It corresponds to a very intensively studied topic in algebraic
geometry (see [7, 10, 15] and references therein).

A birational transformation of Pn is simply a birational change of coordinates, so Bir(Pn)
is a natural generalization of Aut(Pn) = PGLn+1(k), and in many aspects the Cremona group
behaves like semi-simple groups, but also in many aspects it does not. Some analogies between
the Cremona groups and semi-simple groups have been presented by Serre in the 1000th
Bourbaki seminar [15], and by Cantat [6].

For k a local field and endowed with the Euclidean topology, constructed in [5], the Cremona
group becomes a Hausdorff topological group. For k = C and k = R, the restriction to its
subgroup PGLn+1(k) of linear coordinate changes of Pn is the Euclidean topology. This not
only opens the path to study the geometric properties of the Cremona group coming from the
Euclidean topology, but also presents the opportunity to study the Cremona group from the
point of view of geometric group theory and raises the question of analogies to Lie groups.

In this article, we will present one of these analogies, namely the property of being compactly
presented (see Definition 6.1).

Let us take a closer look at the Cremona group endowed with the Euclidean topology:
The group Bir(P1

C) = PGL2(C) is compactly presented by any neighbourhood of 1 because
it is a connected complex algebraic group (see, for example, [1, Satz 3.1]).

For n � 2 and k any local field, the group Bir(Pnk ) is not locally compact [5, Lemma 5.15],
though the topology is the inductive topology given by the family of closed sets Bir(Pn)�d =
{f ∈ Bir(Pn) | deg(f) � d}, which are locally compact [5, Proposition 2.10, Lemma 5.4].
Furthermore, any compact subset of Bir(Pn) is of bounded degree.
For n � 3, the group Bir(PnC) is not compactly generated [5, Lemma 5.17], hence not

compactly presented.
The group Bir(P2

C) is generated by Aut(P2
C) = PGL2(C) and the standard quadratic trans-

formation σ : [x : y : z] ���� [yz : xz : xy] (see [8]). Its subgroup Aut(P2
C), being a connected

complex algebraic group, is compactly presented by any neighbourhood of 1. Hence Bir(P2
C) is

compactly generated by any compact neighbourhood of 1 in Aut(P2
C) and σ.

The aim of this article is to show that, even though it is neither an algebraic group nor
locally compact, Bir(P2

C) is moreover compactly presented.
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Theorem A (Corollary 6.8). Endowed with the Euclidean topology, the Cremona group
Bir(P2

C) is compactly presented by {σ} ∪K, where K is any compact neighbourhood of 1 in
Aut(P2

C) and σ : [x : y : z] ���� [yz : xz : xy] is the standard involution of P2
C.

For algebraically closed fields, the generating sets and generating relations of Bir(P2)
have been studied thoroughly: The famous Noether–Castelnuovo theorem [8] states that if
k is algebraically closed, then Bir(P2) is generated by Aut(P2) and the standard quadratic
involution σ : [x : y : z] ���� [yz : xz : xy], that is, the generating set is the union of two complex
linear algebraic groups.

A presentation was given in [11], where the generating set consists of all quadratic
transformations of P2 and the generating relations are of the form q1q2q3 = 1, where qi are
quadratic transformations. Another presentation was given in [14], where it is shown that
Bir(P1 × P1) (isomorphic to Bir(P2)) is the amalgamated product of Aut(P1 × P1) and the
de Jonquières group of birational maps of P1 × P1 preserving the first projection along their
intersection modulo one relation. In [4], a similar result is presented; the group Bir(P2) is the
amalgamated product of Aut(P2) and the de Jonquières group J[1:0:0] of birational maps of P2

preserving the pencil of lines through [1 : 0 : 0] along their intersection modulo one relation.
Since neither Aut(P2) = PGL3(k) nor the set of quadratic transformations nor the de

Jonquières group are compact in the Euclidean topology, these presentations yield no compact
presentation. However, all three presentations yield bounded presentations (the length of the
generating relations are universally bounded).

In [18], using [14], a presentation of Bir(P2) is given by the generalized amalgamated product
of Aut(P2), Aut(P1 × P1) and J[0:1:0] (as subgroups of Bir(P2)) along their pairwise intersection,
where Aut(P1 × P1) is viewed as a subgroup of Bir(P2) via a birational map P2 ��� P1 × P1

given by the pencils of lines through [0 : 1 : 0] and [1 : 0 : 0]. Again, since J[0:1:0] is not compact,
this does not yield a compact but only a bounded presentation, but it gives rise to the following
idea, which is the key step in the proof of Theorem A.

Theorem B (Theorem 5.5). Let k be algebraically closed. Then the Cremona group
Bir(P2) is isomorphic to the amalgamated product of Aut(P2), Aut(F2), Aut(P1 × P1) (as
subgroups of Bir(P2)) along their pairwise intersection in Bir(P2) modulo the relation τ13στ13σ,
where τ13 ∈ Aut(P2) is given by τ13 : [x : y : z] �→ [z : y : x].

Here the inclusion of Aut(P1 × P1) into Bir(P2) is the same as before, F2 is the second
Hirzebruch surface and the inclusion of Aut(F2) into Bir(P2) is given by a birational map P2 ���
F2 given by the system of lines through [1 : 0 : 0], and the point infinitely near corresponding
to the tangent direction {y = 0}.

The method used to prove Theorem B is, like in [4, 14], to study linear systems and their
base-points. The difference here is that our maps have bounded degree. This rigidifies the
situation and changes the possibilities for simplifications. The proof of Theorem B does not
use [18].

For k = C, the three groups Aut(P2), Aut(F2), Aut(P1 × P1) are locally compact algebraic
groups. Using this and Theorem B, we prove Theorem A.
The plan of the article is as follows:
In Sections 2 and 3, we give basic definitions and results on Aut(P1 × P1) and Aut(F2).

Section 4 is devoted to relations in the generalized amalgamated product of Aut(P2), Aut(F0),
Aut(F2) modulo the relation τ13στ13σ. These are the backbone of the proof of Theorem B,
which will be given in Section 5. In Section 6, we visit some facts about compactly presented
groups and then finally prove Theorem A.

In Sections 2–5, we work over any algebraically closed field k and Section 6 restricts
to k = C.
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2. Description of Aut(P1 × P1) and Aut(F2) inside the Cremona group

This section is devoted to the description of the subgroups Aut(P1 × P1) and Aut(F2) of
Bir(P2).
Remember that the nth Hirzebruch surface Fn, n ∈ N, is given by

Fn = {([x : y : z], [u : v]) ∈ P2 × P1 | yvn = zun}.

Observe that F0 = P1 × P1 and that F1 is isomorphic to the blow-up of one point in P2.
Consider the birational maps ϕ0 : P2 ��� F0 and ϕ2 : P2 ��� F2 given as follows: The map

ϕ0 is given by the blow-up of the points [1 : 0 : 0] and [0 : 1 : 0] followed by the contraction of
the line passing through them. The map ϕ2 is given by the blow-up of [1 : 0 : 0] and the point
infinitely near [1 : 0 : 0] lying on the strict transform of {y = 0}, followed by the contraction
of the strict transform of {y = 0}. The birational maps ϕ0 and ϕ2 are only defined up to
automorphism of F0 and F2. They induce homomorphisms of groups

Aut(F0) −→ Bir(P2), ψ �−→ ϕ−1
0 ψϕ0,

Aut(F2) −→ Bir(P2), ψ �−→ ϕ−1
2 ψϕ2

whose image is uniquely determined by the choice of points blown up in P2. We will denote
the image of Aut(Fi) also by Aut(Fi) for i = 0, 2 since no confusion occurs.

Remark 2.1 (and Notation). (i) We can check that

P2 ��� F0, [x : y : z] ���� ([x : z], [y : z])

with inverse ([u0 : u1], [v0 : v1]) ���� [u0v1 : v0u1 : u1v1], and

P2 ��� F2, [x : y : z] ���� ([xy : y2 : z2], [y : z])

with inverse ([u : v : w], [a : b]) ���� [ua : va : vb] are examples for ϕ0 and ϕ2.
(ii) For i = 0, 2, the map (ϕi)

−1 has exactly one base-point, which we denote by pi
(Figure 1).

(iii) The image of the linear system of lines of P2 by ϕi has a unique base-point, namely pi.
(iv) We denote by C1 the curve of self-intersection 0 in F0 which is contracted by (ϕ0)

−1

onto [1 : 0 : 0], and by C2 the curve of self-intersection 0 which is contracted onto [0 : 1 : 0].
Remark that p0 = ϕ0({z = 0}) and that {p0} = C1 ∩ C2.

(v) We denote by E the exceptional curve of self-intersection −2 in F2. It is contracted onto
[1 : 0 : 0] by (ϕ2)

−1. Denote by C the curve of self-intersection 0 in F2 which is contracted by
(ϕ2)

−1 onto the point infinitely near [1 : 0 : 0] corresponding to the tangent {y = 0}. Remark
that p2 = ϕ2({y = 0}) and p2 ∈ C \ E.

(vi) Let L ⊂ P2 be a general line. Then Cj · ϕ0(L) = 1, j = 1, 2, and C · ϕ2(L) = 1, E ·
ϕ2(L) = 0.

The following picture illustrates for i = 0, 2 the transformation (ϕi)
−1ψiϕi, where ψi is some

automorphism of Fi. At the same time it shows the blow-up diagram of (ϕi)
−1ψiϕi.

Consider the birational transformations of P2 given by

σ1 : [x : y : z] ���� [−xy + z2 : y2 : yz],

σ2 : [x : y : z] ���� [xy : z2 : yz],

σ3 : [x : y : z] ���� [yz : xz : xy].
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Figure 1. The transformation (ϕi)
−1ψiϕi for i = 0, 2.

They are three quadratic involutions of P2 with, respectively, exactly one, two and three
proper base-points in P2. The map σ3 is usually referred to as standard quadratic involution
of P2.
The map σ3 has base-points [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], the map σ2 has base-points

[1 : 0 : 0], [0 : 1 : 0] and the point p infinitely near [1 : 0 : 0] corresponding to the direction
{y = 0}, and the map σ1 has base-points [1 : 0 : 0], p, q, where q is a point infinitely near
p not contained in the intersection of the strict transform of the exceptional divisor of
[1 : 0 : 0].

Remark 2.2. For any quadratic map τ ∈ Bir(P2) we can find i = 1, 2, 3 and α, β ∈ Aut(P2)
such that α sends the base-points of τ onto the base-points of σi and β sends the base-points of
τ−1 onto the base-points of σi. We can then write τ = β−1σiα (see [2, Subsections 2.1 and 2.8]).
It follows that the linear system of τ is the image of the linear system of σi by α

−1, and that
τ and σi have the same amount of proper base-points in P2. Since σ1, σ2, σ3 have, respectively,
one, two and three proper base-points in P2, the amount of proper base-points of τ determines i.

The following is the description of the groups Aut(F0) and Aut(F2) as subgroups of Bir(P2)
given by the above inclusions:

Lemma 2.3. (i) For i = 0, 2, the group Ai := Aut(Fi) ∩Aut(P2) is the group of automor-
phisms of P2 fixing the set of base-points of ϕi, that is, the set {[1 : 0 : 0], [0 : 1 : 0]} if i = 0,
and the point [1 : 0 : 0] and the line {y = 0} if i = 2.
For each i ∈ {0, 2}, Ai corresponds via ϕi to the set of automorphisms of Fi that fix pi.

(ii) The set Aut(F0) \Aut(P2) consists of all elements of the form βσiα, where i = 2, 3 and
α, β ∈ Aut(F0) ∩Aut(P2).

(iii) The set A0 ∪ A0σ2A0 corresponds via ϕ0 to the set of automorphisms of F0, sending
p0 into C1 ∪ C2.

(iv) The set Aut(F2) \Aut(P2) consists of all elements of the form βσiα, where i = 1, 2 and
α, β ∈ Aut(F2) ∩Aut(P2).

(v) The set A2 ∪ A2σ1A2 corresponds via ϕ2 to the set of automorphisms of F2 that send
p2 into C.
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Proof. For i = 0, 2, let ψi be an automorphism of Fi and consider the following commutative
diagram

Fi
ψi �� Fi

(ϕi)
−1

���
�

�
�

P2
(ϕi)

−1ψiϕi �������������

ϕi

���
�

�
�

P2

(i) The map (ϕi)
−1ψiϕi is an automorphism if and only if it does not have any base-points,

which is equivalent to ψi preserving the union of the curves contracted by (ϕi)
−1 and fixing

the point pi blown up by (ϕi)
−1. This is equivalent to (ϕi)

−1ψiϕi being an automorphism
preserving the set of base-points of ϕi.
(ii)–(v) Let Δ be the linear system of lines in P2. We will determine the linear system

(ϕi)
−1ψiϕi(Δ). Note that (i) shows that (ϕi)

−1ψiϕi(Δ) = Δ if and only if ψi preserves pi and
the union of lines contracted by (ϕi)

−1, which is equivalent to ψi fixing pi.
Assume that ψi(pi) �= pi holds. From this, it follows that (ϕi)

−1ψiϕi has at least one and
at most three base-points, hence is a quadratic map. In particular, (ϕi)

−1ψiϕi(Δ) is a linear
system of conics.

(ii) and (iii) If i = 0, then we can check that σ2, σ3 are elements of Aut(F0). In fact, if we
take ϕ0 as in Remark 2.1(i), then they are given by the automorphisms ([u0 : u1], [v0 : v1]) ����
[u0v1 : v0u1 : u1v1] and ([u1 : v1], [u2 : v2]) ���� ([v1 : u1], [v2 : u2]), respectively. It follows that
the set A0σ2A0 ∪ A0σ3A0 is contained in Aut(F0).
A general element of ψ0ϕ0(Δ) intersects each Cj in exactly one point different from p0

(Remark 2.1(iii) and (vi)), which means that [1 : 0 : 0], [0 : 1 : 0] are base-points of the linear
system of conics (ϕ0)

−1ψ0ϕ0(Δ). The third base-point corresponds via ϕ0 to the point ψ0(p0).
In particular, it is infinitely near to [1 : 0 : 0] (respectively, [0 : 1 : 0]) if and only if ψ0(p0) ∈
C1 (respectively, ψ0(p0) ∈ C2). By Remark 2.2, we can write (ϕ0)

−1ψ0ϕ0 = βσjα for some
j = 2, 3 and α, β ∈ Aut(P2), where α, β−1, respectively, send the base-points of (ϕ0)

−1ψ0ϕ0,
(ϕ0)

−1(ψ0)
−1ϕ0 onto the base-points of σj . If j = 2, then it follows that α, β fix the set {[1 : 0 :

0], [0 : 1 : 0]}. If j = 3, then we have (βθ)σ3(θα) = βσ3α for any permutation θ of coordinates
x, y, z, hence we can assume that α fixes the set {[1 : 0 : 0], [0 : 1 : 0]} and it follows that α ∈ A0.
Since σ2, σ3 ∈ Aut(F0), it follows that β ∈ A0.
Note that (ϕ0)

−1ψ0ϕ0 has an infinitely near base-point if and only if ψ0(p0) ∈ (C1 ∪ C2) \
{p0}.
(iv) and (v) If i = 2, then we can check that σ1, σ2 ∈ Aut(F2). In fact, if we take

ϕ2 as in Remark 2.1(i), then they are given by the automorphisms ([u : v : w], [a : b]) �→
([−u+ w : v :w], [a : b]) and ([u : v : w], [a : b]) �→ ([u : w : v], [b : a]), respectively. It follows that
A2σ1A2 ∪ A2σ2A2 ⊂ Aut(F2).
A general element of ψ2ϕ2(Δ) does not intersect E and intersects C in exactly one point

different from p2 (Remark 2.1(iii) and (vi)). Therefore, [1 : 0 : 0], the point p infinitely near
to it corresponding to the tangent direction {y = 0} are base-points of the linear system
(ϕ2)

−1ψ2ϕ2(Δ). The third base-point corresponds via ϕ2 to the point ψ2(p2). In particular, it
is infinitely near to p if and only if ψ2(p2) ∈ C and it is a proper point of P2 otherwise. It follows
from Remark 2.2 that we can write (ϕ2)

−1ψ2ϕ2 = βσjα for j = 1, 2 and α, β ∈ Aut(P2) where
α, β−1, respectively, send the linear system of (ϕ2)

−1ψ2ϕ2, (ϕ2)
−1(ψ2)

−1ϕ2 onto the linear
system of σj . It follows that α, β fix [1 : 0 : 0], p, and hence α, β ∈ A2.

Note that (ϕ2)
−1ψ2ϕ2 has exactly one proper base-point in P2 if and only if ψ2 sends p2 into

C \ {p2}.

Lemma 2.3 allows us to present the following classical results and also describe a Zariski-open
set in each Aut(Fi), which will be useful in Section 6 when we prove that Bir(P2) is compactly
presented.
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Lemma 2.4. For i = 0, 2, let Ai := Aut(P2) ∩Aut(Fi).

(i) The groups Aut(F0) and Aut(F2) are linear algebraic subgroups of Bir(P2).
(ii) The group Aut(F0) has two irreducible components, namely the component Aut(F0)

0

containing 1 and τ12Aut(F0)
0, where τ12 ∈ Aut(F0) is given by τ12 : [x : y : z] �→ [y : x : z].

(iii) The group Aut(F2) is irreducible.
(iv) The set A0σ3A0 is a Zariski-open set of Aut(F0).
(v) The set A2σ2A2 is a Zariski-open set of Aut(F2).

Proof. (i)–(iii) are classical results, which, for example, can be found in [3, Proposition 2.2.6,
Théorème 2].

(iv) By Lemma 2.3, the set Aut(F0) \ (A0σ3A0) is the set of elements of Aut(F0) that send
the point p0 into the curve C1 ∪ C2 and is therefore closed.

(v) By Lemma 2.3, the set Aut(F2) \ (A2σ2A2) is the set of elements of Aut(F2) that fix the
curve C and is therefore closed.

Remark 2.5. The Noether–Castelnuovo theorem states that Bir(P2) is generated by
Aut(P2) and σ3 ([8], see also [2, Section 8]). Furthermore, we can write σ3 = τ12σ2τ12σ2
where τ12([x : y : z]) = ([y : x : z]), hence the group Bir(P2) is also generated by Aut(P2) and
σ2. Therefore, for any i = 0, 2, the group Bir(P2) is generated by its subgroups Aut(P2) and
Aut(Fi), and thus also generated by all three subgroups Aut(P2), Aut(F0) and Aut(F2).

Note that Lemma 2.3 in particular implies that all elements of Aut(F0) ∪Aut(F2) are linear
or quadratic.

Definition 2.6. For a set S, let FS be the free group generated by S.
For the set S := Aut(P2) ∪Aut(F0) ∪Aut(F2) ⊂ Bir(P2), define

G := FS

/
〈

fgh−1, if fg = h in Aut(P2)
fgh−1, if fg = h in Aut(F0)
fgh−1, if fg = h in Aut(F2)
τ13σ3τ13σ3

〉
,

where τ13 ∈ Aut(P2) is given by τ13 : [x : y : z] �→ [z : y : x].

Remark 2.7. The group G is isomorphic to the free product of the three groups
Aut(P2),Aut(F2),Aut(F2) amalgamated along all the pairwise intersections (generalized
amalgamated product of the three groups) modulo the relation τ13σ3 = σ3τ13.

A geometric approach to generalized amalgamated products can be found in [13, 16, 17].
The generalized amalgamated product

FS

/〈
fgh−1, if fg = h in Aut(P2)
fgh−1, if fg = h in Aut(F0)
fgh−1, if fg = h in Aut(F2)

〉

is in [17, Subsection 1.3] the colimit of the diagram

Aut(P2)

������������

������������

A0

��
��

��
��

�
A0 ∩ A2 A2

��
��

��
��

�

Aut(F0) Aut(F0) ∩Aut(F2) Aut(F2)
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Equivalently, it is the fundamental group of a 2-complex of groups. The vertices are Aut(P2),
Aut(F0), Aut(F2), the edges are their pairwise intersection and the 2-simplex is the group
Aut(P2) ∩Aut(F0) ∩Aut(F2) [13, Subsections 2.1 and 3.4, 16, 4.4].

Remark 2.8. By Remark 2.5, there exists a canonical surjective homomorphism of groups

π : G −→ Bir(P2)

and by definition of G a natural map

w : Aut(P2) ∪Aut(F0) ∪Aut(F2) −→ G

which sends an element to its corresponding word. Note that π ◦ w is the identity map.

3. Base-points, multiplicities, de Jonquières

The methods we use mainly consist of studying linear systems of P2 and their base-points.
In this section, we recall some definitions, notions and formulae which will be used almost
constantly in Section 4 and 5, which have the aim to prove Theorem B (Theorem 5.5).

Definition 3.1. A point over P2 is a point p ∈ S, where S := Sn+1
νn→ Sn−1

νn−1→ · · · ν1→
S0 := P2 is a sequence of blow-ups, and where we identify p ∈ S with pi ∈ Si if νi+1 · · · νn : S →
Si is a local isomorphism around p sending p to pi.
A point p ∈ S over P2 is proper if it is equivalent to a point p′ ∈ P2, and infinitely near

otherwise.

Definition 3.2. Let f ∈ Bir(P2) be a quadratic birational transformation, and call
p1, p2, p3 its base-points and q1, q2, q3 the base-points of f−1. We say that the base-points of
f are ordered consistently if the following holds: The base-points of f and of f−1 are ordered
such that the following conditions are satisfied.

(i) If p1, p2, p3 are proper points of P2, then all the lines through p1 (respectively, p2, p3)
are sent onto lines through q1 (respectively, q2, q3).

(ii) If p1, p2 are proper points of P2 and p3 is infinitely near to p1, then all the lines through
p1 (respectively, p2) are sent onto lines through q1 (respectively, q2).

(iii) If p1 is a proper point of P2, p2 infinitely near p1 and p3 infinitely near p2, then the
lines through p1 are sent onto lines through q1 and the exceptional curve associated to p3 is
sent onto the tangent associated to q2.

Remark 3.3. Writing down the blow-up diagram of the three quadratic involutions
σ1, σ2, σ3, we see that we can always order their base-points consistently (for example, for σ3 the
ordering p1 = q1 = [1 : 0 : 0], p2 = q2 = [0 : 1 : 0], p3 = q3 = [0 : 0 : 1] is consistent). Since any
quadratic birational transformation of P2 can be written βσiα for some suitable i ∈ {1, 2, 3},
α, β ∈ Aut(P2) (Remark 2.2), it is always possible to order its base-points consistently.
Throughout the article, we will always assume that the base-points of a quadratic

transformation of P2 are ordered consistently.

Let us remind the reader of the following formula: Let Δ be a linear system and f ∈ Bir(P2)
be a quadratic transformation with base-points p1, p2, p3, and q1, q2, q3 the base-points of f−1.
Let ai be the multiplicity of Δ in pi and bi be the multiplicity of f(Δ) in qi. If the base-points
of f are ordered consistently, then

deg(f(Δ)) = 2deg(Δ)− ε, bi = deg(Δ)− ε+ ai

for i = 1, 2, 3 and ε = a1 + a2 + a3 (see [2, Subsection 4.2]).
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Definition 3.4. We define

J := {f ∈ Bir(P2) : f preserves the pencil of lines through [1 : 0 : 0]}.

The elements of J are called de Jonquières transformations.
A linear system Δ of P2 of degree deg(Δ) = d and with base-points p1, . . . , pn of multiplicity

a1, . . . , an is called de Jonquières linear system if it has multiplicity d− 1 at [1 : 0 : 0] and
satisfies the conditions d2 − 1 =

∑n
i=1 a

2
i and 3(d− 1) =

∑n
i=1 ai.

We call a base-point of f a simple base-point if it is different from [1 : 0 : 0], and denote the
set of simple base-points by sBp(f).

Remark 3.5. (1) We have the following inclusions: Aut(F2) ⊂ J and Aut(F0)
0 ⊂ J ,

where Aut(F0)
0 is the connected component of Aut(F0) containing Id and which is

equal to (Aσ2A) ∪ (Aτ12σ2τ12A) ∪ (Aσ3A) ∪ A, where A = {α ∈ Aut(P2) ∩Aut(F2) | α([1 :
0 : 0]) = [1 : 0 : 0]} and τ12 ∈ Aut(P2) is given by τ12 : [x : y : z] �→ [y : x : z] (Lemma 2.4).

(2) Any element of f ∈ J\Aut(P2) of degree d has 2d− 1 base-points: the base-point [1 :
0 : 0] of multiplicity d− 1 and 2d− 2 other base-points of multiplicity one (this follows from
the conditions on the degree and multiplicities). Thus the definition of simple base-point of f
is quite natural. If f ∈ J is of degree 2, then it has exactly three base-points, all of multiplicity
one. Its simple base-points are just the ones different from [1 : 0 : 0].

(3) A de Jonquières linear system of P2 of degree d has 2d− 1 base-points and the
multiplicity at any base-point different from [1 : 0 : 0] is one. Such a point is called a simple
base-point of Δ. Observe that, for f ∈ J and Δ a de Jonquières linear system, f(Δ) is a de
Jonquières linear system, and the linear system of f is a de Jonquières linear system.

Lemma 3.6. For any quadratic de Jonquières transformation f ∈ Bir(P2) there exist
α1, α2 ∈ Aut(P2) ∩ J, τ ∈ {σ1, σ2, τ12σ2τ12, σ3} ⊂ Aut(F0) ∪Aut(F2), where τ12 ∈ Aut(P2) is
given by τ12 : [x : y : z] �→ [y : x : z], such that f = α2τα1.
In particular, (Aut(P2) ∪Aut(F0) ∪Aut(F2)) ∩ J generates J .

Proof. By Remark 2.1, we can write f = α2σiα1 for some α1, α2 ∈ Bir(P2) and i is
determined by the amount of proper base-points of f . Since f is de Jonquières, the point
[1 : 0 : 0] is a base-point of f .

If f has only one proper base-point in P2, then it has to be fixed by α1 and α2, which belong
thus to J . This gives the result.

Suppose that f has exactly two proper base-points, namely [1 : 0 : 0] and p. This implies that
σi = σ2, which has base-points [1 : 0 : 0], [0 : 1 : 0] and a third one, infinitely near [1 : 0 : 0].
The base-point of f which is not a proper point of P2 is either infinitely near [1 : 0 : 0] or p.
If it is infinitely near [1 : 0 : 0], then α1, α2 fix [1 : 0 : 0] and are therefore de Jonquières. If
it is infinitely near p, then α1 sends p onto [1 : 0 : 0] and [1 : 0 : 0] onto [0 : 1 : 0]. We write
α1 = τ12β1, α2 = β2τ12, for some β1, β2 ∈ Aut(P2), which means that β1 fixes [1 : 0 : 0], that
is, β1 ∈ J ∩Aut(P2) and f = β2(τ12σ2τ12)β1. Since f, β1, τ12σ2τ12 ∈ J , we have β2 ∈ J .
Suppose that f has three proper base-points. For any θ ∈ Aut(P2) that permutes the

coordinate x, y, z, we have θσ3θ = σ3. Therefore, we can assume that α1 ∈ J . Since σ3 is de
Jonquières, the map α2 has to be de Jonquières as well.
Since every element of J decomposes into quadratic elements of J (see [2, Theorem

8.4.3]), Lemma 3.6 implies that J is generated by (Aut(P2) ∪Aut(F0) ∪Aut(F2)) ∩ J
generates J .
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Figure 2. The points (σ3)
•(p) and σ3(p).

Remark 3.7. Suppose Δ is a de Jonquières linear system of degree d and f a quadratic de
Jonquières transformation. We can say the following about the degree of f(Δ): Let p1 = [1 : 0 :
0], p2, p3 be the base-points of f and ai be the multiplicity of Δ in pi. Then a1 = deg(Δ)− 1
and by the formula given above, we have

deg(f(Δ)) = 2d− (d− 1)− a2 − a3 = d+ 1− a2 − a3.

Since Δ has one base-point of multiplicity d− 1 and all the other base-points are of multiplicity
1, we know that, for i = 2, 3, ai is either zero or one. In fact, ai = 0 if pi is not a common base-
point of f and Δ, and ai = 1 if pi is a common base-point of f and Δ. Thus the formula
implies

deg(f(Δ)) =

⎧
⎪⎨
⎪⎩

d+ 1 if f and Δ have no common simple base-points,

d if f and Δ have exactly one common simple base-point,

d− 1 if f and Δ have exactly two common simple base-points.

Furthermore, if p is a simple base-point of Δ that is not a base-point of f , then f•(p) (see
definition below) is a simple base-point of f(Δ) [2, Subsection 4.1].

Definition 3.8. Let f ∈ Bir(P2) and p be a point over the domain P2 that is not a base-
point of f . Take a minimal resolution of f

S
ν2

���
��

��
��

ν1

����
��

��
�

P2
f ��������� P2

where ν1, ν2 are sequences of blow-ups. Let p′ ∈ S be a representative of p. We can see p′ as a
point over the range P2, and call it f•(p).

Let us look at an example to understand f•(p) and f(p):

Example 3.9. Consider the standard quadratic involution σ3 ∈ Bir(P2) and the point
p = [0 : 1 : 1], which is on the line {x = 0} contracted by σ3 onto the point [1 : 0 : 0], which
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means that σ3(p) = [1 : 0 : 0]. The line L = {y = z} passing through p and [1 : 0 : 0] is sent
by σ3 onto itself. By definition, (σ3)

•(p) is the point in the first neighbourhood of [1 : 0 : 0]
corresponding to the tangent direction {y = z}. In conclusion, σ3(p) is a proper point of P2,
whereas (σ3)

•(p) is not. The following picture (Figure 2) illustrates the situation.

Remark 3.10. Note that f• is a one-to-one correspondence between the sets

(P2 ∪ {infinitely near points}) \ {base-points of f} and

(P2 ∪ {infinitely near points}) \ {base-points of f−1}.

4. Basic relations in G

In this section, we present basic relations that hold in G and which will be the backbone of
the proof of Theorem A (Theorem 5.5). We prove relations for words in G of length three
using properties of the elements of Aut(F0), Aut(F2) and Aut(P2). (Lemmas 4.2–4.4.) They
will then be used in the next section to prove that there exists an injective map wJ : J → G
such that π ◦ wJ = Id (Lemma 5.1, Corollary 5.2), which will enable us to prove Theorem A
(Theorem 5.5) using the result that Bir(P2) is the amalgamated product of Aut(P2) and J
modulo one relation [4] (Theorem 5.3).

Lemmas 4.1 and 4.2 yield that words of length three in G whose image in Bir(P2) is linear
or quadratic behave like their images in Bir(P2). Lemmas 4.3 and 4.4 yield relations for words
of length three whose image in Bir(P2) is de Jonquières and of degree 3.

Define TAut(P2) = D � S3, where S3 ⊂ Aut(P2) is the image of the permutation matrices of
GL3 and D is the image of the three-dimensional torus. We can check that the group TAut(P2)
is normalized by σ3, and the automorphism of TAut(P2) given by the conjugation of σ3 will
be denoted by ι. Note that ι(α) = α for α ∈ S3 and ι(δ) = δ−1 for δ ∈ D.
As subgroup of Aut(P2), we can embed TAut(P2) (as a set) into G by the word map w.

Lemma 4.1 shows that in G the image of TAut(P2) is normalized by w(σ3):

Lemma 4.1. For any (δ, α) ∈ D � S3 the relation w(δα)w(σ3) = w(σ3)w(ι(δα)) holds in G.

Proof. Let τ12 : [x : y : z] �→ [y : x : z]. In Aut(F0), the relation τ12σ3τ12 = σ3 holds, hence
the relation w(τ12)w(σ3) = w(σ3)w(τ12) holds in G. By definition, w(τ13)w(σ3) = w(σ3)w(τ13)
is a relation in G, and τ13 and τ12 generate S3. Therefore, the relation w(α)w(σ3) =
w(σ3)w(α) = w(σ3)w(ι(α)) holds in G for any α ∈ S3.

