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Chapter 1

Theoretical Background

1.1 Potential of Mean Force Calculations

The Potential of Mean Force (PMF) is one of the key concepts in modern statistical

mechanics. It plays an extremely important role in the analysis of complex molecular

systems. It is defined as a function of an average distribution function ⟨p(x)⟩:

PMF(x) = PMF(x∗)− kBT ln
[
⟨p(x)⟩
⟨p(x∗)⟩

]
(1.1)

where x∗ and PMF(x∗) are arbitrary. The average distribution function is obtained from

Boltzmann average:

⟨p(x)⟩ def=
∫
e−U(R)

/
kBT δ (x′(R)− x) dR

∫
e−U(R)

/
kBTdR

(1.2)

U(R) is a total energy of a system as a function of all coordinates R, x′(R) can represent

any property of the system, or a certain combination of system's properties. The x′(R)

variables (which are functions of all of the degrees of freedom of a system) will be from

now on called the reaction coordinates.

Direct calculations of a PMF from a distribution function ⟨p(x)⟩ is not possible in the

majority of cases. It becomes clear after rewriting equation 1.2 in the form of a time

average (the average values over time of the physical quantities that characterize a sys-
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tem are postulated to be equal to the statistical average values of the quantities, ergodic

hypothesis).

⟨p(x)⟩ = lim
τ→∞

1

τ

∫ τ

0

δ (x′(t)− x) dt (1.3)

Unfortunately, performing even extremely long simulation runs might not be enough to

sample an entire conformational space. Usually, the existence of high energy regions

on a free energy landscape can result in simulations getting stuck in a certain subset X

of a conformational space Rspace, leaving the complementary locations Rspace \ X un-

explored. To overcome this issue many approaches have been proposed. One of those

is the Umbrella Sampling technique. In this method, a system is simulated in presence

of an artificial biasing potential w(x) that restraints sampling to a specific region of a

reaction coordinate space (it is usually beneficial to utilize for that function a simple har-

monic function, w(x) = 1
2k (x− x0)

2). A single biased simulation generates data nar-

rowed down only to a small subset of a reaction coordinate space with data correspond-

ing to a U(R) + w(x) potential function. In order to acquire data from all regions of the

reaction coordinate space that is functionally relevant, multiple biased simulations have

to be performedwith the biasing potentials defined at positions corresponding to regions

of interest. Results of those simulations have to be unbiased and recombined together to

produce an estimate of PMF(x). Taking equation 1.2 and substituting a potential function

with a biased window potential one produces a biased simulation distribution function:

⟨p(x)⟩(i) =
∫
e−U(R)−wi(x′(R))

/
kBT δ (x′(R)− x) dR

∫
e−U(R)−wi(x′(R))

/
kBTdR

(1.4)

⟨p(x)⟩(i) =
∫
e−U(R)

/
kBTdR

∫
e−U(R)

/
kBTdR

×
∫
e−U(R)

/
kBT e−wi(x′(R))

/
kBT δ (x′(R)− x) dR

∫
e−U(R)

/
kBT e−wi(x′(R))

/
kBTdR

(1.5)

⟨p(x)⟩(i) = e−wi(x)
/
kBT ×

∫
e−U(R)

/
kBT δ (x′(R)− x) dR

∫
e−U(R)

/
kBTdR

(1.6)

×
∫
e−U(R)

/
kBTdR

∫
e−U(R)

/
kBT e−wi(x′(R))

/
kBTdR
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⟨p(x)⟩(i) =
e−wi(x)

/
kBT ⟨p(x)⟩〈

e−wi(x)
/
kBT

〉 (1.7)

As a result, the PMF from the i-th windows is:

PMF(i)(x) = PMF(x∗)− kBT ln

[
⟨p(x)⟩(i)
⟨p(x∗)⟩

]
(1.8)

PMF(i)(x) = PMF(x∗)− kBT ln
[
⟨p(x)⟩
⟨p(x∗)⟩

]
− wi(x) + Fi (1.9)

Where the Fi constant is defined from:

e−Fi

/
kBT =

〈
e−wi(x)

/
kBT

〉
(1.10)

Merging data from multiple windows comes down to determining Fi constants for all

windows. This can be done by modifying F values of adjacent windows i and j, un-

til PMF(i)(x) and PMF(j)(x) overlap in a region where both PMF(i)(x) and PMF(j)(x) are

defined. This also implies that biasing potentials should be defined in such way that

there should exist a path connecting points A and B belonging to simulation data of

windows i and j for each pair of windows at x0(i) and x0(j); A ∈
⋃

0≤t≤Ti
{x(i)(t)}, B ∈

⋃
0≤t≤Tj

{x(j)(t)}. More on paths and energy landscape traversal in chapter 1.3.2.

1.2 Weighted Histogram Analysis Method

One of the most recognised methods for unbiasing is the Weighted Histogram Analysis

Method [13]. Having performed N biased window simulations, WHAM equations repre-

sent the estimate of an unbiased density function 1.2:

⟨p(x)⟩ =
N∑

i=1

⎧
⎨

⎩⟨p(x)⟩
unbiased
(i) × ni · e−[wi(x)−Fi]

/
kBT

∑N
j=1 nj · e−[wj(x)−Fj ]

/
kBT

⎫
⎬

⎭ (1.11)
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where ni represents the number of data points obtained from i-th windows simulation.

Comibning 1.7 and 1.10, a single window simulation unbiased density can be written:

⟨p(x)⟩(i) =
e−wi(x)

/
kBT ⟨p(x)⟩unbiased

e−Fi

/
kBT

(1.12)

⟨p(x)⟩unbiased =
⟨p(x)⟩(i)

e−[wi(x)−Fi]
/
kBT

(1.13)

With that, the 1.11 equation can by rewritten in this form:

⟨p(x)⟩ =
∑N

i=1 ni ⟨p(x)⟩(i)
∑N

j=1 nj · e−[wj(x)−Fj ]
/
kBT

(1.14)

The 1.10 equation also can be rewritten as:

e−Fi

/
kBT =

〈
e−wi(x)

/
kBT

〉
def=

∫
e−wi(x)

/
kBT ⟨p(x)⟩ dx (1.15)

Equations 1.14 and 1.15 provide together an estimate of the unbiased distribution func-

tion. Based on that estimate, the final structure of a Potential of Mean Force is calcu-

lated from equation 1.1. Since 1.14 and 1.15 are codependent, they need to be solved

self-consistently. This is achieved by iterating those equations until predefined criteria

for parameter convergence are met. The procedure starts with a certain initial guess of

{Fi} values.

One on the biggest advantages of using the Weighted Histogram Analysis Method is its

extendibility up to (theoretically) any number of dimensions ND:

⟨p(x1, . . . , xND)⟩ =
∑N

i=1 ni ⟨p(x1, . . . , xND)⟩(i)
∑N

j=1 nj · e−[wj(x1,...,xND
)−Fj]

/
kBT

(1.16)

e−Fi

/
kBT =

∫
· · ·

∫
e−wi(x1,...,xND

)
/
kBT ⟨p(x1, . . . , xND)⟩ dx1 . . . dxND (1.17)
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1.2.1 Basic ND-dimensional implementation

The general approach towards implementing the Weighted Histogram Analysis Method

assumes having performed aND-dimensional Umbrella Sampling simulationwithN win-

dows. Each (i-th window) defined using harmonic biasing potential at xi
1 . . . x

i
ND

with

force constants ki
1 . . . k

i
ND

. The algorithm (algorithm 1) alone is extremely simple and

can be easily optimised (chapter 2.1).

Algorithm 1: Weighted Histogram Analysis Method

input

output

output

1 while not converged do

2 for i = 0, i < N , inc(i) do

3 F ′
i ←

4 end

5 foreach position in H as x1 . . . xND do

6 d ←

7 for i = 0, i < N , inc(i) do

8 d ← d+ ni · eFi

/
kBT e

−
{

1
2k

i
1(x1−xi

1)2+...+ 1
2k

i
ND (xND

−xi
ND )

2
}/

kBT

9 end

10 x1 . . . xND ← x1 . . . xND d

11 for i = 0, i < N , inc(i) do

12 F ′
i ← F ′

i x1 . . . xND · e−
{

1
2k

i
1(x1−xi

1)2+...+ 1
2k

i
ND (xND

−xi
ND )

2
}/

kBT

13 end

14 end

15 for i = 0, i < N , inc(i) do

16 F ′
i ← −kBT · logF ′

i

17 Fi F ′
i

18 Fi ← F ′
i

19 end

20 end

21 foreach position in H as x1 . . . xND do

22 x1 . . . xND −kBT · log
(

x1 . . . xND

/
max( . . . )

)

23 end

7



able free energy valleys and to avoid high (steep) energy barriers (in many cases going

over those high energy regions is not beneficial at all, forcing a system in an energy unfa-

vorable conformation with artificial biasing potentials might result in system undergoing

unphysiological changes). Consequently, these observations could be utilized to narrow

down an area of interest to a subset of the reaction coordinate space that would corre-

spond to energies that are not exceeding a certain value E0.

E (i1, i2, . . . , iND) = PMF

⎛

⎜⎜⎜⎜⎝

⎛

⎜⎜⎜⎝

x01

...

x0ND

⎞

⎟⎟⎟⎠

T

+

⎛

⎜⎜⎜⎝

∆x1

...

∆xND

⎞

⎟⎟⎟⎠

T

· diag (i1, i2, . . . , iND)

⎞

⎟⎟⎟⎟⎠
≤ E0

This relation is true only for a certain subset of the whole space, therefore it could possi-

bly be unnecessary to store an energy value for every single position inmatrix (i1, i2, . . . , iND) ∈

{0, . . . , n0} × . . . × {0, . . . , nND}. Instead, all of the indexes for which energy is defined

could be stored in a certain set, let's call it X .

(i1, i2, . . . , iND) ∈ X ⇔ E (i1, i2, . . . , iND) ≤ E0

If the number of elements in the setX is not bigger than a half of number of elements in

multidimensional array

2 · card (X) ≤ card ({0, . . . , n0}× . . .× {0, . . . , nND})

then thematrix representing an energy landscape is sparse.

Building a data structure for storing energy landscapes on top of a certain sparse ma-

trices implementation could result in significant reduction of memory usage. In fact, in

a simple 2D test simulation, the size of a full energy map was 262 KB against 69 KB for

a sparse matrix stored with a cutoff of E0 = 10 kcal/mol. For a sparse matrices imple-

mentation I've decided to use a dictionary of keys. The information about positions for
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which data is defined would be stored in a self-balancing binary search tree (BST), and

the basic procedures (insertion, removal, lookup) would be performed in O(logn) time

and the extraction of all stored items would take only O(n) time [1, 11]. In C++ a sparse

matrix can be easily implemented as a standard template librarymap, with basic function

defined as follows:

Listing 1.1: sparse matrix, data structure creation

data = new std : : map < i n t * , T > ( ) ;

Listing 1.2: sparse matrix, adding/modifying an element

data−>operator [ ] ( pos i t i on ) = va lue ;

Listing 1.3: sparse matrix, accessing an element

va lue = data−>operator [ ] ( pos i t i on ) ;

Besides obvious advantages, there are certain downsides to the use of sparse matrices

for an array implementation. Themajor one is the time for accessing values at the neigh-

boring locations; O(logn) for each query. However application of this data structure

makes storing of the huge (multidimensional) data sets possible, and that compensates

for the fact of the calculation time not being optimal. The important fact is that utilizing

such data structure does not affect the performance of WHAM procedure (chapter 1.2).

