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SUMMARY

Applied fields of research such as the one on global climate change has heightened the interest to

understand the adaptive evolution process and limits to adaptive evolution. Progress in the field

depends on knowing of the traits under selection and their genetic variation. The goal of my PhD

thesis was to generally assess genome-wide single nucleotide polymorphism (SNP) diversity across

an entire  species  geographic distribution and to  detect  SNPs and genes linked to  adaptation to

climatic variables and substrate type within the herbaceous plant  Arabidopsis lyrata subsp.  lyrata

(A. lyrata). For this work, DNA of 52 populations covering the whole geographic range of A. lyrata

were analyzed by pooling DNA of multiple individuals of each population, sequencing the pools

(Pool-seq) and revealing population SNP frequencies. In the first chapter the wet-lab protocol of

Pool-seq and the bioinformatics pipeline were tested. In the second chapter the genetic diversity of

different genomic regions was analyzed to trace the history of the populations of A. lyrata. In the

third  chapter,  the  climatic  variables  that  determine  the  ecological  niche  limits  of  the  species

distribution were defined. And, in the fourth chapter the SNP frequencies were associated with

climatic variables and substrate type to detect the genomic regions involved in adaptation to climate

and edaphic conditions, highlighting potentially relevant genes and pathways.
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INTRODUCTION

Comparative population genomics can help us getting a better understanding about the genes of

adaptation (Hoffmann & Willi 2008). The idea of population comparisons is that differences in the

environmental  conditions  among  populations  have  caused  traits  and  genes  underlying  them to

adaptively diverge. When sequence variation can be linked with a particular environmental state

such as a climatic variable across populations, it should be possible to detect the genomic regions

under  divergent  evolution.  If  sample  sizes  for  the  study system are large enough,  genes  likely

involved in e.g., climate adaptation should be detected. This is the principle idea of an association

study, to link SNP variation with a trait, which can be the climate where a species can be found.

Imperative to such work is to account for differences in relatedness among populations as there may

be  correlations  between  relatedness  among  populations  and  exposure  to  climate,  which  would

increase  the  rate  of  false  positive  detections.  In  my PhD thesis  I  investigated  these  topics  by

analyzing the SNP (Single Nucleotide Polymorphism) frequencies in Arabidopsis lyrata using the

technique of Pool-seq (Schlötterer et al. 2014).

The model organism that I studied is Arabidopsis lyrata, which is a member of the family of

the  Brassicaceae and  is  closely  related  to  the  plant  model  species  Arabidopsis  thaliana.

Arabidopsis lyrata and  Arabidopsis thaliana are morphologically, physiologically and genetically

similar species. Therefore the experimental designs, molecular tools and software developed for A.

thaliana can be easily adapted for the study of A. lyrata. The size of the A. lyrata genome is 206.7

Mbp on 8 chromosomes,  while  the  size  of  the  A.  thaliana genome is  smaller, 125 Mbp on 5

chromosomes (Hu  et al. 2011). Furthermore, in contrast to  A. thaliana,  A. lyrata is a short-lived

perennial species, not annual, and it is predominantly outcrossing, not selfing. In fact, the North

American  subspecies  is  considered  a  new  model  organism  to  study  mating  system  evolution,

because several independent shifts to selfing have happened at the edges of the geographic species
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distribution (Willi & Määttänen 2010; Haudry et al. 2012; Willi 2013; Griffin & Willi 2014). Other

types of studies conducted on A. lyrata focused on further adaptive differences: the adaptation to

different types of soils (Turner et al. 2008, 2010), the interactions with herbivore species (Clauss &

Mitchell‐Olds 2006; Abel  et al. 2009; Puentes & Ågren 2012) and differences in flowering time

(Sandring et al. 2007; Leinonen et al. 2013).

Pooling biological samples has been widely used in population genetics analysis  for the

estimation of SNP frequencies (reviewed in (Sham et al. 2002)). The approach consists of pooling

the  DNA  of  many  samples,  in  equimolar  amounts,  and  to  sequence  them  together.  The

quantification  of  DNA of  individual  samples  is  a  critical  step  of  this  technique.  Therefore  an

accurate  quantification  based on fluorimetry is  strongly recommended.  Via  the advent  of  next-

generation sequencing (NGS) (Margulies  et  al. 2005;  Pandey  et  al. 2008;  Bentley  et  al. 2008)

techniques of population genetic studies were revolutionized. It has become easier, cheaper and

faster to obtain data at a genome-wide level for multiple populations. Whole-genome sequencing of

pooled DNA is more recent and known as Pool-seq (Schlötterer  et al. 2014). Pooling is a cost-

effective method because it permits to reduce sequencing cost without reducing the sample size.

Hence, Pool-seq has been applied in several field in population genomics: the demographic history

(Corander et al. 2013), the identification of genomic loci affecting a trait of interest (Bastide et al.

2013), the detection of the signature of selection (Kofler  et al. 2012; Fabian  et al. 2012) and in

genome-wide association studies (GWAS) (Turner et al. 2010; Fischer et al. 2013).

While the method of Pool-seq has become popular in the last few years, it has also been

questioned, particularly in regard to the accuracy of SNP frequency data it  produces (Cutler &

Jensen 2010; Anderson et al. 2014). To address this criticism, I investigated the robustness of Pool-

seq in estimating SNP frequencies depending on sample size, sequencing depth and the SNP caller

used (chapter 1).  Particularly, I validated Pool-seq for population genomics by comparing SNP

frequencies  revealed  by  pooling  and  re-sequencing  with  those  revealed  by  individual-based
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Genotyping-By-Sequencing (GBS) (Elshire  et  al. 2011).  I  analyzed how the  pool  size  and the

sequencing depth affect the accuracy of Pool-seq SNP frequency estimates. Furthermore I compared

the accuracy of two SNP calling program: VarScan (Koboldt et al. 2012) and Snape (Raineri et al.

2012).

Through the Pool-seq technique I analyzed 52 populations of  A. lyrata (25 individuals for

each population) across its entire geographic range in North America, which extends from North

Carolina and Missouri to upstate New York and Ontario (Schmickl et al. 2010; Paccard et al. 2016).

Particularly, I quantified the relative importance of historic range dynamics compared to current

local demographic parameters in explaining genetic diversity in different regions of the genome

(chapter 2). Classic equilibrium-based theoretical models predict a positive effect of population

size, mutation rate, gene flow and outcrossing on genetic diversity and mixed effects of selection

depending on their type and strenght (Willi  et al. 2006). Furthermore, within-population genetic

diversity may bear also an important signature of historic demographic processes (Wright & Gaut

2005; Duncan et al. 2015). I first reconstructed the phylogeographic history of A. lyrata based on

nuclear single nucleotide polymorphism (SNP) frequencies and identified possible refugia during

the LGM (Last Glacial Maximum). I then compared genomic diversity estimates based on genome-

wide  SNP frequencies  and published microsatellite-based genetic  diversity  estimates  (Griffin  &

Willi 2014). Lastly, I tested how the phylogeographic history, admixture events, local census size

and the mating system affected genome-wide genetic diversity for intergenic regions, introns and

coding regions (CDS).

I  also  investigated  how  the  genetic  diversity  in  A.  lyrata varied  with  respect  to  the

distribution of the species (chapter 3). Towards the edge of a species distribution, genetic diversity

is  predicted  to  decrease  (Sagarin  &  Gaines  2002;  Eckert  et  al. 2008;  Sexton  et  al. 2009).

Furthermore  the  range  limits  of  the  species  distribution  could  coincide  with  the  niche  limits

(Hargreaves et al. 2014; Lee-Yaw et al. 2016), where the species experiences increasingly marginal
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conditions towards the edge of the range. First, my collaborators and I identified the environmental

variables that determine the niche limits of  A. lyrata. Then we tested if geographic range limits

reflect ecological niche limits, and if there is a relationship between environmental suitability and

genome-wide patterns of genetic diversity.

Finally, I performed an environmental association analysis (EAA) on the SNPs frequencies

of  42  outcrossing  populations  of  A.  lyrata (chapter  4).  I  tested  the  association  with  the

environmental variables that determine the niche limits of the species and the substrate type on

which the population are located in nature (sandy and rocky sites). I carried out a gene ontology

analysis  on  the  associated  SNPs  and  I  suggested  the  top  candidate  genes  linked  to  these

environmental variables.

REFERENCES

Abel C, Clauss M, Schaub A, Gershenzon J, Tholl D (2009) Floral and insect-induced volatile 

formation in Arabidopsis lyrata ssp. petraea, a perennial, outcrossing relative of A. thaliana. 

Planta, 230, 1–11.

Anderson EC, Skaug HJ, Barshis DJ (2014) Next-generation sequencing for molecular ecology: a 

caveat regarding pooled samples. Molecular Ecology, 23, 502–512.

Bastide H, Betancourt AJ, Nolte V et al. (2013) A genome-wide, fine-scale map of natural 

pigmentation variation in Drosophila melanogaster. PLoS Genetics, 9, e1003534.

Bentley DR, Balasubramanian S, Swerdlow HP et al. (2008) Accurate whole human genome 

sequencing using reversible terminator chemistry. Nature, 456, 53–59.

Clauss MJ, Mitchell‐Olds T (2006) Population genetic structure of Arabidopsis lyrata in Europe. 

Molecular Ecology, 15, 2753–66.

Corander J, Majander KK, Cheng L, Merilä J (2013) High degree of cryptic population 

differentiation in the Baltic Sea herring Clupea harengus. Molecular Ecology, 22, 2931–2940.

7



Cutler DJ, Jensen JD (2010) To pool, or not to pool? Genetics, 186, 41–43.

Duncan SI, Crespi EJ, Mattheus NM, Rissler LJ (2015) History matters more when explaining 

genetic diversity within the context of the core-periphery hypothesis. Molecular Ecology, 24, 

4323–4336.

Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: 

the central–marginal hypothesis and beyond. Molecular Ecology, 17, 1170–1188.

Elshire RJ, Glaubitz JC, Sun Q et al. (2011) A robust, simple genotyping-by-sequencing (GBS) 

approach for high diversity species. PLoS ONE, 6, e19379.

Fabian DK, Kapun M, Nolte V et al. (2012) Genome-wide patterns of latitudinal differentiation 

among populations of Drosophila melanogaster from North America. Molecular Ecology, 21, 

4748–4769.

Fischer MC, Rellstab C, Tedder A et al. (2013) Population genomic footprints of selection and 

associations with climate in natural populations of Arabidopsis halleri from the Alps. 

Molecular Ecology, 22, 5594–5607.

Griffin PC, Willi Y (2014) Evolutionary shifts to self-fertilisation restricted to geographic range 

margins in North American Arabidopsis lyrata. Ecology Letters.

Hargreaves AL, Samis KE, Eckert CG (2014) Are species’ range limits simply niche limits writ 

large? A review of transplant experiments beyond the range. The American Naturalist, 183, 

157–173.

Haudry A, Zha HG, Stift M, Mable BK (2012) Disentangling the effects of breakdown of self‐

incompatibility and transition to selfing in North American Arabidopsis lyrata. Molecular 

Ecology, 21, 1130–42.

Hoffmann AA, Willi Y (2008) Detecting genetic responses to environmental change. Nature 

Reviews Genetics, 9, 421–32.

8



Hu TT, Pattyn P, Bakker EG et al. (2011) The Arabidopsis lyrata genome sequence and the basis of 

rapid genome size change. Nature Genetics, 43, 476–481.

Koboldt DC, Zhang Q, Larson DE et al. (2012) VarScan 2: somatic mutation and copy number 

alteration discovery in cancer by exome sequencing. Genome research, 22, 568–576.

Kofler R, Betancourt AJ, Schlötterer C (2012) Sequencing of pooled DNA samples (Pool-Seq) 

uncovers complex dynamics of transposable element insertions in Drosophila melanogaster. 

PLoS Genetics, 8, e1002487.

Lee-Yaw JA, Kharouba HM, Bontrager M et al. (2016) A synthesis of transplant experiments and 

ecological niche models suggests that range limits are often niche limits (JM Gomez, Ed,). 

Ecology Letters, 19, 710–722.

Leinonen PH, Remington DL, Leppälä J, Savolainen O (2013) Genetic basis of local adaptation and

flowering time variation in Arabidopsis lyrata. Molecular Ecology, 22, 709–23.

Margulies M, Egholm M, Altman WE et al. (2005) Genome sequencing in microfabricated high-

density picolitre reactors. Nature, 437, 376–380.

Paccard A, Van Buskirk J, Willi Y (2016) Quantitative genetic architecture at latitudinal range 

boundaries: reduced variation but higher trait independence (CG Eckert, JL Bronstein, Eds,). 

The American Naturalist, 187, 667–677.

Pandey V, Nutter RC, Prediger E (2008) Applied Biosystems SOLiDTM System: ligation-based 

sequencing. In: Next Generation Genome Sequencing: Towards Personalized Medicine  (ed 

Janitz M), pp. 29–42.

Puentes A, Ågren J (2012) Additive and non-additive effects of simulated leaf and inflorescence 

damage on survival, growth and reproduction of the perennial herb Arabidopsis lyrata. 

Oecologia, 169, 1033–42.

Raineri E, Ferretti L, Esteve-Codina A et al. (2012) SNP calling by sequencing pooled samples. 

BMC Bioinformatics, 13, 239.

9



Sagarin RD, Gaines SD (2002) The “abundant centre” distribution: to what extent is it a 

biogeographical rule? Ecology Letters, 5, 137–147.

Sandring S, Riihimäki MA, Savolainen O, Agren J (2007) Selection on flowering time and floral 

display in an alpine and a lowland population of Arabidopsis lyrata. Journal of Evolutionary 

Biology, 20, 558–567.

Schlötterer C, Tobler R, Kofler R, Nolte V (2014) Sequencing pools of individuals — mining 

genome-wide polymorphism data without big funding. Nature Reviews Genetics, 15, 749–763.

Schmickl R, Jørgensen MH, Brysting AK, Koch MA (2010) The evolutionary history of the 

Arabidopsis lyrata complex: a hybrid in the amphi-Beringian area closes a large distribution 

gap and builds up a genetic barrier. BMC Evolutionary Biology, 10, 1–18.

Sexton JP, McIntyre PJ, Angert AL, Rice KJ (2009) Evolution and ecology of species range limits. 

Annual Review of Ecology, Evolution, and Systematics, 40, 415–436.

Sham P, Bader JS, Craig I, O’Donovan M, Owen M (2002) DNA pooling: a tool for large-scale 

association studies. Nature Reviews Genetics, 3, 862–871.

Turner TL, Bourne EC, Von Wettberg EJ, Hu TT, Nuzhdin S V (2010) Population resequencing 

reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nature Genetics, 42, 260–

263.

Turner TL, Wettberg EJ Von, Nuzhdin S V (2008) Genomic analysis of differentiation between soil 

types reveals candidate genes for local adaptation in Arabidopsis lyrata. PLoS ONE, 3, e3183.

Willi Y (2013) Mutational meltdown in selfing Arabidopsis lyrata. Evolution, 67, 806–15.

Willi Y, Buskirk J Van, Hoffmann AA (2006) Limits to the adaptive potential of small populations. 

Annual Review of Ecology, Evolution, and Systematics, 37, 433–458.

Willi Y, Määttänen K (2010) Evolutionary dynamics of mating system shifts in Arabidopsis lyrata. 

Journal of Evolutionary Biology, 23, 2123–31.

10



Wright SI, Gaut BS (2005) Molecular population genetics and the search for adaptive evolution in 

plants. Molecular biology and evolution, 22, 506–19.

11



CHAPTER 1: Validation of pooled whole-genome re-
sequencing in Arabidopsis lyrata

Marco Fracassetti1*, Philippa C. Griffin1,2, and Yvonne Willi1

1Institute of Biology, Evolutionary Botany, University of Neuchâtel, 2000 Neuchâtel, Switzerland

2School of BioSciences, University of Melbourne, 3010 Parkville, Victoria, Australia

* Corresponding author:

E-mail: marco.fracassetti@unine.ch

PUBLISHED IN PLOSONE (DOI 10.1371/journal.pone.0140462)

12



Abstract

Sequencing pooled  DNA  of  multiple  individuals  from  a  population  instead  of  sequencing

individuals separately has become popular due to its cost-effectiveness and simple wet-lab protocol,

although some criticism of this approach remains. Here we validated a protocol for pooled whole-

genome re-sequencing (Pool-seq)  of  Arabidopsis lyrata libraries  prepared with low amounts  of

DNA  (1.6  ng  per  individual).  The  validation  was  based  on  comparing  single  nucleotide

polymorphism (SNP)  frequencies  obtained by pooling  with  those  obtained by individual-based

Genotyping By Sequencing (GBS).  Furthermore,  we investigated  the  effect  of  sample  number,

sequencing depth per individual and variant  caller  on population SNP frequency estimates.  For

Pool-seq data, we compared frequency estimates from two SNP callers, VarScan and Snape; the

former  employs a  frequentist  SNP calling  approach while  the  latter  uses  a  Bayesian approach.

Results revealed concordance correlation coefficients well above 0.8, confirming that Pool-seq is a

valid method for acquiring population-level SNP frequency data. Higher accuracy was achieved by

pooling more samples (25 compared to 14) and working with higher sequencing depth (4.1× per

individual  compared  to  1.4× per  individual), which  increased  the  concordance  correlation

coefficient  to  0.955.  The  Bayesian-based  SNP  caller  produced  somewhat  higher  concordance

correlation coefficients, particularly at low sequencing depth.  We recommend pooling at least 25

individuals  combined  with  sequencing at  a  depth  of  100× to  produce satisfactory  frequency

estimates for common SNPs (minor allele frequency above 0.05).

Keywords:  Brassicaceae;  concordance  correlation  coefficient;  coverage;  depth  of  sequencing;

genomic library; pooled sequencing; population genomics; SNP detection.
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Introduction

The method of pooling biological samples for downstream analysis has been used for more than

seventy years [1]. The main advantage of pooling is that more samples can be analyzed in a cost-

effective way. Pooling has been widely used in population genetics analysis for the estimation of

single-nucleotide polymorphism (SNP) frequencies (reviewed in Sham et al. [2]). More recently, the

field  of  population  genetics  has  been  revolutionized  by  the  development  of  next-generation

sequencing (NGS), as it is now possible to study genetic variation at the whole-genome level [3–7].

Whole-genome sequencing of pooled DNA is more recent and known as Pool-seq [8]. While this

method has become popular in the last few years, it has also been questioned, particularly in regard

to the accuracy of SNP frequency data it produces [9,10]. To address this criticism, we investigated

the robustness of Pool-seq in estimating SNP frequencies depending on sample size, sequencing

depth and the SNP caller used.

So far, Pool-seq has been used in the study of bacteria [11], yeast [12], flatworm [13], sea

urchins [14], plants [15,16],  Drosophila [17–19], fish [20], birds [21] and mammals [22–25]. The

approach has been applied to identify genomic loci affecting a trait of interest [19], to infer the

demographic  history  of  populations  [20],  to  detect  the  signature of  selection [17,18,25]  and to

perform genome-wide association studies (GWAS) [15,16]. In many cases, the pooling of samples

is  used to reduce costs.  But pooling can be obligatory in other cases, such as when separating

individuals is problematic [14,26] or when there is insufficient DNA to make individual libraries.

Several weaknesses of the method have been discussed.  Low individual numbers,  rough

DNA quantification, and low sequencing depth can add error to polymorphism frequency estimates

[27,28]. While these problems can be resolved and/or the magnitude of impact estimated, there are

two more systemic, less easily resolvable limitations. When DNA of individual samples is pooled,

information  on  haplotypes  is  lost.  It  is  no  longer  possible  to  link  a  polymorphism  with  the

individual  to  which  it  belongs  [8],  which  is  a  problem for  studies  that  require  information  on
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linkage disequilibrium, for example. The other limitation is that sequencing errors cannot easily be

distinguished from true rare alleles [9]. Several authors have developed statistical approaches to

tackle these two issues [29–33], which have been implemented in software programs to analyse

pooled data [34–37]. In line with the intention of such improvements, the goal must be to assess the

impact of problems of Pool-seq and to come up with procedures to resolve them, especially as

whole-genome re-sequencing of individuals for population genomics is still expensive for species

with medium-sized to large genomes.

This  study  focused  on  validating  Pool-seq  for  population  genomics  by  comparing  SNP

frequencies  revealed  by  pooling  and  re-sequencing  with  those  revealed  by  individual-based

Genotyping  By  Sequencing  (GBS)  [38].  Comparisons  were  based  on  field-sampled  plants  of

Arabidopsis lyrata. Library preparation required very little DNA and was performed with standard

laboratory equipment. The three main questions we addressed were: (1) What is the increase in

accuracy  of  Pool-seq  SNP  frequency  estimates  when  increasing pool  size?  (2)  What  is  the

sequencing depth per individual required to obtain reliable population SNP frequencies with Pool-

seq? And, (3) what is the difference in accuracy of SNP calling between a heuristic approach as

implemented in the software VarScan [39] and a Bayesian approach as implemented in Snape [35]?

Materials and Methods

The A. lyrata plants of population A were collected in Presque Isle State Park (Erie, PA, USA) with

a permit granted by the Commonwealth of Pennsylvania. The A. lyrata plants of population B were

collected in the Clark Reservation State Park (Jamesville, NY, USA) with a permit granted by the

New York State  Office  of  Parks,  Recreation  and Historic  Preservation.  DNA of  field-collected

plants  was  extracted  from  silica-dried  leaves  with  the  DNeasy  96  Plant  Kit  (Qiagen,

Hombrechtikon, Switzerland). Each DNA sample was quantified twice with the DNA quantification

kit Quant-ITTM DNA HS (Invitrogen, Paisley, UK), a method based on fluorimetry with a DNA-
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specific dye. Samples were only accepted as suitable for the study if the average concentration was

at least 0.25 ng/ml and the coefficient of variation between the two rounds of quantification was

smaller than 0.1. We sampled 14 individuals from population A and 25 from population B (Fig. 1).

