Becskei, A. and Serrano, L.. (2000) Engineering stability in gene networks by autoregulation. Nature, 405 (6786). pp. 590-593.
Full text not available from this repository.
Official URL: http://edoc.unibas.ch/46420/
Downloads: Statistics Overview
Abstract
The genetic and biochemical networks which underlie such things as homeostasis in metabolism and the developmental programs of living cells, must withstand considerable variations and random perturbations of biochemical parameters. These occur as transient changes in, for example, transcription, translation, and RNA and protein degradation. The intensity and duration of these perturbations differ between cells in a population. The unique state of cells, and thus the diversity in a population, is owing to the different environmental stimuli the individual cells experience and the inherent stochastic nature of biochemical processes (for example, refs 5 and 6). It has been proposed, but not demonstrated, that autoregulatory, negative feedback loops in gene circuits provide stability, thereby limiting the range over which the concentrations of network components fluctuate. Here we have designed and constructed simple gene circuits consisting of a regulator and transcriptional repressor modules in Escherichia coli and we show the gain of stability produced by negative feedback.
Faculties and Departments: | 05 Faculty of Science 05 Faculty of Science > Departement Biozentrum 05 Faculty of Science > Departement Biozentrum > Computational & Systems Biology > Synthetic Microbiology (Becskei) |
---|---|
UniBasel Contributors: | Becskei, Attila |
Item Type: | Article, refereed |
Article Subtype: | Research Article |
Publisher: | Macmillan |
ISSN: | 0028-0836 |
e-ISSN: | 1476-4687 |
Note: | Publication type according to Uni Basel Research Database: Journal article |
Identification Number: |
|
Last Modified: | 03 Nov 2017 10:24 |
Deposited On: | 03 Nov 2017 10:24 |
Repository Staff Only: item control page