In a matter of fact, certain modifications allow simplifications in the main loop of WHAM

algorithm that significantly improve the calculation time. This matter will be discussed

later (chapter 2.1).

1.3.2 Graph Representation

Another data structure which can be used to represent energy landscapes is a graph. Let

G = (V,N) be an undirected connected graph representing an energy function E with

discretized parameters (V is a set of nodes, N is a set of edges).

Lets define a node v ∈ V as a object defined by an absolute position in a reaction coor-

dinate space and a free energy value (listing 1.4).
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Listing 1.4: Node class definition

1 template <typename T , typename U>

2 class node

3 {

4 p r i va te :

5 i n t index / / unique index

6 std : : vector < i n t > connect ions ; / / indexes of ad jacent nodes

7

8 pub l ic :

9 T * coord inates ; / / pos i t i on

10 U va lue ; / / f r ee energy va lue

11 } ;

In my implementation (listing 1.5), which served as a valid solution for certain analyses I

have been performing in my research, a graph class contains a list (a vector) of all nodes

and a binary search tree (a map) that is utilized as a dictionary for accessing a neigh-

borhood map (removing a need for its explicit implementation). These implementation

choices result in a O(logn) time for performing queries and accessing nodes at specific

locations, O(n logn) time for a complete construction of a graph with n nodes, and a

O(1) time for accessing neighbors of a node. The last statement might not be obvious,

therefore it can be beneficial to perform slightly deeper analysis of those procedures:

• When a new node n is added to a graph:

A list and a map get a new entries pointing to n (dictionary uses a position of n as

a key for indexing elements),

A procedure responsible for connecting nodes with each other is executed.

Adding an element to a list is performed in O(1) time; adding elements to a map,

as well as finding adjacent nodes takes O(logn) (since a map is a balanced BST).

Hence, the whole process of adding a single node to a graph takes O(logn) time.

• Therefore the construction of a whole graph (adding n elements one after another)

is executed in O(n logn) time.
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• In a graph created with this procedure, every single node contains an information

about nodes adjacent to it. This information is implemented as a vector of foreign

indexes. Those indexes point to certain positions in a list of nodes in a graph object

and are used for accessing elements in constant time. Since only lists are involved

in this procedure, the whole function is executed in O(1) time.

Listing 1.5: A simplified graph class

1 template <typename T , typename U>

2 class graph

3 {

4 p r i va te :

5 std : : vec to r < node<T , U> * > nodes ;

6 std : : map < T * , node<T , U> * > lookup ;

7 void connect ( node<T , U> * ) ;

8

9 pub l ic :

10 graph ( ) ;

11 ~graph ( ) ;

12

13 void addNode ( node<T , U> * N ) {

14 th is−>nodes . push_bach (N ) ;

15 th is−>lookup . operator [ ] (N−>coord inates ) = N ;

16 th is−>connect (N ) ;

17 } ;

18 } ;

Connected Graphs

In order to have WHAM functions converging properly it is important for the reaction

coordinate space to be sampled continuously (definition 1).

Definition 1.

Let G be a graph representing an energy function E.

E is continuous if and only if G is connected (definition 2).
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Definition 2.

A graph is connected if there is a path from any point to any other point in the graph.

Problem of determining whether a graph is connected (definition 2) or disconnected 1

in a undirected graph can by solved by running Breadth-first Search (BFS, algorithm 2)

starting at any node v ∈ G and checking if all nodes in a graph have been visited by the

algorithm.

Algorithm 2: Breadth-first Search
input G

input n

output V

1 Q←

2 V ←

3 Q n

4 V n

5 while Q not empty do

6 t← Q.

7 foreach node e adjacent to t do

8 if e not in V then

9 Q e

10 V e

11 end

12 end

13 end

1A disconnected graph is a graph which is not connected.
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Chapter 2

Methods and Implementaions

Before we can move from theory to running real potential of mean force calculations,

certain structures defined in the previous chapter (chapter 1) require a more in-depth

analysis. In this chapter I will go over certain design/implementation principles I have

chosen for the application.

A big part of my project was to build an application that could be easily used for running

multidimensional PMF calculations (chapter 4). The application itself uses an umbrella

sampling based approach for calculating potentials ofmean force (chapter 1.1), and exe-

cutes weighted histogram analysis method (chapter 1.2) to remove the effects that bias-

ing potentials have on the data. In chapter 2.1 I will perform a brief performance analysis

of WHAM approach, I will discuss advantages and disadvantages of implementing cer-

tain optimizations, and at the end I will present a shape of what seems to be the optimal

WHAM implementation (chapter 2.1.4). After that I will move to the description of the

data model that was implemented (chapter 2.2). It is clear that handling of big data sets

from simulations ran in multidimensional spaces might require some special attention,

therefore it is extremely important to understand how this process can be tweaked to

allow optimal running times, and to reduce the effect the data handling process has on

other processes running on a computational clusters.
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2.1 Optimising WHAM

The procedure of unbiasing data fromaND-dimensional Umbrella Sampling calculations

performed with N window simulations can be accomplished with the WHAM algorithm

(chapter 1.2, algorithm1). Application of this procedure to some large input data sets can

be very slow. In each cycle of the main loop (algorithm 1, line 1) numerical calculations

are performed for each position (line 5) for each window (lines 7 and 11). Therefore,

in each cycle of the main loop C · N · Πi∈{0,...,ND−1}ni operations are performed, C is a

constant representing the amount of floating point operation in the inner-most loops of

WHAM. The total CPU cost of the whole procedure is even higher1.

2.1.1 Reducing number of operations per cycle

The first thing that can be tweaked in the implementation is a reduction of theC constant.

It is clear that the big exponent in lines 8 and 12 (algorithm 1) is a) equal; b) requires quite
1Number of CPU operations for different math operations:

− 1 operation for additions/subtractions;

− 4 operations for multiplications;

− 10 operations for division;

− 50 operations for exponents and logarithms
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a few operations to be calculated: 4ND +1multiplications2 , 2ND − 1 additions3, 1 nega-

tion4 and 1 exponent (which adds up to 50 + 18ND + 4 operations on a CPU); c) doesn't

change over the algorithms main loop cycles. Occurring twice in the algorithm and mul-

tiplied by a number of windows, the total number of operations on a single CPU adds up

to 108N + 36NDN ≥ 144N . The remaining part of the main loop consists of 5N multi-

plications, 2N addictions, N divisions, N exponents, N logarithms and N assignments

with a total sum of 5N · 4 + 2N · 1 +N · 10 +N · 50 +N · 50 +N · 1 = 133N operations

on a CPU. Pre-calcluating the exponent from lines 8 and 12 would therefore result in a

speed increase of 108% in 1D, 162% in 3D, and 243% in 6D. These numbers are quite big,

however this particular optimizationmight not be realistic in typical implementations. As

mentioned before (chapter 1.3, Data Structures), the major issue with multidimensional

PMF calculations is storage, and pre-calculating exponents from lines 8 and 12 would

require additional 8 ·N · Πi∈{0,...,ND}ni bytes of storage5 which is not realistic in a typical

WHAM implementation (algorithm 1). Application of this optimizations becomes possi-

ble only after merging it together with some additional ones.

2.1.2 Application of Sparse Matrices

As described in chapter 1.3.1, a sparse matrix based data structures can be used to

represent multidimensional arrays. The real size of data stored like that might be sig-

nificantly smaller then if a full array was used. Hence, the number of positions (listing

2.1) for which explicit calculations are performed in the main loop of WHAM procedure

(algorithm 1) is drastically reduced.

Listing 2.1: Iterating through the positions in an array representing the energy landscape

foreach pos i t i on in H as x1 . . . xND

2Division by kBT is in fact multiplication by a pre-calculated constant 1
/
kBT .

3Additions count includes also subtractions .
4Negation is as expensive computationally as subtraction (−x = 0− x).
5In a 3D Umbrella Sampling simulation with 1000windows a data resolution of n0×n1×n2, n0 = n1 =

n2 = 1024, the total amount of memory required to store the pre-calculated exponents would be around

60GB.
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Utilization of sparse matrices in combination with pre-calculation of exponents (chapter

2.1.1) might be enough to allow a WHAM implementation to run within available RAM6.

2.1.3 Removing Dimensional Dependence

In any computational problem, if possible, it is extremely beneficial to get rid of concept

of dimensions. In WHAM (algorithm 1) only one loop is dimension-dependent. To get

a better understanding of what exactly is happening there, let's have a closer look at an

explicit 3D implementation of this loop (listing 2.1).

Listing 2.2: Iterating through the positions in a 3D array.

fo r ( i n t i = 0 ; i < x0 ; i++)

fo r ( i n t j = 0 ; j < x1 ; j++)

fo r ( i n t k = 0 ; k < x2 ; k++) {

/ / perform ca l cu l a t i o n s

}

It might not be obvious that running ND nested loops in every cycle of the main loop in

WHAM algorithm could slow the whole procedure down. The key to realizing this fact is

understating how does the data structure for storing energy landscapes work. Iterating

through the elements of a multidimensional array might require a lot of "jumping" within

reserved blocks of memory (such operations are not optimal due to increased times for

data access). The question is, if it is possible to replace the ND nested loops with a

single one that would sequentially go through all of the elements. This can be achieved

by converting a multidimensional array to a vector (listing 2.3) before moving forward

to running the main loop of WHAM. In this concept a ND-dimensional data structure is

represented by two vectors: one that contains values (listing 2.3, line 1), and second that

stores the positions from a "real" array (listing 2.3, line 2).

6RunningWHAM, implementedwith SparseMatrices and exponents pre-calculation, for a 3D input data

set the required memory may get above 1GB.
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The next obvious step here is to replace an array representation of an input data set with

a sparse matrix (chapter 2.1.2). This is the key to having an optimal WHAM implemen-

tation. Storing data in a sparse matrix as a dictionary of keys (associative array, binary

search tree [1,7,11]) provides a very fast and elegant interface for accessing simulations

data (chapter 1.3.1). Data pre-processing procedure updated with sparse matrices is

presented in listing 2.4.

Listing 2.3: Pre-processing data to avoid dimensional-dependence in the main loop of

WHAM. Variable is a biased histogram, and function represents a dis-

cretised position at j along i-th dimension.