The same individuals of these two populations were analysed by pooled (Pool-seq) and individual

(GBS) sequencing.

Library preparation: Pool-seq

Libraries for Pool-seq were prepared with the Nextera Kit (Illumina, San Diego, CA, USA) from

equimolar-pooled DNA samples for each population. For each library a total of 40 ng of DNA was

used,  2.8  ng  per  individual  for  population  A and 1.6  ng  per  individual  for  population  B.  The

protocol was customized to work with strips of 8 PCR tubes. The tagmentation time was increased

from the manufacturer’s protocol of 5 min to 10 min. The number of PCR cycles was increased to 8

(instead of 5) and the elongation time was decreased to 2 min (instead of 3 min). Library A was

paired-end sequenced for 100 bases (PE100) on half a lane of Illumina HiSeq2000. Library B was

PE100 sequenced on four lanes, each time constituting one quarter of the lane. Data of the lanes of

population B were merged to create combinations from one to four lanes together (lane 1, lanes

1+2, lanes 1+2+3, lanes 1+2+3+4; Fig 1.).

Library preparation: GBS

Genomic DNA (50 ng per individual) was digested at 37°C for 65 min in a 20 µL reaction volume

with 5 U MspI (NEB, Ipswich, MA, USA) in 10× NEBuffer 4. Following heat inactivation of the

restriction enzyme (65°C, 20 min), tubes were allowed to cool slowly to room temperature covered

with  tinfoil.  Adapter  ligation  was  then  performed  immediately,  using  the  following  reaction

mixture: 5 µL 10× NEBuffer 2, 1.93 µL P1 adapter (10 µM; sequence as per Elshire et al. [39] but

with a CG instead of a CWG sticky end, and containing a 4-9 base barcode sequence), 1.93 µL P2
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adapter (10 µM; sequence as per Elshire et al. [38] but with a CG instead of CWG sticky end), 1.8

µL rATP (100 mM), 1.5 µL T4 DNA ligase (2×106 U/mL), made up to 50 µL with ddH2O. Ligation

reactions were incubated at room temperature for 45 min, then heat-inactivated at 65°C for 20 min.

Tubes were allowed to cool slowly as before.

To multiplex barcoded samples, 5 µL of each ligation mix was pooled. The mixture was

cleaned with a Clean and Concentrator -5 Kit (Zymo Research, Irvine, CA, USA), eluted in 50 µL

Buffer EB. The pooled and cleaned DNA was used as template in 25 parallel PCR amplifications

(replicated to minimise template bias). Each well included 2 µL template DNA, 2.5 µL of each PCR

primer (as per Elshire et al. [38]), 5 µL dNTPs (2 mM), 0.5 µL Taq polymerase (Promega, Madison,

WI, USA), 5x GoTaq buffer (Promega) and ddH2O to a final volume of 50 µL. Cycling protocol

was as follows: 72°C for 5 min, 96°C for 30 s, 18 cycles of [96°C for 30 s, 65°C for 30 s, 72°C for

30 s], and a final extension of 72°C for 5 min. All replicate PCR reactions were pooled, and cleaned

a second time as before, eluting in 30 µL of buffer per ~200 µL of PCR product. Size selection was

performed with the Caliper LapChip XT (PerkinElmer, Waltham, MA, USA), set to collect two

peaks (first peak: 350 bp, second peak: 455 bp), which effectively collected fragments between 301-

519 bp due to the machine’s size accuracy limit of 14%. A third cleanup was performed, eluting in

17 µL Buffer EB. Sequencing was performed in a single Illumina HiSeq2000 lane.

Bioinformatics pipelines and SNP frequency comparison

The bioinformatics pipelines for Pool-seq and GBS sequence data were kept as similar as possible

to minimize differences due to software used (pipelines accessible at: http://github.com/fraca). The

sequences  are  stored  at  the  European  Nucleotide  Archive  (http://www.ebi.ac.uk/ena)  with  the

accession  number  PRJEB8335. Demultiplexing  of  the  GBS  data  was  performed  with  the

preprocess_radtags script of Stacks [40], which retains reads with the proper barcode and restriction

cut sites.
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The Pool-seq and GBS sequences were trimmed using the script trim-fastq.pl of the software

program PoPoolation [34] with a base quality threshold of 20, trimmed only from the 3' end to

allow the subsequent removal of duplicates. Reads were mapped with BWA-MEM using default

parameters [41]. The first 8 scaffolds of the published genome of A. lyrata v1.0 [42] were used as

the  reference  genome.  Data  of  the  Pool-seq  lanes  of  population  B were  merged  to  create  the

different combinations. Duplicate reads were removed with the MarkDuplicates tool of Picard [43].

Only proper paired reads with a mapping quality score above 20 were retained to create a pileup file

with SAMtools [44]. The pileup file of Pool-seq data was filtered to retain regions with depth of

coverage per site of 14-500 for population A and 25-500 for population B. The pileup file of GBS

data was filtered for regions with depth of coverage per site of 5-500 for an individual and for data

available  for  at  least  90% of  the  individuals  of  a  population.  The  regions  near  insertions  and

deletions were identified (identify-genomic-indel-regions.pl) and removed (filter-pileup-by-gtf.pl)

with PoPoolation [34]. The genomic interspersed repeats were identified in the reference genome

with RepeatMasker [45] using the default settings for “arabidopsis” and removed from the pileup

files. 

Finally, the filtered pileup files were used to call SNPs with the program VarScan with a

significance (P) value  ≤ 0.05, minimum base quality of 20 and a minimum allele count of two

reads. For the Pool-seq data, SNPs were additionally called with Snape [35]. We retained SNPs with

a posterior probability of segregation > 0.9 and minimum allele count of two reads. The nucleotide

diversity and the genetic differentiation from the reference genome that are needed to set  prior

probabilities  in  the  Bayesian  model  of  Snape  were  calculated  by  NPStat  [37].  We used  the

BEDTools software [46] to calculate sequencing depth or depth of coverage per site, defined as the

number of times each base was sequenced per individual or per population pool. We applied the

same thresholds for SNP calling and genome coverage calculation. Figure 1 presents the final 12

data sets used for further analysis. Allele frequency estimates were calculated as the fraction of
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reads carrying the non-reference allele for Pool-seq data, and the fraction of the non-reference allele

across GBS-derived genotypes.

Three statistics were used to compare Pool-seq-based SNP frequencies with those obtained

by  GBS.  First,  the  concordance  correlation  coefficient  (CCC)  was  calculated  using  the  epiR

package [47]. This test statistic can be used to evaluate the agreement between two variables [48].

The CCC combines precision (deviation from best-fit-line) and accuracy (deviation of best-fit-line

from 45° line through origin)  to determine how far  the observed data deviate  from the line of

perfect  concordance.  Second,  the  absolute  value  of  the  difference  between  the  estimated  SNP

frequencies  with the two methods (|Δf|) was calculated and its distribution investigated. Third, a

false negative rate was calculated as the fraction of SNPs called in GBS but not in the pooled

sample, relative to the total number of SNPs called by GBS. This calculation included only genomic

regions covered by both GBS and Pool-seq data, and considered SNP frequencies estimated from

GBS to represent the true population frequencies. Because sequencing depth of GBS reads did not

meet the minimum threshold of five reads for all the individuals, data did not allow the reliable

estimation of a false positive rate of SNP calling.

Results

Sequencing statistics

Pooled sequencing of population A yielded 34 million paired-end reads. Prior to restricting the reads

falling within an informative range of coverage depth, 50% of reads mapped unambiguously to 74%

of the A. lyrata nuclear genome, at a mean depth of 27×. After applying the read depth cutoff (min

14×, max 500×) and removing duplicates, 46% of the reads mapped to 41% of the A. lyrata nuclear

genome.  The  mean sequencing depth  of  population  A was  37× in  the  final  data  set,  which  is

equivalent  to  a  mean  depth  of  2.6×  per  individual.  Pooled  sequencing  of  population  B  was

performed on four lanes, each of which yielded ~40 million paired-end reads. We unambiguously
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mapped 59% of the total reads to cover 80% of the A. lyrata nuclear genome, at a mean depth of

25× per lane. After applying the read depth cutoff (min 25×, max 500×) and removing duplicates,

the  percentage of  the genome covered  by one lane  was on average 36%, while  the four  lanes

together covered 70%. The mean sequencing depth (post-cutoff) of population B depended on the

number of lanes merged; depth was on average 36× for one lane and 103× for four lanes (Fig 1).

Accordingly, sequencing depth per individual varied between 1.4× and 4.1×. Individual sequencing

by GBS yielded 105 million paired-end reads (population A and B together) that were correctly

barcoded and trimmed. We unambiguously mapped 40% of reads to cover 2% of the  A. lyrata

nuclear genome. Once the read depth cutoff (min 5×, max 500×) was applied, the mean sequencing

depth per individual for population A in the final data set was 17× (range across individuals: 10×-

30×).  For  population  B  the  mean  sequencing  depth  per  individual  was  30×  (range  across

individuals: 11×-113×).

Number of SNPs

Table 1 shows the number of SNPs called by GBS and Pool-seq. For the Pool-seq protocol and

population A,  the software VarScan called 0.50 million SNPs, while  Snape called 0.72 million

SNPs. Increasing the depth from 1.4× to 4.1× (from one to four lanes) for population B increased

the number of SNPs called. Using VarScan, the SNPs called increased from 0.68 million to 1.95

million. Using Snape, the SNPs called increased from 1.04 million to 2.54 million. Figure 2 shows

the fraction of SNPs called with both VarScan and Snape in population B using one or four lanes.

Almost all the SNPs called by VarScan were also called by Snape. The percentage of SNPs called

by both programs relative to the total number of SNPs called by either Snape or VarScan, increased

from 65% to 76% when the input data were increased from one lane to four lanes.

GBS led to  more SNPs for  population A than for  population B. The smaller  sample of

individuals in population A (14 instead of 25 in population B) made it easier to attain the processing
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threshold of five or more reads for at least 90% of individuals. Therefore, population A had higher

overlap among individuals in genomic regions with sufficient sequencing depth and a higher total

number of called SNPs. Moreover, the number of SNPs identified by both GBS and Pool-Seq was

low (column SNPboth, Table 1) because GBS revealed SNP information for a small fraction of the

genome  and  that  fraction  overlapped  incompletely  with  genomic  regions  also  covered  with

acceptable depth by Pool-seq.

Comparison of SNP frequencies revealed by Pool-seq versus GBS

First,  SNP  frequencies  obtained  with  Pool-seq  and  GBS  were  compared  by  the  use  of  the

concordance correlation coefficient (CCC), which captures the agreement between two variables by

accounting for precision and accuracy and which can range from 0 to 1. Figure 3 illustrates CCC

values with upper and lower 95% confidence ranges for all library/lane combinations studied. CCC

values for population A were 0.827 for SNPs called with VarScan and 0.864 for those called with

Snape (Table 1). For population B, CCC values increased with increasing depth of coverage per site

from 0.887 (1.4×) to 0.952 (4.1×) with VarScan and from 0.911 (1.4×) to 0.955 (4.1×) with Snape.

Figure S1 illustrates the correlation between SNP frequency estimates of Pool-seq and those of

GBS. The correlation between the two increased when more samples were pooled, and when the

depth of coverage per site was increased.

Second, SNP frequencies revealed with Pool-seq and GBS were compared based on the

absolute difference between the SNP frequency estimates of the two methods (|Δf| in Table 1). The

mean |Δf|  for  population  A was 0.109  with  VarScan and 0.103 with Snape.  The mean |Δf|  for

population B decreased with increasing sequencing depth, from 0.092 to 0.058 with VarScan and

from 0.083  to  0.055  with  Snape.  Figure  4  shows the  distribution  of  |Δf|  for  each  library/lane

combination,  and Fig S2 presents the distribution of the difference between the SNP frequency

estimates of the two methods across the achieved read depth at  SNP sites for each library/lane
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combination. The difference in SNP frequencies between methods was generally lower when read

depth was high, both across and within library/lane combinations. Furthermore, the distribution of

the difference was not appreciably biased towards either negative or positive values (Fig S2).

Third,  the false negative rate (FN rate in Table 1) decreased with increasing sequencing

depth, from 0.385 (1.4×) to 0.170 (4.1×) with VarScan and from 0.212 (1.4×) to 0.101 (4.1×) with

Snape. At the same time, the mean frequency of minor alleles at GBS SNPs that were missed by

Pool-seq (FN MAF in Table 1) decreased from 0.077 to 0.045 with VarScan and from 0.054 to

0.036 with Snape. Figure 5 illustrates that the minor allele frequency at SNP sites missed by Pool-

seq was mostly lower than 5% when the number of sequenced individuals and the sequencing depth

per individual were both high.
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Discussion

Pooled whole-genome  re-sequencing  (Pool-seq)  has  only  recently  been  adopted  for  population

genomics in eukaryotes, so validation studies are needed, together with test of aspects of the wet-lab

protocol and effects of the bioinformatics pipeline on results. Several studies have addressed the

validation of this method (see Table 1 in [28]) but very few have examined the kind of large data

sets  now  common  in  population  genomics,  containing  more  than  a  few  thousand  SNPs

[22,27,32,51].  Here we analysed two populations of  Arabidopsis lyrata by sequencing pools of

individuals, and sequencing the same individuals separately by GBS. The main objective was to

compare SNP frequencies  obtained by Pool-seq with  GBS-based SNP frequencies.  Overall,  we

found that concordance correlation coefficients between SNP frequencies based on the two methods

were high, between 0.827 and 0.955. These values are well within the range of other validation

studies of pooled sequencing (e.g. Table 1 in [28]). Concordance increased with the pool size, with

mean individual sequencing depth in the pool, and with the use of Snape as compared to VarScan as

SNP calling software for the pooled samples.

The comparison of different numbers of individuals pooled was based on comparing 14

individuals with sequencing depth per individual of 2.6× and 25 individuals sequenced on two lanes

with  sequencing  depth  per  individual  of  2.3×. With  the  frequentist  SNP  caller  VarScan,  the

concordance  correlation  coefficient  increased  from  0.827  to  0.931,  while  the  mean  absolute

difference between SNP frequency estimates from the two methods decreased from 0.109 to 0.073

(Table 1, Fig 3, Fig 4). With the Bayesian-based SNP caller Snape, the concordance correlation

coefficient  increased  from  0.864  to  0.941,  while  the  mean  absolute  difference  between  SNP

frequency estimates from the two methods decreased from 0.103 to 0.067. These results clearly

show that an increase in the number of individuals that are pooled – at  least  for the range we

worked  with  –  improves  the  accuracy  of  SNP  frequency  estimation,  as  predicted  by  several

theoretical  studies [8,10,33].  Similar  to  our results,  those of  another  study on pooling different
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numbers of isofemale lines of Drosophila revealed increases in concordance correlation coefficients

from 0.822-0.867 with 22 lines to 0.906-0.934 and 0.911-0.936 with 42 lines [27]. Aside from this,

we found that increasing the number of pooled individuals did not greatly increase the chance of

detecting SNPs, at least not with sequencing depth per individual used here. The false negative rate

remained almost unchanged, increasing slightly from 0.270 to 0.287 with VarScan, and from 0.137

to 0.146 for Snape.

The  comparison  of  varying  depth  of  coverage  per  site  revealed  further  potential  for

improving SNP frequency estimates. An increase of the depth of sequencing per individual from

1.4× to 2.3×, 3.2×, and 4.1×, led to an increase in concordance of Pool-seq with GBS (Fig 3) and a

decrease in the absolute difference between SNP frequency estimates between methods (Fig 4) and

false negative rate (Table 1). In line with our results, a sequencing study on a pool of 30 individuals

of the pine processionary moth [32] revealed improved frequency estimates when the sequencing

depth was increased from a range of 10×-50× to >200×, equivalent to a depth per individual of

0.3×-1.7× to >6.7×. The authors observed  an increase in the correlation coefficient from 0.93 to

>0.99 (across different sequencing depths per individual for individual sequencing) and a decrease

of  the  median of  the  absolute  difference  between individual-based and pooled-based frequency

estimates from 0.067 to 0.007.

A major issue with the Pool-seq technique is a lack of power to detect rare alleles [9,27,33],

which is unimportant for some applications but important for others. For example, rare alleles may

be important for explaining phenotypic variation within populations [52] and therefore desirable to

detect in genome-wide association studies. We investigated this issue by analyzing the minor allele

frequency of false negative SNPs (SNPs that were called only in GBS but not in the Pool-seq

samples). In all library/lane combinations, the majority of false negative SNPs had low minor allele

frequencies (Fig 5). At the sequencing depth of 4.1× per individual in the pool with 25 individuals

the majority of GBS SNPs not detected by Pool-seq had a frequency below 0.05 (mean = 0.045 for
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VarScan and mean = 0.036 for Snape; Table 1). For higher GBS-based SNP frequencies, the number

of SNPs missed by Pool-seq rapidly decreased. This result supports the utility of our upper pool size

and maximum depth of sequencing. It has been suggested that to detect a minor allele with near-

certainty, its frequency must be larger than 10 divided by the number of pooled diploid individuals

[33], which in our study would have been 0.4 for the larger population. We appeared able to detect

all minor alleles with frequency > 0.15 at the largest pool size and sequencing depth tested (Fig. 5).

The discrepancy is likely due to the difference in variant calling approaches and the fact that we

used a P = 0.05 threshold for detection as opposed to the P = 0.001 level used by Lynch et al. [33].

For some population genetics studies this detection threshold is likely to be acceptable and our

results  confirm that  this  kind of  pooled  data  is  useful  for  detecting common minor  alleles.  Of

course, those considering Pool-seq should be aware of the limitation of this approach in detecting

rare alleles.

Several SNP callers can be applied to pooled data (reviewed in [8]). We used VarScan [38],

which uses a frequentist approach, and Snape [35], which uses a Bayesian approach. Both take into

account  sequencing  depth,  base  quality,  and  statistical  significance,  while  Snape  includes

information on nucleotide diversity and divergence from the reference genome to detect SNPs. Our

results show that Snape called considerably more SNPs than VarScan (Fig 2). The number of SNPs

called by Snape that were confirmed by GBS was on average 20% higher than the number of SNPs

called by VarScan confirmed by GBS (column SNPboth in Table 1). Furthermore the false negative

rate was found to be systematically lower with Snape. Therefore, it can be argued that Snape is

more  powerful  at  detecting  SNPs  than  is  VarScan.  This  may  however  be  accompanied  by  an

increase in the false positive rate, which is an important avenue for further investigation. Also, the

concordance  correlation  coefficients  between GBS and Pool-seq SNP frequencies  were  slightly

higher with Snape than with VarScan, although this difference between SNP callers declined with

increasing sequencing depth (Table 1, Fig 3). The absolute difference in SNP frequencies between
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methods was lower with Snape than with VarScan. These results indicate that the use of priors for

nucleotide diversity and divergence contribute positively to the calling of SNPs.

In conclusion, we have presented a method that uses low input DNA (1.6 ng per individual)

and widely-available commercial kits to perform pooled whole-genome re-sequencing. Thanks to

the tagmentation step, we avoided fragmentation by sonication, which requires more input DNA.

We validated SNP frequencies by comparison with GBS data. Our study strengthens the conclusion

that the quality of pooled sequencing data sets relies on two critical parameters: the number of

individuals that are pooled, and sequencing effort. In a recent review on Pool-seq [8], the authors

recommend pools of at  least  40 individuals with sequencing depth of more than 50× per pool.

Lynch et al. [33] used a maximum likelihood estimator and suggested more than 100 individuals

and a sequencing depth of 100× per pool  to obtain high confidence in allele frequency estimates.

Based on the empirical comparison we performed, we find that a pool of 25 individuals combined

with a sequencing depth of 100× produces SNP frequency data  with satisfactory precision and

accuracy. We confirm that Pool-seq is a useful method to detect genomic variants with a frequency

of about 0.05 and larger.
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Fig  1. Diagram  presenting  the  data  sets  produced  to  validate  pooled  whole-genome  re-

sequencing (Pool-seq) by individual-based Genotyping By Sequencing (GBS).

The three rows of boxes contain the following information: top row: name of  Arabidopsis lyrata

population and number of individuals per population; second row: sequencing method, number of

lanes merged (Pool-seq, population B only), the sequencing depth per individual and per pool (in

parentheses); third row: the number of SNPs called by VarScan and Snape for each data set. Note

that for GBS data, only the SNP caller VarScan was used.
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Fig 2. Venn diagram of Pool-seq SNPs called with VarScan (dark grey) and Snape (light grey).

The left-hand panel shows the SNPs called for population B using data from lane 1 only. The right-

hand panel shows the SNPs called for population B with the data from all four lanes. The figure was

produced with the R package VennDiagram [49].
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Fig 3. Concordance correlation coefficient between SNP frequencies estimated with Pool-seq 

and GBS for each library/lane combination and SNP caller.

Mean CCC values with upper and lower 95% confidence ranges are shown. The name of a 

library/lane combination contains information on: the population (A or B), sequencing depth per 

individual by Pool-seq, and the software used to detect SNPs for Pool-seq (either VarScan or Snape;

for GBS, only VarScan was used).
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Fig 4. Box plot illustrating the distribution of the absolute difference in SNP frequency 

estimates between Pool-seq and GBS.

