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Introduction

In this paper we will study special mapping classes of orientable
surfaces with one boundary component. A mapping class is an element
of the mapping class group. The mapping class group for an orientable
surface S with boundary is defined as

MCG(S) = Diff+(S, ∂S)/Diff+
0 (S, ∂S).

So a mapping class is an isotopy class of diffeomorphisms fixing the
boundary pointwise. Tree-like mapping classes are represented by dif-
feomorphisms, that are a product of Dehn twists along a system of
essential simple closed curves on the surface. Curves of the system
intersect at most once with another curve and the complement of the
system of curves is a cylindrical neighborhood of the boundary. We can
build a graph by representing each twist curve by a vertex and connect-
ing two vertices by an edge if the two corresponding curves intersect.
The mapping class is called tree-like, if this graph is a tree. When we
keep the information of cyclic ordering of the curves on the surface, we
get a planar tree, and call it the geometrical Dynkin diagram.

A tree-like mapping class is called positive, if all Dehn twists which
are performed are right or positive Dehn twists.

We will establish an algorithm to distinguish positive tree-like map-
ping classes up to conjugacy. The conjugacy problem for surface map-
ping classes has already been solved by Thurston, but in concrete ex-
amples it can be very hard to determine whether two mapping classes
are conjugate or not.

In the following we will speak of surface diffeomorphisms meaning
surface diffeomorphisms up to isotopy and mapping classes, respec-
tively. So we will define a diffeomorphism and regard it as a represen-
tative for a mapping class.

Positive tree-like diffeomorphisms arise as monodromies of a special
class of fibred knots, the slalom knots. These slalom knots can be con-
structed out of a rooted planar tree, which is related to the geometrical
Dynkin diagram.

Up to the exceptions E6, E8 and the series A2n the monodromies
of slalom knots are pseudo-Anosov. By a theorem of Thurston, there
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vi INTRODUCTION

exist two transverse measured foliations that are invariant under this
diffeomorphism. In chapter 3 we will give an explicit description of the
measured foliations for slalom knots with pseudo-Anosov monodromies.
The rooted planar tree will play again a crucial role. Measured foli-
ations have been studied under different aspects. Casson and Bleiler
considered in [BC] geodesic lamination and Strebel studied in [S] qua-
dratic differentials. For further studies see [FPL].

The two measured foliations of a monodromy are an invariant of the
diffeomorphism up to conjugacy. But since measured foliations contain
a lot of information that is not easy to take care of, it is very hard to
use it as a tool to distinguish concrete diffeomorphisms.

Particularly, it is very hard to distinguish slalom monodromies that
arise from the same abstract rooted tree, but from different embeddings
into the plane since the corresponding slalom knots are mutant. The
notion of mutation was introduced by Conway in [Co]. Mutant knots
are hard to distinguish. For small examples the quantum invariant can
be calculated and separates. Knotscape too, helps us to separate small
examples. Sometimes there is also a symmetry argument that can be
applied. But for the whole class of slalom knots it was not known if all
knots coming from different rooted planar trees were different.

In chapter 5 we give a solution to this problem. We introduce a
method to reconstruct the rooted planar tree out of the diffeomor-
phism by a geometrical algorithm for all diffeomorphisms that arise
from rooted planar trees with at least three crown vertices. So the
rooted planar tree is an invariant for the slalom knot, and hence all
slalom knots are different. Slalom knots with one or two crown ver-
tices arise from trees with only one planar embedding. The theory of
the Montesinos links can be applied to them, and separates them (see
[Tu]). Therefore we obtain the result, that all slalom knots coming
from non-congruent planar trees are different.

To get this algorithm, we need an important property of the slalom
monodromy. All slalom monodromies are strongly inversive. This
means, that there exists an involution, that conjugates the monodromy
to its inverse. This property is inherited from slalom knot. Slalom
knots are strongly invertible, so there exists an involution of S3 sending
the oriented knot to itself, fixing two points on the knot, and reversing
the orientation of the knot. If the knot is fibred, this involution can
be chosen to respect the fibers, and therefore the monodromy becomes
strongly inversive [To].

In chapter 4 we analyse these involutions. We will see, that up
to conjugacy of the pair (monodromy, involution), there are at most
two such involutions. Each of these involutions fixes an arc on the
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surface pointwise. We will study these fixed arcs and their images under
the monodromy, and we will see, that the number of intersections of
the fixed arc and its image under the monodromy differ for the two
arcs coming from the two involutions. So the two involutions can be
distinguished using their fixed arcs. Furthermore, one of this fixed arcs
will play a crucial role in the reconstruction of the rooted planar tree.
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CHAPTER 1

Preparations

1. Slalom knots, Fiber Surfaces, Monodromy

Slalom knots belong to the class of arborescent knots. They can be
obtained by plumbing positive Hopf bands, where the information of
plumbing is contained in a planar tree.