1 vec to r <double > histogram ; / / pre−processed biased data

2 vec to r <double *> pos i t i ons ; / / pos i t i ons fo r histogram va r i a b l e

3

4 fo r ( i n t i = 0 ; i < x0 ; i++)

5 fo r ( i n t j = 0 ; j < x1 ; j++)

6 fo r ( i n t k = 0 ; k < x2 ; k++) {

7 double * pos = new double [ 3 ] ;

8 pos [ 0 ] = pos i t i on ( 0 , i ) ;

9 pos [ 1 ] = pos i t i on ( 1 , j ) ;

10 pos [ 2 ] = pos i t i on ( 2 , k ) ;

11

12 pos i t i ons . push_back ( pos ) ;

13 histogram . push_back (H( i , j , k ) ) ;

14 }
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Listing 2.4: Pre-processing data to avoid dimensional-dependence in the main loop of

WHAM (implemented with sparsematrices). Variable represents an input unbiased

histogram and is of type .

1 fo r ( i n t i = data . begin ( ) ; i ! = data . end ( ) ; i++) {

2 double * pos = new double [ 3 ] ;

3 pos = i−> f i r s t ;

4 pos i t i ons . push_back ( pos ) ;

5 histogram . push_back ( i−>second ) ;

6 }

With data pre-processed like that (listings 2.3, 2.4), the loop responsible for iterating

through the elements in a multidimensional space becomes a single loop through the el-

ements of a 1D array (listing 2.5). It is also worth mentioning one more time that sparse

matrices implemented with associative arrays use binary search trees as a low level im-

plementation [1,7,11], as a result the time required to pre-process biased data is optimal

(linear, O(n)).

Listing 2.5: Intreating through the positions in an pre-processed array.

fo r ( i n t i = 0 ; i < histogram . s i ze ( ) ; i++) {

pos i t i on = pos i t i ons [ i ] ; / / x1 . . . xND

va lue = histogram [ i ] ; / / H[x1 . . . xND ]

/ / perform ca l cu l a t i o ns

}

Incorporating this approach is extremely beneficial since:

• It cleans up the code, and makes it more readable without having to pay any price

in performance.

• Thememorymanager doesn't have to jump all over the reserved blocks ofmemory,

instead data is read sequentially (which results in significantly lower access times).
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• One code with a number of dimensions (ND) as a parameter can handle the unbi-

asing of data in theoretically any number of dimensions.

2.1.4 Parallelization

WHAM calculations can get quite expensive computationally, especially in multidimen-

sional spaces. Therefore it is clear that it would be worth investigating on the possibility

of parallelizing the algorithm.

Fact 1. WHAM algorithm is parallelizable.

This might not be obvious when looking at the nested loops in the core loop of WHAM

procedure (listing 2.2), however after the conversion of a multidimensional array to a

vector (listing 2.4), the calculations are performed sequentially (listing 2.5). It is also

extremely important to state the fact that all of those simulations are independent, which

implies that each of those could be executed at a different processing unit (algorithm 1,

listing 2.5).

Fact 2. Let n be a number of elements in a vector representing a multidimensional array

used for storing biased simulation data, and let m be a number of available processing

units. Time complexity of the main loop in WHAM algorithm is O(n/m).7

Parallelization ofWHAM simply requires that the calculations be distributed by splitting a

vector containing sampling data among the processing units (listing 2.6). The very same

code is executed simultaneously on all processors, and the data exchange between them

is managed by the Message Passing Interface (MPI). Each CPU performs calculations

on a list of coordinates restricted to a certain range in a vector representing data (listing

2.7). Synchronization of values between CPUs is performed after each cycle of the main

algorithm's loop in order to update Fi values (chapter 1.2, listing 2.8).

MPI version of WHAM implemented to utilize sparse matrices for storing data is one of

the most optimal implementations possible. In one 3D simulation test, using 32 CPUs

to unbias data and to calculate a potential of mean force took around 3 minutes, in com-

parison to over 1.5h on a single CPUw.
7Increasing the number of CPUs k-times results in k-times faster WHAM runs.
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There are other interesting ways to improve WHAM's performance. One worth mention-

ing is constructing a script that would generate and compile a C++ code to calculate a

free energy landscape specifically for a given problem. This is a valid approach, since we

can use static arrays with a fixed size which offer far better performance then dynam-

ically allocated arrays. I decided not to publish my code representing this procedure,

since due to its level of complication it is not easily readable.

Listing 2.6: Determining how a vector containing data is going to be split among the

available processing units.

1 i n t PE_size = MPI : : COMM_WORLD. Get_s ize ( ) ; / / number of CPUs

2 i n t PE_id = MPI : : COMM_WORLD. Get_rank ( ) ; / / cu r r en t CPU

3

4 / / number of pos i t i ons i n a vec to r assigned to a sequence of CPUs

5 i n t * mpi_data = new i n t [ PE_size ] ;

6 i n t * mp i _da ta_ce l l s = new i n t [ PE_size + 1 ] ;

7

8 / / number of pos i t i ons i n a vec to r per CPU

9 i n t cut = dS / PE_size ;

10 fo r ( i n t i = 0 ; i < PE_size ; i ++)

11 mpi_data [ i ] = cut ;

12

13 / / f i x i n g the data s i ze i n compliance with d i v i s i o n s reminder

14 fo r ( i n t i = 0 ; i < dS−cut * PE_size ; i ++)

15 mpi_data [ i ] + + ;

16

17 / / determin ing data range fo r each CPU

18 mp i _da ta_ce l l s [ 0 ] = 0 ;

19 fo r ( i n t i = 0 ; i < PE_size ; i ++)

20 mp i _da ta_ce l l s [ i +1 ] = mp i _da ta_ce l l s [ i ] + mpi_data [ i ] ;
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Listing 2.7: Structure of the main loop in WHAM implemented with MPI. Each CPU runs

the main loop, however calculations for all of them are restricted to a certain range in a

vector representing unbiased simulation data.

1 whi le ( ( i C yc l e < nStepMAX ) && ( Cycle ) ) {

2 fo r ( i n t i = 0 ; i < nW; i ++)

3 Fb [ i ] = 0 .0E0 ;

4 / / loop ing through pos i t i ons depends on an id of a CPU

5 fo r ( i n t k=mp i _da ta_ce l l s [ PE_id ] ; k<mp i _da ta_ce l l s [ PE_id + 1 ] ; k++) {

23



Listing 2.8: Merging values of the F list. All CPUs send their Fi values to the first CPU,

and their further analysis is performed only there. After that's done, values will be broad-

casted back by the first CPU.

1 / / synchron iza t ion of F va lues

2 i f ( PE_id ! = 0)

3 MPI : : COMM_WORLD. Send ( Fb , nW , MPI : : DOUBLE , 0 , 1 ) ;

4 else {

5 fo r ( i n t i = 1 ; i < PE_size ; i ++) {

6 MPI : : COMM_WORLD. Recv ( FF , nW , MPI : : DOUBLE , i , 1 ) ;

7 fo r ( i n t j = 0 ; j < nW; j ++)

8 Fb [ j ] += FF [ j ] ;

9 } ;

10 } ;

11 / / 1 s t CPU performs convergence check

12 i f ( PE_id == 0) {

13 Cycle = fa l se ;

14 fo r ( i n t i = 0 ; i < nW; i ++) {

15 Fb [ i ] = −kBT * log ( Fb [ i ] ) ;

16 d i f f = fabs ( Fb [ i ] − Fb [ 0 ] − F [ i ] + F [ 0 ] ) ;

17

18 i f ( d i f f > to l e rance )

19 Cycle = t rue ;

20 } ;

21

22 fo r ( i n t i = 0 ; i < nW; i ++)

23 F [ i ] = Fb [ i ] ;

24 } ;

25 / / 1 s t CPU broadcasts F va lues to a l l o ther CPUs

26 / / along with an i n s t r u c t i o n i f the main loop should cont inue running

27 MPI : : COMM_WORLD. B a r r i e r ( ) ;

28 MPI : : COMM_WORLD. Bcast ( F , nW , MPI : : DOUBLE , 0 ) ;

29 MPI : : COMM_WORLD. Bcast ( &Cycle , 1 , MPI : : BOOL , 0 ) ;
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2.2 Data input/output

Handling big data sets is not an easy task. Let's consider a situation, where WHAM algo-

rithm (chapter 1.2) is used to calculate a PMF from an Umbrella Sampling simulations

with 500 windows. Total time of each window simulation is 1 ns, with reaction coordi-

nates values being stored every 2 fs in 1 ps segments (one data file written every 1ps).

This adds up to 1000 files and 5 · 105 data points for a single window, and 5 · 105 files

and 25 · 107 data points for the whole simulation. Assuming that only the second half of

each simulation represents a converged system (is significant for the free energy calcu-

lation), a number of files that has to be read in order to build the unbiased sampling map

is 2.5 ·105. This typically is not even an issue, however it might become an extremely seri-

ous problem in computer environments with multiple read/write operations, for example

on clusters where disc drives are shared among multiple users.

The first thing that can be implemented in order to reduce a number of files is data

compression. Each window would be associated with a single archive containing all

the data it produced. Using archives indeed simplifies the data management process

significantly, instead of loading 500 files into memory only one file is being loaded. Re-

duction of size by compression is also an important factor, however its impact on the

overall performance can be ignored.
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Figure 2.1: Basic windows data structure
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Another thing that can be done is completely rethinking how the data is stored. Instead of

explicitly saving the data, only a particular data representation can be saved. For various

reasons that have already been mentioned in chapter 1.3, Sparse matrices were used as

a data structure for storying free energy maps in memory. The explicit implementation

also includes a dedicated file format for storing sparse data:

• First line of this file defines data type (listing 2.9, line 1). Two options are available:

–

–

• Second line contains two numbers (listing 2.9, line 2):

1. Number of dimension ND of keys in a sparse matrix

2. Value of each positions in a sparse matrix that is not defined explicitly. Tradi-

tionally a sparse matrix definition assumes that most elements in the matrix

are equal to 0, here I am extending the definition so that most of elements in

the matrix are equal to certain XS ∈ R.

• Next ND lines determine the dimensions of a matrix (listing 2.9, lines 3-5). Each of

those lines consists of three values:

1. Lower bound of a reaction coordinate

2. Upper bound of a reaction coordinate

3. A step in a discretized representation of reaction coordinates

• All lines after that define the actual structure of the map. Every lines consists of

ND+1 values (listing 2.9, lines 6-10):

– First ND values point to a position where the values is defined

– The last position in a row is a value
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Listing 2.9: First 10 lines of a sparse data file.

Basic operations, like reading (definition: listing 2.10; implementation: appendix, listing

??) and saving (definition: listing 2.11; implementation: appendix, listing ??) are imple-

mented in C++ and exported to Python via boost package.