The upper panel (dark grey) shows distributions when SNPs were called with VarScan for Pool-seq,

the lower panel (light grey) shows distributions with Snape. Library names contain information on:

the population (A or B), and the sequencing depth by Pool-seq. The band inside each box shows the

median, while the lower and upper ends indicate the first and third quartile, respectively. The lower
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whisker is -1.5x the interquartile range from the first quartile, while the upper whisker is +1.5x the

interquartile range from the third quartile. The diamonds represent outliers.

Fig 5. Histogram of minor allele frequency of GBS.

35



The  grey  bars  represent  the SNPs  present  only  in  GBS.  The  striped  bars  represent  the  SNPs

sequenced in the GBS and Pool-seq samples. The 10 panels show the results for the various Pool-

seq library/lane combinations and the two SNP callers. The name of a library/lane combination

contains information on: the population (A or B), sequencing depth per individual by Pool-seq, and

the software used to detect SNPs for Pool-seq (either VarScan or Snape; for GBS, only VarScan was

used).
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Fig S1. Scatter plots of SNP frequency estimates based on GBS and Pool-seq for the various

library/lane combinations and the two SNP callers.

The  name  of  a  library/lane  combination  contains  information  on:  the  population  (A  or  B),

sequencing depth per individual by Pool-seq, and the software used to detect SNPs for Pool-seq
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(either VarScan or Snape; for GBS, only VarScan was used).The solid line indicates the expectation

of equal frequency with both sequencing approaches. 

38



Fig S2. Hexbin plots of the difference in SNP frequency estimates between Pool-seq and GBS

with respect to the total read depth at SNP sites of Pool-seq.
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The  name  of  a  library/lane  combination  contains  information  on:  the  population  (A  or  B),

sequencing depth per individual by Pool-seq, and the software used to detect SNPs for Pool-

seq (either VarScan or Snape; for GBS, only VarScan was used). Hexagons are shaded by

SNP count according to the scale shown on the right. The figure was produced with the

hexbin package in R [50].

Table 1. Comparison of SNP numbers and frequency estimate accuracy revealed by Pool-seq

and by GBS.

Columns  report:  library/lane  identity  (population  A or  B,  estimation  of  sequencing  depth  per

individual in Pool-seq, and software used to detect SNPs of Pool-seq data set), number of SNPs

detected  by  GBS  (SNPGBS)  and  Pool-seq  (SNPPool-seq),  overlapping  number  of  SNPs  detected

(SNPboth), concordance correlation coefficient (CCC) with lower and upper 95% confidence limit

(LCL; UCL) of CCC, the mean of the absolute difference in SNP frequency estimates of the two

methods (|Δf|), false negative rate (FN rate), that is, the fraction of SNPs called by GBS but not  by

Pool-seq, and their mean minor allele frequency (FN MAF).

Library/lane ID SNPPool-seq SNPGBS SNPboth CCC LCL UCL |Δf| FN rate FN MAF

A 2.6× VarScan 500’515 13’843 5731 0.827 0.819 0.835 0.109 0.27 0.115

A 2.6× Snape 716’483 13’843 7102 0.864 0.858 0.87 0.103 0.137 0.075

B 1.4× VarScan 682’317 4177 1333 0.887 0.876 0.898 0.092 0.385 0.077

B 1.4× Snape 1’039’746 4177 1754 0.911 0.902 0.918 0.083 0.212 0.054

B 2.3× VarScan 1’405’122 4177 2166 0.931 0.926 0.937 0.073 0.287 0.059

B 2.3× Snape 1’981’376 4177 2636 0.941 0.937 0.946 0.067 0.146 0.043

B 3.2× VarScan 1’745’682 4177 2413 0.946 0.942 0.95 0.063 0.211 0.049

B 3.2× Snape 2’348’269 4177 2738 0.951 0.948 0.955 0.059 0.116 0.038

B 4.1× VarScan 1’950’679 4177 2536 0.952 0.948 0.955 0.058 0.17 0.045

B 4.1× Snape 2’536’178 4177 2771 0.955 0.952 0.958 0.055 0.101 0.036

40



CHAPTER 2: The role of historic, species-scale and recent 
local-scale demographic processes in explaining population 
genomic diversity

Authors: M. Fracassetti1,2*, Y. Willi1,2

Affiliations:

1 Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, CH-2000 Neuchâtel, 

Switzerland

2 Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, CH-4056 Basel, 

Switzerland

*Correspondence to: marco.fracassetti@unibas.ch

TO BE SUBMITTED TO MOLECULAR ECOLOGY

41

mailto:marco.fracassetti@unibas.ch


Abstract: Genetic diversity is the raw material on which evolution acts and is therefore of key

interest of many fields of biology. Albeit much research has been conducted to understand the role

of local demographic factors such as census size and mating system on within-population diversity,

it remains often unclear what role historic, species-scale demographic processes play compared to

the  more  recent,  local  demographic  processes.  Furthermore,  little  is  known how strongly  such

putatively neutral demographic processes may differentially affect intergenic and coding regions of

the genome. In this study, we estimated genomic diversity of 52 populations of North American

Arabidopsis  lyrata across  its  entire  distribution  at  different  functional  regions  of  the  genome.

Analysis on the relatedness of populations  confirmed the presence of a historic split between an

eastern genetic cluster along the Appalachian Mountains and a western genetic cluster west of Lake

Erie with evidence of two bouts of past  gene flow between clusters. Within clusters, expansion

routes since the end of the last glaciation cycle were traced from out of Wisconsin to the north and

to Lake Erie, and from the central Appalachians to the north and south. Best predictors of genomic

diversity  were  mating  system  (selfing  compared  to  outcrossing)  followed  by  historic  range

dynamics  since  the  last  glaciation  cycle.  Historic  demographic  processes  pre-dating  the  last

glaciation cycle and admixture between clusters had a much smaller impact and was significant

only for intergenic regions. Census size did not explain significant variation. The study highlights

that for a species with a relatively recent expansion history, this history is one of the most important

factors explaining genome-wide genetic diversity.

One  Sentence  Summary:  In  a  northern-temperate-zone  herbaceous  plant,  current  within-

population genomic diversity is strongest related to recent mating system shifts to selfing and range

dynamics associated with the last glaciation cycle, while old species-scale demographic processes

left little imprint.
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Introduction

Within-population  genetic  diversity  is  the  basis  of  evolutionary  change,  for  both  neutral  and

adaptive evolution (Barrett & Schluter 2008). Given the importance of genetic diversity, it has been

an important  entity in evolutionary biology, applied conservation biology and animal  and plant

breeding. The assessment of genetic diversity is particularly crucial in conservation biology, where

it is used to determine the conservation status of a population, with low diversity indicating low

current  and  future  fitness  that  endangers  a  population’s persistence (Reed  & Frankham 2003).

Similarly plant breeders aim to preserve genetic diversity in order to develop new varieties and

hybrids (Govindaraj et al. 2015). In these fields, single factors have been estimated for their effect

of determining population genetic diversity such as population size or mating system, that explain a

considerable amount of variation in genetic diversity (Schoen & Brown 1991; Leimu & Fischer

2008).  However,  within-population  genetic  diversity  may  bear  also  an  important  signature  of

historic  demographic  processes  (Wright  & Gaut  2005;  Duncan  et  al. 2015).  In  this  study, we

assessed the extent to which historic processes across a species range can explain genetic diversity

for different regions of the genome, i.e. intergenic and coding regions and the extent to which more

recent and local demographic factors such as census size and mating system are important.

Theory predicts that the diversity of neutral genomic regions is affected by population size,

mutation rate and gene flow (Wright 1931; Kimura 1955;  Slatkin 1981).  Population size has a

positive effect on the amount of genetic diversity, as it is inversely proportional to genetic drift

(Kimura 1955). Genetic drift is defined as the random change in allele frequency, which leads to the

fixation  and loss  of  diversity  in  small  populations  (Wright  1931).  Furthermore,  both  increased

mutation rate and gene flow positively affect genetic diversity (Ohta & Kimura 1973; Slatkin 1981).

Diversity  of  genomic regions  may further  directly  or  indirectly  – via  linkage – be affected  by

selection, whose impact on diversity depends then on the strength and type of selection. Indeed,

directional  selection  is  generally  predicted  to  reduce  genetic  variation  (Smith  &  Haigh  1974),
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whereas  balancing selection  tends  to  maintain  variation  (Dobzhansky 1943),  but  the  impact  of

selection also depends on the effective population size and the relative magnitude of genetic drift

(Wright 1931; Frankham 1996). Also the mating system is predicted to have a strong effect on

within-population genetic diversity, where e.g., selfing reduces the effective population size (Ne) by

one half (Pollak 1987). In summary, classic equilibrium-based theoretical models predict a positive

effect of population size, mutation rate, gene flow and outcrossing on genetic diversity and mixed

effects of selection depending on their type and strength (reviewed in (Willi et al. 2006)).

Contemporary within-population genetic diversity may not only be shaped by recent and

local demographic parameters, but also by historic, large-scale processes such as species retractions

due  to  major  disturbance  events,  long-term  isolation,  re-colonization,  and  admixture  between

formerly  separated  clusters.  Such dynamics  were  found to  have  been  particularly  important  to

species in the northern-temperate zones that were affected by Quaternary ice ages (Hewitt 2000;

Fussi  et al. 2010). Indeed, ancient pollen data (Bennett  & Parducci 2006) and phylogeographic

studies (Schönswetter et al. 2005; Soltis et al. 2006) suggest that many plant species survived the

last glacial maximum (LGM) by retreating to refugia, where the climatic conditions allowed species

persistence. At the end of the ice ages many of these species recolonized the newly ice-free areas.

The prediction is that post-glacial range dynamics led to the situation of high genetic diversity in

areas where the species persisted, including the refugia from which recolonization occurred (Keppel

et  al. 2012).  Along the  expansion route  or  leading species  edge,  a  series  of  founder  events  is

expected to have left a signature of genetic drift and a decline in heterozygosity (Pannell & Dorken

2006; Hallatschek  et al. 2007).  In parallel,  rare genetic variants – either standing or new - are

predicted to have increased in frequencies at the front wave of expansion, a phenomenon called

“gene surfing” (Klopfstein  et al. 2006; Excoffier  et al. 2009). The opposite edge of the species

distribution, called trailing or rear edge, is predicted to have been affected by a dynamics of small

population  size  and  prolonged  isolation  that  reduced  within-population  genetic  diversity  and
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increased genetic differentiation among them (Petit et al. 2003; Hampe & Petit 2005). In summary,

species affected by Quaternary Ice Ages are predicted to have generally reduced genetic diversity at

both leading and trailing edges.

Based on the observation that  many species  have  smaller  population sizes  at  the edges

compared to the center of distribution a somewhat related hypothesis, the center-margin hypothesis

was formulated. Originally, the hypothesis was motivated based on the observation that for many

species, densities decline towards the edge of distribution (Hengeveld & Haeck 1982; Brussard

1984).  Eckert  et  al.  (Eckert  et  al. 2008)  investigated  whether  the  hypothesis  was  generally

supported by published neutral marker studies. The authors found that 64.2% of the studies detected

a decline in within-population genetic diversity and 70.2% of the studies detected an increase in

among-population  genetic  differentiation.  However,  most  of  these  empirical  studies  estimated

genetic diversity using only neutral portions of the genome and results were interpreted to reflect

local  long-term  population  size,  gene  flow,  and  evolutionary  potential.  The  next  generation

sequencing (NGS) revolution allows the estimation of genetic diversity on the level of the entire

genome (e.g.  in  plants:  (Cao  et  al. 2011;  Branca  et  al. 2011;  Mace  et  al. 2013)).  Hence,  the

hypothesis about the effect of different players affecting genetic diversity can be tested for distinct

parts of the genome that may be differentially affected by selection and thus allows determining

how well estimates of presumably neutral genomic variation reflect genomic variation in expressed

genes.

We quantified the relative importance of historic range dynamics compared to current local

demographic  parameters  in  explaining  genetic  diversity  in  Arabidopsis  lyrata spp. lyrata.  The

subspecies is a short-lived perennial plant, pre-dominantly outcrossing and closely related to the

plant model species  A. thaliana (Hu  et al. 2011).  We analyzed 52 populations across its  entire

geographic range in North America, which extends from North  Carolina and Missouri to upstate

New  York  and  Ontario.  Previous  studies  based  on  microsatellites  data  identified  an  old  split
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between an eastern and a western genetic cluster (Hoebe et al. 2009; Willi & Määttänen 2010). We

first  reconstructed  the  phylogeographic  history  of  A.  lyrata based  on nuclear  single  nucleotide

polymorphism  (SNP)  frequencies  and  identified  possible  refugia  during  the  LGM.  We  then

compared  genomic  diversity  estimates  based  on  genome-wide  SNP frequencies  and  published

microsatellite-based genetic diversity estimates (Griffin & Willi 2014). Lastly, we tested how the

phylogeographic  history,  admixture  events,  local  census  size  and  the  mating  system  affected

genome-wide genetic diversity for intergenic regions, introns and coding regions (CDS).

Material and methods

Population sampling and library preparation.

Populations of Arabidopsis lyrata ssp. lyrata were collected during the reproductive season in 2007,

2011 and  2014  (Table  S1).  In  this  manuscript,  populations  were  named  by  the  state/province

abbreviation followed by a number that sorted populations along latitude for US populations and

longitude for Ontario (ON) populations. The sampled populations covered the whole known range

of the species (Schmickl et al. 2010; Paccard et al. 2016). In total 52 populations were analyzed, of

which 50 populations had been previously analyzed at 19 microsatellite loci (Griffin & Willi 2014).

For the remaining two populations, microsatellite genotyping was done as described in Griffin &

Willi.  Subsequent  analyses  revealed  that  ON1 was selfing,  with  an  FIS value  of  0.7.  For  each

population one library was prepared with the Nextera Kit (Illumina, San Diego, CA, USA) from 25

equimolarly  pooled  DNA samples.  We followed  the  library  preparation  protocol  described  in

Fracassetti  et  al.  2015.  Each library  was paired-end sequenced for  100 bases  (PE100)  on four

Illumina HiSeq2000 lanes, using one quarter of the lane each time. This approach of estimating

SNP  frequencies  was  previously  compared  with  SNP  frequencies  based  on  individual-level

representation  sequencing and very  high  congruence  in  estimates  was  found (Fracassetti  et  al.

2015).
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Bioinformatic pipeline

Lane-by-lane, raw sequences were trimmed with a base quality threshold of 20 using the Perl script

trim-fastq.pl that is part of the software package PoPoolation (Kofler  et al. 2011) Trimming was

done only from the 3' end to allow the subsequent removal of duplicates. Reads were mapped with

BWA-MEM (Li 2013) against the reference using default parameters. The reference was the nuclear

genome of  A.  lyrata v1.0  (Hu  et  al. 2011)  and  the  chloroplast  and  mitochondrial  genomes  of

Arabidopsis thaliana  (Lamesch  et al. 2012). Two regions of scaffold 2 of the  A. lyrata reference

genome were masked (position ranges: 8746475-8835273 and 9128838-9212301) because these

regions  shared  very  high  similarity  with  the  A.  thaliana chloroplast  genome,  suggesting  an

assembly error in the A. lyrata genome. Data of the different lanes were subsequently merged and

only reads that mapped against scaffolds I-VIII – representing the eight chromosomes of A. lyrata –

were retained for the further analyses.

Further filtering steps were applied: duplicate reads were removed with the MarkDuplicates tool of

Picard v.2.5.0 (http://broadinstitute.github.io/picard/) and only proper paired reads with a mapping

quality score above 20 were retained. The reads belonging to the three different regions (intergenic,

introns and coding DNA sequencing) were filtered with BEDTools (Quinlan & Hall 2010). The

selection of intergenic regions, introns and coding DNA sequences (CDS) was based on the newest

annotation of  A. lyrata (Rawat  et al. 2015). Intergenic regions were defined as regions  1000 bp

away from the 5' and 3' untranslated regions (UTR) of each gene. Pileup files for each scaffold and

for each region were created with SAMtools (Li et al. 2009). Each pileup file was filtered to retain

regions with depth of coverage per site of 25-500. Indels (inserts, deletions) were called with the

command pileup2indel  of the program VarScan (Koboldt  et al. 2012) for each population.  The

regions  near  insertions  and  deletions  were  identified  (identify-genomic-indel-regions.pl)  and

removed (filter-pileup-by-gtf.pl) with PoPoolation (Kofler  et al. 2011). The genomic interspersed
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repeats were identified in the reference genome with RepeatMasker (Smit  et al. 2010) using the

default settings for “arabidopsis” and removed from the pileup files. SNPs were called with the

command  pileup2snp  of  the  program VarScan  (Koboldt  et  al. 2012)  for  each  population.  We

retained  only  bi-allelic  SNPs,  with  a  minimum  count  of  the  variant  allele  of  3,  a  minimum

frequency of the variant allele of 0.015, a P-value lower than 0.15, and minimum mapping quality

of 20. Cut-off parameters were chosen to balance the removal of false positives and retaining true

rare variants. Finally, SNPs with a strand bias of more than 90% were filtered out.

Population relatedness and genomic diversity esimates

The relatedness tree of the A. lyrata populations was estimated with TreeMix (Pickrell & Pritchard

2012)  on  127,726  SNPs  present  at  nucleotide  sites  sequenced  in  all  populations.  The  SNP

frequencies of the Arabidopsis halleri population Ha31 (Fischer et al. 2013) were used for rooting

the tree. The analysis was conducted with a SNP window size (-K) of 500. This corresponds to a

windows size of 0.2 million bp which exceeds the known extent of linkage disequilibrium of  A.

lyrata (Ross-Ibarra  et al. 2008). We allowed seven migration events and we tested them with the

four-population  test  (Reich  et  al. 2009)  implemented  in  TreeMix  (Pickrell  & Pritchard  2012).

Additional migrations events were tested but they were not significant with the four-population test.

TreeMix was run 100 times and the tree with the highest maximum likelihood value was selected.

The most basal split separated the Ozark populations (MO) from all others, and the next split the

previously  found  western  and  eastern  ancestral  cluster.  For  these  two  clusters  separately,  the

location of ancestral populations - relative to each internal node in the Treemix tree topology - was

determined with the phylo.to.maps function of the R package  phytools (Revell 2012). The time

calibration of the tree was performed with the chronos function in the R package ape (Paradis 2013)

using a “correlated” model with a smoothing parameter (λ) equal to 0 and 10 branch categories,

which  permit  different  mutation  rate  between  branches.  One  calibration  point  was  used,  the
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presumable split time between  A. lyrata and  A. halleri of (334’400 years) estimated based on 29

nuclear loci (Roux  et al. 2011). Usually  time calibration requires that branch lengths reflect the

number  of  substitutions.  Based  on  coalescent  theory,  the  time  to  fixation  should  take  2Ne

generations.  However, our  relatedness  tree  had branch  lengths  which  were  estimated  based on

frequency data and represented the drift parameter, which is time divided by 2Ne. Therefore we

assumed that the two types of branch lengths were proportional.

Three estimates of genomic diversity were calculated. We analyzed the pileup files with

NPStat (Ferretti et al. 2013) in 5000 bp windows using only biallelic SNPs called by VarScan. For

intergenic regions, introns and coding sequence regions (CDS) separately, we calculated nucleotide

diversity, π (Nei & Li 1979), Watterson's Theta, θ (Watterson 1975), and Tajima's D (Tajima 1989).

We then took the weighted median across windows based on the number of sequenced bps (table

S1). Interpolation maps (fig 7-9-11) were generated with the akima R package (Akima et al. 2015).

For  the  production  of  maps,  further  sources  were:  state  lines  (http://gadm.org/),  waterways

(http://www.naturalearthdata.com/), maximum extent of the ice sheet (Clark et al. 2009).

Determinants of genomic diversity

To identify the underlying processes that shaped patterns of genomic diversity, we assessed  the

relation of five explanatory variables (table S2) with the weighted medians of π, θ, and Tajima's D

of intergenic regions and CDS regions in linear models. Analysis for intron regions were not done

as genomic estimates were highly correlated with those of exons/coding regions (all R2 > 0.96, table

1). A first explanatory variable of the linear model was the ancestral cluster membership based on

the population relatedness tree (Figure 2; blue and purple shapes in figure 4), reflecting the oldest

historic split in this species. Since the MO1 and MO2 populations showed signature of admixture

with the southern populations of the western genetic cluster, they were assigned to the western

cluster. The second explanatory variable was the geographic distance from a core point of each of
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the two ancestral clusters, defined as the node from which expansions happened since about the last

glacial maximum (blue and purple circle in figure 3). This ancestral population can be thought as

having given raise to the leading edge of distribution, while populations that had split before where

considered rear-edge relative to the core site. For leading edge populations (blue tips in figure 3),

we  calculated  the  sum of  the  great-circle  distances  back  to  all  ancestral  populations  until  the

presumable refugium (core) population was reached, considering the entire expansion route. For

rear-edge populations, we calculated the direct great-circle distance to the core population. 

The third explanatory variable was census size, it was estimated by the surface area occupied by the

plants of a population multiplied by a measure of mean local density (Willi & Määttänen 2011),

which was log10-transformed. The fourth explanatory variable was the role of mating system, i.e.

whether  a  population was predominantly  outcrossing or  selfing (two mixed-mating  populations

were  considered  as  selfing).  The  mating  system  was  inferred  from  the  population  inbreeding

coefficient (FIS) of 19 microsatellite markers (Griffin & Willi 2014). It had been demonstrated that

FIS is strongly correlated with multi-locus outcrossing rate assessed by progeny-array (N = 18, R2 =

0.929,  P <  0.001,  figure  S1 in  Griffin  & Willi  2014).  The  fifth  explanatory  variable  depicted

admixture events (binary: 0/1) between the two genetic clusters suggested by TreeMix. The relative

importance of these variables was assessed with the R package relaimpo (Grömping 2006) using the

averaging over orderings (Lindeman et al. 1980).