Let δ ∈ D. The relation δσ3δ = σ3 holds in Aut(F0), hence w(δ)w(σ3) = w(σ3)w(δ
−1) =

w(σ3)w(ι(δ)) holds in G.

Using Lemma 4.1, we now show that, for f, g, h ∈ Aut(P2) ∪Aut(F0) ∪Aut(F2) and
deg(fgh) � 2, the word w(f)w(g)w(h) behaves like the composition fgh.

Lemma 4.2. Let g ∈ Aut(P2), h, f ∈ Aut(F0) ∪Aut(F2) such that deg(fgh) ∈ {1, 2}.
(i) If deg(fgh) = 1, then w(f)w(g)w(h) = w(fgh) in G.
(ii) If deg(fgh) = 2, then there exist α, β ∈ Aut(P2), g̃ ∈ Aut(F0) ∪Aut(F2) such that

w(f)w(g)w(h) = w(β)w(g̃)w(α) in G.
(iii) If deg(fgh) = 2 and f, g, h ∈ J, then α, β, g̃ can be chosen to be in J .

Proof. Suppose that f ∈ Aut(P2) or h ∈ Aut(P2). The first claim follows from the definition
of G. The second and third claim follow by putting β := fg or α = gh if deg(f) = 1 or
deg(h) = 1, respectively.
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Assume that h ∈ Aut(Fi)\Aut(P2) and f ∈ Aut(Fj)\Aut(P2). Since Aut(F0) is generated
by Aut(P2) ∩Aut(F0) and σ2, σ3 and Aut(F2) is generated by Aut(P2) ∩Aut(F2) and σ1, σ2
(Lemma 2.3), we can write f = β2σkα2 and h = β1σlα1 for some α1, β1 ∈ Aut(Fi) ∩Aut(P2),
α2, β2 ∈ Aut(Fj)Aut(P2) and k, l ∈ {1, 2, 3}. By replacing g with α2gβ1 in Aut(P2), we can
assume that α2 = β1 = Id, and hence f = β2σk and h = σlα1. It follows from Remark 2.2 that

the base-points of f are exactly the base-points of σk, (∗)
the base-points of h−1 are exactly the base-points of σl.

(i) Suppose that deg(fgh) = 1. Then f and (gh)−1 have exactly the same base-points, which
are, respectively, the base-points of σk and the image of the base-points of σl by g. In particular,
f , (gh)−1, and hence also σk, σl have the same amount of proper base-points in P2. Since σ1,
σ2, σ3 have exactly one, two and three proper base-points, it follows that σk = σl.

If k ∈ {1, 2}, then the equation σk = σl, the fact that f , (gh)−1 have the same base-points
and (∗) imply that g ∈ Aut(F2) ∩Aut(P2) and so f, g, h ∈ Aut(F2). The definition of G then
implies w(f)w(g)w(h) = w(fgh).

If k = 3, then the equation σk = σl, the fact that f , (gh)
−1 have the same base-points and (∗)

imply that g permutes the base-points of σ3. Lemma 4.1 states that w(g)w(σ3) = w(σ3)w(ι(g)).
We get

w(f)w(g)w(h) = w(β2σ3)w(g)w(σ3α1)

= w(β2)w(σ3)w(σ3)w(ι(g))w(α1)

= w(β2)w(ι(g))w(α1) = w(β2ι(g)α1)

= w(β2σ3gσ3α1) = w(fgh).

(ii) Suppose deg(fgh) = 2, that is, f and (gh)−1 have exactly two common base-points s, t,
at least one of them being proper. Assume that s is proper.

If t is infinitely near to s, (∗) implies that {k, l} ⊂ {1, 2}, that is, f, h ∈ Aut(F2). Then (∗)
and the fact that t is infinitely near s imply that s = [1 : 0 : 0] and that t lies on the strict
transform of {y = 0}. Then s, t are base-points of both h−1 and (gh)−1 and it follows that
g({s, t}) = {s, t}, thus g ∈ Aut(F2). It follows that in Aut(F2) (hence also in G)

w(f)w(g)w(h) = w(β2σk)w(g)w(σlα1) = w(β2)w(σkgσl)w(α1).

Remark that any map contained in Aut(F2) is de Jonquières (Remark 3.5), from which claim
(iii) follows for this subcase.

If s and t are both proper, (∗) implies that {k, l} ⊂ {2, 3}, that is, f, h ∈ Aut(F0). Then (∗)
yields that {s, t} ⊂ {[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]}. There exist α, β ∈ TAut(P2) such that

α({[1 : 0 : 0], [0 : 1 : 0]}) = g−1({s, t}), β({s, t}) = {[1 : 0 : 0], [0 : 1 : 0]}
βgα([1 : 0 : 0]) = [1 : 0 : 0], βgα([0 : 1 : 0]) = [0 : 1 : 0].

If k = 2, then we may choose β = Id. If l = 2, then we may choose α = Id. We get

w(f)w(g)w(h) = w(β2σk)w(β
−1)w(β)w(g)w(α)w(α−1)w(σlα1)

Lem 4.1
= w(β2ι(β

−1))w(σk)w(βgα)w(σl)w(ι(α
−1)α1)

= w(β2ι(β
−1))w(σkβgασl)w(ι(α)α1).

The claim follows with α = ι(α−1)α1, g̃ = σk(β̃gα̃)σl, β = β1ι(β
−1). It remains to prove claim

(iii) for this subcase: If f, g, h are de Jonquières, then g([1 : 0 : 0]) = [1 : 0 : 0] and [1 : 0 : 0] is
a common base-point of gf and h−1. Choosing α, β above such that they fix [1 : 0 : 0] (that
is, are de Jonquières), it follows that g̃ = βgα is de Jonquières. The maps f and h being de
Jonquières implies that α1, β2 are de Jonquières (Remark 3.5), hence ι(α−1)α1, β1ι(β

−1) and
g̃ are de Jonquières.
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The next two lemmata yield relations for words of length three whose image in Bir(P2) is of
degree 3.

Lemma 4.3. Let f ∈ (Aut(F0) ∪Aut(F2)) ∩ J be a quadratic transformation, α1, . . . , α4 ∈
Aut(P2) ∩ J such that

(i) f is a local isomorphism at the simple base-points q2, q3 of (α2σ3α1)
−1;

(ii) sBp(α4σ3α3) = {f(q2), f(q3)}.
Then

(i) the map (α4σ3α3)f(α2σ3α1) is quadratic de Jonquières;
(ii) sBp((α4σ3α3)f(α2σ3α1)) = ((α2σ3α1)

−1)•(sBp(f));
(iii) there exist β1, β3 ∈ Aut(P2) ∩ J and β2 ∈ {σ2, σ3, τ12σ2τ12} such that the following

equation holds in G:

w(α4)w(σ3)w(α3)w(f)w(α2)w(σ3)w(α1) = w(β3)w(β2)w(β1);

that is, the following diagram corresponds to a relation in G:

P2
f �������� P2

α4σ3α3

��	
	
	

P2

α2σ3α1

��	
	
	

β3β2β1

�������� P2

Proof. Define τ1 := α2σ3α1 and τ2 := α4σ3α2, and denote by p1 = [1 : 0 : 0], p2, p3 the
base-points of f and by p1, p̄2, p̄3 the base-points of its inverse (ordered consistently, see
Definition 3.2).

Since f is a local isomorphism at q2, q3, the map f−1 is a local isomorphism at f(q2), f(q3).
Hence there exist simple base-points pi, p̄i of f ,f

−1, respectively, either proper points of P2 or
infinitely near p1, which do not lie on the lines contracted by (τ1)

−1 and τ2. Up to order, we
can assume that pi = p2. Therefore, the points p̃2 := (τ−1

1 )•(p2) and p̂2 := (τ2)
•(p̄2) are proper

points of P2.
Observe that the map τ2fτ1 is de Jonquières of degree 2 having base-points p1, p̃2, p̃3 :=

(τ−1
1 )•(p3) and its inverse having base-points p1, p̂2, p̂3 := (τ2)

•(p̄3). Indeed, the map fτ1 is of
degree 3 with base-points p1, p̃2, p̃3, q̃2, q̃3, where q̃2, q̃3 are the simple base-points of τ1, and
its inverse having base-points p1, p4, p5, f(q2), f(q3). Thus τ2fτ1 is de Jonquières of degree 2
with base-points p1, p̃2, p̃3 and its inverse having base-points p1, p̂2, p̂3 (by the formula given in
Section 3).

Since τ2fτ1 has at least one simple proper base-point (namely p̃2), Lemmas 3.6 and 2.2 imply
that there exist β1, β2 ∈ Aut(P2) ∩ J and β2 ∈ {σ2, σ3, τ12σ2τ12} such that τ2fτ1 = β3β2β1.

It is left to prove that w(α4)w(σ3)w(α3)w(f)w(α2)w(σ3)w(α1) = w(β3)w(β2)w(β1) in G.
We will use Lemma 4.2, and for this we fill the diagram

P2
f �������� P2

τ2

��	
	
	

P2

τ1

��	
	
	

β3β2β1

�������� P2

with triangles corresponding to relations in G.
The map f is a local isomorphism at q2, q3, hence the three points p1, p2, q2 are not collinear.

Since moreover p1, q2 are both proper points of P2, there exists a quadratic map ρ ∈ Bir(P2) ∩ J
which has base-points p1, q2, p2. The maps ρτ1 and ρf

−1 are quadratic de Jonquières maps with
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base-points p1, q̃2, p̃2 and p1, p̄2, f(q2), respectively. It follows that also the map ρτ1(β3β2β1)
−1

is quadratic. The situation is summarized in the following diagram, where all the arrows are
quadratic maps and the points in the brackets are the simple base-points of the corresponding
quadratic map contained in J :

P2
f[p2,p3] [p̄2,p̄3] ���������������

ρ

[p2,q2]

		






 P2

[p̄2,f(q2)]



� � � � � � �

τ2

[f(q2),f(q3)]

��	
	
	
	
	
	
	

P2

P2

τ1

[q2,q3]

[q̃2,q̃3]

��	
	
	
	
	
	
	
[q̃2,p̃2]

��������� β3β2β1

[p̃2,p̃3] [p̂2,p̂3]
��������������� P2

��
 
 
 
 
 
 


Writing ρ = γ3γ2γ1 for some γ1, γ2, γ3 ∈ (Aut(P2) ∪Aut(F0) ∪Aut(F2)) ∩ J , only γ2 quadratic
(possible by Lemma 3.6), Lemma 4.2 implies that each triangle in the above diagram
corresponds to a relation in G, making the whole diagram correspond to a relation in G.

Lemma 4.4. Let f, h ∈ Aut(F0) ∪Aut(F2), g ∈ Aut(P2), f, g, h ∈ J, and let Δ be a de
Jonquières linear system. Assume that

deg(fgh) = 3, deg(fgh(Δ)) < deg(gh(Δ)), deg(Δ) � deg(gh(Δ))

and that (gh)(Δ) has a proper base-point different from [1 : 0 : 0]. Then there exist α1, . . . , α7 ∈
(Aut(P2) ∪Aut(F0) ∪Aut(F2)) ∩ J, α1, α3, α5, α7 ∈ Aut(P2), such that

(i) the following equation holds in G:

w(f)w(g)w(h) = w(α7) · · ·w(α1)

that is, the following diagram corresponds to a relation in G:

(gh)(Δ)

f

������������
(gh)−1

��         

Δ

α2α1

���
�

�
�

� fgh(Δ)

α1α2(Δ)
α5α4α3 ����������� α5 · · ·α1(Δ)

α7α6

��������

(ii) for i = 2, . . . , 7

deg(αi · · ·α1(Δ)) < deg((gh)(Δ)).

Proof. The equality deg(fgh) = 3 implies that f and (gh)−1 have exactly one common
base-point, namely p1 = [1 : 0 : 0]. Denote by sBp((gh)−1) = {p2, p3} and sBp(f) = {p4, p5}
the simple base-points of (gh)−1 and f, respectively, and write d = deg(gh(Δ)).
By assumption, gh(Δ) is a de Jonquières linear system that has a proper base-point s

different from p1. For any point r, let m(r) be the multiplicity of gh(Δ) in r, respectively. Then
m(p1) = d− 1 and m(s) = 1 (Remark 3.5), and Remark 3.7 implies that because deg(Δ) � d
and deg(fgh(Δ)) < d, we have (up to ordering of p2, p3)

m(p2) = 1, m(p3) � 1,

deg(fgh(Δ)) = d− 1, m(p4) = m(p5) = 1.
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We will now construct α1, . . . , α7.
Assume that s ∈ {p2, p3, p4, p5}. If s ∈ {p2, p3}, then we choose r ∈ {p4, p5}. If s ∈ {p4, p5},

then we choose r ∈ {pi : i = 2, 3 andm(pi) = 1}. We choose r to be infinitely near p1 or a proper
point (this is always possible). The points p1, s, r are not aligned, because a1 +m(s) +m(r) >
d, thus there exist ρ ∈ Bir(P2) quadratic de Jonquières with base-points p1, r, s. The following
commutative diagram, where the points in the brackets are the base-points of the corresponding
map, summarizes the situation:

gh(Δ)

ρ[p1,s,r]

��	
	
	

f

[p1,p4,p5]

���������
(gh)−1

[p1,p2,p3]

��� � � � � � �

Δ �������� ρgh(Δ) �������� fgh(Δ)

Using Remark 3.7, we obtain

deg(ρgh) = deg(fρ−1) = 2,

deg(ρgh(Δ)) = d− 1 < deg(gh(Δ)).

We write ρ = γρ̃δ, ρgh = α3α2α1, fρ−1 = α6α5α4, where δ, γ, α1, · · · , α6 ∈ (Aut(P2) ∪
Aut(F0) ∪Aut(F2)) ∩ J , only ρ̃, α2, α5 quadratic (Lemma 3.6). By Lemma 4.2, the above
diagram is generated by relations in G. Hence w(f)w(g)w(h) = w(α6) · · ·w(α1) in G.

Assume s /∈ {p2, p3, p4, p5}; we choose r1 ∈ {pi : i = 2, 3 and m(pi) = 1}, r2 ∈ {p4, p5} such
that r1 (respectively, r2) is either a proper point or infinitely near p1 (this is always
possible). For i = 1, 2, the points p1, s, ri are not collinear, because a1 +m(s) +m(ri) > d.
Thus there exist ρ1, ρ2 ∈ Bir(P2) quadratic de Jonquières with base-points p1, s, r1 and p1, s, r2,
respectively. The following commutative diagram, where the brackets are the base-points of the
corresponding map, summarizes the situation:

gh(Δ)

(gh)−1

[p1,p2,p3]

��� � � � � � � � � � � �

ρ1

[p1,s,r1]
�

�
�

���
�

�
�

�
ρ2

[p1,s,r2]

�
�

�

���
�

�
�

� f

[p1,p4,p5]

		�
�����������

Δ ����� ρ1gh(Δ) ����������� ρ2gh(Δ) ����� fgh(Δ)

Using Remark 3.7, we obtain

deg(ρ1gh) = deg(ρ2ρ
−1
1 ) = deg(fρ−1

2 ) = 2,

deg(ρ1gh(Δ)) = d− 1 < deg(gh(Δ)),

deg(ρ2gh(Δ)) = d− 1 < deg(gh(Δ)).

We write ρ1 = γ1ρ̃1β1, ρ2 = γ2ρ̃2β2, ρ1gh = α3α2α1, ρ2ρ
−1
1 = α6α5α4, fρ

−1
2 = α9α8α7 for

α1, . . . , α9, β1, β2, γ1, γ2, ρ̃1, ρ̃2 ∈ (Aut(P2) ∪Aut(F0) ∪Aut(F2)) ∩ J , only α2, α5, α8, ρ̃1, ρ̃2
quadratic (Lemma 3.6). Lemma 4.2 implies that all triangles of the above diagram are generated
by relations in G, and thus w(f)w(g)w(h) = w(α9) · · ·w(α1) in G. We obtain the maps αi in
the claim by merging neighbour automorphisms of P2 in the product α9 · · ·α1.

5. The Cremona group is isomorphic to G

In this section, we prove Theorem B (Theorem 5.5). The main tool will be Lemma 5.1, which
yields the existence of an injective map wJ : J → G such that π ◦ wJ = Id (Corollary 5.2)
and enables us to use the result (Theorem 5.3) of [4], that Bir(P2) is isomorphic to the
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amalgamated product of Aut(P2) and J along their intersection modulo one relation, for the
proof of Theorem B (Theorem 5.5).

Lemma 5.1. Let f1, . . . , fn ∈ (Aut(P2) ∪Aut(F0) ∪Aut(F2)) ∩ J such that fn · · · f1 = Id.
Then w(fn) · · ·w(f1) = Id in G.

Proof. We can write w(fn) · · ·w(f1) = w(αm+1)w(gm)w(αm) · · ·w(α2)w(g1)w(α1), where
αi ∈ Aut(P2) ∩ J and gi ∈ (Aut(F0) ∪Aut(F2)) ∩ J \Aut(P2) as follows: We put gj := fi if fi is
quadratic, αj := fi if fi is linear. Then we proceed by putting αj := αi+1αi (w(αj) = w(αi+1αi)
by Lemma 4.2). Proceeding like this, we will reach a word where no two consecutive letters
both have linear image in Bir(P2). We then insert αj = Id between any two consecutive letters
whose both image in Bir(P2) is quadratic.

We denote by Δ0 the linear system of lines in P2 and define, for i = 1, . . . ,m,

Δi := (αigi−1 · · · g1α1)(Δ0)

which is the linear system of the map (αigi−1 · · · g1α1)
−1. We define di := deg(Δi), which is

also the degree of the map (αigi−1 · · · g1α1)
−1. Furthermore, we define

D := max{di | i = 1, . . . ,m}, N := max{i | di = D}.
If D = 1, then it follows that m = 1 and α1 = Id. We can therefore assume that D > 1 and
prove the result by induction over the lexicographically ordered pair (D,N).

The induction step consists of finding α̃k+1, . . . , α̃1 ∈ Aut(P2) ∩ J and g̃1, . . . , g̃k ∈
(Aut(F0) ∪Aut(F2)) ∩ J \Aut(P2) such that

w(gN+1)w(αN+1)w(gN ) = w(α̃k+1)w(g̃k) · · ·w(g̃1)w(α̃1)

and such that the pair (D̃, Ñ) associated to the product

αm+1gm · · · gN+2(αN+2α̃k+1)g̃k · · · g̃1(α̃1αN )gN−1 · · · g1α1

is strictly smaller than (D,N).
We look at three cases, depending on the degree of gN+1αN+1gN , and if the degree is 3, we

look at two subcases, the ‘good case’ and the ‘bad case’.
If deg(gN+1αN+1gN ) = 1, then define Aut(P2) � α̃ := gN+1αN+1gN . It follows from

Lemma 4.2 (1) that w(gN+1)w(αN+1)w(gN ) = w(α̃) in G. We replace gN+1αN+1gN by α̃,
which decreases (D,N).

If deg(gN+1αN+1gN ) = 2, then it follows from Lemma 4.2 (2),(3) that there exist α̃, β̃ ∈
Aut(P2) ∩ J and g̃ ∈ (Aut(F0) ∪Aut(F2)) ∩ J \Aut(P2) such that w(gN+1)w(αN+1)w(gN ) =
w(β̃)w(g̃)w(α̃). We replace gN+1αN+1gN by β̃g̃α̃, which decreases (D,N).

Finally, suppose that deg(gN+1αN+1gN ) = 3. By definition of N , we have

dN−1 � D, dN = D, dN+1 < D.

‘Good case’: If ΔN has a proper simple base-point, then it follows from Lemma 4.4 (with
Δ = ΔN−1) that there exist α̃1, . . . , α̃4 ∈ Aut(P2) ∩ J , g̃1, g̃2, g̃3 ∈ (Aut(F0) ∪Aut(F2)) ∩ J
such that

w(gN+1)w(αN+1)w(gN ) = w(α̃4)w(g̃3) · · ·w(α̃2)w(g̃1)w(α̃1) in G

and

deg((α̃i+1g̃i · · · g1α̃1)(ΔN−1)) < deg(ΔN ) = D

for i = 1, . . . , 4. Replacing gN+1αN+1gN by α̃4g̃3 · · · g̃1α̃1 decreases (D,N).
‘Bad case’: Assume that ΔN has no simple proper base-points. Without changing the pair

(D,N), we will replace the word w(αm+1)w(gm) · · ·w(g1)w(α1) in G by an equivalent word
w(α̂m+1)w(ĝm) · · ·w(ĝ)w(α̂1) satisfying the ‘good case’.
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Choose two general points p0, q0 in P2 and write p1 = (α2g1α1)(p0), q1 = (α2g1α1)(q0)
and pi = (αi+1gi)(pi−1), qi = (αi+1gi)(qi−1) for i = 2, . . . ,m. Note that pm = p0 and qm = q0
because αm+1gm · · · g1α1 = Id.

For i = 0, . . . ,m, we denote by βi ∈ Aut(P2) an element sending [1 : 0 : 0], [0 : 1 : 0], [0 :
0 : 1], respectively, onto [1 : 0 : 0], pi, qi (this is possible, because we took p0, q0 general), and
write τi := βiσ3(βi)

−1, which is a quadratic de Jonquières involution having base-points [1 : 0 :
0], pi, qi. We choose βm = β0 and then have τm = τ0.

By Lemma 4.3, the maps τ1(α2g1α1)τ
−1
0 , τi(giαi)τ

−1
i−1 are quadratic de Jonquières and there

exist γi, δi ∈ Aut(P2) ∩ J , ĝi ∈ {σ2, σ3, τ12σ2τ12} such that

w(β1)w(σ3)w(β
−1
1 )w(α2)w(g1)w(α1)w(β0)w(σ3)w(β

−1
0 ) = w(δ1)w(ĝ1)w(γ1),

w(βi)w(σ3)w(β
−1
i )w(αi+1)w(gi)w(βi−1)w(σ3)w(β

−1
i−1) = w(δi)w(ĝi)w(γi)

for i = 1, . . . ,m. We get the following diagram

α2g1α1��

τ0

��

α3g2 ��

τ1

��
τ2

��

· · · αi+1gi ��

τi−1

��
τi

��

· · · αm+1gm��

τm−1

��
τm

��
δ1ĝ1γ1

��
δ2ĝ2γ2

�� · · ·
δiĝiγi

�� · · ·
δmĝmγm

��

where each square in the diagram corresponds to a relation in G, making the whole diagram
correspond to a relation in G. Therefore, writing α̃i := δiγi−1 for i = 2, . . . ,m, α̃m+1 := δm,
α̃1 := γ1, the equality

w(αm+1)w(gm) · · ·w(g1)w(α1) = w(α̂m+1)w(ĝm)w(α̂m) · · ·w(α̂2)w(ĝ1)w(α̂1)

holds in G. We replace αm+1gm · · · g1α1 by α̂m+1ĝmα̂m · · · α̂2ĝ1α̂1.
For i = 1, . . . ,m, call Δ̂i := (α̂iĝi−1 · · · ĝ1α̂1)(Δ0), which is the linear system of the

map (α̂iĝi−1 · · · ĝ1α̂1)
−1, and denote by d̂i its degree. Using Remark 3.7, we get

deg(α̂iĝi−1 · · · ĝ1α̂1) = deg(αigi−1 · · · g1α1) for each i, thus d̂i = di for i = 1, . . . ,m. Therefore,
the replacement does not change the pair (D,N), that is, (D̂, N̂) = (D,N).
It remains to show that α̂n+1ĝn · · · ĝ1α̂1 satisfies the ‘good case’, that is, that Δ̂N has a

simple proper base-point.
Since dN+1 < D, it follows from Remark 3.7 that dN+1 = D − 1 and that all the base-

points of gN+1 are base-points of ΔN . Since the base-points of τN are general, it follows from
Remark 3.7 that each point in (τN )•(sBp(gN )) is a base-point of Δ̂N . Lemma 4.3 states that
(τN )•(sBp(gN )) = sBp(ĝN ), and ĝN ∈ {σ2, σ3, τ12σ2τ12} has a simple proper base-point. Hence
Δ̂N has a simple proper base-point.

Corollary 5.2. Let α1, . . . , αn, β1, . . . , βm ∈ Aut(P2) ∪Aut(F0) ∪Aut(F2) de Jonquières
such that αn · · ·α1 = βm · · ·β1. Then

w(αn) · · ·w(α1) = w(βm) · · ·w(β1).
In particular, there exists a homomorphism wJ : J → G which sends αn · · ·α1 onto
w(αn) · · ·w(α1) and π ◦ wJ = Id, that is, wJ is injective.

Proof. The claim follows from applying Lemma 5.1 to β−1
1 · · ·β−1

m αn · · ·α1.

Proposition 5.3 [4]. The group Bir(P2) is isomorphic to

(Aut(P2) ∗Aut(P2)∩J J)/〈τ12σ3τ12σ3〉,
the amalgamated product of Aut(P2) and J along their intersection and divided by the relation
τ12σ3 = σ3τ12, where τ12([x : y : z]) = [y : x : z].
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Remark 5.4. In Bir(P2), the three relations

(i) τ12σ3τ12σ3 = Id;
(ii) τ13σ3τ13σ3 = Id;
(iii) τ23σ3τ23σ3 = Id

hold. Choosing two of them, the remaining relation of the three is generated by the chosen
two. Relation (iii) is a relation holding in J . Thus it suffices to impose relation (i) or (ii) in
Theorem 5.3.

Since τ12, σ3 ∈ Aut(F0), relation (i) holds in Aut(F0), so in particular it holds in the
generalized amalgamated product of Aut(P2),Aut(F0),Aut(F2) along all their pairwise inter-
sections. It is a priori not clear whether or not one of the relations (ii), (iii) holds in
the generalized amalgamated product of Aut(P2),Aut(F0),Aut(F2) along all their pairwise
intersections because it is not clear whether or not J embeds into it or not. Therefore, we need
to impose one of the relations (ii) or (iii).

Theorem 5.5 (Theorem B). The group Bir(P2) is isomorphic to G, the generalized
amalgamated product of Aut(P2), Aut(F0), Aut(F2) along all the pairwise intersections modulo
the relation τ13σ3τ13σ3, where τ13([x : y : z]) = [z : y : x].

Proof. By Corollary 5.2, there exists wJ : J → G such that π ◦ wJ = Id, and w and wJ
coincide on Aut(P2) ∩ J . Thus the following diagram commutes:

G J
wJ��

Aut(P2)

w

��

Aut(P2) ∩ J� �
ι1��

��

ι2

��

where ι, ι1 are the canonical inclusion maps. The universal property of the amalgamated
product implies the existence of a unique homomorphism ϕ : Aut(P2) ∗Aut(P2)∩J J → G such
that the following diagram commutes:

G

Aut(P2) ∗Aut(P2)∩J J

∃!
ϕ

���������������

J��

wJ

��

Aut(P2)

��
w

��

Aut(P2) ∩ J� �ι��
��

ι

��

.

By Proposition 5.3, Bir(P2) is isomorphic to Aut(P2) ∗Aut(P2)∩J J modulo the relation σ3τ12 =
τ12σ3, where τ12([x : y : z]) = [y : x : z]. Since τ12, σ3 ∈ Aut(F0), the relation σ3τ12 = τ12σ3
also holds in Aut(F0), and hence in G. Thus, the homomorphism ϕ induces a homomor-
phism ϕ̄ : (Aut(P2) ∗Aut(P2)∩J J)/〈σ3τ12σ3τ12〉 −→ G. By construction, ϕ̄ and the canonical
homomorphism π : G → Bir(P2) are inverse to each other.

6. The Cremona group is compactly presented

In this section, we restrict to case k = C and show that Bir(P2) is compactly presented using
Theorem 5.5 (Theorem B).
Being compactly presented is a notion reserved for Hausdorff topological groups and we

consider Bir(P2) endowed with the Euclidean topology as constructed in [5, Section 5], which
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makes Bir(P2) a Hausdorff topological group [5, Theorem 3], which is not locally compact
[5, Lemma 5.15].

Definition 6.1. Let G be a group.

(i) A presentation 〈S | R〉 of G is a triple made up of a set S, an epimorphism π : FS � G
of the free group on S onto G, a subset R of FS generating ker(π) as a normal subgroup. The
relations of the presentation are the elements of ker(π) and the elements of R the relators (or
generating relations) of the presentation.

(ii) A bounded presentation of G is a presentation 〈S | R〉 of G with R a set of relators of
bounded length.

(iii) Let G be a Hausdorff topological group. A compact presentation of G is a presentation
〈S | R〉 of G with S a compact subset of G and R a set of relators of bounded length. We say
that G is compactly presented by S if G is given by a compact presentation 〈S | R〉. We also
say that G is compactly presented if G is compactly presented by some subset.

Lemma 6.2. (i) Let G be a group and S1, S2 ⊂ G be generating subsets. If Sm1 ⊂ Sn2 ⊂ Sm
′

1

for some m,n,m′ ∈ N, then G is boundedly presented by S1 if and only if it is boundedly
presented by S2.

(ii) Any connected topological group is generated by any neighbourhood of 1.
(iii) If G is a locally compact Hausdorff topological group having only finitely many

connected components, then it is compactly presented.
(iv) If G is a locally compact Hausdorff topological group that is compactly presented, then

it is compactly presented by all its compact generating subsets.
(v) Let G be a locally compact topological group with finitely many connected components

G0, . . . , Gn, where 1 ∈ G0. For each i choose some gi ∈ G such that Gi = giG0. Then G is
generated by any compact neighbourhood of 1 and g1, . . . , gn. In particular, it is compactly
presented by any compact neighbourhood of 1 and g1, . . . , gn.

Proof. (i) is proved in the forthcoming paper ‘Metric geometry of locally compact groups’,
by de Cornulier and de la Harpe (http://www.normalesup.org/cornulier/MetricLC.pdf),
Lemma 7.A.9) and [9, Lemma 2.6] and (iii) in [1, Satz 3.2] (see also the forthcoming
paper ‘Metric geometry of locally compact groups’, by de Cornulier and de la Harpe
(http://www.normalesup.org/cornulier/MetricLC.pdf), Subsection 8.A).

(ii) Let U ⊂ G be an open neighbourhood of 1. Then the subgroup H of G generated by U is
open because H =

⋃
h∈H hU . It is also closed because G \H =

⋃
g∈G\H gH, which is an open

set.
(iii) If G is compactly generated by a compact set S and K ⊂ G is a compact set, then

K ⊂ Sn for some large n. This follows from the fact that any locally compact topological
group is a Baire space and that S is compact. The claim now follows from (i).

(iv) Let K ⊂ G0 be a compact neighbourhood of 1. By (ii), K generates G0, and thus the
compact set K ∪ {g1, . . . , gn} generates G. By (iii) and (iv), the locally compact group G is
compactly presented by K ∪ {g1, . . . , gn}.

Remark 6.3. Any irreducible algebraic variety over C is connected with respect to the
Euclidean topology [12, Chapter XII, Proposition 2.4]. Any linear algebraic subgroup of Bir(P2)
has finitely many irreducible components in the Zariski topology, which are exactly the cosets of
the component containing 1. Thus they are the connected components in the Zariski topology,
and hence also the connected components in the Euclidean topology.
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Furthermore, any linear algebraic subgroup of Bir(P2) is a closed subset of Bir(P2)�d for
some d ∈ N (see [5, Lemma 2.19]), which is a locally compact set [5, Lemma 5.4]. Hence any
linear algebraic subgroup of Bir(P2) is locally compact and therefore satisfies the conditions of
Lemma 6.2(v).

Remark 6.4. Any algebraic subgroup of Bir(P2) is a linear algebraic group [3, Théorème 2].
The Euclidean topology on these groups is exactly the topology inherited from the Euclidean
topology on Bir(P2) (see [5, Proposition 5.11]).
The groups Aut(P2) = PGL3(C), Aut(F0) and Aut(F2) are linear algebraic subgroups of

Bir(P2) (Lemma 2.4), and thus locally compact by Remark 6.3.

Corollary 6.5. (i) The group Aut(P2) is compactly presented by any compact neigh-
bourhood of 1.

