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1. Summary 
 

Recombinant proteins and monoclonal antibodies offer great promise as therapeutics for hundreds 
of diseases. Today, there are almost 400 biotechnology drugs in development for over 200 different 
conditions. Many of these drugs are glycoproteins for which the correct glycosylation patterns are 
important for their structure and function. Achieving and maintaining proper glycosylation is a major 
challenge in biotechnology manufacturing. Most recombinant therapeutic glycoproteins are 
produced in living cells. This method is used in an attempt to correctly match the glycosylation 
patterns found in the natural human form of the protein and achieve optimal in vivo functionality. 
However, utilizing cell systems to produce glycoproteins requires balancing the cells ability to 
produce the protein with its ability to attach the appropriate carbohydrates. One limitation of this 
approach is that the expression systems do not maintain complete glycosylation under high-volume 
production conditions. This results in low yields of usable product and contributes to the cost and 
complexity of producing these drugs. Incorrect glycosylation also affects the half-life of the drug. 
Low production yields are a significant contributor to the critical worldwide shortage of 
biotechnology manufacturing capacity.  

To achieve higher production yields, the required quality standards to fulfill regulations by health 
authorities, fast, accurate and preferably inexpensive analytical methods are required. Nowadays 
the (routine) analysis of therapeutic glycoprotein is accomplished by analytical HPLC, MS or Lectin 
blotting and in conjunction with chemical derivatization, exo-glycosidases treatment, and/or other 
selective chemical cleavage reactions. The fact that different carbohydrates have very similar 
molecular weights and physicochemical properties makes the analysis of glycosylation slow and 
complex. Conventional glycoanalysis requires multiple steps to obtain the structure, sequence and 
prevalence of all glycans in a glycoprotein sample. Complete analysis typically takes several days 
and highly trained personnel. Therefore, the need for more efficient and rapid glycoanalysis 
methodology is fundamental to the success of biotechnologically produced drugs. 

With this demand in the back of one's mind, a 13C-NMR spectra analysis system for 
oligosaccharides based on multiple Back-propagation neural networks was developed during this 
thesis. Before the realization of the idea, some fundamental questions had to be posed: 

1. Are the monosaccharide moieties, the anomeric configuration and the substitution pattern 
of an oligosaccharide shown in a NMR (13C or 1H) spectrum? 

2. What kind of NMR data provides this information better (1H or 13C-NMR)? 

3. How can spectroscopic data be processed, compressed and transferred into a neural 
network? 

4. Which neural network architecture, learning algorithm and learning parameters lead to 
optimal results? 
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Preliminary experiments showed that the six chemical shifts of a monosaccharide moiety (from 
glucose, galactose and mannose) suffice to identify the monosaccharide itself, the anomeric 
configuration (if the anomeric carbon atom is substituted) and the substitution position(s). The 
experiments also revealed that these compounds could be almost completely separated by the help 
of Counter-propagation neural networks.  

The main goal of the neural network approach was to recognize every single monosaccharide 
moiety in an oligosaccharide and train specialized separated networks for each monosaccharide 
moiety group. Therefore, the neural networks should be trained with the 13C-NMR spectra of these 
monosaccharide moieties. During the test phase, the whole spectrum of an oligosaccharide will be 
presented to the network and the specialized networks should then only recognize the 
monosaccharide moieties they are trained for. 

Initial attempts to train a Back-propagation neural network to identify six methyl pyranoside 
compounds failed. This lack of success was because the data set used was too small and an 
uncompressed NMR spectrum leads to too many input neurons. Therefore, the data foundation was 
changed and enlarged with 535 monosaccharide moieties (mostly galactose, glucose and 
mannose) from literature and a special data compression (JCAMP-DX for NMR files) and parsing 
software tool called ANN Pattern File Generator was developed. The entire dataset was normalized 
and stored in a FileMaker 13C-NMR database. Further experiments with this new dataset, different 
Back-propagation network layouts and training parameters still did not achieve the designated 
recognition rate of unknown test compounds. The training performance of the neural networks 
seems to be insensible against major changes of training parameters. Tests with a new and 
enlarged dataset (1000 oligosaccharides and approx. 2500 monosaccharide moieties) with 
Kohonen networks highlighted, that separate Kohonen networks for each monosaccharide type 
yield to higher recognition rates than networks, which have to deal with all three monosaccharide 
types at once.  

This cognition was transferred to separate back propagation networks, which now showed 
recognition rates higher than 90% for unknown compounds. This separated approach worked 
excellent for disaccharides with two different monosaccharide moieties. Disaccharides with similar 
or identical moieties cannot be identified because the designated neural network recognizes only 
one monosaccharide at once. Out of this disadvantage, the so-called 'ensemble' or 'group of 
experts' approach was developed. Here, one utilizes the fact, that no trained neural network shows 
exactly the same recognition characteristics. Different neural networks respond differently to the 
same test inputs. Twenty trained neural networks at a time were grouped into ensembles. All these 
networks are trained to recognize the same monosaccharide moiety. After presenting a test input 
(e.g. disaccharide) to this group of experts, one gets at the most extreme case, twenty different 
recognition results. Afterwards, the results can be statistically analyzed. In the case of a 
disaccharide with two monosaccharide moieties of the same carbohydrate (e.g. α-D-Glcp-1-4-β-D-
Glcp-OMe), the analysis will deliver both monosaccharide compounds because some networks 
recognized one and other networks the other part of the disaccharide. 
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The ensemble approach brought the final breakthrough of this thesis. Disaccharide recognition 
rates in the range of 85 – 96% (depending on the monosaccharide moiety – glucose, galactose or 
mannose) demonstrate the feasibility of the approach. The hit rates of the different ensembles can 
certainly be improved by a more subtle choice of the members of each ensemble. An ongoing 
diploma work shows a recognition improvement in this direction. 

 

2. Abbreviations 
 

Act Activation Function 
AFFN ASCII Free Form Numeric 
ANN Artificial Neural Network 
CASPER Computer assisted spectrum evaluation of regular polysaccharides 
COSY Correlation spectroscopy 
CSV Comma-separated values 
CHO Chinese hamster ovary cells 
DEPT Distortionless Enhancement by Polarization Transfer 
DQF-COSY Double quantum filtered-COSY 
ER Endoplasmatic reticulum 
FID Free-induced decay 
GAM Glucose, Galactose and Mannose 
GUI Graphical user interface 
HMBC Heteronuclear multiple bond correlation 
HMQC Heteronuclear multiple quantum coherence 
HPLC High pressure liquid chromatography 
HSQC Heteronuclear single quantum coherence 
HU Hidden units (neurons) 
IPS Intelligent problem solver (part of the Statsoft Statistica program) 
IU Input units (neurons) 
IUPAC The International Union of Pure and Applied Chemistry 
JCAMP Joint Committee on Atomic and Molecular Physical Data 
LDR Labeled data records (in JCAMP-DX files) 
LINUCS Linear Notation for Unique description of Carbohydrate Sequences 
MALDI Matrix-assisted laser desorption/ionization 
MG Modification Generator 
MLP Multi-layer perceptron (Neural network whit one or more hidden layers) 
MS Microsoft 
MSE Mean square error 
NOE Nuclear Overhauser Effect 
NOESY Nuclear Overhauser enhancement spectroscopy 
ODBC Open Database Connectivity, a standard database access method developed by the 

SQL Access group 
OU Output units (neurons) 
PFG Pattern File Generator (ANN PFG) 
ROESY Rotating frame Overhauser enhancement spectroscopy 
SNNS Stuttgart Neural Network Simulator 
SOM Self organizing feature maps – also called Kohonen feature maps 
SQL Structured query language. 

SQL is a standardized query language for requesting information from a database 
TOCSY Total Correlation Spectroscopy – a high resolution NMR technique 
VBA Visual Basic for Applications 
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3. Introduction 
 

3.1. Glycoproteins 

The human genome contains approx. 30'000 genes and encodes up to 40,000 proteins. A major 
challenge is to understand how post-translational events, such as glycosylation, affect the activities 
and functions of these proteins in health and disease. Glycosylated proteins are ubiquitous 
components of extracellular matrices and cellular surfaces where their oligosaccharide moieties are 
implicated in a wide range of cell-cell and cell-matrix recognition events. Most viruses and bacteria 
use cell-surface carbohydrates to gain entry into cells and initiate infection. Several human diseases 
and tumor metastasis are related to abnormalities in carbohydrate degradation and recognition. As 
a result, interest in glycobiology and characterization of carbohydrates has grown rapidly. However, 
the technology for carbohydrate analysis and sequencing has lagged behind this recent demand. 
One reason for this could be the distinct heterogeneity of oligosaccharide structures frequently 
found on a single polypeptide species. Hence, a single protein may exist as a complex collection of 
glycoproteins, which differ only in the amount or structure of attached carbohydrate moieties. 

Unlike other structural biomolecules such as proteins and nucleic acids, synthesis of which is 
template-driven and well defined at a molecular level, oligosaccharides are not primary gene 
products [1]. 

For glycoproteins intended for therapeutic administration, it is important to have knowledge about 
the structure of the carbohydrate side chains. This will provide strategies to avoid cell systems that 
produce structures, which in humans can cause undesired reactions, e.g., immunologic and 
unfavorable serum clearance rate. Structural analysis of the oligosaccharide part of the glycoprotein 
requires instruments such as MS and/or NMR. However, before the structural analysis can be 
conducted, the carbohydrate chains have to be released from the protein and purified to 
homogeneity, which is often the most time-consuming step. Mass spectrometry and NMR play 
important roles in analysis of protein glycosylation. For oligosaccharides or glycoconjugates, the 
structural information from mass spectrometry is essentially limited to monosaccharide sequence, 
molecular weight, and only in exceptional cases glycosidic linkage positions can be obtained. To 
completely elucidate an oligosaccharide structure, several other structural parameters have to be 
determined, e.g., linkage positions, anomeric configuration and identification of the monosaccharide 
building blocks. One way to address these problems is to apply NMR spectroscopy (chapter 3.2). 

Recombinant proteins and monoclonal antibodies offer great promise as therapeutics for many 
diseases. In 2002 there were more than 371 biotechnology drugs in development for nearly 
200 different diseases [2]. Many of these drugs are glycoproteins. The process by which these 
carbohydrates are attached to proteins is called glycosylation. Glycosylation patterns are important 
to the structure and function of glycoproteins. Achieving and maintaining proper glycosylation is a 
major challenge in biotechnology manufacturing, and one that affects the industry’s overall ability to 
maximize the clinical and commercial gains possible with these agents. Most recombinant 
therapeutic glycoproteins, including the well-known drugs Avonex™ (interferon beta 1-α) and 
Epogen™/Eprex™ (epoetin α), are produced in living cells - Chinese hamster ovary (CHO) cells - in 
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an attempt to correctly match the glycosylation patterns found in the human form of the protein and 
achieve optimal in vivo functionality.  

However, utilizing cell systems to produce glycoproteins requires balancing the cells ability to 
produce the protein with their ability to attach the appropriate carbohydrates. CHO cells engineered 
to produce large quantities of a specific protein often do not maintain the proper level of 
glycosylation. This results in low yields of usable product, which contributes to the cost and 
complexity of producing these drugs. Incorrect glycosylation also affects the immunogenicity [3], 
plasma half-life, bioactivity and stability [4] of a potential therapeutic product, resulting in the need to 
administer higher and more frequent doses.  

 

Table 1: Some examples of the effect of glycosylation on therapeutic activity reported in the literature. 
 
Protein Change Effect 
erythropoietin additional glycans; increased 

sialylation 
longer half life; 5-fold reduction in 
dosing 

follicle stimulating hormone correct glycosylation increased half-life 
cerezyme/ceredase increased exposure of mannose better binding to mannose receptors; 

increased cell uptake to site of action 
monoclonal antibodies terminal galactose mediation of effector function 

 
These complications affect the cost of therapy, and potentially, the incidence of side effects. Low 
yields are a significant contributor to the critical worldwide shortage of biotechnology manufacturing 
capacity. Thus, the ability to manufacture these drugs is becoming an important strategic asset of 
pharmaceutical and biotechnology companies. Because of these issues, the pharmaceutical 
industry continues to search for better ways to manufacture and analyze glycoproteins. Alternative 
expression systems, such as transgenic animals and plants, have received industry and media 
attention because they offer the possibility to significantly increase product yields at lower cost. 
However, achieving the correct glycosylation patterns remains a problem with these systems and is 
a significant barrier to their widespread adaptation for manufacturing proteins for parenteral use. [5] 

 

3.1.1. Glycoprotein structures and biosynthesis 

The structural variability of glycans is dictated by tissue specific regulation of glycosyltransferase 
genes, acceptor and sugar nucleotide availability in the Golgi, compartmentalization, and by 
competition between enzymes for acceptor intermediates during glycan elongation. 
Glycosyltransferases catalyze the transfer of a monosaccharide from specific sugar nucleotide 
donors onto a particular hydroxyl position of a monosaccharide in a growing glycan chain with a 
specific anomeric linkage (either α or β). The protein microenvironment of the immature glycan 
chain also affects glycosyltransferase catalytic efficiency, and leads to structural heterogeneity of 
glycans between glycoproteins - even between different glycosylation sites on individual 
glycoproteins produced by the same cells [6].The Oligosaccharide structures depend on the cell type 
and its enzymatic equipment, its developmental stage, and its nutritional or pathological state [7]. 
The true structural diversity is enormous. This raises the question of using recombinant 
glycoproteins for therapeutic purposes, insofar as the oligosaccharide chains of the produced 
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glycoproteins have to be structurally close to those of the wild-type glycoproteins and compatible 
with the immune system 

Oligosaccharides are covalently linked to proteins through O- (to Ser or Thr) or N- (to Asn) 
glycosidic bonds, respectively[8]. In O-glycosylated proteins, the oligosaccharides range in size from 
1 to 20 sugars. Therefore, they are displaying considerable structural (and antigenic) diversity. 
Moreover, these oligosaccharides are uniformly distributed along the peptide chain, or clustered in 
heavily glycosylated domains. N-Acetylgalactosamine (GalNAc) is invariably linked to Ser or Thr 
(Figure 1). Mannose residues have not been detected in mature O-glycans. 

 
 
 

 
 

Figure 1: O-linked oligosaccharides 
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Figure 2: O-linked oligosaccharide in schematic illustration (left part) 
and the corresponding chemical structure (right) 

 
N-Oligosaccharides have a common core structure of five sugars and differ in their outer branches. 
The first sugar residue, N-acetylglucosamine (GlcNAc) is bound to Asn being part of a specific 
tri-peptide sequence (Asn-X-Thr or Asn-X-Ser). N-Oligosaccharides are classified into three main 
categories: high mannose, complex, and hybrid (). High-mannose oligosaccharides have two to six 
additional mannoses linked to the pentasaccharide core and are forming branches. Hybrid 
oligosaccharides contain one branch that has the complex structure and one or more high-mannose 
branches. Complex-type oligosaccharides have two or more branches, each containing at least one 
GlcNAc, one Gal, and eventually a sialic acid (SA).  



Matthias Studer NeuroCarb - ANN for NMR structure elucidation of oligosaccharides 

- 15 - 

These branches can be bi-, tri-, or tetra-antennary (Figure 3). Glc residues have not been detected 
in mature complex N-oligosaccharides. Serum glycoproteins mostly consist of complex type 
N-oligosaccharides. O- and N-oligosaccharide chains may occur on the same peptide core [7]. 

 
       

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: N-linked oligosaccharides 
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Figure 4: N-linked oligosaccharide in schematic illustration (bottom right) and the corresponding  
chemical structure (top) 
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O-Oligosaccharide biosynthesis begins in the cis Golgi with the transfer of the first sugar residue, 
GalNAc, from UPD-GalNAc by a specific polypeptide, O-GalNAc transferase, to a completed 
polypeptide chain. The glycan chain then grows by the addition of GlcNAc, Gal, and Fuc residues in 
the medial Golgi. Sialylation finally takes place throughout the trans Golgi. There are several 
possible pathways to construct O-glycans, depending on the substrate specificity and intracellular 
arrangement of glycosyltransferases. However, it is far less complex than the processing of 
N-oligosaccharides [7]. 

The biosynthesis of N-oligosaccharides (Figure 5) begins in the ER with a large precursor 
oligosaccharide that contains 14 sugar residues. The inner five residues constitute the core, which 
is conserved in all structures of N-linked oligosaccharides (highlighted in figure 5). This precursor is 
linked to dolichol pyrophosphate, which acts as a carrier for the oligosaccharide.  

 
Rough Endoplasmatic Reticulum 

 

 
 
 

 
 
 

Figure 5: Processing of N-linked complex oligosaccharides (I) 
 
In a next step, the lipid-linked oligosaccharide is transferred “en bloc” to an Asn residue on the 
growing polypeptide chain. While the nascent glycoprotein is still in the rough ER, all three Glc 
residues and one mannose residue are removed by specific glycosidases, producing an 
oligosaccharide with 10 residues instead of 14. The subsequent maturation of the 
N-oligosaccharides takes place in the Golgi complex.  
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Figure 6: Processing of N-linked complex oligosaccharides (II) 
 
 
This pathway involves a coordinated and sequential set of enzymatic reactions, which remove and 
add specific sugar residues. The enzymes involved (glycosidases and glycosyltransferases) are 
located in the cis, medial, and trans Golgi (figure 6). Many of these enzymes are extremely sensitive 
to stimuli within the cell, in which the glycoprotein is expressed. As a result, the specific sugars 
attached to an individual protein depend on the cell type in which the glycoprotein is expressed and 
its physiological status. The reaction product of one enzyme is the substrate for the next. When 
present, sialic acid residues are always at the terminal non-reducing ends of oligosaccharides. 
Missing terminal sialic acids on a glycoprotein expose underlying galactose residues, which are a 
signal for hepatic removal of the glycoprotein from circulation. The high-mannose and hybrid 
oligosaccharides appear as intermediates along the processing pathway.  

The carbohydrate components of glycoproteins affect the functionality of the molecule by 
determining protein folding, oligomer assembly and secretion processes. Without the proper shape, 
the ability of the protein to interact correctly with its receptor is affected, possibly affecting function. 
Glycosylation may have additional biological roles by affecting solubility and preventing aggregation 
and metabolism. 
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3.1.2. Recombinant proteins 

Recombinant proteins and monoclonal antibodies require a host organism for expression. Although 
protein expression systems produce correct amino acid sequences, the glycosylation remains 
(if unmodified) that of the host (Figure 7).  

 
    

 

 
 
 

Figure 7: Comparison of N-glycosylation among alternate expression systems 
Table 2: Comparison of expression systems [9] 

 
 

Table 3: Different selected expression systems 
 

Characteristics Bacteria Yeast Insect cells Mammalian cells
Cell growth rapid (30 min) rapid (90 min) slow (18-24 h) slow (24 h) 
Complexity of growth 
medium minimum minimum complex complex 

Cost of growth 
medium low low high high 

Expression level high low - high low - high low - moderate 
Extracellular 
expression secretion to periplasm secretion to medium secretion to medium secretion to 

medium 

Posttranslational 
modifications 

no eukaryotic post-
translational 
modifications 

most of the eukaryotic 
post-translational 

modifications 

many of the post-
translational 
modifications 
performed in 

mammalian cells 

post-translational 
modifications 

Protein folding refolding usually 
required 

refolding may be 
required proper folding proper folding 

N-linked glycosylation high mannose simple, no sialic acid complex 

O-linked glycosylation 

Campylobacter jejuni 
and many other 

bacteria have been 
identified as 

containing both N- 
and O-linked 

glycosylation systems 

yes yes yes 

 
Bacteria: The established paradigm that bacteria do not glycosylated proteins is no longer valid [10-

13]. The human enteropathogenic bacterium Campylobacter jejuni and many other bacteria have 
been identified as containing both N- and O-linked glycosylation systems. But the details of the 
glycosylation biosynthetic process have not been determined in any of the bacteria systems [11]. 
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Yeast: Researchers have shown that yeast (pichia pastoris) expression system can be genetically 
altered to produce therapeutic glycoproteins with human-like oligosaccharide structures [14]. This 
process involves the knockout of some of the endogenous glycosylation pathways, and recreation 
of the human sequential glycosylation machinery, which requires proper localization of active 
glycosyltransferases and mannosidases. Yeast and fungal expression systems offer a simple and 
cost effective production process with high yield and powerful secretory pathways.  

Insect cell lines like the baculovirus/lepidopteran expression system [15, 16] attach shorter mannose 
chains to the parent protein than yeast [17] and cannot produce sialylated complex N-glycans. Again, 
while not likely immunogenic, these foreign patterns affect the properties of the recombinant 
proteins.  