The pipelines for analysis were written in BASH (Fox 1989) and R (R Core Team 2015) and

are accessible at: http://github.com/fraca. The sequences were stored at the European Nucleotide

Archive (http://www.ebi.ac.uk/ena) with the accession number XXXXXX. 

Results

Sequencing statistics

Sequencing of all populations yielded more than 13 billion mapped paired-end reads. After applying
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the read depth cutoff (25-500X) and removing duplicates, on average 220 millions paired-end reads

per populations (range: 128-323 millions) mapped unambiguously to 67% (range: 62-72%) of the

A. lyrata nuclear genome with a mean depth of 128X (range:  72-188X). The mean number of

biallelic SNPs called per population was 1.5 million (range: 0.7-2.8 millions). Overall 1.5% of the

sequenced base pairs were SNPs, the percentage was higher in intergenic regions (1.9%), followed

by introns (1.2%) and CDS (1%), see (figure 1).

Relatedness tree and historic range dynamics across the species distribution

The topology of the relatedness tree  indicated two main genetic clusters: one in the west and the

other in the east (figures  2&3). Two populations located in Missouri (MO1 and MO2) formed a

third clade that diverged about 253,050 years ago, suggesting that this first split within the species

occurred before the Illinoian glaciation 130,000-191,000 years ago (Bowen & Frye 1970).  The

topology of the tree was in agreement with the relative geographical position of populations and

suggested the expansion routes of the A. lyrata populations since the LGM (figure 4).

In the eastern cluster the most basal population was on the New Jersey coast line (NJ1,

figure 4) with a divergence time about 84,350 years ago (figure 3), suggesting that this population

belonged to a lineage that predated the LGM. Other eastern populations emerged from ancestors

located in Pennsylvania (blue square in figure 4). The populations that appeared next were located

towards the north in New York (NY1-NY3) and in Pennsylvania (PA1). From the ancestor of PA1

some populations seemed to have expanded northwards (PA3, NY4-NY6), whereas others expanded

southward along the Appalachian mountains (WV1, MD3, NC1-NC4); and eastwards towards the

Atlantic coast (PA2, MD1, MD2, MD4, VA1 and VA2).

In the western cluster the most basal populations were found in Missouri and Iowa (MO3,

IA1, IA2 figure 4). Since all  these populations had high divergence times (126,525 and 84,350

years ago respectively, figure 3), they seemed to have persisted south of the Laurentide ice sheet

52



during the LGM. The other western populations emerged from an ancestor located in Wisconsin

(purple  square  in  figure  4).  The  recolonization  of  regions  that  became  free  of  ice  started  in

Wisconsin (WI1-WI3) towards the shore of Lake Superior and further northwest to Lake of the

Woods (MI5, MI6, ON8-ON12), towards the western shore and later the eastern shore of Lake

Michigan and up to Manitoulin Island on northern Lake Huron (IL1, IL2, IN1, MI1-MI4, ON5-

ON7). The expansion of the species continued from the eastern shore of Lake Michigan to southern

Lake Huron and Lake Erie (ON1-ON4, OH1, and PA4). The populations around Lake Erie showed

signature  of  genomic  admixture  (figure  2,4).  There  were  two  migration  events:  one  from the

ancestral population of NY1 and NY2 to ON1, ON2, ON4 and PA1 with a migration weight (wm) of

41.8% and one from eastern PA1 (wm = 40%) to ON1 and PA1. We investigated this signature of

admixture with the four-population test for treeness (Reich et al. 2009). We tested the tree [[NJ1,

PA1],[ON3, X]], where X is a western population located north of the Laurentide ice sheet. We

obtained significant positive Z scores only for the four eastern populations of Lake Erie (table S3).

These results were consistent with a signature of admixture between PA1 and ON1, ON2, ON4 and

PA4.

Additional migration events were detected from MO1 to MO3 (wm = 39.3%), IA1 (wm =

24.2%), the ancestor of IA2 and MO3 (wm = 20%) and WI1 (wm = 15.3%).  We investigated also

these admixtures with the four-population test. We tested the tree [[MO1, MO2],[WI3, X]], where X

was a western population. We obtained significant positive Z scores for three populations with the

exception of WI1 (Z score = -0.587, P = 0.557). Another admixture event was found from eastern

VA2 to the ancestor of the Missouri populations of MO1 and MO2 (wm = 28.6%), which could not

be tested for significance with the four-population test. The most basal populations in the calibrated

relatedness tree showed the longest branch lengths (red tips in figure 3). These populations were

located at  the rear-edge of the species distribution: on the Atlantic coast in New Jersey for the

eastern genetic cluster (NJ1) and in Missouri and Iowa for the western genetic cluster (MO1-MO3,
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IA1, IA2). The populations that occurred in areas formerly covered by the Laurentide ice sheet

(figure 4)  must have appeared after the beginning of the glacial retreat ~18,000-19,000 years ago

(Clark  et  al. 2009).  Indeed, the estimated age to the most common ancestor for most northern

populations was 14,060 years for both genetic cluster (figure 3). Dating their common ancestor

supported the hypothesis that these northern populations had been part of the leading-edge of the

species distribution. Another part of the leading edge were the populations towards the southern

Appalachians.

Comparison of heterozygosity and allelic diversity across genomic regions

Pearson correlation analysis  among genomic and microsatellite  diversity  estimates  were overall

highly positive (Table 1). Heterozygosity estimates (nucleotide diversity π) were highly correlated

across  genomic  regions  (ρ  =  0.98-0.99),  as  well  as  those  estimated  based  on  SNPs  and

microsatellites (ρ = 0.88-0.92). Also allelic diversity (Watterson's  θ) was similar for SNPs of the

different genomic regions (ρ = 0.98-0.99) and for the estimate based on SNPs and microsatellites (ρ

=  0.89-0.93).  Overall  SNP-based  heterozygosity  and  allelic  diversity  were  relatively  highly

correlated for different genomic regions (ρ = 0.95-0.97).

Determinants of genomic diversity

Nucleotide diversity, π. The mating system, the distance from the ancestral core determined by the

ancestor that gave rise to populations splitting after the withdrawal of the ice sheet at the end of the

last glaciation period and the ancestral cluster membership could explain most of the variation in π

across all the populations (table 2). Particularly, the factors that significantly explained the variation

of π in intergenic regions were mating system (29.80%), distance from the core (25.90%), ancestral

cluster membership (17.30%) and admixture (2.10%). The fractions of variation in  π  of coding
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regions  were  higher  for  mating  system  (32%)  and  distance  from  the  core  (28.80%).  Instead,

ancestral cluster membership and presence of admixture were not significantly related to genomic

diversity in coding regions. Census size was not related to π either of intergenic or coding regions.

Selfing  populations  had  lower  π than  outcrossing  populations  and  eastern  populations  showed

higher π than western populations (figure 5) and π decreased with distance from the core site (figure

6).

Watterson's  θ. The  mating system,  distance  from  the  core  and  the  ancestral  cluster

membership were correlated with Watterson's θ to similar degrees as they were with π (table 2). 

Factors  that  significantly  explained  variation  in  θ  in  intergenic  regions  were  mating  system

(23.10%),  distance  from  the  core  (22.10%)  and  ancestral  cluster  membership  (14.20%).  The

fractions of variation in θ explained in coding regions were mating system (24.30%) and distance

from the core (23.10%). Ancestral cluster membership was not significantly related to Watterson's θ

of  coding  regions,  and  admixture  and  census  size  were  also  not  significantly  related  to  θ  of

intergenic and coding regions. Selfing populations had lower θ than outcrossing populations and

eastern populations showed higher θ than western populations (figure 7), and  θ decreased with

distance from the core (figure 8).

Tajima's  D.  Linear  model  analysis  on Tajima’s D of  intergenic  regions  showed that  the

overall modell was not significant (R2 = 0.3, P = 0.247), and none of the explanatory variables were

significantly associated with the Tajima’s D. For the coding region the only explanatory variable

significantly associated with Tajima’s D was the mating system (17.10%). Selfing populations had

lower  values  of  Tajima’s  D  compared  to  the  outcrossing  populations  (figure  9),  indicating  a

selective sweep in these populations.

Discussion

Genetic diversity estimates have often been studied either for a link with recent and relatively local
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demographic factors such as census size (Willi et al. 2006; Leimu & Fischer 2008) or a link with

historic events such as the reconstruction of population history (Wright & Gaut 2005; Duncan et al.

2015). The goal of our study was to compare the relative importance of both historic species-range

dynamics and recent, local demographic factors in explaining patterns of within-population genetic

diversity.  We  found  that  current  within-population  genetic  diversity  among  north  American

Arabidopsis lyrata had been shaped strongest by recent shifts in the mating system from outcrossing

to selfing and relatively recent historic range dynamics going back to the last glaciation cycle. Older

historic subdivisions were confirmed, namely the east-west split, but this split did not contribute as

much to contemporary patterns of genetic diversity. The allelic diversity (θ) and nucleotide diversity

(π) of rear- and leading edge populations decreased from the core of distribution to the margin.

These findings were generally consistent for both intergenic regions of the genome as well as for

coding DNA sequence (CDS) regions. In contrast, admixture events during range expansion left

only a small imprint in π, and census size could not explain genomic diversity.

The main factor shaping genetic diversity was mating system. Selfing populations had both

decreased nucleotide diversity, θ, and heterozygosity, π, in intergenic and coding regions (Table 3).

Theory predicts that self-fertilization reduces the effective population size (Ne) by one half (Pollak

1987), or possibly more when selfing populations experience founder events and linked selection

(Charlesworth & Wright 2001). Empirical evidence for the aforementioned theoretical predictions

stem from several  plant  species  (Glémin & Muyle  2014),  which  includes  studies  on  the  same

populations  as  studied  here  (Willi  &  Määttänen  2010;  Griffin  &  Willi  2014).  The  selfing

populations  studied  here  mostly  occur  at  range  margins  of  genetic  clusters  where  bottlenecks

facilitated the shit to selfing (Baker 1955; Stebbins 1957; Pannell & Dorken 2006). Furthermore, we

found in this study that selfing populations had low values of Tajima’s D (table 3), which is a sign

of increased purifying selection (Nielsen 2005). Increased purifying selection was also found in

selfing populations of Eichhornia paniculata (Ness et al. 2010; Arunkumar et al. 2015). 
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The second most important factor shaping genomic diversity (θ and π) was postglacial range

expansion. Dating of the relatedness tree revealed that the majority of populations had diverged

since about 14,060 years ago, hence after the start of the withdrawal of the Laurentide ice sheet of

the last (Wisconsinan) glaciation cycle 85,000-11,000 years ago (Clark et al. 2009). The genomic

imprint  of  geographic  range expansion  was  well  visible  in  the  relatedness  tree  where  lineages

appeared that were further and further away from the location of the most common ancestor. Or in

other words, the tree suggested a geographic route of range expansion that makes sense in the

context  of  a  moving wave-front  (figure 4).  Based on the location of  the  most  recent  common

ancestor within each genetic cluster, we were able to track down the possible locations of the last

glacial  refugia.  The western cluster most  likely had a refugium in the Driftless Area in central

Wisconsin, which is consistent with the importance of this region as refugium for many species (Li

et al. 2013). Recolonization in the east was short in distance and likely happened from the central

Appalachians in Pennsylvania. The southern-most populations in the eastern genetic cluster showed

short branch lengths in the time calibrated tree (figure 3). Hence, the colonization of the southern

Appalachians seem to be a young event, of about the same age as the recolonization of the north.

Older populations were found in the west in Missouri and in the east on the Atlantic coast. The

recent expansion of the species range dating to the end of the LGM in north and south as well as

rear-edge dynamics is most likely responsible for the consistent decline in genomic diversity from

core to edge as predicted by theory (Hampe & Petit 2005). 

The third factor was the historic species-range dynamics that affected genomic diversity

estimates of intergenic regions. The subspecies  A. lyrata  subsp.  lyrata was suggested to originate

from a colonization event of North America via the Bering Strait (Schmickl et al. 2010; Novikova

et al. 2016). The divergence time between the American A. lyrata subsp. lyrata and the European A.

lyrata subsp. petrae ranges between 130,000 and 300,000 years, assuming a generation time of two
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years (Pyhäjärvi  et al. 2012). Consequently A. lyrata  subsp.  lyrata very likely occurred in North

America before the Illinoian glaciation period of 191,000-130,000 years ago (Bowen & Frye 1970).

Our finding support this statement and The very old divergence time we estimated for (253,050 year

ago) the populations located in Missouri may thus reflect a very early split following the initial

colonization.  The  history  of  our  study  organism  Arabidopsis  lyrata subsp.  lyrata  was  further

impacted by the split between eastern and western populations. This split was previously confirmed

using microsatellite data (Willi & Määttänen 2010; Griffin & Willi 2014). An east-west split is a

common phenomenon for many North American plant and animal species (reviewed in (Soltis et al.

2006))  and  likely  reflects  isolation  and differentiation  during  Pleistocene  glaciations.  Our  time

calibrated tree (figure 3) suggested that the split  between the two clusters was due to isolation

during the Illinoian glaciation 130,000-191,000 years ago (Bowen & Frye 1970). This split was a

predictor of genomic diversity of intergenic regions but not of coding regions (table 2). This may be

due to the fact that coding regions were more subjected to processes linked to mating system shifts,

recent expansion dynamics (table 3), and natural selection that overrode older processes. Gene flow

and admixture between populations left only a small signature of increased  nucleotide diversity in

intergenic regions. Two admixture events were detected in the western cluster: in Missouri, Iowa

and in the region of Lake Erie. The first was form the oldest A. lyrata populations (MO1, MO2 fig

3) to other southern populations of the western cluster. The second was between the eastern and

western cluster, and the direction of admixture was most likely from east to west. Such admixture

must have happened after the end of the last glaciation cycle, as the populations involved appeared

only then. The fact that it is still associated with increased nucleotide diversity in intergenic regions

supports their young age.

Census size showed no impact  on the genomic diversity. This is  in  concordance with a

previous study on 18 A. lyrata populations that overlapped with our studied sites and which found

only a small  amount of variation in expected heterozygosity to be explained (6%) variation by

58



microsatellite marker (Willi & Määttänen 2011). In a meta-level analysis, it was found that census

size is overall related to estimates of genetic diversity (Willi et al. 2006). We hypothesize that for

our species, current census size is a weak estimate of size for a period of some dozen generations

because the species occurs in generally disturbed places by fire or erosion by water and wind, where

census size can vary a lot over short periods of time.

To conclude, we find genomic diversity to be strongly affected by mating system and more

recent processes of range dynamics that occurred since the last glaciation event. A less important

factor is the deep species-scale historic demographic that affect intergenic regions. Assuming that

these  processes  are  predominantly  neutral  in  effect  and  not  linked  to  selection,  it  means  that

genome-wide diversity, whether in intergenic or in coding regions, is strongly affected by genetic

drift. Similar processes are likely to be at play for many other species affect by range dynamics

during the quaternary ages. This work contributes to the knowledge of how to genetic diversity is

shaped at genome-wide level.
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Figure 1. Boxplot of the percentage of SNPs relative to the base pairs sequenced for intergenic 

regions, introns and coding DNA sequences (CDS).
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Figure 2. Relatedness tree of A. lyrata populations. The branch lengths are proportional to the 

genetic drift parameter of time over 2Ne. The populations of the eastern cluster are indicated in blue,

those of the western cluster in red and those with admixture in purple. The full arrows indicate 

migration events with support by the four population test for treeness. The dotted arrows indicate 

migration events without support by the four population test for treeness.
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Figure 3. Time calibrated tree of A. lyrata populations. The populations that are north of the 

Laurentide ice sheet are indicated in blue. The blue rectangles show the duration of the Illinoian 

glaciation (191,000-130,000 years ago) and Wisconsin glaciation (85,000-11,000 years ago). In the 

yellow boxes is written the estimated divergence time. The red tips point to the populations that 
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survived the LGM. The blue tips point to the populations that emerged after the LGM.
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Figure 4. Map of the A. lyrata populations in North America. The blue dashed line shows the 

maximum extend of the ice at the LGM (Dike et al. 2003). The relatedness tree is plotted on the 

map, in blue for the eastern genetic cluster and in purple for the western genetic cluster. The 

position of the most common ancestor of populations that appeared after the LGM is represented 

with a squares. Outcrossing populations are indicated in black, the selfing populations in red.
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Figure 5. Boxplot illustrating the weighted median of π of the intergenic regions and coding DNA 

sequences (CDS). Populations are grouped by genetic cluster, mating system and signature of 

admixture. Results for the eastern cluster are indicated in blue, those of the western cluster in 

purple, for outcrossing in black and selfing populations in red, for population with no signature of 

admixture in orange and for those with a signature of admixture in yellow.
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Figure 6. Map of interpolated nucleotide diversity π of intergenic regions. The blue dashed line 

shows the maximum extend of the ice at the LGM. The minimum convex polygon hull of the 

eastern cluster and the relatedness tree of its leading-edge populations is indicated in blue, those for 

the western cluster are indicated in purple. The position of the most common ancestor of 

populations that appeared after the LGM are represented with a square. The circles represent the 

populations assessed, in black the outcrossing populations and in red the selfing populations.
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Figure 7. Boxplot illustrating the weighted median of Watterson’s θ of the intergenic regions and 

coding DNA sequences (CDS). Populations are grouped by genetic cluster, mating system and 

signature of admixture. Results for the eastern cluster are indicated in blue, those of the western 

cluster in purple, for outcrossing in black and selfing populations in red, for population with no 

signature of admixture in orange and for those with a signature of admixture in yellow.
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Figure 8. Map of interpolated Watterson’s θ of intergenic regions. The blue dashed line shows the 

maximum extend of the ice at the LGM. The minimum convex polygon hull of the eastern cluster 

and the relatedness tree of its leading-edge populations is indicated in blue, those for the western 

cluster are indicated in purple. The position of the most common ancestor of populations that 

appeared after the LGM are represented with a square. The circles represent the populations 

assessed, in black the outcrossing populations and in red the selfing populations.
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Figure 9. Boxplot illustrating the weighted median of Tajima’s D of the intergenic regions and 

coding DNA sequences (CDS). Populations are grouped by genetic cluster, mating system and 

signature of admixture. Results for the eastern cluster are indicated in blue, those of the western 

cluster in purple, for outcrossing in black and selfing populations in red, for population with no 

signature of admixture in orange and for those with a signature of admixture in yellow.
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Table 1. Pearson correlation coefficients for pairs of genetic diversity estimates based on 

microsatellites (expected heterozygosity, He, and allelic richness, A) and single nucleotide 

polymorphisms for intergenic regions, introns and coding regions, CDS (nucleotide diversity, π 

depicting heterozygosity, and Watterson’s θ, depicting SNP richness). P-values were all <0.001.

π, interg. π, introns π, CDS A θ, interg. θ, introns θ, CDS

Microsatellite He 0.877 0.924 0.922 0.919 0.85 0.891 0.876

π, intergenic 0.981 0.981 0.842 0.969 0.955 0.945

π, introns 0.999 0.885 0.948 0.969 0.956

π, CDS 0.886 0.951 0.972 0.961

Microstellite A 0.893 0.933 0.927

θ, intergenic 0.979 0.978

θ, introns 0.997
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Table 2. Linear model testing the relation of ancestral cluster membership, distance from cluster 

core, census size and mating system on genomic diversity: nucleotide diversity π, allelic diversity θ 

and Tajima’s D of intergenic regions and CDS regions. Sample size for all models was 52 

populations. Most models explained a large amount of variation, with significant p-values <0.0001: 

π, intergenic: R2 = 0.76; π, CDS: R2 = 0.73 ; θ, intergenic: R2 = 0.62 ; θ, CDS: R2 = 0.59. For 

Tajima’s D, variation explained was little and not significant: D, intergenic: R2 = 0.13; D, CDS: R2 

= 0.30. Output statistics reported are: t-values and variation explained (var, in percent). Significance

is indicated: *, 0.01 < P ≤ 0.05; **, 0.001 < P ≤ 0.01; ***, P ≤ 0.001.

Intergenic regions CDS regions

Diversity Source t var. expl. t var. expl.

π Ancestral cluster (west) -3.81*** 17.30 -1.86 9.51

π ancestor distance -4.77*** 25.90 -5.16*** 28.80

π log10(census size) 0.82 0.93 0.75 0.90

π Mating system (selfing) -6.15*** 29.80 -6.02*** 32.00

π Admixture (yes) 2.48* 2.10 1.77 1.86

θ Ancestral cluster (west) -2.76** 14.20 -1.69 8.92

θ ancestor distance -3.62*** 22.10 -3.78*** 23.10

θ log10(census size) 1.05 0.99 0.97 0.97

θ Mating system (selfing) -4.19*** 23.10 -4.17*** 24.30

θ Admixture (yes) 1.76 1.72 1.52 1.55

Tajima's D Ancestral cluster (west) 0.6 0.45 0.95 0.96

Tajima's D ancestor distance -0.79 3.38 -1.78 9.40

Tajima's D log10(census size) -1.36 3.55 -0.61 0.75

Tajima's D Mating system (selfing) -1.51 4.83 -2.96** 17.10

Tajima's D Admixture (yes) -0.38 0.90 -0.41 1.85
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Table S1. Median of genetic diversity estimates weighted based on the number of base pairs 

sequenced for each windows of 5000 bp. The first column lists the population identity, the 

following columns report nucleotide diversity, π, Watterson's θ, and Tajima's D of intergenic 

regions, introns and coding DNA sequences (CDS).