Here we chose another method to obtain a slalom knot. We start
with a rooted planar tree B. A rooted tree is a tree, with a marked
vertex of valence one, called the root. The tree is embedded into the
unit disk D, such that B ∩D contains only the root of the tree.

Figure 1: A rooted tree embedded in the unit disk

With the tree embedded in the unit disk, we can draw an immersed
generic copy of the unit interval, called divide curve. Locally on an
edge, we have the following pictures:

Figure 2: Local pictures of the divide curve

1



2 1. PREPARATIONS

The planar tree gives now the information how the local pieces are
put together. The curve we get is called divide curve PB. For more
detail see [AC2].

Figure 3: The divide curve PB (red)

With a generic relative immersed copy of the unit interval P in the
unit disk there can be constructed a knot K ⊂ S3 in the following way:

K := {(x, u) ε R4| x ε P, u ε TxP, ‖x‖2 + |u‖2 = 1} ⊂ S3.

Divide knots have many special properties. The property of interest
for us is that they are all strongly invertible (see [K]). The inversion
is given by (x, u) 7→ (x,−u).
When the divide curve PB comes from a rooted planar tree B, then
the knot we obtain is called a slalom knot. Every knot constructed out
of a connected divide curve is fibred and hence every slalom knot is
fibred. For the following we will only need the fact, that a slalom knot
is fibred. We will not work with the knot itself, only with the fiber
surface and the monodromy. The knot diagram can be algorithmically
constructed out of the rooted tree, see [H]. This algorithm generates
the knot diagrams, but they are not minimal. Ishikawa gave in [I] a
suggestion for a minimal diagram, and Baader proved its minimality
in [Ba].

The geometrical Dynkin diagram of a slalom knot is obtained by the
rooted planar tree. Each edge except the edge containing the root is
subdivided by a new vertex and at each vertex we have the information
of the cyclic ordering of the edges around that vertex, i.e. the geometri-
cal Dynkin diagram contains the information of the planar embedding
of the abstract tree.

With the geometrical Dynkin diagram we can construct the fiber
surface together with a system of simple closed curves on it. Each
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vertex gives a cycle and the edges between the vertices contain the
information if two cycles intersect. The neighborhood of these 2g cycles
is our fiber surface. It is a surface of genus g with one boundary
component. The 2g cycles can be split into two groups, the A-curves
or A-cycles and the B-curves or the B-cycles. The A-cycles are those
who correspond to the edges in the original rooted tree, the B-curves
correspond to the vertices except the root in the planar tree. So we
have g A-curves and g B-curves.

The monodromy can be written as a product of right Dehn twists
along the A- and B-curves. A right Dehn twist along a simple closed
curve γ is a homeomorphism defined as follows. Take a regular neigh-
borhood N of γ. N is an annulus and homeomorphic to S1 × [0, 1]
oriented by the induced orientation. Give S1 × [0, 1] the coordinates
(θ, t). Then the right Dehn twist D is the identity outside N and on
N it is the map D(θ, t) := (θ − e2πit, t).

Figure 4: On the left a cylinder before and on the right a cylinder after
a right Dehn twist

We call TA the diffeomorphism which is obtained, when we perform
on each A-curve a right Dehn twist, and analogous for TB. Since all
A-curves are pairwise disjoint (and analogous for the B-curves), the
order in which the twists are performed can be chosen arbitrarily. We
define the monodromy diffeomorphism T as:

T := TA ◦ TB

So T is a product of 2g right Dehn twists. We have chosen an order
in which the the twist are performed. This choice is arbitrary, since
all diffeomorphisms which result in performing these Dehn twist in any
order are all conjugate (see [Bo]).
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1.1. Nomenclature on a Rooted Tree. In the following, we
will need appropriate names for the different edges and vertices of a
rooted tree.

Definition 1.1. The below nomenclature will be used:

• An edge which originates in the root is called trunk edge or
only trunk, and the other adjacent vertex is called the trunk
vertex.

• A vertex which has only one adjacent edge (except the root)
is called a crown vertex

• A vertex which has more than one adjacent edge, except the
trunk vertex, is called an interior vertex

• At a vertex v, the adjacent edge is called crown-sided, if it is
not contained in the path from v to the root.

• At an edge e, the adjacent vertex v is called root-sided, if e is
crown-sided for v.

