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Summary 
 
Overview kidney 

Kidney is, beside the liver, one of the most important organs for the elimination of 

waste products, toxins, drugs and their metabolites. Due to the anatomy of the 

kidney, ultra filtrate leaving the glomerulus passes first the proximal tubular cells. 

Therefore, these cells are exposed to high concentrations of xenobiotics which 

explains their high metabolic activity. This circumstance results sometimes in 

proximal tubular nephrotoxicity. In addition, various transmembrane proteins 

respectively transporters are responsible for the elimination or accumulation of drugs. 

This complex interplay is also responsible for drug-drug interactions. 

Therefore, proximal tubular cells are an interesting tool to study drug transport in the 

kidney. These cells are mainly localised in kidney cortex which makes it easy to 

isolate them (Fig. 1.1). Further isolation procedures enables high purity of proximal 

tubular cells by excluding connective tissue cells, distal tubular cells and other 

undesirable cells (elucidated in detail in 2.4).  

 

Aim of the thesis 

The aim of this thesis was to establish and validate a new in vitro model for drug 

transport in kidney by using primary porcine proximal tubular cells.   

In a first step, primary porcine proximal tubular cells were isolated from pig kidney, 

which were retrieved freshly at the slaughterhouse. These isolated cells were 

investigated to verify their origin from proximal tubular cells. In a next step the cells 

were screened at mRNA, protein and functional level for functional expression of 

important drug transporters. Finally, it was investigated if this model can be used for 

screening of drug-drug interactions or for specific drug transporter properties. 

 

Expression of drug transporters 

In cultured cells the following drug transporters were expressed (chapter 2.5 and 3.4) 

 

A) at mRNA level: 

 

• abcb1 (pMDR1) 

• abcc1 (pMRP1) 

• abcc2 (pMRP2) 

• slc22a8 (pOAT3)  

• slco1a2 (pOATP-A)  

• slc15a1 (pPEPT1) 
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• slc5a2 (pSGLT2)  

• slc4a4 (pNBC1)  

• slc9a3 (pNHE3)  

• abcg2 (pBCRP alias BMDP) 

 

B) at protein level 

 

• slc4a4 

• abcb1 

• abcc1 

• abcc2  

• abcg2 

 

C) functionally  

 

• abcb1: transport and uptake of digoxin, inhibition of digoxin transport and higher 

digoxin uptake with verapamil 

• abcc1: uptake of methotrexate, higher methotrexate uptake with indomethacin and 

MK571 

• abcc2: uptake of methotrexate, higher methotrexate uptake with MK571 

• slc22a8: transport and uptake of fluorescein, inhibition of fluorescein transport and 

uptake with estrone sulfate 

• slc15a1: transport and uptake of glycylsarcosine, inhibition of glycylsarcosin 

transport and uptake with benzylpenicillin 

• slc5a2: uptake of glucose, inhibition of glucose uptake with phlorizin 

• abcg2: uptake of mitoxantrone, higher mitoxantrone uptake with prazosin 

 

Slc22a1 (pOCT1) and slc22a6 (pOAT1) were only expressed in freshly isolated cells but 

were down-regulated in culture. Freshly isolated proximal tubular cells showed functional 

activity of slc22a6 as uptake of fluorescein was inhibited with p-aminohippuric acid.  

 

Confirmation of proximal origin 

Several transporters are expressed exclusively in proximal tubular cells. This fact was 

used in order to confirm the origin of the proximal tubular cells with each isolation. Due to 

expression of slc15a1, slc5a2, slc4a4, slc9a3 and the enzyme dipeptidylpeptidase IV 

(DPPIV, see below) we confirmed, that our cells are indeed of proximal origin. 
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BMPD expression 

After validation of the above mentioned drug transporters, we searched for possible 

inhibitors of BMDP/pBCRP, that might influence elimination of known BCRP substrates 

such as the chemotherapeutics topo- and irinotecan and mitoxantrone. The tested drugs 

included various antiepileptic agents, non-steroidal anti-inflammatory drugs, proton pump 

inhibitor, caffeine, theophylline, thalidomide and dotatoc. Of all investigated drugs, only 

phenytoin was able to inhibit BMPD significantly in our model.  

 

GLP-1 effect in proximal tubular cells 

Glucagon like peptide 1 (GLP-1) is an hormone, secreted after meal ingestion in the 

intestine. This peptide mediates satiety feelings and most importantly stimulates glucose 

dependent insulin secretion from pancreatic β-cells, thus lowering plasma glucose levels. 

Interestingly, GLP-1 also enhances renal sodium secretion in healthy volunteers. 

Therefore, we hypothesised that GLP-1 receptor (GLP-1R) is functionally expressed in 

proximal tubular cells. GLP-1R expression was confirmed at mRNA and protein level 

(chapter 4.4). More precisely, in kidney cortex the protein expression of GLP-1R seemed 

to be localised mainly in proximal tubular cells. Furthermore, we could show an inhibitory 

effect of GLP-1 on sodium re-absorption, indicating functional GLP-1R activity. In contrast 

to sodium re-absorption the re-absorption of glucose was not affected by GLP1. 
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Aim of the thesis 
 

Our objective was to establish and validate a new in vitro model for human drug transport 

in kidney. Though established cell lines of proximal tubular cells exist (e.g. LLC-PK1, HK-

2, killifish renal tubules), they are either immortalised and often transfected or the 

assessment of functional bidirectional transport is not possible. With primary proximal 

tubular cells a more “in-vivo” like situation, where various drug transporters are expressed 

simultaneously, is established. We decided to use primary proximal tubular cells from pigs 

since this material is easy to obtain. Furthermore, pig seems to be physiologically more 

closely related to human than other species such as dog, rat, mouse and rabbit.  

 

A first aim was to establish a cell culture model of primary proximal tubular cells from 

porcine. Therefore, fresh porcine kidneys were obtained from the slaughterhouse followed 

by an immediate isolation procedure. The origin from proximal tubular cells of these 

isolated cells had to be verified. 

A next aim was to investigate if important drug transporters of proximal tubular cells are 

functionally expressed in our cell culture model. Therefore a screening of various known 

drug transporters had to be performed at mRNA and protein level. In addition, uptake 

and/or transport assays had to be carried out in order to show in-vitro functional activity of 

these proteins. 

A next aim of the thesis was to investigate for the first time the functional expression of the 

porcine homologue of breast cancer resistance protein (BCRP/BMDP) in proximal tubular 

cells. Furthermore, we aimed at a functional discrimination of BMDP and P-gp activity. 

Therefore, cells had to be screened as mentioned above. For uptake assays specific 

substrates and inhibitors for BMDP and P-gp should be used. 

 

Another aim was to investigate the functional expression of glucagon like peptide receptor 

in proximal tubular cells. Therefore, proximal tubules had to be screened for GLP-1R at 

mRNA and protein level. In order to measure sodium concentration with fluorescence, a 

method had to be established. Then the effect of GLP-1 in proximal tubular cells on 

sodium and glucose re-absorption had to be investigated. 

 

With such an validated in-vitro model expressing various functional transporters 

simultaneously, it would be possible to predict tubular excretion rates, nephrotoxicity and 
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drug-drug interactions in an early stage of drug discovery and development more 

realistically.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



- 15 - 

1. Introduction 
 

1.1. Kidney – an overview 
In mammalians, the kidney is a pivotal control organ for the homeostasis of fluids, 

electrolytes, proteins and glucose. Excess of water and substances results in enhanced 

excretion. However, a lack of water and electrolytes causes the kidney to enhance re-

absorption, but maintaining the excretion of waste products, toxic products and drugs. In 

kidney, xenobiotics undergo three different processes: glomerular filtration, tubular 

secretion and tubular re-absorption. Secretion and re-absorption are mediated by 

transmembrane transport proteins of renal tubular epithelial cells and are therefore 

saturable [7]. As these processes often have to be maintained against concentration 

gradients, they are energy- respectively ATP-dependent. Proximal tubular cells are 

typically exposed to highest concentrations of xenobiotics, as the ultra filtrate leaves the 

glomerulus and flows (first) to the proximal tubule (Fig. 1.1). In addition, highest drug 

metabolising activity occurs in the kidney in proximal tubular cells explaining nephrotoxicity 

to be found often in these cells [10].  

Fig. 1.1 – Localisation of proximal tubular cells in the kidney. 
Adopted from [1]. 
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1.2. Transporters 
Cellular drug transporters 

are integral membrane 

proteins acting as 

gatekeepers for cells and 

organelles. They control 

uptake of important 

nutrients such as sugar, 

amino acids and 

nucleotides into cells and 

efflux of xenobiotics out 

of the cells. Typically 

these membrane proteins 

have 12 transmembrane 

domains. Two most 

important groups of 

transporters exist: ATP-

binding cassette (ABC) 

and solute carrier (SLC) 

transporters (Fig. 1.2). The ABC family transporters consist of 1200-1500 amino acids with 

a molecular weight of 140-180kDa, while the SLC family includes 300-800 amino acids 

with 40-90kDa [11].  

Fig. 1.2 – Expression of SLC and ABC transporter in the membrane or 
in intracellular compartments. Non SLC transporters can also be 
localised intracellular. Adopted from [2]. 

In contrast to passive transporters facilitating the passage of e.g. nutrients down their 

electrochemical gradients, ABC proteins are directly dependent on ATP in order to 

transport solutes actively against their concentration gradient. 

They are also called primary active transporters, as secondary active transporters (e.g. 

some SLC transporters) use ion gradients, previously established by ion pumps, in order 

to transport their substrates against their gradient [2].  

One of the two ATP binding domains of the ABC protein, also called nucleotide-binding 

fold/domain (NBF), possesses characteristic Walker A and B motifs [12]. In between those 

two conserved NBFs, located in the cytoplasm, ATP is trapped like a sandwich. A 

functional ABC protein, a full transporter, typically contains two NBFs and two 

transmembrane domains (TM) [13]. Half transporters must dimerise in order to gain 
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functionality. These TMs, containing 6-11 membrane spanning α-helices, determine 

substrate specificity. 

 

ABC transporters are divided into seven subfamilies ABCA-ABCG, depending on gene 

similarity, sequence homology in the TM and NBF domains, the order of the domains. In 

the following, a short overview is given for those subfamilies which are not mentioned in 

1.2.1.-1.2.3. [13, 14]:    

 

ABCA 

This subfamily covers 12 full transporters of which 5 are localised on the chromosome 

17q24 (ABCA5, 6, 8-10) and expressed in skeletal muscle, heart, ovary and in the liver. 

ABCA1 protein manages cholesterol transport and influences membrane plasticity and 

fluidity. ABCA4, found in photoreceptor cells, transports Vitamin A derivatives and 

influences therefore vision. 

 

ABCD 

Four genes belong to the ABCD subfamily, often associated with ALD 

(adrenoleukodystrophy). This half transporters are only expressed in the peroxisomes 

which have to homo- or heterodimerise. These substrates are transport long chain fatty 

acids.  Namely ABCD1 seem to be responsible for the X-linked form of ALD, as patients 

accumulate unbranched saturated fatty acids in their cells.  

 

ABCE & ABCF 

The ATP-binding domains of these two subfamilies derive from ABC transporters, however 

they do not possess a TM domain. To date ABCE and ABCF are not known to be involved 

in membrane transport functions. The oligo-adenylate-binding protein, OABP, the only 

member of ABCE, recognises oligo adenylate produced by some viruses indicating a 

probable involvement in immune answers. Each ABCF gene has a pair of NBFs. The best 

characterised gene is GCN20, found in S. cerevisiae, mediating the activation of eIF-2α 

kinase, a translation initiation factor. ABCF1, a human analogue, seems to exert similar 

effects.  
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The SLC family includes passive 

transporters, ion coupled transporters 

and exchangers. Some of these 

transporters are also located 

intracellular (see Fig. 1.2). If a 

transporter has <20-25% amino acid 

sequence homology to other 

transporters in the SLC family, it is 

assigned to this family.  A overview of 

different members of the SLC-family is 

given in table 1.1. SLC members which 

were found in porcine proximal tubular 

cells are mentioned below (see 1.2.4-

1.2.9).  

 

1.2.1. ABCB1 (MDR 1 alias P-gp) and 

members of ABCB 

To date, four full and seven half 

transporters compose the ABCB family, 

of which ABCB1 was first discovered 

and characterised in drug resistant 

tumour cell lines. ABCB was found to 

extrude cytostatic drugs out of the cells 

[14].  

ABCB1 consists of two similar regions, 

each containing six putative 

transmembrane segments and an 

intracellular ATP binding site [15]. Later, 

functional activity of ABCB1 was found in s

kidney and intestine [13]. In the kidney, ex

of proximal tubular cells [7]. Therefore, A

either reducing absorption at the intestine

back into the gut or by enforcing renal secr
Table 1.1 - Overview of the SLC family adopted from [2].
everal tissues such as blood-brain barrier, liver, 

pression was localised in the apical membrane 

BCB1 protects the body from xenobiotics by 

 as it pumps out already absorbed substances 

etion into urine. 
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A broad diversity of hydrophobic compounds are actively secreted by ABCB1, e.g. vinca 

alkaloids, digoxin, anthracyclines, steroids, cyclosporines, tacrolimus, HIV-1 protease 

inhibitors and organic cations [7, 14] which explains the importance of this transporter in 

drug-drug interactions and reduced bioavailability. A remarkable example is a small clinical 

cross over study with 12 healthy male receiving ritonavir for 11 days, digoxin was given on 

day 3 [16]: Ritonavir increased digoxin AUC (area under the plasma concentration-time 

curve) by over 80%, decreased the renal digoxin clearance by 35% and thus increased 

half-life by 156%. Another possibility for an unwanted increased AUC of digoxin is the 

most prevalent SNP (single nucleotide polymorphism) C3435T in ABCB1, which resulted 

in lower expression of this protein and higher digoxin plasma levels [17].   

Further essential ABCB transporters are 4 and 11 located in the liver and responsible for 

the secretion of phosphatidylcholine and bile salts, as mutations result in numerous forms 

of progressive familial intrahepatic cholestasis [14]. ABCB2 and 3 form heterodimers 

translocating foreign proteins into the endoplasmatic reticulum, where these antigens form 

complexes with class I histocompatibility proteins in order to present them on cell surfaces 

[14]. As one can imagine, defects in these areas result in a suppressed immune system.  

The remaining ABCB transporters, except for ABCB5, whose function has not been 

described to date and is expressed in all cells, are found in the lysosome (ABCB9) and in 

the mitochondria (ABCB6-8, 10) [14]. Their functions are partly unknown, though ABCB6 

and 7 are closely related and responsible for the transport of a precursor of the Fe/S 

cluster from mitochondria to the cytosol [13]. Gene mutations in the ABCB7 are found in X-

linked sideroblastic anemia and ataxia patients [14]. 

  

1.2.2. ABCC1-6 (MRP 1-6) and members of ABCC 

The ABCC family includes 12 full transporters managing ion transport, cell-surface 

mediated processes and toxin secretion [13]. Nine of them are MRP (multidrug resistance 

protein) related genes, of which ABCC1-3 transport glutathione conjugates and organic 

anions. The isoforms 4, 5, 11 and 12 are smaller than the other MRP transporters without 

a N-terminal domain, that is not required for transport function [13]. ABCC4 and 5 

translocate nucleosides.  Cystic fibrosis is caused by a mutation of the ABCC7 alias CFTR 

protein, which is a chloride ion channel and responsible for the exocrine secretion [14]. 

ABCC8 is a high affinity receptor for the drug sulfonylurea, an oral anti-diabetic drug. After 

binding of sulfonylurea an associated potassium channel is inhibited, that modulates 
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insulin secretion [13, 14]. Sulfonylurea binds with low affinity to the closely related ABCC9 

protein, regulating potassium channels in muscle [13].  

The authors in [6] give an excellent overview of substrates for MRP1-6 and their inhibitors: 

In general, these transporters translocate different substances such as leucotriene C4 and 

D4, MTX, PAH, anti-HIV drugs, vinca alkaloids, indomethacin  and estradiol-17β-D-

glucuronide. Typical inhibitors are probenecid, indomethacin and MK571.  

Interestingly, ABCB1 (MDR1) and ABCC1 (MRP1) share overlapping  substrate specificity, 

e.g. anthracyclines, vinca and colchicine alkaloids, with the difference, that ABCC1 is able 

to translocate glutathione conjugated drugs [13]. ABCB1 prefers large uncharged 

hydrophobic or slightly positively charged substances, whereas the MRP family prefers 

hydrophobic anions [18]. Furthermore, ABCC1 mediates inflammatory responses as it is 

capable of transporting leukotrienes. This transporter was found in various tissues, 

especially in liver, lung and kidney [7].  

ABCC2 is expressed in canalicular cells in the liver, often referred as cMOAT (canalicular 

multispecific organic anion transporter), in the kidney at the apical side of proximal tubular 

cells as well as in the intestine [19]. In the liver, it contributes to a great part to extrusion of 

organic anions e.g. bilirubin into the bile. The TR rat, which suffers under chronic 

hyperbilirubinemia, has a mutation in its abcc2 transporter [20]. The correlation of an 

ABCC2 mutation with Dubin-Johnson syndrome, a form of hyperbilirubinemia, was shown 

in human patients, too [21].   

ABCC3 was found in liver, colon, pancreas and to a lesser extent in the kidney [7], while 

ABCC4 was detected in several tissues, in the kidney at the apical side of proximal tubular 

cells [22]. Interestingly, both apically localised ABCC2 and 4 transport PAH, a prototypical 

substrate for renal organic anion transporters, with KM of 2mM respectively 160µM [23]. 

However, ABCCs seem to play a minor role in this regard, as KM values of PAH in 

SLC22A6 and A8 are significantly lower (see 2.6.6). More clinical relevant is the fact, that 

ABCC2, 4 and 5 are responsible for the renal elimination of antiviral drugs in the kidney, 

playing an important role in drug-drug interactions, (nephro) toxicity and resistance to 

nucleoside analogues (e.g. AZT) [6, 13].  

ABCC5 is ubiquitously expressed in tissues, including kidney, and translocates the 

antiviral agent adefovir, cAMP and cGMP [6]. Interestingly, ABCC5 and 

phosphodiesterase 5 (PDE5) are co-expressed in smooth muscle cells of the corpus 

cavernosum, indicating a second catabolic pathway of cGMP besides the PDE5 [24]: For a 

penile erection the increase of intracellular cGMP is mandatory. Sildenafil (Viagra) reduces 
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the degradation of cGMP by PDE5 thus inducing and prolonging erection. As sildenafil is 

translocated by ABCC5 [6] which also exports cGMP out of cells, a secondary mechanism 

of sildenafil action might be postulated: The inhibition of cGMP transport out of the cell and 

thus increasing intracellular cGMP.  

ABCC6 was mainly found in kidney and liver and translocates BQ123 (endothelin receptor 

blocker), so far this is its only known substrate besides LTC4 [6]. Unfortunately, a mutation 

(R1141X) in ABCC6 is related with a connective tissue disorder, called pseudoxanthoma 

elasticum (PXE), characterised by calcification of connective fibres in skin, arteries and 

retina leading to loss of elasticity, cardiovascular disease and ocular bleeding [25]. Another 

mutation, R1268Q, has been correlated with high plasma triglyceride and HDL levels [26]. 