Plants: The published studies on the production of human proteins in plants indicate that plants 
often add simple N-glycan structures that lack galactose and terminal sialic acids. As a 
consequence their affinity is compromised.  

CHO cells, the system most commonly used today for recombinant protein manufacturing, 
glycosylate close to human but do not maintain complete glycosylation under production conditions. 

Transgenic animals are being studied as an alternative to traditional CHO cell production 
processes. Transgenic animals provide a potentially less expensive source of production for 
proteins compared to traditional cell culture systems. In recent years, the number of production 
systems has increased. While transgenic expression systems may solve the problems of protein 
production yields and may lower cost, they do not solve the problem of protein glycosylation. 
Another obstacle may be the presence of α 1-3 linked core fucose residues that are potentially 
immunogenic [3] [18].  

A potential concern is that most transgenic systems link a non-human form of sialic acid, 
N-glycolylneuraminic acid. Whether or not this is a problem may become evident as high-dose, 
chronic-use protein therapeutics become more widely used. A review of interferon gamma, a 
recombinant protein that has been expressed in three different systems, offers insight into the types 
of glycosylation differences that occur among expression systems. Interferon gamma produced in 
CHO cells contains a fucose residue and high mannose oligosaccharide chains. Finally, Interferon γ 
produced in transgenic mice shows considerable site-specific variation in N-glycan structures. 
Interferon γ produced from insect cell culture is associated with tri-mannosyl core structures. These 
differences highlight the importance of monitoring glycosylation patterns and noting the effect of 
variances in glycosylation on the structure and function of the recombinant protein [5].  

To achieve these required quality standards and fulfill regulations by health authorities, fast, 
accurate and preferably inexpensive analytical methods are required. Nowadays the (routine) 
analysis of therapeutic glycoprotein is accomplished by analytical HPLC, MS or Lectin blotting and 
in conjunction with chemical derivatization, exo-glycosidases treatment, and/or other selective 
chemical cleavage reactions.  
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The complexity described above plus the fact that different carbohydrates have very similar 
molecular weights and physicochemical properties, makes the analysis of glycosylation slow and 
complex. Conventional glycoanalysis requires multiple steps to obtain the structure, sequence and 
prevalence of all glycans in a glycoprotein sample: 

1. purification of the protein from culture medium 

2. the chemical or enzymatic release of the glycans from the protein backbone 

3. purification of the glycans 

4. separation, labeling or other modification of the glycans 

5. sequential cleavage of the terminal carbohydrates for some analytical methods 

6. MS or NMR analysis 

 
Complete analysis typically takes several days and highly trained personnel. This series of 
procedures and methods has several disadvantages: 

1. Several of the steps can introduce anomalies that interfere with accurate analysis of the 
carbohydrates and the structure of the glycans 

2. Once the glycans have been separated from the protein, it is not possible to determine the 
relationship of the glycans.  

 There is therefore clearly a need for more efficient and rapid glycol-analysis methodology. 

 

3.1.3. Main objectives of glycoprotein analysis 

Glycoprotein analysis is used in the following working fields 

• clone profiling, selection and scale up in drug discovery 

• monitoring of glycosylation changes during drug metabolism and pharmacokinetics in 
development  

• stability analysis of glycosylation patterns during stability testing  

• growth optimization and monitoring to reduce batch loss, save time and improve quality 
control in manufacturing  
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3.2. Carbohydrate structure elucidation by nuclear magnetic 
resonance (NMR) 

There are several approaches to perform a primary structural analysis of a mono-, oligo-, or 
polysaccharide by NMR spectroscopy. Vliegenthart et al. [19] introduced the structural-reporter-group 
concept, which is based on signals outside the bulk region (3-4 ppm) in the 1H-NMR spectra of 
carbohydrates. This approach is used to identify individual sugars or sequences of residues and 
can be used to identify structural motifs or specific sugars and linkage compositions found in 
relevant databases.  

NMR- based structure elucidation is most often combined with data from mass spectrometry or 
chemical information, e.g. monosaccharide composition or methylation analysis [20]. Methylation 
analysis[21] provides information about which hydroxyl groups are substituted. Oligosaccharides 
were investigated in H2O at temperatures below 0 °C, either by super cooling or addition of 
acetone-d6 to prevent freezing [22]. During the studies the authors noticed that the method can be 
used to identify positions in the monosaccharide residues of oligosaccharides which are 
glycosidically linked. The aliphatic protons at carbons with OH attached will show couplings to the 
OH group at low temperature and can be identified by comparison of spectra obtained in D2O and 
H2O using 1D TOCSY or by line broadening. The remaining aliphatic protons, often with sharper 
signals, will then correspond to substituted positions of the glycosidic linkages[23]. This method 
requires only small amounts of material compared to the amounts required for a full NMR structural 
analysis. If this indirect method fails to identify the glycosidic positions due to overlap, the positions 
bearing OH can be identified in a 2D COSY [24] by the correlation between OH protons and aliphatic 
protons. Similar experiments can be carried out in DMSO, where the exchange of OH-protons is 
slow even at room temperature [25]. 

Carbohydrates normally have at least two NMR-active nuclei, 13C and 1H. In addition, less 
frequently used nuclei like 2H, 15N, 17O and 31P can be used for studies of natural or synthetic 
oligosaccharides. The dispersion of resonances in the carbon spectra is favorable, but the amount 
of material needed to acquire such spectra is relatively high due to the low natural abundance of 
13C. However, advances in both hardware and pulse sequences have reduced the amount needed. 
In practical terms, about 100 µg of a pure trisaccharide is sufficient to perform a complete structural 
assignment by both 1H and 13C-NMR spectroscopy. When comparing chemical shift values and 
entering the data into a neural network, it is important that the reference data is measured at the 
same temperature and that the data are based on the same internal reference. 

In the following chapters, the different NMR techniques to obtain the carbohydrate properties are 
discussed briefly. 
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3.2.1. Number of sugar residues 

A good starting point for a structural analysis is the chemical shift of the anomeric proton. 
Integration of the anomeric resonances offers an initial estimate on the number of different 
monosaccharide residues present. The anomeric proton resonances are found in the shift range 4.4 
- 5.5 ppm. The remaining ring proton resonances are found in the range 3 - 4.2 ppm in unprotected 
oligosaccharides. Additionally, the number of anomeric C1 resonances present in a 1D 13C-NMR 
spectrum will confirm the number of different residues. (Such results can also be obtained from 2D 
13C-1H HSQC [26-28], HMQC [29-31] or HMBC [32-35] spectra, which in most cases are more sensitive 
than a 1D 13C spectrum). 

5.4 4.2
1H Structural reporter group region 13C anomeric region

+
104 101

No. of monosaccharide units

 
 

Figure 8: determination of the number of involved monosaccharide units (adapted from [25]) 
 
Illustrated examples used during this thesis are discussed in greater detail in chapter 5.1. 

 

3.2.2.  Constituent monosaccharides 

Homonuclear TOCSY and DQF-COSY spectra are useful in the identification of individual 
monosaccharide residues. In TOCSY spectra of oligosaccharides acquired with a fairly long mixing 
time (>100 ms), it is often possible to measure the size of the coupling constants and the 
correlations to reveal the identity of the residue. In cases with significant overlap in the bulk region 
(3-4.2 ppm), a 1D selective TOCSY [36] may be useful in resolving ambiguities. Both 1H and 13C 
chemical shifts for most monosaccharides are reported in literature (chapter 4.1.5) [25]. Based on 
such values, an assignment of the individual residues can be achieved with the help of neural 
networks. The 13C chemical shift values can easily be obtained from a HSQC or HMQC spectrum 
[29-31]. For carbohydrates without an anomeric proton (Figure 9 and Figure 10), characteristic 
signals as the H3equatorial or H3axial protons (δH3axial ~ 1.9 ppm and δH3axial ~ 2.3 ppm [37]) 
are a good starting point for the assignments.  
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Figure 9: α-Kdo = 3-deoxy-D-manno-octulosonic acid 
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Figure 10: α-NeuAc 
 

These experiments summarized in figure 11 are useful and give additional dispersion in the carbon 
dimension, which may facilitate the assignment of individual spin systems. 
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Figure 11: determination of the constituent monosaccharides (adapted from [25]) 
 

3.2.3. Anomeric configuration 

Normally the α-anomer resonates downfield compared to the β-anomer in D-pyranoses in 4C1 
conformation. The vicinal coupling constant between the anomeric H1 and the H2 indicates the 
relative orientation of the two protons. If they are both in an axial configuration in pyranose 
structures, a large coupling constant (7-8 Hz) is observed, whereas if they are equatorial-axial, this 
is smaller (J1,2 ~ 4 Hz), and for equatorial-equatorial oriented protons, even smaller coupling 
constants are observed (<2 Hz) [38]. This principle can be used when assigning the relative 
orientation of protons in a hexopyranose ring as first demonstrated by Lemieux et al [39]. The 13C 
chemical shift reveals the anomeric configuration in a manner similar to the proton chemical shifts, 
but most importantly the one bond 13C-1H coupling constants in pyranoses can be used to 
determine the anomeric configuration unequivocally. For D sugars in the 4C1 conformation, a 
1JC1,H1 ~ 170 Hz indicates an α-anomeric sugar configuration whereas 1JC1,H1 ~ 160 Hz 
indicates a β-anomeric sugar configuration [40]. This is reversed for L sugars. The use of one-bond 
coupling constants in furanose structures does not correlate in the same way with the anomeric 
structure. Several experiments can be used to measure these one-bond coupling constants, the 
simplest is to turn off the proton decoupling during the carbon acquisition. 

 

anomeric configuration+
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Figure 12: determination of the anomeric configuration (adapted from [25]) 
 
Illustrated examples used during this thesis are discussed in detail in chapter 5.1. 
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3.2.4. Linkage and sequence 

Both the 1H and the 13C chemical shift may give an indication of the linkage type, if the chemical 
shifts for the specific linkage have been reported previously [25]. The effect of glycosylation 
depends on the linkage type, and the changes in the chemical shift are in general larger at the 
glycosylation site than at neighboring positions. Interresidue NOEs may give information about the 
glycosidic linkage, but it should be kept in mind that the strongest NOE might not be between the 
protons across the glycosidic linkage [41] [42]. A HMBC [32-35] experiment can also give linkage 
information, keeping in mind that both intra- and interresidue correlations are seen. 
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Figure 13: determination of linkage and sequence (adapted from [25]) 
 
Illustrated examples used during this thesis are discussed in detail in chapter 5.1. 

 

3.2.5. Position of appended groups 

The proton and carbon chemical shifts are sensitive to the attachment of a non-carbohydrate group 
like a methyl, acetyl, sulfate, or a phosphate group. Attachment of such groups will affect the proton 
and carbon resonances at the substitution position. Normally downfield shifts ~0.2-0.5 ppm are 
observed [25] for protons and higher Δδ values for 13C. This shifts these resonances in a less 
crowded area of the spectra and helps the identification of modified residues. Such appended 
groups may also contain NMR-active nuclei, which may give rise to additional splitting due to 
couplings (e.g., 31P-1H long-range couplings). The use of other homo- or hetero-nuclear correlations 
may help in the determination of their position. As pointed out above, many of the resonances are 
found in a narrow chemical shift range, and this can make it problematic to distinguish resonances 
which are close in chemical shift. Difficulty also arises when comparing different spectra or spectral 
regions.  

 
O

X
position of appended groups

 
 
 

Figure 14: determination of the position of appended groups (adapted from [25]) 
 
Illustrated examples used during this thesis are discussed in detail in chapter 5.1. 
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3.2.6. Advantages and disadvantages of NMR 

Because of the very large number of possible structural isomers [43], no structural elucidation 
technique is capable of providing a complete structural analysis, although nuclear magnetic 
resonance comes close in many cases. Unfortunately, NMR is very insensitive and normally needs 
relatively large sample amounts. However, with new special nano NMR sample tubes [25] and 
spectrometers with cryo heads, it is possible to reduce the amount of compound down to some 
milligrams. Even more complicated is the application of NMR analysis of a whole glycoprotein as a 
trustworthy routine monitoring method during production of therapeutic glycoproteins. Conventional 
glycoprofiling methods are complex, time consuming and therefore cost-intensive. 

 
Recent trends in science have resulted in an explosive growth in the number of biotechnological 
medicines in development. These are largely driven by the rapidly growing number of known drug 
opportunities emerging from genomics and the improved ability to clone and express human 
proteins. Such developments are a major force in the growth of the pharmaceutical and biotech 
industries. However, expansion in this area is limited by manufacturing production capacities. Too 
much valuable material is rejected because of incorrect or missing glycosylation patterns provoked 
by slow analysis methods. These manufacturing limitations are likely to slow the growth of the 
biotech industry that could be realized if these issues were solved. Industry analysts have estimated 
that for every $100 million of demand for a drug that goes unfilled, $1 billion of the drug’s market 
value is destroyed [44] 

Therefore, new rapid, inexpensive and accurate analytical approaches such as the ANN approach 
proposed in this PhD thesis would be highly beneficial. 
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3.3. Artificial neural networks (ANN) 

3.3.1. Short historical overview 

The history of neural networks is almost as old as the first programmable computers and proceeds 
the history of the symbolic AI (artificial intelligence). In 1943, Warren McCulloch and Walter Pitts 
rudimentary characterized neural networks. They demonstrated that these networks could in 
principal compute every arithmetic or logic function [45].  

 
Table 4: Basic logical functions and gates 

 
AND 
 
 
 
 ACB 

OR 
 
 
 
 AwB 

NOT 
 
 
 
 -A 

Input 1

Input 2  
0 1 

0 0 0 

1 0 1 
 

Input 1

Input 2  
0 1 

0 0 1 

1 1 1 
 

 
 0 1 

Input 1 0 
 

produces a 'true' result whenever 
there is 'true' on both inputs 

produces a 'true' result when 
there is a 'true' on either or both 
inputs 

Whatever logical state is applied 
to the input, the inverted state 
will appear at the output 

NAND 
 
 
 
 ACB 

NOR 
 
 
 
 A+B 

XOR 
 
 
 
 ArB 

Input 1

Input 2  
0 1 

0 1 0 

1 0 0 
 

Input 1

Input 2  
0 1 

0 1 1 

1 1 0 
 

Input 1

Input 2  
0 1 

0 0 1 

1 1 0 
 

When there are two false inputs, 
one gets a true result 

When there is a 'false' input on 
one or both inputs, there is 'true' 
as the result 

Whenever there is a 'false' on 
one input, and a 'true' on the 
other input, a 'true' result is 
generated 

 
Independently, Donald O. Hebb described with the classical Hebbian learning [46] rule how neural 
assemblies can self-organize into feedback circuits capable of recognizing patterns (chapter 3.3.6). 
This rule can be found in its general form in almost every neural learning process. In the following 
years, the first successful applications of neural networks were demonstrated. Shortly after Frank 
Rosenblatt [47] constructed the first effective neuro-computer (Mark I Perceptron). 

In 1969, Marvin Minsky and Seymour Papert [48] performed a detailed mathematical analysis of the 
Perceptron and showed deficiencies of the Perceptron model. They forecasted that the area of 
neural networks is a 'research dead-end'. In the following 15 years of little acknowledgement some 
scientists, famous today, laid the basis for the renaissance: 

A ~A 

A
B Y

A
B Y 

A 
B Y

A 
B Y 

A 
B Y
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In 1972, Teuvo Kohonen [49] introduced a model of a linear associator. Paul Werbos proposed in 
1974 in his PhD thesis [50, 51] the world's famous Back-propagation learning rule. However, his work 
attained great importance only approximately ten years later by the work of Rumelhart and 
McClelland [52]. Well-known names like Stephen Grossberg [53-55], John Hopfield [56-59] and 
Fukushima [60-74] followed in the next years. In the eighties, a period of main growth expansion 
followed. Often the influence of John Hopfield is quoted for the revival of the neural networks. He 
proved [58] that neural networks are able to solve the traveling salesman problem.1  

This result convinced many scientists of the potential benefits of ANN. Great influence had the final 
development and enhancement of the Back-propagation learning rule by Rumelhart, Hinton and 
Williams [52]. 

 

3.3.2. Concise introduction to neural networks 

Artificial neural networks are an attempt at modeling the information processing of the nervous 
systems. Animal nervous systems are composed of thousands or millions of interconnected 
neurons. Each is a very complex arrangement, which deals with incoming signals in many different 
ways. However, neurons are rather slow when compared to their electronic analogues. Whereas 
the electronic simulation can achieve switching times of a few nanoseconds, biological neurons 
need several milliseconds to react to a stimulus. To accelerate this rather slow process, massively 
parallel and hierarchical networking of the brain is a prerequisite for its immense performance [75].  

Table 5: Comparison between brain and computer [76] 

 
Comparison between brain and computer 

  brain computer 

number of processing elements approx. 1011 neurons approx. 109 transistors

Kind Massively parallel mainly serial 

Storage associative referring to address

switching time of one element approx. 1 ms (10-3s) approx. 1 ns (10-9 s)

"switching events" [Hz] approx. 103 [Hz] approx. 109 [Hz] 

"switching events" altogether (theoretical) approx. 1013 [Hz] approx. 1018 [Hz] 

"switching events" altogether (real) approx. 1012 [Hz] approx. 1010 [Hz] 
                                                      
 
1 Traveling salesman problem (= TSP): Given a set of towns and the distances between them, 
determine the shortest path starting from a given town, passing through all the other towns and 
returning to the first town. 
This is one of the most famous problems to test computationally different approaches (e.g. genetic 
algorithms, particle swarms, neural networks etc.). It has a variety of solutions of varying complexity 
and efficiency. The simplest solution (the brute force approach) generates all possible routes and 
takes the shortest. This becomes impractical as the number of towns, N, increases since the 
number of possible routes is !(N-1). At this stage, only highly differentiated algorithms will succeed. 
Especially neural networks and particle swarms perform significantly better than other complex 
algorithms. Algorithms to solve the TPS problem are also used by phone companies to route 
telephone calls through their wire and wireless networks. 
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Today, the mechanisms for the production and transport of signals from a neuron to the next neuron 
are well-understood physiological phenomena. However, the mechanism by which these systems 
cooperate to form complex and extreme-parallel systems capable of incredible information 
processing feats has not yet been completely elucidated. 

Biological neural networks are just one of many possible solutions to the problem of processing 
information. The main difference between neural networks and conventional computer systems is 
the massive parallelism and redundancy, which they exploit in order to deal with the unreliability of 
the individual computing units. Moreover, biological neural networks are self-organizing systems 
and each individual neuron is a delicate self-organizing structure capable of processing information 
in many different ways. 

In biological neural networks, information is stored at the cell body. Nervous systems possess 
global architectures of variable complexity, but all are composed of neural cells or neurons. 

 

   
 

 
Figure 15: microscopic image of a biological neuron and Comparison between the biological 

and artificial neuron. The circle mimicking the neuron's cell body represents simple 
mathematical procedures to generate an output signal yj from the set input signals represented 

by the multivariate input vector X (adapted from J. Zupan and J. Gasteiger) 
 
Dendrites are the transmission channels for incoming information. They receive the signals at the 
contact regions (the synapses) with other nerve cells. The output signals are transmitted by the 
axon, of which each cell has mostly several. The elements of the biological system, dendrites, 
synapse, cell body and axon, are the minimal structure, which are adopted by the ANN from the 
biological model. Artificial neurons for computing have input channels, a cell body and an output 
channel. The synapses will be simulated by their so-called weights2. 

 

                                                      
 
2 The weight is the synaptic strength who determines the relative amount of the signal that enters 
the body of the neuron through the dendrites. In neural networks the term weight describes the 
factor by which the input is multiplied (Equation 1). Attenuating weights have values < 1 and 
amplifying weight need values > 1. 
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Figure 16 shows the structure of an abstract neuron with four inputs (x) and four weights (w). 

               

 
 
 
 

Figure 16: Similarities between biological and artificial neurons (adapted from J. Zupan and J. Gasteiger) 
 
Each neuron normally has a large number of dendrites or synapses. Therefore, many signals can 
be received by the neuron simultaneously. The individual signals are labeled xi and the 
corresponding weights, wi.  

