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I. SUMMARY  
 
 
Acute myeloid leukemia (AML) is characterized by a poor long-term outcome in the majority of 

patients following conventional treatment with chemotherapy. Even after allogeneic or autologous 

hematopoietic stem cell transplantation (HSCT) the patients are prone to relapse, indicating that the 

leukemic blasts escape elimination by the immune system. Natural Killer (NK) cells have emerged 

as a major component of the innate immunosurveillance of AML and were identified to participate 

in the graft versus leukemia effect following allogeneic HSCT. The effector functions of NK cells 

are regulated by the balanced engagement of activating receptors and inhibitory receptors. 

Triggering of activating receptors by the corresponding ligands on target cells counteracts the 

signalling pathways of inhibitory receptors and thereby elicits target cell lysis. In AML the 

leukemic blasts were shown to express low amounts of ligands for the NK cell activating receptor 

NKG2D and the natural cytotoxicity receptors (NCRs), while the expression of HLA class I 

molecules, the ligands for inhibitory receptors, is mostly retained at normal levels. This 

predominance of inhibitory signalling together with a putative deficiency in the expression of NK 

cell activating receptors may result in an insufficient stimulation of cytolytic NK cell responses 

against leukemic blasts.  

 

To investigate the mechanisms of impaired recognition and lysis of leukemic cells, we evaluated the 

phenotypic and functional properties of NK cells from AML patients (AML-NK cells). We 

examined the cytolytic activity against the autologous leukemic blasts in vitro and in vivo in the 

NOD/SCID transplantation mouse model, in order to exploit their potential in cellular 

immunotherapy of leukemia. Further we explored the feasibility to overexpress the NCR NKp46 in 

NK cells by lentivirus-mediated gene transfer. This approach was intended to test the hypothesis of 

shifting the receptor balance in AML-NK cells towards a status that favours NK cell activation and 

thereby increases the anti-tumor activity. 

 

The results demonstrated a significant, about ten-fold, reduction in the content of NK cells from 

patients with newly diagnosed or relapsed AML as compared to healthy individuals (donor-NK 

cells). Nevertheless, AML-NK cells retained a high proliferative capacity and could be efficiently 

expanded in vivo in response to NK cell specific growth factors. Also, the expression pattern of NK 

cell receptors and activation markers by AML-NK cells did not differ from donor-NK cells. AML-

NK cells were fully functional in terms of IFN-γ production in response to the activation with IL-12 
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and IL-18 and displayed a high cytolytic activity against the NK cell sensitive erythroleukemia cell 

line K562 in vitro. Also in vivo, the adoptive transfer of AML-NK cells to NOD/SCID mice 

engrafted with K562 cells lead to an efficient suppression of tumor formation. The cytolytic activity 

of AML-NK cells against autologous leukemic blasts in vitro was in general below 10% at the E:T 

ratio of 10:1. The antibody-mediated block of inhibitory interactions could enhance the killing 

responses to about 70%, indicating that AML-NK cells are able to recognize autologous blasts 

through activating receptors. Cytolytic activity of AML-NK cells was also seen in NOD/SCID mice 

engrafted with human leukemia. Adoptive NK cell transfer resulted in reduction of tumor load from 

31% to an average of about 10% of human blasts in the BM of treated mice. This high in vivo 

activity of AML-NK cells might be due to an increased expression of the ligands for NKG2D and 

the NCRs. 

 

Taken together, our results showed that AML-NK cells do not differ from healthy donor derived 

NK cells; they can be isolated and efficiently expanded to high cell numbers in vitro and display the 

same expression pattern of the major activating receptors. AML-NK cells have a normal cytokine 

producing ability, preserve their cytolytic activity throughout the process of in vitro expansion and 

display a strong anti-leukemic effect against autologous blasts in vivo in NOD/SCID mice 

repopulated with human leukemia. These results suggest that escape of AML blasts from the 

immunosurveillance by NK cells may be due to the reduction of the NK cell compartment and the 

predominance of signals elicited by the inhibitory receptors. 

 

We used HIV-derived lentiviral vectors for the gene transfer of the GFP marker and the NKp46 

receptor to NK cell lines, primary NK cells and NK cells generated in vitro from CD34+ 

hematopoietic progenitor cells. Both single-gene and bicistronic vectors expressing these transgenes 

were prepared. Through the FACS sorter based enrichment of transduced cells 100% transgenic 

lines and primary NK cell populations were generated with a transgene expression that remained 

stable during in vitro expansion. We demonstrated that GFP+ NK cells can be generated by the in 

vitro differentiation of lentiviral transduced CD34+ progenitors, representing a highly efficient 

approach to produce large amounts of modified NK cells. 

However, a sustained expression of the exogenous NKp46 receptor was only achieved in NK cell 

lines. Except for a high pseudotransduction that resulted in the transient expression of NKp46, no 

stable expression of transgenic NKp46 was obtained in primary NK cells, neither in cells generated 

from the progenitors nor in peripheral blood-derived mature NK cells.  
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Moreover, exogenous NKp46 in NK cell lines and transiently transduced primary cells had no 

ability to trigger the cytokine release or cytotoxic responses, and further studies are required to 

achieve the overexpression of functional NKp46.  

 

Our results demonstrated that lentiviral vectors are suitable to obtain genetically modified NK cell 

lines and primary NK cells. Transgenic NK cells can be expanded to high numbers without loosing 

the transgene expression, thus indicating the possibility to use genetically modified and expanded 

patient-derived NK cells for the adoptive transfer in the immunotherapy of AML. So far, the 

lentivirus-based approach was successful with the GFP marker transgene, but requires further 

optimisation for transfer of the NKp46-encoding gene.  

The over-expression of tumor-specific activatory receptors would be of importance in an 

immunotherapeutic approach to direct NK cell effector functions specifically towards the diseased 

cells, thereby contributing to a graft-versus-leukemia activity against residual malignant cells. 
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II. INTRODUCTION 
  

1. Natural Killer Cells 

1.1 General introduction  
 
Natural Killer (NK) cells are effectors of the innate immune system capable to recognize and lyse 

tumor cells and virus infected cells. NK cells comprise 5-15% of all circulating peripheral blood 

mononuclated cells, and are found also in peripheral tissues, including the liver, peritoneal cavity 

and placenta. Resting NK cells circulate in the blood, but following activation by cytokines, are 

capable of extravasation and infiltration into pathogen-infected or malignant tissues. NK cells 

mediate spontaneous killing of various tumor cells following the triggering of NK cell surface 

receptors by their ligands on target cells. They also produce several cytokines such as IFN-γ, TNF-

α, interleukin (IL)-1, GM-CSF and TGF-β, that induce inflammatory responses, modulate the 

proliferation and function of dendritic cells, monocytes and granulocytes and influence subsequent 

adaptive responses [2]. Moreover, NK cells produce or react on chemokines like CCL3, CX3CL1, 

CXCL8 (IL-8) and CXCL22 that are released by immature DCs after antigen uptake or other cells 

like macrophages, endothelial cells or neutrophils. NK cells also express many co-stimulatory 

molecules that contribute to target cell recognition or enable the interaction with effector cells of the 

adaptive immune response [3]. The cytotoxic potential of NK cells is mainly mediated through 

perforin- and granzyme-dependent cell lysis and induction of apoptosis. In addition, NK cells 

mediate antibody dependent cellular cytolysis (ADCC) of targets through FcγRIII (CD16), the low 

affinity receptor for antibodies of the IgG subclass but also express fas ligand (CD178) and TRAIL 

and kill target cells by inducing apoptosis. Many cytokines such as IL-2, IL-12, IL-15, IL18 and IL-

21 act on NK cells by affecting their proliferative, secretory and cytolytic activity. 

Historically, NK cells were described in 1971 by the observation that lethally irradiated mice were 

capable of rejecting allogeneic or parental bone marrow (BM) cell allografts. This pattern of BM-

rejection did not follow the „classical laws“ of transplantation, where the offspring is tolerant 

towards parental MHC determinants. By contrast, the F1 hybrid mice showed resistance against 

parental BM grafts, a phenomenon called „hybrid resistance“ [4]. The effectors were termed 

Natural Killer Cells, but the mechanisms underlying this specificity of BM rejection remained 

elusive. Studies in mice with severe combined immunodeficiency (SCID) and in vivo depletion 

studies demonstrated that NK cells alone could mediate the specificity of rejection [5]. One 

hypothesis put forward to explain the „hybrid resistance“ was that a subpopulation of remaining 
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host NK cells expressing receptors for „self“ but not for parental MHC class I molecules fail to 

recognize the BM-graft, thus resulting in a loss of inhibition of the lytic machinery. Consequently 

this model was termed the „missing-self theory“. Results from beta-2 microglobulin knock-out 

mice, numerous observations of an inverse correlation between MHC class I expression levels and 

susceptibility to NK cell lysis as well as the characterization of an inhibitory receptor that 

recognized MHC class I molecules supported that hypothesis [6]. 

However, MHC class I does not necessarily protect from lysis by NK cells, and inhibition by MHC 

class I is not always sufficient to prevent NK cytotoxicity. This is due to the fact that all NK cells 

do not only carry inhibitory receptors scanning for the „missing self“ MHC molecules, but also 

express a variety of receptors providing an activating signal upon engaging their ligands. Many 

observations point to the importance of activating receptors in the regulation of NK cell effector 

function. For example, NK cells can recognize and attack virus-infected and transformed cells that 

have down-regulated MHC class I molecules, but are tolerant to normal autologous cells. 

Conversely, some virus-infected cells that maintain expression of MHC class I at the cell surface 

can still be killed by autologous NK cells. This lead to the hypothesis that target cell recognition 

and the overall threshold of NK cell activation is regulated by a fine balance between inhibitory and 

activating signals. 

 

1.2  Phenotypic and functional characterization of NK cell subsets 
 

Two subsets of human NK cells are identified based on the cell surface density of the „NK cell 

marker“ CD56 together with CD16. The majority (∼90%) of human NK cells express low levels 

(dim) of CD56 and high levels (bright) of CD16, whereas a minority (∼10%) is CD56bright and 

CD16dim or CD16 negative [2]. These NK subsets are functionally distinct, with the 

immunoregulatory CD56bright cells producing abundant cytokines and the more cytotoxic 

CD56dim cells functioning as effectors of natural and antibody-dependent target cell lysis [7]. 

CD56bright cells are unique among resting PB NK cells in their constitutive expression of high 

affinity IL-2 receptor (IL-2Rαβγ) and intermediate affinity complexes (IL-2Rβγ) with very low 

(picomolar) concentrations of IL-2 resulting in a substantial proliferation and IFN-γ production in 

vitro, but with only little increase in cytotoxicity [8]. In contrast, CD56dim cells lack the high 

affinity receptor but constitutively express the intermediate type and nanomolar concentrations of 

IL-2 or IL-15 are needed to augment the cytotoxicity while having little or no influence on the 



 Introduction 

15 

proliferation of these cells [2, 9]. Although resting CD56dim NK cells are more cytotoxic against 

NK-sensitive targets (like K562 cell lines) than CD56bright cells, IL-2 or IL-12 activated 

CD56bright NK cells exhibit similar or enhanced cytotoxicity against NK targets compared to 

CD56dim cells [8]. In addition, CD56bright and CD56dim NK cell subsets show differences in 

their NK receptor repertoires. Resting CD56bright NK cells are large agranular cells and express 

high levels of the C-type lectin CD94/NKG2 family with only very small fractions expressing 

killer-cell immunoglobulin receptor (KIR)-family and ILT-2 receptors. Resting CD56dim NK cells, 

however, express CD16, KIRs and C-type lectin NK receptors at high surface density along with an 

abundance of cytoplasmic granules [8] [10]. 

PB NK cell subsets also have unique adhesion molecule and chemokine receptor expression 

profiles, suggesting that the subsets may traffic to different sites in vivo. For example, CD56bright 

cells constitutively express high levels of L-selectin (CD62L) and CCR7, two receptors implicated 

in the recruitment of lymphocytes to secondary lymphoid organs, while CD56dim cells lack these 

receptors [2]. 

 
 

1.3 NK cell development 
 
Human and murine NK cells originate in the bone marrow from hematopoietic progenitor cells 

(HPCs) and require the bone marrow microenvironment for complete maturation. Bone marrow 

stroma-derived cytokines and growth factors, including stem cell factor (SCF) and flt-3 ligand (FL) 

in cooperation with IL-2, -7 and –15, are critical physiologic factors for NK cell development [11]. 

NK cells can be reproducible generated in vitro from cord blood or bone marrow derived HPCs 

{Miller, 1994 #463}{Mrozek, 1996 #176}. Murine models show that NK cell development is 

mainly driven by IL-2 and IL-15 since the disruption of genes encoding the receptor subunits IL-

15Rα, IL-2/15Rβ and γc or the signalling molecule Jak-3 completely abrogate NK cell development 

[12]. Accordingly, humans lacking the β-subunit or the γc-chain are deficient in NK cells [13, 14].  

 

Human NK cell development can be divided into phases, which differ in cytokine responsiveness of 

progenitor cells. In a linear model of development (see Figure 1-1) hematopoietic stem cells 

respond in an initial phase to the stroma-derived growth factors SCF and FL leading to the 

commitment to the lymphoid lineage. These common lymphoid progenitors (CLP) further generate 

NK cell precursors (NKP), which finally differentiate to mature killer cells. An intermediate CD56-
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negative NKP, characterized by the expression of the CD34 marker and the β-subunit of the IL-

2/IL-15 receptor (IL-2/15Rβ), is responsive to IL-15 and marks the transition to a second phase, the 

NK cell maturation. This process is thought to include the generation of the receptor repertoire and 

the acquisition of self-tolerance and give rise to the functional subsets of NK cells with their 

different effector functions. NK cells first acquire the expression of CD161 (NKR-P1) and CD2 and 

are characterized as non-lytic immature CD56-negative NK cells (fail in vitro to lyse perforin-

sensitive targets) that can produce IL-13 but do not secret IFNγ. Subsequently, NK cells become 

cytolytic together with the expression of CD56, CD16, and the MHC-specific CD94-NKG2 

complexes and the killer cell immunoglobulin-like receptors (KIRs; see 1.4.1) [15]. In a final phase 

of maturation NK cells leave the sites of development and enter the periphery. Here they build and 

maintain the steady-state NK cell pool of distinct subpopulations, which can be modified under 

diverse pathological conditions in a homeostatic process of proliferation and recirculation. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1: Model of NK cell development. NK cells originate in the bone marrow where hematopoietic stem 
cells (HSC) interact with cytokines and stromal cells to differentiate in an initial phase of cell commitment into 
common lymphoid precursors (CLP) and the NK cell precursors (NKP). NKPs are characterized by the expression of 
the IL-2/IL-15 receptor beta-chain subunit (IL-2/15Rβ), the progressive loss and acquisition of CD38, CD34 and of 
CD7, respectively (not shown). This early differentiation is accompanied by the regulated expression of the receptors 
for SCF (c-Kit), FL (FLT3) and IL-7 (IL-7R), as indicated by the horizontal grey bars. The phase of NK cell maturation 
is characterized by the expression of CD161, CD2 together with the loss of FL- and IL-7 receptors. The final 
differentiation into lytic and mature NK cells (characterized by the acquisition of cytolytic granules) is marked by the 
expression of CD56, the NKG2/CD94 complexes and the KIR repertoire together with the natural cytotoxicity 
receptors, NKG2D and CD16 (not shown). Mature NK cells enter the periphery where they can be divided into the 
functionally distinct subsets of cytolytic NK cells and the more immunoregulatory cytokine-producing killers 8not 
shown).  (adapted from F. Colucci{Colucci, 2003 #766}) 
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In this linear model of development it is assumed that self-tolerance is achieved by the 

asynchronous expression of inhibitory and activating receptors together with a spatially and 

temporally regulated expression of their corresponding ligands. Moreover, upon the delivery of 

mature NK cells into the periphery, a differential expression of adhesion molecules, cytokine and 

chemokine receptors finally promote the generation of the functional distinct PB NK cell subsets 

(see above; chapter 1.2). 

The in vitro generation of human NK cells can be initiated in the presence of SCF and FL, which 

induce the development of NKPs that respond to IL-2 and IL-15 to become mature NK cells. 

Precursors being CD34+CD38+CD7- or even more differentiated CD34+CD7+ or CD34-CD7+ 

were isolated from different sources such as cord blood, adult bone marrow or murine fetal liver 

and fetal thymus [17] [18] [19] and were shown to be further differentiated into functional NK cells 

with IL-2 or IL-15 only. Several observations indicate that IL-2 and IL-15 could be redundant in 

their roles promoting the NK cell development, with IL-2 maintaining the NKP survival and IL-15 

as the main differentiation inducing cytokine [16]. In vitro generated NK cells are consistently of 

the CD56bright phenotype with a small subset of CD16+ cells, they lyse NK-sensitive targets and 

produce chemokines and cytokines upon stimulation. Even though such cells mostly resemble the 

phenotype of mature PB NK cells, they are reported to express low levels or even none of the 

inhibitory KIRs, thus often termed as “pseudomature” lytic NK cells. However, if “pseudomature” 

NK cells exist in vivo is unknown, as it is still controversial whether NK cells of the CD56dim 

phenotype that predominates in the PB can be generated in vitro. In this context it also remains 

uncertain if during regular in vivo development the CD56dim cells originate from the less 

differentiated CD56bright phenotype or whether each subtype represent unique terminally 

differentiated NK cells with a distinct pathway of maturation [2].   

 

1.4 Regulation of NK cell Function: The NK cell Receptors 
 
The functions of NK cells are regulated by a balance of signals transmitted by activating and 

inhibitory receptors (see Table 1-1). In general, recognition of MHC class I molecules by inhibitory 

receptors dominates over activation signals and blocks the effector functions of NK cells, but the 

detailed mechanisms underlying this regulation of counteracting signalling pathways are not well 

understood. Activation signal is mediated by NK cell activating receptors that are non-covalently 

associated with transmembrane-anchored signalling adaptor proteins like CD3ζ, FcεRIγ, DAP10 or 

DAP12. The engagement of activating receptors activates “first line” protein tyrosine kinases 
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(PTKs) of the Src-family, which phosphorylate immunoreceptor tyrosine-based activation motifs 

(ITAM; consensus sequence: YxxL/I) in the cytoplasmic tail of the adaptor proteins (see Figure 1-

2). Recruitment and activation of “second line” PTKs of the Syk-family like Syk and ZAP70 then 

results in the initiation of the downstream signalling cascade. 

The inhibitory signal results from the presence of immunoreceptor tyrosine-based inhibition motifs 

(ITIM) in the cytoplasmic domain of inhibitory receptors (consensus sequence: I/VxYxxL/V). The 

phosphorylation of ITIMs upon HLA-ligand engagement of inhibitory receptors results in the 

recruitment and specifically binding of Src-Homology-2 (SH-2) domain containing protein 

phosphatases such as SHP-1, SHP-2 or SHIP. Activated phosphatases such as SHP-1 and -2 are 

able to dephosphorylate multiple targets in the activating pathway, thereby mediating its negative 

signalling. As a result, activating receptor signalling is directly inhibited by the de-phosphorylation 

of ITAM-recruited protein-tyrosine kinases like Syk, Zap70, SLP76 or LAT and their 

corresponding substrates (see Figure 1-2 and 1-3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inhibitory NK cell receptors

Receptor Ligand specificity 

MHC class I-specific     

 

     a) KIR

     KIR2DL1 (CD158a) HLA-C (w2, w4, w5, w6, and 

related alleles)

                           

     KIR2DL2/3 (CD158b) HLA-C (w1, w3, w7, w8, and 

related alleles)

                            

     KIR2DL5 Unknown 

                            

     KIR3DL1 HLA-Bw4 

                            

     KIR3DL2 HLA-A3, -A11 

                            

     KIR3DL7  Unknown

                             

     b) C-type lectin receptors

     CD94/NKG2A/B* HLA-E

     CD161 Unknown

                            

Immunoglobulinlike transcripts

     ILT-2 (LIR-1) Unknown 

                            

 Others

     P75/AIRM Unknown

     IRp60 Unknown 

                            

     LAIR-1 Ep-CAM

Activating NK cell receptors / co-receptors

Receptor Ligand specificity 

                                            

MHC class I-specific

        a) KIR

       KIR2DS1  HLA-C (w2, w4, w5, w6, and 

related alleles)                          

       KIR2DS2 HLA-C (w1, w3, w7, w8, and 

related alleles) 

       KIR2DL4                         HLA-G 

       KIR2DS4 Unknown

       KIR2DS5 Unknown 

       KIR3DS1 Unknown

                          

       b) C-type lectin receptors

       CD94/NKG2C               HLA-E

       CD94/NKG2E/H*      Unknown 

Non-MHC class I-specific

     (a) Natural cytotoxicity receptors (NCRs)

       NKp46 Unknown                         

       NKp44 Unknown 

       NKp30 Unknown 

     (b) C-type lectin receptor

       NKG2D MICA, MICB, ULBP-1, -2, -3 

Others (coreceptors)

     CD16 (FcRIII) Unknown (Fc of IgG) 

     CD2 CD58 (LFA-3) 

     LFA-1 ICAM-1 

     2B4 CD48

     NKp80 Unknown 

     CD69 Unknown 

     CD40 ligand CD40  

Table 1-1: Overview NK cell receptors 
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Inhibitory and activating NK cell receptors can be subdivided into two major groups, the MHC 

class I recognizing and the MHC class I non-specific receptors (see table 1-1). The class I specific 

receptors mainly consist of the superfamily of the immunoglobulin like receptors (KIRs) and the C-

type lectin receptors that contain the inhibitory CD94-NKG2 receptor complexes and CD161, or the 

activating NKG2D. A huge panel of various MHC class I non-specific activating receptors and co-

receptors exist with the natural cytotoxicity receptors (NCRs; immunoglobulin like superfamily) 

and NKG2D (C-type lectin receptor) representing the main NK cell function-triggering molecules. 

There are two major clusters of genes for these NK cell receptors on chromosome 19 and on 

chromosome 12. Unlike for T and B cells, the genes for NK cell receptors do not undergo 

rearrangements by somatic recombination. 

 

1.4.1 Human killer cell immunoglobulin like receptors (KIRs) 
 

The KIR family of NK cell receptors includes at least 13 members, of which 7 receptors are 

inhibitory and 6 are activating. KIRs are monomeric receptors and are characterized structurally by 

2 or 3 extracellular immunoglobulin-like domains (KIR2D or KIR3D). Most KIRs specifically 

recognize groups of the „classical“ MHC class I alleles, including HLA-A, -B and –C. Each KIR2D 

or KIR3D receptor functions as inhibitory or activating receptor depending on the transmembrane 

and cytoplasmic domains they have.  

Since the identical extracellular domain bind the same group of class I molecules, it is the long (L) 

ITIM containing cytoplasmic tail of KIR2DL or KIR3DL that induce an inhibitory response, 

whereas the short (S) cytoplasmic tail of KIR2DS and KIR3DS signal an activating response due to 

its association with ITAM bearing adaptor proteins. The only exception is represented by the “long-

tailed” ITIM-containing KIR2DL4 receptor that recognizes the non-classical HLA-G and delivers 

an activation signal upon engagement (see Table1-1). 

The most important KIR-mediated inhibitory interactions are the recognition of the HLA-Bw4 

alleles by the KIR3DL1 receptor, of HLA-A3 /-A11 by KIR3DL2 and of the two different HLA-C 

epitopes by the KIR2DL receptors. HLA-C epitopes can be divided in two groups based on 

dimorphisms at the positions 77 and 80 in the alpha-1 helices of the HLA-C molecules:  

Group 1 consists of HLA-C epitopes that carry each Ser 77 and Asn 80 (corresponding to the cw1-, 

cw3-, cw7- and cw8-serotypes) and are recognized by KIR2DL2 and KIR2DL3 receptors, whereas 

group 2 have Asn 77 and Lys 80 (cw2-, cw4-, cw5- and cw6-serotypes) and is recognized by 

KIR2DL1 only. 
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Corresponding to this dimorphism of HLA molecules the specificity of each long- or short-tailed 

KIR2D is determined by a dimorphism at position 44 in the D1 domain of the KIR receptors. Thus 

there are two activating short-tailed KIR2D receptors that carry the same dimorphism, resulting in 

the recognition of the HLA-C alleles of group 1 (KIR2DS1) and 2 (KIR2DS2), respectively.  

The spectrum of HLA molecules covered by activatory and inhibitory KIRs (and indirectly by 

CD94/NKG2 receptors; see below) is only partially overlapping, suggesting that both systems play 

a complementary role in monitoring the expression of HLA class I molecules. In both cases of KIRs 

(and CD94/NKG2 receptors) the affinity of the activating receptor is lower than that of the 

corresponding inhibitory receptor, ensuring a predominance of the inhibitory signal when both 

activating and inhibitory receptors recognizing HLA molecules are expressed on the same NK cell. 

However, only a minority of NK cell clones express both activating and inhibitory isoforms that 

recognize the same HLA allotype. More commonly, NK cell clones expressing an activating 

receptor for a certain HLA class I allele co-express at least one inhibitory receptor specific for a 

different one that predominates when engaged, Therefore, the MHC class I specific activating 

Figure 1-2: Signalling of inhibitory and activatory KIRs in NK cells. KIR receptors either have 2 or 3 
immunoglobulin domains (2D or 3D) and a long (L) or a short (S) cytoplasmic tail. KIR2/3DL contain ITIM motifs in 
the cytoplasmic tail, whereas KIR2/3DS receptors interact with the ITAM-containing adaptor molecule DAP12. 
Ligation of activating KIRs leads to the Src-family kinases-mediated phosphorylation of the ITAM-containing adaptor 
molecule DAP-12, which binds to and activates Syk-family tyrosine kinases that trigger the down stream activation 
cascade. When inhibitory KIRs bind their HLA ligand, Src-family kinases phosphorylate the ITIM, allowing to bind the 
tyrosine phosphatase SHP-1 (and possibly SHP-2). SHP-1/-2 mediates a negative signalling through the  
dephosphorylation of Vav and SLP-76. As inhibitory KIRs have higher affinities for the HLA class I ligands, co-
ligation of both activating and inhibitory receptors result in an overall negative signal that blocks the cytotoxic activity 
or cytokine release of NK cells. (adapted from S.S. Farag[1]) 
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receptors may only signal when target cells have lost the expression of an HLA allele recognized by 

the inhibitory receptor.  

In this way, NK cell cytotoxicity is balanced and regulated by opposite signals delivered by 

inhibitory and activating receptors. This NK cell surveillance may be important for the removal of 

cells that have down-regulated or lost a single MHC class I allele while normal cells would be left 

unaffected.  

 

1.4.2 C-type lectin-like receptors 
 

In humans more than 15 type II transmembrane C-type lectin-like proteins are encoded on 

chromosome 19 where they are closely linked to the CD94 gene [20]. C-type lectin receptors are 

expressed as homodimers like the NKR-P1 receptor (CD161) or as heterodimers composed of 

monomers of the NKG2 family covalently bound to the common subunit CD94. CD94 is a product 

of a single nonpolymorphic gene and lacks a cytoplasmic domain for intrinsic signal transduction 

capacity [21]. Homodimers of CD94 exist but are of uncertain physiologic function. The 

extracellular and cytoplasmic domains of the NKG2 molecules are structurally diverse, consistent 

with differences in ligand recognition and signal transduction. Four closely related transcripts of the 

NKG2 family have been identified: NKG2A (and its splice variant NKG2B), NKG2C, NKG2E 

(and its splice variant NKG2H), and NKG2F. NKG2D is a fifth distantly related member that 

displays only a low sequence similarity with the other NKG2 molecules and does not interact with 

CD94 (see below).  

CD94/NKG2 heterodimers are constitutively expressed by all NK cells and cytotoxic T 

lymphocytes. Only CD94/NKG2A transmits inhibitory signals, whereas CD94/NKG2C and 

CD94/NKG2E are activating receptors. The inhibitory receptor dimer CD94/NKG2A and its 

activating counterpart CD94/NKG2C recognize the nonclassical class I molecule HLA-E, which 

binds nonamer peptides derived from the signal sequences of HLA-A, -B, -C, and –G [22]. Thus, 

CD94-NKG2A and –NKG2C dimers sense the overall expression of HLA class I molecules at the 

cell surface, a process that can be altered in virally infected or transformed cells. In addition, the 

ability of these receptors to discriminate among different peptide/HLA-E complexes might also 

influence the reactivity against allogeneic cells. As for the inhibitory and activating KIRs, the 

binding of the inhibitory receptor CD94/NKG2A to peptide/HLA-E complexes was shown to be 

stronger than binding of the activating receptor CD94/NKG2C to the corresponding complex [23]. 
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1.4.3 The NKG2D receptor 
 
NKG2D is the best-characterized non-MHC class I specific activating receptor described on human 

NK cells. NKG2D has little sequence homology to the NKG2 family and is not associated to CD94. 

The receptor is expressed as a disulfide-bonded homodimer and requires for the surface expression 

the association with the adaptor subunits DAP10 (DAP10 or DAP12 in mice) that mediate 

signalling, since the intracellular domain of NKG2D has no signalling motifs. NKG2D is 

constitutively expressed by all human and murine NK cells and CD8+ αβ-T cells, by almost all 

human γδ-T cells and by murine macrophages [24] [25].  

In human NK cells triggering of NKG2D induces cytotoxicity but no cytokine release. 

Phosphorylation of the YxNM motif in DAP10 leads to binding of p85 subunit, the activation of 

PI3K and the subsequent activation of Rac, Rho-family GTPases and Phospholipase C-γ2 (PLC-γ2) 

resulting in the intracellular release of calcium and the induction of cytotoxicity [26]. Importantly, 

because NKG2D has a downstream signalling pathway that is distinct from the activating KIR and 
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Figure 1-3: Signalling of inhibitory and activatory C-type lectin-like receptors in NK cells. The C-type 
lectin-like receptors are disulfide-linked heterodimers of CD94 and members of the NKG2 family. The inhibitory 
NKG2A and the activating NKG2C both recognize the non-classical HLA class I molecule HLA-E. Similar to KIRs 
with long cytoplasmic tails, ITIM-containing NKG2A signals through SHP-1/-2 that mediates inhibitory signals by the 
dephosphorylation of substrates such as Vav and SLP-76. NKG2C interacts with DAP-12 and transduce activating 
signals through Syk-family members. In contrast, homodimers of NKG2D associates with the adaptor molecule DAP-
10 and binds to the MHC-like ligands MICA/B and to the ULBP family. DAP-10 contains an YxNM motif that bind 
PI-3 kinase (PI3K) upon phosphorylation thereby delivering an activation signal. As this alternative pathway through 
the PI3K cascade is not inhibited by SHP-1/-2, NKG2D may be able to mediate activation signal that is dominant over 
the KIR- or NKG2A-mediated inhibition (adapted from S.S. Farag[1]). 
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C-type lectin receptors, triggering via NKG2D is less susceptible to blocking by KIR- or NKG2A-

generated inhibitory signals (see Figure 1-3). As a consequence, signalling through human NKG2D 

was postulated to override inhibition signals generated by MHC class I engagement, and thus 

NKG2D functions as a primary cytotoxicity receptor rather than a co-receptor. This concept has 

been proven for the recognition of tumor cell lines [27] and by the transfection of NK cell resistant 

class I positive cell lines with ligands for NKG2D which rendered the targets susceptible to NK cell 

lysis [28, 29]. 

 

1.4.4 Ligands for NKG2D 
 

The ligands for human NKG2D are the MHC class I chain related proteins A and B (MICA/B) and 

the UL16 binding proteins ULBP-1, -2, -3 and -4. In normal tissue low levels of MICA/B are found 

mainly on epithelial cells and fibroblasts where the expression is under the control of promoter 

elements related to those of heat shock genes [30]. MIC molecules are highly polymorphic since at 

least 50 different MICA and more than 15 MICB alleles are currently known [31]. MICA/B are 

glycoproteins that contain MHC-like α1-, α2- and α3-domains but, in contrast to MHC class I 

molecules, do not require β2-microglobulin or peptides for stable surface expression. 

The family of the UL16-binding proteins (ULBPs) are NKG2D ligands that are glycophosphatidyl 

inositol (GPI)-linked surface molecules, which initially were identified by their ability to bind to the 

human CMV-derived membrane glycoprotein UL16.  

Induction or up-regulation of NKG2D ligands may occur with pathogen related cellular stress, viral 

infection or tumor cell transformation. High MICA and MICB expression was found on epithelial 

tumors and on CMV infected epithelial tissues or fibroblasts [32] [33] [27]. It could be 

demonstrated that the CMV-derived UL16 binds to MICB, ULBP-1 and –2 and that this complex is 

selectively retained in the ER. As a consequence, CMV infected cells are no longer recognized 

through the surface-expression of these NKG2D ligands, indicating that the induction of UL16 

expression upon infection represents an immune evasion mechanism of human and murine CMV 

[34, 35]. Indeed, the induced expression of NKG2D ligands were shown to markedly enhance the 

sensitivity of tumors to NK cells in vitro and in vivo in mouse models [36-38].  

The human ULBP gene family is homologous to the murine retinoic acid early-induced transcript 1 

(Rae1) gene family. However, only ULBP-1 and ULBP-2 but not ULBP-3 bind to UL16, and it is 

unknown if any polymorphisms within this gene family exists.  
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1.4.5 The Natural Cytotoxicity Receptors (NCRs) 
 
The family of Natural Cytotoxicity Receptors (NCR) is characterized by the ability to trigger NK 

cell cytotoxicity in an MHC class I independent manner. NKp30, NKp44 and NKp46, all 

immunoglobulin-like type I transmembrane molecules, have been identified based on the screening 

of mAbs capable of inducing NK cell clone-mediated killing of Fc receptor bearing target cells. The 

NCRs share no sequence homology to each other [39] [40] [41]. The most important function of 

NCRs is the recognition and lysis of tumor cells by NK cells. This has become evident by the fact 

that monoclonal antibodies directed against the NCRs can block NK-mediated lysis of tumor cell 

lines („receptor-masking“). Cytotoxicity was shown to correlate strictly with the density of NCR 

surface expression on NK cells [27, 42]. Viral ligands specific for NKp44 and NKp46 are known 

(see below), but the cellular ligands for the NCRs have not yet been discovered. Accordingly, there 

is evidence that NCRs contribute to the defence against different pathogens, in particular in the case 

of viral infections [43-45]. NCRs signal through non-covalently associated adapter molecules that 

contain immunoreceptor tyrosine-based activation motifs (ITAM) in their cytoplasmic tails. Src 

family-mediated phosphorylation (e.g. by p56lck) of the ITAM motifs in the adaptor molecules 

recruits protein-tyrosine kinases of the Syk-family (Syk-PTK) or zeta-chain associated protein of 

70kDa (ZAP70) that activate the downstream signalling cascade to trigger NK cell cytotoxicity (see 

Figure 1-4). 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1-4: Signalling of Natural Cytotoxicity Receptors. NCRs either associate with homodimers of the CD3ξ 
chain and heterodimers of the FcεRIγ and CD3ξ chains (NKp46 and NKp30), or to the adapter protein DAP12 
(NKp44). Ligand-engagement of the NCRs results in the phosphorylation of the ITAM-motifs (in green) and the 
recruitment and activation of Syk- and ZAP70 kinases with the subsequent initiation of the signalling cascade that 
induces NK cell cytotoxicity or cytokine release.  
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The subsequent downstream events include the phosphorylation and activation of different 

molecules like SLP76, p85-PI3K, LAT, the PLC-γ1 and PLC-γ2, the mobilization of Vav-1, Vav-2, 

the Rho-family GTPases, Grb2, and the intracellular release of calcium resulting in the induction of 

cytotoxicity or cytokine release. 

The NKp30 receptor of 30 kDa associates with disulfide-bonded homodimers or heterodimers of 

the ITAM bearing adaptor molecule CD3ζ and the FcεRIγ chain and is constitutively expressed by 

all activated and resting peripheral blood NK cells [39]. The receptor plays a role in the interaction 

of NK cells with dendritic cells (DC) in the initial phases of infection. In particular, activated NK 

cells were shown to lyse immature DCs through the NKp30 receptor [46].  

NKp44 is almost absent in fresh isolated peripheral blood NK cells but can be detected on activated 

NK cells cultured in IL-2, and is also expressed by a subset of γδ-T cells [47, 48]. NKp44 is a 

glycoprotein with a molecular size of approximately 44 kDa that associates with the ITAM bearing 

adaptor molecule DAP12. DAP12 exists solely as disulfide-bonded homodimers and mediates 

surface expression and signal transduction of NKp44. Although a recent report revealed the 

presence of an ITIM motif in the cytoplasmic domain of NKp44, this sequence was shown to lack 

inhibitory capacity and thus has no influence on the activating function of NKp44 [49].  

NKp46 is thought to act as the main NCR and is constitutively expressed by all activated and 

resting peripheral blood NK cells. It associates with CD3ζ and FcεRIγ, similar to NKp30 which was 

found to parallel expression levels of NKp46 [39, 40, 42]. The gene of the 46 kDa surface molecule 

is located in the leukocyte receptor complex of Ig-related genes (LRC) on chromosome 19 and has 

no significant homology to NKp30 and NKp44, which are encoded in the NKC on chromosome 12. 

NKp46 genes have also been identified in other mammals, including primates, rat and mouse. 

