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                                                                                                                                                                  Abstract 

Abstract 
Von Hippel-Lindau (VHL) disease is a dominantly inherited cancer syndrome 

characterized by the development of multiple tumours, among which the most common are 

tumours of blood vessels called hemangioblastomas (HB) that can be found in the retina 

and the central nervous system (CNS). The disease is caused by germline mutations in the 

VHL tumour suppressor gene and tumour development is linked to somatic inactivation of 

the remaining wild-type allele.  

The best documented role of pVHL is as the substrate recognition component of a 

Skp1/cullin/F-box (SCF)-like E3 ubiquitin protein ligase complex that ubiquitinates the 

oxygen-sensitive α-subunit of hypoxia inducible factors HIF-1 and HIF-2 under normoxia 

and targets them for proteasomal degradation, thereby inactivating HIF. Loss of VHL 

function leads to the constitutive activation of HIF and subsequent up-regulation of 

hypoxia-inducible mRNAs encoding angiogenic growth factors such as vascular 

endothelial growth factor (VEGF), Erythropoietin (EPO) and glucose transporter 1 

(GLUT1). Up-regulation of these factors characterizes VHL-associated tumours at the 

molecular level.  

VHL gene expression studies on human fetal and adult tissues showed VHL mRNA 

to be ubiquitously detectable. Expression was not restricted to specific areas known to 

undergo abnormal differentiation as part of the VHL syndrome such as kidney, cerebellum 

and pancreas, but it was also present, among others, in the heart, lung and prostate. In 

addition VHL gene expression was evident in all derivatives of the three germ cell layers 

also during mouse embryogenesis, being most prominent in epithelial components of the 

lung, kidney and eye. 

Expression studies of the VHL protein (pVHL) utilizing poly- and monoclonal 

antibodies against human VHL revealed wide cytoplasmic expression in human adult 

tissues. However, little is known about VHL expression patterns during development and 

in particular, the detailed distribution of VHL within specific tissues.   

To investigate pVHL expression during murine development and adulthood a 

mouse pVHL-specific antibody was raised and utilized in a detailed immunohistochemical 

study focusing on the development of two tissues that play a very important role in the 

course of VHL disease, namely the retina and cerebellum. 

Studying VHL disease, as any other disease, in humans is a difficult task that can be 

circumvented by the usage of genetically engineered mice that phenotypically mimic the 
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disease. The complete knockout of VHL unfortunately didn’t provide a mouse model in 

which to investigate molecular pathology, gene-gene or protein-tissue interactions or even 

therapeutic intervention as the animals died early during gestation.  In an attempt to create 

a mouse model that circumvented the block encountered in the complete knockout, we used 

Cre/loxP technology to design a strategy for creating a conditional VHL knockout, i.e. 

mice having exon 1 flanked by loxP sites (floxed). As our intent was not crowned with 

success and the floxed VHL mice were published in the meantime by another laboratory 

we could benefit by using these mice to specifically knock-out VHL in tissues we found to 

be interesting due to expression studies that had been undertaken as part of this thesis.  

In the thesis presented herein the expression of pVHL in the retina and the 

cerebellum is described and the potential value of localizing VHL to previously 

unidentified cells is discussed (chapter 8). Moreover, an outline of an unsuccessful 

endeavour to create a conditional knockout is provided (chapter 7). Nevertheless, given the 

availability of such mice from a different laboratory, we undertook a cell-specific deletion 

approach to substantiate our immunohistochemical observations in vivo as presented in 

chapter 9. 
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Abbreviations  
APMO adnexal papillary cystadenoma of probable mesonephric origin 
ARNT    aryl hydrocarbon receptor nuclear translocator 
BAC    bacterial artificial chromosome 
BCS    bovine calf serum 
bp    base pair 
BrdU    5-Bromo-2'-deoxyuridine 
cDNA    complementary desoxyribonucleic acid 
CDK    cyclin-dependent kinase 
CDKI    cdk inhibitor 
Ci    curie 
CNS    central nervous system 
CRALBP   cellular retinaldehyde-binding protein 
Cre     causes recombination 
C-TAD    C-terminal transactivation domain 
Cul    cullin 
CT    C-terminal 
DAPI     4’6’-Diamidine-2’-Phenylindole Dihydrochloride 
DMEM     Dulbecco´s modified Eagle´s Medium 
DMSO     dimethylsulfoxide  
DNA    deoxyribonucleic acid 
DT-A    Diphtheria toxin A 
DTT    dithiothreitol 
dNTP    desoxyribonucleoside-triphosphate 
ECL    enhanced chemi-luminescence 
EDTA    ethylenediamine tetra-acetic acid 
EGL    external granular (germinal) layer 
ELST    endolymphatic sac tumour 
EPAS    endothelial PAS domain protein 
EPO    erythropoietin 
ES cells    embryonic stem cells 
EtOH    ethanol 
FCS    fetal calf serum 
FIH    factor inhibiting HIF 
FITC    Fluorescein 
FRT    Flp recombinase target 
G418    geneticin 
GABA    γ-aminobutyric acid 
GCL    ganglion cell layer 
GFAP    glial fibrillary acidic protein 
GL    granular layer 
HB    hemangioblastoma 
HBSS Hank’s balanced salt solution 
HEPES  N-2-Hydroxyethylpiperazine-N’-2-ethanesulfonic acid 
HIF hypoxia inducible factor 
H2O    water 
HRE    hypoxia responsive element 
HSV    herplex simplex virus 
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INL    inner nuclear layer 
KAc    potassium acetate 
kb    kilo-base (i.e. 1000 nucleotides) 
KCl    potassium chloride 
kD    kilo-dalton 
KLH    keyhole limpet haemocyanin 
LB    Luria Bertami medium 
LIF    leukaemia inhibitory factor 
loxP    locus of crossover (x) in P1 
M    molar 
m    milli (10-3) 
µ micro (10-6) 
MEF    mouse embryo fibroblast 
MgCl2    magnesium chloride 
ML    molecular layer 
MMP    matrix metalloproteinase  
mRNA    messenger ribonucleic acid 
NaAc    sodium acetate 
NaCl    sodium chloride 
Na2HPO4   sodium hydrogen phosphate  
NaH2PO4   sodium dihydrogen orthophosphate 
NaOH    sodium hydroxide 
Neo    neomycin 
NGS    normal goat serum 
NT    N-terminal 
N-TAD    N-terminal transactivation domain 
OD    optical density 
ODD    oxygen-dependent degradation domain 
ONL    outer nuclear layer 
PBS    phosphate-buffered saline 
PCE    papillary cystadenomas of the epididymis 
PCR    polymerase chain reaction 
PDGF    platelet-derived growth factor 
Pheo    pheochromocytoma 
PMSF     phenyl-methyl-sulphonyl-fluoride 
RCC    renal cell carcinoma 
RT    room temperature 
RT-PCR    reverse transcriptase PCR  
SDS     sodium dodecyl sulfate 
TEMED    N,N,N’,N’-Tetramethylethylenediamine  
TGF    transforming growth factor 
TIMP    their tissue inhibitors of matrix metalloproteinases 
Tk    thymidine kinase 
Tris    Tris(hydroxymethyl)aminomethane (Tris base) 
U    unit of enzyme activity  
UTR    untranslated region 
VEGF    vascular endothelial growth factor 
VHL    von Hippel- Lindau 
WT    wild-type 
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 Chapter 1 
 

Von Hippel-Lindau Disease 
 
Von Hippel-Lindau (VHL) disease is a dominantly inherited family cancer syndrome that 

predisposes affected individuals to a variety of tumours including those of blood vessels 

(hemangioblastomas; HB) of the retina and the central nervous system (CNS), clear-cell 

carcinomas of the kidney (RCC), adrenal gland tumours (pheochromocytomas), 

endolymphatic sac tumours (ELST), and epididymal and broad ligament cystadenomas 

(AMPO) (FIG.1) (Lonser, 2003; Kaelin, 2002; Singh, 2001). The disease results from germline 

mutations and subsequent biallelic inactivation of the VHL gene as a prerequisite for 

tumour formation and affects 1 in 36 000-45 500 live births (Kondo & Kaelin, 2001; Maher & 

Kaelin, 1997; Maher et al., 1991; Neumann et al., 1991). 

 

 

 

 

 

 

 

 

 

 
                    Figure 1: Location of the principal neoplasms seen in VHL disease (Barry & Krek, 2004). 
 

 The VHL disease was named after Eugen von Hippel, a german ophthalmologist, 

who first described eye angiomas and the familial occurrence of these retinal blood vessel 

tumours in 1904 (von Hippel, 1904), and Arvid Lindau, a Swedish neuropathologist, who in 

1926 appreciated that these retinal lesions were a marker for a systemic disorder that also 

involved blood vessel tumours of the central nervous system (Lindau, 1927).  

At the molecular level VHL disease presents itself as autosomal (not limited to one 

sex) recessive as VHL kindreds have a single germline mutation in one (inherited by an 

affected parent) of the two VHL alleles (Crossey et al., 1994; Maher et al., 1990). Only the 

somatic loss or inactivation of the remaining wild-type VHL allele (through deletion, 
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mutation or silencing by promoter 

methylation) initiates tumour 

development in accordance with 

Knudson’s two-hit hypothesis of 

tumourigenesis (FIG. 2B) (Knudson, 

1971). Nevertheless, as this somatic 

event occurs at a very high frequency, 

resulting in a high penetrance of VHL 

disease (> 90 %), the VHL disease 

presents itself clinically as an 

autosomal dominant disorder. However, 

one has to keep in mind that in addition 

to the biallelic deletion of VHL 

following the already present germline 

mutation, only cells that are 

constituents of susceptible target organs 

(CNS, kidneys etc.) eventually develop 

tumours. 

Figure 2. Knudson’s two-hit hypothesis for
tumourigenesis involving a tumour suppressor gene
(TSG).  (A) Normal individuals require somatic inactivation
of both alleles of a TSG for tumour formation = “two hits”
(B) Individuals with an inherited inactivated allele only
require inactivation of the corresponding TSG allele for
tumour progression = “one hit” 

                    Adapted from Richards et al. 2001

In keeping with the Knudson 2-hit model, VHL gene inactivation has also been shown 

in some sporadic tumours of the same histological types as observed in VHL disease. VHL 

protein function is lost in 50-80% of sporadic cases of renal clear-cell carcinomas (Brieger et 

al., 1999; Gnarra et al., 1994), as well as in some sporadic cases of CNS hemangioblastomas 

(Lee et al., 1998). In these cases the first hit occurs as a result of somatic mutation or 

promoter hypermethylation and then requires a second somatic mutation to occur in order 

for tumours to arise (FIG. 2A) (Maher et al., 1990). 

 

1.1 Clinical manifestations of VHL disease  
 
VHL disease, unlike most other diseases, does not occur exclusively in one organ or at a 

particular age and has no single primary symptom. The age of onset is variable as it 

depends on the expression of the disease within an individual and within a family, but the 

disease normally achieves full penetrance by the age of 65. 

Among the large number of tumours that have been shown to be linked to VHL 

disease the most recurrent ones are retinal and CNS hemangioblastomas, RCC and to a 

much lesser extent pheochromocytomas (although the latter is used to classify the disease 
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subtypes as discussed under 1.2). In addition to these “main” features, multiple renal, 

pancreatic and epididymal cysts can occur and in up to ca. 10 % of patients pancreatic islet 

cell tumours and endolymphatic sac tumours (ELST) of the inner ear are found. While 

hemangioblastomas are normally benign cystic tumours (although they can still be a cause 

of considerable morbidity), RCC, pheochromocytoma and pancreatic islet cell tumours can 

all be malignant.  

The main causes of death in VHL disease have been metastases from renal cell 

carcinomas and neurological complications of CNS hemangioblastomas, though in recent 

years due to improved surveillance, earlier diagnosis and improved treatments, the 

prognosis has improved and complications related to these tumours have been reduced. 

The phenotypes of VHL disease will be shortly discussed below (for reviews see 

Lonser et al., 2003; Kaelin, 2002; Singh et al., 2001; Choyke et al., 1995): 

 

1.1.1 Hemangioblastomas 
 
Hemangioblastomas are benign non-metastasising blood vessel tumours that consist of a 

mixture of so-called “stromal cells” and blood vessels (pericytes and endothelial cells) 

(FIG. 3). The origin of the stromal cells is still a 

matter of debate (see also discussion) but it has 

been shown that these are the neoplastic 

component (the tumour cells) as they have lost 

pVHL expression and function, overproducing 

HIF target gene products such as vascular 

endothelial growth factor (VEGF) and platelet-

derived growth factor B chain (PDGF-β), which 

are likely to support the proliferation of the 

endothelial cells and pericytes respectively, 

transforming growth factor- α (TGF−α) and 

erythropoietin (EPO). Retinal and central nervous system hemangioblastomas in VHL 

disease are histologically indistinguishable and are therefore both referred to as 

hemangioblastomas.  

Figure 3. Histopathology of hemangioblastomas
(HB). HBs consist of stromal cells and blood
vessel cells-pericytes and endothelial cells. In
VHL disease the blood vessel cells have been
shown to be VHL+/-, whereas the stromal cells are
VHL-/-. Due to the lack of VHL function the
stromal cells accumulate high levels of hypoxia-
inducible factor HIF-1α, which in turn leads to the
overproduction of a number for HIF target genes
such as TGF- α, EPO, VEGF and PDGF-β. TGF-
 α probably acts in an autocrine loop. 
                      Adapted from Kaelin, 2002

 
1.1.1.1 Retinal Hemangioblastomas 
 
Among the manifestation of VHL disease retinal hemangioblastomas (HB; also called 

angiomas) appear to be among the most common and earliest tumours, seen in as many as 
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Figure 4. Retinal angioma 
in VHL disease. 

41-60 % of VHL patients. These tumours arise normally in the capillary bed of the retina, 

in the vascular tissue between the arterioles and venules in the 

circulatory system (FIG. 4). When capillaries form angiomas in 

the retina they start out extremely small and difficult to 

detect/see due to the fact that they form mostly in the periphery 

or on/near the optic disc far away from the area of central vision. 

Retinal hemangioblastomas are frequently multiple and if 

untreated may produce retinal detachment and hemorrhage 

leading to blindness. Detected early though most retinal angiomas respond to laser therapy 

or cryotherapy (reviews by Singh et al., 2001; The VHL Handbook under www.vhl.org). 

 

1.1.1.2 Central nervous system hemangioblastomas 
 
The most common tumours in VHL disease affecting 60-80 % of all VHL patients are 

central nervous system hemangioblastomas (or hemangiomas). These blood vessel tumours 

of the brain and spinal cord are benign but a major source of morbidity. Many patients with 

VHL disease ultimately develop multiple CNS hemangioblastomas and the management of 

brain stem and spinal tumours is often difficult and thus CNS involvement remains an 

important cause of morbidity and mortality for VHL patients. 

The cerebellum is the most frequent site of central nervous system 

hemangioblastomas (57-60 % of patients) followed by the spinal cord (13-12 %) and brain 

stem sites. The mean age at onset of cerebellar hemangioblastomas in VHL disease is 

considerably younger than in sporadic cases.  

 

1.1.2 Renal Clear Cell Carcinomas and renal cysts 
 
Renal Cell Carcinoma (RCC) occurs in 24-47 % of patients with VHL disease and affects a 

majority of the individuals with VHL disease, if they live long enough. In addition, RCC in 

VHL disease tends to be associated with renal cysts adding up to increase the finding of a 

renal lesion to 60 %. Renal cell carcinomas are the major malignant neoplasm in VHL 

disease and mutations in the VHL gene are the primary cause of inherited renal cancer. 

Renal cysts are frequent although they rarely produce significant renal impairment, but 

they can give rise, over time, to RCC. 
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1.1.3 Pheochromocytomas 
 
Pheochromocytomas are benign tumours of the adrenal gland that arise from neural crest 

tissue and produce elevated levels of catecholamines (norepinephrine and epinephrine) 

(Koch et al., 2001). Pheochromocytomas are present in about 7-19 % of VHL disease patients 

and tend to be multiple or bilateral. Although this type of tumour is not that frequent 

overall, in some families pheochromocytomas are the major manifestation and this has 

contributed to the classification criteria of the VHL disease as discussed under 1.2. 

 

1.1.4 Pancreatic cysts and neoplasms 
 
Pancreatic lesions in VHL disease are usually classified as nonsecretory (cyst and 

cystadenoma) or secretory (islet cell tumour) (Neumann et al., 1991). Among these the 

pancreatic cyst is the most common pancreatic lesion observed in about 15-30 % of 

patients with VHL disease. 

  Islet cell tumours consist of nests of polygonal cells with vesicular nuclei and are 

mostly asymptomatic but lesions can grow rapidly, cause biliary obstruction and 

metastasise to the liver or more distantly to the bone. An association may exist between 

islet cell tumours of the pancreas and pheochromocytomas since ca. 20 % of the VHL 

families with a high prevalence of pheochromocytoma will also develop islet cell tumours 

whereas this tumour is rare in other VHL families. 

 

1.1.5 Endolymphatic sac tumours (ELST) 
 
Slow-growing low-grade papillary adenocarcinomas may occur in up to 11 % of patients 

and are often bilateral. ELST is a recently recognized feature of VHL disease and may be 

more common than previously thought (Manski et al., 1997).  

 

1.1.6 Epididymal and broad ligament cystadenoma 
 
Papillary cystadenomas (a benign tumour with multiple cysts inside it, having higher 

density than a normal cyst) of the epididymis (PCE) are seen in approximately 10-26 % of 

men with VHL disease (Choyke et al., 1997). (The epididymis is a small, coiled conduit, 

which lies behind the testicle, in the scrotum, on the path to the vas deferens, the vessel, 

which carries the sperm from the testicle to the prostate gland.) 

A corresponding tumour in women is the adnexal (adjoining) papillary 

cystadenoma of probable mesonephric origin (APMO) of the broad ligament near the 
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fallopian tube (the channel carrying eggs from the ovary to the uterus). The broad ligament 

lies in folds and creases on top of both ovaries and uterine tubes, connecting these 

structures to the larger body of the uterus. 

 

1.2 Clinical diagnosis and classification of VHL disease 
 
 The diagnostic criteria for VHL disease are based upon three elements: retinal capillary or 

CNS hemangioblastoma, visceral lesions and family history of similar lesions (Melmon & 

Rosen, 1964). Patients with a family history and a hemangioblastoma (retinal or CNS), 

pheochromocytoma or RCC are diagnosed with the disease. Those patients with no 

relevant family history must have at least two CNS hemangioblastomas and a visceral 

tumour (except epididymal and renal cysts as these are frequent in the general population) 

to meet the diagnostic criteria.  

VHL disease can be classified into two main types, depending on the risk of 

developing pheochromocytoma (Table 1): 

  Type 1 families have a greatly reduced risk of pheochromocytomas but can develop 

all the other tumour types whereas Type 2 families have pheochromocytomas but have 

either a low risk (2A) or high risk (2B) for renal cell carcinoma. Type 2C families have 

pheochromocytomas only with no other neoplastic findings of VHL. The correlation of 

specific mutations and therefore the genotype with a specific VHL phenotype will be 

further elucidated under 1.3.3. 
 

 

Type         Clinica

   HB 
Type 1 + 

Type 2A + 

Type 2B + 

Type 2C     − 
 

Table 1: Classification of VHL di

types. In the germline mutation exa

amino acid indicated after the residu

 
 

                   
Classification of VHL disease

l characteristics                              Germline VHL mutation 

RCC    Pheo. 
+ −     Deletions and truncations 

− +     Missense e.g. Tyr98His 

+ +     Missense e.g. Arg167Trp 

− +     Missense e.g. Leu188Val 
sease types and the most frequently mutated residues connected to the different 

mples, the amino acid of the specific residue number has been exchanged with the 

e number.              Adapted from Richards, 2001 
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1.3 The VHL gene and protein function 
 
1.3.1 The human VHL gene 
 
In humans the VHL tumour suppressor gene is located on the short arm of chromosome 3 

(3p25-26) (Latif et al., 1993), covering less than 20 kb of genomic DNA and encoding a 4.7 

kb mRNA. Alternative splicing yields a small proportion of VHL mRNA that lacks exon 2 

(isoform II), which is predicted, if translated, to produce an in-frame deletion of 41 amino 

acids. The identification of VHL patients with germline deletions in exon 2 resulting in 

isoform II expression only, suggests though that this isoform is not encoding a fully 

functional gene product (Gnarra et al.; 1994).  

The VHL coding sequence is contained within 3 exons (exon 1= 70 bp 5’ UTR and 

340 bp coding sequence, exon 2= 123 bp coding sequence and exon 3= 179 bp coding 

sequence and 4 kb 3’ UTR) (FIG. 5a). 

Codons 14 to 53 encode eight copies 

of an acidic pentameric repeat [Gly-X-

Glu-Glu-X; (GXEEX)8] with 

homology to a procyclic surface 

membrane protein of Trypanosoma 

brucei. However the functional 

significance of this region is still 

unclear. The 642 nucleotides of the 

VHL gene encode a polypeptide of 213 amino acids with an apparent molecular weight of 

ca. 30 kDa and therefore termed pVHL30 (Iliopoulos et al., 1995). Due to alternative translation 

initiation at an internal methionine located at residue 54, a shorter VHL protein, pVHL19, 

of 160 amino acids and with an apparent molecular weight of 18-19 kDa is also 

synthesized (Blankenship et al., 1999; Schoenfeld et al., 1998; Iliopoulos et al., 1998) (FIG. 5b). This 

protein lacks the acidic domain. 

 
Figure 5. VHL gene (a) and protein (b) structure. 
                      Adapted from Richards, 2001

The VHL gene promoter lies approximately 60 bp upstream from the first 

methionine codon and is a GC-rich, TATA-less and CCAAT-less promoter with 

transcription initiating around a putative Sp-1 binding site (Kuzmin et al., 1995). It contains 

numerous predicted binding sites for transcription factors but it has not yet been revealed 

how VHL expression is controlled (Zatyka et al., 2002). The 3’ untranslated region in human 

contains 11 so-called Alu repeats and is in part conserved in rodents, however at present, 

no evidence exists that suggests a VHL-related functional role for these repeats. 
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1.3.2 The VHL protein (pVHL) 
 
The two VHL gene products pVHL30 and pVHL19 are both detectable in vivo and differ 

only by the additional presence of the afore-mentioned eight N-terminal acidic repeats 

characterising solely the longer pVHL form, pVHL30. As the functional distinction between 

the two VHL forms remains elusive to date and as both forms behave similarly in most 

functional assays, they are very often referred to generically as pVHL. Moreover, almost 

all inactivating mutations known so far lie within regions of the VHL gene that are 

common to both proteins leading to the assumption that both forms of pVHL have to be 

inactivated in order for tumours to arise. However a mutation found in the N-terminal 

acidic domain, P25L, has been identified in patients with sporadic pheochromocytoma and 

would suggest that there are different functions related to the two proteins (Van der Harst, et 

al., 1998). Furthermore the two pVHL forms differ in their subcellular localization: while 

pVHL19 is predominantly nuclear, pVHL30 localises to both nuclear and cytoplasmic 

compartments. In addition it has been shown that when pVHL30 resides in the cytoplasm it 

associates and stabilizes the microtubule network (Hergovich et al., 2003). pVHL has been 

shown to be subjected to nucleocytoplasmic shuttling mediated by Ran and to be also 

associated with the endoplasmatic reticulum (ER) (Schoenfeld et al., 2001; Groulx et al., 2000; Lee 

et al., 1996).  

pVHL, comprising both VHL gene products, is a tumour suppressor protein based 

on both genetic and functional criteria as tumour formation by VHL-defective renal 

carcinoma cells 786-O in nude mouse xenograft assays is suppressed after reintroduction of 

wild-type VHL (Gnarra et al., 1996; Iliopoulos et al., 1995).  

pVHL has two major, functionally distinct, structural domains:  the α- and the β-

domain (FIG.5b). While the smaller α-domain consists of 3 α-helices (aa 155-192), the β-

domain consists of a seven-stranded β sandwich (aa 63-154) and one α-helix (aa 193-204) 

(Stebbins et al., 1999). The α-domain is required for binding elongin C (aa 157-171) and the β-

domain provides the substrate-docking interface for target proteins, including the HIF-α 

subunits (see chapter 1.3.5). 

 

1.3.3 Genotype-Phenotype correlations 
 
When germline mutations (mutations present in all cells of an individual including the 

germ cells and that are therefore heritable) occur in the VHL gene, they confer the genetic 

risk of tumour formation in concert with somatic second VHL allele loss or DNA 
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methylation inactivation. Germline VHL mutations have been identified in more than 500 

VHL families worldwide and show considerable heterogeneity in both their type and their 

location within the VHL gene. Two-thirds of VHL patients harbour missense, nonsense, 

splice site mutations, and micro-deletions and –insertions, while in one-third large 

deletions of 4-380 kb can be found.  

As mentioned before, VHL disease has been classified into subcategories 

depending on the likelihood of pheochromocytomas to arise in a VHL patient and specific 

genotype-phenotype correlations are beginning to emerge in affected families (Table 1). 

Type1 disease is normally associated with mutations that lead to complete loss of the VHL 

gene product (deletion, frame-shift, nonsense and splice mutations) and the few missense 

mutations leading to type 1 have been mapped to residues in the hydrophobic core of the β-

domain causing probably complete unravelling of the pVHL structure. In contrast, the 

majority of missense mutations are associated with type 2 disease and mostly map to the 

binding site for elongin C, to the surface patch in the β-domain involved in binding HIF-α 

or are predicted to cause relatively localised effects if a structural residue is involved.  Type 

2C mutations (i.e. associated with pheochromocytoma only) promote HIF-α ubiquitylation 

in vitro, but are apparently incapable of binding and regulating the assembly of fibronectin 

(Clifford et al., 2001; Hoffman et al., 2001). This suggests that loss of other VHL functions than 

HIF-α regulation are necessary for pheochromocytoma susceptibility and raises the 

possibility that abnormal fibronectin matrix assembly contributes to pheochromocytoma 

pathogenesis in the setting of VHL disease.  Mutations causing type 1, type 2A and type 2B 

demonstrated variable effects on Hif-α and elongin binding, though resulting all in 

defective HIF-α regulation and loss of fibronectin binding. In summary HIF deregulation 

seems to have a causal role in HB and RCC, while there must be another cause for 

pheochromocytoma pathogenesis. A listing of all found germline and somatic VHL 

mutations assembled can be viewed under http:// www.umd.be (Beroud et al., 1998). 

 

1.3.4 VHL gene and protein expression 
 
VHL mRNA and protein are ubiquitously expressed implying that tissue-specific 

expression cannot account for the complex tumour pattern observed in VHL disease. For 

example, during human embryogenesis, VHL mRNA is expressed from as early as six 

weeks of gestation in virtually all tissues with particular high levels in urogenital system, 

brain, spinal cord, sensory ganglia, eyes and bronchial epithelium (Richards et al., 1996). In 
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addition it has been shown that VHL expression in the kidney is present in the proximal 

tubule, where RCC is postulated to arise, but also in the loops of Henle, which are normally 

never affected during the course of VHL disease (Richards et al., 1996; Kessler et al., 1995). The 

only study focusing on VHL mRNA expression during mouse embryogenesis documented 

similar widespread expression as in human (Kessler et al., 1995). 

Studies investigating the expression of the VHL protein also confirmed widespread 

VHL expression and demonstrated that pVHL is expressed especially in epithelial cells as 

those covering the body surface, the alimentary canal, and the respiratory and genitourinary 

tracts. In addition expression was found in cardiomyocytes, parenchymal cells of visceral 

organs, secretory cells of the exocrine and endocrine organs, neurons in nervous tissue, 

lymphocytes in lymphoid tissue and macrophages (Sakashita et al., 1999; Corless et al., 1997; Los 

et al., 1995). 

During the course of the thesis presented herein I was able to show cell-specific 

expression of VHL in two tissues, namely the retina and the cerebellum by using a newly 

created antibody recognizing specifically the mouse VHL protein. These new findings will 

be discussed in chapter 8. 

 

1.3.5 VHL function as part of an E3 ligase complex 
 
pVHL functions as the substrate recognition component of a complex termed VCB-Cul2, a 

stable multi-protein complex with elongins C and B, Cullin2 (Cul2) and Rbx1 (a RING box 

protein also called Roc1 and Hrt1) (FIG. 6).  (Kamura et al., 1999, Lisztwan et al., 1999; Pause et al., 

1997; Kibel et al., 1995; Duan et al., 1995). Cul2 is 

the scaffold for the E2 enzyme, Rbx1 and 

elongin C components of the complex. Rbx1 

functions to assist in recruiting the E2, while 

Elongin C bridges Cul2 and the substrate 

recognition component pVHL, while Elongin 

B stabilizes the complex. This multi-protein 

complex, whose correct assembly is directly 

mediated by association of amino acids 100-

155 of pVHL with the chaperonin protein 

TriC (also called CCT for cytosolic 

chaperonin-containing TCP-1) (Hansen et al., 2002; Feldman et al., 1999), has E3 ubiquitin-ligase 

activity and functions in conjunction with an E2 ubiquitin-conjugating enzyme to poly-

Figure 6. The VCB-Cul2 complex. The von
Hippel-Lindau tumour-suppressor protein (pVHL)
forms a protein complex (VCB-Cul2) with elongin C
(El C), elongin B (El B), Cul-2 (neddylated or not),
and Rbx1, which functions as an ubiquitin-protein
ligase (E3). The beta domain of pVHL binds directly
to the ODD domain of HIF-α subunits and directs
their ubiquitination in the presence of oxygen. 
   Adapted from Ivan & Kaelin, 2001
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ubiquitinate proteins which targets them for subsequent degradation via the 26S 

proteasome (FIG. 7). 

 

 

 

  

Figure 7. Many proteins that undergo regulated destruction are first covalently modified by the attachment of a polyubiquitin
tail, which serves as a signal for degradation by a multiprotein complex of proteolytic enzymes called the proteasome.
Substrate-specific poly-ubiquitylation involves the sequential action of the E1 ubiquitin activating enzyme, an E2 ubiquitin-
conjugating enzyme and an E3 ubiquitin ligase. Ubiquitination is a multistep process that conjugates ubiquitin moieties to
internal lysine residues of proteins and successive conjugation of ubiquitin molecules generates polyubiquitin chains.
Polyubiquitinated proteins are then degraded by the 26 S proteasome 

 To date, the most intensely studied and best-understood substrates of the VCB-

Cul2 complex are the α-subunits of the heterodimeric Hypoxia inducible factor (HIF) (see 

1.3.5.1) (Iwai et al., 1999). In the presence of oxygen, hydroxylated HIF-α interacts with the 

β-domain of VHL in the VCB-Cul2 complex, which targets HIF-α for degradation by the 

ubiquitin-proteasome pathway (Min et al., 2002; Tanimoto et al., 2000). Under hypoxic 

conditions or in the absence of functional pVHL, HIF-1α and HIF-2α are stabilized and 

accumulate resulting in elevated transcription of a wide variety of HIF-controlled genes 

such as VEGF, erythropoietin, glucose transporter GLUT1, TGF-β and TGF-α (Maxwell et 

al., 1999; Iliopoulos et al., 1996). Overproduction of these angiogenic factors contributes to the 

highly vascularized tumours that develop in VHL patients.  