1.2. The tree vector β. We will use a vector to represent a rooted
planar tree. First we have to enumerate the vertices and the edges
in the planar tree. The root gets the number 0, the trunk vertex is
numerated by 1. Next, we enumerate all vertices in the tree, that have
distance 2 to the root. We numerate them such that the numbers
increase from left to right. In a next step all vertices are numerated,
that have distance 3 to the root. We enumerate the tree level by level.
To each vertex, except the root, there is assigned exactly one edge,
namely the one, that is the first edge from that vertex on a path to the
root. The vertex and its edge are labelled by the same number.
The tree vector β is defined as follows. The i-th entry of the vector is
the number of the root-sided vertex of the edge with number i. The
tree vector for the tree in figure 1 is [0111].

Figure 5: The surfaces [01112] and [01113] with the A-curves (red) and
the B-curves (blue)



CHAPTER 2

Measured Foliations

Since most slalom monodromies are pseudo-Anosov, we can try to
find the two invariant measured foliations. In this chapter we will show,
that there is an explicit way to construct the measured foliations for
positive tree-like mapping classes out of the rooted planar tree.

1. Tree-like train tracks

First we will introduce special train tracks, that will be needed in
the following.

A tree-like train track is defined by a rooted planar tree. First
construct the fiber surface corresponding to the tree, and then locally
do the following replacements:

(1) The trunk vertex will be replaced by the following partial train
track

Figure 1: Replacement of the trunk vertex

(2) An interior vertex is replaced by the partial train track below

5



6 2. MEASURED FOLIATIONS

Figure 2: Replacement of an interior vertex

(3) The crown vertices are replaced the following way

Figure 3: Replacement of an crown vertex

For our purpose a train track will be a branched subman-
ifold on the surface with only two to one branchings up to
isotopy together with a weighting of its arcs by positive real
numbers. At the branchings the weights satisfy the first Kirch-
hoff rule. For a more general notion of train track see [PH].

c
a

b c=a+b

Figure 4: Kirchhoff rule at a branching point of valence three

For the tree [0111] this construction gives the following train track
on the surface:
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Figure 5: Tree-like train track with weights on the surface [0111]

In the above example we have chosen a minimal notation. By the
Kirchhoff equalities the measures of all the other branches are defined
uniquely. On a tree-like train track there exist arcs, that correspond to
exactly one A- or one B-curves. The measures of arcs that correspond
to the same A- or B-curve are equal. This can be verified by the
Kirchhoff rule at the branching points. The arcs on the train track,
that don’t correspond to exclusively one A- or one B-curve are called
bridges. The train track is homotopic to the union of the A- and B-
curves, whereas the bridges are contracted to points by this homotopy.

5

5

111

5
5

6

Figure 6: On the left side bridges on the train track [0111] marked
blue, on the right side the same surface with the A- and B-curves
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Lemma 1.1. A tree-like train track on a surface of genus g with one
puncture can be labelled minimally by 2g numbers as shown in figure 8.
Each number corresponds to an A- or a B-curve, in other words, each
number corresponds to a vertex or an edge in the rooted planar tree.

Proof. Studying local pictures of the train track, it can be easily
verified, that the labelling is minimal. Begin with the crown vertices
and work downwards until reaching the trunk. ¤

Lemma 1.2. A tree-like train track on a surface of genus g provides
a unique element up to sign in the homology of the surface.

Proof. Take as a basis for the homology the system of all A- and
B-curves oriented in the following way: Chose an orientation for the
A-curve corresponding to the trunk. Then orient any B-curve, such
that it intersects any A-curve positively. In the previous Lemma we
have seen, that to each A- and B-curve the train track assigns exactly
one number. Taking these numbers as coefficients of the corresponding
cycle, we get an element in the homology. ¤

2. Finding the measured foliation

We start with a disjoint union of simple closed curves γ, and let
act the monodromy T iteratively on these curves. We will define γn :=
T n(γ) for nεN. For every n, γn is again a disjoint union of simple
closed curves and a measured foliation, where the transverse measures
are given by the minimal intersection number with the above curves.
When we let go n to infinity, the limit of the γn as a measured foliation
will be the stable Thurston foliation.

We chose the union of all B-curves for γ and let act T = TA ◦ TB

on them.