NKp46, and NKp44 (but not NKp30), has been reported to directly bind both influenza virus 

hemagglutinin (HA) and Sendai virus hemagglutinin-neuraminidase leading to enhanced killing of 

infected cells [50] [43]. To date no cellular ligands of NKp46 have been identified, although NKp46 

has been shown to directly mediate the lysis of certain human tumor cells. A murine homolog of 

NKp46 exhibits a 58% identity to the human receptor, and it has been demonstrated that murine 

tumor cells are susceptible to killing via human NKp46 [51]. This cross-species reactivity may 

suggest a conserved ligand-binding site shared between the human and the mouse receptors [53]. In 

addition, results from CD3ζ and FcεRIγ double knock out mice indicated a predominant role of 

NKp46 in tumor surveillance since these mice showed a profound loss of NK cell activity against 

most tumor targets [52].  
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2. Acute Myeloid Leukemia (AML) 
 
Leukemia is a heterogeneous group of neoplasms affecting early stages of hematopoietic 

progenitors and includes the acute nonlymphoblastic or myeloid leukemia (AML), acute 

lymphoblastic leukemia (ALL), chronic myeloid leukemia (CML) and chronic lymphoblastic 

leukemia (CLL). During the transformation process to leukemia the cells loose the ability to 

differentiate and mature into normal leukocytes. As a consequence, the malignant cells are no 

longer subjected to the normal cellular control mechanisms of cell growth, differentiation and 

maturation- or senescence-induced cell death with a final expansion of transformed cells that 

accumulate and suppress normal hematopoietic activity.  

 

2.1 Characterization of AML 
2.1.1 Classification 
 
AML is characterized by a neoplastic proliferation of cells in the bone marrow that are arrested in 

their maturation, resulting in hematopoietic insufficiency (granulocytopenia, thrombocytopenia or 

anemia) with or without leukocytosis. AML is rapidly fatal without any treatment and most patients 

would die from infections and bleedings within a few months post diagnosis. The malignant cells 

mainly show a myeloid or monocytic differentiation but can also be of erythroid or megakaryocytic 

phenotype. AML is a rare disease, with an incidence of 2.4 per 100'000, but increases progressively 

with age to a peak of 12.6 per 100'000 in adults of 65 years or older. AML affects more men than 

women and despite effective treatment regimens the survival rate among patients who are less than 

65 years of age is only around 40% (in the US; [54]). Although a precise aetiology of AML is 

unknown, several intrinsic and extrinsic factors have been implicated, including family history, 

Down’s syndrome, Fanconi’s anemia, myelodysplastic syndromes (MDS), exposure to high dose 

irradiation or low-frequency non-ionising radiation, chemicals (benzenes) and cytotoxic 

chemotherapy (alkylating agents, anthracyclines). The pathogenesis of AML is often associated 

with the formation of oncogenic fusion proteins generated as a consequence of specific 

chromosome translocations. AML can involve multiple gene rearrangements and chromosomal 

abnormalities are found in more than two-thirds of AML patients [55].  

De novo AML is, by definition, a primary disorder and not associated with any other underlying 

disease. Secondary AML can arise after treatment of other malignancies and the transformation to 

AML is often seen in patients with MDS. Exposures to chemotherapy or radiation are particular risk 
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factors to develop a secondary leukemia [56]. The diagnosis and classification of acute myeloid 

leukemia is based on morphological and cytochemical analysis, as well as on the immuno-

phenotypic, cytogenetic and molecular genetic analysis of the malignant cells in PB and BM. This 

classification was developed by the French-American-British (FAB) group [55, 57] and it divides 

AML into nine different subtypes. The distinction includes the reactivity of leukemic blasts with 

histochemical stains and the cytogenetic analysis of chromosomal aberrations. Four types namely 

M0, M1, M2 and M3 refer to granulocytic differentiation and differ in their extent of maturation.  

 
 

AML with recurrent genetic abnormalities 
Translocations / inversions: 

e.g.     t(8;21); t(15;17); inv(16); 11q23 abnormalities 

AML with multilineage dysplasia 
e.g.   - secondary to MDS or MPD 

      - without preexisting MDS 

Therapy related secondary AML / MDS 
related to prior therapy e.g.  - alkylating agents  

                                              - topoisomerase II inhibitors 

AML not otherwise categorised CORRESPONDS TO FAB-SYSTEM:     M0-M7 

in addition: acute myelofibrosis, myeloid Sarcoma, … 

AML with ambiguous lineage origin 
e.g.    - Acute undifferentiated leukemia 

          - bilineal or biphenotypical acute leukemia 
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Figure 2-1: FAB-classification of AML 
The system is based on cytomorphological and 
cytochemical observations, and subdivides 
AML in nine groups that differ with respect to 
the particular myeloid lineage involved and the 
degree of leukemic cell differentiation. The 
horizontal black bars represent the stage where 
an arrest developmental differentiation is 
present. 
 
 
 
 
 
 
 
 
 
 
Table 2-1: WHO-classification of AML 
AML is divided in 5 groups that are further 
distinguished in subgroups. The FAB-
classification is used in the group of “not 
otherwise categorised” AML. 
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M4 is associated with both granulocytic and monocytic differentiation, whereas M5a/b has 

predominantly a monocytic character of blasts. M6 show an erythroid and M7 a megakaryocytic 

phenotype (see Figure 2-1). 

A second classification is proposed by the World Health Organisation (WHO) and includes the 

FAB subtypes but broadens the classification to secondary leukemias and is more cytogenetically 

orientated. According to the WHO system, acute myeloid leukemias are categorised into five 

groups, which can be sub-divided into different minor groups (see Table 2-1). 

 

 

 
2.1.2 Prognostic factors  
 
Age and cytogenetic status are the two most important prognostic factors in assigning the 

appropriate therapy, in selection of the post-remission treatment and in predicting the outcome. 

Children with AML have a better chance of cure than adults and are usually more tolerant of 

intensive therapy. Remission rates of 70 to 85% have been reported using conventional induction 

therapy. The most important prognostic factors in childhood AML are response to initial treatment 

and the karyotype [58]. As in adults, allogeneic HSCT from an HLA-identical or haploidentical 

sibling increases the long-term survival, and it is thought, that allogeneic HSCT is the treatment of 

choice for children and young adults in first relapse if a suitable donor exists.  

Patients older than 60 years usually have a poorer outcome. There is a higher frequency of 

secondary AML and chromosomal abnormalities in elderly patients, and the death rates associated 

with remission induction tend to be higher. Good prognostic factors in this age group include a 

good physical condition, an age less than 80 years, primary rather than secondary AML, the absence 

of cytogenetic abnormalities and the absence of leukocytosis at diagnosis [54]. 

 

Of the karyotypes that have been identified, translocations between chromosomes 8 and 21, t(8;21), 

between 15 and 17, t(15;17) or the inversion of chromosome 16, inv(16) has been shown to indicate 

a favourable prognosis (roughly 20% of all AML). Conversely, loss of or deletions within 

chromosomes 5, 7 or both, and the translocations involving 11q23, typically define an unfavourable 

prognosis. These mutations are more common in older patients and in patients with secondary 

AML. A normal karyotype carries an intermediate prognosis [59]. Secondary AML is generally 

more resistant to treatment than de novo AML, and conventional induction therapy may produce 
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CR in only about 20% of patients [60]. High remission rates have been reported for an intensified 

induction therapy, but nearly all of the patients subsequently relapsed [61]. Moreover, the failure to 

achieve CR after two courses of chemotherapy has a very poor prognosis and is indicative of 

resistant disease [62]. 

 

2.2 Treatment of AML 
2.2.1 Chemotherapeutic interventions 
 
The primary goal in the treatment of AML is to induce disease remission (induction therapy) with 

the subsequent prevention of leukemia relapse (post remission consolidation therapy). Leukemia 

remission can be categorised based on defined response criterias. Complete remission (CR) is 

defined as the reduction of blasts to less than 5% of the nucleated bone marrow cells, regeneration 

of the blood lineages, an increase in peripheral blood neutrophils (>1.5x109/l), platelets 

(>100x109/l) and hemoglobin (>110g/l; no EPO) and the absence of detectable dysplasia or 

extramedullary leukemia. This definition of CR is based on morphology and has to be stable for at 

least 2 months [63]. Currently, more precise molecular techniques are used to define the remaining 

leukemic burden in patients with morphological remission, since it is estimated that one-half of the 

patients in remission may have clinically important residual disease [64].  

Most standard induction regimens comprise an anthracyclin, such as daunorubicin or idarubicin, 

and cytosine arabinoside (ara-C). Between one-half and two-thirds of adults may achieve CR with 

one or two courses of standard induction chemotherapy, but CR is significantly influenced by age 

and cytogenetic risk factors (see above) [65]. 

 

2.2.2 Hematopoietic Stem Cell Transplantation (HSCT) 
 
Since more than 30 years hematopoietic stem cell transplantation (HSCT) represents a curative 

treatment for hematologic disorders, including malignant and inherited genetic diseases. Despite the 

successful application in a large number of congenital and acquired disorders the use of allogeneic 

stem cell grafts is still limited by the availability of HLA-matched donors and due to treatment-

related problems. In particular, allogeneic HSCT is associated with the danger of graft-versus-host-

disease (GvHD) reflecting the response of donor-derived alloreactive cytotoxic T lymphocytes to 

the recipients HLA molecules in MHC-mismatched donor recipient pairs. Thus, the most severe 

form, the acute GvHD, can affect the skin, the liver and intestine and can be life threatening.  
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The source of stem cells can be either bone marrow (BM), placental blood obtained from the 

umbilical cord after birth (CB) or peripheral blood into which stem cells have been mobilized by the 

treatment with recombinant growth factors (mPB). The frequency of progenitors is lower in 

mobilized blood than in BM and cord blood, but the possibility to perform repeated lymphapheresis 

allows the collection and transplantation of higher numbers of stem cells. Peripheral blood stem 

cells are equally suitable for allogeneic transplantation as bone marrow derived cells, and in 

autologous transplantation mPB has largely replaced bone marrow as the source of hematopoietic 

progenitors [66]. Although HSCT with G-CSF-mobilized stem cells leads to faster engraftment than 

with BM cells [67], the higher content of T cells in mPB grafts may be associated with higher 

incidence of GvHD. This, on the other hand, is compensated by lower rate of leukemia relapse. 

Human umbilical CB is rich in progenitor cells, which were shown to be suitable for related and 

unrelated allogeneic transplantation [68]. The number of stem cells available from one CB donation 

is limited and often sufficient for pediatric patients only. Nevertheless, CB derived stem cells offer 

substantial advantages due to the high proliferative potential of stem cells and the immunological 

naïve status of accessory cells in the graft including a lower expression level of T cell-derived 

growth factors, that diminishes the risk of severe GvHD [69]. 

 

Development of acute GvHD upon allogeneic HSCT can be circumvented by the removal of T cells 

from the graft. However, this T cell depletion is associated with an increased risk of disease relapse, 

graft rejection and reactivation of endogenous cytomegalovirus (CMV) and Epstein-Barr virus 

(EBV) infections.  

Thus, in most cases acute GvHD is prevented by the careful selection of „HLA-identical“ or „HLA-

matched“ donors. The preferred donor for any patient receiving a HSCT would be a syngeneic or at 

least HLA-identical sibling. Because the polymorphic HLA genes are closely linked and, for most 

practical purposes, constitute a single genetic locus, each pair of siblings has a 25% chance to be 

HLA-identical. This frequency allows approximately one third of patients to receive their 

transplants from an HLA-identical sibling. For patients for whom a suitable HLA-matched donor 

cannot be found, the use of autologous HSCs or partially HLA-matched or haploidentical grafts 

from the parents or siblings is considered.  

The overall survival after allogeneic transplantations and the probability to live without acute 

GvHD of grades III-IV, positively correlate with the degree of HLA match [70]. But despite these 

detrimental effects of acute or chronic GvHD after allogeneic HSCT it was soon recognized, that 

patients could gain some benefit from a HLA-mismatch. In early reports it was demonstrated that 
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patients surviving acute GvHD benefited from a reduced tumor relapse rate [71]. The incidence of 

graft failure and of disease relapse is decreased compared to HSCT between HLA identical siblings 

or to allogeneic transplantation with intensive T cell depletion [72].  

All these findings are strongly indicative of lymphocyte-mediated effects in the GvH direction, the 

so-called graft versus leukemia effect (GvL), which is thought to mediate the reduction in tumor 

relapse and increase in overall survival. Improvement of engraftment can be attributed to 

alloreactive T cells in the graft attacking host immune cells that otherwise would mount host-

versus-graft (HvG) reactions. Direct evidence, that donor derived lymphocytes can prevent tumor 

relapse after transplantation was provided by donor lymphocyte infusions (DLI) in CML patients 

[73, 74] and has been subsequently confirmed by many reports [75-77]. 

 

 

2.3 The Role of NK cells in Leukemia 
 
2.3.1 Evidence for an anti-leukemic activity of NK cells 
 
Evidence for the important role of NK cells in the immune-surveillance of hematological 

malignancies in humans is provided by numerous reports on tumor-mediated suppression of NK 

cell activity or inherent defects in NK cell function in patients with leukemia.  

In lymphoma for example, recent data have established the involvement of NK cells in the control 

of EBV-related lymphomas [78]. The X-linked lymphoproliferative disease (XLP) is a severe 

inherited immune deficiency characterized by abnormal immune responses to EBV. Most XLP 

patients succumb to fulminant infectious mononucleosis, whereas those who survive frequently 

develop lymphomas. During EBV infection infected B cells express at high levels CD48 the ligand 

for the NK cell co-receptor 2B4 (CD244). In XLP patients the CD48-2B4 interaction delivers a 

negative instead of an activating signal to NK cells due to the inability of the 2B4 molecule to 

associate to the SH2-domaine containing phosphatases, with the consequence that an efficient 

clearance of infected B cells is impeded.  

In CML it was demonstrated that NK cells decrease in number and functional activity once CML 

progresses to the accelerated phase [79] [80-82]. In addition, an impaired proliferative capacity and 

lytic function was demonstrated for CML derived NK cells, which could be overcome by the in 

vitro activation with high doses of IL-2 [83]. Such CML-derived in vitro activated NK cells were 

shown to suppress autologous malignant but not normal hematopoiesis in long term culture assays. 
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Interestingly, activated NK cells from some patients that failed to lyse NK-sensitive targets also 

failed to suppress the malignant progenitors [84]. Indeed, according to a more recent finding, CML 

patients have alterations in the differentiation of NK cells from CD34+ progenitors, suggesting that 

an inherent defect of transformed progenitors is leading to the subsequent enrichment of 

functionally less effective NK cells [85] 

In a study on 146 AML patients in complete remission the levels of NK cell activity against NK-

sensitive targets was significantly lower than in normal blood donors and the loss of NK cell 

function was associated to a subsequent relapse. Thus, NK cell activity was suggested to serve as a 

possible risk-factor or indicator for leukemia relapse [86]. 

Similarly, blasts of AML-patients at diagnosis were found to be resistant to autologous killing [87], 

while the detection of cytolytic activity of NK cells obtained from PB of AML-patients in remission 

were shown to correlate to the duration of remission and survival.  

A direct proof of an NK cell-mediated activity against autologous blasts in vitro and the association 

of this activity with the clinical outcome were first described in 1997 for three AML and ALL 

patients. The maintenance of complete remission after autologous HSCT was dependent on the 

sustained presence of anti-leukemic NK cells, since the loss of leukemia-reactive NK cells was 

followed by leukemia relapse, which in one patient could be reverted to complete remission by the 

IFN-α induced regain of anti-leukemic NK cells [89]. These results were confirmed on a larger 

group of 25 AML and ALL patients in complete remission either after chemotherapy or autologous 

HSCT, where the cytolytic activity of NK cells against the autologous blasts (isolated at diagnosis) 

were followed post remission. Low or absent activity was predictive of leukemia relapse with a high 

sensitivity and specificity [90]. More recently, in AML patients it was suggested that the observed 

defective expression of natural cytotoxicity receptors (NCRs) upon in vitro expansion might 

contribute to the lack of recognition of autologous leukemic blasts [88]. 

 

2.3.2 Mechanisms of tumors to escape recognition by cytotoxic effectors 
 
Tumor cells are found to localize in immune privileged sites unreachable for effector cells, to down-

regulate MHC class I molecules or to acquire an altered surface expression of ligands that are 

essential for NK cell recognition. However, down-regulation of MHC class I and class II molecules 

is a relatively infrequent event in acute leukemia, but alterations in antigenic peptide sequences may 

occur resulting in an impaired recognition by cytotoxic T lymphocytes [91]. Leukemic blasts can be 

deficient in co-stimulatory molecules such as CD80, CD83, CD86, CD40 and LFA-1 or ICAM-1 
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that leads to an insufficient priming or inhibition of CTL development. They were found to produce 

variable amounts of cytokines such as IL-10, which was shown to inhibit GvL reactions in vitro 

[92] or such as TGF-beta, a known potent inhibitor of activated lymphocytes. Some blasts are also 

known to abnormally secret or to be resistant to TNF-alpha and IFN-gamma.  

In AML patients it was shown that primary leukemic blasts could be resistant to NK cell mediated 

killing due to their reduced binding of perforin [93]. Culture supernatants derived from primary 

AML blasts and AML lines were demonstrated to have the potential to suppress T cell and NK cell 

proliferation, but without affecting their cytolytic function [94]. Further, it was shown that AML 

blasts are resistant to NK cell mediated killing due to the expression of Fas receptor as a non-

functional surface molecule or in released form that “neutralizes” the Fas-ligand [95]. In a 

reciprocal way, expression of Fas-ligand by leukemic blasts was found to prevent cytotoxic activity 

of Fas receptor expressing T and NK cells [96]. In addition some lymphoid leukemias are known to 

be resistant due to their low surface expression of TRAIL molecules [97]. 

Shedding and the serum-accumulation of ligands for the activating receptor NKG2D was also 

shown to cause the down regulation of NKG2D in gastrointestinal tumors and leukemic blasts [34, 

98, 99]. 
 

 
 

2.3.3 NK cells in HSCT: the role of KIR-MHC class I interactions  
 
KIR-epitope mismatches are well known causes of NK cell alloreactivity [100-102] but their role in 

human transplantation has been evaluated only recently. NK cell alloreactivity was detected in 

transplantations where a mismatch in the killer cell immunoglobulin-like receptors (KIR) existed, 

which generated an NK cell response in the GvH direction. This alloreactivity was clearly 

correlated to higher engraftment rates without causing GvHD, it was mainly HLA-C directed and 

had a clear anti-tumor effect in AML but not in ALL [103]. 

The most prevalent and dominant pattern of NK cell alloreactivity is due to the recognition of the 

two HLA-C allotypes by KIRs (see section 1.4.1). Since KIR genes and HLA genes are located on 

different chromosomes, matching for HLA genotype does not necessarily result in matched KIR 

genes. Consequently, 75% of transplants from an HLA-identical sibling donor will be KIR 

mismatched, and for transplants from unrelated donors the frequency of KIR mismatch will be close 

to 100% [104]. In the haploidentical setting of transplantation the donor and recipient share at least 

one HLA-C allele but might differ in the second one. Thus, donors heterozygous in terms of the 
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HLA-C haplotype have subsets of NK cells that kill targets of homozygous recipients, whereas 

heterozygous recipients resist NK cell attack from either type of donors. This has the following 

implications for HSCT between HLA-identical or haploidentical siblings: 

First, no alloreactivity at all, due to a full KIR-ligand (HLA-C) match. Second, alloreactivity occurs 

in the HvG direction. Here the correlation of certain HLA-C determinants to increased risk of graft 

failure was shown [105], but due to extensive conditioning regimens it is difficult to distinguish T 

cell- from NK cell-mediated HvG effects in rejection of allogeneic BM cells. In addition, since NK 

cells are sensitive to most conditioning reagents and the large amounts of HSC given in 

transplantation simply should „override“ potential residual NK cell reactivity. 

The third possibility is represented by the alloreactivity in the GvH direction, which may be 

responsible for most of the beneficial effects on the outcome observed in haploidentical 

transplantation. Data from 92 haploidentical transplantations showed that mismatching in HLA-C 

allotypes correlated with a higher probability of an event-free five-year survival for patients with 

AML but not ALL [106, 107]. 

Why NK cell alloreactivity is observed in acute myeloid but not in lymphoblastic malignancies is 

not known, but may be due to the absence of the adhesion molecule leukocyte function-associated 

antigen 1 (LFA-1) on ALL blasts. Interestingly, LFA-1 is rarely expressed on non-hematopoietic 

cells, which may explain that NK cells do not kill these cells and, possibly, why NK cells do not 

cause GvHD. Another possibility is that in myeloid leukemia blast-derived dendritic cells directly 

present leukemia antigens to reactive T cells, which has been shown in vitro in AML or in CML 

where dendritic cells were found to be BcrAbl positive, thus of leukemic origin but still stimulatory 

for CTLs [108]. 

A controversy remains considering the consequences of KIR ligand incompatibility for the risk of 

severe GvHD, which was shown to be reduced [109] as well as increased [110]. In a case-control 

study on 556 bone marrow recipients from unrelated donors, mismatches for HLA-C correlated to a 

higher risk of graft rejection [111]. Even more striking, a recent study of 62 haploidentical 

transplanted leukemia patients revealed poorer engraftment rates and overall survival in KIR 

epitope mismatched than with matched transplants without any influence on the incidence of GvHD 

[112]. 

In general, depending on the protocol that is administered, allogeneic HSCT can produce an 

environment which favours a GvH directed immune response either dominated by T cells as in 

HLA-matched transplants and in mini-transplantation, or by NK cells in the case of haploidentical 

transplantations with T cell depletion, anti-thymocyte globulin treatment and KIR ligand 
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incompatibility. Taken together these observations suggest that alloreactive T and NK cells can 

contribute to the eradication of residual tumor cells and that patients receiving HSCT may benefit 

from DLI given at later time points. 

 

 

3. Cellular Immunotherapy: The Adoptive Transfer of anti-Leukemic 
Effector Cells 

 
 
The adoptive transfer of leukemia-directed effector cells to patients with hematologic malignancies 

includes different approaches. In principle, the infusion of cytotoxic effector cells is aimed at 

prevention of leukemia relapse and maintenance of remission after HLA-matched stem cell 

transplantation by the eradication of minimal residual disease. Moreover, the adoptive transfer of 

allogeneic or autologous effectors with GvL activity might be considered as a therapeutic tool in 

elderly patients who are mostly intolerant to intensive chemotherapy or as a potential therapy for 

recurrent chemotherapy-refractory leukemia. 

Beside the well-established infusion of donor derived T cells there are attempts to use in vitro 

generated cytotoxic T lymphocytes that were selected for their tumor specificity. The alternative 

approach in the adoptive transfer of anti-leukemic effector cells is to infuse γδ T cells, NK-T cells 

or CD3-CD56+ NK cells which are not MHC-restricted and therefore do not bear the risk to 

develop GvHD. 

 

3.1 Donor-derived lymphocyte infusion (DLI) and leukemia-specific cytotoxic T 
lymphocytes (CTLs) 

 

The most prominent approach is represented by the donor derived lymphocyte infusion (DLI) after 

T cell depleted allogeneic HSCT. Several studies demonstrated that donor derived CTL-precursors 

directed against leukemic blasts in transplanted patients emerged and persisted in the peripheral 

blood of recipients who maintained a state of remission. DLIs were initially applied to CML 

patients but are currently extended to a variety of hematologic malignancies [114]. In some CML 

patients a strong correlation was shown between the presence of anti-leukemic CTLs and the 

disappearance of the tumor cells. In contrast, in transplanted patients who experienced a relapse the 

frequency of CTL precursors rapidly declined [113]. 
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Usually DLI consists of a crude mixture of lymphocytes collected by lymphapharesis and is applied 

in HLA-matched HSCT. T cell DLIs are not recommended in partially mismatched or 

haploidentical HSCT because of the high risk to develop GvHD. The adoptive transfer of donor T 

cells that specifically recognize viral antigens has been effective in preventing CMV and EBV 

disease after allogeneic HSCT without causing GvHD [115] and autologous tumor-reactive T cells 

have been transferred to successfully treat patients with melanoma [116]. 

 

3.2 The adoptive transfer of γδ-T cells and cytokine-induced NK-T cells  
 
The TCR positive γδ-T cells were demonstrated to be important mediators of alloengraftment [117] 

without causing GvHD [118]. The anti-tumor activity of γδ T cells was shown for many tumors of 

different origin, where the reactivity was not MHC restricted but depended on interaction of LFA-1 

with its ligand ICAM-1. In addition, γδ-T cell clones (Vδ1 cells) could be raised against acute 

lymphoblastic leukemias (ALL) but not against myeloid blasts indicating a possible specificity of γδ 

T cells to lymphoid cells [119]. No reports so far demonstrated the immunotherapeutic use of 

expanded and activated γδ-T cells. 

NK-T cells are TCRαβ + CD3+ CD56+ cytotoxic T cells that are abundant in the liver, where they 

make up to 40% of total lymphocytes and localize to the sinusoidal walls. They are also found in 

the BM, in smaller numbers in the spleen, lymph nodes and the thymus [120]. NK-T cells may 

represent an intermediate stage in phylogenic development between NK cells and T cells. Their 

function is not yet clearly defined, but they may play an important role in the surveillance of 

malignant cells and cells infected with intracellular pathogens as well as in the control of 

autoreactive lymphocytes [121]. Early reports on ex vivo expanded and activated T cells, at that 

time not defined as the NK-T cell subset, demonstrated a MHC-unrestricted and unspecific 

cytotoxicity against a variety of malignant cells including autologous leukemic blasts [122]. 

Cytokine induced killer (CIK) cells are NK-T cells expanded from PBMNC by the timed addition 

of IFN-γ, IL-2 and the anti-CD3 monoclonal antibody OKT3. The CIK cells are CD16– and are 

derived from T cells and not from NK cells, which retain their phenotype under these conditions 

[123]. A typical bulk CIK culture contains approximately one third of CD3+CD56+ cells, two 

thirds of CD3+CD56-cells and below 10% of CD3-CD56+ NK cells [124].  

Such bulk cultures exert a marked non-MHC restricted cytotoxicity against a variety of tumor cells 

including B-lymphoma lines [125], fresh tumors and autologous or allogeneic CML progenitors, 

but have only minor effects on normal hematopoietic progenitor cells [126]. The adoptive transfer 
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of CIK cells to SCID mice challenged with human lymphoma cell lines protected against the 

development of tumors and prolonged the survival [123]. In a HLA class I and class II mismatched 

mouse transplantation model it was clearly demonstrated that CIK cells do not mediate GvHD but 

are able to exert a strong GvL effect against a mouse lymphoma cell line [127]. 

In CML patients it could be demonstrated that the large-scale ex vivo generation and expansion of 

BcrAbl negative non-malignant CIK cells is possible, and that these cells have potent in vitro and in 

vivo effects against autologous tumor cells. In tumor-inoculated immunodeficient SCID mice a 

single CIK infusion could significantly delay the progression of leukemia [126]. CIK cells could 

also be generated during relapse phase of patients treated with chemotherapy for a variety of 

malignancies including lymphoma, acute leukemia, myeloma and breast carcinoma. CIK cells could 

be obtained from peripheral blood samples with a minimal pool of residual normal lymphocytes and 

were demonstrated to be cytotoxic against autologous and allogeneic leukemic blasts from AML 

[128], ALL and B-CLL patients [129].  

 

3.3 The adoptive transfer of NK cells 
 
3.3.1 Results from mouse transplantation models 
 
Expanded and activated CD3-CD56+ NK cells are known to mediate numerous anti-tumor effects 

in vitro and in vivo, particularly against metastatic tumors and autologous or allogeneic leukemic 

blasts [130-132]. The adoptive transfer of activated NK cells was shown to promote the engraftment 

in mice receiving syngeneic as well as allogeneic grafts [133, 134].  

In an MHC mismatched transplantation model NK cells were shown to play a pivotal role in tumor 

suppression and the augmentation of allogeneic BM engraftment in mice [106]. In this model 

(donor F1: H-2d/b transplanted to parental: H-2b/b) donor T cells were tolerant of the recipients 

MHC, but donor NK cells included alloreactive cells (recognizing H-2d allotype, hence not 

inhibited by the H-2b allotype). A single dose of alloreactive but not of syngeneic NK cells could 

eradicate advanced human CML in NOD/SCID mice. These alloreactive NK cells did not cause 

GvHD, even when infused in large amounts into lethally irradiated and transplanted recipients (all 

mice with 100% survival), whereas the co-transplantation of alloreactive T cells caused GvHD and 

the rapid death in all mice. However, the alloreactive NK cells could reduce recipient type T cells 

and granulocytes in bone marrow and spleen to levels only observed after lethal irradiation, 

demonstrating a strong immune- and myeloablating effect. These results implicated the use of 
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alloreactive NK cells as a preconditioning infusion to obviate high-intensity regimens while still 

inducing efficient myeloablation. Indeed, the co-transplantation of as few as 2x105 alloreactive NK 

cells to non-lethally irradiated recipients resulted in high levels of mixed donor chimerisms (up to 

80 %), which could be converted to a full donor chimerism by an additional post-engraftment 

infusion of alloreactive NK cells. This MHC-mismatched F1 to parent transplantation model could 

clearly demonstrate that the conditioning by alloreactive NK cells could prevent GvHD by the 

elimination of recipients’ antigen presenting cells (APC). 

Similar results were obtained in an allogeneic transplantation model using tumor-bearing mice as 

bone marrow recipients [131]. It could be demonstrated that donor derived NK cells inhibited 

GvHD and substantially promoted graft-versus-tumor (GvT) reactions. Mice receiving NK cells had 

significantly improved survival, and this could be further augmented with the co-administration of 

donor T cells. In contrast, donor T cells alone gave a certain protection from the tumor, but the mice 

ultimately died due to GvHD. If the administration of NK cells was delayed after initiation of 

GvHD by transferred donor T cells, the incidence and severity of GvHD was increased. 

Importantly, this allogeneic transplantation model used an adenocarcinoma, suggesting that the 

adoptive transfer of alloreactive NK cells may be effective in HSCT for the treatment of 

hematological disorders as well as metastatic solid tumors.  

Taken together, these results in mice implicate that the adoptive transfer of NK cells can have a 

protective effect against GvHD through the inactivation of recipients APCs such as dendritic cells 

and is suggested as a mechanism of suppression of GvHD by NK cells in allogeneic 

transplantations while inducing strong graft versus tumor activity [135].  

 
3.3.2 Transfer of ex vivo expanded NK cells in humans: NK cell DLI 
 
One possible immunotherapeutic application of donor derived NK cells in humans which can be 

directly concluded from mouse transplantation models would be the preconditioning in HSC 

transplantation with donor NK cell infusions. Such NK cell DLIs would aim at the consolidation of 

engraftment with a less severe conditioning or even without high-intensity regimen and without T 

cell depletion while still inducing an efficient myeloablation.  

Moreover, the adoptive transfer of NK cells after allogeneic HSCT offers the possibility to induce a 

strong GvL activity against residual disease without the development of GvHD. Thus, NK cell 

infusions can be given as a „pre-emptive NK-DLI“ at predetermined time points after 

transplantation or as „therapeutic NK-DLI“ upon evidence of minimal residual disease or a mixed 
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chimerism. First prospective ongoing studies and clinical trials are concerning the safety and 

efficacy of donor NK cell collections and the tolerability of NK cell infusions to cancer patients or 

recipients of allogeneic or autologous HSCT. Recent reports demonstrated the feasibility and safety 

of the adoptive transfer of donor lymphocyte preparations, which were ex vivo IL-2 activated and 

enriched for CD56+ effector cells. The adoptive transfer of isolated, enriched and ex vivo IL-2 

activated haploidentical CD56+CD3- NK cells to AML patients was shown to be safe without any 

severe adverse events. Here the persistence without any further in vivo expansion of donor cells up 

to several months was demonstrated [136]. In addition, these studies are designed to determine the 

practicability of large-scaled graft engineering to prepare highly purified NK cells for the use in 

NK-DLIs [137, 138].  

Furthermore, NK cell infusions could be applied to AML patients at high risk, particularly in 

elderly patients or patients in a bad physical condition who are usually not eligible to allogeneic 

transplantations since they are not able to tolerate the severity of a myeloablative regimen. Such an 

adoptive transfer of alloreactive, ex vivo expanded and activated allogeneic or autologous NK cells 

may serve as an alternative approach in the treatment of disease. The first reports on the adoptive 

transfer of ex vivo IL-2 activated and expanded NK cells in humans, of so called Lymphokine 

Activated Killer (LAK) cells in 1993, demonstrated the feasibility of NK cell infusions as an 

alternative approach to high-dose in vivo IL-2 administration even though no direct benefit could be 

assigned to the transferred cells [139]. More recently, the ex vivo expansion of AML patient-derived 

NK cells with a cytolytic activity against autologous leukemic blasts was shown [140]. Similarly, 

the expansion of NK cells and NK-T cells from patients with chronic B cell lymphocytic leukemia 

(B-CLL) was reported. NK cells were expanded from PBMC cultures with no difference in 

expansion rates of NK cells derived from patients either in indolent or progressive state of disease 

[141].  

Importantly, since CIK cells and NK cells can be generated at the time point of diagnosis it is worth 

to note, that patient derived effector cells are derived from normal resting NK cells or NK-precursor 

cells, thus are non-leukemic in nature which would justify their clinical application [129]. This is 

most feasible in the autologous transplantation setting, in which peripheral blood lymphocytes 

harvested by leukapharesis could be expanded for re-infusion post transplantation after 

hematopoietic recovery at a time of minimal residual disease. In general, with the demonstration of 

potent cytotoxicity against autologous leukemic blasts in AML, it is conceivable that IL-2 activated 

NK-like T cells (CIK) or NK cells will find a place in clinical use. 
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4. Gene Therapy and Genetic Modification with Lentiviral vectors 
 

4.1 The concept of gene therapy  
 

Gene therapy protocols have been designed to correct inherited or acquired metabolic, infectious, or 

malignant diseases. The primary aim of gene therapy, namely the insertion and expression of a 

therapeutic copy of a mutant or deleted gene has been extended to additional clinical applications of 

gene transfer. Such therapeutic interventions may concern the genetic modification of tumor cells or 

terminally differentiated effector cells of the immune system. New strategies include for example 

the replacement or inactivation of mutant tumor suppressor genes and oncogenes in tumor cells, the 

introduction of genes encoding prodrug-metabolizing enzymes as new forms of drug delivery [142] 

as well as the transfer of genes encoding co-stimulatory molecules [143] to modify tumor cells for 

the use as cancer vaccines.  

The genetic modification of immune cells such as dendritic cells (DC), T cells or NK cells could 

provide new immunotherapeutic approaches for an effective anti-cancer therapy. For instance, 

genetically modified DCs expressing defined tumor-associated antigens may serve as cellular 

vaccines in eliciting a tumor specific CTL response [144]. Further, the transfer of T cell receptor 

(TCR) genes to T cells which are additionally genetically modified to express the HSV thymidine 

kinase (HSV–tk) “suicide-gene” were successfully applied in immunotherapeutic DLIs after 

allogeneic HSCT [146] and offer the potential to direct T cells to any antigen of interest [145].  

 

4.2 Viral vectors for gene transfer 
 
4.2.1 Viral gene delivery systems 
 
Successful gene therapy primarily depends on the safe and efficient transfer of the selected gene 

and the precise targeting into the cells of interest. If long-term expression is needed the transferred 

DNA has to integrate into the genome of the target cell, ideally in a specific site, and the vectors 

should allow the integration of large exogenous DNA inserts without the induction of gene 

silencing. Moreover, in some therapeutic applications the transgene should be able to respond to 

cellular mechanisms of regulation of gene expression or should allow to be regulated by the 

exogenous administration of drugs, so that the gene product will be produced in correct quantities 

and at appropriate times. Among the wide variety of gene delivery systems viral vectors have 
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proven most useful since they fulfil the majority of the requirements. However, the most important 

constraints of all vector systems including viral vectors are their inability to be targeted to a specific 

cell type or tissue together with their random insertion to the host genome. This integration 

represents a mutagenic event that has the potential to disrupt or to transcriptional activate genes. 