(ii) The group Aut(F0) is compactly presented by the union of the linear map
τ12 : [x : y : z] → [y : x : z] and any compact neighbourhood of 1.

(iii) The group Aut(F2) is compactly presented by any compact neighbourhood of 1.

Proof. The groups Aut(P2),Aut(F0),Aut(F2) are linear algebraic groups and locally
compact by Remark 6.4.

The group Aut(P2) = PGL3(k) is irreducible, hence connected (Remark 6.3), and the group
Aut(F2) is connected by Lemma 2.4(iii). By Lemma 2.4(ii), the group Aut(F0) has two
connected components, namely Aut(F0)

0 containing the identity element and τ12Aut(F0)
0.

The claim now follows from Remark 6.3 and Proposition 6.2(v).

Using Corollary 6.5 and the fact that Bir(P2) is isomorphic to the generalized amalgamated
product of Aut(P2), Aut(F0), Aut(F2) along their pairwise intersection divided by one relation
(Theorem 5.5), we prove that Bir(P2) is compactly presentable.

Lemma 6.6. Let G be a group, n � 2 be an integer and G1, . . . , Gn ⊂ G be subgroups of
G such that the following hold.

(i) The group G admits the presentation G = 〈⋃n
i=1Gi | RG〉, where RG is the set of all

relators of the form ab = c, where a, b, c ∈ Gi for some i ∈ {1, . . . , n}.
(ii) For i = 1, . . . , n, there exists a presentation 〈Ki | Ri〉 of Gi such that, for any subset

I ⊂ {1, . . . , n}, the set
⋂
i∈I Ki generates

⋂
i∈I Gi.

Then, G admits the presentation G = 〈⋃n
i=1Ki |

⋃n
i=1Ri〉.

Proof. Denote by FG the free group generated by
⋃n
i=1Gi and by FK the free group

generated by K =
⋃n
i=1Ki; we view FK as a subgroup of FG.

The natural group homomorphism π : FK → G is surjective, because G is generated by⋃n
i=1Gi and each Gi is generated by Ki. Moreover, each set of relators Ri corresponds to

a subset of ker(π). It remains to see that kerπ is contained in the normal subgroup generated
by

⋃n
i=1Ri.

We take an element in ker(π), which in FK is a word

w = s1s2 · · · sm
such that each si belongs to K and s1 · · · sm = 1 in G. Because G admits the presentation
G = 〈⋃n

i=1Gi | RG〉, we can write w in FG as a product

w = a1r1a
−1
1 a2r2a

−1
2 · · · alrla−1

l ,
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where all the ai, ri are elements of FG and ri ∈ RG, which means by definition of RG that
ri = aibici for ai, bi, ci ∈ Gj(i), that is, each ri is a word in elements of Gj(i).
The word w is equal in FG to a reduced word, whose letters are elements of K because

w ∈ FK . Hence, each g =
⋃n
i=1Gi \K which appears in the word a1r1a

−1
1 · · · alrla−1

l disappears
after the reduction. We can thus replace each occurrence of g with any chosen element of FG
and do not change the value of the word. We do this in the following way: if g ∈ Gi \Ki, then
we replace then g with a word with letters in Ki, which belongs to π−1(π(g)) (this is possible
since Ki generates Gi). If g belongs to more than one of the Gi, then we can moreover assume
that the letters of the word also belong to these Ki, because of the second hypothesis.
After this replacement, we obtain an equality in FK

s1 · · · sm = b1t1b
−1
1 b2t2b

−1
2 · · · bltlb−1

l ,

where each ti is a word with letters in Kj(i), such that π(ti) = 1. For each i = 1, . . . , n denote
by FKi

the free group generated by Ki and by πi : FKi
→ Gi the natural group homomorphism

onto Gi whose kernel is generated by Ri. We consider FKi
as a subgroup of FK , which

means that πi = π|FKi
, and hence ker(πi) = ker(π) ∩ FKi

. Therefore, πi(ti) = 1, and thus ti
is a product of conjugates of Rj(i). This yields the result.

Corollary 6.7. Let K ⊂ Aut(P2), K0 ⊂ Aut(F0), K2 ⊂ Aut(F2) be compact neighbour-
hoods of 1 in the respective groups. Then Bir(P2) is compactly presented by K ∪K0 ∪
K2 ∪ {τ12}.

Proof. Lemma 6.6 yields that the union of any compact generating sets of Aut(P2), Aut(F0),
Aut(F2) giving a compact presentation of the respective groups yields a compact presentation
of G, the generalized amalgamated product of Aut(P2), Aut(F0), Aut(F2) along their pairwise
intersection divided by one relation. Such compact generating sets are given by Corollary 6.5:
Any compact neighbourhood of 1 of the groups Aut(P2) and Aut(F2), respectively, and the
union of τ12 and any compact neighbourhood of 1 in Aut(F0). Since Bir(P2) and G are
isomorphic (Theorem 5.5), the claim follows.

Corollary 6.8. Let K ⊂ Aut(P2), K0 ⊂ Aut(F0), K2 ⊂ Aut(F2) be compact neighbour-
hoods of 1 in the respective groups. Then Bir(P2) is compactly presented by K ∪K0 ∪K2.

Proof. We define S1 := K ∪K0 ∪K2 and S2 := K ∪K0 ∪K2 ∪ {τ12}. The set S2 generates
Bir(P2) by Corollary 6.7. The setK generates Aut(P2) (Corollary 6.5), hence there exists n ∈ N
such that τ12 ∈ Kn. It follows that also S2 generates Bir(P2) and moreover that S1 ⊂ S2 ⊂
(S1)

n. The claim now follows from Lemma 6.2(i) and Corollary 6.7.

Lemma 6.2(i) and Corollary 6.8 imply that to prove Theorem A (Corollary 6.10), we
only need to check that, for any compact neighbourhood K ⊂ Aut(P2) of 1, there exist
Ki ⊂ Aut(Fi), i = 0, 2, compact neighbourhoods of 1 and integers m,m′, n ∈ N such that
(K ∪ {σ3})m ⊂ (K ∪K0 ∪K2)

n ⊂ (K ∪ {σ3})m
′
.

Lemma 6.9. Let K ⊂ Aut(P2) be a compact neighbourhood of 1. Then there exists N ∈ N
such that (K ∪ {σ3})N contains compact neighbourhoods of 1 in Aut(Fi) for i = 0, 2.

Proof. Let A0 = Aut(F0)
0 ∩Aut(P2) and A2 = Aut(F2) ∩Aut(P2), which are connected

algebraic subgroups of Aut(F0) and Aut(F2), respectively (Lemma 2.4). For i = 0, 2, the
set Ki = K ∩ Ai is a compact neighbourhood of 1 in Ai. Corollary 6.5 implies that Ai =
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⋃
n∈N(Ki)

n for i = 0, 2. It follows that

A0σ3A0 =
⋃

n∈N
(K0)

nσ3(K0)
n, A2σ2A2 =

⋃

n∈N
(K2)

nσ2(K2)
n.

The sets A0σ3A0 and A2σ2A2 are Zariski-open subsets of Aut(F0) and Aut(F2), respectively
(Lemma 2.4), and are thus locally compact, and hence Baire spaces. There exists then some
m ∈ N such that (K0)

mσ3(K0)
m and (K2)

mσ2(K2)
m have non-empty interior in A0σ3A0 and

A2σ2A2, and thus in Aut(F0) and Aut(F2), respectively.
Since (Ki)

mσj(Ki)
m ⊂ (Ki ∪ {σj})2m+1, the sets (K0 ∪ {σ3})2m+1 and (K2 ∪ {σ2})2m+1

also have non-empty interior in Aut(F0) and Aut(F2), respectively. Since (Ki)
−1 ⊂ Kmi

i for
some bigmi and (σj)

−1 = σj , the sets (K0 ∪ {σ3})m
′
and (K2 ∪ {σ2})m

′
are neighbourhoods of

1 in the corresponding groups for some m′ big enough. Since Bir(P2) is generated by K ∪ {σ3}
(by the Noether–Castelnuovo theorem), we find m′′ such that σ2 ∈ (K ∪ {σ3})m

′′
. A suitable

power of K ∪ {σ3} contains thus (K0 ∪ {σ3})m
′
and (K2 ∪ {σ2})m

′
.

Corollary 6.10 (Theorem A). Let K ⊂ Aut(P2) be a compact neighbourhood of 1. Then
Bir(P2) is compactly presented by K ∪ {σ3}.

Proof. According to Lemma 6.9, there exist N ∈ N and compact neighbourhoods K0,K2

of 1 in Aut(F0) and Aut(F2), respectively, such that (K ∪ {σ3})N contains K0 ∪K2.
We define S1 := K ∪ {σ3} and S2 := K ∪K0 ∪K2. Because σ3 ∈ Aut(F0)

0 and Aut(F0)
0

is compactly generated by K0 (Lemma 6.2(ii)), there exists M ∈ N such that σ3 ∈ (K0)
M .

It follows that S1 ⊂ (S2)
M . Since S2 ⊂ (S1)

N , we have S1 ⊂ (S2)
M ⊂ (S1)

MN . The group
Bir(P2) being compactly presented by S2 (Corollary 6.8), it is also compactly presented by S1

(Lemma 6.2(i)).

Acknowledgements. The author would like to thank Jérémy Blanc, Yves de Cornulier and
Pierre de la Harpe for interesting and helpful discussions.
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Abstract. We present the Abelianisation of the birational transformations of P2
R. Its kernel is equal

to the normal subgroup generated by PGL3(R), and contains all elements of degree ≤ 4. The descrip-

tion of the quotient yields the existence of normal subgroups of index 2n for any n and implies that
any normal subgroup generated by a countable set of elements is a proper subgroup. This also holds

for the group of birational diffeomorphisms respectively of P2
R, A2

R and the sphere.
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1. Introduction

Let BirR(P2) ⊂ BirC(P2) be the groups of birational transformations of the projective plane de-
fined over the respective fields of real and complex numbers, and AutR(P2) ' PGL3(R), AutC(P2) '
PGL3(C) the respective subgroups of linear transformations.

According to the Noether-Castelnuovo Theorem [Cas1901], the group BirC(P2) is generated by
AutC(P2) and the standard quadratic transformation σ0 : [x : y : z] 99K [yz : xz : xy]. As an abstract
group, it is not simple [CL2013], i.e. there exist non-trivial, proper normal subgroups N ⊂ Bir(P2).
However, all such groups have uncountable index (see Remark 4.12) and the isomorphism class of
the corresponding quotients BirC(P2)/N is quite complicated (essentially as complicated as BirC(P2)
itself). Moreover, the normal subgroup generated by any non-trivial element which preserves a pencil
of lines or which has degree d ≤ 4 is the whole group (see [Giz1994, Lemma 2] and Lemma 4.13) and
the group is perfect [CD2013], which means that BirC(P2) is equal to its commutator subgroup.

As we will show, the situation for the group BirR(P2) is quite different. First of all, the group
generated by AutR(P2) = PGL3(R) and σ0 is certainly not the whole group, as all its elements have
only real base-points. This is not the case for BirR(P2); for instance the quadratic involution σ1 : [x :
y : z] 99K [xz : yz : x2 + y2] has non-real base-points. The group BirR(P2) however is generated by
PGL3(R), σ0, σ1, and by a family of transformations of degree 5 [BM2012]. We will show that this set

2010 Mathematics Subject Classification. 14E07; 14P99.
The author gratefully acknowledges support by the Swiss National Science Foundation Grant “Birational geometry”

PP00P2 153026 /1.
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2 SUSANNA ZIMMERMANN

is not far from being a minimal set of generators. In particular, we obtain the following result, similar
to the case of Bir(Pn), n ≥ 3 [Pan1999].

Theorem 1.1. The group BirR(P2) is not generated by AutR(P2) and a countable set of elements.

The proof consists in finding explicit generators and relations for the group (see Proposition 2.9).
This description also allows to construct a natural quotient, and gives our main result:

Theorem 1.2. The group BirR(P2) is not perfect: its Abelianisation is isomorphic to

BirR(P2)/[BirR(P2),BirR(P2)] '
⊕

R
Z/2Z.

Moreover, the commutator subgroup [BirR(P2),BirR(P2)] is the normal subgroup generated by AutR(P2) =
PGL3(R), and contains all elements of BirR(P2) of degree ≤ 4.

Corollary 1.3. The sequence of iterated commutator subgroups of BirR(P2) is stationary. More pre-
cisely: Let H := [BirR(P2),BirR(P2)]. Then [H,H] = H.

Let X be a real variety. We denote by X(R) its set of real points of and by Aut(X(R)) ⊂ Bir(X)
the subgroup of birational transformations defined at each point of X(R). It is also called the group
of birational diffeomorphisms of X, and is, in general, strictly larger than the group of automorphisms
AutR(X) of X defined over R. The group Aut(P2(R)) is generated by AutR(P2) and the standard
quintic transformations (see Definition 2.2) [RV2005, BM2012]. Until now no similar result has been
found for Aut(A2(R)).

In the following, let P3 ⊃ Q3,1 = {[y : x : y : z] ∈ P3 | x2 + y2 + z2 = w2}.
Corollary 1.4. The statement in Theorem 1.1 also holds for Aut(P2(R)), Aut(A2(R)) and Aut(Q3,1(R)),
replacing AutR(P2) for the latter two by AutR(A2), AutR(Q3,1) respectively..

Corollary 1.5. There exist surjective group homomorphisms

Aut(P2(R))→
⊕

R
Z/2Z, Aut(A2(R))→

⊕

R
Z/2Z, Aut(Q3,1(R))→

⊕

R
Z/2Z

Corollary 1.6. For any real birational map ψ : F0 99K P2, the group ψAut(F0(R))ψ−1 is a subgroup
of ker(ϕ).

Corollary 1.7. For any n ∈ N there is a normal subgroup of BirR(P2) of index 2n containing all
elements of degree ≤ 4.
The same statement holds for Aut(P2(R)), Aut(A2(R)) and Aut(Q3,1(R)).

Corollary 1.8. The normal subgroup of BirR(P2) generated by any countable set of elements of
BirR(P2) is a proper subgroup of BirR(P2).
The same statement holds for Aut(P2(R)), Aut(A2(R)) and Aut(Q3,1(R)).

The plan of the article is as follows: After giving the basic definitions and notations in Section 2, we
define in Section 3 a surjective group homomorphism from the subgroup J◦ ⊂ BirR(P2) of elements
preserving a pencil of conics to the group

⊕
R Z/2Z. In Section 4, we extend the homomorphism to a

surjective group homomorphism BirR(P2)→⊕
R Z/2Z and give Theorem 1.1, Corollary 1.7 and Corol-

lary 1.5. In Section 5, we proof that its kernel is the normal subgroup generated by AutR(P2), which
will turn out to be commutator subgroup of BirR(P2). We will finally be able to prove Theorem 1.2.

In the proof of the main theorems we use a technical proposition (Proposition 2.9) that gives an
explicit representation of BirR(P2) by generators and relations, and which is independent of all the
other results. Its proof is quite long and rather technical, so we devote the whole last section (Section 6)
to proving it.

In [Pol2015] one can find another description of the group BirR(P2), or rather, more specifically, a
description of the elementary links between real rational surfaces and relations between them. However,
this description was not used in the proof of Proposition 2.9.
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2. Basic notions

We now give some basic notations and definitions. Throughout the article, every variety and rational
map is defined over R, unless stated otherwise.

Definition 2.1. We define two rational fibrations

π∗ : P2 99K P1

[x : y : z] 7→ [y : z]

π◦ : P2 99K P1

[x : y : z] 7→ [y2 + (x+ z)2 : y2 + (x− z)2]

whose fibres are respectively the lines through [1 : 0 : 0] and the conics through p1 := [1 : i : 0], p2 :=
[0 : 1 : i], and their conjugates p̄1 = [1 : −i : 0], p̄2 = [0 : 1 : −i].

We define by J∗, J◦ the subgroups of BirR(P2) preserving the fibrations π∗, π◦:

J∗ = {f ∈ BirR(P2) | ∃f̂ ∈ AutR(P2) : f̂π∗ = π∗f}
J◦ = {f ∈ BirR(P2) | ∃f̂ ∈ AutR(P2) : f̂π◦ = π◦f}

Extending the scalars to C, the analogues of these groups are conjugate in BirC(P2) and are called
de Jonquières groups. In BirR(P2), the groups J◦,J∗ are not conjugate. This can, for instance, be seen
as consequence of Proposition 4.3 (see Remark 4.11).

Definition 2.2. We define a type of real birational transformation called standard quintic tranforma-
tion.

Let q1, q̄1, q2, q̄2, q3, p̄3 ∈ P2 be three pairs of non-real conjugate points of P2, not lying on the same
conic. Denote by π : X → P2 the blow-up of these points. The strict transforms of the six conics
passing through exactly five of the six points are three pairs of non-real conjugate (−1)-curves. Their
contraction yields a birational morphism η : X → P2 which contracts the curves onto three pairs of
non-real points r1, r̄1, r2, r̄2, r3, r̄3 ∈ P2. We choose the order so that ri is the image of the conic not
passing through qi. The birational map ηπ−1 : P2 99K P2 is contained in BirR(P2), is of degree 5 and is
called standard quintic transformation.

Lemma 2.3. Let θ ∈ BirR(P2) be a standard quintic transformation. Then:

(1) The points q1, q̄1, q2, q̄2, q3, q̄3 are the base-points of θ and r1, r̄1, r2, r̄2, r3, r̄3 are the base-points
of θ−1, and they are all of multiplicity 2.

(2) For i, j = 1, 2, 3, i 6= j, θ sends the pencil of conics through qi, q̄i, qj , q̄j onto the pencil of conics
through ri, r̄i, rj , r̄j.

(3) We have θ ∈ Aut(P2(R)).

Proof. (1), (2) Let L ⊂ P2 be a general line. The strict transform of L on X by π−1 has self-intersection
1 and intersects the six curves contracted by η in 2 points. The image θ(L) then has six singular points
of multiplicity 2 and self-intersection 25. It is thus a quintic passing through the ri with multiplicity 2.
Therefore, the linear system of θ−1 consists of quintics in P2 having multiplicity 2 at r1, r̄1, r2, r̄2, r3, r̄3.
The construction of θ−1 being symmetric to the one of θ, the linear system of θ consists of quintics
having multiplicity 2 at q1, q̄1, q2, q̄2, q3, q̄3.

(3) This is shown by simply calculating the degree of the images of the conics and their multiplicities
in the base-points.

(4) The birational morphisms η, π induce bijections X(R)→ P2(R) and hence θ, θ−1 are defined on
each point of P2(R). �
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4 SUSANNA ZIMMERMANN

The family of standard quintic transformations plays an important role in BirR(P2): Let

σ0 : [x : y : z] 99K [yz : xz : xy]

σ1 : [x : y : z] 99K [xz : yz : x2 + y2]

Theorem 2.4 ([RV2005],[BM2012]). The group BirR(P2) is generated by σ0, σ1, AutR(P2) and the
infinite family of standard quintic transformations.

Lemma 2.5. For any standard quintic transformation θ there exists α, β ∈ AutR(P2) such that βθα ∈
J◦
Proof. For any two non-collinear non-real pairs of conjugate points there exists α ∈ AutR(P2) that sends
the two pairs onto p1 := [1 : i : 0], p2 := [0 : 1 : i] and their conjugates p̄1 = [1 : −i : 0], p̄2 = [0 : 1 : −i].
Let θ be a standard quintic transformation. Then there exists α, β ∈ AutR(P2) that send q1, q2

(resp. r1, r2) onto p1, p2. The transformation βθα−1 preserves the pencil of conics through p1, p̄1, p2, p̄2

(Lemma 2.3) and is thus contained in J◦. �

Corollary 2.6. The group BirR(P2) is generated by AutR(P2), J∗, J◦
Proof. By Theorem 2.4 and Lemma 2.5, BirR(P2) is generated by AutR(P2), σ0, σ1 and the family
of standard quintic transformations contained in J◦. Observing that σ0 ∈ J∗, σ1 ∈ J◦, the claim
follows. �

Using these generating groups, we can give a representation of BirR(P2) in terms of generating sets
and relations:

Define S := AutR(P2) ∪ J∗ ∪ J◦ and let FS be the free group generated by S. Let w : S → FS be
the canonical word map.

Definition 2.7. We denote by G be the following group:

FS/

〈
w(f)w(g)w(h), f, g, h ∈ AutR(P2), fgh = 1 in AutR(P2)
w(f)w(g)w(h), f, g, h ∈ J∗, fgh = 1 in J∗
w(f)w(g)w(h), f, g, h ∈ J◦, fgh = 1 in J◦
the relations in the list below

〉

(1) Let θ1, θ2 ∈ J◦ be standard quintic transformations and α1, α2 ∈ AutR(P2).

w(α2)w(θ1)w(α1) = w(θ2) in G if α2θ1α1 = θ2.

(2) Let τ1, τ2 ∈ J∗ ∪ J◦ both of degree 2 or of degree 3 and α1, α2 ∈ AutR(P2).

w(τ1)w(α1) = w(α2)w(τ2) in G if τ1α1 = α2τ2.

(3) Let τ1, τ2, τ3 ∈ J∗ all of degree 2, or τ1, τ2 of degree 2 and τ3 of degree 3, and α1, α2, α3 ∈
AutR(P2).

w(τ2)w(α1)w(τ1) = w(α3)w(τ3)w(α2) in G if τ2α1τ1 = α3τ3α2.

Remark 2.8. Note that the group G is isomorphic to the quotient of the generalised amalgamated
product of AutR(P2), J∗, J◦ along all intersections by the relations in the above list.

Since BirR(P2) is generated by AutR(P2),J∗,J◦ (Corollary 2.6), there exists a natural surjective
group homomorphism FS → BirR(P2) which gives rise to a group homomorphism G → BirR(P2), since
all relations above hold in BirR(P2).

Proposition 2.9. The natural surjective group homormophism G → BirR(P2) is an isomorphism.

The proof of Proposition 2.9 is quite long and technical, and we therefore prefer to present it in
the last section. The proposition (and its proof) is independent of all the other results proven in this
article. The method used in the proof has been described in [Bla2012], [Isk1985] and [Zim2015], and
is to study linear systems and their base-points.

We now give some further notation used throughout the article.
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Definition 2.10. Let f ∈ BirR(P2) and p be a point that belongs to P2 as a proper or infinitely near
point. Assume moreover that p is not a base-point of f . We define a point f•(p), which will also be in
P2 or infinitely near. For this, take a minimal resolution of f

S
ν2

��

ν1

��
P2 f // P2

where ν1, ν2 are sequences of blow-ups. Since p is not a base-point of f it corresponds via ν1 to a point
of S or infinitely near. Using ν2 we view this point on P2, again maybe infinitely near, and call it f•(p).

Remark 2.11. Note that f• is a one-to-one correspondence between the sets

(P2 ∪ {infinitely near points}) \ {base-points of f} and

(P2 ∪ {infinitely near points}) \ {base-points of f−1}

Furthermore, if p is a base-point of a linear system Λ of multiplicity m that is not base-point of f ,
then f•(p) is a base-point of f(Λ) of multiplicity m [AC2002, §4.1].

Definition 2.12.
(1) Let C ⊂ P2 be an irreducible (closed) curve, f ∈ BirR(P2) and Bp(f) the set of base-points of

f . We denote by

f(C) := f(C \ Bp(f))

the (Zariski-) closure of the image by f of C minus the base-points of f , and call it the image
of C by f .

(2) Throughout the article, we fix the notation

p1 := [1 : i : 0], p2 := [0 : 1 : i]

for these two specific points of P2, because we will use them extremely often.
(3) The following definition will be used for base-points of elements of J◦. Let η : X → P2 be the

blow-up of p1, p̄1, p2, p̄2. The morphism π̃◦ := π◦η : X → P1 is a real conic bundle with fibres
being the strict transforms of the conics passing through p1, . . . , p̄2.

X

η

��

π̃◦

  
P2

π◦
// P1

Let η′ : Y → X be a birational morphism and q ∈ Y . We define

Cq := π−1
◦ (π̃◦(η

′(q))).

It is the conic passing through p1, p̄1, p2, p̄2, η
′(q), which is irreducible or the union of two lines.

The latter case corresponds to π̃◦(η′(q)) ∈ {[1 : 0], [0 : 1], [1 : 1]}.

3. A quotient of J◦
We first construct a surjective group homomorphism ϕ◦ : J◦ →

⊕
R Z/2Z and then (in Section 4)

use the representation of BirR(P2) by generators and relations (Proposition 2.9) to extend ϕ◦ to a
homomorphism ϕ : BirR(P2)→⊕

R Z/2Z. Both quotients are generated by classes of standard quintic
transformations contained in J◦, as we will see from the construction in Subsection 3.2.

In order to construct the surjective homomorphism J◦ →
⊕

R Z/2Z, we first need some additional
information about the elements of J◦, such as their characteristic (Lemma 3.1) and their action on
the pencil of conics passing through p1, p̄1, p2, p̄2 (Lemma 3.7).
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3.1. The group J◦. The next lemmata state the characteristic and some other properties of the ele-
ments of J◦ (recall that for f ∈ BirR(P2), the characteristic of f is the sequence (deg(f);me1

1 , . . . ,m
ek
k )

where m1, . . . ,mk are the multiplicities of the base-points of f and ei is the number of base-points of f
which have multiplicity mi (see [AC2002, Definition 2.1.7])). We will use these properties to obtain the
action of J◦ on the pencil of conics through p1, . . . , p̄2. The information will be used to construct the
quotients. In Section 6 (proof of Proposition 2.9), we will use the properties to study linear systems
and their base-points in connection with the relations given in Definition 2.7.

Lemma 3.1. Any element of J◦ of degree d > 1 has characteristic:
(
d;

d− 1

2

4

, 2
d−1
2

)
, if deg(f) is odd

(
d;

d

2

2

,
d− 2

2

2

, 2
d−2
2 , 1

)
, if deg(f) is even

and p1, . . . , p̄2 are (the) base-points of multiplicity d
2 ,

d−1
2 or d−2

2 .
Furthermore,

(1) no two double points are contained in the same conic through p1, p̄1, p2, p̄2,
(2) any element of J◦ exchanges or preserves the real reducible conics C1 := Lp1,p2 ∪ Lp̄1,p̄2 and

C2 := Lp1,p̄2 ∪ Lp̄1,p2 ,
(3) any element of J◦ of even degree contracts one of the lines Lpi,p̄i , i ∈ {1, 2} onto a point on a

real conic different from C1, C2.

Proof. Let f ∈ J◦ be of degree d > 1. Let C be a general conic passing through p1, p̄1, p2, p̄2. By
definition of J◦, the curve f(C) is a conic through p1, p̄1, p2, p̄2. Let m(q) be the multiplicity of f at
the point q. Computing the intersection of C on the blow-up of the base-points of f with the linear
system of f gives the degree of f(C):

2 = deg(f(C)) = 2d− 2m(p1)− 2m(p2) = (d− 2m(p1)) + (d− 2m(p2)).

Applying Bézout to the line through pi, p̄i, we obtain that d ≥ 2m(pi), i = 1, 2.
If d− 2m(p1) = d− 2m(p2) = 1, then

m(p1) = m(p2) =
d− 1

2
.

Else, d− 2m(pi) = 0, d− 2m(p3−i) = 2 for some i ∈ {1, 2}, and so

m(pi) =
d

2
, m(p3−i) =

d− 2

2
, i ∈ {1, 2}.

Let q be a base-point of f not equal to p1, p̄1, p2, p̄2 and Cq its associated conic through p1, p̄1, p2, p̄2

(see Definition 2.12). Then 2 ≥ deg(f(Cq)) ≥ 0 and

0 ≤ deg(f(Cq)) ≤ 2d− 2m(p1)− 2m(p2)−m(q) = 2−m(q) ≤ 2

In particular, m(q) ∈ {1, 2}. Let D be a general member of the linear system of f . The genus formula

0 = g(D) =
(d− 1)(d− 2)

2
−

∑

q base-point of f

m(q)(m(q)− 1)

2

and m(q) ∈ {1, 2} for all base-points q of f different from p1, p̄1, p2, p̄2 imply that

(d− 1)(d− 2)

2
= 2

2∑

i=1

m(pi)(m(pi)− 1)

2
+ |{base-points of multiplicity 2}|

and in particular that

|{base-points of multiplicity 2}| =
{
d−1

2 , d odd
d−2

2 , d even

It follows from the Noether equalities that f has exactly one simple base-point if d is even and none
otherwise. This yields the characteristics. Bézout’s theorem implies that no two double points are
contained in the same conic through p1, p̄1, p2, p̄2. The conics C1 = Lp1,p2 ∪Lp̄1,p̄2 , C2 = Lp1,p̄2 ∪Lp̄1,p2 ,
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C3 := Lp1,p̄1 ∪ Lp2,p̄2 are the only reducible conics through p1, . . . , p̄2, and C1, C2 each consist of two
non-real lines while C3 consists of two real lines. If f has even degree, it contracts the line Lpi,p̄i , where

m(pi) = d
2 , onto the base-point of f−1 of multiplicity 1, and no other line is contracted (because f−1

has only one base-point of multiplicity 1). Because of this and the multiplicities of the base-points of f ,
f sends Lpi,pj , Lpi,p̄j , i 6= j, onto non-real lines. This is also true if f has odd degree (simply because of
the multiplicities of its base-points). Thus f preserves or exchanges C1, C2. In particular, the induced

automorphism f̂ of f on P1 does not send π◦(C3) onto either of π◦(C1), π◦(C2). It follows that if f has

even degree, the point f(Lpi,p̄i) is contained in the conic π−1
◦ (f̂(π◦(C3))) 6= C1, C2. In particular, the

simple base-point of f−1 (which is f(Lpi,p̄i)) is not contained in C1, C2. By symmetry, the same holds
for f . �

Remark 3.2. The group J◦ contains standard quintic transformations (Lemma 2.5). Remark that
σ1 : [x : y : z] 99K [xz : yz : x2 + y2] is contained in J◦.

The linear map [x : y : z] 7→ [z : −y : x] exchanges p1 and p2 (and p̄1 and p̄2), and the linear map
[x : y : z] 7→ [−x : y : z] exchanges p1 and p̄1 and fixes p2. Both are contained in AutR(P2) ∩ J◦.
Lemma 3.3. For any q ∈ P2(R) not collinear with any two of {p1, p̄1, p2, p̄2} except maybe the pair
(p2, p̄2), there exists f ∈ J◦ of degree 2 with base-points p1, p̄1, q.

In particular: Let f ∈ J◦ of even degree d, the points pi, p̄i its base-points of multiplicity d
2 and r

its simple base-point or the proper point of P2 to which the simple base-point is infinitely near.
Then there exists τ ∈ J◦ of degree 2 with base-points pi, p̄i, r.

Proof. Since q is not collinear with p1, p̄1, there exists α ∈ AutR(P2) that sends p1, p̄1, q onto p1, p̄1, [0 :
0 : 1]. Let t := (σ1α)•(p2). The quadratic transformation σ1α has base-points p1, p̄1, q and sends the
pencil of conics through p1, p̄1, p2, p̄2 onto the pencil of conics through p1, p̄1, t, t̄. By assumption, the
point p2 is not on the lines Lq,p1 , Lq,p̄1 and thus t, t̄ are proper points of P2 that are not collinear
with p1, p̄1. There exists β ∈ AutR(P2) that fixes p1, p̄1 and sends t, t̄ onto p2, p̄2. The quadratic
transformation βσ1α has base-points p1, p̄1, q and sends the pencil of conics through p1, p̄1, p2, p̄2 onto
itself, i.e. is contained in J◦.

Let f ∈ J◦ of even degree d, pi, p̄i its base-points of multiplicity d
2 and r its simple base-point or the

proper point of P2 to which the simple base-point is infintely near. By Bézout, r, pi, p̄i are not collinear
and by Lemma 3.1 the points r, pi, p3−i and r, p̄i, p3−i are not collinear. Hence there exists τ ∈ J◦ of
degree 2 with base-points r, pi, p̄i. �

To prove the next lemma (Lemma 3.6), we are forced to introduce another kind of quintic trans-
formation, which is just a degeneration of standard quintic transformations. They will pop up again
in Section 5, where we look at relations between quadratic and standard quintic transformations in
order to prove that the kernel of the Abelianisation map is equal to the normal subgroup generated
by AutR(P2).