 

1.3.5.1 Hypoxia inducible factor (HIF) 
 
The hypoxia-inducible factor HIF-1α is a key regulator of responses to hypoxia through 

transcriptional activation of a variety of genes linked to processes such as angiogenesis, 

glucose uptake and metabolism. HIF is a heterodimeric transcription factor consisting of an 

α-subunit (usually HIF-1α, other family members are HIF-2α and HIF-3 α, which will be 

discussed at the end of this subchapter) and HIF-1β (also called ARNT for aryl 
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hydrocarbon receptor nuclear translocator), which are basic helix-loop-helix (bHLH) 

proteins of the PAS family (named after Per, ARNT and Sim, which were the first 

members to be recognized). While the nuclear β-subunit is constitutively expressed, the α-

subunit is the regulatory component, which is labile under normoxia and targeted by the 

VCB-Cul2 complex for ubiquitination and subsequent degradation. Under hypoxic 

conditions though, HIF-α accumulates, becomes phosphorylated, dimerizes with HIF-β and 

binds to specific DNA sequences, hypoxia-response elements (HRE), in the cis-regulatory 

regions of hypoxia-inducible genes activating their transcription (general reviews Lee et al., 

2004; Maynard & Ohh, 2004). 

The interaction of pVHL with HIF-1α requires the latter to be enzymatically hydroxylated 

at two conserved proline (P) residues, P402 and P564, each within a Leu-X-X-Leu-Ala-Pro 

sequence motif (Masson et al., 2001). This oxygen dependent hydroxylation is carried out by 

proline hydroxylases and is required for HIF-α to participate in two essential hydrogen 

bonds with hydrophilic side chains that are located in the VHL β-domain (Hon et al., 2002; 

Bruick & McKnight, 2001; Ivan et al., 2001; Epstein et al., 2001; Jaakola et al., 2001;Ohh et al., 2000). In 

human there are three prolyl hydroxlase isoforms, PHD 1-3, among which PHD2 has been 

proposed to be the primarily responsible for HIF hydroxylation under normoxia (Berra et al., 

2003). The VHL-binding site of HIF-1α lies within a region termed the oxygen-dependent 

degradation (ODD) domain, which overlaps with the amino-terminal transactivation 

domain (N-TAD) of HIF-1α, and which confers protein instability in the presence of 

oxygen. The second transactivation domain of HIF1-α lies in the carboxy-terminus (C-

TAD) and activates transcription solely under hypoxia as under normoxia a specific 

asparagine residue, N893, is hydroxylated by a HIF asparaginyl hydroxylase called FIH 

(factor inhibiting HIF) (Lando et al., 2002; Mahon et al., 2001). Hydroxylation at this site 

prevents recruitment of the co-activator proteins p300 and CBP (cyclic-AMP-response-

element-binding-protein (CREB)-binding protein). HIF is therefore regulated at the level of 

protein turnover by prolyl hydroxylation, which serves as a signal for pVHL binding, and 

at the level of co-activator recruitment by asparaginyl hydroxylation (FIG. 8).  

In addition, normoxia also stimulates binding of a protein acetyl-transferase named 

ARD1 to HIF-1α that acetylates lysine 532 in the ODD domain. This acetylation has been 

shown to increase the interaction of HIF with VHL promoting its proteasomal degradation, 

but the mechanism is still unknown (Jeong et al., 2002). The VHL-HIF-α complex has been 

shown to have in addition another binding partner, the Tat-binding protein TBP-1 (which is 
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an ATPase subunit within the 19S regulatory particle of the 26S proteasome) that seems to 

regulate the proteasomal degradation of HIF-α (Corn et al., 2003). 

Figure 8. Hydroxylation of HIF-α and the
regulation of hypoxia-inducible genes. In the absence
of oxygen (left side), HIF- α is bound by the
transcriptional coactivators p300/CBP and dimerizes
with HIF-β. It then binds to hypoxia-responsive
elements (HREs), initiating the transcription of
numerous hypoxia-inducible genes. In the presence of
oxygen, HIF- α is hydroxylated on conserved pralines
bz prolyl hydroxylases (PHDs) and on asparagine at
position 803 by the factor inhibiting HIF (FIH)
enzyme. Prolyl hydroxylation promotes HIF- α
recognition by the b-domain of pVHL and subsequent
ubiquitination by the VCB-Cul2 complex, resulting in
HIF- α degradation via the 26S proteasome. In
addition, the asparaginyl hydroxylation prevents
p300/CBP from binding HIF- α, thus also inhibiting
transcription of hypoxia-inducible genes. B and C,
elongin B and elongin C respectively; Cul2, cullin 2;
Ub, ubiquitin. 

          Adapted from Sufan et al., 2004 

 

In human there are in total three HIF-α genes: besides HIF-1α there are the 

homologues HIF-2α (also called EPAS1 and MOP2) and HIF-3α, which have structural 

similarities but seem to have different functions (Park et al., 2003). While HIF-1α is 

ubiquitously expressed, HIF-2α expression is e.g. high in the mouse lung, where it has been 

implicated in the development of the tubular system, and in vascular endothelial cells 

where it is involved in vascular remodelling (Wiesener et al., 2003; Brusselmans et al., 2001; Jain et 

al., 1998; Tian et al., 1997). Interestingly, in the kidney both HIF-1α and HIF-2α are abundantly 

expressed, but only HIF-2α overexpression promotes growth of renal carcinoma cells and 

its inhibition is sufficient to suppress this growth (Kondo et al., 2002 and 2003). Therefore, 

although HIF-1α and HIF-2α are very similar, also binding as dimers with HIF-1β the same 

DNA sequences, they might have a different tissue or cellular expression resulting possibly 

in activation of different target genes. The fact that both HIF-1α- and HIF-2α-knockout 

mice have been shown to be embryonically lethal suggests that the two genes actually have 

distinct functions (Iyer et al., 1998; Ryan et al., 1998; Tian et al., 1998; Peng et al., 2000). HIF-3α is 

the least characterized of the three HIF-α subunits and is unique as the gene gives rise to a 

multitude of splice variants and lacks the N-TAD (Maynard et al., 2003). One of these 

alternative splice variants of HIF-3α, the inhibitory PAS domain protein (IPAS), has been 

shown to act as a dominant negative regulator of HIF-1α and HIF-3α might therefore 

generally act as an antagonist of the HIF system (Makino et al., 2002).  
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The dysregulation of the HIF transcriptional cascade has extensive effects that 

make it difficult to distinguish whether, and to what extent, observed matrix-related 

abnormalities in VHL-defective renal carcinoma cells [including abnormal fibronectin 

assembly, defective formation of fibrillar adhesions and changes in branching 

morphogenesis and migration (Esteban-Barragan et al., 2002; Kamada et al., 2001; Davidowitz et al., 

2001; Koochekpour et al., 1999; Ohh et al., 1998)] represent effects on pathways that are related or 

distinct from HIF. In C. elegans it has now been shown recently, by studying and 

comparing effects of VHL inactivation on gene expression patterns in wild-type versus 

HIF1-defective backgrounds, that there are HIF-dependent and –independent effects, 

linking a HIF-independent VHL pathway with extracellular matrix function (Bishop et al., 

2004). 

 

1.3.5.2 Other targets of the VCB-Cul2 E3 ligase complex   
 
Additional potential targets of the VBC-Cul2 E3 ligase complex may be: 

• the atypical protein kinase C (aPKC) isoforms λ αnd ζ that have been shown to 

bind to VHL though its β-domain. At least for PKCλ it has been shown that VHL 

as part of the E3 ligase complex mediates its ubiquitination (Okuda et al., 1999) 

• the VHL-interacting de-ubiquitinating (VDU) enzymes 1 and 2 ( Li et al., 2002) 

• the seventh subunit and the large subunit of RNA polymerase II  (Kuznetsova et al., 

2003; Na et al., 2003) 
 
1.3.6 Other functions of VHL 
 
VHL role in transcripton (beyond HIF) 

Apart form the hypoxia-responsive pathway pVHL is capable of regulating the 

transcription of certain other genes independently of HIF. Among these are the 

transcription factor SP1 (Rafty et al., 2002; Cohen et al., 1999) and the pVHL-associated KRAB-

A domain-containing protein (VHLaK) transcription repressor (Li et al., 2003). 

 

VHL role in CNS development 

Investigation of the putative role of VHL in the CNS development by using rodent 

progenitor cells showed that neuronal differentiation is induced by VHL gene transduction 

and correlates with pVHL-expression (Murata et al., 2002; Kanno et al., 2000). In this specific 

experiment a VHL mRNA antisense oligonucleotide approach inhibited the CNS 
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progenitor cell differentiation and upregulated their cell cycle fitting to a putative role for 

VHL in cell-cycle control as also discussed in the next paragraph. 

 

Link between pVHL and cell-cycle control 

A potential involvement of VHL in cell cycle control was suggested as it has been shown 

that cells lacking pVHL, such as the renal cell carcinoma cell line 786-O, overexpress 

cyclin D1 and downregulate the cyclin-dependent kinase (cdk) inhibitor p27 and exhibit an 

impaired ability to exit the cell cycle following serum withdrawal (Bindra et al., 2002; Pause et 

al., 1998). Moreover, forced overexpression of pVHL leads to upregulation of p27 (Kim et al., 

1998). But up to this point no evidence was given that there is a direct link between VHL 

and p27. Moreover different results are emerging making it difficult to understand this 

potential link (Goda et al., 2003, Wang et al., 2003). 

 

Link between VHL and the extracellular fibronectin matrix 

Renal cell carcinoma cells lacking VHL are deficient in proper fibronectin matrix assembly 

and VHL has been shown to associate directly with fibronectin in order to promote proper 

matrix assembly (Esteban-Barragan et al., 2002; Ohh et al., 1998). This association is somehow 

dependent on the neddylation of VHL as a neddylation-defective pVHL mutant fails to 

promote proper fibronectin matrix assembly (Stickle et al., 2004).  

Type 2C mutant, predisposing solely to pheochromocytoma, have been linked to 

fibronectin assembly, as their binding capacity to fibronectin is impaired while the E3 

ubiquitin ligase complex is functional. This would actually suggest that these would be 

gain-of function mutations as type1 VHL disease patients have no or a low risk for 

pheochromocytomas (Hoffman et al., 2001). 

 
Link between VHL and tumour growth and metastasis 

pVHL has an effect on matrix metalloproteinases (MMPs) and their tissue inhibitors of 

matrix metalloproteinases (TIMPs), which is independent of the hypoxia-responsive 

pathway. Loss of VHL function regulated negatively TIMPs, such as TIMP2, while 

upregulating MMPs (2 and 9) (Koochekpour et al., 1999). As MMPs are important in 

angiogenesis, morphogenesis and tissue remodelling and have been associated with cellular 

invasiveness (Lafleur et al., 2003), the regulation by VHL attributes a role to VHL in tumour 

growth and metastasis. In addition lack of functional VHL has been associated with 

overproduction of carbonic anhydrases 9 and 12 (CA9 and CA12), which favour the 
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growth and invasive properties of tumour cells by their involvement in the acidification of 

the tissue microenvironment (Ivanov et al., 1998). 

  
Link between VHL and microtubules 

VHL has been recently shown to bind to and stabilize microtubules (Hergovich et al., 2003) 

and even more recently it has been proposed that VHL changes the behaviour of MTs 

dependent on their subcellular localization (Lolkema et al., 2004). This implies a role for VHL 

in cellular processes such as migration, polarization, and cell-cell interactions.  

 

1.4 mVHL-the mouse homologue of VHL 
 
The VHL gene sequence has homologues in the nematode worm C. elegans (Woodward et al., 

2000) and in Drosophila (Adryan et al., 2000; Aso et al., 2000) and it is highly conserved in 

primates and rodents. Sequence conservation is particularly high across regions known to 

be involved in binding to other proteins or in maintaining the pVHL structure, and 

conservation of function has been confirmed in Drosophila. 

The murine VHL gene also gives rise to two proteins, pVHL25 and pVHL21, which, 

in contrast to the human homologue, have only one acidic repeat within the N-terminal 

19aa that distinguishes them (Gao et al., 1995). 

 Several groups have attempted to develop a mouse model that mimics the 

phenotypic features of VHL disease. The complete VHL knockout published in 1997 

revealed an essential role for pVHL in development as homozygous animals died between 

day E10.5-E12.5 due to vascular abnormalities in the placenta. Heterozygous mice on a 

C57BL/6 background though were phenotypically normal (Kleymenova et al., 2004; Gnarra et 

al., 1997). Heterozygous VHL mice on a BALB/c background were later shown to develop 

blood vessel tumours in the liver (hepatic hemangiomas) (Haase et al., 2001) and this implies 

that the strain background must have an impact on the observed phenotypes. To avoid 

embryonic lethality Haase et al. utilized Cre/loxP site-specific recombination using an 

albumin promoter driven Cre recombinase to conditionally inactivate the VHL gene in the 

liver. They could confirm that homozygous deletion of VHL in the liver resulted in hepatic 

tumours leading to death at 6-12 weeks (Haase et al., 2001).  However no other organ was 

affected in this conditional VHL knockout model.  

In another attempt to produce a VHL conditional knockout mouse model that more 

closely mimicked human VHL disease a human β−actin promoter-driven cre transgenic 

mouse that expresses cre in a mosaic pattern in multiple organs was utilized (Ma et al., 2003). 
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In this case loss of pVHL resulted in an extensive abnormal vascular phenotype in multiple 

mouse organs, which appears consistent with the ability of pVHL to control the expression 

of genes whose product participate in angiogenesis, a crucial stage in tumour progression.  

Recently it has been shown that VHL has a crucial role in endochondral bone 

development by conditional inactivation of murine VHL in all cartilaginous elements 

(Pfander et al., 2004). The mice were viable, but grew slower than control littermates 

developing a severe dwarfism. VHL is therefore necessary for normal chondrocyte 

proliferation in vivo. This is in contrast to the idea that VHL actually helps cell cycle exit. 

However these findings are consistent with another report that lack of pVHL inhibits cell 

proliferation in a teratocarcinoma model (Mack et al., 2003). It is therefore possible that 

pVHL actions on the cell cycle vary in different cell types. 

In the thesis presented herein we first tried to create a conditional VHL mouse 

where exon 1 of VHL would have been flanked by loxP sites (see also chapter 3), a so-

called floxed VHL mouse. Unfortunately in our case it didn’t work out, but it was 

published at the same time by Haase et al.. The availability of these floxed VHL mice 

allowed us to create a conditional VHL knockout model in the brain with severe impacts on 

the brain development as shown in chapter 9. 
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Chapter 2 
 

The Retina and Cerebellum 
-A closer look at two tissues in the context of VHL disease- 

 
VHL disease is characterized by a defined subset of tumours that can be found only in 

specific tissues (as presented in chapter 1). Given the fact that VHL is expressed in a 

multiplicity of tissues, a broad distribution of tumours arising from mutations in the VHL 

signalling axis would be expected. Nevertheless this is not the case with the retina and 

cerebellum being primarily affected in VHL patients. It is thus likely that the tissue context 

is a major factor dictating tumour formation driven by VHL inactivation. 

To investigate in more detail the VHL protein expression pattern in specific tissues 

we decided to focus on the retina and the cerebellum, as both tissues can be affected by the 

same type of blood-vessel tumour, a so-called hemangioblastoma, and as this type of 

tumour is among the most common and widespread features of the VHL disease. We hoped 

to gain more insight into possibly tissue-specific expression and roles of VHL that would 

allow hypotheses about the origin of hemangioblastomas to be put forward, as this is still a 

matter of debate. The results of this expression study are presented in chapter 8, whereas 

this chapter is meant to give a short overview of the retina and the cerebellum and their 

respective development, especially in the mouse.  

 

2.1 The Retina 
 
The retina is a thin sheet of neural tissue lining the back of the eye, which is involved in 

light detection (FIG. 9). It consists of seven major cell types, six types of neurons and one 

glial cell type, organized into three main cellular layers: the outer nuclear layer (ONL) 

comprising the nuclei of the rod and cone photoreceptor cells, the inner nuclear layer (INL) 

comprising the nuclei of interneurons (such as bipolar, horizontal and amacrine cells) and 

Müller glial cells, and the ganglion cell layer harboring the ganglion cells (GCL). The 

situation in the retina is even more complex than depicted here as all of the seven major 

cell types have in turn subtypes. So in the end mammalian retinas contain approximately 55 

distinct cell types all serving unique roles in the intricate circuitry of the retina (Masland, 

2001). 
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Figure 9. Overview of the morphology of the eye and focus on the retina. On the left a schematic sagittal section through an 
eye is depicted. From the top: the RPE is a non-neuronal cell layer whose apical processes surround the outer segments of the 
photoreceptor cells, namely rods and cones. Rods and cones stretch over three layers named the outer segment, the inner segment and the 
ONL. The outer segment herein contains stacks of membranous discs rich in the visual pigment rhodopsin, the inner segment contains 
the machinery of the cells (like the mitochondria, golgi apparatus and endoplasmic reticulum) and the ONL the nuclei. The OPL layer 
contains many axons of horizontal cells and the dendritic trees of bipolar cells, whose nuclei are found together with nuclei of the 
amacrine and Müller glial cells in the INL. Bipolar and amacrine cells extend their axons also into the IPL. In the GCL a second 
population of amacrine cells can be found together with the ganglion cells. And finally, the ONF consists of axons of the ganglion cell 
layer that make up the optic nerve and ultimately carry retinal signals into the brain.  
 

 The retina is able to receive a light signal that is focused on its surface and convert 

this signal to a neural message, which is then conducted to a cortical area of our brain 

responsible for sight. Light passing through the cornea is focused by the lens on the outer 

segments of the rod and cone photoreceptors in the ONL. After the absorption of various 

wavelengths of light by the photoreceptors, the information gets transmitted to the bipolar 

neurons found in the INL that integrate this information and transmit the signal to the 

ganglion cells, which in turn send the information through the optic nerve to the brain for 

higher order processing. The horizontal cells and the amacrine cells, which provide lateral 

connections in the INL, can modulate these direct signaling circuits.  

The cone photoreceptor cells function in bright light amplitudes and are responsible 

for colour vision, whereas the rods are sensors of dim light and do not discern colour. 

Human vision relies heavily upon cones, of which there are three types-blue, green and red- 

and uses only one variety of rod photoreceptor. By contrast mice and rats rely almost 

entirely on rod-mediated vision. Approximately 76 % of all cells in the mouse retina are 

photoreceptors and about 97 % of these are rods. In addition mice also don’t have the 

centrally localized cone-rich region named the fovea normally found in humans in the 

center of a yellowish spot called macula (Morrow et al., 1998). Among the various cell types 

that can be found in the inner nuclear layer bipolar cells make up ca. 41 % of all cells in the 

layer, amacrine 39 %, Müller cells 16 % and horizontal cells 3 % (Jeon et al., 1998). 
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The one non-neuronal cell type found in the retina, the Müller glial cell, plays very 

important roles in supporting neuronal survival and information processing and will be 

elucidated further in chapter 2.1.1. 

 

2.1.1 Müller glial cell 
 
The vertebrate retina contains a specialized and very unique type of glial cell, the Müller 

glia, which spans the entire thickness of the retina contacting every type of neuronal cell 

body and process (FIG. 10). As a reflection of this morphological relationship, the Müller 

glial cells play a crucial role in supporting neuronal survival and information processing 
(for reviews Newman & Reichenbach, 1996; Bringmann & Reichenbach, 2001).  
Müller glial cells:  

1)   are responsible for the structural stabilization of the retina 

2) regulate the extracellular homeostasis of relevant ions, 

including pH, and of the water content of the extracellular 

space  

3) deliver trophic substances to neurons and remove metabolic 

end-products 

4) metabolize glucose to lactose, which is preferentially taken up 

by photoreceptors as a source of energy for their oxidative 

metabolism 

5) play a crucial role in the glutamate-glutamine cycle within the 

retina as glutamate is degraded in Müller glial cells leading to 

(among others) synthesis of glutamine by the glutamine 

synthetase and to synthesis of glutathione Figure 10. Drawing of a
Müller glial cell
depicting its positioning
in the context of the
retinal tissue. 
             Dyer & Cepko, 2000

6) act as intra-retinal modulators of immune and inflammatory 

responses 

7) release VEGF in reponse to hypoxia and induce neovascularization of the retina          
(Eichler et al., 2000)  

 

Interestingly, virtually every alteration, injury or disease of the retina is associated 

with morphological, cellular and molecular changes of Müller glial cells, a process called 

reactive gliosis. This process is characterized by proliferation, changes in cell shape due to 

alteration in intermediate filament production, changes in ion transport properties and 

secretion of signaling molecules such as vascular endothelial growth factor (VEGF). In 
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response to experimental retinal injury, Müller cells have been shown to down-regulate 

their expression of the tumour suppressor protein p27Kip1 (which is expressed exclusively in 

this retinal cell type after differentiation, see also chapter 2.1.2), resulting in Müller cell 

proliferation and suggesting that post-mitotic Müller glia have an intrinsic requirement for 

p27 in maintaining their differentiated state (Dyer and Cepko, 2000). The proliferation initiated 

by p27 downregulation is transient and reaches a maximum 24 hours after injury. Then 

proliferation ceases due to downregulation of cyclin D3, which is accompanied by 

upregulation of GFAP (glial fibrillary acidic protein). Gliosis is extremely important for the 

protection and repair of retinal neurons and Müller cells are also potential sources for 

neural regeneration within the postnatal retina (Fischer & Reh, 2003 and 2001) as they retain 

their capability to dedifferentiate and proliferate. 

In contrast to the wealth of information available regarding Müller cell function, 

there are several areas where current knowledge of Müller cell biology is rudimentary as 

e.g. very little is known about the mechanisms concerned with Müller cell development 

and determination, or the actual role of Müller cells in retinal development. In addition 

there is also a scarcity of knowledge as to whether there is a direct involvement for Müller 

glial cells in retinal disorders. 

 

2.1.2 Development of the retina 
 
The retina develops as an outgrowth of the neural tube known as the optic vesicle and is 

accomplished by postnatal day P8 in the mouse. By E9.5 the fates of the inner and outer 

layers of the optic cup are clearly different. While the outer layer remains as a monolayer 

of cuboidal cells that will give rise to the pigment layer of the epithelium, those cells in all 

but the periphery rapidly multiply giving rise to multilayers of cells which differentiate to 

form the various components of the neural retina. Retinal progenitors are initially arranged 

as a pseudo-stratified neuroepithelium, whereby cells contact both surfaces of the optic 

cup. During mitosis cells forego these contacts and divide at the outer surface. 

 In the murine retina the diverse retinal cell types derive from a pool of proliferating 

pluripotent precursor cells and are generated by spatial and temporal differentiation during 

development in a characteristic order (Ahmad et al., 1999; Turner & Cepko, 1987). Birth-dating 

studies have shown that retinal cell types are generated in overlapping but well-defined 

intervals with ganglion cells, cone photoreceptors, amacrine cells, and horizontal cells 

generated prior to birth and bipolar neurons and müller glia generated after birth (FIG. 11) 
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(Young et al., 1985). The formation of rod 

photoreceptors occurs pre-and postnatally 

with a peak of genesis coincident with the 

day of birth in the mouse.  

The “competence model” of retinal 

cell fate specification states that the 

instrinsic ability (the competency) of 

mitotic retinal progenitor cells to produce 

a particular cell fate in response to the 

retinal environment changes continuously throughout development (Livesey et al., 2001; Cepko 

et al., 1996). Once a cell passes through a particular developmental stage, it is only 

competent to become “later born” cells. In addition to the contribution of intrinsic 

determinants of cell fate specification extrinsic factors play also a major role.   

Figure 11 . The course of retinal histogenesis. 
  

Terminal cellular differentiation is thought to be associated with irreversible cell 

cycle exit. The proportion of cells that exit the cell cycle at each developmental stage must 

be regulated carefully, because if too many cells exit the cell cycle during early stages of 

development there might be an increase in the proportion of early-born cell types at the 

expenses of later-born cell types. The decision to divide or to exit the cell cycle occurs 

during the first gap phase of the cell cycle, G1, which is governed by cyclin-dependent 

kinases (CDKs), whose activity can be negatively regulated by so called cyclin-dependent 

kinase inhibitors (CDKI) (Sherr and Roberts, 1999). The cyclin-dependent kinase inhibitor 

protein, p27Kip1 , among other members of the Cip/Kip familiy of CDKIs such as p57Kip2, 

has been shown to be expressed in the retina in a temporal pattern coincident with the onset 

of differentiation of most retinal cell types (Cunningham et al., 2002; Dyer and Cepko, 2001; Levine 

et al., 2000). In addition overexpression of p27Kip1 has been shown to inhibit proliferation of 

progenitor cells.  

Accompanying and following retinal cell differentiation, apoptosis can be observed 

in the retina (Voyvodic et al., 1995). In this context, apoptosis presumably plays an important 

role in establishing the proper ratios of the cell types and in fine-tuning the retinal 

connections. 

Little was known of the cell and molecular biology of progenitor cells, or of the 

transcriptional networks that define their intrinsic states that change during development. 

But detailed analysis of genes expressed in these cells and the identification of expression 

profiles characteristic for this cell type are currently emerging (Blackshaw et al., 2004 and 2001; 
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Livesey et al., 2004). As mentioned already above, the p27 and p57 CDKIs are e.g. expressed 

at different times during the cell cycle in the mouse retina suggesting that this reflects their 

different roles in regulating retinal progenitor cell cycle exit. In addition retinal cells use 

different components of the cell cycle machinery over the course of development, e.g. 

cyclin D1 during embryonic and perinatal stages, whereas cyclin D3 is expressed in a 

restricted population of progenitors towards the end of retinal histogenesis. A number of 

homeodomain transcription factors such as Chx10 and Six3 have also been identified 

shown to regulate the proliferation of retinal progenitor cells and the specification of cell 

fate (Dyer, 2003). Crx, an otx-like homeobox gene, has been shown to be expressed in 

photoreceptor and regulates photoreceptor differentiation (Furukawa et al., 1997). And 

regarding gliogenesis, recent studies demonstrated that activation of the Notch signaling 

pathway can play a role in regulating Müller cell development (Furukawa et al., 2000; Vetter & 

Moore, 2001). Furthermore p27, apart from regulating proliferation of Müller glia in response 

to stress or injury, can probably also promote their development, although there are some 

contrasting results from xenopus and mice (Vetter & Moore, 2001).  

In summary, despite all these recent findings, there are still many open questions 

regarding the mechanism underlying the coordination of proliferation and cell fate 

specification to be addressed in order to attain a better understanding of retinal 

development.  

 

2.2 The Cerebellum 
 
The cerebellum is the primary center for fine motor control of movement and posture found 

in the central nervous system (CNS). It is a relatively simple 

CNS structure with well-defined anatomy and physiology and 

can be morphologically divided into a central vermis, which is 

flanked by lateral hemispheres (FIG. 12). Both the vermis and 

hemispheres are further subdivided by a series of parallel fissures 

defining a conserved pattern of folia.  

 The mammalian cerebellum consists of deep centrally 

located neurons, referred to as the deep nuclei, and a peripheral 

cortex. This cortex contains two principal neuronal subtypes, the Purkinje cells, which are 

inhibitory, γ-aminobutyric acid (GABA) releasing neurons, and the cells of the internal 

granular layer (IGL), the glutamate-releasing, excitatory granule neurons. Each neuronal 

Figure 12. Dorsal view of an
adult mouse cerebellum. The
cerebellar vermis (CV) and the
hemispheres (CH) are
indicated. 

           Chizkov et al., 2003
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cell type has a stereotypic and distinct morphology and is located in a discrete lamina 

within the cerebellum (FIG. 13). 
 

Figure 13. Sagittal section through a mouse 
cerebellum. The outer portion of the cerebellum is 
composed of grey matter in two layers: the molecular 
layer (ML; outer, lighter) and the granular layer (GL; 
inner, dark; also called internal granular layer to 
distinguish from the external granular layer present during 
development). The white matter is seen in the middle of 
the cerebellum (WM). Purkinje cells (PL) are large 
neuronal cells with numerous dendrites, which mainly 
form the border between the molecular layer and the 
internal granule cell layer. The star in the left picture 

arks cells of the deep cerebellar nuclei 
   

 

The connections between the principal neu

circuitry that is repeated throughout the cerebellum

movement and the position of the body is se

‘precerebellar system’, a group of nuclei in the 

brainstem. These nuclei in turn project to granule 

cells, which communicate with the Purkinje cells. In 

parallel the inferior olivary nucleus from the brain 

stem projects directly to Purkinje cells. The 

Purkinje neurons then provide the primary output 

from the cerebellar cortex by projecting to the deep 

cerebellar nuclei, which then finally project to the 

cerebral cortex, mediating the fine control of motor 

movements and balance. In addition to the already-

mentioned cerebellar neurons there are three additional classes: Golgi cells, which contain 

GABA and glycine and provide feedback inhibition to granule neurons, and the GABA-

releasing stellate and basket cells, which modulate Purkinje cell output.  

 The murine cerebellum contains ca. 108 granule cells, which control the activity of 

the Purkinje cells. These cells are critical for normal cerebellar function as mutant mice 

with a loss of granule cells suffer from severe ataxia (Hamre & Goldowitz, 1997). 

 

2.2.1 Development of the cerebellum 

uch of what is known about the cerebellum comes from information provided by 

investigations in mice, especially by using mutant mice. Given the high degree of 

m

rons are arranged in a stereotyped 

 (FIG. 14): sensory information about 

nt to the cerebellum via the so-called 

Figure 14. The circuitry of t
Wang & Zoghbi, 2001 
he cerebellum.

 
M
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conservation of cerebellar anatomy and function between human and mouse, an 

understanding of mouse cerebellar development has provided insights into human 

cerebellar development.  

The cerebellum develops from the dorsal region of the posterior neural tube and the 

neural populations of the cerebellum arise from at least two different germinal zones. 

While most of the cells, including the Purkinje cells, arise from the ventricular germinal 

matrix or zone (VZ), granule cell precursors come from a specialized germinal matrix 

called the rhombic lip. The proliferating cells of the rhombic lip, which are committed to 

become external granular layer (EGL) neurons, start by E13 to disperse rostrally over the 

surface of the cerebellar anlage, where they establish the EGL. The EGL contains dividing 

granule neuron progenitors and proliferation of precursors continues until P15, when the 

layer finally disappears. By E18.5 the EGL is normally about eight cells thick. Starting at 

birth and until day P20, when maturation of the cerebellum is complete, the post-mitotic 

granule cells leave the EGL to migrate inwards in order to form the internal granular layer 

(IGL). In the IGL the granule neurons then terminally differentiate. Migrating neurons are 

probably guided by Bergmann radial glia fibers through the molecular layer and, before 

reaching the IGL, they pass through the Purkinje neuron layer (PL) containing the cell 

bodies of Purkinje neurons and Bergmann glia. Purkinje cells appear at around E13, at 

which time they exit the cell cycle and migrate along the radial glial fibre system to the 

cerebellar anlage. The whole development is depicted as a schematic drawing in figure 15. 

