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Aims of this thesis 

 

It was the aim of this thesis to investigate the effects of low molecular weight inhibitors 

on the conformation and the function of the adhesion receptor LFA-1. Moreover, the 

aim was to provide novel methods to enable the pharmacodynamic characterization of 

low molecular weight LFA-1 inhibitors. 
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Summaries 

 

The β2 integrin lymphocyte function-associated antigen-1 (LFA-1, αLβ2, 

CD11a/CD18) is a conformationally flexible heterodimeric receptor which is 

expressed on the surface of all leukocytes. LFA-1 mediates cell adhesion, migration 

and costimulatory signaling events which are vital for immune- and inflammatory 

responses. Classic inside-out signaling events or extracellular cations are required to 

switch LFA-1 from a non-ligand binding to a ligand binding state. During this 

activation process the entire receptor and the ligand binding domain (αL I domain) 

undergo remarkable conformational changes. It was the aim of this thesis to 

contribute to the understanding how low molecular weight LFA-1 inhibitors block the 

function of LFA-1. The thesis is divided into three major parts: The introduction, 

chapter 1 and chapter 2. 

The introduction of this thesis is intended to review the current understanding of 

LFA-1 as an adhesion receptor. The recent molecular models of LFA-1 activation and 

signaling are described. Furthermore, the introduction provides an overview of 

preclinical and clinical data that support the rationale of LFA-1 as a therapeutic 

target. Chemical entities that are currently pursued as low molecular weight LFA-1 

inhibitors are outlined. 

The work described in chapter 1 focused on the characterization of low molecular 

weight (LMW) LFA-1 inhibitors of different chemical classes. In particular their effect 

on the molecular receptor conformation was studied.  

The aim of the work of chapter 2 was to study effects of LFA-1 inhibitors in whole 

blood. In addition to characterizing the degree of target occupancy by LFA-1 

inhibitors in whole blood, we investigated whether LFA-1 receptor occupancy 

corresponds to a modulation of the activation and proliferation of human T-

lymphocytes in whole blood cultures. 
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Summary chapter 1 

Previous studies of our group 1,2 and by others 3 on the isolated ligand binding 

domain of LFA-1 (αL I domain) have suggested that some LFA-1 inhibitors act 

allosterically while other inhibitors were proposed to competitively block the LFA-

1/ligand interaction 4. We postulated that LMW LFA-1 inhibitors allosterically alter the 

LFA-1 receptor conformation, resulting in shielding or neo-expression of epitopes 

recognized by monoclonal antibodies (mAbs) mapping to regulatory domains of the 

αL or β2 chains. 

Results of chapter 1:  

Our data revealed that LFA-1 inhibitors can be differentiated according to their mode 

of action on the receptor level. 

The first group of lovastatin-derived LFA-1 inhibitors strongly induced conformational 

changes within the αL I domain. This was detected by the potent inhibition of the 

binding of the mAb R7.1 (anti CD11a, αL I domain specific) to either purified LFA-1 or 

LFA-1 expressed on Jurkat T-cells. The degree of epitope reduction by the LFA-1 

antagonists tested, correlated well with the potency in inhibition of the LFA-1/ICAM-1 

interaction. These LFA-1 inhibitors had no effect on the binding of mAbs directed to 

other domains within LFA-1. 

In contrast, one lovastatin-derived inhibitor (LFA703) induced epitope changes in the 

αL I domain and also in the β2 I-like domain, a regulatory domain located on the β2 

chain of LFA-1. This effect became evident by the reduced binding of mAb IB4 (anti 

CD18;  β2 I-like domain specific) to cation-activated LFA-1 in the presence of 

LFA703. These results demonstrated that amongst lovastatin-derived inhibitors 

subclasses exit, which exert differential effects on the LFA-1 receptor conformation. 

Moreover, the antibody binding patterns observed on native LFA-1 receptors in the 

presence of various inhibitors demonstrated that upon receptor activation a 

conformational interaction between the αL I domain and the β2 I-like domain is 
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formed. These findings have meanwhile been confirmed by others in more 

comprehensive biochemical studies 5.  

For the first time our results provided strong evidence that the β2 I-like domain 

embodies a target for allosteric LFA-1 inhibition similar to the well established 

regulatory L-site in the αL I domain. XVA143, a suggested ICAM-1 mimetic, which 

was proposed by the inventors to be a competitive αL I domain inhibitor 4, blocked 

the binding of the β2 I-like domain specific mAb IB4 with nM potency. XVA143 had no 

effect on the binding of mAb R7.1 or other anti CD11a mAbs under all experimental 

conditions, and did not bind to the αL L-site as determined by NMR studies. 

Furthermore, we showed that the target of XVA143 is most probably located on the 

β2 chain, as the compound also blocked the binding of mAb IB4 to purified Mac-1 

(αMβ2) and inhibited the interaction of purified Mac-1 with ICAM-1. The compound 

typifies therefore a novel class of LFA-1 inhibitors with a distinct, probably allosteric 

mode of action. These findings provided evidence that the β2 I-like domain could 

represent a new target for potent inhibition of adhesion receptors of the β2 integrin 

subgroup. Potent LMW inhibitors like XVA143 may open new opportunities for 

specific intervention with the function of β2 integrins. These inhibitors could be 

therapeutically useful in transplantation, autoimmune diseases and inflammatory 

disorders. 

Compellingly, the combined use of various LFA-1 inhibitors and selected monitoring 

mAbs contributed to the understanding of the mode of action of LFA-1 inhibitors and 

the function of β2 integrins on a molecular level. In addition, our findings show that 

currently available LFA-1 inhibitors can be differentiated into two major groups 

according to their mode of action on the receptor level: the αL L-site inhibitors and the 

putative β2 I-like domain inhibitors. 

Chapter 1 was published in the Journal of Biological Chemistry in 2002 6. 
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Summary chapter 2 

LMW LFA-1 inhibitors may soon enter clinical trials. For their pharmacological and 

safety evaluation in clinical studies, it will be mandatory to provide, in addition to 

pharmacokinetic (PK) measurements, insights in the pharmacodynamic (PD) 

properties of these potentially immunosuppressive and anti-inflammatory 

compounds. The aim of the studies described here was to develop the methodology 

for studying the effect of LFA-1 inhibitors on receptor occupancy, receptor expression 

and T-cell function in whole blood. These studies are intended as a basis for the 

pharmacodynamic characterization of LFA-1 inhibitors in clinical trials. Furthermore, 

the effect of LFA-1 inhibitors on T-cell function was compared to the 

immunosuppressants cyclosporine A and everolimus. 

Results of chapter 2 

LFA-1 inhibitors of different chemical classes were tested in novel whole blood 

receptor epitope monitoring assays (REMAs). We designate here REMAs as 

cytometric methods which use target-specific mAbs to detect receptor occupancy by 

LMW compounds in whole blood. The lovastatin-derived LFA-1 inhibitor LFA878 and 

the experimental COMPOUND X, a non lovastatin-derived LFA-1 inhibitor, blocked 

the binding of mAb R7.1 to leukocytes in undiluted blood with nM potencies. As 

expected, the putative β2 I-like domain inhibitor XVA143 was unable to alter the 

binding of mAb R7.1 to leukocytes in whole blood. In contrast, we found that LFA-1 

receptor occupancy by XVA143 led to a significantly increased binding of the β2 

chain, stalk region specific mAb MEM48 to whole blood leukocytes. These results 

demonstrated for the first time that LFA-1 inhibitors with different modes of action can 

interact with LFA-1 in undiluted human blood and that target occupancy can be 

monitored by selected mAbs.  

The REMA principle was validated ex vivo by measuring LFA-1 receptor occupancy 

in blood of rabbits after i.v. administration of LFA878. LFA878 blocked the binding of 

the mAb R7.1 with transient duration of action. Dependent on the dose administered 



 Summaries 

  

 

 XVI 

the pharmacodynamic half-life was 0.6 h (11.5 mg/kg i.v.) or 3.3 h (50mg/kg i.v.). 

These data showed for the first time that the REMA can be applied to study 

pharmacodynamic effects of αL L-site inhibitors in rabbits ex vivo. Our results 

furthermore suggested that the αL L-site and the mAb R7.1 epitope are conserved 

between man and rabbit. The pharmacodynamic effects of XVA143 could not be 

investigated because the mAb MEM48 did not cross-react with LFA-1 of other 

species. 

 

To allow the assessment of the effect of LFA-1 inhibitors on several T-cell 

parameters, we developed an anti CD3 (OKT3) mAb stimulated T-cell activation 

assay (CD69 readout) and combined it with the REMAs described above. The so-

called EA-REMAs allowed us to quantify simultaneously receptor occupancy by LFA-

1 inhibitors (REMA), the cell surface LFA-1 expression (E) and the upregulation of 

the activation marker CD69 (A) on individual T-lymphocytes after in vitro stimulation 

of 1:1 diluted blood with immobilized mAb OKT3. 

LFA878, COMPOUND X and XVA143 completely blocked mAb OKT3 stimulated 

CD69 upregulation with IC50s of 2 µM, 1 µM and 0.05 µM respectively, while 

pravastatin, a statin that does not bind to LFA-1, was completely inactive at 50 µM. 

The LFA-1 inhibitors tested were completely inactive in blood cultures stimulated with 

a combination of mAbs OKT3 and anti CD28, demonstrating the specific inhibition of 

LFA-1 dependent T-cell responses by the compounds tested.  

An additional pharmacodynamic property of XVA143 was revealed by the EA-REMA. 

22 h incubation of whole blood with XVA143 led to a partial (35-55%) downregulation 

of LFA-1 cell surface receptors on T-cells, a phenomenon not observed for the αL L-

site inhibitors tested.  

 

The compounds were then assessed on their effect on mAb OKT3 stimulated T-cell 

proliferation in 1:10 diluted blood. All LFA-1 inhibitors blocked mAb OKT3 stimulated 
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T-lymphocyte proliferation with nearly equal potencies than observed in the mAb 

OKT3 stimulated T-cell activation assay.  

Applying these protocols, experimental evidence was obtained for the first time that 

LFA-1 receptor occupancy by LFA-1 inhibitors can translate into efficient blockade of 

in vitro stimulated T-cell activation and proliferation in whole blood. The correlation 

between receptor occupancy and blockade of T-cell activation and proliferation 

(response) revealed that a >85% receptor occupancy in whole blood is required by 

the αL L-site inhibitors tested for the suppression of T-cell responses in whole blood 

cultures by 50%. In contrast, an almost 1:1 correlation between receptor occupancy 

and the resulting suppression of T-cell responses was observed for the β2 I-like 

domain inhibitor XVA143.   

 

A comparison of LFA-1 inhibitors with cyclosporin A (CsA) and everolimus in the 

whole blood assays suggested that the structurally different LFA-1 inhibitors could be 

useful as immunosuppressants. XVA143 blocked T-cell activation (0.05 µM) and 

proliferation (0.02 µM) with higher potency than CsA (0.8 µM; 0.15 µM respectively) 

and was nearly equipotent to everolimus (0.01 µM) in the whole blood proliferation 

assay. In contrast, αL L-site inhibitors were nearly as potent as CsA in the CD69 T-

cell activation assay, but significantly less active in whole blood proliferation assays 

(1-2 µM). As expected, CsA or everolimus did not interfere with LFA-1 expression or 

the binding of the monitoring mAbs R7.1 or MEM48.  

 

During the development of the EA-REMA we found that supplemental MgCl2 strongly 

synergized with anti CD3 triggered T-cell activation in whole blood. This finding may 

suggest a new role for magnesium cations in the regulation of integrin dependent T-

cell responses in vivo. We hypothesize that locally elevated (mM) concentrations of 

Mg2+ may regulate integrin adhesiveness and thereby strengthen cell to cell contacts 

leading to enhanced integrin dependent T-lymphocyte responses. Further 



 Summaries 

  

 

 XVIII 

investigations are ongoing, to elucidate the effect of magnesium on the activation and 

function of immune cells. 

 

In conclusion, we demonstrated that various LFA-1 inhibitors could occupy their 

target on leukocytes in whole blood and that LFA-1 occupancy by these inhibitors 

translated into potent suppression of in vitro stimulated blood T-lymphocytes. Our 

data are strongly suggesting that LFA-1 inhibitors, in particular inhibitors with the 

potency of XVA143, could be applicable as therapeutic immunosuppressants. In 

addition, our array of novel methods allowed us to generate an “in vitro 

pharmacodynamic “ profile of LMW LFA-1 inhibitors with different modes of action in 

whole blood. These protocols may be applicable as pharmacodynamic assays for 

LFA-1 inhibitors in clinical studies and may assist therapeutic dose finding.  

 

 

Parts of this work (REMA) will be soon published as 

G. Weitz-Schmidt, K. Welzenbach, J. Dawson, J. Kallen: "Improved LFA-1 inhibition by statin 

derivatives: Molecular basis determined by X-ray analysis and monitoring of LFA-1 

conformational changes in vitro and ex vivo", J. Biol. Chem. 2004,  in press 

 

A second manuscript publishing other findings of chapter 2 is in preparation.  
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1 Introduction 

 

Since the discovery of lymphocyte function-associated antigen-1 (LFA-1) in 1981 by 

the group of T.A. Springer 7,8 more than 4300 scientific papers - from basic research 

through clinical reports - were published concerning the adhesion receptor LFA-1. 

This introduction briefly describes the integrin family (1.1), outlines the general 

characteristics of LFA-1 and its ligands (1.2) and gives a description of the biological 

functions of LFA-1 (1.3) and the molecular mechanisms of LFA-1 activation (1.4). The 

rationale for LFA-1 as a therapeutic target is outlined in the chapter 1.5. Due to the 

wealth of information obtained on LFA-1 this introduction can only serve as an 

overview and as the background information needed for this thesis. In most areas of 

LFA-1 research, even in fundamental research topics such as LFA-1 signaling and 

LFA-1 receptor activation, many details still remain to be discovered to complement 

the puzzle of the highly complex LFA-1 dependent processes that are vital to all 

higher organisms.  

 

1.1  Integrins 

Adhesive cell contacts within a tissue or between cells and the establishment and 

maintenance of tissue scaffolds by the extracellular matrix are fundamental for the 

development and physiological function of all multicellular organisms. Cell adhesion 

molecules are cell surface proteins that mediate these cell to cell or cell to matrix 

interactions. Intensive research over the past decades has led to substantial 

knowledge about the function of cell adhesion molecules. Several groups of adhesion 

molecules can be distinguished: the integrins, the selectins, the immunoglobulin 

superfamily (IgSF), the cadherins, the CD44 family and the transmembrane 

proteoglucans. 

The most versatile and widely distributed cell adhesion molecules are the integrins. In 

1979 the first cell surface protein which was later classified as an integrin was 
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discovered on mouse myeloid leukocytes by the binding of a monoclonal antibody. 

This antigen was named macrophage differentiation antigen 1 (Mac-1; αMβ2) 9. 

The term “integrin” for an adhesion molecule was firstly used by Tamkun et al in 1986 

who described an integral cell surface protein, termed “integrin”, that established a 

transmembrane link between the extracellular matrix protein fibronectin with actin 

structures of the cytoskeleton 10. 

Integrins soon received particular attention in various fields of research due to their 

diverse cellular functions ranging from adhesion of egg to sperm receptors (α6β1 11) 

over blood clotting (αIIbβ3 12) to metastasis and tumor growth (α4β1, α4β7, αvβ3, 

αvβ5 13), and leukocyte migration and activation (α4β1, αLβ2, αMβ2 14).  

Many insights in the function and the importance of integrins have evolved by 

studying the patho-biochemistry of several inherited diseases. Glanzmanns 

thrombasthenia is a disease with hemorrhagic symptoms and bleeding disorders 

caused by a reduced expression of αIIbβ3 on platelets 15. The expression of aberrant 

β2 subunits causes reduced inflammatory and immune responses summarized as 

“leukocyte adhesion deficiency syndrome” (LAD I). The various LAD phenotypes will 

be described in section 1.5.1. 

 

Integrins are heterodimeric cell surface proteins consisting of two distinct, non-

covalently associated subunits termed the α and the β chain. The N-terminal 

glycosylated ectodomains of both subunits are involved in ligand binding and 

specificity for a ligand. The C-terminal enterodomains point into the cytosol and are 

responsible for signaling and receptor activation. A total of 18 α and 8 β subunits are 

identified to date which can form 24 known α β heterodimers 16. Since the β subunit 

can associate with different α subunits, the classification of integrins was based on 

the common β chain. As illustrated in Figure 1.1, 8 integrin subgroups (β 1-8) are 

classified to date. Some of the α chains are selective for a particular β chain, while 

others can form heterodimers with several β subunits. The most interesting α subunit 

in this respect is the αv chain which can associate with 5 different β chains. 
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The integrin subgroups also distinguish themselves by their ligand specificity. While 

β2 integrins mainly bind cell surface anchorage ligands of the IgSF, the β1 integrins 

(VLAs, very late antigens) mainly bind extracellular matrix proteins such as collagens, 

fibronectin, vitronectin, tenascin or laminin. Integrins of the β3 subgroup mainly bind 

to proteins found in the extracellular matrix (fibronectin, gelatin, vitronectin) as well as 

in serum proteins (fibrinogen, von Willebrand factor, thrombospondin). 

 

 

 

Figure 1.1 Integrins, a large family of adhesion receptors.  Integrins are heterodimeric 
glucoproteins that consist of an α and a β chain. Fig. 1.1 illustrates the currently known 
possible associations between α and β chains. Αll chains with an asterix designate α chains 
that contain an inserted domain (I domain) in the N-terminal headpiece which is the major 
ligand binding domain of these integrins. Integrins are divided into subgroups according to 
their common β chains. Source: Shimaoka & Springer 16. 

 

Integrins transduce signals after ligand binding in the classical “outside-in” direction 

triggering thereby cellular responses such as increased adhesiveness, changes in 
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cellular morphology, migration and anchorage dependent cell growth 17. In the 

opposite way, cells are able to modulate the binding affinity for an integrin-ligand via 

intracellular signals (“inside-out“ signaling). It became clear, that many fundamental 

cellular processes base on the inside-out and outside-in signaling pathways and that 

these signals orchestrate the dynamics of integrin functions. The total integrin 

mediated cellular adhesiveness (avidity) is suggested to be dependent on the 

intrinsic strength of integrin-ligand bond (affinity) and on the number of these bonds 

(valency). It is today’s dogma that the dynamic regulation of integrin adhesiveness 

involves mutual modulation of these parameters 18.  

 

1.2  LFA-1  

1.2.1 LFA-1 history 

LFA-1 (CD11a/CD18, αLβ2) was discovered in 1981 by the group of T.A. Springer 

who found that anti LFA-1 antibodies were able to block the killing activity of cytotoxic 

T-lymphocytes (CTLs) 8suggesting a key function for LFA-1 in T-cell immunology 19. 

Further studies showed that the molecule targeted by these antibodies participated 

also in NK-cell mediated killing as well as monocyte and granulocyte antibody 

dependent cellular cytotoxicity (ADCC) 20,21.  Later, it was demonstrated that LFA-1 

mediated firm adhesion of leukocytes to the endothelium during transendothelial 

migration, a key process during lymphocyte homing and extravasation to sites of 

inflammation 22. 

1.2.2  LFA-1 expression 

LFA-1 is a heterodimer and consists of the αL (CD11a) and the β2 chain (CD18) and 

belongs to the β2 integrin subgroup which is selectively expressed by leukocytes. 

LFA-1 is expressed on all leukocytes subpopulations although on variable levels. The 

constitutive expression of LFA-1 appears to be dependent on the activation and 

differentiation state of a leukocyte. Naïve T-lymphocytes, for example, carry less 

LFA-1 on the cell surface than memory T-cells 23. LFA-1 expression can be enhanced 

by cytokines. For example, IFNα was shown to increase αL expression on tissue 
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macrophages 24. IL-4 upregulated LFA-1 expression on a B-lymphoma cell line 25. In 

addition, viral products or oncogenes can affect the expression of LFA-1. CMV 26 and 

the oncogene c-myc 27 were shown to downregulate LFA-1 expression in certain cell 

types while EBV virus products upregulated mRNA and cell surface expression of αL 

28. 

 The αL chain consists of 1145 amino acids (ca. 180 KDa) with 12 N-glycosylation 

sites 29. The gene of the β2 chain (ca. 95 KDa) encodes 769 amino acids with 6 N-

glycosylation sites. Next to differential expression of receptor numbers, cell type 

specific posttranslational modifications e.g. the number of glycosylations and the type 

of glycosylation introduce a degree of variation in the appearance of LFA-1 on the 

leukocyte cell surface. For instance, in thymocyte and spleen T-cells but not in 

monocytes or granulocytes or spleen B-cells the N-linked sugars are sulfated 30. In 

addition, the LFA-1 receptors found on T-cells differ from that on B-cells or that on 

neutrophils by a the degree of sialic acid (B cell) 31 or CD15 (neutrophils) 32 

expression. However, to which degree the posttranslational modifications of LFA-1 

contribute to the functions of LFA-1 remains still to be elucidated. 

1.2.3 LFA-1 ligands 

The major ligands of LFA-1 are the three intercellular adhesion molecules -1, -2, and 

-3 (ICAM-1, -2, -3) 33. ICAM-1,-2,-3 are structurally related glycosylated cell surface 

proteins which belong to the immunoglobulin superfamily (IgSF). ICAM-1 and ICAM-3 

are constructed of five and ICAM-2 of two immunoglobulin (Ig) like domains from 

which the N-terminal domains 1 and 2 are responsible for binding to LFA-1 34-37. 

ICAM-1,-2,-3 can act as costimulatory signaling receptors by signaling via their 

cytoplasmic domains 38,39. More specifically, LFA-1/ICAM interactions can trigger 

ICAM dependent signaling pathways leading to enhanced cellular activation and 

proliferation of T- and B-cells 40. Besides, signaling via ICAM-1 was reported to 

trigger oxidative burst responses in monocytes 41. 

LFA-1 binds with highest affinity to ICAM-1 followed by ICAM-2 and has the lowest 

affinity for ICAM-3. In vitro binding studies with soluble recombinant ICAM-1 and 

ICAM-3 showed binding affinities of 60 nM (ICAM-1) and 550 nM (ICAM-3) to purified 
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immobilized LFA-1 42. No affinity constant for the LFA-1/ICAM-2 interaction was 

found in literature.  

 

ICAM-1  

ICAM-1 (CD54, MW: 90kDa) was identified in 1986 43. The basal level of ICAM-1 

expression is low on lymphocytes and endothelial-, epithelial cells and on fibroblasts 

and moderate on monocytes 23,43,44. The cell surface expression of ICAM-1 is highly 

upregulated by numerous pro-inflammatory cytokines such as IFNα, TNFα, IL-6 or  

IL-1. There is experimental evidence that ICAM-1 is expressed on endothelial cells as 

a homodimer which may lead to enhanced valency and thus an increased binding 

strength to its counter receptors 45,46. However, single monomeric ICAM-1 is a fully 

competent LFA-1 binding surface as shown by studies of Juen et al 47.  

Serum levels of soluble ICAM-1 were found to be increased in different inflammatory 

and autoimmune diseases 45.  

Mutational analyses defined that the amino acid residues Glu34, Lys39, Met64, 

Tyr66, Asn68, and Gln73 of ICAM-1 are crucial for the interaction with LFA-1. These 

6 residues are suggested to form a rectangular binding surface for LFA-1 48. 

ICAM-2 

ICAM-2 (CD102, MW: 55 kDa) is expressed on platelets, lymphocytes, monocytes 

and endothelial cells. ICAM-2 is the only leukocyte integrin ligand that is well 

expressed on resting endothelial cells. ICAM-2 is expressed only at low levels on not 

activated endothelium, the LFA-1/ICAM-2 interaction is suggested to be involved in 

the normal recirculation (homing) of lymphocytes through tissue endothelium. It has 

been shown that the LFA-1/ICAM-2 interaction augments T-cell receptor (TCR) 

mediated T-cell activation and triggers gene transcription processes 49. In addition, 

soluble ICAM-2 was described to stimulate T-lymphocyte binding to ICAM-1 50. 
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ICAM-3 

ICAM-3 (CD50, MW: 110-140 kDa) is expressed only on leukocytes and absent on 

endothelial cells. It is highly and constitutively expressed on resting T-cells and 

antigen presenting cells (APCs) 51,52. ICAM-3 is suggested to mediate the initial low 

affinity contact of a T-cell with an APC. This cell to cell contact is essential for 

coordinated T-cell activation 53. Recently, experimental evidence has been 

established that solely cell-cell proximity is required to induce ICAM-3 clustering at 

the T-cell/APC contact region 53. Furthermore, engagement of ICAM-3 can 

upregulate the affinity of LFA-1 for ICAM-1 54. Monoclonal antibodies to ICAM-1 and 

anti ICAM-3 have additive or synergistic effects in mixed lymphocyte reactions, 

proliferation and homotypic aggregation assays in vitro 51, again underlining the 

pivotal role of the ICAM-3 interaction with its ligands in T-cell immunology. 

 

Additional but less characterized ligands for LFA-1 are ICAM-4 and the junctional 

adhesion molecule 1 (JAM-1).  

ICAM-4 (MW: 42kDa) is identical to the LW (Landsteiner–Wiener) blood group 

antigen. The ICAM-4 glycoprotein contains two immunoglobulin domains of which the 

first domain is 30% identical to the first domains of ICAM-1, -2 and -3. The 

expression of ICAM-4 is restricted to erythrocytes and erythroid precursor cells and 

its function is restricted to erythropoiesis and apoptosis 55,56. ICAM-4 is suggested to 

bind through novel motifs also to α4β1 and αIIbβ3 integrins 57,58.  