Figure 7: The fiber surface with the curve γ

After the second iteration we have the following picture:



2. FINDING THE MEASURED FOLIATION 9

5

5

111

5
5

6

Figure 8: The fiber surface with the train track representing T (γ)

We have used a train track to represent the union of simple closed
curves, the coefficients represent the number of arcs. We see, that the
train track we get is a tree-like train track as defined in the previous
section. When we let act T on this train track again, we see, that the
train track is invariant under T . To be more precise, we get a new
train track, and after isotopy and collapsing, we get again a tree-like
train track but with new weights. We get new integer coefficients for
the arcs of the train track. Having a closer look, we see that the new
coefficients are built from the old ones by an integer matrix. We label
the arcs that correspond to vertices by {xi} and those who correspond
to the edges by {yi}. In this example we have 1 ≤ i ≤ 4. The trunk
vertex is x1 and the trunk is y1. Then the indices increase from bottom
to top an from left to right, as introduced in chapter 1. By symmetry
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we have x2 = x3 = x4 and y2 = y3 = y4 in the above example. The
linear equations to get the new coefficients {x′i} and {y′i} of the train
track after the action of T are:

x′1 = y1 + y2 + y3 + y4 − x1 = y0 + 3y2 − x1

x′2 = y2 − x2

y′1 = x′1 − y1

y′2 = x′1 + x′2 − y2

We don’t get only positive signs in the equations, since every Dehn
twist changes the train track, and we have to pull back some strands,
in order to get a minimal train track.

So the train track represents the stable measured foliation. The lin-
ear equations above give us an integer matrix. The dominant eigenvalue
and the associated eigenvector correspond to the geometrical growth
and the measures of the arcs in the train track.

In the example above, we see the idea of the algorithm. As invariant
train track, we obtain the tree-like train track associated to the rooted
planar tree as defined in the above section.

The transverse measures on the arcs are given by solving an eigen-
value problem of an integer matrix. The matrix is given by the action
of the monodromy on the measures of the edges and the vertices of the
tree.

We give an explicit way to build the matrix MT :
The matrix MT is the product of the matrices MA and MB that

describe the action of the diffeomorphisms TA and TB on the edges
{yi} and the vertices {xi}, 1 ≤ i ≤ g. MT , MA and MB are integer
2g × 2g matrices, where g is the genus of the fiber surface. We denote
the tree vector introduced in chapter 1 by β. We write the images of
the vertices and edges in the rows of the matrices. The images of the
edges and vertices are given by:

MA(xi) = xi

MA(y1) = x1 − y1

MA(yi) = xi + xβ[i] − yi, i > 1

MB(yi) = yi

MB(xi) = yi − xi +
∑

l,β[l]=i

yl
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The matrix MT is given by:

MT = MA ◦MB.

Theorem 2.1. The two invariant transverse measured foliations
for a monodromy diffeomorphism of a slalom knot, whose Dynkin dia-
gram is not among A2n, E6 or E8, are constructed in the following way:
The stable measured foliation is given by a the tree-like train track con-
structed out of the rooted planar and the transverse measures and the
geometrical growth are given by the dominant eigenvalue and the corre-
sponding eigenvector of MT . The unstable foliation is given by applying
C on the stable foliation, where C is an involution that conjugates T
to its inverse.

Proof. To prove this theorem, we have to show, that the tree-like
train track is invariant under the monodromy T , and that the coeffi-
cients behave the way we predicted with the Matrix MT . Therefore we
study local pictures of the train track and observe how the action of
the monodromy changes this local pictures. We will always perform
one positive Dehn twist and observe what happens to local pictures on
the train track. We will show the new local train tracks after isotopy
and after collapsing parallel arcs.
In a first step we will look at the action of the twists TB on the train
track. Since the these twists correspond the vertices of the tree, we
only have to check neighborhoods of the vertices. Let’s look at the
trunk vertex:

x′1 = y1 + y2 + ... + yn − x1

x1

yny3

y1

y2

x′1 = y1 + y2 + ... + yn − x1

x′1

yn
y3

y2

y1

Figure 9: The trunk vertex under the action of a twist of type B (blue
curve)

The neighborhood of an interior edge will change the following way:
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xi

yi

ynyi+2

yi+1

x′i

x′i = yi + yi+1 + ... + yn − xi

yi

yn
yi+1

yi+2

Figure 10: An interior vertex under the action of a twist of type B
(blue curve)

And at last let’s look at the crown vertex:

yi

xi

x′i = yi − xi

yi

Figure 11: A crown vertex under the action of a twist of type B

Now we look at the action of the twists TA. Analogous we only have
to check the neighborhoods of the edges, since the A-curves correspond
to the edges in the tree.
Let us look at the trunk:

x1

y1

x1

y′1 = x1 − y1

Figure 12: The trunk under the action of a twist of type A (blue curve)

The other edges change the following way:
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yi

xi

xi−1

y′i = xi−1 + xi − yi

xi−1

xi

Figure 13: An arbitrary edge under the action of a twist of type A
(blue curve)

Now we see, that the train track in neighborhoods of the vertices
and the edges after performing T = TA ◦ TB look the same as before.
So the tree-like train track won’t change qualitatively under the diffeo-
morphism. This train track represents the stable foliation, since the
width of the arcs in the train track is getting increased by the action
of the monodromy.