 

 

 

 

 

 

 
Figure 15. Schematic diagram of the developing cerebellum. During early developmental stages (left, E13 and E16), 
both of the principal neuron classes are specified. While Purkinje cells become postmitotic (filled circles) and migrate 
through the wall of the cerebellar anlage, precursors of the granule cell (unfilled circles) sweep across the roof in a 
morphogenetic movement. In the perinatal period (third panel from left, P6), granule cells become postmitotic and 
migrate inward, along the Bergmann glia, to assume a position deep below the Purkinje cell. In the adult (right), the 
pattern of connections of the granule neuron and the Purkinje cell (coronal plane) are established. Granule cells extend 
parallel fibers, which form synaptic connections with the dendrites of the Purkinje cells. EGL, External germinal layer; 
PL, Purkinje cell layer; VZ, ventricular zone; WM, white matter; IZ, intermediate zone: IGL, internal germinal layer. 
                                               Adapted from Hatten, 1999 
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The signals and the mechanism underlying control of granule cell proliferation and 

transition to terminal differentiation are starting to be uncovered and imply a variety of 

factors that are expressed at specific points either during proliferation, exit of cell-cycle, 

migration and terminal differentiation (reviews: Komuro & Yacubova, 2004; Sotelo 2004; Chizhikov 

& Millen, 2003; Kagami & Furuichi, 2001; Wang & Zoghbi, 2001; Hatten et al., 1999; Goldowitz & Hamre, 

1998). For example in the outer EGL, where only proliferating precursor cells can be found, 

there is a strong expression of a factor termed Math1, that has been shown to be required 

for the genesis of granule cells (Jensen et al., 2004; Ben-Arie et al., 1997). When granule neuron 

precursors then start exiting the cell cycle, becoming post-mitotic, they are in a state of pre-

migration and can be found more in the inner EGL. The change from proliferating to post-

mitotic state has been shown to be affected by the cyclin-dependent kinase inhibitor p27, 

which is expressed in the inner two third of the EGL, partly overlapping with the 

proliferating pool of granule cell precursors (Miyazawa et al., 2000). Mice lacking p27 have an 

increased level of proliferation and therefore a larger cerebellum and this further 

emphasizes the need of p27 expression for granule cell precursors to start differentiating. In 

addition it has also been shown that mature granule cells in the inner granular layer express 

p27 again, whereas this expression cannot be detected during the migration of the 

postmitotic precursor cells through the molecular layer into the IGL. 

But in addition to these intrinsic factors also extrinsic factors play a role. As an 

example, Sonic hedgehog (SHH) secreted by the Purkinje cells plays an important role in 

the development of granule cells (Lewis et al., 2004; Dahmane & Altaba, 1999). Furthermore, 

CXCR4, a recently identified target gene of HIF, has been shown to be present on granule 

cell precursors where it plays a role together with its ligand, stromal-derived factor (SDF1) 

(expressed from pial cells) to enhance the SHH induced proliferation of granule cell 

precursors (Staller et al., 2002; Klein et al., 2001).  
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Chapter 3 
 

Generation of mutant mouse strains by gene targeting 
 
Gene targeting techniques have revolutionarized the field of mouse genetics and allowed 

the analysis of diverse aspects of gene function in vivo in the context of the whole animal. 

Defined as the targeted alteration of a specific DNA sequence in its genomic locus, ‘gene 

targeting’ occurs as a result of a process called ‘homologous recombination’ in which two 

DNA entities, with a high sequence homology, interact and recombine, i.e. exchange 

genetic information by adding or replacing their sequence elements. Gene targeting by 

homologous recombination can lead to inactivation or alteration of gene expression 

(“knock-out” /loss of function or “knock-in” /gain of function mutation respectively). By 

this means it has therefore become possible to engineer mice with specific genetic 

alterations that have become an invaluable new tool to produce mouse models of human 

inherited diseases (for reviews Mueller, 1999).   

Nowadays, a routinely used 

technique to modify the mouse genome at 

any chosen locus employs homologous 

recombination in embryonic stem (ES) 

cells (Capecchi, 1989; Evans and Kaufmann, 

1981; Martin, 1981). ES cells are derived 

from pluripotent, uncommitted cells of the 

inner cell mass (ICM) of a pre-

implantation embryo, called a blastocyst, 

collected from a donor mouse 3.5-days 

p.c. (post coitum; after fertilization) (FIG. 

16). These cells behave like ordinary 

somatic cells when cultured in vitro and 

prevented from differentiating by culturing 

on an irradiated feeder layer of fibroblasts, 

which secret Leukemia Inhibitory factor 

(LIF). LIF is very often also supplemented 

additionally with the medium. 

Inner cell mass

Blastocoel

Trophectoderm

Irradiated feeder cells

Inner cell mass
(ICM)

Blastocoel

Troph

Irradiated feeder cells

Embryonic stem cellsEmbryonic stem cells

Figure 16. Establishment of pluripotent Embryonic Stem
(ES) cells. A blastocyst is placed on a feeder cell layer,
which provides a matrix for attachment and prevents ES cell
differentiation. As the blastocyst is cultured, the outer layer
of differentiated cells (trophectoderm) attaches and spreads,
exposing the inner pluripotent cells (inner cell mass or
ICM). The ICM is then extracted, mechanically dissociated,
and the resulting cell clumps transferred onto fresh feeder
cells. After culture, colonies, which exhibit appropriate
morphology, are separated, dissociated into single cells, and
seeded onto a feeder layer. Those cells that form ES
colonies are further passaged to obtain permanent cell lines 
                    Drawing adapted from cba.musc.edu/COBRE/ CORE-B/Resources-B.html
         Text adapted from “Manipulating the mouse embryo-A laboratory manual”, Hogan et al., 1994
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Upon injection into a normal blastocyst though, ES cells retain their full 

developmental potential, contributing efficiently to both somatic and germ-line tissues 
(Bradley, 1984).  

A common strategy used nowadays to generate mutant mice strains involves the 

following steps, which will be subsequently discussed more in detail (FIG. 17):  

 

1. Construction of a targeting vector containing regions of identity with the mouse 

chromosome (homology arms), one or two selectable markers [generally a cassette 

that confers neomycin (G418) resistance] and planned modifications that ablate or 

alter the expression of the targeted gene. 

 

2. Introduction of the linearized targeting vector into mouse ES cells, derived from 

mouse strain A with coat color A [usually 129, therefore white or agouti 

(brown)], by electroporation (Thomas & Capecchi, 1987).  

 

3. Selection and screening by PCR and Southern for those rare targeted ES clones that 

have integrated the planned modifications by homologous recombination.  

 

4. Microinjection of targeted ES cells into host blastocysts obtained from mouse 

strain B with coat color B (e.g. C57BL/6, therefore black). The blastocysts then 

get re-implanted into the genital tract of a pseudopregnant mother and are allowed 

to grow to term. 

 

5. Among the offspring there will be so called chimeras, mice containing two 

populations of cells, namely those derived from the blastocyst (B) and those derived 

from the ES cells (A) and which can be easily spotted by the coat color as this will 

be a mixture of A and B.  

 

6. Crossing the chimeric mice with wild-type animals, and subsequent intercrossing of 

the heterozygous animals in the F1 generation finally leads to the generation of 

homozygous animals carrying the desired mutation in their genome. But this only 

happens in case the in vitro modified ES cells contributed to the germ-line of the 

chimeric animals. 
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Figure 17. Text on the following page.
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5

4

Isolation and Characterization of a genomic clone harboring the gene of interest that
is going to be mutated. 

3

Embryonic stem (ES) cells are obtained from 3.5 day pre-implantation embryos 
(blastocysts) collected frorm donor mice.  

2

Wild-type mice (+/+), having a coat colour referred to as coat colour A, are mated
and the female will be the donor of the pre-implantation embryo 3.5 days after
fertilization. In the example depicted here the coat colour is white as e.g. from 129
mice. 

1

Construction of the TARGETING VECTOR- a piece of DNA that carries a gene or
DNA sequence of interest which has been modified and has integrated a positive (neo)
and a negative (tk) selection marker. In this case the positive selection marker has
substituted exon 2. More about selection markers see chapter 3.1. 
Among the offspring, chimeric animals are identified by coat colour, which will be a
mixture of the ES cell donors with coat colour A and blastocyst donors with coat
colour B. The mouse depicted here is strongly chimeric as most of its skin tissue is
derived from coat colour A. 

 Implantation of the blastocysts into a pseudopregnant foster mother.  

Injection of the targeted ES cells into the host blastocyst. In the illustration the
blastocyst is immobilized on a holding pipette (on the left) so that the inner cell mass
(ICM) is positioned on the far left-hand side of the embryo. The injection needle on
the right side is releasing the cells slowly into the blastocoel cavity. 

Wild-type animals (+/+) from another strain than the donor mice for ES cells are
mated to obtain blastocysts. In this case animals with black coat colour (referred to as
coat colour B) could be used, like e.g. C57 BL/6 mice. 

By extensive screening by PCR and/or Southern blotting the ES cell clones, in which
homologous recombination has taken place, are identified and the clones expanded. 

ES cells that successfully incorporated the construct are selected for with antibiotic
treatment, e.g. with G418 (neo) or gancyclovir (tk). 

The linearized targeting construct is introduced into wild-type ES cells by electro-
poration, a process that delivers an electric pulse to the cells and enhances absorption
of the construct across the cell membrane. Once inside ES cells, the construct can
undergo recombination with the intact genome, exchanging the construct’s DNA for
that of the native DNA in a specific region.  
Chimeric mice, confirmed also as such by PCR and Southern, are crossed back to
wildtype mice. The offspring will be composed of mice having the same coat colour as
the ES cell donor (A) and mice having the same colour as the blastocyst donor (B). 50
% of the animals with colour A will be heterozygous for the mutated allele. These
germline chimeras are then interbred to generate homozygous mice (25 % of
offspring) 
10
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3.1 Design of targeting vectors 
 
As the substrate for homologous recombination in a gene targeting experiment, a targeting 

vector should be designed in such a way that it recombines with a specific chromosomal 

locus in order to mutate it. Targeting vectors can be classified as replacement or insertion 

vectors, depending on their linearization and on the subsequent end result occurring by 

homologous recombination leading either to the replacement of the chromosomal target 

sequences with the vector sequences or to the duplication of the genomic sequences (FIG. 

18). The most frequently employed vector type to date, especially for the generation of null 

mutants, has been the replacement vector.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 18. Classification of targeting vectors. (A) Replacement type vector. In this example the targeting vector is 
designed so that the second exon of a target gene is disrupted by a positive selection cassette harbouring a neomycin 
resistance gene and a HSV thymidine kinase gene (tk) is positioned outside the area of homology. After homologous 
recombination (HR) with the linearized vector the tk is lost and in the targeted locus exon 2 has been replaced with neo. 
PCR primers P1 and P2 can be used to screen for HR. (B) Insertion type vector. The vector is linearized within th region 
of homology between exon2 and exon3 that carries a neo insertion as positive selection marker. HR leads to integration of 
vector sequences and partial duplication of genomic sequences. Thin lines represent plasmid backbone sequences; the 
exons are numbered; stippled lines indicate regions of homology. 
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When designing a targeting vector, the following factors are essential to allow 

homologous recombination to occur with a specific chromosomal locus and to enable 

facilitated localization of the rare recombinant ES cell clones:  

 
1) arms of homology: these are sequences having the same nucleotide sequence as the 

desired chromosomal integration site. Targeting vectors generally contain a so-

called short and a long arm of homology flanking the mutated region. In general, 

recombination rates increase with the length of total homology to about 10 kb, the 

minimum length of the short arm of homology being about 0.5 kb (Deng and Capecchi, 

1992).  

 
2) Selectable marker: Most integrations of transfected DNA molecules into genomic 

DNA occur at a low frequency rate and will normally be random (illegitimate 

recombination).  As only a small portion of these integration events (0,1-10 %) may 

occur by homologous recombination at the desired chromosomal locus, in order to 

maximize selection for these homologously recombined ES cell clones, the 

targeting vectors should include positive and negative selection markers (Mansour et 

al., 1988). Selectable markers require a promoter that is active in ES cells and 

relatively position-independent. 

POSITIVE SELECTABLE MARKERS selectable with 
Neomycin aminoglycoside phosphotransferase (neo) G418 (geneticin) 

puromycin (puro) puromycin 
Hygromycin B phosphotransferase (hyg) hygromycin B 

 
The most commonly used positive selection markers mentioned above are encoded 

by bacterial genes and confer resistance to drugs, therefore allowing a facilitated 

selection for ES cell clones that have stably incorporated the targeting vector DNA, 

though irrespective of its integration site. In addition, the introduction of the 

hypoxanthin-phosphoribosyltransferase (HPRT) gene in ES cells deficient for 

HRPT can also be used as a positive selection marker and in this case transfectants 

then need to be screened in HAT-medium (Matzuk et al., 1992). 

 
NEGATIVE SELECTABLE MARKERS selectable with 

HSV-ThymidineKinase (TK) FIAU, gancyclovir 
diphteria toxin A (DT-A) - 
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While positive selection markers are normally inserted in the targeting vector in 

between the two arms of homology, negative expression cassettes are mostly 

positioned at one or both ends of the vector. The main difference between these two 

selection types lies in the fact that a positive marker, when expressed, simply 

confers drug resistance, whereas the expression of a negative marker leads to cell 

death and its presence is therefore not wanted in the final homologous recombined 

ES cell. Cells expressing e.g. HSV-TK in presence of the nucleoside analogue 

gancyclovir {or FIAU=[1-(2-deoxy-2-fluoro-b-D-arabino-furanosyl)-5-iodouracil]} 

phosphorylate the latter and convert it into a toxic derivative, which finally kills the 

cells. The combined positive-negative selection, combining the ability to both 

positively select for stable transfectants as well as negatively select against random 

integrants can enrich for targeted events by up to 10-fold. The selection marker 

cassette should be removed after homologous recombination because of possible 

interference with the expression of neighbouring genes. 

 
3) Sequence identity should be maintained since it has been reported that 

recombination rates increase with usage of isogenic vector DNA (te Riele et al., 1992). 

This means that the targeting vector should be constructed from a genomic clone of 

the same genetic background as the ES cells to be used. The genetic background of 

the majority of available ES cell lines is 129. 

 
4) Linearization of the targeting construct is important for obtaining homologous 

recombinants. A single cutting site should therefore be available or made available 

at a site in the backbone of the plasmid, not within the homologous region or area 

of interest. 

 
Typically the creation of a targeting vector nowadays requires screening of a genomic 

library to obtain the gene of interest followed by restriction mapping. To design a cloning 

strategy the restriction mapping is necessary, also if the sequence is already available, to 

confirm the size of restriction fragments that will be needed for the subsequent cloning and 

for finding a possible unique site that will be needed for the linearization of the vector prior 

to transfection into ES cells. The cloning strategy normally involves numerous cloning and 

subcloning steps (e.g. see chapter 7, FIG. 28.). 

Recently a new method for a much more rapid generation of gene-targeting vectors 

was reported (Cotta-de-Almeida et al., 2003). The basis of this technology is to utilize strains of 
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E.coli that can efficiently carry out homologous recombination between short terminal 

homology regions on a linear PCR-derived fragment and sequences on a recipient plasmid. 

This strategy has been referred to as recombineering (for recombinogenic engineering). It 

involves identification of the genomic gene sequence of interest from publicly available 

databases and purchasing of an E.coli clone containing a BAC encompassing these 

sequences. Then, with the appropriately constructed template vector and the essential 

recombination machinery, the use of homologous recombination in E.coli can be used to 

manipulate directly the gene of interest in the BAC, avoiding numerous subcloning steps. 

The manipulated sequence within the BAC is then finally removed by identifying flanking 

restriction sites from the published sequence and under antibiotic selection the targeting 

vector is generated. 

 

3.2 The Cre/loxP recombination system 
 
The Cre/loxP recombination system 

originates form the bacteriophage P1 and 

provides nowadays the basis for the most 

versatile and widely applied strategy to 

introduce non-selectable mutations. The 

38 kDa enzyme Cre (causes 

recombination) catalyses the site-specific 

recombination between 34 bp sequences 

referred to as loxP (locus of crossover (x) 

in P1). The loxP sequence consists of two 

13 bp inverted repeats interrupted by an 8 

bp nonpalindromic sequence, the so-called 

spacer, which dictates the orientation of 

the overall sequence (FIG. 19A). When 

two lox P sites are placed in the same 

orientation, and at least 82 bp apart, Cre 

excises the so called ‘floxed’ sequence 

placed between them, leaving one loxP site 

within the genome whereas the second loxP 

is found on the excised circularised 

                    
Figure 19. The Cre/laxP recombination system and making
subtle mutations. (A) Structure of a loxP site (B) Cre-
mediated recombination reactions (C) Example of an intro-
duction of a point mutation and removal of selection markers
by Cre mediated recombination. Firstly, a replacement type
targeting vector is used to introduce a point mutation into exon
2 (white line and filled triangle). 
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fragment. If the two sites are oppositely orientated, inversion of the intervening DNA 

occurs (19B). To catalyse a recombination, Cre itself is sufficient and does not require 

additional co-factors. Cre has been shown to work in vitro as well as in various cells and as 

Cre does not have any endogenous target sequences it is more than suitable to be used in 

other species. In FIG. 19C an introduction of a point mutation is depicted. First, a 

replacement type targeting vector (exlained in FIG. 18A) is designed and used to introduce 

a point mutation into exon 2 (point mutation characterized by a fine white line within the 

exon marked from above with a little black triangle). As negative and positive selection 

cassettes the Diphtheria toxin A fragment (DT-A) and a neo-tk cassette are used 

respectively. Upon homologous recombination the DT-A fragment is lost in those cells that 

have integrated the vector in the right position, whereas if it was randomly inserted the DT-

A will kill the cells. Secondly, selection markers flanked by loxP sites are removed by Cre 

mediated recombination in ES cells leaving one loxP site in the genome, clones that lost the 

TK gene can be enriched by their resistance to FIAU. 

An alternative recombination system used, though with lower efficiencies, is the 

Flp/Frt recombination system from yeast, which is essentially the eukaryotic homolog of 

the Cre/loxP system (Dymecki, 1996; Meyers et al., 1998). Flp, a 423 amino acid monomeric 

peptide is very similar to Cre in that it requires no cofactors, uses a phosphotyrosine 

intermediate for energy, and is relatively stable. FRT is also similar to loxP in that it is 

composed of three 13 bp repeats surrounding an 8 bp asymmetric spacer region. The 

asymmetric region dictates whether excision (same orientation) or inversion (inverted 

orientation) of an intervening DNA sequence occurs after recombination.  

 

3.3 Screening and isolation of recombinant ES cells  
 
Following linearization of the targeting vector and transfection into ES cells, e.g. by 

electroporation, ES cell clones that survive positive (and negative) selection are identified, 

their DNA isolated, and investigated for the presence of a specific recombined allele. 

Verification of correct targeting is done either by polymerase chain reaction (PCR) and 

Southern blotting or by Southern blotting alone. The PCR analysis has the advantage that it 

can be done with minimal expansion of clones saving culture time/resources and helping to 

preserve the totipotency of the ES cells. It is therefore much quicker and provides results 

faster. In addition screening by PCR narrows down the number of putative positive clones 
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that then subsequently should still be confirmed by Southern in order to rule out the 

possibility of aberrant recombination products. 

If one wants to employ a PCR/Southern screening, the targeting vector will need to 

contain a short and a long arm of homology. A short arm of homology is generally in the 

range of 0.5-2 kb in size in order to be still amplifiable by PCR and detectable on agarose 

gels, whereas the long arm is generally in the range of 4-8 kb depending on a number of 

variables such as e.g. availability of sequence. A PCR screen ideally employs a primer 

adjacent to the region of homology (outside the short arm) and a second within the novel 

sequence within the targeting construct, e.g. the selectable marker as the positive selection 

marker is generally inserted at an asymmetric location near the short arm of homology. In 

this way only in the case that the two primer sites are juxtaposed by homologous 

recombination the correctly sized PCR product will be generated. 

Southern blotting analysis of the structure of the locus usually employs probes 

inside (internal, e.g. in the selection cassette) and outside (external 5’ and 3’ primers to 

check that precise recombination has occurred in both arms) of the targeting vector to 

exclude clones with aberrant recombination products. Appropriate restriction digests have 

therefore to be performed that should lead to the generation of diagnostic restriction 

fragments created by homologous recombination that can be easily distinguished from the 

endogenous copies. 

 If one decides to use only Southern blotting for screening, the homologous DNA 

should be more equally distributed among the two vector arms as aberrant recombination 

products are found more frequently using short arms. 

 

3.4 Production of chimeric mice 
 
Following the identification of the correctly mutated, in vitro manipulated ES clone, the 

latter gets amplified/expanded and then injected into the blastocoel of 3,5-days old mouse-

embryos called blastocysts. Approximately 10-20 ES cells are injected per blastocyst. The 

manipulated blastocysts are then in turn implanted into the uterine horns of day-3 

pseudopregnant recipient foster mothers, which have been obtained by mating females with 

vasectomized males. Ideally ca.12-16 blastocysts are transferred to a single foster mother 

meaning 6-8 per uterine horn. 

Following blastocyst injection, ES cells become incorporated within the developing 

inner cell mass (ICM) of the host embryo and contribute to the development of the 

different embryonic lineages in competition with the host cells. Some ES cells will migrate 
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to the genital ridge and become germ cells.  And as germ cells are derived from the same 

cell lineage that gives rise to the skin (primitive ectoderm), ES cells that have become germ 

cells will also contribute to the coat colour. Therefore to identify easily animals that 

harbour both host and ES cell contributions (so-called chimeras) blastocysts and ES cells 

from different mouse strain background are used. For example: ES cell contribution from 

the commonly used agouti (brown) 129 strain is readily detected in chimeras on the black 

background of C57BL/6 because these animals are patchy with black and brown areas.  

And the probability of germ cells originating from the implanted ES cells can be roughly 

equated with the degree of chimerism, meaning that in the above mentioned example a 

chimera with a high proportion of brown fur will have a high probability of transmitting the 

targeted gene to its offspring.  

Alternatively to blastocyst injection in order to generate ES cell/embryo chimeras, 

ES cells can also be injected into morula-stage (8 cell stage; 3 day old) embryos, or 

aggregated with morulae after removing the zona pellucida. In addition also tetraploid 

embryos may be used for injection or aggregation to make ES cell derived foetuses (Plagge 

et al). 

Most of the 129 derived ES cell lines are male and therefore germ-line transmission 

is usually through male chimeras. To establish a new mouse strain with ES-cell genotype, 

male chimeric animals are bred with wild-type females. As the chimeric animal will have a 

similar degree of chimerism in every tissue including the gonads, two types of progeny will 

be generated, e.g. in the example mentioned above the mating of the chimera with a BL6 

wild-type mouse will give black animals with BL6 phenotype and agouti (brown) animals 

with the 129 component. 50 % of these agouti animals will carry the mutation (only one 

allele was targeted) that was originally generated in the ES cells and therefore serve as 

heterozygous founders for a new mouse line. Agoutis with one targeted allele (+/-) should 

be identified by PCR (tail biopsy) and mated with each other to produce wild-type (+/+), 

heterozygous (+/-) and homozygous (-/-) animals for initial phenotyping. 25 % of the 

offspring will finally be homozygous harbouring the desired mutation on both alleles. 

 
 
3.5 Conditional Gene Targeting 
In contrast to the “conventional” gene targeting, that leads to inactivation or modification 

of a gene in all tissues of the body from onset of development throughout the whole 

lifespan, the “conditional” gene targeting is a restricted gene modification in the mouse, 

which is limited to either certain cell types (tissue-specific), to only a portion of its lifetime 

                      41



                                                                                                                                                       Gene Targeting   

(temporally-specific) or both. Conditional gene targeting approaches are particularly useful 

in cases where complete gene inactivation has been shown to lead to a lethal or otherwise 

adverse phenotype that therefore impedes a detailed analysis. Moreover, tissue specific 

gene inactivation may define physiological roles of the gene product of a widely expressed 

gene in certain tissues, without compromising other functions in the organism.  

The currently favoured method for conditional gene targeting in mice is operating 

with the Cre/loxP system (FIG. 20). The Flp/FRT would be an alternative to this 

recombinase system, but as its temperature optimum is ca. 28 °C whereas the mouse body 

temperature lies around 39 °C, Cre recombinase with a temperature optimum of 37 °C is 

much more suitable and efficient.   

 
Figure 20. Conditional knockout strategies: generation of targeted mice. In the first step, three loxP sites are 
introduced by HR into silent regions (e.g. introns) of a target gene (in this case two loxP sites flank the neo-tk selection 
cassette, the third one is upstream of exon 1). Upon Cre-mediated recombination in ES cells and FIAU selection, two 
different genomic deletions (type I and II, type III is not viable in FIAU) are obtained, depending on the loxP sites used. 
Type I deletions may represent non-functional alleles, whereas mice solely harboring two loxP sites in silent regions (type 
II deletion) should display no phenotype. These mice may then be crossed to Cre transgenic mice and double transgenic 
mice will undergo Cre-mediated recombination. 

 

 

Utilization of the Cre/loxP system for conditional gene inactivation or modification in vivo 

involves two lines of mice:  

1) A mouse line that has been generated using ES cell technology and that should give 

mice with so-called floxed alleles in all cells (FIG. 20). These mice should be 

phenotypically normal because the loxP sites were initially inserted into introns 

where they theoretically shouldn’t affect gene function.  
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2) The second line of transgenic mice is normally generated by standard oocyte 

injection techniques. These mice express Cre under the control of a transgenic 

promoter.  

Mating these two mouse lines should result in Cre-mediated gene disruption only in those 

cells in which the promoter is active (FIG. 21).   

 

 

 

 

 

 

 

 
 

Figure 21. Cre/lox Mouse Breeding. Mice with the Cre protein expressing in a specific cell type are bred with mice that 
contain a target gene surrounded by loxP sites. When the mice are bred, the cells carrying Cre will cause those cells to 
lose the target gene. 

 

 

Alternatively to the use of Cre transgenic mice the Cre gene has recently been delivered to 

somatic tissues by using Cre expressing adenoviral vectors or in even more recent times by 

lentivirus.  
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Chapter 4 
 

 Materials 
 
 
4.1 General Chemicals 
Reagent         Supplier 
Acetic acid        Merck 
Activated CH Sepharose 4B      Pharmacia 
Acrylamide        Bio-Rad 
Agar         Gibco BRL 
Agarose        Progen 
Ammonium acetate       Fluka 
Ampicillin        Fisons 
Aprotinin        Boehringer 
Blocking Buffer       Roche 
Boric acid        Fluka 
Bromophenol blue       Ajax  
BSA (bovine serum albumin)      Fluka 
Centricon        Millipore 
Chloroform        Fluka 
Colcemid        Gibco BRL 
L-cysteine        Sigma 
DAPI (4’6’-diamidine-2’-phenylindole dihydrochloride)  Boehringer 
DMEM (Dulbecco’s Modified Eagle Medium)   Gibco BRL 
DMSO  (dimethylsulfoxide)      Fluka 
DTT (dithiothreitol)       Promega 
DNA Ladder: 

Marker II, Marker V and Marker VI    Roche 
ECL (enhanced chemiluminescence)     Amersham 
EDTA (ethylenediamine tetra-acetic acid)    Boehringer 
EtOH (ethanol)       Fluka 
Ethidiumbromide       Sigma 
FCS (fetal calf serum)       Gibco BRL 
Formalin (10%)       Merck 
Formaldehyde        Fluka 
Formamide        Merck 
G418         Gibco BRL   
L-Glutamine        Trace 
Glycerol        Fluka 

                      44



                                                                                                                                                                Materials                              

Reagent         Supplier 
HBSS         Gibco BRL 
HCL (hydrochloric acid)      Fluka 
HEPES (N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid) Boehringer 
H2O2 (Hydrogen peroxide)      Sigma 
Isopropanol        Merck 
KAc (potassium acetate)      Fluka 
Kanamycin (for BAC clones)      Sigma 
KCL (potassium chloride)      Sigma 
Klenow enzyme       Boehringer 
KLH (keyhole limpet hemocyanin)     Calbiochem 
N-Laurylsarcosyl       Roche 
β-Mercaptoethanol       Sigma 
Methanol        BDH 
MgCl2 (magnesium chloride)      Sigma 
Milk powder        Migros 
Mowiol        Calbiochem 
NaAc (sodium acetate)      Merck 
NaCl (sodium chloride)      Merck 
Na2HPO4  (Sodium hydrogen phosphate)    Fluka 
NaH2PO4 (Sodium dihydrogen orthophosphate)   Fluka   
NaOH (sodium hydroxide)      Merck 
Nonidet P-40        Sigma 
Normal Goat Serum       Vector Lab 
Papain         Sigma 
Paraformaldehyde       Fluka 
Paraffin        Fluka 
PBS (phosphate buffered saline)     Trace 
Penicillin        Trace 
Phenol         GibcoBRL 
PMSF (phenyl-methyl-sulfonyl-fluoride)    Boehringer 
Poly-L-Lysine solution      Sigma 
Proteinase K        Gibco BRL 
SDS (sodium dodecyl sulfate)     Eurobio 
Taq DNA polymerase       Invitrogene 
TEMED (N,N,N’,N’-Tetramethylethylenediamine)   Bio-Rad 
Tris (Tris (hydroxymethyl) aminomethane)    Sigma 
Triton X-100        Fluka 
Trypsin EDTA       Gibco BRL 
Tween-20        Sigma 
Vectashield        Vector Lab 
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If chemicals are not listed here the supplier is probably already named in the methods part. 
 

4.2 Radiochemicals 
 

[α-32P]dCTP (~3000 Ci/mmol) was obtained from Amersham as 10mCi/mL solutions. 
 

4.3 Restriction enzymes 
Restriction enzymes were purchased from Boehringer, New England Biolaboratories or 
Promega and used with supplied buffers according to recommended protocols.  
 

4.4 Bacterial strains and buffers 

Plasmid DNA was grown in the bacterial strain DH5α (Life Technologies). 
 