Definition 3.4. We define a type of real birational transformation called special quintic transforma-
tion.

Let q1, q̄1, q2, q̄2 ∈ P2 be two pairs of non-real points of P2, not on the same line. Denote by π1 : X1 →
P2 the blow-up of the four points, and by E1, Ē1 ⊂ X1 the curves contracted onto q1, q̄1 respectively.
Let q3 ∈ E1 be a point, and q̄3 ∈ Ē1 its conjugate. We assume that there is no conic of P2 passing
through q1, q̄1, q2, q̄2, q3, q̄3 and let π2 : X2 → X1 be the blow-up of q3, q̄3.

On X2 the strict transforms of the two conics C, C̄ of P2 passing through q1, q̄1, q2, q̄2, q3 and
q1, q̄1, q2, q̄2, q̄3 respectively, are non-real conjugate disjoint (−1) curves. The contraction of these two
curves gives a birational morphism η2 : X2 → Y1, contracting C, C̄ onto two points r3, r̄3. On Y1 we
find two pairs of non-real (−1) curves, all four curves being disjoint. These are the strict transforms
of the exceptional curves associated to q1, q̄1, and of the conics passing through q1, q̄1, q2, q3, q̄3 and
q1, q̄1, q̄2, q3, q̄3 respectively. The contraction of these curves gives a birational morphism η1 : Y1 → P2

and the images of the four curves are points r1, r̄1, r2, r̄2 respectively. The real birational map ψ =
η1η2(π1π2)−1 : P2 99K P2 is of degree 5 and called special quintic transformation.

Remark 3.5. Let θ be a special quintic transformation and keep the notation of its definition. With
similar argument as for the standard quintic transformations (Lemma 2.3) one shows that q1, . . . , q̄3
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are the base-points of θ, and are of multiplicity 2. Furthermore, θ sends the pencil of conics through
q1, q̄1, q2, q̄2 onto the pencil of conics through r1, r̄1, r2, r̄2 and θ ∈ Aut(P2(R)).

Lemma 3.6. The group J◦ is generated by its linear, quadratic and standard quintic elements.

Proof. Let f ∈ J◦. We use induction on the degree d of f . We can assume that d > 2.
• If d is even, it has a (real) simple base-point. Denote by r the simple base-point of f or, if the

simple base-points is not a proper point of P2, the proper point of P2 to which the simple base-point
is infinitely near to. Let pi, p̄i, i ∈ {1, 2} be the points of multiplicity d

2 (Lemma 3.1). By Lemma 3.3

there exists a quadratic transformation τ ∈ J◦ with base-points pi, p̄i, r. The map fτ−1 ∈ J◦ is of
degree ≤ d− 1.
• Suppose that d is odd and has a real base-point q. By Lemma 3.1, the points q, p1, p2 are of

multiplicity 2, d−1
2 , d−1

2 respectively. We can assume that q is a proper point of P2 (since no real point
is infinitely near p1, . . . , p̄2). By Bézout, q is not collinear with pi, pj , i, j ∈ {1, 2}, and so there exists
τ ∈ J◦ of degree 2 with base-points q, p1, p̄1 (Lemma 3.3). The map fτ−1 ∈ J◦ is of degree d− 1.
• Suppose that d is odd and has no real base-points. If it has a double point q different from

p1, . . . , p̄2 which is a proper point of P2 then p1, p̄1, p2, p̄2, q, q̄ are not on the same conic (Lemma 3.1).
In particular, there exists a standard quintic transformation θ ∈ J◦ with those points its base-points
(Definition 2.2, Lemma 2.5). The map fθ−1 ∈ J◦ is of degree d− 4.

If it has no double points that are proper points of P2, there exists a double point q infinitely near
one of the pi’s. By Bézout, p1, p̄1, p2, p̄2, q, q̄ are not contained on one conic, hence there exists a special
quintic transformation θ ∈ J◦ with base-points p1, p̄1, p2, p̄2, q, q̄ (Definition 3.4). The map fθ−1 ∈ J◦
is of degree d− 4. By [BM2012, Lemma 3.7] and Remark 3.2, θ is the composition of standard quintic
and linear transformations contained in J◦. �

Recall that for each element f ∈ J◦ there exists f̂ ∈ AutR(P1) such that f̂ ◦ π◦ = π◦ ◦ f (Defini-

tion 2.1). This induces a group homomorphism J◦ → AutR(P1) given by f 7→ f̂ (see Definition 2.1).
The next Lemma states that this action corresponds to a real scaling and that every scaling can be
realised by a quadratic transformation. The cubic and standard quintic transformations scale by ±1.

By AutR(P1, [0,∞]) we denote the subgroup of PGL2(R) that fixes the real interval [0,∞] in P1(R).

Lemma 3.7. The action of J◦ on P1 gives rise to a surjective homomorphism

J◦ → AutR(P1, [0,∞]) ' R>0 n Z/2Z

where R>0 ⊂ PGL2(R) is given by diagonal maps [x : y] 7→ [ax : by], a, b ∈ R>0 and Z/2Z is generated
by [x : y] 7→ [y : x].

Moreover, any element of (R>0)∗ is the image of a quadratic element of J◦ and Z/2Z is the image
of a linear element.

Furthermore:
• The cubic transformations are sent onto (1, 0) if they contract Lpi,q onto pi or p̄i, i = 1, 2, where

q is the double point, and onto (1, 1) otherwise.
• The standard quintic transformations are sent onto (1, 0) or (1, 1).

Proof. There are exactly three real reducible conics passing through p1, p̄1, p2, p̄2, namely

C1 := Lp1,p2 ∪ Lp̄1,p̄2 , C2 := Lp1,p̄2 ∪ Lp̄1,p2 , C3 := Lp1,p̄1 ∪ Lp2,p̄2 ,
and their images by π◦ : P2 99K P1 are

π◦(C1) = [0 : 1], π◦(C2) = [1 : 0], π◦(C3) = [1 : 1].

Let f ∈ J◦ and f̂ the induced automorphism on P1. By Lemma 3.1, f preserves or exchanges C1, C2,

which yields that f̂ is of the form f̂ : [u : v] 7→ [au : bv] or f̂ : [u : v] 7→ [av : bu], a, b ∈ R∗, where

[a : b] = f̂(π◦(C3)) = π◦(f(C3)). This yields a homomorphism

ψ : J◦ → R∗ o Z/2Z.

Lets show that the image of ψ is R>0 oZ/2Z and that any element of R>0 is the image of a quadratic
transformation.
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By Lemma 3.6, the group J◦ is generated by its linear, quadratic and standard quintic elements.
The map γ : [x : y : z] 7→ [−x : y : z] induces γ̂ : [u : v] 7→ [v : u], i.e. ψ(γ) = (0, 1). The linear
transformations send lines onto lines, and hence are sent by ψ onto (1, 0) or (1, 1). The standard
quintic transformations preserve the set {C1, C2, C3} and are hence sent onto (1, 0) or (1, 1). Let
τ ∈ J◦ be a quadratic transformation. It has base-points pi, p̄i, q, for some i ∈ {1, 2}, and sends
p3−i, p̄3−i onto proper points of P2. In particular, q is not collinear with any two of p1, p̄1, p2, p̄2 except
maybe p3−i, p̄3−i. It follows that q ∈ P2(R) \ {[1 : 0 : 1], [1 : 0 : −1]}. On the other hand, take
q = [a : b : 1] ∈ P2(R) \ {[1 : 0 : 1], [1 : 0 : −1]}. Then q is not collinear with any two of p1, p̄1, p2, p̄2,
except maybe p2, p̄2. By Lemma 3.3 there exists a quadratic transformation τ ∈ J◦ with base-points
q, p1, p̄1.

We have π◦(τ−1(C3)) = π◦(q) = [b2 + (a + 1)2 : b2 + (a − 1)2], which is not equal to [0 : 1], [1 : 0].
In particular, ψ(τ−1) ∈ (R>0)∗ o Z/2Z, and it follows that ψ(J◦) ⊂ (R>0)∗ o Z/2Z.

Note that pr1(ψ(τ)) = π◦(q), so the image by (pr1 ◦ ψ) of the set of quadratic elements of J◦ is
equal to the image by π◦ of the set P2(R) \ {[1 : 0 : 1], [1 : 0 : −1]}.

Claim: π◦( P2(R) \ {[1 : 0 : 1], [1 : 0 : −1]} ) = {[a : 1] ∈ P1(R) | a > 0} ' R>0: The set of points
where π◦ : [x : y : z] 99K [y2 + (x + z)2 : y2 + (x − z)2] is not defined is {p1, p̄1, p2, p̄2}, hence π◦ is
defined on P2(R) and continuous on it. Thus π◦(P2(R)) is a connected subset of {[a : 1] ∈ P1(R) | a ≥
0} ∪ {[1 : 0]} ⊂ P1(R). The claim now follows with π◦([1 : 0 : 1]) = [1 : 0] and π◦([1 : 0 : −1]) = [0 : 1].

In conclusion, every element of R>0 is the image of a quadratic element of J◦, and ψ has image
R>0 o Z/2Z.

To complete the proof of the lemma, remark that cubic transformations preserve C3 and they
preserve C1, C2 if they contract Lpi,q onto pi or p̄i, i = 1, 2, where q is the double point. �

3.2. The quotient. Using Lemma 3.7, we now construct a surjective group homomorphism J◦ →⊕
R Z/2Z.
There are two constructions of the quotient - one geometrical and the other using the spinor norm

on SO(x2 + y2 − tz2,R(t)). We first give the geometrical construction and then the one via the spinor
norm.

Definition 3.8. Let f ∈ J◦. For any non-real base-point q of f , we have π◦(Cq) = [a + ib : 1] and
π◦(Cq̄) = [a− ib : 1] for some a, b ∈ R, b 6= 0 (see Definition 2.12 for the definition of Cq). We define

ν(Cq) :=
a

| b | ∈ R.

Note that ν(Cq) = ν(Cq̄). Moreover, ν(Cq′) = ν(Cq) if and only if π◦(Cq) = λπ◦(Cq′) or π◦(Cq) =
λπ◦(Cq̄′) for some λ ∈ R∗.

Definition 3.9. We define eδ ∈ ⊕RZ/2Z to be the ”standard vector” given by

(eδ)ε =

{
1, δ = ε

0, else

Definition 3.10. Let f ∈ J◦ and S(f) be the set of non-real conjugate pairs of base-points of f
different from p1, . . . , p̄2. We define

ϕ◦ : J◦ −→
⊕

R
Z/2Z, f 7−→

∑

(q,q̄)∈S(f)

eν(Cq)

which is a well defined map according to Definition 3.8.

Remark 3.11. The following remarks directly follow from the definition of ϕ◦.

(1) If S(f) = ∅, then ϕ0(f) = 0.
(2) For every f ∈ J◦ of degree ≤ 4 the set S(f) is empty (follows from its characteristic;

Lemma 3.1), hence in particular ϕ0(f) = 0.
(3) Let θ ∈ J◦ be a standard quintic transformation. Then |S(f)| = 1 and ϕ◦(θ) is a ”standard

vector”.
(4) It follows from the definition of standard quintic transformations (Definition 2.2) that for every

δ ∈ R there exists a standard quintic transformation θ ∈ J◦ such that ϕ◦(θ) = eδ.
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P2 \ P2(R)

p1

p̄1

p2

p̄2

X \X(R)p3

p̄3

p3

p̄3

π◦
P1 \ P1(R)

[0 : 1]

R

π◦(p3) = [a+ ib : 1]

π◦(p̄3) = [a− ib : 1]

π̃◦

a
|b|

R

ν

Cp3

Cp̄3

Cp3

Cp̄3

Figure 1. The map ν (Definition 3.8)

(5) Let θ1, θ2 ∈ J◦ be standard quintic transformations and S(θi) = {(qi, q̄i)}, i = 1, 2. If Cq1 = Cq2
(or Cq1 = Cq̄2), then ϕ◦(θ1) = ϕ◦(θ2).

(6) Let θ ∈ J◦ be a standard quintic transformation. Let S(θ) = {(q1, q̄1)} and S(θ−1) = {(q2, q̄2)}.
Since θ induces Id or [x : y] 7→ [y : x] on P1 (Lemma 3.7), it follows that ν(Cq1) = ν(Cq2) and
in particular ϕ◦(θ) = ϕ◦(θ−1).

(7) Let f ∈ J◦ and C be any non-real conic passing through p1, . . . , p̄2. The automorphism f̂ on P1

induced by f is a scaling by a positive real number (Lemma 3.7), thus ν ◦ f̂ = ν. In particular,

eν(f(C)) = eν(f̂(C)) = eν(C).

Let us finally prove that ϕ◦ is a homomorphism of groups.

Lemma 3.12. The map ϕ◦ : J◦ →
⊕

R Z/2Z is a surjective group homomorphism and its kernel
contains all elements of degree ≤ 4.

Proof. It suffices to show that ϕ◦ is a group homomorphism: the surjectivity and the assertion on the
kernel then follow from Remark 3.11 (2) and (4).

Let f, g ∈ J◦. We want to show that ϕ◦(fg) = ϕ◦(f) + ϕ◦(g). The group J◦ is generated by its
linear, quadratic and standard quintic elements (Lemma 3.6), so we can assume that f is a linear,
quadratic or standard quintic element of J◦. In particular, S(f) is empty if f is linear or quadratic
(Remark 3.11 (2)), and |S(f)| = 1 if f is a standard quintic transformation.

Suppose that S(f) ∩ S(g−1) = ∅, then S(fg) = S(g) ∪ (g−1)•(S(f)) [AC2002, Corollary 4.1.14].
If S(f) = ∅, we have ϕ◦(f) = 0 (Remark 3.11 (1)), S(fg) = S(g), and in particular ϕ◦(fg) =
ϕ◦(f) + ϕ◦(g). If S(f) 6= ∅, then S(f) = {(q, q̄)}. By Remark 3.11 (7), we have

eν(C(g−1)•(q))
= eν(g−1(Cq)) = eν(Cq)

In particular,

ϕ◦(fg) =
∑

(p,p̄)∈S(fg)

eν(Cp) = eν(C(g−1)•(q))
+

∑

(p,p̄)∈S(g)

eν(Cp)

= eν(Cq) +
∑

(p,p̄)∈S(g)

eν(Cp) = ϕ◦(f) + ϕ◦(g)

Suppose that ∅ 6= S(f) ⊂ S(g−1). Then f is a standard quintic transformation. In order to make
the argument a bit more simple, lets prove that ϕ◦(g−1f−1) = ϕ◦(g−1) + ϕ◦(f−1), which will yield
the claim (since ϕ◦(h) = ϕ◦(h−1) by Remark 3.11 (6)). Let S(f) = {(q, q̄)}, S(f−1) = {(q′, q̄′)}.

We claim that S((fg)−1) = f•
(
S(g−1) \ {(q, q̄)}

)
. Indeed, the multiplicity of (fg)−1 in q′ is equal

to the intersection of the strict transform of Cq with the strict transform of the linear system of g−1 in
the blow-up of q, q̄, p1, p̄1, p2, p̄2 in P2. Since Cq contains exactly one base-point of g−1 (Lemma 3.1),
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which is q, the intersection is precisely

m(fg)−1(q′) = 2 deg(g−1)− 2mg−1(p1)− 2mg−1(p2)−
∑

r∈Cq
mg−1(r)

= 2 deg(g)− 2(deg(g)− 1)−mg−1(q) = 0

On the other hand, f does not touch the base-points of g−1 different from q, q̄, p1, p̄1, p2, p̄2. It fol-
lows that S(g−1f−1) = f•

(
S(g−1) \ {(q, q̄)}

)
[AC2002, Corollary 4.1.14]. In particular, we have by

Remark 3.11 (6), (7)

ϕ◦(g
−1f−1) =

∑

(p,p̄)∈S(g−1f−1)

eν(Cp) =
∑

(p,p̄)∈f•( S(g−1)\{(q,q̄)})
eν◦(Cp)

(7)
=

∑

(p,p̄)∈S(g−1)\{(q,q̄)}
eν(Cp) = ϕ◦(g

−1)− eν(Cq)

= ϕ◦(g
−1)− ϕ◦(f)

(6)
= ϕ◦(g

−1) + ϕ◦(f
−1)

�

3.3. Construction of quotient using the spinor norm. The quotient ϕ : J◦ →
⊕

R Z/2Z is in
fact given by the spinor norm, as explained in the following.

Blowing up the four base-points p1, p̄1, p2, p̄2 of the rational map π◦ : P2 99K P1 and contracting the
strict transform of Lp1,p̄1 (or Lp2,p̄2) yields a del Pezzo surface X6 of degree 6. The fibration π◦ becomes
a morphism π′◦ : X6 → P1, which is a conic bundle with two singular fibres, both having only one real
point. The group J◦ is the group of birational maps of X6 preserving this conic bundle structure.

The contraction the two (−1)-sections on X6 is a morphism

X6 → S = {wz = x2 + y2} ⊂ P3,

onto the quadric in P3 whose real part is diffeomorphic to the sphere. We can choose the images of the
sections to be the points [0 : 1 : i : 0], [0 : 1 : −i : 0] ∈ P3 and obtain that X6 = {([w : x : y : z], [u :
v]) ∈ P3 × P1 | uz = vw,wz = x2 + y2} and

X6
//

π′◦
��

S

��
P1 // P1

([w : x : y : z], [u : v]) //

��

[w : x : y : z]

��
[u : v] [w : z]

The generic fibre of π′◦ is the conic C in P2
R(t) given by x2 +y2− tz2 = 0. By Lemma 3.7, the projection

π′◦ induces an exact sequence

1→ AutR(t)(C) −→ J◦ −→ AutR(P1, [0,∞]) ' R>0 o Z/2Z→ 1,

which in fact is split by

(λ, 0) 7→
(

[w : x : y : z] 7→ [λw :
√
λx :
√
λy : z]

)

(0, 1) 7→ ([w : x : y : z] 7→ [z : x : y : w]).

Furthermore, AutR(t)(C) is isomorphic to the subgroup of PGL3(R(t)) preserving the quadratic form

x2 + y2 − tz2, and is therefore isomorphic to SO(x2 + y2 − tz2,R(t)).
Consider the spinor norm

0→ Z/2Z→ Spin(x2 + y2 − tz2,R(t))→ SO(x2 + y2 − tz2,R(t))
θ→ R(t)∗/(R(t)∗)2.

For a reflection f at a vector v = (a(t), b(t), c(t)), the spinor norm is the the length of v squared, i.e.
θ(f) = a(t)2 + b(t)2 − tc(t)2. As squares are moded out, we may assume that a(t), b(t), c(t) ∈ R[t]. An
element g ∈ R[t] is a square if and only if every root of g appears with even multiplicity. Thus we can
identify R(t)∗/(R(t)∗)2 with polynomials in R[t] having only simple roots, i.e. with Z/2Z⊕⊕H Z/2Z,
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where H ⊂ C is the closed upper half plane and the first factor is the sign of the polynomial. A non-real
root a±ib is the root of (t−a)2 +b2. In particular, the spinor norm induces a surjective homomorphism

θ̄ : SO(x2 + y2 − tz2,R(t))→
⊕

H
Z/2Z.

Let’s look at it geometrically. Extending the scalars to C(t), the isomorphism AutR(t)(C) ' SO(x2 +

y2 − tz2,R(t)) extends to

AutR(t)(C) ⊂ AutC(t)(C) ' PGL2(C[t]) ' SO(x2 + y2 − tz2,C(t)) ' SO(tx2 − yz,C(t)),

where the isomorphism α : PGL2(C[t]) ' SO(tx2 − yz,C(t)) is given by the embedding P1
C(t) ↪→ P2

C(t),

[u : v] 7→ [uv : tu2 : v2]. The group PGL2(C[t]) is generated by its involutions, all of which are conjugate
to matrices of the form

P :=

(
0 p
1 0

)
, p ∈ C[t].

The image of P via α is

α(P ) =



−1 0 0
0 0 −tp
0 −1/tp 0


 ,

which is a reflexion at its eigenvector (0,−tp, 1) of eigenvalue 1. In particular, θ(P ) = tp and so
θ̄(P ) = p = det(P ) ∈ C(t)∗/(C(t)∗)2. The isomorphism α : PGL2(C[t]) ' SO(x2 + y2 − tz2,C(t)) is
induced by a birational map X6 → P1

C × P1
C that contracts one component in each singular fibre. The

zeros of θ̄(P ) correspond to the fibres contracted by fP : P1
C × P1

C 99K P1
C × P1

C, (x, y) 7→ (p/x, y) “an
odd number of times”. So, for f ∈ AutR(t)(C) the spinor norm θ̄(f) corresponds to the non-real conics

contracted by f “an odd number of times”. Lemma 3.7 implies that AutR(P1, [0,∞]) acts on the image
of these conics in P1 by real positive scaling. Observe that the quotient of H by R>0 is bijective to R
via the map ν given in Definition 3.8 (see also Figure 1). We obtain a group homomorphism

J◦ ' SO(x2 + y2 − tz2,R(t)) o AutR(P1, [0,∞])→
⊕

R
Z/2Z,

f 7→
{
θ̄(f), f ∈ SO(x2 + y2 − tz2,R(t))

0, f ∈ AutR(P1, [0,∞])

which is exactly the quotient ϕ◦.

4. A quotient of BirR(P2)

Let ϕ0 : J◦ →
⊕

R Z/2Z be the map given in Definition 3.8. By Proposition 2.9, the group BirR(P2)
is isomorphic to G (see Defintion 2.7), which, according to Remark 2.8, is the quotient of the free
product AutR(P2) ∗ J∗ ∗ J◦ by the normal subgroup generated by all the relations given by the pairwise
intersections of AutR(P2),J∗,J◦ and the relations (1), (2), (3) of Definition 2.7. Define the map

Φ: AutR(P2) ∗ J∗ ∗ J◦ −→
⊕

R
Z/2Z, f 7→

{
ϕ◦(f), f ∈ J◦
0, f ∈ AutR(P2) ∪ J∗

It is a surjective homomorphism of groups because ϕ◦ is a surjective homomorphism of groups (Lemma 3.12).
We shall now show that there exists a homomorphism ϕ such that the diagram

AutR(P2) ∗ J∗ ∗ J◦ π //

Φ

��

G ' BirR(P2)

∃ ϕuu⊕
R Z/2Z

is commutative, where π is the quotient map. For this, it suffices to show that ker(π) ⊂ ker(Φ). We
will first show that the relations given by the pairwise intersections of AutR(P2),J∗,J◦ are contained
in ker(Φ) and then it is left to prove that relations (1), (2), (3) are contained ker(Φ).

Lemma 4.1.
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(1) Let f1 ∈ AutR(P2), f2 ∈ J◦ such that π(f1) = π(f2). Then Φ(f1) = Φ(f2) = 0. (2) Let f1 ∈ J∗,
f2 ∈ J◦ such that π(f1) = π(f2). Then Φ(f1) = Φ(f2) = 0.
In particular, Φ induces a homomorphism from the generalised amalgamated product of AutR(P2),J∗,J◦
along all pairwise intersections onto

⊕
R Z/2Z.

Proof. (1) We have π(f1) = π(f2) ∈ AutR(P2) ∩ J◦ ⊂ J◦. In particular, ϕ◦(π(fi)) = 0, i = 1, 2
(Remark 3.11, (2)), and so Φ(f1) = Φ(f2) = 0 by definition of Φ.

(2) Lets first figure out what exactly J∗ ∩ J◦ consists of. First of all, it is not empty because the
quadratic involution

τ : [x : y : z] 99K [y2 + z2 : xy : xz]

is contained in it. Let f ∈ J∗∩J◦ be of degree d. By Lemma 3.1, its characteristic is (d; d−1
2

4
, 2

d−1
2 ) or

(d; d2
2
, d−2

2

2
, 2

d−2
2 , 1). Since f ∈ J∗, it has characteristic (d; d− 1, 12d−2). If follows that d ∈ {1, 2, 3}.

Linear and quadratic elements of J◦ are sent by ϕ◦ onto 0 (Remark 3.11 (2)). Elements of J◦ of
degree 3 decompose into quadratic elements of J◦ and are hence sent onto zero by ϕ◦ as well. In
particular, Φ(f1) = Φ(f2) = 0.

Since Φ(AutR(P2)) = Φ(J∗) = 0, (1) and (2) imply that Φ induces a homomorphism from the
generalised amalgamated product of AutR(P2),J∗,J◦ onto

⊕
R Z/2Z. �

Lemma 4.2. Let θ ∈ J◦ be a standard quintic with S(θ) = {(q, q̄)}, S(θ−1) = {(q′, q̄′)}.
Let αq, αq′ ∈ AutR(P2) that fix p1 and send q (resp. q′) onto p2. Then θ′ := αq′θ(αq)

−1 ∈ J◦ is a
standard quintic transformation and

Φ(θ) = Φ(αq′θ(αq)
−1) = Φ(θ′)

Note that the statement still holds if we write p̄2 instead of p2.

Proof. Remark that

S(θ′) = { (αq(p2), αq(p̄2)) }.
Hence we need to show that

Φ(θ′) = ϕ◦(θ
′) = eν(Cαq(p2)) = eν(Cq) = ϕ◦(θ) = Φ(θ).

To do this, it suffices to show that π◦(Cαq(p2)) = λπ◦(Cq) or π◦(Cαq(p2)) = λπ◦(Cq̄) for some λ ∈ R∗.
For this, we need to understand the map αq. So, we study the non algebraic mapping

ψ : P2(C) \ {z = 0} −→ P2(C) \ {z = 0}, q 7→ αq(p2)

which we can describe, via the parametrisation

ι : R2 → P2(C), (u, v, x, y) 7→ [u+ iv : x+ iy : 1],

by the real birational involution

ψ̂ : R4 99K R4, (u, v, x, y) 799K
(
ud− vx
v2 + y2

,
−v

v2 + y2
,
uv + xy

v2 + y2
,

y

v2 + y2

)
.

The domain of ψ̂ is R4\{v = y = 0} = ι−1
(
P2(C) \ ({z = 0} ∪ P2(R))

)
. To understand ψ(Cq\{z = 0}),

we use the parametrisation

par : C −→ Cq \ {z = 0},

t 7→
[

(t− 1)(t+ 1)(λ+ µ)

λt+ µt+ λ− µ :
i(λt2 + µt2 + 2λt− 2µt+ λ+ µ)

λt+ µt+ λ− µ : 1

]
,

which is the inverse of the projection of Cq centred at p1. This yields the commutative diagram

ι−1(Cq \ {z = 0})

ι

��

ψ̂ // ψ̂(ι−1(Cq \ {z = 0}))

ι

��
C

par // 44Cq \ {z = 0} ψ // ψ(Cq \ {z = 0}) π◦ // P1
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The map (π◦ ◦ ψ ◦ par) is given by

x+ iy 7→
[−ρQq(x, y)

4(ν2 + ρ2)
+ i
−νQq(x, y)

4(ρ2 + ν2)
: 1

]

where ρ, ν ∈ R are the real coordinates of π◦(Cq), i.e. π◦(Cq) = [ρ + iν : q], and Qq(x, y) ∈ R[x, y] is
of degree 2. This shows that the points π◦(Cq) and π◦(C(αq)−1(p2)) are equal up to multiplication by
−Qq(x,y)
4(ν2+ρ2) , which yields the claim. �

Recall the definition of the homomorphism

Φ: AutR(P2) ∗ J∗ ∗ J◦ −→
⊕

R
Z/2Z, f 7→

{
ϕ◦(f), f ∈ J◦
0, f ∈ AutR(P2) ∪ J∗

Proposition 4.3. The homomorphism Φ induces a surjective homomorphism of groups

ϕ : BirR(P2) −→
⊕

R
Z/2Z

which is given as follows:
Let f ∈ BirR(P2) and write f = fn · · · f1, where f1, . . . , fn ∈ AutR(P2)∪J∗∪J◦. Then ϕ(AutR(P2)∪

J∗)) = 0 and

ϕ(f) =
n∑

i=1

Φ(fi) =
∑

fi∈J◦
ϕ◦(fi)

Its kernel ker(ϕ) contains all elements of degree ≤ 4.

Proof. Let π : AutR(P2) ∗ J∗ ∗ J◦ → G ' BirR(P2) be the quotient map (Remark 2.8). We want to
show that there exists a homomorphism ϕ : BirR(P2)→⊕

R Z/2Z such that the diagram

AutR(P2) ∗ J∗ ∗ J◦ π //

Φ

��

G ' BirR(P2)

∃ ϕ
vv⊕

R
Z/2Z

is commutative. For this, it suffices to show that ker(π) ⊂ ker(Φ). By Lemma 4.1, Φ induces a homo-
morphism from the generalised amalgamated product of AutR(P2),J∗,J◦ along all intersections onto⊕

R Z/2Z. So, by Remark 2.8 it suffices to show that Φ sends the relations (1), (2), (3) in Definition 2.7
onto zero.

Linear, quadratic and cubic transformations in J◦ and the group J∗ are sent onto zero by ϕ (defi-
nition of Φ and Remark 3.11 (2)), hence relations (2) and (3) are contained in ker(Φ). So, we just have
to bother with relation (1):

Lets θ1, θ2 ∈ J◦ be standard quintic transformations, α1, α2 ∈ AutR(P2) such that

θ2 = α2θ1α1

If α1, α2 are contained in J◦, then Φ(α2θ1α1(θ2)−1) = ϕ◦(α2θ1α2(θ2)−1) = ϕ◦(Id) = 0.
So, lets assume that α1, α2 /∈ J◦ and define q := (q, q̄) for q ∈ P2. Denote S(θ1) = {p3}, S((θ1)−1) =

{p4}. There exist i, j ∈ {1, 2, 3} such that (α1)−1(pi) = p1, (α1)−1(pj) = p2. Since α1 /∈ J◦, we

have 3 ∈ {i, j}. By Remark 3.2 there exist β, γ ∈ J◦ ∩ AutR(P2) such that (α−1
1 β−1)(p1) = p1 and

(α2γ)(p1) = p1. We obtain that (βα1)−1(p3) ∈ p2 and (α2γ)(p4) ∈ p2. It follows from Lemma 4.2 that

Φ(θ2) = Φ
(
(α2γ)(γ−1θ1β

−1)(βα1)
)

= Φ(θ1),

i.e. Φ sends relation (1) onto zero. The surjectivity of ϕ follows from the surjectivity of ϕ0 (Lemma 3.12).
If f ∈ BirR(P2) is of degree 2 or 3 there exists α, β ∈ AutR(P2) such that βfα ∈ J∗. Hence ϕ(f) = 0.

If deg(f) = 4, f is a composition of quadratic maps, hence ϕ(f) = 0. �
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Let X be a real variety. We denote by X(R) its set of real points of and by Aut(X(R)) ⊂ Bir(X)
the subgroup of transformations defined at each point of X(R). It is also called the group of birational
diffeomorphisms of X, and is, in general, strictly larger than the group of automorphisms AutR(X) of
X defined over R. The group Aut(P2(R)) is generated by AutR(P2) and the standard quintic transfor-
mations [RV2005, BM2012]. Until now no similar result has been found for Aut(A2(R)).

Corollary 4.4. There exist surjective group homomorphisms

Aut(P2(R))→
⊕

R
Z/2Z, Aut(A2(R))→

⊕

R
Z/2Z.

Proof. We identify A2(R) with P2(R)\Lp1,p̄1 . All quintic transformations are contained in Aut(P2(R))
(Lemma 2.3) and preserve C3 := Lp1,p̄1 ∪Lp2,p̄2 . For any standard quintic transformation θ there exists
a permutation α of p1, . . . , p̄2 such that αθ preserves Lpi,p̄i , i = 1, 2, i.e. is contained in Aut(A2(R)).
Therefore, the restriction of ϕ onto Aut(P2(R)) and Aut(A2(R)) is surjective. �

Let Q3,1 ⊂ P2 be the variety given by the equation w2 = x2 + y2 + z2. Its real part Q3,1(R) is the
2-sphere S2.