By observing the action on the train track, we see, that the matrix
we constructed above describes the action on the weight of the arcs,
again we work in the neighborhoods of vertices and edges.

The matrix MT , defined as above, characterizes the action of the
monodromy on the weights of the train track. The train track is in-
variant and the ratio of the weights will converge to a set of weights,
that belong to the invariant measured foliation. So this weights cor-
respond to a positive eigenvector with a positive dominant eigenvalue.
Having labelled the arcs of the train track by weights, that are coef-
ficients of the eigenvector, the monodromy action is a multiplication
of the weights by the eigenvalue. This eigenvalue is the geometrical
growth of this monodromy diffeomorphism.

So the train track is uniquely determined up to a positive factor
and thus we know the measured foliation. Now we have defined the
stable foliation, what we need is the unstable foliation too. For this, we
can do the same algorithm with the inverse of the monodromy T−1, or
we can use the involution C, with T−1 = C ◦ T ◦ C (see next chapter)
and C of the stable foliation is the unstable foliation. In the end we
get the pair of invariant transverse measured foliations.

¤

Since the homology is a quotient of the fundamental group it follows
that λhom ≤ λgeom. A’Campo showed in [AC1] that 1 < λhom for all
slalomknots, whose Dynkin diagram is not among A2n, E6 or E8. As a
corollary we get the following statement:
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Theorem 2.2. For a slalom knot monodromy the geometrical growth
equals the homological growth:

λgeom = λhom

Proof. Lemma 1.2 tells us, how a tree-like train track is associated
to an element in the homology. The invariant train track, as well
as the corresponding element in the homology, are stretched by the
same factor, the homological growth λhom and the geometrical growth
λgeom, respectively. λgeom is the positive dominant eigenvalue of the
monodromy matrix MT . For this specific element in the homology,
coming from a tree-like train track, the growth is λgeom. Since we have
the inequality λhom ≤ λgeom, and we have found an element in the
homology, that is stretched by λgeom, we get that λgeom = λhom. ¤

For tree-like mapping classes, where positive and negative Dehn
twists occur, the above statement is not true. A class of such examples
can be found at Brinkmann (see [Br]). These diffeomorphisms arise
from a tree with no branchings, corresponding to a surface with even
genus. The corresponding tree vector equals [012...(2n−1)] and the ge-
ometrical Dynkin diagram is A4n. In contrast to our diffeomorphisms,
the Dehn twists corresponding to the first n vertices and edges are pos-
itive ones, and the last 2n Dehn twist are negative ones. In this class
of examples, the homological growth is not realized by a eigenvalue of
the homological monodromy, and the homological and the geometrical
growth are not equal. Furthermore, as n increases, the geometrical
growth decreases and converges to one.

In fact, we have only drawn the invariant train track of the foliation.
We still don’t have the picture of the foliation and its singularities. To
get this, we can cut the surface along all A-curves. We still have a
connected surface. Then we can chose some more curves to cut along,
so that we have decomposed our surface into a collection of pair of
pants. Since we know the measures, we can draw on each pair of pants
a measured foliation (on a pair of pants, there are only 6 qualitatively
different possibilities to draw a measured foliation). And then we have
to glue back the pair of pants, so that we get back our original surface,
now with the measured foliation. We see, that along all curves, that
we have cut the surface, that don’t belong to the set of the A-curves,
the singular leaves get identified. Since the surface minus A-curves
is connected, we can do Whitehead-moves so that we get only one
singularity, that is located on the boundary.
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Theorem 2.3. For slalom knots, whose Dynkin diagram is not
A2n, E6 or E8, the foliation has a single 4g-prong singularity that is
located on the boundary, where two singular leaves belong to the bound-
ary.

Figure 14: The singular leaves for the stable measured foliation in the
example [0111]

For the examples of Brinkmann the above theorem does not hold.
The invariant measured foliations have more than one singularity.

We can now improve our picture of the surface with the measured
foliation on it. For this, we cut the surface along all B-curves. We
get a sphere with 2g + 1 holes, where the central hole is the original
boundary, where the singularity is located. We arrange our picture in a
way, that the original boundary is in the middle an the other boundary
components are arranged symmetrically, according to the tree:
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Figure 15: The picture of the surface cut along the B-curves with the
singular leaves (red) and the A-curves (green)

The 4g − 2 singular leaves are placed the following way: The A-
curves are now 2g − 1 arcs. Each singular leaf starts in the original
boundary curve and goes to one of the new boundary curves.

To each new boundary component there goes a singular leaf from
the boundary. We stop drawing the singular leaf, when it reaches
the first B-curve. Of course, the singular leaves don’t intersect pair-
wise. Each singular leaf goes from the boundary to a B-curve without
crossing an A-curve and two singular leaves are not isotopic. These
constraints give us an unique way of drawing the singular leaves in this
picture.