DIG-Buffer   0.1 M   Maleic acid (Fluka) 
    0.15 M NaCl 
    pH 7.5 
 
10x DNA Loading buffer 250 mg bromophenol blue (Roche) 
    in 33 ml 150 mM Tris pH 7.6 
    Add 60 ml glycerol and 7 ml H2O 
 
HTB      10 mM HEPES              0.477g 
(competent cells)  15 mM CaCl2 (Fluka)    0.441g 

250 mM KCl                3.728g 
dissolved in 150ml H2O and pH adjusted to 6.7 with KOH (4M). 
Then MnCl2 was added and dissolved  55mM MnCl2 1.384g 
volume adjusted to 200ml, filter-sterilized through a 0.45µm filter 
stored at 4°C 

 
LB-Medium   1 % (w/v) Bacto-tryptone (BD) 
    0.5 % (w/v) Bacto-Yeast extract (BD) 
    1% (w/v) NaCl    
    pH 7.0  
 
LB-Agar   LB-Medium + 20 /l agar 
 
PBS  bought as a ready to make mix, needed only resolving in 

water and autoclaving. 
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SDS-PAGE running buffer 10 g SDS 
    30.3 g Tris 
    144.1 g glycin  in 800ml H2O    adjust to 1 l 
 
SOB    20 g Bacto tryptone, (BD) 
(competent cells)           5 g Bacto yeast extract  (BD) 

             0.5 g NaCl  
dissolved in 950 ml H2O and 10ml 250mM KCl were added. pH was 
made up with NaOH to 7 and the volume adjusted to 1l. The medium 
was then aliquoted, autoclaved and cooled to 60°C before adding 
5ml sterile 2M MgCl2 

 
20x SSC   3 M NaCl 
    0.3M Na-citrate 
        pH 7.0 
    
TBE buffer   89mM Tris 
    89 mM Boric acid 

2 mM EDTA    
pH 8.0 

 
 
4.5 Oligonucleotides 

T7 primer TAATACGACTCACTATAGGG 
 

T3 primer ATTAACCCTCACTAAAG 
 

SP6 primer GATTTAGGTGACACTATAG 
  
mVHL primer  
 
cDNA primer 1 -5’    

     5´– ACC CGG ATC CAC CAT GCC CCG GAA GGC AGC CAG TCC AG –3´ 
 
 
cDNA primer 2 –3’ 
 
 
             5´– TCC AGA ATT CAC CTC AAG GCT CCT CTT CCA GGT GCT GA –3´ 

 
short form mVHL-5’  

     5´– CGG TGG ATC CAC CAT GGA GGC TGG GCG GCC GCG GCC GG –3´ 
  
Exon 1  
      5’ primer 5´– AAT GCC CCG GAA GGC AGC CAG TCC –3´ 
      3’ primer 5´– CTC GGT AGC TGT GGA TGC GGC GGC –3´ 
 
Exon 2 
      5’ primer 5´– CGA GGT CAT CTT TGG CTC TTC AGG –3´ 

     3’ primer 5´– ATA CAC TGG CAA TGT GAT GTT GGC –3´ 
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Exon 3  
       5’ primer 5´– TGT ATA CCC TGA AAG AGC GGT GCC –3´ 

      3’ primer 5´– GGA CTC CTT CAA GGC TCC TCT TCC –3´ 
 
 
KNOCKOUT PROJECT  
 
For sequencing the BAMHI-fragments containing the VHL exons: 
 

T7 term  GCT AGT TAT TGC TCA GCG G 
Cl 17 v/n NdeI       GTA CTA TCA GGT ATG TGT GG 

5-BAC    GTA CAT GAG TAC ACT TTA GT 
11Ex2     AAG GTG TGC ACC ACC ACA GC 

Ex1-4A    AGG TAG GTG GCT CGC GTG TC 
Ex1-4B    TCG CAA GCT GGA CGT GGG CG 

41103793      GAT GGG CTC TAT TAA TAA CG 
41017635     TTC ACC GAG CGC AGC ACC GG 

Ex2-5´     AGG ATG GAA TAA ACT GAT GC 
Ex2-3´     GGG CAA CGG CAC TCC TCT GG  

vEx3      TCA TAG TTT ACC CTC CAG TG 
nEx3    GGC TGA AGA GAC TGT AAA GG 

 
 
loxP oligos for designing of the 3rd loxP site: 
 

loxPfor  primer   5´-GAT CTA TAA CTT CGT ATA ATG TAT GCT ATA 

CGA AGT TAT ATC AAG CTT ATC GC-3´ 

 
loxPback primer  5´-GGC CGC GAT AAG CTT GAT ATA ACT TCG TAT 

AGC ATA CAT TAT ACG AAG TTA TA 
 
 
Nde-site (neo-tk cassette) 
 
  5´-Nde site primer  5´–TCG AGG TCG ACC ATA TGT GGC CGA G –3´ 
  3´-Nde site primer  5´–CGC TCG GCC ACA TAT GGT CGA CC –3´ 
 
Exon 2- orientation  
 

Orient-5 primer   5´–TCT CAG TAC CCA GGT CAG GC –3´ 
Orient-3´primer   5´–CGA GTC GCC ACC GTC GTC GG –3´ 

 
To check loxP orientation (in pET-17b-N/B-loxP) 

 
vHind-loxP primer  5´–GGC CGA AAA CAA GTG AGT AT –3´ 
nHind-loxP primer  5´–CCT GGG GAT TGT ACA CCT GA –3´ 
 

 
neo-tk primer (for sequencing) 
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  neo-tk middle primer  5´–GGC CGC GAG AAC GCG CAG CC –3´ 
 
  neo-tk3-A primer  5´– CAT AGC CAG GTC AAG CCG CT –3´ 
  neo-tk3-B primer  5´– ACG GTA TCG CCG CTC CCG AT –3´ 
 

neo-tk2-A primer  5´– CCA TGG GGG ACC CCG TCC CT –3´ 
neo-tk2-B primer  5´– GCC CGC CGT GTT CCG GCT GT –3´ 

 
southern testing 
 

5´-PROBE 
primer 5´.1 5´–CAT CTC ATG TTC TCA TGG GC–3´ 
primer 5´.5 5´–GCA TTC AGG TAT AAT CCA CC–3´ 

3´-PROBE 
primer 3´.4 5´–GTG CCA CTG CGT CTG CCC–3´ 
primer 3´.6 5´–AGC ATC CAA TGG TTT CTT CG–3´ 
 
 

Primer PCR 
 
Nestin: 

Cre-primer1   5´– GCG GTC TGG CAG TAA AAA CTA TC –3´  
Cre-primer2   5´– GTG AAA CAG CAT TGC TGT CAC TT –3´ 
 
Il-2 primer1   5´– CTA GGC CAC AGA ATT GAA AGA TCT –3´ 
Il-2 primer2   5´– GTA GGT GGA AAT TCT AGC ATC ATC C –3´ 

 
VHLflox: 

C1 primer   5´– CAT GTG CCT GCA GAG ACC AG –3´ 
C2 primer   5´– CAC GCA TCC ACA TCA GGT G –3´ 
 
D3 primer   5´– GGA GTA GGA TAA GTC AGC TG –3´ 
B2 primer   5´– GTA CAC CTG AGA GCG GCT TC –3´ 
 

 
 
 
 
 
 
 
 
 
 

                      49



                                                                                                                                                                  Methods                              

Chapter 5 
 

 Methods 
 

5.1 Plasmid DNA purification from bacteria 
 
The isolation of plasmid DNA from bacteria was performed using the NucleoBond PC Kit 

from Macherey-Nagel, according to manufacturer’s instructions:   

A bacterial culture was set up by inoculating 50 ml of LB medium (plus antibiotic) with a 

single colony from a freshly streaked plate or from a glycerol stock. After overnight 

shaking at 37 °C the saturated culture was centrifuged at 6.000 x g for 15 min at 4 °C. After 

discarding the supernatant the pellet was re-suspended in 4 ml buffer S1 (50 mM Tris-HCl, 

10 mM EDTA; pH 8.0) containing 100 µg/ml RNase A. 4 ml Buffer S2 (200 mM NaOH, 

1% SDS) were then added to the suspension to denature both the chromosomal and plasmid 

DNA. Following a short incubation of max. 5 minutes at room temperature (RT) addition 

of 4 ml buffer S3 (2.8 mM KAc, pH 5.1) neutralized the lysate and caused the formation of 

a precipitate containing chromosomal DNA and other cellular components. This incubation 

was carried out for 5 minutes on ice. The suspension was then filtered through NucleoBond 

filters pre-wetted with sterile deionized H2O and the cleared lysate applied onto an 

equilibrated column (equilibrated with 2.5 ml buffer N2 (100 mM Tris, 15% EtOH, 900 

mM KCl, 0,15% Triton X-100, pH 6.3)). Following washing of the column with 10 ml 

buffer N3 (100 mM Tris, 15% EtOH, 1.15 M KCl, pH 6.3) the plasmid DNA bound to the 

anion exchange resin was eventually eluted with 5 ml buffer N5 (100 mM Tris, 15% EtOH, 

1 M KCl, pH 8.5). 3.5 ml Isopropanol precipitated the eluted plasmid DNA and after 30 

minutes centrifugation at 15000 g at 4 °C the supernatant was discarded and the DNA 

pellet washed carefully with 70% EtOH. The pellet was then dried at room temperature and 

finally dissolved in 50 µl sterile deionized H2O. 

 

5.2 Enzymatic treatment of DNA 
 
Restriction digest: The typical restriction digest was performed in a final volume of 20 µl. 

The following volumes of reagents would be added to the reaction tube: 1 µg DNA 

(usually 1-5 µl), 1 µl 10x Restriction enzyme buffer, 1 µl restriction enzyme and sterile 

deionized H2O was used to fill up until 20 µl. 
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Dephosphorylation of 5´ends: In a total volume of 50 µl 44 µl DNA were supplemented 

with 5 µl 10x One-Phor-All-Plus Buffer (Pharmacia) and 1 µl of a 1:20 dilution of Alkaline 

Phosphatase (Calf Intestine Mucosa; Pharmacia). The reaction mix was incubated at 37 °C 

for 30 minutes, followed by an incubation to stop the enzymatic activity at 85 °C for 20 

minutes. The reaction mix was then filled up to 100 µl with sterile H2Odest and extracted 

with Phenol/Chloroform and once chloroform. Addition of 1/10 Vol. NaAc and 2 Vol 

EtOH and centrifugation at 14.000 rpm for 30 minutes at 4 °C precipitated the DNA that 

was then re-suspended in 20 µl H2O. 

Ligation: The ligation of DNA fragments was performed using the Rapid DNA Ligation 

Kit from Roche. The vector DNA and insert DNA was dissolved in thoroughly mixed and 

diluted 1x conc. DNA Dilution Buffer to a final volume of 10 µl. 10 µl T4 DNA Ligation 

buffer was added to the reaction vial and mixed thoroughly. Finally 1 µl of T4 DNA-

Ligase was added to the tube and after mixing the reaction was allowed to incubate for 5 

minutes at RT. The ligation mix was then used directly for the transformation of competent 

cells. 

 
5.3 Isolation of DNA from agarose gels 
 
DNA was isolated from agarose gels by use of the QIAquick Gel Extraction kit from 

Qiagen according to manufacturer’s instructions. 

 

5.4 Polymerase chain reaction (PCR) 
 
PCR's were mostly carried out using the Taq polymerase and additional buffers from 

Invitrogen. Each PCR reaction amounting up to a total volume of 20 µl contained: 1 µl 

each of the forward and the reverse primers (both 10 pmol; final conc. 0.5 µM), 2 µl 10x 

PCR buffer (200 mM Tris-HCl (pH 8.4), 500 mM KCl), 0.6 µl 50 mM MgCl2 (final conc. 

1.5 mM), 1 µl 1% W-1 to improve thermo-stability), 0.4 µl 10 mM dNTP mixture (final 

conc. 0.2 mM each), 0.2 µl of 5 units/µl Taq DNA Polymerase and 12,8 µl sterile ultra-

pure water to increase the reaction volume to 19 µl. 1 µl of DNA was pipetted to a PCR 

tube and the 19 µl mix added. After short mixing the amplification reactions were 

performed in a thermocycler. Negative controls in which H2Odest replaced the DNA were 

included in every series of reactions as well as positive controls as a guideline for the 

migration of the expected bands. Thermal cycling conditions were 94 °C for 3 minutes, 35 

cycles of 94° C for 20 seconds, primer annealing for 30 seconds at the described 
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temperatures, 72 °C for and a final 72 °C incubation for 10 minutes. PCR reactions were 

subsequently analyzed by agarose gel electrophoresis (different agarose concentrations 

(depending on expected product size) containing 0.5 g/ml ethidium bromide). Inclusion of 

appropriate molecular weight standards DNA Markers enabled sizing of PCR products. 

 
5.5 Reverse Transcriptase-PCR (RT-PCR) 
 
First strand cDNA synthesis was performed using SUPERSCRIPT II RNase H- Reverse 

Transcriptase from GibcoBRL for the RT-PCR. Reaction was set up following 

manufacturers instructions.   

 
5.6 DNA sequencing 
 
Initial sequencing was carried out at the FMI internal facility utilizing an ABI PRISM 377 

DNA sequencer. Microsynth, a company providing sequencing services, then carried on the 

sequencing. 

 
5.7 Construction of VHL-knockout-construct 
 
Generation of VHL construct 

The VHL targeting vector was designed with the aim of flanking exon 1 of the VHL gene 

with two loxP sites in order to create a ‘floxed’ VHL mouse strain in which exon 1 could 

be deleted by crossing this strain with a tissue-specific Cre-mouse. The targeting construct 

was composed of: a neo-IRES-tk selection cassette flanked by loxP sites, allowing positive 

and negative selection, two arms of homology (homologous to the targeted chromosomal 

VHL locus) and a single 3rd lox P inserted 3’ of exon 1.  

 

Generation of the backbone vector of the targeting construct containing the 5’ arm of 

homology: The 5 kb-BamHI fragment, containing exon 1 of VHL, was excised from pBS 

and ligated into the pET-16b vector digested with BamHI and Bgl II in order to delete one 

BamHI site. The clone confirmed to have the insert in the right orientation (as depicted in 

the scheme) was digested with Nde I and BamHI and the obtained fragment was ligated 

into a pET-17b vector in order to have a unique Hind III restriction site in the insert and not 

present in the vector any more (b). The pET-16b vector containing the short fragment of 

the BamHI/BglII-NdeI fragment was going to be the backbone in which the whole targeting 

construct would be constructed in in the end and provided the shorter arm of homology (a). 
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 3rd lox P site: By oligo annealing the 3rd lox P site was created flanked by a BglII and a 

NotI site and containing a HindIII site. This fragment was subcloned into pBSKS and 

excised again by digestion with Hind III (c). 

Insertion of the 3rd loxP site: Fragment (c) was cloned into the unique HindIII site of 

plasmid (b) and thereby the 3rd loxP site was introduced 3’ of exon 1 (d). By NdeI and 

BamHI digestion the NdeI-BamHI fragment, which now contained the additional loxP site, 

was reinserted into the original pET-16b construct (a) from where it hade been excised in 

the first place (e).  

Insertion of the 3 kb BamHI  fragment creating the second arm of homology 3’ of the 

3rd loxP site. Into this plasmid (e) the BamHI fragment harboring exon 2 was cloned (from 

pBS) (f).  

Insertion of the neo-tk selection cassette: The neo-tk cassette was excised from pBS, 

(this construct was a kind gift from Ulrich Mueller) flanked with NdeI sites, by oligo 

insertion and cloning into pET-28a (XhoI and NotI), and was then introduced into the 

unique NdeI site of (f) completing the targeting vector construct.  

The plasmid maps can be found in the appendix and the sequences of the inserted oligos 

under material-oligonucleotides. 

 

Mouse VHL full-length construct: Full length mVHL-cDNA was created by RT-PCR on 

RNA samples kindly provided by Anne-Isabelle Michou. The primers used for this purpose 

were cDNA primer 1 -5’ and cDNA primer 2 –3’ (see primer list in materials). 

 

5.8 Isolation of genomic DNA from ES cell clones 
 
Medium was aspirated from each tissue culture well of 24-well plates containing ES 

colonies grown to confluency. After washing once with PBS, 400 µl Lysis buffer (100 mM 

Tris pH 8.5, 5 mM EDTA, 0.2 % SDS, 200 mM NaCl) including 50 µg/ml Proteinase K 

were added to each well and the plates were then incubated in a 37 °C incubator over night. 

The cell-lysate of each well was then carefully transferred into eppendorff-tubes and 

extracted with 400 µl of a 1:1 mixture of Phenol/Chloroform. After mixing and 

centrifugation at 14000 rpm for 2 minutes the upper phase was transferred into a new tube 

and extracted with 400 µl Chloroform. After mixing and centrifugation at 14000 rpm for 10 

minutes the upper phase was again transferred into a new tube and 1 ml of 100 % EtOH 

was added. The DNA precipitated as a white pellet that after an additional centrifugation at 

14000 rpm for 10 minutes was washed once with 70 % EtOH, centrifuged again and then 
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left to dry for at least 5 hours to get rid of all the Ethanol. Subsequently the pellet was re-

suspended in 50 µl H2O and agitated on a shaker at 30 °C for 24 hours to help re-

dissolving. 20 µl (approximately 10 µg) of this DNA were then used for the digest. 

 
5.9 Isolation of genomic DNA from mouse tails 
 
DNA for PCR: 

0,5-1 cm of the tail of a mouse were cut and lysed immediately or frozen at –20 °C. To 

each tail tip 500 µl of DNA digestion buffer (50 mM Tris-HCl pH 8.0, 100 mM EDTA pH 

8.0, 100 mM NaCl, 1% SDS), supplemented with proteinase K at a final concentration of 

0.2 mg/ml, were added and the lysis was allowed to occur at 55 °C for 6-24 hours with 

gentle shaking. After a short centrifugation the supernatant was transferred into new tubes, 

diluted 1:50 with H2Odest and 1 µl was used in a PCR reaction. 

 
5.10 Southern blot analysis 
 
5.10.1 DOT-BLOT and radioactive Southern Blot 

 
Dot-Blot: After subcloning the BamHI-fragments of the BAC clones into the pBSKS-

vector, the colonies obtained after over night incubation at 37 oC on an agar plate with 

ampicillin (amp) selection, were striked onto two fresh agar-(amp)plates.  One of them had 

a Hybond nylon membrane on top of it soaked onto the agar and the other one served as 

‘master plate’ allowing the further usage of the later identified positive clones (and was 

kept at 4 oC after appropriate expansion of the colonies). After allowing the clones to grow 

overnight at 37 oC, the nylon membrane was carefully removed from the agar plate and 

incubated for 7 minutes in the denaturing solution (0.5 M NaOH, 1.5 M NaCl), followed by 

2x 3 minute-incubations in the neutralizing solution (0.5 M Tris pH 8.0, 1.5 M NaCl). 

After 5 minutes washing in 2x SSC the membrane was dried in 3MM paper (whatman) for 

10 minutes and UV-crosslinked with the stratagene transilluminator.  

 
BAC-clone Southern Blot: The DNA of the BAC clones was digested with the 

appropriate restriction enzyme(s) over night (where the enzyme was added at least twice as 

1 µl) and loaded on a 0.8 % agarose-gel. Following migration, the gel was stained 

subsequently with ethidiumbromide (0.5 µg/ µl) for 30 minutes and a picture was taken to 

asses proper digestion of the DNA. The DNA on the gel was then denatured by incubation 

of the gel for 45 minutes in denaturing solution (1.5 M NaCl, 0.5 M NaOH) under constant 
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gentle agitation. After shortly rinsing the gel in H2O, it was incubated for 2x 15 minutes in 

neutralizing buffer (1 M Tris pH 7.4, 1.5 M NaCl) and the incubated in 10x SSC for 30 

minutes, as was a nylon membrane. Capillary transfer of the DNA from the agarose gen 

onto the nylon membrane was allowed for at least 24 hours. Following transfer the 

membrane was marked and then washed in 5x SSC for 15 minutes before being subjected 

to UV-crosslinking by the stratagene transilluminator. 

 
Generation of Southern Probes – radioactive labeling: The probes utilized for screening 

the BAC-clones for the presence of the VHL gene were labeled with the random primed 

Megaprime DNA labeling kit: The DNA was denatured for 10 minutes at 100 oC and then 

cooled on ice. In a microfuge tube to 25 ng of this denatured DNA 3 µl of unlabeled 

dNTPs, 2 µl of the 10x reaction buffer and 5 µl of α32P-dCTP (= 50 µCi) were added and 

the reaction volume was increased to 19 µl by addition of H2O. Then 1 µl of Klenow 

enzyme was added and the whole reaction mixture was incubated for 10 minutes at 37 oC. 

The reaction was stopped by addition of 2 µl 2 M EDTA (pH 8.0) and additional heating to 

65 oC for 10 minutes. The specific activity of the probe was determined, and the probe was 

then subjected to a Nick-spin sepharose G-50 column (Pharmacia-Biotech) to eliminate 

unincorporated nucleotides. The specific activity was reassessed, to ensure that it didn’t get 

lost on the column, and if it didn’t drop below 106cpm, the probe was stored at –20 oC until 

further usage. 

 
Pre-hybridisation:  The membrane was incubated for 4 hours in 65oC pre-warmed Church 

& Gilbert (C&G) Hybridisation buffer (0.25 M Na2HPO4 pH 7.3, 1 % BSA, 1 mM EDTA 

pH 8.0, 7 % SDS – all sterile filtered). 

 
Hybridisation: 100µl of salmon sperm DNA (10mg/ml) and probe were both denatured by 

heating to 95 oC for 5 minutes before being mixed. This DNA-mixture was then added to 

15 ml of C&G buffer and incubated with the membrane at 65oC overnight. The membrane 

was then washed 4x 30 minutes at 65 oC with washing buffer (20 mM Na2HPO4 pH 7.3, 1 

mM EDTA pH 8.0, 1 % SDS) and then dried slightly between two whatman papers. Finally 

the membrane was then exposed to film for at least over night at –80 oC. 
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5.10.2 Non-radioactive Southern Blot for genomic DNA (ES-cells or mouse tail) 

 
Generation of Southern Probes – DIG labeling: For the creation of a 5`-probe to test for 

homologous recombination primers 5`.1 and 5`.5  were used in a PCR reaction utilizing 

genomic wild-type DNA as template whereas for the creation of a 3´-probe primers 3.`4 

and 3.`6 were used. The bands corresponding the expected sizes were then isolated from an 

agarose gel and the purified DNA subjected to another PCR using the DIG labeling Kit 

from Roche. The 50 µl reaction contained 1x PCR buffer, 2 mM MgCl2, 2 µl primer.  

The following program was used: denaturation at 94 °C for 3 minutes, 35 cycles of 

denaturation at 95 °C for 20 seconds, annealing at 57 °C for 30 seconds and elongation at 

72 °C for 45 seconds. This was followed by incubation at 72 °C for 10 minutes. From the 

50 µl starting volume 5 µl were loaded on an agarose gel to check for PCR efficiency and 3 

µl were dissolved in 20 µl H2O, denatured for 5 minutes in a boiling water bath and placed 

on ice for 5 minutes before being added to 15 ml pre-warmed Pre-hybridisation (Pre-hyb) 

buffer.  

 
DNA-gel blot analysis: DNA was digested with the appropriate restriction enzymes in a 

reaction volume of 30 µl containing 3 µl buffer and 1 µl enzyme. The restriction digest was 

allowed to take place at 37 °C over a period of ca. 24 hours, during which two more 

additions of enzyme occurred. 5 µl loading dye were then added to the reactions and the 

DNA was resolved on 0.8 % agarose gels, which were run overnight at 40 V. A DIG-

labelled Marker II was used to enable sizing of the DNA fragments.  

The gels were then incubated in an ethidium bromide “bath” (0.5 µg/ml) with gentle 

agitation for half an hour, washed in H2Odest for 5-10 minutes and a picture was taken to 

see whether the digest had been successful. If so, the gels were incubated for 20 minutes in 

Denaturing buffer (1.5 M NaCl, 0.5 M NaOH) at RT and constant gentle agitation, 

followed by two 20 minutes-incubations in Neutralizing buffer (87.6 g NaCl, 60.8 g Tris, 

33 ml 37% HCl in 1 l H2O). DNA was then capillary transferred in 20x SSC to Zeta-Probe 

GT positively charged nylon membranes (Bio-Rad) and fixed by UV-crosslinking. 

 

Pre-hybridization was performed for 2 hours in 15 ml Pre-Hyb-buffer (for 30 ml: 15 ml 

Formamid, 7.5 ml 10x Blocking buffer (50 g powder in 500 ml DIG-Buffer), 7.5 ml 20x 

SSC, 300 µl 10 % N-Laurylsarcosyl, 60 µl 10 % SDS and 1 ml sonicated salmon sperm 

DNA (10 mg/ml)) at 42 °C. After addition of the denatured probe, hybridisation was 

performed overnight under the same conditions. The membranes were washed 
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consecutively in 2x SSC/0.1 % SDS (5 minutes, RT), in 0.5x SSC / 0.1 % SDS (20 

minutes, 68 °C) followed by 20 minutes at 68 °C in 0.1x SSC / 0.1 % SDS. Finally the 

blots were subjected to immunological detection using an anti-DIG antibody conjugated to 

alkaline phosphatase and the CDP-star kit from Roche Diagnostic, according to 

manufacturer’s instructions. 

 

5.11 Preparation of competent cells 
 
A 200 ml SOB medium culture inoculated with about ten large colonies from a freshly 

grown plate of DH5alpha was left to grow at 26 °C with vigorous shaking until reaching an 

OD600 of 0.45. The culture was then split into sterile centrifuge tubes (4x 50ml falcon 

tubes) and placed on ice for 10 minutes. After spinning for 15 minutes at 2500 g, the 

supernatant was discarded, the pellet re-suspended in 64 ml HTB (4x 16ml) and placed on 

ice for 10 minutes. After spinning and discarding the supernatant again the pellet was re-

suspended in 16 ml HTB (each pellet in 4 ml and then pooled). 1.2 ml filter-sterilized 

DMSO were added slowly while gently swirling the cell suspension and the cells were then 

immediately aliquoted into convenient aliquots (200 µl, 500 µl) and quick frozen by 

throwing into liquid nitrogen. Storage of competent cells occurred at –80 °C. 

In some exceptional cases XL10-Gold Ultracompetent cells from Stratagene were used 

according to the manufacturers transformation protocol. 

 

5.12 Transformation of E.coli 
 
100 µl of cold bacteria competent cells were added to the ligation mix or DNA and the 

whole reaction was incubated for 30 minutes on ice. After heat-shock for 2 minutes at 42 

°C, followed by 5 minutes incubation on ice, the transformed cells were spread on LB-

Agar plates containing the appropriate antibiotic. 

 
5.13 ES cell karyotype analysis 
 
ES cells were split onto a gelatine coated 10 cm dish the day before the analysis to ensure 

actively dividing cells. Fresh ES-medium was added 3 hours prior application of colcemid 

(10 µg/ ml; Gibco). After four to six hours incubation at 37 ˚C, the cells were washed once 

with PBS and trypsinized with 0.1 % trypsin for 3 minutes at 37 ˚C. 5 ml ES-medium were 

added to stop the reaction, followed by centrifugation at 900 rpm for 5 minutes. The 
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supernatant was removed and the cells were resuspended in 1 ml PBS. Cells were pelleted 

by centrifugation at 2000 rpm for 2 minutes. After removal of the supernatant the cells 

were carefully resuspended in 1 ml 0.56 % KCl and left standing at room temperature for 

10 minutes. After centrifugation at 2000 rpm for 2 minutes the pellet was resuspended 

slowly in ice-cold and freshly made fixative (methanol/ acetic acid 3:1). After incubation 

on ice for 10 minutes and short centrifugation the last step was repeated and the cells were 

let sit overnight at 4 ˚C. The next day after short centrifugation, the cells were resuspended 

again in 0.5 ml fixative. With the help of a Pasteur pipette the cells were dropped onto a 

clean microscopic slide from about 0.5-1 meter above and dried on a tray on top of a 37 ˚C 

water bath. The next day the cells were stained for 20-30 minutes in 3% Giemsa (in GuRR 

buffer) at room temperature. The slides were then washed briefly in water, air-dried at 

room temperature and coverslipped in entellan. The solutions like Giemsa, ES-medium and 

entellan were provided by the transgenic facility at the FMI. 

 

5.14 Primary antibodies 
 
The rabbit polyclonal antibody α-pVHLMm (CT) was raised against the synthetic peptide 

RKDIQRLSQEHLESQHLEEEP that corresponds to the carboxyl terminal amino acid 

sequence of the murine VHL protein. The peptide was coupled to keyhole limpet 

haemocyanin (KLH) (Pierce) by Glutaraldehyde (Serva, Heidelberg) coupling and injected 

into rabbits. Antiserum was obtained from Eurogentec (Bruxelles) and affinity purified 

over a column generated by coupling 10 µg of the peptide to 1 g of activated CH-

Sepharose 4B (Pharmacia) according to manufacturer’s protocol.  

Other antibodies used in the expression study were: rabbit polyclonal α-calbindin D-28k 

(Swant, Bellinzona, CH), mouse monoclonal α-Rho4D2 (kindly provided by Robert 

Molday, Vancouver, Canada), rabbit polyclonal α-p27 (C19) (Santa Cruz), rabbit 

polyclonal α-CRALBP (kindly provided by John Saari, Seattle, WA), mouse monoclonal 

α-GS (Chemicon, Temecula, CA), mouse monoclonal α-Vimentin (Chemicon, Temecula, 

CA) and rabbit polyclonal anti-RPE65 (kindly provided by Andreas Wenzel, Zürich, CH). 

The secondary antibodies were α-rabbit-Cy5, α -rabbit-FITC, α -mouse-Cy5 and α -

mouse-FITC (Dianova). 

  

 

 

                      58



                                                                                                                                                                  Methods                              

5.15 Cell culture 
 
Mouse NIH3T3 cells were maintained in Dulbecco´s modified Eagle´s Medium (DMEM, 

Invitrogene) supplemented with 5 % bovine calf serum (BCS), whereas the murine kidney 

tumor cell line RENCA was cultured in DMEM supplemented with 10 % fetal calf serum 

(FCS). Cultures were maintained at 37 °C in a humidified 95 % air and 5 % CO2 

atmosphere. 

 

5.16 Western Blot analysis 
 
For immunoblot analysis either postnatal P2 eyes from euthanized C57BL/6J mice were 

isolated, enucleated and the neural retina separated from the retinal pigment epithelium or 

alternatively NIH3T3 and Renca cells were harvested after being rinsed with phosphate 

buffered saline (PBS, Biochrom AG). Retinas or cells were homogenized through a G25 

syringe in lysis buffer (20 mM HEPES, 0.4 M NaCl, 25 % glycerol, 1 mM EDTA, 5 mM 

sodiumfluoride, 0.1 % Nonidet P-40, 100 µg/ml phenylmethylsulfonyl fluoride, 100 µg/ml 

aprotinin, 1 mM Dithiothreitol). After standing on ice for 30 minutes the cell lysates were 

cleared by centrifugation at 14.000 rpm at 4 °C for 10 minutes. Protein concentrations were 

measured using the BioRad Protein Assay (Bio-Rad Laboratories) and cell lysates 

containing equal amount of protein were resolved by electrophoresis on a 12 % 

polyacrylamide-SDS gel and electroblotted onto nitrocellulose membrane (Optitran BA-

S83, Schleicher&Schuell). After blocking in TBST buffer (50 mM Tris-HCl buffer, pH 8.0, 

containing 150 mM sodium chloride, 0.1 % Tween 20) with 5 % (w/v) nonfat dry milk, the 

membrane was incubated over night at 4 °C with α-pVHLMm (CT) diluted 1:500 in TBST 

+ 5 % milk. Washing of the membrane for 30 minutes at room temperature in TBST was 

followed by incubation with horseradish peroxidase-conjugated secondary antibody. The 

antigen-antibody complexes were detected using a chemiluminescence reagent kit (ECL 

Kit, Amersham Biosciences) according to manufacturer’s instructions. 

 

5.17 Preparation of murine tissues for immunohistochemical staining  
 
C57BL/6J mice were obtained from Charles River Laboratoires France. Experimental 

procedures were designed to conform to the cantonal guidelines. 

Eyes and cerebellum from euthanized C57BL/6J mice at various stages of development 

were used for immunohistochemical studies. Embryonic day E 0.5 was determined by the 

presence of a vaginal plug and the day of birth was designated as postnatal day P0. Tissues 
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were fixed overnight at 4 °C in 10 % formalin, embedded in Paraffin and sectioned at 5-20 

µm. 

 

5.18 Immunohistochemical studies 
 
Paraffin sections were subjected to de-paraffinization in xylene and subsequently ethanol 

series. After incubation in PBS (+ 0.3 % Triton X-100) for 20 minutes, sections were 

subjected for 10 minutes to 97 °C in 10 mM Citrate Buffer pH 6.0 for antigen retrieval and 

slides were then left to cool down by standing for at least 20 minutes at room temperature. 

Short incubation in PBS at RT was followed by incubation for 30 minutes in 3% H2O2 / 10 

% methanol to block endogenous peroxidases. After short washes in PBS sections were 

pre-incubated with 10 % normal goat serum (NGS; Vector Laboratories) in PBS (+ 0.3 % 

Triton X-100) for 30 minutes. Incubation with primary antibody was allowed over night at 

4 °C or for 2 hours at RT. For ABC stainings the α-pVHLMm (CT) antibody was diluted 

1:200, whereas for immunofluorescent studies all primary antibodies were diluted 1:50 in 

10 % NGS in PBS (+ 0.3 % Triton X-100), except α-Rho4D2 and α-calbindin that were 

diluted 1:100.  

a) ABC staining:  

After 3 washes of 5 minutes in PBS (+ 0.3 % Triton X-100) sections were 

incubated with biotinylated goat α-rabbit diluted 1:200 in 10 % NGS in PBS. 