Pop
ID inter π inter θ inter D intro π intro θ intro D CDS π CDS θ CDS D

IA1 0.0040 0.0038 0.2761 0.0016 0.0014 0.4463 0.0012 0.0011 0.4043

IA2 0.0036 0.003 0.6788 0.0013 0.001 0.821 0.001 0.0008 0.7746

IL1 0.0019 0.0016 0.5681 0.0006 0.0005 0.8625 0.0004 0.0003 0.8293

IL2 0.0036 0.0033 0.2842 0.0014 0.0012 0.4971 0.0011 0.001 0.4057

IN1 0.0034 0.0031 0.2819 0.0013 0.0011 0.5595 0.001 0.0008 0.4644

MD1 0.0043 0.0035 0.7942 0.0015 0.0012 0.9507 0.0011 0.0009 0.9111

MD2 0.0055 0.0052 0.2098 0.002 0.0018 0.4098 0.0016 0.0014 0.3536

MD3 0.0037 0.003 0.7531 0.0012 0.0009 0.9447 0.0009 0.0007 0.893

MD4 0.006 0.007 -0.4152 0.0021 0.0022 -0.1021 0.0016 0.0017 -0.1125

MI1 0.0032 0.0029 0.3613 0.0012 0.0011 0.5319 0.0009 0.0008 0.453

MI2 0.0034 0.0032 0.2272 0.0012 0.0011 0.4603 0.0009 0.0008 0.3781

MI3 0.0032 0.003 0.3096 0.0012 0.0011 0.5048 0.0009 0.0008 0.4136

MI4 0.0022 0.0019 0.4726 0.0007 0.0006 0.7086 0.0005 0.0004 0.6414

MI5 0.002 0.0016 0.6323 0.0006 0.0005 0.9256 0.0005 0.0004 0.8871

MI6 0.0015 0.0014 0.3713 0.0003 0.0003 0.4617 0.0002 0.0002 0.4457

MO1 0.002 0.0018 0.1683 0.0005 0.0005 0.0778 0.0004 0.0005 -0.1664

MO2 0.0006 0.0006 0.3351 0 0 0.1418 0 0 0.1531

MO3 0.0035 0.0028 0.7531 0.0011 0.0009 0.8168 0.0008 0.0007 0.8294

NC1 0.002 0.0019 0.1502 0.0004 0.0004 -0.0546 0.0003 0.0004 -0.1719

NC2 0.0022 0.002 0.2504 0.0005 0.0005 0.1331 0.0004 0.0005 -0.0568

NC3 0.0029 0.0026 0.3861 0.0008 0.0007 0.4803 0.0006 0.0006 0.3643

NC4 0.0029 0.0027 0.1473 0.0008 0.0009 -0.0552 0.0007 0.0008 -0.2943

NJ1 0.004 0.0033 0.8001 0.0015 0.0012 1.0074 0.0012 0.0009 0.9623

NY1 0.0051 0.0048 0.2161 0.002 0.0018 0.3839 0.0015 0.0014 0.3341

NY2 0.0047 0.0041 0.4786 0.0017 0.0015 0.6224 0.0013 0.0011 0.5657

NY3 0.0032 0.0026 0.7048 0.0011 0.0009 0.8692 0.0009 0.0007 0.837

NY4 0.0051 0.0052 -0.0778 0.0018 0.0018 0.0771 0.0014 0.0015 -0.1109
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NY5 0.0051 0.0049 0.108 0.0018 0.0017 0.3376 0.0014 0.0013 0.2553

NY6 0.0049 0.0045 0.3103 0.0019 0.0016 0.5137 0.0014 0.0013 0.4528

OH1 0.0008 0.0009 -0.0655 0 0.0001 -0.6456 0 0.0002 -1.0069

ON1 0.0014 0.0014 -0.0051 0.0001 0.0002 -0.4757 0.0001 0.0002 -0.7956

ON2 0.0011 0.0014 -0.7405 0.0001 0.0004 -1.1361 0.0001 0.0004 -1.3239

ON3 0.0028 0.0029 -0.1142 0.0009 0.0009 0.0816 0.0007 0.0007 -0.0388

ON4 0.0015 0.0016 -0.0373 0.0003 0.0004 0.0133 0.0002 0.0003 -0.1408

ON5 0.003 0.0027 0.3511 0.001 0.0008 0.5624 0.0008 0.0007 0.3695

ON6 0.0027 0.0024 0.3672 0.0009 0.0008 0.5574 0.0007 0.0006 0.5125

ON7 0.0023 0.002 0.5333 0.0008 0.0006 0.8089 0.0006 0.0005 0.7802

ON8 0.0028 0.0023 0.609 0.0009 0.0007 0.9597 0.0007 0.0005 0.8921

ON9 0.0028 0.0022 0.8465 0.0009 0.0007 1.0446 0.0007 0.0005 0.9805

ON10 0.0027 0.0022 0.7327 0.0009 0.0007 0.9621 0.0007 0.0006 0.9003

ON11 0.0004 0.0004 -0.0097 0 0 -0.9131 0 0 -0.9247

ON12 0.0029 0.0026 0.388 0.0011 0.0009 0.6053 0.0008 0.0007 0.5082

PA1 0.0042 0.0036 0.6424 0.0016 0.0013 0.7754 0.0012 0.001 0.7305

PA2 0.0029 0.0024 0.5428 0.0007 0.0006 0.5906 0.0005 0.0004 0.542

PA3 0.0049 0.0046 0.2169 0.0019 0.0017 0.4114 0.0014 0.0013 0.3856

PA4 0.0029 0.0025 0.4806 0.0009 0.0008 0.6017 0.0007 0.0007 0.4627

VA1 0.0049 0.0045 0.1933 0.0016 0.0015 0.3071 0.0013 0.0012 0.2284

VA2 0.0031 0.0024 0.9572 0.001 0.0007 1.0919 0.0008 0.0006 1.0492

WI1 0.0047 0.0054 -0.4237 0.002 0.0023 -0.3877 0.0016 0.0018 -0.422

WI2 0.004 0.0037 0.3409 0.0016 0.0015 0.3148 0.0013 0.0012 0.2181

WI3 0.0036 0.0034 0.2916 0.0014 0.0013 0.4773 0.0011 0.001 0.4192

WV1 0.0045 0.0042 0.2086 0.0015 0.0014 0.4197 0.0012 0.0011 0.309
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Table S2. List of population information: population identity, membership to ancestral genetic 

cluster, the geographic distance from the core (ancestor that gave raise to populations emerging 

after the withdrawal fo the ice of the last glacial cycle; for a detailed description see Methods), the 

predominant mating system, and evidence for admixture.

Pop ID Cluster Distance [km] log Census size Mating system Admixture

IA1 west 410.43 2.16 outcrossing yes

IA2 west 305.07 2 outcrossing yes

IL1 west 542.48 1.9 outcrossing no

IL2 west 387.7 6.79 outcrossing no

IN1 west 490.35 5.17 outcrossing no

MD1 east 195.29 2.01 outcrossing no

MD2 east 202.12 2.91 outcrossing no

MD3 east 267.48 2.08 outcrossing no

MD4 east 100.24 3.62 outcrossing no

MI1 west 428.57 5.2 outcrossing no

MI2 west 311.41 7.05 outcrossing no

MI3 west 326.52 4.61 outcrossing no

MI4 west 306.03 2.85 outcrossing no

MI5 west 235.28 3.06 selfing no

MI6 west 296.75 3.02 selfing no

MO1 west 900.14 3.26 outcrossing no

MO2 west 799.91 2.08 selfing no

MO3 west 696.2 3.58 outcrossing yes

NC1 east 850.33 2.56 selfing no

NC2 east 669.19 4.37 outcrossing no

NC3 east 692.79 3.21 outcrossing no

NC4 east 571.8 3.77 outcrossing no

NJ1 east 184.53 2.08 outcrossing no

NY1 east 198.55 2.62 outcrossing no

NY2 east 198.97 2.26 outcrossing no

NY3 east 250.56 5.57 outcrossing no

NY4 east 195.07 2.83 outcrossing no

NY5 east 288.93 2.21 outcrossing no
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NY6 east 265.52 2.48 outcrossing no

OH1 west 652.19 4.23 selfing no

ON1 west 893.3 1.78 selfing yes

ON2 west 817.98 3.52 selfing yes

ON3 west 678.5 5.92 outcrossing no

ON4 west 732.3 6.26 selfing yes

ON5 west 589.13 4.1 outcrossing no

ON6 west 540.58 2.24 outcrossing no

ON7 west 540.46 2.15 outcrossing no

ON8 west 449.35 2.88 outcrossing no

ON9 west 438.16 2.68 outcrossing no

ON10 west 418.51 4.68 outcrossing no

ON11 west 399.08 1.49 selfing no

ON12 west 594.8 3.11 outcrossing no

PA1 east 356.29 2.07 outcrossing no

PA2 east 63.99 3.88 outcrossing no

PA3 east 163.16 3 outcrossing no

PA4 west 862.7 5.45 outcrossing yes

VA1 east 361.77 2.78 outcrossing no

VA2 east 321.6 1.79 selfing no

WI1 west 200.62 3.35 outcrossing no

WI2 west 193.04 1.73 outcrossing no

WI3 west 149.2 3.8 outcrossing no

WV1 east 324.68 2.76 outcrossing no
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Table S3. Test statistics of the four-population test for treeness. Clade 1 was [NJ1,PA1], clade 2 

was[ON3,X], where X is one western population formerly covered by the Laurentide ice sheet.

Populations F4 statistic Standard error Z score P

NJ1,PA1;ON3,PA4 0.0087 0.00133 6.52 6.90E-011

NJ1,PA1;ON3,ON2 0.00659 0.00139 4.73 2.29E-006

NJ1,PA1;ON3,ON1 0.00655 0.00139 4.7 2.61E-006

NJ1,PA1;ON3,ON4 0.00434 0.00115 3.77 0.000166

NJ1,PA1;ON3,IL1 0.000974 0.000978 0.996 0.319

NJ1,PA1;ON3,OH1 0.000794 0.001 0.791 0.429

NJ1,PA1;ON3,WI2 0.000147 0.000917 0.161 0.872

NJ1,PA1;ON3,IL2 -0.000284 0.00112 -0.253 0.8

NJ1,PA1;ON3,IN1 -0.000383 0.00083 -0.462 0.644

NJ1,PA1;ON3,MI2 -0.000453 0.000845 -0.537 0.592

NJ1,PA1;ON3,MI1 -0.000589 0.000873 -0.675 0.5

NJ1,PA1;ON3,WI3 -0.00102 0.001 -1.02 0.306

NJ1,PA1;ON3,MI3 -0.0011 0.000875 -1.25 0.21

NJ1,PA1;ON3,ON5 -0.00188 0.000932 -2.02 0.0437

NJ1,PA1;ON3,ON8 -0.00229 0.00112 -2.04 0.0413

NJ1,PA1;ON3,MI5 -0.00239 0.00114 -2.1 0.0361

NJ1,PA1;ON3,ON7 -0.00233 0.0011 -2.12 0.0344

NJ1,PA1;ON3,ON12 -0.0024 0.000981 -2.45 0.0143

NJ1,PA1;ON3,ON6 -0.00261 0.001 -2.6 0.00927

NJ1,PA1;ON3,MI4 -0.00252 0.000945 -2.66 0.00777

NJ1,PA1;ON3,ON9 -0.00346 0.00102 -3.41 0.000647

NJ1,PA1;ON3,MI6 -0.00545 0.00143 -3.82 0.000134

NJ1,PA1;ON3,ON10 -0.00381 0.000925 -4.12 3.87E-005

NJ1,PA1;ON3,ON11 -0.00609 0.00139 -4.37 1.23E-005
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Table S4. Test statistics of the four-population test for treeness. Clade 1 was [MO1,MO2], clade 2 

was [WI3,X], where X is one western population.

Populations F4 statistic Standard error Z score P

MO2,MO1;WI3,MO3 0.00595 0.00175 3.4 0.000663

MO2,MO1;WI3,IA1 0.00295 0.00133 2.22 0.0262

MO2,MO1;WI3,IA2 0.00308 0.00149 2.07 0.038

MO2,MO1;WI3,PA4 0.00108 0.00155 0.692 0.489

MO2,MO1;WI3,WI2 0.000523 0.000954 0.548 0.583

MO2,MO1;WI3,MI5 -0.000426 0.00133 -0.321 0.748

MO2,MO1;WI3,WI1 -0.000552 0.00094 -0.587 0.557

MO2,MO1;WI3,ON2 -0.00112 0.00165 -0.679 0.497

MO2,MO1;WI3,ON1 -0.00148 0.00168 -0.882 0.378

MO2,MO1;WI3,ON12 -0.00279 0.00143 -1.96 0.0502

MO2,MO1;WI3,ON4 -0.00383 0.00153 -2.5 0.0123

MO2,MO1;WI3,ON8 -0.00441 0.00127 -3.47 0.000523

MO2,MO1;WI3,ON10 -0.00444 0.00119 -3.73 0.000195

MO2,MO1;WI3,ON9 -0.0048 0.00126 -3.82 1.36E-004

MO2,MO1;WI3,ON11 -0.00628 0.00157 -4 6.35E-005

MO2,MO1;WI3,MI3 -0.00529 0.00129 -4.1 4.21E-005

MO2,MO1;WI3,MI6 -0.00603 0.00142 -4.24 2.23E-005

MO2,MO1;WI3,MI4 -0.00739 0.00141 -5.22 1.74E-007

MO2,MO1;WI3,IL2 -0.00619 0.00113 -5.46 4.85E-008

MO2,MO1;WI3,ON5 -0.00742 0.00128 -5.79 7.10E-009

MO2,MO1;WI3,ON7 -0.00897 0.0015 -6 2.02E-009

MO2,MO1;WI3,ON6 -0.0083 0.00138 -6.01 1.91E-009

MO2,MO1;WI3,MI2 -0.00835 0.00116 -7.23 4.98E-013

MO2,MO1;WI3,IN1 -0.00893 0.00119 -7.53 4.98E-014

MO2,MO1;WI3,OH1 -0.0131 0.00173 -7.54 4.56E-014

MO2,MO1;WI3,ON3 -0.0104 0.00134 -7.74 9.69E-015

MO2,MO1;WI3,IL1 -0.0107 0.00131 -8.15 3.52E-016

MO2,MO1;WI3,MI1 -0.00989 0.00116 -8.53 1.50E-017
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Abstract

Understanding the factors that govern the distribution of species is a central goal in evolutionary

ecology. It is commonly assumed that geographic range limits reflect ecological niche limits and

that species experience increasingly marginal conditions towards the edge of their ranges. Using

spatial  data  and  ecological  niche  models  we  tested  these  hypotheses  in  Arabidopsis  lyrata.

Specifically, we asked whether range limits coincide with predicted niche limits in this system and

whether the suitability of sites declines towards the edge of the species’ range in North America. We

further explored patterns of environmental change towards the edge of the range and asked whether

genome-wide patterns of genetic diversity decline with increasing peripherality and environmental

marginality. Our results suggest that latitudinal range limits coincide with niche limits. Populations

experienced  increasingly  marginal  environments  towards  these  limits—though  patterns  of

environmental change were more complex than most theoretical models for range limits assume.

Genomic diversity declined towards the edge of the species’ range and with increasing distance

from the estimated centre of the species’ niche in environmental space, but not with the suitability

of sites based on niche model predictions. Thus while latitudinal range limits in this system are

broadly  associated  with  niche  limits,  the  link  between  environmental  conditions  and  genetic

diversity, and thus the adaptive potential of populations, is less clear. 
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Introduction

Understanding species’ geographic ranges is a major goal in ecology. There are two main ways in

which the distribution of environmental conditions is thought to shape species’ ranges. The first is

based  on  Hutchison’s  “n-dimensional  hypervolume”  niche  concept  (Hutchinson  1957),  which

describes the region of multivariate environmental space in which conditions permit population

persistence (i.e. non-negative growth rates; Hutchinson 1978; Holt 2009). When transferred across

geographic space,  the niche defined in  this  way delineates  the  potential  geographic  range of  a

species in a binary fashion (e.g. Jackson & Overpeck 2000). Not mutually exclusive to this concept

is the model championed by Brown (1984) in which environmental conditions deteriorate towards

the edge of a species’ range. This scenario sets up a gradient within species’ ranges (i.e. within the

geographical realization of Hutchinson’s niche: Brown 1984), whereby populations become smaller

and increasingly isolated towards the edge of the range (sometimes referred to the “abundant-centre

hypothesis”;  though  environmental  factors  may  not  always  drive  such  a  pattern  where  it  is

observed:  Sagarin & Gaines  2002;  Gaston 2003).  These premises have greatly  influenced both

ecological and evolutionary perspectives on range limits (e.g. Table 1 from Sagarin & Gaines 2002;

Sexton et al. 2009) and empirical evaluation of these models is thus of fundamental interest. In this

study, we test the relationship between environmental marginality and range limits in Arabidopsis

lyrata sub. lyrata (hereafter A. lyrata for simplicity).

Hutchinson’s niche concept gives us an initial framework with which to think about species’

ranges, centered around the question of whether species’ fill their potential niche on the landscape.

Additional factors, namely biotic interactions and constraints on dispersal may preclude species’

from occupying all  regions  of geographic space that are  suitable  for them and a biotic-abiotic-

migration (i.e. BAM) classification scheme is commonly used in ecology to think about range limits

(e.g.  Soberón 2007; Peterson et al. 2011). From an evolutionary standpoint, assessing the relative

importance of these different types of factors for range limits provides critical insight into the types
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of traits that may be limiting the range and whether range expansion requires subsequent adaptation

to abiotic conditions (i.e. “niche expansion”). 

Brown’s model of increasing environmental marginality towards the edge of the range also

has implications for understanding the extent to which constraints on adaptation govern species’

range limits. First,  this  model assumes that there is a single set of optimal conditions in which

population  growth  and/or  carrying  capacity  is  highest.  Observing a  strong association  between

population  size  and environmental  gradients  in  accordance  with  this  model  suggests  that  local

adaptation has not allowed this optimum to vary from place to place (Gaston 2003) and thus speaks

to the readiness with which adaptation has occurred within the range.  Second, an extension of

Brown’s model is that marginal conditions, in keeping populations small, may actually constrain

adaptation. For instance, small (effective) population size decreases the efficacy of selection relative

to  drift  (Kimura  1983;  Charlesworth  2009),  leads  to  inbreeding  and  potentially  inbreeding

depression (reviewed by Keller & Waller 2002), and may establish density gradients that promote

swamping gene flow from elsewhere in the range (e.g. Garcia-Ramos & Kirkpatrick 1997). These

factors diminish the ability of populations to respond to selection and, in the context of range limits,

may limit adaptation to novel conditions at the range edge (Soule 1973; Kawecki 2008). 

A number of empirical studies have addressed the question of whether range limits are niche

limits (see studies included in  Hargreaves  et al. 2014 and  Lee-Yaw  et al. 2016) or, in line with

Brown’s model,  the  extent  to  which  population  size  (reviewed  by  Sagarin  & Gaines  2002) or

genetic diversity  (Eckert  et al. 2008; Lira-Noriega & Manthey 2014) decline towards the edge of

the range. Yet these questions are rarely addressed simultaneously. Several alternative scenarios are

possible and have different implications for understanding the relative importance of and nature of

constraints on adaptation at the edge of the range. For instance, a range limit may be a niche limit in

the absence of a gradual decline in habitat quality and population size from centre to edge if the

environment changes abruptly  (Gaston 2003). Although adaptation is  still  required to overcome
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such a range limit,  this scenario creates different expectations for the number and effect size of

mutations necessary to permit range expansion, and for the effects of gene flow on adaptation, than

a scenario whereby range limits fall along a smooth environmental gradient  (e.g. Kawecki 2008;

Gomulkiewicz  et  al.  2010;  Holt  &  Barfield  2011).  Species  may  also  fail  to  demonstrate

demographic patterns consistent with Brown’s model in cases where there has been a history of

asymmetric range expansion. For instance,  in the northern hemisphere, post-glacial colonization

from  southern  refugia,  may  mean  that  the  spatial  centers  of  many  contemporary  ranges  are

displaced from historical  areas  of  high abundance  and diversity  (see  also Micheletti  & Storfer

2015). Colonization from multiple refugia in many cases may also limit the utility of models based

on a single range centre. Finally, even where species conform to Brown’s model, a limited amount

of time for colonization in these areas may mean that many species have yet to colonize the full

spatial extent of their Hutchison niche (i.e. a form of dispersal limitation). Thus historical events

may override niche dynamics in structuring many species’ ranges and negate one or both of the

models for range limits discussed above. 

The difficulty of empirically quantifying environmental suitability and population size with

the  amount  of  replication  and  across  the  scales  necessary  for  understanding  range  limits  has

traditionally limited studies evaluating the relationship between suitable habitat and range limits.