 
The sum of the incoming signals becomes the net input Net: (Equation 1) 

 

mmii xwxwxwxwNet +++++= ......2211  Equation 1 

 
The input signals are combined into a multivariate signal: a multidimensional vector X, whose 
components are the individual input signals: 

 
),...,,...,,( 21 mi xxxxX =  Equation 2 

 
The same way, all the weights can be described by a multidimensional weight vector W: 

 
),...,,...,,( 21 mi wwwwW =  Equation 3 

 
The Net is then the scalar product of a weight vector W and a multivariate input vector X 
representing an arbitrary object: 

 
ϑϑ ++++++=+= mmii xwxwxwxwWXNet ......2211 Equation 4 
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=
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In the present model, a neuron contains two steps in obtaining output from the incoming signals. In 
the first step the net input Net (as explained above) is evaluated and in the second step the net 
input signals Net is transformed nonlinearly. The second step tries to imitate the reaction of a real 
biological neuron. It only fires if the excitatory potential is reached, otherwise there is no stimulus 
passed [77].  

 
 
 

Figure 17: The first (evaluation of the Net input) and the second step (nonlinear transformation of Net) taking 
place in the artificial neuron 

 
)(Netfout =  Equation 6 
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The transfer function is also called squashing function because it squashes the output into a small 
interval. Some frequently used transfer functions for the second step are represented in the 
following figures: 

a) b) c) 
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The input signal will be directly 
forwarded without any 

modification. This function is also 
called identity function. 

The neuron will forward the signal 
linearly but only in an interval 

between -1 and 1 (identity function 
with swap interval 

The binary hard limiter (hl) function 
converts a continuous input signal 

into a binary output signal. The 
threshold level φ divides the output 
spectrum into two parts. At φ the 

function is not differentiable. 
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This bipolar hard limiter function is 
also a hard limiter but with an 

extended input range (-1 to 1). φ is 
the threshold of the function. 

The input values are transferred 
according to a sinusoid function 

between 0 and 1. 

This function is similar to the 
sinusoid function but limiting 

smoother (S-shaped) between 
0 and 1. 

Figure 18: Transfer functions 
 
The basic operation of a neuron is always the same. It collects a net input Net and transforms it into 
the output signal via one of the transfer of functions (Figure 18). 

 
A layer is a group of neurons all of which have the same number of weights and all receive the 
same dimensional input signal simultaneously. The input "layer" does not change the input signals. 
That means that the input neurons have neither weights nor any kind of transfer function. These 
non-active input units (=input neurons) serve only as distributors of signals and do not play an 
active role in the network. 

 0  if Net < φ 

1  if Net $ φ 

-1  if Net < φ 

1  if Net $ φ 
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Figure 19: Full-connected feed forward sample network with one hidden layer 
 

The layer(s) below the passive input layer are called hidden layer(s), because they are not directly 
connected to the input or output signal. They only serve the information processing. More complex 
neural networks normally consist of more than one hidden layer. This is especially the case for 
higher dimensional problems. The layer of neurons that yields the output signals, is called output 
layer. 

Neural networks differ in their network topology (architecture):  

• the number of inputs and outputs 

• the number of layers 

• the number of neurons in each layer 

• the number of weights in each neuron 

• the way weights are linked together within or between the layers 

• which neurons receive the correct input signals 

 
We distinguish the following network topologies: 

• feed forward networks 
o connected in layers (Figure 20a) 

o connected in layers and additional shortcut connections (Figure 20b) 

• feedback networks 
o direct feedback (Figure 20c) 

o indirect feedback (Figure 20d) 

o lateral feedback (Figure 20e) 

o fully connected (Figure 20f) - Fully connected networks are rare special cases and 
became acquainted in particular with Hopfield [56-59] networks) 
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a) b) c) 

 

 

 

 

 

 
 

These networks are divided into 
several levels (layers). There are 
only connections from a layer to 
the next. 

With these networks there are 
connections between consecutive 
layers and connections, which 
jump over layers. For some 
problems, e.g. the Two-Spiral-
Problem[78] the shortcut 
connections are necessary. 
 

These networks allow the 
adaptation of a neurons own 
activation over a connection from 
its exit to its entrance.  

d) e) f) 
 

 
 

 

 
 

 

 
 

With these networks there is a 
feedback of neurons of higher 
levels to neurons of lower levels. 
This kind of feedback is 
necessary, if one wants to reach 
an increased sensitivity to certain 
ranges of input neurons or to 
certain input chara-cteristics. 

Networks with feedbacks within 
the same layer are often used for 
tasks, in which only one neuron in 
a group of neurons is to become 
active. Each neuron receives then 
restraining (in-hibitory) connec-
tions to other neurons and often 
still another activating (excitatory) 
direct feedback from itself. The 
neuron with the strongest 
activation (the winner) then 
restrains the other neurons, 
therefore such a topology is also 
called a winner takes all network.  

Fully connected networks have 
connections between all neurons. 
They are in particular known as 
Hopfield networks [56-59]. 

 
Figure 20: Sample network topologies for feed forward and feedback networks 
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3.3.3. Training of artificial neural networks 

A neural network has to be configured such that the application of a set of inputs produces (either 
'direct' or via a relaxation process) the desired set of outputs. Various methods to set the strengths 
of the connections exist. One way is to set the weights explicitly, using a priori knowledge. 
Alternatively, the neural network can be trained by feeding teaching patterns and allowing the 
weights to change according to some learning rules. 

 

3.3.4. Learning in neural networks 

As previously mentioned, the concept of learning in neural networks generally means that 
modifications of the combining weights occur in order to receive a better agreement between 
desired and actual output of the neural network. However, this presupposes that the desired output 
of the network must be known in advance. 

Generally, there are three different ways of learning in neural networks [76]: 

• reinforcement learning 

• unsupervised learning 

• supervised learning 

3.3.4.1. Reinforcement learning 

In reinforcement learning, only the overall correct or wrong output is indicated (possibly also the 
degree of the correctness). However, there are no output values for each output neuron at hand. 
The learning process has to find the correct output of these neurons itself. This kinds of learning 
procedures are neurobiologically and/or evolutionary more plausible than supervised learning: 
Observations of lower and of higher organisms showed that simple feedback mechanisms 
(punishment with wrong decisions, reward with correct) from the environment exist and improve the 
learning process. On the other hand, these learning procedures are much more time-consuming. 
Compared to a method in which one knows the desired output (supervised learning), reinforcement 
learning needs more time since it has less information for the correct modification of the weights. 

3.3.4.2. Unsupervised learning 

With unsupervised learning (also called self-organized learning), the training set only consists of 
input samples. There is no desired output or data whether the net classified the training samples 
correctly or not. Instead, the learning algorithm tries independently to identify and illustrate groups 
of similar or neighboring neurons (cluster) of similar input vectors. The most well-known class of 
unsupervised learning procedures are the self organizing maps of Kohonen[79]. In the trained state 
of the organizing map, similar input vectors are mapped on topologically neighboring neurons.  
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Figure 21: A sample Kohonen feature map (Euclidian distance map) made out of all monosaccharide units 
used in this thesis 

 

Kohonen maps will be discussed in chapter 4.5.3. This class of learning procedures is the 
biologically most plausible one. Such topological maps have been found in the visual cortex of the 
mammalian brain [76].  

Because unsupervised learning groups similar vectors into similar classes, these networks can be 
used for classification problems. For this purpose one only needs a number of reference vectors 
(training cases), whose transformation on the neurons is known in advance, and can then classify 
also unknown training samples according to their proximity to the next trained reference vector.   

3.3.4.3. Supervised learning 

With supervised learning, an external "teacher" indicates the correct and/or best output sample to 
each input sample of the training set. This means that for the network, a completely specified input 
sample and the correct and/or optimal completely specified output sample for this input is always 
available at the same time. The purpose of this learning procedure is to change the weights of the 
net in such a way that the net can make this association independently after repeated presentation 
of the input-output sample pairs. The network should also be able to recognize unknown, similar 
input samples (generalization). This kind of learning is usually the fastest and most used method to 
train a network for its task. The disadvantage of this approach is that it is biologically not plausible 
because no nervous system has its desired target neurons already activated in advance.  

A typical supervised learning procedure, as for instance Back-propagation or its variations, 
accomplishes the following five steps for all pairs of input-output samples: 

1. Presentation of the input pattern by appropriate activation of the input neurons (input unit). 

2. Forward propagation of the input through the network; this produces a specific output 
pattern at the output neurons for the current input. 

3. The comparison of the actual output with the desired output (teaching input) gives an error 
vector (difference, delta). 
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4. Back-propagation of the error from the output layer to the input layer provides changes of 
the combining weights, which serve to reduce the error vector. 

5. Change of the weights of all neurons of the network by the error values computed in 
advance. 

 
There are some variations in the details, particularly in the formulas for the computation of the 
weight changes. However, this pattern is in principle the basis of nearly all supervised learning 
procedures for non-recurrent networks (with no feedback connections). 

 

3.3.5. Learning rules 

The learning rule is the most interesting component of a neural network model because it allows the 
network to learn a given task only from its own examples. There are several possible ways of 
learning [76]: 

• Development of new connections between neurons 

• Deletion of connections 

• Modification of the weight of a connection 

• Modification of the threshold 

• Modification of activation-, propagation- or output-function 

• Creation of entirely new neurons 

• Deletion of entire neurons 

 
From these different alternatives, which can be used individually or in combination, the modification 
of the connection weights is by far most frequently used way of learning in neural networks. The 
development of a new connection between two neurons can be achieved relatively easy by 
modifying the connecting weight (from zero to some value >0). Similarly, the deletion of a 
connection is realized by changing the value of its weight to zero. The creation of new neurons finds 
their practical application in the cascade correlation neural networks [77]. 

The different learning rules used during this PhD thesis will be explained in chapter 4. 
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3.3.6. Modifying patterns of connectivity 

All learning paradigms discussed above result in an adjustment of the weights of the connections 
between units according to some modification rule. Virtually all learning rules for models of this type 
can be considered as a variant of the Hebbian learning rule suggested in 1949 [46]. 

The basic idea is: 

 
If neuron j receives an input from neuron i, and both neurons are strongly 
activated at the same time, then the weight wij of the connection from neuron i 
to neuron j is increased. 

In the mathematical form, the Hebbian learning rule looks like show in the following equations: 

jiij aow η=Δ  Equation 7 

 
Thereby ijwΔ is the weight change of weight ijw , η  a constant (learning rate), io the output of the 
predecessor neuron i and ja is the activation of the subsequent neuron. 

According to Rumelhart and McClelland [52] the Hebbian learning rule in its general form looks like: 

( ) ( )jjijiij tagwohw ,,η=Δ  Equation 8 

 
In this connection, the weight change ijwΔ is defined as the product of two functions: 

1. The function ( )iji woh ,  uses the output of the predecessor neuron io and the weight ijw from 
neuron i to neuron j 

2. The function ( )jj tag ,  uses the activation of neuron ja and the required activation (target 

output) of the neuron jt  

 

3.3.7. Advantages and disadvantages of neural networks 

Considering as a whole, neural networks have many positive properties: 

• Learning aptitude: Mostly neural networks are not programmed, but trained with a large 
class of training patterns. Thus, they are able to adapt their behavior to changing inputs. 

• A network learns the easiest features it can. 

• Parallelism: Neural networks are inherently highly parallel and therefore very suitable for 
an implementation on parallel computers. 

• Distributed knowledge presentation: The "knowledge" of a neural network is saved within 
distribution of the weights. On one hand, this makes it possible to process the data in a 
parallel form and on the other, it results in a higher fault tolerance of the system against 
loss of single neurons or connections. 
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• Associative storage of information: here, information is stored oriented by its content. 
This associative method is not address-based as in conventional computer architectures. 
With neural networks, it is easy to recall a pattern that is only slightly similar to the entered 
test pattern.  

• Robustness against disturbance or noisy data: Correctly trained neural networks 
respond less sensitive to noisy data or disturbances in the input pattern than conventional 
algorithms.  

 
However, one must also consider the negative characteristics of neural networks: 

• Knowledge acquisition is only possible through training 

• Learning is slow: To analyze bigger problems with neural networks the amount of neurons 
and therefore weights is correspondingly larger. Many improvements of the known learning 
algorithms can reduce the problem but none solves it completely. 

This issue will not be discussed here in detail. The different learning algorithms and error functions 
used in this PhD thesis will be discussed in chapter 4.5. 

 

3.3.8. Application of neural networks 

The fields of application of neural networks are normally those in which statistical and/or linear and 
also non-linear models can be used. In general, the use of neural networks provides better results 
than standard statistical techniques. Apart from science and engineering, some other fields in which 
neural networks are applied are shown below:  

 

Table 6: Fields of application for neural networks 
 

Finance Index prediction, fraud detection, credit risk, classification, prediction 
of share profitability 

Recognition of characters 
printed mechanically 

Graphic recognition, recognition of hand-written characters, 
recognition of manual italic writing 

Food Odor and aroma analysis, customer profiling depending on purchase, 
product development, quality control 

Energy Electrical consumption prediction, distribution of water resources for 
electrical production, prediction of gas consumption 

Manufacturing industry Process control, quality control, control of robots 

Medicine and health Help to diagnosis, image analysis, medicine production, distribution of 
resources 

Transports and 
Communications Route optimization, optimization of the distribution of resources 
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3.3.9. Application of neural networks to NMR and carbohydrates 

Intensive literature searches showed that there is relatively little cognition in this field of research. In 
SciFinder the keywords 'neural network', 'NMR' and 'carbohydrates' ' lead to only 14 hits for the time 
period between 1960 and 2002. 

Meyer et al. [80-82] was the only researcher to perform fundamental experiments using neural 
networks and 1H-NMR spectra of sugar alditols. He showed that a normal fully connected feed 
forward Back-propagation network could be trained with 1H-NMR spectra and was able to recognize 
the trained data reliably. However, the dataset was highly limited consisting of only 24 training 
samples. Recall-tests with only parts of spectra (reporter groups) still led to good results. The whole 
work however remained fixed on the recall of already learned patterns. The real ability of a neural 
network – the generalization - was not tested and this contribution therefore must only be regarded 
as an initial attempt in the research field. 

In 1998, Amendolia et al. [83] undertook further attempts in the area of sugar analytics and tried to 
quantify binary sugar alditol-mixtures with a set of neural networks on the basis of the 1H-NMR 
spectra of mixtures thereof. They trained a separate network for each possible binary combination 
of the available alditols. 

After these two contributions, the attempts witnessed limited attention for over 13 years. To date, no 
other researchers ever tried successfully to identify NMR spectra of oligosaccharides with the help 
of neural networks. 

 

3.3.10. Other computer-assisted structural analysis systems for 
carbohydrates 

Vliegenthart and co-workers developed a 1H and 13C-NMR database called SUGABASE, which 
combines the CarbBank[84] and Complex Carbohydrate Structure Data (CCSD) with proton and 
carbon92 chemical shifts in a search routine[85-88]. The search is based on the use of 1H chemical 
shifts from the structural reporter groups[19] This concept is based on the fact that it is often sufficient 
to inspect only certain areas of a spectrum to ascertain the primary structure of a common 
glycoprotein carbohydrate structure. In the structural reporter group approach the region between 
3 - 4 ppm is ignored and only the regions between 4 - 5.6 ppm and 1 - 3 ppm are inspected. The 
anomeric protons, methyl protons, protons attached to a carbon atom in the direct vicinity of a 
linkage position, and protons attached to deoxy carbon atoms are considered relevant structural 
reporter groups. The chemical shift values are used for a search in SUGABASE. The database is 
currently not being updated. The same is true for the CarbBank database[84]. 

Jansson and Kenne developed the program CASPER (computer-assisted spectrum evaluation of 
regular polysaccharides) [38, 89-94]. This program has been developed to perform a structural analysis 
of both linear and branched oligo- and polysaccharides using 1H and 13C chemical shift data and 
1JCH or 3JHH scalar coupling constants. The program allows both 1D and 2D data to be used for the 
spectra to be simulated. The database with the chemical shifts, different glycosylation shift, and 
correction sets for sterically strained structures will be more accurate with the increasing number of 
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assigned structural elements included, particularly with the addition of more data from branched 
molecules. CASPER can be used to extract glycosylation shifts and correction sets from newly 
assigned structures and incorporate them into the database.  

3.4. Integration of NeuroCarb into the EuroCarbDB 

3.4.1. What is EuroCarbDB 

EuroCarbDBs is the abbreviation of 'distributed web-based European carbohydrate databases'. 
EuroCarbDB is a design study integrated in the 6th Framework Program for research and 
technology development (FP6) of the European Union. FP6 is a collection of actions at EU level to 
fund and promote research in transnational scientific projects. 

 

EuroCarbDB is a union of researchers from five European countries: 

• The German Cancer Research Centre and the University of Giessen in Germany 

• The Bijvoet Center Utrecht in The Netherlands 

• The Stockholm University in Sweden 

• The University of Basel in Switzerland 

• The European Bioinformatics Institute, Imperial College London and the University of 
Oxford in the UK. 

 
The main reason why this union has been brought into being is the urgent need for an 
infrastructure, that will essentially improve the quality of the European carbohydrate research. 
EuroCarb will set up distributed data base systems for data exchange and new developments 
containing all kind of data about carbohydrates. In contrast to the genomic and proteomic area, no 
large data collections for carbohydrates have been compiled so far. However, the availability of 
such comprehensive data collections will be an important prerequisite to successfully perform large-
scale glycomics projects aiming to decipher the biological functions of glycans. The definition of 
common protocols to enter new data will rapidly help to spread guidelines of good practice and 
quality criteria for experimental data, especially NMR-, MS- and HPLC-data, which are the key 
technologies for the identification and analysis of carbohydrates. 

With the help of the internet, a global and interactive peer-to-peer communication for scientific data 
will be constituted. The initiative aims to overcome the existing fragmentation of European research 
in the area of bioinformatics for glycobiology through the development of standards, databases, 
algorithms and software components that are critical for the future of an excellent infrastructure. To 
guarantee maximal synergetic effects of the information contained in the newly created databases 
other available bioinformatics and biomedical resource have to be linked and cross-referenced in an 
efficient way.  

The interpretation of both MS- and NMR spectra as well as HPLC profiles of glycans can be 
complicated without appropriate reference data. It is an urgent demand of ongoing high throughput 
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glycomics projects that efficient tools for automatic detection of glycan structures are provided. The 
development of appropriate algorithms, which enable a rapid and reliable automatic annotation and 
interpretation of MS- and NMR- spectra, is a major aim of the study. Therefore, the work described 
in this PhD thesis (NeuroCarb) is a more than suitable instrument for the solution of this problem 
and will be integrate in the EuroCarb union at best. 

The EuroCarbDB has to be comprehensive and include the latest data to be attractive for the 
scientific community. However, to keep scientific data collections up-to-date and feed in 
continuously new data is one of the most time-consuming and thus expensive tasks to maintain an 
excellent database.  

The existence of the EuroCarbDB infrastructure will provide high flexibility to include new types of 
experimental data, and encourage the development of new software tools and algorithms for data 
interpretation and analysis. Creating a GRID of distributed local databases will encourage people to 
input their recorded data prior to publication and keep it private. The data can be made available to 
the public after publication by the push of a button. In such a way, one potential source of error 
caused by extracting data from the literature will be eliminated. Additionally, the stored primary data 
will be more complete as can be guaranteed by any retrospective excerption of experimental data. 
Another advantage of an open data base structure is that the ability to access primary experimental 
data in a digital format will attract researchers from outside the consortium to contribute to the 
development of the database, by creating new applications and algorithms and by including their 
own data. 

To enable consistency between the various distributed databases a unique identifier for each 
carbohydrate structure must be defined. The LINUCS (Linear Notation for Unique description of 
Carbohydrate Sequences) notation has been proven suitable for this purpose. Based on the 
extended notations for complex carbohydrates as recommended by the IUPAC, the LINUCS-
notation can be easily generated and looked up in a list of already existing LINUCS-codes, which is 
available from the master database. 

The first goal will be to put together all required software modules (database management system, 
the data base design and the web-server). This can be installed quite easily on the distributed local 
hosts. The next step will be to develop standardized input options for NMR and MS, carbohydrates 
structures and references. These will be the first data to include as new entries into the database. 
The third step will be to include primary experimental data, which may originate from various 
instruments and will have different digital formats. The fourth step is then to provide standard 
exchange formats that allow access to these data across the Internet. This exchange format will be 
based on XML-definitions, which are sufficiently flexible to allow future extensions and require only 
a minimum effort to be adapted to existing databases. Future extensions of the database and new 
applications will be also based on the XML standard for data exchange. 
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3.5. The aims of this PhD thesis 

The main objective was to develop a neural network based identification system capable of 
identifying monosaccharides from spectroscopic NMR data. In a further step, the system is to be 
extended in such a way that it can recognize monosaccharide moieties contained in disaccharides 
and still later oligosaccharides. Based on the initial efforts of Meyer et al. [80-82], the first task was to 
prove and improve this system, especially the generalization rate of the used networks. 