Colometric detection using the ABC Elite Kit (Vector Laboratories) was performed 

according to manufacturer’s instructions. Slides were counterstained with 

hematoxylin and finally mounted using Mowiol. 

b) Immunofluorescent staining 

Sections were washed in PBS (+ 0.3 % Triton) and incubated for 1 hour at room 

temperature with FITC- or Cy5-labeled secondary antibodies. After shortly rinsing 

the slides in H2O, sections were coverslipped with Vectashield (Vector 

Laboratories). 

c) Immunofluorescent staining using TSA kit 

If two rabbit polyclonal antibodies were to be used in a co-staining experiment the 

Tyramide Signal Amplification Kit (TSA; Perkin Elmer) was used according to 

manufacturer’s protocol. 

We used either conventional or confocal fluorescence microscopy to view the slides. 
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5.19 BrdU labelling 
 
P7 mice were injected intraperitoneally with 100 µg BrdU / g body weight. Mice were 

sacrificed 2 hours later, their brains dissected, fixed in 10 % formalin and processed for 

paraffin sectioning. The in situ cell proliferation KIT, FLUOS (Roche) was used according 

to manufacturer’s protocol. 

 

5.20 Retinal Tissue dissociation 
To dissociate retinal tissue a protocol by Wahlin et al., 2004 was followed. In short: After 

euthanization of BL6 mice their eyes were enucleated and the neural retinae were isolated 

from the retinal pigment epithelium (RPE) in PBS without Ca2+ and Mg2+ at RT. The 

retinae were cut into smaller pieces and incubated in HBSS containing 1 mM EDTA and 5 

U / ml Papain, pre-activated with the reducing agent L-cysteine (2.7 mM) for 30 minutes at 

37 °C. For Müller glia cell isolation retinas were incubated for 15 minutes at room 

temperature followed by at least two washes with DMEM containing 10 % FCS. 

Dissociation of the tissue occurred by sequential trituration with Pasteur pipettes and the 

dissociated cells were then pelletted and resuspended in DMEM / 10% FCS. Dissociated 

cells were dropped onto polylysine-coated slides and incubated for a couple of minutes to 

allow attachment. Subsequently the cells were fixed with 4 % paraformaldehyde for 5 

minutes, gently washed in PBS and permeabilized for 20 minutes in PBS containing 0.3 % 

Triton X-100. After blocking with 10 % Normal Goat Serum in 0.3 % Triton X-100 in PBS 

incubation with the primary antibody was carried out overnight at 4 °C. Antibody dilutions 

were: anti-CRALBP 1:50, anti-calbindin 1:50, anti-Rho4D2, anti vimentin 1:50. After short 

washes in PBS secondary antibody incubation was allowed for 45 minutes at RT. The 

slides were then shortly rinsed and mounted with Vectashield. 
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Aim of this thesis 
 

 

The aim of this thesis was to obtain a detailed picture of VHL protein expression in 

primary VHL-disease target tissues, such as the retina and the cerebellum, in order to use 

this information to model VHL disease in mice and consequently attain a better 

understanding of its pathophysiology. 
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Homozygous disruption of VHL in mice resulted in embryonic lethality by embryonic day 

E 10.5-E 12.5 due to the absence of placental embryonic vasculogenesis and subsequent 

hemorrhage and necrosis (Gnarra et al., 1997). As this precluded the investigation of VHL 

function in the adult, we decided to use conditional gene targeting technology based on the 

Cre/loxP recombination system (see introduction chapter 3) to generate a conditional VHL 

knockout, a “floxed” VHL-mouse (overview FIG. 22). VHL could then be inactivated 

tissue-specifically by crosses of these floxed mice with Cre-mice.  

 
Figure 22. Overview of the strategy to 
produce a floxed VHL mouse or a 
complete VHL knockout.  From the top: 
The genomic locus illustrates the genomic 
organisation of the VHL gene to be floxed 
or deleted (in red exon 1). Below, the 
targeted genomic locus is depicted. In 
case of a homologous recombination 
event taking place the recombined 
targeted allele/locus will have the same 
structure as the targeting vector. The 
population of ES cells deriving from a 
clone harbouring a wt allele and a 
recombined allele, will then be transiently 
transfected with a Cre-expressing plasmid 
and clones will be selected with G418 
and/or gancyclovir.  The transfection will 
lead to three types of site-specific 
recombination. A) In this case exon 1 has been deleted but the selection cassette is still present. The ES cells containing 
this construct are not very useful as the selection cassette should be removed prior blastocyst injection, especially as the tk 
has been reported to cause male sterility if expressed in mice. B) This represents the ‘floxed’ allele or also called 2-lox 
allele as two lox P sites are still present, flanking exon1. This is the recombination event we were primarily interested in 
as mice homozygous for this allele could be crossed to tissue-specific Cre mice allowing the creation of a conditional 
VHL knockout. Therefore ES cells containing this allele would be used for blastocyst injection. C) ES cells containing the 
complete knockout, where the first exon has been deleted and the selection cassette is not present any longer would be 
suitable to create a complete knockout. The complete knockout, although already published, was still of interest to be 
created in a different strain background, as it has been shown that different mice strain backgrounds affect heavily the 
phenotype observed in knockout mice.  

Targeted genomic  
 locus 

 

 

1) Targeting vector design and cloning 
 

In order to design the cloning strategy for the creation of the VHL targeting vector the first 

step consisted in finding a genomic clone containing the whole gene of interest. Based on 

the information given about the mouse exon sequences of VHL (Gao et al., 1995; Gnarra et al., 

1997), primer pairs specific for exon 1 (oligos exon1-5’ and exon1-3’), exon 2 (oligos 

exon2-5’ and exon2-3’) or exon 3 (oligos exon3-5’ and exon3-3’) were ordered and tested 

for their efficiency to amplify the corresponding exon fragment from wild-type genomic 

DNA by polymerase chain reaction (PCR) (FIG. 23).  
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Figure 23. Testing PCR primers for specific
amplification of the three VHL exons. Primers
specific for exon 1, 2 or 3 of VHL were tested.
Lane 1 always shows the negative control, where
no template DNA was added to the PCR reaction,
whereas in lanes 2, 3 and 4 genomic DNA from
different sources (129, C57BL/6 and 129 derived
mouse strain respectively) was utilized. Marker VI
(M) was used as a size reference. For exon 1 a
fragment of 238 bp, for exon 2 123 bp and for
exon 3 201 bp were expected. The primer pair for
exon 1 always amplified two fragments, whereas
the primer pairs for exon 2 and 3 specifically
amplified the corresponding exon band, although
for the exon 3 primers occasionally also another
band appeared (not shown). 

Exon 2 Exon 1 Exon 3M

154 

234 

298 

394 

1    2    3    4           1   2    3    4          1   2    3    4

After identification of the exon 2-primer-pair as being the most efficient and 

specific one in amplifying the expected band of 123 bp, the primer pair together with the 

PCR protocol/conditions were sent to the company Incyte Genomics. There, this primer-

pair was utilized for a PCR screening of a 129 mouse-derived genomic library with the 

goal of identifying specific BAC (bacterial artificial chromosome) clones that harboured 

the complete VHL gene. As the VHL gene lies within a stretch of genomic DNA smaller 

than 12 kB, it was enough to screen with only one primer-pair assuming that in the case of 

a positive hit, the positive BAC clone, normally enclosing 120 kB of genomic sequence, 

would harbour the whole gene including also exons 1 and 3. 

In total three clones were obtained from the PCR screening and these were labelled 

with the numbers 361, 383 and 422 respectively. The next step comprised characterizing 

these clones and scanning them for the presence of the VHL gene. PCR analysis of the 

three BAC clones with the original primers used to amplify the three exons of VHL 

revealed the presence of all 3 exons within all three BAC clones  (FIG. 24).  
 

 

 

 

 

 

 

Figure 24. Confirmation by PCR of VHL
exon presence within BAC-clones. The
vector control, BAC clones 361, 383 and 422
and genomic DNA, as a positive control,
were tested for the presence of the VHL
exons.  Lanes 1, 2 and 3 represent PCRs with
primer-pairs specific for VHL exon 1, 2 and
3 respectively. In the genomic DNA control
as well as in all three BAC clones the
presence of all three exons of VHL was
confirmed. In the vector control a band for
the exon 1 primer-pair was detected that was
though lower than the expected size.   

Genomic  
  DNA 422 383361

M

Vector 
control

298 

234 

154 

1    2    3   1    2    3    1   2    3    1   2    3    1    2    3 

 

Physical mapping studies performed on the genomic clones obtained in the paper 

published by Gnarra in 1997 had shown that a digestion of these clones with BamHI gave 
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restriction fragments of 5 kb, 6 kb and 4 kb containing exons 1, 2 and 3, respectively. In 

addition a unique HindIII restriction site within the 6 kb-BamHI fragment of exon 2 was 

identified, whereas there were no HindIII sites within the other two BamHI-fragments 

containing either exon 1 or exon 3.  

In order to confirm the presence of these fragments in our case, the genomic DNAs 

of all three BAC clones were digested with BamHI alone or with BamHI and HindIII, and 

then subjected to Southern Blotting analysis by hybridization with a full-length mVHL-

cDNA-probe randomly labelled with α-32P-dCTP. As depicted in figure 25, the genomic 

BAC DNA, when digested using the BamHI restriction enzyme and hybridised with a full-

length mVHL-probe yielded 3 fragments/bands of 3, 4 and 5 kb instead of the expected 4, 5 

and 6 kb. When comparing the BamHI-restricted with the BamHI/HindIII restricted DNA 

the only striking difference was the disappearance of the 5 kb-band (9.6 kb band in case of 

clone 383) and the, as an alternative appearing smaller fragment of ca. 3.7 kb, which led to 

the assumption, always based on Gnarra’s paper, that the 5 kb-fragment could be the one 

containing exon 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25. Southern Blot of BAC-clones
confirming the presence of VHL exons and
defining their BamHI-fragment distribution.
Screening of a 129 mouse-derived genomic
library for BAC-clones harbouring the VHL
gene yielded the identification of three clones:
n. 361, 383 and 422. To confirm the presence of
the three VHL exons within these clones their
DNA was digested with BamHI (lanes a) and
BamHI / HindIII (lanes b) and subjected to
Southern Blot analysis with a full-length mVHL
cDNA probe (positive probe was on the same
gel, but not shown as fragment run much
lower). All three clones contained 3 BamHI-
fragments of ca. 5, 4 and 3 kb (except clone 383
that instead of the 5 kb fragment had a much
bigger sized fragment). Additional HindIII-
digestion only resulted in disappearance of the 5
kb-BamHI-fragment (or of the ca. 9.6 kb band
for clone 383) and in the appearance of a ca. 3.7
kb band. Subsequent labelling with an exon1-,
exon2- or exon3-probe allowed the association
of the BamHI-fragments with the corresponding
VHL-exons harboured within (Data not shown,
result just indicated by arrows). 

In order to link the three BamHI-fragments to the corresponding exon contained 

within, the southern blot was hybridised with specific probes for exon 1, exon 2 and 

eventually exon 3 (the probes were created by PCR on genomic DNA using the before 

mentioned specific primer-pairs) and the fragments were therefore identified as following: 

the 5kb-fragment contained exon 1, the 3kb-fragment exon 2 and the 4kb-fragment 

contained exon 3. The HindIII-site predicted to be in the BamHI-fragment containing exon 
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2 was not confirmed by our result, instead it was rather the BamHI-fragment harbouring 

exon 1 that had to contain such a restriction site. 

The BAC clone 361 was chosen to be digested with BamHI, the fragments between 

2,5-5,5 kb were extracted from the gel and subcloned into the Bluescript vector pBSKS. 

Single colonies were plated on a fresh plate and a Dot 

Blot was performed using the exon 1- or exon 2-specific 

probes to identify which clones had inserted the right 

fragments (FIG. 26).  

With this strategy we obtained 3 clones 

harbouring exon 1 in the Bluescript (pBSKS) vector, 3 

clones harbouring exon 3 and finally 2 clones harbouring 

exon 2 in the pBS-vector. All clones were confirmed by 

sequencing.  

In order to design the VHL targeting vector we 

had to first assemble the sequence of the VHL gene. As 

the whole sequence was not yet available, the clones had 

to be sequenced through completely to obtain all the information needed to design the 

cloning strategy (primers for sequencing see materials, chapter 4). In addition in silico analysis of 

the already known parts of the VHL gene locus was undertaken and compared with the 

sequenced DNA. When finally the whole sequence was deciphered, and all the possibly 

interesting restriction sites found, the design and subsequent cloning of the vector was 

initiated.  

Figure 26. Example of a dot blot.
After sub-cloning the 5 and the 4 kb
BamHI-fragments into pBS, the
colonies surviving ampicillin
selection were plated on a nylon
membrane and this one hybridized
with probes specific for exon 1, 2 or 3
in order to find positive clones
harbouring the different fragments.  

For the VHL targeting vector only the two BamHI-fragments containing exon 1 (5 

kb fragment) and exon 2 (3 kb 

fragment) were utilized (FIG. 27). 

A targeting cassette flanked by 

loxP sites, containing both a 

positive (neo) and a negative (tk) 

selection marker, was inserted into 

a unique NdeI-site approximately 

2.6 kb upstream of exon 1. A third, 

single loxP element was inserted 

into a HindIII-site lying 

downstream of exon 1. In order to 

Figure 27. Design of the targeting vector (below) in comparison
to the genomic locus of the VHL gene (top). In red are the two
arms of homology. B= BamHI restriction site. Further details see
text
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favour the homologous recombination event in the mouse, two arms of homology had to be 

present in the targeting vector. A shorter arm of homology of ca. 1.2 kb was provided 

nearby the positive/negative selection marker cassette and a longer arm of homology of ca. 

3.5 kb, containing also exon 2, was provided 3’ of the 3rd loxP site. The whole cloning 

strategy is depicted in figure 28 and is explained in more detail in the methods section in 

chapter 5.7. The final construct was confirmed by sequencing especially for checking the 

correct orientation of all loxP elements.  

 

 

a 
b 

c 

e 
d 

f 

 
Figure 28. Schematic overview of the cloning steps involved for the creation of the VHL targeting vector. Details 
about the cloning are found in chapter 5.7. 
 
 
 

2) Electroporation of the targeting vector in ES cells and subsequent screening 
 

Prior transfection into embryonic stem (ES) cells, the vector was linearized by digesting the 

targeting vector (inside the pET-16b plasmid backbone) with the restriction enzyme ClaI, 

which only cut once, outside the construct, in the vector. ES cells were then electroporated 

to incorporate the targeting vector into the ES cell genome. The ES cell line used was 
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derived from a 129 mouse strain, which is characterized by the dominant brown (agouti) 

colour.  

The transfection of the targeting vector into ES cells and the subsequent selection 

with G418 (250 µg/ml) for ES-clones containing the neomycin-resistance gene were 

performed by Patrick Koop in the transgenic facility at the Friedrich Miescher Institute in 

Basel. G418 resistant clones were then picked and expanded to isolate enough genomic 

DNA to perform Southern analysis. 

With the aim of identifying the correctly recombined clones, three probes, which 

had been tested for their efficiency on wild-type genomic DNA before, were employed: 

two external, 5’ and 3’, probes and an internal neo-probe (kindly provided by Christiane 

Wirbelauer). The 3’-probe was used to confirm the proper insertion of the 3rd single loxP 

site by digestion of genomic DNA with NdeI and EcoRV, while the 5’ probe and the neo-

probe could both be employed on BclI digested DNA to screen for the presence of the 

selection cassette. As illustrated in figure 29 restriction digests of genomic DNA with 

EcoRV and NdeI and hybridisation with the 3’-probe were expected to generate a band of 

9.1 kb for the wild-type allele and a 5.9 kb band for the targeted allele.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 29. Southern Blot with the 3`-probe. A) Schematic diagram of the genomic locus of VHL and the relative 
position of the 3’-probe herein, depicted with red bar. B) The genomic VHL wt DNA, when restricted using EcoRV (E) 
and NdeI (N), was expected to generate a 9.1 kb fragment, whereas the targeted allele would in that case generate a 5.9 
kb fragment due to an additional EcoRV restriction site that had been introduced together with the 3rd loxP site. The 
restriction sites are shown as vertical red lines and the loxP sites as blue arrowheads. The neo-tk selection cassette is 
shown as a light blue box flanked by loxP sites (blue arrowheads).  In the depicted examples of southern blots all tested
clones contained the wt fragment, but only 3 clones were positive for the targeted allele fragment of 5.9 kb (clones 54,
60 and 117). 
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168 clones were digested with EcoRV and NdeI and hybridised with the 3’ probe. 

Among these, 4 clones, numbers 54, 60, 107 and 117, proved to have the right insertion of 

the 3rd single lox P in one of their two alleles. Only these four clones were expanded again 

and DNA was isolated in order to perform another southern to check with the 5’ and the 

neo-probe for proper insertion of the other elements of the targeting vector.  

Genomic DNA of the four clones that tested positive for the proper insertion of the 

3rd single loxP site was digested with BclI and subjected to southern blot analysis using 

first the 5’-probe and then the neo-probe. As depicted in figure 30 digest with BclI was 

expected to produce a 6 kb fragment for the wild-type allele and a 10 kb fragment for the 

recombined allele due to the inserted neo-tk cassette, which is about 4 kb in length.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30. Southern Blot with the 5`-probe. A) Schematic diagram of the genomic locus of VHL and the relative
position of the 5`-probe herein, depicted as red bar. B) The genomic VHL wt DNA, when restricted using BclI (B) was 
expected to generate a 6 kb fragment, whereas the targeted allele would in that case generate a 10 kb fragment due to the
insertion of the neo-tk selection cassette of about 4 kb in size. The restriction sites are shown as vertical red lines and the
loxP sites as blue arrowheads. The neo-tk selection cassette is shown as a light blue box flanked by loxP sites (blue
arrowheads).  In the depicted southern blot of the four clones, which had been positive for the insertion of the 3rd single 
lox P site, only two clones gave the expected fragment of the targeted allele (clones 60 and 117; control represents
genomic wt DNA). Strangely enough as this blot was hybridized with a neo-probe all four clones confirmed the 
presence of the neo-tk selection cassette as a 10 kb fragment (Data not shown). 

 

But in this case only two out of the four clones previously shown to be positive for 

the 3rd loxP site demonstrated the expected band of 10 kb. As the same blot could be 

hybridised with a neo-probe designed against the neomycin resistance gene in the neo-tk 

cassette, the presence of the selection cassette was though confirmed in all four clones with 

                      70



                                                                                                                                                         Results Part 1                              

this probe.  These contrasting results made us chose clone 117 for further experiments, as 

this was one of the two clones that had shown the expected fragment patterns in all 

southern blot proving that homologous recombination had occurred in this case. In addition 

the band detected by the neo-probe for the other positive clone, clone 60, had been much 

fainter, so that clone 117 in the end seemed to be the only appropriate one to pick as the 

basis for the next transfection round.  

The karyotype of the 117 ES cell clone population 

was investigated prior its utilization for the 2nd transfection 

as it is known that with time in culture abnormal variant 

cell clones can arise in ES cell populations. Among these 

some variants have an abnormal phenotype and may 

therefore be unable to contribute to germline transmission 

of genetic traits.  

The karyotype in this case was though proven to be 

acceptable, as 75 % out of 50 counted spreads didn`t show any karyotypic abnormalities. 

Figure 31. Karyotype of 117 ES
cell clone. 

 
 

3) Transfection of the positive clone from 1. Electroporation with a Cre-
expressing plasmid and screening 

 
After expansion of clone 117, this ES-cell population was transiently transfected with a 

cytomegalovirus promoter-driven Cre recombinase plasmid (performed again by Patrick 

Koop at the Friedrich Miescher Institute). This time negative selection was provided by the 

presence of gancyclovir (2 µM) in the medium and cells expressing the thymidinkinase 

gene (present in the cassette together with the neomycin resistant gene) normally convert 

this nucleoside analog into a toxic derivative leading to their own death, therefore enriching 

for clones that have lost the selection cassette due to excision by Cre action. 

In total 168 surviving clones were picked and expanded, but unfortunately the DNA 

gained from the ES cells was not enough to perform southern blot analysis. Therefore a 

PCR screening strategy was utilized with the aim of identifying the putative positive 

clones, which would then have been subsequently re-grown in order to be confirmed by 

southern.   

The PCR screen employed the primers schematically depicted in figure 32. 
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A) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

B)
Figure 32. PCR screening strategy employed to identify clones containing either a floxed VHL allele or a VHL
null allele. A) Schematic diagram of the targeted allele and the relative position of the employed primers (depicted as
arrows) showing the orientation of the primers. B) The primer combination A.1 and C.2 depicted only in A) was used to
select for clones that did not contain the neo-tk cassette any longer and where therefore no band was detectable by PCR.
These clones were subsequently tested with all the primer sets listed in the table. On the left of the table the possible
allele structures are depicted  (although the second and fourth from the top should in theory not be present any more due
to the selection with the A.1 and C.2 primer in the beginning that was thought to ensure the absence of the selection
cassette). The fragment sizes expected with the primer pairs depicted on top of the table are shown for every possible
allele structure. Little stars mark the cases where the primers would have recognized the corresponding DNA, but where
the fragments were too big to be synthesized by PCR. 
 

All the clones were first tested for the presence of the neo-tk cassette with the 

primer pair A.1 and C.2 that could only give a band in case the cassette was still in one of 

the two alleles. With this screening approach out of the 168 screened clones the following 

numbers did not test positive and were therefore likely to have lost the selection cassette: n. 

4, 7, 8, 9, 18, 23, 29, 30, 31, 43, 47, 63, 85, 92, 121, 124, 137, 144 and 166. The high 

number of clones that still seemed to contain the neo-tk cassette led to the assumption that 

the gancyclovir selection hadn’t been very efficient, nevertheless we continued screening 

the above-mentioned clones for both the floxed and the complete knockout on one allele.  

Before screening these clones though, clone 117 was re-tested with this PCR 

screening also to ensure the usefulness of the strategy.  As shown in figure 33 clone 117, 

the clone that was chosen from the 1st transfection to be transfected with the Cre-plasmid, 

when compared to genomic wild-type DNA and screened with different primer sets 

confirmed the presence of the neo-tk cassette and the 3rd lox P site.   
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B) A) 

Figure 33. PCR screening strategy employed to identify clones containing either a floxed VHL allele or a VHL
null allele. A) ES cell clone 117 (from first transfection) was tested with different primer combinations for the Presence
of the neo-tk cassette and the 3rd lox P site (defined here as 2. loxP. The two loxPs refer to the floxed allele that we
wanted to screen for, therefore the primer pairs were utilized to screen for the presence of the first (1. loxP) or the
second loxP (2. loxP)). As control wt genomic DNA was utilized to prove efficiency of the selected primers. Clone 117
showed all the expected fragment sizes (the lower and fainted band in the C.1 + C.4 lane was not reproducible in other
experiments and is therefore neglected) and was therefore re-confirmed as a clone in which homologous recombination
had taken place. B) Clone n. 47 showed the fragments or absence of fragments defining it as a possible candidate for a
complete knockout, where VHL exon 1 had been excised leaving only a single loxP. Clone 8 is depicted as an example
of many clones that didn’t show any clear result as they had been negative for the presence of the neo-tk cassette but for
the rest behaved as if they contained the selection cassette.  

 

Among the clones obtained from the 2nd transfection there were four clones (n. 47, 

121, 137 and 166) that seemed to have a complete knockout (where exon 1 was excised 

and only a single lox P site left) on one allele (always remember that only one allele is 

recombined or ‘targeted’, while the other one remains WT). Unfortunately no clear 

“conditional “ clones, containing a floxed and a wt allele, could be identified, as the 

remaining clones showed abnormal PCR patterns. 

Nevertheless 12 clones of the originally 168 were re-grown and subjected to 

southern blot analysis. The DNA was digested with EcoRV and then hybridised with the 5’-

probe already used for the screening of the first transfection. Figure 34 illustrates the 

possible results.  

 

 

 

 

 

 

 

 
Figure 34. Southern Blot strategy testing the outcome of the 2nd transfection. The EcoRV restriction sites are depicted 

as vertical red lines and the 5’-probe is depicted as a blue bar.  
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The Southern Blot didn’t give any 6.1 kb band expected in the case of a recombined 

‘floxed’ allele, but the wild-type band expected to run above 20 kb could be seen for all 

clones confirming that the southern blot per se had worked. This result excluded the 

possibility of a floxed VHL gene within the selected clones, but didn’t eliminate the 

possibility of a complete knockout, where exon 1 had been deleted. 

In order to screen for a complete knockout, the DNA was digested with the BclI 

restriction enzyme and a VHL exon1-specific probe (used for screening the BAC clones in 

the beginning of this study) was utilized.  As depicted in figure 35, digestion with BclI was 

expected to generate a fragment of 6 kb for the wild-type allele and a 3.3 kb fragment for 

the complete knockout allele. The result of the southern blot confirmed the presence of 

three clones that had excised exon 1 and that were therefore complete knockouts 

(heterozygous though).  

Figure 35. Southern Blot testing for
complete knockout ES cell clones. The
digest with BclI was expected to create a 6
kb fragment for the wt allele (see also
figure 30). In the case of a VHL knockout
allele, where exon 1 had been excised by
Cre, a 3.3 kb fragment was expected.
Among the 12 tested clones (cl.) three
showed a strong (cl. 137) or faint (cl. 47
and 166) 3.3 kb band in addition to the wt
allele band.  

 

cl.     7    8      9    43  47   62   63  85  121 137 144 166  old

6 kb

3.3 kb

The main aim of this project had been to create a conditional knockout as it had 

been shown that the complete knockout was lethal. Although it would have been interesting 

to knock out VHL in another mouse strain due to the fact that it is known that the 

background affects the different outcome of a knockout, it was still more interesting and 

challenging to create a conditional knockout, so another attempt was undertaken. 

 
 

4) Re-Transfection of the positive clone from 1. Electroporation with a Cre 
expressing plasmid and screening  

 

After expansion of clone 117, that had been tested positive for the homologous 

recombination event in the first place (see 3)), another transfection with the Cre-plasmid 

was carried out. This time instead of gancyclovir selection, that hadn’t seemed to be very 

efficient in the first try, selection was carried out with G418. As opposed to the screening 

after the 1st transfection (of the targeting vector into the ES cells) in this case cells that 
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were dying were screened, as these had lost the selection cassette and were therefore the 

interesting ones. 

67 clones died during G418 selection and, as it was not possible to re-grow all of 

them, only 12 clones were chosen to be re-grown and tested by Southern.   

The southern strategy was the same one already explained before under point 4) and 

as a control DNA from clone 117 was utilized (FIG. 36).  

A) B) 

    1         4          9         12        15       21       43  
            2         5         10        13       1 9     23         117 cl.   

    cl.     1         4         9        12       15       21       43  
         2         5        10       13       1 9     23      117

   4.5 kb

> 20 kb

Figure 36. Southern Blots of 12 clones that were supposed to have lost the neo-tk cassette. A) Southern blot with
the 5’-probe following EcoRV digestion was expected to give a 20 kb fragment for the wt allele and a 6.1 kb fragment
for the floxed VHL allele. The 117 ES cell clone (in red) was utilized as negative control, as this still retained the neo-
tk cassette and gave a 4.5 kb fragment (see also figure 34). Clone 43 came from the previous transfection round which
had given only complete knockout clones. None of the tested clones showed a fragment of 6.1 kb. B) The same blot
was tested for the presence of the neo-tk cassette with a neo-probe. Although the clones had been selected for their
inability to survive selection with G418 the hybridization with the neo-probe revealed that all clones except one
(cl.23) gave bands of a specific size. In addition clone 117, on which the 2nd transfection was based on, gave multiple
bands that were not explicable. 

 

As shown in figure 36A the wt band of  >20 kb could be seen for all twelve clones, 

whereas there was no clone that showed a fragment of 6.1 kb. While clone 117 contained a 

second fragment of the expected size of 4.5 kb, some of the other clones showed multiple 

faint bands. Testing of these clones for the neo-probe gave even more incomprehensible 

bands (FIG. 36B). In addition also clone 117, on which this second transfection was based 

on, started to show a strange band pattern putting everything in question that had been done 

until that moment. As, on top of everything, the conditonal knockout had been published in 

the meantime, this project was stopped. 
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Chapter 8 
 
 
 

Results 
-Part Two- 

 
 
 
 
 
 
 

pVHL-expression study in the murine retina 
and cerebellum 
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 VHL gene expression studies on human fetal and adult tissues showed VHL mRNA to be 

ubiquitously detectable. Expression was not restricted to specific areas known to undergo 

abnormal differentiation as part of the VHL syndrome such as kidney, cerebellum and 

pancreas, but it was also present, among others, in the heart, lung and prostate. In addition 

VHL gene expression was evident in all derivatives of the three germ cell layers also 

during mouse embryogenesis, being most prominent in epithelial components of the lung, 

kidney and eye (Richards et al., 1996; Kessler et al., 1995).  

Expression studies of the VHL protein (pVHL) utilizing poly- and monoclonal 

antibodies against human VHL revealed wide cytoplasmic expression in human adult 

tissues (Sakashita et al., 1999; Corless et al., 1997; Los et al., 1995). However, despite the emergence 

of data on overall Vhl gene expression and elucidation of VHL function, little was known 

about the detailed VHL protein expression in the retina and cerebellum.  

To investigate pVHL expression during murine development and adulthood a 

mouse pVHL-specific antibody was raised and utilized in a detailed immunohistochemical 

study focusing on the development of two tissues that play a very important role in the 

course of VHL disease, namely the retina and cerebellum. 

 
1) Characterization of the α-pVHLMm (CT) – antibody 
 

Polyclonal rabbit serum was raised against the synthetic 21mer peptide corresponding to 

the C-terminus of murine pVHL. In order to test for the specificity of this antibody, defined 

as α-pVHLMm (CT), cell lysates of mouse NIH3T3 and Renca cells were prepared, loaded 

onto a 12% SDS-gel and subjected to immunoblotting. As illustrated in figure 37A the 

affinity-purified α-pVHLMm (CT) antibody recognized exclusively two endogenous 

proteins of expected molecular weights, 21 and 25kD. The abundance of the endogenously 

detected proteins was significantly increased in whole cell lysates prepared from cells 

previously transfected with a mammalian expression plasmid encoding either the long or 

the short form of pVhlMm. Thus the migration of the endogenous proteins is consistent with 

the one of over-expressed proteins (data not shown) and the antibody proves to be specific 

for murine Vhl. 

As in human, the mouse Vhl gene also encodes two proteins, termed pVHL21 and 

pVHL25, arising from two alternative start codons. The primary sequence in this case only 

differs by the additional presence of a single acidic repeat unique to the longer VHL 

protein, pVHL25. The mouse pVHL shares high homology with the human pVHL, sharing 

a 90% identity in the amino acid sequence in the middle part harboring the most important 
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sites. As the α-pVHLMm (CT) antibody recognizes both forms equally, no distinction 

between the forms will be made and both forms will be subsumed under the term “pVHL”. 

To study pVHL expression during development mouse embryos were euthanized, 

fixed in 10% formalin and embedded into paraffin. Sections were then stained with the α-

pVHLMm (CT)-antibody. Immunohistochemical staining of murine tissues from E17.5 

using α-pVHLMm (CT) revealed strong VHL expression in a variety of tissues. 

Representative examples of pVHL staining in tissues such as pancreas, lung and ear as well 

as in the retina are illustrated in figure 37B (a,d,g) and Fig. 37C (left panel). These findings 

correlate with the impressive Vhl expression pattern noted in Kesslers paper where e.g. at 

E16.5 the inner and outer neuroblastic layers of the retina revealed strong VHL mRNA 

expression activity. Moreover as shown previously for VHL mRNA, pVHL expression was 

not exclusively present in tissues known to be at risk in VHL disease development, but also 

in tissues not connected to the known VHL phenotypes.  