 

1.2.3. ABCG2 (BCRP) and members of ABCG 

The ABCG family consists of six “reverse” half transporters, as the NBF is at the N 

terminus and the TM domains at the C terminus, an orientation which is contrary in other 

eukaryotic ABC proteins [14].   

The authors in [13, 14] provide a good overview of this family:  

ABCG1 is the human homologue to Drosophila white gene, with an amino acid identity of 

31%. The latter is the first gene found in this family. Therefore the ABCG family is often 

named as white half transporter family. The Drosophila white gene is a transporter for eye 

pigment precursors. ABCG1 is involved in cholesterol transport, similar to ABCG5 and 8 

(expressed in intestine and liver), genes which are mutated in patients with sitosterolemia 

(defective transport of dietary sterols such as sitosterol, stigmasterol, compesterol, etc…).  

To date ABCG3 has been exclusively found in rodents, ABCG4 is mainly expressed in 

brain [27]. For both transporter, their function is still unknown. 

ABCG2 was discovered as a multidrug resistance gene and is to date eagerly under 

investigation. ABCG2 has been made responsible for resistance to anthracycline drugs 

(doxorubicin and daunorubicin), mitoxantrone and camptothecin derivatives 

(topoisomerase I inhibitors e.g. topotecan and irinotecan) [28]. Interestingly, ABCG2 

transports also estrone-3-sulfate (known as SLC22A8 substrate), methotrexate (a classical 

ABCC1-3 substrate) and 17β-estradiol 17-β-D-glucuronide (free estradiol: ABCC2-4 and 

ABCB1 substrate) [29].  

At protein level, ABCG2 expression was found not only in carcinogenic cell types, but also 

in normal human tissues e.g. lung, bladder, prostate, uterus, intestine, pancreas, kidney 

and liver [30]. In kidney, the authors in [30] could sub-localise ABCG2 to cortical tubules, 
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while in mouse kidney it was found at the apical side of proximal tubular cells [31]. 

Furthermore its expression was detected in the placenta, suggesting a protective function 

for the foetus [14].  

As all ABCG transporters are half transporters, they have to form either homo- or 

heterodimers in order to gain functionality. ABCG2 is supposed to build a homodimer [32]. 

Interstingly, abcg2 knock out mice developed symptoms similar to protophorphyria, as a 

degradation product of chlorophyll, called pheophorbide induced severe dermal phototoxic 

lesions after light exposure [33].  Therefore ABCG2 seems to be responsible for reducing 

uptake of pheophorbide, found in numerous plant-derived foods and food supplements, 

after meal ingestion. In addition, abcg2 knock out mice had a threefold higher AUC after 

oral intake of the food carcinogen PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-

b]pyridine), demonstrating ABCG2’s role in protecting the body from toxic compounds [34]. 

Its role could be even more crucial as that of ABCB1, since in human jejunum the mRNA 

level of ABGC2 was higher compared to ABCB1 [35]. Analyses of human sequences 

revealed numerous (over 80) different variations, of which two can be called as 

polymorphic forms (V12M and Q141K) of ABGC2 in several populations [32]. Though 

many investigations have been performed regarding expression, localisation and function, 

the results are contradictory and to date it is not possible to pose a clear statement [32].  

 

1.2.4. SLC4A4 (NBCe1) 

In the SLC4A family are to date 11 members known, which can be divided, dependent on 

their function, into three groups, [36]: 1. Cl-/HCO3
- exchangers; 2. Na+/HCO3

- 

cotransporters (NBCs); and 3. Na+ dependent Cl-/Na+HCO3
- exchangers (NDCBEs). 

SLC4A11 (alias BTR1 or NaBC1) represents an exception, as it translocates borate Na+-

dependently and can’t be classified in one of the three gropus. It was included in the SLC4 

family due to its homology with other members of this family. 

The second group, Na+/HCO3
- cotransporters (NBCs), can be divided further into a 

electroneutral group with a HCO3
- (or CO3

2-) : Na+ stoichiometry of 1:1, while the 

electrogenic cotransporters translocate with a stoichiometry of 2:1 or 3:1.  A stoichiometry 

of 3:1 favours energetically extrusion of bicarbonate from cells while 2:1 stoichiometry 

favours cellular uptake [37]. Interestingly, rat kidney NBCe1 expressed in Xenopus laevis 

oocytes could change its stoichiometry from 2:1 to 3:1 after an calcium increase [38]. In 

murine proximal tubular cells the stoichiometry of NBCe1 shifted from 3:1 to 2:1 after 
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phosphorylation at position Ser982 [39]. Thus this transporters has the ability to shift 

between influx and efflux of bicarbonate.  

In humans, two splice variants have been found  [36]: kNBC1, which is highly expressed 

on the basolateral membrane of proximal tubular cells, and pNBC1 highly expressed in 

pancreas and at lower level in various other tissues, e.g. kidney, brain, liver, prostate, 

colon, stomach, thyroid, and spinal chord [40]. Intriguingly, more than 85% of the filtered 

load of HCO3
- is re-absorbed in proximal tubular cells, accomplished by an apical Na+/H+ 

exchanger and the basolateral SLC4A4 [41]. 

As SLC4A4 is crucial for the acid-base regulation, mutations in the human gene resulted in 

metabolic acidosis [41]. Furthermore, mental retardation, short stature and ocular 

abnormalities have been described with mutations in this gene [37].   

The other familiy members of SLC4, such as SLC4A1-3 (AE1-3), SLC4A5 (NBC4 or 

NBCe2), SLC4A7 (NBC3 or NBCn1), SLC4A8 (NDCBE), SLC4A9 (AE4), SLC4A10 

(NCBE) and SLC4A11 (NaBC1) were partly found in kidney but have to date not been 

localised in proximal tubules [36, 37].  

 

1.2.5. SLC5A1/2 (SGLT 1/2) 

The SLC5A family consists amongst others of six sodium-dependent glucose transporters, 

which are secondary active transporters translocating glucose (and other 

monosaccharides) against its concentration gradient into cell. The driving force here is, 

similar to the SLC9A family, the inwardly directed Na+ gradient established by the Na+/K+ 

ATPases [42].  

The high affinity, low capacity transporter SLC5A1 (SGLT1) has been found in intestine 

and in renal proximal tubules (S3 cells) with a Na+ to glucose coupling ratio of 2:1 [43]. In 

this part of the renal tubules (S3) SLC5A1 is expected to re-absorb remaining glucose, 

which has not been re-absorbed completely by the high capacity, low affinity transporter 

SLC5A2 (SGLT2), mainly located at the apical side of proximal tubules (S1 and S2 cells) 

and mediating Na+ to glucose with a ratio of 1:1 [44]. The third renal transporter SLC5A4 

(SGLT3), probably located at an earlier segment of proximal tubules, is a high capacity 

transporter similar to SGLT2 but with the same Na+/glucose stoichiometry as SGLT1 of 2:1 

[45]. Recently, SLC5A9 (SGLT4) has been found to some extent in human kidney (with a 

higher mRNA than SGLT1), however its exact localisation has to be elucidated [46]. 

SLC5A10 (SGLT5) has been found in bovine kidney [47]. The sodium-dependent glucose 
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transporter SLC5A11 (SGLT6 alias KST1 or SMIT2) seems to be expressed in various 

tissues [48].  

Mutations of human SLC5A1 (SGLT1) led to a glucose / galactose malabsorption resulting 

in severe diarrhoea and dehydration [49], indicating, that in the intestine, SGLT1 seems to 

be the major glucose absorbing transporter. However, SLC5A4 (SGLT3 former SAAT1) 

has been also detected in pig intestine (at mRNA level) [50]. As one would expect, 

mutations in the SLC5A2 gene result in renal glucosuria [51]. Other mutations in sodium-

dependent glucose transporters are to date not known.  

The facilitative Na+-independent sugar transporters GLUT 2, 5, 9 belonging to the SLC2A 

family are also present in kidney [42]. GLUT2 and 5 are fructose transporter. The latter has 

been localised at the brush border membrane of the S3 proximal tubules in rats [52]. 

However, GLUT2 is found at the basolateral side of proximal tubules and is also 

transporting glucose with low affinity [42]. Recently, GLUT1 and 12 has been found in 

kidney: in rat GLUT1 was located basolateral throughout the nephron, whereas GLUT12 

was found at the apical side in human and rat distal tubules and collecting ducts [53]. Their 

main function is to facilitate transport of glucose and other sugars (e.g. fructose) along 

their concentration gradient.  

 

1.2.6. SLC9A3 (NHE 3) 

To date, nine members of the SLC9A family (Na+/H+ exchange respectively NHE family) 

are known [54-56]. However, at www.gene.ucl.ac.uk/cgi-bin/nomenclature/searchgenes.pl  

eleven members are described. These secondary active transporters regulate intracellular 

pH, cell volume, systemic electrolyte, acid-base and fluid volume homeostasis by 

exchanging Na+ into cell with H+ out of cell. Their driving force is accomplished by Na+/K+ 

ATPase pumps which establish the inward Na+ gradient. The SLC9A family can be divided 

into five isoforms SLC9A1-5 located at the plasma membrane and the intracellular 

organellar forms SLC9A6-9 [57]. Interestingly, SLC9A3 and SLC9A5 cycle between 

endosomes and plasma membrane while the other three NHE1, 2 and 4 stay stationary.  

SLC9A1, 6-8 are ubiquitously expressed, whereas other SLC9A members are expressed 

in various tissues such as stomach, intestine, skeletal muscle and brain [56]. SLC9A1-4 

and 8 have been found in kidney [58]. NHE3 is located predominantly in kidney proximal 

tubule, at the luminal/apical side [58]. There, NHE3 is crucial for Na+ and water re-

absorption [59]. The associated secretion of H+ contributes to a major part (approx. 66%) 

of renal HCO3
- re-absorption [60]. Interestingly, NHE3 forms complexes with other 
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proteins, such as CHP1/2, megalin, dipeptidylpeptidase IV (DPPIV) and PDZ-proteins 

(post synaptic density protein, Drosophila disc large tumour suppressor, and zo-1 protein). 

CHP are calcineurin B homologous proteins which are vital for the activity of NHE3 [61, 

62]. NHE3 exists in two forms: either active in microvilli or inactive, when megalin 

associated, in intermicrovillar microdomains of the apical plasma membrane [63]. DPPIV 

inhibitors such as P32/98 reduce NHE3 activity significantly, although the mechanisms 

behind this action remains unclear [58]. The PDZ proteins NHE-RF1 / 2 inhibit NHE3 in a 

cAMP dependent way [64, 65]. 

Loss of NHE3 function has been associated with diarrhea characterised with Na+ enriched 

alkaline stools, hyponatremia and metabolic acidosis [66]. This finding correlates with 

NHE3 knock out mice [67, 68]. Furthermore these results demonstrate the significance of 

SLC9A3 in the intestine and kidney regarding systemic homeostasis of electrolytes, acids 

and bases as well as blood pressure.    

  

1.2.7. SLC15A1/2 (PEPT 1/2) 

The SLC15A family consists of four peptide transporters: PEPT1 (SLC15A1), PEPT2 

(SLC15A2), PHT1 (SLC15A4) and PHT2 (SLC15A3) [3]. They all transport di- and 

tripeptides into intestinal and renal epithelial cells, whereas only PHT1 and 2 are capable 

of translocating free histidine. PEPT1 is mainly expressed in the small intestine, in the S1 

segment of proximal tubules and in bile duct epithelial cells and has been characterised as 

high-capacity, low-affinity peptide transporter [69-71], whereas PEPT2 has its predominant 

expression in the S2 and S3 segment of proximal tubules as a low-capacity, high-affinity 

transporter [72]. Interestingly, this topographic arrangement of first, a high-capacity, then a 

low-capacity but high affinity peptide transporter in the proximal tubules is similar to the 

glucose dependent SGLT1/2 transporters (see 1.2.5.). PEPT2 was also found in brain 

astrocytes, mammary lands and in the lung [73-75]. The histidine/peptide transporter 

PHT1 was found in rat brain and human placenta, whereas PHT2 was found in various rat 

tissues, such as lymphatic system, spleen, lung and thymus [76].  

The driving force for the re-absorption of di- and tripeptides in proximal tubular cells is the 

inwardly directed H+ gradient, established by the prior mentioned sodium-proton 

exchanger NHE3 (SLC9A3) [3]. The influx of sodium is compensated by the Na+/K+-

ATPases at the basolateral side, pumping 3 Na+ out of the cell in return of 2 K+ into cell, 

the latter leaving the cell by potassium channels. The re-absorbed peptides, respectively 

amino-acids, as the peptides are rapidly degraded by intracellular peptidases, are then 
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transported out of the cell at the basolateral side by a not yet defined peptide transporter 

(Fig. 1.3).   

For PEPT1, the coupling ratio of protons with neutral and cationic peptides is 1:1 and for 

anionic peptides 2:1 [77, 78]. PEPT2 transports neutral peptides together with 2 protons, 

anionic peptides together with 3 protons and cationic peptides are transported together 

with a variable numbers of protons [79].  

PEPT 1/2 transport also various beta-lactam antibiotics [80-82], oral antidiabetics, such as 

glibenclamide [9], ACE inhibitors, the anticancer drug bestatin and other peptidomimetics 

such as valacyclovir [7]. It is quite obvious that concomitant use of the above mentioned 

drugs results in 1. reduced absorption of the drug in the intestine and 2. influences the 

Fig. 1.3 – Uptake of di– and tripeptides (upper compartment) and of peptidomimetics into cell. Adopted from 
[3].  
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pharmacokinetics as renal clearance might be enhanced due to reduced re-absorption in 

proximal tubular cells.  

To date, neither pathology associated with malfunction of these transporters nor 

polymorphism are known in humans [3]. However, PEPT1 is expressed in inflamed colonic 

tissues and is capable to transport the known neutrophile attractant peptide formyl-Met-

Leu-Phe derived from certain bacterial species [83, 84]. 

 

1.2.8. SLC21A (SLCO alias OATP) 

In order to cope with the rapid growth of the SLC21A family, a new species independent 

classification and naming system has been introduced: In the OATP / organic anion 

transporting protein family, 21A has been replaced by O (letter) [2]. In the following, both 

nomenclatures inclusive aliases are used. 

To date, 14 rat and 11 human Oatps/OATPs have been identified [85]. Although some 

OATPs are restricted to liver only, e.g. SLCO1B1 (SLC21A6 alias OATP-C) and SLCO1B3 

(SLC21A8 alias OATP8) managing uptake of bulky and relative hydrophobic organic 

anions, most OATPs are expressed in various tissues such as kidney, brain, heart, lung, 

placenta and testes [86].  

Typical OATP substrates are mainly amphipathic molecules with a high molecular weight 

(>450kDa), e.g. bile salts, steroid hormones and their conjugates, substances which are 

often bound to albumin [86]. In humans, only SLCO4C1 (SLC21A20 alias OATP4C1) is 

expressed in the kidney. This transporter is located at the basolateral side of the proximal 

tubules where it translocates digoxin, ouabain and T3 (triiodothyronine) from blood into the 

proximal cells [85, 87]. 

OAT-K1/K2 are transporters found specifically in rat kidney, while human orthologs are to 

date not existent [85]. These two transporters are located at the apical side with a narrow 

substrate specificity such as MTX (methotrexat), AZT (azidothymidine), folate and digoxin 

[6].  

The first characterised human OATP was SLCO1A2 (SLC21A3 alias OATP-A) and was 

found at mRNA level in the brain, liver and kidney [6]. This transporter translocates various 

compounds such as bile salts, hormones and their conjugates, prostaglandine E2, 

peptides (endothelin receptor antagonist BQ-123, thrombin inhibitor CRC-220, opioid 

receptor agonist d-penicillamine 2, 5-enkephalin), fexofenadine, N-methylquinine and N-

methylquinidine [86]. 
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All OATPs transport the above mentioned substances sodium independently [86]. In 

addition, there is evidence for an anion exchange mechanism between organic anions and 

GSH (glutathion) functioning as driving force, although this has only been shown for the 

mouse/rat Oatp1 and Oatp2 [86].  

 

1.2.9. Overview of the SLC22A family 

The SLC22 family (to date A1-A18) includes not only the organic cation / anion 

transporters but also organic carnitine transporters OCTN 1/2, CT2 (SLC22A4/5, A16) and 

URAT1 (SLC22A12), responsible for urate transport in the kidney [88]. Further SLC22 

members are FLIPT 1/2, BOCT and ORCTL2-4, all organic cation transporters. Most of the 

previously mentioned transporters are expressed in kidney, especially in proximal tubular 

cells [5, 8, 11, 85].  

Small (<500kDa) and hydrophilic organic anions are mainly excreted via the kidneys, 

whilst large (>500kDa) and hydrophobic anions favour the excretion pathway by the liver 

[85]. 

In order to excrete organic anions / cations from blood into urine, it is mandatory to enable 

the entrance of organic anions / cations at the basolateral (blood) side of e.g. proximal 

tubular cells and the excretion at the apical (urine) side. Therefore, organic anion / cation 

transporters are located on both cellular sides. In figure 2.1, the localisation of the 

transporters in proximal tubular cells is given: SLC22A6-8 and SLC22A1-3 are located 

basolaterally (blood side), whereas SLC22A10-11 and SLC22A2, too, are located apically 

(urine side). Following example illustrates that the SLC22 family members do not only 

function as eliminators of organic anions / cations but also withhold important substances: 

Carnitine, a vital co-factor of mitochondrial β-oxidation [89], is an amine which is re-

absorbed by SLC22A4/5. Both transporters are located at the apical side and directed 

inwardly [90].  

 

1.2.9.1. SLC22A1-3 (OCT 1-3) 

Interestingly, SLC22A1-3 has to be regarded as a facilitative diffusion system that can 

transport cations in both directions. Transport direction is driven by its concentration 

gradients, dependent on the membrane potential and independent of sodium [8]. SLC22A1 

has been studied in different species (rat, mouse, rabbit and human) where it was mainly 

expressed in the liver. However in rodents, high expression of SLC22A1 was also found in 

kidney [91]. In contrast, SLC22A2 is mainly expressed in kidney, whereas SLC22A3 is 
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expressed in different tissues e.g. skeletal muscle, liver, placenta, kidney and heart [91]. 

SLC22A1-3 have a broad substrate specificity [91]. All three transporters translocate to a 

certain extent the following substances: β-estradiol, progesterone, cimetidine, clonidine, 

desipramine, prazosin, quinine, verapamil, MPP+ (1-Methyl-4-phenylpyridinium) and TEA 

(tetraethylammonium) [92]. The last two mentioned substances MPP+ and TEA are not 

used therapeutically but as model substances for SLC22A1-3 transport studies. 