 
Initially, the following fundamental questions have to be answered:  
 

1. Is this information available through NMR spectroscopy? (monomer identity, anomeric 
configuration, substitution pattern). 

 
2. What kind of NMR data provides this information (1H or 13C-NMR)? 
 
3. How can spectroscopic data be transferred into a neural network? 
 
4. Which network architecture, learning algorithm and learning parameters lead to optimal 

results? 
 
5. Is an identification of monosaccharide moieties out of saccharide-mixture possible at all? 
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4. Material and Methods 
 

4.1. Used chemical compounds 

4.1.1. Methyl pyranosides 

In house methyl pyranosides used for the training of SNNS neural networks. 
 
Compound 1:  
Methyl-α-D-glucopyranoside 
 

HO O

HO
HO

OMe

OH

 
 
Weighted sample: 0.0110 g 
 

Compound 2:  
Methyl-α-D-galactopyranoside 
 

OH

O

HO
HO

OMe

OH

 
 
Weighted sample: 0.0105 g 

Compound 3:  
Methyl-β-D-galactopyranoside 
 

OH

O

HO
HO OMe

OH

 
 
Weighted sample: 0.0104 g 
 

Compound 4:  
Methyl-β-D-glucopyranoside 
 

HO O

HO
HO OMe

OH

 
 
Weighted sample: 0.0104 g 

Compound 5:  
Methyl-α-D-mannopyranoside 
 

HO O
OH

HO

OMe

HO

 
 
Weighted sample: 0.0104 g 
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4.1.2. Hindsgaul compounds  

(These compounds were kindly provided by Prof. Ole Hindsgaul (=OH), Carlsberg Research 
Center, Denmark) 
 

Compound OH1:  
β-D-Galp-1-4-β-D-Glcp-OMe  
 

O O

OH
HO OMe

HO
O

HO
HO

OHOH

 

Compound OH7:  
α-D-Glcp-1-4-β-D-Glcp-OMe  
 

HO O

HO
HO

OH

O O

OH
HO

OH

OMe

 
 

Compound OH3:  
α-D-Fucp--1-2-β-D-Galp-OMe  
 

HO

O
HO

O

OH

O

OH OH
OH

OMe

 
 

Compound OH8:  
α-D-Glcp-1-4-α-D-Glcp-OMe  
 

HO O

HO
HO

OH

O O

HO
HO

OH

OMe  
 

Compound OH6:  
α-D-Glcp-1-4-α-D-Manp-OMe 
 

HO O

HO
HO

O

OH

O
OH

HO

OMe

HO

 

Compound OH9:  
α-D-Glcp-1-6-α-D-Glcp-OMe  
 

HO O

HO
HO

HO O

HO
HO

O

OMe

OH
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4.1.3. Disaccharide test compounds 

The following disaccharides were used as real test compounds for all neural networks trained and 
tested in chapter 5.8 and 5.9. The original NMR peak files can be found in appendix 11.1. 

 
Trehalose:  
α-D-Glcp-1-1-α-D-Glcp 
 

HO O

HO
HO

OH

O

O

OH

OH

OH

OH

 
 

Gentiobiose:  
β-D-Glcp-1-6-β-D-Glcp 
 

HO O

HO
HO O

OH

HO O

HO
HO OH

 
 
 

Weighted sample: 0.0175 g Weighted sample: 0.0201 g 
 
note: to use this disaccharide as a test compound the 
anomeric configuration of the second monosaccharide unit 
was artificially set to β configuration. 
 

Lactose:  
β-D-Galp-1-4-β-D-Glcp 
 

HO
O

OH
HO O

OH

O

OH
HO

OH

OH

 
 

Saccharose:  
α-D-Glcp-1-2-β-Fruf 
 

HO O

HO
HO

O

OH

O

OH

OH
HO

HO

 
Weighted sample: 0.0216 g 
 
note: to use this disaccharide as a test compound the 
anomeric configuration of the second monosaccharide unit 
was artificially set to β configuration. 

Weighted sample: 0.0216 g 
 
note: furanose forms of carbohydrates were not included in 
the neural network training. But this compound can serve 
as a positive and negative test all in one. 
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4.1.4. Synthesis of β-D-glucopyranosyl-1-6-β-D-glucopyranosyl-1-6-β-D-
glucopyranoside 

HO O

OH
HO

OH

OH
1. TritCl + Pyr (Ar/80°C)
2. BzCl, CH2Cl2 (Ar/0°C-RT)

BzO O

OBz
BzO

OTrit

OBz
H2NNH2-AcOH, 
DMF (Ar/RT-50°C)

BzO O

OBz
BzO

OTrit

OH

Cl3CCN, DBU, CHCl2 (Ar, RT)

BzO O

BzO
BzO

OTrit

O CCl3
NH

TMSOTf, MeOH, 
CH3CN (MS4Å/Ar/-35°)

BzO O

OBz
BzO

OTrit

OMe

BzO O

OBz
BzO

OH

OMe

TFA(80%), 
CHCl2 (RT)

HO O

OH
HO

OH

OMe

TMSOTf, CHCl2 
(Ar/-40°C) BzO O

OBz
BzO

O

OMe

BzO O

BzO
BzO

OTrit

TFA(80%), 
CHCl2 (RT)

BzO O

OBz
BzO

O

OMe

BzO O

BzO
BzO

OH

NaOMe, MeOH
(Ar/RT)

NaOMe, MeOH
(Ar/RT)HO O

OH
HO

O

OMe

HO O

OH
HO

OH

BzO O

BzO
BzO

OTrit

O CCl3
NH

TMSOTf, CHCl2 
(Ar/-40°C)

BzO O

OBz
BzO

O

OMe

BzO O

BzO
BzO

OBzO O

BzO
BzO

OTrit

BzO O

OBz
BzO

O

OMe

BzO O

OBz
BzO

OBzO O

OBz
BzO

OH

NaOMe, MeOH
(Ar/RT)

HO O

OH
HO

O

OMe

HO O

OH
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OHO O

OH
HO

OH

21 3

4

4

TFA(80%), 
CHCl2 (RT)

5

6

7

8

910

11

12 13
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4.1.4.1. Synthesis of O-Methyl β-D-glucopyranosyl-1-6-β-D-glucopyranosyl-1-6-β-D-gluco-
pyranoside 

 
2,3,4-tri-O-benzoyl-6-O-trityl-α-D-glucopyranosyl trichloroacetimidate (4): 

 

D-Glucose (1, 5.03g, 27.9mmol) was coupled with tritylchloride (9.20g 33mmol, 1.2eq.) in a solution 
of dry pyridine (30ml) at 80°C during 15 h under Ar protection. The reaction mixture was cooled to 
0°C, diluted with 20ml of CH2Cl2, and benzoylchloride (19.4ml, 167.4mmol, 6eq.) was added slowly. 
After stirring during 5h at RT, the solution was diluted and extracted with EtOAc (3 times), washed 
with H20 and brine, dried (Na2SO4) and concentrated. The crude product was further purified on a 
silica gel column with 4:1 petroleum ether - EtOAc as eluent, to obtain 1,2,3,4-tetra-O-benzoyl-6-O-
trityl-D-glucopyranoside (2, 18.30g, 78%).  

2,3,4-tri-O-benzoyl-6-O-trityl-D-glucopyranose (3, 8.27g, 59%) was obtained by treating 2 (15.83g, 
19mmol) with H2NNH2-AcOH (3.84g, 37.8mmol, 2 eq.) in DMF (200ml) under Ar protection for 4h at 
50°C and a terminal purification as described for 2 (3:1 petroleum ether – EtOAc as eluent). 

Compound 3 (8.2g, 11.2mmol) was dissolved in dry CH2Cl2 (100ml), CCl3CN (5.6ml, 55.8mmol, 
5eq.) and 1,8-Diazobicyclo-[5,4,0]-undec-7-en (0.83ml, 5.58mmol, 0.5 eq.) were added and the 
mixture was stirred for 6h at RT. After concentration and purification on a silica gel column with 6:1 
petroleum ether-EtOAc as eluent, compound 4 (6.56g, 66.6%) was obtained. 

 

Methyl β-D-glucopyranoside (7): (RS1) 

Compound 4 (6.54g, 7.5mmol) was dissolved in dry CH3CN (100ml).  MeOH (0.6ml, 15mmol, 2eq.) 
was added and the solution was stirred during 1h over a molecular sieve (MS4Å) under Ar 
protection. After drop wise addition of TMSOTf (0.2ml, 1.125mmol, 0.15eq.) at –35°C stirring was 
continued during 1.5h. Then the mixture was neutralized with Et3N and concentrated. Purification of 
the residue on a silica gel column with 6:1 petroleum ether-EtOAc as eluent, gave Methyl 2,3,4-tri-
O-benzoyl-6-O-trityl-β-D-glucopyranoside (5, 3.48g, 64.4%). Cleaving of the trityl group was 
achieved by adding TFA (80%, 2.75ml) to a solution of 5 (3.44g, 4.6mmol) in CH2Cl2 (150ml). After 
stirring for 2h, saturated NaHCO3 solution (70ml) was added. The resulting colorless reaction 
mixture was extracted with CH2Cl2 (3 times), washed with H20 and brine, dried with Na2SO4, 
followed by purification by flash chromatography (4:1-1:1 petroleum ether-EtOAc as eluent) to yield 
Methyl 2,3,4-tri-O-benzoyl-β-D-glucopyranoside (6, 1.84g, 79%). Finally the benzoyl groups were 
cleaved by adding a catalytical amount of a freshly prepared Na-methanolate solution to a solution 
of 6 (108mg) in methanol (2ml) under Ar protection at RT to afford pH of 9 of the reaction mixture. 
After stirring for 1h the mixture was neutralized with acidic Amberlyste15, filtrated and concentrated. 
Purification on a silica gel column with 4:1:0.2 CH2Cl2-MeOH-H2O as eluent to provided 7 (39mg, 
95%). 
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Methyl β-D-glucopyranosyl-1-6-β-D-glucopyranoside (10): (RS2) 

Compounds 6 (288mg, 0.568mmol) and 4 (502mg, 0.568mmol) were dissolved in dry CH3CN 
(12ml) over activated MS4Å under Ar protection and stirred for 1h at RT. The solution was then 
cooled down to –40°C and TMSOTf (15μl, 0.15eq.) was added. The resulting yellow mixture was 
stirred at this temperature for 3h, then neutralized with Et3N (∼0.2ml) to produce a colorless 
solution, then filtered and concentrated. Purification on a silica gel column with 4:1-2:1 petroleum 
ether – EtOAc as eluent provided Methyl 2,3,4-tri-O-benzoyl-6-O-trityl-β-D-glucopyranosyl-(1→6)-
2,3,4-tri-O-benzoyl-β-D-glucopyranoside (8, 460mg, 66%). 

Methyl 2,3,4-tri-O-benzoyl-β-D-glucopyranosyl-(1→6)-2,3,4-tri-O-benzoyl-β-D-glucopyranoside (9, 
228mg, 84,4%) was obtained by cleaving the trityl group from 8 (337mg, 0.275mmol) under the 
same conditions as described for the preparation of compound 6. Methyl β-D-glucopyranosyl-1-6-β-
D-glucopyranoside (10, 34mg, 81%) was obtained by cleaving the benzoyl groups from 9 (145mg, 
0.118mmol) and neutralizing the mixture by the same method as described for 7. Final purification 
of the crude product on a silica gel column with 10:4:0.8 CH2Cl2-MeOH-H2O as eluent and in 
addition on a Sephadex™G15 column with H2O as eluent was required to give 10 (39mg, 95%). 

Methyl β-D-glucopyranosyl-1-6-β-D-glucopyranosyl-1-6-β-D-glucopyranoside (13): 

Methyl2,3,4-tri-O-benzoyl-6-O-trityl-β-D-glucopyranosyl-(1→6)-2,3,4-tri-O-benzoyl-β-D-
glucopyranosyl-(1→6)-2,3,4-tri-O-benzoyl-β-D-glucopyranoside (11, 148mg, 48.6%) was obtained 
by coupling 9 (180mg, 0.183mmol) and 4 (177mg, 0.02mmol, 1.1eq.) with TMSOTf (7.5μl, 0.225eq.) 
under the same conditions as described for 8. The crude product was purified on a silica column 
with 15:1 toluene-EtOAc as eluent. Methyl 2,3,4-tri-O-benzoyl-β-D-glucopyranosyl-(1→6)-2,3,4-tri-
O-benzoyl-β-D-gluco-pyranosyl-(1→6)-2,3,4-tri-O-benzoyl-β-D-glucopyranoside (12, 93mg, 78.1%) 
was obtained by cleaving the trityl group from 11 (140mg, 0.084mmol) under the same conditions 
as described for the preparation of compound 6. The crude product was purified on a silica column 
with 6:1 toluene-EtOAc as eluent. Methyl β-D-glucopyranosyl-1-6-β-D-glucopyranosyl-1-6-β-D-
glucopyranoside (13, 30mg, quant.) was obtained by cleaving the benzoyl groups from 12 (90mg, 
0.063mmol) and neutralizing the mixture by the same method as described for 7. Purification of the 
crude product was performed as described for 10. 

 



Matthias Studer NeuroCarb - ANN for NMR structure elucidation of oligosaccharides 

- 49 - 

4.1.5. 13C-NMR Database 

Due to the lack of good and well-maintained 13C-NMR databases (including solvent, standards and 
temperature) it was inevitable that an own database based on FileMaker 6 (FileMaker Inc.) had to 
be designed from scratch. A robust base training dataset is the most important and indispensable 
precondition for good generalization results of a neural network. 

During an extensive literature research over one thousand different 13C-NMR peak lists of 
carbohydrates (mono-, di- and oligosaccharides) were collected  [38, 73, 76, 77, 95-291]. 

 

Table 7: Oligosaccharide statistics of 13C-NMR FileMaker® database 
 

Saccharides Number 
Monosaccharides 168 
Disaccharides 381 
Trisaccharides 255 
Tetrasaccharides 83 
Pentasaccharides 59 
Hexasaccharides 44 
Heptasaccharides 4 
Nonasaccharides 2 
Total monosaccharide units 2632 

 
All peaks of the registered compounds in the database were corrected according to Gottlieb et 
al. [292]. Literature compounds with no available internal or external standards were fed into the 
database anyway but were marked accordingly and may be useful for later testing purposes 
(e.g. robustness) of trained neural networks, 

Via the FileMaker's open database connectivity (ODBC) interface the NMR peaks are easily 
accessible also in other ODBC compatible programs as Microsoft Excel, Statsoft Statistica™[293] or 
future releases of the ANN Pattern File Generator (chapter 4.9). The data records can also be 
exported into CSV Files (chapter 4.9.2.2) with the help of different FileMaker export scripts. 

The database is accessible online within the Institute of Molecular Pharmacy. In connection with the 
EuroCarbDB project, the database will be placed at the disposal of all institutes united under 
EuroCarbDB. This will be done via a migration to a MySQL-server and an intuitive web interface 
(EuroCarbDB efforts in chapter 3.4). 
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Figure 22: Main input layout of the 13C-NMR FileMaker database 

4.1.5.1. Nomenclature 

All monosaccharides are assumed to be in the D-configuration except for fucose and Iduronic acid, 
which are in the L-configuration. All glycosidically-linked monosaccharides assumed to be in the 
pyranose form. All monosaccharide glycosidic linkages are assumed to originate from the 1-position 
except for the sialic acids, which are linked from the 2-position 

To enter a structure into the database, the quick names are assembled according to the following 
rules: 

• The main chain is determined by the longest monosaccharide moieties chain 

• If this rule is not applicable, the alphabet or the linkage is taken to assistance. 

• The monosaccharide unit at the beginning of the main chain is determined by its free 

anomeric carbon atom (maybe substituted with OH or OMe) 

• The monosaccharide units of the main chain are labeled with numbers starting from '1' 

• Monosaccharide units of side chains are designated with capital letters starting with A 

• The numbering of the units in a side chain starts again with the number '1' 

• If there are several side chains starting at the same unit of the main chain, the one with the 

lowest initial letter (in alphabetical order) is designated A. The other chains  with B, C, D 

and so on. 
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Figure 23: Oligosaccharide description scheme 
 
The only simplification consists of the fact that only two side chains per monosaccharide unit of the 
main chain can be designated and entered into the FileMaker database. A fictive nomenclature 
example is outlined in figure 24. 

 

α-D-mannopyranosyl-1-3-(α-D-mannopyranosyl-1-6)-α-D-mannopyranosyl-1-3-(α-D-
mannopyranosyl-1-3-(α-D-mannopyranosyl-1-6-)-α-D-mannopyranosyl-1-6)-α-D-mannopyranoside 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 24: A fictive nomenclature example 
 

α-D-Manp-OMe 

α-D-Manp-1-6 

α-D-Manp-1-3 

α-D-Manp-1-6 

α-D-Manp-1-3 

α-D-Manp-1-6 

α-D-Manp-1-3 

1

2

3 

1A1

1A2 

1A1-A1 

2A1 
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4.1.5.2. Nomenclature examples for quick names 

 
b-D-Glcp-1-2-(b-D-Glcp-1-3)-a-D-Manp-OMe 

 

HO O

HO
HO O

OH

HO O

OH
HO O

OH

HO O

OMe

HO

 
Structure 1: database record ID 32 

 
b-D-Galp-1-4-b-D-GlcpNAc-1-2-(b-D-Galp-1-4-b-D-GlcpNAc-1-6)-a-D-Manp 

 

O O

HN
HO O

OH

O

HO O
HO

OH

OO O

HN
HO

OH

O

HO
O

HO
HO

OH

HO
O

HO
HO

OH

 
Structure 2: database record ID 745 

 
Figure 25: Two nomenclature examples for quick names 

 

4.2. NMR equipment & experiments 

All NMR experiments were acquired on the in-house Bruker™ 500 MHz UltraShield™ AVANCE™ 
Two-Bay Spectrometer. The Bruker XWIN-NMR Software package was used for spectrometer 
control, data acquisition, and processing. All experimental data was exported to JCAMP-DX for 
NMR files. 

All NMR spectra (1H and 13C) were acquired in D2O and at room temperature. 1H spectra were 
scanned sixteen times and 13C spectra 256 times. 
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4.3. Computer hardware 

All neural networks were computed on the following hardware: 
 

• Precision WorkStation with Dual Intel™ Xeon 2.0 GHz, 1GB RIMM Dual Channel PC800 
ECC RAM - RedHat Linux 7.2 

• Precision WorkStation with Dual Intel™ Xeon 2.4 GHz, 1GB RIMM Dual Channel PC800 
ECC RAM - Microsoft Windows XP Professional 

• Precision WorkStation with Dual Intel™ Xeon 3.4 GHz, 2 GB SDRAM – Microsoft Windows 
XP Professional 

4.4. IUPAC JCAMP-DX 

4.4.1. Summary 

Because Bruker uses a proprietary and encoded NMR data storage format in its XWIN-NMR 
software package, it was no possible to extract the raw NMR data from the acquired NMR data and 
feed as input into a neural network. A solution was quick at hand: the JCAMP-DX exchange format. 
Fortunately, Bruker supports the export of collected NMR data into JCAMP-DX v.5.0 for NMR files. 

JCAMP was an organization sponsored jointly by many scientific societies all over the world. This 
committee has been the source of several spectroscopic data exchange protocols. The first one for 
infrared spectroscopy [185] was published in 1988, other for chemical structure data [138], nuclear 
magnetic resonance spectroscopy [124] and mass spectrometry [178] followed later. 

 

4.4.2. Detail insight into a JCAMP-DX file 

The JCAMP-DX file is divided into three sections 

           

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 26: JCAMP-DX file structure overview 
 

The intention is to separate the essential information to be parsed by the computer from the 
associated non-critical support data. The core is the irreducible minimum content of a JCAMP-DX 
file. The header contains all parameters defining the data set at the end of the file (core data) [252]. 

fixed core header

notes 

core data

variable core header

core data table 

} core header 

} core data 
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The core itself consists of four parts: 1) The first part, called the “Fixed Header Information”, 
contains labeled data records (LDRs), which are required for all JCAMP-DX files and which appear 
at the beginning of each file in a given order. 2) The “Variable Header Information” contains records 
which are data type specific (in this case NMR-specific) or which are used only in special types of 
JCAMP-DX files (e.g., compound files). Whether a particular LDR is required or not depends on the 
application. 3) The third section, “Core Data,” contains the spectral parameters for the fourth 
section, the “Data Table.” The type of data in the data table determines the parameters, which must 
appear in the core data. Only one data table may appear per JCAMP-DX block (a block being a part 
of the JCAMP-DX file starting with ##TITLE= and ending with ##END=) [124]. 