JAM-1 (MW: 40 kDa) was established as an ligand for LFA-1 in 2002 59. JAM-1 

belongs to the IgSF and consists of 2 Ig like domains. JAM-1 is expressed 

particularly at tight junctions of endothelial and epithelial cells, but can also be found 

at hematopoetic cell types. The LFA-1/JAM-1 interaction was suggested to guide and 

control chemokine induced transendothelial migration of T-cells and neutrophils 59. 
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1.3 Biological functions of LFA-1 

 

Most functions of leukocytes are crucially dependent on coordinated sequences of 

adhesion events. LFA-1 is probably the most prominent adhesion molecule in the 

immune system, because it also establishes together with CD2/CD58 the adhesive 

contact between naïve T-cells and APCs. The establishment of this solid cross 

contact via LFA-1 and its ICAM-ligands is today recognized as the basis for effective 

T-cell activation 5. LFA-1 was shown to be pivotal for T-cell effector function such as 

T-helper or killing function as well as processes such as transendothelial migration 

into sites of inflammation. LFA-1 mediated migration processes are fundamental for 

the lifecycle and function of all leukocytes.  

As experiments shown in this thesis are largely concerned with the blockade of  

LFA-1 expressed on primary T-cells or T-cell lines, the following section focuses on 

the function of LFA-1 on T-lymphocytes.  

 

1.3.1 LFA-1 as adhesion molecule in migratory processes 

 

The adhesion molecule LFA-1 plays a pivotal role in the 3 major cellular migration 

processes that are crucial for T-lymphocytes: a) migration during cell development 

and differentiation, b) homing and c) transendothelial migration to sites of 

inflammation. 

a) During T-cell development, the precursor T-cell has to migrate from the bone 

marrow to the thymus, where selection and maturation take place. T-cells migration 

from the thymus into the blood stream is mediated by adhesion molecules such as 

LFA-1. 

b) Naïve T-lymphocytes continuously circulate from the peripheral blood to lymph 

nodes and secondary lymphoid organs and back into the blood stream. Naïve T-cells 

can migrate in an organ-specific manner. Specialized endothelial cells that line the 

high endothelial venules in lymph nodes and Peyer’s patches constitutively express 
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so-called addressins, which support the homing of naïve lymphocytes, whereas other 

endothelial cells allow little or no leukocyte binding unless under inflammatory 

conditions 60. Next to addressins, selectins and the integrins LFA-1, VLA-4 are α4β7 

are involved in homing processes 61. 

c) Inflammatory and immune disorders such as autoimmune diseases and graft 

rejection are largely mediated by activated T-lymphocytes. At the site of inflammation 

or in lymphoid organs, these T-cells drive and boost immunologic responses. A 

requirement for the inflammatory response is the migration of these T-cells from the 

blood stream into the target tissue thereby crossing the endothelial barrier. 

Lymphocytes which circulate in the blood generally can not establish an adhesive 

contact with endothelial cells because both endothelial and lymphocytes and their 

adhesion receptors are in a non activated state. Extravasation is initiated by an up-

regulation of the endothelial ligands P- and E-selectin as well as ICAM-1, VCAM-1 

and MAdCAM-1, which are triggered by inflammatory stimuli such as histamines, 

cytokines, endotoxins and complement fragments 62. Primed effector T-cells express 

PSGL-1 and modified PSGL-1 which are the ligands for P- and E-selectin. The 

interaction between the selectins and their ligands allows to overcome the dynamic 

sheer forces of the blood stream and to tether lymphocytes which then start to roll on 

the inflamed endothelial cells. Recently, VLA-4 and α4β7 were shown to also mediate 

rolling of leukocytes 63 64. Carbohydrate trapped locally excreted chemokines such as 

MIP1α, MIP1β and Rantes can interact with chemokine receptors and activate the T-

cell 65. This leads to clustering and affinity upregulation of the adhesion molecules 

LFA-1, VLA-4, Mac-1 and α4β7 60. The latter bind to their ligands of the IgSF and 

mediate a firm arrest of the lymphocyte to the inflamed endothelium. Signaling events 

triggered by binding of chemokines to their receptors and signaling induced by LFA-1 

and VLA-4 stimulate a change in cell morphology (flattening of the spherical shaped 

lymphocyte, building of the cellular uropod) and a rearrangement of surface 

receptors. The following migration process through the endothelium into the 

underlying tissue is a VLA-4, α4β7, Mac-1 independent, but LFA-1 dependent 

process. Junctional adhesion molecule 1 (JAM-1) is now recognized as the 

responsible ligand for LFA-1 for the trespassing through the borders of the 
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endothelial wall. The basic principle of transendothelial migration is exemplified in 

figure 1.2 
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Figure 1.2 Basic principle of transendothelial migration of lymphocytes: Cell adhesion 
molecules of the selectin family and their ligands (blue), Integrins and members of the 
immunoglobulin superfamily (green), and chemokines and their receptors (grey), orchestrate 
the highly dynamic adhesive processes of leukocyte tethering and transendothelial migration. 
Endothelial transmigration can occur under inflammatory (activated endothelium) and not-
inflammatory conditions (resting endothelium). 

 

1.3.2 LFA-1 as participant in the immunological synapse 

 

The discovery of the phenomenon of the “immunological synapse” (IS) has gathered 

a lot of interest lately. The IS is a specialized circular arrangement of T-cell surface 

molecules formed during T-cell activation and is proposed to enable an optimal 

presentation of the T-cell receptor to the antigen-MHC complex of APCs. Alternative 
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functions of the IS may be the polarization of the secretion of cytokines or the 

regulation of the endocytosis of the TCR. These prerequisites for an efficient adaptive 

immune response are suggested to be fulfilled by compartmentalization of adhesion-, 

costimulatory, cytoskeletal and signaling molecules which are organized in so-called 

“supramolecular activation clusters” (SMACS). Two SMAC zones of an IS have been 

defined. The central zone of a SMAC cluster (central SMAC) bears next to other 

molecules the TCR/CD3 complex and CD28 on the T-cell side which are in contact 

with the APC presented ligands. In addition, signal transduction enzymes such as 

PKCθ, Lck, Jak2 or PI3 kinase are found in the cytoplasmic side of a central SMAC. 

The central SMAC is surrounded by a peripheral SMAC in which LFA-1 and the actin 

cytoskeleton are located 53,66. LFA-1 builds a peripheral ring around the central zone 

of a SMAC 67. LFA-1 may therefore stabilize the T-cell-APC contacts and provide 

additional costimulatory signals necessary for T-cell activation 68.  

 

1.3.3 LFA-1 as signaling receptor 

 

One property of the integrin family is their ability to mediate bidirectional signaling 

events. Many cell surface molecules including GPCRs such as chemokine receptors 

and tyrosine coupled T-cell receptors can send intracellular signals that impinge on 

the short cytoplasmic tails of integrins and trigger increased adhesiveness of the 

extracellular domain (inside-out signaling, reviewed in sections 1.4.1-1.4.3). Vice 

versa, ligand binding to the extracellular domains of integrins can induce signaling 

events (outside-in signaling) that can regulate cellular growth, proliferation, 

differentiation and apoptosis 69. Although integrins are fundamental in development, 

immunity, wound healing and metastasis, the basic signaling mechanisms induced by 

these receptors remain to be elucidated. This section is intended to outline the 

insights gained in LFA-1 induced signaling. 

Early studies have shown that stimulation of the TCR in combination with ICAM-1 led 

to T-cell proliferation. This suggested that LFA-1 is an adhesion molecule that can 

also act as a signaling receptor 70.  However, solid biochemical evidence was missing 

that LFA-1 can mediate unique signals that are exclusively dependent on the LFA-1 
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receptor and are not initiated via the TCR or co-receptors such as CD28. Recently, 

Perez et al demonstrated that binding of LFA-1 to ICAM-2 could trigger two key 

phosphorylating signaling events leading to the activation of gene transcription 49. 

The interaction of ICAM-2 with LFA-1 activated selectively the δ isoform of PKC 

which led to a phosphorylation of the β2 cytoplasmatic tail and cytohesin-1. 

Cytohesin-1 was found earlier to specifically bind to the cytoplasmic tail of the β2 

chain which suggested a regulatory function of cytohesin-1 for LFA-1 adhesiveness 

71. Yet, it was unclear, whether cytohesin-1 could trigger signaling pathways via the 

LFA-1/ICAM interaction 72,73. The phosphorylation of cytohesin-1 by PKCδ resulted in 

the activation of the MAPKinases ERK1 and ERK2 which target c-Fos, a “nuclear 

translocator protein”. Phosphorylation of the cytoplasmic tail of the β2 chain released 

the “Jun activating binding protein 1” (JAB-1), a transcriptional co-activator that 

translocates after LFA-1 activation to the nucleus and interacts with c-Fos for building 

the AP-1 transcriptional regulatory complex that is essential for gene transcription 49.  

These data, generated in a Jurkat cell line, suggested that LFA-1 can trigger at least 

two independent signaling pathways that converge at the level of regulators of gene 

transcription.  

The effects of LFA-1 signaling on naïve T-cells were also investigated by Perez et al. 

The addition of LFA-1 signals to TCR and CD28 mediated signaling resulted in 

accelerated IL-2 production and entry of naïve T-cells into the cell cycle 49. In 

addition, LFA-1 mediated signals enhanced the number of Th1 type T-helper cells in 

a cytohesin-1 and JAB-1 depended manner. In summary, there is evidence today 

that LFA-1 mediated signaling can occur independently from the TCR and that LFA-1 

mediated signals can act as qualitative modulators in T-cell immunity.  

 

Most research regarding LFA-1 function is done using T-cells. Nevertheless, it should 

be emphasized that all leukocytes express LFA-1. Yet, very little is known about 

cellular activation or signaling processes that happen after engagement of LFA-1 on 

B-cells, dendritic cells, monocytes or granulocytes. It is very likely that signaling and 

activation events can also modulate the biological function of these cells. 
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1.4 Molecular mechanism of LFA-1 adhesion 

 

Integrins such as LFA-1 have the unique property that their adhesiveness can be 

dynamically regulated by intracellular mechanisms. This regulation is pivotal for 

integrin dependent processes which require well coordinated sequential actions such 

as lateral motion or chemokine driven endothelial transmigration. The term “inside-

out signaling” explains that extracellular receptors can trigger signals leading to rapid 

up- or downregulation of integrin adhesiveness. Many cell surface receptors are 

known to increase LFA-1 adhesiveness after engagement. However, only few are 

described that trigger a down-regulation of LFA-1 adhesiveness. In vitro LFA-1 

affinity can be rapidly activated by extracellular activating antibodies (Table 1.1) or 

bivalent cations (section 1.4.3). 

Two synergistic mechanisms permit to dynamically regulate the total binding strength 

(avidity) of LFA-1 under physiologic conditions. Firstly, the modulation of the affinity 

of the individual LFA-1 receptor to its ligands (section 1.4.1) and secondly, the 

number of these receptor ligand bonds (valency) (section 1.4.2). Despite of recent 

advances in the understanding of how these two mechanisms are regulated, an 

integrated model, taking all regulatory parameters into account which orchestrate 

dynamic cell adhesion or migration, has to date not been established.  

The following section intends to review the current understanding of the LFA-1 

receptor structure and how LFA-1 affinity can be regulated on a molecular basis. 

 

1.4.1 The structure of LFA-1 and the regulation of receptor affinity  

 

Affinity enhancement of cell surface integrins requires conformational changes in the 

extracellular domains. These changes in conformation have been evident by the 

identification of monoclonal antibodies (mAbs) that bind preferentially to the activated 

/ or ligand occupied forms of integrins 74,75. Several mAbs were described that 

recognize activated forms of LFA-1. The mAbs 24 76,77, CBR LFA1/2 78, 327A, 327C, 

and 330E 79 and MEM48 80 detect neoepitopes on the β2 chain that become exposed 
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after activation of LFA-1. In particular mAb 24 has led to the first experimental 

evidences that cations can induce conformational changes in the extracellular LFA-1 

structure and that these changes correspond to an enhanced ligand binding affinity of 

LFA-1 76.  

 

The current model of LFA-1 receptor activation 

 

LFA-1 consists of the αL and the β2 chain. The extracellular N-terminal ends of both 

chains interact with each other and build together the ligand binding headpiece of 

LFA-1. The αL and the β2 chains contain furthermore extracellular stalk regions, 

transmembrane domains and short cytoplasmic tails (Fig. 1.3).  

 

The head domain of the αL chain consists of seven 60-amino acid repeats which 

have been predicted to fold into a seven bladed β propeller domain 81. The head 

domain of the αL chain contains an inserted domain the so-called “I domain”. The αL 

I domain is the major ligand binding domain of LFA-1 as shown by mutational - and 

antibody blocking studies 82.  

The αL I domain consists of 200 amino acids and is located between the β sheets 2 

and 3 of the putative β-propeller region on the αL subunit 83-85. The αL I domain is 

highly homologous to other integrin I domains which can be found in 8 out of the 

known 18 α subunits 74 (Fig.1.1). The three-dimensional structures of I domains 

revealed that they can adopt conformations similar to small G proteins with one metal 

ion-dependent adhesion site (MIDAS) at the top of the domain where ligands are 

bound 86. There is strong evidence that the metal-ion of the αL MIDAS is coordinated 

by an acidic glutamate residue (Glu34) from the domain 1 of ICAM-1 and thus directly 

participates in ligand binding 48,87.  

 

It has recently been demonstrated that the αL I domain can be locked in an open, 

ligand binding and a closed, non-binding conformation. This has been shown by 

mutational introduction of disulfide bonds between the C-terminal helix and a central 

β sheet of the αL I domain. Stabilizing the activated form of the αL I domain by 
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disulphide bonds increased the affinity for ICAM-1 by 10000 fold (from 2 mM to  

200 nM) 88,89. The positions of the disulfide bonds were modeled according to the 

crystal structures of I domains of Mac-1 (αMβ2, CD11b/CD18) and VLA-2 (α2β1, 

CD49b/CD29). These I domains have been crystallized in two conformations which 

disclosed that major shifts in the positioning of the C-terminal helices can occur 87,90. 

Moreover, transfectants expressing mutant LFA-1 with alanine or tryptophane 

substitutions in the C-terminal α7 helix region of the αL I domain showed impaired or 

constitutively active binding to ICAM-1 2,91. These studies suggested that the C-

terminal α7 helix may be involved in regulating the conformation of the αL I domain. 

 

Integrin β subunits contain regions structurally homologous to the I domains, the so-

called I-like domains 92,93. The existence of such I-like domains was recently 

confirmed by the crystal structure of the extracellular segment of the integrin αVβ3 94.  

The I-like domain of the LFA-1 β2 subunit (β2 I-like domain) is predicted to contact 

the β propeller of the αL subunit near β sheets 2 and 3 95. The β2 I-like domain 

contains 3 metal-ion binding sites. The central MIDAS is proposed to directly ligate to 

a putative intrinsic ligand on the αL chain. The outer ion-binding sites are termed as 

“ligand-induced metal-ion binding site” and the “adjacent MIDAS” based on findings 

with the integrin αvβ3 16. 

The current model of LFA-1 activation suggests that the conformation of the αL I 

domain is directly regulated by the β2 I-like domain 89. The β2 I-like domain is 

proposed to undergo, analogous to the αL I domain, a conformational rearrangement 

that upregulates the affinity of the β2 I-like domain MIDAS for a putative intrinsic 

ligand by a downward movement of the β2 I-like domain C-terminal α-helix. The 

putative ligand for the β2 I-like domain MIDAS is probably the conserved glutamate 

residue 310 (Glu310) that is located close to the C-terminal α7 helix of the αL I 

domain 16. The interaction between the β2 I-like domain and Glu310 may enable a 

downward pull of the C-terminal α7 helix of the αL I domain in which then leads to the 

open form (high affinity) of the αL domain 18. The presence of regulatory elements in 

the β2 chain was further substantiated by the finding that all mAbs that triggered LFA-

1 adhesiveness (Table 1.1) mapped to epitopes located on the β2 chain. In 
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agreement, almost all anti CD18 mAbs mapping to the β2 I-like domain, blocked LFA-

1 adhesiveness and this presumably in an allosteric manner 89.  

 

 

 

Figure 1.3 Schematic structure of LFA-1. The ligand binding domain (I domain) is inserted 
between the β propeller repeats as denoted by the broken lines. The β2 I-like domain is 
flanked by parts of the so-called hybrid domain. Cystein and disulphide bonds are shown as 
lines below the stick figures. Red and blue asterisks denote Ca2+- and Mg2+-binding sites, 
respectively. Each domain is color-coded: I-EGF: integrin-epidermal growth factor domain; 
PSI: plexin/semaphorin/integrin. Source: Shimaoka et al 16, modified drawing. 

 

 

Figure 1.4 illustrates the present model of LFA-1 receptor activation showing only the 

ligand binding headpiece of LFA-1. It should be noted, that this model was not 

existing when the work for chapter 1 (in year 2001-2002) was conducted and that the 

work of chapter 1 has partially contributed to the proposed model. 
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(ICAM-1-2-3, JAM-1) 

 

(probably Glu310) 

 

 

Figure 1.4  Activation of LFA-1 by conformational rearrangements in the headpiece of LFA-

1: A black cylinder and curved line coming from the ‘top’ of the αL I domain represents its C-
terminal α7 helix and the β6–α7 loop, respectively. In addition, the linker connecting the C-
terminus of the α7 helix to the β-propeller domain is drawn as a curved line coming from the 

bottom of the αL I domain α7 helix and connecting to the β-propeller domain. The glutamate 
(Glu310) that is postulated to serve as an intrinsic ligand for the β2 I-like MIDAS is depicted 
as a yellow ball. (i) Closed head piece. (ii) Open headpiece transition. The hybrid domain of 
the β2 chain swings out and conformational changes in the β2 I-like MIDAS proceed. (iii) 
Open headpiece. The open β2 I-like MIDAS binds to the intrinsic ligand in the linker (Glu310), 
exerting a pull on the α7 helix. This causes the C-terminal α7 helix it to move down and the 

αL I domain MIDAS to shift into the high-affinity conformation. Source: Carman and Springer 
18. 

 

In addition to the conformational changes within the headpiece of LFA-1, large scale 

conformational changes in the entire heterodimer occur during activation and ligand 

binding. These rearrangements have been visualized by NMR, by electron 

microscopic studies and by atomic structures using purified extracellular LFA-1 

domains and superimposing the results on the X ray structures of the αvβ3 integrin 

96,97. These studies revealed surprising details how integrins can alter their 

conformation. The latest model of conformational changes in whole dimeric integrins 

is reviewed by Carman and Springer 18. 
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It is the current understanding that LFA-1 has a full repertoire of different 

conformations ranging from a bent conformation (low affinity, closed form of the αL I 

domain) to intermediate conformations (extended conformation of the entire receptor 

but closed or intermediate form of the αL I domain) to a fully extended conformation 

(highest affinity for a ligand, open form of the αL I domain) (Fig.1.5). During LFA-1 

activation, the entire receptor appears to switch from a bent to an extended 

conformation in a “switchblade“ kind of motion. It can be assumed that the 

switchblade opening of the integrin may also serve to enhance the presentation of 

the αL I domain to the juxta-positioned ligands.  

 

The conformational changes in the extracellular domains of LFA-1 are suggested to 

be regulated by the interaction between the cytoplasmic tails of the αL and the β2 

chains. Experimental evidence for this interaction has been provided by two 

independent groups who showed that mutations in the membrane proximal sites of 

the cytoplasmatic domains of the LFA-1 resulted either in constitutive integrin 

activation or in an inactive LFA-1 98,99 . In particular the GFFKR motif which is located 

on the αL cytoplasmic tail may play a major role in modulating LFA-1 function. The 

GFFKR motif is exposed after removal of the cytoskeleton linkage during activation. It 

is likely that this motive plays a role in activation of LFA-1 as the deletion of this 

region resulted in a constitutively activated LFA-1 102,103. 

In contrast, the introduction of an artificial clasp in the cytoplasmic domains resulted 

in an inactive LFA-1 
69. The close association of the αL and β2 cytoplasmic and 

transmembrane domains may thus constrain a low affinity state of LFA-1. FRET 

analyses in living cells provided first evidences that spatial separation of the 

cytoplasmic domains of the αL and the β2 chains are responsible to control the LFA-1 

affinity to ICAM-1 (inside-out) 69.  Figure 1.5 summarizes the knowledge about the 

switchblade model of LFA-1 receptor activation. 

 

 



 Introduction 

  

 19 

  

 

     Inactive            Intermediate conformation     Active receptor conformation  

   Low affinity                   medium affinity                High affinity 

 

Figure 1.5 Current “switchblade” model of the LFA-1 receptor activation: Different 
conformations allow the regulation of LFA-1 affinity. Blue ribbons show the ICAM-1 (domains 
1 and 2). Green ribbons indicate the αL I domain. Spatial separations of the α and β 
cytoplasmic chains (red and blue bars) initiate the switchblade–style opening of the LFA-1 
receptor from a bent to an extended conformation. These arrangements may induce 
conformational changes in the β2 I-like MIDAS which regulate the conformation and ligand 
binding affinity of the αL I domain. The picture was assembled for this thesis from Shimaoka 
and Springer 16 and Kim et al 69. 

 

There are two known distinct ways to induce the spatial separation of the LFA-1 

cytoplasmic chains.  

Firstly, the cytoplasmic domains of LFA-1 are known to interact with members of the 

cytoskeleton during inside-out signaling events. The cytoskeletal protein talin is 

known to associate with cytoplasmic domains of LFA-1 and other integrins. This 

association was suggested to modulate integrin adhesiveness. Isolated talin head 

Head 
piece 

 
Stalk 
region 



 Introduction 

  

 20 

pieces were shown to associate with cytoplasmic domains of several chains 69. Over-

expression of talin modulated LFA-1 affinity and suggested that the talin head piece 

can promote a spatial separation of the αL and the β2 cytoplasmic chains which 

stabilizes a high affinity conformation of LFA-1 69.  Other proteins may be involved in 

regulating the high affinity conformation. Rap1, a small GTPase, has emerged as 

important effector protein for chemokines and cytokines. Rap1 was shown to act as a 

regulator for several integrin subgroups 104. Over-expression of dominant negative 

forms of Rap1 blocked TCR induced upregulation of LFA-1 adhesiveness 105 while a 

defective regulation of RAP1 led to leukocyte adhesion deficiency syndrome in man 

106. RAPL was recently identified as effector molecule of Rap1 105. It is still 

speculation, however, whether the Rap1/RAPL interaction directly promotes the 

active conformation of LFA-1 or whether these regulators enhance the valency (vide 

1.4.2) of the interaction. Integrin cytoplasmic domain associated protein-1 (ICAP-1) 

may be another candidate for intracellular LFA-1 affinity regulation. ICAP-1 is 

suggested to act synergistically with talin head domains of β1 integrins 107-110.  

Secondly, ICAM-1 binding to extracellularily activated LFA-1 was found to induce 

significant spatial separations of the cytoplasmic domains which may lead to the 

triggering of “outside-in” signals 69. The transmission of signals by integrins across 

the plasma membrane may therefore occur bi-directionally and may be mediated by 

coupling spatial separation of cytoplasmic domains to conformational changes of the 

extracellular chains of LFA-1. The study which was published 2003 in Science by Kim 

et al was the first biochemical evidence for a distinct molecular mechanism how 

information can be transmitted bi-directionally across the plasma membrane 69. 

 

1.4.2 LFA-1 clustering 

Early studies revealed that LFA-1 and the ICAM ligands can form clusters or patches 

upon cellular activation 111,112. LFA-1 clusters were recognized to increase the overall 

binding strength (avidity) of LFA-1 dependent adhesion processes. Receptor- or 

ligand clustering can be induced by processes such as random diffusion, 
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oligomerisation, ligand dependent redistribution, intracellular trafficking or 

polarization.  

Recently, the terminology was redefined to categorize the different modes of integrin 

reorganization leading to increased valency 18. These can be differentiated into a) 

large scale LFA-1/ligand reorganizations detectable by fluorescence microscopic 

techniques and b) microcluster formation on submicroscopic scale which can only be 

visualized by sophisticated methods such as FRET or BRET technology. 

Both large reorganizations and microcluster formation can be triggered via ligand 

binding or occur in a ligand independent way. Clustering in a ligand dependent way 

requires the presence of locally clustered or mulitmeric ligands. For the ICAM ligands 

of LFA-1 clustering was shown to be induced via chemotactic and proinflammatory 

chemokines such as RANTES, MCP-1, MIP-1 α, MIP-1 β, and IL-8 65 as well as other 

stimulators (Table 1.1)   

 

1.4.3 Activation of LFA-1 mediated adhesion  

The activation of LFA-1 via inside-out signaling pathways has been the focus of 

numerous studies. Crosslinking of various cell surface molecules by antibodies or 

treatment of lymphocytes with protein kinase C activators rapidly induced LFA-1 

mediated adhesion to ICAM-1 (Table 1.1). This “inside-out” activation of LFA-1 

requires intact and metabolically active cells. In vitro studies with inside-out activators 

suggested that only a minority of LFA-1 receptors undergo conformational changes 

as measured by the expression of activation epitopes on the β2 chain. Beals et al 

suggested that 20% of LFA-1 receptors are activated after PMA activation while only 

10% of the LFA-1 receptors show the expression of activation related neoepitopes 

after stimulation of T-lymphocytes with mAb CD3 79. It can be assumed that in vivo 

only a minor number of LFA-1 receptors per cell are in a high affinity conformation. 

Table 1.1 summarizes the methods to induce LFA-1 dependent adhesion in vitro. 

Activation of LFA-1 with cations is generally used in in vitro binding assays thereby 

circumventing the need for metabolically active and intact cells.  
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Table 1.1 Inside-out and extracellular modulators of LFA-1 adhesiveness 

Stimulus Comment Ref 

 

Monoclonal antibodies             

Anti CD2 Persistent activation of LFA-1 dependent adhesion 
113

 

Anti CD3 Transient activation of LFA-1 dependent adhesion 
79,113

 

Anti TCR Transient activation of LFA-1 dependent adhesion 
114,115

 
116

 

Anti CD4 

 

Antigen independent T-cell adhesion 

 

Dephoshorylation of CD4 by CD45 may negatively regulate LFA-1 
mediated signaling 

117,118
  

 
119

 

Anti CD7 Crosslinking of the T-cell-specific accessory molecules CD7 
modulates T-cell adhesion. 