Each viral vector system available today has certain advantages that make it valuable for a 

particular application in gene therapy (see Table 5-1), but only retroviral derived vectors have the 

capability to mediate the stable integration of the transgene into the host genome.  

 
vector characteristics disadvantage 
Adenoviruses 

 

high vector titers, with large DNA inserts 
(up to 15kb); 
high level of expression; 
infection of non-dividing cells;  
high target cell range 

no genomic integration,  
thus toxic and inflammatory in vivo 
reactions possible, with neutralisation of 
vector particles by the immune system  

Adeno-associated viruses 
 

High vector titers; Infection of non-dividing 
cells with genomic integration; 
Non-toxic 

Small vector genome allows only small 
DNA inserts; 
Requirement for helper adenovirus, with 
low gene transfer efficiencies 

Herpes simplex virus 
 

large DNA inserts possible (up to 30kb) 
 

no genomic integration; 
toxic and inflammatory in vivo reactions 
possible 

Retroviruses 
 

Genomic Integration of viral genome; high 
vector titers possible with large DNA 
inserts (up to 9kb); high target cell range 

genomic integration in dividing cells only; 
random insertion with low gene transfer 
efficiencies 

HIV-derived lentiviruses High vector titers; Infection of non-dividing 
cells with genomic integration; large DNA 
inserts (more than 10kb) 

random insertion  

 
Table 5-1: Characteristics of viral gene delivery systems 

 

4.2.2 The lentivirus-based vector system 
 
Retroviruses are lipid-enveloped particles comprising a homodimer of two single stranded RNA 

genomes of 7 to 11 kb and virus replication enzymes within a protein core. Following infection, the 

viral genome is reverse-transcribed into DNA that is transported to the nucleus where it randomly 

integrates into the chromatin. The family of retroviruses includes several varieties being exploited 

for gene therapy, the mammalian and avian C-type retroviruses (oncoretroviruses), spumaviruses 

and the lentiviruses. All retroviral genomes have two long terminal repeats at the 5’ and 3’ ends (5’-

/3’LTR) with closely located cis-acting sequences that are active during viral gene expression, 

reverse transcription, packaging and integration. The LTR frames the three groups of structural 

genes gag, pol and env that encode the capsid proteins, the reverse transcriptase, polymerases, the 

integrases and the surface glycoproteins, respectively (see Figure 5-1). The 5’LTR (R-5U) contains 

the promoter that drives the transcription of the viral genes, whereas the 3’LTR (U3’-R) contains 
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the transcription termination site and the polyA signals. Lentiviruses have a more complex genome 

encoding two additional groups of regulatory and accessory genes that are essential during the viral 

life cycle and pathogenesis. The regulatory gene product tat is responsible for the promoter activity 

and initiates transcription from the 5’LTR, whereas the rev protein binds to the rev responsible 

element (RRE) within the viral RNA which is necessary for efficient gag and pol expression and 

allows the transport of unspliced RNA out of the nucleus. The accessory genes vpr, vif, vpu and nef 

have function in nuclear transport, particle assembly and release as well as in the growth arrest of 

infected cells, thus representing virulence factors for the infectivity of the virus. Upon infection of 

eukaryotic cells the retroviral RNA is reverse transcribed within the cytoplasm and the viral genome 

enters the nucleus to integrate into the host DNA. Unlike the common oncoretroviruses such as the 

murine leukemia virus (MLV) that cannot cross the nuclear membrane, lentiviruses use an 

mechanism of active transport of the viral genome through the pores of the intact nucleus. The 

reverse transcribed viral DNA together with the gag-encoded matrix protein, the enzyme integrase 

and the product of the vpr gene form the pre-integration complex that is recognized by the nuclear 

import machinery and translocated to the nucleus (see Figure 5-2). 
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Figure 5-1: Schematic organisation of the retroviral genome. In addition to the gag, pol and env genes found in all 
retroviruses accessory (vpr, vif, vpu and nef) and regulatory genes (tat, rev; all in red) are present in the wild-type HIV. 
Retrorviral RNA that is packed into a virus particle contains shortened LTRs with the U5-and the U3’ regions 
duplicated in proviral DNA after reverse transcription. A prototypical self-inactivating (sin) lentiviral vector is shown 
below. The only regions left from the HIV are the LTRs are a small part of the gag gene, the packaging signal sequence 
ψ (both necessary for RNA encapsidation), and the rev-responsible element (RRE). A 400bp deletion in the 3’LTR 
(Δ3’LTR) results in the abolishment of the promoter activity of the (duplicated) U3’-R-U5 LTR after integration. 
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Lentiviruses are therefore able to infect and integrate into non-dividing cells such as terminally 

differentiated somatic cells or hematopoietic stem cells, while oncoretroviruses need mitotically 

active cells (with the disassembly of nuclear membrane during mitosis) to complete their replication 

cycle. During the process of reverse transcription the U5-region of the 5’LTR (R-U5) and the U3’-

region of the 3’LTR (U3’-R) are both duplicated, so that a proviral DNA integrates that contains 

two identical LTRs, each consisting of the regions U3 (viral promoter/enhancer), R (transcriptional 

start sequence) and U5. This is especially important for the generation of so-called “self-

inactivating” (sin) viral vectors where a deletion in the U3’-region results in the loss of promoter 

activity after reverse transcription and integration (see Figure 5-1). Such engineered vectors are able 

to transduce a foreign gene after infection of target cells, but are replicative defective and thus 

unable to multiply and spread to other cells[149].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-2: Lentivirus replication cycle. Infection begins with the recognition of specific cell surface receptors by the 
viral envelope glycoproteins, followed by the fusion with the target cell membrane. Viral RNA is reverse transcribed to 
DNA in the reverse transcription complex (RTC). Proviral DNA is uncoated and forms together with DNA binding 
viral proteins (e.g. integrase; associate with the central DNA flap) the pre-integration complex (PIC) that is translocated 
to the nucleus where the provirus integrates randomly. Integration to the host genome enables the provirus to be stably 
maintained and passed to the progeny cells by host DNA replication during mitosis. Viral RNA is transcribed into 
unspliced and spliced mRNA variants. The unspliced RNA is translated into structural core proteins (matrix, capsid and 
nucleocapsid) and the viral enzymes (protease and integrase) and two copies are packed as genomic RNA into new 
virions. The spliced mRNA variants code either for the packed reverse transcriptase or the envelope proteins. Mature 
virions are released from the cell (virus budding) after the acquisition of their envelopes that consists of cellular 
membrane components and viral env proteins. 
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The currently used lentiviral vectors are derived from the immunodeficiency viruses of human 

(HIV-1 or HIV-2), simian (SIV), feline (FIV) or bovine (BIV) origin. The rational to develop 

lentiviral vectors from the non-human viruses is that they would be more acceptable for clinical 

application since the parental viruses are not infectious to humans. 

 

Lentiviral vector particles are generated by the co-transfection of a producer cell line with three 

different vector plasmids [147, 148] (see Figure 5-3; section 2.4.1). The first plasmid represents the 

transfer vector that carries the gene of interest under the control of a strong internal promoter. Most 

viral genes are deleted, leaving a backbone of the LTRs with the packaging signal sequence ψ 

(encapsidation-site; 3’ of the 5’LTR), a small part of the gag coding region and a variety of 

regulatory sequences. Such cis-acting elements like the rev responsible element (RRE) regulate and 

improve the nuclear translocation of reverse transcribed DNA as well as the nuclear export and 

stabilization of vector mRNA and their propagation into viral particles. Additional important 

improvements in such vectors are the insertion of the central polypurine tract and central 

termination site element (cPPT/CTS) that facilitates nuclear translocation of the pre-integration 

complex and the insertion of the post-transcriptional regulatory element (PRE) of the woodchuck 

hepatitis B virus (WPRE) [150] that enhances the transgene expression through the stabilization of 

vector mRNA. The second plasmid, the packaging construct, provides the viral gag, pol and rev 

genes in trans, whereas the third plasmid encodes the envelope protein that is mostly either the 

amphotropic MLV envelope glycoprotein or the vesicular stomatitis virus G-protein (VSV-G) that 

broaden the types of cells that can be infected.  

This split of the genetic information on three different transcriptional units improves the biosaftey 

since it minimizes the probability of the reconstitution of a replication competent retrovirus (RCR). 

For additional safety aspects all accessory genes (vpr, vif, vpu and nef) are deleted in the so-called 

2nd generation packaging and vector plasmids without affecting the vector yield or the transduction 

efficacy of most cell types.  

 

4.3 Genetic modification of hematopoietic stem cells 
 
The hematopoietic stem cell is one of the preferred targets for gene therapy, since this cell has the 

capacity to self renew and to differentiate into all mature cell lineages of the blood and the immune 

system. Many of the genetic diseases that affect these systems could be treated by the stable 

introduction of genes into HSCs with the potential to achieve a long-term therapeutic effect. HSCs  
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(A) 

Figure 5-3:  Lentiviral vector production in producer cell lines.  Schematic drawing of the 
“2nd generation” three-plasmid lentiviral vector system is shown in (A). All information for the production 
of viral particles is split onto three separate DNA plasmids. The transfer vector carries the gene of interest 
flanked by the HIV-derived LTRs, the regulatory RRE sequence, a shortened form of the gag gene with the 
encapsidation site (ψ) and the accessory sequences cPPT to achieve genomic integration in the target cells. 
The packaging construct provides the gag and pol genes in trans but is deleted for the ψ-signal to avoid the 
encapsidation of mRNA. The third plasmid codes for the amphotropic vesicular stomatitis virus G-protein 
(VSV-G), that allows the infection of a broad range of target cells. In (B) the process of virus production is 
illustrated. The plasmids are inserted by Ca-phosphate transfection to a producer cell line that releases high 
amounts of infective viral particles. Cell culture supernatant is collected and concentrated virus 
(ultracentrifugation step) is used to transduce target cells with the desired vector construct.  
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are easy accessible for ex vivo manipulation, and in theory a small number of modified cells would 

be sufficient to repopulate the whole hematopoietic system of a recipient for his entire life.  

 
However, human HSC therapy is still hampered by many obstacles concerning the gene delivery 

systems used. A stable long-term transgene expression in vivo is only achieved when the gene 

transfer is mediated into the relatively rare population of primitive stem cells. Only these cells 

would be able to long-term reconstitute the hematopoiesis after transplantation leading to the 

sustained expression of the transgene in all blood cell lineages. Common viral and non-viral gene 

delivery systems are inefficient in the transduction of quiescent stem cells, since these types of 

vectors do require the breakdown of the nuclear membrane at mitotic cell division to enter the 

nucleus. Genomic integration of DNA from such vectors needs the ex vivo growth factor 

stimulation to induce cell division prior to transduction, that leads to a lineage commitment and 

differentiation of stem cells and finally results in a weak long-term engraftment of transduced cells 

in the recipient. Transduction with lentivirus-derived vectors could circumvent these limitations 

since these vectors integrate into the genome of non-dividing cells. Even though many 

modifications improved safety and efficacy of gene transfer and elevated the acceptance of 

lentiviral vectors, only a few clinical trials with lentiviral vectors have been initiated so far [151, 

152]. However, recent clinical experiences with gene therapy trials on X-linked SCID have recalled 

into question the ultimate biosaftey of retrovirus-mediated genetic modifications of human cells. 

Two cases of acute T cell leukemia were reported in patients who had undergone retrovirus-

mediated gene therapy of CD34+ selected hematopoietic stem cells to cure inherited X-linked SCID 

[153, 154]. In these patients’ cancerous T cells it was found that the vector had inserted itself into a 

gene called LMO-2, mutations in which are known to be involved in childhood cancers. Such 

processes of insertional mutagenesis in oncogenic regions are thus the most worried side effects of 

retroviral mediated gene transfer. On the other hand, no serious adverse effects have been 

associated to date with the adoptive transfer of gene-modified mature cells [155]. In contrast to 

HSC, mature cells have a limited life span, they do not pass through multiple rounds of proliferation 

and differentiation and may thus have a lower risk of malignant transformation following retroviral 

integration. 
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III.    RESEARCH OBJECTIVES 
 
 
Natural killer (NK) cells are important effectors of innate immunity mediating the spontaneous 

killing of virus-infected and malignant cells [156]. The cytotoxic activity of NK cells is regulated by 

the complex balance between activating and inhibitory receptors. The normal expression of HLA 

class I molecules, which function as the ligands for inhibitory receptors, protects healthy cells from 

NK cell lysis by blocking the signalling pathways of activating receptors [1]. In the absence of HLA 

class I expression, as a consequence of viral infection or tumor transformation, the effects of 

activating receptors are no longer counterbalanced and target cell lysis is initiated (“missing self 

recognition”). 

Most tumors have evolved strategies to escape the immune surveillance by NK cells. In 

hematological malignancies such as acute myeloid leukemia (AML), several mechanisms can be 

responsible for the failure of recognition of malignant cells. First, unlike most solid tumors, leukemic 

blasts maintain the expression of HLA class I molecules that mediate NK cell inhibition [91, 157]. 

Second, the malignant cells may display a low or absent expression of the ligands for NK cell 

triggering receptors[34, 37]. Alternatively, NK cells may fail to eliminate AML blasts due to the 

defective expression or the down-regulation of activating receptors involved in the recognition of 

tumor antigens [88].  

In this context we hypothesize that the anti-tumor activity of AML-derived NK (AML-NK) cells 

could be enhanced by shifting the receptor balance towards a status that “overrides” the inhibitory 

signalling and favours NK cell activation. Hence, the major objective of this work was to characterize 

the function of AML-NK cells and to manipulate the expression of activating receptors on NK cells 

in order to confirm the model of a receptor-balanced NK cell regulation.  

 

The goal of the first part of this thesis was to achieve an enhanced cell surface expression of the 

Natural Cytotoxicity Receptor NKp46 by the genetic modification of NK cells. For this purpose, we 

used the HIV-derived lentiviral vector system for the gene transfer to NK cell lines, primary 

peripheral blood NK cells and NK cells generated in vitro from hematopoietic progenitor cells. With 

regard to the potential application of genetically modified NK cells in cellular immunotherapy 

protocols, we investigated the conditions for the expansion of NK cell populations with the 

concomitant maintenance of transgene expression.  
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In the second part of the thesis we focused on the phenotypic and functional characterization of 

AML- NK cells. The main goal was to define whether abnormalities in NK cell effector functions are 

responsible for the insufficient recognition and lysis of autologous leukemic blasts. Next we 

investigated the possibility to expand AML-NK cells in vitro and examined the influence of 

cytokines on the pattern of expression of NK cell receptors. The activity of cytokine activated AML-

NK cells was determined in vitro by the IFN-γ release and the cytotoxicity against NK cell sensitive 

target cell lines and autologous leukemic blasts. The anti-leukemic activity of AML-NK cells in vivo 

was determined upon the adoptive transfer to NOD/SCID mice transplanted with human leukemic 

blasts. 

 

In a third part of this thesis we investigated the conditions that lead to the development of human NK 

cell precursors and mature NK cells in the murine bone marrow microenvironment.  

Suitable models for the in vivo analysis of human NK cell effector functions and their development 

have been lacking. The NOD/SCID transplantation system has not been useful since the lymphoid 

differentiation in mice repopulated with human progenitors cells is restricted to the B cell lineage 

whereas T and NK cells are produced at a minimum level or not at all. We administered human 

cytokines that are known to act during NK cell development in vitro to NOD/SCID mice engrafted 

with human cord blood derived CD34+ progenitors and characterized the NK cell lineage derived 

from the human graft in vivo.  

 

 

Results of these studies on the characterization of NK cells in AML patients and their genetic 

modification as well as the establishment of an NOD/SCID in vivo system of human NK cell 

development may contribute to the improvement of immunotherapeutic strategies for the treatment of 

acute leukemia. 
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IV. MATERIALS AND METHODS 
 

1. Molecular Biology 
 

1.1 RNA Isolation and cDNA Synthesis 
 
1.1.1 Total RNA isolation and DNaseI treatment  
 
Approximately 5x106-1x107 cells were used for the extraction of total cellular RNA. Cells were 

washed in PBS and centrifuged at maximum speed (12’000rpm) for 1-2 min. The pellet was 

resuspended in 1ml of TRIzol Reagent (Gibco, Life Technologies, Inc.), vortexed vigorously for 1-

2 min and incubated for 15min at RT. 200 µl of chloroform was added, the tubes were vortexed 

again vigorously for 2-3 min and incubated for additional 10-15 min at RT. The cell lysate was 

centrifuged at maximum speed for 15 min at 4°C. The upper RNA containing (colourless) 

hydrophilic phase was carefully transferred into a new tube and 500µl (1:1 ratio) of isopropanol was 

added and the tubes shortly vortexed. After an incubation time of 10 min at RT the tubes were 

centrifuged at maximum speed for 15 min at 4°C. The supernatant was discarded and the RNA 

pellet washed in 1ml of 70% ethanol and again centrifuged at maximum speed for 15 min at 4°C. 

The ethanol was completely removed and the pellet air-dried for 5-10 min in the flow of a sterile 

hood. RNA was dissolved in 50µl DEPC-H2O and stored at –70°C for further use in RT-PCR. 

DNaseI treatment was done with 5-8 µg of total cellular RNA in a total volume of 20µl. 2µl of 10x 

buffer and 5-8 units of DNaseI (1U/µg RNA) were added to the RNA and the volume adjusted with 

DEPC-H2O to final 20µl. RNA was incubated for 15min at RT, reaction was stopped by the 

addition of 25mM EDTA and the enzyme heat-inactivated at 65°C for 10min. 

 

1.1.2 Small scale isolation of polyadenylated mRNA 
 
When only small amounts of cells were available for RNA isolation (e.g. from cord blood 

differentiation cultures initiated with 2x105 transduced CD34+ progenitors) the QuickPrep Micro 

mRNA Purification Kit (Amersham Pharmacia Biotech Inc.) was used. The mRNA was isolated 

according to the manufacturers protocol; briefly, microcentrifuge tubes were prepared with 1ml of 

oligo- (dT)-cellulose suspension and cells were homogenized in 0,4ml of “extraction buffer” 

(buffered aqueous solution containing guanidinium thiocyanate). 0,8ml of “elution buffer” (10mM 
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Tris-HCl, 1mM EDTA) was added, the cleared homogenate (centrifuged at maximum speed for 

1min) was mixed with the oligo- (dT)-cellulose and gently mixed for 3min. Tubes were centrifuged 

at maximum speed for 1min, the supernatant discarded and the cellulose-pellet washed 5 times with 

1ml of “high-salt” buffer (10mM Tris-HCl, 1mM EDTA, 0,5M NaCl) and 2 times with 1ml of 

“low-salt buffer” (10mM Tris-HCl, 1mM EDTA, 0,1M NaCl). The pellet was transferred to a 

MicroSpin column and washed again 3 times with “low-salt buffer”. The mRNA was finally eluted 

with preheated (65°C) “elution buffer” (10mM Tris-HCl, 1mM EDTA). 

 

1.1.3 RT-PCR 
 

Reverse transcription (RT) was performed in a total volume of 20µl. 1-2µg RNA was used in a 

maximum volume of 8µl, 2µl 10x buffer ( ; Perkin Elmer), 0,75µl RNase inhibitor (40U/µl; 

Promega), 1µl of Random Hexamers (…; 50µM), 0,25µl RTase (SuperScript™II RT, 200U/µl; 

GibcoBRL) and 4x2µl of dNTPs (10mM each; Promega) were added. The RT reaction was 

incubated at 21°C for 12min, followed by 45min at 42°C and stopped at 95°C for 5min. 2µl of this 

RT-mix was used in the subsequent PCR which was performed in a total volume of 20µl. 2µl of 

10x buffer ( ; Perkin Elmer), 2µl of a dNTP mix (2mM each), 0,5µl Taq polymerase (5U/µl; 

Promega) and 1µl of each primer (2-10µM) were added and the volume adjusted with DEPC-H2O 

to final 20µl. Standard PCR was performed with 5min preheating at 94°C and 30 cycles of 

94°C/1min, 60°C/1min and 72°C/1min. The reaction was finished at 72°C for 7min. 

 

1.2 Isolation of genomic DNA 
 

Genomic DNA was isolated using the DNAzol® Reagent (GibcoBRL, Life Technologies) 

according to the manufacturers protocol. Briefly, up to 1x107 cells were washed in PBS and the 

pellet was resuspended in 1ml of DNAzol. Cells were lysed by gently vortexing and inverting the 

tube. The homogenate was centrifuged at maximum speed for 10min and the viscous supernatant 

was transferred to a fresh tube for ethanol precipitation. 0,5ml of ethanol (100%) was added leading 

to a cloudy DNA precipitate that was wrapped around a pipette tip and attached to the tube wall. 

Ethanol was discarded, the remaining cell lysate was aspirated and the genomic DNA was washed 2 

times with 95% ethanol. Alcohol was completely removed and the DNA air-dried for 15min. DNA 

was dissolved in 200µl DEPC-H2O.  
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Small-scale isolation of genomic DNA was done by a cell-lysis procedure using a two detergent 

“Whole cell lysis buffer”. For 100ml of buffer 5ml of KCL (1M), 1ml of TrisHCl (pH 8,3; 1M), 

150µl of MgCl2, 10mg gelatine and 450µl Nonidet p40 and 450µl Tween 20 were added to 93ml 

H2O. The cells (< 10000) were resuspended in 20µl of the lysis buffer and 3µl of proteinase K 

(conc.:) was added. The lysates were incubated for 1hour at 56°C and the enzyme was inactivated at 

100°C for 10min. In standard PCR reactions 1µl of the cell lysate was used. 

 

1.3 Western Blotting 
1.3.1 Preparation of total cell lysates 
 
Cell lysates were prepared using a “triple-detergent” extraction buffer (EB; for total 10ml: 7.5ml 

milli-Q water; 0.5ml Tris [1M, pH8.0; final:50 mM]; 0.3ml NaCl [5 M; final 150 mM]; 0.1ml 

EDTA [0.5 M, final 5 mM]; 1.0 ml DOX [5 %, final 0.5 %]; 100µl SDS [10 %, final 0.1 %]; 400µl 

NP-40 [25 %, final 1.0 %]; 20µl Aprotinin [1mg/ml, final 2ng/ml]; 50µl Leupeptin [1mg/ml, final 

5ng/ml] ). Cells were washed in ice cold PBS, centrifuged and all liquid was carefully removed. Per 

1-2,5 x106 cells in suspension 100µl EB was added, vortexed and incubated for 10 min on ice. The 

lysate was centrifuged at 10’000 rpm and the supernatant was immediately put on dry ice or stored 

at –70°C (in 25µl aliquots). 

 

1.3.2 SDS-PAGE separation and membrane blotting 
 
The gels were prepared according to Laemmli (Laemmli 1970) with some modifications. The 

resolving gel contained 12% Acrylamide/Bis, 375 mM Tris, pH 8.8, and 0.1 % SDS, and was 

polymerised with 50-75µl 10 % APS and 5 µl TEMED per 10 ml gel. The stacking gel contained 

4% Acrylamide/Bis, 125 mM Tris, pH 6.8, and 0.1 % SDS, and was polymerised with 50 µl 10 % 

APS and 10 µl TEMED per 10 ml gel. The 4x sample buffer contained 10% glycerol, 2 % SDS, 0.5 

% bromophenol blue, 60 mM Tris, pH 6.8, and 5% β-mercaptoethanol (added just before use). The 

samples were denatured for 4min at 95°C. The separation buffer contained 25 mM Tris-base, 14.4 

% glycine and 1 % SDS. The gels were run for 15 min at 100V followed by 1hr at 160-200V. 

Before the protein transfer, the gels were washed once in running buffer and once in transfer buffer 

(25 mM Tris-base, 14.4 % glycine). The proteins were blotted to Immun-Blot PVDF Membrane 

(Biorad) using the Mini Trans-Blot Electrophoretic Transfer Cell (Biorad) with 100V for 1hr. The 

blots were blocked over night in blocking solution, BS (1g BSA and 5g dry milk in 100ml PBS, 
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0.05% Tween20). The membrane was washed 3 times in PBS-Tween and incubated with the 

primary antibody for 1-3 hrs at RT (purified mAbs: 2,5 µl/ml; polyclonal Abs: 1 in 2000-5000 

dilution) in BS. The primary antibody was removed by washing 3 times in PBS-Tween before the 

secondary antibody was incubated for 1 h at RT in PBS-0,1 % BSA (HRP-conjugates: 1 in 4000 

dilution; SAV-HRP- conjugates: 1 in 5000 dilution). After washing three times with PBS-Tween, 

the protein bands were revealed with the Super Signal Reagent (Amersham Pharmacia) and 

exposed to Hyperfilm ECL (Amersham Pharmacia). 

 

2. Cell Biology 
 

2.1 Flow Cytometry 
 
Three-colour FACScalibur© analysis (Becton Dickinson) was used to phenotypically characterize 

freshly isolated NK cells, activated and expanded polyclonal NK cell lines or patient-derived PB 

samples. Cells were stained with fluoresceinisothiocyanate (FITC)-, phycoerythrin (PE)- or 

allophycocyanin (APC)- and peridin chloropyll protein (PerCP)-conjugated monoclonal antibodies 

(mAbs) against human CD3, CD16, CD33, CD34, CD45, CD56, CD69, CD94 and CD161 or 

isotype control antibodies (all from BD PharMingen, San Jose, CA). Staining with the unlabeled 

mAbs anti-HLA-A,B,C (clone G46-2.6; BD PharMingen), anti-MHC class II (clone L243; 

hybridoma supernatant) anti-CD158a, -CD158b, -NKB-1 (clones EB6, GL183, DX9; BD 

PharMingen), anti-NKp46 (clone 9E2; hybridoma supernatant provided by Marco Collona, Basel 

Institute for Immunology) and anti-NKG2D (clone M585, IgG1; 10µg/ml) or anti-ULBP-1 (clone 

M295, IgG1; 10µg/ml), -ULBP-2 (clone M311, IgG1; 20µg/ml) and -ULBP-3 (clone M250, IgG1; 

10µg/ml) (all provided by David Cosman, Amgen Washington Inc., Seattle) was revealed with 

secondary PE- or FITC-conjugated goat anti-mouse (gtαms) antibodies (Southern Biotechnology 

Associates, Birmingham, AL). Incubation with normal mouse serum (1:10 diluted; Jackson 

ImmunoResearch, West Grove, PA) allowed the subsequent staining with directly labeled mAbs. 

MICA/B expression was analysed using an anti-MICA/B hybridoma supernatant (rat anti-human 

mAb; provided by Marco Collona, Basel Institute for Immunology) combined with a FITC-

conjugated gtαrat secondary IgG (1:100 diluted; Jackson ImmunoResearch, West Grove, PA). The 

putative ligands for the natural cytotoxicity receptors (NCR) were measured using the solubilized(s) 

dimeric complexes of the recombinant BirA1.4-tagged receptor molecules sNKp30, sNKp44 and 
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sNKp46 as staining reagent (anti-BirA mAb [clone BirA1.4] crosslinked; 5-10µg/ml). Binding was 

revealed with secondary FITC-conjugated gtαms antibodies (Southern Biotechnology Associates, 

Birmingham, AL). All stainings were incubated on ice for 20 minutes in FACS buffer containing 

PBS, 2% fetal calf serum (FCS, Invitrogen, Carlsbad, CA) and 0.02% NaN3 (Fluka, Buchs, 

Switzerland). Propidium Iodide (Sigma) was used to exclude dead cells from analysis. Staining of 

patient samples was performed in 100µl aliquots of fresh heparinized PB followed by red blood cell 

lysis (FACS lysis buffer; BD PharMingen, San Jose, CA). FACS data were analysed using the 

CellQuestPro© software (Becton Dickinson). 

 

 

2.2 Preparation of cord blood CD34+ cells 
 

Cord blood (CB) was kindly provided by the Department of Obstetrics and Gynecology, University 

Hospital Basel and the Department of Obstetrics and Gynecology, Kantonsspital Bruderholz, with 

informed consent of the mothers. The Ethical Committee of the University Hospital Basel approved 

all investigations.  

CB was harvested aseptically by umbilical vein puncture right after delivery and between 10 to 50 

ml was collected into heparin-containing bags. The delay between collection and sample processing 

did not exceed 24 hours. CB mononuclear cells were separated by Histopaque (Sigma, St Louis, 

MO) density-gradient centrifugation and the subsequent red blood cell lysis (lysis buffer; KBS, 

Kantonsspital Basel). The cells were cryopreserved in liquid nitrogen until use.  

Frozen samples were pooled after thawing and left overnight in IMDM (20% FCS) containing 

100U DNase (Sigma) per 1x107 cells/ml at 4°C. Cells were washed 2 times in PBS and resuspended 

in MACS buffer (PBS, containing 2mM EDTA and 0,5% BSA). CD34+ cells were isolated with 

MACS (magnetic cell sorting) microbeads (Miltenyi Biotec, Bergisch Gladbach, Germany) 

according to the manufacturer’s instructions. The purity of the CD34+ cell population was 

determined by FACS analysis and ranged from 85 to 95%. 

 

2.3 NK cell in vitro differentiation from CB derived CD34+ Cells  
 

Cord blood derived CD34+ progenitor cells were seeded at 1 to 2 x106 cells /mL in 24-well plates in 

Iscove modified Dulbecco medium (IMDM) containing 5% FCS. The NK cell differentiation 
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medium was supplemented with 5% human AB+ serum (Blutspendezentrum Basel), 380 ug/mL 

ironsaturated human transferrin, 1% bovine serum albumin (BSA) and with IL-15, FL, and SCF 

(each at 100 ng/mL). After 1 week, cells were transferred to 6-well plates, and half the medium was 

replaced once a week for another 2 to 5 weeks. The development of CD56+ NK cells was 

determined weekly by FACS analysis. NK cell lines were expanded by restimulation as described 

below (see 2.5.2). 

 

2.4 Lentiviral Transduction  
 
2.4.1 Preparation of concentrated lentivirus 
 
Lentiviral particles pseudotyped with the VSV-G envelope protein were produced by the transient 

co-transfection of the human embryonic kidney cell line 293T with three different plasmids. The 

packaging plasmid pCMVΔR8.91, the VSV-G encoding plasmid pMD.G (or pMD2.G) and a 

transfer vector containing the gene of interest were used to transfect 293T cells by Ca-phosphate 

precipitation. All plasmids were kindly provided by D. Trono and P. Salmon, University of Geneva, 

Switzerland. The transfer vector constructs are derivates either from the single-gene vector 

pLox/EW-GFP or the bicistronic constructs pWP-IRES-GFP or pWP-IRES-mCD8 and were 

generated as described above (see 1.2). The 293T cells were split four and one day prior to the 

transfection to obtain mono-layers of actively proliferating cells which were optimally covering 

approximately 2/3 of the surface area of 10cm culture Petri-dishes. 5µg of pMD.G, 15µg of 

pCMVΔR8.91 and 2µg of the transfer vector plasmid were mixed and the volume was adjusted to 

250µl with ultra pure H2O and 250µl of Ca-phosphate buffer was added. The mixture was added 

slowly and drop-wise to 500µl of 2x concentrated HBSS buffer in a 15ml Falcon polystyrene tube 

while permanently vortexing the tube. The mixture was incubated for 20 to 25 minutes at RT to 

allow the formation of Ca-phosphate-DNA crystals. The precipitated DNA was spread on the 293T 

cell layers and the plates were incubated at 37°C. After eight hours the transfection medium 

(DMEM, 10% FCS) was completely replaced by fresh medium and the cells were incubated for 

additional 16 to 20 hours. At that time, if GFP encoding transfer vector constructs were used, the 

transfection efficiency of the 293T cells was checked by fluorescence microscopy. The viral 

supernatant was collected and replaced by fresh medium for an additional incubation period of 16 to 

20 hours. The supernatant was filtered through 0,45µm syringe-filters (Nalgene) pooled to 40ml 

“Ultra-clear open-top” tubes (Beckman-Coulter, Nyon) and centrifuged at 100000 rpm for 90 
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minutes at 4°C in an ultra-centrifuge. The supernatant was discarded and the (non-visible) virus 

pellet was vigorously vortexed in the remaining volume of 400 to 500µl. Tubes were covered with 

parafilm and stored at 4°C overnight to let the viral particles readily disaggregate and dissolve. 400-

600µl of the virus preparation were transferred to one spinex filter-tube and filtered by the 

centrifugation at 8000 rpm for 2-3 minutes. The filter cartridge was removed and the tubes were 

additionally centrifuged for 60 minutes with 13000 rpm at 4°C. The viral particles usually formed at 

that time a visible pellet and all of the supernatant was carefully removed. The pellet was 

resuspended in approx. 100µl medium and aliquots of 50µl were stored at –70°C until use in 

transduction experiments. 

 

2.4.2 Titration of concentrated lentivirus 
 
The titers of the concentrated LV preparations of GFP-encoding virus were determined on HeLa 

cells. In 6 well plates HeLa cells were seeded with1x105 cells per well (day –1) and transduced with 

serial dilutions of the concentrated virus (day 0). Concentrated virus in serial 1/3 dilutions starting 

from 1/300 to 1/10’000 was used in a total infection volume of 500µl per well with 5µg/ml 

protamine sulfate (Sigma). After the HeLa cells were incubated for 4 hours the culture volume was 

completed to 3-4 ml. Transduction efficiency was determined by FACS analysis on day 3 post 

infection. For the FACS analysis cells were trypsinized, washed two times in PBS and fixed in 2% 

paraformaldehyde (Sigma) for ten minutes at RT. The titers were given as transducing units per ml 

(TU/ml) and were determined for each virus-dilution according to the following formula: 

[% (GFP+ cells) x (virus dilution factor) x 2(infection was done in 0,5 ml)] TU / ml. 

The final viral titers were calculated as the average of all titers determined for each dilution. On 

average the lentiviral titers usually obtained were 5x107 TU/ml (range: 0,5-40x107 TU/ml). 

 

2.4.3 Transduction of CB-derived CD34+ progenitors 
 
Before the lentiviral transduction of purified CD34+ cord blood derived hematopoietic progenitors 

(see 2.2) the cells were prestimulated for 48 hours to induce cell cycling. The 2x concentrated 

prestimulation-medium consisted of IMDM 20% FCS, supplemented with 380 µg/ml iron saturated 

human transferrin, 1% bovine serum albumin (BSA) and the cytokines in the following 

concentrations: IL-3 20ng/ml; IL-6 20ng/ml; SCF 100ng/ml; FL 100ng/ml. As an alternative, if the 
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differentiation into NK cells was the goal, the progenitors were prestimulated for 48 hours in NK 

cell differentiation medium (see 2.3). 

2-3 x105 CD34+ progenitors were resuspended in 30-50µl of the corresponding medium and 

transferred to 96 well round bottom plates. Concentrated lentivirus preparation was added to an 

MOI of 20-30 in a total volume of 50-80µl depending on the viral titer. Protamine sulfate (PS) was 

added as a 10x concentrated stock-solution to final 5µg/ml. The progenitors were incubated for 4 

hours, resuspended in fresh medium and transferred to 96 well flat bottom plates in a total volume 

of 200µl. On day 2 to 4 post infection the transduction efficiency was determined by FACS 

analysis. 

 

2.4.4 Transduction of NK cell lines and primary NK cells 
 

As for hematopoietic progenitors the transduction of NK cell lines and primary NK cells was done 

in 96 well round bottom plates in a total volume of 50-80µl in the presence of PS (final 5µg/ml). 

Per transduction 2-3x105 cells were infected with lentivirus at an MOI of 20-30. Cells were 

incubated for 4 hours, resuspended in fresh medium, transferred to 96 well flat bottom plates and 

routinely expanded and split in regular time intervals (after 3-5 days of culture). FACS analysis of 

the transduction efficiency was done on day 4 post infection. 

Primary NK cells were separated from peripheral blood mononuclear cells (PBMNC) by an 

immunomagnetic negative selection procedure (see 2.5.1) and infected upon the stimulation with 

100 U/ml IL-2 for 2 days. After the 4-hour infection period NK cells were either immediately 

restimulated with PHA, IL-2 and irradiated feeders as described below (see 2.6.2) or they were 

cultured for additional 3 days in IL-2 containing medium prior to restimulation. 

 

2.5 NK cell Isolation from Peripheral Blood Samples 
 
2.5.1 MACS separation 
 

Human mononuclear cells (MNC) obtained from patients after informed consent were isolated from 

total blood samples by Ficoll-Histopaque (Sigma, St. Louis, MO) density-gradient centrifugation 

and cryopreserved in liquid nitrogen until use. NK cells were isolated from 14 patients with AML, 

13 newly diagnosed patients and 1 in relapse. The diagnosis and division into the AML subtypes of 

M1-M7 was based on morphologic, cytogenetic and immuno-phenotypic criteria.  
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All patient-NK cells (AML-NKs) were purified starting from thawed MNCs by immunomagnetic 

negative selection using the MACS system („NK cell isolation kit“, Milteny Biotech, Bergisch 

Gladbach, Germany) according to the manufacture’s instructions. CD3, CD14, CD19, CD36 and 

IgE positive MNCs were retained in a LD depletion column wheras untouched CD56+CD3- NK 

cells were collected in the flow-through. The purity of NK cell preparations from healthy donors 

was at least 95% and less than 0.5% were positive for CD3. NK cell separation from AML patient 

samples resulted in variable levels of purity (2-10%) due to the high proportions of leukemic blasts 

(characterized by the CD45dim phenotype). The combination of negative selection and a subsequent 

positive selection for the NK cell marker CD16 or CD56 resulted in an enrichment of NK cells to a 

purity of 42-70%. These mixtures of MACS-enriched NK cells and residual AML blasts were 

expanded in restimulation cultures as described below. 

 

2.5.2 In vitro cultivation: PHA restimulation  
 
Purified NK cells were cultured on irradiated (30Gy) allogeneic peripheral blood MNCs in „ NK 

cell medium“ (IMDM, 5% human AB+ serum (Blutspendezentrum Basel) containing 100U/ml IL-2 

(Novartis, Basel, Switzerland) and phytohemagglutinin (2ug/ml; H16, Murex Biotech, Datford, 

England). The medium was supplemented with nonessential aminoacids, sodium pyruvate, L-

glutamine and penicillin/streptomycin (Gibco, Gaithersburg, MD, USA). Preparations containing 

2x104 to 3x105 CD56+CD3- NK cells were seeded onto 2x106 irradiated feeders in a total volume of 

2ml in 24 well plates. After 8 to 10 days cells were expanded to 6 well plates and between day 14 

and 28 activated NK cell lines were phenotypically and functionally analysed. Repeated 

stimulations were done after 3 to 4 weeks of culture. 

NK cell expansion was either performed in the general restimulation-mix alone (irradiated feeders, 

PHA and IL-2) or together with different combinations of the cytokines IL-12 (Roche, Nutley, NJ), 

IL-15 and IL-21 (both from Immunex, Seattle, WA). The final cytokine concentrations were 1ng/ml 

for IL-12, 10ng/ml for IL-15 and 100ng/ml for IL-21, respectively. 