Lemma 4.5. There exists a surjective group homomorphism

Aut(Q3,1(R))→
⊕

R
Z/2Z.

Proof. By [KM2009, Theorem 1] (see also [BM2012, Theorem 1.4]), the group Aut(Q3,1(R)) is gen-
erated by AutR(Q3,1) = PO(3, 1) and the family of standard cubic transformations (see [BM2012,
Example 5.1] for definition). Consider the stereographic projection

p: Q3,1 99K P2, [w : x : y : z] 799K [w − z : x : y]

It is a real birational transformation obtained by first blowing-up the point [1 : 0 : 0 : 1] and then
blowing down the singular hyperplane section w = z onto the points p2, p̄2. The inverse p−1 is an
isomorphism around p1, p̄1 and p sends a general hyperplane section onto a general conic passing
through p2, p̄2.

To prove the Lemma, it suffices to show that every standard quintic transformation in J◦ that
contracts the conic passing through all its base-points except p2 onto p2 is conjugate via p to a standard
cubic transformation in Aut(Q3,1(R)). Let θ ∈ J◦ be a standard quintic transformation with base-
points p1, p̄1, p2, p̄2, p3, p̄3, and assume that the conic passing through p1, p̄1, p̄2, p3, p̄3 is contracted
by θ−1 onto p2. Then p θ p−1 ∈ Aut(Q3,1(R)). Let C ⊂ P2 be a general conic passing through p2, p̄2.
Then θ−1(C) is a curve of degree 6 with multiplicty 3 in p2, p̄2 and multiplicity 2 in p1, p̄1, p3, p̄3.
Therefore, (p−1 θ−1)(C) ⊂ Q3,1 is a curve of self-intersection 18 passing through p−1(p1),p−1(p̄1),
p−1(p3),p−1(p̄3) with multiplicity 2. It follows that (p−1 θ p)−1 sends a general hyperplane section
onto a cubic section having multiplicity 2 at these four points. [BM2012, Lemma 5.4 (3)] implies that
p−1 θ p ∈ Aut(Q3,1(R)) is a standard cubic transformation. �

Corollary 4.4 and Lemma 4.5 imply Corollary 1.5.

Corollary 4.6 (Corollary 1.6). For any real birational map ψ : F0 99K P2, the group ψAut(F0(R))ψ−1

is a subgroup of ker(ϕ).

Proof. By [BM2012, Theorem 1.4], the group Aut(F0(R)) is generated by AutR(F0) ' PGL(2,R)2 o
Z/Z and the involution

τ : ([u0 : u1], [v0 : v1]) 799K ([u0, u1], [u0v0 + u1v1 : u1v0 − u0v1]).

Consider the real birational map

ψ : P2 99K F0, [x : y : z] 799K ([x : z], [y : z]),

with inverse ψ−1 : ([u0 : u1], [v0, v1]) 799K [u0v1 : u1v0 : u1v1].
A quick calculation shows that the conjugate by ψ of these generators of Aut(F0(R)) are of degree

at most 3. Proposition 4.3 implies that they are contained in ker(ϕ). In particular, ψ−1 Aut(F0(R))ψ ⊂
ker(ϕ). Since ker(ϕ) is a normal subgroup of BirR(P2), the same statement holds for any other real
birational map P2 99K F0. �
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Corollary 4.7 (Corollary 1.7). For any n ∈ N there is a normal subgroup of BirR(P2) of index 2n

containing all elements of degree ≤ 4.
The same statement holds for Aut(P2(R)), Aut(A2(R)) and Aut(Q3,1(R)).

Proof. Let prδ1,...,δn :
⊕

R Z/2Z → (Z/2Z)n be the projection onto the δ1, . . . , δn-th factors. Then
prδ1,...,δn ◦ ϕ has kernel of index 2n containing ker(ϕ) and thus all elements of degree ≤ 4. By Corol-
lary 1.5, the same argument works for Aut(P2(R)), Aut(A2(R)) and Aut(Q3,1(R)). �

Lemma 2.5 and Theorem 2.4 imply that BirR(P2) is generated by AutR(P2), σ1, σ0 and all standard
quintic transformations in J◦. This generating set is not far from being minimal:

Corollary 4.8 (Theorem 1.1 and Corllary 1.4). The group BirR(P2) is not generated by AutR(P2) and
a countable family of elements.

The same statement holds for Aut(P2(R)), Aut(A2(R)) and Aut(Q3,1(R)), replacing AutR(P2) for
the latter two by AutR(A2), AutR(Q3,1) respectively.

Proof. If BirR(P2) was generated by AutR(P2) and a countable family {fn}n∈N of elements of BirR(P2)
then by Proposition 4.3, the countable family would yield a countable generating set of ⊕RZ/2Z, which
is impossible.

The same argument works for Aut(P2(R)), Aut(Q3,1(R)) and Aut(A2(R)) - for the latter two we
replace AutR(P2) respectively by PO(3, 1) and by the subgroup of affine automorphisms of A2, which
corresponds to AutR(P2) ∩Aut(A2(R))). �
Corollary 4.9 (Corollary 1.8). The normal subgroup of BirR(P2) generated by any countable set of
elements of BirR(P2) is a proper subgroup of BirR(P2).
The same statement holds for Aut(P2(R)), Aut(A2(R)) and Aut(Q3,1(R)).

Proof. Let S ⊂ BirR(P2) be a countable set of elements. Its image π(S) ⊂ ⊕R Z/2Z is a countable
set and hence a proper subset of

⊕
R Z/2Z. Since π is surjective (Proposition 4.3), the preimage

π−1(π(S)) ( BirR(P2) is a proper subset. The group ⊕RZ/2Z is Abelian, so the set π−1(π(S)) contains
the normal subgroup of BirR(P2) generated by S, which in particular is a proper subgroup of BirR(P2).

�
Remark 4.10. The group homomorphism ϕ : BirR(P2)→⊕

R Z/2Z does not have any sections: If it
had a section, then for any k ∈ N the group (Z/2Z)k would embed into BirR(P2), which is not possible
by [Bea2007].

Remark 4.11. Over C, the group J◦ is conjugate to J∗ (f.e. by any quadratic transformation having
base-points p1, p̄1, p2 and sending p̄2 onto [1 : 0 : 0]). This is not true over R: By Proposition 4.3, one
is contained in ker(ϕ) and the other is not.

Remark 4.12.
(1) No proper normal subgroup of BirR(P2) of finite index is closed with respect to the Zariski or

the Euclidean topology because BirR(P2) is connected with respect to either topology [Bla2010].
(2) The group BirC(P2) does not contain any proper normal subgroups of countable index: Assume

that {Id} 6= N is a normal subgroup of countable index. The image of PGL3(C) in the quotient is
countable, hence PGL3(C) ∩N is non-trivial. Since PGL3(C) is a simple group, we have PGL3(C) ⊂
N . Since the normal subgroup generated by PGL3(C) is BirC(P2) [Giz1994, Lemma 2], we get that
N = BirC(P2).

Lemma 4.13. The normal subgroup of BirC(P2) generated by any non-trivial element of of degree ≤ 4
is equal to BirC(P2).

Proof. The claim is stated in [Giz1994, Remark on Lemma 2, p. 42] for degree ≤ 7 but only a partial
proof is given, which works for all transformations preserving a pencil of lines [Giz1994, Lemma 2].

(deg 1:) For degree 1, it is the fact that the normal subgroup generated by PGL3(C) is equal to
BirC(P2) [Giz1994, Lemma 2, Case 1 of proof].

(deg 2, 3:) Let f ∈ BirR(P2) be of degree 2 or 3. There exists a proper base-point q (resp. q′) of f
(resp. f−1) such that f sends the pencil of lines through q onto the pencil of lines through q′. Pick
α ∈ PGL3(C) that exchanges q, q′ and such that fα−1fα 6= Id. Then Id 6= fα−1fα is contained in
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the normal subgroup generated by f and preserves the pencil of lines through q′. Hence the normal
subgroup generated by f is BirC(P2) [Giz1994, Lemma 2].

(deg 4:) If the transformation has a triple base-point, we prove the claim with a similar argument
as above. For transformations without triple points, despite the idea of proof in [Giz1994, Remark on
lemma 2], we only succeeded to show the claim with a lot of effort and a rather long case by case study
depending on the configuration of the base-points. �

5. The kernel of the quotient

In this section, we prove that the kernel of ϕ : BirR(P2) → ⊕
R Z/2Z is the normal subgroup

generated by AutR(P2), which will turn out to be the commutator subgroup of BirR(P2). It implies
that the quotient ϕ : BirR(P2)→⊕

R Z/2Z is in fact the Abelianisation of BirR(P2).
For this, we will again use the presentation of BirR(P2) in terms of generators and relations given in

Proposition 2.9. We will see that ker(ϕ) is the normal subgroup generated by AutR(P2), J∗ and ker(ϕ0),
and then it suffices to prove that J∗ and ker(ϕ◦) are contained in the normal subgroup generated by
AutR(P2).

The key idea is to show that if two standard quintic transformations θ1, θ2 are sent by ϕ◦ onto the
same image, then θ2 can be obtained by composing θ1 with a suitable amount of quadratic elements,
which will imply that θ1(θ2)−1 is contained the normal subgroup of BirR(P2) generated by AutR(P2).
For this to be useful, we need to be able to put the quintic elements next to each other when decom-
posing an element of J◦ into quadratic and standard quintic elements. To do this we need to sidle off
to involve special quintic transformations (see Definition 3.4), which is why they pop up again in this
section.

More precisely, Lemma 5.6 shows that if two standard or special quintic transformations in J◦ have
the same image via ϕ◦, we can obtain one from the other by composing with a suitable amount of
quadratic transformations in J◦. We then show that every quadratic transformation in BirR(P2) is
contained in the normal subgroup generated by AutR(P2) (Lemma 5.8). Lemma 5.9 shows that J∗ is
contained in the normal subgroup generated by AutR(P2). All of this will yield that that the kernel of
ϕ is indeed the normal subgroup generated by AutR(P2) (Proposition 5.13)

Definition 5.1. We denote by 〈〈AutR(P2)〉〉 the normal subgroup of BirR(P2) generated by AutR(P2).

5.1. Geometry between cubic and quintic transformations. One idea in the proof that ker(ϕ) =
〈〈AutR(P2)〉〉 is to see that if two standard quintic transformations are sent onto the same standard
vector in

⊕
R Z/2Z, then one is obtained from the other by composing from the right and the left with

suitable cubic maps, which in turn can be written as composition of quadratic maps. For this, we first
have to dig into the geometry of cubic maps.

Remark 5.2. Let f ∈ J◦ of degree 3 and r ∈ P2(R) its double point. The points p1, . . . , p̄2 are base-
points of f of multiplicity 1 (Lemma 3.1). Note that for i ∈ {1, 2}, the map f contracts the line passing
through r, pi onto one of p1, p̄1, p2, p̄2 and that by Bézout the (real) double point is not collinear with
any two of p1, p̄1, p2, p̄2.

Lemma 5.3. For every r ∈ P2(R) not collinear with any two of p1, p̄1, p2, p̄2 there exists f ∈ J◦ of
degree 3 with base-points r, p1, p̄1, p2, p̄2 (with double point r).

Proof. Since r is not collinear with any two of p1, p̄1, p2, p̄2, there exists τ1 ∈ J◦ quadratic with
base-points r, p1, p̄1 (Lemma 3.3). The base-points of its inverse are s, pi, p̄i for some s ∈ P2(R) and
i ∈ {1, 2}. We can assume that i = 1 by exchanging p1, p2 if necessary (Remark 3.2). Since r, p2, p̄2 are
not collinear, also s, p2, p̄2 are not collinear because τ1 sends the lines through r onto the lines through
s and preserves {p2, p̄2}. Moreover, s is not collinear with p1, p2 because (τ−1

1 )•(p2) ∈ {p2, p̄2} is a
proper point of P2. Hence there exists τ2 ∈ J◦ of degree 2 with base-point s, p2, p̄2 (Lemma 3.3). The
map τ2τ1 ∈ J◦ is of degree 3 with base-points r, p1, p̄1, p2, p̄2. �

Lemma 5.4. Let q ∈ P2(C) \ {p1, p̄1, p2, p̄2} be a non-real point such that Cq = π−1
◦ (π◦(q)) is ir-

reducible. Then there exists a real point r ∈ P2(C) and f ∈ J◦ of degree 2 or 3 with r among its
base-points such that

(1) f(Cq) = Cq

68



18 SUSANNA ZIMMERMANN

r

p1

p̄1

p2

p̄2

π η

η(C̃r)

p̄2

p2

p̄1p1

η•(q)

q

q

C̃r

L̃r,p1

Lr,p̄1

Lr,p2

Lr,p̄2

E1

Ē1
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Figure 2. The cubic transformation of Lemma 5.4

(2) f•(q) is infinitely near p1 corresponding to the tangent direction of f(Cq)
(3) either deg(f) = 3 and Cr is irreducible or deg(f) = 2 and Cr is singular.
(4) q ∈ Lr,p̄2 .

Proof. Let L be the line passing through q, p̄2. Since Cq is irreducible, q is not collinear with any of
p1, p̄1, p2, p̄2. It follows that L 6= L̄, and so L and L̄ intersect in exactly one point r, which is a real
point.

If r is not collinear with any two of p1, p̄1, p2, p̄2, then Lemma 5.3 states that there exists f ∈ J◦ of
degree 3 with singular point r. The line L is contracted onto pi or p̄i, i ∈ {1, 2}. By composing with
elements of AutR(P2)∩J◦, we can assume that L is contracted onto p1 and that f preserves the conic
Lp1,p2 ∪ Lp̄1,p̄2 , and thus induces the identity map on P1 (Lemma 3.7), and therefore preserves Cq. It
follows that f•(q) is infinitely near p1 and corresponds to the tangent direction of f(Cq) = Cq.

If r is collinear with two of p1, p̄1, p2, p̄2, it is collinear with p1, p̄1 and not collinear with any other
two. Lemma 3.3 implies that there exists f ∈ J◦ of degree 2 with base-points r, p2, p̄2, and we can choose
f such that the line L (through q, p̄2, r) is contracted onto p1 (then f({p1, p̄1}) = {p2, p̄2}) and such

that f(p1) = p2. Then f•(q) is infinitely near p1. We claim that f(Cq) = Cq: Call f̂ the automorphism

of P1 induced by f . We calculate f̂−1 (cf. proof of Lemma 3.7). Since f(Lp1,p2) = Lp1,p2 , we see that

f̂−1 : [u : v] 7→ [(r2
1 + (r0 + r2)2)u : (r2

1 + (r0− r2)2)v], where r = [r0 : r1 : r2]. Since r ∈ Lp1,p̄1 , we have

r2 = 0 and so f̂−1 = Id. In particular, f(Cq) = Cq. �

Remark 5.5. Let θ1, θ2 ∈ J◦ be special quintic transformations with S(θi) = {(qi, q̄i)}. If Cq1 = Cq2
or Cq1 = Cq̄2 , then q1 = q2 or q1 = q̄2 respectively. In particular, there exist α1, α2 ∈ J◦ ∩ AutR(P2)
such that θ2 = α2θ1α1.

Lemma 5.6. Let θ1, θ2 ∈ J◦ be standard quintic transformations with S(θi) = {(qi, q̄i)}, i = 1, 2.
Assume that Cq1 = Cq2 or Cq1 = Cq̄2 .

Then there exist τ1, . . . , τ8 ∈ J◦ of degree ≤ 2 such that θ2 = τ8 · · · τ5θ1τ4 · · · τ1.

Proof. By exchanging the names of q2, q̄2, we can assume that Cq1 = Cq2 . It suffices to show that there
exist g1, . . . , g4 ∈ J◦ of degree ≤ 3 such that θ2 = g4g3θ1g2g2, since every element of J◦ of degree 3
can be written as a product of two qudratic elements of J◦. We give an explicit construction of the
gi’s.

According to Lemma 5.4 there exist for i = 1, 2 a real point ri and fi ∈ J◦ of degree di ∈ {2, 3}
with base-point ri such that fi preserves Cqi and ti := (fi)•(qi) is infinitely near p1 corresponding to
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the tangent direction of Cqi and that qi ∈ Lri,p̄2 =: L. Since Cri is real, ri is not on a conic contracted
by θi, and so si := (θi)•(ri) = θi(ri) is a proper point of P2.

If Cri is irreducible (and hence di = 3), then ri is not collinear with any two of p1, . . . , p̄2, and so
si is not collinear with any two of p1, . . . , p̄2 either. Therefore, there exists hi ∈ J◦ of degree 3 with
singular base-point si (Lemma 5.3). If Cri is singular (and hence di = 2), then ri ∈ Lp1,p̄1 , and so
si ∈ θi(Lp1,p̄1) = Lpj ,p̄j for some j ∈ {1, 2}. Therefore, there exists hi ∈ J◦ of degree 2 with base-points
si, p3−j , p̄3−j (Lemma 3.3).

By composing hi with elements in J◦∩AutR(P2), we can assume that hi sends the line θi(Lri,p̄2) onto
p1 (Remark 5.2). Then hiθi(fi)

−1 ∈ J◦ is of degree 5. Its base-points are p1, p̄1, p2, p̄2, (fi)•(qi), (fi)•(q̄i),
where the latter ones are infinitely near p1, p̄1 corresponding to the tangent direction of Cqi , Cq̄i .
By Remark 5.5, h1θ1(f1)−1 and h2θ2(f2)−1 have exactly the same base-points, hence h1θ1(f1)−1 =
βh2θ2(f2)−1α for some α, β ∈ AutR(P2) ∩ J◦. In particular, θ2 = (h2)−1β−1h1θ1(f1)−1α−1f2. The
claim follows with g1 = α−1f2, g2 = (f1)−1, g3 = β−1h1, g4 = (h2)−1. �

Lemma 5.7. Let θ1, θ2 ∈ J◦ be a standard and a special quintic transformation respecitvely with
S(θi) = {(qi, q̄i)}. Assume that Cq1 = Cq2 or Cq1 = Cq̄2 .

Then there exists τ1, . . . , τ4 ∈ J◦ of degree ≤ 2 such that θ2 = τ4τ3θ1τ2τ1.

Proof. By exchanging the names of q1, q̄1, q2, q̄2, we can assume that Cq1 = Cq2 and that q2 is infinitely
near pi, i ∈ {1, 2}. By Lemma 5.4 there exists f ∈ J◦ of degree d ∈ {2, 3} such that f(Cq1) = Cq1 = Cq2
and f•(q1) is infinitely near pi. Let r be the real base-point of f . Since r is real, it is not on a conic
contracted by θ1, and so (θ1)•(r) = θ1(r) is a proper point of P2.

If Cr is irreducible (i.e. d = 3), the conic θ1(Cr) = Cθ(r) is irreducible as well. By Lemma 5.3 there
exists g ∈ J◦ of degree 3 with double point θ1(r). If Cr is singular (i.e. d = 2), the conic θ1(Cr) = Cθ(r)
is singular as well. By Lemma 3.3 there exists g ∈ J◦ of degree 2 with θ(r) among its base-points.

The map gθ1f
−1 is of degree 5 with base-points p1, p̄1, p2, p̄2, f•(q1), f•(q1), where the latter two

are infinitely near pi, p̄i corresponding to the tangent directions Cq1 = Cq2 , Cq̄2 . Hence there exists
α ∈ AutR(P2) ∩ J◦ such that αgθ1f

−1 = θ2. The claim follows from the fact that we can write f, g as
composition of at most two quadratic transformations in J◦. �

5.2. The normal subgroup generated by AutR(P2). Lemma 5.6 implies that if two standard
or special quintic transformations θ1, θ2 contract the same conics through p1, p̄1, p2, p̄2, then θ2 is
obtained from θ1 by composing with suitable quadratic transformations. So, one step of proving that
ker(ϕ) = 〈〈AutR(P2)〉〉 is to see that all quadratic transformations are contained in 〈〈AutR(P2)〉〉.
Lemma 5.8. Any quadratic map in BirR(P2) is contained in 〈〈AutR(P2)〉〉.
Proof. Let τ ∈ BirR(P2) be of degree 2. Pick two base-points q1, q2 of τ that are either a pair of non-real
conjugate points or two real base-points, such that either both are proper points of P2 or q1 is a proper
point of P2 and q2 is in the first neighbourhood of q1. Let t1, t2 be base-points of τ−1 such that τ sends
the pencil of conics through q1, q2 onto the pencil of conics through t1, t2. Pick a general point r ∈ P2

and let s := τ(r). There exists α ∈ AutR(P2) that sends q1, q2 onto t1, t2 and exchanges r, s. The map
τ̃ := τα is of degree 2, fixes s, and t1, t2 are base-points of τ̃ and τ̃−1.

Since r is general, also s is general, and there exists θ ∈ BirR(P2) of degree 2 with base-points
t1, t2, s. Observe that the map θτ̃θ−1 is linear. In particular, τ is contained in 〈〈AutR(P2)〉〉. �

Recall that J∗ is contained in ker(ϕ). Using Lemma 5.8, we now prove that J∗ is contained in
〈〈AutR(P2)〉〉:
Lemma 5.9. The group J∗ is generated by its quadratic and linear elements. In particular, J∗ ⊂
〈〈AutR(P2)〉〉.
Proof. Let f ∈ J∗. We do induction on the degree d = deg(f) of f . If f is linear or quadratic, there is
nothing to do. So, we can assume that d ≥ 3.

Case 1: Assume that there exist two simple base-points q1, q2 of f that are proper points of P2

and either non-real conjugate points or both real points. The points [1 : 0 : 0], q1, q2 are not collinear
by Bézout, hence there exists a quadratic map τ ∈ J∗ with base-points [1 : 0 : 0], q1, q2. The map
fτ−1 ∈ J∗ is of degree d− 1.
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Case 2: Assume that f has exactly one simple (real) base-point q that is a proper point of P2. Let
r be a general real point in P2. There exists τ1 ∈ J∗ of degree 2 with base-points [1 : 0 : 0], q, r and
the map f(τ1)−1 ∈ J∗ is of degree d. If t is a base-point of f in the first neighbourhood of [1 : 0 : 0] or
q, then (τ1)•(t) is a base-point of f(τ1)−1 that is a proper point of P2. Thus f(τ1)−1 has at least two
simple base-points that are proper points of P2 and either non-real conjuagte points (if t is non-real)
or both real (if t is real). We proceed as above.

Case 3: Assume that f has no simple proper base-points at all, i.e. any simple base-point is infinitely
near [1 : 0 : 0].
• If there are at least two base-points q1, q2 in the first neighbourhood of [1 : 0 : 0], let r, s ∈ P2 be

general points. There exists τ1 ∈ J∗ of degree 2 with base-points [1 : 0 : 0], r, s. Call [1 : 0 : 0], r′, s′ the
base-points of (τ1)−1. The map f(τ1)−1 is of degree d+ 1. We may assume that q1, q2 are both real or
a pair of non-real conjugate points. Then (τ1)•(q1), (τ1)•(q2) are proper points of P2 and base-points of
f(τ1)−1. Since [1 : 0 : 0], τ1(q1), τ1(q2) are not collinear, there exists τ2 ∈ J∗ of degree 2 with base-points
[1 : 0 : 0], τ1(q1), τ1(q2). The map f(τ1)−1(τ2)−1 is of degree d. We claim that the image by (τ2)•(τ1)•

of all base-points of f different from q1, q2 in the first neighbourhood of [1 : 0 : 0] or of q1, q2 are
base-points of f(τ1)−1(τ2)−1 that are proper points of P2 or are in the 1st neighbourhood of [1 : 0 : 0]:
Indeed, let t be a base-point of f in the 1st neighbourhood of [1 : 0 : 0] or q1. Then (τ1)•(t) is either a
proper point of P2 on the line Lr′,s′ or is infinitely near τ1(q1). By Bézout, [1 : 0 : 0], τ1(q1), (τ1)•(t) are
not collinear. It follows that (τ2)•((τ1)•(t)) is either in the 1st neighbourhood of [1 : 0 : 0] (if t is in the
1st neighbourhood of [1 : 0 : 0] or q1 and proximate to [1 : 0 : 0]) or a proper point of P2 (if t is in the 1st

neighbourhood of q1 but not proximate to [1 : 0 : 0]). The situation is visualised in the following picture:

[1 : 0 : 0]
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q2

r

s
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(τ1)•(q1)
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[1 : 0 : 0]

(τ2)•((τ1)•(t))
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(τ2)•(s′)

(τ2)•((τ1)•(t))

Figure: The quadratic maps τ1, τ2, and the possibilities for the point (τ2)•((τ1)•(t)).

Since not all base-points of f are proximate to [1 : 0 : 0], we can repeat all of this until we obtain
an element of J∗ of degree d with simple proper base-points. We continue as in Case 1 or Case 2.
• If there is exactly one base-point q of f in the first neighbourhood of [1 : 0 : 0], then in particular,

q is a real point. Let r ∈ P2 be a general real point. There exists τ ∈ J∗ of degree 2 with base-points
[1 : 0 : 0], q, r. The map fτ−1 ∈ J∗ is of degree d and the image by τ• of any base-point in the first
neighbourhood of q is a base-points of fτ−1 in the first neighbourhood of [1 : 0 : 0]. We repeat this
step until we reach one of the above cases or until we obtain a linear map. �

5.3. The kernel is equal to 〈〈AutR(P2)〉〉. It now remains to actually prove that ker(ϕ) = 〈〈AutR(P2)〉〉.
Take an element of ker(ϕ). It is the composition of linear, quadratic and standard and special quintic
elements (Lemma 3.6). The next three lemmata show that we can choose the order of the linear, qua-
dratic and standard and special quintic elements so that the ones belonging to the same coset are just
one after another. These lemmata will be the remaining ingredients to prove that ker(ϕ) = 〈〈AutR(P2)〉〉
Lemma 5.10. Let τ, θ ∈ J◦ be a quadratic and a standard (or special) quintic transformation re-

spectively. Then there exist τ̃1, τ̃2 ∈ J◦ of degree 2 and θ̃1, θ̃2 ∈ J◦ standard (or special quintic)

transformations such that τθ = θ̃1τ̃1 and θτ = τ̃2θ̃2, i.e. we can ”permute” τ, θ.

Proof. The map τ−1 has base-points pi, p̄i, r, for some r ∈ P2(R), i ∈ {1, 2}. Since r is not on a conic
contracted by θ, the point θ•(r) = θ(r) is a proper point of P2 that is a base-point of (θτ)−1. Let
pji be the image by θ of the contracted conic not passing through pi. The map θτ is of degree 6 and
pji , p̄ji are base-points of (θτ)−1 of multiplicity 3. By Lemma 3.3 there exists τ̃ ∈ J◦ of degree 2 with
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base-points θ(r), pji , p̄ji . The map θ̃ := τ̃ θτ ∈ J◦ is a standard (or special) quintic transformation. We

put τ̃2 := τ̃−1, θ̃2 := θ̃. A similar construction yields θ̃1, τ̃1. �
Lemma 5.11. Let θ1, θ2 ∈ J◦ be standard or special quintic transformations (both can be either) such
that ϕ0(θ1) 6= ϕ0(θ2). Then there exist θ3, θ4 ∈ J◦ standard or special quintic transformations, such
that

θ2θ1 = θ4θ3, ϕ0(θ1) = ϕ0(θ4), ϕ0(θ2) = ϕ0(θ3)

i.e. we can ”permute” θ1, θ2.

Proof. Let S(θ1) = {(p3, p̄3)} and S(θ2) = {(p4, p̄4)}. By definition of ϕ0 the assumption ϕ0(θ1) 6=
ϕ0(θ2) implies p4 /∈ Cp3 ∪ Cp̄3 .

The point p5 := ((θ1)−1)•(p4) is either a proper point of P2 or in the first neighbourhood of one
of p1, p̄1, p2, p̄2. Because p4, p̄4, p1, p̄1, p2, p̄2 are not on one conic, the points p5, p̄5, p1, . . . , p̄2 are not
on one conic. So, there exists a standard or special quintic transformation θ3 ∈ J◦ with base-points
p1, . . . , p̄2, p5, p̄5. The map θ4 := θ2θ1(θ3)−1 ∈ J◦ is a standard or special quintic transformation. In
fact, its inverse has base-points p1, . . . , p̄2, (θ2)•(p3), (θ2)•(p̄3). We have by construction θ2θ1 = θ4θ3.
The equalities ϕ◦(θ1) = ϕ◦(θ4) and ϕ◦(θ2) = ϕ◦(θ3) follow from the construction and Remark 3.11 (7).

�
Lemma 5.12. Let θ1, θ2 ∈ J◦ be standard or special quintic transformations (both can be either) such
that ϕ0(θ1) = ϕ0(θ2). Then θ1(θ2)−1 ∈ 〈〈AutR(P2)〉〉.
Proof. Let S(θ1) = {(p3, p̄3)} and S(θ2) = {(p4, p̄4)}. The assumption ϕ0(θ1) = ϕ0(θ2) implies that
there exists some λ ∈ R>0 such that π◦(Cp3) = λπ◦(Cp4) or π◦(Cp3) = λπ◦(Cp̄4) in P1. By Lemma 3.7
there exist τ1 ∈ J◦ of degree 2 such that π◦(τ1(Cp3)) = π◦(Cp4) (resp. π◦(Cp̄4)), i.e. τ1(Cp3) = Cp4
(resp. Cp̄4). Let r be the real base-points of τ . Since Cr is a real conic, it is not contracted by θ1 and
hence (θ1)•(r) = θ1(r) is a proper point of P2 and a base-point of (θ1τ1)−1. Let pji be the image by θ1 of
the contracted conic not passing through pi. The map θ1τ1 is of degree 6 and pji , p̄ji are base-points of
(θ1τ1)−1 of multiplicity 3. By Lemma 3.3 there exists τ2 ∈ J◦ of degree 2 with base-points θ(r), pji , p̄ji .
The map τ2θ1τ1 ∈ J◦ is a standard or special quintic transformation contracting the conics Cp4 , Cp̄4 .
Hence, by Lemma 5.6, Remark 5.5 and Lemma 5.7, there exist ν1, . . . , ν2m ∈ J◦ of degree ≤ 2 such
that θ2 = ν2m · · · νm+1(τ2θ1τ

−1
n )νm · · · ν1. Then

θ1(θ2)−1 =
(
θ1(νm · · · ν1)−1(τ1)θ−1

1 )
(
τ2)−1(ν2m · · · νm+1)−1.

By Lemma 5.8, all quadratic elements of J◦ belong to 〈〈AutR(P2)〉〉, so θ1(θ2)−1 is contained in
〈〈AutR(P2)〉〉. �
Proposition 5.13. Let ϕ : BirR(P2) → ⊕

R Z/2Z be the surjective group homomorphism defined in
Theorem 4.3. Then

ker(ϕ) = 〈〈AutR(P2)〉〉
Proof. By definition of ϕ (see Proposition 4.3), AutR(P2) is contained in ker(ϕ), hence 〈〈AutR(P2)〉〉 ⊂
ker(ϕ). Lets prove the other inclusion. Consider the commutative diagram from Proposition 4.3:

AutR(P2) ∗ J∗ ∗ J◦ π //

Φ

��

G ' BirR(P2)

ϕ
vv⊕

R
Z/2Z

It follows that ker(ϕ) = π(ker(Φ)), which is the normal subgroup generated by AutR(P2),J◦ and
ker(ϕ◦). Moreover, AutR(P2) and J∗ are contained in 〈〈AutR(P2)〉〉 (Lemma 5.9), thus it suffices to
prove that ker(ϕ0) is contained in 〈〈AutR(P2)〉〉.