Here we used ecological niche modeling and a large genomic dataset to overcome some of these

limitations  and  to  address  these  questions  in  A.  lyrata across  its  North  American  range.  We

specifically  asked:  1)  Are  range  limits  niche  limits  in  this  system? 2)  How do  environmental

conditions and habitat suitability change towards the edge of the range? 3) In line with an effect of

environmental conditions on population size and genetic diversity, is there a relationship between

environmental  suitability  and  genome-wide  patterns  of  genetic  diversity  or  is  genetic  diversity

explained by range position alone, particularly in light of recent range changes associated with the

Pleistocene glaciations?
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Methods

Study System

Arabidopsis lyrata sub. lyrata occurs in the eastern USA and southern Canada (Fig. 1a) and is one

of the most southern members of the circumpolar Arabidopsis lyrata species complex (Schmickl et

al. 2010). This short-lived perennial is associated with disturbed habitats—primarily sand dunes,

deposits and rocky outcrops along lakes and riverbanks. Previous work suggests that the species

consists of two genetic lineages (Willi & Määttänen 2010; Griffin & Willi 2014), likely reflecting

repeated  contraction  into  and  expansion  from  distinct  eastern  and  western  refugia  during  the

Pleistocene glaciations (Griffin & Willi 2014). Genomic data suggest divergence between lineages

is low and that some amount of gene flow has occurred in the recent past (Fracassetti & Willi

unpublished). Crosses between the two lineages also result in viable offspring with no evidence of

reduced fitness (Willi unpublished). For these reasons, we treat North American populations of A.

lyrata as a single species and ask about range limits and the niche of the species as a whole. At the

same time,  evidence  for  post-glacial  range  expansion from at  least  two refugia  prompts  us  to

consider this history in our analysis of the distribution of genome-wide diversity below. 

Quantifying environmental suitability

We used ecological niche models to assess the distribution of suitable habitat for A. lyrata within

and beyond its  range  in  North America.  Close  to  600 localities  were collected from published

studies,  herbaria  and  government  agencies  and  were  georeferenced  to  within  1  km  (average

estimated error: 0.25 km). Records along lakeshores or on small islands that resulted in missing data

(i.e. ended up in water) at the resolution of our raster dataset (below) were moved a maximum

distance of 5 km to their  nearest  “onshore” grid cell  or were discarded. In order to reduce the

potential effects of sampling bias on our niche models  (Varela et al. 2014; Boria  et al. 2014), we
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thinned records using an approach that considered both the density of points (geographic filtering)

and environmental novelty (environmental filtering; full details in Appendix S1). After thinning, our

final locality dataset included 279 records (including 55 that had been moved a median distance of

1.28 km “onshore”; Fig. 1). 

The environmental data in our models included eight climatic, topographical and vegetation

variables at a resolution of 30 arc-seconds (Table 1; variable selection explained in Appendix S1).

Niche models were built using MAXENT (Phillips et al. 2006; Phillips & Dudík 2008) and the dismo

package  (Hijmans  et  al. 2013) in  R.  The  background  area  for  model  calibration  included  all

ecotones  (Commission  for  Environmental  Cooperation  Working  Group  1997) occupied  by  the

species with the maximum study extent set as -100 to -70 degrees longitude and 32 to 53 degrees

latitude. Prior to model calibration, we used the approach described by Warren & Seifert (2011; see

also Warren et al., 2014) to tune both the features and regularization coefficient (ß; Appendix S1).

Following  feature  and  ß  tuning,  we  used  ten-fold  cross-validation  (Fielding  &  Bell  1997) to

calibrate a final set of models, assessing the ability of each model to discriminate between withheld

presence data and background data based on the area under the curve statistic (AUC; of the receiver

operating  characteristic).  For  each  model,  we  also  compared  observed  AUC  values  to  a  null

distribution of values generated from 99 niche models built using random points (Raes & Steege

2007) and calculated the true test statistic (TSS;  Allouche  et al., 2006) using the threshold that

maximized the sum of sensitivity and specificity (Liu et al. 2013). Models that had an AUC score

that was both ≥0.7 and that fell outside the 95th quantile of this null distribution (i.e. performed

significantly better than random), and for which TSS > 0.5, were used to predict environmental

suitability across the study region, with the mean of these predictions taken as an estimate of the

suitability of each cell for the species (Peterson et al. 2011). 

As a second metric of environmental suitability that relies less heavily on the niche models,

we used the method of  Lira-Noriega & Manthey (2014) to calculate the distance of sites to an
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estimate of  the  centre  of  the species’ niche  in  environmental  space.  Specifically, we converted

continuous niche model predictions to a binary representation of the species’ niche in geographic

space using two cutoffs for defining suitable locations: the minimum suitability score of any  A.

lyrata  locality (minPres; Fig. 1c) and the 5th percentile of locality suitability scores (PercentPres;

Fig. 1d). For each of these distributions, we took a random sample of 5000 points and used these

points, as well as the locality data, to conduct a principal component analysis (PCA) of the eight

environmental variables used in the niche models. The species’ niche centroid in each case was

defined as the vector of median scores of all points used in the PCA for PC axes one to six (which

captured > 99% of the variance in environment). The distance between any location and this niche

centroid serves as a measure of the niche centrality (or conversely marginality) of that point. As a

sensitivity test, we reran the niche centroid calculation for both thresholds with different numbers of

random sites in the PCA (500, 1000, 2500).

Are range limits niche limits?

To determine whether range limits reflect the limits of suitable habitat for the species (i.e. niche

limits), we asked whether observed range limits correspond to those predicted by the niche models.

Apart from qualitative comparisons between model prediction surfaces and the species’ range, we

used a novel range-fitting test to evaluate the statistical significance of the fit between observed

range limits and predicted niche limits. The steps of this test were as follows: 1) Continuous niche

model predictions were converted to a binary map of habitat suitability representing the species’

niche limits; 2) Depending on the range limit in question (e.g. northern limit, etc.) this binary raster

was then subset to include only cells to the north (or south etc.) of the centroid of the MCP. 3)

Treating all of the cells inside the MCP in this subsetted raster as “in-range” and all cells outside the

MCP as “out-of-range”, we calculated as the proportion of in-range cells predicted as suitable +

proportion of out-of-range cells predicted as non-suitable -1 (TSSrange); 4) The species’ MCP was
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then shifted randomly in the direction of the range limit being evaluated (e.g. to the north etc.); 5)

Based on the centroid of the shifted MCP, the original binary raster was subset anew and TSSrange

was recalculated; 6) Steps 3 and 4 were repeated 99 times to generate a null distribution of TSSrange

scores for each range limit. The fit between a given range limit and the niche limit of the species in

the same direction was considered significant if the observed values of TSSrange were more extreme

(indicating a better fit) than 95% of the values in the null distribution. 

We conducted this  test to evaluate the fit of the species’ northern,  southern and western

range limits to predicted niche limits (the species’ eastern limit coincides with the Atlantic ocean

making tests of niche limits irrelevant to range limits in this direction). The MCP was repeatedly

shifted in each direction by a random amount between 50 and 500 km (i.e. reasonable for our study

region). We repeated this test using binary suitability maps based on two cutoffs for considering a

site  suitable:  the  minimum suitability  score  of  any  A.  lyrata locality and  the  5th  percentile  of

locality  suitability  scores (Fig.  1c,  d).  We note  that  using  a  cutoff  that  maximizes  the  sum of

sensitivity and specificity (Liu et al. 2013) produced a binary map that was almost identical to our

second cutoff and so this third, commonly used cutoff was not considered further.

Environmental changes towards the edge of the range

We used the average predicted suitability of sites based on our niche models, as well as our index of

niche centrality, to test the hypothesis that environmental conditions become more marginal (i.e.

less suitable) towards the edge of the species’ range. Brown’s hypothesis specifically posits that

conditions  are  most  suitable  at  the  geographic  centre  of  species’ ranges.  Thus  as  an  index  of

peripherality, we took the minimum great circle distance from each locality to the centroid of the

MCP encompassing all localities. These values were standardized by dividing by the sum of this

distance and the minimum distance between the locality and the MCP hull (following  Griffin &

Willi 2014). Localities were also assigned to non-overlapping groups according to their primary
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direction (north, south, east, west) away from the MCP centroid. We then used linear models to test

whether  environmental  suitability  declines  and  distance  to  the  niche  centroid  increases  with

increasing peripherality. Direction was included as a second, potentially interacting, explanatory

variable. Peripherality scores were arcsin transformed and distance to the niche centroid was log

transformed to better meet model assumptions. We repeated the test for the estimates of distance to

niche centroid based on different thresholds for defining the extent of suitable habitat and based on

the PCAs involving different numbers of points to estimate the niche centroid (above). One of the

sites towards the eastern edge of the species’ range (a coastal population from Sandy Hook, NJ,

USA) was an environmental outlier in both datasets. We ran the models with and without this point

included. 

 To understand environmental patterns underlying changes in suitability at the species’ range

limits  on  a  smaller  scale,  we  used  a  model  selection  approach  to  evaluate  the  nature  of  the

relationship between range position and the two variables that were most important for predicting

presence in the niche models. Focusing on 200 km transects spanning the range edge in different

places and centered on different peripheral populations, we specifically tested whether minimum

temperature of early spring and precipitation of the wettest quarter (see results) change towards or

across the range edge and whether changes in these variables tend to be gradual or abrupt. Fourteen

sites were chosen to center each transect, with transects running from these points 100 km towards

and 100 km away from interior parts of the range (Fig. 1a; see Appendix S1 for full details of

transect designation). We extracted environmental values at 5 km intervals along each transect and

used model  selection based on AIC to determine whether  an intercept-only (no change),  linear

(environmental  gradient)  or  four  parameter  logistic  (abrupt  change)  model  better  describe  the

relationship between the two environmental variables and range position for each transect. Finally,

because these simple model types may fail to account for more complex changes in the environment

towards the range limit, we conducted a breakpoint analysis to determine the number of significant
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structural changes in the relationship between each environmental variable and transect position.

The optimal number of breakpoints per transect was estimated using the strucchange (Zeileis et al.

2002; Achim et al. 2003) package in R, with the minimum number of observations per segment set

to five (permitting a maximum of seven breaks per transect).

Environmental marginality and patterns of genomic diversity 

Small  population  size  associated  with  increasingly  marginal  habitat  is  expected  to  result  in  a

decrease in  genetic  diversity  towards the edge of species’ ranges  (i.e.  Eckert  et  al. 2008;  Lira-

Noriega  &  Manthey  2014).  To  test  this  hypothesis,  we  looked  at  the  relationship  between

environmental suitability and genome-wide estimates of genetic diversity. Following the protocol

and pipeline outlined by  Fracassetti  et al. (2015), we sequenced pools of 25 individuals from 42

outcrossing  populations  from  across  the  species’  range  (Fig.  1a).  After  aligning  reads  to  the

published nuclear genome of  A. lyrata (v.1.0;  Hu  et al. 2011) and filtering (see  Fracassetti  et al.

2015),  single nucleotide  polymorphisms (SNPs)  were called  for  each population using  Varscan

(Koboldt et al. 2012). We retained biallelic SNPs with a minimum variant allele frequency of 0.015,

a P-value lower than 0.15, a minimum mapping quality score of 20 and a minimum allele count of

three reads. Our final genomic dataset consisted of a mean of > 1.6 million SNPs per population

with  an  average  depth  coverage  of  125X.  Nucleotide  diversity  ()  was  estimated  in  5000  bp

windows across the genome of each population using NPStat v. 0.99c (Ferretti  et al. 2013). The

weighted median value across windows was taken as an estimate of genomic diversity for each

population. 

We used Pearson correlation tests to examine the relationship between genomic diversity

and environmental marginality. However, genome-wide patterns of genetic diversity are known to

decline with increasing peripherality as the result founder effects during colonization (Griffin &

Willi  2014).  We thus  used linear  models  to  test  for  an effect  of  environmental  marginality  on
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genetic diversity, above and beyond any effects associated with range position. In this case, range

position was defined in terms of distance away from putative refugial areas based on the results of

Griffin  &  Willi  (2014).  Specifically,  Griffin  &  Willi  (2014)  described  a  pattern  of  declining

microsatellite  diversity  away  from the  centroids  of  the  western  and  eastern  lineages  that  they

described. These centroids roughly coincide with the driftless area of Wisconsin and the central

Appalachian Mountains respectively (Fig.  1a), both of which have previously been proposed as

refugial areas for a number of other taxa  (Jackson  et al. 2000; Soltis  et al. 2006; Lee-Yaw et al.

2008;  Beatty & Provan 2011; Li  et  al. 2013).  We assigned sites  to genetic  group (based on a

modified version of the boundaries from Griffin & Willi 2014: see Appendix S1) and used the

formula above to calculate the peripherality of each site with respect to the centroid of its genetic

group.  We  regressed  nucleotide  diversity  against  peripherality  and  then  asked  whether

environmental marginality explained any of the residual variation from this relationship. Models

were run separately for the two measures of environmental marginality (suitability and distance

from niche centre). We note that the suitability outlier was removed for this analysis, as it was an

extreme outlier that polarized the values of all other sites. All analyses were done in R v. 3.2.3.

Results

Are range limits niche limits?

The  niche  models  from all  ten  rounds  of  model  calibration  in  MAXENT had  high  predictive

performance when applied to withheld data (AUC ranged from to 0.84 to 0.91; mean AUC = 0.88)

and outperformed models built using random locations from within the species’ range. Models also

performed reasonably well based on the threshold-dependent evaluation metric, with TSS > 0.64 in

all cases. Of the eight variables included in our models, average minimum temperatures during the

early spring (March and April) made the largest percent contribution to the model and resulted in

the largest drop in model performance when values were randomly permutated across the training
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dataset (Table 1). The suitability of sites tended to be highest at intermediate to higher values of this

variable and drop off towards very high or very low values within the study region (Fig. S2-1a).

Precipitation  of  the  wettest  quarter  and  the  Priestly-Taylor  coefficient  (representing  moisture

availability) were also of moderate importance in the latter regard (Table 1), with suitability tending

to decrease with very high values of spring precipitation (Fig. S2-1b) and towards very high or low

values of the Priestly-Taylor coefficient.  Non-climate variables,  associated with topography and

vegetation,  were  the  least  important  for  explaining  the  occurrence  of  the  species  across  the

landscape (Table 1). 

Examination of average model predictions across the study region revealed that range limits

are closely aligned with the predicted distribution of suitable conditions for the species—although

areas  of  moderate  to  high  suitability  extend  beyond the  species’ range to  the  west  and to  the

northeast along the St. Lawrence River (Fig. 1). Our range fitting tests generally supported these

conclusions,  though  only  speak  to  the  fit  of  model  predictions  to  range  limits  in  three  broad

directions: north, south and west. Observed TSSrange was significantly higher than values calculated

after randomly shifting range limits 50 to 500 km to the north, regardless of whether the minimum

suitability score of any locality or the 5th percentile of locality suitability scores was used as a cutoff

for  defining  suitable  habitat  (p  = 0.01 in  both cases).  In  the southward direction,  TSS range was

significantly higher than values calculated for shifted range limits when the 5 th percentile of locality

suitability scores was used as a cutoff for defining suitable habitat (p = 0.01) but not when the

minimum suitability score of any locality was used (p = 0.33). In the westward direction, observed

values were non-significant regardless of the cutoff used, supporting the qualitative observation that

range limits are not well-predicted by niche limits in this direction. 

Environmental changes towards the edge of the range
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Patterns of predicted suitability suggested that conditions generally become more marginal towards

the edge of the species’ range. Average predicted suitability based on the niche models declined

with distance from the centre of the MCP (linear model: estimate ± SE = -0.309 ± 0.032, F = 93.16,

df = 1, 274, p <<0.001; Fig. 2). Although eastern populations tended to have higher suitability

scores (Fig. 2a), the main effect of the direction of sites relative to the geographic centre (i.e. north,

south, east or west) was not significant (F = 0.33, df = 3, 274, p = 0.80; Type III sums of squares).

However, the interaction between peripherality and direction was marginally significant (F = 2.50,

df = 3, 274, p =0.059), with suitability declining slightly more steeply towards the northern edge of

the  range;  Fig.  2a).  These  results  were  robust  to  the  inclusion  or  exclusion  of  a  single  high

suitability outlier near the eastern edge of the species’ range (outliner shown in Fig. 2a). 

The  relationship  between  our  index  of  niche  centrality  and  geographic  peripherality

depended on direction away from the range centre (Fig. 2b). As expected if conditions become more

marginal towards the edge of the range, distance to the niche centre increased moving away from

the geographic centre of the species’ range to the north and south. However, distance to the niche

centre  increased  only  gradually  to  the  west  and tended to  decline  (i.e.  conditions  became less

marginal) towards the eastern edge of the species’ range (Fig. 2b). These results were consistent

regardless of the threshold of suitability and number of points in the PCA used to calculate the niche

centroid (the significance of the main effect of peripherality varied across these iterations, however

we note that it is difficult to interpret main effects in the presence of a significant interaction, and in

all  cases,  results  were  qualitatively  the  same;  Table  S2-1).  Results  were  once  again  robust  to

inclusion or exclusion of the outlier.

The variables  that  best  predicted  presence  in  the  niche  models  exhibited  a  diversity  of

patterns at the edge of the species’ range (Fig. 3). As expected based on latitude, average minimum

spring temperatures tended to decline across northern range limits and increase across southern

range limits. Model selection suggested that these changes were more abrupt than simple linear

96



models would predict (i.e. the four parameter logistic model was chosen in seven out of twelve

transects; the linear model was chosen for the remaining five transects). Examination of the data

revealed that change was most abrupt or step-like for transect 6 in the northeastern part  of the

species’ range. The direction of change in precipitation of the wettest quarter was more variable

across transects, although a consistent pattern of increasing precipitation towards the most southern

range limits was observed (transects 8, 10, 11, 12; Fig. 3b). Our breakpoints analysis suggested that

the three model forms tested may have been overly simplistic as, for both variables, the estimated

number of breakpoints was usually higher than the number expected for the chosen model (i.e.

expected  0  for  intercept  and  linear  models,  2  for  four  parameter  logistic  model;  Table  S2-2).

Examination of the data for each transect also suggested that patterns of change were more complex

than these simple models in many cases, although the models chosen were reasonable in some cases

(Fig. 3 a,b). 

Environmental marginality and patterns of genomic diversity 

In line with the results of Griffin & Willi (2014), genomic diversity was negatively correlated with

distance from the centroids of the two genetic groups that comprise the species’ range (r =

-2.42, df = 40,  p = 0.02; Fig.  4a).  Genomic diversity was not significantly associated with the

predicted suitability of sites based on our niche models (r   = 1.39, df = 40, p = 0.17; Fig. 4b).

However, genomic diversity did decline with our distance to the centre of the species’ niche in

environmental space (r = -3.70, df = 39, p = 0.0006; Fig. 4c). This latter measure of marginality also

explained a significant proportion of the residual variation in genomic diversity after accounting for

range position. 

Discussion
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We evaluated niche  limits  and the link between environmental  marginality  and range limits  in

Arabidopsis lyrata.  The species’ northern and, to  some extent,  southern range limits  were well

predicted by our niche models suggesting that latitudinal range limits  represent niche limits.  In

contrast, suitable habitat extended continuously beyond the species’ western and northeastern range

limits  indicating  that  other  factors  limit  range  expansion  in  these  directions.  Environmental

suitability tended to decline in all directions away from the centre of the species’ range, with the

underlying environment changing in a variety of ways at the edge of the species’ range. However,

the relationship between the environmental suitability of sites and genome-wide patterns of genetic

diversity depended on the measure of suitability used. Thus although latitudinal range limits appear

to  be  niche  limits  in  this  system,  the  specific  consequences  of  environmental  marginality  for

individual populations are less clear. We discuss the implications of these results below.

Niche limits, environmental marginality and range limits in Arabidopsis lyrata

Species’ geographic ranges reflect the interplay of different ecological and evolutionary processes

(reviewed by  Sexton  et al. 2009), as well as the contingency of historical events experienced by

populations  (e.g.  (Hewitt  1996).  Studying  the  relative  importance  of  these  different  factors  is

necessary  to  fully  understand  species’  range  limits  and  the  distribution  of  biodiversity  more

generally. Our niche modeling approach allowed us to evaluate the importance of several variables

on the range limits of  A. lyrata in North America. Consistent with the idea that range limits are

manifestations of species’ ecological niches (i.e. sensu Hutchinson 1957; e.g. Jackson & Overpeck

2000; Soberón 2007), we found that the northern and southern-most range limits of A. lyrata were

well-predicted  by  our  niche  models.  Furthermore,  inline  with  Brown’s  model  of  declining

conditions towards the edge of species’ range (Brown 1984), we found that the predicted suitability

of sites declined towards range limits in these directions. These results suggest that populations at

the northern and southern edges of the species’ range experience increasingly marginal (i.e. novel)
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conditions  and  that  range  expansion  in  these  directions  may  be  precluded  by  constraints  on

adaptation to the variables considered here.

However, not all range limits were clearly associated with niche limits in this system. In

contrast to latitudinal limits, the species’ western range limit was not predicted by our niche models,

especially  when  the  minimum suitability  score  of  any  locality  was  used  to  gauge  the  overall

suitability of sites. Suitable habitat also extended continuously beyond the species’ range to the

northeast. Although the predicted suitability of sites did decline towards the western and eastern

limits of the species’ range, the distance of sites to the centre of the species’ niche in environmental

space (i.e. the marginality of sites) showed only a moderate increase towards the species’ western

limit,  and  actually  decreased  towards  the  eastern  limit.  Thus  it  is  less  clear  that  peripheral

populations in these directions face increasingly marginal conditions. Whereas most of the species’

eastern  range limit  coincides  with  the  Atlantic  Ocean  and  is  thus  readily  explained by a  hard

physical  barrier,  determinants  of  the  species’  western  range  limit  remain  ambiguous.  The

availability  of  moderately  suitable  habitat  beyond  this  limit  suggests  that  some  other  form of

dispersal limitation may constrain the range in this direction. However, it is also possible that other

abiotic or biotic factors not incorporated in our models set the western bounds of the species’ range.

All  together, these findings  underscore the potential  for  range limits  to  be  shaped by different

factors in different places. 