120
 

Anti CD14 LPS binds to CD14 activates monocytes and their LFA-1 mediated 
adhesion 

121
 

Anti CD28 Crosslinking of the T-cell-specific accessory molecules CD28 
modulates T-cell adhesion. 

120
 

Anti CD44 Crosslinkage with anti CD44 mAb leads to Mg
2+

 and Ca
2+

 
independent activation pathway  

 

Anti CD45 Enhanced adhesiveness only in activated but not in resting T-cells 
122,123

 

 

Receptor ligand interactions 

fMLP As for IL-8 long lasting adhesiveness 
124

 

IL-2&IL-12,  Synergistic effect of IL-2&IL-12;  

IL-12 upregulates CCR5 (inside-out receptor) 

125,126
 

IL-8  

 

Sub nanomolar IL-8 stimulated rapid redistribution of active LFA-1, 
but not Mac-1 on neutrophils.  

Sub nanomolar IL-8 stimulated LFA-1 dependent neutrophil 
adhesion to ICAM-1  

 
127

 
128

 

Chemokines/ 

Chemokine 
receptors 

In principle all chemokines and the engagement of their receptors 
should utlimatively lead to integrin dependent adhesion and 
migration. Which integrin is activated is for many chemokines not 
depicted yet. Rantes/CCR5, SLC (CCL21), SDF-1 (activates Rap-1), 
MIP1α and MIP1β have been shown to mediate LFA-1 dependent 
effects. 

65
 

 
126,129,130

 
65,131

 

 

ICAM-2 and 
ICAM-3 

ICAM-2/-3 interact with LFA-1 and may regulate the LFA-1/ICAM-1 
cell adhesion  

50,132
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Table 1.1 continued 

 
Chemical agents 
Ionomycin  Ca

2+
 ionophor 

133
 

PMA PKC activator 
79

 
 

Extracellular LFA-1 activators (directly acting on the LFA-1 receptor) 

Cations   

Calcium 
(CaCl2) 

Extracellular Ca
2+

 modulates LFA-1 cell surface distribution on T-
lymphocytes and consequently affects cell adhesion. Role of Ca

2+
 

is controversial. 
Ca

2+
 competes with magnesium activation 

134
 

 
 
135

 
Magnesium 
(MgCl2) 

Usually used at 2 mM in adhesion assays 
136

 
135

 
116

  

Manganese 
(MnCl2) 

Usually used at 1-2 mM with or without additional 2 mM MgCl2 for 
adhesion assays 

135
  

   

 
LFA-1 antibodies that increase ligand binding  
Anti CD18 Clone KIM185 and KIM127 

137
 
138

 
69

 
Anti CD18 Clone MEM83 

139
 

Anti CD18 Clone CBR LFA-1/2 
140

 
Anti CD11a Clone NKI L16 Induces LFA-1 dependent cell aggregation.   

139
 
141

 
134

 

 

 

1.5 LFA-1 as a therapeutic target 

The characterization of the phenotype and the underlying cause of disease in LAD I 

(1.5.1) patients suggested LFA-1 as a potential target to interfere with inflammatory 

immunological pathways. Besides, the development of LFA-1 knockout mice (1.5.2) 

allowed studying the effect of absent LFA-1 on the immune system. Support for LFA-

1 as a therapeutic target for several indications was established in rodent models of 

disease using blocking anti LFA-1 antibodies (1.5.3). Today, LFA-1 is well 

established as therapeutic target for treatment of immunologic disorders. Anti LFA-1 

antibodies have been clinically tested and one (efalizumab) has been approved 

recently for clinical use (1.5.4). Several chemical classes of low molecular weight 

LFA-1 inhibitors are described in this section (1.5.5). 
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1.5.1 Leukocyte adhesion deficiency (LAD) syndrome  

One hallmark of this rare disease is the recurrence of life-threatening bacterial 

infections and impaired would healing. According to the molecular reason for 

impaired leukocyte adhesion three types of LAD diseases are distinguished to date: 

LAD I: Individuals afflicted with LAD I lack the expression of the β2 integrins LFA-1 , 

Mac-1 and p150/95 on the cell surface of leukocytes due to autosomal recessive 

inherited mutations within the β2 chain encoding gene INTG2 142,143. The severity of 

this disease has been linked to the degree of β2 integrins expressed on the leukocyte 

surface. Interestingly, in LAD I patients, T helper - or B-cell responses, and the 

susceptibility to viral infections appeared to be nearly normal 142. This was surprising 

as LFA-1 contributes to T-cell driven humoral and cellular defense mechanisms. 

Maybe redundant mechanisms can substitute missing β2 integrins and foster T-cell 

and B-cell dependent immune responses in these patients.  

LAD II patients have a defect in the gene encoding a putative GDP-fucose 

transporter 144. This leads to hypofucosylated lactosaminoglycans such as sialyl-

Lewisx which are ligands for the selectin adhesion receptor family 145. Impaired 

interaction of selectins with their ligands causes leukocyte adhesion defects which 

result in immunodeficiency syndromes similar as seen in LAD I patients. LAD II was 

reviewed by Wild et al 145.  

Patients with LAD III disease show normal surface expression of integrins and 

selectin ligands, but have a defect in chemokine receptor induced activation of β2 

integrins as described by Alon et al 146,147. These patients appeared to have a defect 

in the regulation of the small GTPase, Rap1 which is a key regulator of inside-out 

integrin activation 106. 

 

1.5.2 Phenotype of LFA-1 knockout mice 

Targeted deletion of the αL chain of LFA-1 in mice resulted in a phenotype of 

decreased lymphocyte recirculation, decreased leukocyte adhesion to the ligand 

intercellular adhesion molecule ICAM-1, and decreased delayed-type hypersensitivity 
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reactions. αL deficiency caused a selective defect in the induction of peripheral 

immune responses whereas responses to systemic viral infections were described as 

normal. In LFA-1 (-/-) mice it was found that α4β1 (VLA-4) and α4β7 have a hitherto 

unrecognized ability to compensate for the lack of LFA-1 in migration to peripheral 

lymph nodes 148.  

1.5.3 Synopsis of the effect of LFA-1 antibodies in rodent models of disease 

Monoclonal anti LFA-1 antibodies (aCD11a mAbs) have been successfully employed 

in animal studies and have provided an early proof of concept that LFA-1 plays 

pivotal roles in these experimental models. These animal models built also the basis 

for potential indications for therapeutic LFA-1 inhibition. The most striking effects of 

aCD11a mAbs were provided in rodent models of transplantation. Treatment with 

aCD11a mAb alone led to prolongation of cardiac allograft survival 149. In combination 

with an anti ICAM-1 mAb indefinite survival of the cardiac allograft was achieved after 

administration of the biologicals for 6 days 150,151. This tolerance induction was, 

however, dependent on the combinations of mouse strains used 150. In some animal 

models, particularly in transplantation models, aCD11a mAb therapy proved to be 

only efficacious if used as an induction therapy, while aCD11a mAbs were not able to 

block graft rejection in sensitized animals 152. This indicated that aCD11a mAb 

treatment can block initial lymphocyte activation processes which may add next to 

the anti-migratory effects, an immunomodulatory property to a drug targeting LFA-1. 

Further animal studies of integrin blockade with antibodies were reviewed in 153. It 

should be noted that anti CD18 and anti CD11b (Mac-1) were found most efficacious 

in models of ischemia reperfusion injury indicating that Mac-1 and LFA-1 may play 

synergistic roles in these diseases. However, long term blockade of Mac-1 did result 

in nearly all experiments in increased susceptibility of the animals to fungal and 

bacterial infections, a phenotype mirrored in LAD I patients. Table 1.2 gives an 

overview about the rodent models in which anti LFA-1 antibodies have been 

successfully employed. Many of these models support LFA-1 as therapeutic target in 

inflammatory and autoimmune disorders as well as in several infectious diseases.  
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Table 1.2 Synopsis of the effect of anti LFA-1 antibodies in rodent models  

Disease of animal 
model 

Antibody Effect Refs. 

Murine AIDS aCD11a, 
aCD54 

Inhibited disease development and 
lowered serum Ig levels 

154 

Cerebral malaria aCD11a  Prevented specifically cerebral malaria 
aCD11b, aCD54 or aCD49d had no effect 

155 

Cerebral malaria aCD11a 

(not CD54) 

Abrogated cerebral malaria 156 

Collagen induced arthritis aCD11a Suppressed arthritis 157 

Experimental murine lupus aCD11a Suppressed auto-reactive antibody 
formation   

158 

LPS induced lethal shock aCD11a Protected from liver injury 159 

EAE aCD11a, 
aCD54 

Contradictory effects: No effect 
Suppressed disease progression  

160,161 

Skin inflammation aCD11a Reduced dermal inflammatory reactions 
to LPS, zymosan IL-1 activated serum) 

162 

fMLP induced skin edema aCD11a  Reduced edema, blockade of infiltrating 
leukocytes to sites of inflammation 

163 

DTH aCD11a, 
aCD54 

Decreased ear swelling 164 
157 

Antigen specific 
unresponsiveness 

aCD11a, 
aCD54 

Induced tolerance 150 

Experimental autoimmune 
uveitis 

aCD11a, 
aCD54 

Reduced ocular inflammation 165 

Thioglycolate induced 
peritonitis 

aCD11a Reduced neutrophil immigration 2 

Graft versus host disease aCD11a Reduced severity and enhanced survival 
in allogenic mice 

166 

Acute graft rejection cardiac 
allograft 

aCD11a Prolonged allograft survival 150  

Acute graft rejection cardiac 
allograft 

aCD11a 

 

Indefinite graft survival 152  

Acute graft rejection cardiac 
allograft 

aCD11a 

aCD54 

Indefinite graft survival 151 
150 

Acute graft rejection: thyroid 
gland 

aCD11a Complete inhibition of rejection 167 

Murine islet transplantation aCD11a Increased survival 

 

168,169 
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1.5.4 Anti LFA-1 antibodies in clinical studies   

While the development of humanized mAbs against LFA-1 ligands ICAM-1 

(Enlimomab, Boehringer Ingelheim Inc.) 170,171 and ICAM-3 (ICOS Inc.) has been 

discontinued 172, two blocking anti LFA-1 mAbs (Odulimomab, Efalizumab) have 

shown benefits in clinical trials.  

In 1989 the first anti human CD11a antibody named odulimomab (IMTIX-Sangstat, 

murine IgG1, clone 25.3) was in clinical trials for HLA mismatched bone marrow 

transplantation 173 in children and kidney transplantation as reviewed by M. Behrend 

174. Odulimomab was beneficial for the treatment of steroid resistant graft versus host 

disease 175,176 and on the rate of engraftment in children receiving a HLA non 

identical bone marrow graft 177 while it was therapeutically not successful in adults 

178. When used in combination with an anti CD2 antibody odulimomab prevented in a 

phase II clinical trial the rejection of partially incompatible bone marrow transplants in 

leukemic children 179. Odulimomab showed a trend towards efficacy in renal 

transplantation when given as induction therapy 180 but was not effective in the 

treatment of acute kidney graft rejection 181. The development of odulimomab was 

discontinued 182 after a clinical trial in phase III failed to show efficacy in kidney 

transplantation. Anti LFA-1 therapy with odulimomab was tolerated well in these 

studies. 

Efalizumab (Raptiva®) was developed by Genentech Inc. and Xoma Ltd. and is the 

first humanized anti CD11a mAb (IgG1) that was tested in clinical studies. Efalizumab 

was tested is psoriasis, an inflammatory autoimmune diseases of the skin which is 

characterized by strong infiltration of leukocytes and a strong proliferation of 

keratinocytes. Psoriasis is recognized as a T-cell dependent disease which can be 

demonstrated by the therapeutic use of calcineurin inhibitors CsA and FK506, classic 

immunosupressants which strongly interfere with T-cell activation processes. 

Efalizumab treatment led to an internalization of LFA-1 on circulating leukocytes 

within a day of treatment 101. A second pharmacodynamic effect of efalizumab was 

the increase in lymphocyte counts in the peripheral blood by a factor of 2. Recently, 

Gordon et al reported the outcome of a phase III trial on psoriatic patients 
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demonstrating efficacy of efalizumab in patients with moderate to severe disease.  

27% (47%) of patients treated with efalizumab showed an improved PASI (DLQI) 

score vs. 4% (14%) placebo. Efalizumab was generally well tolerated 183.  Clinical 

data suggested that concentrations of efalizumab which correspond to saturated 

receptor occupancy by the antibody were essential for efficacy 184,185. In October 

2003 efalizumab has been granted FDA approval for the treatment of chronic, 

moderate-to-severe plaque psoriasis in systemic therapy. 

 

Efalizumab was tested in renal transplantation for 24 weeks as adjunctive to the 

standard therapy (CsA plus MMF and steroids) in a phase I/II trial. There was only a 

trend towards a lower incidence of acute rejection; however, more extensive studies 

are necessary to show the significance of a benefit in renal transplantation 186. 

 

1.5.5 Low molecular weight LFA-1 inhibitors 

Administration of therapeutic anti LFA-1 mAbs requires delivery via injection or 

infusion. To circumvent this, strong efforts are ongoing to discover and develop orally 

available low molecular weight (LMW) inhibitors that can interfere with LFA-1 

function. The blockade of the LFA-1/ICAM interaction was initially regarded as 

challenging as a LMW competitive inhibitors (Mol. Weight <1000) would have to 

interfere with the large protein-protein interactions (300-400 kDa). A good argument 

to foster the efforts to discover LFA-1 antagonists came from the discovery that 

ligand mimetics (RGD-mimetics) could effectively block the function of β1 and β3 

integrins. αIIbβ3 (GPIIb-IIIa) blocking ligand mimetics (lamifiban, eptifibatide or 

tirofiban) have been shown efficacious in clinical studies 187 and have become 

important drugs in cardiology since a few years as i.v. anti-thrombotic agents 188. 

Extensive clinical trials are ongoing with lefradafiban, sibrafiban and orbofiban as 

orally available αIIbβ3 blockers 188,189.  To date no LFA-1 specific LMW inhibitor has 

entered clinical studies. This section is intended to introduce currently followed 

structural classes of LMW LFA-1 inhibitors. 
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Compounds designed based on the ICAM-1 binding motif (ICAM-1 mimetics) 

Many efforts that were undertaken to design competitive LFA-1 inhibitors based on 

the 6 amino acid residues of the ICAM-1 domain 1 that are mandatory for binding to 

LFA-1 4,48. Many groups have reported ICAM-1 derived peptides; however, no ICAM-

1 domain 1 mimetic was further developed possibly due to low potency and limited 

bioavailability.  

In 2002, a group of Genentech reported the successful translation of the LFA-1 

binding site of ICAM-1 into a low molecular mimetic structure. Compounds were 

designed based on the 2 amino acid residues Glu34 and Tyr66 which are essential 

for the interaction with LFA-1 4,48. Based on an ortho-bromobenzoyl tryptophan 

backbone several compounds were synthesized that blocked ICAM-1 binding to 

purified LFA-1 with low nM potencies 4. The most potent derivative described (e.g. 

compound #4, Table 1.3) inhibited the human mixed lymphocyte reaction (MLR) ca. 

20 times more potently than cyclosporin A and 7 times more potently than anti 

CD11a Fab fragments 4. In murine contact hypersensitivity models compound 4 

showed activity after continuous infusion. The authors proposed that these 

compounds act as ICAM-1 proteomimetics, provided, however, no experimental 

evidence that these compounds have a competitive mode of action 4.  In addition, no 

information on the integrin specificity of this compound class was given in the patent 

or in the publication. Derivatives of this compound class (e.g. compound #5) were 

patented by Roche 190. 
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Table 1.3 Examples for LFA-1/ICAM-1 inhibitors based on the ICAM-1 domain 1

Structure 

 

 
 

 
Names Compound #1 

ortho-
bromobenzoyl 

tryptophan 

Compound #4 Compound #5 
(XVA143) 

 

Potency LFA-1/ICAM-1 
ELISA: 1.4 µM 

MLR: n.d. 

LFA-1/ICAM-1 
ELISA: 1.4 nM 

MLR: 3nM 

LFA-1/ICAM-1 
ELISA: n.d. 
MLR: n.d. 

Company 
 

References 

Genentech 
 
4 

Genentech 
 
4 

Roche 
 

190 

 

Lovastatin derivatives  

The first LMW antagonist for LFA-1 was described by our research group in 1999. 

The group discovered by high throughput screening that the HMG CoA reductase 

inhibitor lovastatin interfered with LFA-1/ICAM-1 dependent cellular adhesion. X-ray 

analysis and crystallography of the lovastatin αL I domain revealed that lovastatin 

binds to a hitherto unknown binding site within the αL I domain. This region has not 

been implicated as part of the binding site for any of the ICAMs (ICAM-1 191, ICAM-2 

192, ICAM-3 193) as well as mAbs that inhibit LFA-1 mediated adhesion map not to this 

site 
191,194,195. The site was thereafter termed “lovastatin binding site” (L-site) 2,196 . 

The αL L-site is identical with the “I domain allosteric site” (IDAS) described later by 

others 91. Occupation of the αL L-site by lovastatin modulates the αL I domain 

conformation thereby allosterically modulating the adhesive function of LFA-1 1. 

Mutational analyses further substantiated that the αL L-site is a regulatory site for the 
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αL I domain as some point mutations completely abrogated binding to ICAM-1 while 

one mutation constitutively activated LFA-1 2. LMW inhibitors (lovastatin derivatives, 

hydantoins and cinnamides) were described to block the downward axial 

displacement of the C-terminal helix of the αL I domain and inhibited ICAM binding by 

stabilizing the αL I domain in a low-affinity (closed) conformation 1,89,196. These 

inhibitors have thus the equal mode of action and can be regarded as αL L-site 

inhibitors.  

Lovastatin and the ten times more potent derivative LFA703 were able to block 

adhesion to ICAM-1 and interfered with ICAM-1 dependent T-cell costimulation in 

vitro. The structurally similar HMG CoA reductase inhibitor Pravastatin did not 

interfere with LFA-1 function 2. Lovastatin derivatives were shown to be highly active 

after oral administration in thioglycolate induced murine peritonitis models (ED50 0.4 

µg/kg) 2,89. In a different study, LFA703 has recently been described as being 

protective in ischemia/reperfusion-induced leukocyte adhesion in the murine colon 

197.  Lovastatin-derived LFA-1 inhibitors were found to act independently from HMG 

CoA reductase inhibition and were selective over the related integrins Mac-1 and 

VLA-4 2. Several other lovastatin derived inhibitors were synthesized within Novartis. 

LFA451 and LFA878 will be described in chapter 1 and 2 of this thesis.  
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Table 1.4 Examples for lovastatin derived allosteric LFA-1 inhibitors/ Control 

Structure 
 

O

O
O

OH O

H

3

 16

 

 

O

O
O

OH O

H

OH  

 

O

O
N

OOH O

OH

H

 
 

Names Lovastatin 

Mevacor
™

 

Pravastatin 
Pravachol™ 

LFA703 

Potency ELISA: 
2 µM 

Cell adhesion 
assay 25 µM 

 
> 100 µM 

 
> 100 µM 

 
0.2 µM 

 
0.7 µM 

Company 

References 

Merck 

2,6 

Bristol-Myers Squibb 

2,6 

Novartis 

2,6,198 

 

Hydantoin derivatives 

Hydantoin derivatives were first described as LFA-1 antagonists in 1999, briefly after 

the publication of Lovastatin as LFA-1 inhibitor. A group of Boehringer Ingelheim Inc. 

published BIRT 377, a compound which evolved from a lead structure discovered in 

an ELISA based high throughput screening assay using purified LFA-1. These 

compounds have a >35 fold increased in vitro potency compared to the lead 

structure. The binding site of BIRT 377 and its analogs maps to the αL L-site 199. 

Selectivity of hydantoin derivatives for LFA-1 over Mac-1 was also reported by Kelly 

et al 3.  BIRT 377 showed in vivo efficacy after oral dosing.  10 or 3 mg/kg p.o. once 

daily for two weeks potently inhibited the production of human IgG in SCID mice 

engrafted with human peripheral blood mononuclear cells. The efficacy of BIRT 377 

was comparable to that achieved with an anti LFA-1 antibody. BIRT 377 also 

inhibited SEB induced IL-2 induction in mouse after 25 and 50mg/kg-p.o. 3.  
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Table 1.5   Examples for hydantoin derived allosteric LFA-1 inhibitors 

Structure 

 
 

Names Lead structure BIRT 377 

(R)-5-(4-bromobenzyl)-3-(3,5-
dichlorophenyl)-1,5-

dimethylimidazolidine-2,4-dione 

Potency ELISA  3.5 µM 
26 nM ELISA 

2.6 µM cell adhesion assay 

Company 

References 

Boehringer Ingelheim 

3,200 

Boehringer Ingelheim 

3,200 

 

Cinnamide derivatives 

In 2000, Abbott Laboratories have reported a novel class of LFA-1 inhibitors. A 

cinnamide lead structure was identified by a time resolved fluorescence LFA-1/ICAM-

1 binding assay. Intensive chemical modification led to molecule A-286982 which has 

a 38 fold increased potency compared to the lead compound. Cinnamide derivatives 

bind to the αL L-site (IDAS) as demonstrated by Liu et al 201. No in vivo efficacy 

studies are described so far. However, pharmacokinetic data demonstrated that A-

286982 was orally available 202.  

Table 1.6 Examples for cinnamide derived allosteric LFA-1 inhibitors 

Structure 
 

 
 

 

 
Names Lead structure 

p-Arylthio Cinnamides 
 

A-286982 

Potency ELISA LFA-1/ICAM-1 
1.7  µM 

ELISA LFA-1/ICAM-1 
44 nM 

Company 

References 

Abbott Laboratories 

201,202 

Abbott Laboratories 

201,202 
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2.1 Introduction 

 

Central to ligand binding by LFA-1 is an inserted domain of 200 amino acids at the N-

terminus of the αL subunit, the so called αL I domain 1. This LFA-1 I domain is highly 

homologous to I domains displayed on other integrin α subunits. Three-dimensional 

structures of I domains reveal that they adopt a dinucleotide-binding fold and contain 

a cation binding site designated metal ion-dependent adhesion site (MIDAS). There 

is strong evidence that the metal ion of the MIDAS is coordinated by an acidic 

residue from ICAM and thus directly participates in ligand binding 2. The LFA-1 I 

domain is inserted between the β sheets 2 and 3 of a seven bladed putative β-

propeller region on the αL subunit 3.  

 

There is strong evidence that integrin β subunits contain regions structurally 

homologous to the I domains, the so-called β I-like domains 2,4. The existence of 

such I-like domains was recently confirmed by the crystal structure of the 

extracellular segment of the integrin αVβ3 5. The β2 I-like domain of the LFA-1 β2 

subunit is predicted to contact the putative β propeller of the αL subunit near β sheets 

2 and 3 6. A recent study suggests that the β2 I-like domain has a regulatory role 

rather than a direct role in ligand binding 7. 

 

As described for other integrins, the ligand binding activity of LFA-1 is tightly 

regulated 1,8. LFA-1 is expressed on leukocytes in an inactive state and can be 

rapidly activated by cations or by intracellular signals 1,9. Receptor clustering and 

conformational changes are proposed to be the major mechanisms by which LFA-1 

is converted from a low to a high affinity form 1. Several studies provide strong 

evidence that in particular the C-terminal helix of the αL I domain plays an important 

role in the activation process. It has been recently demonstrated that LFA-1 can be 

locked in an open, ligand binding and a closed non-binding conformation by 

mutational introduction of disulfide bonds between the C-terminal helix and a central 
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β sheet of the αL I domain 1,10. The position of the disulfide bonds were modeled 

according to the crystal structures of Mac-1 (αMβ2, CD11b/CD18) and VLA-2 (α2β1, 

CD49b/CD29) I domains. These I domains have been crystallized in two 

conformations which differed by a major shift in the positioning of the C-terminal helix 

1,11,12. Moreover, transfectants expressing mutant LFA-1 with alanine or tryptophan 

substitutions in the C-terminal helix region of the αL I domain show impaired or 

constitutively active binding to ICAM-1 12-14. The importance of this region in 

controlling LFA-1 activity is further underlined by the fact that low molecular weight 

(LMW) LFA-1 inhibitors bind to a hydrophobic pocket between the C-terminal helix 

and the central β-sheet of the LFA-1 I domain, termed lovastatin binding site (L-site) 

13-15. This pocket has been also termed I domain allosteric site (IDAS) by others 13. 

The first compound described to interact with the L-site was the HMG-CoA reductase 

inhibitor lovastatin 15. Only recently it became evident that compounds of diverse 

chemical classes including hydantoin and cinnamide derivatives utilize the same 

pocket for inhibition of LFA-1 16,17. Since the L-site is distant from the MIDAS, it is 

thought that these compounds inhibit LFA-1 via an allosteric mechanism 15-18. 

However, molecular details of this inhibition in context of the whole receptor are 

unknown. Similarly, the molecular details of the natural activation process are not 

well understood. Addressing both molecular mechanisms, LFA-1 activation and 

inhibition, is the objective of this study. 

 

Here we investigate the effect of LMW LFA-1 inhibitors on the LFA-1 αL I domain, the 

putative β-propeller region and the β2 I-like domain using monoclonal antibodies 

(mAbs) mapped to these different regions of the receptor. We show that the inhibitors 

induce epitope changes in the I-domain, the β2 I-like domain or both domains 

depending on their chemical structure and binding site. For the first time we establish 

the β2 I-like domain on the β2 subunit as a molecular target for LFA-1 inhibition. 