By Lemma 3.6, every f ∈ ker(ϕ◦) is the composition of linear, quadratic and standard quintic
elements of J◦. Note that a quadratic or quintic element composed with a linear element is still a
quadratic or standard quintic element respectively, so we can assume that f decomposes into quadratic
and standard quintic elements. For every δ ∈ R the number of standard quintic elements in the
decomposition of f with image eδ is even. According to Lemma 5.10 and Lemma 5.11, we can write
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f as a composition of quadratic, and standard and special quintic transformations, such that for each
δ ∈ R, all the standard and special quintic transformations with image eδ are next to each other.
In particular, for any δ the number of standard and special quintic transformations next to each
other that are sent onto eδ is even. It follows from Lemma 5.12, Lemma 5.8 and ϕ0(θ) = ϕ0(θ−1)
(Remark 3.11 (6)) that f ∈ 〈〈AutR(P2)〉〉. �
Corollary 5.14. We have

〈〈AutR(P2)〉〉 = ker(ϕ) =
[
BirR(P2),BirR(P2)

]

Proof. The first equality is Proposition 5.13. The normal subgroup
[
BirR(P2),BirR(P2)

]
contains non-

trivial linear elements, and since AutR(P2) is a simple group,
[
BirR(P2),BirR(P2)

]
contains AutR(P2)

and therefore also 〈〈AutR(P2)〉〉. Thus, the Abelianisation homomorphism factors through ϕ. As ϕ is
a homomorphism onto an Abelian group it implies that ϕ is the Abelianisation homomorphism. �
Corollary 5.15 (Corollary 1.3). The sequence of iterated commutated subgroups of BirR(P2) is sta-
tionary. More specifically: Let H := [BirR(P2),BirR(P2)]. Then [H,H] = H.

Proof. Since AutR(P2) ⊂ H, the group [H,H] contains non-trivial elements of AutR(P2). But AutR(P2)
is simple, hence AutR(P2) ⊂ [H,H]. By Corollary 5.14, we have

H = 〈〈AutR(P2)〉〉 ⊂ [H,H].

�
Theorem 5.16 (Theorem 1.2). The group BirR(P2) is not perfect: its Abelianisation is isomorphic to

BirR(P2)/[BirR(P2),BirR(P2)] '
⊕

R
Z/2Z.

Moreover, the commutator subgroup of [BirR(P2),BirR(P2)] is the normal subgroup generated by AutR(P2) =
PGL3(R), and contains all elements of BirR(P2) of degree ≤ 4.

Proof. Follows from Proposition 4.3, Proposition 5.13 and Corollary 5.14. �
Remark 5.17. The kernel of ϕ is the normal subgroup N generated by all squares in BirR(P2): On
one hand, for any group G, its commutator subgroup [G,G] is contained in the normal subgroup of
G generated by all squares. On the other hand, since

⊕
R Z/2Z is Abelian and all its elements are of

order 2, the normal subgroup of BirR(P2) generated by the squares is contained in ker(ϕ). The claim
now follows from ker(ϕ) = [BirR(P2),BirR(P2)] (Corollary 5.14).

Remark 5.18. Endowed with the Zariski topology or the Euclidean topology (see [BF2013]), the
group BirR(P2) does not contain any non-trivial proper closed normal subgroups and 〈〈AutR(P2)〉〉 is
dense in BirR(P2) [BZ2015]. In particular, the quotient topology on

⊕
R Z/2Z is the trivial topology.

6. Presentation of BirR(P2) by generating sets and relations

This section is devoted to the rather technical proof of Proposition 2.9. We remind of the notation
p1 := [1 : i : 0], p2 := [0 : 1 : i].

Recall that BirR(P2) is generated by AutR(P2),J∗,J◦ (Corollary 2.6).
Consider FS , the free group generated by the set

S = AutR(P2) ∪ J∗ ∪ J◦.
There is a natural word map w : S → FS , sending an element to its corresponding word.

Remark 6.1. Let G as in Definition 2.7. There exists a natural surjective homomorphism G →
BirR(P2). By abuse of notation, we also denote by

w : AutR ∪J∗ ∪ J◦ → G
the composition of S → FS with the canonical projection FS → G.

Remark 6.2. In the proof that G ' BirR(P2) (Proposition 2.9) the relations given in the definition
of G (list in Definition 2.7) mostly turn up in the form of the following examples:
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(1) Let θ ∈ J◦ be a standard quintic transformation (see Definition 2.2). Call its base-points
p1, p̄1, p2, p̄2, p3, p̄3, and the base-points of its inverse p1, p̄1, p2, p̄2, p4, p̄4 where p3, p4 are non-
real proper points of P2. There exist i, j ∈ {1, 2} such that θ sends the pencil of conics pass-
ing through pi, p̄i, p3, p̄3 onto the pencil of conics passing through pj , p̄j , p4, p̄4. Let α1, α2 ∈
AutR(P2) such that α1 sends the set {p1, p̄1, p2, p̄2} onto {pi, p̄i, p3, p̄3}, and α2 sends the set
{pj , p̄j , p4, p̄4} onto the set {p1, p̄1, p2, p̄2}, i ∈ {1, 2}. Then α2θα1 ∈ J◦ is a standard quintic
transformation. The relation w(α2)w(θ)w(α1) = w(α2θα1) holds in G (Definition 2.7 (1)).

(2) Let τ ∈ J◦ be of degree 2 or 3. Let r be the real base-point of τ and s the real base-point
of τ−1. Observe that τ sends the pencil of lines through r onto the pencil of lines through s.
There exist α1, α2 ∈ AutR(P2) such that (α1)−1(r) = [1 : 0 : 0] = α2(s). Then α2τα1 is an
element of J∗ and the relation w(α2)w(τ)w(α1) = w(α2τα1) holds in G (Definition 2.7 (2)) .

(3) Let τ1, τ2 ∈ J◦ of degree 2 with base-points pi, p̄i, r and pj , p̄j , s respectively, and α ∈ AutR(P2)
such that α(pi) = pj and α(r) = s. Then τ2α(τ1)−1 is linear. The relation w(τ2)w(α)w((τ1)−1) =
w(τ2α(τ1)−1) holds in G ((Definition 2.7 (2)).

(4) Let τ1, τ2 ∈ J∗ be of degree 2 with base-points p := [1 : 0 : 0], r1, r2 and p, s1, s2 respectively,
and α ∈ AutR(P2) with α(ri) = si but α(p) 6= p (i.e. α /∈ J∗). Suppose that the base-
points of (τ1)−1, (τ2)−1 are p, r′1, r

′
2 and p, s′1, s

′
2 respectively. Then τ3 := τ2α(τ1)−1 is quadratic

with base-points r′1, r
′
2, τ1(α−1(p)) and its inverse has base-points s′1, s

′
2, τ2(α(p)). There exist

β1, β2 ∈ AutR(P2), τ̃3 ∈ J∗ of degree 2 such that τ3 = β2τ̃3β3. The relation w(β2)w(τ̃3)w(β2) =
w(τ2)w(α)w(τ1) holds in G (Definition 2.7 (3)).

Remark 6.3. Suppose θ1, θ2 ∈ J◦ are special quintic transformations (see Definition 3.4). If there
exist α1, α2 ∈ AutR(P2) such that θ2 = α2θ1α1 then α1, α2 permute p1, p̄1, p2, p̄2 and are thus contained
in J◦. So, the relation

w(θ2) = w(α2)w(θ1)w(α2) if θ2 = α2θ1α1 in BirR(P2)

is true in G and even in the generalised amalgamated product of AutR(P2)J∗,J◦ along all the pairwise
intersections.

Lookout 6.4. We are going to look at the following three situations: Let g ∈ AutR(P2) and f, h ∈
BirR(P2) belonging to J∗ or being standard quintic transformations.

Suppose that Λ is a real linear system of degree D := deg(Λ) and that

deg(h−1(Λ)) ≤ D, deg(fg(Λ)) < D

We want to find θ1, . . . , θn ∈ AutR(P2) ∪ J∗ ∪ J◦ such that w(f)w(g)w(h) = w(θn) · · ·w(θ1)

Λ
g // g(Λ)

f

##
h−1(Λ)

h

<<

θ1 // // θn // fg(Λ)

and such that the successive images of h−1(Λ) have degree < D or such that the degree certain elements
θi ∈ J∗ drop (Lemma 6.7, Lemma 6.10, Lemma 6.11).

This will then be the key ingredient to prove that G is isomorphic to BirR(P2) (Proposition 6.12).

Lemma 6.5. Let f ∈ J∗ ∪ J◦ be non-linear and Λ be a real linear system of degree deg(Λ) = D.
Suppose that

deg(f(Λ)) ≤ D (resp. deg(f(Λ)) < D).

(1) If f ∈ J∗, there exist two real or a pair of non-real conjugate base-points q1, q2 of f such that

mΛ([1 : 0 : 0]) +mΛ(q1) +mΛ(q2) ≥ D (resp. > D)

(2) Suppose that f ∈ J◦. Then there exists a base-point q /∈ {p1, . . . , p̄2} of f of multiplicity 2 such
that

(2.1) mΛ(p1) +mΛ(p2) +mΛ(q) ≥ D (resp. > D)

or f has a simple base-point r and there exists i ∈ {1, 2} such that

(2.2) 2mΛ(pi) +mΛ(r) ≥ D (resp. >).
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Moreover, if inequality (2.1) does not hold, we can replace ≥ with > in (2.2) if deg(f) > 2.

Proof. Define d := deg(f) to be the degree of f .
(1) Suppose that f ∈ J∗. Its characteristic is (d; d− 1, 12d−2). Let r1, . . . , r2d−2 be its simple base-

points. Since non-real base-points come in pairs, f has an even number N of real base-points. Call
mi := mΛ(ri) the multiplicity of Λ in ri and m0 = mΛ([1 : 0 : 0]) the one in [1 : 0 : 0]. We order the
base-points such that either r2i−1, r2i are real or r2i = r̄2i−1 for i = 1, . . . , d− 1. Then

D ≥ deg(f(Λ)) =dD − (d− 1)m0 −
d−1∑

i=1

(m2i−1 +m2i)

=D +
d−1∑

i=1

(D −m0 −m2i−1 −m2i)

Hence there exists i0 such that D ≤ m0 −m2i0−1 −m2i0 . The claim for ”>” follows analogously.

(2) Suppose that f ∈ J◦. By Lemma 3.1, its characteristic is (d; d−1
2

4
, 2

d−1
2 ) or (d; d2

2
, d−2

2

2
, 2

d−2
2 , 1).

Assume that f has no simple base-point. Call r1, . . . , r(d−1)/2 its base-points of multiplicity 2. Let
mi := mΛ(pi) be the multiplicity of Λ in pi, i = 1, 2 and ai := mΛ(ri) the one in ri. Then

D ≥ deg(f(Λ)) = dD − 2m1 ·
d− 1

2
− 2m2 ·

d− 1

2
− 2

(d−1)/2∑

i=1

ai

= D + 2

(d−1)/2∑

i=1

(D −m1 −m2 − ai)

which implies that there exists i0 such that 0 ≥ D − m1 − m2 − ai0 . The claim for ”>” follows
analogously.

Assume that f has a simple base-point r. Let r1, . . . , r(d−2)/2 be its base-points of multiplicity 2,
ai := mΛ(ri) the multiplicity of Λ in ri, and mi := mΛ(pi) the one in pi. Then

D ≥ deg(f(Λ)) = dD − 2mj ·
d

2
− 2mk ·

d− 2

2
− (2

(d−2)/2∑

i=1

ai)−mΛ(r)

= D + (D − 2mj −mΛ(r)) + 2

(d−2)/2∑

i=1

(D −mj −mk − ai)

where {j, k} = {1, 2}. The inequality implies there exist i0 such that 0 ≥ D −mj −mk − ai0 or that
0 ≥ D − 2mj −mΛ(r). The claim for ”>” follows analougously.

Suppose that 0 < D − mj − mk − ai for all i = 1, . . . , d−2
2 , i.e. , 1 ≤ D − mj − mk − ai for all

i = 1, . . . , d−2
2 . We obtain from the calculations above that

0 ≥ (D − 2mj −mΛ(r)) + 2

(d−2)/2∑

i=1

(D −mj −mk − ai)

≥ (D − 2mj −mΛ(r)) + (d− 2)

Assume that d > 2, i.e. since d is even here, d ≥ 4. The inequality above implies

−2 ≥ −(d− 2) ≥ D − 2mj −mΛ(r)

and so

2mj +mΛ(r) ≥ D + 2 > D.

�

Notation 6.6. For a pair of non-real points q, q̄ ∈ P2 or infinitely near, we denote by q the set {q, q̄}.
Lemma 6.7. Let f, h ∈ J◦ be standard or special quintic transformations, g ∈ AutR(P2) and Λ be a
real linear system of degree D. Suppose that

deg(h−1(Λ)) ≤ D and deg(fg(Λ)) < D.

75



THE ABELIANISATION OF THE REAL CREMONA GROUP 25

Then there exists θ1 ∈ AutR(P2), θ2, . . . , θn ∈ AutR(P2) ∪ J◦ such that

(1) w(f)w(g)w(h) = w(θn) · · ·w(θ1) holds in G, i.e. the following diagram corresponds to a relation
in G:

Λ
g // g(Λ)

f

##
h−1(Λ)

h

<<

θ1 // // θn // fg(Λ)

(2) deg(θi · · · θ1h
−1(Λ)) < D for i = 2, . . . , n.

Proof. The maps h−1 and f have base-points p1, p̄1, p2, p̄2, p3, p̄3 and p1, p̄1, p2, p̄2, p4, p̄4 respectively, for
some non-real points p3, p4 that are in P2 or infinitely near one of p1, . . . , p̄2. Denote by m(q) := mΛ(q)
the multiplicity of Λ at q. According to Lemma 6.5 we have

(Ineq0) m(p1) +m(p2) +m(p3) ≥ D, mg(Λ)(p1) +mg(Λ)(p2) +mg(Λ)(p4) > D

We choose r1, r2, r3 with {r1, r2, r3} = {p1, p2, p3} such that m(r1) ≥ m(r2) ≥ m(r3) and such that if
ri is infinitely near rj , then j < i. Similarly, we choose r4, r5, r6 with {r4, r5, r6} = g−1({p1, p2, p4}). In
particular, r1, r4 are proper points of P2.

The two inequalities (Ineq0) translate to

(Ineq1) m(r1) +m(r2) +m(r3) ≥ D, m(r4) +m(r5) +m(r6) > D

We now look at four cases, depending of the number of common base-points of fg and h−1.

Case 0: If h−1 and fg have six common base-points, then α := fgh is linear and w(g)w(h)w(α−1) =
w(f−1) (Definition 2.7 (1)).

Case 1: Suppose that h−1 and fg have exactly four common base-points. There exists α1 ∈ AutR(P2)
such that α1 sends the common base-points onto p1, . . . , p̄2 if all the common points are proper points
of P2, and onto pi, p̄i, p3, p̄3 if p3, p̄3 are infinitely near pi, p̄i (cf. Remark 6.2). There exist α2, α3 ∈
AutR(P2) such that f̃ := α3fg(α1)−1 ∈ J◦ and h̃ := α1hα2 ∈ J◦ (see Lemma 2.5). The commutative
diagram

Λ

fg

**
α1

��
h−1(Λ)

h

44

α2

// α2h
−1(Λ)

h̃

//

θ2

99
α1(Λ)

f̃

// α3fg(Λ) fg(Λ)
α3

oo

is generated by relations in G (Definition 2.7 (1), Remark 6.2, Remark 6.3). Write θ2 := f̃ h̃ ∈ J◦. The
claim now follows with θ1 := α1, θ2, θ3 := (α3)−1.

Case 2: Suppose that the set r1 ∪ r2 ∪ r4 ∪ r5 consists of 6 points ri1 , r̄i1 , . . . , ri3 , r̄i3 .
If at least four of them are proper points of P2, inequality (Ineq1) yields

2m(ri1) + 2m(ri2) + 2m(ri3) > D,

which implies that the six points ri1 , r̄i1 , . . . , ri3 , r̄i3 are not contained in one conic. By this and by
the chosen ordering of the points, there exists a standard or special quintic transformation θ ∈ J◦,
α ∈ AutR(P2) such that those six points are the base-points of θα. By construction, we have

deg(θα(Λ)) = 5D − 4m(ri1)− 4m(ri2)− 4m(ri3) < D,

and h−1, θα and θα, fg each have four common base-points. We apply Case 1 to h, α, θ and to
θ−1, gα−1, f .

If only two of the six points are proper points of P2, then the chosen ordering yields q = r1 = r4 and
the points in r2∪r5 are infinitely near points. Since h, f are standard or special quintic transformations,
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it follows that r3, r6 are both proper points of P2. We choose i ∈ {3, 6}, j ∈ {2, 5} with m(ri) =
max{m(r3),m(r6)} and m(rj) = max{m(r2),m(r5)}. We have

2m(r1) + 2m(rj) + 2m(ri) ≥ 2m(r4) + 2m(r5) + 2m(r6) > D.

Thus the six points in r1 ∪ ri ∪ rj are not contained on one conic and there exists a standard or special
quintic transformation θ ∈ J◦, α ∈ AutR(P2) such that the base-points of θα are r1 ∪ ri ∪ rj . Again,
the maps h−1, θα and θα, fg have four common base-points, deg(θα(Λ)) < D and we apply Case 1 to
h, α, θ and to θ−1, gα−1, f .

Case 3: Suppose that r1 ∪ r2 ∪ r4 ∪ r5 consists of eight points. Then r1 ∪ r2 ∪ r4 and r1 ∪ r4 ∪ r5 each
consist of six points. We have by inequality Ineq1 and by the chosen ordering that

2m(r1) + 2m(r2) + 2m(r4) > 2D, 2m(r1) + 2m(r4) + 2m(r5) > 2D,

so the points in each set r1 ∪ r2 ∪ r4 and r1 ∪ r4 ∪ r5 are not on one conic. Moreover, at least four
points in each set are proper points of P2 (r1, r4 ∈ P2). Therefore, there exist standard or special
quintic transformations θ1, θ2 ∈ J◦, α1, α2 ∈ AutR(P2) such that θ1α1 (resp. θ2α2) has base-points
r1 ∪ r2 ∪ r4 (resp. r1 ∪ r4 ∪ r5). Then deg(θiαi(Λ)) < D and we can apply Case 1 to h, α−1

1 , θ1 and to
(θ1)−1, α2(α1)−1, θ2 and to (θ2)−1, g(α2)−1, f . �

Remark 6.8. Let f ∈ J∗, and q1, q2 two simple base-points of f . Then by Bézout, the points [1 : 0 :
0], q1, q2 are not collinear. (This means that they do not belong, as proper points of P2 or infinitely
near points, to the same line.)

Notation 6.9. In the following diagrams, the points in the brackets are the base-points of the corre-
sponding birational map (arrow). A dashed arrow indicates a birational map, and a drawn out arrow
a linear tranformation.

Lemma 6.10. Let f, h ∈ J∗, g ∈ AutR(P2) and Λ be a real linear system of degree D. Suppose that

deg(h−1(Λ)) ≤ D, deg(fg(Λ)) < D

Then there exist θ1, . . . , θn ∈ AutR(P2) ∪ J∗ ∪ J◦ such that

(1) w(f)w(g)w(h) = w(θn) · · ·w(θ1) holds in G, i.e. the following commutative diagram corre-
sponds to a relation in G:

Λ
g // g(Λ)

f

##
h−1(Λ)

h

<<

θ1 // // θn // fg(Λ)

(2) θ1 ∈ AutR(P2), deg(θi · · · θ1h
−1(Λ)) < D for i = 2, . . . , n

(3) or θ1 ∈ J∗, θ2 ∈ AutR(P2), deg(θ1) = deg(h)− 1 and

deg(θ1(Λ)) = deg(θ2θ1(Λ)) ≤ D
deg(θi · · · θ1h

−1(Λ)) < D, i = 3, . . . , n.

Proof. If g ∈ J∗ then w(f)w(g)w(h) = w(fgh) in J∗. So, lets assume that g /∈ J∗. Let p := [1 :
0 : 0], q := g−1([1 : 0 : 0]). Let m(q) be the multiplicity of Λ in q. By Lemma 6.5 there exists r1, r2

base-points of h−1 and s1, s2 base-points of fg such that

(F) m(p) +m(r1) +m(r2) ≥ D, m(q) +m(s1) +m(s2) > D

and either r1, r2 (resp. s1, s2) are both real or a pair of non-real conjugate points. We can assume
that m(r1) ≥ m(r2), m(s1) ≥ m(s2) and that r1 (resp. s1) is a proper point of P2 or in the first
neighbourhood of p (resp. q) and that r2 (resp. s2) is a proper point of P2 or in the first neighbourhood
of p (resp. q) or r1 (resp. s1).

Note that if deg(h−1(Λ)) < D, then by Lemma 6.5 ”>” holds in all inequalities. We split the
remain of the proof into three Situations, depending on whether or not there exist τ1, τ2 ∈ BirR(P2)
with base-point p, r1, r2 and p = g(q), g(s1), g(s2) respectively.

77



THE ABELIANISATION OF THE REAL CREMONA GROUP 27

- Situation 1 - Assume that there exist τ1, τ2 ∈ J∗ of degree 2 with base-points p, r1, r2 and
p = g(q), g(s1), g(s2) respectively, and that τ1, τ2g have common base-points.

Observe that τ1h, f(τ2)−1 ∈ J∗ and deg(τ1h) = deg(h)− 1, and by inequality (F) that

deg(τ1(Λ)) = 2D −m(p)−m(r1)−m(r2) ≤ D,
deg(τ2g(Λ)) = 2D −m(q)−m(s1)−m(s2) < D

We are going to look at three cases, depending on the common base-points of τ1, τ2.
• If τ1 and τ2g have three common base-points, the map τ2g(τ1)−1 is linear. The commutative

diagram

Λ
g //

τ1

��

g(Λ)

f

  

τ2

��
h−1(Λ)

h

::

// τ1(Λ) // τ2g(Λ) //

is generated by relations in G (Definition 2.7 (2)), and the claim follows with θ1 := Id, θ2; = τ1h, θ3 :=
τ2g(τ1)−1, θ4 := f(τ2)−1.
• If τ1 and τ2g have exactly two common base-points, the map τ2g(τ1)−1 is of degree 2 and there

exists α1, α2 ∈ AutR(P2), τ3 ∈ J∗ such that τ2g(τ1)−1 = α2τ3α1.
The situation is summarised in the following commutative diagram

Λ
g //

τ1
[p,r1,r2]

��

g(Λ)

τ2

[g(q),g(s1),g(s2)]

%%

f

**
h−1(Λ)

h
00

deg(h)−1
// τ1(Λ)

α1 // α1τ1(Λ)
τ3 // τ3α1τ1(Λ)

α2 // τ2(Λ) // fg(Λ)

Observe that is generated by relations in G (Definition 2.7 (3)) and that

deg(α1τ1(Λ)) = deg(τ1(Λ)) ≤ D, deg(τ3α1τ1(Λ)) = deg(τ2(Λ)) < D.

The claim follows with θ1 := τ1h, θ2 := α1, θ3 := τ3, θ4 := α2, θ5 := f(τ2)−1.
• If τ1 and τ2g have exactly one common base-point, then τ2g(τ1)−1 is of degree 3 and there exists

α1, α2 ∈ AutR(P2), τ3 ∈ J∗ of degree 3 such that τ2g(τ1)−1 = α2τ3α1, which corresponds to a relation
in G (Definition 2.7 (3)). The situation can be visualised with the diagram of the previous case, and
here too, deg(α1τ1(Λ)) = deg(τ1(Λ)) ≤ D, deg(τ3α1τ1(Λ)) = deg(τ2(Λ)) < D. The claim follows, as
above, with θ1 := τ1h, θ2 := α1, θ3 := τ3, θ4 := α2, θ5 := f(τ2)−1.

- Situation 2 - As in Situation 1, we assume that there exist τ1, τ2 ∈ J∗ of degree 2 with base-
points p, r1, r2 and p = g(q), g(s1), g(s2) respectively. Opposed to Situation 1, we now assume that
τ1, τ2g have no common base-points.

We put θ1 := τ1h, θn := f(τ2)−1 and construct θ2, . . . , θn−1 as follows in the below three cases,
which depend on the ri’s and si’s begin real point or non-real points:
• If r1, r2, s1, s2 are real points, let {a1, a2, a3} = {p, r1, r2} and {b1, b2, b3} = {g(q), g(s1), g(s2)}

such that m(ai) ≤ m(ai+1) and m(bi) ≤ m(bi+1), i = 1, 2, 3, and if ai (resp. bi) is infinitely near aj
(resp. bj) then j > i. From inequalities (F), we obtain

m(a1) +m(a2) +m(b1) > D, m(a1) +m(b1) +m(b2) > D.

By them and the chosen ordering, there exists τ3, τ4 ∈ J∗ of degree 2, α1, α2 ∈ AutR(P2) such that
τ3α1, τ4α2 have base-points a1, a2, b1 and a1, b1, b2 respectively. The situation is summarised in the
following commutative diagram

Λ //

τ3α1

[a1,a2,b1]

��
τ1

[a1,a2,a3]

zz

g(Λ)

τ2

[b1,b2,b3]

%%
τ4α2

[a1,b1,b2]

��

f

$$
h−1(Λ)

h --

deg(h)−1
// τ1(Λ) τ3α1(Λ) τ4α2g(Λ) τ2g(Λ) // fg(Λ)
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By construction of τ3, τ4, we have

deg(τ3α1(Λ)) = 2D −m(a1)−m(a2)−m(b1) < D,

deg(τ4α2g(Λ)) = 2D −m(a1)−m(b1)−m(b2) < D

The maps τ1, τ3α1, the maps τ3α1, τ4α2 and the maps τ4α2, τ2 each have two common base-points, and
we proceed with each pair as in Situation 1 to obtain θ2, . . . , θn−1.
• Assume that r2 = r̄1 and s1, s2 are real points. If m(q) ≥ m(p), then

m(q) + 2m(r1) > D

hence q, r1, r̄1 are not collinear and there exists τ3 ∈ J∗ of degree 2 with base-points g(q), g(r1), g(r2).
If m(q) < m(p), then

m(p) +m(q) +m(s1) > m(q) +m(s1) +m(s2) > D

hence there exists τ4 ∈ J∗ of degree 2 with base-points p, q, s1. Note that τ2(τ3)−1, τ4(τ1)−1 ∈ J∗. The
situation is summarised in the following commutative diagrams.

Λ

τ1

��

g // g(Λ)

τ2

[g(q),g(s1),g(s2)]

$$
τ3

[g(q),g(r1),g(r2)]

��
τ1(Λ) τ3(Λ) // τ2g(Λ),

Λ

τ1

[p,r1,r2]

{{
τ4

[p,q,s1]

��

g // g(Λ)

τ2

��
τ1(Λ) // τ4(Λ) τ2g(Λ)

By construction of τ3, τ4, we have

deg(τ3g(Λ)) < D, deg(τ4(Λ)) < D

The maps τ1, τ3g, the maps τ4, τ2g are of degree 2 with one common base-point and we obtain
θ2, . . . , θn−1 as in Situation 1.
• If r2 = r̄1 and s2 = s̄1, then r1, r̄2, s1, s̄1 are proper points of P2. Moreover, no three collinear:

Else, all four would be on one line and so 2m(r1) + 2m(s1) ≤ D. But then the inequality (obtained
from inequalities (F))

(Ineq2) (m(p) + 2m(r1)) + (m(q) + 2m(s1)) > 2D

would imply m(p)+m(q) > D, which is impossible by Bézout. Since no three are collinear, there exists
α, β, γ ∈ AutR(P2) such that α(r1) = p1, α(s1) = p2 and τ̃1 := βτ1α

−1 ∈ J◦, τ̃2 := γτ2gα
−1 ∈ J◦ (see

Remark 6.2). These correspond to relations in G (Definition 2.7 (2)).

Λ
g //

α

��
τ1zz

g(Λ)

τ2

��
τ1(Λ)

β

$$

α(Λ)

τ̃1

��

τ̃2

%%

τ2(Λ)

γ

��
βτ1(Λ) // γτ2g(Λ)

Note that τ̃2(τ̃1)−1 ∈ J◦ and we get from the inequalities at the very beginning of the proof that

deg(β1τ1(Λ)) = deg(τ1(Λ)) ≤ D, deg(γτ2g(Λ)) = deg(τ2g(Λ)) < D.

The claim follows with θ2 := β, θ3 := τ̃2(τ̃1)−1, θ3 = θn−1 = γ−1.
- Situation 3 - Assume that there exists no τ1 ∈ J∗ or no τ2 ∈ J∗ of degree 2 with base-points

p, r1, r2 and p = g(q), g(s1), g(s2) respectively.
We essentially look at two cases, depending on who of τ1, τ2 exists:
• Assume that neither τ1 nor τ2 exists. Since p, r1, r2 (resp. q, s1, s2) are not collinear by Lemma 6.8,

it follows that r1, r2 are both proximate to p and s1, s2 are both proximate to q [AC2002, §2]. Then
m(p) ≥ m(r1) + m(r2), and from Inequalities (F) we obtain 2m(p) ≥ m(p) + m(r1) + m(r2) ≥ D.
Similarly we get 2m(q) > D. But then m(p) ≥ D

2 and m(q) > D
2 , which is impossible by Bézout. So,

this case does not appear.
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• Assume that τ1 exists, but τ2 does not. As above, it follows that s1, s2 are both proximate to q
and hence m(q) > D

2 . In particular, by Bézout,

m(q) > m(s1),m(s2),m(p),m(r1),m(r2).

Furthermore, τ1h ∈ J∗ and (from Inequalities (F))

deg(τ1h) = deg(h)− 1, deg(τ1(Λ)) = 2D −m(p)−m(r1)−m(r2) ≤ D.
We define θ1 := τ1h and construct θ2, . . . , θn.

If r1, r2 are real, let {t1, t2, t3} = {p, r1, r2} such that m(ti) ≥ m(ti+1) and such that if ti is infinitely
near tj then i > j. By the chosen ordering, we have

m(t1) +m(t2) +m(q) ≥ 2D

3
+
D

2
> D.

Moreover, t1, t2 are proper points of P2 or t2 is in the first neighbourhood of t1, hence there exist
τ3 ∈ J∗ with base-points [1 : 0 : 0] = g(q), g(t1), g(t2).

If r2 = r̄1, then r1, r̄2 are proper points of P2 (they are base-points of τ1). We have from inequalities
(F) and m(q) > m(p) and that

m(q) + 2m(r1) > m(p) + 2m(r1) ≥ D.
Thus there exists τ4 ∈ J∗ with base-points [1 : 0 : 0] = g(q), g(r1), g(r̄2).

Λ
g //

τ1
[p,r1,r2]

��

g(Λ)

f

&&

τ3/
τ4

[g(q),g(r1),g(r̄2)]

[g(q),g(t1),g(t2)]/

��
h−1(Λ)

h

::

deg(h)−1

θ1 // τ1(Λ) τ3g(Λ)/τ4g(Λ)
θ7 // fg(Λ)

The maps f(τ3)−1 and f(τ4)−1 are contained in J∗ and

deg(τ3g(Λ)) = 2D −m(q)−m(t1)−m(t2) < D,

deg(τ4g(Λ)) = 2D −m(q)− 2m(r1) < D

Define θ7 := f(τ3)−1 (resp. = f(τ4)−1). We obtain θ2, . . . , θ6 by applying Situation 1 to τ1, τ3g (resp.
τ1, τ4g).
• The case where τ1 does not exist and τ2 exists is treated similarly. �

Lemma 6.11. Let f ∈ J◦ be a standard or special quintic transformation, h ∈ J∗, g ∈ AutR(P2) and
Λ be a real linear system of degree D. Suppose that

deg(h−1(Λ)) ≤ D, deg(fg(Λ)) < D

Then there exist θ1, . . . , θn ∈ AutR(P2) ∪ J∗ ∪ J◦ such that

(1) w(f)w(g)w(h) = w(θn) · · ·w(θ1) holds in G, i.e. the following commutative diagram corre-
sponds to a relation in G:

Λ
g // g(Λ)

f

##
h−1(Λ)

h

<<

θ1 // // θn // fg(Λ)

(2) θ1 ∈ AutR(P2), deg(θi · · · θ1h
−1(Λ)) < D for i = 2, . . . , n

or θ1 ∈ J∗, θ2 ∈ AutR(P2), deg(θ1) = deg(h)− 1 and

deg(θ1(Λ)) = deg(θ2θ1(Λ)) ≤ D,
deg(θi · · · θ1h

−1(Λ)) < D, i = 3, . . . , n.