Single nucleotide polymorphisms (SNPs) have been investigated and found in SLC22A1 & 

2 [92]: In 57 Caucasians, the most frequent polymorphism with 16% frequency (Arg61Cys, 

located at the large extracellular loop) resulted in a reduction of MPP+ uptake by half. More 

extreme, although less frequent, the mutation Cys88Arg (1.2%) and Gly401Ser (6.7%) 

demonstrated a MPP+ uptake of 2% of wild type SLC22A1. This fact is of clinical 

importance, as the uptake of cationic drugs and xenobiotics in liver is mediated by 

SLC22A1. A reduced activity of this transporter can be beneficial or devastating: 

beneficial, if the substance is toxic to the liver and is eliminated by other means (e.g. 

kidney) or devastating, if the substance is toxic for the body and can’t be 

eliminated/excreted fast enough, as the uptake into liver is reduced. Sixteen SNPs in the 

coding region of SLC22A2 were found, of which eight caused single amino acid 

substitutions and one resulted in a premature termination of the protein. Interestingly, 

Met165Ile and Arg400Cys led to an two – threefold higher uptake of MPP+ than wild type 

SLC22A2, which again can be beneficial in the kidney in order to excrete toxic xenobiotics 

faster or can be disadvantageous if a drug should stay in body.  

Anyhow, to date no specific disease or adverse drug reaction can be attributed to 

malfunction of SLC22A1-3, as substrate specificities and expression patterns are 

overlapping within these transporters and with other transporters [92], e.g. SLC22A8 

translocating cimetidine or ABCB1 mediating quinidine and verapamil [93-95].  

 

1.2.9.2. SLC22A6-8, 11, 10 (OAT 1-5) 

Many clinical important anions like β-lactam antibiotics, diuretics, NSAIDs (non-steroidal 

anti-inflammatory drugs), virostatics, anticancer agents and ACE (angiotensin-converting 

enzyme) inhibitors are substrates of the organic anion transporters (OAT 1-5) [5]. This 

demonstrates a broad substrate specificity for these SLC members. Translocation of 

various drugs/substrates are overlapping between different isoforms of organic anion 

transporters [4, 6, 85].  In general, renal tubular cells are negatively charged, therefore 

basolateral uptake of organic anions has to be accomplished against their electrochemical 
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gradient [6]. In order to achieve this aim,  Na+/K+ - ATPase pumps Na+ out of the cell 

establishing a gradient, which is used to co-transport Na+ with α-ketoglutarate through 

SLC13A3 alias SDCT (sodium/dicarboxylate cotransporter) into cell. Finally α-

ketoglutarate is exchanged by an organic anion and, therefore, the organic anion enters 

into the proximal tubular cells [5]. As the mechanism of the exit of organic anions at the 

apical side is not yet completely solved, different mechanisms are postulated, like 

involvement of the PAH (para-aminohippuric acid)/dicarboxylate or PAH/anion exchanger 

or a membrane potential dependent mechanism [5].  

The first discovered organic anion transporter was SLC22A6 in rat kidney [96, 97]. 

Functional activity was tested with the prototypic organic anion PAH, explaining why 

SLC22A6 is often referred as PAH transporter [85]. Expression of the human ortholog 

hOAT1 was also shown in skeletal muscle, placenta and brain [91].  

SLC22A7 (OAT2) was originally found in rat liver and was first named NLT (novel liver-

specific transporter) [7]. Rat OAT2 is highly expressed in liver but low expression was 

found in kidney [6]. Interestingly, SLC22A7 is not driven by the outwardly directed α-

ketoglutarate gradient [98]. The intrarenal distribution of OAT is not clearly solved yet, as 

rat OAT2 was localised to the apical side of renal tubular cells while human OAT2 was 

localised at the basolateral side of proximal tubular cells [6, 85].  

SLC22A8 was discovered in rat and human, in rat mRNA expression was found in liver, 

brain and kidney while in humans high levels of mRNA were detected only in kidney [6]. 

According to the authors in [91] hOAT3 is also expressed in brain and skeletal muscle and 

interestingly not in liver.  

SLC22A11 is abundantly expressed in kidney and placenta [85], whereas SLC22A10 

(hOAT5) mRNA was exclusively found in liver and rOAT5 was exclusively expressed in 

kidney [91]. Due to its low amino acid identity of 55% between hOAT5 and rOAT5 it is 

questionable if these two transporters are homologues [91].  

 

Drug-drug interactions involving OAT transporters are very likely, due to their broad 

substrate specificity. For example, intake of MTX (methotrexate), a cytostatic drug, with 

anionic drugs such as NSAIDs or β-lactam antibiotics, resulted in severe suppression of 

bone marrow as a result of reduced renal clearance of MTX [5]. 

Paradoxically, organic anion transporters, which detoxify our body from xenobiotics, can 

enforce nephrotoxicity of drugs, e.g. cephaloridine or oxytocin A, due to accumulation in 

proximal tubular cells [5]. Co-medication of substrates or inhibitors of the involved OAT 
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can decrease nephrotoxicity by a reduced renal excretion of the given drug leading to 

increased efficacy but also to increased adverse events [91].  

SLC22A11 (OAT4) secrets not only anions at the apical side of proximal tubular cells but 

also re-absorbs filtered prostaglandins [91]. Furthermore, OAT4 seems to excrete toxic 

anions from fetal into maternal circulation. Thus, an impairment of OAT4 can lead to a loss 

of prostaglandins and fetal intoxication. 

 

1.3. Proximal tubular cells – which species? 
It is clear that obtaining healthy human kidney is difficult and self-limiting. To date, little is 

known about species differences between e.g. human, rat, mouse, dog, rabbit, monkey 

and pig regarding renal drug transport. Monkey seems to be a good predictor model for 

renal drug-drug interactions in humans [99-101], whereas the dog remains a questionable 

alternative [102]. The authors in [10] emphasise that humans are physiologically more 

closely related to pig than to rat, rabbit or mouse. Taken this into consideration and the 

fact that porcine kidney is easily available, a validation of primary porcine proximal tubular 

cells seem to be an interesting alternative as an in vitro model for drug transport in human 

kidney.  
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2.1. Abstract 
Background: Kidney proximal tubular cells play a major role in the transport of endogenous 

and exogenous compounds. A multitude of different transporters are expressed starting 

with multidrug ABC transporters (e.g. abcb1, abcc1-6), slc22a6-8 (organic anion 

transporters) and slc22a1-3 (organic cation transporters). For transport studies of renal 

drug transport, cell lines like MDCK and LLC-PK1 are often used to overexpress and study 

one or two transporters, such as abcb1 or abcc1-6. However, the use is limited since 

under physiological conditions xenobiotics are transported through different transporters at 

the same time. Therefore, a primary in vitro model expressing functionally different 

transporters simultaneously, as it is the case in vivo, would be of great benefit. 

Methods: Primary proximal tubular cells were isolated from porcine kidney. Cells were 

cultured under selective culturing conditions leading to specific growth of primary proximal 

tubular cells. Expression of important proximal transporters was checked at mRNA level 

with RT-PCR, at protein level with immunocytochemistry and functionally by transport and 

uptake assays. 

Results: A model of primary proximal tubular cells was established expressing the most 

important transporters: abcb1, abcc1, abcc2, slc22a8, slco1a2, slc15a1, slc5a2 and 

slc4a4. In freshly isolated cells, slc22a1 and slc22a6 were expressed, but were down-

regulated in culture. Abcb1, abcc1, abcc2 and slc4a4 were detected at protein level with 

immunostaining. Functional activity was confirmed for abcb1, abcc1/2, slc22a8, slc15a1/2 

and slc5a1/2. The tightness of the monolayers of this model was better than in previously 

established in vitro models. 

Conclusion: This primary cell culture model might be an interesting tool to investigate 

proximal tubular transport and to predict toxicity and drug interactions since it expresses 

functionally several transporters simultaneously. 

 
2.2. Introduction 
Renal elimination of drugs and toxins is necessary for the survival of mammalian species. 

Regarding physiology of different species, humans are more closely related to pig, than to 

rat, rabbit or mouse [10]. Thus a porcine in vitro model might be more suitable for 

prediction of transepithelial drug transport, than other non-human species. The existing 

cell lines e.g. HK2 and HKC (human proximal tubular cells), HEK293 (human embryonic 

kidney), LLC-PK1 (proximal tubular cells from pig) and MDCK I/II (distal tubular cells from 

dog) would provide enough possible models to study renal elimination. However, these cell 



- 34 - 

lines are immortalised. The advantage of having a cell line for many passages available is 

diminished by the fact, that transporter or enzyme activities may have been changed. For 

example, in rabbit kidney proximal tubule, the activities of sodium-glucose co-transport 

system, gamma-glutamyl transpeptidase and alkaline phosphatase were reduced after few 

passages [103]. Also, signal transduction pathways seem to be more intact in primary 

cultures than in immortalised cell lines [104]. Many transport studies were performed in 

each of the above mentioned immortalised cell lines, which were transfected with 

transporters and thus altering the system [105-110]. As many different transporters are 

involved in the elimination of xenobiotics (Fig. 2.1), a transfection and thus over-

expression of one or more drug transporters ignores possible influences of other 

transporters. Using the parental cell line as reference, where transporters might be already 

partially down regulated in their function, is questionable. Therefore a primary cell culture 

Figure 2.1 - Different transporters in the proximal tubular cells as described in the literature [4-9]. 
 



- 35 - 

model expressing different drug transporters simultaneously like in the in vivo situation 

would be of great interest. 

In the following, an overview of different drug transporters in the kidney is given.  

In order to excrete large (amphophilic) drugs, transporters are needed to overcome the 

transepithelial barrier [6]. The expression of slc15a1/2 (peptide transporter PEPT1/2) [9, 

81] and slc5a1/2 (sodium-dependent glucose transporter SGLT1/2) [111] for the re-

absorption of important nutrients like amino acids, peptides and glucose from the urine is 

mandatory. The kidney is, together with the liver, the most important detoxifying organ [7]. 

In drug discovery and development, an in vitro model expressing the most important 

transporters concurrently would be an important tool in order to predict elimination, toxicity 

and drug interactions at a functional level. From all renal segments, the proximal tubular 

cells have the highest transport activity and are exposed to highest concentrations of 

xenobiotics [6, 10].  

Multidrug-resistance transporters (such as abcb1, respectively P-gp or abcc1-6, 

respectively MRP1-6) are important for proximal tubular secretion of many drugs. Abcb1 

interacts mainly with neutral and cationic xenobiotics (e.g. digoxin, cyclosporine A, 

vinblastin, antiviral drugs) [112]. Abcc1-6 have like abcb1 a broad substrate specificity 

[113]. Although abcc1-6 prefer anionic molecules many substrates are transported by 

both, abcb1 and abcc1-6 (especially neutral molecules and some polypeptides) [114]. 

Slc22a6-8 (organic anion transporters: OAT1-3) are transporting a broad spectrum of 

xenobiotics such as β-lactam antibiotics, antiviral drugs, diuretics, NSAIDs, PAH, estrone 

sulfate, fluorescein but also MTX (methotrexate), pravastatin and cimetidine [6, 115-120].  

The Slc21 family (organic anion transporting polypeptides: OATPs) interacts with bile 

acids, steroids, fexofenadine, estrone sulfate, pravastatin and antiviral drugs [5-7, 86].   

Slc22a1-3 (organic cation transporters: OCT1-3) are translocating a variety of cationic 

drugs such as procainamide, desipramine, clonidine, araC, cimetidine, nicotine, quinidine, 

verapamil, corticosterone, dopamine, epinephrine, 5-hydroxytryptamin, and amantadine [6, 

8, 121]. 

Slc15a1/2 (peptide transporters: PEPT1/2) are important for re-absorption of amino acids 

and oligopeptides [6]. Furthermore valacyclovir, glycylsarcosine, β-lactam antibiotics, ACE-

inhibitors, glibenclamide and dipeptide-like anticancer drug bestatin are substrates of 

these transporters [6, 9, 81, 82, 122]. Glycylsarcosine is used as a model substrate for 

slc15a1/2 [80]. Re-absorption of glucose and its derivates are managed through sodium-

dependent glucose transporters, which are classified in a high affinity Na+/Glucose co-
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transporter slc5a1 (SGLT1) und low affinity Na+/Glucose co-transporter slc5a2 (SGLT2) 

[111]. Both transporters can be inhibited by phlorizin. The facilitated-diffusion glucose 

transporter family (SLC2 respectively GLUT) is also expressed with different subtypes (1-

5) located on both sides of the proximal tubular cells (apical and basolateral) [123, 124]. 

The electrogenic Na+-HCO3
– co-transporter slc4a4 (NBC1) located at the basolateral side 

of proximal tubular cells in the kidney is responsible for the re-absorption of NaHCO3 (80% 

through slc4a4) and regulation for acid base status [37, 125]. 

All these, and some other not mentioned transporters, contribute to the renal transport 

function to detoxify the body from xenobiotics or endogenous waste products.  

To study isolated transport of one transport protein, tumour cells derived cell lines are 

often utilised, which over-express e.g. either abcb1 and/or abcc1-6 [126]. However, to 

predict proximal tubular elimination, a more realistic model would be desirable. Therefore, 

it was our aim, to characterise functional expression of a primary cell culture based model 

of porcine proximal tubular cells expressing important transporters simultaneously.  

 

2.3. Materials 
[3H]glucose (573.5GBq/mmol) was purchased from DuPont NEN Research (Boston, USA), 

[3H]digoxin (865.8GBq/mmol) from Perkin Elmer Life Science (Boston, USA), [3H]MTX 

(1239.5GBq/mmol) and [14C]glycylsarcosine (4.07GBq/mmol) from Moravek Biochemicals 

(Brea, USA), [14C]PEG4000 (496MBq/g) from Amersham Bioscience (Buckinghamshire, 

England), MK571 from Biomol Research Labs (Plymouth Meeting, USA), Nycodenz from 

Axon Lab (Baden-Dättwil, Switzerland), MEM Eagle D-Valine w/L-glutamine from Lucerna 

Chem AG (Luzern, Switzerland), Dulbecco’s MEM / Nut Mix F-12 (DMEM/F12), Fetal calf 

serum (FCS) and penicillin/streptomycin from Gibco (Gibco Life Sciences, Basel, 

Switzerland), Insta-Gel Plus from Perkin Elmer (Boston, USA), cell flask 75cm2 from BD 

(Franklin Lakes, USA). All other substances were purchased from Sigma/Fluka in highest 

quality.  
 

2.4. Functional characterisation of transporters 

2.4.1. Cell Culture 

Porcine proximal tubular cells were isolated and seeded as described previously [127]. In 

brief, fresh pig kidneys with the capsule were retrieved in the slaughterhouse and put into 

ice-cold Eurocollins, pH 7.4 and 2mM glycine. The cortex was removed, minced and 
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washed with Ca2+ and Mg2+ free Hanks’ buffer, containing 25mM HEPES and 2mM 

Glycine (Buffer A). The washed cortex was then digested with collagenase (0.07%w/V) in 

buffer A with 1mM desferal and 4mM Ca2+ at 37°C for one hour. For 30g cortex 25ml of 

this buffer was used. The incubation was terminated with ice-cold buffer A including 4mM 

Ca2+ and 1.5% (w/V) bovine serum albumin (buffer C). All buffers contained 100U/ml 

respectively 100µg/ml penicillin/streptomycin. After filtration through an 80µm nylon gauze, 

washing, centrifugation (80g, 5min, 4°C) the cells were diluted in a Nycodenz solution with 

11.3% Nyocodenz.  Establishing a gradient of Nycodenz solutions with layers of 17%, 

11.3% (containing cortex cells) and 8.5%, all of them containing 6.7mM KCl, 1.22mM 

CaCl2 and 10mM HEPES, the mixture was centrifuged (2300g, 6min, 4°C). The cells at the 

interface between the upper two layers were harvested, washed (80g, 6min, 4°C) with 

buffer C. Viability was determined by tryptan blue exclusion. One ml cell suspension with 

1.5  106 cells was cryoconserved in cell culture medium 1 (see below) with 10% DMSO.   

Cells were seeded (1.5⋅106 cells in 75cm2 flask) in 50ml of 9.6g/1000ml MEM D-Val, 10% 

FCS and 100U/ml penicillin/streptomycin (medium 1) and cultured for 5 days (after the first 

48h medium was changed every day). As in medium 1 proximal tubular cells can use D-

valine and fibroblasts do not, fibroblast growth was suppressed. Then culturing was 

continued with DMEM/F12 (containing L-Valine) with 10% FCS and 100U/ml 

penicillin/streptomycin (medium 2) until confluence was reached (about 3 days, medium 2 

was changed on the second day). For both medium conditions the cells were incubated at 

37°C in 95% air and 5% CO2. For passaging the monolayer was trypsinised with 10ml 

(trypsin EDTA from Gibco) for 15min. Then 10ml of medium 2 was added and centrifuged. 

After removing supernatant the cell pellet was diluted in medium 2. For transport studies 

cells were transferred onto uncoated Transwell filter cell culture systems. On Transwell 

filters tightness was reached after 3-4 days in medium 2, so that primary cells were 

cultured in total for 11-12 days. After this period the cells were discarded.  

 
2.4.2. Transepithelial electrical resistance (TEER) measurement  

TEER was measured with Millipore Millicell ERS (Volketsville, Switzerland). 

Measurements were carried out as described in the manufacturer’s description. The 

electrode was at least 24 hours in the same culture medium as the cells. The 

transepithelial electrical resistance (TEER) of blank filters in culture medium 2 was 146 ± 

4.7 Ω·cm2. There was a correlation between low FITC-dextran or [14C] PEG4000 transport 

and high TEER values and vice versa. In blank filters, 14.8% ± 2.1% (SEM) FITC-dextran 
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diffused after 75min apical-to-basolateral. Monolayers with the value ∆TEER > 900 Ω·cm2 

were defined as confluent, as the FITC-dextran or [14C] PEG4000 transport after two hours 

was below 2% respectively 0.15% (data not shown).  

After three days, cells formed a confluent monolayer on the membranes, where ∆TEER 

values of 900-3200 Ω·cm2 were achieved. After 7 days, cells were still confluent. When the 

values dropped down to 290 Ω·cm2, FITC-dextran was transported up to 11.1% ± 1.14% 

(SEM) after 120min from apical-to-basolateral (data not shown). Literature data have 

shown, that monolayers with ∆TEER values of 100 Ω·cm2 for HK-2 cell lines and 350 

Ω·cm2 for MDCK cell lines offer already sufficient tightness [128].  Time course of cell 

growth on transwell filters showed, that tightness of cells changes rapidly (300 Ω·cm2 

versus 1100 Ω·cm2 one day later).   

So far 900 Ω·cm2 was the lowest value where monolayers of  porcine proximal cells were 

still tight. Thus, the limit of tightness was deliberately set to 900 Ω·cm2 and to ensure 

absolute tightness, cells with ∆TEER values below 900 Ω·cm2, were not used in further 

experiments.  

 

2.4.3. Functional assays 

For functional assays the Transwell Costar 3460 system was used (Corning Incorporation, 

NY, USA). Cells were preincubated with the inhibitors for twenty minutes.  Both sides of 

the diffusion cells were filled with pre-warmed transport buffer (see below). The whole 

system was kept at constant temperature (37°C). At time t = 0, the substrate with or 

without inhibitor was added to the donor chamber. At defined time intervals, samples were 

drawn from the acceptor chamber and analysed. Uptake/transport assays were carried out 

in HBSS (Gibco) with 1mM MEM sodium pyruvate (Gibco), pH 7.4. Except for the dose-

dependent assays, radioactive substances were used at a concentration of 11100Bq per 

well (0.5ml in the apical and 1.5ml in the basolateral compartment). FITC-dextran 

(250µg/ml) or [14C] PEG4000 (11000Bq/well) was used for monitoring the monolayer 

integrity.  

