edoc-vmtest

Multipotent neural stem cells reside into the rostral extension and olfactory bulb of adult rodents

Gritti, Angela and Bonfanti, Luca and Doetsch, Fiona and Caille, Isabelle and Alvarez-Buylla, Arturo and Lim, Daniel A. and Galli, Rossella and Verdugo, Jose Manuel Garcia and Herrera, Daniel G. and Vescovi, Angelo L.. (2002) Multipotent neural stem cells reside into the rostral extension and olfactory bulb of adult rodents. Journal of Neuroscience, 22 (2). pp. 437-445.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/50354/

Downloads: Statistics Overview

Abstract

The lateral walls of the forebrain lateral ventricles are the richest source of stem cells in the adult mammalian brain. These stem cells give rise to new olfactory neurons that are renewed throughout life. The neurons originate in the subventricular zone (SVZ), migrate within the rostral extension (RE) of the SVZ along the rostral migratory stream (RMS) within tube-like structures formed of glial cells, to eventually reach the olfactory bulb (OB). We demonstrate that, contrary to the current view, multipotential (neuronal-astroglial-oligodendroglial) precursors with stem cell features can be isolated not only from the SVZ but also from the entire RE, including the distal portion within the OB. Specifically, these stem cells do not derive from the migratory neuroblasts coming from the SVZ. Interestingly, stem cells isolated from the proximal RE generate significantly more oligodendrocytes, and those from the distal RE proliferate significantly more slowly than stem cells derived from the SVZ and other RE regions. These findings demonstrate that stem cells are not confined to the forebrain periventricular region and indicate that stem cells endowed with different functional characteristics occur at different levels of the SVZ-RE pathway.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Neurobiology > Stem Cell Biology (Doetsch)
UniBasel Contributors:Doetsch, Fiona
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Society for Neuroscience
ISSN:0270-6474
e-ISSN:1529-2401
Note:Publication type according to Uni Basel Research Database: Journal article
Identification Number:
Last Modified:27 Nov 2017 10:07
Deposited On:27 Nov 2017 10:07

Repository Staff Only: item control page