edoc-vmtest

Characterization of the head-to-tail overlap complexes formed by human lamin A, B1 and B2 "half-minilamin" dimers

Kapinos, L. E. and Schumacher, J. and Mucke, N. and Machaidze, G. and Burkhard, P. and Aebi, U. and Strelkov, S. V. and Herrmann, H.. (2010) Characterization of the head-to-tail overlap complexes formed by human lamin A, B1 and B2 "half-minilamin" dimers. Journal of molecular biology, Vol. 396, H. 3. pp. 719-731.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5265311

Downloads: Statistics Overview

Abstract

Half-minilamins, representing amino- and carboxy-terminal fragments of human lamins A, B1 and B2 with a truncated central rod domain, were investigated for their ability to form distinct head-to-tail-type dimer complexes. This mode of interaction represents an essential step in the longitudinal assembly reaction exhibited by full-length lamin dimers. As determined by analytical ultracentrifugation, the amino-terminal fragments were soluble under low ionic strength conditions sedimenting with distinct profiles and s-values (1.6-1.8 S) indicating the formation of coiled-coil dimers. The smaller carboxy-terminal fragments were, except for lamin B2, largely insoluble under these conditions. However, after equimolar amounts of homotypic amino- and carboxy-terminal lamin fragments had been mixed in 4 M urea, upon subsequent renaturation the carboxy-terminal fragments were completely rescued from precipitation and distinct soluble complexes with higher s-values (2.3-2.7 S) were obtained. From this behavior, we conclude that the amino- and carboxy-terminal coiled-coil dimers interact to form distinct oligomers (i.e. tetramers). Furthermore, a corresponding interaction occurred also between heterotypic pairs of A- and B-type lamin fragments. Hence, A-type lamin dimers may interact with B-type lamin dimers head-to-tail to yield linear polymers. These findings indicate that a lamin dimer principally has the freedom for a "combinatorial" head-to-tail association with all types of lamins, a property that might be of significant importance for the assembly of the nuclear lamina. Furthermore, we suggest that the head-to-tail interaction of the rod end domains represents a principal step in the assembly of cytoplasmic intermediate filament proteins too.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Former Organization Units Biozentrum > Structural Biology (Aebi)
UniBasel Contributors:Kapinos Schneider, Larisa E. E and Aebi, Ueli
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Elsevier
ISSN:0022-2836
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:08 Jun 2012 06:48
Deposited On:22 Mar 2012 13:28

Repository Staff Only: item control page