Listing 2.10: Saving data as a sparse data file.

1 template < typename T , typename U >

2 void saveSparseData ( boost : : shared_pt r < dataGr id <T , U> > , std : : s t r i n g ) ;

Listing 2.11: Loading data from a sparse data file.

1 template < typename T , typename U >

2 void loadSparseData ( boost : : shared_pt r < dataGr id <T , U> > , std : : s t r i n g ) ;

This data model can be utilized to store data differently. The idea is that the regular data

representation8 could be replaced9 with sparse matrices S(j)
i defined for each iteration

i of every window j. S(j)
i is defined as a data container with the information about all

unbiased data from j first iteration of window i. Each sparsematrix is build based on the

8Regular data representations is: one data file for each cycle of each window.
9For safety, both representations are stored, however the explicit one is used only as a backup.
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sparse matrices from the previous iteration.

S(j)
i = S(j)

i−1 + SparseHistogram
(
data(j)i

)
(2.1)

Application of this data implementation significantly improves the process of retrieving

simulation data. Unbiased sampling from the last 500ps of simulation10 is equal to:

500∑

n=250

data(j)n = S(j)
500 − S(j)

250 (2.2)

Instead of loading 250 files with 500 lines each, only two files with < 200 lines are read.

This data handling method reduces data retrieval time by a factor of over 300.

This final data model for storying unbiased simulation data is included by default in the

iPMF application (figure 2.2).
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Figure 2.2: Full single window data structure

10Assuming that each window simulation is 1ns; 500 cycles of 2ps.
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Chapter 3

The Self-Learning Method

3.1 The Self-Learning Adaptive Scheme

The aim of any PMF calculation approach should be to describe the free energy land-

scape within a subspace of predefined reaction coordinates with the greatest accuracy

and a minimal sampling effort. Stratified US is arguably the most accurate approach

to this task, but it can be computationally expensive in high dimensionality. This limita-

tion can be circumvented if sampling via computationally costly simulations is limited to

regions of the subspace of collective variables where the PMF is below a certain max-

imum threshold. To achieve this, the self-learning adaptive umbrella sampling process

progressively builds simulation windows at positions indicated by the ongoing sampling

data.

Like for any stratified US approach, an appropriate list ofND reaction coordinates xi with

their respective boundaries needs to be determined. A biasing potential, usually defined

as w(x) = 1
2ki (x− x0)

2, and an interval for window creation, ∆xi, are also required for

each reaction coordinate. In our current implementation, ki and∆xi are fixed, but this is

not a requirement of the approach. The sampling could be made even more efficient by

adjusting on-the-fly these values to the local features of the free energy landscape. This

is made possible by the flexibility of the WHAM algorithm (chapter 1.2) that is used to

combine the sampling data provided by the different windows.
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The process starts with a system located somewhere within the ND-dimensional reac-

tion coordinate space. The creation of a minimal number of simulation windows is re-

quired to perform a first assessment of the local free energy landscape. In this first step,

3ND windows are created. The position (x1, . . . , xND) of each initial simulation window

is determined by taking the starting state of the system
(
xA
1 , . . . , x

A
ND

)
and changing its

reaction coordinates xA
i by small values∆xi in both directions, i.e.

(x1, . . . , xND) ∈ Πi

{
xA
i −∆xi, x

A
i , x

A
i +∆xi

}

The PMF exploration is initialized on the basis of these 3ND windows from which a first

PMF is calculated using the WHAM algorithm. The procedure responsible for creating

newwindows in regions that remain to be explored is based on the current viewof the free

energy landscape, at the periphery of which new windows are constructed. A parameter

Wmax is introduced in order to guide the exploration of the subspaceX : no newwindows

can be created in the areas of the reaction coordinate space where the free energy is

higher thanWmax. To favor the exploration of lower free energy pathways while allowing

exploration of pathways with higher free energy barriers when needed, Wmax is initially

set to a low value (e.g., 2 kcal/mol) and is incrementally increased up to a predefined

limit (e.g., 10 kcal/mol) if the algorithm fails to create new windows at a given cycle. The

procedure can be summarized as follows (see Figure 3.1).

1. The free energy landscape is calculated using the WHAM algorithm once all win-

dows have provided a certain minimal amount of sampling data. (Figure 3.1a illus-

trates such a free energy landscape calculated from 11 windows.)

2. Among all existing windows, those with a free energy value lower than Wmax (ini-

tially set to Wmax = E1) are selected as a base for the expansion procedure. (In

Figure 3.1b, Wmax = 2.0, and thus seven windows could potentially be used for ex-

pansion.)

3. Each of the preselected windows attempts to create a new window in 3ND − 1

neighboring locations. Locations already occupied by windows are omitted. (In

Figure 3.1b, five windows are selected to create eight new windows.).
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(a) (b) (c)

Figure 3.1: Free energy landscape exploration procedure. (a) The yellow dots correspond

to the positions of 11 windows plotted on top of a free energy landscape generated with

sampling from thesewindows. (b)Windows that are located in regionswith a free energy

below a given level Wmax (here Wmax = 2.0) attempt to create new windows on free

neighboring grid points. (c) When more than one window targets the same location, the

window associated with the lowest free energy is selected as the source of the system

conformation to initiate the new window.

4. In the case when two or more windows want to expand to the same location, the

window with the lowest free energy is selected as the source of the system con-

formation to initiate the new simulation window. (In Figure 3.1c, for each of the

eight new windows a single window is selected as the source of the initial confor-

mation.).

5. If no window is created in steps 3 and 4, Wmax is increased by a small increment

(untilWmax = E2) and steps 2-4 are repeated.

6. This process cycles until no more windows can be created within the current free

energy barrier limit Wmax = E2 (or alternatively when a pathway from the initial

state of the system to a predefined target state is found).
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The self-learning adaptive US calculation can be initiated from a single state of the sys-

tem as described above. If the final targeted state of the system is already known, the

string method can be used to predefine a free energy pathway connecting the initial and

final states. In this case, a third parameter∆1 is employed to restrict the creation of new

windows. A window whose distance from its center to the pathway exceeds ∆1 will not

be added.

3.2 Efficiency of theSelf-LearningAdaptiveUmbrella Sam-

pling.

For the calculation of PMF in multiple dimensions, one key advantage of methods like

ABF1 and metadynamics [9] is the ability to concentrate the sampling effort to regions

of the conformational space that correspond to highest probability density. The conver-

gence of these methods is however dependent on stochastic diffusion along the reac-

tion coordinates for accumulating the required sampling data. On the other hand, con-

ventional implementation of stratified US would typically waste time sampling regions

of low probability density, but it is more systematic in its strategy to accumulate data by

using the concept of windows. The algorithmwe present here combines the advantages

of both approaches; i.e., it concentrates the sampling effort to the region of high interest

and accumulates data in a systematic way.

This can be illustrated by the argument brought by van Duijneveldt and Frenkel [14] who

showed that sampling of narrow windows (steep biasing harmonic window potential)

converges more rapidly than that of broad windows (soft biasing potential). This argu-

ment also applies to semi brute-force methods like ABF and metadynamics. To flatten a

PMF along one dimension using metadynamics or ABF, one needs to sample the length

L of this degree of freedom. Diffusion back and forth requires a time t = L2
/
2D, where

D is the diffusion coefficient. Using a stratification procedure, the length L is divided into

N windows of width L
/
N , and the time for diffusion within the window is then:

1ABF - Adaptive Biasing Force
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twindow = L2
/
2DN2

which goes down like 1
/
N2, much faster than the number of windows. The total theo-

retical simulation time using a stratified umbrella sampling approach is:

tUS = Ntwindow = L2
/
2DN = t

/
N

The efficiency gain is thus on the order of the number of windows used. For this rea-

son, ABF simulations are also often subdivided into a number of narrower windows [?].

The relaxation time of a diffusing degree of freedom restrained by a harmonic poten-

tial goes like kBT
/
Dk, where k is the force constant of the biasing harmonic poten-

tial. By identification with the diffusion time above, the width of the windows would be

l2 =
(
L
/
N
)2

= 2
(
kBT

/
k
)
. The larger k is, the shorter is the relaxation time and shorter

should be the window width. This is however true only up to a point, depending on slow

motions orthogonal to the chosen set of order parameters.

3.3 Test Systems

3.3.1 Model System of Fermat Spiral

We focused here on the ability of the describedwindowcreation procedure to follow com-

plex pathways. We performed Monte Carlo simulations on an analytical energy function

defined as a Fermat spiral:

r = ±θ
1/2, θ ∈ [0, 9/4 · π]

which was chosen for its non-trivial shape (see Figure 3.2). Sampling was performed in

Cartesian coordinate with an initial position set to [−2,−0.75] and the window separation

distance to 0.15. Simulationwindowswere characterized by a biasing harmonic potential
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(a) (b)

(c) (d)

Figure 3.2: Illustration of the self-learning umbrella sampling approach usingMonteCarlo

simulations and an energy function defined as a Fermat Spiral. The different panels show

the energy landscape at different stages of the calculation: (a) Initial energy landscape

generated with 9 windows, (b-c) Intermediate stages with 212 and 352 windows respec-

tively (d) The final landscape obtained from 562 windows. The whole space contains

1,156 grid points.
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with k = 6 kcal
/
mol · u along both dimensions. Sampling in each window was obtained

fromaBoltzmannweighted randomwalk. TheWHAMalgorithmwas applied to calculate

the energy landscape from the sampling data. From the initial 9windows, the automated

procedure created new windows in both directions along the spiral function. A total of

562 windows were used to reconstruct the potential function, while the space in which

the Fermat Spiral is inscribed contains 1156 grid points (see Figure 3.2).

3.3.2 Model System of Lennard-Jones Particles

The self-learning umbrella sampling simulations andWHAMwith 3 reaction coordinates

was performed to probe a system consisting of Lennard-Jones (LJ) particles. The sys-

tem consisted of 4 face-centered cubic unit cells of homogeneous LJ particles. The

LJ parameters used in our calculations were modified from those of Argon atoms in

CHARMM 27 force field, such that ϵ = 2 · ϵAr and Rmin = Rmin, Ar. All MD simulations

were performed using CHARMM [5] molecular simulation program. Canonical ensemble

was applied to this model system. The temperature were controlled by Langevin dynam-

ics and kept at 300 K. No cutoff was applied to non-bonded interactions.