Implications for adaptation at the edge of the range

Where  niche  models  predict  range  limits,  the  variables  with  the  greatest  influence  on  model

predictions can shed light on the dimensions along which adaptation at the range edge may be

constrained.  In  A.  lyrata,  the  variables  that  were most  important  to  predicting  presence on the

landscape were average minimum temperature during the early spring and precipitation during the

wettest  quarter.  Other  annual  and  seasonal  variables  added  very  little  to  our  models,  although
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general  moisture  availability, as  represented  by  the  Priestley-Taylor  coefficient,  was  somewhat

important. A. lyrata breaks seed dormancy during the early spring and undergoes a period of growth

before flowering in May and June. Our results suggest that extreme temperatures and levels of

precipitation during this period are detrimental to populations. This conclusion is consistent with

previous work showing that frost and drought stress compromise plant size and thus may impact

fitness in this system (Paccard et al. 2014; Wos & Willi 2015).

Apart from identifying variables associated with range limits, our analysis of environmental

change at the edge of the range has implications for understanding how different ecological and

evolutionary factors may impact adaptation. In several places, the range limits of  A. lyrata were

associated with roughly linear changes in the variables that were most important for predicting

presence.  In  contrast,  step-like  changes  in  these  variables  were  rarely  observed.  These  results

suggest that theoretical models for adaptation and range limits based on the assumption that the

environment changes linearly (e.g.  Kirkpatrick & Barton 1997; Bridle  et al. 2010) may be more

relevant to understanding range limits in this system than models based on discreet habitat patches

(e.g. Holt & Barfield 2011). At the same time, changes in environment observed at the range edge

were often better characterized by a four-parameter logistic model than a simple linear model and in

many  cases,  range  limits  were  associated  with  complex,  non-linear  patterns  of  environmental

change.  Recent  studies  have  demonstrated  that  non-linear  landscapes  can  alter  the  conditions

necessary for trait evolution towards local optima (García-Ramos & Huang 2012; Schiffers et al.

2014). However, the number of alternative landscape scenarios and ecological and evolutionary

processes considered in theoretical studies is limited to date. The complex patterns of environmental

change observed at the range limits of A. lyrata argue for further investigation into the sensitivity of

predictions from existing range limit theory to assumptions about the underlying environment.

Finally, the patterns of genomic diversity revealed in our analyses have implications for

thinking about  the adaptive potential  of peripheral populations.  A long-held explanation for the
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failure of adaptation at range limits is that peripheral populations have limited genetic variation

upon which selection can act (Hoffmann & Blows 1994; Blows & Hoffmann 2005). Griffin & Willi

(2014)  previously  documented  two genetic  groups  within  A.  lyrata and  a  pattern  of  declining

genetic diversity away from the geographic centers of these groups based on microsatellite data. We

followed up on those results  in this  study with genome-wide patterns of genetic  diversity. Our

results confirm a decline in genetic diversity towards the range edge and thus clearly establish a link

between range position and diversity in this system. These low levels of diversity at the edge of the

species’ range may compromise the ability of populations to respond to the environmental changes

discussed above.

The impact of environmental marginality on genomic diversity

In addition to range position, we tested the importance of marginal environmental conditions for

explaining levels of genomic diversity. Following from the abundant centre  hypothesis,  genetic

diversity is expected to decline towards the edge of the range as populations become smaller and

more  isolated in  response to  increasingly  marginal  conditions  (Brown 1984;  Sagarin  & Gaines

2002; reviewed by Gaston 2003). We found mixed support for this hypothesis. Although genomic

diversity  declined  significantly  with  increasing  distance  away from the  estimated  centre  of  the

species’ niche in environmental space and this measure of suitability explained a significant amount

of the residual variation between genomic diversity and range position, niche model estimates of

suitability were unrelated to genomic diversity. The reasons for these differences are unclear but we

note that these two measures of suitability have different strengths and weaknesses. Whereas the

niche modeling algorithm of  MAXENT weights variables based on their importance in explaining

presence  on  the  landscape,  the  niche  centrality  measure  of  Lira-Noriega  &  Manthey  (2014)

emphasizes the variables that explain the most variation among in any point within the species’

putative  range.  Likewise,  whereas  MAXENT can  incorporate  nonlinear  relationships  between
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environmental  conditions  and  suitability,  the  niche  centrality  method  assumes  suitability  is  a

function  of  the  linear  distance  of  sites  away from the  center  of  the  set  of  (PCA-transformed)

environment conditions underlying all places where the species could occur. On the other hand,

whereas  MAXENT scores are relative and can be sensitive to sampling bias in the locality data (or

variation in population density), we expect estimates of niche centrality to be less sensitive to any

issues with sampling. Thus the two measures of suitability are complementary and the differences

observed in the present study caution against reliance on either metric in isolation. 

More  generally  a  growing  number  of  studies  have  questioned  the  relationship  between

genetic  variation,  range  limits  and  the  environmental  suitability  of  sites.  Eckert  et  al. (2008)

reviewed the evidence for a genetic signature an abundant centre and found mixed support for this

hypothesis. Recently, Lira-Noriega & Manthey (2014) analyzed genetic variation in relation to both

geographic range position and niche centrality. They found that genetic diversity was consistently

negatively associated with niche centrality but not with geography and used these results to argue

that an abundant-centre may only arise when environmental suitability and geographic peripherality

are  positively  correlated  (Lira-Noriega  &  Manthey  2014).  However,  a  number  of  alternative

explanations (reviewed by Sagarin & Gaines 2002; Gaston 2003) can explain an abundant-centre

distribution where it exists and several recent studies have called into question the importance of the

environmental  suitability  of  sites  per  se in  generating  genetic  patterns  across  the  range.  For

instance,  Pironon et al. (2015) and Duncan et al. (2015) examined genetic variation in relation to

geography, the contemporary environment, and the position of historical glacial refugia in plants

and frogs respectively. Both studies found declining genetic variation towards the edge of the range

but concluded that range dynamics associated with the last glacial cycle had a more profound effect

on patterns of genetic variation than the contemporary environment (Pironon et al. 2015; Duncan et

al. 2015).  A.  lyrata similarly  occupies  previously  glaciated  regions.  The  clear  support  for  an

association between genomic diversity and range position and limited evidence of an association
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between genomic diversity and environmental suitability suggests that founder effects associated

with colonization may have had a more pronounced impact on patterns of genomic diversity than

environmental conditions in this system (although additional phylogeographic analyses are required

to confirm the location of historical refugia and colonization routes in this system). Of note in light

of the above studies is that where the direction of historical colonization routes and changes in

environmental conditions covary it can be hard to disentangle the relative effects of the environment

versus genetic drift on genetic diversity. 

Limitations and future directions

Our study sheds light on environmental conditions and the challenges facing adaptation at the edge

of the range in a widely distributed plant species in North America. Although our niche models

point to specific abiotic variables that may be particularly limiting for A. lyrata at the edge of its

range, we caution that it is not possible to definitively attribute range limits to these variables. Niche

model  predictions  may  be  influenced  by  correlated  but  unmodeled  variables  (both  biotic  and

abiotic)  that  systematically  exclude  the  species  from  regions  of  environmental  space  that  are

otherwise suitable  (Peterson et al. 2011). Thus direct experimentation is necessary to evaluate the

causal link between the variables examined and the species’ range limits. 

The interpretation of our results also depends on the accuracy of designated range limits. A.

lyrata sub. lyrata is part of a larger species’ complex (Schmickl et al. 2010) and is replaced to the

north by A. arenicola. Recent molecular work has called into question the distinctiveness of these

two subspecies (Schmickl et al. 2010; Hohmann et al. 2014; Willi unpublished) and thus taxonomic

designations and range limits in this system may need revising. At the same time, A. arenicola and

A. lyrata sub. lyrata differ in morphology and mating system, with all evidence suggesting that the

former is selfing and whereas the latter is mainly outcrossing. Thus, at the very least, our results are

relevant to understanding the limits of outcrossing populations in this system (see Banta et al. 2012
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for discussion of benefits of modeling the niche of distinct trait groups within species). Notably,

selfing is restricted to the edge of the range in  A. lyrata (Griffin & Willi 2014)—areas that are

predicted to be less suitable for the species based on our models. That the replacement of A. lyrata

with a selfing congener coincides with one of the sharpest declines in the suitability of sites for A.

lyrata (e.g. the northern range limit) further establishes a link between selfing and the environment.

The  link  between  environmental  conditions  and  the  factors  that  promote  selfing  thus  warrants

further investigation in this and other systems.

Finally, our  study contributes  one  of  the  first  tests  of  genome-wide  patterns  of  genetic

diversity in relation to range position and the environmental suitability of sites. That the patterns we

observed were consistent with results from previous work based on microsatellites (Griffin & Willi

2014) suggests that accurate conclusions about overall patterns of diversity may be reached without

whole genome data, which is reassuring given that most studies investigating genetic diversity in

relation to geography and the environment to date have relied on a limited number of markers

(reviewed by  Eckert  et al. 2008; Lira-Noriega & Manthey 2014). At the same time, much more

work is  required to understand how these patterns relate to the adaptive potential  of peripheral

populations. Identifying the genes and traits involved in local adaption and examining variation in

these  genes  and in  the regulatory processes  that  control  gene expression  with respect  to  range

position and the environment are all important avenues of future investigation that are currently

underway  in  our  group.  In  this  regard  genomic  data  pave  the  way  for  a  more  complete

understanding of adaptation at the edge of the range. The coupling of such data with the types of

spatial analyses presented here represents a powerful approach for advancing our understanding of

species’ geographic range limits.
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Figures

Figure 1. The distribution of Arabidopsis lyrata sub. lyrata in North America. Black circles in all 

panels indicate known localities (thinned dataset), with the species’ range limits represented by the 

minimum convex polygon around these points (outer polygon). Panel a shows the centroid of the 

MCP of the species’ entire range (red star), genomic sampling sites (blue circles), the boundaries 

(inner polygons) and centroids (red triangles) of the western and eastern genetic groups described 

by Griffin & Willi (2014) and the location and orientation of the range-edge transects (numbered 

grey lines) used in Fig. 3. Panels b-d show the predicted distribution of suitable conditions for A. 

lyrata across the study region based on niche models built using MAXENT. Continuous estimates of 

suitability are shown in panel b and represent the average prediction from ten rounds of model 

calibration. Binary maps of suitable habitat were generated from the continuous prediction surface 

using c) the minimum and d) the 5th percentile of the average suitability scores of the locality data 

as cutoffs for defining suitable habitat.

Figure 2. The relationship between geographic peripherality (distance to geographic range centre/

[distance to geographic range centre + distance to hull of minimum convex polygon around all 

known localities]) and environmental marginality in North American populations of Arabidopsis 

lyrata. a) The average predicted suitability of sites declines with increasing peripherality in all 

major directions away from the range centre. The open circle in this plot represents a peripheral site 

with particularly high suitability at the eastern edge of the species’ range. The inclusion or exclusion

of this site did not change the results. b) The distance of localities to the estimated centre of the 

species’ niche in environmental space increased with increasing peripherality towards the north and 

south in particular and actually decreased towards the eastern edge of the species’ range (outlier not 

shown for clarity of trends). The niche centroid used here was calculated from a PCA of the 

variables used in the niche models based on the locality data, plus 5000 points sampled randomly 
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from the extent of suitable conditions for the species as determine by the minimum suitability score 

of any presence. Using a different number points in the PCA or a different threshold for defining 

suitable habitat did not qualitatively change the results. 

Figure 3. Changes in a) mean early spring temperature and b) precipitation of the wettest quarter 

towards and across range limits in Arabidopsis lyrata based on transects centered on different 

peripheral populations. Plots in each panel correspond to the transects depicted in Fig. 1 and are 

ordered from west to east for northern (top row) and southern (bottom row) sections of the species’ 

range. Transects spanned the range edge (100 km in either direction) with the focal periperphal 

population located at position 0. Negative values along the x-axis represent locations within the 

species range, positive values represent locations over the edge of the range. For clarity, the y-axis 

varies across plots and colour is used instead to represent the environmental value at a given 

location. 

Figure 4. Genomic diversity of 42 outcrossing populations of Arabidopsis lyrata in relation to a) 

(arcsin) distance to putative refugial areas and b) the average predicted suitability of sites based on 

niche model predictions and c) the distance of sites from the centre of the species’ niche in 

environmental space. For the latter, the minimum suitability score of the localities was used as a 

cutoff when calculating the niche centroid (see main text). Results are qualitatively similar for the 

alternative cutoff. 
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Tables

Table 1. Final environmental variables used to generate niche models for Arabidopsis lyrata sub. 
lyrata and their effects on model performance.

Type Variable Abb Source* Basis of
inclusion§

Percent
contribution†

Permutation
importance†

Climate Mean diurnal range
(temperature)

Bio2 BioClim RF 8.65 2.87

Maximum
temperature of
warmest month

Bio5 BioClim BI 9.32 0.45

Precipitation
Seasonality

Bio15 BioClim RF 4.04 6.74

Precipitation of
Wettest Quarter

Bio16 BioClim BI / RF** 9.48 22.3

Priestley-Taylor
coefficient

alpha CGAIR BI 4.51 18.47

Average minimum
temperature of early

spring (March,
April)

Tmin_sp Derived
from

WorldClim 

BI 61.63 46.71

Topography Compound
topographic index

CTI USGA
(Hydro1k)

BI 0.21 0.43

Vegetation Variability in
Maximum Green

Vegetation Fraction

mgvf_sd Derived
from USGS-

LCI

BI 2.15 2.03

* Sources: WorldClim and BioClim: WorldClim database (http://www.worldclim.org); CGAIR: 
CGIAR Consortium for Spatial Information (http://www.cgiar-csi.org/data); HWSD: Harmonized 
World Soil Database (http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-
database/HTML/); USGS LCI: U.S. Geological Survey Land Cover Institute 
(http://landcover.usgs.gov/green_veg.php); USGA Hydro1k: U.S. Geological Survey (EROS 
Center) topographically derived datasets (https://lta.cr.usgs.gov/HYDRO1K)
§ Variables were either chosen based on information about the biology of the species (BI) or because
important for classifying presence and background sites in a random forest analysis (RF); see 
Appendix S1
† Based on MAXENT output and averaged across those k-fold models passing modeling evaluation
** Bio 16 was also highly correlated with the derived mean spring and mean summer precipitation 
variables that we had a priori singled out as being important for the species but that were 
subsequently dropped
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Abstract

Adaption to climate and edaphic conditions are ubiquitous in plants, but little is known about the

traits  and genes  involved in  adaptation.  We performed an environmental  association analysis

(EAA), linking genetic variation with climatic variables known to determine the climatic niche of

our study organism and substrate type (sandy and rocky sites). The study species was the North

American  Arabidopsis  lyrata spp.  lyrata.  We re-sequenced pools  of  DNA of  42  outcrossing

populations from the entire geographic range and revealed  population-level single-nucleotide-

polymorphism  (SNP)  frequency  data.  SNP  data  was  regressed  against  the  environmental

variables. Subsequently we performed a gene ontology analysis on the correlated genes which

suggested the top candidate genes. The highest number of associated SNPs and candidate genes

were  linked  to  precipitation  during  the  wettest  quarter  of  the  year,  followed  by  minimum

temperature in early spring, substrate type and Priestley-Taylor alpha coefficient. The associated

SNPs clustered in particular genomic regions for all environmental variables. The strength of the

associations was higher for populations of the Western genetic cluster, which had more standing

genetic variation that seemed to allow them to evolve improved local adaptation.

Keywords:  adaptation to edaphic conditions; Brassicaceae; climate adaptation; gene ontology;

genome-wide association.
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Introduction

Climate and soil have been reported as main drivers of adaptive evolution in plants, but little is

known about  the genetic  basis  of  such adaptation (Alvarez  et  al. 2009;  Toledo  et  al. 2011).

Knowing the genetic basis is important from a fundamental science point of view, but also in the

face  of  global  change.  In  the  last  decades  evidence  has  further  accumulated  that  global

temperature is increasing and that other climatic conditions are changing (Pachauri et al. 2014).

In the face of anthropogenic climate change the persistence of species may be strongly promoted

if populations and species can adapt to changing conditions (Lynch & Lande 1993; Anderson et

al. 2011).  In  turn,  the  ability  to  adapt  depends  on the genetic  variation in  traits  selected  by

climate.  Hence,  to  understand  adaptation  and  to  predict  adaptive  potential,  we  first  have  to

understand what genes, gene networks and phenotypic traits are under selection.

If phenotypic change to climate or any other environmental factor is genetically based

(Hoffmann & Sgrò 2011), it involves a shift in the allele frequencies; the change is heritable and

evolution occurs. In a recent review, Franks  et al. (Franks  et al. 2014) found that evolutionary

response to climate change are widespread among plants. Out of 38 analyzed studies they found

that 26 studies showed an evolutionary response. However, in the case of evolutionary response

the allelic change does not act in a simple manner but in a gene-network context. These networks

include  various  genes,  transcription  factors  and  proteins  that  interact  together  to  produce  a

phenotype suitable for the environment (Franks & Hoffmann 2012). One well-known example is

flowering time in  Arabidopsis thaliana; it is controlled by several pathways which respond to

different  environmental  cues  including  climatic  ones  (Wilczek  et  al. 2010).  In  the  case  of

evolutionary response, local adaption of populations takes place (Williams 1966). Local adaption

is favored under conditions of low gene flow, moderate selection on intermediate genotypes, little

temporal variation in the direction of selection, under costs of plasticity – the other way to cope
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with environmental change, and large population size (Kawecki & Ebert 2004; Leimu & Fischer

2008).

The  study  of  environmental  factors  that  shape  adaptive  genetic  variation  and  the

investigation  of  gene  variants  that  drive  local  adaptation  is  central  to  the  field  of  landscape

genomics  (Turner  et  al. 2001;  Manel  et  al. 2003).  The  core  of  landscape  genomics  is  the

Environmental Association Analysis (EAA), where alleles or genotypes are associated with an

environmental factor, while controlling for neutral genetic structure. In this study we used a pool-

sequencing  approach  (Pool-seq),  which  was  shown  to  be  a  cost-effective  method  to  obtain

genome-wide allele frequency data (Schlötterer et al. 2014). Pool-seq has been used in different

organism from bacteria (Holt et al. 2009) to humans (Bansal et al. 2011). Particularly, it has been

used to perform Genome-Wide Association Studies (GWAS) in the genus Arabidopsis (Turner et

al. 2010;  Fischer  et  al. 2013).  Several  methods  are  available  for  environmental  association

analysis (reviewed in Rellstab et al. 2013), but only the Bayesian hierarchical model proposed by

Coop et al. (Coop  et al. 2010), implemented in Bayenv2 (Günther & Coop 2013), can handle

Pool-seq data. This method has been improved in the program Baypass (Gautier 2015), where a

binary auxiliary variable was introduced to classify each locus as associated or not.

Our  study organism was  A.  lyrata spp.  lyrata,  a  short-lived  perennial  plant  with  a

predominantly  outcrossing  reproductive  mode.  Here  we analyzed  42  outcrossing  populations

which  covered  the  known  specie  range  (Schmickl  et  al. 2010;  Paccard  et  al. 2016).  These

populations belong both to the Eastern and Western genetic cluster of the species (Hoebe et al.

2009; Willi  & Määttänen 2010).  Common garden analysis  of some of these populations had

shown that phenotypic traits were linked to latitude and therefore mainly to climate. Plants from

the North – compared to  the  South – grew to larger  size,  flowered earlier, were more frost

resistant and less heat resistant and less heat tolerant (Paccard  et al. 2014; Wos & Willi 2015).
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Furthermore, extensive niche model analyses revealed that the latitudinal range limit of A. lyrata

coincides with the niche limit, and the niche limit was determined strongest by temperature –

minimum  temperature  in  early  spring  –  and  to  a  lesser  extent  by  water  availability  and

precipitation (Lee-Yaw et al. submitted). During the early spring A. lyrata increases the rosette

size.  By April  and May the  plants  start  bolting  and flower  until  about  June  and July. After

fertilization of ovules, a relatively long period of 4 weeks is needed until the fruits are ripe, at a

time when summer dryness becomes stronger. Another feature of the species is that populations

either occur in predominantly sandy places or rocky sites. Sandy places where the species occur

are close to the shore of the Atlantic Ocean, on Lake Erie, Lake Michigan and parts of Lake

Superior. Rocky sites where the species occurs can be found in the Appalachians, on parts of the

shore of Lake Superior and along large rivers. For both climatic and edaphic conditions, it is

likely that populations adapted to them.

In this  study, we addressed the following specific questions: 1) What are the SNPs

associated with the different  environmental  conditions  – climate and substrate  type? Is  there

consistency  in  associated  SNPs  between  the  two  ancestral  groups  of  populations,  in  the

Appalachians  and  in  the  Mid-West,  indicating  convergent  evolution?  2)  What  are  the

overrepresented gene ontology terms? And 3) what is the overlap between the genes found here

and in studies of other  Arabidopsis species,  suggesting convergence in pathways involved in

adaptation across species?

Materials and Methods

Genomic data

In this study we analyzed 42 outcrossing populations of Arabidopsis lyrata ssp. lyrata (figure 1,

table S1). The genomic data used in this study was taken from the data set analyzed in Fracassetti
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& Willi  (in prep), where pools of 25 individual DNA samples were sequenced according the

pool-sequencing protocol described in Fracassetti  et  al.  (2015). The SNPs were called by the

program VarScan (Koboldt et al. 2012) for each population individually with a minimum count of

the variant allele of 3, a minimum frequency of the variant allele of 0.015, a P-value lower than

0.15, minimum mapping quality of 20 and a strand bias less than 90%. We retained 1,692,676

biallelic SNPs, with a MAF (minimum allele frequency) across the populations of > 0.05 and

when the specific site had been sequenced at least in half of the populations.