 

2.6 Measurement of Intracellular Ca 2+-Mobilization  
 

Cells were washed 2 times in PBS and adjusted to 5-10x106 cells/ml in “flux-medium”(RPMI 

without phenol red; 5% FCS). Indo-1AM (Indo-1-penta-acetoxy-methylester; 10mg/ml in DMSO) 

was added to a final concentration of 2ug/ml and incubated for 30 minutes at 37°C (during loading 
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cellular esterases cleave the AM moiety of the membrane-permeant Indo-1AM resulting in the 

trapping of the highly charged Indo-1 in the cells). Cells were washed, gently pelleted (centrifuged 

below 1100 rpm) and resuspended in flux-medium to a concentration of 1x107 cells/ml. Indo-1 

loaded cells were stored at RT in the dark until analysis in a FACS Vantage SE (Becton Dickinson). 

Each measurement of intracellular calcium release was performed on 5x105 cells in total 500µl 

(450µl to 37°C pre-warmed flux-medium + 50µl Indo-1 loaded cell suspension). Purified azid-free 

primary mAb at a concentration of 0,5µg/ml (anti CD3; clone TR66) or 25µl of undiluted 

hybridoma supernatant (anti NKp46; clone 9E2) was added. To obtain the baseline of intracellular 

calcium, cells were acquired in the FACS Vantage SE for approximately 2 minutes. Then the 

secondary cross-linking mAb was added (goat anti mouse; S418) and acquisition was continued for 

additional 10 minutes. For a positive control the calcium ionophor ionomycin (1mg/ml in DMSO; 

Sigma) was added to one sample in a final concentration of 2µg/ml. The Indo-1 ratio of 

395nm/500nm fluorescence emission (FL5/FL4) was calculated and plotted versus time. 

 

2.7 Measurement of IFN-γ production in activated NK cells  
 

2.7.1 NK cell activation by target co-cultures 
 

Co-cultures of PHA restimulated NK cells and target cells were performed in 96 well flat bottom 

plates at an effector to target cell ratio of 2:1 in a total volume of 200µl. NK cells were used at day 

15 to 25 post restimulation and seeded at 1x105 cells per well in a volume of 100µl. Target cells 

were washed in PBS, resuspended in complete NK cell medium (see 2.6.2) and added to the NK 

cells at 5x104 cells per well in a volume of 100µl. As a positive control for IFN-γ release NK cells 

were stimulated with final 20ng/ml PMA (Sigma) and final 1µM Ca2+-ionophor (Calbiochem). To 

determine the background IFN-γ release, NK cells were cultured without any targets. All co-

cultures and controls were performed in triplicates.  

To analyse IFN-γ release upon the antibody-mediated “re-directed” NK cell-target interaction (with 

murine P815 targets), NK cells were either pre-incubated for 30 min with anti-NKp46 before the 

target cells were added or anti-NKp46 was directly added to the co-culture (clone 9E2, mAb-SN; 

10µl/well). Culture supernatants for the measurement of IFN-γ release were taken after 36 hrs of co-

culture and stored at -20°C until use in ELISA. If NK cells were analysed for intracellular IFN-γ 
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(see 2.7.4) Brefeldin A (5µg/ml) was added to the co-culture for the last 4 hrs of the36 hrs 

incubation time. 

 

2.7.2 NK cell activation by antibody mediated receptor cross-link 
 

Receptor cross-link was performed in 96 well flat bottom plates coated either with receptor-specific 

mAbs or with mAbs in solution. For the coating purified mAbs were used at a concentration of final 

20µg/ml in PBS in a volume of 20µl per well whereas hybridoma supernatants were used undiluted 

at 50µl per well. Plates were incubated over night at 4°C. Coated plates were washed once with 

PBS and cells were added at a concentration of 5x104 cells per well in total 200µl. If the mAbs were 

used in solution, cells were pre-incubated with the corresponding mAbs for 30 minutes at RT, 

washed and plated. Secondary cross-linking mAbs were added at a final concentration of 20µg/ml.  

Monoclonal antibodies used as cross-linking reagents were anti-CD3 (TR66) anti-CD28, anti-

NKp46 hybridoma supernatant (clone 9E2; Marco Collona, Basel Institute of Immunology, Basel) 

and goat anti-mouse IgG1 PE labelled mAb (Southern Biotechnology), all as NaN3-free 

preparations. Culture supernatants for the measurement of IFN-γ release were taken 36 hrs after 

receptor cross-link and stored at -20°C until use in ELISA (see 2.7.3).  For the FACS analysis of 

CD69 surface expression or intracellular IFN-γ the cells were harvested after 36 hrs. Brefeldin A 

was added for the last 4 hrs if intracellular IFN-γ was measured (see 2.7.4).  

 

2.7.3 ELISA detection of released IFN-γ  
 

Culture supernatants were stored at 4°C until use in the IFN-γ ELISA. 96-well ELISA plates were 

coated at 4°c over night with anti huINFγ (clone 43-11, mIgG1; kindly provided by Ch. Heusser, 

Novartis, Basel) at a concentration of 5µg/ml in a volume of 100µl per well. Plates were washed 

and blocked with RIA-buffer for one hour at room temperature. Each washing step was done 4 

times with PBS and all incubation were at RT. Plates were washed and culture supernatants or the 

IFN-γ standard were added. Serial 1/3 dilutions of the IFN-γ standard (recombinant huIFN-γ BD 

PharMingen San Jose, CA; cat. no. 554616) were made starting with a final concentration of 

30ng/ml in RIA-buffer and added in a volume of 100µl per well. After an incubation time of 3 hrs 

at RT plates were washed and the biotinylated anti huIFN-γ revealing mAb was added (clone 45-15, 

mIgG1-biotin; Ch. Heusser, Novartis, Basel). The biotinylated mAb was 1/10000 diluted and added 
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in a volume of 100µl per well. Plates were incubated for 2 hrs, washed and 100µl per well 

streptavidine-alkaline phosphatase (Sigma) was added at a 1/10000 dilution in RIA-buffer and 

incubated for 1 hour. After an additional washing step the substrate, p-nitrophenyl phosphate 

(Sigma) was added in a volume of 150µl per well and incubated for 30 minutes. The enzymatic 

reaction was stopped by the addition of 1N NaOH (50µl per well) and the plates were analysed for 

the absorbance at 405 nm in an ELISA reader. 

 

 

2.7.4 Intracellular FACS staining of IFN-γ  production  
 

NK cells were used on day 15 to 25 post PHA-expansion and 1-1.5x106 cells/ml were incubated for 

36 hrs in 96 well plates either with 10U/ml IL-12 and 100ng/ml IL-18 (PeproTech, Rocky Hill, NY) 

or with 100U/ml IL-2 only. Brefeldin A (Sigma) was added at 5µg/ml for the last 4 hours of culture. 

Cells were fixed in 2% paraformaldehyde (PFA) for 15 minutes at RT, washed 3 times in FACS-

buffer and 2 times in FACS buffer containing 0.1% saponin to permeabilize the cells. Anti-IFN-γ 

FITC-conjugated and isotype control mAbs (BD PharMingen, diluted in permeabillization buffer) 

were added for 30 minutes at RT. Cells were washed twice in permeabilization buffer and 3 times in 

FACS buffer and analysed with FACScalibur. Staining for cell surface markers were done before 

PFA fixation and intracellular IFN-γ staining. 

 

2.8 Up-regulation of NKG2D ligands on primary AML blasts and the HL60 cell line  
 

Primary AML blasts were seeded at 6 x 105 per mL in 24-well plates containing 2 mL Dulbecco's 

modified eagle medium (DMEM) supplemented with 2 mM L-glutamine, 100 U/ml penicillin, 100 

µg/mL streptomycin, 10% fetal calf serum (FCS; all from Invitrogen, Carlsbad, CA). Cells were 

cultured with growth factors (flt3 ligand, (FL) at 100 ng/mL, stem cell factor (SCF) at 100 ng/mL 

and granulocyte-macrophage colony stimulating factor (GM-CSF) at 20 ng/mL; all kind gifts of 

Amgen Inc, Thousand Oaks, CA), and IFN-γ at 100 U/mL (PeproTech, City, UK).  

The AML derived cell line HL60 was cultured with Bryostatin-1 (LKT laboratories, St. Pauel, 

USA), at a final concentration of 10-8 M for 2 days. NKG2D ligand up-regulation was determined 

by FACS analysis after 1, 2 and 4 days of culture. 

 



 Material and Methods 

61 

2.9 Cytotoxicity Assays 
 
2.9.1  51Chromium release killing assay 
 

Cytotoxicity of activated AML-NK and control-NK cells was determined at day 14 to 28 of 

expansion culture against the NK sensitive target cell line K562 and the primary autologous AML-

blasts in a 4-hour 51chromium-release assay. Cryopreserved patient-derived MNC (Ficoll density-

gradient purified) were thawed and maintained 1 to 2 days in IMDM supplemented with 5% FCS, 

nonessential aminoacids (1:100), 1mM sodium pyruvate, 2mM L-glutamine and 100µg/ml each 

penicillin/streptomycin (all Gibco Life Technologies, Gaithersburg, MD, USA) until blasts were 

prepared for the 51chromium release assays. The MNCs were directly used for the 51Cr-loading 

when the percentage of leukemic blasts (CD45dim phenotype) was above 85% of total. Alternatively, 

MNCs were enriched for blasts by the selection of CD34+ or CD33+ cells using MACS microbeads 

(Milteny Biotech, Bergisch Gladbach, Germany) according to the manufacturer’s instructions. For 

the target cell loading 2x106 cells were incubated at 37°C for 2 hours with 250µCurie of Na 51CrO4 

(Amersham, Little Chalfont, UK) in a total volume of 200-300µl. The effector to target ratio ranged 

from 20:1 to 0.6:1 for the AML blasts and from 10:1 to 0.3 for the K562 erythroleukemia target cell 

line. All experimental wells were set up in triplicates and contained 3x103 target cells in a final 

volume of 200µl. Plates were incubated at 37°C for 4 hours. To determine maximum 51Cr-loading, a 

triplicate of target cells (“target maximal release”) was lysed in final 0.1% Triton X-100 (20µl/well 

of a 10x solution; Sigma). 30µl of culture supernatant of each well was transferred to Luma® 

scintillation-plates (Perkin Elmer) and analysed in a gamma counter. Results are expressed as 

percentages of specific 51Cr-release and calculated as follows: [(cpm experimental release – cpm 

spontaneous release) / (cpm target maximal release – cpm spontaneous release)] x 100.  

 

To block the inhibitory KIR-HLA interaction and to induce killing of the autologous AML target 

cells anti-HLA class I monoclonal antibodies were used (W6-32; IgG2a, ATCC). Blocking was 

achieved by the preincubation of target cells for 15 minutes prior to the addition of the effectors 

(10µg/ml during the 4-hrs incubation). Anti-HLA class II mAb was used as a negative control 

(10µg/ml; clone L423, IgG1, ATCC).  
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2.9.2 Redirected killing of murine P815 cell line 
 

The murine FcγRII/III+ mastocytoma cell line P815 was used in reverse cytotoxicity assays 

(redirected killing). Reverse cytotoxicity is mediated upon stimulation of CD16 or other 

activatory/cytotoxicity receptors on NK cells with NK cell receptor-specific mAbs. The Fc part of 

these mAbs binds to FcγRII (mCD32) on the mastocytoma cells and thereby elicits the lysis of the 

otherwise NK cell-resistant targets. P815 target cells were labelled with 250µCi of Na 51Chromat at 

37°C for 1 hour, washed and resuspended in complete “killing medium” (as described in 2.9.1). 

Purified and NaN3-free NK cell receptor-specific mAbs were added to the targets at a 2x final 

concentration, cells were incubated for 15 minutes at RT and added in a volume of 100µl to the 

prepared effectors to a final volume of 200µl per well. The final concentration of the mAbs anti 

CD16, anti CD56 (both BD PharMingen), anti NKG2D (clone M585) was 1µg/ml. In the case of 

the anti NKp46 hybridoma supernatant (clone 9E2) targets were pre-incubated with 10µl SN per 

3x103 cells.  

The redirected killing was further performed as described for the standard 51chromium-release assay 

(see 2.9.1).  

 

2.10 Transplantation of human leukemia to NOD/SCID mice and NK cell transfer 
 
NOD/LtSz-scid/scid (NOD/SCID) mice (The Jackson Laboratory, Bar Harbor, ME) were bred and 

maintained under specific pathogen-free conditions in the animal facility of the Research 

Department, University Hospital Basel. Mice were kept on acidified drinking water supplemented 

with Bactrim (32/160 mg/L; Roche Pharma AG, Reinach, Switzerland) for the duration of the 

experiments. 

K562 erythroleukemia cells were washed and resuspended in PBS and 1x107 cells in a total volume 

of 100µl were injected subcutaneously into the dorsal lateral thorax of NOD/SCID mice. 3-5x106 in 

vitro activated and expanded AML- and control-NK cells on day 14 to 21 of restimulation culture 

were resuspended in 150µl PBS and injected intravenously on day 1 post tumor inoculation. Tumor 

growth was monitored weekly by determining the tumor surface area as follows: [(short diameter/2 

x long diameter/2) x π]. Unpaired student t test was used to confirm statistical significance between 

the different transplantation groups of mice. 
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PBMNCs from AML patients containing 1x107 blasts (only patient samples with a content of more 

than 75% blasts were used) were resuspended in PBS and were injected intravenously in a total 

volume of 100µl into the tail veins of 7-10 week old NOD/SCID mice sub-lethally irradiated with 

375 cGy (60Co source; 2cGy/min). Engraftment of the human leukemia was monitored on week 4, 8 

10 and 12 post transplantation by the FACS analysis of peripheral blood samples as described in 

section 2.1. In mice repopulated with AML blasts as indicated by > 0,5% CD45+ cells in the PB, 

bone marrow samples were aspirated from one femur by puncture through the knee joint [158] 

under the intraperitoneal anaesthesia using Ketalar (150mg/kg; Parke-Davies) and Xylasol 

(30mg/kg; Gräub AG, Bern). BM cells were collected in FACS buffer and phenotypically analysed 

by flow cytometry. If engraftment of AML-blasts was confirmed in BM aspirates, in vitro activated 

and expanded autologous AML-NK cells on day 14 to 21 of restimulation culture were resuspended 

in 200µl PBS and injected intravenously on week 8–12 post transplantation. Transplanted human 

NK cells were supported by the i.p. administration of human rhIL-2 (Novartis, Basel, Switzerland)  

and rhIL-15 (Immunex, Seattle, WA). 10µg of each cytokine in 100µl PBS was given in three 

doses, along with the injection of NK cells and 24 and 48 hours later. Mice were sacrificed on day 7 

post NK cell transfer and the content of AML blasts in the BM, spleen and PB was determined by 

FACS analysis. 
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V. RESULTS  
(A) GENETIC MODIFICATION WITH LENTIVIRAL VECTORS 
 

1. Cloning of Transfer Vector Constructs  
 
The lentiviral transfer vector constructs used in this study are based on the vector plasmids 

pLox/EW-GFPΔSalI (single gene vectors) and pWP-IRES-GFP (bicistronic vectors) that were 

kindly provided by Didier Trono, Department of Genetics and Microbiology, CMU, Geneva. Both 

transfer vectors belong to the self-inactivating (SIN) lentiviral vectors, which lose the 

transcriptional capacity of the viral long terminal repeat (LTR) once integrated in the genome of the 

target cells. This SIN activity is due to a 400bp deletion in the U3 region of the 3’LTR (ΔLTR; 

Gene Bank accession no.: AF 237862). Transgene expression is either regulated by the elongation 

factor 1-alpha (EF1-alpha) promoter (in pLox-GFP vectors) or its shorter version, the intron-less 

EF1-alpha (“EF1-alpha short”; in pWP-IRES-GFP vectors). All vectors contain the post-

transcriptional regulatory element (WPRE) of woodchuck hepatitis virus that allows an enhanced 

transgene expression (Zufferey R, J. of Vir., 1999). The bicistronic vectors additionally contain the 

central polypurine tract (cPPT), a cis-acting element that improves the efficiency of gene transfer to 

the target cell nucleus. 

 

1.1 The “single-gene” transfer vectors 
 
The single gene transfer vector for the cDNA of the natural cytotoxicity receptor NKp46 was 

constructed based on the green fluorescence protein (GFP) encoding lentiviral vector plasmid 

pLox/EW-GFPΔSalI. The FLAG-tagged NKp46FLAG cDNA was PCR-amplified from a pFLAG-

CMV1 expression vector containing the cDNA of NKp46 in frame to the sequences of an N-

terminal FLAG tag and the preprotrypsin leader peptide (a gift of Marco Colonna; Basel Institute of 

Immunology, Basel, Switzerland). A 935 bp fragment flanked by a 5’ BamHI and a 3’ ClaI 

restriction site was amplified using primers carrying overhangs to generate the corresponding sites 

(primer: 5’BamFLAG sense; 3’p46Cla antisense; see “Materials and methods”). The amplified 

fragment was BamHI-ClaI sub-cloned in the pBluescript II KS expression vector (Figure 1-1 a). In 

a second step the GFP encoding cDNA in the pLox/EW-GFPΔSalI vector was exchanged by the 

940 bp BamHI-SalI NKp46FLAG fragment excised from the pBluescript plasmid (Figure 1-1 b). The 

correct sequence of the NKp46 cDNA insert in the pBluescript plasmid as well as in the final 

transfer vector construct was confirmed by automated sequencing. 
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1.2 Bicistronic transfer vectors 
 
The bicistronic lentiviral transfer vector construct is based on the pWP-IRES-GFP vector plasmid 

(Fig. 1-2). The pWP-constructs contain additionally the central polypurine tract (cPPT) sequence 

and the short form of the EF1 alpha promoter regulates expression of the transgene-IRES-GFP 

cassette. This vector construct contains the internal ribosomal entry site (IRES) of the 

encephalomyocarditis virus (ECMV) and allows the simultaneous expression of the gene of interest 

together with the GFP marker gene. Transcription leads to the formation one bicistronic mRNA 

with the IRES sequence functioning as the initiation site for translation of the GFP gene. To 

generate an NKp46 encoding bicistronic vector, the 940 bp BamHI-SalI NKp46FLAG fragment 

excised from the pBluescript plasmid was inserted to the pWP-IRES-GFP backbone upstream to the 

Figure 1-1: Cloning of the single gene transfer vector pLox-NKp46. A 935bp fragment containing the NKp46 

cDNA fused to an N-terminal FLAG-tag and the preprotrypsin leader sequence was PCR amplified with primers 

generating 3’ BamHI and 5’ ClaI restriction sites. The insert was sub-cloned and sequenced in the pBluescript 

expression vector (a). The pLox NKp46 transfer vector was generated by the BamHI-SalI replacement of GFP in the 
pLox/EW-GFPΔSalI plasmid with the NKp46 insert (b). 
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IRES sequence. Correct sequence and integration of the inserted fragment was confirmed by 

automated sequencing of the EF1alpha-IRES region in the pWP-NKp46-IRES-GFP vector. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Genetic Modification of Cell Lines 
 
 
To investigate the potential of the generated lentiviral vectors to transduce NK cells with the cDNA 

for the natural cytotoxicity receptor NKp46, we first chose the T-lymphocytic Jurkat cell line and 

the NK cell lines NK92 and NKL as a model for gene transfer. These cell lines can be easily 

cultured in vitro and, in contrast to primary lymphocytes, they actively proliferate and therefore 

should be highly susceptible to lentiviral transduction. Like all primary T cells, the Jurkat T cell line 

does not express NKp46, but the CD3-ζ subunit that associates as an adaptor protein with NKp46. 

Thus, the Jurkat cell line provides a useful model system to explore the lentiviral gene transfer of 

the activating NK cell receptor NKp46 into lymphocytes. 

The NK cell lines NKL and NK92 express endogenous NKp46 at very low levels, and therefore 

should allow the study of functional consequences of the expression of a transgenic receptor. 

 
 
 

Figure 1-2: Generation of the bicistronic transfer vector pWP-NKp46-IRES-GFP. The BamHI-SalI NKp46 
cDNA fragment was inserted upstream to the IRES sequence into the pWP-IRES-GFP plasmid.  
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2.1 Lentiviral transduction of Jurkat cells 
 
2.1.1 Transduction of Jurkat cells with single-gene transfer vectors 
 

Lentiviral transduction of Jurkat cells was performed either with viral supernatants or with 

preparations of concentrated virus. Concentrated virus of the pLox-GFP was titrated using HeLa 

cells. Viral titers of concentrated virus of the pLox-NKp46 vectors were determined based on the 

RT assay. 

Transduction efficiencies with the pLox-GFP vector were on average higher than that of the pLox-

NKp46 vector (see Table 2-1). Transductions done with viral supernatant of the pLox-GFP vector 

on average lead to 51,3 ± 27,2% (range: 14-83,6%) of GFP positive cells, while a poor transduction 

efficiency was obtained with viral supernatant of the pLox-NKp46 vector yielding 1,2 ± 0,9% 

(range: 0,2-1,8%) of NKp46+ cells. When concentrated virus preparations at an MOI of 20 were 

used, the frequency of GFP positive Jurkat cells was 97,7 ± 3,5% (range: 91-98%) whereas 

transduction with concentrated pLox-NKp46 virus preparations resulted in an output of transgene 

expressing Jurkat cells that was 34,8 ± 9,7% (range: 24-83,8%). 
 
 pLox-GFP pLox-NKp46 
 GFP+ NKp46+ 

LV supernatant 51,3 ± 27,2% 1,2 ± 0,9 % 
concentrated LV 

MOI 10-20 97,7± 3,5% 34,8 ± 9,7%. 

 

 

 

 

To obtain pure populations of NKp46-expressing Jurkat cells, we repeatedly sorted for transgene 

expressing cells that were transduced with concentrated pLox-NKp46 virus. FACS sort of 

transduced Jurkat cells in combination with single cell cloning by limiting dilution technique 

generated clones that showed a stable and homogenous surface expression of the NKp46 receptor 

(Figure 2-1). 

 

 

Table 2-1:  Transduction efficiencies of Jurkat cells.  Cells were transduced with the pLox/EW-GFPΔSalI 

based transfer vector constructs and percentage of transgenic cells was determined by FACS analysis. Mean 

percentages and SD are shown (pLox-GFP; SN; n=7) (pLox-GFP, conc. virus; pLoxNKp46, SN or conc. virus n=3). 
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Detection of the NKp46 transgene in the Jurkat-p46.3 clone by western blot analysis is shown in 

Figure 2-2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The genomic integration of lentivirus derived DNA was confirmed by PCR on genomic DNA of the 

Jurkat-p46.3 clone and on pLox-GFP transduced Jurkat cells. Figure 2-3 shows the agarose gel 

analysis of the PCR products generated with primer pairs specific for the integrated EGFP transgene 

or the exogenous, FLAG-tagged NKp46 receptor cDNA. PCR was also performed on genomic 

DNA of wt Jurkat cells that served as a negative control.  

 
 

Figure 2-1: Generation of transduced Jurkat clones. Cells were transduced with concentrated pLox-NKp46 

lentivirus and the subjected to FACS sorting and single cell cloning by limiting dilution to generate a homogenously 
NKp46 expressing clone. Jurkat-NKp46 clone #3 (0,3 cell/well) is shown. 
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Figure 2-2: Western Blot detection of transgenic NKp46 receptor. pLox-NKp46 transduced Jurkat cells 

(clone Jurkat-p46.3) were lysed and electrophoretically separated by SDS-PAGE (approximately 2,5x105 cells per 

lane). The proteins were blotted to a nitrocellulose membrane and NKp46 was detected with anti-NKp46 hybridoma 
supernatant (mIgG1; clone 9E2) combined with a horse-radish peroxidase (HRP)-conjugated secondary antibody. 
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2.1.2 Transduction of Jurkat cells with bicistronic transfer vectors 

 
The transduction of Jurkat cells with lentivirus preparations of the bicistronic pWP-IRES-GFP 

transfer vector resulted in almost pure transgenic populations. The transduction with LV 

supernatant yielded between 88% and 98% GFP+ cells (not shown). Figure 2-4 shows a typical 

transduction result with concentrated virus of the bicistronic pWP-NKp46-IRES-GFP transfer 

vector at a MOI of 2-5. FACS analysis of GFP expression on day 5 after infection revealed a 

transduction efficiency of 97%. As expected, the mean fluorescence of the GFP expression 

observed with the bicistronic vectors was approximately one log lower compared to the high GFP 

expression levels achieved with the single-gene pLox-GFP vector (MFI ~103). A lower expression 

of the GFP marker gene was also seen in transductions using concentrated virus of the bicistronic 

control vector pWP-IRES-GFP (data not shown). This reduced expression may reflect the fact that 

the initiation of translation from the IRES site on the bicistronic mRNA is less efficient compared 

to the translation starting at the 5’end of mRNA. Importantly, expression of both genes was stable 

over time as measured for up to 7 weeks after transduction.  

(1) Jurkat-wt

(2) Jurkat-GFP

(3) Jurkat-NKp46

(4) no cDNA

(5) positive control

M

506
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1630

298

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

GFP specific primer NKp46 specific primer
(transgene specific)  

 

Figure 2-3: PCR detection of genomic integrated lentiviral provirus cDNA.  Integration was confirmed by 

the use of transgene specific primer pairs. The GFP encoding vector cDNA was detected with the 3’EGFPsense-

EGFP5’antisense primer combination, whereas the integration of NKp46-cDNA was confirmed by the BamFLAG 

3’sense-ClaI5’antisense primer pair specific for the vector-encoded exogenous NKp46. As a positive control the 

plasmid DNA of the corresponding transfer vector construct was used. Comparable amounts of genomic DNA were 
used in the PCR reaction as shown by the amplification of the β-Actin gene (gel insert below). 

Actin    (1)        (2)       (3)     (4) 
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We observed that a certain fraction of transduced cells did not express the upstream NKp46 

receptor gene (Figure 2-4). Despite nearly 100% of the cells express the GFP gene, less than 90% of 

the GFP+ cells showed the surface expression of the NKp46 receptor (85% NKp46+ vs. 97% 

GFP+). Since bicistronic vectors were used and the opposite was to be expected, this “incomplete” 

surface expression of the NKp46 receptor suggests that in a subpopulation of Jurkat cells the 

transport to the cell surface is impaired, possibly due to a limited availability of adaptor molecules. 

This is supported by the results obtained in transduction experiments using concentrated virus of the 

pLox single-gene vectors. The GFP-encoding vectors readily transduced Jurkat cells even at low 

multiplicities of infection, whereas homogenous expression of the NKp46 receptor was only 

achieved upon the cloning of transduced cells after FACS sorting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Lentiviral transduction of the NK cell lines NK92 and NKL 
 
2.2.1 Transduction efficiency with “single-gene” and “bicistronic” transfer vectors 
 
In contrast to the results obtained with Jurkat cells, only poor transduction efficiencies were 

achieved in NK cell lines. Transductions with concentrated lentivirus of the single-gene pLox-GFP 

vector at an MOI of 20 resulted in 0,8-1,0% of GFP+ cells on day 3 post infection. Results for 

Figure 2-4: Transduction of Jurkat cells with concentrated virus of the bicistronic construct pWP-NKp46-

IRES-GFP. FACS analysis of transgene expression was measured on day 5 post infection (MOI 2-5). Staining was 

done with unlabelled anti-NKp46 and anti-FLAG (M2; Sigma) mAbs using the same PE-conjugated goat anti-mouse 

IgG1 secondary reagent. Detection of transgenic NKp46 receptor with the anti-FLAG mAb as the primary reagent is 
less efficient compared to the anti-NKp46 mAb. 
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concentrated virus of the bicistronic LV transfer vectors were up to 45% measured on day 3 post 

infection (Figure 2-5), but rapidly dropped on day 8 to below 1% GFP+ cells for both NKL and 

NK92 (Table 2-2). This phenomenon of “pseudo-transduction” was observed upon the infection 

with concentrated virus preparations of the pWP-NKp46-IRES-GFP vector as well as with virus of 

the “empty” pWP IRES-GFP control vector (data not shown). The high initial transgene expression 

may be indicative of a highly efficient transfer of vector DNA into the nucleus of target cells 

without the integration into the hosts’ genome or with high rates of gene-silencing. No pseudo-

transduction was observed when concentrated virus of the single gene vectors was used. Indeed, 

unlike the bicistronic constructs, these vectors do not carry the central polypurine tract (cPPT) 

sequence that allows an increased transfer of the vector preintegration-complex through the nuclear 

pores.  

Thus, the NK cell lines NK92 and NKL are highly susceptible to the nuclear translocation of vector 

DNA derived from the bicistronic lentivirus constructs. This indicates that the NK cell lines may 

posses a mechanism to minimize vector DNA integration, although “silencing” of integrated vector 

DNA cannot be ruled out since the integration of vector DNA into the genome of cells with a high 

initial “pseudo-transduction” was not evaluated. 

 

pLox-GFP pWP-NKp46-IRES-GFP  GFP+ GFP+ 
NKL < 1,0%  < 1% d8  

NK92 < 1,0% < 1% d8  

 
 
2.2.2 Generation of stably transduced NK92 and NKL  
 
Stably transduced NK92 and NKL cells were generated by the repeated FACS sort of GFP+ cells 

resulting in almost pure transgenic NK cell lines with 94% (NK92) to 98,5% (NKL) of cells 

positive for GFP expression. Figure 2-5 illustrates the results obtained for NK92. Transduction of 

about 2x105 cells resulted in a very high initial transduction rate that rapidly declined within the 

following 8 days to below 1% (Figure 2-5a). The subsequent FACS sort of about 1,3x104 GFP 

positive cells resulted in the enrichment of transgenic cells to a level of 4,1% after an expansion 

period of 16 days. In contrast to day 8 post infection the transgenic cells were now visible as a 

Table 2-2 : Transduction efficiencies of NK 92 and NKL cell lines.  Cells were transduced with 

concentrated lentivirus of the single-gene or the bicistronic vector constructs at an MOI of 20. The percentages of GFP+ 

cells at day 3 (pLox-GFP) or day 8 post transduction (pWP-constructs) are shown. 
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distinct and highly GFP positive population that allowed the subsequent re-sort to a purity of 94% 

GFP positive NK92 cells (Figure 2-5b). 

Similar results were obtained for the NKL cell line transduced with the same vector. A high purity 

of transduced cells (> 98%) was achieved even after a single FACS sort (data not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As observed in Jurkat cells, FACS analysis revealed a lower expression of the upstream NKp46 

gene, when compared to expression of the downstream GFP marker. This diminished surface 

expression of transgenic NKp46 in a proportion of transduced cells suggests either a limited 

availability of adaptor molecules necessary for the surface expression or simply reflects an 

inefficient transport of receptor molecules to the cell surface in NKL and NK92.  

 

 

 

Figure 2-5: Generation of a stably transduced NK cell line NK92. NK92 cells were transduced with 

concentrated virus of the vector construct pWP-NKp46-IRES-GFP at an MOI of 20. FACS analysis of the transduction 

efficiency at the indicated days is shown in (a), the repeated FACS sort of transduced NK92 on day 8 and day 24 post 

infection in (b). 
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2.3 Analysis of the functional activity of transgenic NKp46 in cell lines  
 
By the combination of repeated FACS sorting and cloning by limiting dilution stably transduced 

clones of the Jurkat cell line were generated. These Jurkat-p46 clones showed a high and 

homogenous surface expression of the transgenic NKp46 receptor whereas the wild type cells were 

negative (Figure 2-1). Accordingly, a high expression of NKp46 together with the GFP reporter 

gene was achieved after FACS sorting of GFP+ cells of the NK cell lines NK92 and NKL 

transduced with the bicistronic pWP transfer vector constructs. NKp46 expressed by the modified 

NK cell lines represents mainly exogenous receptor since wild type NKL and NK92 express low 

levels of endogenous NKp46. 

To determine the functionality of the transgenic receptor, we measured the induction of the 

lymphocyte activation marker CD69, the production of IFN-γ or the mobilization of intracellular 

calcium-ions upon monoclonal antibody-mediated receptor crosslinking or in target cell co-cultures.  

Further we analysed the potential of the transgenic NKp46 receptor to induce the monoclonal 

antibody mediated re-directed lysis of murine target cells. 

 

2.3.1 CD69 expression and intracellular Ca2+ -release in the Jurkat cell line 
 
Resting primary lymphocytes as well as the cultured Jurkat T cell line do not express the activation 

marker CD69. Strong surface expression of CD69 was induced by the unspecific stimulation with 

PMA and PHA, which served as a positive control treatment. Jurkat-NKp46 cells were either 

incubated with mAbs in solution or with immobilized mAbs in antibody–coated plates. To allow 

optimal receptor crosslink on cells pre-stained with mAbs a secondary goat anti-mouse polyclonal 

Ab (GaM) was added. Crosslinking with anti-CD3 only or in combination to a crosslinking 

secondary mAb served as a positive control for antibody mediated CD69 expression. The anti CD3 

mediated induction of CD69 expression was as high as in response to PMA-PHA when the cells 

were incubated on antibody-coated plates (Figure 2-6b), but was lower when anti CD3 was used in 

solution (Figure 2-6a), reflecting a stronger cross-linking effect through plastic adherent mAbs. In 

contrast, the mAb mediated crosslink of the transgenic NKp46 receptor in the Jurkat-p46.3 clone 

did not result in the induction of CD69. Neither the anti-NKp46 mediated receptor cross-link alone 

(Figure 2-6c), nor the simultaneous stimulation of the co-receptor CD28 (Figure 2-6d) induced any 

CD69 expression on the transgenic Jurkat clones. 
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We next analysed whether the crosslink of the transgenic NKp46 receptor could induce the 

mobilization of intracellular Ca2+ ions. As shown in Figure 2-7b a sharp increase in free intracellular 

Ca2+ was detected upon the addition of the calcium ionophor ionomycin. The pre-staining with anti 

CD3 and the subsequent cross-link with a secondary GaM mAb resulted in an immediate but lower 

Ca2+ mobilization (Figure 2-7c) as compared to the ionomycin treatment. Treatment with anti-

NKp46 or the secondary GaM mAb only did not result in any detectable change in free intracellular 

Ca2+ (Figures 2-7a, d). In contrast, the addition of cross-linking GaM to NKp46 pre-stained cells 

induced a weak but significant Ca2+ mobilization (Figure 2-7e). This result clearly suggests that the 

transgenic NKp46 receptor is functional in the Jurkat cell line in terms of mediating an immediate 

activation of the signal transduction cascade upon receptor triggering.  

 

 

 

 

 

PMA + PHA 

PMA + PHA 

PMA + PHA 
 

PMA + PHA 

Figure 2-6: FACS analysis of the expression of the activation marker CD69 on Jurkat cells transgenic for 

NKp46 (clone Jurkat-p46.3). Crosslink of NKp46 (c), NKp46±CD28 (d) and CD3 (a,b) was achieved either through 

plastic adherent (“coated”) anti-NKp46 (mAb-SN; 60µl/well) or anti-CD3 and anti CD28 (purified mAb; 20µg/ml), or 

through the addition of a secondary goat anti mouse (GAM, final 20µg/ml) mAb to Jurkat cells pre-stained with the 

corresponding mAbs (“crosslink” in a, b and c). As a positive control CD69 expression was induced by the unspecific 

activation with PMA (20ng/ml) and PHA (1µg/ml). FACS analysis of CD69 expression was done on day 36 hours post 
stimulation. 
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However, the relatively weak response to the used monoclonal antibody might indicate that this 

particular mAb is not an agonistic type of antibody or that the transgenic NKp46 receptor is 

ineffective or even defective in its capacity to trigger a strong intracellular signalling. 

 

 
2.3.2 Crosslinking of transgenic NKp46 and IFN-γ  release by NKL 
 
In contrast to the transgenic Jurkat clone Jurkat-p46.3 (see 2.3.1) intracellular Ca2+-ion mobilization 

upon the anti-NKp46 mediated receptor crosslink could not be detected with the transduced NK cell 

line NKL-p46-IRES-GFP. All obtained results were inconclusive and even the calcium ionophor 

stimulation did not elicit any reproducible Ca2+-fluxes (data not shown).  

To assess whether the stimulation of the exogenous receptor induces IFN-γ secretion of transgenic 

NKL we mediated the receptor crosslinking. Figure 2-8 shows the secretion of IFN-γ by primary PB 

NK cells and by NKL wild type (wt) and transduced NKL-p46-IRES-GFP cells in response to anti-

NKp46 mediated crosslinking, that was either mediated through plastic adherent primary antibodies 

(anti-NKp46; anti-CD38; anti CD16) or by the stimulation of pre-stained NKL cells with secondary 

goat anti-mouse antibodies (Figures 2-8a,c). Alternatively, anti-NKp46 mediated crosslinking was 

induced by the “re-directed” use of the antibody in co-cultures with the murine target P851 pre-

Figure 2-7: Measurement of intracellular Ca2+ ion mobilization in the Jurkat-p46.3 clone. Ca2+-release was 

measured upon the treatment with secondary mAb only (a), calcium-ionophor (b), anti CD3 crosslink (c), anti NKp46 

only (d) or in the presence of anti NKp46 together with secondary mAb crosslink (e). Arrows indicate the time point of 
the addition of the secondary cross-linking mAb. 

(a) (b) (c)

(d) (e)
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incubated with anti-NKp46 (Figure 2-8b). Here the K562 cell line served as a negative control for 

the induction of IFN-γ release. 