Our aim is to describe the displacement of a given particle, number 166, around which

three other particles were removed. The Cartesian coordinates of particle 166 were se-

lected as reaction coordinates to calculate the PMFW [x1, y1, z1]. A snapshot of the sys-

tem is illustrated in Figure 3.3. All particles except number 166 were restrained to their

"lattice" points by a harmonic potential (k = 40 kcal
/
mol · Å2

). Umbrella windows were

generated every 0.5Å in each direction, within a box [−4, 4]× [−1, 4]× [−1, 4]Å3
. The force

constant of the umbrella potential was 10 kcal
/
mol ·Å2

. Each window was simulated for

100 ps, with a time step of 1 fs. Free energy landscape expansion procedure was initial-

ized with the E1 = 2 kcal
/
mol and E2 = 10 kcal

/
mol. The result of this calculation is

presented in Figure 3.3 and in Table 3.1.
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(a) (b)

(c)

Figure 3.3: Three-dimensional PMF of a system with Lennard-Jones particles: (a) and

(b) PMF projection on a system, (c) 3D PMF with contours and 2, 4, 6 and 8 kcal
/
mol.
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3D PMF

Full configuration space 2057

Essential configuration space, as delimited by the automated procedure 311

Table 3.1: Number of windows required to calculate a PMF describing the process of

moving one particle in a LJ-particle system.
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Chapter 4

The iPMF Application

In this chapter I will discuss an application that we developed in a purpose of running

multiple multidimensional PMF calculations. The starting point for this project was to

have an implementation of the Self-Learning Adaptive Umbrella Sampling Method [15],

however over the course ofmy PhD it has evolved far beyond that. iPMF is an application

for running potential of mean force calculations and performing analysis of PMFs for

various numerical systems. It consists of two layers: the low level C++ implementation

for all complex algorithms and data structures, and a Python interface that serves as

an user interaction layer. All objects and classes implemented in C++ are exposed to

Python, so that every single operation can be performed via a Python script with a native

C++ performance.

iPMF includes a support for various molecular dynamics engines, and it can be easily

extended to support additional ones (chapter ??).

Various data manipulation techniques have been implemented; for example, casting

data onto spaces with different vector basis (including a reduction and an increase in a

number of dimensions), finding the most favorable free energy pathway in a PMF, and

more.
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4.1 Low level C++ implementation

High performance implementation of any algorithm requires a low level programming

language. All of the algorithms and data structures used in the iPMF application were

coded in C/C++, and are exposed to Python using boost libraries.

4.1.1 Structure of the multidimensional data

As discussed in chapter 1.3.1, the storage containers for multidimensional data in iPMF

are based on sparse matrices. By default those are implemented to support data for

up to 6 dimensions. Typical implementation of an array (as a full N-dimensional matrix)

is also available, however the number of dimensions is limited to 3. It was mentioned

before that the amount of memory required to store a 3D data set can exceed memory

of a typical computer, therefore the full arrays should not be used unless there is an

explicit need to do that.

4.2 WHAM interface

iPMF uses theWeighted Histogram Analysis Method (chapter 1.2, algorithm 1) to unbias

simulation data. The application includes several implementations of WHAM algorithm

(as described in chapter 2.1).

4.2.1 iPMF internal WHAM implementation

The default implementation of WHAM follows the description from chapter 2.1.3. It is an

internal part of the application, and it can be accessed by a user directly from the iPMF

Python shell.

WHAM function is implemented in C++ (definition in chapter ??) and exposed to Python

with the help of boost.python library. This allows the algorithm to run with a full C++ per-

formance directly from within the Python code. WHAM object is converted and exposed
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from C++ to Python, it behaves as it would be a part of Python, however all of the algo-

rithm's internal operations are executed without accessing any of the objects registered

in Python objects tree (which is the key factor affecting performance of any pure Python

implementation).

4.2.2 External MPI WHAM implementation

Another available implementation is theMPI implementation formulti-core systems (chap-

ter 2.1.4). It is accessible as a standalone application that requires aMPI (Message Pass-

ing Interface) to be installed on the operating system. To run this application, two files

have to be provided: a file containing a list of windows with their complete description

(chapter ??), and a biased density data file (listing 2.9).

$ mpirun −np 12 wham windows . l i s t histogram . sdat

The application offers an optimal parallel implementation ofWHAMalgorithm that scales

quite well with the number of assigned computational cores. It divides the input data

between CPUs and runs WHAM as described in chapter 2.1.4 (listings 2.6, 2.7 and 2.8).

number of assigned nodes : 12

t o t a l data s i ze : 181126

data s ize , node 1 : 15094 0−15094

data s ize , node 2 : 15094 15094−30188

data s ize , node 3 : 15094 30188−45282

data s ize , node 4 : 15094 45282−60376

data s ize , node 5 : 15094 60376−75470

data s ize , node 6 : 15094 75470−90564

data s ize , node 7 : 15094 90564−105658

data s ize , node 8 : 15094 105658−120752

data s ize , node 9 : 15094 120752−135846
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data s ize , node 10 : 15094 135846−150940

data s ize , node 11 : 15093 150940−166033

data s ize , node 12 : 15093 166033−181126

As with most MPI applications, performance may decrease if too many CPUs are used

for a problem that does not require it. In those situations, the time for performing calcula-

tions for each cycle of WHAM is significantly smaller than the time required for maintain-

ing communication between processing units. Parsing messages between processors

becomes a factor that is not only meaningful, but is also a weakest spot in the whole

procedure. In certain cases, it might be wise to perform benchmarking to pick the best

parameters for WHAM for given system's configuration. This can be done by running

the application with a limit of 10 cycles, and picking the most optimal runtime configu-

ration. Doing this might result in huge performance gains, and should not be omitted if

algorithm's performance is not satisfactory. Sample result of running such benchmark

(presented in figure 4.1) shows that the algorithm performs best when ran on 12 CPUs.

0

11s 625ms

23s 250ms

34s 875ms

46s 500ms

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 4.1: Sample result of running a MPI WHAM benchmark. Calculation time of 10

cycles as a function of number of used computational cores.
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4.3 Python layer

Python is probably the most broadly utilized scripting language these days. It provides a

simple, elegant and intuitive environment that allows performing a vast variety of tasks

(ranging from one-line applications to huge, scalable application running on powerful

servers). It is a high level interface for interacting with the low level C++ objects, which

users can access without having any direct interaction with the low level implementa-

tions. Python can be easily extended and embedded in any application, and that is the

reason why it became so popular. I like to think about Python as an interface for inter-

acting with all of my C++ code, and I build iPMF application around this concept.

I have designed the iPMF directory structure so that there would be a certain logic behind

placement of script files. Name of each directory provides an information about what

might be included in this directory. During startup, the main iPMF application loads all of

the files included the directories1:

• config - configuration scripts and default settings,

• engine - functions describing interfaces for various simulation engines,

• core - core functions responsible for an execution of the self-learning approach,

• environment - operating system specific functions,

• functions - commonly used functions,

• structures - data structures manipulation functions,

• xtra - additional/external modules.

Each operation performed by a user in iPMF is parsed by a Python interpreter. For the

full list of objects and functions that are available in the Python shell, see the iPMF user

guide included in the appendix (chapter ??, page ??).

1Location of iPMF directories is stored in a SQLite database file at:
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4.4 iPMF's internal job scheduler

One of the major problem that I had to address was related to a scheduler that handles

the distribution of calculations among available processing units on a computational

cluster. In the case of multiple Umbrella Sampling calculations we will be dealing with

hundreds of thousands of individual simulations2. The obvious problem is a problem

of managing all of those simulations on the cluster. A straightforward approach would

be to submit everything to a grid engine and let it handle them (figure 4.2), this however

might not be the most optimal solution.

iPM
F gri

d 

en
gin

e

Figure 4.2: Basic model for iPMF interacting with a grid engine.

The idea of implementing an additional layer (that would work as an interface between

the iPMFand an existing grid engine) came fromanswering a fairly simple question: what

to do if we would want to adjust priority of simulations that have already been submitted.

Having an additional job scheduler between iPMFand a cluster (simulation scheduler, fig-

ure 4.3) was the only valid solution, since the grid engines do not usually allow parameter

modifications after jobs have been submitted.

The iPMF job scheduler is an application that I designed to run as a daemon on any of

the available nodes capable of submitting jobs to a grid. The job of this application is to

be an interface between active iPMF sessions and a grid engine. Explicit numerical cal-

culations instead of getting submitted directly to a cluster (figure 4.2) are pre-processed

by the scheduler that monitors and manages simulations running on a grid (figure 4.3)).

2For a molecular system build with 200 window simulations with 500 steps of 2ps each, 100,000 short

(±1h long) MD simulations will have to be performed.
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Figure 4.3: Interaction model between iPMF and a grid engine with an additional simula-

tion scheduler in a middle.

To maintain communication between iPMF sessions and a scheduler I have designed

a database (figure 4.4) that serves as a necessary interface. An alternative option would

be the use of SOCKETS, however that approach can complicate things a bit since the

requirement of administrative privileges to set up the interface for network communica-

tions.

The scheduler application runs in a background as a daemon, and its job is to: a) obtain

information about the jobs from a database, b) process and manage jobs retrieved from

a database, c) forward the jobs to a real grid engine according to a predefined algorithm.

Figure 4.4: iPMF relational database model.
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There are two tables in the database that are of importance to the daemon process; one

is a queue table and the other is a daemon table (figure 4.4). The queue table contains

information about the jobs submitted to a queue: a) dir - working directory for a submit-

ted job, b) file - job file compatible with a grid engine, c) state - the live status of a job ("0"

- not processed, "1" - processed by a scheduler, "2" - forwarded to a grid, "-1" - finished),

d) job_id - identification number of a job forwarded to a real queue, e) score - parameter

that informs a scheduler how to manage execution priority of submitted jobs. The pur-

pose of the daemon table is quite different; it was designed to keep track of the running

daemons, and to make sure that one user is not running two daemon sessions at the

same time (to avoid nonexclusive "write" operations on a database).

iPMF scheduler job management

Themost important function of the iPMF scheduler is themanagement of jobs. It obtains

a list of jobs from a database and processes them accordingly. Forwarding of jobs is

only possible if there are slots available in a real queue on a grid, and it is limited so

that no more than 16 jobs have a "queued" status on a cluster3. The initial algorithm for

determining the order in which jobs would get forwarded to a grid was a randomized

one4. Each job was assigned a score based on the priority of the iPMF session that was

submitting it:

score(simulation.priority) = int
(
random() · 2simulation.priority

)

In this approach the simulation priority is defined as an integer in range from 0 to 10,

with a default value of 5. Increasing a value of iPMF session's priority by 1 results in a

twofold increase of a probability for its jobs getting forwarded to a grid; jobs with higher

scores get forwarded first (with an exception for WHAM processes, which always get
3Number of jobs is a parameter that can be adjusted according to needs.
4random() ∈ [0, 1)
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a maximal score of 1024). The obvious problem with this model is that the jobs which

were assigned some very low score values would end up being stuck in a queue for days.