Moreover, utilizing the native LFA-1 receptor, as compared to mutated LFA-1 studied 

previously 7, we provide strong evidence for a functional relationship between the αL 

I domain and the β2 I-like domain which is induced upon activation. 
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2.2 Methods 

2.2.1 Reagents and antibodies  

LFA-1 was purified from JY cells as described earlier 14. Mac-1 was purified from 

peripheral blood leukocytes as described by Diamond et al. 19. ICAM-1 mouse Cκ 

fusion protein (ICAM-1-mCκ) was produced and biotinylated as described 15. ICAM-

1-human Fc, ICAM-2 human-Fc and ICAM-3 human-Fc fragment fusion proteins 

were purchased from R&D Systems, Oxon, UK. 3'-O-Acetyl-2',7'-bis (carboxyethyl)-4 

or 5-carboxyfluorescein diacetoxy-methyl ester (BCECF-AM) was purchased from 

Molecular Probes, Leiden, Netherlands. Streptavidin-peroxidase conjugate (SPOD) 

was purchased from Boehringer Mannheim GmbH, Germany. 2,2-azino-bis[3-

ethylbenzthiazoline-6-sulfonic acid] was obtained from Bio-Rad, Hercules, California. 

All cell culture reagents were purchased from Life Technologies AG, Switzerland. 

Hybridoma cells producing mAbs TS2/4.1.1 (anti-CD11a) and TS1/22.1.3 (anti-

CD11a) and mAbs 44aacb (anti-CD11b) and LM2/1 (anti-CD11b) were obtained from 

the American Type Culture Collection (ATCC). Antibodies were purified from culture 

supernatants using protein A sepharose (Amersham Pharmacia Biotech, 

Switzerland) separation. Amino-directed biotinylation of these antibodies was 

performed using NHS-biotin following manufacturers instructions. The biotinylated 

and the non-biotinylated anti-human LFA-1 mAb R7.1 (anti-CD11a) and R3.3 (anti-

CD18) were purchased from BioSource International, Camarillo, CA. The biotinylated 

and the non-biotinylated mAb TS1/18 (anti-CD18) was from Endogen, Woburn, MA; 

the mAb IB4 (anti-CD18) was from Ancell Corp. Bayport, MN; YFC118.3 (anti-CD18) 

was from Serotech, UK. CLB-LFA-1/1 (anti-CD18) was from Caltag Laboratories, 

Burlingame, CA. Antibody 25.3.1 (anti-CD11a) was from Immunotech, Marseille, 

France. The biotinylated and the non-biotinylated mAb clone 38 (anti-CD11a), the 

mAb MEM48 (anti-CD18), isotype controls for mouse IgG1, IgG2a, IgG2b and rat 

IgG1 as well as goat anti-mouse IgG Cκ were from Southern Biotechnology 

Associates, Birmingham, AL. Alexa Fluor® 488 goat anti-mouse IgG (H+L) conjugate 

and Alexa Fluor®488 goat anti-rat IgG (H+L) conjugate were purchased from 

Molecular Probes, Leiden, Netherlands. Goat anti-human IgG-Fc fragment was 
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purchased from KPL, Gaithersburg, Maryland. All other assay reagents were bought 

from Sigma-Aldrich Chemie GmbH, Steinheim, Germany. 

2.2.2 Cell culture 

Jurkat E6-1 and HUT78 cell were obtained from ATCC and grown in RPMI 1640 

medium supplemented with 10 % fetal calf serum, 1% Glutamax I and 1% non 

essential amino acids.  

2.2.3 LFA-1/ICAM-1 ELISA-type binding assay 

LFA-1 inhibitors were tested in a LFA-1/ICAM-1 ELISA-type binding assay which was 

performed as previously described 14. Briefly, 96 well microtiter plates (Nunc 

Maxisorb) were coated with 2-10 µg/ml of purified human LFA-1 and blocked with 1% 

bovine serum albumin (BSA) in phosphate-buffered saline (PBS) for 1 hour (h). After 

washing the plates compounds dissolved in dimethyl sulfoxid (DMSO) and diluted in 

2 mM MgCl2 and 0.5% FCS, pH 7.4 (assay buffer) were added to the plates. After 15 

minutes of incubation, ICAM-1-mCκ in assay buffer (4 µg/ml) was added and 

incubated at 37°C for 1 h. After several washing steps SPOD was added 1:5000 

diluted in assay buffer and incubated at 37°C for 35 min. After removal of unbound 

SPOD by washing, ICAM-1-mCκ  was quantified using 2,2-azino-bis[3-

ethylbenzthiazoline-6-sulfonic acid] as substrate. 

2.2.4 Biotinylated antibody binding to purified LFA-1 

The binding of biotinylated anti-CD11a and anti-CD18 mAbs to purified LFA-1 was 

investigated in the presence of the LFA-1 inhibitors. The compounds were dissolved 

in DMSO and serially diluted with PBS containing 2 mM MgCl2 and 0.5% FCS, pH 

7.4 (assay buffer). The inhibitors were added to LFA-1 coated and blocked microtiter 

plates (see above). After 15 min incubation at room temperature (RT), biotinylated 

anti-LFA-1 mAbs in assay buffer (0.1 µg/ml) were added and incubated at RT on a 

shaker for 30 min. After washing the plates, SPOD was added, 1:5000 diluted in 

assay buffer and incubated at RT for 35min. After a washing step, bound anti-LFA-1 

mAbs were quantified using 3,3,5,5-tetramethyl-benzidine (TMB) as substrate. For 

experiments in the absence of cations the immobilized LFA-1 was washed three 
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times with 1 mM EDTA in PBS and the assay buffer was switched to PBS, 0.5% 

BSA, pH7.4 containing either 0.1 mM or 1 mM EDTA. 

2.2.5 Mac-1/ICAM-1 ELISA-type binding assay 

Purified Mac-1 was immobilized at 2-10 µg/well onto 96-well microtiter plates (Nunc 

Maxisorb) and blocked with 5% non-fat dry milk in PBS. The inhibitors were dissolved 

in DMSO and serially diluted in Tris-buffered saline (TBS) containing 150 mM NaCl, 2 

mM MgCl2, 1 mM CaCl2, 2 mM MnCl2 and 0.2% non-fat dry milk, pH 7.4 (assay 

buffer). The compounds were added to the Mac-1 coated plates. After 15 min 

incubation biotinylated ICAM-1-mCκ in assay buffer (2 µg/ml) was added and 

incubated at 37°C for 1 h. After four washing steps with assay buffer, SPOD diluted 

1:5000 in assay buffer was added and incubated at 37 0C for 35 min. After washing, 

bound ICAM-1-mCκ was quantified using TMB as substrate.  

2.2.6 Biotinylated antibody binding to purified Mac-1 

The binding of the anti-CD18 mAb IB4 to purified Mac-1 was tested in the presence 

of LFA-1 inhibitors dissolved in DMSO and diluted in Tris-buffered saline containing 

150 mM NaCl, 2 mM MgCl2, 1 mM CaCl2, 2 mM MnCl2 and 0.2% non-fat dry milk, pH 

7.4 (assay buffer). The compounds were added to the microtiter plates coated with 

Mac-1 and incubated at RT for 15 min. Then biotinylated mAb IB4 was added 

(0.1 µg/ml) in assay buffer. After 30 min incubation, bound antibodies were detected 

by the streptavidin-peroxidase reaction as described above. 

2.2.7 Cell-based adhesion assays 

LFA-1 dependent adhesion of HUT78 cells to immobilized ICAM-1-Fc, ICAM-2-Fc 

and ICAM-3-Fc fusion proteins was carried out as described earlier for the 

HUT78/ICAM-1 mCκ assay 15. Briefly, 96 well microtiter plates were coated with goat 

anti-human IgG-Fc fragment in PBS, pH 7.8 (5 µg/ml) followed by a blocking step 

with 1.5% BSA in TBS. After washing with TBS, ICAM-1-Fc, ICAM-2-Fc or ICAM-3-

Fc were added at 0.1-0.3 µg/ml, 0.3 µg/ml or 1 µg/ml respectively in TBS containing 

150 mM NaCl, 1.5% BSA, 5 mM glucose, 2 mM MgCl2 and 2 mM MnCl2 (assay 

buffer). BCECF-AM labeled HUT78 cells (1.25 ×105 cells/well) in assay buffer were 
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transferred to the plates and incubated together with the inhibitors at 37°C for 30 min. 

The plates were then gently washed with assay buffer and bound cells were 

quantified by measuring fluorescence using a VICTOR2 microplate reader (Wallac, 

Finland). 

2.2.8 Flow cytometry 

The effect of the LFA-1 inhibitors on the conformation of cell expressed LFA-1 was 

tested by monitoring the binding of anti LFA-1 mAbs to Jurkat E6-1 cells using flow 

cytometry. Jurkat E6-1 cells were harvested and washed two times with TBS 

containing 150 mM NaCl, 2 mM MgCl2, 2 mM MnCl2, 0.5% BSA, pH 7.4 (assay 

buffer). For experiments in the absence of cations, cells were washed three times 

with TBS containing 150 mM NaCl, 1 mM EDTA and the assay buffer was replaced 

by TBS containing 150 mM NaCl, 0.5% BSA, 0.1 mM EDTA, pH 7.4.  

3 x 10 5 cells were pre-incubated with the LFA-1 inhibitors at a final concentration of 

50 µM in assay buffer at RT for 20 min followed by the addition anti-CD11a and anti-

CD18 mAbs (1-2 µg/ml). After 25 min incubation, cells were washed two times with 

assay buffer and counter stained with Alexa Fluor® 488 goat anti-mouse IgG (H+L) 

conjugate or Alexa Fluor® 488 goat anti-rat IgG (H+L) conjugate diluted 1:175 in 

assay buffer for 30 min. After a washing step, antibody binding was immediately 

analyzed by flow cytometry on a FACScan (Becton-Dickinson, San Jose, CA).  

Control experiments at low temperatures were performed as described above except 

that the antibody binding steps were carried out on ice.  

Mean fluorescence intensities (MFI, geometric mean) were calculated using the 

CellQuest software. MFIs were corrected for background staining by subtracting the 

MFI of the appropriate isotype-matched negative control. MFIs of the solvent controls 

were set as 100 %. Inhibition of anti-LFA-1 mAb binding induced by inhibitor 

treatment was expressed as percentage of these controls.  
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2.2.9 NMR binding assay (conducted by Dr. U. Hommel)  

The NMR binding assay was performed as previously described 15. Briefly, {1H, 15N}-

HSQC spectra were recorded on a 600 MHz Bruker Avance spectrometer (Bruker 

AG, Karlsruhe) at 23 ºC. Uniformly 15N-labelled αL I domain was titrated with 

increasing amounts of ligand dissolved in DMSO. The protein concentration was 100 

µM and the maximal ligand concentration varied between 200 µM and 600 µM 

depending on the ligand. The change in the 15N-resonance frequency for the cross-

peak corresponding to the amide group of Thr291 was followed for a qualitative 

assessment of the binding affinity. For the assessment of compound binding to the 

αM I domain, 1D-1H spectra of the isolated Mac-1 I-domain were recorded. The αM I 

domain (residues 131-321) was first cloned into a pET9a vector using standard 

molecular biology procedures 20. The protein was expressed as His-tagged fusion 

protein and purified using NTA and size exclusion chromatography. The N-terminal 

His-tag was thereafter cleaved from the purified protein using thrombin. 
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2.3 Results 

 

2.3.1 Compounds of two different chemical classes inhibit LFA-1 function 

Table 2.1 summarizes the properties of LMW LFA-1 inhibitors of two different 

chemical classes. Lovastatin and the optimized lovastatin-derived LFA-1 inhibitors 

LFA703 and LFA451 blocked ICAM-1 binding to purified immobilized LFA-1 with 

IC50s of 2.1, 0.2 and 0.04 µM, respectively (Table 2.1). The inhibitors not only 

interfered with the LFA-1/ICAM-1 but also with the LFA-1/ICAM-2 and LFA-1/ICAM-3 

interaction as shown in T-cell adhesion assays (Table 2.1). ICAM-3 mediated 

adhesion was more potently inhibited by the compounds than ICAM-1 and ICAM-2 

mediated adhesion (Table 2.1). This result is in agreement with previous studies 

showing that LFA-1 binds to ICAM-1 and ICAM-2 with stronger affinity than to ICAM-

3 21. The IC50 values determined for the LFA-1 inhibitors in the HUT78/ICAM-1 

adhesion assay were found to be similar to IC50 values determined in an ICAM-1 

adhesion assay utilizing the human lymphoma cell line Jurkat (data not shown). 

Jurkat/ICAM-1 or Jurkat/ICAM-3 adhesion assays were not performed. As shown by 

nuclear magnetic resonance (NMR) spectroscopy the inhibitors were able to interact 

with the L-site of the αL I domain (Table 2.1). A close analogue of the lovastatin-

derived inhibitors, pravastatin, does not inhibit LFA-1 function and has only marginal 

affinity for the αL I domain (Table 2.1). This compound was included in the study as a 

negative control (Table 2.1).  

 

A unique property of the lovastatin-derived LFA-1 inhibitors is their specificity for  

LFA-1. The function of other integrins including the β2 integrin Mac-1 (αMβ2, 

CD11b/CD18) was not affected by the compounds (Table 2.1). In contrast, a  LFA-1 

inhibitor recently described by others was less specific 22. This inhibitor, which we 

termed XVA143, is a suggested peptidomimetic with an unknown LFA-1 binding site 

22. XVA143 inhibited LFA-1 and Mac-1 with IC50s < 20 nM (Table 2.1). Based on the 

presence of a carboxylic acid function in the structure of XVA143 (Table 2.1) it could 
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be speculated that the inhibitor binds to the MIDAS pocket of the I domains of LFA-1 

and Mac-1. Thus, the binding of XVA143 to both, the LFA-1 and Mac-1 I domain was 

qualitatively assessed using NMR. In general, I domain binding of lovastatin and 

some close derivatives are associated with large chemical shift changes in protein 

spectra of the αL I domain 15. These changes are observed for many residues of the 

central β-sheet as well as helices α7 and α1 indicating ligand induced structural 

rearrangements in solution 15. The same was observed for the lovastatin-derived 

inhibitors LFA703 (Fig. 2.1A) and LFA451 (not shown) at equimolar concentrations of 

protein and ligand. In contrast, XVA143 influenced the protein spectra to a lesser 

extent even at high concentrations (Fig. 2.1B). We note, that none of the residues 

associated with the LFA-1 MIDAS motif was affected by XVA143 ruling out the 

possibility that inhibition of LFA-1 is mediated by competitive binding of the 

compound to the MIDAS region implicated in ICAM-1 binding (Fig 2.1B). Likewise, 

protein spectra of the αM I domain acquired in the presence and absence of XVA143 

did not show changes in the chemical shift of resonances affected by magnesium, 

i.e. residues located in the vicinity of the MIDAS pocket (data not shown). These 

results indicate that LFA-1 and Mac-1 inhibition by XVA143 is not mediated by the 

engagement of the α chain MIDAS pocket. The data further suggest that the 

molecular target for XVA143-driven inhibition of LFA-1 and Mac-1 is different from 

the L-site utilized by the lovastatin-derived LFA-1 inhibitors. 
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Table 2.1 Characterization of LFA-1 inhibitors and a dual LFA-1/Mac-1 inhibitor in different assays 

 

Lovastatin Pravastatin LFA703 LFA451 XVA143 (Genentech/Roche) Assay 

O

O
O

OH O

H

3

 16

 

O

O
O

OH O

H

OH

 

O

O
N

OOH O

OH

H

 

O

O
O

N ONH

O

O

OH OH

H

 

N
H

O

Cl

Cl

N
H

OOH NH

OH

O

O
OH

OH

 

LFA-1/ICAM-1: IC50 [µM] 2.1 ± 0.8 (n=8) > 100 (n=5) 0.2 ± 0.1 (n=5) 0.04 ± 0.010 (n=6) 0.020 ± 0.008 (n=5) 

HUT78/ICAM-1: IC50 [µM] 25.4 ±13.3 (n=5) > 100 (n=3) 0.7 ± 0.5 (n=7) 0.40  ± 0.07 (n=7) 0.005 ± 0.004 (n=4) 

HUT78/ICAM-2 IC50 [µM] 36.2 ± 22.7 
(n=4) 

> 100 (n=2) 1.2; 1.7 0.6 ± 0.251 (n=3) 0.007, 0.007 

HUT78/ICAM-3 IC50 [µM] 16, 3.5 > 100 (n=2) 0.4, 0.1 < 0.1, 0.06 0.002, 0.001 

I-domain binding + - + + - 

Mac-1/ICAM-1: IC50 [µM] 

 

> 100 (n=3) > 100 (n=3) > 100 (n=3) > 100 (n=3) 0.002 ± 0.001 (n=3) 

Values represent independent experiments or the mean ± SD;  in parentheses, number of independent experiments performed;  #uniformly 
15N-labelled I-domain was titrated with increasing amounts of compound dissolved in DMSO. The change in the 15N-resonance frequency 
for the peak corresponding to Thr291 was followed and analyzed. + and - correspond to a change > 50 Hz and < 5 Hz at a concentration 

for the I-domain and compound of 100 µM, respectively. 
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Figure 2.1 Effect of the LFA-1 inhibitors LFA703 and XVA143 on the LFA-1 αL I domain. 

[1H,15N] HSQC spectra are shown for the αL I domain in the absence (black) and presence 
(red) of A) LFA703 and B) XVA143. The protein concentration was 0.1 mM and ligand 
concentrations were 0.2 and 0.6 mM for LFA703 and XVA143, respectively. In A) cross-
peaks experiencing strong chemical shift changes upon ligand binding are labeled by their 
sequence numbering. In B) cross peaks corresponding to residues of the conserved MIDAS 
motif are indicated by boxes and labeled. (Data of Dr. U. Hommel) 

 

2.3.2 Selection of mAbs specific for different LFA-1 domains 

To investigate the effect of the inhibitors described above on the different domains of 

LFA-1 the binding of mAbs to LFA-1 expressed on Jurkat cells and to purified LFA-1 

was determined in the presence and absence of compounds. The selected mAbs are 

reported to map to different regions of the αL chain and the β2 chain of LFA-1. MAbs 

TS1/22, 25.3.1, R7.1 and clone 38 bind to the αL I domain 3,23,24. The epitopes of 

mAb R7.1 and mAb clone 38 on the αL I domain are unknown whereas mAbs 

TS1/22 and 25.3.1 map to a region in the close vicinity of the L-site 3 (Fig. 2.2). MAb 

TS2/4 maps outside the αL I domain recognizing the putative β-propeller of the αL 

chain 3. MAbs TS1/18, YFC118.3, IB4 and R3.3 are reactive with the putative β2 I-

like domain 4,25 According to the recognized epitopes consisting of at least two non-

contiguous sequences the anti- β2 I-like domain mAbs can be divided into two 

groups: the first group includes mAbs TS1/18 (Leu154-Glu159 and Glu344-Asp348) 

and YFC118.3 (Leu154-Glu159, Glu344-Asp348, and His354-Asn358) and the 
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second group includes mAbs IB4 and R3.3 (Arg144-Lys 148 and Pro192-Glu197) 4. 

All mAbs which map to the αL I domain or the putative β2 I-like domain of LFA-1 are 

reported to block LFA-1 binding to ICAM-1 24,4,23,25,26. In contrast, mAb TS2/4.1.1 

(TS2/4) only marginally inhibits LFA-1 function 26.  

 
 

Figure 2.2 The function-blocking anti-LFA-1 mAbs TS1/22 and 25.3.1 bind adjacent to the 
allosteric L-site of the LFA-1 I-domain. The X-ray structure of the lovastatin-I domain complex 
is shown. The region recognized by the function-blocking anti-LFA-1 mAbs TS1/22 and 
25.3.1 (residues 250 – 303) is shown in red.  

 

2.3.3 The lovastatin-derived LFA-1 inhibitors induce epitope changes in the ααααL 

I domain and β2 I-like domain of LFA-1 on Jurkat cells 

We first utilized Mn2+/Mg2+ activated LFA-1 expressed on the surface of Jurkat cells 

to investigate the effect of the lovastatin-derived inhibitors on the binding of the mAbs 

to the β2 integrin. Lovastatin and the inhibitors LFA703 and LFA451 prevented the 

binding of the anti-αL I domain mAbs to different extents (Table 2.2). It can be 

assumed that this compound effect is due to the alteration of epitopes induced by 

compound binding to the αL L-site rather than the direct interaction of the compounds 

with the various antibody epitopes. We found that the epitope recognized by mAb 

R7.1 was most prominently altered by the compounds as demonstrated by 80% to 
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100% inhibition of antibody binding (Table 2.2, Fig. 2.3A). The epitopes recognized 

by mAbs TS1/22 and 25.3.1 were only partially or not affected by the compounds 

(Table 2.2). Interestingly, αL L-site engagement by lovastatin also influenced the 

presentation of epitopes displayed on the β2 I-like domain. This phenomenon 

became even more pronounced in the presence of the lovastatin-derived LFA-1 

inhibitor LFA703 (Table 2.2). The compound potently blocked the binding of mAbs 

IB4, TS1/18 and YFC118.3 shown to recognize two distinct regions of the β2 I-like 

domain 4. This finding indicates that LFA703 is able to alter epitopes in the β2 I-like 

domain of the CD18  chain by binding to the L-site of the αL chain (Table 2.2). In 

contrast, the effect of the inhibitor LFA451 on the β2 I-like domain was much less 

evident. Only the epitope recognized by mAb YFC118.3 was marginally affected by 

the inhibitor (Table 2.2). The fact that LFA451 and LFA703 show different effects on 

mAb binding to the β2 I-like domain was not entirely unexpected. The compounds 

differ in their pattern of chemical modifications on the parent lactone ring of 

lovastatin. While LFA703 is a N-substituted lactame with a modification in position 2’ 

of the lactam ring, LFA451 is modified in position 3’ of the corresponding carbamate 

ring (Table 2.1). These chemical modifications, in conjunction with the accompanying 

changes in the stereochemistry of the lactam/carbamate ring were expected to result 

in a different orientation of the newly introduced groups with respect to the native 

LFA-1 receptor. This assumption was confirmed by the crystal structure 

determination of the LFA451 and LFA703 αL I domain complexes (not shown). Our 

data suggest that the naphthyl part of LFA703 interacts with pockets of the αL L-sites 

which are not reached by the vanillyl group of LFA451. Likewise, the recently 

described LMW LFA-1 inhibitor BIRT 377 does not extent into pockets of the αL L-

site used by LFA703 as indicated in the modeled structure published recently 16. 

Consistent with this observation, BIRT 377 was found to inhibit the binding of mAbs 

to the αL I domain, but not the β2 I-like domain 23. Taken together these results 

provide evidence that conformational changes of the β2 I-like domain are induced by 

the unique interaction of the naphthyl part of LFA703 with the αL L-site.  
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R7.1 

R7.1+LFA451 

  Isotype Control 

IB4

IB4+XVA143 

Isotype Control 

Fluorescence Intensity Fluorescence Intensity
 

Figure 2.3 Inhibition of mAb R7.1 or mAb IB4 binding to LFA-1 expressed on Jurkat cells by 
LFA-1 inhibitors: data of a representative flow cytometry experiment.Jurkat cells were 

incubated with the mAbs R7.1 (anti- αL I domain) or mAb IB4 (anti-β2 I-like domain) in the 
presence and absence of the LFA-1 inhibitors LFA451 (A) and XVA143 (B). The experiment 
was performed in the presence of cations. Bound antibody was detected by the addition of 
Alexa Fluor® 488 conjugated anti-IgG followed by flow cytometry analysis as described 
under Methods.  

 

In contrast to the αL I domain and β2 I-like domain, the putative β-propeller region of 

LFA-1 was not affected by the binding of the lovastatin-derived LFA-1 inhibitors 

(Table 2.2). As expected pravastatin did not inhibit antibody binding to LFA-1 (Table 

2.2). To exclude the possibility that internalization of antibodies in the presence of 

compounds led to the effects described above all experiments were also performed 

at 4 0C. The results at low temperatures were comparable to those generated at 

room temperature (data not shown). 

 

2.3.4 Lovastatin-derived LFA-1 inhibitors induce epitope changes in the ααααL I 

domain and β2 I-like domain of purified LFA-1 

To further substantiate our findings we investigated the interaction of mAb R7.1 and 

mAb IB4 to immobilized purified LFA-1 in the presence of the LFA-1 inhibitors. The 

analysis was performed with the Mg2+-activated form of LFA-1. Consistent with the 

flow cytometry experiments described above lovastatin, LFA703 and LFA451 

inhibited the binding of the mAb R7.1 in a dose-dependent manner whereas 

A) B) 
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pravastatin had no effect (Fig. 2.4A). Interestingly, the IC50 values determined for the 

compounds in the LFA-1/mAb R7.1 binding assay (Fig. 2.4A: Lovastatin: IC50: 2.9 

µM, LFA703: IC50: 0.14 µM, LFA451: IC50: 0.03 µM) correlated well with those 

generated in the cell-free LFA-1/ICAM-1 binding assay (Table 2.1). Moreover, 

LFA703 blocked the binding of the mAb IB4 to purified LFA-1 in a dose-dependent 

manner confirming the effect of LFA703 on the β2 I-like domain of the CD18 chain 

(Fig. 2.4B). In contrast, lovastatin and LFA451 did not inhibit the interaction of mAb 

IB4 with purified LFA-1 corroborating that their binding to the αL L-site does not affect 

the β2 I-like domain to the same extent as observed for LFA703 (Fig. 2.4B). As 

expected pravastatin showed no effect on antibody binding (Fig. 2.4 A and  B). 
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Figure 2.4  Effect of LFA-1 inhibitors on the binding of mAbs to cation-activated purified LFA-1:Purified LFA-1 was immobilized onto 96 

well plates and incubated with biotinylated mAb R7.1 (anti- αL I domain) (A) or biotinylated mAb IB4 (anti-β2 I-like domain) (B) in the 
presence and absence of increasing concentrations of indicated LFA-1 inhibitors. The experiment was performed in the presence of 2 mM 
MgCl2. Bound antibody was detected via streptavidin-peroxidase as described under Methods. Compound induced inhibition of mAb 
binding to LFA-1 is expressed as the percentage of solvent control. Each value represents the mean ± SD of  triplicates. A representative 
experiment out of two is shown. 
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2.3.5 The LFA-1 inhibitor LFA703 does not interact with the β2 I-like domain 

To exclude that LFA703 directly binds to the β2 I-like domain of the CD18 chain and 

by this inhibits the interaction of the mAbs with the β2 I-like domain, we tested the 

effect of LFA703 on Mac-1 which shares the β2 chain with LFA-1 9. Purified Mac-1 

was immobilized on microtiter plates and the binding of the mAb IB4 was measured 

in the presence of LFA703 (Fig. 2.5). The compound did not inhibit the binding of 

mAb IB4 to purified Mac-1 at a concentrations of 50 µM (Fig. 2.5) or 200 µM (not 

shown) suggesting that LFA703 does not bind to the β2 I-like domain and indeed has 

to bind to the L-site on the αL chain to influence epitopes on the β2 chain. Likewise, 

lovastatin and LFA451 were inactive in the Mac-1/mAb IB4 binding assay confirming 

the high selectivity of the lovastatin-derived LFA-1 inhibitors for LFA-1 as compared 

to Mac-1. 