To know the complete picture of the measured foliation, we need
the information, how the B-curves have to be glued together. The
measure of a B-curve is the sum of the measures of all adjacent edges
to the corresponding vertex. We put the two B-curves together, such
that the singular leaves of the two sides coincide and before gluing
them, we twist counterclockwise sucht that the measure between the
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two corresponding singular leaves on this B-curve is the measure of the
corresponding vertex.





CHAPTER 3

Involutions

1. T is strongly inversive

The monodromy of slalomknots has a very special property: the
monodromy diffeomorphism is strongly inversive (see [AC3]). Strongly
inversive means, that there exists an involution C such that T−1 =
C ◦ T ◦ C. This property has been inherited by the knot, that is itself
strongly invertible. A knot K in S3 is called strongly invertible, if there
is an involution of (S3, K) which preserves the orientation of S3 and
reverses the orientation of K (see [K]). Slalom knots are fibred knots
and Tollefson showed in [To] that the monodromy inherits this kind of
property and becomes strongly inversive.
Obviously, there doesn’t exist only one such involution. For every dif-
feomorphism D, that commutes with T , TD = DT , and which is
strongly inversive by C, DC is also an involution with the above prop-
erty:

DCDC = D(CDC) = DD−1 = Id

DCTDC = (DC)−1TDC = CD−1TDC

= CD−1DTC = CTC = T−1

Since T is pseudo-Anosov, the only diffeomorphisms that commute
with T are powers of T and elements of finite order (see [M]), so
D = T n, for n ε Z or Dm = Id for m ε N. But since our special
pseudo-Anosov diffeomorphisms have only one singularity located on
the boundary, a finite order element that commutes with T and fixes
the boundary can be only the identity. So the only diffeomorphisms
that commute with our T are powers of T .
Up to conjugation of the pair (T,C) there are at most two involutions,
since all T 2nC and T 2n+1C are conjugate among each other:

T 2nC = T nT nC = T nCCT nC = T nCT−n

T 2n+1C = T nTT nC = T nTCCT nC = T n(TC)T−n

19
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The next question to answer is, if the pairs (T, C) and (T, TC) are
conjugate.

2. Are C and TC conjugate?

To answer this question we will need a special property of C and
we will check, if TC has the same property.

2.1. The fixcurve for C. We fix the involution C to be the one,
that comes from the involution in the unit disk given by (x, v) 7→
(x,−v). On the surface C is a reflection S (front and back are changed
on the surface) followed by a left Dehn twist along all B-curves:

C = T−1
B ◦ S

That C is an involution for the monodromy T = TA◦TB with the above
properties, is shown by the little calculation below:

CC = T−1
B ST−1

B S = T−1
B (ST−1

B S) = T−1
B TB = Id

CTC = T−1
B STATBT−1

B S = T−1
B STAS = T−1

B T−1
A = T−1

For the involution C there exists a curve γ0 that is fixed pointwise
(see [AC4]). In the unit disk, it is the curve that consists of all points
(x, v), with v = 0. On the surface, it is a curve that goes from boundary
to boundary along the symmetry axis of the reflection S. Since γ0 is
fixed pointwise by S and does not intersect any B-curve, it is fixed
pointwise by C.

Figure 1: The fixcurve γ0 on the surface [0111]
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2.2. The Fixcurve for TC. Above we have fixed the monodromy
T and the involution C on the surface. So we get for the involution
TC

TC = TATBT−1
B S = TAS.

In [AC4] it is shown, that for TC there also exists an arc γ′0, that is
fixed pointwise. γ′0 is constructed out of γ0 and the A- and B- curves
in the following way:

• Go along γ0 until you cross the first A-curve (this will of course
be the trunk).

• Go along this A-curve in a right Dehn twist way until you cross
a B-curve.

• Go along this B-curve in a left Dehn twist way until you cross
the next A-curve.

• Repeat these two steps until you cross the trunk curve again.
• Then you follow again γ0 (the part you didn’t already follow)

to the boundary.

It is easy to see, that this curve is fixed by TC, looking at local pictures
around an edge.

Figure 2: The fixcurve γ′0 on the surface [0111]

2.3. A method to distinguish C from TC. First we change
the fixcurves, so that they become simple closed curves embedded in
the interior of the surface. So we push both curves out of the boundary
and call them γ and γ′ respectively.
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Figure 3: The curves γ (left) and γ′ (right) for the surface [0111]

Now we get two triples (T, C, γ) and (T, TC, γ′). The important
thing we observe, is that γ and T (γ) intersect exactly in one point.
The idea to separate C from TC is to show, that the curves γ′ and
T (γ′) intersect in more than one point.