To fix that, an additional time dependent component has been added to the equation (the

score would get increased the longer simulations stays in the queue):

score(. . .) = int
(
random() · 2simulation.priority

)
+ 2days(now()−time.submitted)

Even though this is a valid approach, I decided to implement a different one in the final

version of the iPMF. Instead of having a random scoring function, a cycle number would

be the only parameter responsible for sorting of jobs. Each iPMF session is assigned a

dedicated priority queue (implemented as a heap) that keeps a job with the lowest cycle

number in the front. The reason behind having separate queues is to maintain the pos-

sibility of assigning different priorities to different iPMF sessions. Priority scale remains

the same p ∈ {x ∈ Z : 0 ≤ x ≤ 10}, and it determines which queue's topmost element

would be forwarded to a grid engine first. The process of selecting a queue can be per-

formed as follows: a) an execution list is created, b) each iPMF session is added to the

list 2simulation.priority times, c) execution list is shuffled d) its elements are to be processed

sequentially (listing 4.1).

Listing 4.1: Creation of an execution list for the iPMF scheduler.

exec = [ ]

fo r session i n sessions :

fo r i i n range (2* * session . p r i o r i t y ) :

exec . append ( session )

random . shu f f l e ( exec )

whi le exec :

forward ( exec . pop ( ) )
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Chapter 5

Molecular Dynamics Simulations

5.1 KcsA potassium channel

Potassium ions diffuse rapidly across cell membranes through proteins called K+ chan-

nels. This movement underlies many fundamental biological processes, including elec-

trical signaling in the nervous system. Potassium channels use diverse mechanisms of

gating (the processes by which the pore opens and closes), but they all exhibit very sim-

ilar ion permeability characteristics (1). Most K+ channels show a selectivity sequence

of K+ ≈ Rb+ < Cs+, whereas permeability for the smallest alkali metal ions Na+ and Li+

is immeasurably low. The amino acid sequence of the KcsA K+ channel from Strepto-

myces lividans (figure 5.1) is similar to that of other K+ channels, including vertebrate

and invertebrate voltage-dependent K+ channels. The overall length of the pore is 45 Å,

and its diameter varies along its distance. From inside the cell (bottom) the pore begins

as a tunnel 18 Å in length (the internal pore) and then opens into a wide cavity (around

10 Å across) near the middle of the membrane [10,16].

Free energy molecular dynamics calculations on the basis of the X-ray structure of the

KcsA K+ channel have shown that ion conduction involves transitions between twomain

states, with two and three K+ ions occupying the selectivity filter. A 'knock-on' mecha-

nism has been proposed, as an model for ion conduction [2].
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(a) (b)

Figure 5.1: KcsA K+ channel in a closed state (Protein Data Bank 1K4C) embedded in a

lipid bilayer. Subfigure (b) represents a detailed view of a selectivity filter. Major sites in

a filter are labeled: S0, S1, S2, S3 and S4; Cav represents channel's cavity; Ext is a bulk.

A part of my work was to test the self-learning adaptive method (chapter 3.1) with some

explicit molecular dynamics simulations on a KcsA K+ channel, and to verify the validity

of a 'knock-on' mechanism. I have performed various simulations using the iPMF appli-

cation (chapter 4), and I will go over those in this chapter.
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5.2 Closed channel simulations

I startedmy study of the KcsA K+ channel by performing some explicit iPMF simulations

in the purpose of validating the self-learning adaptive method (chapter 3.1). I used a

1K4C [16] based systemwith a protein embedded in a DPPC lipid bilayer (156 lipids) with

10780 water molecules (59134 atoms in total). An initial configuration of this system

was defined with three potassium ions located in S1, S3 and in cavity (figure 5.1b). I ran

some 2D and 3D iPMF calculations; in the 2-dimensional case reaction coordinates were

defined as follows:

• Z12 = CoM (K1
z , K

2
z )

z coordinate of the center of mass of the top and the middle ion

• Z3 = K3
z

z coordinate of the bottom ion

and in the 3-dimensional simulations reaction:

• Z1 = K1
z

z coordinate of the top ion

• Z2 = K2
z

z coordinate of the middle ion

• Z3 = K3
z

z coordinate of the bottom ion

iPMF simulations were performed using the self-learning approach (chapter 3.1) with

E1 = 2 kcal/mol, E1 = 8 kcal/mol, ∆E = 0.5 kcal/mol. Expansion run was initialized

after every window simulation has generated at least 10 ps of data, or every other 10

ps if no windows were created after the expansion procedure. A sample result of an ex-

pansion procedure is presented in the appendix; see figure A.1 (page 72), and figure A.2

(page 73). Molecular dynamics simulations were performed in CHARMM (Chemistry at

HARvard Molecular Mechanics) [5] using the CHARMM 27 force field.
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The final structure of each potential of mean force has been obtained from the last 50

ps of simulation data (unless stated differently). In all cases the WHAM algorithm (algo-

rithm 1, page 7) has been used for the PMF calculations.

(a) (b)

Figure 5.2: PMFs calculated for the KcsA K+ channel (1K4C) system: (a) charmm 27

force filed with CMAP corrections enabled, (b) charmm 27 force field with CMAP cor-

rections disabled. Simulations started form a S1-S3-Cavity configuration, with reaction

coordinates defined as: x : Z12 = (K1
z +K2

z )
/
2 ; y : Z3 = K3

z . Range for values of

reaction coordinates was selected so that the energy landscape would include transi-

tion pathways from S1-S3-Cavity to S0-S2-S4 configuration. Contours plotted every 1

kcal/mol.

The very first simulation I performed was a copy of a simulation performed by Bernèche

and Roux [2]. I rebuild a system using a 1K4C structure (instead of an earlier 1BL8 struc-

ture used by Bernèche and Roux [2]), and ran with it an iPMF simulation with a time

limit of 100 ps per window. Initial configuration of this system was defined with three

potassium ions located in: S1, S3 and in the cavity (figure 5.1b and figure 5.3a). The

features of an obtained PMF (figure 5.2a) did not match the ones from an original plot
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(figure 2, Bernèche and Roux [2]; figure A.3, page 74), and the only common property

was the energy difference between the initial (S1-S3-Cavity) and the final configuration

(S0-S2-S4). The system did not behave as we thought it would, and the obtained en-

ergy landscape showed ions following a pathway alternative to the one that would cor-

respond to a 'knock-on' mechanism. Further analysis of structures collected at different

values of reaction coordinates revealed unphysiological conformational changes in a fil-

ter region. Initially we though that this problem might come from an introduction of the

CMAP corrections [6] which were not included in CHARMM 22 force filed that was used

by Bernèche and Roux [2]. I restarted this simulation using a CHARMM 27 force filed

without CMAP corrections1. Unfortunately, the result of this simulation did not bring a

solution to the problem, see Figure 5.2b. The only apparent difference was a well cor-

responding to S1-S3-S4 configuration which was not visible in the previous simulation,

however the pathway alternative to the one that would be in agreement with a 'knock

on' mechanism still seems to be more favorable (due to shallower slopes and smaller

energy barriers).

After running numerous simulations, we got to a point when the system was stable and

the target PMFwas resembling the one obtained by Bernèche andRoux [2], see figure 5.4.

The energy barrierswere slightly higher thanwhatwas expected, however the ion translo-

cation pathway (figure 5.4) was definitely matching the 'knock on' mechanism. This run-

ning time was extended to 1 ns per window, and the system remain stable throughout

the whole simulation. Figure 5.5d contains a PMF calculated from the last 100 ps of this

1 ns simulation. To have an in-depth view of this simulation I performed an additional 3D

iPMF simulation in which each ion was considered separately. This was a 500 ps simu-

lation, and it reveled a structure identical to the one from a 2D iPMF run (compare figures

5.6b and figure 5.6c). Unfortunately, further analysis of this system reveled something

unexpected. In an intermediate configuration in a pathway with ions in S1-S3-S4 (see

figure 5.4) we found that the water molecule that was originally occupying site S4 was

missing (compare figure 5.3a and figure 5.3b). To have another view of the behavior of

this system, we ran a long molecular dynamics simulation with the very same starting

1CMAP keyword removed from a PSF file.
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conformation (figure 5.3a) as described in Boiteux and Bernèche [4]. During the initial

10ns the bottom-most potassium ion (located in the cavity) was attempting to get ac-

cess to the S4 site. Those attempts were unsuccessful, until a water molecule that was

occupying the S4 site moved away to the cavity. Only then there was enough space for

the ion to get to the S4 site (figure 5.3b). The "jump" of the other two ions of interest from

S1-S3 (figure 5.3b) to S0-S2 (figure 5.3c) occurred almost instantly after the bottom ion

was able to move to the S4 site.

(a) (b) (c)

Figure 5.3: Selectivity filter of a KcsA K+ channel (PDB id: 1k4c), snapshots taken along

a translocation pathway of interest: (a) S1-S3-Cavity, water molecules present in S0, S2

and S4; (b) S1-S3-S4, water molecules in S0 and in S2; (c) S0-S2-S4, water molecule in

S1, water molecule missing from S3.

The comparison of the initial structures that generated PMFs mentioned in this chap-

ter (see figure 5.2 and figure 5.4), revealed that the only difference was the initial position

of the bottom potassium ion. In the first simulation (Figure 5.4) the bottom ion was lo-

cated slightly below the S4 site, whereas in the other one (figure 5.4) it was located 2 Å

below (deeper in the cavity). This small difference allowed a water molecule to leave the

S4 site in order tomake enough space for the potassium ion (Figure 5.3). At that time we

believed that the reason behind this problem was related to the flexibility of the selectiv-

ity filter that could originate from an introduction of the CMAP parameters (the reference

simulation from Bernèche and Roux [2] was performed with charmm 22 forcefield which
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did not include CMAP). However the experiments that we performed next gave a different

explanation of this problem.

Figure 5.4: PMF calculated using an umbrella samplingmethod with 154 simulation win-

dows that describes the process of ion translocation in the KcsA K+ channel (1K4C).

Each window was simulated for 100 ps; last 50 ps of sampling was used to calculate

this PMF. The difference between this map and the map from a Figure 5.2 is the starting

position of the bottom ion. In this simulation, the bottom ion is initially located slightly

deeper in the cavity. This allows an ion to enter S4 site after a water molecule that was

previously occupying it goes down to the cavity. This map was plotted with a contour

every 1 kcal/mol.
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Figure 5.5: Ion translocation in the KcsA K+ channel described by self-learning umbrella

sampling. The 2D PMF is shown at different stages of the umbrella sampling calcula-

tions: startingwith ninewindows (a), moving to 25 (b) and 28windows (c). The final PMF

shown in (d) was calculated from 63 windows. The reaction coordinates are the center-

of-mass of ions K1 and K2 along the Z axis, CoM (K1
z , K

2
z ), and the position of ion K3

along the same axis, K3
z . For the additional information about the expansion procedure

please see the appendix: figure A.1 (page 72), and A.2 (page 73).
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Figure 5.6: Comparison of the ion translocation PMF obtained through different umbrella

sampling approaches: (a) 2D umbrella sampling calculation with 154 windows covering

the whole conformational space (regions above 10 kcal/mol are not detailed). (b) Re-

sult of the 2D self-learning umbrella sampling calculation using a total of 63 windows.