Selection of climatic variables

Four environmental variables were used to test for an association with SNPs. The first variable

was the minimum temperature early spring (March, April;  Tmin_ESp). During this period  A.

lyrata is very susceptible to cold and frost since plants start growing. The second variable was the

precipitation  during  the  wettest  quarter  (bio16).  The  third  variable  was  the  Priestley-Taylor

coefficient that indicates the general water availability of the environment (alpha). Tmin_ESp

and bio16 were estimated from worldclim data (http://www.worldclim.org). Alpha was estimated

from the data of the Consortium for Spatial Information (http://www.cgiar-csi.org/data). These

three climatic variables had been shown previously to predict well habitat suitability and niche

limits of the species (Lee-Yaw et al. submitted). The fourth variable was the substrate on which

the plants grew: rocky or  sandy sites  (Sub).  The values  of  environmental  variables  for  each

population are listed in table S1. We performed a principal component analysis (PCA) on the

values  of  these  variables  of  each  population  with  the  R  package  ggbiplot

(https://github.com/vqv/ggbiplot).  The  PCA showed  the  environmental  variation  between  the

sampled populations (figure S1).
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Testing for an association between genomic variation and the environment

We performed an environmental association analysis with the program Baypass (Gautier 2015).

The bayesian method controls for (co-)variance in population SNP frequencies due to sampling

(individuals within populations and sequencing of pooled DNA) and population history while

testing  for  a  correlation  between  SNP  frequency  and  environmental  variable.  We used  the

auxiliary covariate model with the default parameters. To detect the posterior probability of each

auxiliary variable associated with each SNP, we ran 25,000 MCMC (Markov chain Monte Carlo)

simulations  with  a  burn-in  time  of  5,000  simulations.  The  population  variance  matrix  was

calculated  based  on  50,000  randomly  picked,  intergenic  SNPs.  We compared  two  different

variance matrices calculated based on different random sets of intergenic SNPs. The Forstner-

Moonen Distance (FMD; Förstner & Moonen 2003) turned out to be low (FMD = 0.48), which

indicates  that  50,000 SNPs were enough to  detect  populations  structure in  the data  set.  The

program was  run  independently  three  times  to  avoid  high  run-to-run  variability  detected  in

Bayenv-like methods (Blair  et al. 2014). We considered a SNP to be significant (“associated”)

when the Bayes Factor (BF) was greater than 20 decibians in all the three independent runs.

Subsequently,  the  Spearman  correlation  coefficient  (rho)  between  the  frequencies  of  the

associated  SNPs  revealed  by  the  EAA and  environmental  variables  was  calculated  for  each

genetic cluster separately (table S2), and a t-test was performed on the absolute values of rho

between the two genetic cluster. We performed a PCA on the all SNPs frequencies of populations

grouped by the two genetic clusters. Finally, we performed a gene ontology (GO) analysis on the

associated SNPs with the R package snp2go (Szkiba et al. 2014) using the most recent annotation

of  A.  lyrata (Rawat  et  al. 2015)  and  only  the  biological  process  subcategory. The  program

performed a candidate SNP enrichment analysis based on the number of candidate SNPs and non-
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candidate SNPs in a GO term. The overrepresented GO terms with a false discovery rate (FDR)

lower than 0.05 were reduced with revigo (Supek et al. 2011) based on semantic similarity.

Results and Discussion

SNPs associated with environmental variables

Environmental  Association  Analysis  (EAA)  revealed  9,327  SNPs  associated  with  the  four

environmental variables of minimum temperature early spring (Tmin_ESp), precipitation during

the wettest quarter (bio16), the Priestley-Taylor coefficient of  general water availability (alpha)

and substrate type (Sub) – rock versus sand (table S2). Only 45 SNPs were associated with more

than  one  environmental  variable.  Precipitation  of  the  wettest  quarter  was  the  environmental

variable  with  the  highest  number  of  associated  SNPs  (5005  SNPs),  followed  by  minimum

temperature early spring (2637 SNPs), substrate type (1308 SNPs) and alpha (422 SNPs) (Table

1). For each environmental variable more of the associated SNPs were in genic regions compared

to intergenic regions (figure 2). The difference was higher for precipitation during the wettest

quarter and alpha (77% and 66% of SNPs in genic regions, respectively) compared to minimum

temperature  early  spring  and  substrate  type  (58%  and  53%  of  SNPs  in  genic  regions,

respectively).  The associated  SNPs  clustered  in  distinct  genomic  regions  (figure  3,  table  2).

Particularly, 40.46% of the SNPs associated with bio16 were located in chromosome 2 between

the positions 17,247,881 and 17,630,257.

In a next step, we investigated the strength of associations for the Eastern and Western

ancestral genetic clusters separately. The absolute values of Spearman correlation coefficients

were significant higher in the Western genetic cluster for all environmental variables (p value of

t-test < 0.001) (figure 4). The PCA done on the SNP frequencies (figure S2) indicated that the
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SNP frequencies  in  the  Western  genetic  cluster  were  more  differentiated,  which  may  have

contributed to strengthen associations.

Gene ontology and genes associated with environmental variables

The  number  of  associated  genes  and significant  gene  ontology  (GO) terms  were  higher  for

precipitation during the wettest quarter, followed by minimum temperature early spring, substrate

type and alpha. The trend was similar to that found for the number of associated SNPs (table 1).

In the following paragraphs, results of the gene ontology analysis are described for each of the

four environmental variables, followed by a discussion of candidate genes. The candidate genes

were selected picking the gene with the highest number of SNPs associated for each genomic

regions that had more than 50 SNPs associated (table 2). The description of these genes is written

in table 3.

The environmental variable of minimum temperature during the months of March and

April had 557 associated genes. Most of the SNPs that were found to be associated – 57.32% –

were located in 67 genes, each of which with more than 5 associated SNPs (the latter was part of

the settings for finding associated genes). The GO enrichment analysis revealed 35 GO terms

overrepresented (table S3) and they mainly belonged to the GO terms “branched-chain amino

acid biosynthesis” (GO:0009082) and “regulation of hydrolase activity” (GO:0051336) (figure

6). One candidate gene (AL2G25500) was found to be involved in the response to both frost and

heat in A. lyrata (Wos & Willi submitted). This gene encoded a midasin-like protein involved in

seed development (Chen et al. 2014). Other two candidate genes (AL3G32800, AL2G31960) had

a homologous gene in  A. thaliana. The first encoded a protease involved in programmed cell

death (Ondzighi et al. 2008). The second encoded a water-soluble chlorophyll protein involved in

herbivore resistance activation (Boex-Fontvieille et al. 2015).
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Precipitation  during  the  wettest  quarter  had  832 genes  associated.  Most  of  the  SNPs

associated (69.66%) were in 127 genes that had more than 5 SNPs. The GO enrichment analysis

revealed  97  overrepresented  GO  terms  (table  S3),  and  after  a  reduction  based  on  semantic

similarity  in  GO  terms,  the  most  significant  GO  terms  were:  translational  initiation

(GO:0006413),  response  to  UV-B  (GO:0010224),  sepal  development  (GO:0048442)  and

exocytosis (GO:0006887) (figure 5). In line with SNP numbers, the highest number of candidate

genes  were  found  for  precipitation  during  the  wettest  quarter,  and  they  were  located  on

chromosome  2.  Three  of  the  candidate  genes  (AL2G15270,  AL2G15460,  AL2G28070)  had

previously been found in association with the response to salt stress (Sottosanto et al. 2004; Reis

2014; Zhang et al. 2016). Another candidate, AL2G36920, encodes a heat shock protein involved

in multiple stress response pathways (Swindell et al. 2007) and the AL2G24570 gene is involved

in the response to abscisic acid and drought (Ren et al. 2010). Other genes that are candidates

based on this study, AL2G27910 and AL5G24920, had been shown to be involved in defense

response  (Reumann  2013)  and  response  to  fungus  (Oelmuller  et  al. 2005).  The  remaining

candidate genes had no counterparts in A. thaliana.

The Priestley-Taylor coefficient, reflecting general water availability in the environment,

had 93 genes associated. Most of the SNPs associated (62.99%) were in 11 genes that had more

than 5 SNPs. The GO enrichment analysis revealed 15 GO terms overrepresented (table S3),

which could be grouped in “protein acetylation” (GO:0006473) and “tryptophan biosynthesis”

(GO:0000162) (figure 8). One of the candidate genes of alpha had no homologue in A. thaliana,

the other gene (AL4G36300) encoded a acyltransferases involved in  the response to  drought

(Trijatmiko 2005).

Substrate type had 321 genes associated. The percentage of SNPs associated in 33 genes

with more than 5 SNPs (42.45%) was lower compared to the former two variables, minimum
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temperature in spring and precipitation during the wettest quarter. The GO enrichment analysis

revealed  23  GO terms  overrepresented  (table  S3),  and  after  a  reduction  of  terms  based  on

semantic  similarity,  they  grouped  in  “response  to  UV-B”  (GO:0010224),  “vesicle  docking”

(GO:0048278)  and  “glutamine  metabolism”  (GO:0006541)  (figure  7).  The  candidate  gene,

AL2G14660,  encodes  a  kinase  protein,  which  is  involved  in  a  signal  transduction  pathway

(Nemoto et al. 2011).

Finally, we also tested for an overlapped in the candidate genes found in other studies on

Arabidopsis:  one was done on  A. thaliana (Hancock  et  al. 2011) and the other in  A. halleri

(Fischer et al. 2013). Few genes overlapped between the different studies (figure 5).

Conclusions

This study has highlighted the genomic regions that are associated with environmental variables

that determine the specie distribution (Lee-Yaw et al. submitted) and substrate type. Most of the

associated SNPs clustered in particular genomic regions. The pattern was most noticeable for

precipitation during the wettest quarter, for which 58.6% of SNPs clustered together. For the

other variables, the pattern was weaker: for Priestley-Taylor alpha 35.55%, minimum temperature

early spring 21.8% and for substrate type 4.91%. The strength of the associations was higher in

the Western genetic cluster compared to the Eastern genetic cluster. This could be due to the fact

that the SNP frequencies in the Western cluster were more differentiated, therefore the Western

populations had more standing genetic variation that allowed them to adapt better to different

environments.  The  overlap  between  the  candidate  genes  of  this  study  and  other  studies  on

Arabidopsis (Hancock  et  al. 2011;  Fischer  et  al. 2013)  was  found  to  be  low  but  the

overrepresented  GO  terms  were  similar,  such  as  defense  response,  response  to  UV  and

translational initiation.
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Table 1. Number of SNPs, genes and GO terms for each environmental variable.

Env SNPs tot SNPs gen Genes Genes 5SNPs Perc 5SNPs GO term

bio16 5005 3425 831 127 69.66% 97

Tmin_ESp 2637 1591 556 67 57.32% 35

Sub 1308 742 321 33 42.45% 23

alpha 422 335 93 11 62.99% 15

Env environmental variables.

SNPs tot number of SNPs associated.

SNPs gen number of SNPs associated in genetic region.

Genes number of genes associated.

Genes 5SNPs number of genes associated that have more than 5 SNPs associated.

Perc 5SNPs percentage of associated SNPs in genes that have more than 5 SNPs associated.

GO number of GO terms associated.
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Table 2. Genomic regions with more than 50 SNPs associated with environmental variables.

Env Chr Start End SNPs Perc Gene

bio16 1 3435415 3518282 63 1.26% AL1G19550

bio16 2 2660327 2719097 202 4.04% AL2G15270

bio16 2 2762362 2816602 214 4.28% AL2G15460

bio16 2 11530672 11601244 64 1.28% AL2G24570

bio16 2 13424791 13480687 69 1.38% AL2G27910

bio16 2 13497672 13535329 68 1.36% AL2G28070

bio16 2 17247881 17630257 2026 40.48% AL2G36920

bio16 5 12420610 12447861 52 1.04% AL5G24920

bio16 5 19083072 19121791 102 2.04% AL5G40790

bio16 8 12045356 12064070 73 1.46% AL8G21750

Tmin_ESp 2 12158010 12187596 66 2.50% AL2G25500

Tmin_ESp 2 15328669 15372557 95 3.60% AL2G31960

Tmin_ESp 3 8358784 8378481 74 2.81% AL3G32800

Tmin_ESp 3 17608920 17622585 120 4.55% AL3G44910

Tmin_ESp 8 11539355 11576290 220 8.34% AL8G21140

Sub 2 2397658 2405223 51 4.91% AL2G14660

alpha 4 18900248 18925846 55 13.03% AL4G36300

alpha 8 2129257 2145511 95 22.51% AL8G13590

Env environmental variables.

Chr chromosome.

Start start of the genomic regions.

End end of the genomic regions.

SNPs number of associated SNPs in the genomic regions.

Perc percentage of associated SNPs in the genomic regions relative to the total number of SNPs 

associated.

Gene gene present in the region with the highest number of associated SNPs.

136



Table 3. Candidate genes in regions with the highest number of associated SNPs.

Env ID lyrata Chr Start End SNPs ID thaliana Desc

bio16 AL1G19550 1 3479497 3482448 17 NA NA

bio16 AL2G15270 2 2704310 2706198 42 AT1G61110
NAC domain containing

protein 25

bio16 AL2G15460 2 2788175 2793670 78 AT1G60995
S3 self-incompatibility locus-

linked pollen protein

bio16 AL2G24570 2 11559302 11560652 11 AT1G66600 ABA overly sensitive mutant 3

bio16 AL2G27910 2 13443303 13454344 15 AT1G68890

2-oxoglutarate
decarboxylase/hydro-

lyase/magnesium ion-binding
protein

bio16 AL2G28070 2 13517749 13521362 40 AT1G69020
Prolyl oligopeptidase family

protein

bio16 AL2G36920 2 17322232 17329664 328 AT1G76780
HSP20-like chaperones

superfamily protein

bio16 AL5G24920 5 12440001 12442900 36 AT3G46190 TRAF-like family protein

bio16 AL5G40790 5 19112107 19114395 28 NA NA

bio16 AL8G21750 8 12053095 12057696 18 NA NA

Tmin_ESp AL2G25500 2 12161888 12188505 65 AT1G67120 midasin-like protein

Tmin_ESp AL2G31960 2 15331522 15332472 39 AT1G72290 Kunitz-protease inhibitor

Tmin_ESp AL3G32800 3 8378106 8380315 3 AT3G19390
Granulin repeat cysteine
protease family protein

Tmin_ESp AL3G44910 3 17619295 17624192 43 NA NA

Tmin_ESp AL8G21140 8 11565959 11568937 72 NA NA

Sub AL2G14660 2 2403991 2406585 14 AT1G61590
Protein kinase superfamily

protein

alpha AL4G36300 4 18915610 18917714 27 AT2G39000
Acyl-CoA N-acyltransferases

(NAT) superfamily protein

alpha AL8G13590 8 2132609 2142052 82 NA NA

Env environmental variables.

ID lyrata gene identifier of A. lyrata

Chr chromosome.

Start start of the genomic regions.

End end of the genomic regions.

SNPs number of associated SNPs in the gene.
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ID thaliana gene identifier of the homologous gene in A. thaliana.

Desc description of the A. thaliana gene.

Table S1. A. lyrata populations with coordinates and values of climatic variable.

Table S2. SNPs associated with the environmental variables.

Table S3. Overrepresented GO terms for each environmental variables.

Table S4. Genes associated with the climatic variables.

The supplementary tables are  available at https://github.com/fraca/Thesis_data.
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Figure 1. Map of the outcrossing A. lyrata populations included in this study. The minimum 

convex polygon hull of the Eastern cluster is indicated in blue, the one of the Western cluster is 

indicated in purple. The black circles represent the populations at rocky sites and the red circles 

those at sandy sites.
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Figure 2. Associated SNPs and their distribution across intergenic and genic regions of the 

nuclear genome. The red bars are the SNPs in intergenic regions, the blue bars are the SNPs in 

genic region, for the four environmental variables of precipitation wettest quarter, bio16; 

minimum temperature early spring, Tmin_ESp; substrate type, Sub; and the Priestley-Taylor 

coefficient of water availability, alpha. The environmental variables are sorted by the number of 

SNPs that were found to be associated with them.
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Figure 3. Histogram of the significant SNPs of the association study distributed across the 

chromosomes. In pink: SNPs associated with the Priestley-Taylor coefficient, alpha. In green: 

SNPs associated with precipitation during the wettest quarter, bio16. In blue: SNPs associated 

with substrate type, Sub. In purple: SNPs associated with the minimum temperature early spring, 

Tmin_ESp. The vertical bars represent the SNP density in windows of 100,000 base pair.
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Figure 4. Boxplot of the absolute Spearman correlation coefficients. Values of the Eastern genetic

cluster are indicated in blue, those for the Western genetic cluster in purple.
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Figure 5. Tree map of GO terms linked to the environmental variable of precipitation during the 

wettest quarter of the year (bio16). Each rectangle represents an enriched GO term. The size of 

the rectangles reflects the FDR value of the snp2go analysis.
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Figure 6. Tree map of GO terms linked to the environmental variable of minimum temperature 

early spring (Tmin_ESp). Each rectangle represents an enriched GO term. Size of the rectangles 

reflects the FDR value of the snp2go analysis.

Figure 7. Tree map of GO terms linked to the environmental variable of substrate type (Sub). 

Each rectangle represents an enriched GO term. Each rectangle represents an enriched GO term. 

The size of the rectangles reflects the FDR value of the snp2go analysis.
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Figure 8. Tree map of GO terms linked to the environmental variable of the Priestley-Taylor 

coefficient for general water availability (alpha). Each rectangle represents an enriched GO term. 

The size of the rectangles reflects the FDR value of the snp2go analysis.
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Figure 5 Venn diagram of the candidate genes of the EEA executed in three Arabidopsis species. 

A. lyrata, of this study, A. thaliana (Hancock et al. 2011) and A. halleri (Fischer et al. 2013). Few

candidate genes overlapped between pairs of studies/species, and none overlapped across the 

three species.
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Figure S1. Principal component analysis on the environmental variables grouped by genetic 

cluster, East (E) and West (W).
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Figure S2. Principal component analysis on the SNP frequencies grouped by genetic cluster, East 

(E) and West (W).
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DISCUSSION

In this thesis I analyzed the genetic diversity and the genetic basis of adaptation to different 

environmental conditions in the plant Arabidopsis lyrata spp. lyrata. I analyzed 52 populations of 

A. lyrata that covered the whole species distribution range (Schmickl et al. 2010; Paccard et al. 

2016). The estimation of genetic data was done with a Pool-seq approach (Schlötterer et al. 2014), 

in which pools of 25 individuals for each population were sequenced. 

In the first chapter, I compared the accuracy of the estimation of the SNP frequencies 

detected by Pool-seq with individual-based Genotyping-By-Sequencing (GBS) (Elshire et al. 2011).

The key parameters I tested for impacting accuracy of Pool-seq were the pool size and the 

sequencing depth. I demonstrated that pools of 25 individuals with a sequencing depth of 100× 

produce accurate allele frequency estimates for common SNPs with a minor allelic frequency above

0.05 (Fracassetti et al. 2015).

In the second chapter, I reconstructed a relatedness tree based on the SNPs frequencies with 

the program Treemix (Pickrell & Pritchard 2012), that confirmed the presence of two genetic 

clusters: an Eastern cluster along the Appalachian Mountains and a Western cluster west of Lake 

Erie with signature of past gene flow between them. These genetic clusters had already been 

detected in previous studies (Hoebe et al. 2009; Willi & Määttänen 2010). Based on a population 

relatedness tree, I could reconstruct the colonization history of the species at the end of the last 

glacial maximum. In a next step, I analyzed the predictors of within-population genomic diversity 

for different genomic regions (intergenic and coding). The main drivers of genomic diversity at the 

whole-genome level were mating system (selfing compared to outcrossing) and historic range 

dynamics after the last glaciation maximum (LGM). Historic demographic processes before LGM 

and past gene flow between clusters had a minor impact on genomic diversity in intergenic regions. 
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As these drivers are predicted to predominantly determine neutral evolution and are unlikely to 

directly impose selection, it means that genomic diversity is strongly affected by genetic drift.

In the third chapter, genomic diversity was linked also to the species distribution. In A. 

lyrata the geographic range limits reflect the ecological niche limits at the latitudinal range margins 

(Lee-Yaw et al. Submitted). In other word the suitability of sites declines towards the latitudinal 

edge of the species distribution. The variables that mainly contributed to predicting the niche limits 

were average minimum temperature during the early spring and precipitation during the wettest 

quarter of the year, and marginally by the general moisture availability. Extreme temperatures and 

levels of precipitation are harmful to species persistence during this period. 

In my last chapter, I performed an environmental association analysis (EAA) to reveal SNPs

and genes associated with environmental variables that determine the niche limits and substrate type

(sandy and rocky sites).  Most  of  the  SNPs and genes  clustered  in  particular  genomic  regions.

Particularly, 40% of the SNPs associated with the precipitation during the wettest quarter of the year

are  located  on  chromosome  2  between  the  position  17247881  and  17630257.  The  association

between the SNPs frequencies and the environmental variables was higher in the Western genetic

cluster populations, which were more genetically differentiated.

Overall,  my thesis  contributed  to  our  understanding of  the  drivers  of  within-population

genomic diversity necessary for adaptive evolution – the role of the species history versus local

factors, the investigation of important niche variables that determine a species distribution and the

genes linked to adaptation to these variables within the general distribution of a species. For all

these analysis,  Pool-seq turned out  to  be an effective approach to  perform population genomic

analysis.
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