For detection of radioactive substances, Packard 1900TR liquid scintillation counter was 

used. The samples were diluted in 3ml Insta-Gel Plus (Perkin-Elmer, Schwerzenbach, 

Switzerland). Detection of FITC-dextran and fluorescein was carried out with Perkin-Elmer  

HTS 7000 Bio Assay Reader with the following parameters: excitation at 485nm, emission 

535nm.  
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Table 2.1 – Primers designed for qualitative PCR, and primers/probes designed for quantitiative PCR 
(Taqman® assay) 

Data were analysed using apparent permeability coefficient Papp= ∆Q/∆t  1/(60  A  C0) 

with the unit cm/s [129]. ∆Q/∆t is the permeability rate (mol/min), A the surface area of the 

membrane (cm2) and C0 is the initial concentration (mol/ml). Reading points were 5, 10, 

15, 20, 30, 60, 90 and 120 minutes.  

 

2.4.4. PCR 

Total RNA was isolated from confluent monolayers using the RNeasy Mini Kit (Qiagen, 

Hilden. Germany). RNA was quantified with a GeneQuant photometer (Pharmacia, 

Uppsala, Sweden). The purity of the RNA preparations was high, as demonstrated by the 

260 nm/280 nm ratio (range, 1.8-2.0). Its integrity was checked by ethidium bromide 

agarose gel electrophoresis. After DNAse I digestion (Invitrogen, Basel, Switzerland), 2 µg 

of total RNA was reverse transcribed by SuperScript II RT-Kit (Gibco) according to the 

manufacturer's protocol using random hexamers (Perkin-Elmer) as primers. The primer 

sequences and conditions for PCR are displayed in Table 2.1. Primers were synthesised 

by Invitrogen (Basel, Switzerland), probes by Eurogentec (Seraing, Belgium). PCR 

products were detected with agarose-gel electrophoresis using an agarose concentration 
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of 1.5% (w/V) (Invitrogen) and 0.5µg/ml ethidium bromide. The gel was run at 120V for 

50min. 

TaqMan analysis (quantitative RT-PCR) was carried out on a Gene Amp 5700 Sequence 

Detection System (Applied Biosystems, Rotkreuz, Switzerland). All samples were run in 

triplicates. A relative standard curve was generated by serial dilutions of cDNA. The 

dilution of the latter cDNA was expressed by the respective dilution value. Ct values of 

standards were plotted against the log of the respective dilution factors. Slope and y-

intercept of the standard curve line were then calculated by linear regression and used to 

calculate the input amount for unknown samples for respective genes. To standardise the 

amount of sample cDNA added to reaction the calculated amount of the gene of interest 

was divided by the calculated amount of the constitutively expressed glyceraldehydes-3-

phosphate dehydrogenase (GAPDH) gene in the sample. These normalised amounts were 

then used to compare the relative amount of target in different samples.  

 

2.4.5. Sequencing of slc15a1 (PEPT1) and slc22a8 (OAT3) PCR products 

PCR products  were, after isolation with the Qiaquick Gel extraction kit (Qiagen, Hilden, 

Germany) according to the manufacturer’s description and after quantification of DNA with 

Quant-iT™ Picogreen dsDNA Assay Kit (Molecular Probes, Leiden, The Netherlands), sent 

to Microsynth AG (Balgach, Switzerland) for sequencing. The received sequences were 

checked for homology with nucleotide-nucleotide blast at www.ncbi.nlm.nih.gov/BLAST/.  

2.4.6. Confocal microscopy 

For immunostaining, cells grown in Chamberslides® (Nalge Nunc International, Rochester, 

NY, USA) were used. Cells were washed 3 times with PBS and fixed for 20 minutes with 

4% (w/v) paraformaldehyde in PBS. After washing 3 times with PBS, tissues were 

permeabilised for 5 minutes with 0.5% (v/v) Triton X-100 in PBS. For immunostaining, cells 

were incubated for one hour at 37°C in a humid chamber with the primary antibody 

dissolved in PBS supplemented with 3% (w/v) BSA (bovine serum albumin). After washing 

twice with PBS, the fluorochrome conjugated secondary antibody dissolved in PBS 

supplemented with 3% (w/v) BSA was added for one hour at room temperature, in a dark 

chamber. Stained cells were then washed twice with PBS and mounted with FluorSave® 

(Calbiochem, San Diego, CA). Fluorescence stained cells were examined on a confocal 

Zeiss LSM 150 inverted laser scanning microscope (Carl Zeiss, Oberkochen, Germany). 

For fluorescein uptake, temperature control was used at 37°C, software: Carl Zeiss 
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LSM510 V3.2. All pictures except uptake of fluorescein are 400x magnified, excitation at 

the wavelength 488nm, fluorescein uptake: 100x magnification. The intensity of 

fluorescence was quantitatively determined with ImageJ 1.33u (National Institutes of 

Health, USA, http://rsb.info.nih.gov/ij/) by selecting 20 different spots in each image. Mean 

gray values were measured and analysed as described under statistical analysis.  

Primary antibodies used for these experiments were purchased at Alexis Biochemicals 

and used for ABCB1, ABCC1-5 staining: monoclonal antibody (Mab) to ABCB1 (human, 

JSB-1); mouse IgG1 Mab to ABCC1 (human; MRPm6); mouse IgG1 Mab to ABCC2 

(human; M2I-4), mouse IgG1 Mab to ABCC3 (human; M3II-9), rat IgG2a Mab to ABCC5 

(human; M5I-1). The primary antibodies for ABCB1, ABCC1, ABCC2 and ABCC3 were 

each diluted at a ratio of 1:50 and ABCC5 at a ratio of 1:25 with PBS and 3% FCS. For the 

staining of slc4a4 a polyclonal antibody was used from guinea pig serum (Chemicon 

International, Temecula, USA). The dilution rate used was 1:100. 

The following secondary fluorescent antibodies were used (Jackson Immuno Research): 

for ABCB1 and ABCC1-3 Cy2 AffiniPure rabbit Anti-Rat IgG (H+L), for ABCC5: Cy2 

AffiniPure Goat Anti Mouse IgG (H+L), for slc4a4 Cy2: AffiniPure Goat Anti Guinea Pig IgG 

(H+L), for double staining of ABCB1 and slc4a4 Cy3: AffiniPure Goat Anti Mouse IgG 

(H+L), and for slc4a4 the same secondary antibody as described above. 

 

2.4.7. Statistical analysis 

Statistical significance was investigated with t-test (two-tailed distribution with unequal 

variances). A probability of p<0.05 was defined as statistically significant. All transport and 

uptake studies were performed with primary cells obtained from two different isolations 

(exception: uptake with MTX and probenecid, see Table 2.2). Each isolation originated 

from at least two different pigs, as three or more pig kidneys have been used for one 

isolation procedure. Each transport or uptake assay was performed in triplicate. Results 

are expressed as the mean ± SEM.  

 

 

2.5. Results 
2.5.1. Expression of transporters at mRNA level 

http://rsb.info.nih.gov/ij/
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With RT-PCR (qualitative PCR), mRNA expression of slc5a2 (SGLT2), slc15a1 (PEPT1), 

slc22a8 (OAT3), slc4a4 (NBC1), slco1a2 (OATP-A) was shown, while slc22a1 (OCT1) and 

slc22a6 (OAT1) were only detected in freshly isolated proximal tubular cells (Fig. 2.2). 

Porcine GAPDH, slc5a2 and slc15a1 mRNA expression served as positive controls. Fig. 

2.2B shows that slc5a2 is expressed. With quantitative RT-PCR (Taqman® assay), abcc1 

(MRP1), abcc2 (MRP2) and abcb1 (P-gp) mRNA expression was revealed (Figure 2.3). 

Generally, an up-regulation of abcc1 and a down regulation of abcc2 during culture were 

noticed, while the level of abcb1 mRNA expression seems to remain constant.  

 

2.5.2. Sequencing 

Sequencing of slc15a1 (pPEPT1) band gave a 99% homology with the sus scrofa peptide 

transporter 1 (accession number: NM_214347 respectively AY180903).  

Figure 2.2 – (A): PCR of different transporters from freshly isolated primary proximal tubular cells: GAPDH 
(496bp), slc15a1 / PEPT1 (634bp), slc22a1 / OCT1 (464bp), slc22a6 / OAT1 (355bp), slc22a8 / OAT3 
(701bp), slc4a4 / NBC1 (241bp) and slco1a2 / OATPA (333bp). (B): PCR of slc5a2 / SGLT2 (494bp). The 
probes 1 and 2 are from pig kidney cortex while probes 3 and 4 are derived from isolated primary pig 
proximal tubular cells.   
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Slc22a8 (pOAT3) sequence gave a match of 99% with pOAT3 (accession Number: 

AJ587003 and NM_214455) (sequence data not shown).  

 

2.5.3. Functional assay 

The polar orientation of the cells growing on a surface was checked with confocal 

microscopy by double staining. The basolateral side of the cells was attached to the 

microscope slide. Abcb1 was shown to be predominantly expressed on the apical side of 

the cells (Fig. 2.4). The basolateral-to-apical abcb1 mediated transport and uptake of 

digoxin were inhibited by verapamil (Fig. 2.5A - B). Verapamil inhibited digoxin transport 

from basolateral-to-apical in a dose-dependent manner, whereas from apical-to-

basolateral transport of digoxin was enhanced with verapamil (not significant, data not 

shown).  

Uptake and transport of MTX seems to be complex as it is transported through different 

Figure 2.3 - Quantitative expression of abcb1 / P-gp (A), abcc1 / MRP1 (B) and abcc2 / MRP2 (C) normed 
to GAPDH. Culture 1 and 2 derived from two different isolations of different pigs. They were cultured as 
described in methods for 10-11 days. “Freshly isolated” means the proximal tubular cells were directly 
processed for RNA-isolation, DNA digestion and reverse transcription after isolation from pig kidneys.  
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subtypes of abcc1-6 (MRP1-6). All subtypes 

pump xenobiotics out of the cells, those at the 

basolateral side (abcc1, 3, 5, 6) are directed 

resulted also in an increased MTX uptake 

Table 2.2 - Uptake data after 2h. MTX 
(methotrexate) is used as model substrate for 
abcc1-6 (MRP1-6), whereas glycylsarcosine 
serves as a substrate for slc15a1/2 (PEPT1/2) 
and glucose for slc5a1/2 (SGLT1/2). 

into blood while those at the apical side 

(abcc2, 4) pump into urine.  At the apical s

(Fig. 2.6) the dose-dependent uptake of MTX, 

an abcc1-6 substrate, was enhanced by

specific abcc1-6 inhibitor MK571.

Basolateral inhibition of abcc1 by MK571 

ide 

 the 

 

(Table 2.2). These findings show a 

translocation of MTX both by abcc1 and 

abcc2. Indomethacin, a known abcc1 inhibitor, 

inhibited significantly MRP activity only at the 

basolateral side, where abcc1 is located 

transport of MTX from apical-to-basolateral 

ced uptake  and 

fect. 

(Table 2.2). Indomethacin tends to inhibit 

(Table 2.3) which also can be explained by 

selective inhibition of abcc1 at the basolateral 

side. This model, therefore, may allow a 

functional discrimination of the two subtypes 

abcc1, 2. MTX uptake in the cells was also 

inhibited by probenecid (Table 2.2). 

Fluorescein was used as model substrate for 

slc22a6-8 located at the basolateral side, 

transporting fluorescein from the blood into the 

cells. An inhibition of slc22a6-8 at the 

basolateral side means a redu

transport of organic anions. 

Transport of fluorescein from basolateral-to-

apical was inhibited by estrone sulfate, while PAH didn’t show any inhibitory ef

Probenecid showed a small and not significant inhibition (Table 2.3).  

Slc15a1/2 (PEPT1/2) is located at the apical side of renal proximal tubular cells and is 

Table 2.3 - Papp values after 1h. Fluore
model substrate for slc22a6-8 (OAT1
(methotrexate) for abcc1-6 (MRP1-
glycylsarcosine for slc15a1/2 (P

scein is a
-3

EPT1/2).

 
), MTX 

6) and 
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responsible for re-absorption of amino acids and oligopeptides. As a model compound, 

glycylsarcosine was used to demonstrate functional expression in our cells. Penicillin G 

(benzylpenicillin) was used as an inhibitor. Transport and uptake of glycylsarcosine could 

oximal tubular 

ells. In our cells glucose uptake could be inhibited by phlorizin (Table 2.2). 

 could 

e that slc22a8 (OAT3) expression was possibly higher than slc22a6 expression.   

stry. Abcc3 and 5 protein expression could not be shown by 

munostaining.  

 

be demonstrated in our cells and it was inhibited by penicillin (Table 2.3).  

Glucose is re-absorbed by slc5a1/2 (SGLT1/2) at the apical side of the pr

c

 

2.5.4. Uptake of fluorescein in viable cells 

With confocal microscopy it was possible to visualise the uptake of fluorescein into viable 

cells. In Fig. 2.7 the intensities are quantitatively plotted. The uptake was strongly reduced 

by addition of 200µM probenecid, 200µM estrone sulfate and 10mM penicillin (Fig. 2.7). 

With 100µM MTX and 200µM p-aminohippurate (PAH) the uptake of fluorescein was also 

inhibited (Fig. 2.7). However, the effect is not as strong as with probenecid. PAH was used 

as a slc22a6 (OAT1) inhibitor. An explanation for the lower inhibitory effect of PAH

b

 

2.5.5. Immunostaining 

In figure 2.8, staining of cells for slc4a4 (NBC1), abcb1 (P-gp), abcc (MRP) 1-3, 5 is 

shown. The presence of slc4a4, abcb1, abcc1 and abcc2 at protein level was shown by 

immunocytochemi

im
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Figure 2.5 – (A) Transport of 8.55nM digoxin with and 
without 100µM verapamil from basolateral-to-apical. (B) 
Uptake of digoxin at the basolateral side with and without 
100µM verapamil after 2h. 

Figure 2.6 - Uptake in cells at the apical side after 45 
min with different MTX concentrations. 
 

Figure 2.4  - Z-Stack of primary proximal 
tubular cells stained with ABCB1 and 
SLC4A4 starting from the apical side down 
to the basolateral side. CY3 staining (red) 
represents ABCB1 and CY2 staining 
(green) SLC4A4. 
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2.6. Discussion 
 

2.6.1. Expression of transporters on mRNA level 

The PCR bands of slc15a1 (pPEPT1) and slc22a8 (pOAT3) were located lower than they 

should be (634bp for pPEPT1 and 701 for pOAT3, Fig. 2.2). Therefore the PCR products 

of pPEPT1 and pOAT3 were sequenced and amplification of the right product was 

confirmed.   

The mRNA expression of porcine slc5a2 (SGLT2) and slc15a1 (PEPT1) was shown by 

RT-PCR and on a functional level. Slc5a2 and slc15a1 are restricted to proximal tubular 

cells only [111, 122]. Therefore, we conclude that the isolation procedure provided us with 

proximal tubular cells. In the kidney, slc5a2 and slc15a1 are restricted to the S1 segment, 

whereas slc5a1 (SGLT1) and slc15a2 (PEPT2) are restricted to the S3 segment [5, 111]. 

We did not screen our cells for porcine slc5a1, slc15a2, abcc3-6 and slc22a4/5 for mRNA 

expression since there is a lack of genetic information on these transporters in pigs.  

Slc4a4 (NBC1) is exclusively expressed at the basolateral side of the proximal tubular 

cells [37, 125]. Its specific staining provided further evidence for the proximal tubular origin 

of our cells. 
Since information about the porcine gene sequences of abcb1 (P-gp), abcc1 (MRP1), 

abcc2 (MRP2), slc15a1 (PEPT1), slc5a2 (SGLT2), slc22a1 (OCT1), slc22a6 (OAT1), 

slc22a8 (OAT3), slc4a4 (NBC1) and slco1a2 (OATP-A) was available, only mRNA 

expression of these genes was investigated in our cells. In freshly isolated cells mRNA 

expression of each of these transporters was demonstrated. Slc22a6 and slc22a1 mRNA 

expression was down-regulated in culture. A possibility to reach the „in vivo like“ 

expression of slc22a6 and slc22a1 is to induce slc22a6 gene expression with 

triiodothyronine [130], dexamethasone [131] or AST-120 [132] and slc22a1 gene 

expression with dexamethasone [133]. Another possibility is to use fresh isolated proximal 

tubular cells without culturing them for days. By this means a down regulation of 

transporters could be avoided. This should be investigated in a further series of 

experiments. 

Furthermore, abcb1, abcc1 and abcc2 mRNA expression was determined quantitatively 

showing a remarkable variability for abcc1 and abcc2, while abcb1 appeared to be 

constantly expressed in different isolations (Fig. 2.3). During culturing, abcc1 and abcc2 

were up- and down-regulated, respectively. 
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2.6.2. Protein expression 

The expression of slc4a4, abcb1, abcc1 

and abcc2 on protein level was shown 

by immunocytochemistry (Fig. 2.8A-D). 

However, abcc3 and abcc5 were not 

detected in our cells (Fig. 2.8E, F). This 

could be due to a lack of homology 

between human and porcine as we 

used antibodies against human ABCC3 

and ABCC5. To date, in pigs there is 

information available neither about 

abcc3 and abcc5 genes nor the 

respective protein structures.  

Abcb1 (P-gp) is located apically and 

slc4a4 (NBC1) basolaterally [37, 125]. 

With double-staining for abcb1 and slc4a4, the right spatial orientation of our cells growing 

on a surface could be confirmed. This gives us further evidence, that the cells are correctly 

orientated with the basolateral side on the microscope slide.  

 

Figure 2.7 - Intensity values from uptake of 1µM 
fluorescein after 30min, with 200µM probenecid, 
200µM estrone sulfate, 200µM PAH, 100µM MTX 
and 10mM penicillin.    
 

2.6.3. Tightness 

By TEER and FITC-dextran transport measurements as a negative control, we could 

ensure tightness of the monolayers for the transport and uptake assays. For the widely 

used MDCK cell line, which consists of distal tubular cells, transendothelial resistances 

were measured resulting in ∆TEER between 50-600 Ω·cm2 [128, 134-137]. Using dog 

urine extracts may increase ∆TEER in MDCK to values up to 800 Ω·cm2 [138]. According 

to Gallardo et al. [138], transepithelial resistance rises in vivo from the proximal tubular 

cells (5-8 Ω·cm2) to the distal cells (150-600 Ω·cm2) and along the collecting duct (860-

2000 Ω·cm2). In the LLC-PK1 cell line, which consists of proximal tubular cells, ∆TEER 

values range between 100-200 Ω·cm2 [134, 135, 139], while the interesting cell line HK-2 

(immortalised human proximal tubular cells) reaches a tightness of about 110 Ω·cm2 [128]. 