(c,d) 2D projection (c) of a 3D PMF (d) calculated with 385 windows generated by the

self-learning approach. The reaction coordinates in panels (a), (b) and (c) are as de-

scribed in a Figure 5.5. In the 3D PMF presented in (d), each ion is considered separately

W [K1
z , K

2
z , K

3
z ], withK2

z sticking out of the plane.
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5.3 Open channel simulations

Next set of simulations was based on a KcsA K+ channel structure with the intracellular

gate in the open state (Figure 5.7), PDB entry 3FB7 [8].

Using this system I ran a few iPMF simulations (using the CHARMM 36 force field) with

a S0-S2-S4 configuration as a starting point:

1. 2D PMF representing a K+ ion entering a filter from the cavity (Figure 5.1b), with

reaction coordinates defined as follows:

• Z12 = CoM (K1
z , K

2
z )

z coordinate of the center of mass of the top and the middle ion

• Z3 = K3
z

z coordinate of the bottom ion

2. 2DPMF representing a K+ ion leaving the filter to the extracellular bulk (Figure 5.1b),

with reaction coordinates defined as follows:

• Z1 = K1
z

z coordinate of the top potassium ion

• Z23 = CoM (K2
z , K

3
z )

z coordinate of the center of mass of the bottom and the middle ion

All of those simulations, were ran with iPMF using the self-learning method for creat-

ing new windows. Each window was simulated for 1 ns, however in many cases the

system did not remain stable for the last 300 ps. This is an unfortunate problem with

that open structure of the KcsA K+ channel that we are still trying to solve.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: KcsA K+ channel with the intracellular gate in the closed (a,c,e) and in the

open (b,d,e) states.
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(a) (b)

Figure 5.8: Potential of mean force for a KcsA K+ channel in an open conforma-

tion: (a) a 2D projection of a 3D PMF that represent ion transfer through the channel

on the plane {x : Z12 = CoM (K1
z , K

2
z ) , y : Z3 = K3

z}; (b) a 2D projection on the plane

{x : Z1 = K3
z , y : Z23 = CoM (K2

z , K
3
z ) , }.

Results of those PMF simulations were merged together into a 3-dimensional energy

landscape, and then projected onto appropriate 2D landscapes (Figure 5.8). The main

pathway connecting the end-states S1-S3-Cavity and Bulk-S1-S3 includes all of the prop-

erties that would support the 'knock on' mechanism, as described by Bernèche and Roux

[2]:

1. The initial state in the ions transfer process (with ions in S1-S3-Cavity, Figure 5.9a)

corresponds to position (1.0,−9.0) on a Figure 5.8a;

2. The bottommost potassium ion enters the filter to site S4 (1.0,−5.5) - see Figure

5.8a, pushing the water molecule that was occupying that site a little to the side

(S1-S3-S4 state, Figure 5.9b). Between the S1-S3-Cav and S1-S3-S4 states there is

a free energy barrier of around 1 kcal/mol;
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(a) S1-S3-Cav (b) S1-S4-S4 (c) S0-S2-S4 (d) S1-S3

Figure 5.9: Selectivity filter of a KcsA, transfer of ions through the selectivity filter.

3. From state S1-S3-S4 the system goes rapidly to the S0-S2-S4 state (Figure 5.9c).

The free energy difference between those states is in range of −5 kcal/mol (the

S0-S2-S4 is the more favorable one) with no apparent free energy barriers. This

motion is visible on a free energy profile (Figure 5.8a), and the positions of the cor-

responding sites are (1.0,−5.5) and (3.5,−5.0);

4. In the final step, the system goes from S0-S2-S4 to a state with only two ions oc-

cupying the filter in S2-S4. This state changes later to a S1-S3 state, see Figures

5.8b and 5.9d. The motion of the two ions inside the filter is actually visible on the

first free energy map (Figure 5.8a). Position: (−1.0,−11.0) describes the system in

a S2-S4 state with a third ion deep in the cavity; when the cavity ion pushes up, the

two ions move from S2-S4 to a S1-S3 conformation (1.0,−9.0).

The 'knock on' mechanism [2] seems to be present in both the movement of ions from

S1-S3-Cavity to S0-S2-S4 (with an intermediate step of S1-S3-S4) and in the movement

from S2-S4 to S1-S3 (which seems to be triggered by an additional ion pushing up from

the cavity). We believe that the opening of the intracellular gate in the KcsA K+ channel

is the key factor that enables ion transfer through the channel (Figure 5.8).
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(a) -150 mV (b) -100 mV

(c) -50 mV (d) +50 mV

(e) +100 mV (f) +150 mV

Figure 5.10: Potential of mean force for a KcsA K+ channel in an open conformation,

2D projections of a 3D PMFs on the plane {x : Z1 = K3
z , y : Z23 = CoM (K2

z , K
3
z ) , }. PMF

calculations were performed in the presence of an additional electrostatic potential that

was normal to the membrane: (a) -150 mV, (b) -100 mV, (c) -50 mV, (d) +50 mV, (e) +100

mV, (f) +150 mV.
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Additional iPMF simulations ( with an open structure of a KcsA K+ channel were per-

formed in a presence of an additional electrostatic potential (normal to the membrane),

see Figure 5.10. These results show a trend in which the Ext-S2-S4 conformation gets

more and more energetically favorable than the S1-S3-Cav conformation, the bigger is

the transmembrane potential applied to the system.

5.4 Summary

To sum up the KcsA K+ channel simulations, I will go over some of the most meaningful

PMF simulations that relate to the subject of ion translocation.

Result obtained fromvarious simulations of theKcsAchannel in a close state, undoubtably

show that the channel in this state is incapable of conducting ions. Simulation started

with two ions in the filter and additional one in the cavity result in a PMF which is charac-

terized by features that would suggest existence of a 'knock on' mechanism (see Figure

5.11a). However, in-depth analysis of this system shows that this structure does not al-

low site S4 to be simultaneously occupied by a potassium ion and a water molecule. As

a result, system goes into a stable configuration S0-S2-S4 with no water molecule being

present in the S3 site. This configuration is separated by a free energy barrier of over 7

kcal/mol from a S1-S3-Cavity configuration.

An attempt was made to force a water molecule not to leave a spot between the middle

and the bottom potassium ion. In order to do that, a simulation was started from a S0-

S2-S4 configuration and than it was led in the direction of S1-S3-Cavity configuration.

The results of this simulation shows a PMF (figure 5.11b) with a high energy barrier, a

pathway that does not follow any of the proposed ion translocation strategies, and some

unphysiological structural changes in the filter region.

63



(a) (b)

(c)

Figure 5.11: KcsA K+ channel iPMF simulations performed in CHARMM 36 force field:

(a) 1K4C simulation started at S1-S3-Cavity; (b) 1K4C simulation started at S0-S2-S4; (c)

open channel simulation started at S0-S2-S4 (this subfigure represents a time frame of

400 ps to 500 ps of a PMF presented in a figure 5.8a).

Simulation of a channel with an open intracellular gate started in a S0-S2-S4 configura-

tion, results in a PMF (Figure 5.11c) with a translocation pathway that implies a 'knock

on' mechanism as described by Bernèche et al. [2]. The S1-S3-Cavity and S0-S2-S4 con-

figurations are separated by a barrier of ∼ 1 kcal/mol which is also in line with previous

data.

These simulations suggest that the opening of the intracellular gate is required for the

channel to be conductive. We are still working on describing details of this process, and

the simulations presented in my dissertation are only a first step in understanding the

conducting process of the KcsA K+ channel.
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Chapter 6

Brownian Dynamics

The free energy landscape calculated for the KcsA K+ channel (structure with the intra-

cellular gate in an open state) provides a description of the process of ion translocation

through the selectivity filter (see chapter 5.3; Figure 5.8 and Figure 5.11c). Themain path-

way connecting the end-states (S1-S3-Cavity and Bulk-S1-S3) includes all of the proper-

ties that support the existence of the 'knock on' mechanism, as described by Bernèche

and Roux [2]. The problem is that a potential of mean force does not provide us with

any direct information about the ion fluxes. Even though the performance of available

computational units is increasing every year (as predicted by George E. Moore), we are

still not capable of performing molecular dynamics simulations that would be able to

visualize ion flux in the KcsA K+ channel. Time required to run a simulation that could

show an ion translocation process is in range of 10-20 ns [12], which can currently be

achieved in the matter of a week or two. To have a statistically significant simulation

of the ionic flux across the KcsA channel we would require a simulation time thousands

times longer than that, therefore it is clear that this is something we cannot afford quite

yet.
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6.1 Brownian Dynamics Simulations

Bernèche and Roux [3] presented a Brownian dynamics (BD) based approach for simu-

lating ion permeation over long periods of time. The result of a BD simulation (ion flux)

is the limit (a converged data over a large number of simulation steps) of a function of

a free energy landscape and values of reaction coordinates that define it. Any further

properties of the molecular system do not have to be explicitly taken into account in a

BD approach.

6.1.1 The graph-based BD algorithm

The stochastic Brownianmotion for themulti-ion systemwasfirst implemented byBernèche

and Roux [3]. It was defined as a continuous-time Markov chain with discrete states cor-

responding to the ion positions. The state-to-state random walk was constructed by

generating exponentially distributed random survival times. I have taken that implemen-

tation and decided to reimagine it slightly. In chapter 1.3.2 I introduced an alternative way

of representing free energymaps in computer'smemory. Applying graphs as amain stor-

age data structure in the Brownian motion implementation is extremely beneficial: a) it

provides an extremely easy mechanism for adding various additional connections be-

tween graphs, b) it removes all of the biological aspects of the system from the random

walk procedure - the only part that involvesmolecular parameters of the system is a defi-

nition of edges in a graph. The graph-based approach for performing Brownian dynamics

simulations has been implemented in a way that can be used in a virtually any system

described by any number of specially separated (though not disjoint) PMFs. I will base

my description of this method on a "simple" KcsA K+ channel system.

During the ion translocation process, the KcsA K+ channel goes from a state with three

ions occupying the selectivity filter to a statewith only two ions in the filter. The process of

ions permeating through the channel is based on a system jumping back and forth from

the three ion state to the two ion state. Complete description of this process requires

two graphs, for both a two and a three ion state:
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• G1(E1, V1) - graph representing a 3D PMF that describes the three ion state (as

shown in chapter 5.3). The 3D PMF has been obtained as a results of merging of

two 2D PMFs, see Figures 5.8a and 5.8b;

• G2(E2, V2) - graph representing a 2D PMF that describes a behavior of two ions in a

selectivity filter. Taken as a slice from the 3D PMF (at x = K3
z = 10 Å, Figure 6.1a).