4.4.3. The internal file format 

All JCAMP-DX files are ASCII alphanumeric files consisting of lines of up to 80 characters long 
terminating in a carriage-return (CR) or linefeed (LF) [252]. The entire file is made up of LDRs which 
all have the same basic structure: 

 
##descriptor= xxx 

 

The leading two hash signs tag the start of a new record. The descriptor is the label of a new data 
record. The following equal sign closes the data label. The LDR then continues with the data set 
until the parsing software reads the next LDR. Theoretically, a data record could run over more than 
just one line in the JCAMP-DX file. ($$ indicates that the reminder of the line is a comment!) 

Example fixed core header section of a Bruker JCAMP-DX v.5.0 for NMR file: 

 
 
##TITLE= Name Gentiobiose / Project ANN / 20.1mg / c13cpdstd256 D2O 
##JCAMPDX= 5.0          
$$ Bruker NMR JCAMP-DX V1.0 
##DATATYPE= NMR Spectrum 
##DATACLASS= XYDATA 
##ORIGIN= Bruker Analytik GmbH 
##OWNER= mstuder 
 

 
Data sets can consist of TEXT which is alphanumeric information of no predefined format such as in 
the example above for the title or as could be found in the ##OWNER and ##ORIGIN LDRs. They 
can also consist of alphanumeric data in the form of predefined values specified in the various 
JCAMP-DX protocols.  

The JCAMP-DX for NMR guidelines have the same basic form like all the other JCAMP-DX 
protocols. The only major difference is the form which LDRs specific to NMR spectroscopy are 
written. The DATATYPE SPECIFIC information, whether belonging to the CORE or the NOTES 
section of the file have LDRs written in the following form: 

 
##.labelname= 
 
The additional period following the two hashes indicates a label specific to the type of spectroscopy 
identified in the ##DATATYPE field.  
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The full data type specific LDR would read: 

 
##NMR SPECTRUM.OBSERVE NUCLEUS= xxxx, 

 

Concatenating the data type with the label name but the data type is left out to simplify matters. 

A typical JCAMP-DX v.5.0 for NMR file [124] generated with Bruker XWIN-NMR from a 32k 
(32768 data points) 13C-NMR looks as follows (shortened in certain parts). Some LDRs of special 
importance for this thesis will be discussed later in this chapter 

 
##TITLE= Name Gentiobiose / Project ANN / 20.1mg / c13cpdstd256 D2O 
##JCAMPDX= 5.0          
$$ Bruker NMR JCAMP-DX V1.0 
##DATA TYPE= NMR Spectrum 
##DATA CLASS= XYDATA 
##ORIGIN= Bruker Analytik GmbH 
##OWNER= mstuder 
$$ XWIN-NMR Version 3.0 
$$ Mon Mar 24 14:39:38 2003 "MET (UT+1h) 
##.OBSERVE FREQUENCY= 125.771571864236 
##.OBSERVE NUCLEUS= ^13C 
##.ACQUISITION MODE= SIMULTANEOUS 
##.AVERAGES= 256 
##.DIGITISER RES= 17 
##SPECTROMETER/DATA SYSTEM= drx500 
$$ Bruker specific parameters 
$$ -------------------------- 
##$DU= </z> 
##$EXPNO= 20 
##$NAME= <Mar21-2003> 
##$EXP= <c13cpdstd256> 
##$INSTRUM= <drx500> 
##$SOLVENT= <D2O> 
##$YMAX_p= 556486971 
##$YMIN_p= -89040629 
$$ End of Bruker specific parameters 
$$ --------------------------------- 
##XUNITS= HZ        
##YUNITS= ARBITRARY UNITS 
##XFACTOR= 0.95970155584897 
##YFACTOR= 1 
##FIRSTX= 31446.5408805032 
##LASTX= 0 
##DELTAX= -0.95970155584897 
##MAXY= 556486971 
##MINY= -89040629 
##NPOINTS= 32768 (32k Datapoints) 
##FIRSTY= -22508377 
 
##XYDATA=(X++(Y..Y)) 
  32767.00000000     -22508377      -1367291      -5883613       3044087 
  32763.00000000      -7614526       9764630       7765945      24592774 
  32759.00000000      10390742       6682998      -5237532      10476673 
  32755.00000000       6050057      -8171106      11107674      31413300 
  32751.00000000      13364826     -18005683     -12936085      -6330169 
  32747.00000000      11108544      15060429     -11885205     -18129920 
  32743.00000000     -35745512      -8114840     -11074660      -3953471 
  32739.00000000      12553316     -18400264     -11216800     -18484949 
  32735.00000000     -16974031     -25466643       6790507       1051515 
  32731.00000000       8564863       2882937     -18718790      11071256 
  32727.00000000      18799416      13960988     -11076169       -355478 
    ... 
     19.00000000      -8952473      -4672043     -13698200     -36492374 
     15.00000000     -13358629     -15377731     -31312215     -17676944 
     11.00000000      -8440680      -3872342       6481776     -17295108 
      7.00000000     -31234689     -15539587      17322022      14852773 
      3.00000000        532254     -12077914     -13717156      -5059602 
##END= 

The LDR ##DATA TYPE= (third line of a JCAMP-DX file) affects the form of data that is stored in 
the last ##YXDATA= data record. E.g. NMR SPECTRUM, NMR PEAK TABLE, NMR FID or NMR 
PEAK SSIGNMENTS. 
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The ##XYDATA= LDR is mostly a couple of thousand lines long (depending on the chosen 
spectrometer resolution: 8k, 16k and 32k) and contains the actual NMR data. The data block is 
terminated with an ##END= tag. The NMR data can be stored either as ASCII free format numeric 
(AFFN), which can be in scientific notation, or in a compressed coded form called ASCII Squeezed 
Difference (ASDF). These two formats will be explained in the next chapters. 

4.4.3.1. ASCII free format numeric (AFFN) 

AFFN is similar to the free-form numeric I/O of BASIC and other popular computer languages. It is a 
combination of FORTRAN I, F, and E formats. An AFFN data item consists of a mantissa plus an 
optional exponential part. The mantissa can be an integer in FORTRAN I format, or a decimal in 
Fortran F format. The combination of mantissa and exponential is effectively Fortran E format. It is 
necessary to exclude the exponential term from the abscissa at the beginning of a line to prevent 
confusion with SQZ data items which start with E or e via ##XFACTOR=. Thus, the data type of 
##XYDATA= is expressed as AFFN- or ASDF. The Bruker example above is written in AFFN. 

 
Adjacent AFFN numeric fields are separated by blank(s), tab, comma, +, or – 

 
       Example:        12-3+4(tab)5,6,7 ,8,, 
 
       Translation:    1, 2, -3, 4, 5, 6, 7, 8, null entry. 
 

Notice that "7 ," is interpreted as 7 not "7 + a null entry". In other words, when a numeric field 
containing at least one digit is terminated by blank, the scanner should skip ahead to the next non- 
blank. If that non-blank is comma, it should also be skipped. A blank field followed by a comma is 
interpreted as a NULL entry (i.e., no change in existing value). 

The form of TABULAR DATA is represented symbolically as a variable list as follows: 

(X+ + (Y..Y)), where '..' indicates indefinite repeat until the line is filled and + + indicates that X is 
incremented by ( ) ( )1−÷− DATAPOINTSFIRSTXLASTX between adjacent Ys. 

 
 

7087.00000000      48420955      -5953663     -19724977     -13618317 

7083.00000000     -20990412     -32154519     -22559434      25247761 

7079.00000000       1516879      -5128452     -23129053      -5284456 

X-values Successive Y-values 
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In a table format, the above example section would look like this: 

 

Table 8: JCAMP-DX (X+ + (Y..Y)) Data 
 

x-values y-values 
7087 48420955
7086 -5953663
7085 -19724977
7084 -13618317
7083 -20990412
7082 -32154519
7081 -22559434
7080 25247761
7079 1516879
7078 -5128452
7077 -23129053
7076 -5284456

 
The (X+ + (Y..Y)) notation leads to a about ¼ smaller size of the JCAMP-DX file. However, it would 
be helpful to achieve higher compression rates, because a standard 32k JCAMP-DX NMR file 
normally has a file size of about 500 KB! Higher compression is only possible with a different 
compression coded form like ASDF (not discussed in this thesis). 

After initial experiments with ASDF compressed JCAMP-DX files, the post data handling showed to 
be too complicated and time consuming and the compression was abandoned. There was no need 
to compress the data because of sufficient disk space and fast in house Ethernet network 
connections. Software compressing and decompressing of JCAMP-DX for NMR files consumes a 
lot of needless computing power. 

JCAMP-DX files not used anymore can easily be stored in compressed TAR file archives with a 
compression factor ~3. 

 

4.4.4. Important LDRs for regaining the original NMR data (in ppm) 

The tabulated data points can be converted back to real ppm values (and vice versa) by dint of the 
following formulas: 

 
[ ] [ ]( )

XFactor
FirstXoffsetppmptHZfrequencyDXpt −+×=  Equation 9 

 

[ ] ( )
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⎞
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⎝

⎛ ×+=  Equation 10 
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The following LDRs are important to regain the original recorded NMR spectrum: 

 

Table 9: important LDRs for NeuroCarb 
 
LDR Unit Description 
##$OFFSET= [pt] A Bruker specific parameter to shift the spectrum back to its 

original position 
##MAXY= / ##MINY= [AU] The minimal and maximal peak intensities are needed for correct 

ordinate scaling of the NMR spectrum (Figure 57) 
 

##XFACTOR= - These is the factor by which components of the tabulated abscissa 
values must be multiplied to obtain actual ppm values 

##FIRSTX= [pt] Specifies the abscissa corresponding to the first value listed 
(Spectral data can be tabulated in order of either increasing or 
decreasing abscissa values!) 

##NPOINTS=  Number of measured data points. This value determines the 
resolution of the NMR spectrum (typical values are: 32768 = 32k,  
16384 = 16k, 8192 = 8k) 

##.OBSERVE FREQUENCY [MHz] Observer Frequency of the instrument 
##.OBSERVE NUCLEUS - Observed nucleus (e.g. ^13C , ^1H) 
##XYDATA=(X++(Y..Y))  The actual tabulated measuring points as discussed above 
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Figure 27: Graphical JCAMP-DX file x-y chart illustration of a sample 1H-NMR peak 
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4.5. Multi-Layer Perceptrons (MLP) and the Back-propagation 
learning method 

MLP is perhaps the most popular network architecture in use today. This is the type of network 
discussed briefly in the introduction: the units each perform a weighted sum of their inputs and pass 
this activation level through a transfer function to produce their output, and the units are arranged in 
a layered feed forward topology. The network thus has a simple interpretation as a form of input-
output model, with the weights as the free parameters of the model. Such networks can model 
functions of almost arbitrary complexity, with the number of layers, and the number of units in each 
layer, determining the function complexity. Important issues in MLP design include specification of 
the number of hidden layers and the number of units in these layers [77]. 

The number of input and output units is defined by the problem. The number of hidden units to use 
is far from clear. There are many rules of thumb, but the only way to determine the number of 
hidden layers and number of neurons is by testing as many network architectures as possible and 
compare their performance/error – trial and error. 

Once the number of layers and number of units in each layer have been selected, the network's 
weights and thresholds must be set to minimize the prediction error made by the network. This is 
the role of the training algorithm that is used to automatically adjust the weights and thresholds in 
order to minimize this error. This process is equivalent to fitting the model represented by the 
network to the training data available. The error of a particular configuration of the network can be 
determined by running all the training cases through the network, comparing the actual output 
generated with the desired or target outputs (Figure 28). The differences are combined by an error 
function to give the network error.  

 

 
 

Figure 28: Schematic presentation of weight correction (Adapted from J. Zupan and J. Gasteiger [232]) 
 
The most common error functions (chapter 4.6) are the sum-squared error (used for regression 
problems), where the individual errors of output units on each case are squared and summed 
together, and the cross entropy functions (used for maximum likelihood classification).  
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The Back-propagation learning method is a typical gradient method. All gradient methods compute 
the gradients of a target function (error function), and rise either orthogonal to gradients upward, 
until a maximum is reached or downward, until a minimum is reached. In the area of neural 
networks one tries to minimize the error by changing the weights by a negative fraction of the error 
function. A helpful concept here is the error surface. Each of the N weights and thresholds of the 
network (i.e., the free parameters of the model) is taken to be a dimension in space. The N+1th 
dimension is the network error. For any possible configuration of weights, the error can be plotted in 
the N+1th dimension, forming an error surface. The objective of network training is to find the lowest 
point in this many-dimensional surface. 

 

 
 

Figure 29: 3D error surface of a neural network as a function of weights w1 and w2 (adapted from [76]) 
 
Neural network error surfaces are much more complex as showed above (Figure 29), and are 
characterized by a number of unhelpful features, such as local minima (which are lower than the 
surrounding terrain, but above the global minimum), flat-spots and plateaus, saddle-points, and long 
narrow ravines (chapter 4.5.1).  

It is not possible to determine analytically where the global minimum of the error surface is, and so 
neural network training is essentially an exploration of the error surface. From an initially random 
configuration of weights and thresholds (i.e., a random point on the error surface), the training 
algorithms incrementally seeks for the global minimum. Typically, the gradient (slope) of the error 
surface is calculated at the current point, and used to make a downhill move. Eventually, the 
algorithm stops in a low point, which may be a local minimum. 
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4.5.1. Problems of the Back-propagation learning method 

 

 
 

Figure 30: Problems of gradient methods - 1 they only find local minima, 2 they get stuck on flat plateaus, 3 
oscillation in narrow ravines and 4 they leave good minima. 

4.5.1.1. Local minima 

Gradient methods all have the problem that they can get stuck in a local suboptimal minimum of the 
error surface (Figure 30 1). The problem of neural networks is, that the error surface gets cliffy with 
increasing dimension of the network (with increasing number of connections and weights) and 
therefore the probability to find a local instead of the global minimum increase [76]. For this there are 
little generally accepted procedures, how this problem can be solved. 

4.5.1.2. Flat plateaus 

Flat plateaus are a further problem of gradient methods. Since the size of the weight-change 
depends on the absolute value of the gradient, Back-propagation on flat plateaus stagnates, i.e. the 
learning procedure needs many iteration steps (Figure 30 2). The learning procedure accomplishes 
no more weight changes on a completely flat plateau at all. With the introduction of the momentum 
term, the Back-propagation algorithm can overcome these flat plateaus (chapter 4.5.2.2). 
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4.5.1.3. Oscillation in narrow ravines 

In steep ravines of the error surface, the learning process can oscillate (Figure 30 3). This 
happens, if the gradient at the edge of a ravine is so large that via the weight change a jump on the 
opposite side of the ravine takes place. If the ravine there is just as steep, this causes a jump back 
to the starting position. Fortunately, the introduction of the momentum term can also absorb or 
damp the oscillation in steep ravines. 

4.5.1.4. Leaving of good minima 

If the learning rate (chapter 4.5.2.1) is too high, it can even occur that Back-propagation jumps out 
of a good into a sub-optimal minimum (Figure 30 4). In practice, this happens very rarely. 

 

4.5.2. Training with the Back-propagation learning method 

The Back-propagation method (schematically shown in Figure 20), is a supervised learning method. 
Therefore it needs a set of pairs of objects (inputs XS, targets YS). The weights are corrected to 
produce the specified target output for as many inputs as possible. The correction of weights is 
made after each individual new input. During learning, the input vector X is presented to the network 
and the output vector Out is immediately compared with the target vector Y, which is the correct 
output for the input X. Once the error produced by the network is known, the weights will be 
adjusted accordingly. 

The weight correction in the l-th layer is composed of two terms (Equation 14): 

• The first term tends towards a fast steepest-descent convergence 

• The second one is a long-range function that prevents the solution from being trapped in 
shallow local minima. 

 
These two terms pull in opposite directions! 

The weight correction is different in the output and hidden & input layer: 
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Values from three layers influence the correction of weights in any one layer: 

 
1. the output 1−l

iout  of the layer above acting as the input i to the l-th layer 

2. the l
jout  of the j-th neuron on the current layer l 

3. the correction 1+l
kδ of the weight 1+l

kjw  from layer l+1 
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Equation 13: final expression of 
the weight correction in a hidden 

layer 

 
 

l index of the current layer 
j current neuron 
i index of the input source (index of neuron in the upper layer) 
l
jδ  introduced error by the corresponding neuron 

η learning rate 
μ momentum term 
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Equation 14: final 
expression in condensed 

form 
 
 

4.5.2.1. Learning rate η 

The value of the learning rate determines only the speed at which the network attains a minimum on 
the criterion function (Equation 14), not the final weight values them selves. The step size is 
proportional to the slope (so that the algorithms settle down in a minimum) and to the learning rate. 
The correct setting for the learning rate is application-dependent, and is typically chosen by 
experiment; it may also be time-varying, getting smaller as the algorithm progresses [293].  

The choice of the learning rate is decisive for the performance of the Back-propagation algorithm. 
Too large values of η cause strong jumps on the error surface and bring the risk of skipping narrow 
ravines and/or jumping out of them again. On the other hand, in the worst case the algorithm starts 
to oscillate. If the learning rate is too small, the amount of time needed to train the neural network is 
practically not acceptable. The choice of η depends primarily on the problem and the training data 
and in addition on the size and topology of the network. Therefore, it is not possible to choose the 
learning rate correctly in advance. The only way is to determine it experimentally. 
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4.5.2.2. Momentum term μ 

As shown in Figure 30, error surfaces often have plateaus - regions in which the slope is very small. 
These can arise when there are too many weights and thus the error depends only weakly upon 
any one of them. The momentum term allows the network to learn more quickly when plateaus in 
the error surface exist. The approaches to alter the learning rule to include some fraction of the 
previous weight update [52]. Obviously, μ should not be negative and for stability μ must be less than 
1.0 (Equation 14). If μ=1, the change suggested by Back-propagation is ignored, and the weight 
vector moves with constant velocity [128].  

 

4.5.3. Self organizing feature maps (SOM) 

The self organizing maps (also known after their developer as Kohonen maps or Kohonen feature 
maps [79]) concern a special neural network, which is organized without teachers. As explained 
above in chapter 3.3.3, these teachers compare the produced output with the target output and 
adapt the weights if necessary.  Whereas in supervised learning the training data set only contains 
cases featuring input variables together with the associated target outputs (and the network must 
infer a mapping from the inputs to the outputs), in unsupervised learning the training pattern file only 
contains input variables. At first glance, this may seem strange. Without outputs, what can the 
network learn? The answer is that the SOM network attempts to learn the structure of the data. 

One possible use is therefore in exploratory data analysis. The SOM network can learn to recognize 
clusters of data, and can also relate similar classes to each other. The user can build up an 
understanding of the data, which is used to refine the network. As classes of data are recognized, 
they are labeled, so that the network becomes capable of classification tasks. SOM networks can 
also be used for classification when output classes are immediately available - the advantage in this 
case is their ability to highlight similarities between classes. A second possible use is in novelty 
detection. SOM networks can learn to recognize clusters in the training data, and respond to it. If 
new unseen data, unlike previous cases, is encountered, the network fails to recognize it and this 
indicates novelty. 

 
A SOM network has only two layers: the input layer, and an output layer (also known as the 
topological map layer). The units in the topological map layer are laid out in space - typically in two 
dimensions. 
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Figure 31: An illustration of a sample Kohonen feature map (49 neurons forming a 7x7x6 network) represented 
as a block containing neurons as columns and weights (line intersections) in levels (adapted from [294]). 

 

The levels of weights are superimposed onto each other in a one-to-one-correspondence, hence 
the weights of each neuron are obtained by looking at the weights in all levels that are exactly 
aligned in a vertical column (from the top in (Figure 31). There are as many weight levels in each 
Kohonen network as there are input variables describing the objects for which the network is 
designed. 

SOM networks are trained using an iterative algorithm. Starting with an initially random set of 
weights, the algorithm gradually adjusts them to reflect the clustering of the training data. The 
iterative Kohonen training procedure tries to map the input so that similar signals excite neurons 
that are very close together on the topological map (in terms of spatial distance). You can think of 
the network's topological layer as a crude two-dimensional grid, which must be folded and distorted 
into the N-dimensional input space to preserve the original structure as far as possible. Clearly any 
attempts to represent an N-dimensional space in two dimensions will result in loss of detail; 
however, the technique can be worthwhile in allowing to visualize data that might otherwise be 
impossible to understand [295]. 