To document the specificity of the Vhl staining, the antibody was pre-incubated 

with an excess of peptide before use in immunostaining. As illustrated in Figure 37B 

(b,e,h) and 37C (right panel) the pre-incubation with the CT-peptide, which was  originally 

used to create the antibody, reduced the staining dramatically whereas incubation with a 

control peptide mimicking the N-terminus of Vhl didn’t affect the staining at all (Fig 37B 

right panels).  

pVHL expression in the retina was additionally confirmed by western blot. Whole 

cell extracts of retinas from P2 mice were resolved by electrophoresis on a 12 % 

polyacrylamide-SDS gel and electroblotted onto nitrocellulose membrane. Incubation of 

the membrane with α-pVHLMm (CT) revealed exclusively two bands migrating at the same 

size of the above characterized pVHL bands in NIH3T3 whole cell extracts. In this 

experiment expression of the longer pVHL form, pVHL25 seemed to be more prominent 

than the expression of the so-called shorter form, pVHL21. This difference in expression 

levels has been seen reproducible and will be interesting to be investigated in more detail in 

future. 

 
In conclusion these data show that α-pVHLMm (CT) is a highly specific antibody 

recognizing both forms of pVhl in mouse.  
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Figure 37. Antibody characterization of the α-pVHLMm (CT) antibody.  
(A) Whole cell lysates of NIH3T3 (lane 1) and Renca (lane 2) cells were subjected to immunoblotting utilizing the α-
VHLMm (CT) antibody. In both mouse cell lines the antibody specifically recognized the endogenous expression of
two pVHL (Mm) forms defined as pVHL21 and pVHL25 (indicated by arrows). The migration of the detected
endogenous bands was confirmed by overexpression of the Vhl proteins in transfection experiments (data not shown).
(B) At E17.5 pVHL expression was detectable among others in the ear, pancreas and lung (a, d, g). Pre-absorption of
the α-pVHLMm (CT) antibody with the CT-peptide (1mg/ml), which was originally used to create this antibody,
showed strong competition of the signal (b, e and h), whereas pre-absorption with an NT-peptide as a negative control
showed no competition (c, f and i).  
(C) Strong pVHL expression at E17.5 was also detectable in the retina (left panel), where the signal could be
abolished completely by pre-absorption of the antibody with the CT-peptide (1mg/ml) (right panel).  
(D) pVHL expression in the retina was further confirmed by western blot in retinal whole cell extracts (lane 2). The
shorter pVHL form (21kD) seemed less abundant than the longer form (25kD) in comparison to NIH3T3 whole cell
extracts (lane 1).  
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2) Localization of VHL expression during murine developmental and adult 
retina 

 
To determine pVhl expression at specific developmental stages during murine retinal 

development retinae from E10.5, E12.5, E14.5, E17.5, P0, P4, P8, P11, P16, P18 and adult 

animals were isolated, fixed in 10 % formalin, embedded in paraffin and sectioned at 

12µm. Postnatal stages P0, P4, P11, P16 and adult are represented in figure 38. In the left 

panels negative controls omitting the primary antibody are shown, whereas on the right 

side sections stained with α-pVHLMm (CT) can be seen.  

pVHL expression 

was detectable throughout 

development, from early 

embryonic stages on until 

adulthood. During postnatal 

development the overall 

pVHL-staining in the retina 

started to delineate a more 

pronounced pattern that 

could be already noticed by 

P4.  In adult animals pVHL 

localized to a defined 

specific structure.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38.  Localization of pVHL
expression in the developing
mouse retina. Mouse retina
sections of different developmental
time points (P0, P4, P11, P16 and
adult) were counterstained with
hematoxylin in the presence (right
panels, right row) or absence (left
panels, left row; CONTROL) of the
primary α-pVHLMm (CT) antibody.
A strong VHL signal was detected
throughout development and in
adulthood. Scale bars are indicated. 
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To find out which specific cells towards the end of retinal development were 

expressing pVHL to such a high level, we performed immunofluorescence stainings on 

paraffin sections utilizing cell-specific markers (FIG. 39). At first strong pVhl expression 

was re-confirmed throughout development as shown at E17.5 (b) and P16 (c) [negative 

control with no primary antibody seen in (a)]. Utilizing a Rod specific marker, α-Rho4D2 

(e), did not show any co-localization with the α-pVHLMm (CT) (d) to the same set of cells 

(f) as did not markers for retinal pigment epithelium, amacrine cells, horizontal cells and 

bipolar cell (data not shown). Strong co-localization was though found with a monoclonal 

antibody against Glutamine synthetase, α-GS, a known marker for müller glial cells (g-i) 

and even further confirmed with another müller glia cell marker, namely α-CRALBP (k), 

that also co-localized with α-pVHLMm (CT)(j) to the same cells (l).  

Figure 39. Immunofluorescent analysis of pVHL expression in the mouse retina by use of cell-specific markers.  
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Mouse retina sections were stained with α-pVHLMm (CT) antibody and cell specific marker antibodies. (a- c) Immuno-
staining utilizing a FITC-conjugated secondary antibody in the presence or absence (a) of α-pVHLMm (CT) as primary 
antibody confirmed strong pVhl expression in the retina as shown at E17.5 (b) and at P16 (c). (d-f) Co-staining of P9 
retinae with α-pVHLMm (CT) (d) and α-Rho4D2, a rod-specific marker (e) revealed no colocalization (f). (g-h) Co-
staining of P7 retinae with α-pVHLMm (CT) (g) and α-GS, a Müller glial cell-specific marker (h) revealed strong co-
localization (i). (j-l) Vhl immunostaining at P12 (j) also coincides with another Müller glial cell marker, namely α-
CRALBP(k), and confirms herewith its localization to this specific cell type. For all the shown stainings FITC- (GREEN) 
or Cy5-(RED) coupled secondary antibodies were used. Scale bar represents 50µm. 
 

To confirm and further analyze the subcellular distribution of pVHL localization to 

Müller glial cells and to investigate whether additional cells also expressed pVHL, we 

isolated retinal cells from adult mice and stained the dissociated cells with α-pVHLMm 

(CT) (FIG. 40). Also in this case strong pVHL expression could be noticed in specific cells 

(a,c,h) identifiable as Müller glia both by morphology (b,f) and by the use of two marker 

antibodies, α-GS (d) and α-Vimentin (i) that co-localized with α-pVHLMm (CT) (e and j 

respectively). Strikingly among these dissociated retinal cells another cell type was stained 

with α-pVHLMm (CT) (k,m) that did not stain for the Müller glial cell marker vimentin 

(l,,m)

.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 40. pVHL is expressed predominantly in Müller glial cells, but also in another cell type. Dissociated retinal 
cells from adult mice were stained with α-pVHLMm (CT) and cell type specific markers. For all the shown stainings 
FITC- (GREEN) and/or Cy5-(RED) coupled secondary antibodies were used. pVhl expression localizes to specific cells 
(a,c,h) identifiable as Müller glia both by morphology (b,f) and by the use of two marker antibodies, α-GS (d) and α-
Vimentin (i) that co-localize with α-pVHLMm (CT) (e and j respectively) to the same cell. In addition another cell type 
stained for α-pVHLMm (CT) (k,m) that did not stain for the Müller glial cell marker vimentin (l,m). Sections were 
counterstained with DAPI, shown in dark blue, to highlight position of nuclei. Scale bar represents 10 µm. 
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We conclude that pVhl is expressed in the murine retina throughout development 

and that at the later stages of development it localizes predominantly to Müller glial cells 

and to another yet-to-be-identified cell type. In addition we observed that pVHL expression 

in these cell types appears to be exclusively cytoplasmic. 

 

3) Localization of VHL expression during murine cerebellar development 
 

To investigate pVhl expression during murine cerebellar 

development, cerebella (FIG. 41) from P0, P7, P12, P16, P18, 

P21 and adult animals were isolated, fixed in 10 % formalin, 

embedded in paraffin, sectioned at 12 µm, stained with α-

pVHLMm (CT) and analyzed both by immunofluorescence 

utilizing FITC-conjugated secondary antibodies as well as by 

DAB staining. Postnatal development of the murine cerebellum revealed a particular pVHL 

expression that was confined predominantly to the outer parts of the cerebellar cortex 

(FIG.42, see white arrows).  

Cerebellum
Figure 41. Position of the
cerebellum. 

 

 

 

 

 

 
Figure 42. Localization of Vhl
protein during postnatal
development of the cerebellum.  
12 µm thick sagittal sections of
murine cerebella from P7, P12 and
P16 were stained with α-pVHLMm
(CT) and analyzed both by
immunofluorescence utilizing
FITC-conjugated secondary
antibodies (left panels) as well as
by DAB staining counterstained
with hematoxylin (high
magnification view, right side).
pVHL expression was confined
predominantly to the outer parts of
the cerebellar cortex (see white
arrows).  
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The adult peripheral cerebellar cortex contains two principal neuronal subtypes, 

namely the Purkinje cells and the granule cells constituting the internal granular cell layer 

(IGL). The granule cells are derived from peripherally located mitotic or “cycling” cells in 

the external germinal layer (EGL) which after birth exit cell cycle, start differentiating and 

migrating along radial glia across the Purkinje cell layer to then settle and constitute the 

IGL. The inward migration of EGL cells continues approximately until P15 when the EGL 

disappears. The observed pVHL expression was localized to the molecular layer area and 

the EGL throughout development as specifically noticeable by P16 when only a thin stretch 

of VHL staining can be noticed on the very edge of the cerebellar foliae coinciding with the 

fact that by this developmental stage the EGL disappears. 

The fact that pVHL has been shown to be expressed in CNS neuronal cell 

precursors and the specific change in position of Vhl expressing cells during cerebellar 

development made 

an involvement of 

progenitor cells 

likely. In order to 

identify the VHL-

expressing cells 

immunofluorescent 

double-staining ex-

periments were 

performed (FIG. 43).  

 

 
 

igure 43. pVHL expression in the External Granular layer (EGL). Sagittal cerebellar sections were stained with α-
VHLMm (CT) and markers of the cerebellar cortex. Proliferating GCP cells at P7 were highlighted by BrdU injection and 

 

 

 

 

 
 
F
p
subsequent staining for an BrdU antibody (a). Additional staining with α-p27 (b) confines p27 expression, as already 
shown, to postmitotic GCP and not colocalising with the BrdU signal (c). Staining P4 sagittal cerebellar section with 
α−p27 (d) and α-pVHLMm (CT) (e) revealed pVHL expression in the same subset of cells in the EGL as α−p27 (f) as well 
as probably in adult granule cells (higher magnification view seen in g,h and i respectively). Staining sections with the 
Purkinje cell marker α-calbindin (j) and α- pVHLMm (CT) (k) revealed no colocalization to the same cell (l) excluding 
VHL expression in Purkinje cells at this stage. Scale bar represents 50 µm (d-f) and 20 µm (g-l). 
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By marking mitotic cells at P7 in the EGL with BrdU (a) and staining additionally 

with p27 (b) we confirmed the well-documented fact that p27 is expressed in cells that 

have become postmitotic and therefore no colocalization could be seen (c). Staining P4 

sagittal cerebellar section with α−p27 (d,g) and α-pVHL  (CT) (e,h) revealed that pVHL 

seems to be expressed in the same subset of cells in the EGL as p27 (f,i) as well as 

probably in adult granule cells. Staining sections with the Purkinje cell marker α-calbindin 

(j) and α- pVHL  (CT) (k) revealed no colocalization to the same cell (l) excluding VHL 

expression in Purkinje cells at this stage.  

In summary we could show that pVHL expression during cerebellar development 

seems to be localized to a specific subset of granule cell precursors that have exited the cell 

cycle and are about to migrate. Whether Vhl expression persists in the migrating cells will 

have to be investigated further.  
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Based on the new finding, that VHL protein expression was strongly detectable during 

cerebellar and retinal development (chapter 8), and on the already proposed role for VHL 

in neuronal differentiation (Kanno et al., 2000), we decided to investigate the role of the VHL 

tumour suppressor gene in neuronal precursor cells in the context of the CNS development.  

In order to do so we took advantage of two already established mouse strains: the 

VHL floxed/floxed (VHLfl/fl) mice (Haase et al., 2001), which we had also tried to create (as 

shown in chapter 7), and transgenic mice that express the Cre recombinase under the 

control of the neuron-specific nestin promoter (nes-Cre) (Tronche et al., 1999). Nestin is an 

intermediate filament protein expressed predominantly in the neural progenitor cells during 

murine CNS development (Lendahl et al., 1990) and in skeletal muscle. But in addition it can 

also be detected in the developing (neuro) retina around E12.5 (Yang et al., 2000). 

The VHLfl/fl mice contain on both alleles a loxP-flanked (floxed) exon 1, whereas 

the nes-Cre mice express Cre under the control of the rat nestin (nes) promoter and 

enhancer (FIG. 44) 

 

 
 
 
Figure 44. Structure of the nestin-Cre transgene. Cre recombinase was expressed under the control of the promoter 
and the nervous system-specific enhancer present in the second intron of the rat nestin gene. hGH poly(A), human growth 
hormone polyadenylation signal. 
                                                              From Tronche et al., 1999 

 
Both mice strains had been shown to be viable and healthy and had been previously 

utilized in different conditional knockout experiments (Pfander et al., 2004, Graus-Porta et al., 

2001; Haase et al., 2001, Tronche et al., 1999). In addition, the nes-Cre mice had been 

characterized by crossing them with a reporter mouse line that carries a Rosa26lacZ-loxP 

gene (where lacZ expression is induced by Cre-mediated recombination) showing efficient 

and widespread recombination in precursors of neurons and glia starting around embryonic 

day E 10.5 (Blaess et al., 2004; Graus-Porta et al., 2001).  

 

1) Generation of nes-Cre; VHLflox/flox mutant mice 
 

In a first breeding step VHLfl/fl mice were bred with nes-Cre mice in order to generate nes-

Cre; VHLfl/+ mice (FIG. 45A). These mice were then bred again with VHLfl/fl and the 

offspring screened for the appearance of the nes-Cre; VHLfl/fl genotype (FIG. 45B). This 

genotype was then expected to lead to the excision of the floxed exon 1 of VHL only in 
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tissues where nestin was expressed. The genotype was determined by PCR on tail biopsies 

and the VHL status was assessed in addition by southern blot analysis (data not shown).  
 

igure 45. Sc mouse. A) The 

 
fl/fl (FIG. 

 led 

to death of newborn pups within a day after birth. The screening of the mice was performed 

by PCR analysis and an example is depicted in figure 46. 

 

 

 

 

 

 

 

 

F hematic representation of the two breeding steps needed to obtain the nes-Cre; VHL

2) Mice that lack VHL in the nervous system show severe defects in brain    

As expected one out of four pups from a cross between nes-Cre; VHLfl/+ and VHL

45B) had the genotype nes-Cre;VHL  and the deletion of VHL in the nervous system

fl/fl 

nes-Cre mice are heterozygous, therefore the genotype is depicked as tgN (transgene Nestin) / + (for wildtype). By 
crossing a nes-Cre mouse with a VHLfl/fl mouse both nes-Cre; VHLfl/+ and VHLfl/+ mice were born at the expected 
mendelian frequency (1:1). B) By crossing the nes-Cre; VHLfl/+, obtained in the first step, with VHLfl/fl mice the 
conditional VHL knockout nes-Cre;VHLfl/fl was obtained at a ratio of 1:4.  
 

development and die within a few hours after birth 

fl/fl

co Nes co M1 M VHLfl/fl M1 MVHLfl/+

Nestin VHL 
Figure 46. PCR analysis for VHL and Nestin status of mice. In this example (co) stands for genomic wt DNA, (Nes co)
for a nes-Cre mouse DNA, (M1) was a dying mouse at PO, whereas (M2) was a mouse picked as a control within the same
litter as M1. VHLfl/fl and VHLfl/+ genomic DNA was used as control for the PCR investigating the VHL status. Stars
represent the band of 100 bp for the nestin transgene. Concerning VHL the higher band of ? bp represents the floxed VHL
DNA, whereas the smaller fragment of 500 bp comes from wt DNA. As can be clearly seen M1 is positive for the nestin
transgene and in addition only shows the upper band for VHL, meaning that it is homozygous floxed. The expression of
the transgene in a mouse with a floxed VHL gene leads to conditional inactivation of VHL in neuronal precursors. This
though cannot be monitored by a PCR on tail biopsies, as there nestin will not be expressed. 
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To confirm that VHL expression had been really abolished in the brain of conditional 

knockouts, a Western Blot analysis on whole brain extracts was performed utilizing the α-

pVHLMm (CT) antibody, characterized in chapter 8. Different brain regions were in the first 

place examined for their normal VHL expression and were also compared to the VHL 

expression in the cerebellum and the forebrain of two mice which had been shown 

previously by PCR to be nes-Cre;VHLfl/fl (FIG. 47).   

 
Nes-Cre;VHLfl/+ 

     or  VHLfl/fl 

 

Nes-Cre;VHLfl/+

     or  VHLfl/+ 

 

pVHL21 

pVHL25 

p27 

c m f f c c c c whole brain

Nes-Cre;VHLfl/+  

 

 

 

 

 

 

 

 
Figure 47. Western Blot analysis assessing pVHL expression in different brain compartments and comparing 
wildtype to mutant brains. 130µg whole cell extract were loaded onto a 12 %-SDS gel and subjected to immunoblotting 
with the α-pVHLMm (CT) polyclonal antibody. The expression of both forms of VHL, pVHL25 and pVHL21, was 
detectable in all brain compartments of mice used as control (Nes-Cre;VHLfl/+,VHLfl/+ and VHLfl/fl) . Overall the 
longer form, pVHL25, seemed to be more abundant than the shorter form, pVHL21. The VHL expression was 
dramatically reduced in parts of brains extracted from nes-Cre; VHLfl/fl mice ( ). A faint band that is still 
detectable for the longer VHL form might arise from contamination from other tissue parts during preparation 
or from the fact that VHL might be expressed in other cell types that are not affected by nestin expression. 
p27-expression was tested as this has been shown to be present in differentiating granular precursors cells 
apparently co-localizing with pVHL expression. But no clear difference in the expression could be detected. 
F= forebrain, m=midbrain, c=cerebellum. 
 
 
 
The expression of VHL was significantly reduced in the cerebellum and the forebrain of 

the two nes-Cre;VHLfl/fl mice tested, leading to the assumption that it was indeed the loss 

of VHL that caused the severe phenotype. 

In order to investigate in more detail the brains of nes-Cre; VHLfl/fl mice whole 

brains were carefully removed from the scull the day of birth (P0) of the animals and the 

appearance of these “mutant” brains was compared to brains at P0 of wild-type C57BL/6, 

nes-Cre;VHLfl/+ and VHLfl/fl mice (FIG. 48). Subsequently the brains were fixed in 10 % 

formalin and embedded in paraffin. 12 µm sections were cut and stained by 

immunofluorescence utilizing the α-pVHLMm (CT) (FIG. 49) the HIF-1α or VEGF 

antibody (data not shown) or by simply staining with hematoxylin and eosin (FIG. 50).  
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When comparing the exterior appearance of 

the PO brains there were no phenotypic abnormalities 

noticeable in the whole structure (FIG. 48). However, 

the brains of nes-Cre;VHLfl/fl mice appeared slightly 

smaller and more vascularized as can be seen in 

figure 48B and 48C. It is nevertheless not clear 

whether this red colour and the vessels were not 

enhanced due to the stress of the death process that 

was ongoing in the moment the animals were 

euthanized 

Before looking at the expression pattern of the 

VHL protein (pVHL) in the mutant brains the VHL 

expression was assessed at P0 (the day of birth) in the 

whole brain in order to obtain a reference. Up to that 

point we had been mainly interested in the cerebellum 

and had not looked at the rest of the brain that much 

and it was therefore very important to define whether 

there was localized expression of VHL in the rest of 

the brain. As shown in figure 49A, VHL expression 

at P0 seems to be ubiquitous in the brain, with 

enhanced staining at the periphery of the 

telencephalon, the hippocampus and the cerebellum 

(marked by arrowheads). There were no differences 

noticeable when comparing wt C57BL/6 brains with 

brains from nes-Cre;VHLfl/+, VHLfl/fl or nes-Cre 

mice (data not shown). But when we compared 

pVHL expression in the brain of mutant nes-

Cre;VHLfl/fl mice to the expression of pVHL in wt 

animals the first striking thing that was noticable 

was actually the severe brain abnormalities that could be seen in the overall structure. In 

addition there was also a strongly reduced VHL expression detectable especially in the 

outer regions of the brain mentioned before (FIG. 49).  

Figure 48. Comparison of wt brains at P0
with the conditional inactivated nes-
Cre;VHLfl/fl mice.  A) The brain of a wt
mouse (or nes-Cre;VHLfl/+, VHLfl/+ or
VHLfl/fl mouse) at PO appears whitish and
some vessels can be distinguished. B) The
brain of a nes-Cre;VHLfl/fl at PO presents
itself as much more red in colour with strong
highlighting of small vessels all over the
brain. Besides the colour and the highlighted
vessels the phenotypic appearance is though
normal. C) When comparing directly a wt
mouse with a nes-Cre;VHLfl/fl mouse  the
only noticeable additional difference, apart
from the colour, is the size that seems to be
slightly reduced in case of the nes-
Cre;VHLfl/fl  mice.   

As all these sites where enhanced VHL expression could be detected are developing 

strongly in the time frame around birth and as loss of VHL had such a severe impact on the 
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overall brain architecture, VHL seems to play a role somewhere in between the processes 

of proliferation, exit of cell cycle, migration and differentiation as already proposed by the 

result obtained from the expression study of VHL in the cerebellum and the retina. 

 

 

 

 
 

  

BA

 
Figure 49. Brain section stained with α-pVHLMm (CT). (A) VHL expression, as assessed by immunostaining utilising 
a mVHL-CT polyclonal antibody (see chapter 8), seems to be ubiquitous in wt mice at birth (PO). One can notice a strong 
expression of VHL on the outer borders of the cerebral and the cerebellar cortex (shown by arrows). B) The comparison 
of the brain at P0 of a nes-Cre;VHLfl/fl mouse with the wt brain depicted in A first of all shows much weaker overall VHL 
staining suggesting that the conditional inactivation of VHL has functioned properly. The signal was not expected to be 
lost completely as not all cell types are targeted by this conditional inactivation and there will still be residual VHL 
expression in these non-targeted cells or vessels. The two arrows point at the corresponding places in A) showing clearly 
that the brain development is somehow impaired in these mice leading in addition to open spaces within the brain.  
 

In order to investigate in more detail the effect of VHL loss in the brain we focused 

on the telencephalon and the cerebellum. As seen in figure 50 the telencephalon of mutant 

nes-Cre;VHLfl/flmice (FIG. 50B) showed big holes which are ofter referred to in the 

literature as hydrocephalus, empty spaces probably filled by cerebrospinal fluid that upon 

fixation gets lost and appears as empty holes. In addition the outer layers seem to be 

thinner as in the wt control. Comparing the cerebella gives a similar picture: in the mutant 

mouse the cerebellum (FIG. 50D) seems to form but is perturbed and the surroundings 

again show larger holes and not the close compact structure seen in the wt (FIG. 50C). 
 
 
 
Figure 50. Hematoxylin and 
Eosin stainings of sagittal 
sections of the nes-Cre;VHLfl/fl 

brains in comparison to their wt 
control. A) and B) respresent a 
picture of the telencephalon with 
the hippocampal structure while 
C) and D) show the cerebellum 
and its surrounding. A) and C) are 
wt control whereas B) and D) 
represent a nes-Cre;VHLfl/fl brain.  
When comparing the 
telencephalons in A) and B) the 
difference is striking, showing that 
in the mutated brain the overall 
structure is perturbed and  the 
same grade of perturbation can be 
seen also in the cerebellum. 
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3) Mice that lack VHL in the nervous system show a possible effect in the 
retina 

 
As we had investigated VHL expression in the retina as well as in the cerebellum as part of 

this thesis it would have been interesting to specifically delete VHL in these cells. 

Unfortunately though due to the lack of a Mueller glia cell specific Cre-mouse we didn’t 

have the chance to knock out VHL specifically in these cells. However, it was surprising to 

find that in one of the examined nes-Cre;VHLfl/flmice when we looked at the retina a 

strange involution could be noted that in addition stained positive for VHL. Now, it is 

known that Nestin is expressed specifically at E 12.5 in a part of the neuroretina, so it could 

be an effect of the deletion of VHL in the precursor cells. But this will have to be 

investigated further and will also need to be seen reproducibly. Nevertheless it is an 

interesting phenomenon.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 51. Hematoxylin
/Eosin and pVHL
staining of wt and
mutant retinae.  A) and
B) represent a wt retina
whereas C) and D)
represent a mutant retina.
A) and C) show
Hematoxylin/Eosin 
stainings, while B) and
D) depict pVHL
expression as assessed by
immunostaining with the
α-pVHLMm (CT)
antibody. In the mutant
brain an involution of the
neuroretina can be seen
that still seems to express
VHL though. 

 

 

In conclusion VHL seems to play a specific role during the development of the 

brain as loss of VHL, mimicked by a mouse model in which VHL was deleted specifically 

in neural precursor cells, leads to a severe brain phenotype and results ultimately in the 

death of newborns. 
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Chapter 10 
 

Discussion and future perspectives 
 
The most common lesions found in VHL disease include hemangioblastomas, which are 

neoplasms containing a mural nodule formed by noninvasive, vacuolated “stromal” cells of 

unknown origin that are embedded in a network of capillaries. VHL disease-associated 

hemangioblastomas can be found mainly in the retina and the cerebellum. Both lesions 

exhibit indistinguishable histological characteristics, with VHL loss restricted to stromal 

cells, suggesting that this is the neoplastic component.  Given the central role of VHL in 

hypoxia signaling through regulation of HIF, these tumors consequently provide an in vivo 

view of HIF effects in a tumor.   

Multiple mRNA expression studies, aiming at investigating VHL expression in 

tissues, have documented that VHL mRNA is present ubiquitously and not restricted only 

to tissues affected during the course of VHL disease. In addition immunolocalization 

studies utilizing poly- and mono-clonal VHL antibodies recognizing human pVHL 

additionally proved that the protein expression is not restricted to specific tissues either but 

can be found widespread, particularly within epithelial cells.  

Although these studies provided an insight into pVHL expression in adult human 

tissues, so far no studies have addressed the issue of elucidating the VHL protein 

expression pattern and therefore its function during development. In addition, in-depth 

analysis of pVHL expression focusing in tissue-specific cell types e.g. in the retina was still 

pending. Knowing the identity of the cell that expresses VHL, and that is therefore prone to 

unforeseen misregulation by VHL loss, would definitely provide a better target for 

additional studies investigating cures or remedies for the disease. 

To gain more insight into pVHL expression we decided to focus on two tissues that 

are heavily affected during the course of VHL disease, namely the retina and the 

cerebellum. We investigated the VHL protein expression in these two murine tissues 

during development and adulthood by immunostaining utilizing a newly characterized 

antibody that specifically recognizes murine pVHL. 

pVhl expression in the retina was found throughout development. In addition, it was 

localized exclusively to a very specific cell type, the Müller glial cell, towards the end of 

development and in adulthood. As the so-called “stromal” cells in hemangioblastomas have 
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been hypothesized to be of glial cell origin, due to ultrastructural and 

immunohistochemical features (Lubinski et al., 2003), the discovery that under normal 

conditions pVHL is expressed in the principal glial cell of the retina is striking. 

Overall the finding that pVHL is expressed in retinal precursor cells and that its 

expression is unique to Müller glial cells in adult mice proves to be interesting for a variety 

of reasons:  

First, the observed temporal expression pattern would suggest that VHL has some 

function during development, maybe even in directing glia differentiation. It has been 

shown that VHL plays a role in neuronal differentiation in the CNS (Murata et al., 2002; Kanno 

et al., 2000), but in these studies it was not linked to glial histogenesis. The finding that VHL 

expression is prominent in glial cells in the retina is though not really in contrast to these 

results in the CNS, because one has to keep in mind that VHL is already expressed 

throughout the retinal development in precursor cells, which are multipotent giving rise 

both to all the neurons and the glial cell type.  Moreover it is likely that VHL anyway 

exerts different functions in different cell types.  

The homeobox gene Chx10 has been shown to be expressed during development in 

most proliferating retinal cells. As cells exit the cell cycle, they downregulate Chx10 

expression and shortly thereafter differentiating bipolar cells up-regulate and continue to 

express this protein again (Cunningham et al., 2002). However, as a detailed analysis of the 

timing of the expression of Chx10 during cell cycle has not been carried out, it is thus not 

known whether Chx10 expression persists in a subset of retinal progenitor cells as they exit 

the cell cycle or if postmitotic neurons committed to becoming bipolar cells reinitiate 

expression as they differentiate. VHL follows a similar pattern of expression but being 

finally unique to the Müller glial cells. The expression of pVHL didn’t seem to be always 

equally strong in retinal precursor cells as e.g. especially after/ around birth the signal 

intensity seemed to decrease (data not shown) and this time span is the one in which Müller 

glial cells are born together with bipolar cells and rods. It will be therefore interesting to 

have a closer look as to whether this phenomenon of signal reduction is reproducible. In 

addition by retroviral-mediated overexpression of VHL (coexpressed e.g. with GFP) in 

mitotic retinal progenitor cells one could monitor whether more cells become Müller glial 

cells. This would then confirm that VHL provides or relays a signal needed for 

specification to this cell type. When trying to unravel VHL function in this setting it will be 

necessary to find out which biological process is affected by VHL the most among 

proliferation (cell division/ multiplication), differentiation (into specialized retinal cell 
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types), and apoptosis (programmed cell death). Interestingly in the elegant survey focusing 

on the genomic analysis of mouse retinal development by serial analysis of gene expression 

(SAGE) VHL was not identified (Blackshaw et al., 2004). However, in the same report they 

showed that mitotic retinal progenitor cells and Müller glia share a great degree of 

transcriptional overlap. Of the genes being specifically expressed in MG during the first 

postnatal week 68 % were found to be also enriched in mitotic progenitor cells. These two 

cell types resemble each other morphologically and based on the extensive overlap in gene 

expression it is interesting to speculate to which degree they also share a functional 

similarity. Müller glia are one of the last cell types to exit mitosis (Reh and Levine, 1998) and 

they are the only cell type in the mature retina that can reenter mitosis following retinal 

injury (Dyer and Cepko, 2000; Vetter and Moore, 2001). Moreover, data from chicken suggest that 

Müller glia can be induced to divide and give rise to some types of retinal neurons for a 

short period of time near the end of retinal development (Fischer & Reh, 2001). All these facts 

actually lead to the interesting, even more challenging question as to whether Müller glia 

are fundamentally multipotent progenitor cells that are simply quiescent regarding cell 

division and the production of neurons.  Given the well-documented role of VHL in the 

control of gene expression primarily through HIF regulation and potentially other effectors, 

and the coupling of glial cell fate with specific gene expression patterns, it would be of 

interest to investigate the contribution of VHL-mediated gene expression in these 

processes. 

 Second, the fact that VHL is expressed solely in the Müller glial cells provides a 

model cell type in which to further analyze VHL function. Hypoxia has been shown to 

induce VEGF and TGF-β expression of Müller glial cells leading to neovascularization 

fitting therefore to the current knowledge about VHL: both VEGF and TGF-β are HIF 

target genes and HIF is active under hypoxia but normally degraded by VHL under 

normoxia. Interestingly it has been shown that p27 expression, which has been postulated 

to be linked to VHL expression by a yet unknown mechanism, is also restricted to the 

nucleus of müller glial cells in the adult retina. In addition, the fact that Mueller glia play a 

major role in every single disease or injury associated with the retina by initiating a process 

called reactive gliosis calls for further investigations of VHL expression in this context. 