(a) (b)

Figure 6.1: 2D slices of a 3D potential of mean force calculated for a KcsA K+ channel in

an open conformation (see figure 5.8): (a) slice taken at z = K3
z = 10 Å; (b) slice taken at

z = K1
z = −10 Å. Note, the obvious difference between those figures that derives from

different integration constants.

It is important to state that:

G1 ≡ PMFtot (x1, x2, x3) (6.1)

where:

PMFtot (x1, . . . , xND) = PMFeq (x1, . . . , xND) +
ND∑

i=1

qφmp (xi) (6.2)

PMFeq denotes the equilibrium PMF, and the φmp (xi) is the transmembrane potential
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function. G1 and G2 are not disjoint, since G2 is defined as a subset of G1 (figure 6.1).

Moreover the relation between those graphs is the following:

G2 ≡ PMFtot

(
x1, x2, 10Å

)
≈ PMFtot

(
−10Å, x2, x3

)
(6.3)

The graph structure is read from a data file which contains a sparse matrix representa-

tion (chapter 1.3.1) of a pre-calculated1 PMF for the KcsA K+ channel. Each position in a

sparsemodel corresponds to a node2 in a graph. Connections between nodes in a graph

are managed automatically by the internal functions of a data structure; a self-balancing

binary search tree [1, 11] containing a list of all nodes sorted according to their position

serves as a interface for finding nodes at the neighboring locations (single query is per-

formed in O (logn) time, see listing B.1 on page 76). The probability of a system going

from a node to one of its neighbors is equal to:

k(x1,x2,x3)(→(x1±δx1,x2,x3) =

[
D(x1) +D(x1 ± δx1)

2δx2
1

]

· exp
[
PMFtot (x1 ± δx1, x2, x3)− PMFtot (x1, x2, x3)

2kBT

] (6.4)

whereD denotes a diffusion coefficient of potassium ions along the selectivity filter.

In the graph model, we can handle data a bit differently. There is no need to give any

special treatment to any part of the system, and only one general formula is capable of

handling all of the transition rates:

k(x1,x2,x3)(→(x1±δx1,x2,x3) ≡

kNi (→{Nj=neighbourm(Ni)} =

⎧
⎪⎨

⎪⎩

∑

n=0
n<ND

[
D (xn(Ni)) +D (xn(Nj))

2δx2
n

]
⎫
⎪⎬

⎪⎭

· exp
[
PMF (Nj)− PMF (Ni)

2kBT

]

(6.5)

1For the details about PMF calculation check the method described in chapter 3.1 on page 28.
2The node is an object containing information about a position and a free energy value, see listing 1.4

on page 11.
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Survival time of a state (time a system stays at a given position) in this model is random

and distributed exponentially:

t(i1,...,iND)
= −1

/
∑

j1∈[−1,1]

. . .
jND

∈[−1,1]

[
k(j1,...,jND)

] · log (random()) , random() ∈ (0, 1)

(6.6)

Graphs G1(E1, V1) and G1(E2, V2) are connected if:

∃N1i ∈ V1 ∧ ∃N2j ∈ V2 :
(
N1i , N2j

)
∈ Es , G1(E1, V1) +G2(E2, V2) = Gs(Es, Vs) (6.7)

and:

Gs(Es, Vs) =

= G1(E1, V1) +G2(E2, V2) =

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e : e ∈ E1 ∪ E2 ∪

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(v1, v2) :

v1 ∈ V1

v2 ∈ V2

v1x = v2x

v1y = v2y

v1y = +10Å

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, v : v ∈ V1 ∪ V2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.8)

G2 is connected with the G1 via two different sets of connections:

• Ion leaving to the bulk:

– Find a list L1 of nodes in G1 with x3 = 10Å

– Look for pairs of nodes in L1 and G1 that have matching coordinates, and

connect them by adding an appropriate edge to G1(E1, V1) +G2(E2, V2)
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std : : vec to r < node<double > * > l aye r1 =

G1−>query ( std : : pa i r < i n t , double > ( 2 , +10.0 ) ) ;

std : : vec to r < std : : p a i r < i n t , i n t > > laye r1_connect ions ;

l aye r1_connect ions . push_back ( std : : p a i r < i n t , i n t > ( 0 , 0 ) ) ;

l aye r1_connect ions . push_back ( std : : p a i r < i n t , i n t > ( 1 , 1 ) ) ;

ConnectGraphs <double > ( layer1 , G2−>nodes , layer1_connect ions , r a t e _ e x t r a ) ;

• Ion entering the cavity:

– Find a list L2 of nodes in G1 with x1 = −10Å

– Look for pairs of nodes in L2 and G2 that have matching coordinates, and

connect them by adding an appropriate edge to G1(E1, V1) +G2(E2, V2)

std : : vec to r < node<double > * > l aye r2 =

G1−>query ( std : : pa i r < i n t , double > ( 0 , −10.0 ) ) ;

std : : vec to r < std : : p a i r < i n t , i n t > > laye r2_connect ions ;

l aye r2_connect ions . push_back ( std : : p a i r < i n t , i n t > ( 1 , 0 ) ) ;

l aye r2_connect ions . push_back ( std : : p a i r < i n t , i n t > ( 2 , 1 ) ) ;

ConnectGraphs <double > ( layer2 , G2−>nodes , layer2_connect ions , r a t e _ i n t r a ) ;

The detailed implementation B.2 of the template <typename T> ConnectGraphs<T> func-

tion is included in the appendix on page 77.

After construction of a graph has been completed, an additional function is executed in

purpose of checking the integrity of a simulation system. This task can be perforated by

querying a graph for disjoint components. This procedure can implemented as a variant

of a certain graph traversal methods (BFS in my implementation). Usually the largest

joint subgraph GT of G1(E1, V1) +G2(E2, V2) should be used for a simulation.
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The main simulation loop in this approach is extremely straightforward, since all of the

complex (system specific) interactions define the structure of a graph and not the ran-

dom walk, the can be implemented in just a few lines:

fo r ( i n t i S tep = 0 ; iS tep < NSTEP ; iS tep ++) {

t ime += CurrentNode−>getSurv iva lT ime ( ) ;

double r = ( double ) rand ( ) / ( double )RAND_MAX ;

fo r ( i n t i = 0 ; i < CurrentNode−>p r o b a b i l i t i e s . s i ze ( ) ; i ++) {

i f ( r < CurrentNode−>p r o b a b i l i t i e s [ i ] ) {

CurrentNode = CurrentNode−>connect ions [ i −1 ] ;

break ;

}

}

}
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Appendix A

Additional Figures

(a) (b)

(c) (d)

Figure A.1: iPMF expansion procedure steps for KcsA (Protein Data Bank 1K4C) calcu-

lated in CHARMM36 force filed:

(a) 6 windows; (b) 58 windows; (c) 87 windows; (d) 107 windows.
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(a) (b)

(c) (d)

Figure A.2: iPMF expansion procedure steps for KcsA (Protein Data Bank 1K4C), the

hierarchy of windows: (a) 6 windows; (b) 58 windows; (c) 87 windows; (d) 107 windows.
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Figure A.3: Bernèche et al. [2]: Topographic free energy maps of ion conduction calcu-

lated from umbrella sampling molecular dynamics simulations.
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Listing B.1: Connecting a node in a graph with its neighbors.

1 template <typename T>

2 void graph <T> : : connect ( node<T> * ob j ) {

3

4 / / number of dimensions

5 i n t N = obj−>coord inates . s i ze ( ) ;

6

7 / / get a pos i t i on of a node

8 std : : vec to r < i n t > crds = obj−>coord inates ;

9

10 typename std : : map < std : : vector < i n t > , node<T> * > : : i t e r a t o r query ;

11

12 fo r ( i n t i =0 ; i <N ; i ++) {

13

14 / / check one at x _ i + 1

15 crds [ i ] = obj−>coord inates [ i ] + 1 ;

16 i f ( ( query = th is−>lookup . f i n d ( crds ) ) ! = th is−>lookup . end ( ) ) {

17 obj−>connect ions . push_back ( query−>second ) ;

18 query−>second−>connect ions . push_back ( ob j ) ;

19 }

20

21 / / check one at x _ i − 1

22 crds [ i ] = obj−>coord inates [ i ] − 1 ;

23 i f ( ( query = th is−>lookup . f i n d ( crds ) ) ! = th is−>lookup . end ( ) ) {

24 obj−>connect ions . push_back ( query−>second ) ;

25 query−>second−>connect ions . push_back ( ob j ) ;

26 }

27

28 / / r ese t the v a r i a b l e of i n t e r e s t

29 crds [ i ] = obj−>coord inates [ i ] ;

30 } ;

31 } ;
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Listing B.2: Connecting two sets of nodes together: a) finding a list of nodes that share

predefined permutation of values of coordinates; b) connecting them with each other; c)

each connection is represented by two edges.

1 template <typename T>

2 void ConnectGraphs ( std : : vec to r < node<T> * > G1 , std : : vec to r < node<T> *

> G2 , std : : vec to r < std : : pa i r < i n t , i n t > > connections , double r a t e ) {

3 / / bu i l d i n g a bst using data from the f i r s t l i s t of nodes

4 std : : map < std : : vec to r < i n t > , node<T> * > query ;

5 fo r ( i n t i = 0 ; i < G1 . s i ze ( ) ; i ++) {

6 / / d e f i n i t i o n of a " reduced " key

7 std : : vec to r < i n t > key ;

8 fo r ( i n t j = 0 ; j < connect ions . s i ze ( ) ; j ++)

9 key . push_back ( G1 [ i ]−> coord inates [ connect ions [ j ] . f i r s t ] ) ;

10 query [ key ] = G1 [ i ] ;

11 } ;

12 / / f i n d i n g nodes G2 tha t would match nodes i n G1

13 typename std : : map < std : : vec to r < i n t > , node<T> * > : : i t e r a t o r

q u e r y _ i t e r a t o r ;

14 fo r ( i n t i = 0 ; i < G2 . s i ze ( ) ; i ++) {

15 std : : vec to r < i n t > key ;

16 fo r ( i n t j = 0 ; j < connect ions . s i ze ( ) ; j ++)

17 key . push_back ( G2 [ i ]−> coord inates [ connect ions [ j ] . second ] ) ;

18 q u e r y _ i t e r a t o r = query . f i n d ( key ) ;

19 i f ( q u e r y _ i t e r a t o r ! = query . end ( ) ) {

20 / / connect graph #1 with graph #2

21 que r y _ i t e r a t o r −>second−>connect ions . push_back ( G2 [ i ] ) ;

22 q ue r y _ i t e r a t o r −>second−>p r o b a b i l i t i e s . push_back ( r a t e ) ;

23 / / connect graph #2 with graph #1

24 G2 [ i ]−>connect ions . push_back ( que r y _ i t e r a t o r −>second ) ;

25 G2 [ i ]−> p r o b a b i l i t i e s . push_back ( r a t e /45 ) ;

26 } ;

27 } ;

28 } ;
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