The basic iterative Kohonen algorithm simply runs through a number of epochs. During each epoch, 
the corresponding training case passes through the following steps: 

1. The responses of all neurons are calculated. 

2. The winning neuron is selected (the one whose center is nearest to the input case); no 
matter how close the other neurons are to this best one, they are left out of that cycle. This 
is also referred to as the winner takes all method [232]. 

3. After finding the neuron that best satisfies the selected training case, its weights are 
corrected to make its response larger and/or closer to the desired one.  
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4. The weights of the arbitrarily defined neighboring neurons are corrected as well. These 
corrections are usually scaled down, depending on the distance from the winning neuron. 
For this reason, the scaling function is called a topology dependent function [232]. 

The algorithm uses a time-decaying learning rate, which is used to perform the weighted sum and 
ensures that the alterations become subtler as the epochs pass. This ensures that the centers settle 
down to a compromise representation of the cases that cause that neuron to win. 

 

 
 

Figure 32: Illustration of square neighborhoods (adapted from J. Zupan and J. Gasteiger) 
 
The topological ordering property is achieved by adding the concept of a neighborhood to the 
algorithm. The neighborhood is a set of neurons surrounding the winning neuron (Figure 32). The 
neighborhood, like the learning rate, decays over time, so that initially quite a large number of 
neurons belong to the neighborhood (perhaps almost the entire topological map); in the latter 
stages the neighborhood will be zero (i.e., consists solely of the winning neuron itself). In the 
Kohonen algorithm, the adjustment of neurons is actually applied to all the members of the current 
neighborhood, not just to the winning neuron. 

The effect of this neighborhood update is that initially quite large areas of the network are dragged 
towards training cases - and dragged quite substantially. The network develops a crude topological 
ordering, with similar cases activating clumps of neurons in the topological map (Figure 35). As 
epochs pass, the learning rate and neighborhood both decrease, so that finer distinctions within 
areas of the map can be drawn, ultimately resulting in fine-tuning of individual neurons. Typically, 
training is deliberately conducted in two distinct phases: a relatively short phase with high learning 
rates and neighborhood, and a long phase with low learning rate and zero or near-zero 
neighborhoods. 

Once the network has been trained to recognize structure in the data, it can be used as a 
visualization tool to examine the data. Win Frequencies (counts of the number of times each neuron 
wins when training cases are executed) can be examined to see if distinct clusters have formed on 
the map (Figure 33). Individual cases are executed and the topological map observed (Figure 35), 
to see if some meaning can be assigned to the clusters (this usually involves referring back to the 
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original application area, so that the relationship between clustered cases can be established). 
Once clusters are identified, neurons in the topological map are labeled (Figure 34) to indicate their 
meaning (sometimes individual cases may be labeled, too). Once the topological map has been 
built up in this way, new cases can be submitted to the network. If the winning neuron has been 
labeled with a class name, the network can perform classification. If not, the network is regarded as 
undecided. 

 

 
 

Figure 33: Sample Kohonen topological map (Euclidian distance between classes) trained with 30 different 
glucose monosaccharide classes after 20'000 learning cycles. 

 
 

 
 

Figure 34: Winning neurons for each class after 10'000 learning cycles of the same network 
as illustrated in Figure 33 
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Figure 35: Graphical location of four different glucose monosaccharide residues (top left: α-D-Glcp-OMe-2R, 
top right: α-D-Glcp-OMe-3R, bottom left: α-D-Glcp-OMe-4R and bottom right: α-D-Glcp-OMe-6R). Light green 

areas indicate high, darker green regions indicate weaker similarity. 
 
SOM networks also make use of an accept threshold, when performing classification. Since the 
activation level of a neuron in a SOM network is the distance of the neuron from the input case, the 
accept threshold acts as a maximum recognized distance. If the activation of the winning neuron is 
greater than this distance, the SOM network is regarded as undecided. Thus, by labeling all 
neurons and setting the accept threshold appropriately, a SOM network can act as a novelty 
detector (it reports undecided only if the input case is sufficiently dissimilar to all radial units). 

SOM networks are inspired by some known properties of the brain. The cerebral cortex is actually a 
large flat sheet (about 0.5m squared; it is folded up into the familiar convoluted shape only for 
convenience in fitting into the skull) with known topological properties (for example, the area 
corresponding to the hand is next to the arm, and a distorted human frame can be topologically 
mapped out in two dimensions on its surface) [295]. 
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4.5.4. Counter-propagation Network 

The Counter-propagation network is a real multilayer network with more than just an input and an 
output layer. It consists of a Kohonen layer (as explained in chapter 4.5.3) followed by a fully 
connected Grossberg layer. The Counter-propagation network is trained with supervised 
competitive learning – the training process needs defined input and target output pairs. 

The Grossberg layer acts as a kind of visualization and classification aid for the output of the 
Kohonen layer. Once the Counter-propagation network is trained, each time a winner neuron in the 
Kohonen layer is selected, the corresponding output neuron of the Grossberg layer is activated. The 
user now only sees to which class his input pattern belongs to and no longer the geographical 
region on the Kohonen feature map. This information is hidden. 

Counter-propagation networks are best used to generate lookup tables, where all the required 
answers are known in advance. The network learns to build the Kohonen map and in the same step 
to connect all the neurons of a cluster on the Kohonen layer with its corresponding target output 
neuron of the Grossberg layer. 

 
 
 

         
 

Figure 36: Fully connected sample Counter-propagation network in SNNS 3D illustration. Input Units on top, 
Kohonen layer in the middle and the Grossberg layer at the bottom. 
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Figure 37: An illustration of a sample Counter-propagation network. On top the Kohonen layer and at the 
bottom the Grossberg [53-55] layer (adapted from [294]). 

 

During a learning cycle (epoch) the following steps are executed [296]: 

1. The responses of all neurons are calculated. 

2. The winning neuron is selected (the one whose center is nearest to the input case) 

3. After finding the neuron that best satisfies the selected training case, its weights are 
corrected to make its response larger and/or closer to the desired one. 

4. The output at the Grossberg layer is computed and compared to the target output. 

5. Only the weights between the winner and the output layer are updated. The weights in the 
Kohonen layer are not adapted. 

 
It is hard to formalize the types of predictions which can be accomplished by a Counter-propagation 
network. They can be of very different types. The simplest are those classifying multidimensional 
objects into proper categories like NMR spectra into monosaccharide units. More complex 
predictions involve content-dependent retrievals, where incomplete or fuzzy data are entered and 
the originals are recovered. Therefore, this type of network was used for the identification of 
monosaccharide units. Also incomplete input pattern (e.g. peaks missing) lead to a correct 
classification (chapter 5.5). 

The problem with the Counter-propagation network is that it needs large quantities of training data 
covering all possible answers. The number of different classes the network can distinguish is limited 
by the size of the network [232].  
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4.6. Error functions 

The central goal in network training is not to memorize the training data but rather to model the 
underlying generator of the data, so that the best possible predictions for the output vector can be 
made when the trained network is subsequently presented with a new value for the input vector [77]. 
However, to direct this process in the right direction we need some penalty criteria – the error 
functions. Based on their output the neural network training algorithm can determine his position on 
the error surface and take the necessary steps to reduce the error. 

 

4.6.1. The Sum-of-squares error (SSE) 

The Sum-of-squares error is the sum over the output units of the squared difference between the 
desired output tk given by a teacher and the actual output zk: 
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 Equation 15: The sum-of-squares 
error function 

Where t and z are the target and the network output vectors of length c 
and w represents all the weights in the network. 

 
This is the standard error function used in regression problems. It can also be used for classification 
problems, giving robust performance in estimating discriminant functions, although arguably entropy 
functions are more appropriate for classification (on the assumption that the generating distribution 
is drawn from the exponential family), and allow outputs to be interpreted as probabilities. 

 

4.6.2. Mean squared error (MSE) 

The mean squared error is equal the SSE divided by the number of patterns (training or test cases). 

 

4.6.3. Cross entropy 

The following formula is applied when one is dealing with a conventional classification problem 
involving mutually exclusive classes (number of classes is greater then two). One output for each 
class appearing in the input pattern file with the coding scheme 1-of-c and a winner-takes-all 
activation model (the unit with the largest input hast output 1 while all other units have output 0). 
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Where n = number of patterns, tmk=target output of unit k for pattern m 
and zmk = actual output of unit k for pattern m 
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4.7. Modification generator (MG) 

The MG is a VBA Excel macro programmed by Andreas Stöckli. The main purpose of the macro is 
the artificial inflation of the NMR training peak data. Since certain monosaccharide moieties are 
under-represented in the database, it is necessary to generate further artificial NMR peaks from 
these sugars. From each monosaccharide moiety included in the NMR FileMaker database, the 
program calculates the mean value and the standard error. With these numbers, the macro 
generates a user requested quantity of artificial modifications of a certain monosaccharide moiety. 
The mean values of each peak are then randomly shifted upward and downward in the range of the 
standard deviation. With the MG it is possible to generate an equalized data basis for the training 
and recognition process of a neural network. 

4.8. Used neural network simulation software 

4.8.1. Statsoft Statistica [293] 

 

 
Figure 38: Statsoft Statistica main working area 

 
Statistica is a suite of analytics software products and provides an array of data analysis, data 
management, data visualization and data mining procedures. Its techniques include a wide 
selection of predictive modeling, clustering, classification and exploratory techniques in one 
software platform. 

The subprogram for neural networks includes many architectures and algorithms. like regression, 
classification, time series, cluster analysis and feature selection; MLP, RBF, PNN, SOM, linear, 
PCA, cluster networks and ensembles; Back-propagation, conjugate gradient descent, quasi-
newton, Levenberg-Marquardt, quick-propagation, delta-bar-delta, LVQ, PCA, pruning and feature 
selection algorithms (including forward & backward selection and genetic algorithms). 

As input data for a neural network the program accepts almost any imaginable table data format 
used today. The most applicable format in connection with the ANN Pattern File Generator is a 
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comma separated value (CSV) file in ASCII format (chapter 4.9.2.2 and 4.9.3.1). These files are not 
compressed and can be edited with a multitude of ASCII editors or spreadsheet programs like 
Microsoft Excel. It is also possible to read the training data directly out of a database with an ODBC 
or MySQL interface or from an online web form over the internet. 

 

4.8.2. Stuttgart Neural Network Simulator (SNNS) V.4.2 [297] 

The Stuttgart Neural Network Simulator is a simulator for neural networks developed at the Institute 
for Parallel and Distributed High Performance Systems (Institut für Parallele und Verteilte 
Höchstleistungsrechner, IPVR) at the University of Stuttgart since 1989.  

 

 
Figure 39: SNNS V.4.2 working area 

 
The SNNS simulator consists of four main components that are depicted in Figure 40: Simulator 
kernel, graphical user interface, batch execution interface batchman, and network compiler snns2c. 
The simulator kernel operates on the internal network data structures of the neural networks and 
performs all operations on them. The graphical user interface XGUI1, built on top of the kernel, 
gives a graphical representation of the neural networks and controls the kernel during the simulation 
run. In addition, the user interface can be used to directly create, manipulate and visualize neural 
networks in various ways. Complex networks can be created quickly and easily. 

SNNS is implemented completely in ANSI-C. During this thesis the kernel was compiled under 
RedHat Linux 7.1, and 7.2. A precompiled version of kernel V.4.2 was used to run simulations in a 
Microsoft Windows environment like Windows 2000 and Windows XP. 
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Figure 40: SNNS components: simulator kernel, graphical user interface xgui, batchman and network compiler 
snns2c (adapted from [296]) 

 
 
In SNNS the following architectures and learning procedures are included [296]: 
 

•  Back-propagation (BP) for feedforward networks  
•  Counter-propagation  
•  Quickprop  
•  Backpercolation 1  
•  RProp  
•  Generalized radial basis functions (RBF)  
•  ART1  
•  ART2  
•  ARTMAP  
•  Cascade Correlation  
•  Recurrent Cascade Correlation  
•  Back-propagation through time (for recurrent networks)  
•  Quickprop through time (for recurrent networks)  
•  Self-organizing maps (Kohonen maps)  
•  TDNN (time-delay networks) with Back-propagation  
•  Jordan networks  
•  Elman networks and extended hierarchical Elman networks  
•  Associative Memory 

 
As input data, the program only accepts a specific predefined pattern file format explained in detail 
in chapter 4.9.3.2. 
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4.8.3. Java Neural Network Simulator (JavaNNS) V.1.1 [298] 

JavaNNS is the Java implementation with almost the same features as SNNS. It is based on the 
SNNS kernel V.4.2. The required input data format of the pattern files is the same as for SNNS 
(chapter 4.9.3.2). 

JavaNNS was used because of the good visualization tools and Java applications can be executed 
on almost any operating system like UNIX, Linux, Windows and Mac OSX. Therefore, the 
calculated neural networks and their recognition results can be compared among the operating 
systems. 

 

 

 
Figure 41: JavaNNS V.1.1 main window 
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4.9. ANN PFG (Pattern File Generator) 

4.9.1. Introduction / Summary 

The ANN NMR pattern file generator (or just PFG) is a powerful and multifunctional software tool 
developed and programmed in Microsoft Visual Basic 6.0 during this PhD thesis. The main goal of 
the program is the conversion and compression of any kind of JCAMP-DX (but specially JCAMP-DX 
for NMR (13C and 1H-NMR)) file or a predefined CSV file containing NMR peak lists (chapter 
4.9.2.2) into an every time intimately pattern file. The conversion is executed with user-defined 
parameters and in later versions a custom peak mask (chapter 4.9.6.2). All processing parameters 
can be saved in a configuration file. The output pattern file is an ASCII text file containing the input 
pattern presented to the input neurons of the neural network in a compressed form. For Back-
propagation networks, the file also contains the corresponding teaching output patterns. With the 
ANN PFG it is possible to provide an absolutely identical pattern for each use. 

 

 
 

Figure 42: ANN PFG - coarse data flow 
 
Another reason for the development of this software was the immense amount of 13C-NMR data 
one had to deal with. An exported JCAMP-DX NMR spectrum normally contains 32k (32768) data 
points (chapter 4.4) depending on the resolution and the dimensions of the spectrum (1D or 2D) at 
hand. Feeding uncompressed 32k NMR data points into a neural network would lead to a network 
with 32768 input units. Already the fact that a carbohydrate 13C-NMR spectrum only contains about 
1% peak values, makes data compression inevitable. To work with the 99% non-peak data with no 
information content is needless and would increase the amount of training data in no relation. Not 
speaking of the immense amount of computer training time it takes to train neural networks with 
several million weights. A major problem with networks with too many degrees of freedom (weights) 
is over-fitting and the resulting lack of generalization capability [299-301]. Therefore, the used neural 
network should be as small as possible. An algorithm capable of distinguishing between peak and 
non-peak data and data conversion into a format suitable as an input for neural networks had to be 
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implemented into the PFG. The three different major releases (V.0.1, 0.2 and 0.9) of the software 
use different approaches to fulfill these needs. 

In version 0.1 there is no proper data reduction algorithm implemented – instead the only way of 
data reduction is the definition of a region of interest; a starting ppm-value and an end ppm-value 
(Figure 43). The fixed (hard coded) scaled intensity (from 0 to 1) of each measuring point in this 
defined region is then feed directly into the corresponding input neuron of the network to train 
(Figure 44). The resulting network has as many input units as there are data points in the defined 
ppm range. But with this method regions with no peak data will be included nevertheless.  

 

 

 
 

 
 

Figure 43: Illustration of data reduction in PFG V.0.1 and partly from V.0.2 
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Figure 44: Input data flow illustration; how 1H-NMR data enters the neural network 
 
In version 0.2 the data reduction approach from version 0.1 was retained but extended with an 
individual adjustable reading step size – only every xth data point is processed and the missed out 
data points are not used as input to the final input pattern for the neural network. The biggest 
danger of this approach is to read over important peaks if the step size is bigger than the dimension 
of a peak in a JCAMP-DX file. A normal 1H peak allocates approximately 20 points in a JCAMP-DX 
file. A peak in a 13C-NMR file allocates approximately 10 data points. Therefore, the step size has to 
be adjusted according to the underlying type of data. To avoid this problem version 0.2 was 
extended with a new feature: the block-patterns. In this approach, the software checks in the 
original JCAMP-DX input file after every reading step it, if a peak was missed out. If there was a 
peak in the gap exceeding the threshold (Figure 56) the algorithm will include the signal in the 
generated pattern. For details, see description of the algorithm in chapter 4.9.5. 

In the latest stable version of the PFG (V.0.9), a different approach was chosen. The program still 
works with a starting ppm-value and an end ppm-value but the values are determined automatically 
by reading all the NMR input data in advance. In a second step another algorithm is superimposing 
all input NMR spectra and generates a so-called peak mask of all used data points in the 
ppm-range. Data points where there is no input level exceeding the threshold level (Figure 57 and 
Figure 58) are not included in the final pattern file. The idea of the peak mask has also the 
advantage of filtering out uninteresting peak regions. If the peak mask was generated, e.g. only out 
of glucose data then the algorithm will not care about peaks in the region of 17 – 19 ppm if a 
rhamnose is presented. The peak mask serves as a kind of primitive input filter. Details are 
explained in chapter 4.9.6. 
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Because the used neural networks cannot change their size (number of neurons in the different 
layers) during the training or the test phase, all input and output vectors of the pattern file have to be 
kept at a fixed dimensionality. This task is taken over by the ANN Pattern File Generator in advance 
during the data input data processing. Also for later predictions based on an earlier trained neural 
network, the input dimensionality of the test pattern has to match exactly the number of input and 
output units provided by the used network. 

The ANN PFG was developed in three major and independent releases suited for the particular 
problems one had to deal with in each stage of this thesis. The different not already explained 
releases will be discussed and outlined in two separated chapters. The detailed algorithms will only 
be discussed in the final version 0.9, as they are quite similar in each version of the program. 

 

4.9.2. Input file formats 

An input file contains the data one wants a neural network to learn from or make predictions from. 
For training purposes, an input file also has to contain the corresponding teaching output. As input 
files, the different versions of the ANN PFG accept two fundamental different input file types. 

• JCAMP-DX for NMR files 

• CSV Files (Comma-separated values file) 

 

4.9.2.1. JCAMP-DX for NMR files 

This file format is discussed and explained in chapter 4.4  

4.9.2.2. CSV Files 

A CSV file contains the values in a table as a series of ASCII text lines organized so that each 
column value is separated by a predefined delimiter (freely selectable in the PFG) from the next 
column's value and each row starts a new line. 

A CSV file is a way to collect the data from any table so that it can be conveyed as input to another 
table-oriented application such as a relational database application. Microsoft Excel, a leading 
spreadsheet or relational database application, can read (and write) CSV files. 

To serve as an input file for the ANN PFG V.0.9 the CVS file must keep the file structure according 
to the following defaults: 

 
Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 ...... 
Data origin (NMR, 
FileMaker, 
Literature …) 

Compound name Subset 
(Train, Test 
or Selection) 

Peak 1 
[ppm] 

Peak 2 
[ppm] 

Peak 3 
[ppm] 

Peak x 
[ppm] 

 
Each compound has to start on a new line. The peaks starting at Column 4 do not have to be 
sorted. The ANN PFG will bubble sort them internally. The peak list should be filled up with 0-peaks 
– as many 0-peaks as there are peak values in the longest record in the whole table. 
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average;a-D-Manp-1R;selection;101.06;73.42;71.42;71.22;67.26;61.50;0.00 
average;a-D-Manp-OH;selection;94.85;73.15;71.49;71.08;67.86;61.75;0.00 
average;a-D-Manp-OH-2R;selection;93.14;79.56;73.26;70.34;67.23;61.48;0.00 
average;a-D-Manp-OH-4R;selection;94.91;77.74;72.24;71.04;69.88;61.37;0.00 
average;a-D-Manp-OH-6R;selection;95.18;73.21;71.59;71.62;70.13;67.89;0.00 
average;a-D-Manp-OMe;selection;101.70;73.28;71.36;70.73;67.78;61.68;55.71 
average;a-D-Manp-OMe-2R;selection;99.98;79.19;73.40;70.84;67.76;61.58;55.50 
average;a-D-Manp-OMe-3R;selection;101.39;79.31;7.40;68.68;66.51;61.42;55.50 
.... 