With the primary porcine proximal tubular cells ∆TEER values in general between 1500 

and 2500 Ω·cm2 can be obtained. With values below 900 Ω·cm2, transport assays were 

not possible: FITC-dextran was transported to a bigger extent indicating that the 
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monolayers were not confluent anymore. This cell culture model provides a much tighter 

monolayer than the other commonly used models. A higher transepithelial resistance 

means reduced paracellular transport (passive diffusion) through tight junctions. This may 

facilitate the discrimination of transport related from unspecific drug translocation. 

However, a correlation between in vivo and in vitro resistances in different parts of the 

kidney is difficult to establish. 

 

2.6.4. ABCB1 (P-gp) 

Expression of porcine abcb1 could be demonstrated on mRNA, protein and on a functional 

level. Abcb1 is located at the apical side (urine side, Fig. 2.1) and seems not to be down or 

up regulated during cultivation (Fig. 2.3A). Digoxin excretion was reduced with verapamil, 

a known abcb1 inhibitor (Fig. 2.5A). In the basolateral-to-apical experiment one would 

expect accumulation of digoxin in the cells. However, we found contrary results (Fig. 2.5B). 

Therefore, the mechanism of digoxin uptake into the cell is not completely solved. This 

may be explained by the inhibition of another not yet defined uptake mechanism of digoxin 

by verapamil at the basolateral side. One candidate of this uptake may by the human 

SLCO4C1 or a corresponding porcine transporter [87]. Its inhibition would than result in a 

decreased digoxin uptake.  

Figure 2.8 - Immunostaining of transporters, on the right bottom side corresponding negative control. 
Staining is positive for slc4a4/NBC1 (A), ABCB1/P-gp (B), ABCC1/MRP1 (C) and ABCC2/MRP2 (D).  
For ABCC3/MPR3 (E) and ABCC5/MRP5 (F) staining is negative. 
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2.6.5. ABCC1-6 (MRP1-6) 

Abcc1 and abcc2 mRNA could be shown in primary porcine proximal tubular cells even 

though abcc2 is down-regulated during culture as indicated by quantitative RT-PCR (Fig. 

2.3C). Abcc1-6 mediated transport is complex: Each result could be explained either by 

inhibition of abcc1 at the basolateral or of abcc2 at the apical side.  

Indomethacin inhibited abcc1 at the basolateral side, not at the apical side, where abcc2 is 

located (Table 2.2). Thus in this model indomethacin can be used as a selective abcc1 

inhibitor, as already described in [107, 140]. Nevertheless the system shows abcc1-6 

activity on both sides, as the uptake is enhanced with MK571 inhibition (Table 2.2), a 

selective abcc1-6 inhibitor [141, 142].  

Table 2.3 shows that apical-to-basolateral transport of MTX is inhibited with indomethacin 

which confirms that indomethacin inhibits selectively abcc1 at the basolateral side.  

 

2.6.6. Slc22a6/8 (OAT1/3) 

Slc22a6 and slc22a8 are expressed in freshly isolated cells, in cultured cells only slc22a8 

was detectable (Fig. 2.2). Fluorescein is a classical model substrate for slc22a6-8 [143]. 

They are located at the basolateral side and translocate organic anions into the cells in 

exchange for α-ketoglutarate (Fig. 2.1). As a general inhibitor of slc22a6-8 probenecid is 

used whereas estrone-sulfate inhibits slc22a8 selectively and PAH seems to be more 

selectively inhibiting slc22a6 [4]. PAH has a high affinity for porcine slc22a6 (Km =3.75µM) 

[144], whereas ES has a high affinity for rat slc22a8 (Km =2.3µM) [7]. Although no 

information on PAH affinity to porcine slc22a8 was found in the literature, a similar 

situation was described in rabbit proximal tubular cells where PAH is translocated by rabbit 

slc22a6 and not by rabbit slc22a8 and ES mainly by rabbit slc22a8 [145]. Also, in human 

SLC22A8 transfected Xenopus leaevis oocytes, ES has a higher affinity than PAH (Km 

3.1µM for ES and 87.2µM for PAH) [93]. In many species (from fish to mammals), the 

organic anion secretion system is expressed and functionally available [146]. Therefore, it 

is possible that substrate specificity and affinity remain comparable in all species. In the 

functional assay (Table 2.3), fluorescein transport could only be inhibited by ES and 

probenecid showed only a weak inhibition. This indicates the functional availability of 

porcine slc22a8. In freshly isolated cells, where slc22a6 and 8 are expressed, the 

inhibition with PAH is not as strong as with ES or probenecid (Fig. 2.7). A possible 

explanation could be that the porcine slc22a8 analogue has a higher affinity for fluorescein 
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or that functional activity of slc22a8 is higher than of porcine slc22a6. 

Interestingly, penicillin inhibits fluorescein uptake (Fig. 2.7), indicating excretion through 

slc22a6-8. MTX is not only transported through abcc1-6, but also by slc22a6-8 [6], as 

probenecid, an slc22a6-8 and abcc1-6 inhibitor [4], reduced MTX uptake at the basolateral 

side (Table 2.2). However, the transport of fluorescein, a slc22a6-8 substrate, could not be 

inhibited with 100µM MTX (Fig. 2.7). This may be explained by the fact that most data on 

transport of MTX through slc22a6-8 were generated in transfected models, where these 

transporters were over-expressed. Therefore, it is tempting to speculate that in this more 

complex and physiological model MTX translocation through slc22a6-8 seems to play only 

a minor role.  
 

2.6.7. Slc15a1/2 (PEPT1/2) 

These transporters translocate penicillin and other antibiotics, peptides and peptide-like 

substances. They are inwardly directed transporters located at the apical side of proximal 

tubular cells and play – under physiological conditions – an important role for the re-

absorption of amino acids and peptides from the urine.  

Glycylsarcosine is used as a model substrate for slc15a1/2. Whereas slc15a1 is mainly 

described as an intestinal transporter, slc15a2 is described as an renal transporter [122]. 

Although we could demonstrate slc15a1 mRNA expression (Fig. 2.2), genetic information 

on slc15a2 was to date not available. As both transporters slc15a1 and slc15a2 are 

directed inwardly into the cells at the apical side it is clear that the apical-to-basolateral 

transport of glycylsarcosine is reduced by penicillin (Table 2.3), an inhibitor of both 

transporters. On the other side, the basolateral-to-apical transport of glycylsarcosine was 

slightly enhanced by penicillin (not statistical significant, Table 2.3), as one would have 

expected.  

The uptake of glycylsarcosine at the apical side is inhibited (Table 2.2).  

 

2.6.8. Slc5a1/2 (SGLT1/2) 

Sodium-dependent glucose transporters are responsible for the re-absorption of glucose 

and other sugars. Both, slc5a1 and 2, are located at the apical side and transport sugar 

from the tubular lumen into the cell [111]. We could show their activity as glucose uptake 

at the apical membrane is significantly inhibited by phlorizin (Table 2.2), an inhibitor of 

these two transporters [111].  
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2.6.9. Transporters in other cell lines 

Parental HKC, HK-2 and MDCK were investigated for Na/HCO3 co-transporter (NBC), p-

glycoprotein (abcb1) and MRPs (abcc1-6) respectively [147-149]. A lot of information exist 

on transfected cell lines studying e.g. P-gp (abcb1), MRP2 (abcc2), OATP1B1 (sclo21a6), 

hOAT1 (SLC22A8) in MDCK [107, 108, 150], but also for LLC-PK1 [105, 106, 151] and 

HEK293 [109, 110, 118, 152] information is available. These interesting studies have 

investigated in an isolated manner the function of one to two transfected transporters in 

one cell line and seem to be useful to study, which drugs could potentially be translocated 

by the transfected transporters.  

In vivo, the situation is different, since many transporters are expressed concurrently. 

Transfecting and over-expressing of one or two drug transporters, lead to a changed in 

vitro system and ignored other possible active drug transporters. We are aware that in 

primary culture cells, the in vitro system is also changed by down- or up-regulation of drug 

transporters’ gene expression. Although we used the cells for a maximum of two weeks, 

such alteration in gene expression have been observed (see Fig. 2.3). Nevertheless, we 

could show preservation of functional expression of most of the investigated transporters 

in our unmodified system. Data on simultaneous functional expression of these drug 

transporters in parental proximal tubular cell lines, (such as LLC-PK1, HK2 and HEK293), 

are - as far as we know - to date not available. Despite these possible theoretical 

advantages of our primary cell culture model, we do not have experimental data to prove 

superiority over the commonly used cell lines. Therefore, a direct comparison of these 

models should be done using different model compounds and comparing this with in vivo 

data. However, these kind of experiments were beyond the scope of our capacity and 

facilities. 

 

2.6.10. Final conclusion 

Our model is based on a simple isolation of proximal tubular cells from readily available 

porcine kidneys. We could establish the functional validity of porcine primary proximal 

tubular cells for in vitro study. It might be an interesting tool to study in vitro drug 

elimination, tubular toxicity and drug interactions. Furthermore, it exhibits high 

transepithelial electrical resistance and thus monolayer tightness was ensured. In addition 

our model shows functional expression of the most important renal transporters for 

transport of xenobiotics simultaneously. Therefore, adverse effects resulting from drug-
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drug interactions might be investigated and/or predicted. On the other hand, it may allow 

simulating in vitro physiological processes more realistically.  

As already mentioned, primary cell cultures seem to have certain advantages compared to 

immortalised cells [103, 104]. 

Further studies are required, e.g. characterizing primary human proximal tubular cells in 

order to establish a correlation between human and pig transport activities in kidney. So 

far, the question concerning ligand specifities between human and pig transporters 

remains unanswered. However, pig kidney is apparently easy to obtain compared to 

human kidney and this species seems to be more closely related to human than rat, rabbit 

or mouse [10]. 

This in vitro model provides a basis to study the regulation of physiological transport 

processes and tubular toxicity. 
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3.1. Abstract 
Background: Breast cancer resistance protein (BCRP or ABCG2) is one of the multidrug 

resistance proteins which is currently under investigations. Its porcine homologue was 

found in brain capillary endothelial cells and therefore called brain multidrug resistance 

protein (BMDP). BCRP has shown to be responsible for chemotherapy resistances to 

various anti-cancer drugs, such as topotecan, irinotecan and mitoxantrone. To date, BCRP 

protein expression was found in several organs such as in lungs, pancreas, liver, placenta, 

intestine, urogenital system and kidney (tubular cells). The aim of this study was to 

investigate, if BMDP is functionally expressed in primary porcine proximal tubular cells 

(PPPTC). Furthermore, we wanted to investigate, if functional discrimination between 

BMDP and another multidrug resistant protein (P-gp, ABCB1) is possible. Finally, various 

drugs (antiepileptic agents, nonsteroidal anti-inflammatory drugs, proton pump inhibitors, 

caffeine, thalidomide, theophylline and dotatoc) were screened for an inhibitory effect on 

BMDP function.  

Methods: PPPTC were isolated from porcine kidneys. Expression of BMDP was measured 

at the mRNA level by quantitative RT-PCR. Protein expression of BCRP was verified with 

immunohistochemistry and Western blot analysis. Functional studies included uptake 

assays with the fluorescent BCRP substrate mitoxantrone and prazosin as inhibitor and 

various other drugs as well as the P-gp substrate digoxin with verapamil inhibitor.   

Results: In porcine proximal tubular cells, BMDP was found to be expressed at mRNA and 

protein level. Prazosin enhanced mitoxantrone uptake at the apical (urine) side, whereas 

verapamil did not show any inhibitory effect on BMDP. P-gp was functionally active, too. 

The discrimination of P-gp and BMDP activity was possible. Prazosin inhibited both, 

BMDP and P-gp function. From the tested drugs, only phenytoin inhibited BMDP. 

Conclusion: Functional expression of BMPD was shown in PPPTC. This transporter could 

potentially be involved in renal drug-drug interactions and excretion of drugs. Our study 

provides an in-vivo model based on primary porcine proximal tubular cell, which can now 

be used to test drug transport in the kidney with respect to BMDP and P-gp function.  

 

3.2. Introduction  
The breast cancer resistance protein (BCRP) is a member of the ABCG family and has a 

molecular weight of 72kDa [29, 153, 154], respectively around 70kDa [155] and authors in 

[156] even state a molecular weight of 65kDa. The porcine homologue of the human 
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BCRP was found in brain capillary endothelial cells and was named brain multidrug 

resistance protein (BMDP) with a sequence homology of 86% to the human BCRP [28].  

BCRP (ABCG2) belongs, similar to P-gp (ABCB1 alias P-glycoprotein), to the multidrug 

resistance proteins, which were first found over-expressed in tumour cells from patients 

with impaired chemotherapy [32]. Typical BCRP substrates are camptothecin derivatives 

(topotecan, irinotecan and its active metabolite SN-38, which are topoisomerase I 

inhibitors), flavopiridol, anthracyclines, the food carcinogen PhIP and the topoisomerase II 

inhibitor mitoxantrone, but not the typical P-gp substrates such as paclitaxel or vinca 

alkaloids [29, 32]. ABCG2 has been found in various normal human tissues such as 

intestine, pancreas, kidney cortex, hepatocytes and alveolar pneumocytes [30]. 

Interestingly, in human jejunum of healthy subjects the mRNA level of ABCG2 is about 

three times higher than that of P-gp [35]. Although a correlation between mRNA level and 

functional expression of the protein is difficult to establish, the latter finding indicates the 

importance of BCRP in multidrug resistance. In pig, BMDP expression was found in 

various tissues with highest expression in brain, kidney and lung [28].  

ABCG2 seem to have, similar to other multidrug resistance proteins, a protective function: 

Jonker et al. could show in [33] that Abcg2 knock-out mice developed severe to lethal 

phototoxic lesions upon ingestion of pheophorbide, a break-down product of chlorophyll, 

which occurs in plant-derived foods and food supplements. This protective function is also 

assumed for the brain, as BCRP is expressed at the blood-brain barrier [32]. 

Phenobarbital, phenytoin, ethosuximide, primidone, valproate, carbamazepine, 

clonazepam, and lamotrigine were investigated in a BCRP over-expressed MDCKII cell 

line, which is originally derived from distal tubular cells from dog, and these tested drugs 

showed no interactions with BCRP [157]. The authors conclude, that BCRP seems not to 

be responsible for therapy resistance of the tested antiepileptic drugs at the blood-brain 

barrier.  

As mentioned above, BCRP seems to be expressed in human kidney cortex. In mice, bcrp 

was found to be expressed in the brush border membrane of proximal tubules (apical 

side/urine side) [31]. Therefore, the aim of this study was to investigate if the porcine 

homologue BMDP is functionally expressed in primary porcine proximal tubular cells. This 

was investigated by quantitative RT-PCR, Western blot analysis and 

immunocytochemistry. For functional studies, the fluorescent BCRP substrate 

mitoxantrone and the inhibitor prazosin was used. Furthermore, we investigated, if we 

could discriminate P-gp and BCRP activity by using the P-gp substrate digoxin with 
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verapamil, prazosin and combination of both substances. Finally, we tested various 

antiepileptic drugs for BMDP interaction, most of them known to be excreted via the 

kidney: carbamazepine, carbamazepine-epoxide, gabapentin, lamotrigine, vigabatrine, 

phenytoin, felbamate and topiramate. Other substances were also tested which could be 

potentially excreted via kidney: acetylsalicylic acid, diclofenac, ibuprofen, indomethacin, 

fluvoxamine, clomipramine, imipramine, the proton-pump inhibitors ome-, lanso-, rabe- and 

pantoprazole, coffein, thalidomide, theophylline, yttrium- and gallium-dotatoc (dotatoc 

stands for [1,4,7,10-tetraazacyclododecane-N,N′N′′,N‴-tetraacetic-acid-D-Phe1-Tyr3]-

octreotide, a somatostatin analogue).   

 

3.3. Methods 
3.3.1. Materials 

MEM Eagle D-valine w/L-glutamine was purchased from Lucerna Chem AG (Luzern, 

Switzerland), Dulbecco’s MEM / Nut Mix F-12 (DMEM/F12), Fetal calf serum (FCS) and 

penicillin/streptomycin from Gibco Life Sciences (Basel, Switzerland), cell flask 75cm2 and 

24-well plates from BD (Franklin Lakes, USA), Fumitremorgin C from Alexis (Lausen, 

Switzerland). All other substances were purchased from Sigma/Fluka in highest quality.  
 
3.3.2. Cell Culture 

Porcine proximal tubular cells were isolated and seeded as described previously [158]. 

Cells were first seeded (1.5⋅106 cells in 75cm2 flask) in 50ml of 9.6g/1000ml MEM D-Val, 

10% FCS and 100U/ml penicillin/streptomycin and cultured for 5 days (after the first 48h 

media was changed every day). Then culturing was continued with DMEM/F12 with 10% 

FCS and 100U/ml penicillin/streptomycin until confluency was reached (about 3 days, 

media was changed every second day). The cells were incubated at 37°C in 95% air and 

5% CO2. For passaging, the monolayer was trypsinised with 10 ml (trypsin EDTA from 

Gibco) for 15 min. Then 10 ml of DMEM/F12 was added and centrifuged. After removing 

supernatant, the cell pellet was diluted in DMEM/F12. For uptake studies cells were 

transferred onto uncoated 24-well plates .  

 

3.3.3. RT-PCR for BMDP standards 

Total RNA was isolated from confluent monolayers using the RNeasy Mini Kit (Qiagen, 

Hilden. Germany). RNA was quantified with a Nanodrop Spectrophotometer (Witeg AG, 

Littau-Luzern, CH). The purity of the RNA preparations was high, as demonstrated by the 



- 58 - 

260nm/280nm ratio (range, 1.8 - 2.0). After DNAse I digestion (Invitrogen, Basel, 

Switzerland) 1µg of total RNA was reverse transcribed by SuperScript II RT-Kit (Gibco) 

according to the manufacturer's protocol using random hexamers (Perkin-Elmer) as 

primers. Gene amplification for generation of standards was performed by PCR in four 

25µl reaction units using AmpliTaq Gold DNA polymerase 1.25U (Applied Biosystems, 

Foster City, USA), dNTPs 200mM (Promega, Catalys AG, Wallisellen, Switzerland), 35ng 

cDNA (or DNA digested RNA for negative control), forward and reverse primers 0.4µM. 

The primer sequences and conditions used for BMDP (Accession no.: AJ420927) and for 

GAPDH (Accession no.: AF017079) are: BMDP forward 5′-

CTTCTCATGACCATCTCGTTTGTG-3′, BMDP reverse 5′-

CCCAAGCGGAGAGACTGATG-3′,  GAPDH forward 5`-CTTTGCCCCGCGATCTAA-3` 

and GAPDH reverse 5`-ACGATGCCGAAGTTGTCATG-3`. 

PCR was performed with Mastercycler personal (Eppendorf AG, Hamburg, Germany) 

using the following program: 1. step: 95°C over 10min, 2. step: 95°C over 30s, 3. step: 

annealing temperature.: 60°C for BMDP and 52°C for GAPDH, 4. step: 72°C over 1 min, 5. 

step: 72°C over 10 min, 6. step: cooling at 4°C. Steps 2 - 4 were repeated 44 respectively 

39 times. PCR products were detected with agarose-gel electrophoresis using an agarose 

concentration of 1.5% (w/v) (Invitrogen) and 0.5µg/ml ethidium bromide. The gel was run 

at 120V for 50min.  