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 +
 M

a
c
-1

 -
 M

a
c
-1

L
o

v
a
s
ta

ti
n

P
ra

v
a
s
ta

ti
n

L
F

A
7

0
3

L
F

A
4

5
1

X
V

A
1

4
3A

n
ti
b

o
d
y
 b

in
d

in
g
 [
 O

D
4
5

0
n
m

 ]

 

Figure 2.5 Effect of LFA-1 inhibitors on the binding of mAb IB4 to cation-activated purified 
Mac-1: Purified Mac-1 was immobilized onto 96 well plates and incubated with biotinylated 

mAb IB4 (anti-β 2 I-like domain) in the presence of different LFA-1 inhibitors (50 µM).  
Binding of the antibody in the absence of compounds is indicated as ‘+ Mac-1’ and 
background binding in the absence of immobilized Mac-1 is indicated as ‘- Mac-1’. The 
experiment was performed in the presence of cations. Bound antibody was quantified via 
streptavidin-peroxidase. Each bar represents the mean ± SD of triplicates. A representative 
experiment out of two independent experiments is shown.  

 

 



Chapter 1 Results 

 

61 

 

2.3.6 The LFA-1/Mac-1 inhibitor XVA143 induces epitope changes in the β2 I-

like domain of LFA-1 on Jurkat cells and purified LFA-1 

In contrast to the lovastatin-derived molecules, XVA143 had no effect on the binding 

of mAbs to the αL I domain of cation-activated LFA-1 (Table 2.2 and Fig. 2.4A ). 

Instead, the compound potently blocked the interaction of the mAbs TS1/18, IB4 and 

YFC118.3 with the β2 I-like domain of LFA-1 (Table 2.2, Fig. 2.3B, Fig. 2.4B). 

Moreover, XVA143 was active in the Mac-1/mAb IB4 binding assay indicating that 

the effect of XVA143 on the β2 I-like domain is independent from the type of α chain 

associated with the β2 chain (Fig. 2.5). In contrast, the binding of the mAb TS2/4 to 

LFA-1 was not impaired in the presence of XVA143 (Table 2.2). These findings 

provide strong evidence that the binding site of XVA143 is located on the β2 I-like 

domain of the CD18  chain shared by LFA-1 and Mac-1. Moreover, the IC50 values 

determined in the LFA-1/ICAM-1 and the Mac-1/ICAM-1 assays suggest that the 

engagement of this binding site allows very efficient β2 integrin inhibition (Table 2.1). 

 

2.3.7 Effect of the LFA-1 inhibitors on inactive LFA-1 on Jurkat cells 

We also investigated the effect of the inhibitors on the inactive form of LFA-1. To 

keep LFA-1 in its inactive state Jurkat cells were washed several times with 1 mM 

EDTA before compounds and antibodies were added. The experiments were 

performed in the presence of 0.1 mM EDTA. Under these conditions, LFA-1 did not 

interact with ICAM-1 (data not shown). The antibodies utilized for the study bound the 

active and inactive form of LFA-1 equally well (data not shown). As observed for 

active LFA-1, lovastatin, LFA703 and LFA451 most prominently inhibited the binding 

of the anti-αL I domain mAb R7.1 to inactive LFA-1 on Jurkat cells (Table 2.2). This 

suggests that the L-site ligands interact with the L-site irrespective whether the 

receptor resides in its ligand binding or non-binding state. However, the effect of 

LFA703 on the reactivity of anti-β2 I-like domain mAbs with the inactive receptor was 

less pronounced than observed for the active receptor (Table 2.2). This result 

indicates, that the conformational linkage between the αL I domain and the β2 I-like 

domain observed in the active receptor is modified upon inactivation of LFA-1 by 



Chapter 1 Results 

 

62 

 

cation removal. In contrast to the lovastatin-derived LFA-1 inhibitors, XVA143 had 

almost no effect on the mAb epitopes of inactive LFA-1 expressed on Jurkat cells 

(Table 2.2). As observed for activated LFA-1, the inhibitors did not affect or only 

marginally affected the β-propeller region of inactive LFA-1 recognized by mAb TS2/4 

(Table 2.2).  

 



Chapter 1 Results 

 

63 

Table 2.2 Effect of LFA-1 inhibitors on the binding of different mAbs to LFA-1 expressed on Jurkat cells 

 Inhibition of antibody binding [ % ] 

Target of mAbs Lovastatin LFA703 LFA451 Pravastatin XVA143 

aL I domain + Mg/Mn - Mg/Mn    
+ EDTA 

+ Mg/Mn - Mg/Mn    
+ EDTA 

+ Mg/Mn - Mg/Mn    
+ EDTA 

+ Mg/Mn - Mg/Mn    
+ EDTA 

+ Mg/Mn - Mg/Mn    
+ EDTA 

TS1/22 22 ± 22 n.s. 44 ± 33 * 58 ± 2 * 52 ± 31 * 11 ± 10 n.s. 39 ± 22 n.s. 5 ± 11 n.s. 22 ± 25 n.s. -4 ± 15 n.s. 8 ± 4 n.s. 

25.3.1 37 ± 7 * 43 ± 14 n.s. 55 ± 4 * 48 ± 9 n.s. 22 ± 25 n.s. 53 ± 16 n.s. -1 ± 5 n.s. 1 ± 24 n.s. -12 ± 27 n.s. 18 ± 11 n.s. 

R7.1 80 ± 12 *** 81 ± 10 ** 99 ± 3 *** 78 ± 12 ** 103 ± 2 *** 97 ± 3 ** 6 ± 4 * 16 ± 19 n.s. 11 ± 11 n.s. 22 ± 12 * 

clone 38 23 ± 8 * 20 ± 2 * 34 ± 7 * 28 ± 3 * 6 ± 2 n.s. 17 ± 9 n.s. 1 ± 8 n.s. 4 ± 2 n.s. 8 ± 21 n.s. 5 ± 5 n.s. 
           

β-propeller: TS2/4 27 ± 8 n.s. 22 ± 2 * 32 ± 10 n.s. 27 ± 5 * 6 ± 10 n.s. 10 ± 13 n.s. 1 ± 2 n.s. 0 ± 5 n.s. 4 ± 14 n.s. 5 ± 4 n.s. 
           

β2 I-like domain           

IB4 32 ± 22 * 21 ± 3 ** 88 ± 8 *** 27 ± 6 ** 16 ± 22 n.s. 13 ± 5 * 5 ± 6 n.s. 4 ± 1 *** 96 ± 6 *** 21 ± 14 ** 

TS1/18 21 ± 22 n.s. 23 ± 16 n.s. 75 ± 6 *** 25 ± 18 n.s. 5 ± 19 n.s. 13 ± 21 n.s. -1 ± 17 n.s. 4 ± 6 n.s. 72 ± 6 *** 12 ± 7 * 

YFC118.3 39 ± 13 ** 29 ± 4 * 84 ± 8 *** 35 ± 3 n.s. 31 ± 15 ** 17 ± 4 n.s. 15 ± 20 n.s. 15 ± 14 n.s. 86 ± 11 *** 14 ± 8 n.s. 

R3.3 30 ± 5 ** 19 ± 3 * 38 ± 7 ** 26 ± 1 ** 14 ± 10 n.s. 12 ± 14 n.s. 4 ± 7 n.s. -3 ± 2 n.s. 15 ± 12 n.s. 2 ± 4 n.s. 

Table 2.2. Jurkat cells were incubated with indicated mAbs in the presence or absence of LFA-1 inhibitors (50 µM). The experiment was either 
performed in the presence of 2 mM Mg/Mn or in the presence of 0.1 mM EDTA combined with the absence of Mg/Mn. Bound antibody was 
quantified by immunofluorescence flow cytometry as described under Methods. Compound induced inhibition of mAb binding to LFA-1 is 
expressed as the percentage of solvent control. Each value presents the mean ± SD of more than 3 independent experiments. The statistical 
significance of the compound effects on antibody binding versus controls was tested using the paired t-test, where *p<0.05, **p<0.01 and 
***p<0.001 are considered significant, very significant and highly significant, respectively. 
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2.3.8 Effect of the LFA-1 inhibitors on inactive purified LFA-1 

LFA-1 immobilized on microtiter plates was washed several times with 1 mM EDTA 

and antibody binding experiments were performed in the presence of 0.1 mM EDTA 

or 1 mM EDTA to further examine the effect of the compounds on the inactive 

integrin. At both EDTA concentrations, lovastatin, LFA703 and LFA451 inhibited the 

interaction of mAb R7.1 with the αL I domain in a dose-dependent manner whereas 

XVA143 and pravastatin had no effect on mAb R7.1 binding (Fig. 2.6A and B). This 

result is in agreement with the data described above for inactive LFA-1 expressed on 

Jurkat cells. In the mAb IB4/LFA-1 assay at 0.1 mM EDTA, lovastatin and LFA451 

were inactive whereas XVA143 and LFA703 significantly influenced the interaction of 

the antibody with the inactive receptor (Fig. 2.6C). At 1 mM EDTA, however, the 

lovastatin-derived inhibitors and XVA143 had no effect or only a marginal effect on 

the IB4 epitope (Fig. 2.6D). The latter data, at 1 mM EDTA, are consistent with the 

flow cytometry experiment involving LFA-1 on Jurkat cells in 0.1 mM EDTA. This may 

indicate that EDTA more effectively removes cations from the membrane-bound 

receptor than from the purified receptor. The results show that the binding of XVA143 

to LFA-1 is highly cation-dependent. This property is not shared by the lovastatin-

derived LFA-1 inhibitors. We note that the binding of the mAbs directed against the 

β2 I-like domain of LFA-1 was not altered by the removal of cations (data not shown). 

This clearly indicates that the effects of XVA143 on the antibody/LFA-1 interaction 

are not due to competitive inhibition but a consequence of epitope alterations .  
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Figure 2.6.  Effect of LFA-1 
inhibitors on the binding of mAbs to 
purified LFA-1 in the presence of 
EDTA. Purified LFA-1 was 
immobilized onto 96 well plates and 
incubated with the biotinylated anti- 

α L I domain mAb R7.1 (A and B) or 

the biotinylated the anti-β2 I-like 
domain mAb IB4 (C and D) in the 
presence and absence of increasing 
concentrations of indicated LFA-1 
inhibitors. The experiment was 
performed in the presence of 0.1 or 1 
mM EDTA. Bound antibody was 
detected via streptavidin-peroxidase 
as described under Methods. 
Compound induced inhibition of mAb 
binding to LFA-1 is expressed as the 
percentage of solvent control. Each 
value represents the mean ± SD of 
triplicates. A representative 

experiment out of two is shown. 
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2.4 Discussion 

The data reported here demonstrate that LMW LFA-1 inhibitors can induce 

conformational changes in both, the αL chain and β2 chain of the LFA-1 receptor. 

The nature of these changes is dependent on the binding site of the compound and 

its chemical structure. This is schematically illustrated in Figure 2.7 for two of the 

inhibitors analyzed. All lovastatin-derived LFA-1 inhibitors shown to bind to the αL L-

site and to be highly LFA-1 specific, lead to the partial or total loss of epitopes on the 

αL I domain as monitored by impaired binding of several αL I domain specific 

antibodies. This finding suggests that αL L-site ligands induce conformational 

changes in the αL I domain resulting in LFA-1 inhibition and is consistent with earlier 

data showing that the αL I domain is directly involved in ICAM-1 binding 24.  

Dependent on the binding mode, some inhibitors targeting the αL L-site were found 

to induce conformational changes in both the α chain I domain as well as the β2 

chain I-like domain. This result is in agreement with a recent study showing that 

mutational activation or inactivation of LFA-1 at the IDAS/L-site results in enhanced 

or reduced binding of a novel mAb recognizing an activation epitope on the β2 chain 

27. Further, Lu et al. demonstrated that LFA-1 locked in an active form by introducing 

a disulfide bond within the αL L-site region is resistant to inhibition by blocking mAbs 

to the β2 I-like domain, and conclude that a functional relationship between the αL I 

domain and β2 I-like domain exists 7. The data reported here using αL L-site ligands 

demonstrate that indeed an interaction between the I domains exists in the native 

LFA-1 receptor.  

Interestingly, the additional involvement of the β2 I-like domain by certain lovastatin-

derived LMW inhibitors does not correlate with increased inhibitory activity as 

exemplified by the profile of the lovastatin-derived inhibitor LFA451. Although 

LFA451 is a more potent inhibitor of LFA-1 than the other lovastatin-derived 

inhibitors, epitope changes induced by LFA451 are restricted to the αL I domain. This 

result indicates that the β2 I-like domain indirectly rather than directly contributes to 

ligand binding to the I-domain of the αL chain as has been proposed before 7.   
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Inactive receptor 
- Mn/Mg, +EDTA
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Figure 2.7 Schematic diagram of the LFA-1 αL chain and the β2 chain domains in the 
absence or presence of the LFA-1 inhibitors LFA703 or XVA143. Inhibitor induced epitope 
changes within the domains are detected by reduced antibody binding. A conformational 
linkage between the αL I domain and β2 I-like domain induced by receptor activation via 

cations is illustrated by a movement of the β2 I-like domain towards the αL L-site of the αL I 
domain.  
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Legend to Figure 2.7 

 

αL- I domain 
                                                                                                  exposed 

β-propeller                  MIDAS                   L-site                        epitope  
                                                                                                              
 

β2 I-like domain         occupied                occupied                  shielded 
   MIDAS  L-site                         epitope 

 

 

 

For the first time we show that the dual LFA-1/Mac-1 inhibitor XVA143 induces 

epitope changes in the β2 I-like domain of the LFA-1 CD18  chain. Most interestingly, 

the I domain on the αL chain of LFA-1 is not affected by the compound. The cation 

dependency of XVA143 binding suggests that the inhibitor directly interacts with the 

putative metal-ion in the MIDAS-like motif of the β2 I-like domain or a putative 

calcium binding site adjacent to the MIDAS-like motif. Such a calcium binding site 

has recently been identified within the β3 I-like domain of the integrin αVβ3 5. It 

remains unknown, however, whether this putative interaction of XVA143 with LFA-1 

inhibits ICAM-1 binding via a direct or indirect mechanism. Our data (see above) and 

a recent study investigating the role of the β2 I-like domain of LFA-1 7 provide 

evidence in favor of an indirect mechanism. Thus, we hypothesize that the binding of 

XVA143 to the β2 I-like domain induces conformational changes which disturb the 

interaction between αL I domain and β2 I-like domain necessary for ICAM-1 binding. 

This hypothesis is supported by a study analyzing the inhibition of the 

αIIbβ3/fibrinogen interaction by RGD containing peptides. This study indicates that 

inhibitor binding to the β3 I-like domain induces the dissociation of fibrinogen from its 

binding site located on the α chain of αIIbβ3 via an allosteric mechanism 28. Taken 

together, these data provide strong evidence that β2 I-like domains on integrin β 

subunits represent targets for allosteric integrin inhibition, similar to the well 

established allosteric αL L-site on the αL chain 14-17. 

We also examined the effect of the different LFA-1 inhibitors on inactive LFA-1 in the 

absence of cations. The interaction of XVA143 with the inactive receptor was found 
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to be very weak as indicated by marginal changes of a few mAb epitopes. This 

observation is in agreement with the assumption that XVA143 interacts with a cation 

binding site on the β2 I-like domain. In contrast, the lovastatin-derived LFA-1 

inhibitors mediated epitope changes in the αL I domain of LFA-1 in absence of 

cations indicating that the αL L-site is accessible in the inactive and active receptor 

and that inhibitor binding to the αL L-site is not dependent on cations. However, αL L-

site engagement in the inactive receptor did no longer result in conformational 

alterations in the β2 I-like domain of the β chain. This finding indicates that the 

conformational interaction between the αL I domain and β2 I-like domain observed in 

the active receptor is cation-dependent, and does not take place in the inactive 

receptor. Similarly, a conformational interaction between the αL I domain of the LFA-

1 α chain and the stalk region of the LFA-1 β chain was abolished in the inactive 

receptor in the absence of cations (K.W. and G.W., unpublished data). These results 

suggest that during the LFA-1 activation process cation-dependent domain linkages 

are built up which allow inter-subunit communication. Our data imply that the putative 

β propeller region of LFA-1 is less affected by the activation process although this 

region is thought to be in close contact with both I domains.  

In conclusion using mAbs directed against different domains of LFA-1 we were able 

to analyze how inhibitor binding to the αL L-site or the β2 I-like domain triggers 

epitope changes within and across LFA-1 domains. For the first time we can 

demonstrate these processes in the native receptor without introducing mutations. 

Our study demonstrates that both, the αL L-site and the β2 I-like domain constitute 

suitable targets for the design of integrin inhibitors which could be used to prevent or 

treat a wide range of diseases. 
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3.1 Introduction  

 

T-cell migration and T-cell activation are fundamental for immune responses but can 

also account for graft rejection and for the development and worsening of 

autoimmune diseases 1. Currently, in clinical transplantation and severe autoimmune 

diseases, therapeutic inhibition of T-cell activation is achieved with calcineurin 

phosphatase inhibitors such as cyclosporin A (Neoral™) or ascomycin derivatives 

(Prograf™, Elidel™). Alternatively rapamycin derivatives (Certican™, Rapamune™) are 

therapeutically used to block T-cell functions such as activation or clonal proliferation 

2. However the current immunosuppressive regimens are often associated with 

severe side effects such as lymphomas, nephrotoxicity and hypertension (CsA), 

diabetes mellitus (steroids) and hyperlipidemia as well as thrombocytopenia 

(rapamycin derivatives) 1,3-5. Strong efforts are ongoing to circumvent these side 

effects by either using combination of additively and synergistically acting drugs, or to 

develop compounds or biologicals with new mode of actions 6,7. Novel, first in class, 

and potentially safer drugs for the prevention of graft rejection and to treat 

autoimmune disorders are therefore medical needs 8. One approach for a novel 

therapeutic intervention is the inhibition of the β2 integrin LFA-1. This receptor is 

pivotal in adhesion and migration processes of T-cells and acts as a costimulatory 

molecule essential for T-cell activation and T-cell function 9,10. LFA-1 is a clinically 

validated target. Efalizumab, a humanized monoclonal antibody (mAb) which blocks 

LFA-1 function has been shown to alleviate the symptoms of psoriasis in clinical trials 

and has recently been approved as a biopharmaceutical 11-13. To overcome the 

hurdle of administration by injection or infusion, several classes of low molecular 

weight (LMW) inhibitors are under preclinical development. Today these compounds 

can be differentiated into two groups according to their mode of action on the 

receptor level. One group of antagonists which we termed αL L-site inhibitors, binds 

to the αL L-site located underneath the C-terminal α7 helix of the αL I domain and 

blocks the downward axial displacement of the α7 helix, thereby stabilizing the αL I 

domain in an inactive state 14. Our work of chapter 1 has led to the definition of the 
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second group of LFA-1 inhibitors (e.g. XVA143 and derivatives), the β2 I-like domain 

inhibitors. These compounds appear to interfere with regulatory domains on the β2 

chain and act independently of the αL I domain 15. Our hypothesis that the compound 

class of XVA143 may bind to the MIDAS of the regulatory β2 I-like domain was 

further substantiated by recent, more detailed studies by Shimaoka et al16. These 

studies suggested that XVA143 may act as ligand mimetic for the β2 I-like domain 

MIDAS, stabilizes the β2 I-like domain in the liganded state and induces a conversion 

from the bent to the extended integrin conformation. In addition, XVA143 may disrupt 

the conformational communication between the regulatory β2 I-like domain and the 

αL chain which is required for affinity regulation of the αL I domain 16. In summary, 

both classes of LFA-1 inhibitors can induce conformational changes in regulatory 

domains of LFA-1 which allosterically prevent the structural rearrangements within 

the headpiece of LFA-1 required for ligand binding. Our results of chapter 1 have 

demonstrated that these compound-induced conformational changes can be 

monitored by the altered binding behavior of specific mAbs which allowed us to 

differentiate between the different modes of action. 

 

LFA-1 inhibitors of several chemical entities are presently in the late phase of 

preclinical development and may approach clinical studies. As for many “first in class” 

drug candidates, an early evaluation of a promising LFA-1 inhibitor in man is 

desirable before laborious and costly drug development efforts are undertaken. An 

early clinical assessment of a novel drug candidate aims to gain first insights on drug 

absorption, distribution, metabolism and excretion (ADME) and preliminary 

tolerability. However, these pharmacokinetic (PK) measurements do not reflect the 

pharmacological effects of the drug in vivo. Particularly in life supporting 

immunosuppressive therapies such as those used in transplant recipients, both sub-

therapeutic concentrations and overdosing of a immunosuppressive drug can have 

devastating results. Sub-therapeutic dosage increases the risk of transplant rejection, 

and overdosing can lead to lymphomas 3, infections 4 and/or drug-specific side 

effects 17. The assessment of pharmacodynamic activity (PD) of immunosuppressive 

drug candidates in early clinical phases gains thus more and more interest. There are 
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two major advantages to PD measurements. Firstly, PD activity may help to predict 

adequate immunosuppression in the clinical setting. Furthermore, blood levels of 

drug candidates and their metabolites often do not correlate with drug efficacy due to 

inter-subject variability in sensitivity towards an immunosuppressant drug 18. PD 

assay systems which demonstrate that a compound can indeed impair immune cell 

function in a subject treated may facilitate drug development and may guide clinical 

decision on the therapeutic dose 19.  

In addition, the technical feasibility of PD assays has significantly improved over the 

last decade. Methods such as flow cytometric techniques have evolved, and allow us 

today to study immune cell function on individual cells requiring only microliter 

quantities of blood. These methods are essentially used to assess T-cell function of 

immune deficient individuals but some reports describe the assessment of PD effects 

of immunosuppressants ex vivo 18,19. 

Currently strong efforts are ongoing to develop suitable methods to quantify PD 

activities for immunosuppressive compounds ex vivo. 

A PD assay for the ex vivo characterization of a T-cell immunosuppressant ideally 

measures compound mediated effects on T-cell effector functions such as cytokine 

release, cytotoxic function or proliferation. The most commonly used in vitro method 

to test immunosuppressant compound effects on T-cell function is the mixed 

lymphocyte reaction (MLR). This method quantifies proliferation of peripheral blood 

lymphocytes (PBLs) after incubation with allogenic PBLs. For most drug candidates, 

these assays are not suitable as predictive ex-vivo PD assays: for example, during 

the isolation of PBLs the equilibrium of the immunosuppressant with serum proteins 

is altered; or the immunosuppressant is removed by the required washing steps. To 

overcome this, PD assays which measure T-cell function in whole blood are ideal.  

 

The purpose of the work described in chapter 2 of this dissertation was to 

characterize pharmacodynamic effects of LFA-1 inhibitors on LFA-1 expressed on 

native leukocytes in whole blood. We intended to determine whether and to what 

extent LFA-1 inhibitors can occupy their target in whole blood as well as how these 
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compounds affect LFA-1 receptor expression. Furthermore, we thought to study 

whether LFA-1 inhibitors can impair T-lymphocyte activation and proliferation 

triggered in whole blood. The methodology developed should allow for the first time a 

broad in vitro pharmacodynamic characterization of LFA-1 inhibitors (αL L-site 

inhibitors and β2 I-like domain inhibitors) in whole blood. The methods developed 

were furthermore intended as a basis for the pharmacodynamic characterization of 

LFA-1 inhibitors in clinical trials. 

 

The principle of measuring changes in LFA-1 receptor conformation by monitoring 

antibodies upon inhibitor binding (Chapter 1) was adapted to the whole blood 

situation. Two novel receptor epitope monitoring assays (REMAs) were developed to 

allow the monitoring of receptor occupancy by two distinct chemical classes of αL L-

site inhibitors and the β2 I-like domain inhibitor XVA143 in whole blood. The methods 

were further advanced to simultaneously assess LFA-1 occupancy, the LFA-1 

receptor density and T-cell activation on individual T-cells after in vitro activation of 

whole blood.  

In vitro T-cell activation was triggered by the crosslinkage of the CD3/TCR complex 

with mAb OKT3. This in vitro stimulation represents a specific and relatively 

physiological way to activate T-cells 20 and is different from published protocols using 

phorbol ester and calcium ionophors for whole blood T-cell functional studies. mAb 

OKT3 triggers T-cell receptor (TCR) specific signaling pathways (Fig. 3.1) which lead 

to LFA-1 activation 20-23. LFA-1 receptors interact with ICAM-1 and -3 on the 

neighboring leukocytes and transduce costimulatory signals (signal 2). Signal 1 (of 

the TCR) and costimulatory signaling (signal 2) are required for T-cell activation (e.g. 

CD69 upregulation), the formation of the “immunological synapse” 24 and functional 

T-cell responses such as cytokine (IL-2) mediated proliferation 21,24,25. CD69 up-

regulation as an early marker for T-cell activation was described earlier 26,27. A model 

for this LFA-1 dependent T-cell activation is shown in figure 3.1.  

For demonstrating LFA-1 dependency of the assay a combination of mAb OKT3 with 

an anti CD28 mAb was used. Crosslinking the CD28 receptor on the cell surface of 
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T-lymphocytes by antibodies induces strong T-cell specific costimulatory signals 

(signal 2) which lead to pronounced T-cell activation and proliferation 28 (not shown in 

Fig. 3.1). The combination of mAb OKT3 and anti CD28 mAbs (OKT3/aCD28) should 

lead to LFA-1 independent T-cell activation. 