Figure 45: Sample input CSV file for ANN PFG 
 

4.9.3. Output file formats 

4.9.3.1. CSV Files for Statsoft Statistica 

The best input for the Statistica [293] Software packet is also the CSV file format. The PFG was 
programmed to write out the processed NMR peak data (the actual pattern file) into a CSV file in the 
following format: 

 
Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 ...... 

Compound name 
(or description con-
training no delimiters) 

Data origin 
(NMR, FileMaker, 
Literature …) 

Subset 
(Train, Test or 
Selection) 

encoded and compressed peak data 
(separated by delimiters) 

 
Each compound has to start on a separate line. The compound name or descriptor in Column 1 
serve at the same time as teaching output for the neural network calculated in Statsoft Statistica[293]. 

 

a-D-Manp-1R;average;train;0;0;0;0;0;0;0;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0 ........... 
a-D-Manp-OH;average;selection;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0 ......... 
a-D-Manp-OH-2R;average;train;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0 ........ 
a-D-Manp-OH-4R;average;train;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0 ........ 
a-D-Manp-OH-6R;average;train;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;0;0;0 ........ 
a-D-Manp-OMe;average;train;0;0;0;0;0;0;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0 .......... 
a-D-Manp-OMe-2R;average;train;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;0;0;0 ........... 
a-D-Manp-OMe-3R;average;train;0;0;0;0;0;0;0;0;0;0;0;1;0;0;0;0;0;0;0;0;0;0 ........... 
.... 

Figure 46: Example Statistica output pattern file in CSV format 
 

4.9.3.2. SNNS pattern file V4.2 

The SNNS pattern file is also a non-compressed ASCII file format. To use the output of the PFG in 
SNNS the file format has to fulfill special conditions. The first two line of the file header must contain 
the string "V4.2". The following lines contain the exact numbers of training or test cases and the 
number of input and output units SNNS will expect during training or testing. Each new record is 
separated by a hash ('#'), followed by an optional clear text description of the record. The coded 
input and output information is normally written in two separated lines for better illustration. 
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SNNS pattern definition file V4.2 
generated at 01.09.2004 17:53:06 
 
No. of patterns : 20 
No. of input units : 139 
No. of output units : 8 
 
# a-D-Manp-1R / average 
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ............... 
1 0 0 0 0 0 0 0 
 
# a-D-Manp-OH / average 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 ............... 
0 1 0 0 0 0 0 0 
 
# a-D-Manp-OH-2R / average 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 ............... 
0 0 1 0 0 0 0 0 
 
# a-D-Manp-OH-4R / average 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 ............... 
0 0 0 1 0 0 0 0 
 
# a-D-Manp-OH-6R / average 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 ............... 
0 0 0 0 1 0 0 0 
 
# a-D-Manp-OMe / average 
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ............... 
0 0 0 0 0 1 0 0 
 
# a-D-Manp-OMe-2R / average 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ............... 
0 0 0 0 0 0 1 0 
 
# a-D-Manp-OMe-3R / average 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ............... 
0 0 0 0 0 0 0 1 

Figure 47: SNNS sample input pattern file 
 

4.9.4. SNNS PFG V.0.1 

4.9.4.1. Key features of version 0.1 

The first version of the PFG was only able to read JCAMP-DX files of 1H-NMR spectral data of the 
five methyl pyranosides compounds described in chapter 4.1.1 and write output patterns in SNNS 
V4.2 format (Figure 47). The output patterns were hard coded in a binary format 
(Compound 1 = 1000, compound 2 = 01000, compound 3 = 00100, compound 4 = 00010 and 
compound 5 = 00001). The only possible way of data reduction was the possibility to narrow the 
spectra down by indicating a start and an end ppm value (explained in chapter 4.9.1 and Figure 43). 
To filter out noise from the used 1H-NMR spectra, the user has the possibility to indicate an intensity 
threshold level. The biggest peak in all used JCAMP-DX files was assigned 100% and the smallest 
peak correspondingly 0% (Figure 49). The whole bandwidth between the new threshold level and 
the maximal occurring intensity value is scaled hard coded between 0 and 1.  

 

file header
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Figure 48: First generation SNNS-PFG GUI 

 

To increase and artificially multiply the input data, the first version of the program was able to 
generate artificial modifications of the original JCAMP-DX files. Thereto the desired modification can 
be coded directly in the filename of the JCAMP-DX file. It is also possible to combine different 
reasonable modifications. 

The following codes (and their combinations) in the input file name are accepted: 

 

Table 10: Modification codes and their explanation 
 

Code explanation 
A no variation 
B halve spectrum intensity 
C add Gaussian noise (40dB) 
D add Gaussian noise (60dB) 
E right shift whole spectrum (+1Hz) 
F left shift whole spectrum (-1Hz) 

 
 

Table 11: Some example input file names 
 

File name explanation 
1_a.dx Compound 1 with no changes 
2_b.dx Compound 2 is halved in its peak intensity 
4_de.dx Compound 4 is shifted to the right (+1Hz) and 60dB noise is added 
5_bf.dx Compound 5 is shifted to the left (-1Hz) and reduced in its intensity by 50% 
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Figure 49: Noise threshold [%] and max / min intensity parameter by the example of a disaccharide 

13C-NMR spectrum. 
 

4.9.5. SNNS PFG V.0.2 

After all, PFG version 0.2 is actually based on the same ideas and algorithms as version 0.1. These 
basic features are discussed in chapter 4.9.1. A new version of the PFG was necessary because 
the training/test dataset was expanded with 13C-NMR peak lists from literature. Because these peak 
lists are not available as JCAMP-DX files, a subprogram to generate JCAMP-DX out of normal 
13C-NMR peak lists was implemented in this version (chapter 4.9.5.1). The training pattern files of 
version 0.1 still had too many inputs and for this reason, the training and generalization results of 
the tested networks were absolutely unsatisfying (chapter 5.3). Therefore, the compression 
algorithm had to be improved and extended (chapter 4.9.5.3). Several new features like SNNS 
Kohonen input pattern, binary input pattern and pattern files in CSV file format were also 
implemented. 

4.9.5.1. JCAMP-DX file generator subprogram 

The JCAMP-DX file generator subprogram converts peak lists of (literature) 1H or 13C-NMR spectra 
back into JCAMP-DX for NMR files. The subprogram also offers the possibility to generate user 
defined artificial modifications of the original files and add a custom percentage of random Gaussian 
noise to the data. The JCAMP-DX files can be generated each with different resolutions (8k, 16k 
and 32k). It is also possible to split up the generated modifications into different directories for test 
and training cases. 
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Figure 50: JCAMP-DX file generator V.0.2 GUI 

 

To model and simulate 1H and 13C-NMR peaks in the output JCAMP-DX file, about 100 peaks of 
each type were isolated from real NMR spectra. The individual data points were averaged to gain 
an average shape of each peak type (Figure 51). This information was then hard coded into the 
source code of the JCAMP-DX file generator subprogram. The arbitrary intensity value of 100 is 
assigned to the original data point in the input peak list. This point represents the symmetrical 
center of the peak. Real NMR spectra normally contain slightly unsymmetrical peaks but the 
JCAMP-DX file generator does not simulate this to simplify matters. 

 

         
Figure 51: Detail shape view of simulated NMR peaks (left graph: 1H-NMR, right graph: 13C-NMR). The red 

circle marks the original data point in the input peaklist (now the symmetrical center of the peak). 
     
As input, the JCAMP-DX file generator accepts peak lists in the CSV file format. The compound 
name is the same as the filename and will be used as output file name with the DX file extension. 
E.g., the CSV input file a-D-Manp-1R.csv becomes a-D-Manp-1R_0001.dx whereas a four-digit 
suffix will be attached to distinguish possible custom modifications.  

 
 

 
 

Figure 52: Sample file content of a-D-Manp-1R.csv 

101.06;73.42;71.42;71.22;67.26;61.50;0.00 
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The resulting output JCAMP-DX file only contains the LDRs who are important for later processing 
in other subroutines in the PFG (chapter 4.4.4). The JCAMP-DX files cannot be reimported into a 
NMR software suite like Bruker XWIN-NMR because spectrometer specific LDRs can no be 
artificially created. The JCAMP-DX generator in its final version is able to convert 50'000 
JCAMP-DX files at most. 

4.9.5.2. Main pattern file generation subprogram 

The main subprogram is responsible for the actual training or test pattern creation out of 
JCAMP-DX files (generated with the JCAMP-DX file generator or real JCAMP-DX files from NMRs). 
Features like the user definable input range (in ppm) and the zero-level threshold were taken over 
from version 0.1.  

 
 

Figure 53: SNNS PFG V.0.2 main subprogram GUI 
 

New features introduced with version 0.2 are: 

• A user-defined input intensity scaling factor (default value 1); the largest appearing peak 
intensity in all input JCAMP-DX files is assigned to this value. 

• A user-defined frequency shift for desired artificial modifications 

• A user-defined reading step size for a more efficient data compression. This value defines 
the number of data points the reading subroutine skips in each reading cycle (Figure 54). 
The biggest problem of this compression approach is the possibility that the subroutine 
skips complete peaks if the step size is bigger than expansion of a single NMR peak 
(second reading step in Figure 54). To solve this problem for larger step sizes, the so called 
block-pattern approach was introduced (this approach is discussed in greater detail in 
chapter 4.9.5.3). 
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Figure 54: Explanation of the variable step size approach – only the peaks marked in red are processed and 
taken over into the final output pattern file. Peaks colored in pink will not be processed. 

 
• A partly solution for the peak read-over problem is the user-defined reading offset. This 

value shifts the reading grid rightwards. 

• Version 0.2 allows also the creation of binary pattern files. Thereto all intensities exceeding 
the binary threshold level are represented by '1'. Intensities below the binary threshold are 
assigned '0'. 

• If desired version 0.2 can write Kohonen SNNS pattern files (as described in chapter 
4.9.3.2) 

• If the JCAMP-DX input files are used to train a Back-propagation network, the necessary 
target output patterns will be retrieved from an external CSV file called output.csv. This file 
acts as a kind of lookup table for the PFG. After every processed input JCAMP-DX file, the 
subroutine browses through the output.csv file and copies the corresponding output pattern 
into the pattern file. 

The fact that this file is not hard coded into the source code makes it easier to insert new 
compounds into the pattern files. 
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 The output.csv file has the following structure:  

 

   
Figure 55: A sample cutout of the output.csv file 

 
Line 1 contains the number of output neurons the PFG subroutine should write into the 
pattern file. The following lines contain the compound name followed by its (binary) output 
pattern. Compound name and output pattern are separated by a standard CSV delimiter 
(e.g. semicolon). If desired, the digits of the output can be optionally separated by a space 
to improve the readability of the file.  

• All described values and settings can be saved in an individual configuration file. These 
settings can be reloaded later to reproduce exactly the same pattern as for the first time. 

 

4.9.5.3. Data compression and block-pattern 

The block-pattern approach is an effective solution to overcome the problem of peak loss if the 
reading step size entered by the user is too big. A detailed overview is given in Figure 56. The 
block-pattern algorithm can only be used for even step sizes.  

If the block-pattern option is chosen, the algorithm checks (blue arrows in step 1) after each 
reading step (green arrows in step 1), if an intensity of a data point exceeding the threshold level 
was skipped. If there is a value exceeding this threshold, the exact location within the last step is 
determined. The area of the skipped data points is divided into three similar regions. The first and 
the last third of the region are called the cold spots. The central region is named hot spot 
accordingly. If the exceeding data point of interest is located in the hot spot area, then all intensity 
values exceeding the threshold in this area (step size) will be averaged (step 2) and the average 
value is taken over into the final pattern file. If the data point of interest is located in one of the cold 
spot areas the exact intensity value is directly taken over into the pattern file. 

Step 3 shows the final generated and compressed pattern file without the skipped data points with 
a step size eight. 

 
 

12 
a-D-Glc-1R;1 0 0 0 0 0 0 0 0 0 0 0 
b-D-Glc-1R;0 1 0 0 0 0 0 0 0 0 0 0 
a-D-Glc-2R;0 0 1 0 0 0 0 0 0 0 0 0 
b-D-Glc-2R;0 0 0 1 0 0 0 0 0 0 0 0 
a-D-Glc-3R;0 0 0 0 1 0 0 0 0 0 0 0 
b-D-Glc-3R;0 0 0 0 0 1 0 0 0 0 0 0 
a-D-Glc-4R;0 0 0 0 0 0 1 0 0 0 0 0 
b-D-Glc-4R;0 0 0 0 0 0 0 1 0 0 0 0 
... 
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Step 1 

 
Step 2 

 
Step 3 

 
 

Figure 56: Formation path of a sample block-pattern with step size = 8 
 

4.9.6. ANN PFG V.0.9 

The UML sequence diagram is shown in Figure 69. 

The final release of the ANN PFG is actually a summary of all important and well-proved functions 
of the predecessor versions. It accomplishes all requirements of the experiments at the state of the 
thesis. Because of still bad generalization abilities and too big neural networks, the data 
compression approach was radically redesigned and the resulting compression algorithm is called 
peak mask. This approach will be explained in the next chapter 4.9.6.1. 
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The support of JCAMP-DX files was discontinued because 13C / 1H-NMR data is now stored in the 
FileMaker 13C-NMR database and exported as peak lists or directly taken over via ODBC from any 
database application. Non-peak data (e.g. noise) is unimportant for the generalization abilities of the 
tested neural networks and all experiments are based only upon literature peak lists without non-
peak data. 

Version 0.9 was equipped with a detailed preview window that displays the imported NMR peak lists 
and the generated peak mask (Figure 61). Located on the right side of the main GUI the user will 
find detailed statistics about the generated peak mask (Figure 59), the read in input peak list file and 
the estimated size of the generated pattern file. The workflow of the PFG is divided into three 
different work steps: 

 

 
 
In the Pre-Run phase, the program generates the peak mask and collects all variables out of the 
input file necessary to proceed to the next step. Determined variables are ppm-max, ppm-min, 
max-intensity and min-intensity (Figure 57). The calculated peak mask and all NMR peaks of the 
input file will be displayed in the NMR preview windows (Figure 61). 

 
Figure 57: ANN PFG V 0.9.40 variables explanation 

 
In the Equalization step, the user can fine-tune the parameters of the computer calculated peak 
mask and enter desired parameters needed to create the final pattern file. The last step consists of 
the pattern creation itself. 
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The input CSV file format the new PFG version can process is strictly specified and has to follow 
the following rules:  

 
Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 ...... 
Data origin 
(NMR, FileMaker, 
Literature …) 

Compound name Subset 
(Train, Test or 
Selection) 

Peak 1 
[ppm] 

Peak 2 
[ppm] 

Peak 3 
[ppm] 

Peak x 
[ppm] 

 
Each compound starts on a new line. The peaks starting at column 4 do not have to be sorted. The 
ANN PFG will sort them internally with the help of a bubble-sort algorithm. The peak list must be 
filled up with 0-peaks – as many 0-peaks as there are peak values in the longest record in the 
whole table. 

 
average;a-D-Manp-1R;selection;101.06;73.42;71.42;71.22;67.26;61.50;0.00 
average;a-D-Manp-OH;selection;94.85;73.15;71.49;71.08;67.86;61.75;0.00 
average;a-D-Manp-OH-2R;selection;93.14;79.56;73.26;70.34;67.23;61.48;0.00 
average;a-D-Manp-OH-4R;selection;94.91;77.74;72.24;71.04;69.88;61.37;0.00 
average;a-D-Manp-OH-6R;selection;95.18;73.21;71.59;71.62;70.13;67.89;0.00 
average;a-D-Manp-OMe;selection;101.70;73.28;71.36;70.73;67.78;61.68;55.71 
average;a-D-Manp-OMe-2R;selection;99.98;79.19;73.40;70.84;67.76;61.58;55.50 
average;a-D-Manp-OMe-3R;selection;101.39;79.31;7.40;68.68;66.51;61.42;55.50 
.... 
 

Figure 58: Sample input CSV file for ANN PFG V.0.9 

4.9.6.1. Pre-Run phase 

After the selection of an input CSV file and choosing the desired NMR type the user clicks on the 
Pre-Run button and the following steps will be executed: 

 
• The input CSV file is imported line by line into an array (the input CSV array). Each line is 

then separated into its columns. The whole input CSV file is now stored in a two-
dimensional x/y array in the computers memory. 

• Since there is the possibility, that the individual peaks are not arranged according to size, 
the peak list of each line will be sorted in descending order by a bubble-sort algorithm. 

• In a next step, the whole input CSV array is transformed into the CSV point array:   
Each peak value (in ppm) is converted into its corresponding JCAMP-DX data point (1H or 
13C-NMR with 8k, 16k and 32k resolution as defined by the user in the input options GUI). 
In the end, there is a second array (CSV point array) containing the same information but 
with the exception that the peaks are no longer stored in ppm-values but in JCAMP-DX 
data points. 

• The values for ppm-maxglobal and ppm-minglobal are determined (peak intensities are not 
available in literature peak data). Each peak is assigned the arbitrary intensity of 1'000'000. 

• The peak mask is created with all data and values carried together so far. The procedure is 
explained in the next chapter. 
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Figure 59: ANN PFG GUI - input and Pre-Run options tab 

 

4.9.6.2. Peak mask 

The peak mask is actually a simple bit mask (or a one-dimensional binary array). It has always the 
dimension of the NMR resolution the user requests (8k, 16k or 32k).The fundamental idea of the 
peak mask is to create a one-dimensional map or copy of all peaks contained in the compounds in 
the input CSV file. And this map serves as a template or filter for the final output pattern file.  

 

 
 

                       Figure 60: Formation of the binary peak mask 
 
For these purposes, only peaks exceeding the threshold level (adjusted by the user) will be mapped 
on the peak mask. Peaks exceeding this level will be mapped in binary form; above threshold = 1 
and below threshold = 0 (Figure 60). Thus, peaks are not mapped by their intensity but only by their 
dispersion (only their "shadow" by perpendicular "illumination"). All other information is lost – and 
not necessary for the application of the peak mask. The mask can also be regarded as a kind of 
superimposed dot mask filter containing all the peaks available (as holes) in the input file (Figure 
61).  
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During every reading cycle in the CSV point array, the algorithm checks up in the peak mask if the 
corresponding bit is set to 1 or 0. If the bit of the processed data point is set to 1, the peak 
information will be written into the final pattern file. Otherwise, the information of the CSV point array 
at the corresponding data point will not be processed and written in the pattern file. This procedure 
shows very well, how the mask can be used for input data compression. Regions with no peaks 
(regions with bits set to 0 in the peak mask) won't appear in the final pattern file. And on the other 
hand the pattern file only contains dense peak information used as input for the neural network.  

 

 
Figure 61: Preview of overlaid NMR spectra (blue) and calculated peak mask (red) 

 
Consider the following example to show how the peak mask also acts as an input filter: The initially 
"closed" peak mask (all bits set to 0) will be opened or "perforated" (bits set to 1) only just at the 
regions where the compounds in the input CSV file contains peak information. The peak mask 
created during the Pre-Run can certainly be saved to a configuration-file. In later applications the 
same saved peak mask can be reloaded (e.g. to create an identical pattern to test a specific neural 
network) and will filter the new test compounds insofar as only "known" compounds will pass the 
peak mask filter. Disturbing impurities or other foreign substances will be ignored. 

A peak mask built from a certain carbohydrate (e.g. glucose) will act as a filter for other compounds 
or disturbing impurities. Peaks in regions, where the peak mask built from e.g. glucose is set to 0, 
will not appear in the final pattern file for the neural network to train or test. Therefore, a peak mask 
created with glucose will not allow peaks from e.g. rhamnose to enter the final pattern file. But 
rhamnose peaks in regions overlapping with glucose won't be filtered. This cannot be prevented. 

To equalize and refine the peak mask, two different approaches are also implemented into the 
PFG V.0.9: 

 
1. With values entered in the Mask Equalization field in the GUI, it is possible to delete small 

gaps between adjacent peaks in the peak mask. The bits of gaps smaller than the specified 
value will be set to 1. This leads to a smoother mask and "opens" the mask for peak 
information not already known at the time of the peak mask creation. E.g. poorly shifted 
NMR spectra. 

 

 
 

Figure 62: Peak mask equalizing (4 points) 
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2. Another approach is the introduction of a tolerance factor (the input field is also located on 
the GUI). This subroutine enlarges the peak mask regions with bits set to one (the holes) on 
every side. 

 

 
 

Figure 63: Peak mask with tolerance = ± 2 

4.9.6.3. Pattern creation 

The final pattern creation step consists of filtering the input CSV file through the peak-mask created 
in the Pre-Run step or loaded from a file. If desired, the default values for the ppm-range, the zero 
threshold level or the input unit activation values, can be adjusted by the user. If nothing different is 
selected, binary pattern files (data point not exceeding zero threshold level = 0, data point 
exceeding zero threshold level = 1) are created. The ppm-range values ppm-max and ppm-min are 
automatically determined out of the input CSV file. 