 

3.3.4. Real-time Polymerase Chain Reaction (TaqMan® Assay) 

At the end of the culture period, medium was removed, total RNA was extracted and 

reverse transcribed as described above. TaqMan analysis was carried out on an Abi Prism 

7900 Sequence Detection System (Applied Biosystems, Rotkreuz, Switzerland). PCR 

conditions were 10min at 95°C followed by 40 cycles of 15s at 95 °C and 1min at 60°C. 

Each TaqMan reaction contained 10ng of cDNA in a total volume of 10µl. TaqMan 

Universal PCR Mastermix from Eurogentec (Geneva, Switzerland) was used. The 

concentrations of primers and probes were 900nM and 225nM, respectively. Primers and 

probes were designed according to the guidelines of Applied Biosystems with help of the 

Primer Express 2.0 software. Primers were synthesised by Invitrogen (Basel, Switzerland), 

probes by Eurogentec (Seraing, Belgium). All samples were run in triplicates. A standard 

curve was generated by serial dilutions of cDNA. The dilution of the latter cDNA was 

expressed by the respective dilution value. Ct (threshold cycle) values of standards were 

plotted against the log of the respective dilution factors. Slope and y-intercept of the 
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standard curve line were then calculated by linear regression and used to calculate the 

input amount for unknown samples for respective genes. To standardise the amount of 

sample cDNA added to the reaction the calculated amount of the gene of interest was 

divided by the calculated amount of the constitutively expressed glyceraldehydes-3-

phosphate dehydrogenase (GAPDH) gene in the sample. These normalised amounts were 

then used to compare the relative amount of target in different samples. All samples 

expressed GAPDH at same Ct values (20.18 ± 0.08). GLP-1R standard was generated 

using the respective Taqman primers without probe. PCR product was detected as 

described above on a 3% agarose gel.  

Following Taqman primers and probe have been used: GADPH probe 5'-

CGCCTGGTCACCAGGGCTGC-3', GAPDH forward 5'-GTTGAAGGTCGGAGTGAACG-3', 

GAPDH reverse 5'-CGACAATGTCCACTTTGCCA-3', BMDP probe 5’-

CGTCACAACAAACAATAC-3’, BMDP forward 5’-AACTTCTGCCCGGGACTCA-3, BMDP 

reverse 5’-GCCAGTACATATTGCGAAGCTACA-3.  

 

3.3.5. Sequencing of GAPDH and BMDP PCR products 

PCR was performed as described above. After detecting the bands on an agarose gel, 

they were cut out with a sterile scalpel. The PCR product was then extracted from the gel 

slice with the Qiaquick Gel extraction kit (Qiagen, Hilden, Germany) according to the 

manufacturer’s description. After quantification of DNA with Quant-iT™ Picogreen dsDNA 

Assay Kit (Molecular Probes, Leiden, The Netherlands), the probes were sent to 

Microsynth AG (Balgach, Switzerland) for sequencing. Correct sequences were confirmed 

by nucleotide-nucleotide blast at www.ncbi.nlm.nih.gov/BLAST/ (data not shown).  

 
3.3.6. Confocal microscopy 

For immunostaining, cells grown in Chamberslides® (Nalge Nunc International, Rochester, 

NY, USA) were used. Cells were washed 3x with PBS and fixed for 20 minutes with 4% 

(w/v) paraformaldehyde in PBS. After washing 3x with PBS, tissues were permeabilised 

for 5min with 0.5% (v/v) Triton X-100 in PBS. For immunostaining, cells were incubated for 

one hour at 37°C in a humid chamber with the primary antibody dissolved in PBS 

supplemented with 3% (v/v) FCS (foetal calf serum). After washing three times with PBS, 

the fluorochrome conjugated secondary antibody dissolved in PBS supplemented with 3% 

FCS was added for one hour at room temperature, in a dark chamber. Stained cells were 

then washed three times with PBS and mounted with FluorSave® (Calbiochem, San 
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Diego, CA). Fluorescence stained cells were examined on a confocal Zeiss LSM 150 

inverted laser scanning microscope (Carl Zeiss, Oberkochen, Germany). The image was 

400x magnified. Fluorescence was detected with a wavelength for excitation at 488 nm 

and for emission between 505-550nm.  

Monoclonal antibody to human BCRP from mouse (BXP-21) used for these experiments 

was purchased from Alexis (Lausen, Switzerland). The dilution ratio was 1:50 in PBS with 

3% FCS. 

The following secondary fluorescent antibody was used (Jackson Immuno Research) and 

diluted in PBS with 3% FCS: CY2 AffiniPure goat anti mouse IgG (H+L) with a dilution rate 

of 1:50 and a final concentration of 5 µg/ml. 

3.3.7. Western blot analysis 

Proximal tubular cells were cultured in a 25cm2 cell culture flask from BD (Franklin Lakes, 

USA) until confluency was reached. Then proteins were extracted with 300µl protein 

extraction buffer (20mM Tris-HCl, 1% Igepal CA-630, 0.5mM sodium orthovanadate) 

including 1mM phenylmethylsulfonyl fluoride (Sigma-Aldrich, St. Louis, MO, USA) and 

protease inhibitor cocktail tablet, Complete Mini (Roche Diagnostics, Germany). The 

quantification of the protein content was performed with the BCA protein assay kit (Pierce 

Chemical, Rockford, IL, USA). Protein concentration was determined by measuring the 

absorbance at 562nm with Spectra MAX 250 Microplate Spectrophotometer (Molecular 

Devices Corporation, California, USA).  

For immunoblotting, lane A: 66µg, lane B: 35µg and lane C: 100µg (Fig. 3.2) of total 

protein extract was mixed with Laemmli sample buffer (Bio Rad Laboratories, Reinach, 

Switzerland) and transferred to the polyacrylamide gel. Gel electrophoresis was performed 

with a Mini Protean 3 Electrophoresis Cell (Bio Rad) applying 80V for 15min for the 

stacking gel (4% polyacrylamide) and 120V for 1hour for the separating gel (7.5% 

polyacrylamide). After electrophoresis, proteins were blotted to the nitrocellulose 

membrane (250mA for 2.5 hours) using a Mini Trans-Blot Cell (Bio Rad). Protein transfer 

was verified by Ponceau S staining. The membrane was blocked overnight at 4°C with 

PBS containing 5% milk powder and 0.05% Tween 20. After washing three times for 15 

minutes (0.05% Tween and 1% milk powder in PBS), the membrane was incubated for 2 

hours at 37°C with the primary, mouse anti-human antibody against BCRP, 5µg/ml (Alexis, 

Lausen, Switzerland) diluted 1:200 in PBS containing 0.05% Tween and 1% milk powder. 

After the first incubation, the membrane was washed three times for 15min and then 

incubated with the secondary, horseradish peroxidase-conjugated rabbit anti-mouse IgG 
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(Dako, Santa Barbara, CA) diluted 1:500. Secondary antibody incubation was performed 

for one hour at room temperature. Membranes were washed, and BCRP detection was 

performed with the enhanced chemiluminescence system (ECL-Detection-Kit, Amersham). 

The molecular weight was identified by using molecular weight Precision Plus Protein Dual 

Colour Standard (Bio Rad).  

 

3.3.8. Functional assays 

For functional assays, 24-well plates were used (BD). At time t = -30min, pre-warmed 

HBSS (Gibco) with 1mM MEM sodium pyruvate (Gibco), pH 7.4, with and without inhibitor 

was added to the well (apical side facing the solution). The whole system was kept at 

constant temperature (37°C). At time1 = 0min, media was changed, containing HBSS with 

1mM sodium pyruvate, mitoxantrone with and without inhibitor. After two hours, media was 

removed and cells were washed twice with HBSS/sodium pyruvate and incubated for 

30min with 5% Triton-X. Then supernatant was removed and transferred into a 96well 

plate (Perkin Elmer, Schwerzenbach, Switzerland). Fluorescence detection of 

mitoxantrone was performed with SpectraMax Gemini XS with Softmax Pro 3.1 from 

Molecular Devices (California, USA) at a excitation wavelength of 610nm, emission filter at 

685.  

 

3.3.9. Statistical analysis 

Statistical significance was investigated with t-test (two-tailed distribution with unequal 

variances). A probability of p<0.05 was defined as statistically significant. All transport 

studies were performed with primary cells obtained from two pigs. Each transport assay 

was performed in triplicate if not mentioned otherwise. Results are represented as the 

mean ± SEM. 
 

3.4. Results 
Expression of the brain multidrug resistance protein (BMDP) in porcine proximal tubular 

cells was detected by means of quantitative RT-PCR (Fig. 3.1). Interestingly, after 

incubation of cell culture (two weeks), the BMDP mRNA expression was down-regulated 

and, at the end of the third week, expression reached the initial expression level again.  

Protein expression was confirmed by Western blot analysis: A band of approximately 

72kDa, corresponding to the expected molecular mass for  the monomeric ABCG2, was 

detected (Fig. 3.2, lane A and B). As positive control, we used the human brain capillary 
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endothelial cell line BB19 (Fig. 3.2, lane 

C). The detected band at 140kDa 

represents the dimeric form of ABCG2. 

Further evidence for protein expression 

in proximal tubular cells was given by 

immunohistochemistry (Fig. 3.3). 

Functional activity of the breast cancer 

resistance protein (BCRP) respectively 

BMDP was shown by enhanced 

mitoxantrone uptake with the BCRP 

inhibitor prazosin (Fig. 3.4). No effect 

was detected with the P-gp inhibitor verapamil and the other BCRP inhibitor fumitremorgin 

C (FTC). The results in Fig. 3.5 show, as expected, an enhanced digoxin uptake with 

verapamil. However, the higher digoxin uptake with prazosin was somewhat surprising, 

which was even slightly higher in combination with verapamil (Fig. 3.5). The difference in 

inhibition between 100µM verapamil and 50µM prazosin was statistically significant 

(p<0.01), whereas the combination of prazosin and verapamil gave a slightly stronger 

Figure 3.1 - Quantitative PCR (Taqman): absolute 
quantification of BMDP mRNA in porcine proximal 
tubular cells at different days. 0d: freshly isolated 
cells without seeding them for culturing. Expression 
of mRNA was normalised to GAPDH. Data were 
pooled from two independent experiments, n=6.  
 

Figure 3.3 - Confocal microscopy: 
Immunostaining of BCRP with CY2 (green) and 
negative control. Size bar represents 50 µm 

Figure 3.2 - Western blot analysis of BCRP. 
Lane A and B: porcine proximal tubular cells, 
derived from two different isolations, lane C 
represents proteins from the human BB19 cell 
line. The monomeric form of BCRP has a 
molecular weight of around 70kDa.  
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inhibition of P-gp than prazosin alone, but this difference was statistically not significant 

(p=0.48). 

Screening of various antiepileptic agents for BCRP respectively BMDP inhibition showed 

only for phenytoin an effect (Fig. 3.6). Other substances, such as non-steroidal anti-

inflammatory drugs (NSAIDs), anti-depressants, and proton-pump inhibitors (PPIs), 

showed no significant inhibitory effect on BMPD, although a tendency was seen for 

ibuprofen, indomethacin and fluvoxamine (Fig. 3.7). Contrary to expectations, co-

incubation with diclofenac, caffeine, thalidomide, theophylline and gallium-dotatoc lead to a 

reduction of mitoxantrone concentration in the cells. This might be explained by inhibiton of 

mitoxantrone uptake through an unknown transport mechanism.  

  

 
 
 
 

Figure 3.4 - Mitoxantrone uptake at the apical side after 2h, cells were pre-incubated with the inhibitors 
for 30 minutes. MIT = mitoxantrone, Praz = prazosin, Verap = verapamil, FTC = fumitremorgin C,  
* p<0.05, ** p<0.01, *** p<0.001.  
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3.5. Discussion 
In mice and human, evidence exists 

for BCRP expression at the apical 

side of renal proximal tubules [31, 

33, 159, 160]. The objective of this 

study was to investigate, if  primary 

porcine proximal tubules do express 

the porcine homologue of BCRP, 

namely BMPD, at mRNA, protein 

level and if BMDP is functionally 

active.  

Expression at mRNA level was 

confirmed by quantitative RT-PCR, 

showing first a down-regulation of 

mRNA BMDP expression in the first 17 days during culturing and then reaching the initial 

level after 20 days (Fig. 3.1). If one can assume a correlation between mRNA and protein 

expression, it would have been optimal to perform functional assays either with fresh cells, 

which is difficult to perform without a confluent monolayer or cells which have been 

cultured around 20 days. Uptake experiments were performed between day 12-15, two 

experiments at day 24. At day 17, the effects were less pronounced. However, in cultured 

cells, protein expression was confirmed by Western blot analysis (Fig. 3.2) and by 

immunohistochemistry (Fig. 3.3). BCRP is known to be functional as a homodimer with 

disulfide bonds in between and a molecular weight of 130 respectively 140kDa. 

Accordingly, the BCRP monomer (“half transporter”) has a molecular weight of 65 

respectively 70kDa [156, 161]. Interestingly, the porcine proximal tubular cells seem to 

express the BMDP monomer, as the Western blot analysis was performed under non-

reducing conditions (Fig. 3.2 lane A and B). However, the BB19 cells seem to express 

mainly the dimer protein at 140kDa (Fig. 3.2 lane C). Intriguingly, [Arg482] ABCG2 is 

capable of translocating methotrexate even in presence of 10mM mercaptoethanol, a 

reducing agent breaking the disulfide bonds, indicating that ABCG2 may be to a certain 

extent functional as a monomer [162]. This latter finding seem to be the case in porcine 

proximal tubular cells, although it can not be excluded, that the half transporter BMDP 

spontaneously builds dimers in the membrane prior translocating substrates.      

 

Figure 3.5 - H3-Digoxin uptake at the apical side after 2h, 
cells were pre-incubated with the inhibitors verapamil 
(Verap), prazosin (Praz) and combined for 30 minutes. 
Cpm = counts per minute, ** p<0.01, *** p<0.001, n=6. 
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In order to test whether BMDP is functional available, the known BCRP substrate 

mitoxantrone was used in different concentrations with prazosin as inhibitor. In various cell 

lines, mitoxantrone was used in a concentration of 20µM [163]. Therefore, we used 50, 25 

and 10µM mitoxantrone for the first screening (Fig. 3.4). In literature, prazosin was used as 

an ABCG2 inhibitor with concentrations ranging from 1-50µM [156, 164-166]. We used 

prazosin at the highest concentration of 50µM. As mentioned in the beginning, in humans 

and in mice, BCRP is located at the apical side of the proximal tubules. Therefore, we 

assumed the same location in porcine tubules. All uptakes were performed in well plates, 

thus the apical side of these cells faces the solution, as already shown in [158]. The 

authors showed in [31], that in mice bcrp is involved in renal secretion of organic 

sulphates. Taking this into account, an inhibition of this transporter at the apical side would 

result in a reduced secretion of the substrates and accumulation in the tubule cells and in 

blood.  

Figure 3.6 - Mitoxantrone uptake at the apical side after 2h, cells were pre-incubated with 
antiepileptic agents for 30 minutes. Mitox = mitoxantrone, carba = carbamazepine, carba-epoxide 
= carbamazepine-10, 11-epoxide, * p<0.05, *** p<0.001, n=5. 
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Figure 3.7 - Mitoxantrone uptake at the apical side after 2h, cells were pre-incubated with various drugs 
for 30 minutes. Mitox = mitoxantrone, ASS = acetylsalicylic acid, Y = yttrium, Ga = gallium, * p<0.05,  
** p<0.01, n=4. 
 

In Fig. 3.4, it is shown, that mitoxantrone accumulated in porcine proximal tubular cells in 

the presence of prazosin, indicating the apical localisation of BMDP extruding substrates 

into lumen respectively into urine. Verapamil was given at a concentration of 100µM to 

exclude a P-gp mediated effect on mitoxantrone uptake, as verapamil is a known P-gp 

inhibitor, but no inhibitor of BCRP [160]. Fumitremorgin C (FTC), is reported to be likewise 

a BCRP inhibitor (Fig. 3.4) [167, 168].  One possible explanation could be, that FTC does 

not bind to the porcine BMDP. However, in other cell lines with human origin (BB19 and 

Caco) an inhibitory effect of FTC on BCRP could not be observed (data not shown). These 

cell lines were not over-expressing BCRP, another possible explanation for the lacking 

effect, that findings for FTC as a BCRP inhibitor was established mostly in over-expressing 

cells. Finally, the affinity of mitoxantrone to BMDP could be higher than that of FTC, thus 

preventing the expected interaction. 

The inhibitory effect of prazosin on BMDP seems to be maximal below 25µM  

mitoxantrone. Therefore, we performed further evaluation uptake assays with 20µM, 10µM 

mitoxantrone and 50µM prazosin (data not shown).  We have chosen 20µM mitoxantrone, 
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due to the better signal to noise ratio than with 10µM. Therefore, we decided to use 20µM 

mitoxantrone as final concentration for further experiments.  

 

As already shown in [158], P-gp is located at the apical side of porcine proximal tubules. 

Therefore, the principles of uptake and its inhibition are similar to BCRP: P-gp extrudes 

drugs out of the cell into urine. Inhibition of this transporter with verapamil resulted in an 

accumulation of digoxin in the cells, as shown in figure 3.5. Interestingly, prazosin was 

capable of inhibiting extrusion of digoxin much stronger than verapamil. It was shown, that 

digoxin is not translocated by BCRP although digoxin can inhibit BCRP [155]. Therefore, it 

can be excluded that the inhibitory effect of prazosin could be due to translocation of 

digoxin by BCRP. Furthermore, verapamil seems to be a relatively selective inhibitor for P-

gp compared to BCRP [160] and mitoxantrone uptake was not influenced by verapamil 

(Fig. 3.4). Prazosin again is not translocated by P-gp (as well as mitoxantrone) but 

prazosin could inhibit digoxin transport through P-gp as shown in Fig. 3.5 [165]. 

Interestingly, combination of verapamil and prazosin increased digoxin uptake slightly 

more than with prazosin alone, although this effect was not statistically significant. 

However, this latter finding is indicative that prazosin inhibits both P-gp and BCRP.   

 

In order to test a possible interaction of antiepileptic agents with BMDP in proximal tubular 

cells, we used concentrations of these drugs which are four-fold higher than the highest 

therapeutic blood concentrations. Although data already exists regarding BCRP and 

antiepileptic agents, we extended the “drug list” with some other not yet tested drugs which 

could be of potential relevance in the renal excretion [157]. Prazosin served as positive 

control for BCRP activity, whereas verapamil excluded a possible P-gp effect of 

mitoxantrone (Fig. 3.6). Only phenytoin showed an increased uptake of mitoxantrone 

indicating the possibility to inhibit BCRP/BMDP at least at high concentrations. With 

100µM phenytoin, no inhibitory effect could be shown (data not shown). We elucidated the 

possibility, that phenytoin is not only an inhibitor but also a substrate of BMDP. However, 

this hypothesis could not be confirmed with apical to basolateral transport (data not 

shown). Therefore, these results are in accordance with [157] and identify further 

antiepileptic drugs which are not inhibiting BCRP/BMDP (carbamazepine-10, 11-epoxide, 

gabapentin, vigabatrin, felbamate and topiramate). 
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In the next step, we tried to screen for further substances that might interact with 

BMDP/BCRP in proximal tubular cells (Fig. 3.7). So far, the tested NSAIDs, 

antidepressants, PPIs, caffeine, theophylline, thalidomide and both dotatocs showed no 

effect. Solely, ibuprofen, indomethacin and fluvoxamine showed a tendency to enhance 

mitoxantrone uptake, but this was not statistically significant. Interestingly, some 

substances were able to inhibit mitoxantrone uptake significantly (diclofenac, caffeine, 

thalidomide, theophylline and gallium-dotatoc). However, the mechanism of apical 

mitoxantrone uptake into proximal tubular cells is not yet completely resolved.  