For the measurement of T-cell proliferation, a separate mAb OKT3 stimulated 

protocol was set up using the classic 3H thymidine incorporation approach similar to 

that described by Wendelbo et al. 29. 

 

 

 T-cell responses:  
Activation (CD69) 

� 
Cytokine production 

e.g. IL-2 
� 

Proliferation 
Activation of 

neighbouring cells 

outside in 

inside out 

 

1. 

2. 

OKT3 

T-cell 
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Mg2+ 
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ICAM-1 
or 

ICAM-3 

inactive LFA-1 
(bent) 

active LFA-1 
(open, cluster) 

CD3/TCR 
complex 

 

Figure 3.1 Principle of T-lymphocyte activation in the LFA-1 dependent whole blood T-
cell activation /proliferation assays. T-lymphocytes are specifically activated with anti CD3 
mAb (OKT3) which activates (amongst other pathways) LFA-1/ICAM binding and LFA-
1/ICAM dependent costimulatory events. Both T-cell receptor (TCR) and LFA-1 dependent 
signals (signal 1+2) together result in T-cell activation (CD69 upregulation) and production of 
proliferation cytokines (IL-2 synthesis). An overview of LFA-1 signaling pathways is given in 
the first part of the dissertation. 

 

Besides compounds described in chapter 1 (XVA143 and pravastatin), we included 

two new LFA-1 inhibitors, LFA878 and COMPOUND X in our studies. LFA878, a 

lovastatin-derived LFA-1 inhibitor, is similar to LFA451 (described in chapter 1) and 
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has almost equivalent in vitro characteristics. COMPOUND X was included to employ 

a different chemical class of LFA-1 antagonists. COMPOUND X is an exploratory 

compound which is not based on the lovastatin structure. COMPOUND X was found 

to bind to the L-site of the αL I domain and to allosterically modify the αL I domain 

conformation as reported for the lovastatin derivatives in chapter 1 (Novartis 

unpublished data).  

 

Furthermore, two Novartis immunosuppressive drugs were assessed in the 

developed assays: Cyclosporin A (CsA, Sandimmune™, Neoral™) and everolimus 

(Certican™). CsA is widely used in transplantation and severe autoimmune diseases 

and impairs T-cell activation and T-cell proliferation by inhibiting the phosphatase 

calcineurin 30. Everolimus is a rapamycin derivative similar to Rapamune™, which 

binds to the mammalian target of rapamycin (mTOR) and blocks cytokine mediated 

T-cell proliferation 2,31,32. While CsA has been used in humans since 1983, 

everolimus was granted approval by the European authorities in 2003. 
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3.2 Methods 

3.2.1 Materials 

Antibodies (mAb) 

FITC-conjugated anti human CD11a (clone R7.1) was obtained from BioSource, US; 

FITC-conjugated anti human CD18 (clone IB4) was purchased from SBA, US; FITC-

conjugated anti human CD18 (clone MEM48) and FITC-conjugated anti human CD2 

(clone MEM65) and all isotype controls (IgG1 and IgG2a) were obtained from 

Immunotools, Germany; phycoerythrin (PE) labeled anti human CD69 (clone L78) 

and PerCp-conjugated anti human CD3 (clone UCHT1) were purchased from Becton 

Dickinson, Switzerland.  The hybridoma cell lines producing anti human CD11a 

(clone TS2/4.1.1) or anti human CD3 (clone OKT3) mAbs were obtained from the 

American Type Culture Collection (ATCC). The hybridoma cell line producing anti 

human CD28 (clone 15E8) was a kind gift of Prof. L. Aarden, Sanguin INC., 

Netherlands. Production and purification of mAbs were conducted within Novartis 

Pharma AG, Switzerland by standard protocols. mAb TS2/4.1.1 was labeled with 

ALEXA647 using an ALEXA647 antibody labeling kit (Molecular Probes, 

Netherlands) according to manufacturer’s instructions.  

Other materials 

Erythrocyte FACS Lysing Solution was purchased from Becton Dickinson, 

Switzerland; Sodium heparin was obtained from B.Braun Medical AG, Switzerland; X-

VIVO 10™  medium was obtained from BioWhittaker, US; Sterile Dulbecco`s 

phosphate buffered saline (PBS) (w/o Ca2+ and Mg2+ w/o sodium bicarbonate) and 

RPMI1640 were obtained from Invitrogen LifeTechnologies, US; Bovine serum 

albumin (BSA, protease and IgG free), Dimethylsulfoxide (DMSO), 

Ethylenediaminetetraacid (EDTA) and phytohemaglutinin (PHA) were purchased 

from Sigma-Aldrich, Switzerland; Scintillation liquid (Betaplate Scint) was purchased 

from Perkin-Elmer, Switzerland; 3H methyl thymidine (3H thymidine) was purchased 
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from Amersham Pharmacia Biotech, Switzerland; Prequillan was obtained from Fatro 

Inc, Italy. 

Test compounds    

LFA878, XVA143, COMPOUND X, CsA, everolimus were supplied by the Novartis 

department of chemistry. Pravastatin was obtained from Calbiochem, US.   

3.2.2 Biohazard  

All experimental steps involving blood samples were conducted in a laboratory 

classified as “BL2” according to Novartis research guidelines.  

3.2.3 Blood collection 

Human blood was collected from healthy volunteers by venipuncture (butterfly 

needle) at the Novartis Basle health care unit. Time of collection was in the morning 

(7:30 a.m.-8:35 a.m.) Sodium heparin (100 U/ml) was immediately added to the blood 

samples. 

3.2.4 Dilution of test compounds 

All test compounds were dissolved in DMSO at 10 mM. Stock solutions were stored 

at 4°C except everolimus which was stored in aliquots at -20°C. In indicated 

experiments the compounds were serially diluted in DMSO before direct addition to 

blood.  

3.2.5 REMA (human/rabbit) for αL L-site inhibitors 

Heparinized undiluted human or rabbit blood samples (198 µL) were mixed with the 

compounds or the DMSO solvent control (2 µL) and incubated for 30 min at room 

temperature (RT). The blood samples (90 µl/well) were then transferred to 96 well PP 

microtiter plates. The FITC-conjugated mAb R7.1 was diluted in PBS containing 0.5% 

BSA, pH 7.4 (PBS/0.5%BSA) and added (10 µL) to the blood samples (final 

concentration: 1 - 2 µg mAb/ml blood). After 25 min staining at RT the blood samples 

(100 µl) were transferred to polypropylene tubes containing FACS lysing solution (1 
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ml), mixed and incubated in the dark at RT for 10 min. The samples were centrifuged 

(200 x g) for 5 min, washed once with PBS/0.5% BSA and analyzed within 24 hours 

on a FACScan or a FACS-Calibur flow cytometer. Light scatter parameters and 

fluorescence 1 (FITC) were acquired. Data acquisition was stopped after the 

acquisition of 12000 lymphocyte events. 

Background fluorescence of unstained lymphocytes, monocytes or granulocytes was 

deducted from all values. Mean fluorescence intensities (MFIs) of bound mR7.1 to 

whole blood leukocytes in solvent controls were set as 100 %. mAb R7.1 binding, in 

the presence of the test compounds was expressed as percentage of these controls. 

The values derived for the 3 subpopulations of leukocytes were averaged and 

standard deviation (SD) was calculated. Resulting curves were plotted and IC50 were 

analyzed with the dose response curve fitting tool of ORIGIN V. 7.0 (OriginLab 

Corporation). 

3.2.6 REMA (human) for β2 I-like domain inhibitors 

The REMA for the β2 I-like domain inhibitor XVA143 was conducted as described 

above for αL L-site inhibitors, except that the FITC-conjugated anti human CD18 mAb 

MEM48 (1.5 µg/ml) was used. In one experiment the anti human CD18 mAb IB4 was 

used instead of mAb MEM48. MFIs of bound mAb MEM48 to whole blood leukocytes 

in solvent controls were set as 100 %. Enhancement of mAb MEM48 binding to LFA-

1 was expressed as percentage of these controls. The values derived for the 3 

subpopulations of leukocytes were averaged and standard deviation (SD) was 

calculated. Resulting curves were plotted and EC50s were analyzed with the dose 

response curve fitting tool of ORIGIN V. 7.0. 

3.2.7 Ex vivo rabbit REMA for αL L-site inhibitors 

Female russian dwarf rabbits received 0.1 ml/kg Prequillan (10 mg/ml) 

subcutaneously. LFA878 was dissolved in a mixture of Cremophor EL and ethanol 

(2:1/w:w) and then further diluted with 5% glucose (1:3/v:v). The compound or vehicle 

control was administered intravenously (i.v.) by bolus injection (right ear, 1.5 ml per 
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rabbit). Blood samples (200 µl) were taken from the left ear at indicated time points 

and collected into micro tubes containing sodium heparin (100 U/ml blood). The 

blood samples were stored on ice until analysis. The REMA was conducted as 

described above. The animal experiments were conducted according to the animal 

experimentation guidelines and laws laid down by the Swiss Federal and Cantonal 

authorities. 

3.2.8 T-lymphocyte activation in whole blood  

The activating anti human CD3 mAb OKT3 was immobilized onto a 96 well microtiter 

plate (Maxisorb, Nunc Inc, US) in PBS (0.01-30 µg/ml, 100 µL/well), pH 8.0 at 4°C 

over night. On the next day the plate was washed twice with sterile PBS/0.5%BSA. 

The plate was then blocked with sterile PBS/0.5%BSA for 1 h at 37°C. PBS (50 

µL/well) with or without 4 mM magnesium chloride (MgCl2) was added to the wells 

followed by the addition of undiluted human blood (50 µL/well). After briefly shaking, 

the plate was incubated at 37°C in a 5% CO2 humidified atmosphere for 22 h. EDTA 

solution (20 mM, 15 µL/well) was added to each well, and incubated for further 15 

min to loosen adherent leukocytes. 3 color flow cytometry was performed to assess 

the upregulation of extracellular CD69 on human CD2+ lymphocytes. PerCp-

conjugated anti human CD4 (1.1 µL), PE-conjugated anti human CD69 (2.5 µL) and 

FITC-conjugated anti human CD2 (1.2 µL) were diluted with PBS/0.5% BSA and 

added to a 2 ml PP plate (20 µL/well). Activated blood samples (200 µL) were added 

to the antibody staining cocktail and incubated at RT in the dark for 15 min. To lyse 

red blood cells and fix the samples, FACS lysing solution containing formaldehyde 

was added (1.4 ml). After 10 min lysis, the plate was centrifuged (250 x g) at RT for 6 

min. The samples were washed once with PBS/0.5% BSA and then either analyzed 

immediately or stored at 4°C in the dark overnight and analyzed on the next day.  

Data acquisition was performed on a FACSCalibur (Becton Dickinson) after 

adjustment of compensation with single fluorochrome labeled whole blood 

lymphocytes. For data acquisition a live gate was employed to acquire 10000 CD2+ 

positive events. Data evaluation was carried out with Cellquest Pro (BD). The 
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leukocyte subpopulation corresponding to lymphocytes was gated (gate 1) according 

to the FSC/SSC light scatter properties. Gate 1 was applied to a dot plot to visualize 

and gate all CD2+CD4+ events (gate 2). In an additional histogram the CD69 

expression of these T-cells was plotted applying both gate 1 and gate 2. CD69 

positive cells were selected using the marker tool. Generally less than 2% of 

CD2+CD4+ lymphocytes of non-stimulated human blood samples were CD69 

positive. Histogram statistics were performed and exported using the “Batch” 

processing module of Cellquest Pro. 

3.2.9 Expression-Activation (EA) REMA for αL L-site inhibitors 

Heparinized human blood (1 ml) was added to wells of 2 ml polypropylene (PP) deep 

well plates followed by the addition of pre-diluted compounds (2 µL). DMSO (2 µL) 

was added as solvent control. The test compounds were incubated for 1 h at RT. 

mAb OKT3 (1 µg/ml) - or alternatively mAb OKT3 (0.1µg/ml) and anti CD28 (clone 

15E8, 1 µg/ml) - were immobilized onto a 96 well microtiter plate (Maxisorb, Nunc 

Inc, US) in PBS, pH 8.0 (100 µL/well) at 4°C overnight. On the next day the plates 

were washed twice with PBS/0.5%BSA. The plates were then blocked with sterile 

PBS/0.5%BSA for 1 h at 37°C.  

In experiments involving activation by mAb OKT3, PBS (50 µL/well) containing 4 mM 

MgCl2 was added to the wells followed by the addition of the blood samples (50 

µL/well). The plate was incubated at 37°C in a 5% CO2 humidified atmosphere for 22 

h. EDTA solution (20 mM, 15 µL/well) was added to each well, and incubated for 

further 15 min to loosen adherent leukocytes. 2-3 individually activated blood 

samples were pooled. 

In experiments involving the combination of mAb OKT3 and the anti CD28 

(OKT3/aCD28) for stimulation, the assay was conducted as described for the mAb 

OKT3 stimulation but without additional MgCl2 . 

200 µL of activated pooled blood was transferred to a 2 ml polypropylene deep well 

plate (Becton Dickinson, CH) and stained with PBS/0.5% BSA (20 µL/well) containing 
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FITC-conjugated mAb R7.1 (1.5 µL), PE-conjugated anti human CD69 (2.5 µL), 

PerCp-conjugated anti human CD3 (1.3 µL) and ALEXA-647-conjugated anti human 

CD11a mAb TS2/4.1.1 (1 µL). The concentrations used were saturating for TS2/4.1.1 

and non-saturating for mAbs R7.1 as determined by titration (not shown). Blood 

samples were stained at RT in the dark for 15 min. Erythrocytes were lysed with Facs 

lysing solution (1.4 ml). After 10 min lysis, the plate was centrifuged (250 x g) at RT 

for 6-7 min. The samples were washed once with PBS/0.5% BSA and then either 

analyzed immediately or stored at 4°C in the dark overnight and analyzed on the next 

day.  

For data acquisition a live gate was employed to acquire 10000 CD3 positive events.  

Data evaluation was carried out with Cellquest Pro (BD). The leukocyte 

subpopulation corresponding to lymphocytes was gated (gate 1) according to the 

light scatter properties. Gate 1 was applied to a histogram plotting all CD3 positive 

events. A second gate (gate 2) was drawn to select all CD3 positive lymphocytes. In 

three histograms the fluorescence signals of mAb R.71, anti CD69 and mAb 

TS2/4.1.1 were plotted applying both gate 1 and gate 2. Geometric means of the 

fluorescence intensities of mAbs R7.1 and TS2/4.1.1 binding to CD3 positive T-

lymphocytes were calculated. The percentage of CD69 positive cells was determined 

using the marker tool. Histogram statistics were performed and exported using the 

“Batch” processing module of Cellquest Pro. 

IC50 values were obtained by fitting the percentage of CD69 positive T-cells using the 

dose response curve fitting tool of ORIGIN V. 7.0 (OriginLab Corporation). The 

percentage of CD69 positive CD3+ events of non-stimulated blood and the averaged 

percentage of CD69 positive T-cells after stimulation without an inhibitor were used 

as the fitting range. 6-7 different concentrations per compound were tested to 

generate concentration response curves.   

IC50s for the effect of LFA-1 inhibitors on mR7.1 binding were obtained using 

unprocessed MFI data. Solvent controls and the MFI of an isotype control were used 

as fitting range.  
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3.2.10 EA-REMA (human) for the β2 I-like domain inhibitors XVA143 

The EA-REMA for the β2 I-like domain inhibitor XVA143 was performed as described 

for the EA-REMA measuring αL L-site inhibitors, except that the FITC-conjugated anti 

human CD18 mAb MEM48 (1 µg/ml) was used instead of mAb R7.1. EC50 values 

were calculated with the dose response curve fitting tool of ORIGIN V. 7.0 .  To 

calculate the effect of XVA143 on the LFA-1 surface expression, the mean 

fluorescence intensities of mAb TS2/4.1.1 binding to T-lymphocytes in the absence of 

an inhibitor was set as 100%. 

3.2.11 Whole blood lymphocyte proliferation  

Microtiter plates coated with mAb OKT3 or the combination of mAb OKT3 and anti 

CD28 mAb (OKT3/aCD28) were prepared as described for the EA-REMA.  

Compounds were added to undiluted human blood as described for the EA-REMA. 

After 1 h incubation of the blood with the test compounds, blood samples (20 µl/well) 

were transferred to X-VIVO 10™ medium (180 µl/well) and added to antibody coated 

microtiter plates. Replicas of 3-4 wells were generated per compound concentration. 

The plates were put on a shaker for mixing and incubated for 72 h in a 5% CO2-

humidified air incubator. Wells were then pulsed with 
3
H-methyl thymidine (1 µCi/ 

well) and incubated for additional 22 h. Blood samples were then transferred to a 

cellulose filter using a BETAPLATE® 96 well harvester (Perkin-Elmer). The filter was 

washed with distilled water, dried and counted after the addition of liquid scintillation 

fluid using a BETAPLATE® Liquid scintillation counter (Perkin-Elmer). 

Alternatively, blood samples were stimulated with the lectin phytohemaglutinin (PHA) 

(3µg/ml). Proliferation experiments in 1:10 diluted blood lymphocytes were conducted 

as described above except that un-coated sterile microtiter plates (Costar, US) were 

used.    

IC50 values were calculated by fitting the raw data of the 3H thymidine incorporation 

assays with the dose response curve fitting tool of ORIGIN V. 7.0. 6 to 7 different 
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concentrations were used to generate concentration response curves. Triplicates or 

quadruplicates were used per concentration. 

3.2.12 Calculations 

For all calculations the compound concentration added to undiluted blood samples 

was used. This facilitates the back calculation of sensitivities of these assay systems.  

3.2.13 Correlation receptor occupancy with T-cell responses 

The inhibition of CD69 upregulation and T-cell proliferation by the test compounds 

was calculated [ % ] and correlated with the percentage of inhibition (mAb R7.1) or 

induction (mAb MEM48) of monitoring antibody binding. Alternatively the natural 

logarithm (ln) of the mean fluorescence intensities (MFIs) of the mAb R7.1 signals 

were used. Regression analysis was performed using ORIGIN V.7.0 statistic 

software. 

3.2.14 ANOVA  

ANOVA was performed using the statistical software program “Graphpad INStat” 

version 3.05 and the Tukey-Kramer multiple comparison test. 
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3.3 Results 

3.3.1 In vitro profile of LFA-1 inhibitors 

Table 3.1 shows the in vitro profile of the LFA-1 inhibitors tested in chapter 2. The 

results were generated by applying the methods described in chapter 1 15. LFA878 (a 

lovastatin-derived LFA-1 inhibitor) and COMPOUND X (non lovastatin-derived LFA-1 

inhibitor) blocked ICAM-1 binding to purified immobilized LFA-1 with IC50s of 0.05 and 

0.03 µM respectively (Table 3.1). No effect on ICAM-1 binding to purified Mac-1 was 

observed, demonstrating the selectivity of these compounds for LFA-1. The adhesion 

of the T-cell line HUT78 to immobilized ICAM-1 was inhibited with average IC50s of 

0.3 and 0.8 µM respectively (Table 3.1). The results for Pravastatin and XVA143 

were already described in chapter 1.  

 

Table 3.1 In vitro profile of the LFA-1 inhibitors and pravastatin  

Assay LFA878 

 

 
Pravastatin 

(Control) 
COMPOUND 

X 
XVA143 

(Genentech/Roche) 

 

O

O

H

O

NH N

O

O

OH

O

 

O

O
O

OH O

H

OH

 

 

experimental 
compound, 
unrelated to 
Lovastatin 
structure 

N
H

O

Cl

Cl

N
H

OOH NH

OH

O

O
OH

OH

 

LFA-1/ICAM-1: 
IC50 [µM] 

0.048 ± 0.013  > 100 0.034 ± 0.01  0.020 ± 0.008  

HUT78/ICAM-1: 
IC50 [µM] 

0.3 ± 0.2  > 100  0.8 ± 0.7  0.005 ± 0.004  

I domain binding + * - 
15

 + * - 
15

 

Mac-1/ICAM-1: 
IC50 [µM] 

> 100  > 100 > 100  0.002 ± 0.001  

Values represent the mean ± SD of at least 3 independent experiments. 
* Novartis unpublished observation. Methods see chapter 1 

 



Chapter 2 Results 

  

 

88 

 

 

3.3.2 Receptor occupancy by LFA-1 inhibitors in human whole blood 

The flow cytometric method used in chapter 1 to monitor LFA-1-inhibitor-induced 

conformational changes within the LFA-1 receptor was adapted to establish a method 

to measure LFA-1 receptor occupancy in whole undiluted blood. Different LFA-1 

inhibitors were added to undiluted heparinized human blood at various 

concentrations. After 30 min of incubation the effect on the binding of the FITC-

conjugated monoclonal antibodies (mAbs) R7.1 (anti CD11a), IB4 (anti CD18) or 

MEM48 (anti CD18) to whole blood leukocytes was measured. Leukocyte 

subpopulations were distinguished by their light scatter properties (Fig. 3.2a). We 

termed this simple and straight forward method to measure compound induced 

conformational changes within LFA-1 Receptor Epitope Monitoring Assay (REMA). 

The REMA utilizes the readout of only one fluorescence parameter and can be 

conducted in less than 2 h on any basic flow cytometer. A typical example for a 

REMA experiment is shown in figure 3.2a. In this experiment the αL L-site inhibitor 

LFA878 was tested. The compound almost completely abrogated the binding of mAb 

R7.1 to the major leukocyte subpopulations in human whole blood at 10 µM. The 

inhibition of mAb R7.1 binding was concentration dependent as shown in figure 3.2b 

(IC50 0.4 µM). The potency of LFA878 was equal on the different leukocyte 

subpopulations as shown by the small standard deviation (Fig. 3.2b). Figure 3.2a 

also shows that lymphocytes contain subpopulations with distinct LFA-1 receptor 

densities, while monocytes and granulocytes demonstrated a homogenous LFA-1 

expression pattern. 

As expected, XVA143, which was shown in chapter 1 to affect the β2 I-like domain 

but not the aL I domain, was inactive in the mAb R7.1 REMA (Table 3.2). 
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MFI R7.1 (granulocytes) 

MFI R7.1 (monocytes) MFI R7.1 (lymphocytes) 

FSC  

 

Figure 3.2a REMA: LFA878 induced conformational changes within LFA-1 
receptors expressed on leukocytes in human whole blood. LFA878 efficiently 
blocked binding of anti CD11a mAb R7.1 to leukocytes in human whole blood. 
Dot-Plot: Leukocyte subpopulations were discriminated according to light 
scatter properties as granularity (side scatter) and cell size (forward scatter, 
FSC). Histograms: Red line: Binding of R7.1-FITC in the absence of LFA878. 
Green line binding of R7.1-FITC in the presence of 10 µM LFA878. Black line: 
Fluorescence of isotype control (IgG1).   
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Figure 3.2b  Binding of the CD11a mAb R7.1-FITC was 
completely abrogated by LFA878 at concentrations ≥10 µM 
in whole undiluted human blood. Experiment was carried 
out as described under Methods. Inhibition of mAb R7.1 
binding to lymphocytes, monocytes and granulocytes was 
individually calculated. Data shown are means ± SD of 
these inhibitions. 



Chapter 2 Results 

  

 

90 

 

As shown in chapter 1, the β2 I-like domain inhibitor XVA143 potently blocked the 

binding of mAb IB4 (anti CD18) to cation activated LFA-1 on Jurkat T-cells or purified 

LFA-1 15. The effect of XVA143 on the binding of mAb IB4 to native whole blood 

leukocytes was tested. To our surprise XVA143 did not or only marginally block the 

binding of mAb IB4 to human whole blood leukocytes even at high concentrations (50 

µM) (Fig. 3.3a). As we demonstrated in chapter 1 XVA143 is a β2 integrin inhibitor 

and alters the conformation of the β2 I-like domain in a cation dependent manner. To 

investigate whether the absence of the activating cation manganese prevented 

XVA143 from interacting with LFA-1 we supplemented human whole blood with 1-2 

mM MnCl2. XVA143 remained inactive on mAb IB4 binding in the presence of MnCl2 

(data not shown). mAb IB4 was therefore not suitable for measuring receptor 

occupancy by XVA143 in whole undiluted human blood for reasons that need further 

investigation. 

In contrast, XVA143 potently induced the binding of the anti CD18 mAb MEM48 to 

whole blood leukocytes (Fig. 3.3b). This agonistic effect of XVA143 on mAb MEM48 

binding and its effect on the LFA-1 receptor conformation was dependent on the 

blood concentration of XVA143. (Fig. 3.3b: EC50 0.014 µM). XVA143 enhanced the 

binding of FITC-conjugated mAb MEM48 by ≥ 2.5 fold (250%) at concentrations 

above 0.2 µM compared to solvent controls (100%). These findings demonstrate for 

the first time that XVA143 can interact with LFA-1 receptors in human blood and 

suggest that the degree of mAb MEM48 epitope exposure is dependent on the 

concentration of XVA143.  

mAb MEM48 has been mapped to the cysteine rich repeat 3 flanked on the stalk 

region of the β2 chain of LFA-1 33. In addition, mAb MEM48 was shown to bind 

preferably to epitopes in the stalk region of the β2 chain that become exposed after 

LFA-1 activation 33. Our data from the experiments with XVA143 in whole blood 

confirm our earlier, but not reported findings that XVA143 strongly induced 

conformational changes in domains on the β2 chain that are not directly involved in 

ligand binding (chapter 1 discussion). Furthermore, our data confirm meanwhile 
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published insights that XVA143 can induce an extended conformation of the β2 stalk 

region which is similar to the conformation found in the stalk region of an fully 

activated LFA-1 receptor (Fig. 1.5 16). Since anti CD18 mAbs such as IB4 and 

MEM48 are not specific for a particular β2 integrin, the data shown in Figs 3.3 a&b 

may also reflect the effect of XVA143 on the β2 integrins Mac-1 and possibly 

CD11c/CD18 which are significantly expressed on monocytes, granulocytes, NK cells 

and weakly on minor subgroups of T and B lymphocytes 34.  

