Kahmen, Ansgar and Hoffmann, Bernd and Schefuß, Enno and Arndt, Stefan K. and Cernusak, Lucas A. and West, Jason B. and Sachse, Dirk. (2013) Leaf water deuterium enrichment shapes leaf wax n-alkane δD values of angiosperm plants II: Observational evidence and global implications. Geochimica et Cosmochimica Acta, 111. pp. 50-63.
Full text not available from this repository.
Official URL: http://edoc.unibas.ch/49369/
Downloads: Statistics Overview
Abstract
Leaf wax n -alkanes are long-chain hydrocarbons that can persist in sedimentary records over geological timescales. Since their hydrogen isotopic composition (expressed as a δD value) can be correlated to the δD values of precipitation, leaf wax n -alkane δD values have been advocated as new and powerful proxies for paleohydrological research. The exact type of hydrological information that is recorded in the δD values of leaf wax n -alkanes remains, however, unclear. In a companion paper we provide experimental evidence showing that the δD values of leaf wax n -alkanes of angiosperm plants grown under controlled environmental conditions not only reflect δD values of precipitation – as has often been assumed – but that evaporative deuterium (D)-enrichment of leaf water has an additional critical effect on their δD values. Here we present a detailed observational study that illustrates that evaporative D-enrichment of leaf water also affects the δD values of leaf wax n -alkanes in plants from natural ecosystems along a 1500 km climate gradient in Northern Australia. Based on global simulations of leaf water D-enrichment we show that the effects of evaporative D-enrichment of leaf water on leaf wax n -alkane δD values is relevant in all biomes but that it is particularly important in arid environments. Given the combined influence of precipitation δD values and leaf water D-enrichment we argue that leaf wax n -alkane δD values contain an integrated signal that can provide general hydrological information, e.g. on the aridity of a catchment area. We also suggest that more specific hydrological information and even plant physiological information can be obtained from leaf wax n -alkanes if additional indicators are available to constrain the plant- and precipitation-derived influences on their δD values. As such, our findings have important implications for the interpretation of leaf wax n -alkane δD values from paleohydrological records. In addition, our investigations open the door to employ δD values of leaf wax n -alkanes as new ecohydrological proxies in contemporary plant and ecosystem sciences.
Faculties and Departments: | 05 Faculty of Science > Departement Umweltwissenschaften > Integrative Biologie > Physiological Plant Ecology (Kahmen) |
---|---|
UniBasel Contributors: | Kahmen, Ansgar |
Item Type: | Article, refereed |
Article Subtype: | Research Article |
Publisher: | Elsevier |
ISSN: | 0016-7037 |
e-ISSN: | 1872-9533 |
Note: | Publication type according to Uni Basel Research Database: Journal article |
Identification Number: | |
Last Modified: | 30 Nov 2017 13:12 |
Deposited On: | 30 Nov 2017 13:12 |
Repository Staff Only: item control page