 

In summary, our study could show for the first time expression of the porcine analogue of 

BCRP, the so called BMDP, in primary proximal tubular cells at mRNA, protein and 

functional level. In this porcine model, as described in [158], the concurrent expression of 

a further drug transporter enhances the possibility to reach a more realistic in vitro model 

as various drug transporters are expressed simultaneously. In order to compare the 

functional acitivity of the porcine transporter with the human BCRP, further investigations 

should be performed with the known BCRP substrates PhIP and prazosin. Then, possible 

interactions of drugs due to BMDP/BCRP in this in-vitro model must be compared with the 

in-vivo situation. Therefore clinical studies in human subjects are necessary. 

However, with this model it is now possible to screen various drugs regarding 

BCRP/BMDP and P-gp activity.  
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4.1. Abstract 
Background: GLP-1 is secreted into the circulation after food intake. The main biological 

effects of GLP-1 include stimulation of glucose dependent insulin secretion and induction 

of satiety feelings. Recently, it was demonstrated in rats and humans that GLP-1 can 

stimulate renal excretion of sodium. Based on these data, the existence of a renal GLP-1 

receptor (GLP-1R) was postulated. However, the exact localisation of the GLP-1R and the 

mechanism of this GLP-1 action have not yet been investigated.  

Methods: Primary porcine proximal tubular cells were isolated from porcine kidneys. 

Expression of GLP-1R was measured at the mRNA level by quantitative RT-PCR. Protein 

expression of GLP-1R was verified with immunocytochemistry, immunohistochemistry and 

Western blot analysis. Functional studies included transport assessments of sodium and 

glucose using three different GLP-1 concentrations (200pM, 2nM and 20nM), 200pM 

exendin-4 (GLP-1 analogue) and an inhibitor of the dipeptidylpeptidase IV (DPPIV) 

enzyme (P32/98 at 10µM). Finally, the expression of NHE3, the predominant Na+/H+ 

exchanger in proximal tubular cells, was also investigated. 

Results: GLP-1R, NHE3 and DPPIV were expressed at the mRNA level in porcine 

proximal tubular kidney cells. GLP-1R expression was confirmed at the protein level.  

Staining of human and pig kidney cortex revealed that GLP-1R was predominantly 

expressed in proximal tubular cells. Functional assays demonstrated an inhibition of 

sodium re-absorption with GLP-1 after three hours of incubation. Exendin-4 and GLP-1 in 

combination with P32/98 co-administration had no clear influence on glucose and sodium 

uptake and transport. 

Conclusion: GLP-1R is functionally expressed in porcine proximal tubular kidney cells. 

Addition of GLP-1 to these cells resulted in a reduced sodium re-absorption. GLP-1 had no 

effect on glucose re-absorption. We conclude that GLP-1 modulates sodium homeostasis 

in the kidney most likely through a direct action via its GLP-1R in proximal tubular cells. 
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4.2. Introduction 
Glucagon-like peptide 1 (GLP-1) is a hormone secreted from intestinal L-cells after food 

intake. The peptide is synthesised as a pre-proglucagon molecule that is subsequently 

metabolised to GLP-1 [169-171]. Different molecular forms of GLP-1 exist: GLP-1 7-36 

and 7-37 amide are bioactive forms [172], whereas GLP-1 9-36 and 9-37 amide are 

inactive metabolites [173].  In the following, we refer to the bioactive form GLP-1(7-36), if 

not stated otherwise. The GLP-1 receptor (GLP-1R) is a class B heptahelical G-protein-

coupled receptor with a molecular weight between 62-65kDa [174-180]. Upon GLP-1 

binding, adenylate cyclase is activated and intracellular cAMP is generated [180].  

 

The main effect of GLP-1 is stimulation of glucose-dependent insulin secretion from 

pancreatic β-cells thereby lowering blood glucose levels [181]. In vivo, GLP-1 is rapidly 

degraded by dipeptidylpeptidase IV (DPPIV) resulting in a short half-life of about two 

minutes [182]. Interestingly, DPPIV is highly expressed in renal proximal tubular cells and, 

therefore, can be used as a specific marker for these cells [183-186].  

 

Further effects of GLP-1 include induction of satiety and reduction of energy intake, both in 

healthy volunteers and in patients with diabetes type 2 [173, 187, 188].  

 

Furthermore, in rats and humans, exogenous administration of GLP-1 has a natriuretic 

effect [188-190]. In the kidney, about 60-70% of excreted sodium is re-absorbed in the 

proximal nephron, mainly by paracellular pathway and by a Na+/H+ exchanger (NHE3; 

SLC9A3) [191]. NHE3 exists in multimeric complexes with DPPIV at the apical side of the 

proximal tubular cells [57, 58], but the exact mechanism for this action has not been 

elucidated.   

 

The aim of the study was therefore 1) to screen human, pig kidney cortex and porcine 

proximal tubular cells for GLP-1R expression, 2) to characterise the effect of GLP-1 on 

porcine kidney cells on sodium and glucose re-absorption. Primary porcine proximal 

tubular cells were used to characterise GLP-1R expression by means of RT-PCR for the 

detection at mRNA level and immunoassays (Western-blot, immunohisto- and 

cytochemistry) for the detection at protein-level. For sodium transport measurements a 

fluorescence marker was used and for glucose transport measurements radioactive 

labelled 3H-Glucose.  
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4.3. Materials and Methods 
4.3.1. Materials 

MEM Eagle D-valine w/L-glutamine was purchased from Lucerna Chem AG (Luzern, 

Switzerland), Dulbecco’s MEM/Nut Mix F-12 (DMEM/F12), Fetal calf serum (FCS) and 

penicillin/streptomycin from Gibco Life Sciences (Basel, Switzerland), cell flask 75cm2 from 

BD (Franklin Lakes, USA), GLP-1 7-36 from Bachem (Bubendorf, Switzerland). P32/98 

was a kind gift from Dr. H.-U. Demuth from Probiodrug (Halle/Saale, Germany). All other 

substances were purchased from Sigma/Fluka in highest quality.  
 

4.3.2. Cell Culture 

Porcine proximal tubular cells were isolated and seeded as described previously [158]. 

Cells were first seeded (1.5⋅106 cells in 75cm2 flask) in 50ml of 9.6g/1000ml MEM D-Val, 

10% FCS and 100U/ml penicillin/streptomycin and cultured for 5 days (after the first 48h 

media was changed every day). Then culturing was continued with DMEM/F12 with 10% 

FCS and 100 U/ml penicillin/streptomycin until confluency was reached (about 3 days, 

media was changed every second day). The cells were incubated at 37°C in 95% air and 

5% CO2. For passaging, the monolayer was trypsinised with 10 ml (trypsin EDTA from 

Gibco) for 15 min. Then 10ml of DMEM/F12 was added and centrifuged. After removing 

supernatant the cell pellet was diluted in DMEM/F12. For transport studies cells were 

transferred on uncoated Transwell filter cell culture systems and for incubation studies on 

uncoated 6-well plates. In order to investigate the effect of glucose on the mRNA 

expression, cells were incubated, after passaging, in MEM D-Val, 10% FCS and 100U/ml 

penicillin/streptomycin containing 5mM Glucose and 15.6mM Glucose (corresponding 

glucose concentration of DMEM/F12) by adding from a 5M sterile filtered glucose solution.   

 

4.3.3. RT-PCR 

For quantitiative RT-PCR standards were generated for the genes NHE3 and DPPIV. 

Therefore, total RNA was isolated from confluent monolayers using the RNeasy Mini Kit 

(Qiagen, Hilden. Germany). RNA was quantified with a Nanodrop Spectrophotometer 

(Witeg AG, Littau-Luzern, CH). The purity of the RNA preparations was high, as  
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Gene 
RT-PCR Primers 

Accession no. Forward primer 
Reverse primer  

GAPDH AF017079 5`-AGATCATCAGCAATGCCTCCTG-3` 

5`-GAGCTTGACAAAGTGGTCGTTG-3` 

DPPIV AY198323 5’-TCCTACCAAATCGTTCCTCCG-3’ 

5’-GCTAAGGCACGTCACTTTTGTGTA-3’ 

slc9a3 AF123280 
 

5’-AAGTACGTGAAGGCCAACATCTC-3’ 

5’-TTCTCCTTGACCTTGTTCTCGTC-3’ 

Gene 

Taqman primers and 

probes 

 

Accession no. 

Forward primer  

Reverse primer  

Probe  

GAPDH AF017079 5’-GTTGAAGGTCGGAGTGAACG-3` 

5’-CGACAATGTCCACTTTGCCA-3` 

5’-CGCCTGGTCACCAGGGCTGC-3`  

GLP-1R CV871385 5`-TACTTCTGGCTGCTGGTGGAG-3` 

5`-ACCCCAGCCTATGCTCAGGTA-3` 

5`-ACCTGTACACGCTGCTGGCCCTGTC-3` 

DPPIV AY198323 5'-ATTTCCTCAGTGGCCCGG-3' 

5'-TCTGCAGGCCTAAATCTTCCA-3' 

5'-AACACATTGAAATCAGTACCACTGGCTGGG-3 

slc9a3 AF123280 
 

5`-GGACCCGCTCATCTGGAA-3` 

5`-ACCCGGTACACGGAGATAAAGAC-3` 

5`-AACACAGCCTTTGTGCTCCTGACGC-3` 

Table 4.1 - Sequences of porcine primers and probes 

demonstrated by the 260/280nm ratio (range, 1.8 - 2.0). After DNAse I digestion 

(Invitrogen, Basel, Switzerland) 1µg of total RNA was reverse transcribed by SuperScript II 

RT-Kit (Gibco) according to the manufacturer's protocol using random hexamers (Perkin-

Elmer) as primers. Gene amplification for generation of standards (except GLP-1R, see 

under Real Time PCR) was performed by PCR in four 25µl reaction units using AmpliTaq 

Gold DNA polymerase 1.25U (Applied Biosystems, Foster City, USA), dNTPs 200mM 

(Promega, Catalys AG, Wallisellen, Switzerland), 35ng cDNA (or DNA digested RNA for 

negative control), forward and reverse primers 0.4µM. The primer sequences, which were 

designed with Primer Express V 2.0 from Applied Biosystems, are displayed in table 4.1. 

Mg2+ concentration was 3mM for SLC9A3, DPPIV and GAPDH (glyceraldehyde 3-

phosphate dehydrogenase). 

 

PCR was performed with Mastercycler personal (Eppendorf AG, Hamburg, Germany) 

using the following program: 1. step: 95 °C over 10 min, 2. step: 95 °C over 30 s, 3. step: 

annealing temperature.: 55 °C, 4. step: 72 °C over 1 min, 5. step: 72 °C over 10 min, 6. 

step: cooling at 4 °C. Steps 2 - 4 were repeated 44 times. PCR products were detected 
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with agarose-gel electrophoresis using an agarose concentration of 1.5% (w/v) (Invitrogen) 

and 0.5µg/ml ethidium bromide. The gel was run at 120V for 50min.  

 

4.3.4. Real-time Polymerase Chain Reaction (TaqMan® Assay) 

At the end of the culture period, medium was removed, total RNA was extracted and 

reverse transcribed as described above. TaqMan analysis was carried out on an Abi Prism 

7900 Sequence Detection System (Applied Biosystems, Rotkreuz, Switzerland). PCR 

conditions were 10min at 95°C followed by 40 cycles of 15s at 95°C and 1min at 60°C. 

Each TaqMan reaction contained 10ng of cDNA in a total volume of 10µl. TaqMan 

Universal PCR Mastermix from Eurogentec (Geneva, Switzerland) was used. The 

concentrations of primers and probes were 900nM and 225nM, respectively. Primers and 

probes were designed according to the guidelines of Applied Biosystems with help of the 

Primer Express 2.0 software (Table 4.1). Primers were synthesised by Invitrogen (Basel, 

Switzerland), probes by Eurogentec (Seraing, Belgium). All samples were run in triplicates. 

A standard curve was generated by serial dilutions of cDNA. The dilution of the latter 

cDNA was expressed by the respective dilution value. Ct values of standards were plotted 

against the log of the respective dilution factors. Slope and y-intercept of the standard 

curve line were then calculated by linear regression and used to calculate the input 

amount for unknown samples for respective genes. To standardise the amount of sample 

cDNA added to the reaction the calculated amount of the gene of interest was divided by 

the calculated amount of the constitutively expressed glyceraldehydes-3-phosphate 

dehydrogenase (GAPDH) gene in the sample. These normalised amounts were then used 

to compare the relative amount of target in different samples. All samples expressed 

GAPDH at same CT values (20.18 ± 0.08). GLP-1R standard was generated using the 

respective Taqman primers without probe. PCR product was detected as described above 

on a 3% agarose gel.  

 

4.3.5. Sequencing of SLC9A3 (NHE3), DPPIV, GLP-1R and GAPDH PCR products 

PCR was performed as described above. After detecting the bands on an agarose gel, 

they were cut out with a sterile scalpel. The PCR product was then extracted from the gel 

slice with the Qiaquick Gel extraction kit (Qiagen, Hilden, Germany) according to the 

manufacturer’s description. After quantification of DNA with Quant-iT™ Picogreen dsDNA 

Assay Kit (Molecular Probes, Leiden, The Netherlands), the probes were sent to 
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Microsynth AG (Balgach, Switzerland) for sequencing. Correct sequences were confirmed 

by nucleotide-nucleotide blast at www.ncbi.nlm.nih.gov/BLAST/ (data not shown). 

 
4.3.6. Confocal microscopy 

For immunostaining, cells grown in Chamberslides® (Nalge Nunc International, Rochester, 

NY, USA) were used. Cells were washed 3x with PBS and fixed for 20 minutes with 4% 

(w/v) paraformaldehyde in PBS. After washing three times with PBS, tissues were 

permeabilised for 5min with 0.5% (v/v) Triton X-100 in PBS. For immunostaining, cells 

were incubated for one hour at 37°C in a humid chamber with the primary antibody 

dissolved in PBS supplemented with 3% (v/v) FCS (foetal calf serum). After washing twice 

with PBS, the fluorochrome conjugated secondary antibody dissolved in PBS 

supplemented with 3% FCS with or without 60µg/ml propidium iodide was added for one 

hour at room temperature, in a dark chamber. Stained cells were then washed three times 

with PBS and mounted with FluorSave® (Calbiochem, San Diego, CA). Fluorescence 

stained cells were examined on a confocal Zeiss LSM 150 inverted laser scanning 

microscope (Carl Zeiss, Oberkochen, Germany). All pictures are 400x magnified. 

Fluorescence was detected with wavelengths for excitation at 488nm (CY2) and 543nm 

(propidium iodide), for emission between 505-550nm and 560-615nm, respectively.  

 

Polyclonal antibody to human GLP-1R from rabbit used for these experiments was 

purchased from Acris Antibodies (Hiddenhausen, Germany). Dilution ratio was 1:100 in 

PBS with 3% FCS. 

 

The following secondary fluorescent antibody was used (Jackson Immuno Research) and 

diluted in PBS with 3% FCS: GLP-1R CY2 AffiniPure Goat Anti Rabbit IgG (H+L) with a 

dilution rate of 1:25.  

4.3.7. Immunohistochemistry 

Formalin-fixed, paraffin embedded specimens were used for the immunohistochemical 

analysis by the avidin-biotin-peroxidase complex method (ABC Vectastain, Vector 

Laboratories, Burlingame, CA, USA).  

 

For experiments, 5 µm sections of kidney cortex were dewaxed and rehydrated in 

UltraClear (J.T. Baker, Deventer, Holland) for 30min, in 100, 96, 70% ethanol (each step 
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2-3min) and afterwards put into methanol with 0.3% H2O2 for 30min. After washing with 

PBS, protein kinase K 0.05% was applied for 5 min. As blocking agent horse serum was 

used for GLP-1R and BSA 1% in PBS for DPPIV and co-staining. Further steps were 

conducted according to manufacturer’s description. Negative controls for immunostaining 

were obtained by substituting the primary antibodies for PBS. Chromogenic detection was 

performed with 3,3-diaminobenzidine (DAB) for GLP-1R using horse radish peroxidase 

and fast red for DPPIV using alkaline phosphatase. Counterstaining was briefly performed 

with Mayer’s hematoxylin. The sections were dehydrated in ethanol 70%, 96%, 100% 

(each step 2-3 min) and finally in Ultra Clear. Mounting was performed with UltraKit 

Mounting Medium (J.T. Baker, Deventer, Holland). 

4.3.8. Western blot analysis 

Proximal tubular cells were cultured in a 25cm2 cell culture flask from BD (Franklin Lakes, 

USA) until confluency was reached. Then proteins were extracted with 300µl protein 

extraction buffer (20mM Tris-HCl, 1% Igepal CA-630, 0.5mM sodium orthovanadate) 

including 1mM phenylmethylsulfonyl fluoride (Sigma-Aldrich, St. Louis, MO, USA) and 

protease inhibitor cocktail tablet, Complete Mini (Roche Diagnostics, Germany). The 

quantification of the protein content was performed with the BCA protein assay kit (Pierce 

Chemical, Rockford, IL, USA). Protein concentration was determined by measuring the 

absorbance at 562nm with Spectra MAX 250 Microplate Spectrophotometer (Molecular 

Devices Corporation, California, USA). The same procedure was performed with a piece of 

human kidney cortex, received from the department of pathology of the university hospital 

in Basel.  

 

For immunoblotting, 100µg (Fig. 4.4) respectively 150µg (Fig. 4.5) of total protein extract 

was mixed with Laemmli sample buffer (Bio Rad Laboratories, Reinach, Switzerland) and 

transferred to the polyacrylamide gel. Gel electrophoresis was performed with a Mini 

Protean 3 Electrophoresis Cell (Bio Rad) applying 80V for 15min for the stacking gel (4% 

polyacrylamide) and 120V for 1h for the separating gel (7.5% respectively 10% 

polyacrylamide). After electrophoresis, proteins were blotted to the nitrocellulose 

membrane (250mA for 2.5 hours) using a Mini Trans-Blot Cell (Bio Rad). Protein transfer 

was verified by Ponceau S staining. The membrane was blocked overnight at 4°C with 

PBS containing 5% milk powder and 0.05% Tween 20. After washing three times for 15 

minutes (0.05% Tween and 1% milk powder in PBS), the membrane was incubated for 2 

hours at 37°C with the primary, rabbit anti-human antibody against GLP-1R, 1mg/ml (Acris 
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Antibodies, Hiddenhausen, Germany) diluted 1:500 in PBS containing 0.05% Tween and 

1% milk powder. After the first incubation the membrane was washed three times for 

15min and then incubated with the secondary, horseradish peroxidase-conjugated, donkey 

anti-rabbit IgG (Amersham, Buckinghamshire, UK) diluted 1:500. Secondary antibody 

incubation was performed for 1 hour at room temperature. Membranes were washed, and 

GLP-1R detection was performed with the enhanced chemiluminescence system (ECL-

Detection-Kit, Amersham). The molecular weight was identified by using molecular weight 

Precision Plus Protein Dual Colour Standard (Bio Rad).  