IFN-γ secretion was determined by ELISA of culture supernatants collected 36 hours after 

stimulation. For a positive control, cells were stimulated with PMA and ionomycin, which resulted 

in a high IFN-γ release that was up to 28’000 pg/ml for NKL and 59’000 pg/ml for PB NK cells. In 

contrast, unstimulated PB NK cells as well as wt and transduced NKL cells displayed a very low 

background-release of IFN-γ (300-500 pg/ml) and crosslink of NKp46 did not lead to any further 

induction of the cytokine. Neither plastic adherent or soluble anti-NKp46 nor the “re-directed” anti-

NKp46 mAb (bound to the murine P851 target cells via the FcγRII-receptors) triggered the cells to 

release IFN-γ.  

Similarly, the crosslinking of CD38 by anti-CD38 mAb did not result in the induction of cytokine 

release in NKL. In NKL it was shown that signalling via CD38 is strictly dependent on the 

expression of CD16 that provides the signalling components (Deaglio, S. Blood 2002). Since the 

NKL cell line we used is negative for CD16, and the crosslink of CD38 did not reveal any cytokine 

release, a possible effect of the “over-expressed” transgenic NKp46 receptor in the delivery of 

signalling components to CD38 in NKL can be ruled out.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-8: ELISA measurement of IFNγ-release upon mAb mediated receptor crosslink and upon co-

culture with target cells. For receptor crosslink in (a) and (c) 0,5-1x105 cells per well were seeded in 96 well plates 

coated with anti-NKp46 (mAb-SN; 60µl/well) or anti CD38 and anti CD16 (purified mAb; 20µg/ml). Alternatively, 

cells were pre-stained with anti-NKp46 or anti-CD38 and the secondary reagent (goat anti-mouseIgG1) was added to a 

final concentration of 20µg/ml. Co-cultures were done at an E:T ratio of 2:1 with 1x105 effector cells (b). Target cells 

were pre-incubated for 30 min with anti-NKp46 before NK cells were added (mAb-SN; 10µl/well). Culture 

supernatants were taken after 36 hrs. Maximal IFNγ-release was induced by the unspecific stimulation with PMA 

(20ng/ml) and calcium ionophor (Ionomycin; 1µM). 
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As already hypothesized from the Ca2+-flux measurements in the Jurkat-p46.3 clone, the transgenic 

NKp46 receptor might be functionally defective in terms of signal transduction. At least, the 

antibody-mediated crosslinking of the exogenous receptor might be insufficient to transmit a full 

activation signal that could lead to the release of cytokines. One possible explanation for the 

dysfunction of the transgenic receptor molecule might be the fact that the exogenous receptor 

contains a FLAG tag at the N-terminus. The six additional amino acid residues of the tag do not 

interfere with the specific binding of the antibody to the receptor, but may affect the process of 

signal transduction.  

However, in control experiments with primary PB NK cells that express the endogenous NKp46 

receptor and CD16 at normal high levels no IFNγ release was detectable upon the anti-NKp46 or 

anti-CD16 mediated receptor crosslink (Figure 2-9c). Thus, it cannot be excluded that the crosslink 

with anti-NKp46 mAb is insufficient to induce any cytokine release in NK cells or that the mAb we 

used (anti NKp46, clone 9E2) have no agonistic capacity. 

 

 

2.3.3 Redirected killing of murine targets by NKp46 transduced NK92 
 

In order to determine whether the monoclonal antibody specific for NKp46 is capable to function as 

an agonistic reagent, we performed “re-directed” cytotoxicity assays with normal primary NK cells. 

These IL-2 activated and in vitro expanded peripheral blood NK cells displayed normal surface 

expression levels of CD16 and NKp46. In NK cells a “re-directed” cytotoxicity against the NK-

insensitive murine target cell P815 can be induced by the addition of mouse anti-human monoclonal 

antibodies specific for activating NK cell receptors. In Figure 2-9 the “re-directed” killing of P851 

by activated and expanded primary PB NK cells (a) and by wt NK92 and transgenic NK92 (b) is 

shown. For the induction of the cytotoxic activity of the NK cells, purified anti-CD16 mAb was 

used as a positive control reagent. The addition of anti-CD56 served as a negative control. Since 

CD56 is not a cell-activating molecule, the tight contact between NK cells and the targets mediated 

by anti-CD56 should not lead to cytolysis.  

As expected, the spontaneous killing was around 1% or almost undetectable, but a high specific 

lysis was induced by anti-CD16 that was up to 30% at an E:T ratio of 20:1 (Figure 2-9a). In 

contrast, no lysis was measured when anti-CD56 was added. The addition of anti-NKp46 mAb 

induced a cytolytic activity against P851 at different E:T ratios with a maximal specific lysis of 8% 

at the E:T ratio of 20:1, corresponding on average to 40% of the anti-CD16 induced response.  
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These results strongly indicate that anti-NKp46 indeed represents an agonistic antibody suitable to 

trigger cytotoxic activity in NK cells. However, the level of mAb-induced activation is clearly 

below that mediated by anti-CD16. This may be due to the fact that the mAb was used as an un-

purified hybridoma supernatant of unknown protein concentration. 

We next analysed the re-directed cytotoxicity of the NK92 wt cell line compared to the lentivirus-

transduced counterpart NK92-NKp46-IRES-GFP. Since the NK92 cell line is negative for CD16, 

no antibody was available to serve as a positive control for a maximal inducible specific lysis. The 

transduced cell line displayed a high surface expression of NKp46 (MFI ratio 15,0) compared to the 

wt line expressing low levels of endogenous NKp46 (MFI ratio 2,8; not shown). Background 

activity against P851 (without the addition of antibody or in the presence of anti-CD56) was low or 

almost absent and equal for the wt and the transgenic cells (Figure 2.9a).  
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Figure 2.9: “Re-directed killing” of the murine target cell line P851. The “re-directed” killing by activated and 

expanded primary PB NK cells (a) and by wt NK92 and transgenic NK92-NKp46-IRES-GFP (b) is shown. Percentage 

of specific lysis was measured in standard 4 hrs Cr51 release assays. The P851 target cells were pre-incubated with the 

indicated mAbs for 30 min before they were added to the effector cells (purified anti-CD16, anti-FLAG and anti-CD56 

at final 1µg/ml; anti-NKp46 SN at 10µl/100µl, corresponding to final 0,5-1µg/ml). FACS analysis of the surface 

expression of the activating receptors NKp46 and CD16 is shown in (b). 



Results 
 

79 

No difference between wt NK92 and transgenic cells was observed with the anti-FLAG mAb that 

led to a E:T ratio-independent unspecific triggering. The addition of anti-NKp46 induced a cytolytic 

activity in both cell lines, and surprisingly the specific lysis of wt NK92 was stronger compared to 

the lysis observed with the transduced line. At the highest E:T ratio of 20:1 for instance, specific 

lysis of wt NK92 was 17%, whereas that of NK92-NKp46-IRES-GFP was only 9%.  

 
This unexpectedly low killing despite higher NKp46 surface expression might be explained by the 

hypothesis that the transgenic NKp46 receptor is indeed functionally inactive. If one assumes that 

the availability of anti-NKp46 mAb is not limited, all FcγRII-receptors on the P851 targets should 

have bound anti-NKp46 mAb. Thus, the high surface expression of inactive receptor molecules on 

NK92-NKp46-IRES-GFP cells may compete with the endogenous, functionally active NKp46 for 

the binding to the triggering antibody and thereby may lead to the observed reduction in “re-

directed” cytotoxicity. 

 

 

 

 

 

3. Genetic Modification of Primary Peripheral Blood NK Cells 
 

3.1 Phenotypic characterization of activated and expanded PB NK cells 
 
3.1.1 Phenotypic characterization of PHA and IL-2 expanded polyclonal NK cell cultures 

   
 
To determine the ability of lentiviral vectors to transduce primary NK cells we isolated NK cells 

from fresh or cryopreserved ficolled peripheral blood samples of healthy donors. NK cells purified 

by MACS technology were stimulated and expanded with phytohemagglutinin (PHA) and IL-2 in 

the presence of irradiated allogeneic PBMCs. Expansion of NK cells was measured on day 14, 21 

and 28 post stimulation. In a typical polyclonal stimulation culture NK cells started to form (PHA-) 

blasts on day 4 to 6 and entered the phase of exponential growth on day 8 to 10 of culture period. 

Figure 3-1 shows the average expansion of normal NK cells upon stimulation. NK cells usually 

reach a plateau-phase of expansion between day 21 and 28, thereafter they stop to proliferate, 

decrease in size and enter a resting phase, in which they can be repeatedly stimulated.  
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Regular restimulations with the same polyclonal NK cell line were done up to for times resulting in 

comparable proliferative responses (data not shown). NK cells were phenotypically characterized 

on day 14, 21 and 28 during culture period by FACS analysis for the cell surface expression of 

different NK cell and lymphocyte markers. Cells were stained for the NK cell specific CD56, the 

natural cytotoxicity receptor NKp46, the activatory receptors NKG2D and CD16 (FcγRIII) and the 

lymphocyte activation marker CD69. 

 

 

 

 

 

 

 

 

 

 

NK cells were also stained for the inhibitory receptors CD158a (KIR2DL1), CD158b (KIR2DL2) 

and NKB1 (KIR3DL1) of the killer cell immunoglobulin-like receptor (KIR) family, for the lectin-

like inhibitory receptor CD161 (NKR-P1) and for CD94 that forms heterodimers either with the 

inhibitory NKG2A or with the activatory NKG2C receptors (Figure 3-2a). The surface expression 

levels (measured as percentage positive cells or by the mean fluorescence intensity ratio; MFIR) of 

the inhibitory KIRs, of CD161, and of CD94 were unchanged during in vitro expansion, while the 

activation marker CD69 was strongly upregulated when compared to freshly isolated resting NK 

cells (data not shown). 

Freshly isolated peripheral blood NK cells belong to different subsets according to the expression 

pattern of CD56 and CD16. However, in all stimulation cultures analysed, the NK cell subsets 

characterized by the CD56bright/CD16dim/negative and the CD56dim /CD16bright phenotype were no more 

distinguishable since almost all cells acquired a uniform CD56bright/CD16bright phenotype (Figure 3-

2b). The surface expression of the natural cytotoxicity receptor NKp46 showed a transient down-

regulation during the process of restimulation but reached in almost all expansion cultures the initial 

or even higher levels between day 20 and day 28 (Figure 3-2c). The average expression level of 

NKp46 during the 28 days of in vitro culture was 8,1 ± 2,3 (MFIR±SEM) and thus comparable to 

Figure 3-1: Average expansion rates 
of normal peripheral blood NK cells.         
1-3x105 NK cells isolated from healthy 
donors (n=4). were stimulated with 
phytohemagglutinin (PHA; 1µg/ml) and 
2x106 irradiated allogeneic PBMCs in the 
presence of rhIL-2 (100U/ml). Cell counts 
were done on the indicated days of expansion 
culture and standardized for the expansion of 
0,1x106 cells. 0,1

1

10

100  

106 x 1000

days in culture     14                             21                                28
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freshly isolated PB NK cells with an average MFIR of 10,0 ± 0,9. In contrast, surface expression 

level of the activatory receptor NKG2D was strongly upregulated in all cultures analysed. 

The average MFIR increased from 6,8 ± 0,7 at day 0 to a MFIR of 25,2 ± 3,4 without any down-

modulation during the 28 days of in vitro expansion (Figure 3-2d). FACS analysis of freshly 

isolated PB NK cells revealed three different patterns of NKp46 surface expression (Figure 3-3a). 

NK cells either showed a homogenous receptor expression that was of a “dim” or “bright” 

phenotype or consisted of two distinct subpopulations, representing a “bimodal” phenotype of 

NKp46 surface expression.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-2: Typical surface expression pattern of different NK cell markers. PHA-stimulated normal 

peripheral blood NK cells were analysed by FACS. Expression of the markers is shown as histograms on day 14 of 

restimulation culture (a); open curves represent the staining with isotype mAb (if directly labelled mAbs were used) or 

with secondary reagent only (in case of unlabeled primary mAbs were used; e.g. for the detection of NKp46). 

Compared to the different subsets of PB NK cells found in freshly isolated NK cells, activated and expanded cells 

showed a uniform CD56 and CD16 bright phenotype (b). NKp46 surface expression during the process of restimulation 

was transiently down regulated but reached initial or higher levels between day21 and day28 of culture; a typical kinetic 

of surface expression is shown in (c). The surface expression of the activatory receptors NKG2D and NKp46 on freshly 

isolated peripheral blood NK cells compared to the average expression levels upon in vitro expansion between day14 

and day28 is shown in (d); red bars represent the mean values.  
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3.1.2 Modulation of the NKp46 surface expression by repeated PHA stimulations 
 

To further expand and propagate NK cell cultures in vitro, cells were regularly restimulated 

between day 21 and day 28 of expansion culture. As described in 3.1.1, the average expression 

levels of NKp46 after the first PHA/IL-2 stimulation reached the initial “ex vivo” values, but in 

some cases (2/8 healthy donors) the overall surface expression level decreased with repeated 

stimulations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3: Flow cytometry analysis of NKp46 surface expression on freshly isolated expanded PB NK cells. 

Filled histograms show the NKp46 surface expression, with the indicated mean fluorescence ratio (MFIR), whereas the 

open histograms represent background staining with the secondary reagent only (FITC-labelled goat anti mouse IgG1). 

In freshly isolated NK cells the expression of NKp46 was either of the “dim”, the “bimodal” or was of the “bright” 

phenotype (a). Repeated PHA/IL-2 stimulations lead to the complete loss of surface expression of the receptor as shown 

for one normal donor with an initial “bimodal” type of NKp46 expression (b). In all PHA/IL-2 expansion cultures the 

initial NKG2D dim expression was upregulated to a “bright” phenotype that stayed at high levels even upon repeated 

stimulations. 
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Figure 3-3b shows the repeated expansion of a polyclonal NK cell line with a bimodal type of 

NKp46 expression. After first expansion the bimodal distribution of NKp46 expression was 

maintained, but the overall MFIR decreased from 9,1 to an MFRI of 3,9. NKp46 surface expression 

was progressively decreasing with further restimulations to and was virtually lost after the third 

stimulation. Similar results were obtained upon the repeated PHA/IL-2 expansion of a polyclonal 

NK cell population with a bright NKp46 surface expression.  

In this case the initial bright expression after the first expansion changed to a bimodal distribution 

and finally was lost after the third restimulation (data not shown). In contrast, in all PHA/IL-2 

expansion cultures NKG2D surface expression was upregulated after the first expansion and 

remained at high levels even upon the repeated stimulation (Figure 3-3b). 

 

 
 
3.1.3  Modulation of the NKG2D surface expression upon PHA-stimulation in combination with 

different cytokines  
 

The finding that the repeated in vitro expansion of PB NK cells with PHA and IL-2 resulted in a 

strong up-regulation of NKG2D and in a transient down modulation or even a complete loss of 

NKp46 prompted us to test the effect of different cytokines in combination with the PHA/IL-2 

stimulation. Among the cytokines that are known to regulate the function and homeostasis of NK 

cells, we used IL-12, IL-15 and IL-21. We analysed the influence of these cytokines on the cell 

expansion and focused on the expression levels of the activatory receptors NKG2D and NKp46.  

Figure 3-4a shows the expansion of normal PB NK cells upon PHA stimulation either in the 

presence of IL-2 alone or with IL-2 in various combinations with IL-12, IL-15 and IL-21. In all 

tested combinations of the different cytokines similar NK cell expansion rates were obtained. FACS 

analysis of the receptor expression revealed no changes in the surface expression of NKp46, but a 

strong upregulation of NKG2D in cultures containing IL-2 only, together with IL-15 or IL-21 or IL-

2 in combination with both cytokines (Figure 3-4 b). In contrast, in all cultures that contained IL-12 

the up-regulation of NKG2D surface expression was suppressed 
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3.1.4 Functional consequences of NKG2D surface modulation 
 
To assess whether the observed cytokine mediated upregulation or suppression of the NKG2D 

receptor has any influence on the cytotoxicity, we analysed the cytolytic activity of receptor-

modulated NK cells against the NK-susceptible AML cell line HL60. HL60 cells express the 

NKG2D ligands ULBP-1, -2 and –3 as well as MIC/A and MIC/B at low levels. The ligands can be 

upregulated upon treatment with growth factors promoting the myeloid differentiation (such as 

SCF, Flt3-ligand and GM-CSF) or with the monocyte-activating cytokine IFNγ. In addition, the 

transcription enhancing compounds like the 5-aza-2-deoxycytidine (AZA; inhibitor of DNA 

methyltransferase), Trichostatin (TSA; histone deacetylase inhibitor, HDACi), Bryostatin-1 

(phosphokinase-C activator) or all-trans retinoic acid (ATRA) and 1-alpha-2,5-dihydroxyvitamin-

D3 (vitamin D), which are all known to induce the differentiation of myeloid progenitors or 
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Figure 3-4: Expansion rates and receptor expression in response to different cytokines. NK cells were 

stimulated with phytohemagglutinin (PHA; 1µg/ml) IL-2 (100U/ml) and irradiated allogeneic PBMCs in the presence 

of the indicated cytokines. The final cytokine concentrations were 1ng/ml for IL-12, 10ng/ml for IL-15 and 100ng/ml 

for IL-21, respectively. Expression levels of NKp46 and NKG2D were determined by FACS analysis as mean 
fluorescence ratio (MFIR) on day 14 of expansion cultures (b). 
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malignant myeloblasts, were also found to induce the up-regulation of NKG2D ligands on HL60 

cells (dissertation A.Rohner, 2004). 

The HL60 cell line untreated and treated with Bryostatin-1 for 3 days was used in cytotoxicity 

assays to determine functional differences upon the modulation of NKG2D surface expression. 

Figure 3-5 shows the cytokine-modulated “low” and “high” NKG2D expression phenotypes on 

expanded NK cells isolated from the same donor (Figure 3-5a) and the upregulation of the NKG2D 

ligands ULBP-1, -2 and-3 on Bryostatin-1 treated HL60 cells (Figure 3-5b). In contrast to the 

treatment with vitamin D or IFNγ, the surface expression of MHC class I molecules was not 

affected and remained at initial levels (data not shown). Figures 3-6a and 3-6b show the cytolysis of 

untreated HL60 cells by the two different types of NK cells. At all E:T ratios the specific lysis of 

the “NKG2D low” NK cells was significantly below that of the “NKG2D high” NK cells, indicating 

that the extent of cytolysis may be NKG2D-dependent.  
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Figure 3.5: FACS analysis of the surface expression of NKG2D on cytokine-modulated NK cells. Expression 

levels of NKG2D (a) and the corresponding NKG2D ligands on Bryostatin-1 treated HL60 cells (b) were measured on 

day14 of expansion culture. The “high” NKG2D phenotype was induced by PHA-stimulation and expansion with IL-2, 

whereas the “low” phenotype was achieved by PHA-stimulation and expansion in the presence of the cytokines IL-2, 

IL-12 and IL-21 (filled histograms). Upregulation of the surface expression levels of the NKG2D ligands ULBP-1, -2, 

and –3 on HL60 cells was induced by the treatment with Bryostatin-1 for 3 days. The thin line represents the 

background level of the ligands (“untreated”) whereas the filled areas show the ligand expression upon treatment 

(“treated”).  
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To test this hypothesis, we blocked the NKG2D-ligand interaction by the addition of anti-ULBP 

and anti-NKG2D mAbs. A slight decrease of the cytolysis by the “NKG2D low” but not by 

“NKG2D high” NK cells was observed (Figure 3-6b). This implies that the “NKG2D high” 

phenotype characterizes an activation status with an almost maximal NK cell activity that might be 

mediated by the concerted activation of several different receptor-ligand interactions. In contrast, 

the “NKG2D low” phenotype may characterize an activation status with an overall low cytotoxic 

activity that might be enhanced by the upregulation of receptor ligands. Indeed, Bryostatin-1 

treatment of HL60 target cells that causes the upregulation of NKG2D ligands resulted in a clear 

increase in cytolysis by the “NKG2D low” NK cells at most E:T ratios, while the cytotoxic 

potential of the NKG2D “high” effectors was only marginally enhanced. 
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Figure 3-6: Cytotoxic activity against the NK sensitive target cell line HL60. In (a) the specific lysis of 

untreated HL60 targets by NK cells with “low” and “high” NKG2D surface expression is shown. NK cells were used 

on day14 of expansion cultures for the analysis in 51chromium release assays. Effect upon the addition of NKG2D 

blocking mAbs (anti-ULBP-1,-2 and anti-NKG2D; each 10µg/ml) at the indicated E:T ratios is shown in (b). The 

graphs in (c) illustrate the cytotoxic activity of the two types of NK cells against Bryostatin-1 treated (filled symbols) 

compared to untreated HL60 targets (open symbols).  
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Taken together, the 60 to 70% specific lysis of HL60 by “NKG2D high” NK cells may represent 

the maximal inducible lysis and, more importantly, NK cells having a low NKG2D surface 

expression can induce an almost maximal killing only if a sufficient amount of ligands is present on 

the target cells. These ligands can be upregulated resulting in an enhancement of the susceptibility 

to NK cell lysis. Thus, the weak cytolytic activity of cytokine-modulated NK cells is at least in parts 

due to the low expression of NKG2D.  

 

 

 
 
 

3.2 Lentiviral transduction of peripheral blood NK cells 
 
 
3.2.1 Transduction with single-gene and bicistronic transfer vectors  
 
As described for NK92 and NKL (see 2.2), single-gene or bicistronic lentiviral vectors were used to 

transduce primary peripheral blood NK cells. The transduction efficiency of stimulated and in vitro 

expanded PB NK cells with the single-gene vector pLox-GFP on day 3 to 7 post infection was as 

low as observed with NK92 or NKL (2,2 ± 1,0%; Table 3-1). Transduction with the bicistronic 

transfer vectors showed high initial rates of gene transfer which were most likely due to 

“pseudotransduction” since transgene expression rapidly declined within the first 7 days post 

infection to levels achieved with the single-gene vectors (from 35,3 ±16,7% to 3,2 ±1,5%). As 

expected, the mean expression level of GFP was approximately one log higher after transduction 

with the single gene vectors than with bicistronic vectors containing GFP as a downstream gene 

with the IRES sequence as the starting site of translation.  

Figure 3-7 shows the typical FACS analysis results for the transduction of in vitro expanded PB NK 

cells. 2x105 NK cells were transduced at an MOI of 20-30 on day 14 to 21 of expansion culture. 

Since NK cells stop to proliferate between day 14 to 21 in expansion cultures the cells were 

restimulated immediately after the 4 hours of infection or on day 6 post infection. For both types of 

transfer vectors FACS analysis on day14 post restimulation revealed that the percentages of 

transduced cells were equally (5,2 ± 1,4% vs. 4,6 ± 2,6%) and maintained through the process of 

expansion at the levels measured before (Table 3-1). 
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 GFP+  
 day 3 post infection day 7 post infection day 14 post 

restimulation 
pLox-GFP 

(n=4)          2,2 ±1,0%                           n.d. 5,2 ±1,4% 

pWP-IRES-GFP 
(all constructs; n= 7) 35,3 ±16,7% 3,2 ±1,5% 4,6 ±2,6% 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3-1: Transduction efficiencies of expanded polyclonal primary NK cells. GFP expression was 

determined by FACS analysis at the indicated time points. PHA and IL-2 expanded PB NK cells were transduced on 

day14 to 21 of expansion culture at an MOI of 20-30. Transduced NK cells were repeatedly stimulated with PHA/IL-2 

either on day 7 post infection or immediately after the 4 hours of infection. Mean expression levels of GFP are shown ± 
SD. 

2% 4.5% 1.8%

pLox-GFP pWP IRES-GFP pWP p46-IRES-GFP

day 6 post
 infection:

total
3.7%

total
7%

GFP

C
D

56 total
6,2%

PHA / IL-2 expansion

GFP

 

Figure 3-7: Transduction and propagation of in vitro expanded primary peripheral blood NK cells. 

PHA/IL-2 expanded polyclonal NK cell lines were transduced at day14 to 21 of expansion culture. 2x105 NK cells 

were transduced at an MOI of 20-30 and restimulated with PHA and IL-2 on day 6 post infection. FACS analysis was 
performed on day 14 post restimulation. 
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In contrast, the transduction of freshly isolated peripheral blood NK cells resulted in higher 

efficiencies compared to those obtained with PHA/IL-2 expanded cells. PB NK cells were isolated 

from cryopreserved (ficolled) blood samples, stimulated for 2 days in IL-2 containing medium and 

transduced with concentrated virus. Figure 3-8 illustrates the transduction of freshly isolated NK 

cells with the bicistronic vector pWP-NKp46-IRES-GFP at an MOI of 20. Transduction efficiency 

was measured on day 4 post infection and NK cells were PHA/IL-2 stimulated 3 days later. FACS 

analysis on day 14 post stimulation showed an overall efficiency of about 25,2% GFP+ cells with 

30,1% of NK cells transduced. Since in NK cell stimulation cultures residual CD3+ T cells and NK-

T cells are expanded as well, it is possible to compare the transduction efficiencies of primary CD3-

CD56+ NK cells with that of primary CD3+ cells. Interestingly, the high transduction efficiency 

achieved with the bicistronic vector in the CD3-CD56+ NK cell population (30,1%) was 

significantly higher compared to the efficiency observed in the CD3+ T cell and NK-T cell subsets 

which was only around 7,5%. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2.2 Selection of stably transduced NK cells by FACS sorting 
 
In order to maintain and propagate the transduced CD56+CD3- NK cell population in a polyclonal 

NK cell expansion culture, the transgenic cells were FACS sorter purified before repeated 

stimulation. If the transgenic cells were not selected or enriched, the percentage of transduced cells 

gradually declined during the process of PHA/IL-2 expansion.  

Figure 3-8: Transduction and propagation of freshly isolated primary PB NK cells. NK cells were separated 

from cryopreserved PB samples and stimulated for 2 days in IL-2. 2-3x105 NK cells were transduced with concentrated 

pWP-NKp46-IRES-GFP virus at an MOI of 20. NK cells were PHA/IL-2 stimulated on day3 post infection and FACS 

analysis of expanded NK cells was done on day14 of stimulation culture. The indicated percentages correspond to the 

overall content of GFP+ cells.  
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Figure 3-9a shows the progressive loss of a transgenic NK cell population in a repeatedly stimulated 

expansion culture transduced with the bicistronic lentiviral vector pWP-NKp46-IRES-GFP. 

Typically for this vector, very high initial transduction efficiency on day 3 post infection (78% 

FLAG+; 20% GFP+) declined to about 1,5% on day 14 after in vitro expansion. This small 

population of GFP+ NK cells was almost lost upon the second restimulation. For the maintenance 

of transduced NK cell cultures it is important to ensure that the in vitro cultures are depleted of 

CD3+ NK-T and NK cells before the repeated stimulation. 
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Figure 3-9: Transduction and maintenance of transgenic primary PB NK cells. NK cells were infected with 

the bicistronic pWP-NKp46-IRES-GFP vector at an MOI of 20. In (a) the transduction of in vitro expanded PB NK 

cells and the repeated PHA/IL-2 restimulation is shown. After the first expansion on day 6 p.i., the bulk population 

contained about 1,5% transgene expressing NK cells, which were almost lost upon the second restimulation. FACS 

sorter enrichment of GFP+CD56+ cells without the depletion of CD3+ cells resulted in the preferential expansion of 

CD3+ (NK)-T cells (b). In (c) the expansion and maintenance of transduced CD3-CD56+ PB NK cells upon FACS sort 

and restimulation of CD3-GFP+ cells is shown. 



Results 
 

91 

The depletion is necessary since CD3+ cells preferentially expand under these conditions and 

overgrow the CD3-CD56+ NK cells. The FACS sort of CD56+ cells including the CD3+ NK-T and 

NK cells with the subsequent restimulation is shown in Figure 3-9b. This particular sort for 

transgenic cells on day 14 post restimulation yielded about 60% GFP+ cells, which mainly 

comprised T cells (>80%) and contained only 11% CD3-CD56+ NK cells.  

An example for the enrichment of a transgenic CD3-CD56+ NK cell population by FACS-sorting is 

shown in Figure 3-9c. In this experiment freshly isolated and IL-2 activated PB NK cells were 

transduced with the bicistronic pWP-NKp46-IRES-GFP vector and restimulated on day 6 post 

infection. The content of GFP+ NK cells on day 14 of expansion culture was around 24%, which 

allowed an efficient separation of transduced cells. The FACS sort of CD3-CD56+GFP+ NK cells 

with the subsequent restimulation resulted in a stably transduced population of NK cells with a 

proportion of GFP+ cells that was almost 100%. Figure 3-10 shows the analysis of the surface 

expression levels of NKp46 on these transgenic NK cells on day 14 after the second (upon the 

FACS sort) and third restimulation, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-10: NKp46 surface expression on transgenic NK cells upon repeated in vitro expansion. NK cells 

were transduced with concentrated pWP-NKp46-IRES-GFP virus at an MOI of 20, PHA/IL-2 stimulated on day 6 

post infection, FACS sorted for GFP+ NK cells and repeatedly stimulated for a second and third time. NKp46 

expression was determined by FACS analysis on day 14 of each stimulation procedure and is indicated as the mean 

fluorescence intensity ratio (MFIR). The open histograms represent the staining with the secondary reagent only 

(GaM IgG1-PE).  
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At both time points the NK cells homogenously expressed the GFP marker and even after the third 

restimulation RT-PCR on total RNA clearly revealed the presence of lentivirus derived mRNA for 

exogenous NKp46 (data not shown). However, the transgenic cells not only were negative for the 

surface expression of exogenous NKp46 (as indicated by the absence of FLAG staining) but also 

showed a decrease in endogenous NKp46 to low levels (MFIR of 2,1).  

Thus, it remains to be elucidated whether the observed down regulation of endogenous NKp46 in 

turn influenced the expression of the transgenic receptor through post-transcriptional mechanisms 

or wether the lentiviral vector derived mRNA may interfere with the endogenous NKp46 messenger 

in a way that only low levels of endogenous NKp46 are present on the cell surface.  

 

 
 
 
 
3.2.3 Transient transductions: restoration of down-modulated NKp46 surface expression  
 
In order to obtain a sufficient amount of NK cells transgenic for NKp46 to perform functional 

assays, we took advantage of the high rates of pseudo-transduction observed with the bicistronic 

lentiviral vectors. As mentioned in section 3.2.1, infections with concentrated virus of the 

bicistronic pWP-constructs resulted in high transduction efficiencies on day 2 post infection. This 

efficient transgene expression was only transient, since the percentage of transgenic cells rapidly 

declined within 8 days after infection (see Table 3-1). High pseudo-transduction was achieved even 

upon the infection of 3x106 NK cells at an MOI of 1-2 for 8 hours.  

To assess any potential functional differences due to the expression of the transgenic NKp46 

receptor, we transduced repeatedly in vitro expanded primary PB NK cells, which lost their NKp46 

surface expression (see 3.1.2). Figure 3-11 illustrates the transient transduction of primary PB NK 

cells that displayed a practically complete down-modulation of NKp46 surface expression upon 

three consecutive PHA/IL-2 stimulations. FACS analysis two days post infection revealed a high 

expression of exogenous NKp46 with about 78% of the cells positive for the FLAG-tag and more 

than 85% of the cells positive for the receptor, corresponding to an MFI ratio of 7,2 (versus 1,4 for 

the not transduced control cells; Figure 3-11a,b). Like in all transductions performed with the pWP-

vectors, this high transgene expression was not stable and NKp46 expression declined to 

background levels on day 7 to 8 post infection as shown in Figure 3-11c. 
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Thus, transductions with the bicistronic pWP-vectors result in high short-term transgene expression 

levels and represent an efficient approach to generate transgenic NK cells suitable for functional 

assays. 
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Figure 3-11: Transient expression of NKp46 in PHA/IL-2 expanded PB NK cells. High “pseudo-transduction” 

was achieved by the transduction of 3x106 NK cells with concentrated virus of the lentiviral vector pWP-NKp46-IRES-

GFP at an MOI of 1-2 in a total volume of 500µl (a). FACS analysis of NKp46 surface expression on day 2 post 

infection of untransduced (no virus) and virus transduced NK cells as mean fluorescence intensity ratio (MFIR; a) or as 

percentages of positive cells (b). Surface expression of transgenic NKp46 declined within 8 day to background levels 

(c). Black histograms represent the NKp46 staining, whereas open histograms show the secondary reagent (GaM IgG1) 
only. 
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3.2.4 Functional consequences upon restoration of NKp46 surface expression 
 
We first analysed if the lentivirus-mediated restoration of NKp46 surface expression has any 

influence on the cytotoxic activity in general, using the NK cell sensitive target cell line K562 in 
51Cr-release cytotoxicity assays. Therefore, PHA/IL-2 expanded primary PB NK cells with a down-

modulated NKp46 surface expression were “short-term” transduced with the lentiviral transfer 

vector pWP-NKp46-IRES-GFP. Figure 3-12a shows the surface expression levels of NKp46 on the 

NK cells before and after the lentiviral infection. In this particular experiment the relatively low 

surface expression of NKp46 (MFI ratio 2,3) could be increased to an intermediate level with an 

MFI ratio of 9,7. As shown in Figure 3-12b the high NKp46 expression did not result in any 

detectable differences in the cytolytic activity against K562 targets. Both NK cell populations 

displayed a high activity that was in a normal range with a specific lysis of up to 80% at the upper 

effector to target ratios (E:T ratio). This result shows that the virus infection per se did not interfere 

with the cytolytic capacity of NK cells.  

The high and NKp46-independent cytotoxicity was confirmed by the finding that the K562 target 

cell line we used did not express the ligands either for NKp46, nor for the other NCRs NKp44 and 

NKp30 (as determined by the use of recombinant soluble NCR receptors-dimers; sol p30/44/46) or 

the activating receptor NKG2D (data not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-12: Cytolytic activity against the NK sensitive target cell line K562. PHA/IL-2 expanded primary PB 

NK cells that had a down-modulated NKp46 expression were transduced with concentrated pWP NKp46-IRES-GFP 

virus at an MOI of 1-2 on day 14 of expansion culture. FACS analysis of NKp46 expression was done on day 2 post 

infection (a). The specific lysis of K562 target cells was measured in standard 4 hrs 51Cr release assays (b).  
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Next, we performed 51Cr-release cytotoxicity assays with the THP-1 target cell line, which 

expresses ULBP-1 and –3, the ligands for NKG2D at substantial levels and is highly positive for the 

ligands for NKp30, NKp46 and NKp44 (Figure 3-13a). The cytolytic activity of untransduced and 

transduced NK cells against THP-1 cell is shown in Figure 3-13b. For both NK cell populations the 

specific lysis was below that against the K562 targets and was comparable to the lysis measured 

with freshly isolated and IL-2 activated control PB NK cells. No major difference in the cytolytic 

potential was detectable for the transduced NK cells in comparison to the untransduced cells. Since 

THP-1 target cells are positive for the NKp46 ligand(s) this strongly indicates the possibility that 

the transgenic NKp46 receptor is not capable to recognize the corresponding ligand(s) or to trigger 

an activating signal that could result in an enhanced cytolysis.  
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Figure 3-13: Cytolytic activity against the NK sensitive target cell line THP-1. THP-1 expresses ULBP-1 and –

3, the ligands for NKG2D as well as the ligands for NKp30, NKp46 and NKp44 (a) as measured by the use of 

recombinant receptor proteins (soluble receptors-dimers; sol p30/44/46). In (b) the cytolytic activity of virus transduced 

vs. untransduced PB NK cells (see Figure 3.11) compared to the lytic activity of freshly isolated IL-2 stimulated (for 3 

days) PB NK cells is shown. 
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As demonstrated in section 2.3.3, hybridoma supernatant of the anti-NKp46 mAb (clone 9E2) 

showed an “agonistic” capacity and could induce the cytolysis of the NK cell resistant murine target 

cell line P815 by normal PB NK cells or by wild type NK92 when used against the endogenous 

NKp46 receptor in a “redirected“ way. From such “redirected” cytotoxicity assays with the 

transgenic NK92 cell line we already concluded that the exogenous NKp46 receptor might be 

inactive probably due to a deficiency in signal transduction.  
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Figure 3-14:  “Re-directed killing” of the murine target cell line P851. FACS analysis of the surface 

expression of NKp46 was done on day 2 post infection (a). The “re-directed” killing by PHA/IL-2 expanded primary 

PB NK cells is shown in (b). Percentage of specific lysis was measured in standard 4 hrs Cr51 release assays. The P851 

target cells were pre-incubated with the indicated mAbs for 30 min before they were added to the effector cells 
(purified anti-CD16, anti-CD56 at final 1µg/ml; anti-NKp46 SN at 10µl/well). 
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Figure 3-14 illustrates the lentiviral modification of primary NK cells and the evaluation of the 

“redirected” cytotoxicity against the P815 target cells upon the expression of exogenous NKp46 

receptor. FACS analysis on day 2 post infection (Figure 3-14a) revealed an efficient lentiviral gene 

transfer to the primary PB NK cells.  

Untransduced NK cells were almost negative for endogenous NKp46 (MFIR 1,6) whereas the 

transduced cells displayed an at least 5-fold increase in the surface density of exogenous NKp46 as 

indicated by the MFIR of 9,4 obtained with the anti-FLAG staining.  