(3) If h ∈ J◦ is a standard or special quintic transformation and f ∈ J∗, the same statements
holds with

θ1 ∈ AutR(P2), deg(θi · · · θ1h
−1(Λ)) < D, i = 2, . . . , n

If deg(h−1(Λ)) < D, then ”<” holds everywhere.
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Proof. We only look at the situation, where f ∈ J◦, h ∈ J∗, since for f ∈ J∗, h ∈ J◦ the proof works
similarly.

Let p := [1 : 0 : 0], and define m(q) := mΛ(q) to be the multiplicity of Λ at q. Call p1, . . . , p̄2, p3, p̄3

the base-points of f . By Lemma 6.5 we have

(Ineq3) m(p1) +m(p2) +m(p3) > D

By Lemma 6.5 there exist two real or two non-real conjugate base-points r1, r2 of h, such that

(Ineq4) m(p) +m(r1) +m(r2) ≥ D
Note that if deg(h−1(Λ)) < D, then ”>” holds everywhere (Lemma 6.5) and we will have ”<” every-
where.

We order r1, r2 such that m(r1) ≥ m(r2) and such that r1 is a proper point of P2 or infinitely near
p and r2 is a proper base-point of P2 or infinitely near p or r1. Let s1 ∪ s2 ∪ s3 = g−1(p1 ∪ p2 ∪ p3) such
that m(s1) ≥ m(s2) ≥ m(s3) and if si is infinitely near sj , then i > j. In particular, s1 is a proper

point of P2. We now look at two cases, depending on whether r1, r2 are real or not. Inequality (Ineq3)
translates to

(Ineq5) m(s1) +m(s2) +m(s3) > D

We look at two cases, depending on whether r1, r2 are real or not.

Case 1: Suppose that r1, r2 are real points. Let t ∈ {p, r1, r2}∩P2 such thatm(t) = max{m(p),m(r1),m(r2)}.
Then

m(t) + 2m(s1) > D

There exists τ ∈ J∗ of degree 2, α ∈ AutR(P2) such that θα has base-points t, s1, s̄1. There exists

β1, β2, β3 ∈ AutR(P2) such that τ̃ := β1g(τα)−1β1, f̃ := β3f(β2)−1 ∈ J◦ (see Remark 6.2). The
situation is summarised in the following commutative diagram:

Λ
g //

τα

[q,s1,s̄1]

��

g(Λ) f

''
β2

$$h−1(Λ)

h

::

τα(Λ) (β1)−1τα(Λ)
β1

oo τ̃ //
77

f̃ // β3fg(Λ) fg(Λ)
β3oo

It is generated by relations in G (Definition 2.7 (2)). Moreover,

deg((β1)−1τα(Λ)) = deg(τα(Λ)) = 2D −m(q)− 2m(s1) < D

The claim now follows from applying Lemma 6.10 to h, α, τ .

Case 2: Assume that r2 = r̄1. If r1, r̄1 ∈ s1 ∪ s2 ∪ s2, then in particular, r1, r̄1 are proper points of
P2, and by Remark 6.8 the points p, r1, r̄1 are not collinear. So, there exists τ ∈ J∗ of degree 2 with
base-points p, r1, r̄1. Let α1, α2, α3 ∈ J◦ such that τ̃ := α2τα1 ∈ J◦, f̃ := α3fgα1 ∈ J◦. The situation
is summarised in the following commutative diagram:

h(Λ)
g //

τ

��

g(Λ)

f

$$
h−1(Λ)

deg(h)−1 ##

h

;;

(α1)−1(Λ)

τ̃

��

f̃

&&

α1

ee

fg(Λ)

α3

zz
τ(Λ)

α2 // τ̃(α1)−1(Λ) // α3fg(Λ)

It is generated by relations in G (Definition 2.7 (2)). Note that deg(τh) = deg(h)− 1 and

deg(τ̃(α1)−1(Λ)) = deg(τ(Λ)) ≤ D, deg(α3fgh(Λ)) = deg(fg(Λ)) < D

The claim follows with θ1 := τh, θ2 := α2, θ3 := f̃ τ̃ , θ4 := (α3)−1.
So, lets assume that r1, r̄1 /∈ s1 ∪ s2 ∪ s2.
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• If m(p) < m(r1), then in particular r1, r̄1 are proper points of P2 and there exists τ ∈ J∗ with
base-points p, r1, r̄1. Remark that

deg(τ(Λ)) ≤ D, deg(τh) = deg(h)− 1.

Furthermore, from inequality (Ineq5) and the order of the si’s we derive the inequality 2m(r1) +
2m(s1)+2m(s2) > 2D. Since moreover r1, s1 are proper points of P2, there exists a standard or special
quintic transformation θ ∈ J◦, α ∈ AutR(P2) such that θα has base-points g(r1 ∪ s1 ∪ s2). Consider
the following diagram

Λ
g //

τ

��

g(Λ)

θα

��

f

$$
h−1(Λ)

deg(h)−1
//

h

;;

τ(Λ) θαg(Λ) fg(Λ)

Note that by construction of θ, we have

deg(θαg(Λ)) = 5D − 4m(r1)− 4m(s1)− 4m(s2) < D

The maps τ, αg, θ are in the situation of the Case 1, and θ, α, f satisfy the assumptions of Lemma 6.7,
and the claim follows from them.
• If m(p) ≥ m(r1), then m(p) + 2m(s1) > D and so there exists τ ∈ J∗ with base-points p, s1, s̄1.

We proceed as in Case 1 (where r1, r2 are real but the map we construct is of the same kind). �

Proposition 6.12. ([ Proposition 2.9 ]) Let f1, . . . , fm ∈ AutR(P2) ∪ J∗ ∪ J◦ such that

fm · · · f1 = Id in BirR(P2).

Then

w(fm) · · ·w(f1) = 1 in G.
In particular, the natural surjective homomorphism G → BirR(P2) is an isomorphism.

Proof. Let Λ0 be the linear system of lines in P2, and define

Λi := (fi · · · f1)(Λ0)

It is the linear system of the map (fi · · · f1)−1 and of degree di := deg(fi · · · f1). Define

D := max{di | i = 1, . . . ,m}, n := max{i | di = D}, k :=
n∑

i=1

(deg(fi)− 1)

We use induction on the lexicographically ordered pair (D, k).
IfD = 1, then f1, . . . , fm are linear maps, and thus w(fm) · · ·w(f1) = 1 holds in AutR(P2) (and hence

in G). So, lets assume that D > 1. Note that by construction deg(fn+1) ≥ 2. We may assume that fn is a
linear map - else we can insert Id after fn, i.e. w(fm) · · ·w(f1) = w(fm) · · ·w(fn+1)w(Id)w(fn) · · ·w(f1),
which does not change (D, k).

We now construct maps θ1, . . . , θN ∈ AutR(P2) ∪ J∗ ∪ J◦ such that

w(fn+1)w(fn)w(fn−1) = w(θN ) · · ·w(θ1)

and such that the pair (D̃, k̃) associated to fm · · · fn+1θN · · · θ1fn−2 · · · f1 is strictly smaller than (D, k).

If fn−1, fn+1 ∈ J∗, we apply Lemma 6.10 to fn−1, fn, fn+1 to decrease (D, k).

If fn−1 ∈ J◦ or fn+1 ∈ J◦, we have to look at three cases, depending on to which group they belong
to. We will only do one case as the other two are done similarly.

Suppose that fn−1 ∈ J◦ and fn+1 ∈ J∗. By Lemma 6.5, there exists a base-point q of (fn−1)−1 of
multiplicity 2 such that m(p1)+m(p2)+m(q) ≥ D, or there exists i ∈ {1, 2} such that 2m(pi)+m(r) ≥
D, where r is the simple base-point of (fn−1)−1. We can assume that q is either a proper point of P2

or in the first neighbourhood of one of p1, p̄1, p2, p̄2.
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• If m(p1) + m(p2) + m(q) ≥ D for some non-real base-point q of (fn−1)−1 of multiplicity 2,
then p1, . . . , p̄2, q, q̄ are not one one conic (Lemma 3.1). So, there exists a standard or special quintic
transformation θ ∈ J◦ with base-points p1, . . . , p̄2, q, q̄. Then θfn−1 ∈ J◦ and

(∗) deg(θfn−1) = deg(fn−1)− 4 < deg(fn−1), deg(θ(Λn−1)) ≤ D.
Applying Lemma 6.11 to θ−1, fn, fn+1 decreases (D, k).
• If m(p1) +m(p2) +m(q) ≥ D for some real base-point q of f of multiplicity 2, then q is a proper

point of P2. If deg(fn−1) is odd, then by Bézout, q is not collinear with any two of p1, p̄1, p2, p̄2, and
there exists θ1 ∈ J◦ of degree 3 with base-points q, p1, . . . , p̄2 (Lemma 5.3). If deg(fn−1) is even, let pi
be a base-point of multiplicity deg(fn−1)

2 . By Bézout, q is not collinear with any two of {p1, p̄1, p2, p̄2}
except maybe p3−i, p̄3−i. It follows from Lemma 3.3 that there exists θ2 ∈ J◦ of degree 2 with base-
points q, pi, p̄i. Note that for i = 1, 2, θifn+1 ∈ J◦ and

(∗∗) deg(θifn−1) = deg(fn−1)− 2 < deg(fn−1), deg(θ(Λn−1)) ≤ D
There exist θ̃i ∈ J∗ and α1, α2 ∈ AutR(P2) such that θi = α2θ̃iα1. By Definition 2.7 (2), w(θi) =

w(α2)w(θ̃i)w(α1) and we can apply Lemma 6.10 to θ̃−1 , fn(α1)−1, fn+1, which decreases (D, k).
• Suppose that there is no base-point q of multiplicity 2 such that m(p1)+m(p2)+m(q) ≥ D, which

means by Lemma 6.5 that

(1) d is even,
(2) m(r) + 2m(pi) ≥ D, i ∈ {1, 2},
(3) 2m(pi) +m(r) > D if deg(fn−1) > 2.

If deg(fn−1) = 2, there exist α, β ∈ AutR(P2), τ ∈ J∗ such that fn−1 = βτα ∈ J∗. Aplplying
Lemma 6.10 to τ, fnα

−1, fn+1 decreases (D, k).
If deg(fn−1) > 2, the point r may not be a proper point of P2. We denote by s the proper point of

P2 to which r is infinitely near to, if r is not a proper point of P2, and s = r if r is a proper point of
P2. The above list still holds if we write s instead of r. In particular, pi, p̄i, s are not collinear and so
there exists τ ∈ J◦ of degree 2 with base-points s, pi, p̄i (Lemma 3.3). Then τfn−1 ∈ J◦ and

deg(τ(Λn−1)) = 2D −m(r)− 2m(pi) < D.

The situation is summarised in the following commutative diagram:

Λn−1
fn //

τ

��

Λn
fn+1

��Λn−1

fn−1

::

// τ(Λn−1)

There exist α, β ∈ AutR(P2), τ̃ ∈ J∗ of degree 2 such that τ = βτ̃α. Applying Lemma 6.10 to
τ, fnα

−1, fn+1 decreases (D, k). �
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V Punctual transformations

In this chapter, we encounter a specific type of transformation contained in Birk(Pn),
n ≥ 2, the punctual transformations (see Definition V.1.6). Any birational transformation
of P2 is punctual, and for n ≥ 3, the punctual transformations of Pn are geometrically
similar to plane Cremona transformations and there exist easy formulae for the degree
and multiplicities of compositions with the standard Cremona involution, just like for
n = 2. The standard Cremona involution σn of Pn is the most prominent example of a
punctual transformation.

In [Kan1897], S. Kantor studies birational transformations of P3 not having any curves
of the first species, that is, curves which are the image of a surface in P3, and claims that
any such transformation is contained in the group G3(k) generated by Autk(P3) and σ3.
The statement is false, a counterexample was given in [BlaHed2014, Proposition 8.1].

Punctual transformations are a specific family of transformations without curves of
the first species, and not all transformations having no curve of the first species are punc-
tual [BlaHed2014, Proposition 8.1]. The notion of punctual transformations had first been
mentioned in [DolOrt1988, p.93], where they study pseudo-isomorphisms of varieties.
They suggest that the following statement is true.

Suggestion ([DolOrt1988, p. 93]). The set of punctual transformations is contained in Gn(k),
the group generated by σn and Autk(Pn).

However, they mention that, although they believe the statement to be true, they
could not find a proof.

In [BlaHed2014, Example 8.3], Blanc and Hedén prove that the set of punctual trans-
formations is not a group. Their counterexample to Kantor’s claim is not a punctual trans-
formation, and the Suggestion remains unproven.

In this chapter, we list some general properties of punctual transformations, which
might help to prove or disprove the Suggestion. Candidates of punctual transformations
not contained in Gn(k) are punctual stellar transformations; stellar transformations were
studied in [Pan1999, Pan2000], where they are used to prove that Birk(Pn) is not gener-
ated by Autk(Pn) and countably many transformations if n ≥ 3.

Outline of the chapter: We first revisit some prelimenaries, where we define a family
of curves associated to a birational transformation of Pn, n ≥ 3, and define the punctual
transformations and state some basic properties. Then, we compute the formulae for de-
gree and multiplicities of compositions of punctual transformations, and use them to list
further properties. In Chapter V.4, we recall the stellar transformations and prove that if
a stellar transformation is punctual then it projects onto a punctual transformation.
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V.1 Preliminaries revisited

To any f ∈ Birk(Pn), we associate a linear system Λf of hypersurfaces, each of its elements
passing through the base-locus of f . To use intersection theory in higher dimension, we
will further associate to f a family of curves.

Definition V.1.1 (Multiplicity of a curve). Let c ⊂ Pn be a curve and p ∈ B(Pn). Let
η : X → Pn be a sequence of blow-ups of points such that p corresponds to a proper point
of X and denote by c̃η ⊂ X the strict transform of c. Let η′ : Y → Pn be the blow-up of p
and Ep ⊂ Y its exceptional divisor. We define

mp(c) := c̃ηη
′ · Ep.

Definition V.1.2 (Total transform of a curve). Let c ⊂ Pn be a curve and η : X → Pn the
blow-up of p1, . . . , pk ∈ B(Pn). Denote by Ẽi ⊂ X the strict transform of the exceptional
divisor of pi and ei ⊂ Ẽi a general curve. We define the 1-cycle

cη := c̃η +
k∑

i=1

mpi(c)ei ∈ N1(X)

and call it the total transform of c in X .

Lemma V.1.3. Let c ⊂ Pn be a curve and η : X → Pn the blow-up of p1, . . . , pk ∈ B(Pn). For
any general line l ⊂ Pn, the 1-cycles deg(c)l̃η and cη are numerically equivalent.

Proof. We just have check that their intersections with the generators of Pic(X) are the
same. Denote by Ei ⊂ X the total transform of the exceptional divisors of pi and pick a
general hyperplane H ⊂ Pn. Then

Pic(X) = H
η ⊕ E1Z⊕ · · · ⊕ EkZ.

From Lemma I.1.5, we get that Hη
ei = 0, Eiei = −1 and Eiej = 0 for i, j = 1, . . . , k and

i 6= j. Since l and H are general, we obtain

H
η
(deg(c)l̃η) = deg(c), Ei l̃

η = 0, i = 1, . . . , k,

and, by definition of the multiplicity mpi(c) and the projection formula,

H
η
cη = H

η
(c̃η +

k∑

j=1

mpj (c)ej) = deg(c)

Eic
η = Eic̃

η +

k∑

j=1

mpj (c)Eiej = mpi(c)−mpi(c) = 0, i = 1, . . . , k.

Let f ∈ Birk(Pn), and let Lf ⊂ G(1, n) be the open subset of all lines in Pn not passing
though Base(f) and not contained in any hypersurface contracted by f . Then for any
l ∈ Lf , the curve f(l) is of degree deg(f) [Pan1999, Proposition 1.1]. If we write

f : [x0 : · · · : xn] 799K [f0 : · · · : fn],
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where f0, . . . , fn ∈ k[x0, . . . , xn] are homogenous of equal degree and without common
factors, and parametrise a general line l ∈ Lf by a linear map l : P1 ↪→ Pn, then f(l) is
parametrised by

[u : v] 799K [f0(l([u : v])) : · · · : fn(l([u : v]))].

Therefore, the line f(l) passes through the base-locus of f−1.

Definition V.1.4 (System of curves associated to a transformation). To f ∈ Birk(Pn), we
associate the set

Cf := ∪l∈Lf−1f
−1(l)

of all pre-images of the lines in Lf−1 , and call it the system of curves of f . We define
deg(Cf ) := deg(f−1). Further, we call Ind(Cf ) = ∩c∈Cf c the indeterminacy points of Cf .

Note that Cf is parametrised by an open subset of G(1, n) and hence carries the struc-
ture of an algebraic variety.

Example V.1.5. Lets figure out the system of curves Cσn of σn, n ≥ 3. Let l ⊂ Pn be a
general line parametrised by

l : [u : v] 7→ [a0u+ b0v : · · · : anu+ bnv]

Its pre-image σn(l) is the rational curve of degree n parametrised by

c : [u : v] 799K


∏

i 6=0

(aiu+ biv) : · · · :
∏

i 6=n
(aiu+ biv)


 .

Then c([bi : −ai]) is the ith coordinate point pi of Pn, and so any curve in Cf passes
through all coordinate points of Pn. Blowing up p0, we obtain that the strict transform of
σn(l) is parametrised by

[u : v] 7→




∏

i 6=0

(aiu+ biv) : · · · :
∏

i 6=n
(aiu+ biv)


 ,


∏

i 6=0,1

(aiu+ biv) : · · · :
∏

i 6=0,n

(aiu+ biv)




 .

The strict transform of σn(l) intersects the exceptional divisor in exactly one point, namely
the image of [b0 : −a0]. Changing the parametrisation, we can choose a0 6= 0 and b0 = 0.
Now, we see that the differential of c at [0 : 1] has full rank, hence mp0(σn(l)) = 1. By
symmetry, we obtain mpi(σn(l)) = 1 for all i = 0, . . . , n.

The base-locus of σn is the union of the varieties Cij given by xi = xj = 0 for i 6= j,
and the intersection of σn(l) and Cij are the coordinate points contained in Cij .

Definition V.1.6 (Pseudo-isomorphism, punctual transformation).

1. A birational map g : X 99K Y between smooth projective varieties is called pseudo-
isomorphism (or isomorphism in codimension 1) if there exist dense open subsets Ug ⊂
X,Ug−1 ⊂ Y with codimX(X \Ug) ≥ 2, codimY (Y \Ug−1) ≥ 2 such that g|Ug : Ug

'→
Ug−1 is an isomorphism.

2. We call an element f ∈ Birk(Pn) punctual if there exist sequences of blow-ups of
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points πi : Xi → Pn, i = 1, 2 and a pseudo-isomorphism f̂ such that the diagram

X1

π1
��

f̂ // X2

π2
��

Pn f // Pn

is commutative. We choose π1, π2 to be minimal and call the points blown-up by π1

the central base-points of f .

Definition V.1.7 (Strict transforms). For a pseudo-isomorphism g : X 99K Y and a hyper-
surfaceD ⊂ Y , we call the hypersurface D̃g := g−1(D ∩ Ug−1) the strict transform ofD via
g.

For a curve c ⊂ Y not contained in Y \ Ug−1 , we call the curve c̃g := g−1(c ∩ Ug−1) the
strict tranform of c via g.

Remark V.1.8. For n ≥ 1, any linear element of Birk(Pn) is punctual.
Any element of Birk(P2) is punctual and deg(f) = deg(f−1) (see for instance [AC2002,

§1.3, 2.1.12]).
For any n ≥ 2, the standard Cremona involution σn ∈ Birk(Pn) is punctual [BlaHed2014,

Proposition 3.1].
For any n ≥ 3, the group Gn(k) generated by σn and Autk(Pn) contains non-punctual

elements [BlaHed2014, Example 8.3].

Remark V.1.9. Let g : Y1 99K Y2 be a pseudo-isomorphism between two smooth projective
varieties of dimension n. Then the pullback g∗(KY2) of the canonical divisor KY2 via g is
equivalent to the canonical divisor KY1 of Y1.

Let g : X 99K Y be a pseudo-isomorphism, and let D ⊂ Y be a hypersurface and c ⊂
Ug−1 ⊂ Y . Then g−1 is an isomorphism around c and therefore preserves the intersection
intersection with c. More concretely,

D̃f · c̃f = D · c, KY · c = KX · c̃f

Lemma V.1.10. For n ≥ 2 and f ∈ Birk(Pn) punctual, the base-points of Cf are exactly the
central base-points of f .

Moreover, for each central base-point p ∈ B(Pn), there exists a positive integer m ∈ Z such
that a general element of Cf has multiplicity m in p. We define mp(Cf ) := m.

Furthermore, for any central base-point p ∈ B(Pn) of f that has no infinitely near central
base-point, there exists a rational hypersurface Sp ⊂ Pn of degree mp(Cf ) that is contracted onto
p by f−1.

Proof. For n = 2, this follows from the existence of resolution of birational transforma-
tions between smooth projective surfaces (see Chapter I.2). Let n ≥ 3 and πi : Xi → Pn,
i = 1, 2, be sequences of blow-ups of points and f̂ : X1 99K X2 be a pseudo-isomorphism
such that the diagram

X1

π1
��

f̂ // X2

π2
��

Pn f // Pn
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is commutative. The base-locus of Cf consists of finitely many points because two distinct
curves in Pn can meet at most in finitely many points. Since the family of lines in Pn has
empty base-locus, f̂ is an pseudo-isomorphism by assumption and a general element of
Cf does not meet the image of X1 \Uf̂ , every point in the base-locus of Cf is blown-up by
π1, i.e. is a central base-point of f .

Let p ∈ B(Pn) be a central base-point of f such that f has no infinitely near base-
points infinitely near p, and let Ep ⊂ X1 be its exceptional divisor. A general element
of Λf passes through p, and as there are no central base-points of f infinitely near p,
the strict transform of a general element of Λf intersects Ep. Then, since f̂ is an pseudo-

isomorphism, Sp := Ẽp
f̂−1

⊂ X2 is a hypersurface that intersects the strict transform of
all general hyperplanes in Pn. The linear system of hyperplanes in Pn has empty base-
locus, hence Sp is not contracted by π2 (recall that π2 contracts divisors onto points only).
In particular, f̂ |Ep : Ep 99K Sp is birational. Let l ⊂ Pn be a general line. Then f̂−1 is an
isomorphism around l̃π2 , and Lemma I.1.5 and Remark V.1.9 imply that

0 6= Sp · l = S̃p
π2 · l̃π2 V.1.9

= Ep · l̃π2f̂ = Ep · (deg(f−1)l
π1 −

∑
mq(l̃

π2f̂ )eq)
I.1.5
= mp(l̃

π2f̂ )

where we sum over all central base-points of f and eq ⊂ Eq is a general line in the
strict transform of the exceptional divisor of q. Figure V.1 visualises the calculation. Then
c := π1(l̃π2f̂ ) = f−1(l) ∈ Cf and mp(c) 6= 0. A general element of Cf is the pre-image of a
line satisfying the assumptions on l, hence mp(c) 6= 0 for a general c ∈ Cf . In other words,
p is contained in a general elements of Cf . Further, it shows that all the central base-
points to which p is infinitely near are contained in the base-locus of Cf , and therefore, all
central base-points of f are contained in Base(Cf ). Moreover, a general element of Cf has
multiplicity mp(c) in p. Therefore, for all central base-points q of f , a general element of
Cf has multiplicity mq(c) in q.

f̂

π1 π2

Ep

π2(Sp)p

Ẽp
f̂−1

= Sp

f

l

l̃π2l̃π2f̂

c = f−1(l)

PnPn

X2X1

Figure V.1: Calculation of the multiplicity mp(Cf ).

Lemma V.1.11. Let n ≥ 2 and f ∈ Birk(Pn) be punctual. Let V ⊂ Pn be of codimension≥ 2.
Then a general element c ∈ Cf intersects V only in the central base-points of f contained in V .

Proof. For i = 1, 2, let πi : Xi → Pn be blow-up of the central base-points of f and f−1

respectively and f̂ : X1 99K X2 the induced pseudo-isomorphism of f , i.e. the following
diagram is commutative

X1
f̂ //

π1
��

X2

π2
��

Pn // Pn
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Observe that the claim is equivalent to c̃π1 and Ṽ π1 not intersecting. There exist open
dense subsets Uf̂ ⊂ X1 and Uf̂−1 ⊂ X2 such that f̂ |Uf̂ : Uf̂

'−→ Uf̂−1 is an isomorphism.

For a general line l ⊂ Pn, the strict transform l̃π2 = l
π1 ⊂ X2 is contained in Uf̂−1 , and so

a general element c ∈ Cf is contained in Uf̂ . If Ṽ π1 ⊂ X1 \ Uf̂ , then we are done. Suppose

that Ṽ π1 ∩ Uf̂ 6= ∅. Since c̃π1 ⊂ Uf̂ , f̂ preserves the intersection of c̃π1 with varieties.

As c̃π1 is sent by f̂ onto a general line, which does not intersect the codimension≥ 2

set f̂(Ṽ π1 ∩ Uf̂ ), the curve c̃π1 does not intersect Ṽ π1 ∩ Uf̂ . Since c̃π1 ⊂ Uf̂ , the claim
follows.

V.2 Composition revisited

For n ≥ 3, there is no general fomula known that computes the degree of compositions,
let alone multiplicities of the linear system. For punctual transformations we can find
formulae using the intersection form of hyperplanes and curves. For n = 2, they are very
classical and can for instance be found in [AC2002, §4] (see Lemma I.3.4).

Lemma V.2.1 (Composition). For n ≥ 2, let D ⊂ Pn be a hypersurface, g ∈ Birk(Pn) be
punctual and f ∈ Birk(Pn) be any transformation. Then

deg(g(D)) = deg(g−1) deg(D)−
∑

p∈B(Pn)

mp(Cg)mp(D),

where mp(D) is the multiplicity of D in p, and

deg(fg) = deg(f) deg(g)−
∑

p∈B(Pn)

mp(Cg−1)mp(Λf ). (V.1)

By Lemma V.1.10, mp(Cg) = 0 if p is not a central base-point of g, thus the sums in
the above lemma are finite. Further, for n = 2, the formulae translate to the classical ones
given in Lemma I.3.4.

Proof. By definition of punctual transformation, there exist sequences π1, π2 of blow-ups
of points and a pseudo-isomorphism ĝ such that the diagram

X1
ĝ //

π1
��

X2

π2
��

Pn g // Pn

is commutative. Let l ⊂ Pn be a general line. The degree of g(D) is equal to the intersec-
tion g(D) · l. The blow-up π2 and the pseudo-isomorphism ĝ−1 are isomorphisms around
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l̃π2 , and so Lemma I.1.5 and Remark V.1.9 imply that

deg(g(D)) = g(D) · l = g(D)
π2 · lπ2 = g̃(D)

π2 · l̃π2
V.1.9
= g̃(D)

π2ĝ · l̃ĝπ2

=
(

deg(D)H
π1 −

∑
mp(D)Ep

)
·
(

deg(g−1)l
π1 −

∑
mp(Cg)ep

)

I.1.5
= deg(g−1) deg(D)−

∑
mp(D)mp(Cg)

where we sum over all points blown-up by π1, H ⊂ Pn is a general hyperplane, Ep the
total transform of the exceptional divisor of a point p and ep ⊂ Ep a general line in the
strict transform of the exceptional divisor of p. Since mp(Cg) = 0 if p is not a central
base-point of f (Lemma V.1.10), we can sum over all points of B(Pn) in the last line.

The degree of fg is equal to the degree of (fg)−1(H), whereH is a general hyperplane
in Pn. Putting D = f−1(H) in the above formula, we obtain

deg(fg) = deg(g−1(f−1(H))) = deg(g) deg(f−1(H))−
∑

p∈B(Pn)

mp(Cg−1)mp(f
−1(H))

= deg(g) deg(f)−
∑

p∈B(Pn)

mp(Cg−1)mp(Λf ).

Lemma V.2.2 (Noether equations). Let n ≥ 2 and let f ∈ Birk(Pn) be punctual transforma-
tion. Then the intersection of general two elements of Cf and Λf have exactly one free intersection
point and

deg(f) deg(f−1)− 1 =
∑

p∈B(Pn)

mp(Λf )mp(Cf ), (V.2)

(n+ 1)(deg(f−1)− 1) =
∑

p∈B(Pn)

(n− 1)mp(Cf ). (V.3)

If n = 2, then deg(f) = deg(f−1) and Λf = Cf , and the equations translate to the classical
Noether equations (see Lemma I.3.3).

Proof. The first equation follows from equation (V.1) in Lemma V.2.1 with g = f−1.
Let H, l ⊂ Pn respectively be a general hyperplane and line and consider the commu-

tative diagram

X1
f̂ //

π1
��

X2

π2
��

Pn f // Pn

where π1, π2 are the blow-ups the central base-points of f, f−1 respectively, and f̂ a
pseudo-isomorphism. Both H and l do not contain any of the central base-points of f−1,
and f̂−1 is an isomorphism in an open neighbourhood of l̃π2 . Using Remark V.1.9 and
Lemma I.1.5, we obtain

1 = H · l = H̃π2f̂ · l̃π2f̂ = ˜f−1(H)
π1
· f̃−1(l)

π1
,
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which says that any two general elements of Λf and Cf have exactly one free intersection
point. It is also another way to obtain the first equation. Remark V.1.9 and Lemma I.1.5
yield

−(n+ 1) = KPn · l =(π2)∗(KPn) · l̄π2 = (KX2 +
∑

(n− 1)Ep) · l̃π2 = KX2 · l̃π2

=f̂∗(KX2) · l̃f̂π2 V.1.9
= KX1 · l̃f̂π2

=
(
−(n+ 1)H

π1 +
∑

(n− 1)Ep

)
·
(

deg(f−1)l̄π1 −
∑

mp(Cf )ep

)

I.1.5
= − (n+ 1) deg(f−1) +

∑
(n− 1)mp(Cf )

where we sum over the points blown-up by π1. Sincemp(Cf ) = 0 if p is not a central base-
point of f by Lemma V.1.10, we can sum over all points of B(Pn) in the last equation.

The following consequence is a motivation for the name "punctual".

Corollary V.2.3 ([Kan1897, Theorem LIV]). Let f ∈ Birk(Pn) be punctual and S ⊂ Pn a
hypersurface of degree deg(S) = deg(f) passing through all central base-points p of f with
multiplicity mp(Λf ). Then S ∈ Λf . In other words:

“The linear system of a punctual transformation is determined by its central base-points."

Proof. By Lemmata V.2.1 and V.2.2, the hypersurface f(S) has degree

deg(f(S))
V.2.1
= deg(f−1) deg(S)−

∑

p∈B(Pn)

mp(Cf )mp(S)

= deg(f−1) deg(f)−
∑

p∈B(Pn)

mp(Cf )mp(Λf )
V.2.2
= 1.

Thus f(S) is a hyperplane, which means that S belongs to Λf .

Remark V.2.4. Example V.1.5 shows that mp(Cf ) = 1 if p is a coordinate point of Pn. If we
put f = σn or g = σn in Lemma V.2.1, we obtain the formulae

deg(fσn) = n deg(f)−
∑

cpb(σn)

mp(Λf )

and
deg(σng) = n deg(g)−

∑

cpb(σn)

(n− 1)mp(Cg−1),

where cpb(σn) is the set of central base-points of σn.