Lemma 2.1. The curve γ constructed above and its picture under
the monodromy T intersect in exactly one point.

Proof. We can argue in the standard picture as above, since in-
tersections are preserved under conjugation. We see, that in any case
the curve γ intersects with only one curve of the tree, and that is the
A-curve which comes from the trunk a1. Thus T (γ) = TA(TB(γ)) =
TA(γ) = Ta1(γ). Therefore the above statement is proved. ¤

We know now, how γ and T (γ) intersect, namely in exactly one
point. In the following, we will see, that γ′ and T (γ′) intersect in most
cases in more than one point, and so the two pairs (T,C) and (T, TC)
cannot be conjugate.

We will prove the non-conjugacy of the two involution for a smaller
class of trees, those that have at least 3 crown vertices. For the further
observation those trees that have only one or two crown vertices are
not interesting for us, since one crown vertex trees produce non pseudo-
Anosov monodromies and two crown vertex trees have only one planar
embedding up to congruence.

We will subdivide our class of trees with at least 3 crown vertices
in two groups. Group one contains all trees, that have at least one
interior vertex of valence more or equal than four. Group two contains
all trees, that have only interior vertices of maximal valence 3.

First let us look at group one. The minimal representative for this
group is the tree [0111].
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Lemma 2.2. For all trees, that have at least one vertex of valence
four, the curves γ′ and T (γ′) intersect in at least three points.

Proof. First, we analyse our minimal representative [0111]:

+ + +

+

−

Figure 4: The signed intersection points of γ′ (green) and T (γ′)(blue)

In the example, it can be seen, that the homological intersection
number equals 4-1=3. So we can be sure, that these three intersection
points can not be cancelled by isotopy of the two curves. If [0111]
can be found as a subtree, then these three intersection points always
remain, some more intersection points can occur. So we can be sure,
that if in a tree we have at least one vertex of valence four, that is
equivalent, that this tree has [0111] as a subtree, then γ′ and T (γ′)
intersect at least in three points. ¤

Let us look now at the second group of trees, those who have at most
three valent vertices, but at least three crown vertices. The minimal
representative for this group is the tree [01122].
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Lemma 2.3. For all trees, that have at least three crown vertices but
no vertices of more than valence three, the curves γ′ and T (γ′) intersect
in at least three points.

Proof. Again we have to analyse our minimal representative care-
fully, to understand what happens in the general case:

+

−+

Figure 5: The signed intersection points of γ′ (green) and T (γ′)(blue)

For the tree [01122] we get three intersection points, but if we count
them with their signs we only get 2-1=1. So we have to take a closer
look at this situation and check, if two intersection points with opposite
sign do cancel. For this we have to solve a pair of intersection points.
We get two simple closed curves, and we have to show, that none of
these two curves is non essential. In fact, every curve obtained by solv-
ing two intersection points is a non-separating curve for the surface,
and therefore, two intersection points cannot cancel.
Having this, we see, that by enlarging our representative [01122] by
subdividing edges or by attaching new edges, these three intersection
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points remain. Moreover, sometimes more intersection points will ap-
pear. The argument remains the same for this whole class of trees in
group two. Hence the statement of the lemma has been verified. ¤

Hence we have shown, that, if we start with a tree with at least
three crown vertices, the fixcurve γ′ of TC produces at least three
intersection points with the curve T (γ′). On the other hand we have
shown, that the fixcurve γ of C intersects always once with its picture
T (γ) under the monodromy. Therefore the pairs (T, C) and (T, TC)
cannot be conjugate. We have found even more, we have found a
criterion to distinguish (T,C) from (T, TC).

Theorem 2.4. For trees with at least three crown vertices the pairs
(T, C) and (T, TC) are not conjugate.

With this we get the following statement:

Theorem 2.5. Slalom knots, that arise from rooted planar trees
with at least three crown vertices, are strongly invertible knots with
exactly two involutions.





CHAPTER 4

Reconstructing the planar tree

In this chapter we will establish an algorithm to reconstruct the
planar tree out of the monodromy. We will need the triple (T, C, γ)
from the last chapter. In the whole chapter we will only consider mon-
odromies that arise from trees with at least three crown vertices.
Additonaly we will need also an operation to solve crossings of oriented
curves. We will call the operation shown in figure 1 an anti-oriented
solving of a crossing. The result gives an non-oriented curve. The curve
will be oriented afterwards, following several rules.

Figure 1: anti-oriented solving of a crossing

1. The algorithm

We start with the triple (T, C, γ). We will illustrate the algorithm
in the standard situation. We can do this, since the operations we
perform are invariant under conjugacy.

• We chose an arbitrary orientation on γ.