However, this significant difference in NKp46 surface expression did not result in any substantial 

change in the “redirected” killing of P815 cells (Figure 3-14b). For both NK cell populations the 

anti-CD16 induced cytolysis as well as the background lysis without the addition of any mAbs was 

in the same range for most E:T ratios. As expected from the experiments performed with transgenic 

NK92 (section 2.3.3; Figure 2-10), the addition of anti-NKp46 mAb could not induce any cytolysis 

by the transduced cells that was significantly higher compared to untransduced cells or compared to 

background lysis. In contrast to the transgenic NK92, the primary NK cells used in this experiment 

were practically negative for endogenous NKp46 and thus allowed the assessment of the 

functionality of the transgenic NKp46 without any interference due to the expression of endogenous 

receptor. Therefore, we could confirm the results obtained with the transgenic NK cell line, but the 

results suggest that the transgenic NKp46 receptor, at least as a FLAG-tagged version, is 

functionally inactive.  

 
 
Taken together, the high cytolytic activity against K562 and THP-1 observed with lentivirus 

modified NK cell populations indicates that the vector-mediated surface expression of NKp46 does 

not interfere in any way with the cytolytic activity of NK cells. However, since the over-expression 

of NKp46 did not correlate to an enhanced cytotoxicity against target cells that are positive for the 

NKp46 ligand(s) and, more strikingly, since the “redirected” triggering of exogenous NKp46 did 

not result in any significant enhancement in the cytolysis of P815 targets, we conclude that the 

transgenic receptor is indeed functionally inactive. 
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4. Genetic Modification of Cord Blood Derived Hematopoietic             
Precursor Cells  

 
In the previous chapter we described the limited effectiveness in transduction of mature PB NK 

cells, confirming that NK cells are refractory to genetic modification. In the following a highly 

efficient approach of transfer to and the stable expression of the green fluorescent protein (GFP) 

marker gene in NK cells is described. Since functional NK cells can be differentiated from 

hematopoietic progenitor cells (HPCs) in vitro [18], this goal was achieved by the lentiviral transfer 

of the GFP gene to cord blood derived progenitors with the subsequent differentiation towards the 

NK cell lineage (see Figure 1-1). The selection of transduced GFP-expressing precursors by FACS 

sorting resulted in almost pure transgenic populations of NK cells after the in vitro differentiation. 

This approach was extended to the gene transfer of the natural cytotoxicity receptor NKp46 and to 

explore its influence on the effectiveness to recognize and lyse target cells by in vitro generated NK 

cells. For this purpose the single gene and bicistronic lentiviral vectors described in the previous 

chapters were used.  

 

 
 

4.1 Transduction with single-gene transfer vectors and in vitro differentiation  
 
Our first goal was to determine the effectiveness in generation of transgenic NK cells by the 

lentiviral transduction of CD34+ HPCs and the subsequent in vitro differentiation towards the NK 

cell lineage. We used concentrated lentivirus preparations of the single gene transfer vectors pLox-

GFP and pLox-NKp46. In all transduction experiments CD34+ cord blood derived HPCs were 

prestimulated with “NK cell differentiation medium” (containing SCF, FL and IL-15; see Materials 

and Methods) for 2 to 3 days prior to exposure to the lentiviral vectors. 2-3x105 cells were 

transduced at an MOI of 20-30. Immediately after the infection cells were expanded in the “NK cell 

differentiation medium” for 5 to 6 weeks.  

Figure 4-1 shows a typical FACS analysis of differentiation cultures of pLox-GFP transduced and 

untransduced CD34+ HPCs. The content of developing CD56+ NK cells and the GFP expression 

were determined weekly over a time period of 4 to 5 weeks. In all cultures analysed differentiation 

did not lead to the development of CD3+ cells (Figure 4-2, top). Gene transfer efficiency in pLox-

GFP transduced cultures was on average 16,8±9,9% (n= 5) as measured on day 3 post infection. 
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Importantly, the percentage of GFP expressing cells stayed throughout the differentiation culture at 

levels comparable to the initial efficiency of transduction. In the depicted differentiation culture for 

instance (Figure 4-1, bottom), the percentage of GFP positive cells is maintained in all cells as well 

as in the developing NK cell population at a level of about 20%. This indicates that the transgene 

expression in the transduced progenitors is stable and not affected by the process of cell 

differentiation. 
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Figure 4-1: FACS analysis of two independent differentiation cultures of CB-derived hematopoietic 

progenitors. The upper panel shows the FACS analysis a control differentiation culture without transduction. In the 

lower panel a differentiation culture starting with pLox-GFP transduced progenitors is shown. Cells were prestimulated 

3 days with IL-15, SCF and FL prior to infection and initial transduction efficiency was measured on day 2 post 

transduction. Expression of CD56, CD3 and GFP was measured before and during in vitro culture at week 2, 3 and 4. 
The percentages of cells positive for each marker are indicated in the corresponding quadrants  
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Transduction efficiencies achieved with the pLox-NKp46 vectors could not be determined since we 

were not able to detect the exogenous NKp46 receptor in the differentiation cultures by FACS 

analysis. This may be due to different reasons. First, at the time the transduction experiments were 

performed the titers of the different batches of concentrated pLox-NKp46 lentivirus could not be 

determined as done for the GFP-encoding constructs. Therefore pLox-NKp46 virus preparations 

were used in amounts (volumes) similar to those of pLox-GFP vectors, but possibly below the 

intended MOI of 20 to 30. This may have resulted in a content of transgenic cells that was below 

the detection level in FACS analysis which may be confirmed by the fact that transductions of the 

Jurkat cell line performed with concentrated virus preparations (see 2.2) resulted in efficiencies that 

were clearly below that of the GFP encoding vector. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2: Detection of integrated vector cDNA and of exogenous NKp46 transcripts. Total cell lysates of 

differentiation cultures transduced with the pLox-NKp46 transfer vector were analysed (pLox-GFP transduced cultures, 

CBIII-GFP, served as a negative control). On the indicated days post infection (p.i.) mRNA was isolated (lanes 1and 2) 

and analysed by RT-PCR. Genomic DNA was isolated on day 38 p.i. and analysed by PCR (lane 6). Arrows indicate 

PCR products that confirm transduction of CBIII-NKp46 culture. The control cDNA (lanes 3, 4, 5) was generated by 

isolation of total RNA of the indicated cells and analysed by RT-PCR. The two primer combinations used, are both 

specific for vector sequences (5’BamFLAG sense/Cla3’anti-sense, 930bp; 5’pLNKp46 sense/WPRE3’anti-sense, 

380bp). As a positive control (+) for the primer combinations cDNA isolated from 293T cells transfected with pWP 

NKp46-IRES-GFP plasmid DNA was used. 

930bp

M (1) Ø (3) (6) (+)

1636 bp
1018 bp

506 bp

(b)       d20 p.i.

930bp

930bp

(1) (1) Ø (+) (+) M

1018 bp
1636 bp

506 bp

(c)     d38 p.i.

380bp
930bp

(1) (2) (3) (4) (5) Ø (+) M

(a)      d15 p.i.

930bp

(1) CB III-NKp46 cDNA
(2) CB III-GFP cDNA
(3) Jurkat-p46.3 cDNA
(4) PBNK1 cDNA
(5) PBNK2 cDNA

(6) CB III-NKp46 genomic DNA

 Ø no cDNA
(+) 293T p46IGFP  cDNA

 



Results 
 

101 

Second, the expression of exogenous NKp46 receptor in the CD34+ HPCs may suppress or 

interfere with the development of early NK cell progenitors and thus may lead to a loss of 

transduced progenitors that would give rise to transgenic NK cells. Similar conclusions can be 

drawn from results obtained in transductions with bicistronic transfer vectors (see 4.1.4). Despite 

the failure to detect pLox-NKp46 transduced cells by FACS analysis in differentiation cultures, the 

amplification of PCR products indicates that vector cDNA has integrated in the progenitors. In 

independent differentiation cultures transcripts of exogenous NKp46 could be confirmed by RT-

PCR on mRNA and the integration of the transgene was confirmed by PCR on genomic DNA. 

Figure 4-2 shows the PCR detection of exogenous NKp46-transcripts (Figure 4-3a,c) and of vector 

cDNA integrated to genomic DNA (Figure 4-3b). Moreover, RT-PCR on mRNA isolated on day 38 

post infection indicates the persistent transcription of the exogenous NKp46 transgene throughout 

the process of differentiation as it was observed in pLox-GFP transduced cultures.  

 

4.2 Restimulation of in vitro generated transduced NK cells  
 
The in vitro differentiation towards the NK cell lineage is accompanied by an intensive proliferation 

and expansion to high cell numbers. Table 4-1 summarizes the average content of CD56+ NK cells 

and the average overall cell expansion of in vitro differentiation cultures. Within 4 weeks the 

content of CD56+ NK cells reaches an average of 41,2 ± 18,7% of total cells, with a range of 12-

81%.  

 day0 week 1 week 2 week 3 week 4 week 5 

% CD56+ (n=10) 
(range) -- 1,5±1,2 

(0,5-5) 
6,9±3,8 

(0,7-16,7) 
16,9±13,7 

(4-64) 
41,2±18,7 

(12-81) 
52,6±23,3 
(21-94,5) 

fold expansion 
(n=4) -- 65±24 164±76 208±57 347±96 n.d. 

calculated abs. 
cell numbers 2x105 13x106 32,8x106 4,16x107 6,94x107 n.d. 

estimated abs. 
numbers CD56+ -- 1,9x105 2,3x106 7,1x106 28,5x106  

 
 
 
 
 
 

Table 4-1: Average content of CD56+ NK cells and the average total cell expansion rates. Two measured in 

independent CB CD34+ NK cell differentiation cultures were initiated with 2-3x105 progenitors. The average content 

of developing NK cells and expansion rates were determined based on the analysis of vector transduced and non-

transduced differentiation cultures. 
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Together with an average expansion rate of 347±96 fold and a starting population of about 2x105 

progenitor cells one can calculate the total cell number in differentiation cultures after 4weeks to 

roughly 7x107 cells. Thus, the estimated output of NK cells within such a differentiation culture can 

be estimated to at least 3x106 cells after 4 weeks of expansion.  

 

In order to propagate and to further expand the in vitro generated NK cells, the differentiation 

cultures can be restimulated as described for primary PB NK cells (see 3.1.1). Restimulations were 

performed as early as at week 2 of in vitro culture. Despite the NK cell content at this time point is 

usually below 20% (Table 4-1) restimulations resulted in the expansion of almost pure populations 

of CD56+CD3- NK cells on day 14 to 21 (see Figure 4-4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, in lentivirus transduced differentiation cultures the expansion of CD56+CD3- NK cells 

was as efficient as for untransduced cultures, but PHA/IL-2 stimulation lead to the loss of transgene 

expressing cells. Figure 4-4 illustrates a differentiation culture transduced with the pLox-GFP 

vector and restimulated at week 4 post infection. The content of NK cells in this particular 

differentiation culture was 42% with about 20% of cells positive for the GFP marker. Restimulation 

resulted in the expansion of the CD56+CD3- NK cells to a purity of more than 97%, but the 

transgene expressing NK cells were almost all lost (1,4%), indicating that the process of 

restimulation preferentially expanded the non-transduced NK cells.  
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Figure 4-4: Loss of transgenic NK cells in differentiation cultures after restimulation. At week 4 of 

differentiation culture 1,5-2x106 cells were PHA/IL-2 stimulated as a “bulk” unseparated population. The percentages 

of cells positive for each marker are indicated in the corresponding quadrants. The content of CD3+ cells was usually 
below 3% (not shown).The content of transgene expressing cells dropped from initially 21% to 1,4% after stimulation. 
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Thus, as already concluded for transduced primary PB NK cells (see 3.2.2), the restimulation of 

transgenic NK cell populations needs the separation or at least the enrichment of transgenic cells 

prior to restimulation to avoid the loss of transduced cells during expansion. To reach this goal, we 

purified transgenic NK cells by FACS based cell sorting.  

 

In a first step we purified the transduced progenitor cells by FACS 2 days after the lentiviral 

transduction. In Figure 4-5 the in vitro differentiation of FACS sorted pLox-GFP transduced 

CD34+ progenitor cells is shown. The sort of a 12% population of GFP+ progenitors on day 3 after 

lentiviral infection resulted in the enrichment of transduced cells to 70-80% at week 4 (Figure 4-

5a). 
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Figure 4-5: FACS based enrichment of transgenic precursor cells after lentiviral infection. Developing NK 

cells were  separated and expanded during in vitro differentiation. Cord blood derived CD34+ HPCs were transduced 

with the pLox-GFP vector at an MOI of 20. On day 3 post infection GFP+ progenitors were FACS sorted and subjected 

to in vitro differentiation (a). The indicated percentages represent the content of GFP+ cells within the developing NK 

cell population. The content of CD56+ NK cells was 7, 24 and 40% at week 2, 3 and 4, respectively. Figure (b) 

illustrates the FACS sort of transgenic NK cells at week 4 and the subsequent expansion. FACS analysis on day 14 

upon expansion is shown. 
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This content of transgenic cells was maintained in all subpopulations during in vitro differentiation 

and thus 70% of the developing NK cells were transgenic for the GFP marker. In a second step, the 

generated NK cells were sorted at week 4 to obtain a pure population of transgene expressing cells. 

At that time point the overall content of NK cells was about 40% that allowed an efficient FACS 

sort of transgenic NK cells. The subsequent restimulation of the sorted cells lead to the expansion of 

a nearly 100% GFP+ NK cell population (Figure 4-5b).  

 

In conclusion, the FACS based enrichment of transduced progenitor cells combined with a second 

purification step of transduced NK cells during development represents a highly efficient approach 

in the generation of genetically modified NK cells. The early sort of transduced progenitor cells 

significantly enhances the output of transgenic NK cells in terms of absolute numbers, which in turn 

enhances the effectiveness of the subsequent cell purification for PHA/IL-2 expansion. Thus, this 

approach does not only allow to use a relatively low number of progenitor cells with a maximal 

output, but also helps to reduce the consumption of lentivirus, the preparation of which to high titers 

is representing one of the limiting factors in retroviral gene transfer technology. 

 
 

4.3 Transduction with bicistronic transfer vectors 
 
Figure 4-6 illustrates the transduction of CB derived CD34+ cells with the bicistronic vectors pWP-

IRES-GFP and pWP-NKp46-IRES-GFP. As observed for the infection of primary PB NK cells (see 

3.2.1), the transduction efficiencies measured on day 3 post infection reached very high levels in 

CD34+ cells but dropped during the in vitro differentiation to below 10% GFP+ cells after 2 to 3 

weeks (see Figure 4-4). This effect was observed for both vectors and it remains to be elucidated 

whether this decrease is due the failure of vector integration or whether the loss of transgene 

expression is due to an ineffective or even suppressed transcriptional activity. Although the overall 

differentiation towards the NK cell lineage in cultures transduced with the bicistronic constructs 

seemed to be unaffected, there is evidence that the transgene is transcriptional inactive in the 

developing NK cells. Figure 4-7 shows the FACS based analysis of the NK cell content and GFP 

expression in the NK cell populations of differentiation cultures transduced with the pWP-IRES-

GFP and pWP-NKp46-IRES-GFP vectors. 
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The content of in vitro generated NK cells is comparable for both bicistronic constructs reaching 70 

to 94% at week 4 to 5 (Figure 4-7a) similar to cultures transduced with the single gene vectors (see 

Table 4.1). But in contrast to differentiation cultures initiated from pLox-GFP transduced 

progenitors, the percentage of transgenic NK cells was dramatically reduced in cultures transduced 

with bicistronic vectors. As shown for the pWP-IRES-GFP vector, a roughly 10-fold reduction in 

the content of transgene expressing NK cells was observed when compared to the overall content of 

GFP+ cells or to that of the residual (non-NK) cells (Figure 4-7b). In pLox-GFP transduced cultures 

the percentage of transgene expressing NK cells did not differ significantly from the overall content 

of GFP+ cells.  

The pWP-constructs contain the (intron-less) short form of the EF-1 alpha promoter (see section 

1.1), which may explain different expression levels of the transgene in different cell populations. 

Since stable transduction of mature PB NK cells with the bicistronic pWP-NKp46-IRES-GFP 

vector was only successful for freshly isolated IL-2 activated but not for in vitro expanded cells (see 

3.2.2), it is possible that the “EF-1alpha short” promoter is transcriptional inactive in not terminally 

differentiated, developing NK cells.  

Figure 4-6:  Progressive loss of transgene expression. Differentiation cultures of cord blood derived CD34+ 

HPCs transduced with bicistronic pWP-NKp46-IRES-GFP transfer vector (top panel) and the corresponding control 

vector pWP-IRES-GFP (lower panel). FACS analysis of GFP expression was done at the indicated time points post 

infection (p.i.). 

day 4 p.i. day 14 p.i. day 23 p.i.

pWP-NKp46-IRES-GFP

pWP-IRES-GFP

22% 8%29%GFP

33% 8% 4%GFP
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Figure 4-7: NK cell content and GFP expression in the NK cell populations of differentiation cultures.  

CB derived CD34+ HSCs were transduced with the vectors pWP-IRES-GFP, pWP-NKp46-IRES-GFP and pLox-GFP, 

respectively. Content of CD56+ NK cells during in vitro differentiation culture is shown in (a). In (b) the percentages of 

GFP+ NK cells in pWP-IRES-GFP transduced cultures is compared to the content of transgenic NK cells in pLox-GFP 
transduced cultures. 

 

Figure 4-8:  FACS sorting of transgenic precursor cells and the subsequent in vitro differentiation. The 

upper 15% of GFP+ progenitors transduced with the pWP NKp46-IRES-GFP vector were sorted on day 3 post 

infection. At day 24 of in vitro differentiation the content of NK cells was 25% in the control culture that was not 

transduced, whereas in the FACS sorted and GFP+ differentiation culture the content of CD56+ NK cells was below 
1%.  
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This hypothesis cannot fully explain the fact that the decrease in transgene expression is 

preferentially observed in the developing NK cell population. If transcription is not suppressed in 

mature NK cells and assuming that in vitro generated NK cells acquire a full state of maturation, 

one would expect the detection of transgenic cells at later time points during the process of 

differentiation. Thus, it cannot be ruled out, that the exogenous NKp46 receptor interferes with the 

development of early NK cell progenitors leading to the loss of transgenic cells.  

 

Indeed, differentiation cultures that were FACS sorted for transgenic precursors early after lentiviral 

infection contained more than 90% transgenic GFP+ cells after a culture period of 3 weeks. In 

contrast to the untransduced control culture starting from the same CD34+ progenitors that 

comprised of 24% NK cells, the content of NK cells in the transduced differentiation culture was 

below 1% (Figure 4-8). This strongly indicates that the expression of exogenous NKp46 receptor 

may have a suppressive or even a toxic effect on early NK cell precursors. In the case of a pure 

transgenic progenitor population the differentiation towards NK cells may be totally suppressed 

resulting in the complete failure of NK cell development. 
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V. RESULTS  
 
(B) THE CYTOTOXIC POTENTIAL OF NK CELLS FROM AML PATIENTS 
 

5. Isolation and Expansion of NK cells from AML patients 
 

5.1 Patient cohort, NK cell isolation and in vitro expansion 
 
Peripheral blood NK cells were isolated from patients with newly diagnosed or relapsed acute 

myeloid leukemia (AML). 14 patients were included into the study, 12 newly diagnosed and 2 

patients with recurrent leukemia from which 1 relapsed after allogeneic stem cell transplantation. 

All PB samples were taken before chemotherapeutic intervention. Table 5-1 summarizes the main 

characteristics of the selected patients. Diagnosis and the division into AML FAB-subtypes of M1 

to M7 were based on morphologic, cytogenetic and immuno-phenotypic criteria (determined by the 

Hämatologie Labor, University Hospital Basel). The main immuno-phenotypic lineage markers in 

AML are CD33, CD117, CD15 and CD65 for the myeloid, CD61, CD41 (CD42b) for the 

megakaryocytic and CD14, CD11b, CD64 for monocytic lineage.  

A highly reliable way to gate on leukemic blasts in flowcytometry is the use of the pan-leukocyte 

marker CD45, which is expressed at low levels (CD45dim) in all leukemic blasts and almost absent 

on some ALL and megakaryocytic AML. Myeloblasts in PB, BM and other body liquids are 

phenotypically identical [63]. The content of myeloblasts in PB samples was on average 37,4% per 

total MNCs. The CD45bright population was defined as the compartment of residual healthy cells 

(see Figure 5-1). The content of CD56+CD3- NK cells was below 1% of mononuclear cells (%NK 

per MNC) and of total leukocytes (%NK per total). These values significantly differed from the NK 

cell contents measured per MNCs in PB of healthy donors (2,6 vs. 7,0%), corresponding to a 

reduction that was at least 2,5-fold. For all 14 patients depicted in Table 5-1 NK cells were 

separated using the magnetic immuno-bead (“MACS-beads”) technology in a procedure that 

combined the depletion of blasts and residual healthy non-NK cells with the positive selection of 

CD56+ NK cells. The separations were all done from thawed cryopreserved samples starting with 

2-20 x107 MNCs.  

In a first step a cocktail of lineage marker specific immuno-beads was used to mainly deplete for B- 

and T lymphocytes and cells of the myeloid lineages (see “Materials and Methods”). By this initial 

depletion we were able to enrich the CD3-CD56+ NK cell subset in the PB samples to 2-10% of 

total. Depletion of CD3+ NK-T and T cells was almost complete in all separations (95-99% CD3-). 
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This was absolute crucial since CD3+ cells preferentially expand during the subsequent in vitro 

expansion of separated NK cells. In rare cases the initial step allowed an efficient depletion of blast 

cells and resulted in highly enriched NK cell preparations (> 80%). 

We further tried to deplete for the myeloid blasts by the use of immuno-beads specific for CD33 or 

CD34 depending on the phenotype of the AML blasts. However, for not explained reasons in the 

majority of the performed separations these additional depletions were completely inefficient and 

resulted in a reduction of blast content that was only marginal. This may be simply due to the 

enormous amount of myeloblasts that might skew the ratio between immuno-beads and the “target 

cells” to levels that are below the proportions recommended for separations of normal cell subsets.  

Table 5-1:  AML Patient characteristics and NK cell content in peripheral blood samples of patients 

compared to healthy donors. FACS analysis was done on thawed samples of cryopreserved (ficolled) MNCs or on 

whole blood of freshly isolated PB. Patient BT# relapsed after allogeneic transplantation; thus NK cells are of donor 

origin. Values of NK cell content for patient SR were excluded since the blasts of this patient expressed the CD56 NK 

cell marker. 

patient characteristics healthy donors

patient age sex FAB-type
cytogenetic

abnormalities

% blasts

per

MNCs

%NK

per

MNCs

%NK

per total

%NK

per

MNCs

%NK

per total

BeT 68 m 2
nd

 OMP ? 78.2 0.7 0.1 BS 5.5 1.6

BT# 57 m
M5b;

relapsed
+8; t(2;11),

t(3;9)
92,9 0,7 nd CA 8.6 2.8

CC 43 f M5 ? 93.5 nd nd FC 7.6 3.9

CL 67 f M2 ? 73,5 1.4 1.2 FA 1.2 0.3

DC 52 f M4 ? 37.7 2.1 1.7 KC 7.1 2.8

SH 73 f M1 - 84,3 0.3 0.3 CV 5.2 1.8

SC 69 f M2
+4; del9q;

del11q
88,3 0.3 0.3 NP 3.2 1.4

RM 86 f 2
nd

 MDS ? 55.4 1,0 0.6 RA 20.3 6.7

SR 74 m
M1;

relapsed
?

58.9 ( 10,9 5,2 ) SG 3.4 1.7

EA 68 f M4 +8 76.5 0,4 0,4 SU 7.3 2.5

FE 37 f M4 ? 74,8 0,3 nd SS 7.8 2.9

MU 46 f M5b ? 37,2 nd nd

SF 54 m M5a - 73,1 0,8 nd

SD 62 f
2

nd
 M4

(CML)
-

93.4 0,2 nd

median 64,5 mean 37,4 0,7 0,6 7.0 2.6

StDev 19,4 0,6 0,5 5,0 1.7

range 37,2-93,5 0,2-2,1 0,1-1,7 1.2-20.3 0.3-6.7

n 14 11 7 11 11
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In the next step we further enriched for the NK cells by positive selection using CD56 or 

alternatively CD16 specific MACS beads. This two-step NK cell enrichment resulted in a purity of 

NK cells that ranged from 10 to 70%. However, the overall efficiency of AML-NK cell purification 

was further reduced due to the fact that each MACS separation step is accompanied with a 

considerable loss of cells. Thus, since the actual output of separated NK cells in terms of the 

absolute numbers was 2x104 - 3x105, and starting from 1x108 cells in the beginning with an 

considered theoretically yield that should be about 10x105, this corresponds to an overall efficiency 

of 2 to 30%.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As a consequence of the poor yield and contamination with a substantial proportion of blasts, we 

were not able to perform any functional assays with ex vivo isolated AML-NK cells. Instead, the 

separated cells were immediately subjected to in vitro expansion as described for the expansion of 

normal PB NK cells (see section 3.1.1). Except for two patients, all stimulations of enriched NK 

cell preparations resulted in the successful expansion of CD3-CD56+ NK cells.  

Figure 5-1: FACS analysis of the NK cell content as measured on whole blood samples. Representative 

examples of AML patient derived PB (top) and of PB from a normal healthy donor (bottom) are shown. R1 represents 

the gate on total mononuclear cells (based on FSC/SSC-plot; granulocytes excluded). the dark coloured dots represent 
the blasts  gate R1. The percentages indicate the content of CD3-CD56+ NK cells in the “NK cell gate”. 
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The fact that in some cultures the proportion of CD3+CD56- T cells and CD3+CD56+ NK-T cells 

reached 20-30 % of total cells emphasizes the importance of CD3 depletion prior to stimulation.  

In contrast, the depletion of “contaminating” blasts seems to be not necessary. Even though some 

AML-NK cell preparations consisted of mixtures with up to 90% of blasts, these cells disappeared 

like the irradiated feeder cells within 14 days of culture. Figure 5-2 shows the expansion curves of 

AML-NK cells compared to the expansion of NK cells from normal healthy donors and illustrates 

the disappearance of residual blasts during in vitro expansion. No significant difference in the 

expansion potential of AML-NK cells and control NK cells was observed. In both “types” of 

polyclonal NK cell cultures the cells start to proliferate between day 6 to 8 and expand within the 

next 10 to 14 days of culture. The plateau of cell expansion is reached between day 14 and 21. Cell 

counts on day 14, 21 and 28 revealed an expansion rate that was on average 2000±790 fold-increase 

in cell numbers for AML-NK cells and about 750±195 fold-increase for control NK cells.  
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Figure 5-2: In vitro expansion of separated AML-NK cells. MACS separated PB AML-NK cells (2x104-3x105) 

were stimulated with PHA/IL-2 in the presence of 2x106 irradiated allogeneic PBMNCs. In (a) the cell expansion of 

AML-NK cells is compared to the expansion of normal healthy donor derived PB NK. Cell counts were done on the 

indicated time points. The cell expansion is “normalized” for 1x105 cells. The expansion of AML-NK cells as a mixture 

of NK cells and residual leukemic blasts is exemplified in (b). Blast content of more than 90% did not influence the 
expansion of as few as 8% NK cells (red highlighted) to pure NK cell populations within 14 days of culture.  
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5.2 Phenotypic characterization of expanded polyclonal NK cell cultures 
 

PHA stimulated NK cells were phenotypically characterized during expansion on day 14, 21 and 28 

by FACS analysis for the cell surface expression of different NK cell and lymphocyte markers. 

Cells were stained for the NK cell specific marker CD56 and CD16, for CD3, the activation marker 

CD69 and for the activating receptors NKp46 and NKG2D. The NK cells were also stained for the 

inhibitory receptors CD158a, CD158b, NKB1, CD161 and for CD94. Figure 5-3 summarizes the 

FACS results for the analysed surface markers. No significant difference between AML-NK cells 

and control NK cells was found. Moreover, as observed for the expansion of PB NK cells from 

normal healthy donors (see section 3.1.1) surface expression levels of the inhibitory KIRs, of 

CD161, and of CD94 were unchanged during in vitro expansion of AML-NK cells, while the 

activation marker CD69 was upregulated when compared to freshly isolated AML-NK cells (data 

not shown). Accordingly, all expanded AML-NK cells acquired a CD56bright/CD16bright phenotype 

upon expansion.  
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Figure 5-3: FACS analysis of the surface expression of activating and inhibitory NK cell receptors on 

stimulated NK cells. Freshly isolated cells were stimulated and analysed on day 14 to 21 of expansion culture. In (a) 

the expression levels of the activating receptor CD16 and the inhibitory receptors CD158a/b and NK-B1 is shown. As 

indicated by the histogram for CD158a, the polyclonal NK cell populations consisted of negative and positive cells and 

thus the percentages for the positive cells are indicated. In (b) the inhibitory receptor CD161, the NK cell receptor 

associated CD94 and the lymphocyte activation marker CD69 is shown. Here the MFI ratios are indicated since for 
these markers the populations stained homogenously. Open histograms represent the isotype staining. 
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The two NK cell subsets that can be distinguished based on the differential expression of CD56 and 

CD16 were found in freshly isolated AML-NK cells (data not shown) but disappeared upon in vitro 

expansion (Figure 5-2). FACS analysis results of the surface expression of the activating receptors 

NKp46 and NKG2D in AML-NK cells and healthy control NK cells are summarized in Table 5-3 

and Figure 5-4. Expression levels were measured at the day of NK cell separation (“freshly 

isolated”) and between day 14 to 28 during in vitro expansion (“PHA expanded”/ “stimulated”). 

The MFI ratios of NKp46 surface expression stayed at the initial “ex vivo” levels during expansion 

of AML-NK cells (6,9 “stimulated” vs. 7,0 “ex vivo”) and of the control NK cells (8,7 vs. 6,8). 

Importantly, the absolute mean values of expression were at an equal level for both (Figure 5-3, 

left). In contrast, the surface expression of NKG2D was strongly upregulated in response to the 

restimulation process in AML-NK cells as well as in NK cells from healthy controls (Figure 5-3, 

right). In accordance to NKp46, the absolute expression levels of NKG2D as measured “ex vivo” or 

during the expansion were almost identical for both “types” of NK cells (9,8 vs. 27,0 for AML-NK 

cells; and 10,0 vs. 27,1 for control NK cells). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

freshly isolated NK cells

Patient NKp46 NKG2D
healthy

donors
NKp46 NKG2D

AG 6.0 17.5 BS 10.9 11.7

BH 6.4 nd CA 6.1 10.6

BeT 6.1 18.0 FC nd 6.9

BT# 7,5 9,6 FA 7.9 17.2

CA 5.2 nd KC 4.2 8.6

CL 6.5 nd KR nd nd

DR 14.0 9.9 NP 8.8 11.2

DC 2.9 2.9 RA 6.7 8.8

EA 8.7 8.6 SG 4.9 6.1

FE 6,3 5,3 SU 5.7 9.1

HI 6.3 10.7 SS nd 8.2

JJ 11.5 11.0 CV 6.2 11.4

KA 7.9 nd

LE nd 6.9

OE nd 7.2

RA 4.1 8.5

RM 3.0 2.7

SH 7.3 7.3

SC nd 6.2

SR 5,2 2,7

SJ 11.1 10.6

WG 6.8 11.2

ZC 3.4 nd

ZP 7.2 18.2

Mean 7.0 9.8 6.8 10.0

StDev 3.09 4.59 2.1 3.0

Range 2.9-14.0 2.7-18.2 4.2-10.9 6.1-17.2

n 18 16 9 11

 

PHA expanded NK cells

patient NKp46 NKG2D
healthy

donor
NKp46 NKG2D

BeT 3,5 24,3 I 7,4 23,2

BT# 10,8 37,0 III 10,5 25,5

CC 2,3 32,3 IV 2,7 22,9

CL 2,2 13,3 VI 2,6 19,6

DC 10,3 23,8 VII 5,2 33,0

SH 5,1 26,4 VIII 23,6 38,5

SC 13,5 34,3

RM 15,2 27,3

SR 2,2 19,7

EA 8,7 25,0

FE 8,0 27,9

MU nd nd

SF 5,8 30,2

SD 4,6 23,5

Mean 6,9 27,0 8,7 27,1

StDev 4,3 6,2 7,2 15,4

Range 2,2-15,2 13,3-37,0 2,6-23,6 19,6-38,5

n 13 13 6 6

 

Table 5-2: FACS analysis results of the surface expression of NKp46 and NKG2D on AML-NK cells and 

on NK cells from healthy donors. Expression levels are shown as the MFI ratio at the day of NK cell separation (left 

side) or as the average of MFI ratios between day14 and day28 upon in vitro expansion (right side). The highlighted 

AML patients on the left side correspond to the patients on the right side from which NK cells were isolated and in 

vitro expanded. In vivo- and expansion-values for healthy control NK cells were determined on different individuals. 
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Taken together, AML-NK cells display a proliferative capacity that is analogous to or even higher 

than that of healthy donor derived NK cells. AML-NK cells also do not differ from healthy donor 

derived control NK cells, in terms of surface marker expression including the expression of 

activating and inhibitory receptors.  

 

 

 

6. Functional characterization of AML-NK cells 
 
In addition to the phenotypic characterization of in vitro expanded AML-NK cells we determined 

their functional properties compared to expanded healthy donor derived PB NK cells.  

Functional activity of NK cells can be defined by their ability to lyse virus infected or transformed 

cells and by the capacity to produce a variety of immunoregulatory cytokines. Thus, in the 

following the potential of expanded AML-NK cells for the production of IFN-γ and the in vitro 

cytotoxicity against different target cells is described.  
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Figure 5-3: FACS analysis of the of activating receptors NKp46 and NKG2D. Surface expression on AML-

NK cells (filled symbols) compared to NK cells from healthy donors (open symbols). Expression levels are shown as 

the MFI ratio at the day of NK cell separation (“freshly isolated”) or as the average of MFI ratios between day14 and 
day28 upon in vitro expansion (“stimulated”). 
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6.1 IFN-γ production upon IL-12/-18 stimulation 
 
To assess the potential of in vitro expanded AML-NK cells to produce IFN-γ, we stimulated the 

cells for 36 hours with the cytokines IL-12 and IL-18 which are known to induce the release of 

IFN-γ by NK cells [2]. The cells were stimulated between day 14 and 21 during in vitro expansion 

and the proportion of IFN-γ producing cells was measured by intracellular FACS analysis. Figure 6-

1 shows the results obtained for AML-NK cells and healthy donor derived NK cells. As a control 

NK cells were incubated with IL-2 alone or in the absence of any cytokines. The proportion of IFN-

γ producing cells among AML-NK and donor NK cells without cytokine stimulation or with IL-2 

was below 1%. In contrast, stimulation with IL-12 and IL-18 resulted in the IFN-γ production by 

26,1±13,2% of AML-NK cells and 22,7±8,6% of the healthy donor derived NK cells. 

 

From this we conclude that AML-NK cells are functional in terms of IFN-γ production and do not 

differ from NK cells isolated from healthy donors since they respond equally well to the stimulation 

with the cytokines IL-12 and IL-18.  
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Figure 6-1: IFN-γ  production of AML-NK cells and of NK cells derived from healthy donors. The 

percentage of IFN-γ producing cells measured by intracellular FACS analysis is indicated. NK cells were either 

stimulated with IL-12 and IL-18 for 36 hours or were incubated without any cytokines. Incubation with IL-2 only 

served as a control of background level for IFN-γ producing NK cells. BrefeldinA was added for the last 4 hours of 
culture period to induce the intracellular retention of IFN-γ. 
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6.2 In vitro cytotoxicity of AML-NK cells 
 
6.2.1 In vitro cytotoxicity against the target cell line K562 
 
We next analysed the cytolytic capacity of AML-NK cells against the target cell line K562. Due to 

a deficiency in MHC class I expression K562 erythroleukemia cells are highly sensitive to NK cell 

mediated lysis. Killing of K562 target cells thus can serve as a control for the integrity of the 

cytolytic activity of a given NK cell population. Figure 6-2 shows the cytolytic activity of AML-

NK cells and of NK cells from healthy donors at different effector to target ratios. The cytotoxicity 

was measured by 51Cr release assays on day 14 to 21 during in vitro expansion. AML-NK cells 

displayed a high cytolytic activity against K562 with an average specific lysis that ranged from 

45±12,9% to 74±9,5% at the E:T ratios of 0,6 to 10 (Figure 6-2a).  
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Figure 6-2: In vitro cytotoxicity of expanded AML-NK cells against K562. In (a) the cytotoxic activity of 

AML-NK cells (black bars) and of NK cells derived from healthy donors (white bars) is shown. Percentage of specific 

lysis at the indicated effector to target ratios was measured in standard 4 hrs 51Cr-release assays. NK cells were assayed 

for their cytolytic activity on day 14 to 21 during restimulation culture. In (b) the percentages of specific 51Cr-release for 

a particular in vitro expanded AML-NK cell line in first (open symbols) and in second restimulation (filled symbols) is 
shown. 
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This cytolytic activity was even higher than the activity measured for control NK cells (18,5±14,7% 

to 73,9±6,9%). Importantly, this high cytolytic capacity is retained through the process of repeated 

in vitro expansion (Figure 6-2b).  

 

In conclusion, AML-NK cells are highly cytotoxic against NK cell sensitive targets, indicating that 

the NK cells do not bear any functional deficiencies in their cytolytic potential. 

