edoc-vmtest

Biological residues define the ice nucleation properties of soil dust

Conen F, Morris C. E. and Leifeld J, Yakutin M. V. and Alewell, C.. (2011) Biological residues define the ice nucleation properties of soil dust. Atmospheric Chemistry and Physics, 11 (18). pp. 9643-9648.

[img]
Preview
PDF - Published Version
Available under License CC BY (Attribution).

535Kb

Official URL: http://edoc.unibas.ch/45963/

Downloads: Statistics Overview

Abstract

Soil dust is a major driver of ice nucleation in clouds leading to precipitation. It consists largely of mineral particles with a small fraction of organic matter constituted mainly of remains of micro-organisms that participated in degrading plant debris before their own decay. Some micro-organisms have been shown to be much better ice nuclei than the most efficient soil mineral. Yet, current aerosol schemes in global climate models do not consider a difference between soil dust and mineral dust in terms of ice nucleation activity. Here, we show that particles from the clay and silt size fraction of four different soils naturally associated with 0.7 to 11.8 % organic carbon (w/w) can have up to four orders of magnitude more ice nucleation sites per unit mass active in the immersion freezing mode at −12 °C than montmorillonite, the nucleation properties of which are often used to represent those of mineral dusts in modelling studies. Most of this activity was lost after heat treatment. Removal of biological residues reduced ice nucleation activity to, or below that of montmorillonite. Desert soils, inherently low in organic content, are a large natural source of dust in the atmosphere. In contrast, agricultural land use is concentrated on fertile soils with much larger organic matter contents than found in deserts. It is currently estimated that the contribution of agricultural soils to the global dust burden is less than 20 %. Yet, these disturbed soils can contribute ice nuclei to the atmosphere of a very different and much more potent kind than mineral dusts.
Faculties and Departments:05 Faculty of Science
05 Faculty of Science > Departement Umweltwissenschaften > Geowissenschaften > Umweltgeowissenschaften (Alewell)
UniBasel Contributors:Conen, Franz and Alewell, Christine
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:European Geosciences Union
ISSN:1680-7316
e-ISSN:1680-7324
Note:Publication type according to Uni Basel Research Database: Journal article
Language:English
Identification Number:
edoc DOI:
Last Modified:16 Jan 2018 10:13
Deposited On:16 Jan 2018 10:13

Repository Staff Only: item control page