27
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Figure 2: The oriented curve γ on the surface [0111]

• We let act the monodromy T on the oriented curve γ and
get a new simple closed and oriented curve γ′. It is T (γ) =
TA(TB(γ)) = TA(γ) = TA0(γ) = γ′, since γ intersects no B-
curve and only crosses the trunk-curve A0.

Figure 3: The oriented curve γ′ on the surface [0111]

• The two oriented curves γ and γ′ intersect in exactly one point.
We eliminate this crossing with the above defined solving and
get a simply closed curve a1. We chose an orientation on a1

such that the intersecion of γ with a1 is positive. We have
relocated the trunk curve.
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Figure 4: The surface with γ and γ′ and the constructed twistcurve a1

• We will continue our algorithm with the curve a1. We let act
T−1 on a1.

T−1(a1) = T−1
B (T−1

A (a1)) = T−1
B (a1) = a′1

The second equality holds, since a1 intersects only B-curves.
So we get a new simple closed, oriented curve a′1.

Figure 5: The curve a′1

• Again a1 and a′1 intersect only in one point, and this crossing
we eliminate as before. We get an simple closed curve b1. We
chose an orientation on b1 such that the intersection number
of a1 and b1 is +1. The curve b1 correspond to the trunk edge
in the planar tree.
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Figure 6: The surface with a1 and a′1 and the constructed twistcurve
b1

• Next we let act T on the oriented curve b1. We get a new curve
b′1.

T (b1) = TA(TB(b1)) = TA(b1) = b′1
The new curve b′1 intersects b1 in n1 points, where n1 is the
number of adjacent edges of the vertex that corresponds to b1

in the tree.

Figure 7: The curve b′1

• Now we solve each crossing of b1 and b′1 with an anti-oriented
solving. So we get n1 curves, which correspond to the adjacent
edges to the vertex corresponding to b1. We get the curve a1,
which we already know, and the we get also new curves a2 to
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an1 . b1 intersects each curve ai in exactly one point. We chose
the orientation of the ai such that the intersection number
with b1 is +1.

Figure 8: The surface with a1 to an1

• We continue with the curves a2 to an1 by doing the same as
before with the curve a1: We let act T−1 on them. Then we
get the curves b1 to bn1 . Each ai gives two curves, b1 which we
already know, and a new curve bi. The curve ai correspond to
an edge in the tree and b1 and bi to the two adjacent vertices.

Figure 9: The surface with ai (left) and after the action of T−1 with a′i
(right)
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Figure 10: The surface with ai and a′i (left) and the surface with the
curves b1 and bi after the anti-oriented solving (right)

• Now we can go on with n1 − 1 new curves b2 to bn1 . With
each of them we do the same as we did above with the curve
b1: We let act T on them. By doing this and after a crossing
solving we get the curves a2 to an2, since we get all curves, that
correspond to the adjacent edges to the edges that correspond
to the vertices b2 to bn1 .

Figure 11: The surface with bi (left) and after the action of T with b′i
(right)

Figure 12: The surface with bi and b′i (left) and the surface with the
curves ai to aj after the anti-oriented solving (right)
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• We repeat the last two steps as long as we can create new
curves, i.e. as long as a curve bj gives more than the curve aj.
If bj corresponds to a crown vertex, the algorithms stops in
this branch. When we have arrived in all branches in a crown
vertex, the algorithm stops. Then we have found back all A-
and B-curves for the monodromy and we can reconstruct the
planar tree, since the cyclic ordering of the A-curves around
a B-curve gives us the information for the embedding of the
tree into the plane.

The algorithm above gives us a tool to find back the planar tree
out of the monodromy. So the planar tree is an invariant for the knot.
The consequence is, that two slalom knots, which come from the same
abstract rooted tree with different embeddings into the plane, can be
distinguished. This gives us the following statements:

Theorem 1.1. For a positive tree-like mapping class, coming from
a rooted planar tree with at least three crown vertices, the rooted planar
tree can be reconstructed with the algorithm established above.

Corollary 1.2. Two positive tree-like mapping classes coming
from different planar trees are not conjugate.

Proof. For mapping classes coming from rooted planar trees with
at least three crown vertices, the corollary is a direct consequence of
the theorem. For mapping classes with two or one crown vertex, there
exists only one planar embedding up to congruence. The knots corre-
sponding to this mapping classes have already been classified by the
theory of Montesinos links (see [Tu]). ¤

As a direct consequence we get the next statement:

Corollary 1.3. Two slalomknots that come from non-congruent
rooted planar trees are different.

Thus the construction of knots via rooted tree generates a lot of
different but mutant knots, since non-congruent embeddings of the
same abstract tree correspond to mutations of the knot.
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