We also want to be able to compute the multiplicities of fσn for some punctual trans-
formation f . For this, consider the commutative diagram

X
σ̂n //

π
��

X

π
��

Pn σn // Pn

where π is the blow-up of all coordinate points of Pn and σ̂n the induced pseudo-isomorphism.
Let H, l ⊂ Pn be a general hyperplane and line respectively and denote by E0, . . . , En ⊂
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X1 the exceptional divisors of coordinate points of Pn. Further, denote by ei ⊂ Ei a gen-
eral line inEi. They yield a basis of the Picard group and the group of curves inX modulo
numerical equivalence,

Pic(X) = H
πZ⊕ E0Z⊕ · · ·EnZ, N1(X) = l̄πZ⊕ e0Z⊕ · · · ⊕ enZ.

The pseudo-isomorphism σ̂n induces a linear involution Pic(X)→ Pic(X) by sending di-
visors onto their strict transforms via σ̂n. It also induces a linear involution (σ̂n)∗ : N1(X)→
N1(X) as follows: For i = 0, . . . , n, let Hi be the hyperplane given by xi = 0. The line l is
a general line, hence lπ = l̃π is contained in the open set Uσ̂n where σ̂n is an isomorphism.
We define (σ̂n)∗(l

π
) = l̃πσn , which is precisely the strict transform via π of the curve σn(l).

The map σn sendsHi onto the ith coordinate point. The restriction of σ̂n onto H̃i
π

induces
the standard Cremona involution

σn−1 : Pn−1 ' H̃i
π σ̂n|Ei−→ Ei ' Pn−1.

As ei ⊂ Ei is a general line, we define the image of ei, just like the image of l̃π above, to
be the curve (σ̂n)∗(ei) := σn−1(ei) ⊂ H̃i

π
.

These linear involutions which can be used to compute multiplicities when compos-
ing with σn.

Lemma V.2.5. Let n ≥ 2. The Z-module isomorphism Pic(X) → Pic(X) induced by σ̂n with
respect to the basis (H

π
, E0, . . . , En) is given by the involution

Mσn,Pic :=



n 1 1 1 . . . 1

−(n− 1) 0 −1 −1 . . . −1

−(n− 1) −1 0 −1 · · · −1

−(n− 1) −1
. . .

. . .
. . .

...
...

...
. . .

. . . 0 −1

−(n− 1) −1 −1 · · · −1 0


∈ GLn+2(Z)

and (σ̂n)∗ : N1(X)→ N1(X) with respect to the basis (l̄π, e0, . . . , en) is given by the involution

Mσn,N1
:=



n (n− 1) (n− 1) (n− 1) · · · (n− 1)

−1 0 −1 −1 · · · −1

−1 −1 0 −1 · · · −1

−1 −1
. . .

. . .
. . .

...
...

...
. . .

. . . 0 −1

−1 −1 −1 · · · −1 0


∈ GLn+2(Z)

Furthermore, for any c ⊂ Uσ̂n ⊂ X , we have (σ̂n)∗(c) ≡ c̃ σ̂n .

For n = 2, they are presented in [AC2002, §2.4].

Proof. A general hyperplane of Pn is sent by σn onto a surface passing through the n+ 1

coordinate points with multiplicity (n−1). The hyperplane through n of these n+1 points
is sent onto the exceptional divisor of the (n+ 1)th point [BlaHed2014, Proposition 3.1].

A general line is sent by σn onto a curve of degree n passing through the n + 1 co-
ordinate points with multiplicity 1. By Lemma V.1.3, its class in N1(X) is the element
nl̄π −∑n

i=0 ei, which is precisely (σ̂n)∗(l̄π). As explained above, σ̂n(ei) is a curve in Hi of
degree n − 1 passing through all coordinate points contained in Hi. By Lemma V.1.3, its
class in N1(X) is (n− 1)l̄π −∑j 6=i ei, which is precisely (σ̂n)∗(ei).
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For the last claim, we have to show that σ̂n acts linearly one the curves in Uσ̂n . As
σ̂n(c∪c′) = σ̂n(c)∪σ̂n(c′) for any two curves c, c′ ⊂ Uσ̂n , we just have to show that it sends
numerically trivial curves onto numerically trivial curves. Remark V.1.9 explains that σ̂n
preserves the intersection of curves in Uσ̂n and divisors, and this yields the claim.

Lemma V.2.6. For n ≥ 2, let f ∈ Birk(Pn) be a punctual transformation, p0, . . . , pn the central
base-points of σn and pn+1, . . . , pm the central base-points of f different from p0, . . . , pn. Define

ε :=

n∑

i=0

mpi(Λf ), δ :=

n∑

i=0

mpi(Cf ).

If fσn is punctual, then

mpi(Λfσn) =(n− 1) deg(f)− ε+mpi(Λf ), i = 0, . . . , n

m(σn)•(pi)(Λfσn) =mpi(Λf ), i ≥ n+ 1

and

mpi(Cfσn) = deg(f−1)− δ +mpi(Cf ), i = 0, . . . , n

m(σn)•(pi)(Cfσn) =mpi(Cf ), i ≥ n+ 1

Note that for n = 2, the equations translate to the ones given in Lemma II.4.2.

Proof. Since for n = 2 the claim is stated in Lemma II.4.2, we can assume that n ≥ 3.
Both σn and f are punctual transformations. Denoting by π : X → Pn be the blow-up of
p0, . . . , pn and for i = 1, 2 by ηi : Yi → Pn the blow-up of the central base-points of f, f−1

respectively, and by σ̂n and f̂ repsectively the lifts of σn and f onto the blow-ups. We can
view the base-points of η1 not blown up by π as points of X . We denote by η′1 : Z → X

the blow-up of these points. Similarly, we denote by π′ : Z → Y1 the blow-up of the base-
points of π not blown up by η. The situation is summarised in the following commutative
diagram.

Z

η′1~~ π′   
X

σ̂n
//

π
��

X

π   

Y1
f̂ //

η1~~

Y2

η2
��

Pn σn // Pn f // Pn

Let H, l ⊂ Pn respectively be a general hyperplane and line. Denote by E0, . . . , Em ⊂ Z

be the total transforms of the exceptional divisors of p0, . . . , pm under the map πη′1 and
by ei ⊂ Ei the strict transform of a general line in the the exceptional divisor of pi. Then

Pic(Z) = H
η′1πZ⊕ E0Z⊕ · · · ⊕ EmZ,

N1(Z) = l̄η
′
1πZ⊕ e0Z⊕ · · · ⊕ emZ.

Pic(X) = H
πZ⊕ (η′1)∗(E0)Z⊕ · · · ⊕ (η′1)∗(En)Z,

N1(X) = l̄πZ⊕ (η′1)∗(e0)Z⊕ · · · ⊕ (η′1)∗(en)Z

We look at the birational map σ̂nη
′
1 : Z 99K X . The isomorphism Mσn,Pic : Pic(X) →

Pic(X) extends to a linear map Pic(Z)→ Pic(X), which, written with respect to the basis
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above, is given by the matrix

M ′σn,Pic :=
[
Mσn,Pic 0

]
∈ Mn+2,m+2(Z).

The sequence of blow-up of points η′1 induces a linear projection (η′1)∗ : N1(Z) → N1(X)

by sending lη
′
1π onto lπ and ei onto (η′1)∗(ei). Then (σ̂n)∗ extends to a linear map (σn)∗ ◦

(η1)∗ : N1(Z)→ N1(X). Written with respect to the basis above, is given by the matrix

M ′σn,N1
:=
[
Mσn,N1 0

]
∈ Mn+2,m+2(Z).

By Lemma V.2.5, we obtain

M ′σn,Pic
t
(
deg(f),−mp0 (Λf ), . . . ,−mpm (Λf )

)
= t

(
deg(fσn), −

(
(n− 1) deg(f)−

n∑
i=1

mpi (Λf )

)
, . . . ,−

(
(n− 1) deg(f)−

n−1∑
i=0

mpi (Λf )

)
,mpn+1 (Λf ), . . . ,mpm (Λf )

)
,

which the class of the divisor σ̃n(D)
π

for a general element D ∈ Λf .
For i 6= j, denote by Cij ⊂ Pn the codimension 2 subvariety given by xi = xj = 0.

By [BlaHed2014, Proposition 3.1], the union of the C̃ij
π

is the base-locus of σ̂n, and σ̂n
is an isomorphism outside of it. Let c ∈ Cf be a general element. By Lemma V.1.11, c
only intersects Cij in the central base-points of f . We claim that any of these must be
coordinate points, i.e. points blown up by π. Suppose that there exists a central base-
point p of f that is contained in Cij . By Lemma V.1.10 there exists a surface S ⊂ Pn which
is contracted by f−1 onto p. Then (fσn) contracts S onto Cij , which is a contradiction to
fσn being punctual. It follows that c only intersects Cij in points blown up by π, hence
c̃π ⊂ Uσ̂n . By Lemma V.2.5, we get σ̂n(c̃π) = (σ̂n)∗(c̃π) = (σ̂n)∗(η1)∗(c̃πη

′
1) and obtain

M ′σn,N1

t(deg(f−1),−mp0 (Cf ), . . . ,−mpm (Cf ) )

= t

(
deg((fσ3)−1), −

(
deg(f−1)−

n∑
i=1

mpi (Cf )

)
, . . . ,−

(
deg(f−1)−

n−1∑
i=0

mpi (Cf )

)
,mpn+1 (Cf ), . . . ,mpm (Cf )

)
,

which is the class of a general element in Cfσn .

V.3 Properties of punctual transformations

The following lemma shows that if we can decompose a punctual transformation f into
linear maps and σn such that all successive compositions are punctual, then f has rather
nice properties:

Lemma V.3.1. For n ≥ 3, let α0, . . . , αm ∈ Autk(Pn) such that for every i = 1, . . .m, the
transformation fi := αiσnαi−1 · · ·α1σnα0 is punctual. Then

1. mp(Λfm) = (n− 1)mp(Cfm) for all central base-points p ∈ B(Pn) of f ,

2. deg(fm) = deg(f−1
m ).

For n = 2, the first part of the lemma is redundant, while the second part is classical
([Hud1927, §I.1.3]).

Proof. Let n ≥ 3. For i = 1, . . . ,m, we define gi := αmσnαm−1 · · ·αm−i and use induc-
tion on m and the gi. Note that the punctual transformation g1 = αmσnαm−1 has the
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desired properties, which yields the claim for m = 1, and that fm = gm = gm−1σnα0. The
induction hypothesis is

mp(Λgm−1) = (n− 1)mp(Cgm−1), deg(gm−1) = deg(g−1
m−1)

for all central base-points p of gm−1. It follows from Lemma V.2.6 that
• If q = (σn)•(pi), i ≥ n+ 1, then

mq(Λfm) = mq(Λgm−1σn)
V.2.6
= mpi(Λgm−1)

ind.
= (n− 1)mpi(Cgm−1)

V.2.6
= (n− 1)mpi(Cgm−1σn) = (n− 1)mq(Cfm).

• If q = pi, 0 = 1, . . . , n, then

mq(Λfm) =mq(Λgm−1σn)
V.2.6
= (n− 1) deg(gm−1)−

∑

j 6=i
mpj (Λgm−1)

ind.
= (n− 1)


deg(gm−1)−

∑

j 6=i
mpj (Cgm−1)




ind.
= (n− 1)


deg(g−1

m−1)−
∑

j 6=i
mpj (Cgm−1)




V.2.6
= (n− 1)mq(Cgm−1σn) = (n− 1)mq(Cfm)

With Remark V.2.4 it follows that

deg(fm) = deg(gm−1σn) =n deg(gm−1)−
∑

p∈cpb(σn)

mp(Λgm−1)

ind.
= n deg(g−1

m−1)−
∑

p∈cpb(σn)

(n− 1)mp(Cgm−1)

= deg(σng
−1
m−1) = deg(f−1

m )

where cpb(σn) is the set of central base-points of σn.

The following lemmata aim at showing that the non-linear punctual transformation of
smallest degree with only proper base-points is in fact the standard Cremona involution.

Remark V.3.2. The generalised Noether-inequalities from Lemma V.2.2 imply that:
• If n ≥ 3 is even, then gcd(n − 1, n + 1) = 1 and hence d = N(n − 1) + 1 for some

N ∈ N.
• If n ≥ 3 is odd, then gcd(n− 1, n+ 1) = 2 and hence d = N n−1

2 + 1 for some N ∈ N.
Note that for n = 3, this does not say anything at all.

Lemma V.3.3. For n ≥ 2, there are no non-linear punctual transformations of degree ≤ n− 1 in
Birk(Pn).

Proof. For n = 2, the lemma is trivial. Let n ≥ 3, f ∈ Birk(Pn) be punctual and non-
linear, and deg(f−1) = d. It suffices to show that d ≥ n. Suppose that d = n− k for some
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1 ≤ k ≤ n− 2. Equation (V.2) in Lemma V.2.2 implies

(n− 1)
∑

p∈B(Pn)

mp(Cf )
V.2.2
= (n+ 1)(d− 1) = (n+ 1)(n− k − 1)

= (n− 1)(n− k − 1) + 2(n− k − 1)

As n−1 is a factor of (n−1)(n−k−1), it is also a factor or 2(n−k−1), which is impossible
for n ≥ 4.

If n = 3, then d = 2 and equation (V.3) in Lemma V.2.2 implies that

2 =
∑

p∈B(Pn)

mp(Cf ).

Thus f has exactly two base-points p1, p2, both of multiplicitiy mp1(Cf ) = mp2(Cf ) = 1.
Then equation (V.2) in Lemma V.2.2 states

2 deg(f)− 1 = mp1(Λf ) +mp2(Λf ).

Bézout theorem implies that mp1(Λf ) ≤ deg(f)− 1, which yields

2 deg(f)− 1 = mp1(Λf ) +mp2(Λf ) ≤ deg(f)− 1 +mp2(Λf ),

which implies deg(f) ≤ mp2(Λf ). Impossible.

Lemma V.3.4. For n ≥ 2, any non-linear punctual tranformation in Birk(Pn) has at least n+ 1

central base-points.

Proof. Suppose that f ∈ Birk(Pn) is has degree d := deg(f−1) > 1 and has at most n
central base-points, say p0, . . . , pm ∈ B(Pn), m ≤ n. Then there exists a hyperplane H ⊂
Pn that contains p0, . . . , pm. Pick a curve c ∈ Cf . Then

(n− 1)d = (n− 1)c ·H ≥ (n− 1)
m∑

i=0

mpi(Cf )
V.2.2
= (n+ 1)(d− 1),

which implies that 2d ≤ n+ 1 and deg(f) ≤ n+1
2 < n for n ≥ 2. That is a contradiction to

Lemma V.3.3, which states that deg(f) ≥ n.

Lemma V.3.5. Let n ≥ 2. If a punctual transformation f ∈ Birk(Pn) satisfies deg(f−1) = n,
then f has exactly n+ 1 central base-points in B(Pn) and

mp(Cf ) = 1 for all central base-points p ∈ B(Pn).

If furthermore all central base-points are proper points of Pn, then there exist α, β ∈ Autk(Pn)

such that f = βσnα.

Proof. Let p0, . . . , pm ∈ B(Pn) be the central base-points of f and write deg(f) = D and
deg(f−1) = d = n. Recall the equations in Lemma V.2.2:

(V.2.2, V.2) dD−1 =

m∑

i=0

mpi(Λf )mpi(Cf ), (V.2.2, V.3) (n+1)(d−1) =

m∑

i=0

mpi(Cf )(n−1).
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We plug the assumption d = n into equation (V.2.2, V.3) and get

(n+ 1)(n− 1) =

m∑

i=0

mpi(Cf )(n− 1),

which implies
m∑

i=0

mpi(Cf ) = n+ 1. (V.4)

As mpi(Cf ) ≥ 1 for i = 0, . . . ,m, the above equation implies m ≤ n. By Lemma V.3.4, f
has at least n + 1 central base-points, therefore m = n. Now, equation (V.4) implies that
mp0(Cf ) = mp1(Cf ) = · · · = mpn(Cf ) = 1 and that p0, . . . , pn are not contained in one
hyperplane (cf. proof of Lemma V.3.4).

Suppose that p0, . . . , pn ∈ Pn. Then equation (V.2.2, V.2) translates to

Dn− 1 =
n∑

i=0

mpi(Λf )mpi(Cf ) =
n∑

i=0

mpi(Λf ). (V.5)

As p0, . . . , pn are not contained in one hyperplane, there exists α ∈ Autk(Pn) that sends
p0, . . . , pn onto the n + 1 coordinate points. The formula for composing with σn given in
Remark V.2.4 and equation (V.5) imply

deg(fα−1σn)
V.2.4
= nD −

n∑

i=0

mpi(Λf )
(V.5)
= 1.

In other words, fα−1σn ∈ Autk(Pn).

Lemma V.3.6. Let f ∈ Birk(Pn) be a punctual transformation with exactly n + 1 central base-
points. Then deg(f−1) = n.

In particular, if all its central base-points are proper points of Pn, then there exists α, β ∈
Autk(Pn) such that f = βσnα.

Proof. Let p0, . . . , pn ∈ B(Pn) the central base-points of f and order them such thatmp0(Cf ) ≤
mp1(Cf ) ≤ · · · ≤ mpn(Cf ) and that there is no base-points infinitely near to p0. Let
d := deg(f−1). Then equation V.3 yields

(n+ 1)(d− 1) =

n∑

i=0

mp(Cf )(n− 1) ≥ (n+ 1)(n− 1)mp0(Cf )

which implies
d− 1 ≥ (n− 1)mp0(Cf ).

Further, the n points p1, . . . , pn are contained in a hyperplane H . For any c ∈ Λf , we get
by Lemma V.1.10 that

d = c ·H ≥
n∑

i=1

mpi(Cf ) =
n+ 1

n− 1
(d− 1)−mp0(Cf )

which implies
(n− 1)mp0(Cf ) ≥ 2d− (n+ 1).
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Together with the above inequality, we obtain

d− 1 ≥ (n− 1)mp0(Cf ) ≥ 2d− (n+ 1)

which yields
n ≥ d.

Lemma V.3.3 implies that deg(f−1) = d = n. Lemma V.3.5 implies that if p0, . . . , pn ∈ Pn,
then f = βσnα for some α, β ∈ Autk(Pn).

V.4 Punctual stellar transformations

In this chapter, we attack the question, whether all punctual transformations can be de-
composed into linear transformations and σn. Although we do not succeed to prove it
or give a counterexample, we take a close look at transformations that are not obviously
compositions of σn and automorphisms.

We now recall the family of stellar transformations in Birk(Pn) as presented in [Pan1999,
Pan2000]; for any field k, n ≥ 3 and for any curve Γ ⊂ P2, the family contains an el-
ement that contracts a non-rational hypersurface birational to Γ × Pn−2, which proves
that Birk(Pn) cannot be generated by Autk(Pn) and a countable set of elements [Pan1999,
Théorème 1].

They are perfect candidates to explore properties of punctual maps far away from
the prejudice induced by σn and in the end of this chapter, we will attempt to determine
when they are punctual.

Definition V.4.1. Let t1, . . . , tn ∈ k[x1, . . . , xn] be homogenous polynomials of equal de-
gree e := deg(ti) without common factors. They define a rational map

t : Pn−1 99K Pn−1, [x1 : · · · : xn] 799K [t1 : · · · : tn].

Pick an integer d > e and homogenous polynomials gd, gd−1, hd−e, hd−e−1 ∈ k[x1, . . . , xn]

of degree as indexed and define

g := gd−1x0 + gd, h := hd−e−1x0 + hd−e,

which are homogenous polynomials of degree deg(g) = d and deg(h) = d − e > 0. This
yields a rational map Tg,h,t : Pn 99K Pn,

Tg,h,t : [x0 : · · · : xn] 799K [
g

h
: t1 : · · · : tn] = [

gd−1x0 + gd
hd−e−1x0 + hd−e

: t1 : · · · : tn],

which is called stellar.

Remark V.4.2. The name stellar is motivated by the fact that a rational transformation
Tg,h,t respects the projection prO : Pn 99K Pn−1 centered at O := [1 : 0 : · · · : 0], i.e. the
following diagram is commutative

Pn
Tg,h,t //

pr
��

Pn

pr
��

Pn−1 t // Pn−1
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In other words, if Tg,h,t is birational, it sends the bunch of lines through [1 : 0 : · · · : 0]

onto the bunch of lines through [1 : 0 : · · · : 0].

Lemma V.4.3 ([Pan1999, Lemm 2]). Suppose that

det

(
gd−1 gd
hd−e−1 hd−e

)
= gd−1hd−e − gdhd−e−1 6= 0.

Then Tg,h,t : Pn 99K Pn is birational if and only if t : Pn−1 99K Pn−1 is.

The proof of Lemma V.4.3 in [Pan1999] is given for algebraically closed fields of char-
acteristic zero but works over any field.

Definition V.4.4. We denote the set of stellar birational transformations in by Stk(Pn) ⊂
Birk(Pn).

Lemma V.4.5 ([Pan2000, Proposition 2.1]). The set Stk(Pn) ⊂ Birk(Pn) of birational stellar
transformation is a group and is isomorphic to

Stk(Pn) ' PGL2(k(y1, . . . , yn−1)) o Birk(Pn−1).

The proof of Lemma V.4.5 in [Pan2000] is given for algebraically closed fields of char-
acteristic zero but works over any field.

Definition V.4.6. For homogeneous, rational functions f0, . . . , fn ∈ k(x0, . . . , xn) of equal
degree, we define the Jacobian

Jac(f0, . . . , fn) = det

(
∂fi
∂xj

)n

i,j=0

∈ k(x0, . . . , xn).

For a rational transformation

f : [x0 : · · · : xn] 799K [f0(x0, . . . , xn) : · · · : fn(x0, . . . , xn)]

with f0, . . . , fn ∈ k[x0, . . . , xn] without common factor, we define the Jacobian of f

Jac(f) = Jac(f0, . . . , fn) ∈ k[x0, . . . , xn],

which is a homogenous polynomial of degree deg(Jac(f)) = (n+ 1)(deg(f)− 1).

Remark V.4.7. For n ≥ 1, the zero set of the Jacobian Jac(f) of an element f ∈ Birk(Pn)

is the union of hypersurfaces of Pn contracted by f .
Let f ∈ St(Pn) and p ∈ B(Pn) be a central base-point that has no infinitely near central

base-points. By Lemma V.1.10, there exists a hypersurface Sp ⊂ Pn that is contracted by
f−1 onto p. It follows that Sp is the zero set of some irreducible factor of Jac(f).

Lemma V.4.8 ([BlaHed2014, Lemma 2.3]). Let k be a field of characteristic zero, let h ∈
k[x0, . . . , xn] be a homogenous polynomial of degree d ∈ N, and let t0, . . . , tn ∈ k(x0, . . . , xn)

homogenous rational functions of degree e ∈ Z \ {0}. Then

Jac(ht0, . . . , htn) = (1 + d/e)hn+1Jac(t0, . . . , tn).
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Lemma V.4.9. Let char(k) and let Tg,h,t : Pn 99K Pn be a stellar map. Then

Jac(Tg,h,t) =

(
1 +

deg(h)

e

)
hn−1 (gd−1hd−e − gdhd−e−1) Jac(t)

Proof. Write
Tg,h,t : [x0 : · · · : xn] 799K [

g

h
: t1 : · · · : tn].

Since t1, . . . , tn ∈ k[x1, . . . , xn] are homogenous of equal degree without common factor,
we get

Jac(
g

h
, t1, . . . , tn) =

(
∂ g
h/∂x0 ∂ g

h/∂xj

0 ∂ti/∂tj

)
=

(
∂ gh
∂x0

)
Jac(t1, . . . , tn) =

(
∂ gh
∂x0

)
Jac(t).

Then Lemma V.4.8 yields, with e = deg(ti),

Jac(Tg,h,t) = Jac(g, ht1, . . . , htn)

V.4.8
=

(
1 +

deg(h)

e

)
hn+1Jac(g/h, t1, . . . , tn)

=

(
1 +

deg(h)

e

)
hn+1

(
∂ gh
∂x0

)
Jac(t)

=

(
1 +

deg(h)

e

)
hn+1

(
gd−1hd−e − gdhd−e−1

h2

)
Jac(t)

Notation V.4.10. For any homogeneous polynomial f ∈ k[x0, . . . , xn] \ k∗, we denote by
Sf ⊂ Pn the hypersurface given by the equation f = 0.

Remark V.4.11. It follows from Remark V.4.7 and Lemma V.4.9 that Tg,h,t contracts the
hypersurfaces Sh, SJac(t) and Sgd−1hd−e−gdhd−e−1

and no other hypersurfaces.

Lemma V.4.12. Let Tg,h,t ∈ St(Pn) and S ⊂ Pn−1 an irreducible hypersurface. Suppose that t
contracts S onto a point.

If Tg,h,t contracts pr−1
O (S) onto a point, then gd−1hd−e − gdhd−e−1 vanishes on S and

pr−1
O (S).

Proof. We may suppose that t contracts S onto p := [1 : 0 : · · · : 0] ∈ Pn−1 because com-
posing with an element of Autk(Pn) that fixes O and corresponds via prO to an element
of Autk(Pn−1) moving the point p ∈ Pn−1 does not change the claim. Writing

Tg,h,t : [x0 : · · · : xn] 799K [
gd−1x0 + gd

hd−e−1x0 + hd−e
: t1 : · · · : tn],

we see that any point of Tg,h,t(pr−1
O (S)) is of the form

[
gd−1(y1, . . . , yn)x0 + gd(y1, . . . , yn)

hd−e−1(y1, . . . , yn)x0 + hd−e(y1, . . . , yn)
: t1(y1, . . . , yn) : 0 : · · · : 0]

for some [y1 : · · · : yn] ∈ S and t1 does not vanish on S.
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If Tg,h,t(pr−1
O (S)) is a point, then the matrix

(
gd−1 gd

ahd−e−1 ahd−e

)

has rank ≤ 1 on S and hence gd−1hd−e − gdhd−e−1 vanishes on S.

Lemma V.4.13. Let Tg,h,t ∈ Stk(Pn) and suppose that h is irreducible and hd−e−1 6= 0. Let
πO : XO → Pn be the blow-up of O and EO ⊂ XO be its exceptional divisor. Then Tg,h,t lifts to a
birational map

Sh 99K EO, [x0 : y1 : . . . , yn] 799K (O, [y1 : · · · : yn]).

Proof. Since Tg,h,t sends Sh onto O, we get the rational map above. It is in fact birational
because h = hd−e−1x0 + hd−e is irreducible and hd−e−1 6= 0; we can recover x0 by writing
x0 =

hd−e
hd−e−1

.

Proposition V.4.14. Let k be of characteristic zero, Tg,h,t ∈ Stk(Pn) and let Tg′,h′,t−1 = T−1
g,h,t.

Suppose that Tg,h,t is punctual, that h does not vanish on any component of SJac(t) and that h′

does not vanish on any component of SJac(t−1). Then

• t is punctual,

• the factors of Jac(t) are factors of gd−1hd−e − gdhd−e−1,

• T contracts a component of Sgd−1hd−e−gdhd−e−1
onto O if and only if hd−e or all ti are

factors of gd−1hd−e − gdhd−e−1.

• the projection of the points in B(Pn) different from O onto which SJac(t) is contracted are
the central base-points of t.

Proof. If Tg,h,t =: T is punctual, then there exist sequences of blow-ups of point πi : Xi →
Pn, i = 1, 2 and a pseudo-isomorphism T̂ : X1 99K X2 such that the following diagram is
commutative

X1

π1
��

T̂ // X2

π2
��

Pn T // Pn

By Remark V.4.11, T only contracts the hypersurfaces Sh, Sd−1hd−e−gdhd−e−1
and SJac(t),

and it contracts them onto points because it is punctual. More concretely, π2T̂ contracts
the strict transforms of these surfaces onto points in B(Pn). Lemma V.4.12 yields the sec-
ond claim. Note that T contracts Sh onto the point O. We write

Tg,h,t : [x0 : · · · : xn] 799K [
gd−1x0 + gd

hd−e−1x0 + hd−e
: t1 : · · · : tn].

It contracts the components of Sgd−1hd−e−gdhd−e−1
onto points of the form

[
gd(y1, . . . , yn)

hd−e(y1, . . . , yn)
: t1(y1, . . . , yn) : · · · : tn(y1, . . . , yn)]
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for some [0 : y1 : · · · : yn] ∈ Sgd−1hd−e−gdhd−e−1
. Such a point is different fromO if and only

if hd−e and not all tj do not vanish on the corresponding component of Sgd−1hd−e−gdhd−e−1
.

This yields the third claim.
By Remark V.4.7, t contracts the hypersurface RJac(t) ⊂ Pn−1 given by Jac(t) = 0 onto

a variety of dimension≤ n− 2 whose points are of the form

[t1(y1, . . . , yn) : · · · : tn(y1, . . . , yn)]

for some [y1 : · · · : yn] ∈ RJac(t). Hence not all ti vanish on the components of RJac(t) and
therefore also not on the components of SJac(t) = pr−1

O (RJac(t)). Then T contracts SJac(t)

onto points of the form

[
gd−1(y1, . . . , yn)x0 + gd(y1, . . . , yn)

hd−e−1(y1, . . . , yn)x0 + hd−e(y1, . . . , yn)
: t1(y1, . . . , yn) : · · · : tn(y1, . . . , yn)]

for some [x0 : y1 : · · · : yn] ∈ SJac(t). By assumption, h does not vanish on any component
of SJac(t), hence these points are different from O.

Call q1, . . . , qm ∈ B(Pn) the images by π2T̂ of the strict transform of the components
of SJac(t). The situation is similar for T−1 and we call p1, . . . , pk ∈ B(Pn) the images of
the strict transforms of the components of SJac(t−1) by π1T̂

−1. Since all these points are
different fromO, the projection (prO)• is defined around them and we call ri, si ∈ B(Pn−1)

respectively the image of pi, qi by (prO)•. Denote by η1 : Y1 → Pn−1 the blow-up of the ri
and by η2 : Y2 → Pn−1 the blow-up of the si. Then t lifts to a birational map t̂ : Y1 99K Y2

and prO lifts to projections pri : Xi 99K Yi, i = 1, 2, that respectively project the strict
transform Ẽpi ⊂ X1 of the exceptional divisor of pi onto Ẽri ⊂ Y1, the strict transform
of the exceptional divisor of ri, and similarly Ẽqi ⊂ X2 onto Ẽsi ⊂ Y2. The situation is
summarised in the following commutative diagram.

X1

π1

��

pr1
vv

T̂ // X2

π2

��

pr2

vv
Y1

η1

��

t̂ // Y2

η2

��

Pn

prO||

T // Pn

prO||
Pn−1 t // Pn−1

We claim that t̂ is a pseudo-isomorphism. Because of the symmetry of the contstruction,
we only need to check that t̂ does not contract any hypersurfaces of Y1.

By Remark V.4.7, any irreducible hypersurface R ⊂ Y1 contracted by t̂ is a component
ofRJac(t)

η1 and hence is either a component of R̃Jac(t)

η1
or one of the Ẽri , and is contracted

to a varietyW ⊂ Y2 of dimension dim(W ) ≤ n−3. Then T̂ sends the hypersurface pr−1
1 (R)

onto a variety contained in pr−1
2 (W ), which is of dimension dim(pr−1

2 (W )) ≤ n−2. That is
a contradiction to T̂ being a pseudo-isomorphism. This yields the first and last claim.

Lemma V.4.15. Let n ≥ 3 and k of characteristic zero. If t = σn−1 and Tg,h,t a punctual
stellar transformation satisfying the assumptions of Proposition V.4.14, then T = βσnα for some
α, β ∈ Autk(Pn).

103



V.4. PUNCTUAL STELLAR TRANSFORMATIONS CHAPTER V. PUNCTUAL TRANSFORMATIONS

Proof. It follows from Proposition V.4.14, that all central base-points of T project to central
base-points of σn−1. Furthermore, T contracts Sh ontoO, which is therefore a central base-
points as well. Hence T has exactly n + 1 central base-points, and Lemma V.3.6 implies
that T = βσnα for some α, β ∈ Autk(Pn).

It will be quite interesting to explore examples of punctual stellar transformations and
to see when they are compositions of σn and linear maps.
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