Müller cell gliosis is characterized by a downregulation of p27 levels, by proliferation, 

changes in cell shape due to alterations in intermediate filament production and by 

secretion of signaling molecules such as VEGF, promoting neovascularisation in the 

surroundings. This setting now provides a great model system to unravel the role that VHL 
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plays in the retina. Our next aim is to further investigate whether reactive gliosis has an 

effect on VHL expression. This process can be induced by intraocular injections of ouabain 

utilizing subsequently immunostaining to monitor the changes in expression levels (Dyer & 

Cepko, 2000). It will be exciting to see whether the VHL pathway is downregulated in these 

cases because if this were the case one could envision a model of how actually 

hemangioblastomas could arise: Changes in the cellular redox status and the production of 

reactive oxygen species are associated with retinal injury. Under such conditions, it is 

likely that downstream VHL effectors are differentially modified thus evading destruction 

by the E3 ligase function of the protein. Such downregulation of the VHL pathway during 

the process of reactive gliosis would probably create a condition similar to that encountered 

in case of VHL loss due to mutation. The Müller glial cells would start proliferating again, 

probably expressing glial markers at the beginning, but then switching more to precursor 

markers again (that would explain the fact that there are controversial data regarding the 

markers expressed by stromal cells) and neovascularization would occur due e.g. to the 

expression of VEGF. Whether in reality it is as simple as this model would suggest the near 

future will tell.  

 

As opposed to the retina, in the cerebellum we could show that pVHL expression 

seems to be localized to a specific subset of cells during development, whereas in 

adulthood the expression appeared more ubiquitously and overall reduced. Localizing 

pVHL expression to the non-proliferating subset of granule cell precursors is in complete 

accordance to an already proposed function of VHL in neuronal differentiation and is 

therefore not surprising. In addition some facts even further encourage the idea of a 

specific role played by VHL in these cells at that particular stage:  

1) p27 expression has been shown to be high in GCP cells that have exited the cell cycle 

(Miyazawa et al., 2000). Based on a proposed link between VHL and the cell cycle it is 

interesting to see that both in the retina and in the cerebellum VHL and p27 seem to be 

expressed in the same subset of cells. Whether this correlation translates into a true link at 

the molecular level needs further investigation. With regards to this, we are currently 

crossing floxed VHL mice with p27-/- mice to then delete VHL specifically in the brain by 

using again the Nestin-Cre mice discussed further down. As p27-/- mice have been shown 

to have enlarged organs (Fero et al., 1996) including a larger cerebellum (Miyazawa et al., 2000), it 

will be interesting to see whether knocking out VHL specifically in the brain reverts this 

phenotype or not.  
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2) expression of Cyclin D1 (or the brain-specific cyclin D2), which has been shown to be 

negatively regulated by VHL (Bindra et al., 2002; Zatyka et al., 2002), drops in postmitotic 

granule cell precursors.  

3) CXCR4 expression, which is regulated by HIF that in turn is regulated by VHL (Staller et 

al., 2003), has been shown to be present in proliferating granule cell precursors where it 

plays a role together with its ligand SDF1 (expressed from pial cells) to enhance the SHH-

induced proliferation of granule cell precursors (Lewis et al., 2004; Dahmane & Altaba, 1999). 

CXCR4 mRNA expression peaks in the first two postnatal weeks and from localization 

studies it seems that CXCR4 protein is localized only to the outer part of the EGL and not 

in the VHL expressing postmitotic GCPs. All these facts sustain a possible role for VHL in 

these precursor cells, due to the fact that it should not be possible for VHL and CXCR-4 to 

be expressed in the same cell type assuming that for CXCR4 expression on the membrane, 

HIF needs to be present and active. Maybe absence of CXCR4 expression due to the 

presence of VHL could even lead to the start of differentiation of granule cells (if the 

proliferation-driving signal provided by SHH is not sufficient). 

 

The possible role of VHL played during differentiation in the cerebellum though, does still 

not explain what could happen in an adult cerebellum when lower VHL expression occurs.  

In conclusion of the expression studies, the observed VHL expression during retinal 

and cerebellar development substantiates a previously suggested role of VHL in 

differentiation. The fact that VHL seems to be localized to glial cells in the retina while 

being present in neuronal cells is not in contrast as we could show that VHL is present 

throughout the retinal genesis in the precursor cells which are multipotent and can therefore 

generate glia and neuronal cells. In accordance to this, it is assumed that VHL exerts 

different functions in different tissues. This must be the case as it would be otherwise not 

explicable why despite widespread VHL expression only a small subset of organs are 

affected during the course of VHL disease. This assumption is further substantiated by the 

newly ascribed function of microtubule stabilisation to VHL (Hergovich et al., 2003) which, 

however, despite the implications for a disease-type specific connection to particular VHL 

functions, is still pending evidence for a physiological role in vivo. Finally, the 

identification of Müller glia as the primary Vhl-expressing cell type in the adult retina 

provides a firm basis for the elucidation of the pathophysiological and molecular 

mechanisms that give rise to the observed VHL disease phenotypes.  
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A part of this thesis was dedicated to the creation of a conditional VHL knockout mouse 

model. The aim was to create a floxed VHL mouse, where exon 1 of the VHL gene would 

have been flanked by two loxP elements. This would have then allowed, by crossing these 

animals with cre-expressing mice, an excision of exon 1 leading therefore to the loss of 

VHL in the cre-expressing tissues. When this project was initiated in the year 2000 the only 

published report concerning a mouse model for VHL disease was the complete knockout 

that led to the death of the pups very early in gestation. Due to the lack of possibility to 

study VHL function more extensively in these mice the creation of floxed mice would have 

been a major achievement. During the course of this knockout project a conditional VHL 

knockout was though published by another laboratory (Haase et al., 2001). Although this was 

a major adversity at that time, we decided nevertheless to continue in our intent because of 

the following: The complete knockout published by Gnarra in 1997 had shown that 

homozygous deletion of VHL in C57BL/6 mice led to vascular abnormalities in the 

placenta leading to the death of the embryos at 10-12.5 days of gestation. The conditional 

knockout published by Haase inactivated VHL in BALB/c mice. Comparing the 

heterozygous VHL mice showed that while the heterozygous VHL C57BL/6 mice didn’t 

show any phenotype, heterozygous VHL mice on a BALB/c background developed hepatic 

hemangiomas. Reports in the literature have suggested that mouse models for human 

disease may develop variable phenotypes depending on the strain background, possibly due 

to the presence of polymorphic variants in certain modifier genes in some strain. As a 

recent example: the creation of a VHL conditional knockout mouse model on a C57BL/6 

background was described which developed liver angiomas in 100% of animals within one 

year (Ma et al., 2003). When this phenotype development was compared in different strains 

by introducing the VHL deleted allele also in BALB/c and A/J mouse strains a remarkable 

increase in development of hepatic vascular lesions was observed. Coming back to our 

original aim, we wanted to create a conditional knockout in the C57BL/6 background. 

Unfortunately though it proved to be impossible maybe due to unforeseen recombination 

events happening in the clones or due to adverse culturing conditions. It is also possible 

that the clone 117, which we picked for the second transfection, had a wild-type ES-cell 

contamination. However, at that point, given the availability of floxed VHL mice, we 

decided to use the information gained by our expression studies in the cerebellum to 

investigate the function of VHL in the central nervous system (No Müller glial cell specific 

Cre-strain exists so far). In order to do so a conditional knockout mouse was generated with 

the Cre/loxP system utilizing a nestin promoter-based neural precursor-specific Cre 
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recombinase. The thesis presented  herein documents that neural cell-specific ablation of 

the VHL gene in mice leads to severe brain structure abnormalities resulting in premature 

death occurring shortly after birth. These are preliminary data from an ongoing study that 

needs further investigation as to HIF-1α- or related target genes expression levels either by 

immunostaining or by RT-PCR. Interestingly, in knockout animals of Hif-1α, which has 

been shown to be expressed in the brain, a brain phenotype was also encountered that 

resembles the one we found (Tomita et al., 2003; Jain et al., 1998; Ryan et al., 1998). This 

phenotype is defined as hydrocephalus, the term coming from the greek words ‘hydro’ 

meaning water and ‘cephalus’ meaning head. The hydrocephalus is an abnormal build-up 

of cerebrospinal fluid in the brain. In sections it is recognizable by empty spaces as the one 

noticeable in figure 50. Based on our current knowledge VHL and HIF protein expression 

should be mutually exclusive. Furthermore, it is more and more appreciated that oxygen 

may act as a morphogen in neural tissues in that localised fluctuations in oxygen levels 

drive specific transcriptional programs (Acker & Acker, 2004; Sharp & Bernaudin, 2004). Given 

the similarities in the phenotypes of the two knock-out mice one could envision that 

differential VHL expression in the brain may create an antagonistic environment between 

high and low VHL-expressing cells, with varying responsiveness to surrounding oxygen 

levels and as such comprising a driving force in the differentiation of these brain 

compartments.  

  In addition the layers of the telencephalon in the VHL knockout mouse seemed to 

be smaller in size leading to the assumption of a probable effect of VHL on cell 

proliferation. In this case this would mean that VHL actually promotes proliferation. And 

therefore this finding would add up to the accumulating contrasting reports evaluating the 

effect of VHL on the cell cycle (see also the latest mouse model where VHL was knocked 

out in all cartilaginous elements to investigate its role in endochondral bone development 

(Pfander et al., 2004). Given that these observations are still at a preliminary stage of 

investigation it would be premature to provide a definite answer as to which effect VHL 

exerts but our ongoing studies of the observed severe brain phenotype are warranted to 

elucidate novel functions associated with this interesting tumour suppressor. 

                      99



                                                                                                                                                              References      

References 
  
Acker T. and Acker H. (2004). Cellular oxygen sensing need in CNS function: 
Physiological and pathological implications. J Exp Biol 207: 3171-3188. 
 
Adryan B., Decker H.H., Papas T.S. and Hsu T. (2000). Tracheal development and the von 
Hippel-Lindau tumor suppressor homolog in Drosophila. Oncogene 19: 2803-2811. 
 
Ahmad I., Dooley C.M., Thoreson W.B., Rogers J.A. and Afiat S. (1999). In vitro analysis 
of a mammalian progenitor that gives rise to neurons and glia. Brain Res 831: 1-10. 
 
Aso Y., Yamazaki K., Aigaki T. and Kitajima S. (2000). Drosophila von Hippel-Lindau 
tumor suppressor complex possesses E3 ubiquitin ligase activity. Biochem Biophys Res 
Commun 276: 355-361. 
 
Barry R.E. and Krek W. (2004). The von Hippel-Lindau tumour suppressor: a multi-
faceted inhibitor of tumourigenesis. Trends Mol Med 10: 466-472. 
 
Ben-Arie N., Bellen H.J., Armstrong D.L., McCall A.E., Gordadze P.R., Guo Q., Matzuk 
M.M. and Zoghbi H.Y. (1997). Math1 is essential for genesis of cerebellar granule 
neurons. Nature 390: 169-172. 
 
Beroud B.U., Joly D., Gallou C., Staroz F., Orfanelli M.T. and Junien C. (1998). Software 
and database for the analysis of mutations in the VHL gene. Nucleic Acids Res. 26: 256-
258. 
 
Berra E., Benizri E., Ginouves A., Volmat V., Roux D. and Pouyssegur J. (2003). HIF 
prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1α in 
normoxia. EMBO J 22: 4082-4090. 
 
Bindra R.S., Vasselli J.R., Stearman R., Linehan W.M. and Klausner R.D. (2002). VHL-
mediated hypoxia regulation of cyclin D1 in renal carcinoma cells. Cancer Res 62: 3014-
3019. 
 
Bishop T., Lau K.W., Epstein A.C.R., Kim S.K., Jiang M., O’Rourke D., Pugh C.W., 
Gleadle J.M., Taylor M.S., Hodgkin J. and Ratcliffe P.J. (2004). Genetic analysis of 
pathways regulated by the von Hippel-Lindau tumor suppressor in Caenorhabditis elegans. 
PloS Biol 2: e289. 
 
Blackshaw S.,Harpavat S., Trimarchi J., Cai  L., Huang H., Kuo W.P., Weber G., Lee K., 
Fraioli R.E., Cho S., Asch E., Ohno-Machado L., Wong W.H. and Cepko C.L. (2004). 
Genomic Analysis of Mouse Retinal Development. PloS 2: e247. 
 
Blackshaw S, Fraioli R.E., Furukawa T. and Cepko C.L. (2001) Comprehensive analysis of 
photoreceptor gene expression and the identification of candidate retinal disease genes. 
Cell 107: 579-589. 
 
Blaess S., Graus-Porta D., Belvindrah R., Radakovits R., Pons S., Littlewood-Evans A., 
Senften M., Guo H., Li Y., Miner J.H., Reichardt L.F. and Mueller U. (2004). β1-integrins 
are critical for cerebellar granule cell precursor proliferation. J Neurosci 24: 3402-3412. 

                      100



                                                                                                                                                              References      

 
Blankenship C., Naglich J., Whaley J., Seizinger B. and Kley N. (1999). Alternate choice 
of initiation codon produces a biologically active product of the von Hippel Lindau gene 
with tumor suppressor activity. Oncogene 18: 1529-1535. 
 
Bradley A., Evans M., Kaufman M.H. and Robertson E. (1984). Formation of germ-line 
chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309: 255-256. 
 
Brieger J., Weidt E.J., Schirmacher P., Storkel S., Huber C. and Decker H.J. (1999). 
Inverse regulation of vascular endothelial growth factor and VHL tumour suppressor gene 
in sporadic renal cell carcinomas is correlated with vascular growth: an in vivo study on 29 
tumours. J Mol Med 77: 505-510. 
 
Bringmann A. and Reichenbach A. (2001). Role of Mueller Cells in Retinal Degenerations. 
Frontiers in Biosciences 6: 77-92. 
 
Bruick, R.K. and McKnight S.L. (2001). A conserved family of prolyl-4-hydroxylases that 
modify HIF. Science 294: 1337-1340. 
 
Brusselmans K., Bono F., Maxwell P., Dor Y., Dewerchin M., Collen D., Herbert J.M. and 
Carmeliet P. (2001). Hypoxia-inducible factor 2-α (HIF-2α) is involved in the apoptotic 
response to hypoglycemia but not to hypoxia. J Biol Chem 276: 39192-39196. 
 
Capecchi M.R. (1989). Altering the genome by homologous recombination. Science 244: 
1288-1292. 
 
Capecchi M.R. (1989). The new mouse genetics: altering the genome by gene targeting. 
Trends Genet 5: 70-76. 
 
Cepko C.L., Austin C.P., Yang X., Alexiades M. and Ezzeddine D. (1996). Cell fate 
determination in the vertebrate retina. Proc Natl Acad Sci USA 93: 589-595 
 
Chizkow V. and Millen K.J. (2003). Development and malformations of the cerebellum in 
mice. Mol Gen Met 80: 54-65. 
 
Choyke P.L., Glenn G.M., Wagner J.P. et al.(1997). Epididymal cystadenomas in von 
Hippel-Lindau disease. Urology 49: 926-931. 
 
Choyke P.L., Glenn G.M., Walther M.M., Patronas N.J., Linehan W.M. and Zbar B. 
(1995). Von Hippel-Lindau disease: genetic, clinical, and imaging features. Radiology 194: 
629-642. 
 
Clifford S.C., Cockman M.E., Smallwood A.C., Mole D.R., Woodward E.R., Maxwell 
P.H., Ratcliffe P.J. and Maher E.R. (2001). Contrasting effects of HIF-1-α regulation by 
disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-
Lindau disease. Hum Molec Genet 10: 1029-1038. 
 
Cohen H., Zhou M., Welsh A., Zarghamee S., Scholz H., Mukhopadhyay D., Kishida T., 
Zbar B., Knebelmann B. and Sukhatme V. (1999). An important von Hippel-Lindau tumor 
suppressor domain mediates Sp1-binding and self-association. Biochem Biophys Res 
Commun 266: 43-50. 

                      101



                                                                                                                                                              References      

 
Corless C.L., Kibel A., Iliopoulos O. and Kaelin W.G. Jr (1997). Immunostaining of the 
von Hippel-Lindau gene product (pVHL) in normal and neoplastic human tissues. Hum 
Pathol 28: 459-464. 
 
Corn P.G., McDonald E.R., Herman J.G. and El-Deiry W.S. (2003). Tat-binding protein-1, 
a component of the 26S proteasome, contributes to the E3 ubiquitin ligase function of the 
von Hippel-Lindau protein. Nat Genet 35: 229-237. 
 
Cotta-de-Almeida V., Schonhoff S., Shibata T., Leiter A. and Snapper S.B. (2003). A New 
method for rapidly generating gene-targeting vectors by engineering BACs through 
homologous recombination in bacteria. Genome Res 32: 2190-2194. 
 
Crossey P.A., Foster K., Richards F.M., Phipps M.E., Latif F., Tory K., Jones M.H., 
Bentley E., Kumar R., Lerman M.I., Zbar B., Affara N.A., Ferguson-Smith M.A. and 
Maher E.R. (1994). Molecular genetic investigations of the mechanism of tumourigenesis 
in von Hippel-Lindau disease: analysis of allele loss in VHL tumours. Hum Genet 93: 53-
58. 
 
Cunningham J.J., Levine E.M., Zindy F., Goloubeva O., Roussel M.F. and Smeyne R.J. 
(2002). The cyclin-dependent inhibitors p19Ink4d and p27Kip1 are coexpressed in select 
retinal cells and act cooperatively to control cell cycle exit. Mol Cell Neurosci 19: 359-374. 
 
Dahmane N. and Altaba A.R. (1999). Sonic hedgehog regulates the growth and patterning 
of the cerebellum. Development 126: 3089-3100. 
 
Davidowitz E.J., Schoenfeld A.R. and Burk R.D. (2001). VHL induces renal cell 
differentiation and growth arrest through integration of cell-cell and cell-extracellular 
matrix signalling. Mol Cell Biol 21: 865-874. 
 
Deng C. and Capecchi M.R. (1992). Reexamination of gene targeting frequency as a 
function of the extent of homology between the targeting vector and the target locus. Mol 
Cell Biol 12: 3365-3371. 
 
Duan D.R., Pause A., Burgess W.H., Aso T., Chen D.Y.T., Garrett K.P., Conaway R.C., 
Conaway J.W., Linehan W.M. and Klausner R.D. (1995). Inhibition of transcription 
elongation by the VHL tumor suppressor protein. Science 269: 1402-1406. 
 
Dyer M.A. and Cepko C.L. (2001) p27Kip1 and p57 Kip2 regulate proliferation in distinct 
retinal progenitor cell populations. J Neurosci 21: 4259-4271. 
 
Dyer M.A. and Cepko C.L. (2001). Regulating proliferation during retinal development. 
Nat Rev Neurosci 2: 333-342. 
 
Dyer M.A. and Cepko C.L. (2000). Control of Mueller glial cell proliferation and 
activation following retinal injury. Nat Neursci 3: 873-880. 
 
Dymecki S.M. (1996). FLP recombinase promotes site-specific DNA recombination in 
embryonic stem cells and transgenic mice. Proc Natl Acad Sci USA 93: 6191-6196. 
 

                      102



                                                                                                                                                              References      

Eichler W., Kuhrt H., Hoffmann S., Wiedemann P. and Reichenbach A. (2000). VEGF 
release by retinal glia depends on both oxygen and glucose supply. Neuroreport 11: 3533-
3537. 
 
Epstein A.C., Gleadle J.M., McNeill L.A., Hewitson K.S., O’Rourke J., Mole D.R., 
Mukherji M, Metzen E., Wilson M.I., Dhanda A., Tian Y.M., Masson N., Hamilton D.L., 
Jaakola P., Barstead R., Hodgkin P.H., Pugh C.W., Schofield C.J. and Ratcliffe P.J. (2001). 
C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate 
HIF by prolyl hydroxylation. Cell 107: 43-54. 
 
Esteban-Barragan M.A., Avila P., Alvarez-Tejado M., Gutierrez M.D., Garcia-Pardo A., 
Sanchez-Madrid F. and Landazuri M.O. (2002). Role of the von Hippel-Lindau tumor 
suppressor gene in the formation of β1-integrin fibrillar adhesions. Cancer Res 62: 2929-
2936. 
 
Evans M.J. and Kaufmann M.H. (1981). Establishment in culture of pluripotential cells 
from mouse embryos. Nature 292: 154-156. 
 
Feldman D., Thulasiraman V., Ferreyra R. and Frydman J. (1999). Formation of the VHL-
elonginBC tumor suppressor complex is mediated by the chaperonin TRiC. Mol Cell 4: 
1051-1061. 
 
Fero M.L., Rivkin M., Tasch M., Porter P., Carow A.E., Firpo E., Polyak K., Tsai J., 
Broudy V., Perlmutter R.M., Kaushansky K. and Roberts J.M. (1996). A syndrome of 
multiorgan hyperplasia with features of gigantism, tumourigenesis, and female sterility in 
p27Kip1-deficient mice. Cell 85: 733-744. 
 
Fischer A.J. and Reh T.A. (2003). Potential of Mueller Glia to become Neurogenic Retinal 
Progenitor Cells. Glia 43: 70-76. 
 
Fischer A.J. and Reh T.A. (2001). Mueller glia are a potential source of neural regeneration 
in the postnatal chicken retina. Nat Neurosci 4: 247-252. 
 
Furukawa T., Mukherjee S., Bao Z., Morrow E.M. and Cepko C.L. (2000). Rax, Hes1, and 
notch1 promote the formation of Mueller glia by postnatal retinal progenitor cells. Neuron 
26: 383-394. 
 
Furukawa T., Morrow E.M. and Cepko C.L. (1997). Crx, a novel otx-like homeobox gene, 
shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 
91: 531-541. 
 
Gao J., Naglich J.G., Laidlaw J., Whaley J.M., Seizinger B.R. and Kley, N. (1995). 
Cloning and characterization of a mouse gene with homology to the human von Hippel-
Lindau disease tumor suppressor gene: implications for the potential organization of the 
human von Hippel-Lindau gene. Cancer Res 55: 743-747. 
 
Giordano F.J. and Johnson R.S. (2001). Angiogenesis: the role of the microenvironment in 
flipping the switch. Curr. Opin. Genet. Dev. 11: 35-40. 
 
Gnarra J.R., Ward J.M., Porter F.D., Wagner J.R, Devor D.E., Grinberg A., Emmert-Buck 
M.R., Westphal H., Klausner R.D. and Linehan W.M. (1997). Defective placental 

                      103



                                                                                                                                                              References      

vasculogenesis causes embryonic lethality in VHL-deficient mice. Proc Natl Acad Sci USA 
94: 9102-9107. 
 
Gnarra J.R., Zhou S., Merrill M.J., Wagner J., Krumm A., Papavassiliou E., Oldfield E.H., 
Klausner R.D. and Linehan W.M. (1996). Post-transcriptional regulation of vascular 
endothelial growth factor mRNA by the VHL tumor suppressor gene product. Proc Natl 
Acad Sci USA 93: 10589-10594. 
 
Gnarra J.R., Tory K., Weng Y.,  Schmidt L., Wei M.H. et al. (1994). Mutations of the VHL 
tumour suppressor gene in renal carcinoma. Nat Genet 7: 85-90. 
 
Goda N., Ryan H.E., Khadivi B., McNulty W., Rickert R.C. and Johnon R.S. (2003). 
Hypoxia-inducible factor 1α is essential for cell cycle arrest during hypoxia. Mol Cell Biol 
23: 359-369. 
 
Goldowitz D. and Hamre K. (1998). The cells and molecules that make a cerebellum. TINS 
21: 375-382. 
 
Graus-Porta D., Blaess S., Senften M, Littlewood-Evans A., Damsky C., Huang Z., Orban 
P., Klein R., Schittny J.C. and Mueller U. (2001). β-1 integrins regulate the development of 
laminae and folia in the cerebral and cerebellar cortex. Neuron 31: 367-379. 
 
Groulx I., Bonicalzi M. and Lee S. (2000). Ran-mediated nuclear export of the von Hippel-
Lindau tumor suppressor protein occurs independently of its assembly with cullin-2. J Biol 
Chem 275: 8991-9000.  
 
Haase V.H., Glickman J.N., Socolovsky M. and Jaenisch R. (2001). Vascular tumours in 
livers with targeted inactivation of the von Hippel-Lindau tumor suppressor. Proc Natl 
Acad Sci USA 98: 1583-1588. 
 
Hamre K.M and Goldowitz D. (1997). meander tail acts intrinsic to granule cell precursors 
to disrupt cerebellar development: analysis of meander tail chimeric mice. Development 
124: 4201-12. 
 
Hansen W., Ohh M., Moslehi J., Kondo K., Kaelin W.G. Jr and Welch W. (2002). Diverse 
effects of mutations in exon II of the von Hippel-Lindau (VHL) tumor suppressor gene on 
the interaction of pVHL with the cytosolic chaperonin and pVHL-dependent ubiquitin 
ligase activity. Mol Cell Biol 22: 1947-1960. 
 
Hatten M.E. (1999). Central nervous system neuronal migration. Annu Rev Neurosci 22: 
511-539. 
 
Hergovich A., Lisztwan J., Barry R., Ballschmieter P. and Krek W. (2003). Regulation of 

microtubule stability by the von Hippel-Lindau tumour suppressor protein pVHL. Nat Cell 

Biol 5: 64-70. 

 
Hoffman M.A., Ohh M., Yang H., Kico J.M., Ivan M. and Kaelin W.G. Jr (2001). Von 
Hippel-Lindau protein mutants linked to type 2C VHL disease preserve the ability to 
downregulate HIF. Hum Mol Genet 10: 1019-1027. 

                      104



                                                                                                                                                              References      

 
Hon W.C., Wilson M.I., Harlos K., Claridge T.D., Schofield C.J., Pugh C.W., Maxwell 
P.H., Ratcliffe P.J., Stuart D.I. and Jones E.Y. (2002). Structural basis for the recognition 
of hydroxyproline in HIF-1 by pVHL. Nature 417: 975-978. 
 
Iliopoulos O., Ohh M. and Kaelin W.G. Jr (1998). pVHL19 is a biologically active product 
of the von Hippel-Lindau gene arising from internal translation initiation. Proc Natl Acad 
Sci USA 95: 11661-11666. 
 
Iliopoulos O., Jiang C., Levy A.P., Kaelin W.G. and Goldberg M.A. (1996). Negative 
regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc Natl Acad 
Sci USA 93: 10595-10599. 
 
Iliopoulos O., Kibel A., Gray S. and Kaelin W.G. Jr. (1995). Tumour suppression by the 
human von Hippel-Lindau gene product. Nat Med 1: 822-826. 
 
Ivan M., Kondo K., Yang H., Kim W., Valiando J., Ohh M., Salic A., Asara J.M., Lane 
W.S. and Kaelin W.G. Jr (2001). HIFα targeted for VHL-mediated destruction by proline 
hydroxylation: implications for O2 sensing. Science 292: 464-468.   
 
Ivanov S., Kuzmin I., Wei M., Pack S., Geil L., Johnson B., Stanbridge E. and Lerman M. 
(1998). Down-regulation of transmembrane carbonic anhydrases in renal cell carcinoma 
cell lines by wild-type von Hippel-Lindau transgenes. Proc Natl Acad Sci USA 95: 12596-
12601. 
 
Iwai K., Yamanaka K., Kamura T., Minato N., Conaway R.C., Conaway J.W., Klausner 
R.D. and Pause A. (1999). Identification of the von Hippel-Lindau tumor-suppressor 
protein as part of an active E3 ubiquitin ligase complex. Proc Natl Acad Sci USA 96: 
12436-12441. 
 
Iyer N.V., Kotch L.E., Agani F., Leung S.W., Laughner E., Wenger R.H., Gassmann M, 
Gearhart J.D., Lawler A.M., Yu A.Y. and Semenza G.L. (1998). Cellular and 
developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev 12: 
149-162. 
 
Jaakola P., Mole D.R., Tian Y.M., Wilson M.I., Gielbert J., Gaskell S.J., von Kriegsheim 
A., Hebestreit H.F., Mukherji M., Schofield C.J., Maxwell P.H., Pugh C.W. and Ratcliffe 
P.J. (2001). Targeting of HIF-α to the con Hippel-Lindau ubiquitylation complex by O2-
regulated prolyl hydroxylation. Science 292: 468-472. 
 
Jain S., Maltepe E., Lu M.M., Simon C. and Bradfield C.A. (1998). Expression of ARNT, 
ARNT2, HIF1α , HIF2α and Ah receptor mRNAs in the developing mouse. Mech Dev 73: 
117-123. 
 
Jensen P., Smeyne R. and Goldowitz D. (2004). Analysis of cerebellar development in 
math1 null embryos and chimeras. J Neurosci 24: 2202-2211. 
 
Jeon C.J., Strettoi E. and Masland R.H. (1998). The major cell populations of the mouse 
retina. J Neuroscience 18: 8936-8946. 
 

                      105



                                                                                                                                                              References      

Jeong J.W., Bae M.K., Ahn M.Y., Kim S.H., Sohn T.K., Bae M.H., Yoo M.A., Song E.J., 
Lee K.J. and Kim K.W. (2002). Regulation and destabilization of HIF-1α by ARD1-
mediated acetylation. Cell 111: 709-720. 
 
Kaelin, W.J. Jr (2002). Molecular basis of the VHL hereditary cancer syndrome. Nat Rev 
Cancer 2: 673-682. 
 
Kagami Y. and Furuichi T. (2001). Investigation of differentially expressed genes during 
the development of mouse cerebellum. Gene Exp Pat 1: 39-59. 
 
Kamada M., Suzuki K., Kato Y., Okuda H. and Shuin T. (2001). Von Hippel-Lindau 
protein promotes the assembly of actin and vinculin and inhibits cell motility. Cancer Res 
61: 4184-4189. 
 
Kamura T., Conrad M., Yan Q., Conaway R. and Conaway J. (1999). The Rbx1 subunit of 
SCF and VHL E3 ubiquitin ligase activates Rub1 modification of cullins Cdc53 and Cul2. 
Genes Dev 13: 2928-2933. 
 
Kamura T., Koepp D.M., Conrad M.N., Skowyra D., Moreland R.J., Iliopoulos O., Lane 
W.S., Kaelin W.G. Jr, Elledge S.J., Conaway R.C., Harper J. and Conaway J.W. (1999). 
Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. 
Science 284: 657-661. 
 
Kanno H., Saljooque F., Yamamoto I., Hattori S., Yao M., Shuin T. and U H. (2000). Role 
of the von Hippel-Lindau tumor suppressor protein during neuronal differentiation. Cancer 
Res 60: 2820-2924. 
 
Kessler P., Vasavada S., Rackley R., Stackhouse T., Duh F., Latif F., Lerman M., Zbar B. 
and Williams B. (1995). Expression of the von Hippel-Lindau tumor-suppressor gene, 
VHL, in human fetal kidney and during mouse embryogenesis. Mol Med 1: 457-466. 
 
Kibel A., Iliopoulos O., DeCaprio J.A. and Kaelin W.G. Jr (1995). Binding of the von 
Hippel-Lindau tumor suppressor protein to elongin B and C. Science 269: 1444-1446. 
 
Kim M., Katayose Y., Li Q., Rakkar A., Li Z., Hwang S., Katayose D., Trepel J., Cowan 
K. and Seth P. (1998). Recombinant adenovirus expressing von Hippel-Lindau-mediated 
cell cycle arrest is associated with the induction of cyclin-dependent kinase inhibitor 
p27Kip1. Biochem Biophys Res Commun 253: 672-677. 
 
Klein R.S., Rubin J.B., Gibson H.D., DeHaan E.N., Alvarez-Hernandez X., Segal R.A. and 
Luster A.D. (2001). SDF-1 α induces chemotaxis and enhances Sonic hedgehog-induced 
proliferation of cerebellar granule cells. Development 128: 1971-1981. 
 