 
 
6.2.2 Cytolytic in vitro activity against autologous primary AML blasts  
 
We next investigated the cytolytic in vitro activity of AML-NK cells against the autologous 

leukemic blasts. The main goal was to define whether AML-NK cells are characterized by an 

inherent defect in target cell recognition that may contribute to the escape of malignant cells from 

the immune surveillance. 

To address this issue, we performed 51 Cr release cytotoxicity assays with expanded AML-NK cells 

for 9 out of the 14 patients that were included in the study (see Table 5-1). Due to methodological 

limitations of the 51 Cr release technique (51 Cr uptake by the AML blasts was too low; spontaneous 
51 Cr-release exceeded 25% of maximal release) we could reliably analyse the cytolytic activity for 

5 out of these 9 patients. Since we expected a dominant effect of KIR-MHC class I interaction that 

inhibits the cytolysis upon NK cell target interaction, we included an anti-class I mAb in the 

cytotoxicity assays to block the induction of any inhibitory signalling.  

Figure 6-3 illustrates the results in cytotoxicity assays obtained for the AML-NK cells generated 

from patient “EA”. The cytolytic activity of AML-NK cells on day 14 after initial stimulation is 

shown as the percentages of specific 51Cr-release at different E:T ratios. As expected from the high 

levels of MHC class I expression displayed by the AML blasts (see section 6.3; Table 6-4), the 

spontaneous lysis by the particular AML-NK cells was very low (from about 16% to below 2%). 

In contrast, cytolytic activity measured in the presence of MHC class I mAb was highly elevated 

and ranged from 77% to 12%. The observed induction of cytolysis upon the addition of monoclonal 

antibodies was not due to an Ab-mediated “re-directed” triggering of NK cell activity, since control 

experiments with anti-MHC class II mAbs that did not result in any significant induction of 

cytolysis (data not shown). In addition, as observed for the cytolysis of K562 target cells the 

repeated stimulation and expansion did not impede the cytolytic activity of AML-NK cells against 

the autologous blasts (Figure 6-3b). 
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In Figure 6-4 the results of cytotoxicity assays obtained for all 5 AML-NK cells and their 

corresponding blasts are summarized. In addition to the specific lysis by the autologous NK cells 

(AML-NK cells; left side), the specific lysis of the indicated blasts by allogeneic healthy donor 

derived NK cells at the E:T ratio of 10 is shown (donor NK cells; right side).  

For all patients (except “CC”) the spontaneous autologous killing of AML-NK cells was below 

10%, but a strong cytolytic activity could be induced by the addition of MHC class I specific mAbs. 

A homogenous and high specific lysis was observed that reached levels between 43 and 59%. The 

high spontaneous killing of blasts from patient “CC” may be due to the fact that these leukemic 

cells displayed relative high levels of surface expression of ligands for the activating receptors 

NKp30, NKp46 and NKG2D (see section 6.3.4; Table 6-4), whereas only low levels of ligand 

expression were measured for the blasts of the remaining patients.  
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Figure 6-3: In vitro cytotoxicity of expanded AML-NK cells against autologous leukemic blasts. In (a) the 

cytolytic activity of AML-NK cells of patient “EA” after initial restimulation is shown as the percentages of specific 
51Cr-release ( 4 hrs assays) at the indicated E:T ratios. Lysis in the presence of MHC class I blocking mAb (clone 

W6/32; 10µg/ml) is represented by the black bars, without the addition of mAbs by the white bars. In (b) the cytolytic 

activity of AML-NK cells of patient “EA” generated by two subsequent restimulations are compared to each other. 

Open symbols show the activity of AML-NK cells of the initial first stimulation whereas the filled symbols represent 

lysis of NK cells upon the second stimulation. 
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Surprisingly, the spontaneous lysis measured for allogeneic donor NK cells was as low as for 

autologous AML-NK cells. This was not necessarily expected since the high probability for KIR-

mismatches between unrelated individuals - as the case in these experiments - should favour an 

increased killing of allogeneic targets. 

 

However, no exact KIR-typing was done so that we cannot exclude the possibility of matches in 

KIR-MHC class I recognition that would explain the observed MHC class I dependent inhibition of 

cytolysis.  

In addition, the specific lysis by allogeneic donor NK cells that was induced upon MHC class I 

blocking (Figure 6-4, right) was below the high levels of cytolysis that were observed with 

autologous AML-NK cells. This phenomenon may be explained by a higher overall activity of the 

AML-NK cells compared to healthy donor NK cells as it was already observed for the killing of 

K562 target cells. Thus, we determined the cytolytic activity of AML-NK cell against allogeneic 

AML blasts.  

Figure 6-4: Lysis of AML blasts by expanded autologous AML-NK cells. The cytolytic activity of autologous 

AML-NKs (left) and allogeneic healthy donor-derived NK cells (right) is shown. White bars represent the spontaneous 

specific lysis whereas the black bars indicate the lysis in the presence of KIR-MHC class I interaction blocking mAb 

(clone W6/32; 10µg/ml) at the E:T ratio of 10. As a control the lysis measured in the presence of anti-MHC class II 

mAb is shown for autologous killing by AML-NK cells of patient “FE”. Below the bars the blasts used in the 
corresponding cytotoxicity assay are indicated. 
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Figure 6-5 shows the cytotoxic in vitro activity of allogeneic AML-NK cells against the blasts of 

patient “BT”. The anti-MHC class I induced killing of the allogeneic blasts was as high as observed 

for the autologous setting, but compared to the activity of healthy donor derived NK cells the 

spontaneous as well as the mAb-induced killing of AML-NK cells was indeed higher. 

 

In conclusion, these results strongly indicate that AML-NK cells are capable to recognize and 

efficiently lyse autologous leukemic blasts. Since the blockage of the KIR-MHC class I interaction 

can induce a strong autologous killing it appears that AML-NK cells are readily triggered by their 

targets through the interaction of NK cell activating receptors and their corresponding ligands on 

the target cells. However, the fact that only the block of inhibitory signalling renders the leukemic 

blasts susceptible to NK cell lysis underlines the predominance of KIR-mediated inhibition.  

It remains to be elucidated if the shift in receptor balance by the over-expression of activating 

receptors or the upregulation of the corresponding ligands on leukemic blasts can contribute to an 

enhanced activation signal that might override the otherwise dominant inhibition of NK cell 

cytotoxicity. 

 
 
 

Figure 6-5: Lysis of AML blasts from patient “BT” by autologous and allogeneic AML-NK cells. 

Spontaneous specific lysis (white bars) and specific lysis in the presence of MHC class I blocking mAb (clone W6/32; 

10µg/ml) (black bars) at the E:T ratio of 10 is shown. “FE”, “BeT”, and “SR” indicates AML-NK cells from the 

corresponding patients. 
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6.3 In vivo activity of AML-NK cells in the NOD/SCID transplantation model 
 
 
To investigate the cytotoxic effect of AML-NK cells against leukemic target cells in vivo, we used 

the NOD/SCID transplantation model. We first determined the anti-tumor activity of NK cells in 

mice inoculated with the erythroleukemia cell line K562. Further we transplanted leukemic blasts of 

the AML patients described in section 5.1 into NOD/SCID mice to assess the in vivo activity of the 

AML-NK cells against the autologous leukemic blasts. 

 
6.3.1 In vivo suppression of K562 tumor formation in NOD/SCID mice 
 
As described in section 6.2.1, AML-NK cells displayed a high cytotoxic activity against the MHC 

class 1–deficient human erythroleukemia cell line K562 in vitro. Thus, to confirm the observed 

anti-leukemic activity in vivo and to establish an animal model for the transplantation of human 

leukemias we transplanted NOD/SCID mice with the K562 cell line. Here we took advantage of the 

fact that the K562 cells upon the subcutaneous (s.c.) injection to NOD/SCID mice form solid 

tumors whose growth can be easily followed over time (Weichold, FF Blood). Six- to eight-week-

old NOD/SCID mice received 1x107 K562 cells s.c. and the growth of K562 tumors was followed 

over a time period of 3 to 4 weeks post transplantation. To investigate the in vivo activity of 

adoptively transferred NK cells we injected 2-5x106 NK cells 24 hours after the K562 inoculation. 

Figure 6-6 shows the results for tumor transplanted NOD/SCID mice that either remained without 

any further treatment or received a single dose of AML-NK cells or of NK cells derived from 

healthy donors. Tumor growth was apparent 3 to 4 weeks after K562 injection. In untreated mice 

tumor load reached an average size of 300mm2 in diameter. At that stage of tumor expansion the 

observation was stopped and mice were sacrificed. In contrast, in mice treated with adoptively 

transferred AML-NK cells or donor NK cells the tumor growth was significantly reduced to about 

60-70% of the tumor size in the control group of untreated mice. No human NK cells could be 

detected in tumors recovered from treated mice using FACS analysis of tumor preparations and 

immuno-histochemical analysis of tumor sections (data not shown). Therefore reduction in tumor 

size is likely to reflect an NK cell–mediated reduction of the initial tumor growth early after NK 

cell infusion.  
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6.3.2 Engraftment of NOD/SCID mice with primary human AML blasts 
 
We next transplanted primary human acute leukemic blasts to NOD/SCID mice and determined the 

levels of engraftment eight to ten weeks after the injection. Six- to eight-week-old NOD/SCID mice 

were irradiated 2-6 hours before the intravenous injection of 1x107 AML blasts. We transplanted 

mice with blast preparations of six of the 14 patients listed in Table 5-1. For all transplantations we 

used thawed samples of cryopreserved ficolled patient PBMNCs. If the blast content was below 

90% the absolute numbers of injected cells were adjusted to achieve the transplantation of 1x107 

leukemic cells.  

In Figure 6-7 the detection of human AML blasts in bone marrow preparations of NOD/SCID mice 

8 weeks post transplantation is shown. Leukemic blasts can be easily distinguished from the murine 

cells by the FACS analysis of cell suspensions of the whole BM (Figure 6-7a). The level of 

engraftment was determined as the percentage of human CD45+CD33+ cells per total cells. Human 

leukemic blasts are also visible in BM cytospin preparations of transplanted mice (Figure 6-7b).  

 

Figure 6-6: Cytotoxic activity of AML-NK cells against the K562 erythroleukemia cell line in vivo in the 

NOD/SCID transplantation model. NOD/SCID mice were inoculated subcutaneously with 1x107 K562 cells. Tumor 

formation was measured (as mm2) at the indicated time points post inoculation. AML-NK cells or healthy donor derived 

NK cells were injected i.v. on day 1 post tumor inoculation. The NK cells were used at day 14 to 21 of in vitro 

expansion cultures. Numbers in parenthesis (n) indicates the number of mice per group. Tumor size is expressed as a 

mean ± St.Dev.. Significant differences between the NK cell infused groups and the control group are marked. 
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The histochemical analysis revealed that the blasts retained their morphological properties after the 

repopulation of the murine BM. The percentage of human blast-engraftment in each transplanted 

NOD/SCID mouse on week 6 to 8 after injection is summarized in Figure 6-8. On average 5 mice 

(range 3 to 8) were transplanted per patient sample. Engraftment was achieved in almost all mice 

transplanted with blasts derived from patients of different AML-subtypes. The proportions of 

human cells in murine BM were highly variable, even within each single patient group resulting in a 

median blast content of 26,6% with a range from 20,8% to 37,8%. However, for two patient 

samples no engraftment was detected at all (“CL”, “RM”).  

 

 

6.3.3 Adoptive transfer of expanded AML-NK cells to leukemia-repopulated NOD/SCID mice 
 
To evaluate the activity of AML-NK cells against the autologous AML blast in vivo we transplanted 

NOD/SCID mice as described in the previous section and transferred AML-NK cells to mice that 

were engrafted with human leukemic cells. Figure 6-9a illustrates the experimental outline for the 

adoptive transfer of AML-NK cells to leukemia-repopulated NOD/SCID mice.  

Figure 6-7: Engraftment of human AML blasts in the bone marrow of NOD/SCID mice. Detection of human 

cells by FACS analysis of bone marrow aspirates (a) and microscopally by histochemical staining of a BM cytospin 

preparation (b). In (a) murine BM was analysed on week 8 post transplantation and human cells were identified in total 

bone marrow by the use of anti-huCD45 and anti-huCD33 mAbs. The percentage indicates the content of blasts per 
total mouse BM. Black arrow-heads in (b) indicates the human leukemic blasts. 
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To follow the engraftment of the NOD/SCID mice after the transplantation, we analysed the content 

of human blasts in PB and BM of transplanted mice regularly between week 4 and 10 by FACS 

analysis. BM sampling was done by the aspiration of a small volume of marrow from the tibia of 

one of the hind limbs. If a substantial engraftment of the BM was detected, mice received a single 

dose of 3-5x106 AML-NK that were injected intravenously one week after the last BM aspiration.  

 

In order to support the viability of the transferred NK cells and to maintain their activation status, 

mice received 3 doses of huIL-2 and huIL-15 (10µg of each), administered intraperitoneally along 

with the NK cell transfer and on the two consecutive days. One week after NK cell infusions the 

mice were sacrificed and analysed for the content of leukemic blasts in the BM, PB and spleen. 

According to this time-schedule for the adoptive transfer of AML-NK cells we defined the 

endpoints for the analysis of the tumor-load as “day –7” (before NK infusion) and “day +7” (after 

NK infusion).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-8: Engraftment of human AML blasts in the bone marrow of NOD/SCID mice. Percentage 

of human cells in the BM of transplanted mice at week 8 to 10 as determined by FACS analysis is shown. Mice 

were sub-lethally irradiated (375 cGy from a 60Co source at 2 cGy/min) and injected with 1x107 primary 

unseparated AML blasts. Each dot represents the engraftment of a single mouse transplanted with blasts of the 

indicated patient (FAB subtype in brackets). The bars represent the median percentage of engraftment for each 

sample of blasts.  
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Figure 6-9b summarizes the results obtained with AML-NK cell transfer to mice repopulated with 

blasts of the patients “BT”, “EA” “SD” and “CC”. 10 mice received expanded NK cells and 8 mice 

were analysed as controls without the infusion of NK cells. All mice infused with AML-NK cells 

showed a significant overall reduction of tumor load. For seven out of the 10 mice that were treated 

with transferred NK cells we determined the blast content at “day-7” before infusion to an average 

of about 30,6% (Figure 6-9b; right).  
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Figure 6-9:  Adoptive transfer of AML-NK cells to leukemia-repopulated NOD/SCID mice. In (a) the time 

schedule of NK cell infusion is illustrated. Open arrows “before” and after NK infusions represent bone marrow 

aspirations one week before or end-point analysis one week after the NK cell infusion. In (b) the levels of bone marrow 

engraftment are shown. The filled circles on the left side represent the control mice that received no NK cell infusions, 

whereas the open symbols represent the mice treated with NK cell infusions. The connection between the symbols 

correspond to the measurements of one individual mouse performed before NK cell infusion 8at the day of bone marrow 

aspiration) and one week after NK cell infusion at the end-point analysis. Horizontal bars represent the average of BM 

engraftment. 
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Mice with high blast content were selected for the NK cell infusion-group in order to increase the 

chance to determine any significant effect due to the treatment. On “day +7” the average content of 

human leukemic blasts in the BM of all (n=10) treated mice was significantly reduced to about 

10,0%, corresponding to an average reduction of tumor-load of 68%. All mice treated with NK cell 

infusions contained below 1% of blasts in PB and spleen. Importantly, the infused AML-NK cells 

were no more detectable at the day of analysis neither in the BM, nor in spleen or peripheral blood. 

In the control-group the content of blasts was on average 15,8% at “day –7” as measured for 6 mice 

by BM aspiration. The content of human cells measured in PB was below 1%, except for the two 

mice with the highest BM-content (20 and 38%) where the percentage in PB was about 2,1 and 

3,0%, respectively. Two weeks later at “day +7” the average content of human cells in the BM of 

all 8 control-mice was marginally increased to about 18,3% (Figure 6-9; left). Despite this low 

overall increase, there is a tendency to elevated levels of blast contents. In 4 out of the 6 mice where 

the “pre-values” were determined the content of blasts in the BM remained at the initial level or was 

clearly increased, whereas in two mice a strong reduction within the 2 week period was measured 

(the two control-mice with the highest initial tumor load).  

 

In conclusion, AML-NK cells display a strong anti-leukemic effect against autologous blasts in vivo 

in leukemia-repopulated NOD/SCID mice. This in vivo-activity was unexpected, since the cytolytic 

activity measured in vitro was mostly dependent on the block of the inhibitory signalling, indicating 

that the interaction of HLA class I displayed by the leukemic blasts and the KIRs on the NK cells 

exert a dominant inhibitory effect (see section 6.2.2). One possible explanation for the observed in 

vivo activity could be that apoptosis inducing NK cell-target interactions might contribute to the 

reduction of tumor load. Such mechanisms act in an HLA class I independent way and would 

explain the observed discrepancy of the determined in vitro activity and the anti-leukemic in vivo 

effect. Another possibility is that the murine BM microenvironment influenced the transplanted 

leukemic blasts in a way that rendered them more susceptible to NK cell lysis. This would imply 

that AML blasts may undergo a change in HLA class I expression or in the expression of the 

different ligands for activating NK cell receptors during the repopulation of the murine BM. 
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6.3.4 Ligands for NKG2D and the NCRs on primary AML blasts and blasts recovered from 
transplanted NOD/SCID mice  

 

In order to evaluate the possibility that the NOD/SCID BM environment induces a change in ligand 

expression or a down-modulation of HLA class I molecules on the transplanted leukemic blasts we 

first analysed the freshly isolated AML blasts for the expression of HLA class I molecules and for 

the ligands for NKG2D and for the NCRs (Table 6-1). The yet unknown ligands for the NCRs 

NKp30, NKp44 and NKp46 were detected by the use of dimers of soluble recombinant NCRs 

(“solp30/p44/p46”). Analysis of HLA class I expression on the leukemic blast revealed MFI ratios  

 

MHC class I NKG2D ligands NCR ligands

Patient FAB-
type

blasts CD45bright ULBP-1 ULBP-2 ULBP-3 sol p30 sol p44 sol p46

AG M2 163 166 1.2 nd 2.1 1,3 1,3 1,2

BeT 2nd 92 70 3.6 nd 4.0 4,4 3,3 3,9

BT M5b 113 181 10.1 3.7 1,0 nd nd nd
CA M2 380 490 2.0 1.4 1.7 nd nd nd

CC M5 82 n.d 4.6 2.5 3.5 4,8 nd 5,2

CL M2 175 193 1.1 1.4 1.5 nd nd nd
DC M4 40 48 1.9 nd 1.6 2,0 1,7 1,7

DR M5 n.d n.d 1.7 nd 3.5 1,6 1,6 1,6

EA M4 36 27 1.2 2,8 2.4 1,2 nd 2,4

HI M1 116 143 1.7 nd 1.9 nd nd 1,6
JJ M1 612 415 2.7 nd 3.0 nd 1,7 1,9

KA ? 103 85 1.1 1.0 1.6 nd nd nd

LE M2 n.d n.d 1.2 nd 1.2 nd nd nd
MM 2nd 236 382 1.4 1.2 2.1 nd nd nd

MU M5b n.d n.d 1.3 1.1 1.4 nd nd nd

RA ? 58 68 1.6 nd 1.9 1,4 nd nd
RM 2nd 18 32 1.1 nd 1.2 nd nd 1,1

SJ M4 n.d n.d 1.3 nd 1.4 1,4 1,4 1,3

SR M2 29 306 1.3 nd 1.4 1,5 nd nd

SD M2 (2nd) 81 n.d 1,3 1,0 1,1 1,3 nd 1,3
SH M1 60 108 1,6 nd 2,3 1,7 1,6 1,4

SC M2 n.d n.d nd nd nd nd nd nd

TL M7 n.d n.d (10,9 3 11,4) nd (32,8 21,5
VP M2 n.d n.d 1.1 1.2 1.1 nd nd nd

WG MD 135 373 1.4 nd 1.3 1,9 1,3 1,5

ZC M4 n.d n.d 1.1 1.2 1.6 nd nd nd

ZP MD 158 194 nd nd nd nd nd nd

145 193 2.4 1,7 2.3 1,9 1,7 2,0

142 143 2,6 0,9 2.1 0,3 0,6 1,2

18-612 27-490 1.1-10,9 1.0-3,7 1.0-11.4 1,3-4,4 1,3-3,3 1,1-5,2

Mean

StDev

Range

n 19 17 25 12 25 10 8 13

 
Table 6-1: Expression levels of HLA class I molecules and the ligands for NKG2D and the NCRs. 

Expression of the indicated molecules were determined by FACS analysis and are shown as MFI ratio. CD45 

bright indicates the residual healthy cell compartment in AML patients. The highlighted patients correspond to the 

patient cohort for which the AML-NK cells were isolated (see also Table 5-1).  
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that were comparable or even below to that found on the residual healthy cell compartment 

(indicated by the CD45bright phenotype) but nevertheless, high enough to induce a dominant 

inhibitory signalling (145±32 vs. 193±32; see Table 6-1). This is in accordance to the obtained 

functional in vitro data, which suggest that primary AML blasts are protected from autologous NK 

cell lysis through the HLA class I mediated inhibition of NK cell triggering. In addition, the low or 

even absent surface expression of ligands for the activating receptors NKG2D and the NCRs 

support the hypothesis that acute leukemic blasts are poorly recognized by NK cells and thus might 

escape NK cell lysis in the patients.  

We next analysed the expression levels of these molecules on blasts recovered from the BM of 

leukemia-repopulated NOD/SCID mice. Table 6-2 summarizes the FACS determined expression 

levels of HLA class I molecules and the ligands for NKG2D determined for the transplanted blasts 

derived from the patients “EA”, “BT”, “CC” and “SD” (see also Figure 6-8). HLA class I 

expression by two of the transplanted blasts was upregulated during the 3 month process of BM 

repopulation. Even though this would suggest an increased resistance to NK cell mediated lysis, a 

NKG2D ligands NCR ligands

Blasts MHC

class I
MICA/B ULBP-1 ULBP-2 ULBP-3 sol p30 sol p44 sol p46

EA

d0 36 1,1 1,2 n.d. 1,1 1,2 n.d. 2,4

ex

NOD/SCID
426 n.d. 7,0 1,7 2,3 n.d. n.d. n.d.

BT

d0 113 n.d. 10,1 3,7 1,0 n.d. n.d. n.d.

ex

NOD/SCID
243 1,5 8,9 3,5 3,4 8,0 3,5 4,6

CC

d0 82 n.d. 4,6 2,5 3,5 4,8 n.d. 5,2

ex

NOD/SCID
115 27 12,1 5,4 5,6 12,1 n.d. 12,4

SD

d0 81 1,1 1,3 1,0 1,1 1,3 n.d. 1,3

ex

NOD/SCID

 
Table 6-2: Expression levels of HLA class I molecules and the ligands for NKG2D and the NCRs on 

AML blasts recovered from transplanted NOD/SCID mice. FACS analysis of total BM isolated from the 

leukemia-repopulated mice 10 to 12 weeks post transplantation. Expression of the indicated molecules is shown 
as MFI ratio. Values “d0” indicate the expression levels determined for the freshly isolated patient samples.  
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high in vivo susceptibility to the adoptively transferred autologous AML-NK cells was also 

observed for these particular AML blasts (see Figure 6-9). This could be a further indication that 

mainly HLA class I independent processes may contribute to the observed anti-leukemic effect.  

 

However, when the expression levels of the ligands for NKG2D and the NCRs were evaluated, it 

turned out that for all analysed blasts the ligands for at least one of these receptors were 

upregulated. Blasts of patient “EA” showed a high upregulation of ULBP-1 (MFI ratio 7,0 vs. 1,2). 

Similarly, blasts of patient “BT” were already high for ULBP-1 and –2, but upregulated the 

expression of ULBP-3 upon the transplantation to NOD/SCID mice (3,4 vs 1,0). Although for these 

particular blasts the initial expression levels of all three NCR ligands were not determined it is 

likely that the ligands were upregulated upon transplantation, since the high levels measured after 

BM repopulation were clearly above the average values determined for a panel of AML patients 

(8,0 vs.1,9 solp30; 3,5 vs.1,7 solp44; 4,6 vs.2,0 solp46; see Table 6-1). For the blasts of patient 

“CC” almost all NKG2D ligands as well as the ligands for the NCRs were upregulated upon 

transplantation to the mice. In accordance to the high initial expression levels of the ligands, these 

particular blasts showed a relative high suceptibility to the killing by allogeneic and autologous NK 

cells indicated by a high spontanous in vitro lysis (see Figures 6-4 and 6-5).  

 

In conclusion, these data suggest that the observed in vivo activity of adoptively transferred AML-

NK cells against the autologous blasts might be explained by an enhanced susceptibility due to the 

increase of ligand levels for activating receptors taking place in the murine BM microenvironment.  
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V. RESULTS  (C)     HUMAN NK CELL DEVELOPMENT IN THE  
NOD/SCID MOUSE TRANSPLANTATION MODELL 
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VI. DISCUSSION 
 

1. Lentiviral transduction of NK cell lines, primary NK cells and 
hematopoietic progenitor cells 

 
 
The effector functions of NK cells are regulated by the complex interaction of activating and 

inhibitory receptors [1]. This tightly balanced regulation of NK cell activity offers the chance to 

manipulate the counteracting signalling of activating and inhibitory receptors on NK cells. In 

particular, the possibility to shift the receptor balance on NK cells towards a status that favours the 

activating signals would augment NK cell anti-tumor activity and thus would serve as an attractive 

approach in cellular immunotherapy. 

 

Direct indication supporting the concept that a modulation of the receptor balance can enhance NK 

cell anti-tumor responses was provided by reports on allogeneic hematopoietic stem cell 

transplantation (HSCT) in the management of hematological malignancies. Ruggeri et al. [103, 106] 

could show that NK cells play an important role in the elimination of residual leukemic blasts after 

transplantation. A favourable prognosis was observed in AML patients receiving a haploidentical 

stem cell graft with a mismatch between inhibitory killer cell immunoglobulin-like receptors (KIRs) 

in the graft and the patients’ HLA class I molecules (KIR-ligands). The activation and anti-tumor 

activity of donor-derived NK cells was favoured due to the lack of inhibition. Since NK cells do not 

contribute to the development of graft versus host disease (GvHD) after allogeneic transplantation 

[135], these pioneering studies on NK cell alloreactivity upon KIR-ligand mismatch suggest the 

adoptive transfer of NK cells to obtain a graft versus leukemia (GvL) effect devoid of the 

deleterious GvHD reactions. Indeed, pre-clinical studies were initiated with alloreactive NK cells 

given as donor lymphocyte infusions (“NK-DLI”) in haploidentical transplantations to prevent 

leukemia relapse or to combat recurrent disease [137] [138]. 

The feasibility to manipulate the receptor balance in favour of NK cell activation was proven in a 

recent study in a murine model of acute leukemia. The blockade of interaction between KIRs on 

NK cells and their MHC class I ligands on target cells by the treatment with F(ab)2 fragments of 

anti-KIR monoclonal antibodies protected mice from leukemic death. The same effect was also 

achieved upon the adoptive transfer of IL-2–activated NK cells treated with anti-KIR F(ab)2 



 Discussion 
 

139 

fragments ex vivo [159]. However, given the higher complexity in the human system, where subsets 

of NK cells express different inhibitory receptors for self-HLA molecules, only the simultaneous 

blockade of several receptors may provide a sufficient anti-leukemic effect.  

The activating receptor NKG2D and the natural cytotoxicity receptors (NCR) NKp30, NKp44 and 

NKp46 have emerged as major triggering receptors involved in the HLA-independent lysis of 

various tumor cells [27]. We focused on NKp46, which is expressed by all human NK cells 

irrespective of their state of activation. The surface density of NKp46 varies within an individuals’ 

polyclonal NK cell population and the expression level correlates with the spontaneous natural 

cytotoxicity of NK clones against allogeneic or autologous target cells [42]. Taking advantage of 

these activating properties of NKp46, our approach was to over-express the receptor by gene 

transfer and, thereby, to increase the cytolytic activity of NK cells. 

Only few reports on the stable genetic modification of NK cells exist so far, and most studies were 

performed with NK cell lines rather than with primary NK cells. The described methods include 

particle-mediated transfection and the retroviral transduction with “classical” murine leukemia virus 

(MLV)-based vectors or vaccina virus-derived vector systems (protocols in NK cell… ,Colonna). 

The genetic modifications mostly aimed at the delivery of cytokine encoding genes to NK cell lines 

and were shown to allow the propagation of cells independent of the particular cytokine or to 

enhance the effector functions of modified cells [160] [161]. In this context, some studies were 

designed with the goal to modify effector cells for the application in cellular immunotherapy [162], 

but clinical trials with gene-transfected primary NK cells, NK-T cells or tumor infiltrating T-

lymphocytes (TIL) were hampered by the poor efficiency of gene-transfer and the down-regulation 

of transgene expression [155]. A variety of reports focused on the genetic modification of NK cell 

lines in order to gain new insights in the biology of intracellular signalling or receptor-ligand 

interactions. For example, retrovirus-mediated transduction experiments showed the successful 

transfer of genes encoding “wild type”, mutant or chimeric versions of KIRs or of NCRs to study 

the role of ITAMs and ITIMs in the intracellular signalling cascade [49] [163-166].  

Similar to our approach some studies aimed at the over-expression of genetically engineered 

chimeric receptors to induce a target specific cytolytic activity of NK cell lines. Such chimeric 

receptors consisted of an intracellular signalling subunit, either the ITAM containing CD3ζ-chain or 

the FcεRIγ-chain, which was fused to the ligand-binding extracellular domain of CD4 to form a 

chimeric CD4ζ or CD4γ receptor, respectively. The target induced cross-link of the chimeric 

receptors was shown to deliver an activatory signal to the modified cells and specifically directed 

NK cell killing towards targets carrying the HIV-derived gp120 protein, the ligand for CD4 [167-
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169]. This approach to direct NK cell effector functions in a target-specific way clearly indicates 

that it is feasible to augment the cytolytic activity of NK cells through the transfer of genes 

encoding activating receptors.  

Nonetheless, expression of exogenous genes in NK cells and NK cell lines has proven to be 

extremely difficult. In all the above-mentioned reports only low efficiencies of gene transfer were 

achieved. The MLV-based transduction rate of NK cell lines never exceeded 5 to 15% [49]. 

Moreover, despite the stable transgene-integration to the target genome is mediated by murine 

retroviral vectors, high rates of transcriptional silencing due to the methylation of the viral LTRs 

occurs [155]. Furthermore, the retroviral transduction of primary lymphocytes needs the unspecific 

activation of cells, which was shown to increase the susceptibility to apoptotic death of modified 

cells [170].  

 

For our gene transfer experiments we used HIV-derived lentiviral vectors, which are superior to 

common retroviral vectors. These vectors mediate the efficient gene delivery into mature and cell 

cycle arrested, terminally differentiated cells, including neurons, retinal cells [171], liver cells [172, 

173] or PB-derived dendritic cells [144]. Lentiviral vectors were also demonstrated to transduce 

activated or even resting lymphocytes including the CD56+ NK-T cells with high efficiency [174] 

[175]. Likewise, HIV-based vectors are capable to efficiently transduce human CD34+ 

hematopoietic progenitor cells in the absence of cytokine stimulation [176], as well as the human 

SCID repopulating cells (SRC) that are capable of long-term engraftment in NOD/SCID mice [177] 

[178] [176]. Bone marrow from these primary recipients could repopulate secondary mice with 

transduced cells confirming that genetically modified cells included primitive progenitors, possibly 

the “true” quiescent stem cells [179]. By the in vitro differentiation of transduced progenitors the 

lentiviral transduction provides the opportunity to generate transgenic cells of all blood cell 

lineages. This approach lead to the successful transfer of the green fluorescent protein (GFP) 

marker gene to granulocytes, monocytes, erythroid cells, dendritic cells [180, 181] as well as natural 

killer cells [182]. Due to this highly efficient gene delivery to stem cells and their progeny and due 

to the fact that the integrated provirus is less prone to transcriptional silencing, lentiviral vectors 

represent a promising tool in certain gene therapy approaches. 

 

In all lentiviral transductions carried out in our studies, HIV-based vectors of the so-called “2nd 

generation” were used. These vectors are self-inactivating (SIN) vectors due to an almost complete 

deletion of the U3 region of the 3’LTR [149] and contain a posttranscriptional regulatory element of 
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the woodchuck hepatitis virus (WPRE) that enhances transgene expression [150]. We used single-

gene transfer vectors (“pLox-vectors”) encoding either the gene for NKp46 or for the GFP marker, 

as well as bicistronic constructs (“pWP-vectors”), which contained both the NKp46 and the GFP 

genes. The bicistronic vectors additionally carried the nuclear translocation regulatory element 

cPPT/CTS and in all vectors transcription was driven by the EF1-alpha promoter either in its long, 

intron-containing (in the pLox-vectors) or short intron-less (in the pWP-vectors) version.  

 

1.1 Lentivirus mediated genetic modification of cell lines  
 
 
We first performed transduction experiments with the Jurkat T lymphocytic cell line and the NK 

cell lines NKL and NK92 in order to confirm the integrity and functionality of the different vector 

constructs. Since the Jurkat T cell line lacks endogenous NKp46 but expresses the CD3zeta 

signalling subunit that serves as the adaptor protein of NKp46 in NK cells, Jurkat cells were chosen 

as a model system to investigate expression and signalling capacity of the transgenic NKp46 

protein. NK92 and NKL cell lines express endogenous NKp46 at very low levels, which should 

allow to study the consequences of the receptor over-expression for NK cell effector functions.  

 

Our results showed that the Jurkat cell line is highly susceptible for the transduction with all GFP 

encoding vector constructs including the bicistronic vectors. Transduction rates of virtually 100% 

were achieved using concentrated virus even at a low MOI (<10). In contrast, expression of the 

NKp46 receptor in transduced Jurkat cells was consistently less efficient. When the single-gene 

vector pLox-NKp46 was used between 40 and 60% of cells expressed the transgene. Also 

transduction with bicistronic vectors resulted in the NKp46 expression in not more than 80% of 

cells. It remains to be clarified if the observed failure of NKp46 expression in a subpopulation of 

transduced Jurkat cells is due to post-transcriptional modifications of the vector mRNA or to a post-

translational phenomenon affecting the protein stability or its export to the cell surface. A limiting 

expression of the adaptor molecules CD3zeta and FcεRIγ is most probably not the reason since it 

was demonstrated that NKp46 surface expression is independent of the signalling molecules [40]. In 

case of the bicistronic vectors, splicing events and unspecified post-transcriptional modifications of 

the vector mRNA that may impair the expression of the upstream NKp46 gene cannot be ruled out 

but seem to be unlikely, since usually the expression of the downstream gene is affected in such 

multigene transfer vectors [183]. 
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Nevertheless, the combination of FACS-sorter purification of transduced cells together with single-

cell cloning resulted in the generation of clones of the Jurkat cell line that homogenously displayed 

the transgenic NKp46 receptor at the cell surface.  

 

The NK cell lines NK92 and NKL showed a very low susceptibility to the transduction with all 

GFP-containing vector constructs tested. Even at an MOI of 20-30, poor efficiencies between 1 to 

3% were measured. The reason for this low susceptibility of NK92 and NKL compared to the T 

Jurkat cell line remains elusive but our results are in line with published data indicating that NK cell 

lines are refractory to gene transfer [49]. Despite the low transduction efficiency in NKL and NK92, 

we were able to generate 100% transgenic NK cell lines by the FACS sorter based enrichment of 

cells transduced with the NKp46 encoding bicistronic vector. Importantly, long-term culture of 

transgenic Jurkat cells and the two NK cell lines revealed the stable and sustained expression of the 

GFP marker as well as of the transgenic NKp46 receptor over a time period of at least 10 weeks. 

NKp46 expression was confirmed by western blot analysis and RT-PCR technique in Jurkat cells 

transduced either with the single-gene or the bicistronic vectors. For both vectors the sustained 

transgene expression at equal high levels indicates that there is no difference in the activity of both 

types of EF1-alpha promoters (“short” and “long” version).  

Transductions performed with NK92 and NKL using the bicistronic pWP-vectors revealed a high 

initial efficiency of up to 45% GFP+ cells on day 2 post infection, which rapidly declined within the 

following few days. This phenomenon was not observed with the pLox-vectors and most probably 

reflected a “pseudotransduction” which might be due to the cPPT/CTS regulatory element present 

in the pWP constructs. Interestingly, this phenomenon of pseudotransduction was not observed in 

the Jurkat cell line but was also seen with primary NK cells (see below). Thus, NK cells may allow 

the infection and efficient nuclear translocation of vector DNA but remain refractory to stable 

genetic modification. In this context it needs to be elucidated whether the low transduction 

efficiency observed in NK cell lines and primary NK cells is due to mechanisms that minimize the 

transgene integration or due to mechanisms that promote the silencing of integrated vector DNA.  

 

We chose several experimental approaches to investigate the functional integrity of the transgenic 

NKp46 receptor. The upregulation of the activation marker CD69 and the release of intracellular 

Ca2+ ions were measured in transduced Jurkat cells upon the monoclonal antibody mediated 

crosslink of the transgenic receptor. We also measured the release of IFN-γ by transgenic NKL and 

NK92 cells in response to the engagement by anti-NKp46. Further, we analysed the cytotoxic 
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activity of the transduced NK cell lines by anti-NKp46 mediated “re-directed” lysis of the NK cell-

resistant murine target cell line P815. 