 

4.3.9. Functional assays 

For functional assays the Transwell Costar 3460 system was used (Corning Incorporation, 

NY, USA). For sodium transport, cells were preincubated with 200pM, 2nM, 20nM GLP-1, 

200pM Exendin-4, 10µM P32/98 and a combination of 200pM Exendin-4 or 200pM GLP-1 

with P32/98, for three hours.  Both sides of the diffusion cells were filled with pre-warmed 

buffer (see below). The whole system was kept at constant temperature (37 °C). At time 

t = 0, HBSS (Gibco) with 1mM MEM sodium pyruvate (Gibco), pH 7.4 with or without GLP-

1 was added to the donor chamber (apical). Acceptor media (basolateral) contained 

150mM choline chloride, 10mM Hepes, 2mM MgCl2, 2mM CaCl2 and 1µM cell impermeant 

Sodium Green (Invitrogen, Basel, Switzerland) in sodium free water (Sigma Aldrich, Basel, 

Switzerland).  At defined time intervals, samples were drawn from the acceptor chamber 

and analysed. [14C]PEG4000 (11000Bq/well) was used for monitoring the monolayer 

integrity (max. 0.2% of applied dose was transported).  

For glucose transport assays, pre-incubation was performed with 200pM, 2 and 20nM 

GLP-1 for three, 24, 48 and 72 hours. In both chambers of the Transwell Costar 3460 

HBSS was used with MEM sodium pyruvate as mentioned above. 3H-Glucose 

(11000Bq/well) was used in combination with 6.5µM glucose. Samples were drawn at 5, 

10, 15, 20, 30, 60, 90 and 120 minutes. To test monolayer integrity Fitc-dextran in a 

concentration of 250µg/ml was used (max. 0.8% of applied dose was transported). 

Glucose uptake was performed for three hours in 6-well plates with pre-incubation of  

GLP-1, exendin-4, P32/98 and its combinations as mentioned above. 

 

For detection of radioactive substances Packard 1900TR liquid scintillation counter was 

used. The samples were diluted in 3ml Insta-Gel Plus (Perkin-Elmer, Schwerzenbach, 

Switzerland). Detection of Sodium Green and Fitc-dextran was carried out with Perkin-
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Elmer HTS 7000 Bio Assay Reader with the following parameters: excitation at 485nm, 

emission 535nm.  

 

4.3.10. Cytotoxicity assay 

The effect of GLP-1, exendin-4 and P32/98 on cell viability was assessed using the 

sulforhodamine-B (SRB) colorimetric assay. Aliquots of primary porcine proximal tubular 

cells suspension were seeded onto 96-well plates. In order to test toxicity after three hours 

of incubation, cells were first incubated for 24 hours in blank medium and then treated with 

different concentrations of drugs in the culture medium.  

Toxicity was also tested for 96 hours changing the media with different concentrations of 

drugs every 24 hours. After incubation, cells were washed with medium and fixed with 5% 

trichloracetic acid in medium for one hour at 4°C. Subsequently cells were washed with 

water, air dried and stained with 0.4% SRB in 1% acetic acid for 15 minutes. Then the 

plate was again air dried, 10mM TRIS (pH=10.5) was applied for 5 minutes and absorption 

was measured at 540nm in Spectra Max 250 plate reader (Molecular Devices Corporation, 

CA, USA). Each condition was performed in five wells. 

 

4.3.11. Statistical analysis 

Statistical significance was investigated with t-test (two-tailed distribution with unequal 

variances). A probability of p<0.05 was defined as statistically significant. All transport 

studies were performed with primary cells obtained from two pigs. Each transport assay 

was performed in triplicate. Results are expressed as the mean ± SEM. 

 

4.4. Results 
Glucagon like peptide 1 receptor (GLP-1R), dipeptidyl-peptidase IV (DPPIV) and Na+/H+ 

exchanger isoform 3 (NHE3) mRNA expression was investigated by quantitative RT-PCR 

(Fig. 4.1). Glucose had no significant effect on the expression of these three genes (Fig. 

4.1).  

 

GLP-1R expression at the protein level was confirmed in primary porcine proximal tubular 

cells (Fig 4.2, 4.3D-F and 4.5) by immunocytochemistry, immunohistochemistry and 

Western blot analysis. In Fig. 4.4 homogenised kidney cortex slices from human (right 

lane) and pig (left lane) were used, whereas in Fig. 4.5 isolated porcine proximal tubular 
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cells were analysed. The acrylamid concentration of the gel in Fig. 4.4 is 7.5%, whereas in 

Fig. 4.5 the gel consists of 10% acrylamid.  

  

GLP-1R seems to be localised throughout the cell and a high staining was observed 

intracellular, near the nucleus (Fig. 4.2A). To assess the intracellular localisation of GLP-

1R expression in proximal tubular cells, a co-staining with propidium iodide was 

performed, as propidium iodide stains DNA respectively the nucleus (Fig. 4.2B, D). 

 

For immunohistochemistry and Western blot analysis, human kidney cortex was used as 

positive control (Fig. 4.3B and 4.4). DPPIV staining was performed in order to identify 

proximal tubular cells both in human and pig kidney cortex (Fig. 4.3A, D). In kidney cortex, 

GLP-1R seems to be expressed predominantly in proximal tubular cells, since staining of 

DPPIV (pink) and GLP-1R (brown) were overlapping (Fig. 4.3C, F). 

 

 

Figure 4.1 - Quantitative RT-PCR (Taqman): Absolute quantification of GLP-1R 
(Glucagon like peptide receptor), NHE3 (Na+/H+ exchanger isoform 3) and DPPIV 
(dipeptidyl-peptidase IV) mRNA in media containing two different glucose concentrations. 
Incubation was over 96 h. Expression of mRNA was normalized to GAPDH and 1µg RNA. 
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Figure 4.2 - Confocal microscopy: Immunostaining of GLP1R with CY2 (green) (A), costained with 
propidium iodide (red) (B), transmission picture (C) and superposed (D). Size bar represents 50 µm. 
Negative control is placed in the lower left corner.  
 

 

For sodium transport assays, cells were pre-incubated with 200pM, 2nM and 20nM GLP-1, 

200pM Exendin-4, 10µM P32/98 and combination of 200pM Exendin-4 or 200pM GLP-1 

with P32/98, for three hours. These conditions were chosen to have a comparison with a 

clinical study in healthy subjects and in insulin resistant obese men [188]. After 30, 60 and 

90min, apical-to-basolateral transport of sodium (corresponding to re-absorption) was  

significantly inhibited with 20nM GLP-1 (Fig. 4.6). Lower GLP-1 concentrations showed a 

Figure 4.3 - Immunocytochemistry: A-C human kidney cortex, D-F pig kidney cortex. A and D: staining for 
DPPIV (specific proximal tubular marker); B and E: staining for GLP-1R, C and F: double staining DPPIV 
and GLP-1R. Size bar represents 50µm. 
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slight, but statistically not significant inhibition. 10µM P32/98 alone and in combination with 

200pM Exendin-4 or 200pM GLP-1 showed no inhibition (data not shown). 

Glucose transport assays from apical to basolateral were performed with 200pM, 2 and 

20nM GLP-1 without any differences (data not shown). Glucose uptake with GLP-1, 

exendin-4, P32/98 and its combinations showed inconclusive results (data not shown). 

 

All drugs used did not show any toxicity after three or ninety-six hours at the mentioned 

concentrations (data not shown).  

 

4.5. Discussion 
Renal effects of GLP-1 have been documented in vivo, both in healthy subjects and in 

obese persons [188]. The findings were supported by animal data in anaesthetised rats. 

When the animals received GLP-1 infusion, a remarkable 13-fold increase of sodium 

excretion was observed [189]. The authors postulated that the inhibitory effect of GLP-1 on 

sodium re-absorption was a direct action on the proximal tubules and not due to a change 

in renal hemodynamics.  

 

In vitro investigations have confirmed the tissue distribution of GLP-1R in rat and mouse at 

mRNA level [192-196]. With one exception [195], GLP-1R expression was always found in 

the kidney.  

 

Though information is available on the expression of GLP-1R in the human kidney at 

mRNA level [197], the intrarenal distribution of GLP-1R has not clearly been defined yet 

nor has it been investigated whether in particular proximal tubular cells express GLP-1R. 

Therefore, it was the objective of this study, to confirm renal expression of GLP-1R and to 

evaluate, whether this expression was confined to proximal tubular cells in kidney cortex. 

Furthermore, we tried to show the cellular distribution and the regulation of expression of 

GLP-1R as well as the effect of GLP-1 administration on proximal tubular cell sodium re-

absorption. 

 

In the first experiments, GLP-1R mRNA expression was shown in renal tissue by RT-PCR. 

In previous studies we have observed GLP-1 effects on renal sodium re-absorption in 

obese subjects with impaired glucose tolerance. In the following experiments, we therefore 

investigated the effect of glucose on GLP-1R mRNA expression. The expression levels of 
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GLP-1R, DPPIV and NHE3 were not dependent on glucose concentrations (5.0 and 

15.6mM) (Fig. 4.1). However, using a high glucose concentration (22mM) in a mouse 

pancreatic beta cell line (MIN6), an up-regulation of GLP-1R expression was observed 

[195]. We can only speculate on the physiological importance of this latter finding. 

Furthermore, the lack of induction of GLP-1R expression at mRNA level in primary porcine 

proximal tubules may be explained by the lower (more clinically relevant) glucose 

concentrations used in this study or by species differences (pigs versus mice). In addition, 

we have shown that GLP-1, exendin-4 and P32/98 did not influence the mRNA expression 

of GLP-1R, DPPIV, NHE3, sodium- dependent glucose transporter slc5a1, slc5a2 (SGLT1, 

2) after incubation over 96 hours (data not shown).  

 

GLP-1R expression was confirmed on the protein level using immunohistochemistry, 

immunocytochemistry and Western blot analysis (Fig. 4.2-4.5). This analysis showed that 

GLP-1R protein was found in the kidney cortex, predominantly in proximal tubular cells. 

This was proven by co-staining with DPPIV, which is exclusively expressed in proximal 

Figure 4.5 - Western blot of three different 
samples of primary porcine proximal 
tubular cells from two different isolations, 
each isolation derived from kidneys of two 
pigs. Gel run on a 10% polyacrylamide gel.  
 

Figure 4.4 - Western blot of GLP-1R left lane: 
pig kidney cortex, right lane: human kidney 
cortex run on a 7.5% polyacrylamide gel. 
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tubular cells (Fig. 4.3). Interestingly, Fig. 4.3E shows a distribution of GLP-1R throughout 

the cells, although we would have expected a concentration of GLP-1R protein expression 

at the apical side, as GLP-1 influenced sodium transport there. Authors in [177] deliver an 

possible explanation for the distribution of GLP-1R in the cells: The receptor is internalised 

upon GLP-1 binding. Afterwards endosomal membrane fractions was found to be enriched 

with GLP-1R. Furthermore, the authors could show a cycling of the receptor between 

endosomal compartments and plasma membrane. However, our preparation for 

immunocytochemistry was performed without GLP-1 application. Additional experiments 

are required in order to clarify the intracellular protein distribution and function. 

 

For our functional experiments, higher GLP-1 concentrations were applied (significantly 

higher than those observed physiologically). These concentrations were chosen, since 

GLP-1 is very rapidly (half-life of 2min) degraded in vivo by DPPIV [182]. DPPIV 

represents the major renal catabolic pathway for GLP-1 [198]. Therefore, in order to 

measure the direct effects of GLP-1 on primary porcine proximal tubular cells, either 

supra-physiological concentrations of GLP-1 need to be applied and/or DPPIV has to be 

blocked by specific inhibitors (such as P32/98). In patients with type 2 diabetes, 

supraphysiological GLP-1 serum concentrations of 50 to 120pM have been shown to lower 

glucose plasma concentrations. These concentrations are 3-5 fold higher than those 

reached after a meal or oral glucose intake [173]. 

 

Since our in vitro model consists of proximal tubular cells and DPPIV is abundantly 

expressed at the cell surface (apical side) in proximal tubular cells (and used as a marker 

for these cells) [183-186], a high activity of DPPIV is expected.  

 

We therefore used high GLP-1 concentrations of 200pM to 20nM. The experiments of 

GLP-1 were compared with exendin-4 (200pM), a GLP-1 receptor agonist with a prolonged 

half-life of 2-4 hours [173], which was shown to be active in concentrations above 12pM 

[199]. To study inhibition of DPPIV, P32/98, a specific blocker of this enzyme was used at 

a concentration of 10µM, a concentration, which was effective in opossum kidney proximal 

tubule cells [58].  

 

With 20nM GLP-1, we could show a significant inhibition of sodium re-absorption without 

using a DPPIV inhibitor (Fig. 4.6). Lower concentrations were ineffective although there 
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was a trend towards inhibition. However, 200pM GLP-1 and 10µM P32/98 given alone and 

in combination also failed to show a significant inhibition of sodium re-absorption (data not 

shown, n=6). A possible explanation of the latter finding could be that P32/98 does not 

bind to porcine DPPIV. Furthermore, in opossum kidney cells, even a complete inhibition 

of DPPIV with P32/98 resulted in only a 45% inhibiton of NHE3 [58]. It is possible that the 

expression pattern of the five existing Na+/H+ exchanger isoforms differs somewhat 

between pig and opossum that an partial inhibition of NHE3 isn’t sufficient enough to 

influence the overall sodium re-aborption in porcine proximal tubular cells.  

 

 

When we used the DPPIV resistant GLP-1 analog exendin-4, a concentration of 200 pM 

with and without additional administration of 10µM P32/98 had also no effect on sodium re-

absorption (data not shown, n=6). This lack of effect is somewhat surprising. Although 

exendin-4 has only a 53% amino acid sequence homology with human GLP-1 [200], 

exendin-4 binds in vitro (rat and human) with similar affinity to the pancreatic GLP-1 

Figure 4.6 - Sodium transport after 3h incubation from apical to basolateral (n=3), representative for three 
independent experiments. Sodium is measured with sodium green indicator (tetramethylammonium salt) 
by fluorescence. 
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receptor as GLP-1 [201]. On the other hand, exendin-4 does not mimic all GLP-1 effects 

such as suppressing gastric acid secretion or activating hepatic vagal afferent nerves 

[202]. Recent findings even indicate that exendin-4 exerts additional effects, which are not 

mediated by GLP-1 receptor activation [201]. Further alternative explanations may be 1) a 

GLP-1 metabolite is necessary for this effects or 2) exendin-4 does not bind to the porcine 

GLP-1 receptor.  

 

Inhibition of sodium transport from apical-to-basolateral (urine to blood) indicates 

enhanced secretion of sodium from blood to urine compartment. This fact corresponds 

with a clinical study: a significantly increased natriuresis was seen in men receiving 

intravenous GLP-1 for three hours [188]. Since the clinical data demonstrated, that plasma 

glucose levels were lowered by GLP-1 infusion, we also checked a possible effect of GLP-

1 on glucose re-absorption in porcine proximal tubular cells. However, glucose transport 

was not affected with 200pM, 2 and 20nM GLP-1. Uptake with GLP-1, exendin-4, P32/98 

and its combinations showed inconclusive results (data not shown). 

 

The mechanism of the observed inhibition of sodium re-absorption is still not clear. A 

possible explanation could be a conformational change of the NHE3-DPPIV complex by 

GLP-1, resulting in a reduced transport activity of NHE3. This transporter is critical for the 

proximal tubular sodium re-absorption [191]. On the other hand, it is not yet resolved, 

which isoform of NHE is responsible in our cell line model, as mRNA expression of NHE3 

was very low. Therefore, it may be speculated that such a conformational effect of GLP1 

on the NHE3-DPPV complex would be independent of GLP-1R activation. Another 

possibility could be that the GLP-1 mediated increase in intracellular cAMP concentrations 

could influence the activity of the different NHE isoforms in the kidney. Indirect evidence 

for this explanation comes from experiments with intestinal cells, which showed that an 

intracellular rise of cGMP inhibits sodium absorption notably through inhibition of NHE 

transporters [203].  

Finally, further investigations are required in order to elucidate 1. GLP-1R expression in 

other parts of the kidney and to which part it would contribute to physiology, 2. the effect of 

GLP-1 on intracellular cAMP production.  

 

In conclusion, we have found further evidence for a direct renal action of GLP-1 in a 

porcine primary cell culture model of proximal tubules. These in vitro findings are in 
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agreement with findings in animals, and clinical observations in healthy volunteers and 

patients. Although the cellular mechanisms of this GLP-1 action remain unclear, this work 

demonstrates that GLP-1 has a direct effect on sodium re-absorption in primary cultures of 

porcine proximal tubular cells. 
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5. Conclusion and outlook 
 

Development of one successful pharmaceutical lasts about 10 years and costs, according 

to pharmaceutical companies around 800-1000 million US-Dollars (includes also costs for 

unsuccessful projects) [204]. Therefore it is of great interest to filter potentially “dangerous” 

pharmaceuticals in an early stage of drug discovery and development in order to prevent 

the costly and awkward situation of withdrawing a drug from market after 10 years of 

development due to a drug-drug interaction. Various “filtering” systems do exist. One of 

them is to use predictive in-vitro models, preferentially with high throughput screening 

capacities. In addition, an advantageous validated system can reduce costly and 

unnecessary animal tests.   

 

In this thesis, we provide a new validated in-vitro model, which expresses various drug 

transporters functionally and simultaneously. Many drugs are often transported not only by 

one specific transporter (chapter 2.2). Therefore, this in-vitro model can now be used to 

test substances for tubular toxicity or to screen for possible drug-drug interactions in 

proximal tubules with the advantage to have various drug transporters available in one 

system without altering it by e.g. transfection. We are aware, that the definitive 

confirmation, whether this in-vitro model has more advantages compared to other 

established cell lines (LLC-PK1, HK2, HEK293, etc.), is yet to be performed. Even if the 

mentioned benefits are more theoretical, though plausible, we believe to provide an 

interesting tool for further studies. One of them would be to compare porcine with human 

transporter properties either by isolating these cells from human kidney or to confirm future 

findings in the porcine model with human clinical studies. Furthermore, evidence has to be 

supplied for high throughput screening capacities. Under certain conditions, such as using 

fluorescence markers (e.g. mitoxantrone) in 96 wells for uptake measurements, high 

throughput screening could be possible.  

 

In addition, this system expresses genes, which are currently of great interest in diabetes 

research regarding GLP-1, its analogues and inhibitors of the degrading enzyme DPPIV. 

Therefore, in this part of the kidney, it is now possible to investigate the effect of these 

substances, which will be soon launched onto market. 
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