None of the αL L-site inhibitors altered the binding of mAb MEM48 in human blood 

(Table 3.2). 
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Figure 3.3 Effect of XVA143 on the binding of mAb IB4 and mAb MEM48 to human 
whole blood leukocytes: a) Binding of FITC-conjugated mAb IB4 to whole blood leukocytes is 
not significantly impaired by the indicated concentrations of XVA143. b) XVA143 strongly 
induced the epitope recognized by the anti CD18 mAb MEM48 (EC50: 0.014 µM) on 
leukocytes inn whole blood. Experiments were carried out as described in Methods using 
undiluted whole blood. Inhibition of mAb IB4 or induction of mAb MEM48 binding to 
lymphocytes, monocytes and granulocytes were individually calculated. Data shown are 
means ± SD.  One representative experiment out of 3 is shown. 
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3.3.3 Binding of mAbs R7.1 and MEM48 to LFA-1 of different species 

The mAbs R7.1 and MEM48 were tested on cross species reactivity by flow 

cytometry. The experiments were performed as described for the REMA except that 

heparinized blood of other species was used. mAb R7.1 did not cross react with LFA-

1 on leukocytes of mice and rats. In contrast, mAb R7.1 bound to leukocytes of dogs 

(beagles), monkeys (rhesus and cynomolgus) (data not shown) and rabbits (russian 

dwarf). All LFA-1 inhibitors that were active in the human REMA (R7.1 binding) also 

potently inhibited the binding of mAb R7.1 to leukocytes of the cross-reactive 

species. LFA878 for example blocked the binding of the mAb R7.1 to leukocytes in 

undiluted rabbit (russian dwarf) blood with an average IC50 of 0.34±0.18 µM (n=7, 

data not shown) equally potent as in the human REMA (Fig.3.2b). These findings 

indicate that the epitopes recognized by mAb R7.1 may be conserved amongst 

higher mammalian species and that the REMA can be applied in these species to 

study pharmacodynamic receptor occupancy by αL L-site inhibitors. In contrast to 

mAb R7.1, mAb MEM48 did not bind to LFA-1 of mice, rats, dogs, monkeys or rabbits 

(± XVA143, data not shown). The antibody was therefore not suitable for the ex vivo 

assessment of receptor occupancy by XVA143 or its derivatives in these species.  

 

3.3.4 Ex vivo receptor occupancy assessment in rabbits 

The REMA was validated by measuring the receptor occupancy by LFA878 in rabbits 

after i.v. administration of 11.5mg/kg or 50mg/kg LFA878. As shown in figure 3.4 

LFA878 almost completely blocked the binding of the mAb R7.1 to whole blood 

leukocytes immediately after application. The pharmacodynamic effect of LFA878 

was dependent on the dose administered and time point of blood sampling. Half-

maximal blockade of mAb R7.1 binding was reached after 0.6 h (11.7mg/kg) or 3.3 h 

(50mg/kg). mAb R7.1 binding returned to levels of vehicle controls after 4 h 

(11.7mg/kg) and after 6 h (50mg/kg) respectively. These data indicate that the REMA 

is well suited to monitor pharmacodynamic effects of αL L-site inhibitors ex vivo. The 

PK/PD relationship for LFA878 after i.v. administration was measured in separate 



Chapter 2 Results 

  

 

93 

 

experiments in rabbits and demonstrated that the pharmacokinetic measurements of 

LFA878 correlated well with the PD effect measured by the REMA (data not shown).  
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Figure 3.4 Ex vivo pharmacodynamic assessment of LFA-1 receptor occupancy by 
LFA878 in blood samples of rabbits. Compound or vehicle were applied i.v. at the 
indicated dose. Blood samples were taken at indicated time points. The REMA assay 
was performed as described in the Methods section. In this experiment the data 
represent the mean ± SD of individually calculated binding of mAb R7.1 to 
lymphocytes, monocytes and granulocytes in one blood sample. Binding of mAb R7.1 
to leukocytes of a blood sample drawn before the application were set as 100%. One 
representative experiment out of 2 is shown. 

 

3.3.5 Experimental set-up of the human whole blood T-cell activation and 

proliferation assays  

After the establishment of the REMAs for LFA-1 inhibitors we intended to study 

whether LFA-1 receptor occupancy on blood lymphocytes translates into an 

impairment of T-cell activation or proliferation. The in vitro characterization of the 

effect of LFA-1 inhibitors on T-cell activation and proliferation in whole blood 

necessitated the de novo establishment of several test systems. Undiluted blood 

samples were spiked with the test compounds. T-lymphocyte activation and 
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proliferation was then triggered by immobilized anti human CD3 mAb OKT3 in 1:1 or 

1:10 diluted blood samples respectively. The blood samples were then incubated in 

for either 22 h in the presence of 2 mM additional MgCl2 (T-cell activation) or for 96 h 

(proliferation) after which different readouts were measured. T-cell activation was 

quantified by measuring upregulation of the activation marker CD69. Assessment of 

proliferation was done by quantifying incorporated radioactive 3H thymidine. As a 

control stimulus mAb OKT3 was used in combination with anti CD28 mAb 

(OKT3/aCD28). Figure 3.5 shows the experimental principle of the whole blood T-cell 

activation and proliferation test systems.  

 

 

Figure 3.5 Experimental principle of whole blood T-cell activation and proliferation assays: 
Compounds were added to undiluted heparinized human blood and incubated for 1 h at RT. 
Aliquots of the blood samples were then transferred to wells of microtiter plates coated with 
the mAb OKT3 (anti CD3) or a combination of mAb OKT3 and anti CD28 (OKT3/aCD28). 
The effect of the inhibitors on CD69 upregulation as marker for T-cell activation was 
measured by flow cytometry after 22 h of incubation. Effects on T-cell proliferation were 
measured by 3H thymidine incorporation after a total incubation time of 96 h.  
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3.3.6 mAb OKT3 stimulated T-cell activation in whole blood is augmented by 

supplementary MgCl2 

Initial experiments revealed that extended incubation (3-4 days) of undiluted human 

blood at 37°C resulted in clotting of blood samples of several donors (data not 

shown). A 50% dilution of the heparinized blood with PBS and a 22 h activation 

allowed further assay development without observable coagulation. Furthermore, our 

initial data revealed that mAb OKT3 stimulated T-cell activation in undiluted blood, as 

assessed by CD69 upregulation, was marginal and barely reproducible. In 50% 

diluted blood only a minor percentage of T-cells responded with the expression of the 

activation marker CD69 (<4% CD69+CD3+ lymphocytes; example shown in figure 

3.6). We investigated thus the addition of 2 mM magnesium chloride (MgCl2) to the 

blood cultures. We reasoned that additional magnesium ions could activate LFA-1 

(vide Table 1.1) on T-lymphocytes which could result in LFA-1 binding to the ICAM 

ligands presented by neighboring leukocytes. This would enhance LFA-1 dependent 

costimulatory signaling and boost T-cell activation. We tested the effect of 

supplemental 2 mM MgCl2 with blood samples of two different blood donors. In the 

experiments shown in figures 3.6a&b CD2 and CD4 were used in these particular 

experiments to define T-cells (CD2+CD4+, T helper cells) as increasing 

concentration of immobilized mAb OKT3 strongly internalized the CD3 antigen (not 

shown). In the experiments shown below, the CD3 antigen was suitable for the 

discrimination of T-cells by flow cytometry due to the reduced amount of immobilized 

mAb OKT3 used. 

Supplementing the whole blood cultures with 2 mM MgCl2 resulted in 3-4 times 

enhanced CD69 upregulation in T-lymphocytes of both blood specimens after mAb 

OKT3 stimulation compared to the absence of the additional MgCl2.  2 mM MgCl2 

alone (no mAb OKT3) did not lead to upregulation of CD69 on T-cells (Fig. 3.6a&b 

lowest concentration indicated on X-axis). The augmenting effect of 2 mM MgCl2 on 

T-cell activation was LFA-1 dependent as specific LFA-1 inhibitors blocked the 

activation (Fig. 3.10a, table 3.2) and was evident on both CD4+ and CD8+ (CTLs) T-

lymphocytes (CD8 not shown).  
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Our data suggest that 2 mM MgCl2 acts synergistically with mAb OKT3 during T-

lymphocyte activation in blood cultures, possibly by enhancing LFA-1 dependent cell 

to cell adhesive contacts. The effect of this enhanced cell-cell contact by MgCl2 may 

be the reason for pronounced costimulatory events and subsequent T-cell activation.  

It should be noted that the addition of 2 mM MgCl2 and the activation of whole blood 

with mAb OKT3 for 22 h did not lead to macroscopic blood clotting or hemolysis. 

Figures 3.6a&b also demonstrate that the CD69 response of T-lymphocytes was 

depended on the concentration of immobilized mAb OKT3. Furthermore, when mAb 

OKT3 was replaced by an isotype control antibody no significant activation of T-

lymphocytes was observed demonstrating the specificity of the activation by the anti 

CD3 antibody. For the final protocol 2 mM additional MgCl2 and a concentration of 1 

µg/ml mAb OKT3 (mAb OKT3/MgCl2) was chosen for stimulation. 
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Figure 3.6 Addition of magnesium chloride enhanced mAb OKT3 stimulated T-lymphocyte 
activation in whole blood cultures: mAb OKT3 or an isotype control (IgG2a) antibody were 
immobilized to wells of 96-well microtiter plates at concentrations indicated in the graphs. At 
the lowest concentration shown on the axis no antibody was immobilized. Blood samples 
were diluted 1:1 with PBS w/w.o. 2 mM MgCl2 and activated for 22 h. In this experiment 3 
individually activated samples were pooled and stained for T-cell markers (CD2 and CD4) 
and CD69 expression. Data shown are the results of the pooled samples. Experiments were 
conducted with blood samples of 2 different donors (a) donor 1 and (b) donor 2. All samples 
were processed and analyzed by flow cytometry as described in Methods.  
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3.3.7 Principle of the EA-REMA  

After optimization of T-cell activation via mAb OKT3 in whole blood cultures we 

combined the methods of T-cell activation and receptor epitope monitoring (REMA) to 

a single assay. In addition, the expression of LFA-1 receptors on the T-cell surface 

was measured using the non blocking anti CD11a mAb TS2/4.1.1 .  mAb TS2/4.1.1 

did not interfere with the binding of mAbs R7.1 or MEM48 (not shown). We termed 

our method EA-REMA (Expression-Activation Receptor Epitope Monitoring Assay). 

By utilizing either the anti CD11a mAb R7.1 (for αL L-site inhibitors) or the anti CD18 

mAb MEM48 (for XVA143), the resulting method allowed to simultaneously assess 

the effect of different LFA-1 antagonists on receptor conformation (occupancy), LFA-

1 receptor expression and T-lymphocyte activation (CD69 upregulation) on individual 

T-cells in 50% diluted blood. In figure 3.7 the principle of this four color flow 

cytometric method is visualized, depicting also the different fluorochrome 

combinations used.  
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Figure 3.7 Principle of the EA-REMA: The EA-REMA is a four color flow cytometric method 
that allows to measures simultaneously the effect of LFA-1 inhibitors on T-cell activation 
(CD69 upregulation, mAb OKT3/MgCl2 stimulation shown), LFA-1 receptor expression (mAb 
TS2/4.1.1) and receptor occupancy (mAbs R7.1 and MEM48). The T-lymphocytes are 
detected by immunostaining the T-cell specific marker CD3.  

 

3.3.8 Effects of LFA-1 inhibitors and control compounds in the EA-REMA 

Figures 3.8 and 3.9 are examples for raw data derived from the two different EA-

REMA assays. LFA878 (Fig. 3.8) and XVA143 (Fig. 3.9) were chosen as examples 

for LFA-1 inhibitors with the two different modes of action. In the experiments shown 

ca 6-7% of the T-lymphocytes were activated after 22 h stimulation with mAb 

OKT3/MgCl2. In contrast, in the absence of mAb OKT3  1% of the peripheral blood 

lymphocytes were found positive for the CD69 antigen (Fig. 3.8 & 3.9) in the 

presence or absence of 2 mM MgCl2. 

Both LFA-1 inhibitors completely blocked mAb OKT3/MgCl2 stimulated CD69 

upregulation on T-cells at the tested concentrations (Figs. 3.8 & 3.9) indicating that 

both compounds were able to interfere with LFA-1 dependent T-cell activation in 

human whole blood cultures. 

At a concentration of 10 µM LFA878 no mAb R7.1 binding was observed to T-cells 

indicating that at this concentration all LFA-1 receptors on T-lymphocytes were 

occupied (Fig. 3.8). At the same time LFA878 had no effect on the binding of mAb 

TS2/4.1.1 e.g. the expression of the LFA-1 receptors after 22 h incubation at 37°C 

(Fig. 3.8). Similar results were obtained with other αL L-site inhibitors such as 

COMPOUND X (Table 3.2).  

Substituting the mAb R7.1 with mAb MEM48 enabled to apply the EA-REMA 

principle to assess the effects of the β2 I-like domain inhibitor XVA143 in human 

whole blood. In the experiment shown 2 µM XVA143 enhanced  the binding of mAb 

MEM48 to whole blood T-cells by >3 fold (Fig 3.9). At the same time, XVA143 led to 

a significant downregulation (-52%) of LFA-1 surface receptors on T-cells as 

measured by the reduced binding of mAb TS2/4.1.1 (Fig 3.9). 
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Figure 3.8 Effects of the αL L-site inhibitor LFA878 on T-cell activation, LFA-1 receptor 
occupancy and LFA-1 expression in whole blood (EA-REMA). 50% diluted blood samples 
were incubated in the presence of 2 mM MgCl2 with (+ OKT3) or without (- OKT3) 
immobilized mAb OKT3. One blood sample (+LFA878) contained 10 µM LFA878. mAb R7.1 
was used to assess LFA-1 receptor occupancy by LFA878. mAb TS2/4.1.1-Alexa647 was 
employed to measure the effect on receptor expression. CD69 upregulation was measured to 
quantify the effect on T-cell activation. Experiment was carried out as described in Methods. 
One representative experiment out of more than 3 is shown. MFI: Mean fluorescence 
intensity.  Numbers in the left and middle column indicate the MFIs; numbers in the right 
column the percentage of  CD69+CD3+ T-cells. 
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Figure 3.9 Effects of the β2 I-like domain inhibitor XVA143 on T-cell activation, LFA-1 
receptor occupancy and expression in whole blood (EA-REMA). 50% diluted blood samples 
were incubated in the presence of 2 mM MgCl2 with (+ OKT3) or without (- OKT3) 
immobilized mAb OKT3. One blood sample (+ XVA143) contained 2µM XVA143. mAb 
MEM48 was used to assess LFA-1 receptor occupancy by XVA143. mAb TS2/4.1.1-
Alexa647 was employed to measure the effect on receptor expression. CD69 upregulation 
was measured to quantify the effect on T-cell activation. Experiment was carried out as 
described in Methods. One representative experiment out of more than 3 is shown. Numbers 
in the left and middle column indicate the MFIs; numbers in the right column the percentage 
of  CD69+CD3+ T-cells. 
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Figures 3.10-3.13 illustrate the effects of the LFA-1 inhibitors LFA878, COMPOUND 

X and XVA143 in the different EA-REMA readouts. These compounds were 

compared in mAb OKT3/MgCl2 (LFA-1 dependent) and OKT3/aCD28 (CD28 

dependent) stimulation. Pravastatin, which does not block LFA-1 (chapter 1) was 

included in the shown experiments as a control. All tested LFA-1 inhibitors, but not 

pravastatin, blocked mAb OKT3/MgCl2 triggered T-lymphocyte activation (Fig. 3.10a) 

with different potencies in a concentration dependent manner. The inhibitory effects 

were clearly dependent on LFA-1 signaling pathways as the inhibitors failed to block 

CD69 upregulation when the T-lymphocytes were stimulated with OKT3/aCD28 (Fig. 

3.10b), even though LFA-1 receptors were fully occupied by the inhibitors as 

measured by the REMA readout (Fig. 3.12b). These data provide strong evidence 

that low molecular weight (LMW) LFA-1 inhibitors can potently block LFA-1 

dependent activation of T-lymphocytes in the whole blood environment. The data 

also demonstrate the high potency of the β2 I-like domain inhibitor XVA143. XVA143 

blocked T-cell activation with the highest potency (IC50: 48 nM), followed by 

COMPOUND X (IC50 1.0 µM). LFA878 blocked T-cell activation with the lowest 

potency (IC50 2.6 µM). All results of the whole blood assays are summarized in Table 

3.2. 

Figures 3.11a&b illustrate the effect of the test compounds on the expression of LFA-

1 receptors on whole blood T-lymphocytes after 22 h at 37°C. The results provide 

strong evidence that prolonged incubation of XVA143 leads to a significant reduction 

of LFA-1 cell surface molecules (35% in the experiment shown). The downregulation 

of LFA-1 surface receptors was confirmed by using other anti LFA-1 mAbs such as 

mAb R7.1 (Fig. 3.12a) or mAb IB4 (not shown). This effect of XVA143 was highly 

reproducible and also observed in non-stimulated blood samples after 22 h at 37°C. 

In addition, the downregulation of LFA-1 by XVA143 correlated well with the potency 

of XVA143 in the mAb OKT3 stimulated T-cell activation assay (Table 3.2). However, 

since XVA143 did only induce a partial downregulation (maximal ≤55% of total LFA-1 

staining) it is unlikely that the high potency of XVA143 in the mAb OKT3 mediated T-

cell activation assay is solely a result of the diminished numbers of LFA-1 receptors 

present at the cell surface. Since LFA-1 is not reported to be proteolytically cleaved, it 
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is plausible that XVA143 caused internalization of LFA-1. In independent experiments 

we have observed complete internalization of LFA-1 receptors from the cell surface 

after 22 h incubation with crosslinking anti LFA-1 antibodies (data not shown) which 

indicates that upon receptor occupancy LFA-1 receptors can be internalized. The 

partial nature of the LFA-1 downregulation mediated by XVA143 could indicate that 

two subgroups of LFA-1 may exist which differ by their ability to internalize upon 

receptor occupancy by XVA143. The almost constant ratio of 35-55% downregulation 

of LFA-1 by XVA143 after 22 h further substantiates this speculation. In separate 

experiments the effect of XVA143 on the binding of mAbs R7.1, IB4 and TS2/4.1.1 

was studied after 1 h incubation at 37°C without stimulation. The short term 

incubation of whole blood lymphocytes with XVA143 did not to affect the binding of 

these mAbs to T-lymphocytes suggesting that downregulation of LFA-1 receptors by 

XVA143 required prolonged incubation (data not shown). In contrast to XVA143, all 

other test compounds did not induce a downregulation of LFA-1 surface receptors on 

T-lymphocytes under these experimental conditions again showing the completely 

different mode of action of these compounds. 

A comparison of the effect of the test compounds on the receptor conformation e.g. 

LFA-1 receptor occupancy under EA-REMA conditions is shown in Figures 3.12 and 

3.13. It should be noted, that neither mAb OKT3/MgCl2 nor OKT3/aCD28 stimulation 

(Fig. 3.12&3.13) for 22 h or the dilution of the blood by 50 % (EA-REMA versus 

REMA) had a significant effect on the potency of the compounds to reduce or induce 

binding of mAbs R7.1 and MEM48 respectively. The αL L-site inhibitors LFA878 and 

COMPOUND X reduced the binding of mAb R7.1 to whole blood T-lymphocytes with 

nM potencies while pravastatin was inactive (Fig. 3.12a&b;Table 3.2). The 

downregulation of cell surface LFA-1 by XVA143 was confirmed by the reduced 

binding of mAb R7.1 (Fig 3.12a).  As expected XVA143 potently induced mAb 

MEM48 binding to whole blood T-cells while the αL L-site inhibitors did not have an 

effect on the expression of the mAb MEM48 epitope (Figs. 3.13a&b) demonstrating 

again the ability of the monitoring antibodies to detect the two modes of action of the 

tested LFA-1 inhibitors.  
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Figure 3.10 Effect of LFA-1 inhibitors and pravastatin on T-lymphocyte activation in whole blood cultures (EA-REMA): Whole undiluted 
blood was spiked with the compounds at concentrations indicated in the graphs. CD69 upregulation was quantified on CD3+ T-
lymphocytes after 22 h stimulation of 1:1 diluted blood with a) mAb OKT3/MgCl2 or b) OKT3/aCD28.  4 individually activated samples were 
pooled. Two of these pooled samples were stained and measured as independent samples. Data shown are means of these duplicates. 
Standard deviation is shown to indicate range of data. The EA-REMA was conducted as described in Methods. One representative 
experiment out of more than 3 is shown. 
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Figure 3.11 Effect of LFA-1 inhibitors and pravastatin on the cell surface expression of LFA-1 on T-lymphocytes in whole blood cultures 
(EA-REMA): LFA-1 cell surface expression was quantified by binding of mAb TS2/4.1.1 to CD3+ T-lymphocytes after 22 h stimulation of 
1:1 diluted blood with a) mAb OKT3/MgCl2  or b) OKT3/aCD28.  4 individually activated samples were pooled, stained and measured as 
two independent samples. Data shown are means of these duplicates. Standard deviation is shown to indicate range of data. The EA-
REMA was conducted as described in Methods. One representative experiment out of 3 is shown. 
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Figure 3.12 Effect of LFA-1 inhibitors and pravastatin on the binding of the monitoring antibody R7.1 to LFA-1 on T-lymphocytes in whole 
blood cultures (EA-REMA): Whole undiluted blood was spiked with the compounds at concentrations indicated in the graphs. mAb R7.1 
binding was quantified on CD3+ T-lymphocytes after 22 h stimulation of 1:1 diluted blood with a) mAb OKT3/MgCl2  or b) OKT3/aCD28. 4 
individually activated samples were pooled. Two of these pooled samples were stained and measured as independent samples. Data 
shown are means of these duplicates. Standard deviation is shown to indicate range of data. The EA-REMA was conducted as described 
in Methods. One representative experiment out of 3 is shown. XVA143 was not measured in the OKT3/aCD28 (b) experiment. 
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Figure 3.13 Effect of LFA-1 inhibitors and pravastatin on the binding of the monitoring antibody MEM48 to LFA-1 on T-lymphocytes in 
whole blood cultures (EA-REMA): Whole undiluted blood was spiked with the compounds at concentrations indicated in the graphs. mAb 
MEM48 binding was quantified on CD3+ T-lymphocytes after 22 h stimulation of 1:1 diluted blood with either a) mAb OKT3/MgCl2  or b) 
OKT3/aCD28.  4 individually activated samples were pooled. Two of these pooled samples were stained and measured as independent 
samples. Data shown are means of these duplicates. Standard deviation is shown to indicate range of data. The EA-REMA was conducted 
as described in Methods. One representative experiment out of 3 is shown. 
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3.3.9 Development of T-cell proliferation assays in human whole blood  

Initially we attempted to test the effect of LFA-1 inhibitors on human blood T-

lymphocytes proliferation in 50% blood. Stimulation of lymphocytes with mAb OKT3 

for 96 h in the presence or absence of MgCl2 was, however, not successful to trigger 

significant proliferation in 50% diluted whole blood cultures (data not shown). Dilution 

of blood samples by 1:10 and the use of the novel serum free culture medium X-

VIVO 10™ resulted in significant and reproducible proliferation of mAb OKT3 

stimulated T-cells as measured by 3H thymidine incorporation after 96 h of 

incubation. In addition, the use of X-VIVO 10™ medium resulted reproducibly in ≥3 

times stronger proliferation compared to the standard cell culture medium RPMI 1640 

(data not shown). The beneficial effect of X-VIVO 10™ medium on lymphocyte 

proliferation in diluted blood cultures was recently described 29. As shown in figure 

3.14 the degree of proliferation of whole blood lymphocytes was dependent on the 

concentration of immobilized mAb OKT3 and to a lesser extent on the blood donor. 

Whole blood lymphocytes of donor 1 started to proliferate at low concentrations of 

mAb OKT3 (≤0.3µg/ml, Fig. 3.14a) while no 3H thymidine incorporation was observed 

for lymphocytes of donor 2 at this concentration (Fig. 3.14b). At 1 µg/ml immobilized 

mAb OKT3, T-lymphocytes of both donors proliferated maximally. This concentration 

was routinely used in our proliferation assays. 1 µg/ml of mAb OKT3 stimulation 

resulted in reproducible proliferation also using blood lymphocytes of other donors 

(not shown). Interestingly, at higher concentrations of immobilized mAb OKT3 a 

strong decline in proliferation was observed (Fig. 3.14a&b). It is likely that 

lymphocytes underwent activation-induced cell death (AICD) 37,38 as a result of 

overstimulation by the high mAb OKT3 concentration 39. The isotype control IgG used 

(IgG2a) did not induce 3H thymidine incorporation under the same experimental 

conditions demonstrating that the mitogenic stimulation measured was specific for 

mAb OKT3 (Fig. 3.14a&b). 
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Figure 3.14 Proliferation induced by mAb OKT3 was dependent on the blood origin and the 
amount of mAb OKT3 coated. Experiments were carried out with the blood samples of 2 
donors (a) and (b). Blood samples were diluted 1:10 with X-VIVO 10™ medium and 
incubated for 96 h at 37°C. 3H thymidine incorporation was measured after 96 h of incubation 
with mAb OKT3 or the isotype control mAb (IgG2a) as described in Methods. Data are 
means of quadruplicates ±SD.   

 

3.3.10  Effect of LFA-1 inhibitors and control compounds on T-cell 

proliferation in human blood  

Figure 3.15a exemplifies the in vitro effects of LFA-1 inhibitors LFA878, COMPOUND 

X, XVA143 and the control compound pravastatin on mAb OKT3 stimulated 

proliferation of lymphocytes in diluted blood. All LFA-1 inhibitors potently blocked 

mAb OKT3 stimulated lymphocyte proliferation (Fig 3.15a). In contrast, the 

compounds showed no effect on OKT3/aCD28 stimulated proliferation (Fig 3.15b) 

which again demonstrated the LFA-1 pathway specific effect of the tested inhibitors. 