Except for the weakly enhanced specific intracellular Ca2+ release in Jurkat cells, all other assays 

did not reveal any substantial effects upon the engagement of the transgenic NKp46 receptor neither 

in Jurkat cells nor in NK cell lines. Thus, our main conclusion from the functional assays is that the 

transgenic NKp46 receptor fails to transmit an activating signal upon ligation. One explanation for 

the lack of activity of the exogenous NKp46 receptor can be that the N-terminal FLAG tag on the 

receptor may interfere with the antibody-mediated ligation of the receptor. Alternatively, it is 

possible that the tag-epitope may influence the steric properties of the receptor thus interfering with 

an association with the adaptor proteins. The apparent although weak response of transgenic Jurkat 

cells as measured by the intracellular Ca2+ release, would be in line with this assumption. 

Another possible explanation might be that the adaptor proteins necessary for transmission of the 

intracellular signalling are missing or limited in their accessibility to NKp46 in the transduced cell 

lines. Since the surface expression of NKp46 was demonstrated to be independent of the adaptor 

proteins [40] it is indeed possible that NKp46 is expressed at the surface but is functional inert due 

to the lack of associated adaptor molecules. Although we found CD3zeta and FcεRIγ mRNAs in the 

NK cell lines and the Jurkat clones, the amounts of the signalling subunits may be insufficient for 

the function of exogenous receptors. If so, a low expression of adaptor proteins could explain the 

lack of activation in Jurkat cells or the failure to induce cytokine release or the redirected killing of 

anti-NKp46 coated P815 targets by the transgenic NK cell lines.  

However, in a recent report on the retroviral transduction of NK92 the successful transfer of FLAG-

tagged “wild-type” NKp44 receptor and mutant versions of the NCR was shown [49]. The authors 

could validate that the surface expression of NKp44 needed the co-expression of DAP12 adaptor 

molecules and that the transgenic receptor was able to deliver triggering signals through the 

association with endogenous DAP12. The anti-NKp44 mediated re-directed lysis of otherwise 

resistant target cells and the upregulation of activation marker by the modified NK92 cell line 

clearly indicated that the approach to express exogenous NCRs, such as NKp44, is feasible.  

 

Altogether, our results show that the lentiviral vector system is suitable to transfer the cDNA for the 

natural cytotoxicity receptor NKp46 with varying efficiency and leads to a stable transgene 

expression in different cell lines. Even though the lentiviral vectors showed a limited capacity to 

transduce the NK cell lines NK92 and NKL, the enrichment of transgenic cells with a sustained 

long-term transgene expression was possible. The functional data, however, strongly suggest that 
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the exogenous NKp46 receptor is not functional, most probably due to impairment in its signalling 

capacity by as yet undefined mechanism.  

 

 

1.2 Lentivirus mediated genetic modification of primary NK cells 
 
 

Lentiviral transductions of primary NK cells were performed either with freshly isolated NK cells at 

the day of isolation or with NK cells that were cultured and activated with IL-2 and PHA 

(“restimulated”) for 14 to 20 days. For both stages of cell activation the transduction efficiencies 

were equally low either with the single-gene pLox-vector or with the bicistronic pWP-vector. Even 

at an MOI of 20 the GFP marker was expressed by 3 to 5% of cells, indicating similarly low 

susceptibility to lentiviral gene transfer as with NK92 and NKL. In addition, similar to the NK cell 

lines, high rates of pseudotransduction in primary NK cells were observed with the bicistronic 

vector. Restimulated and cultured primary NK cells displayed a GFP expression on day 2 post 

infection in up to 80% of the cells, which rapidly dropped to levels equal or below that obtained 

with single gene vectors. 

For the GFP encoding pLox-vector we could show that the proportion of transduced cells was 

maintained through the process of in vitro restimulation, although there was a tendency of loosing 

the transgene expressing cells upon repeated stimulations. In addition, such cultures often were 

over-grown by contaminating residual CD3+ T and NK-T cells. These limitations were 

circumvented through the enrichment of transduced CD56+ CD3- NK cells by FACS-sorting, 

which resulted in the generation of pure populations of GFP-expressing NK cells suitable for the 

subsequent expansion. Taking into account that the process of restimulation usually leads to cell 

expansions in the range of 1000- to 2000-fold from a starting population of around 3x105 cells, this 

approach represents a highly efficient way to generate large amounts of transgenic NK cells. 

 

Recent results from our lab showed that infections of freshly isolated NK cells that were stimulated 

for two days with IL-2 resulted in 4 to 5 times higher transduction efficiencies with up to 30% 

transgenic cells. The reason for this increased susceptibility to gene-transfer remains elusive. In 

particular, it is surprising that restimulated NK cells, which represent highly proliferating cells, are 

more refractory to gene transfer than NK cells activated with IL-2 only. This lower susceptibility is 

difficult to explain but might be caused by the PHA-dependent expansion with its unspecific effects 
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on cell activation. Analogous to the results achieved with cultured NK cells, cells transduced two 

days after isolation maintained the initial transduction efficiency during the process of 

restimulation. 

For the gene-transfer of the NKp46 receptor to freshly isolated and IL-2 pre-activated NK cells we 

used the bicistronic transfer vector only; no infections were done with NKp46-encoding single-gene 

vectors. The enrichment of transgenic cells by FACS sorting of restimulated cultures resulted in NK 

cell populations that displayed GFP expression in almost 100% of the cells. In contrast to what we 

observed with cell lines, no exogenous NKp46 surface expression was detectable on the primary 

cells. Interestingly, these transduced NK cells had progressively downmodulated endogenous 

NKp46 during expansion, while the GFP expression remained stable even after the third 

consecutive restimulation. Whether the low level of endogenous NKp46 is in any relation to the 

absent surface expression of the transgene remains uncertain. It is particularly of interest, whether 

the same mechanisms which are responsible for the down regulation of endogenous NKp46, could 

have influenced the transgenic receptor. Mechanism limiting the NKp46 expression through the 

regulation of the CD3zeta and FcεRIγ adaptor proteins can be ruled out, since RT-PCR analysis 

showed the transcription of both molecules in transduced NK cells and since the surface expression 

of NKp46 was shown to be independent of the expression of adaptor proteins in NK cells [40]. 

Instead, it might be possible that an unspecified interference of vector mRNA with endogenous 

transcripts occurs, which in turn would affect both the expression of the endogenous as well as that 

of the transgenic receptor.  

Despite lacking cell surface expression of the transgene encoded NKp46, RT-PCR analysis of 

transduced NK cells confirmed the presence of the bicistronic transcriptional unit including the 

mRNA sequence encoding the exogenous receptor. Thus, post-transcriptional modifications of the 

bicistronic vector mRNA affecting the up-stream gene only, interference of the vector-encoded 

preprotrypsin leader sequence with protein transport-processes or the instability of the exogenous 

NKp46 protein in primary cells may result in the observed lack of its surface expression. In favour 

of these possibilities is the observation that γδ T cells transduced with the bicistronic vector also fail 

to express NKp46 (recent data; not included in the thesis). In this case the possibility of an 

interference of endogenous mRNA or its regulatory elements with vector transcripts can be ruled 

out since γδ T cells lack endogenous NKp46. 

In an alternative approach to express exogenous NKp46 in primary NK cells, we took advantage of 

the pseudotransduction achieved with the bicistronic vectors, which led to a high but transient 

transgene expression. This short-term effect was used to restore the NKp46 surface expression on 
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polyclonal primary NK cell populations that had almost completely down-modulated NKp46 

expression upon the repeated PHA-dependent cell expansion. This approach allowed us to analyse 

the cytolytic potential of modified NK cells and to assess the functional activity of the exogenous 

NKp46 receptor in primary cells.  

Our results revealed that the transient transduction of NKp46 did not interfere with the efficient 

cytolysis of different NK cell sensitive target cells. However, as observed for the transduced NK92 

and NKL cell lines, the engagement of the transgenic receptor could not mediate any NK cell 

effector functions. In particular, the surface expression of exogenous NKp46 did not correlate to an 

enhanced cytotoxicity against target cells expressing the putative NKp46-ligand(s), (as identified 

through the binding of soluble NKp46 molecules). More striking, the fact that anti-NKp46 mAbs 

did not trigger the “redirected” lysis of the murine P815 target cell line, again strongly suggests that 

the exogenous receptor is impaired in its capacity to transmit any activating signals.  

 

 

1.3 Lentiviral transduction of cord blood derived CD34+ hematopoietic progenitor cells 
 

Our second approach to generate transgenic primary NK cells was to apply the lentiviral gene 

transfer to hematopoietic progenitor cells followed by in vitro differentiation towards the NK cell 

lineage.  

CB derived CD34+ progenitors were transduced either with the pLox-vector or the bicistronic 

pWP-vector at an MOI of 20-30 and were immediately subjected to the differentiation culture for 6 

to 8 weeks. The transduction efficiencies were determined early after infection and the maintenance 

of transgene expression together with the proportion of developing NK cells were monitored 

throughout the process of differentiation. Transductions with the GFP-encoding single-gene vectors 

revealed an efficiency of gene transfer that was on average 16,8±9,9%, which is within the broad 

range of results reported for lentiviral vectors that carry the EF1alpha promoter and are devoid of 

the cPPT/CTS regulatory element [181, 184]. In certain reports describing remarkable high rates of 

more than 90% gene transfer efficiency to CD34+ progenitors, transduction protocols involved 

multiple infections at exceedingly high MOIs with viral titers that were far beyond those we could 

produce [182] [185]. 

One of the most important findings in the transduction of progenitor cells with the pLox-vectors 

was that during in vitro differentiation the percentage of GFP+ cells was maintained at the initial 
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level and that the proportion of transgene expressing cells was stable within the population of 

developing NK cells. This is in accordance to several reports that describe a stable, multilineage 

transgene expression upon the in vitro differentiation of transduced progenitor cells [180, 181, 185, 

186] and indicates that neither the lentiviral transduction per se nor the GFP expression interfered 

with the process of in vitro differentiation. 

In addition, this in vitro differentiation approach turned out to represent a very efficient way to 

generate transgenic NK cells. Differentiation cultures were usually started from 2x105 progenitors 

with an average content of CD56+CD3- NK cells that reached approximately 40% at week 4 of in 

vitro culture. Thus, given a roughly 350-fold mean expansion rate after 4 weeks, this corresponds to 

an average output of about 30x106 NK cells. Assuming the proportion of transgenic cells to be 20%, 

this would correspond to an absolute amount of at least 6x106 transduced NK cells. This high output 

of transgenic NK cells could be substantially increased by the FACS sorting of transduced 

progenitor cells on day 4 post infection, which resulted in the development of almost pure 

transgenic NK cell populations during the in vitro differentiation of CD34+ progenitors. 

 

We further could demonstrate that NK cell in vitro differentiation cultures can be expanded with 

PHA in the presence of IL-2 at high rates comparable to those achieved in the restimulation of PB 

NK cells. However, in contrast to primary transgenic PB NK cells where the content of transduced 

cells was usually stable during restimulation, the differentiation cultures had a far higher tendency 

to loose the transgenic cells upon PHA-dependent expansion. Therefore, the FACS-sorting of 

transduced progenitors prior to the restimulation was necessary to maintain the transgenic cells and 

usually resulted in a high yield of nearly 100% transgenic NK cells. 

 

However, this promising approach developed using the GFP marker gene was not applicable to 

generate NK cells transgenic for the NKp46 receptor. Transgene expression was neither detectable 

in differentiation cultures transduced with the single-gene pLox-vector nor in cultures transduced 

with the bicistronic pWP-vector. For both types of vectors distinct explanations can be suggested 

for the observed failure of NKp46 expression.  

For transductions with the pLox-NKp46 virus we estimated the viral titers based on the average 

yield achieved with the GFP-encoding vectors, which possibly led to transductions below the 

intended MOI of 20 to 30. This may have resulted in a content of transgenic cells that was 

undetectable by FACS analysis, even though PCR analysis of genomic DNA and RT-PCR on whole 
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differentiation cultures revealed the integration and presence of transcripts of exogenous NKp46 for 

at least six weeks during culture.  

An alternative explanation is that the transgene may interfere with the in vitro differentiation of NK 

cells, meaning that the exogenous NKp46 protein might impair the development of early NK cell 

progenitors. Such a suppressive, or even apoptotic effect would lead to the loss of transgenic NK 

cell progenitors. This hypothesis is supported by results obtained in transductions performed with 

the bicistronic vector, which resulted in only transient transgene expression which very rapidly 

decreased to low levels. This might indicate the progressive loss of transduced progenitor cells, 

even though it also can be contributed to pseudotransduction of progenitors as observed for cell 

lines and primary NK cells. In addition, we could demonstrate that differentiation cultures starting 

from FACS-sorter enriched transduced progenitors resulted in almost pure GFP-expressing 

populations that were mainly of the myeloid lineage with an NK cell content below 1%. This low 

NK cell content indicates the disappearance of transduced progenitors committed to the NK cell 

lineage, which resulted in an almost complete suppression of NK cell development. However, 

although in the remaining myeloid fraction of the differentiation culture no exogenous NKp46 

expression was expected, the fact that all GFP+ cells were negative for NKp46, implies instead the 

presence of additional, yet unspecified mechanisms that suppress transgene expression in an 

equivalent way as observed in primary NK cells or γδ T cells.  

Finally, the lack of NKp46 expression upon transduction with the pWP-vectors can be explained by 

a differential activity of the short version of the EF1-alpha promoter in NK cell progenitors and 

mature NK cells. This conclusion was drawn from the fact that in differentiation cultures transduced 

with the “empty”, GFP-encoding control-vector (“short” EF1-alpha) the GFP expression in the 

developing NK cell population was markedly lower compared to the expression in the non-NK cell 

population. This effect was not observed in mature PB-derived NK cells where the short EF1-alpha 

promoter was shown to efficiently drive the GFP expression. In contrast, in all pLox-vector 

transduced cultures (“long” EF1-alpha) the content of GFP+ NK cells was always as high as the 

overall content of transgenic cells.  

All these putative mechanisms may independently impair the expression of NKp46 in transduced 

progenitor cells, but most probably act in an synergistic way, resulting in an almost undetectable 

transgene expression. 
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1.4 Conclusions 
 

Our results demonstrate that lentiviral vectors are suitable to obtain stably transduced NK cell lines 

or primary NK cells. Transgenic PB-derived NK cells can be expanded to high numbers without 

loosing the expression of the GFP marker, thus indicating the possibility to use genetically modified 

and expanded NK cells for the adoptive transfer in the immunotherapy of hematological 

malignancies.  

We further demonstrated that GFP+ primary NK cells can be generated by the in vitro 

differentiation of lentiviral transduced CB-derived hematopoietic progenitors. This approach 

represents a highly efficient method to produce large amounts of modified NK cells, in particular in 

combination to FACS-sorter enrichment of transduced progenitor cells together with the PHA-

dependent expansion of in vitro generated transgenic NK cells. This approach gives the opportunity 

to use genetically modified progenitors in hematopoietic stem cell transplantations for the treatment 

of acute leukemias. Since donor-type NK cells develop rapidly in the early phase after 

transplantation the over-expression of tumor-specific activatory receptors would direct NK cell 

effector functions specifically towards the diseased cells, thereby contributing to GvL activity 

against residual malignant cells. 

 

However, all attempts to genetically modify primary or in vitro generated NK cells to overexpress 

the NKp46 receptor revealed two major constraints for the transfer of the NKp46-encoding gene. 

First, although a sustained expression was achieved in NK cell lines, no stable surface expression of 

transgenic NKp46 could be detected, neither in hematopoietic progenitor cells of differentiation 

cultures nor in primary PB-derived mature NK cells. Second, the transgenic NKp46 receptor we 

used turned out to be functional defective or at least impaired in its signalling capacity, without the 

ability to trigger cytotoxic responses. This failure in the induction of cell activation and NK cell 

effector functions was observed in stably transduced Jurkat cells or NK cell lines, as well as in 

transiently transduced primary NK cells. 

 

Taken together, the stable lentivirus-mediated expression of exogenous NKp46 receptor is limited 

to cell lines but for yet undefined reasons seems to be not feasible in primary cells. Moreover, the 

lack of transgene-mediated activation in NK cell lines as well as in primary NK cells may be due to 

different counteracting effects that most probably interfere with each other. Some of these 

interfering effects can be directly attributed to the cDNA construct we used, like the N-terminal 
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FLAG tag, the signal peptide that is not NKp46 specific or the IRES element and thus imply the re-

cloning of the vector using the original leader sequence in a backbone that is devoid of additional 

elements. On the other hand, if the failure to transmit an activation signal may prove to be related to 

a limited availability of the adaptor proteins, the co-transduction of NK cells with cDNA for the 

corresponding CD3zeta and FcεRIγ subunits should be considered.  

Alternatively, the generation of chimeric receptors represent a reasonable approach to induce an 

NKp46 specific triggering. Chimeric receptors are well established in the re-direction of T cell 

responses [155] and were also described as an approach to direct the cytolytic activity of transgenic 

NK cells towards an HIV-derived epitope [169]. Such a chimera would consist of the extracellular 

part of NKp46 that directs the specificity towards the tumor ligands fused to the signalling 

components of the CD3zeta- or FcεRIγ chains. 

 
 
 
 
 

2. Characterization and adoptive transfer of autologous AML-derived NK 
cells for a cellular immunotherapy of leukemia 

 
Acute myeloid leukemia is characterized by a poor long-term outcome following conventional 

treatment with high-dose chemotherapy alone or in combination to HSCT. In the majority of AML 

patients, even a complete remission is associated with a minimal residual disease that is prone to 

high incidence of relapse with a rapid progression. Together with the fact that a substantial 

proportion of patients, in particular elderly or in a bad overall condition, cannot undergo 

chemotherapy or transplantation, new approaches in the management of acute leukemia are clearly 

of need. Recent studies on the role of NK cells in the immunosurveillance of hematological 

malignancies point towards the use of NK cells as an immunotherapeutic tool for the treatment of 

AML. The anti-leukemic activity provided by alloreactive NK cells in the context of HSCT [187] 

and the finding that a low or lacking anti-tumor reactivity of autologous NK cells can be correlated 

to the probability of leukemia relapse in AML patients [89, 90] suggest an adoptive transfer of 

allogeneic or autologous NK cells as a new strategy in leukemia immunotherapy. 

In AML several mechanisms can be hypothesized to explain that malignant cells escape the immune 

surveillance by cytotoxic effector cells. Leukemic blasts were found to preferentially down-regulate 

the expression of HLA class I molecules that are associated with the recognition and lysis by 
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cytotoxic T cells, but keep those that mediate NK cell inhibition [91] [157]. Malignant cells may 

also escape NK cell attack by the in vivo selection of leukemia-initiating progenitor cells, which 

lack ligands for NK cell triggering receptors [34] or display a certain resistance to NK cell lysis 

such as an impairment in perforin binding [93]. Alternatively, the failure of NK cells to control 

leukemia might be due to the loss or decreased expression of activating receptors involved in the 

recognition of tumor targets [88].  

To investigate the mechanisms of impaired recognition and lysis of leukemic blasts, we isolated NK 

cells from AML patients (AML-NK) and activated and expanded them in vitro. For the phenotypic 

and functional characterization of AML-NK cells, our studies focused on the expression of the 

activating receptors NKG2D and the NCR NKp46 and determined the cytotoxic activity of NK cells 

against the autologous blasts in vitro and in vivo in the NOD/SCID mouse transplantation model. 

 

 

 

2.1 Isolation, expansion and phenotypic characterization of AML-derived NK cells 
 

We isolated peripheral blood NK cells from 14 AML patients that were either newly diagnosed or 

had a recurrent disease. The AML diagnosis at clinical presentation included the sub-types M1, M2, 

M4 and M5 as well as not further categorized secondary AML. FACS based analysis revealed the 

strongly diminished content of NK cells in AML patients compared to healthy controls. At 

diagnosis NK cells accounted for less than 1% of PB MNCs, corresponding to an average 4-fold 

reduction per leukocyte content that was even 10-fold below normal levels when calculated per total 

MNCs. However, in absolute numbers NK cells in AML PB was in a normal range arguing that the 

disease did not affect the NK cell development. As a consequence of this reduction and due to the 

high blast content of 37-94% (per MNCs), the absolute amount of NK cells that could be recovered 

from patient samples was poor. For all patients the total yield of CD3-CD56+ NK cells was in a 

range of 0,2 – 3,0x105 cells. Thus, with regard to the low numbers that were far below the amount 

required for functional assays, the NK cells were immediately subjected to in vitro restimulation 

with PHA, IL-2 and irradiated allogeneic PB MNCs. This procedure led to the efficient expansion 

of NK cells equal to that observed for control-NK cells with an 1000 to 2000-fold increase in total 

cell numbers, a feature which was also observed with NK cells in remission [140]. Thus, unlike in 
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chronic myeloid leukemia, in which the proliferative capacity of NK cells decreases with the 

disease progression [80, 83] AML-NK cells can be expanded in vitro with high efficacy. 

FACS analysis of the surface expression of different NK cell and lymphocyte marker revealed that 

the phenotype of AML-NK cells in polyclonal expansion cultures closely resembled that of control-

NK cells. The restimulated NK cells acquired a uniform CD56bright/CD16bright phenotype and 

displayed comparable distribution patterns of the subsets that expressed CD158a and -b, NK-B1 or 

CD161.  

The NKp46 expression on freshly isolated or restimulated polyclonal NK cell populations has been 

described to be heterogeneous. Polyclonal NK cell populations either display a NKp46 phenotype 

that is uniformly bright or dim or NKp46 expression is “bimodal”, representing a mixture of NK 

cell clones of either phenotype [42]. Our results are in accordance to published data since we could 

detect each phenotype in freshly isolated NK cell populations of healthy donors as well as in AML 

patients. We demonstrated that the surface expression levels of NKp46 and NKG2D in expanded 

AML-NK cell cultures did not differ from control-NK cells. In addition, we could show that the 

average expression level of NKp46, defined by the mean fluorescence intensity ratio (MFIR), 

remained at a constant level upon the in vitro expansion. The MFIR of NKp46 was 8,3 on freshly 

isolated AML-NK cells and 6,9 after expansion, or 6,8 and 8,7 in donor-NK cells, respectively. In 

contrast, the expression levels of NKG2D were clearly upregulated following the culture in AML-

NK cells (MFIR 6,4 to 27,0) as well as in donor NK cells (MFIR 10,0 to 27,1).  

Interestingly, there has been a tendency of lower expression of NKG2D in fresh patients’ PB 

(MFIR 6,4 vs. 10,0; P<0,05), which might be influenced by ligands shed from AML blasts in 

analogy to the downregulation of NKG2D in T cells by MIC ligands released from solid tumors 

[98], 

The surface expression of NKp46 showed a certain dynamic during PHA-dependent restimulation, 

with a transient down modulation of NKp46 and its recovery to initial levels. In some polyclonal 

NK cell cultures the repeated restimulation was accompanied with the progressive loss of NKp46 

surface expression to almost undetectable levels. This phenomenon was restricted to NKp46 since 

the surface expression of NKG2D was always upregulated and sustained at high levels without any 

major changes even upon several consecutive cycles of restimulation. It remains to be clarified if 

this loss of NKp46 expression is due to the down-regulation of the receptor in the whole population 

or whether this reflects a bias of the polyclonal population to the preferential expansion of NKp46dim 

cells. In line with the latter is the observation that some polyclonal NK cell populations changed 
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from a uniform bright phenotype to a bimodal distribution and finally consisted of cells with a dim 

or almost negative NKp46 expression. 

A negative or “dull” NCR expression in AML-NK cells upon the PHA-dependent in vitro 

expansion was described previously [88]. The authors reported a defective NCR expression in 16 

out of 18 AML patients, and could correlate this phenomenon to the observed failure in cytolysis of 

autologous blasts. A similar loss or the tumor-mediated downmodulation of triggering NK cell 

receptors was recently demonstrated as a mechanism of tumor escape in epithelial tumors [98]. 

However, since we observed the same NKp46 down-regulation in NK cells derived from healthy 

donors, this phenomenon cannot be attributed to an AML-inherent defect in NK cell function. 

 

With regard to the putative therapeutic application of expanded NK cells it would be of major 

importance to define culture conditions that are not accompanied by the loss of activating receptors, 

but, opposite, would allow to increase NK cell effector functions through the up-regulation of 

adhesion molecules, co-receptors or triggering receptors. Therefore, we investigated the influence 

of several cytokine combinations and their synergy to the IL-2- and PHA-dependent expansion with 

the goal to enhance surface expression of NKp46 or NKG2D.  

The effect of cytokines on the expression of NK cell receptors has not been studied extensively. 

Earlier studies suggested that the expression density of most activating receptors is stable and not 

influenced by IL-2, IL-12 or IL-15 [188]. On the other hand, it is known that activation with IL-2 

induces the expression of the natural cytotoxicity receptor NKp44, which is absent on resting NK 

cells [48]. Similarly, expression levels of human NKG2D are upregulated in response to IL-2 and 

IL-15 in NK cells [189] as well as in intraepithelial CD8+αβ+ T lymphocytes [190].  

We have extended these studies by using cytokines that are known to modulate homeostasis and the 

function of NK cells, namely IL-12, IL-15 and IL-21, and used various combinations of these 

cytokines along with IL-2. Our results demonstrated that these cytokines did not enhance the 

proliferative capacity of AML- and control-NK cells in response to IL-2 and none of the cytokine 

combinations could further increase the surface expression of NKp46. In contrast, the expression of 

NKG2D was clearly suppressed in cultures that contained IL-12 and IL-21 either singly or in 

combination. This in turn offered the possibility to perform functional assays to determine the 

consequences of receptor down modulation in a system where the NKG2D receptor-ligands 

interaction is well defined.  
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Taken together, our results show that AML-NK cells do not differ from healthy control-NK cells; 

even though reduced as a cell compartment, they retain a proliferative capacity that allows the in 

vitro expansion to high cell numbers and they display the same expression pattern of the major 

activating receptors.  

 

 

2.2 Functional properties of expanded AML-NK cells 
 
In addition to the phenotypic characterization of in vitro expanded AML-NK cells we determined 

their functional properties. The functional activities of NK cells can be defined according to their 

role as effector cells of the innate immunity. NK cells constitutively express several receptors for 

monokines and chemokines and rapidly produce a variety of cytokines such as IFNγ, IL-10, IL-13, 

TNF-β, TNF-α or GM-CSF in response to stimulation. This immunoregulatory role is attributed to 

the less abundant CD56bright/CD16dim subset of NK cells, whereas the majority of PB NK cells are 

CD56dim, express high levels of CD16 and have a more important role in cytotoxicity [7]. We 

showed that restimulated NK cells express uniform levels of CD56 and CD16 and therefore can no 

longer be classified into functional subtypes. We examined the potential of expanded AML-NK 

cells to produce IFN-γ in response to IL-12 and IL-18 and analysed their cytolytic capacity against 

the NK cell sensitive target cell line K562. Intracellular FACS analysis revealed that a high 

proportion of AML-NK cells displayed the ability to produce IFN-γ, analogous to that of control-

NK cells. Similarly, previous studies documented the ability of AML-NK cells in remission to 

produce IFN-γ and TNF-α after polyclonal activation [90, 140]. We also determined the cytolytic 

activity against the K562 target cell line in 51chromium release assays at different effector to target 

ratios and demonstrated that AML-NK cells were equally cytolytic as control-NK cells.  

From these results we conclude that cultured AML-NK have a normal ability to produce 

proinflammatory cytokines and have preserved their cytolytic activity throughout the process of in 

vitro expansion.  

 

In AML it was shown that the capacity to recognize and kill autologous malignant leukemic cells is 

generally poor [88, 90, 191]. However, the cytolytic activity of patient-derived NK cells against 

tumor cell lines could be correlated to the duration of remission [86], indicating the importance of 

NK cells in the immunosurveillance of acute leukemia. A recent study could reveal an association 
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of NK cell-mediated in vitro activity against autologous leukemic cells with the clinical outcome in 

AML and ALL patients [89]. The loss of tumor-reactive NK cells in one patient was followed by 

leukemia relapse, whereas in another patient treatment with IFN-α could revert the relapse to 

complete remission, which was accompanied by the regain of NK cell activity against autologous 

blasts. These results were confirmed on a larger group of 25 AML and ALL patients after 

chemotherapy or autologous HSCT, where a low or absent activity was shown to be predictive of 

leukemia relapse [90]. Thus, the data imply that the failure of NK cells to recognize and lyse 

autologous leukemic blasts may contribute to the high incidence of relapse in AML. Earlier studies 

on the NK cell activity at diagnosis found that leukemic blasts are resistant to autologous killing, 

and concluded that patient-derived NK cells were functionally defective [87]. Likewise, in a recent 

report the failure of AML-derived NK cells of lysing autologous leukemic cells was attributed to an 

insufficient interaction between NK cell activating receptors and their ligands on the blasts [88]. 

This may either be due to the defective expression of triggering receptors on NK cells or to the low 

density of the corresponding ligands on the tumors.  

On the other hand, the fact that NK cells from AML patients in complete remission after 

chemotherapy or after autologous HSCT exert a substantial anti-leukemic activity in vitro, justifies 

the expansion of patient-derived NK cells for a putative application in cellular immunotherapy. A 

recent study demonstrated that NK cells that were collected at remission, displayed a certain in vitro 

activity against the autologous leukemic blasts after activation and in vitro expansion [140]. 

Accordingly, we isolated patient-derived NK cells at diagnosis or at disease relapse, and determined 

the cytotoxic activity of in vitro expanded cells against autologous blasts. The main goal was to 

define whether AML-NK cells are characterized by an inherent deficiency in target cell recognition 

that may contribute to the escape of leukemic blasts from NK cell surveillance.  

The analysis of the cytolytic activity of expanded NK cells from 5 patients revealed that the 

spontaneous lysis of autologous blasts was very low. In 4 out of 5 patients the specific lysis at the 

E:T ratio of 10 was below 10%. Importantly, the addition of anti-HLA class I monoclonal 

antibodies, which interrupts the KIR-HLA interactions and thereby blocks inhibitory signalling, 

induced a substantial level of cytolysis that ranged from 40 to 70% specific lysis.  

Thus, our results demonstrate that in vitro expanded AML-NK cells are capable to recognize and 

efficiently lyse autologous leukemic blasts, through the interaction of activating receptors with their 

ligands. These findings indicate that no intrinsic resistance in the leukemic blasts exists although 

NK cell activation was dominated by the HLA class I mediated inhibition as demonstrated by the 
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addition of HLA-masking mAbs. This strong NK cell inhibition represented by a low spontaneous 

cytolysis of leukemic blasts was also observed when allogeneic control-NK or allogeneic AML-

derived NK cells were used as effectors, but rather unexpected since the high probability of KIR-

HLA class I mismatches in the allogeneic set-up should favour the opposite effect of an increased 

susceptibility to cytolysis.  

However, in one out of the five analysed patients, AML-NK cells had a fairly high spontaneous 

cytolytic activity against the autologous blasts with a specific lysis of up to 30% at the E:T ratio 10. 

Even though the HLA class I expression was within the range usually measured in AML, the 

addition of HLA class I masking antibodies could only marginally increase the lysis by autologous 

NK cells. Therefore, we suggest that the elevated expression of ligands for the activating receptor 

NKG2D and the NCRs, NKp46 and NKp30, by the blasts may account for the observed 

susceptibility to cytolysis. The blasts of this particular patient belong to the AML subtype M5, 

which has been related to an increased level of NKG2D- and NCR-ligand expression. Indeed, 

according to recent studies in our laboratory, acute leukemias of the subtypes M1 to M4 were found 

to express low levels of triggering ligands, whereas the M5 and M7 subtypes of AML, which affect 

more mature progenitors, displayed higher ligand levels [192].  

In conclusion, our data implicate that a low density of NKG2D and NCR ligands, due to the 

incomplete process of myeloid lineage maturation or ligand shedding [34], together with the 

abundance of HLA class I molecules, are compromising the recognition of blasts by NK cells.  

2.3 The NOD/SCID transplantation model and immunotherapeutic consequences 
 

One of the important issues of the present study was to explore the potential of activated and in 

vitro expanded NK cells from AML patients for an adoptive transfer in the cellular immunotherapy 

of leukemia. In this context we used the NOD/SCID transplantation mouse model which have 

previously been employed to demonstrate the cytolytic potential of human haploidentical NK cells 

against CML blasts [106], to investigate the in vivo activity of activated and expanded AML-NK 

cells. First we could demonstrate that adoptively transferred AML-NK cells were able to exert an 

anti-tumor activity in K562 erythroleukemia engrafted NOD/SCID mice. Mice were inoculated 

subcutaneously with K562 cells and injected one day later with AML-NK cells. Our results showed 

that in mice that received the adoptively transferred AML-NK cells the tumor formation was 

significantly suppressed over a time period of four weeks. This effect was most probably due to an 

NK cell target interaction in an early phase after the adoptive transfer since we could not detect any 
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infiltration of the tumors with human NK cells. This is in line with a recent report demonstrating 

that human NK cells injected into the circulation of NOD/SCID mice accumulate in the BM and 

spleen within the first 24 hours post transplantation but were not anymore detectable after 72 hours 

[193]. Thus, in this case the suppressive effect of NK cells on tumor formation might be due to a 

rapid purge of tumor initiating cells.  

We further extended the NOD/SCID in vivo model to the transplantation of human primary AML 

blasts. 10x106 AML blasts were injected, and the engraftment was determined on week 4 to 8 in the 

peripheral blood or in aspirated bone marrow samples. In 5 out of 7 patient samples the 

transplantation resulted in an engraftment with human leukemia, with an average of 27% of human 

cells detected in the BM of recipient mice on week 8 post transplant. These values are in accordance 

to previously reported results on the transplantation of AML into NOD/SCID mice with an average 

engraftment of 13% for 70% of the more than 60 different samples [194]. In this particular report 

the failure of engraftment in mice was also found to correlate to the FAB-type and the cytogenetic 

status of AML blasts.  

Transplanted NOD/SCID mice that showed a substantial engraftment with human leukemia 

received 3 to 5x106 in vitro activated and expanded autologous AML-NK cells along with IL-2 and 

IL-15 in order to support the viability and to maintain the activation status of the infused NK cells. 

Since only a short-term retention of the transferred NK cells in the mice was to be expected, we 

analysed the mice one week after the adoptive transfer of NK cells. 

Our results demonstrate that all mice that received AML-NK cells showed a significant overall 

reduction of tumor load in the BM. The content of human leukemic blasts of an average of about 

30% before NK cell treatment was significantly reduced to about 10%, corresponding to an overall 

reduction of tumor-load of roughly 70%. In contrast, the content of blasts in the control-group, 

which did not receive NK cells, was on average 16% and increased to about 18%, irrespective of 

the administration of IL-2 and IL-15. 

In conclusion, we could demonstrate that AML-NK cells display an anti-leukemic effect against 

autologous blasts in vivo in leukemia-repopulated NOD/SCID mice. This in vivo activity was 

observed despite the inhibitory signalling mediated by the interaction of HLA class I and the KIRs. 

One possible explanation for the reduction of tumor load is that NK cell target interactions induced 

apoptosis, which act through an HLA class I independent mechanism. Another possibility is that the 

murine BM microenvironment influenced the transplanted leukemic blasts in a way that rendered 

them more susceptible to NK cell lysis. This would imply that AML blasts may undergo a change 

in expression of HLA class I molecules or of ligands for activating NK cell receptors. Indeed, we 
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found an up to 5-fold upregulation of ligands for NKG2D and NCR receptors on leukemic blast that 

were recovered from the murine BM. In addition, recent results in our laboratory demonstrate that 

the exposure of AML blasts to myeloid-specific growth factors upregulated expression of activating 

ligands and increased the susceptibility to NK–mediated killing [192]. The importance of triggering 

ligands for the susceptibility to NK-mediated killing has been further demonstrated by studies in a 

mouse tumor model, in which ectopic expression of murine NKG2D ligands resulted in efficient 

NK- and T cell-dependent rejection of the tumor [38].  

Therefore, we hypothesize that growth factors produced in the murine BM may have an influence 

on the ligand expression by the transplanted AML blasts, which is substantial to counteract the 

inhibitory signalling through HLA class I expression.  

 

The possibility of substantial ex vivo expansion of highly cytotoxic AML-NK cells implicates their 

usefulness as cellular therapeutics for the clearance of autologous leukemia. Infusions of donor-

derived NK cells, including NK cells activated by 2 week-long treatment with IL-2 in vitro, have 

been reported as safe effective in increasing the donor chimerism in the transplanted patients [195, 

196]. Given the importance of activating ligand-receptor interactions for the tumor recognition 

process, clinical use of low dose of IL-2 [197] and IL-15 [198] to upregulate the receptors and 

support the maintenance of adoptively transfered NK cells along with administration of myeloid 

growth factors to upregulate the respective ligands may be beneficial in enhancing the effectiveness 

of leukemia therapy with ex vivo IL-2-activated autologous NK cells. Moreover, the possibility to 

enhance the expression of activating NK cell receptors by lentiviral-mediated genetic modification 

of ex vivo expanded AML-NK cells still represents an option to optimize such immunotherapeutic 

interventions.  

 

Even though the mechanism of blast susceptibility to autologous NK cell-mediated lysis requires 

further clarification, the strong reduction of tumor load upon the adoptive transfer of the autologous 

AML-NK cells to NOD/SCID mice is promising and may be important for the design and future 

progress in clinical immunotherapeutic treatment strategies based on infusions of autologous NK 

cells. 
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