Kleymenova E., Everitt J.I., Pluta L., Portis M., Gnarra J.R. and Walker C.L. (2004). 
Susceptibility to vascular neoplasms but no increased susceptibility to renal carcinogenesis 
in Vhl knockout mice. Carcinogenesis 25: 309-315. 
 
Knudson A.G. Jr (1971). Mutation and cancer: statistical study of retinoblastoma. Proc Natl 
Acad Sci USA 68: 820-823. 
 

                      106



                                                                                                                                                              References      

Koch C.A., Vortmeyer A.O., Huang S.C., Alesci S., Zhuang Y. and Pacak K. (2001). 
Genetic aspects of pheochromocytoma. Endocr Regul 35:43-52. 
 
Komuro H. and Yacubova E. (2003). Recent advances in cerebellar granule cell migration. 
Cell Mol Life Sci 60: 1084-1098. 
 
Kondo K., Kim W.Y., Lechpammer M. and Kaelin W.G. Jr (2003). Inhibition of HIF-2α is 
sufficient to suppress pVHL-defective tumor growth. PloS Biol 1:439-444. 
 
Kondo K., Klco J.,Nakamura E., Lechpammer M. and Kaelin W.G. (2002). Inhibition of 
HIF is necessary for tumor suppression by the von Hippel Lindau protein. Cancer Cell 1: 
237-246. 
 
Kondo K. and Kaelin W.G. Jr (2001). The von Hippel-Lindau tumor suppressor gene. Exp 
Cell Res 264: 117-125. 
 
Koochekpour S., Jeffers M., Wang P.H., Gong C. Taylor G.A., Roessler L.M., Stearman 
R., Vasselli J.R., Stetler-Stevenson W.G., Kaelin W.G. Jr, Linehan W.M., Klausner R.D., 
Gnarra J.R. and Woude G.F.V. (1999). The von Hippel-Lindau tumor suppressor gene 
inhibits hepatocyte growth factor/scatter factor-induced invasion and branching 
morphogenesis in renal carcinoma cells. Mol Cell Biol 19: 5902-5912. 
 
Kuzmin I., Duh F., Latif F., Geil I., Zbar B. and Lerman M.I. (1995). Identification of the 
promoter of the human von Hippel-Lindau disease tumor suppressor gene. Oncogene 10: 
2185-2194. 
 
Kuznetsova A.V., Meller J., Schnell P.O., Nash J.A., Ignacak M.L., Sanchez Y., Conaway 
J.W., Conaway R.C. and Czyzyk-Krzeska M.F. (2003). Von Hippel-Lindau protein binds 
hyperphopsphorylated large subunit of RNA polymerase II through a proline hydroxylation 
motif and targets its ubiquitination. Proc Natl Acad Sci USA. 100: 2706-2711.  
 
Lafleur M.A., Handsley M.M. and Edwards D.R. (2003) Metalloproteinases and their 
inhibitors in angiogenesis. Expert Rev Mol Med 5: 1-39. 
 
Lando D., Peet D.J., Gorman J.J., Whelan D.A., Whitelaw M.L. and Bruick R.K. (2002). 
FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of 
HIF. Genes Dev 16: 1466-1471. 
 
Latif F., Tory K., Gnarra J., Yao M., Duh F., Orcutt M.L. et al. (1993). Identification of the 
von Hippel-Lindau disease tumour suppressor gene. Science 260: 1317-1320. 
 
Lee J., Bae S., Jeong J., Kim S. and Kim K. (2004). Hypoxia-inducible factor (HIF-1)α: its 
protein stability and biological functions. Exp Mol Med 36: 1-12.  
 
Lee J.Y., Dong S.M., Park W.S., Yoo N.J., Kim C.S. et al. (1998). Loss of heterozygosity 
and somatic mutations of the VHL tumour suppressor gene in sporadic cerebellar 
hemangioblastomas. Cancer Res 58: 504-508. 
         
Lee S., Chen D.Y.T., Humphrey J.S., Gnarra J.R., Linehan W.M. and Klausner R.D. 
(1996). Nuclear/cytoplasmic localization of the von Hippel-Lindau tumor suppressor gene 
product is determined by cell density. Proc Natl Acad Sci USA 93: 1770-1775. 

                      107



                                                                                                                                                              References      

 
Lendahl U., Zimmermann L.B. and McKay R.D.G. (1990). CNS stem cell express a new 
class of intermediate filament protein. Cell 60: 585-595. 
 
Levine E.M., Close J., Fero M., Ostrovsky A. and Reh T.A. (2000).  p27Kip1 regulates cell 
cycle withdrawal of late multipotent progenitor cells in the mammalian retina. Dev. Biol. 
219: 299-314. 
 
Lewis P.M., Gritli-Linde A., Smeyne R., Kottmann A. and McMahon A.P. (2004). Sonic 
hedgehog signalling is required for expansion of granule neuron precursors and patterning 
of the mouse cerebellum. Dev Biol 270: 393-410. 
 
Li Z., Wang D., Na X., Schoen S.R., Messing E.M. and Wu G. (2003). The VHL protein 
recruits a novel KRAB-A domain protein to repress HIF-1α transcriptional activity. EMBO 
J 22: 1857-1867. 
 
Li Z., Wang D., Na X., Schoen S.R., Messing E.M. and Wu G. (2002). Identification of a 
deubiquitinating enzyme subfamily as substrates of the von Hippel-Lindau tumor 
suppressor. Biochem Biophys Res Commun 294: 700-709. 
 
Lindau A. (1927). Zur Frage der Angiomatosis Retinae und ihrer Hirnkomplikation. Acta 
Opthalmol 4: 193-226. 
 
Lisztwan J., Imbert G., Wirbelauer C., Gstaiger M. and Krek W. (1999). The von Hippel-
Lindau tumor suppressor protein is a component of an ubiquitin-protein ligase activity. 
Genes Dev 13: 1822-1833. 
 
Livesey F.J., Young T.L. and Cepko C.L. (2004). An analysis of the gene expression 
program in mammalian neural progenitor cells. Proc Natl Acad Sci USA, 101: 1374-1379 
 
Livesey F.J. and Cepko C.L. (2001). Vertebrate neural cell-fate determination: Lessons 
from the retina. Nat Rev Neurosci 2: 109-118. 
 
Lolkema M.P., Mehra N., Jorna A.S., van Beest M., Giles R.H. and Voest E.E. (2004). The 
von Hippel-Lindau tumor suppressor protein influences microtubule dynamics at the cell 
periphery. Exp Cell Res 301: 139-146. 
 
Lonser R.R., Glenn G.M., Walther M., Chew E.Y., Libutti S.K., Linehan W.M. and 
Oldfield E. (2003). von Hippel-Lindau disease. Lancet 361: 2059-2067. 
 
Los M., Jansen G.H., Kaelin W.G. Jr, Lips C.J.M., Blijham G.H. and Voest E.E. (1996). 
Expression pattern of the von Hippel-Lindau protein in human tissues. Lab Invest 75: 231-
238. 
 
Lubinski W., Krzystolik K., Cybulski C., Szych Z., Penkala K., Palacz O. and Lubinski J. 
(2003). Retinal function in the von Hippel-Lindau disease. Doc Ophthalmol 106: 271-280. 
 
Ma W., Tessarollo L., Hong S., Baba M., Southon E., Back T.C., Spence S., Lobe C.G., 
Sharma N., Maher G.W., Pack S., Vortmeyer A.O., Guo C., Zbar B. and Schmidt L.S. 
(2003). Hepatic vascular tumors, angiectasis in multiple organs, and impaired 

                      108



                                                                                                                                                              References      

spermatogenesis in mice with conditional inactivation of the VHL gene. Cancer Res 63: 
5320-5328. 
 
Mack F., Rathmell W.K., Arsham A.M., Gnarra J., Keith B. and Simon M.C. (2003). Loss 
of pVHL is sufficient to cause HIF dysregulation in primary cells but does not promote 
tumor growth. Cancer Cell 3: 75-88. 
 
Maher E.R and Kaelin W.G. Jr (1997). Von Hippel-Lindau disease. Medicine (Baltimore) 
76: 381-191. 
 
Maher E.R., Iselius L., Yates J.R. (1991). Von Hippel-Lindau disease: a genetic study. J 
Med Genet 28: 443-447. 
 
Maher E.R., Yates J.R.W. and Ferguson-Smith M.A. (1990). Statistical analysis of the two 
stage mutation model in von Hippel-Lindau disease, and in sporadic cerebellar 
hemangioblastoma and renal cell carcinoma. J Med Genet 27: 311-314. 
 
Mahon P.C., Hirota K. and Semenza G.L. (2001). FIH-1: a novel protein that interacts with 
HIF-1α and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 15: 
2675-2686. 
 
Makino Y., Kanopka A., Wilson W.J., Tanaka H. and Poellinger L. (2002). Inhibitory PAS 
domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible 
factor-3α locus. J Biol Chem 277: 32405-32408. 
 
Manski T., Heffner D., Glenn G., Patronas N., Pikus A., Katz D., Lebovics R., Sledjeski 
K., Choyke P., Zbar B., Linehan W. and Oldfield E. (1997). Endolpymphatic sac tumors-A 
source of morbid hearing loss in von Hippel-Lindau disease. JAMA 277: 1461-1466. 
 
Mansour S.L., Thomas K.R. and Capecchi M.R. (1988). Disruption of the proto-oncogene 
int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to 
non-selectable genes. Nature 336, 348- 
 
Martin G.R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured 
in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78: 7634-
7638. 
 
Masland R.H. (2001). The fundamental plan of the retina. Nat. Neurosci. 4(9):877-886. 
 
Masson N., William C., Maxwell P.H., Pugh C.W. and Ratcliffe P.J. (2001). Independent 
function of two destruction domains in hypoxia-inducible factor-α chains activated by 
prolyl hydroxylation. EMBO J 20: 5197-5206. 
 
Matzuk M.M., Finegold M.J., Su J.G., Hsueh A.J. and Bradley A. (1992). Α-inhibin is a 
tumour-suppressor gene with gonadal specificity in mice. Nature 360: 313-319. 
  
Maxwell P.H., Wiesener M.S., Chang G.W., Clifford S.C., Vaux E.C., Pugh C., Maher 
E.R. and Ratcliffe P.J. (1999). The von Hippel-Lindau gene product is necessary for 
oxygen-dependent proteolysis of hypoxia-inducible factor α subunits. Nature 399: 271-
275. 
 

                      109



                                                                                                                                                              References      

Maynard M.A. and Ohh M. (2004). Von Hippel-Lindau tumor suppressor protein and 
hypoxia-inducible factor in kidney cancer. Am J Nephrol 24: 1-13. 
 
Maynard M.A., Qi H., Chung J., Lee E.H.L., Kondo Y., Hara S., Conaway R.C., Conaway 
J.W. and Ohh M. (2003). Multiple splice variants of the human HIF-3α locus are targets of 
the von Hippel-Lindau E3 Ubiquitin Ligase complex. J Biol Chem 278: 11032-11040. 
 
Melmon K.L. and Rosen S.W. (1964). Lindau’s disease. Am J Med 36: 595-617. 
 
Meyers E.N., Lewandoski M. and Martin G.R. (1998). An Fgf8 mutant allelic series 
generated by Cre- and FLP-mediated recombination. Nature Genet. 18: 136-141. 
 
Min J., Yang H., Ivan M., Gertler F., Kaelin W.G. Jr and Pavletich N.P. (2002). Structure 
of an HIF-1α-pVHL complex: hydroxyproline recognition in signaling. Science 296: 1886-
1889. 
 
Miyazawa K., Himi T., Yamagashi H., Sato S. and Ishizaki Y. (2000). A role for p27/Kip1 
in the control of cerebellar granule cell precursor proliferation. J Neurosci 20: 5756-5763. 
 
Morrow E.M., Furukawa T. and Cepko C.L. (1998). Vertebrate photoreceptor cell 
development and disease. Trends Cell Biol 8: 353-358. 
 
Mueller U. (1999). Ten years of gene targeting: targeted mouse mutants, from vector 
design to phenotype analysis. Mech Dev 82: 3-21. 
 
Murata H., Tajima N., Nagashima Y., Yao M., Baba M., Goto M., Kawamoto S., 
Yamamoto I., Okuda K. and Kanno H. (2002). Von Hippel-Lindau tumor suppressor 
protein transforms human neuroblastoma cells into functional neuron-like cells. Cancer Res 
62: 7004-7011.  
 
Na X., Duan H.O., Messing E.W., Schoen S.R., Ryan C.K., di Sant’Agnese P.A., Golemis 
E.A. and Wu G. (2003). Identification of the RNA polymerase II subunit hsRPB7 as a 
novel target of the von Hippel-Lindau protein. EMBO J 22: 4249-4259. 
 
Neumann H.P. and Wiestler O.D. (1991). Clustering of features of von Hippel-Lindau 
syndrome: evidence for a complex genetic locus. Lancet 337: 1052-1054. 
 
Newman E. and Reichenbach A. (1996). The Mueller cell: a functional element of the 
retina. TINS 19:307-312 
 
Ohh M., Park C.W., Ivan M., Hoffman M.A., Kim T., Huang L. E., Pavletich N., Chau V. 
and Kaelin W.G. Jr (2000). Ubiquitination of hypoxia-inducible factor requires direct 
binding to the β-domain of the von Hippel-Lindau protein. Nat Cell Biol 2: 423-427. 
 
Ohh M., Yauch R.L., Lonergan K.M., Whaley J.M., Stemmer-Rachamimov A.O., Louis 
D.N., Gavin B.J., Kley N., Kaelin W.G. Jr and Iliopoulos O. (1998). The von Hippel-
Lindau tumor suppressor protein is required for proper assembly of an extracellular 
fibronectin matrix. Mol Cell 1: 959-968. 
 
Okuda H., Hirai S., Takaki Y., Kamada M., Baba M., Sakai N., Kishida T., Kaneko S., Yao 
M., Ohno S. and Shuin T. (1999). Direct interaction of the β-domain of VHL tumor 

                      110



                                                                                                                                                              References      

suppressor protein with the regulatory domain of atypical PKC isotypes. Biochem Biophys 
Res Commun 263: 491-497. 
 
Park S., Dadak A.M., Haase V.H., Fontana L., Giaccia A.J. and Johnson R.S. (2003). 
Hypoxia-induced gene expression occurs solely through the action of hypoxia-inducible 
factor 1α (HIF-1α): role of cytoplasmic trapping of HIF-2α. Mol. Cell. Biol. 23: 4959-
4971. 
 
Pause A., Lee S., Lonergan K.M. and Klausner R.D. (1998). The von Hippel-Lindau tumor 
suppressor gene is required for cell cycle exit upon serum withdrawal. Proc Natl Acad Sci 
USA 95: 993-998. 
 
Pause A., Lee S., Worrell R.A., Chen D.Y., Burgess W.H., Linehan W.M. and Klausner 
R.D. (1997). The von Hippel-Lindau tumor-suppressor gene product forms a stable 
complex with human CUL-2, a member of the Cdc53 family of proteins. Proc Natl Acad 
Sci USA 94: 2156-2161.     
 
Peng J., Zhang L., Drysdale L. and Fong G.H. (2000). The transcription factor EPAS-
1/hypoxia-inducible factor 2α plays an important role in vascular remodeling. Proc Natl 
Acad Sci USA 97: 8386-8391. 
 
Pfander D., Kobayashi T., Knight M.C., Zelzer E., Chan D.A., Olsen B.J., Giaccia A.J., 
Johnson R.S., Haase V.H. and Schipani E. (2004). Deletion of Vhlh in chondrocytes 
reduces cell proliferation and increases matrix deposition during growth plate development. 
Development 131: 2497-2508. 
 
Rafty L.A. and Khachigian L.M. (2002). Von Hippel-Lindau Tumor suppressor protein 
represses platelet-derived growth factor B-chain expression via the Sp1 binding element in 
the proximal PDGF-B promoter. J Cell Biochem 85: 490-495. 
 
Reh T.A. and Levine E.M. (1998). Multipotential stem cells and progenitors in the 
vertebrate retina. J Neurobiol 36: 206-220 
 
Richards F.M. (2001). Molecular pathology of von Hippel-Lindau disease and the VHL 
tumour suppressor gene. Expert Rev Mol Med 1-27. 
 
Richards F.M., Schofield P.N., Fleming S. and Maher E.R. (1996). Expression of the von 
Hippel-Lindau disease tumour suppressor gene during human embryogenesis. Hum Mol 
Genet 5: 639-644. 
 
Ryan H.E., Lo J. and Johnson R.S. (1998). HIF-1 α is required for solid tumor formation 
and embryonic vascularization. EMBO J. 17: 3005-3015.  
 
Sakashita N., Takeya M., Kishida T., Stackhouse T.M., Zbar B. and Takahashi K. (1999). 
Expression of von Hippel-Lindau protein in normal and pathological human tissues. 
Histochem J 31:133-44.   
 
Schoenfeld A., Davidowitz E.J. and Burk R.D. (2001). Endoplasmic reticulum/cytosolic 
localization of von Hippel-Lindau gene products is mediated by a 64-amino acid region. Int 
J cancer 91: 457-467. 
 

                      111



                                                                                                                                                              References      

Schoenfeld A., Davidowitz E.J. and Burk R.D. (1998). A second major native von Hippel-
Lindau gene product, initiated from an internal translation start site, functions as a tumor 
suppressor. Proc Natl Acad Sci USA 95: 8817-8822. 
 
Sharp F.R. and Bernaudin M. (2004). HIF1 and oxygen sensing in the brain. Nat Rev 
Neurosci 5: 437-448. 
 
Sherr C.J. and Roberts J.M. (1999). CDK inhibitors: Positive and negative regulators of 
G1-phase progression. Genes Dev 13: 1501-1512. 
 
Singh A.D., Shields C.L. and Shields J.A. (2001). Von Hippel-Lindau disease. Surv 
Opthalmol 46: 117-142. 
 
Sotelo C. (2004). Cellular and genetic regulation of the development of the cerebellar 
system. Prog Neurobio 72: 295-339. 
 
Staller P., Sulitkova J., Lisztwan J., Moch H., Oakeley E.J. and Krek W. (2003). 
Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumor suppressor 
pVHL. Nature 425: 307-311. 
 
Stebbins C.E., Kaelin W.G. Jr and Pavletich N.P. (1999). Structure of the VHL-ElonginC-
elonginB complex: implications for VHL tumor suppressor function. Science 284: 455-
461. 
 
Stickle N.H., Chung J., Klco J.M., Hill R.P., Kaelin W.G. Jr and Ohh M. (2004). pVHL 
modification by NEDD8 is required for fibronectin matrix assembly and suppression of 
tumor development. Mol Cell Biol 24: 3251-61. 
 
Sufan R.I., Jewett M.A.S. and Ohh M. (2004). The role of von Hippel-Lindau tumor 
suppressor protein and hypoxia in renal clear cell carcinoma. Am J Physiol Renal Physiol 
287: F1-F6. 
 
Tanimoto K., Makino Y., Pereira T. and Poellinger L. (2000). Mechanism of regulation of 
the hypoxia-inducible factor-1α by the von Hippel-Lindau tumor suppressor protein. 
EMBO J 19: 4298-4309. 
 
te Riele H., Maandag E.R. and Berns A. (1992). Highly efficient gene targeting in 
embryonic stem cells through homologous recombination with isogenic DNA constructs. 
Proc Natl Acad Sci USA 89: 5128-5132. 
 
Thomas K.R. and Capecchi M.R. (1987). Site-directed mutagenesis by gene targeting in 
mouse embryo-derived stem cells. Cell 51: 503-512. 
 
Tian H., Hammer R.E., Matsumoto A.M., Russell D.W. and McKnight S.L. (1998). The 
hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis 
and protection against heart failure during embryonic development. Genes Dev. 12: 3320-
3324. 
 
Tian H., McKnight S.L. and Russell D.W. (1997). Endothelial PAS domain protein 1 
(EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 11: 
72-82. 

                      112



                                                                                                                                                              References      

Tomita S., Ueno M., Sakamoto M., Kitahama Y., Ueki M., Maekawa N., Sakamoto H., 
Gassmann M., Kageyama R., Ueda N., Gonzalez F.J. and Takahama Y. (2003). Defective 
brain development in mice lacking the Hif-1α gene in neural cells. Mol Cell Biol 23: 6739-
6749. 
 
Tronche F., Kellendonk C., Kretz O., Gass P., Anlag K., Orban P.C., Bock R., Klein R. and 
Schuetz G. (1999). Disruption of the glucocorticoid receptor gene in the nervous system 
results in reduced anxiety. Nat Gen 23: 99-103. 
 
Turner D.L. and Cepko C.L. (1987). A common progenitor for neurons and glia persists in 
rat retina late in development. Nature. 328: 131-6. 
 
Van der Harst E., de Krijger R.R., Dinjens W.N., Weeks L.E., Bonjer H.J., Bruining H.A., 
Lamberts S.W. and Koper J.W. (1998). Germline mutations in the vhl gene in patients 
presenting with phaeochromocytomas. Int J Cancer 77: 337-340. 
 
Vetter M.L. and Moore K.B. (2001). Becoming glial in the neural retina. Dev Dyn 221: 
146-153. 
 
Von Hippel E. (1904). Ueber eine sehr seltene Erkrankung der Netzhaut. Graefe Arch 
Opthalmol 59: 83-106. 
 
Voyvodic J.T., Burne J.F. and Raff M.C. (1995). Quantification of normal cell death in the 
rat retina: implications for clone composition in cell lineage analysis. Eur J Neurosci 7: 
2469-2478. 
 
Wahlin K.J., Lim L., Grice E.A., Campochiaro P.A., Zack D.J. and Adler R. (2004). A 
method for analysis of gene expression in isolated mouse photoreceptor and Muller cells. 
Mol Vis 10: 366-75. 
 
Wang G., Reisdorph R., Clark R.E., Miskimins R., Lindahl R. and Miskimins W.K. (2003). 
Cyclin dependent kinase inhibitor p27Kip1 is upregulated by hypoxia via an ARNT 
dependent pathway. J Cell Biochem 90: 548-560. 
 
Wang V.Y. and Zoghbi H.Y. (2001). Genetic regulation of cerebellar development. Nat 
Rev Neurosci 2: 484-491. 
 
Wassle H. and Boycott B.B. (1991). Functional Architecture of the Mammalian Retina. 
Physiological Reviews 71 (2): 447-447. 
 
Wiesener M.S., Jurgensen J.S., Rosenberger C., Scholze C.K., Horstrup J.H., Warnecke C., 
Mandriota S., Bechmann I., Frei U.A., Pugh C.W., Ratcliffe P.J., Bachmann S., Maxwell 
P.H. and Eckardt K.U. (2003). Widespread hypoxia-inducible expression of HIF-2α in 
distinct cell populations of different organs. FASEB J. 17: 271-273. 
 
Woodward E.R., Buchberger A., Clifford S.C., Hurst L.D., Affara N.A. and Maher E.R. 
(2000). Comparative sequence analysis of the VHL tumor suppressor gene. Genomics 65: 
253-265. 
 
Yang J., Bian W., Gao X., Chen L. and Jing N. (2000). Nestin expression during mouse 
eye and lens development. Mech. Dev. 94: 287-291. 

                      113



                                                                                                                                                              References      

Young, R.W. (1985). Cell proliferation during postnatal development of the retina in the 
mouse. Brain Res 353: 229-239. 
 
Zatyka M., Morrissey C., Kuzmin I., Lerman M.I., Latif F., Richards F.M. and Maher E.R. 
(2002). Genetic and functional analysis of the von Hippel-Lindau (VHL) tumour 
suppressor gene promoter. J Med Genet 39: 463-472. 
 
Zatyka M., da Silva N.F., Clifford S.C., Morris M.R., Wiesener M.S., Eckardt K.U., 
Houlston R.S., Richards F.M., Latif F. and Maher E.R. (2002). Identification of cyclin D1 
and other novel targets for the von Hippel-Lindau tumor suppressor gene by expression 
array analysis and investigation of cyclin D1 genotype as a modifier in von Hippel-Lindau 
disease. Cancer Res 62: 3803-3811. 
 

                      114



                                                                                                                                                             Appendices                                                                                                                                                                   Appendices      

                      115

Plasmid Maps

                      115



                                                                                                                                                             Appendices      

 
 
 

 
 
 
 
 

                      116



                                                                                                                                                             Appendices      

 
 
 

 
 
 
 
 

                      117



                                                                                                                                                             Appendices      

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

                      118



                                                                                                                                                    Curriculum Vitae     

Acknowledgements 
 
To begin with I would like to thank Prof. Dr. Wilhelm Krek for giving me the opportunity 
to carry out my thesis in his laboratory. I will be always grateful for what I have learned in 
these few years, because I learned much more than just dealing with everyday scientific 
problems and challenging questions…..I started understanding who I am, who I can be and 
who I want to be (Jitka, I love you for verbalising this perspective…) . For this “swimming lesson” 
and for the opportunity to finish my ongoing works as a postdoc I sincerely thank you 
Willy. 
 
A big thank you goes also to Prof. Dr. Thomas Bickle as my Fakultätsverantwortlicher and 
to Prof. Dr. Holger Moch as Korefferent, who, in the occasions that I had the pleasure to 
meet them, were very enthusiastic and interested in my ongoing work and who made it 
possible to fix a date for my final exam so easily.  
 
I want to thank Melanie Sticker for her great work in regards to the localization studies. 
Whenever she came there was a positive result coming…..so I wish that good things will 
keep on coming on now that we are together again. ☺ 
 
I need to thank Christiane Wirbelauer for making it easy for me when I first started in the 
lab by providing loads of help and advice regarding any kind of method. She really had it 
all under control….. In addition I want to thank Robert E. Barry for being a special 
colleague, apart from being the only normal PhD student when I started….☺.  My sincere 
gratitude goes also to all the other members of the Krek Lab for providing advice, help and 
entertainment, each of them in different occasions. Manuela Hitz needs a special thank you 
for being a great lab-companion and for doing a good job with all those squirky mice. I am 
happy she joined this lab. In regards to mice, especially regarding the knockout strategy 
and the isolation of retinas, I want to thank Prof. Dr. Ulrich Müller for his invaluable help 
and advice. Thanks also to Dr. Philippe Bugnon for being the nicest and most helpful vet I 
have ever met and to all the people who have helped me in moments of need and that are 
too many to be all mentioned by name. I just hope that whenever I was helped I made sure 
to show my gratitude then…….. 
 
Thank you to Jitka Sulitkova for being my “companion of (dis)adventure” besides being a 
friend. Vanda Pogacic, there are no words to express my happiness to have met you and to 
have you as a friend (….and true friends last forever…..).  Girls, I miss the good old times, but 
I believe they will come again. Thank you for making me so often smile and think about other 
things, like LIFE, and for being simply your way.  
 
Many thanks go also to Francesca Cesari for her support during the writing of this thesis.  
 
Last, but not least the three most important people in my life have to be thanked: 

I thank my parents for their continuous support and advice throughout whatever I 
was doing or going through and for their unconditional love that always kept me warm. 
You were the best, you are the best and you will always be the best and most adorable 
parents in the world. Vi voglio un mondo di bene… 
 
Dimitris Anastasiou has proven to be the most valuable and amiable person I have ever 
met. I need to thank him for giving me strength, love, help and support and for being, on 
top of all this, an inspiration at work. You complete me… 

                      119


	Functional analysis of the von Hippel-Lindau tumour suppressor in mice
	Inauguraldissertation
	Pia Ballschmieter
	
	Basel, den 14. Dezember 2004

	Prof. Dr. Hans-Jakob Wirz
	
	
	Table of contents
	Abstract………………………………………………………….………………………………………… 1
	Abbreviations…………………………………………………………………………………………….    3
	Chapter 1-3: Introduction
	Chapter 4-5: Materials and Methods
	4. Materials………………………………………………………………………………………………    44
	5. Methods……………………………………………………………………………………………….     50
	Chapter 7-9: RESULTS
	Chapter 10: Discussion




	Abstract
	Abbreviations
	Chapter 1
	Von Hippel-Lindau Disease
	Clinical manifestations of VHL disease
	Hemangioblastomas
	Retinal Hemangioblastomas
	Central nervous system hemangioblastomas
	Renal Clear Cell Carcinomas and renal cysts
	Pheochromocytomas
	Pheochromocytomas are benign tumours of the adrenal gland that arise from neural crest tissue and produce elevated levels of catecholamines (norepinephrine and epinephrine) (Koch et al., 2001). Pheochromocytomas are present in about 7-19 % of VHL dis
	Pancreatic cysts and neoplasms
	Endolymphatic sac tumours (ELST)
	Epididymal and broad ligament cystadenoma

	Clinical diagnosis and classification of VHL disease
	The VHL gene and protein function
	1.3.1 The human VHL gene
	1.3.2 The VHL protein (pVHL)
	1.3.3 Genotype-Phenotype correlations
	1.3.4 VHL gene and protein expression
	1.3.5 VHL function as part of an E3 ligase complex
	1.3.6 Other functions of VHL

	mVHL-the mouse homologue of VHL

	Chapter 2
	The Retina and Cerebellum
	-A closer look at two tissues in the context of VHL disease-
	2.1 The Retina
	2.1.1 Müller glial cell
	2.1.2 Development of the retina

	2.2 The Cerebellum
	2.2.1 Development of the cerebellum


	Generation of mutant mouse strains by gene targeting
	Figure 17. Text on the following page.��3.1 Design of targeting vectors
	
	POSITIVE SELECTABLE MARKERS
	NEGATIVE SELECTABLE MARKERS


	3.2 The Cre/loxP recombination system
	3.3 Screening and isolation of recombinant ES cells
	3.4 Production of chimeric mice
	3.5 Conditional Gene Targeting

	Chapter 4
	Materials
	4.1 General Chemicals
	4.4 Bacterial strains and buffers
	4.5 Oligonucleotides

	mVHL primer
	5’ primer5´– CGA GGT CAT CTT TGG CTC TTC AGG –3´
	KNOCKOUT PROJECT
	Primer PCR
	Chapter 5
	Methods
	
	5.1 Plasmid DNA purification from bacteria
	5.2 Enzymatic treatment of DNA
	5.3 Isolation of DNA from agarose gels
	5.4 Polymerase chain reaction (PCR)
	5.5 Reverse Transcriptase-PCR (RT-PCR)
	5.6 DNA sequencing
	5.7 Construction of VHL-knockout-construct
	5.8 Isolation of genomic DNA from ES cell clones
	5.9 Isolation of genomic DNA from mouse tails
	5.10 Southern blot analysis


	5.10.1 DOT-BLOT and radioactive Southern Blot
	
	
	DNA-gel blot analysis: DNA was digested with the 

	5.11 Preparation of competent cells
	5.12 Transformation of E.coli

	5.14 Primary antibodies
	5.15 Cell culture
	5.16 Western Blot analysis
	5.17 Preparation of murine tissues for immunohistochemical staining
	5.18 Immunohistochemical studies
	5.20 Retinal Tissue dissociation


	Chapter 7
	Results
	
	Figure 22. Overview of the strategy to produce a floxed VHL mouse or a complete VHL knockout.  From the top: The genomic locus illustrates the genomic organisation of the VHL gene to be floxed or deleted (in red exon 1). Below, the targeted genomic loc


	Chapter 8
	Results
	Chapter 9
	Results
	
	2) Mice that lack VHL in the nervous system show severe defects in brain    development and die within a few hours after birth
	3) Mice that lack VHL in the nervous system show a possible effect in the retina


	Chapter 10
	
	
	
	
	
	
	
	References








	Acknowledgements