As paralleled in the T-cell activation assay, XVA143 was significantly more potent 

(≥40 fold) than LFA878 or COMPOUND X (Table 3.2). These findings show for the 

first time that LFA-1 inhibitors can impair CD3 stimulated T lymphocyte proliferation in 

whole blood cultures in vitro. As observed before in the T-cell activation assays 

pravastatin had no effect in the whole blood proliferation assays.  
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Figure 3.15 Effect of LFA-1 inhibitors and pravastatin on the proliferation of lymphocytes in whole blood. Undiluted whole blood was 
spiked with the compounds at concentrations indicated in the graphs. The blood was then diluted 1:10 with XVIVO-10 medium and 
incubated with a) mAb OKT3 or b) OKT3/anti CD28 for 96 h at 37°C. 3H thymidine was added for the last 22 h of incubation. 3H thymidine 
incorporation was quantified as described in Methods. Data are means ± SD of triplicates. One representative experiment out of 3 is 
shown. 
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3.3.11 Correlation between receptor occupancy and inhibition of T-cell 

activation and proliferation in whole blood cultures 

The relationship of receptor occupancy by the LFA-1 inhibitors and the effect on mAb 

OKT3 stimulated T-cell activation (CD69) and proliferation was studied.  

Despite of the 1:10 dilution of the blood samples in the mAb OKT3 proliferation assay 

the receptor occupancy by the tested inhibitors (REMA) was not significantly altered 

in comparison to undiluted blood e.g. equal IC50s were obtained in the REMAs in 1:10 

diluted and undiluted blood (not shown). This allowed us to compare the data 

generated in the different assays. 

As an example for αL L-site inhibitors COMPOUND X showed a non linear 

relationship between the inhibition of mAb R7.1 binding and the inhibition of T-cell 

activation (Fig. 3.16a) and proliferation (Fig. 3.16b). Our results show that >85% of 

receptor occupancy is needed (e.g. >85 % inhibition of mAb R7.1 binding) to reach 

half-maximal inhibition of T-cell responses in whole blood. For COMPOUND X this 

corresponded to a blood concentration of 0.9 µM. The logarithmic values of the 

antibody binding fluorescence negatively correlated (R= ≥-0.94) with the T-cell 

responses (Fig. 3.16c&d). LFA878 demonstrated the same correlation between 

receptor occupancy and the inhibition of T-cell responses (data not shown). Our data 

suggest that the logarithmic values of the mAb R7.1 binding signals can be used as a 

marker to estimate the effect of αL L-site inhibitors on in vitro stimulated functional T-

cell responses.  

In contrast to the experiments described above, we found a linear relationship 

between the induction of mAb MEM48 binding and the inhibition of T-cell activation 

and proliferation by the β2 I-like domain inhibitor XVA143. The agonistic activity of 

XVA143 on mAb MEM48 binding strongly correlated with the blockade of CD69 up-

regulation (Fig. 3.17a) and proliferation (Fig. 3.17b) (R≥0.96). Receptor occupancy by 

XVA143 translated therefore directly into suppression of in vitro T-cell functional 

responses. These results suggest that receptor occupancy monitoring (REMA) can 
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also be a valuable tool to predict the potency of β2 I-like domain inhibitors in in vitro 

stimulated functional T-cell responses in whole blood.   
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Figure 3.16 Receptor occupancy at different concentrations of COMPOUND X was measured 
by the inhibition of mAb R7.1-FITC binding to whole blood T-lymphocytes using the EA-REMA 
method. Data were correlated to the inhibition of a) mAb OKT3/MgCl2 induced CD69 
upregulation (EA-REMA) and b) the inhibition of mAb OKT3 triggered T-cell proliferation as 
described in Methods. Regression analysis was performed to fit the curve and to calculate the R 
value. Data are means of duplicates. One of 3 independent experiments is shown. 
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Figure 3.17 Correlation between receptor occupancy and the inhibition of mAb OKT3 
mediated T-cell activation and proliferation by XVA143. Receptor occupancy by XVA143 was 
measured by induction of mAb MEM48 binding to whole blood T-cells using the EA-REMA 
method. Data were correlated to a) the inhibition of mAb OKT3/MgCl2 induced CD69 
upregulation (EA-REMA) and b) the inhibition of mAb OKT3 triggered T-cell proliferation as 
described in Methods. Regression analysis was performed to fit the curves and to calculate 
the R value. Data are means of duplicates. 
 
 

3.3.12 LFA-1 inhibitors are inactive in phytohemaglutinin stimulated 

proliferation of whole blood T-lymphocytes  

As already observed for the OKT3/aCD28 stimulated expression of the activation 

marker CD69 and proliferation, the activity of LFA-1 antagonists in whole blood was 

dependent on the type of stimulus used. Proliferation of whole blood lymphocytes 

induced by the T-cell stimulating lectin phytohemaglutinin (PHA 60) was not 

(COMPOUND X, LFA878) or only marginally (XVA143, 35%) blocked by LFA-1 

inhibitors demonstrating that PHA stimulated proliferation is insensitive towards 

extracellular inhibition of LFA-1 function (Table 3.2).  
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3.3.13 Effect of cyclosporine A (CsA) and everolimus in the whole blood 

assays and comparison to LFA-1 inhibitors 

To better understand the results of the whole blood assays in the context of 

immunosuppression and to validate the test systems, the calcineurin inhibitor CsA 

and the mTOR inhibitor everolimus were tested. Both compounds are therapeutically 

used immunosuppressants which block T-cell activation (CsA 40) and proliferation 

(CsA and everolimus 2,32) via interfering with intracellular pathways.  

As expected CsA or everolimus had no effect on the binding of the mAbs R7.1, 

MEM48 or TS2/4.1.1 to T-lymphocytes in whole blood (Table 3.2).  

CsA inhibited mAb OKT3/MgCl2 stimulated T-cell activation (CD69 upregulation) in 

whole blood equipotent (IC50: 0.8 µM) to COMPOUND X (Table 3.2). To our surprise 

the LFA-1 inhibitor XVA143 showed a 16 fold higher potency than CsA demonstrating 

the essential requirement of β2 integrin function in this assay system. Everolimus did 

not interfere with mAb OKT3 stimulated T-cell activation (Table 3.2). These data 

indicate that LFA-1 inhibitors can be as potent or can even more potently interfere 

with T-lymphocyte activation in whole blood cultures as classical immuno-

suppressants. It should be noted however, that CD69 is only one of many possible T-

cell activation markers and other markers (e.g. CD25, CD71 or intracellular 

cytokines) may have a higher sensitivity towards calcineurin inhibition. We have 

tested these markers (data not shown) but were unable to establish robust and LFA-1 

inhibitor sensitive T-cell activation protocols in whole blood cultures.  

CsA and everolimus inhibited both mAb OKT3 or PHA stimulated whole blood 

lymphocyte proliferation with nM potencies (Table 3.2). Again XVA143 was 

significantly more potent in the mAb OKT3 stimulated proliferation assay than CsA 

and nearly equipotent than everolimus. In contrast, CsA or everolimus inhibited mAb 

OKT3 stimulated proliferation with significantly higher potency than the αL L-site 

inhibitors LFA878 and COMPOUND X. 

Interestingly OKT3/aCD28 stimulated T-lymphocyte activation and proliferation were 

largely resistant to inhibition by CsA. Only minor inhibition of lymphocyte activation 
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and proliferation was observed in the presence of CsA (Table 3.2). Everolimus was 

unable to block OKT3/aCD28 stimulated activation. Proliferation induced by 

OKT3/aCD28 was potently but only partially inhibited. The maximum inhibition by 

everolimus measured under our assay conditions was <75%. Similar observations 

were made with CsA 41,42 and everolimus in OKT3/aCD28 mediated T-cell response 

assays using purified lymphocytes or T-cell lines (Novartis in-house unpublished 

observation). These properties of CsA and everolimus in the OKT3/aCD28 stimulated 

assays suggest, that the nature of signaling events induced by the crosslinking 

antibodies may base, at least in part, on calcineurin and mTOR independent 

mechanisms.   
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3.3.14 Summary of the effects of the tested compounds in the whole blood assays 

Table 3.2 Summary: Profile of LFA-1 inhibitors and control compounds in the human whole blood assays 

Stimulus mAb OKT3/MgCl2 

or OKT3/aCD28 

mAb 
OKT3/MgCl2 

mAb OKT3 OKT3/aCD28 OKT3/aCD28 PHA 

Readout 

 

 

 

Compound 
Target 

CD11a 
REMA

‡
 

(R7.1) 

CD18 
REMA

‡
 

(MEM48) 

LFA-1 
expression

‡
 

(TS2/4.1.1) 

CD69 
upregulation

‡
 

3
H thymidine 

incorporation
‡‡

 
CD69 

upregulation
‡
 

3
H thymidine 

incorporation
‡‡

 

3
H thymidine 

incorporation
‡‡

 

LFA878 αL (L-site) 0.5±0.2  >10 >10 2.6±1.7 ** 2.6±0.5 *** >10 >10 >10 

COMPOUND X αL (L-site) 0.15±0.06  >10 >10 1.0±0.2 *** 1.0±0.38 ** >10 >10 >10 

XVA143 β2-I-like 
domain  

>50 EC50: 

0.031±0.007 

35-55% 
‡‡‡

  
at 10 µM 

0.045±0.01 

0.049±0.016 0.023±0.001 >10 >10 ≤35% 
inhibition at 10 

µM 

Pravastatin HMG CoA 
reductase 

>40  >40 >10 >40 >40 >40 >40 >40 

CSA Calcineurin 
phosphatase  

>10 >10 >10 0.8±0.26 ** 0.15±0.09 * ≤35% 
inhibition at 

10 µM 

≤55% inhibition 
at 10 µM 

0.05±0.03 

Everolimus mTOR  >10 >10 >10 ≤35% 
inhibition at 

2 µM 

0.01±0.005 
n.s. 

≤35% 
inhibition at 2 

µM 

0.03±0.02 

≤75% inhibition 
at 2 µM 

0.015±0.014 

 
All results were obtained in whole human blood cultures by the EA-REMA and proliferation assays described in Methods.  Values represent 
the mean ± SD of more than 3 independent experiments. Concentrations, IC50s and EC50 are in µM. Concentrations shown are the highest 
concentrations tested. No significant effects at these concentrations were observed except if indicated.  ‡: readout after 22 h incubation at 
37°C; ‡‡: readout after 96 h incubation at 37°C;‡‡‡: receptor internalization %. The statistical significance of the compound effects versus 
XVA143 on activation and proliferation was tested using the unpaired t-test, where *p<0.05, **p<0.01 and ***p<0.001 are considered 
significant, very significant and highly significant, respectively. 
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 3.4 Discussion  

Affinity regulation of LFA-1 and the transmission of post ligand binding events 

requires conformational flexibility and three dimensional conformational changes to 

occur within the quaternary receptor structure. Differential conformational states 

within LFA-1 induced by receptor activation or by allosteric LFA-1 inhibitors were 

demonstrated to be detectable by the binding pattern of specific monoclonal 

antibodies (mAbs). The binding of the anti CD11a mAb R7.1 or mAb R3.1 to the LFA-

1 αL I domain was shown by us and others to be significantly impaired by different αL 

L-site inhibitors (chapter 1 15,43). In the work described here, we show for the first time 

that two structurally different αL L-site inhibitors LFA878 and COMPOUND X blocked 

the binding of mAb R7.1 to leukocytes in undiluted blood (REMA) with nanomolar 

potencies. These potencies were similar to the IC50s measured in the in vitro cellular 

adhesion assay (HUT78/ICAM-1, Table 3.1 and 3.2).  

The REMA employing mAb R7.1 was found to be simple, robust and was applicable 

to different mammalian species which facilitated to study receptor occupancy in 

animal blood. The REMA was tested and validated in rabbits and it was 

demonstrated that the assay could be applied to study pharmacodynamic receptor 

occupancy of αL L-site inhibitors ex vivo. During the documentation of this work a 

method was published using a similar approach to measure receptor occupancy by 

αL L-site inhibitors in blood of humans and monkeys. This publication suggested that 

receptor occupancy measurements can be achieved using a different anti CD11a 

mAb and hydantoin derived αL L-site inhibitors 44. The authors further speculated that 

the binding of their utilized mAb (clone R3.1) may be competitively inhibited by their 

LFA-1 inhibitor. It remains open, however, whether the published method can be 

applied to LFA-1 inhibitors others than hydantoins. Furthermore, the mode of action 

by which the binding of mAb R7.1 (REMA) is inhibited by various classes of αL L-site 

inhibitors is not investigated yet.  

We have furthermore developed a protocol that allowed for the first time to measure 

target occupancy by the putative β2 I-like domain inhibitor XVA143 in human whole 

blood. XVA143 induced conformational changes in the β2 chains (CD18) expressed 
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on leukocytes in whole blood. The effects of XVA143 on the three dimensional 

structure of LFA-1 was detected by the enhanced binding of the anti CD18 mAb 

MEM48. The agonistic potency (EC50) of XVA143 on mAb MEM48 binding in whole 

blood was ≥5 times less compared to the potency (IC50) measured in the cellular 

adhesion assay (Table 3.1 and 3.2). This difference was not evident on purified PBLs 

(not shown). These findings may indicate that XVA143 was bound to serum proteins 

in whole blood. Due to lack of cross-species reactivity of mAb MEM48 this CD18 

REMA variant could not be validated ex vivo. Other mAbs such as clones KIM127 

and m24 were recently described to detect XVA143 induced conformational changes 

in LFA-1 16. These mAbs may be tested for their suitability to assess receptor 

occupancy by XVA143 or derivatives in blood of other species than man. 

The modulation of mAb binding to integrins by small molecules is rather exceptional. 

Binding of anti-CLIBS (cation/ligand-induced binding sites) antibodies (reviewed by 

Bazzoni & Hemmler 45) has been shown to be enhanced in the presence of LMW 

antagonists against other, non β2, integrins such as αIIbβ3 46,47 or VLA-4 (α4β1) 48. In 

this view mAb MEM48 could be accounted to the category of anti CLIBS antibodies 

while the mAb R7.1 differs from this category in that its binding is impaired, not 

enhanced in the presence of LFA-1 inhibitors. Antibodies with reduced target binding 

in the presence of a LMW antagonist have been successfully employed to study 

target receptor occupancy by xemilofiban, an orally available αIIbβ3 antagonist in 

human blood ex vivo 49.  This study provided evidence that receptor occupancy by 

integrin inhibitors can be studied in clinical trials using selected mAbs. 

 

To date no studies were reported demonstrating that LFA-1 occupancy by an inhibitor 

translates into suppression of functional responses of native human T-cells. 

Furthermore, the important question remained to which extent cell surface receptors 

must be occupied in order to block LFA-1 mediated functional T-cell responses. To 

answer these questions, we studied the effect of LFA-1 inhibitors on T-cell activation 

(CD69) and proliferation in human blood and correlated it to receptor occupancy.  
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Both, the principle to activate T-lymphocytes in 1:1 diluted blood by mAb OKT3 and 

supplemental MgCl2, as well as the method to assess T-cell activation together with 

receptor expression and occupancy in one sample (EA-REMA), are described here 

for the first time. The EA-REMA made it possible to conveniently assess the effects 

of LFA-1 inhibitors on receptor occupancy, receptor expression and T-cell activation 

on individual T-cells stimulated in whole blood cultures. The EA-REMA and the mAb 

OKT3 stimulated whole blood T-cell proliferation assay allowed to establish a broad 

“in vitro pharmacodynamic” profile of LFA-1 inhibitors on human blood T-cells.  

We could show that receptor occupancy by LFA-1 inhibitors correlated with the 

inhibition of in vitro T-cell activation and proliferation in whole blood. Interestingly, the 

degree of receptor occupancy required for suppressing T-cell responses was 

different for the αL L-site inhibitors and the putative β2 I-like domain inhibitor 

XVA143. For the two αL L-site inhibitors LFA878 and COMPOUND X > five fold 

differences between the IC50s in the mAb R7.1 binding- and the mAb OKT3 

stimulated T-cell activation or proliferation assays were observed. Nearly complete 

receptor occupancy by these inhibitors was thus required to achieve half-maximal 

inhibition of the LFA-1 dependent T-cell functions. In contrast, XVA143 induced the 

binding of mAb MEM48 (REMA) and blocked equipotently T-cell activation and 

proliferation in whole blood. Our data strongly suggest that the conformational 

changes induced by XVA143 directly translate into blockade of immunologically 

relevant LFA-1 (or Mac-1) dependent pathways. 

An additional distinguishing property of XVA143 was revealed by the assessment of 

LFA-1 cell surface expression in the EA-REMA. Prolonged incubation of whole blood 

with XVA143 led to a partial downregulation of LFA-1 cell surface receptors on T-

cells in whole blood and also on purified lymphocytes (not shown), a phenomenon 

which was not observed for the tested αL L-site inhibitors. This property of XVA143 

was not reported for any LFA-1 inhibitor before and underlines again the differential 

effects of αL L-site inhibitors and the putative β2 I-like domain inhibitor on native LFA-

1. Our finding suggests that XVA143 may have amongst other integrin inhibitors a 
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unique mode of action. The downregulation of the target receptor by an LMW integrin 

inhibitor has not been described so far. LMW integrin inhibitors against αIIbβ3, such 

as xemilofiban 49,50, or the LMW α4β1 (VLA-4) inhibitor BIO5192 51 were described to 

not affect the cell surface expression of their target receptors. 

  

During the assay development for this thesis we found that supplementary 

magnesium cations can have substantial synergistic effects on the CD69 

upregulation on whole blood T-cells triggered by mAb OKT3. The effect of 

magnesium on CD69 upregulation on T-cells was confirmed using mAb OKT3 or 

allogenic cells as stimulators for purified PBLs (K.W. unpublished observation). 

Furthermore, the magnesium effect not evident when T-cells were activated by SEB 

(data not shown) indicating that supplemental magnesium cations may strengthen 

required cell to cell contacts and/or LFA-1 dependent costimulatory signaling. 

However, it was proposed that during early stages of wound healing elevated 

magnesium concentrations found in the wound fluid could serve to stimulate 

migration of macrophages, keratinocytes and endothelial cells 52. Our findings 

provide for the first time experimental evidence that elevated extracellular 

magnesium cations can enhance LFA-1 dependent T-cell activation in human whole 

blood. Our data give raise to the speculation that locally elevated magnesium 

concentrations could be involved in the regulation of β2 integrin dependent functions 

of immune cells in vivo. Further studies, however, are indispensable to support the 

physiological relevance of the regulatory function of magnesium. 

 

The technical simplicity and robustness of the here described receptor epitope 

monitoring assays (REMAs) suggest that they could be applicable without major 

optimizations as PD assays in clinical studies for LFA-1 inhibitors. LFA-1 expression 

on T-cells may be altered during courses of stress 53, malignancies or autoimmune 

disorders 54,55 by medication (e.g. statins 56, thalidomide 57) or by the investigated 

drug (e.g. XVA143 class). Potential alterations of LFA-1 expression would have an 



 Chapter 2 Discussion 

  

 

120 

impact on the readout of the REMAs and should be considered, in particular, in later 

phases of clinical development of LFA-1 inhibitors. The mAb TS2/4.1.1 component of 

the EA-REMA is intended to detect these alterations in LFA-1 expression on 

peripheral leukocytes. This antibody can be employed in experiments were only 

receptor occupancy and expression measurements and not T-cell activation are 

desired.  

The REMAs as methods for pharmacodynamic (PD) receptor occupancy studies may 

have several benefits for clinical application. Next to the simplicity and speed of 

analysis, the insights in target receptor occupancy by the drug administered is of high 

value. This is particularly important if active metabolites are generated, if the inhibitor 

investigated is substantially bound to serum proteins or if a compound has a rapid 

clearance, but due to a strong target affinity (high kon) remains biologically active. In 

these cases, PK would not correlate with PD effects. The REMAs may complement 

PK measurements during the pharmacological characterization of LFA-1 inhibitors 

and may guide dose finding in early phases of clinical development. For preclinical 

research efforts, the REMA (mAb R7.1) enables new possibilities to conduct 

pharmacodynamically controlled animal models. In addition, REMAs may give 

insights into systemic effects of locally administered compounds or are useful for the 

assessment of PK/PD relationships in animal models. All these studies could help to 

accelerate the selection and characterization of LFA-1 inhibitors. 

The clinically used immunosuppressants CsA and everolimus inhibited the mAb 

OKT3 stimulated whole blood proliferation assay with IC50s of 0.15 and 0.01 µM 

respectively. Patients that are on immunosuppressive therapy with these drugs have 

average blood levels of 0.1-0.2 µM (CsA) 58 or 3-16 nM (everolimus, combination 

therapy with CsA) 59. A comparison of the blood levels of CsA and everolimus 

necessary for immunosuppression with the IC50s determined in the mAb OKT3 

stimulated proliferation assay suggests that the sensitivity of this assay would allow 

its application as PD assay in clinical trials. All LFA-1 inhibitors tested demonstrated 

considerable inhibitory properties in this assay. Moreover, LFA-1 inhibitors can be 



 Chapter 2 Discussion 

  

 

121 

expected to impair leukocyte extravasation from the blood stream and block 

migration processes which may add an additional immunomodulatory effect. Based 

on these considerations LFA-1 inhibitors may have the potential to be promising 

immunomodulatory agents.  

In contrast to the robust receptor occupancy assays, the T-cell activation or the 

proliferation assays described here may need extensive optimization and validation 

before being applicable as PD assays in clinical trials. We have observed that inter-

donor variation concerning the T-cell response to mAb OKT3 exist (Fig. 3.6). In 

addition, we encountered significant intra-day and inter-assay variability (not shown) 

in the CD69 upregulation and proliferation assays suggesting that mAb OKT3 

stimulated T-cell response assays in whole blood may have a considerable degree of 

variation. However, once optimized and properly validated, these assays could 

provide valuable insights into the inter-individual T-cell sensitivity towards a LFA-1 

inhibitor which may again guide dose finding.  

 

There are, however, certain considerations for the clinical application of the here 

described methods as PD assays. 

There is no in vitro stimulation of T-cell immune responses that realistically reflects all 

the mechanisms and cell types involved in an in vivo immune response. The most 

prominent location where immune responses take place in vivo are the lymph nodes 

and lymphoid tissue. These compartments contain distinct micro environments than 

peripheral blood. Peripheral blood may therefore not represent all cell types involved 

in an immune response. 

Besides,  it is generally accepted that in vitro whole blood PD assays can not reflect 

the tissue distribution of a drug. This may have a significant impact on the efficacy 

and dose finding, in particular, if a compound shows tissue specific accumulation.  

Most of the pharmacodynamic T-cell function assays reported in literature lack a 

direct correlation with efficacy. For therapeutics in immunologic diseases (transplant 
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rejection, autoimmune diseases) it is difficult to demonstrate a direct correlation of a 

T-cell function PD readout to efficacy as these tests assess the responsiveness of T-

cells to in vitro stimulants. These results are largely dependent on the degree and the 

nature of the stimulation, the PD readout and the sensitivity of the stimulated 

pathways towards the tested drug. The results of such PD assays can therefore over-

estimate the compound efficacy or be under-predictive. The outcome of ex vivo 

stimulated T-cell responses must thus be considered with caution.  

For all these reasons, it needs to be determined in clinical trials, to which degree the 

LFA-1 PD assays described here can really reflect the immunosuppressive potential 

of LFA-1 inhibitors. 
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4 Final conclusion 

The work of this PhD thesis elucidated that low molecular weight (LMW) LFA-1 

(αLβ2) inhibitors block the function of LFA-1 with different modes of actions. 

Accordingly, these inhibitors can be designated into two major groups: The αL L-site 

inhibitors and the putative β2 I-like domain inhibitors.  

αL L-site inhibitors encompass meanwhile several chemical classes. These inhibitors 

induce conformational changes within αL I domain of the native LFA-1 receptor which 

can be monitored using monoclonal antibodies. We provided further evidence that 

lovastatin-derived αL L-site inhibitors can be further distinguished by their effect on 

the conformation of the β2 I-like domain on the neighboring β2 chain. 

The definition of the second major class of LFA-1 inhibitors based on our finding that 

the compound class of XVA143 inhibits β2 integrin adhesive function by inducing 

conformational changes in the regulatory I-like domain as well as the stalk region of 

the β2 chain of LFA-1. We demonstrated for the first time that the β2 chain contains 

motives that allow potent, probably allosteric, β2 integrin inhibition by LMW 

compounds. The requirement of the β2 I-like domain for the activity of XVA143 was 

confirmed meanwhile by others 16. However, a crystal structures of XVA143 with the 

β2 I-like domain or NMR studies are mandatory to finally prove our hypothesis that 

XVA143 binds to the β2 I-like domain. We therefore designated this compound class 

as putative β2 I-like domain inhibitors. 

Furthermore, our studies provided next to the methodology, insights into the potential 

pharmacodynamic (PD) effects of LFA-1 inhibitors of both compound classes. These 

studies demonstrated that LFA-1 inhibitors occupy their target in whole blood and 

that receptor occupancy can translate into potent suppression of T-cell function. The 

distinct modes of action of the tested LFA-1 inhibitors were not only evident by their 

effects on the LFA-1 receptor conformation but were also reflected by differential 

effects on T-cell function and LFA-1 cell surface expression. Furthermore, our 

findings strongly suggest that regulatory domains in the β2 chain are novel and 

promising targets for T-cell suppression approachable with LMW inhibitors. However, 

further investigations, backed by in vivo testing and the assessment of other β2 I-like 
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domain inhibitors are required to allow a comparison of the immunosuppressive 

concepts between αL L-site and β2 I-like domain inhibitors.  

The here described methods may serve as a basis to assess PD effects of LFA-1 

inhibitors in clinical studies. The results of these studies will broaden our 

understanding whether ex vivo PD effects - measured by the here described 

techniques – allow a correlation with therapeutic efficacy of LFA-1 inhibitors.  
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