 

 
Figure 64: ANN PFG GUI - processing options tab 

 

The algorithm also checks if the step size is larger than the biggest gap in the peaks mask. If this is 
the case the according peak would be wrapped. The block-pattern approach was abandoned. If 
desired the subprogram can create output files in the SNNS (Backprop or Kohonen) or Statistica 
format. As SNNS can't work with clear text output values the target output values for SNNS pattern 
files have to be encoded in a binary format. This task is fully automated and integrated in PFG 
V.0.9. Each different compound found in the input CSV file is assigned a consecutive binary 
number. This binary number has as many digits as there are different compounds in the input CSV 
file. Leading digits not used will be filled up by zero (example in Figure 63) 
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 Figure 65: A sample binary output-coding matrix for 12 different compounds for SNNS pattern files  
 
The final output files look like the examples described in chapter 4.9.3.1 and 4.9.3.2. 

4.9.6.4. Combination generator 

The combination generator is a subprogram added in a later stage to PFG V.0.9. It was originally 
designed to create pattern files of single compounds just by entering the peak list in the designated 
fields. And not to enter the single compound via an extra prepared CSV input file. However, the 
problems discussed in chapter 5.8.8 lead to the invention and introduction of the combination 
generator. 

 
Figure 66: ANN PFG GUI - peak combination generator tab 

 

When feeding e.g. twelve peaks (a disaccharide) into a neural network, it is sometimes impossible 
to assign all peaks to the corresponding monosaccharide unit. Test compounds (e.g. a-D-Glcp-1-6-
b-D-Galp-OMe) are often understandably recognized as follows: 

 
b-D-Glcp-1-6-a-D-Galp-OMe α, β interchanged 
     
 
 
a-D-pGal-1-6-b-D-pGlc-OMe Monosaccharide moieties interchanged 
 
 

 1: 1 0 0 0 0 0 0 0 0 0 0 0 
 2: 0 1 0 0 0 0 0 0 0 0 0 0 
 3: 0 0 1 0 0 0 0 0 0 0 0 0 
 4: 0 0 0 1 0 0 0 0 0 0 0 0 
 5: 0 0 0 0 1 0 0 0 0 0 0 0 
 6: 0 0 0 0 0 1 0 0 0 0 0 0 
 7: 0 0 0 0 0 0 1 0 0 0 0 0 
 8: 0 0 0 0 0 0 0 1 0 0 0 0 
 9: 0 0 0 0 0 0 0 0 1 0 0 0 
10: 0 0 0 0 0 0 0 0 0 1 0 0 
11: 0 0 0 0 0 0 0 0 0 0 1 0 
12: 0 0 0 0 0 0 0 0 0 0 0 1 
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This can be explained thereby that a neural network has no knowledge about the ring membership 
(spin system) of a single peak and the false positive results cannot be regarded as real faults. The 
assignment of the ring membership could also be a problem for a human NMR interpreter. 

To overcome this problem the combination generator subprogram generates an array of all possible 
combinations of how to group n peaks into groups of g peaks. For a disaccharide with e.g. 12 
peaks, there are only two reasonable combinations out of 924. The remaining 922 combinations 
are senseless. 

 

 
Figure 67: Combinations example with 12 peaks / 6 peaks per group and α/β confusion 

(anomeric peaks 6 and 12) 
 
The array with all possible peak combinations is computed with the following formula: 

 

( )!!
!
gng

nc
−×

=  Equation 17 

 
c = number of possible combinations 
n = number of peaks in NMR spectrum 

g = group size (normally g=6 for a monosaccharide) 

 
This internal array with all combinations is then processed exactly like a normal CSV input file and 
finally converted into a neural network test pattern file. If this pattern file is tested with different pre-
trained neural networks, most networks will statistically recognize the correct two combinations. The 
minority will also recognize the false positive or some wrong combinations. 

Peaks:  1 2 3 4 5 6 7 8 9 10 11 12    assumption: peak 6 = α and 12 = β  
 
  
  moiety 1     moiety 2  
 
924 possible combinations of 6 peaks: 
 
 1 2 3 4 5 6    
 1 2 3 4 5 7    
 1 2 3 4 5 8    
 1 2 3 4 5 9    
 1 2 3 4 5 12  false positive combination (Peak 6 and 7 interchanged) 
 . . . . . . 
 3 4 7 10 11 12  
 . . .  .  .  .  
 6 7 8  9 10 11   second false positive compound 
 6 7 9 10 11 12  
 6 8 9 10 11 12  
 7 8 9 10 11 12  
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In the following example, 40 neural networks were tested with 924 peak combinations of a single 
disaccharide peak list containing 12 peaks. 
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Figure 68: Test results overview of 40 neural networks tested with 924 peak combinations 

 
The results show, that the two right combinations are recognized by the majority of the 40 neural 
networks tested with all of the 924 combinations. The false positive combinations are recognized as 
well but with lower incidence. 
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program start pre run

pre run

csv2array

convert()

bubble sort

return array

draw peaks PointArray

convert ppm to points()

PeakMask

generate

draw mask

initiate drawdraw peaks

return peak mask

statistics

display mask statistics

done

equalize mask

equalize

draw peaks

draw

display mask statistics

create pattern

start

convert

bubble_sort()

bubble_sort()

convert ppm to points()

return array generate

initiate draw

display mask statistics

write pattern to file

Message1

pattern written

done

 
Figure 69: ANN PFG V.0.9 UML sequence diagram 
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5. Experiments 
 

5.1. Glycosylation shifts  

The following graphs illustrate the glycosylation shifts of substituents R at different ring positions. 
The analysis was done for glucose, galactose and mannose. The used ppm-values are average 
shift values of all corresponding compounds in the FileMaker 13C-NMR database (chapter 4.1.5).  
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Figure 70: Influence of substituents at different ring positions for α-D-Glcp-OMe 
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5.1.2. β-D-Glcp-OMe-xR 
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Figure 71: Influence of substituents at different ring positions for β-D-Glcp-OMe 

 

5.1.3. α-D-Glcp-xR 
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Figure 72: Influence of substituents at different ring positions for α-D-Glcp 
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5.1.4. β-D-Glcp-xR 
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Figure 73: Influence of substituents at different ring positions for β-D-Glcp 

5.1.5. α-D-Manp-xR 
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Figure 74: Influence of substituents at different ring positions for α-D-Manp 
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5.1.6. β-D-Manp-xR 
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Figure 75: Influence of substituents at different ring positions for β-D-Manp 

5.1.7. α-D-Manp-OMe-xR 
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Figure 76: Influence of substituents at different ring positions for α-D-Manp-OMe 
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5.1.8. β-D-Manp-OMe-xR 

There is no data available in the FileMaker 13C-NMR database. 
 

5.1.9. α-D-Galp-xR 

60

65

70

75

80

85

90

95

100

105

1 2 3 4 5 6

Peak Nr.

[p
pm

]

a-D-pGal-OH-3R
a-D-pGal-OH-4R
a-D-pGal-OH-6R
a-D-pGal-OH
b-D-pGal-OH

a-D-pGal-OH-3R a-D-pGal-OH-4R a-D-pGal-OH-6Ra-D-pGal-OH

HO

O

HO
HO

OH

OH
HO

O

HOOH

OH

RO
O

HO
HO

OH

OHRO
HO

O

HO
HO

OH

OR

 
Figure 77: Influence of substituents at different ring positions for α-D-Galp 
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5.1.10. β-D-Galp-xR 
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Figure 78: Influence of substituents at different ring positions for β-D-Galp 

 

5.1.11. α-D-Galp-OMe-xR 
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Figure 79: Influence of substituents at different ring positions for α-D-Galp-OMe 
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5.1.12. β-D-Galp-OMe-xR 
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Figure 80: Influence of substituents at different ring positions for β-D-Galp-OMe 
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5.2. General definitions 

Term Definition / Explanation 
Generalization A measure of how well a network can respond to new data on which it 

has not been trained but which are related in some way to the training 
patterns. An ability to generalize is crucial to the decision-making ability 

of the network. 
Recall A measure of how well a network can respond to the data it was trained 

with. If the recall rate reaches 100% network training can be stopped 
because no further improvement in generalization can be expected. 

Valid set Other expression for test data set to test the generalization ability of the 
trained neural network. This test can be done after the training or during 

the training process. 
dmax The maximum difference dj = tj - ij between a teaching value tj and an 

output oj of an output unit which is tolerated, i.e. which is propagated 
back as dj = 0. [296] 

Threshold Activation level an output neuron has to exceed to be classified as a 
correct output. This is especially important when binary teaching values 

are used.  
 
 

5.3. Methyl pyranosides approach 

The idea of these experiments was to apply the approach of Meyer et al. [80-82] to glycopyranoses, 
because of the fact that there were no sugar alditols available. The compounds used were five 
methyl pyranosides presented in chapter 4.1.1. The methyl pyranosides have the advantage that 
they are clearly defined at the anomeric carbon and the information of the difference between α and 
β configuration can be included into the training of the neural networks. For the identification of 
disaccharides, the anomeric configuration is indispensable.  

 

5.3.1. 1H-NMR data 

All five compounds were measured under the conditions explained in chapter 4.2. The amount of 
sample is indicated under 4.1.1. 

To artificially amplify the data set, each compound was measured four times and then twelve 
modifications (according to Table 12) were created with the ANN PFG V.0.1. 

 
Train: 5 compounds x 4 NMR measurements x 12 modifications = 240 compounds 

 
To gain the valid data set, the procedure was repeated with only six modifications per NMR 
experiment. 

 
Valid: 5 compounds x 4 NMR measurements x 6 modifications = 120 compounds 

 
Before creating the pattern file, the twenty acquired NMR spectra were superimposed. To include all 
peaks in the twenty samples, a peak range from 4.4 to 3.2 ppm had to be included into the final 
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pattern files. After processing the JCAMP DX files with the ANN PFG V.0.1 the resulting pattern 
files (training and test) contained 2620 input neurons. 

 

Table 12: Modification codes and their explanation 
 

Mod code explanation 
1 a no variation 
2 b half intensity 
3 c add 40db noise 
4 d right shift 1Hz 
5 e left shift 1Hz 
6 bc half intensity + Noise 
7 bd half intensity + right shift 1Hz 
8 be half intensity + left shift 1Hz 
9 cd add 40db noise + right shift 1Hz 
10 ce add 40db noise + left shift 1Hz 
11 bcd half intensity + add 40db noise + right shift 1Hz 
12 bce half intensity + add 40db noise + left shift 1Hz 

 

5.3.1.1. Comparison of different learning rates 

This experiment was the first test run made during this thesis. As a starting point, all parameters 
were chosen according to default values proposed in the SNNS manual [296] and the Neural Network 
book from J. Gasteiger [232]. The main aim of this experiment was to determine if it is possible to 
separate the five used methyl pyranosides and if it is possible to recognize unseen but similar 
1H-NMR spectra. 

 
ANN PFG V.0.1 parameters NMR type 

Shift 
Zero threshold 

Input range 

1H – 32k data points 
± 1 Hz 

10 
4.4 - 3.2 ppm 

Software SNNS V4.2 
Training algorithm Standard Back-propagation 

Network size 2620 input neurons 
200 hidden neurons 

5 output neurons 
Output coding binary (1= activated / 0 = deactivated) 
Training cycles 100 

Activation function Logistic (as described in Figure 18f) 
Output function Identity 

Init function Random (±0.5) 
Learning rate Variable 

Momentum term 0.5 
dmax 0.1 

Flat spot elimination value 0.1 
Threshold 1 

Pattern shuffling Activated 
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Figure 81: Learning rate comparison 
 
Figure 81 clearly shows, that the generalization rate of the networks is independent from the chosen 
learning rate. A 100% recall rate is reached after ~30 cycles. An improvement of the generalization 
rate was not expected because the recall curve already reached its maximum and these two curves 
always climb in parallel. 

5.3.1.2. Hidden layer size comparison 

The next parameter expected to have a great influence, is the size of the hidden layer. A range from 
zero to 800 hidden units seems to be appropriate. Bigger networks would take too long to compute. 

 
ANN PFG V.0.1 parameters NMR type 

Shift 
Zero threshold 

Input range 

1H – 32k data points 
± 1 Hz 

10 
4.4 - 3.2 ppm 

Software SNNS V4.2 
Training algorithm Standard Back-propagation 

Network size 2620 input neurons 
variable hidden neurons 

5 output neurons 
Output coding binary (1= activated / 0 = deactivated) 
Training cycles 100 

Activation function Logistic (as described in Figure 18f) 
Output function Identity 

Init function Random (±0.5) 
Learning rate 0.2 

Momentum term 0.5 
dmax 0.1 

Flat spot elimination value 0.1 
Threshold 0.7 

Pattern shuffling activated 
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Figure 82: Hidden layer size comparison 
 

• Figure 82 shows a saturation of the generalization rate starting at the size of about 200 
hidden units. Networks with more hidden units cannot improve the generalization rate. 

• Networks with more than 800 hidden units were not trained because of the immense 
amount of time needed to train these networks. A network with 2620 input units, 800 hidden 
units and 5 output units has a total of 2'100'000 weights (2620 @ 800 + 800 @ 5 = 2'100'000) 
and it took 288 hours to train this network up to 100 cycles. 

• Linear networks do not seem to be suitable to predict unseen test data. 

• The optimal point to stop the training is reached after about 10 training cycles. 

• The results of this experiment highlight the urgent need of more compounds to train the 
network. The artificially generated modifications are not sufficient to give good 
generalization results. Literature says that 10 times as many training cases as input units 
are needed to get satisfying results. This may not be enough for the highly complex 
functions at hand. For classification problems, the number of cases in the smallest class 
should be at least several times the number of input units [302]. According to this rule of 
thumb, the networks used in this experiment should be trained with at least 26'200 training 
cases. This demand cannot be achieved with twelve simple modifications of five NMR 
compounds. 
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5.3.1.3. MSE and classification comparison with 246hu 

In a next step, the output coding values for an activated output unit were changed from 1 to 0.75 
and from 0 to 0.25 for a deactivated output unit (new values are shown in dotted red lines in Figure 
83). This change is reasonable because the curve of the logistic activation function has its steepest 
part between 0.75 and 0.25. This means, that small changes of the net input result in stronger 
output changes. If the target output levels are set to 1 and 0 accordingly, it takes indefinitely many 
training cycles to reach the desired target output because the logistic function is not defined for 1 
and 0. Therefore, the network can never reach the required target output values. 
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Figure 83: Act Logistic activation function 

 
 

ANN PFG V.0.1 parameters NMR type 
Shift 

Zero threshold 
Input range 

1H – 32k data points 
± 1 Hz 

10 
4.4 - 3.2 ppm 

Software SNNS V4.2 
Training algorithm Standard Back-propagation 

Network size 2620 input neurons 
246 hidden neurons 

5 output neurons 
Output coding 0.75 = activated / 0.25 = deactivated 
Training cycles 100 

Activation function Logistic (as described in Figure 18f) 
Output function Identity 

Init function Random (±0.5) 
Learning rate 0.1 

Momentum term 0.5 
dmax 0.1 

Flat spot elimination value 0.1 
Threshold 0.7 

Pattern shuffling activated 
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Figure 84: MSE and classification comparison for target output values 0.75 and 0.25 
 
The blue colored classification curve depicted in Figure 84 flattens after about 400 training cycles. 
The best generalization rate of 67% of experiment 5.3.1.2 was far not reached. The red training 
MSE curve drops steadily to zero. Therefore, no further improvements in generalization can be 
expected. Why the generalization rate never exceeds 22%, cannot be explained.  
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5.3.1.4. MSE and classification comparison with 100hu 

The following experiment was carried out with exactly the same setup as the previous experiment 
5.3.1.3. The only difference is a smaller hidden layer size of 100 units. 

 
ANN PFG V.0.1 parameters NMR type 

Shift 
Zero threshold 

Input range 

1H – 32k data points 
± 1 Hz 

10 
4.4 – 3.2 ppm 

Software SNNS V4.2 
Training algorithm Standard Back-propagation 

Network size 2620 input neurons 
100 hidden neurons 

5 output neurons 
Output coding 0.75 = activated / 0.25 = deactivated 
Training cycles 100 

Activation function Logistic (as described in Figure 18f) 
Output function Identity 

Init function Random (±0.5) 
Learning rate 0.1 

Momentum term 0.5 
dmax 0.1 

Flat spot elimination value 0.1 
Threshold 0.7 

Pattern shuffling activated 
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Figure 85: Combined MSE and classification comparison - patterns without methyl-peak 
 

The reduced hidden layer size improves the generalization rate to 27%. Deeper inspection of the 
weights connecting the input with the hidden layer showed that the trained neural network only 
considered the methyl peak at 3.4 ppm. The remaining peaks of the 1H spectra were ignored, 
respectively the weights in these regions where all set to a level between 0.85 and 0.93. 
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5.3.1.5. Classification comparison of networks without methyl peaks at 3.4ppm 

To avoid the findings of the previous experiment, all methyl peaks at 3.4 ppm were manually 
deleted in the training and valid pattern files. The network was trained with the same parameters 
used in experiment 5.3.1.2. 

 
ANN PFG V.0.1 parameters NMR type 

Shift 
Zero threshold 

Input range 

1H – 32k data points 
± 1 Hz 

10 
4.4 - 3.2 ppm (without 3.4 

ppm) 
Software SNNS V4.2 

Training algorithm Standard Back-propagation 
Network size 2620 input neurons 

100 hidden neurons 
5 output neurons 

Output coding binary (1= activated / 0 = deactivated) 
Training cycles 100 

Activation function Logistic (as described in Figure 18f) 
Output function Identity 

Init function Random (±0.5) 
Learning rate 0.1 and 0.2 

Momentum term 0.5 
dmax 0.1 

Flat spot elimination value 0.1 
Threshold 0.7 

Pattern shuffling activated 
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Figure 86: Classification comparison of networks without methyl peaks at 3.4ppm 
 
Surprisingly, the trained neural network was unable to correctly predict more than two test 
compounds. The two recall curves flatten after about 20 training cycles. This indicates that the 
network is unable to find an approximation function for the given in- output training pairs. 
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5.3.2. Conclusion 

According to the conducted experiments in the last chapter allow drawing the following conclusions 
are drawn: 

• The learning rate does not seem to have an influence on the generalization rate of the 
trained neural networks. 

• Networks with more than 200 hidden units cannot distinctively improve the generalization 
rate. 

• It is not possible to train a neural network with a satisfying generalization rate with only five 
compounds. Either the amount of training compounds has to be extended or the size of the 
used neural network has to be reduced. 

• The conclusions from experiment 5.3.1.5 suggest to abandon the 1H-NMR approach and 
switch to 13C-NMR spectra. This consideration is supported by the fact that protons in a 
1H-NMR spectrum interact with each other. However, to correctly identify monosaccharides, 
one only needs the carbon-"core" and the substitution pattern. This information is best 
accessibly via 13C-NMR data.  

• To accomplish the new targets, a new version of the ANN PFG was necessary. 

 

5.4. 13C-NMR experiments 

5.4.1. Used dataset 

The underlying 13C-NMR data was obtained from literature [73, 96, 97, 101, 103, 106, 107, 109, 113, 119, 121, 129, 132, 

133, 135-137, 145, 149, 151, 155-157, 159, 162, 164, 166, 174-177, 181, 183, 188, 191, 193, 202, 210, 211, 221, 260, 290, 303]. The data set 
contained 535 monosaccharides consisting of 55 different monosaccharide moieties (Table 13). To 
prepare the processing with the ANN PFG V.0.2 the, the average peak values of each group were 
calculated and saved into 55 separate CSV files. Afterwards, these files were converted into 
JCAMP DX files (32k and no Gaussian noise). 

To enlarge the dataset, the JCAMP DX generator V.0.2 created 200 modifications (JCAMP DX files) 
for each monosaccharide-group. Thereof 40 modifications were used as test data and the 
remaining 160 modifications were saved into the training pattern file. The parameters used for the 
ANN PFG V.0.2 are indicated at the respective experiment. 
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Table 13: Monosaccharide moieties contained in the first 13C-NMR literature data set 
 

Nr. Monosaccharide moiety Nr. Monosaccharide moiety 
1 a-D-pMan-1R 29 b-D-pGal-OH-6R 
2 a-D-pMan-OH-2R 30 b-D-pGal-OMe 
3 a-D-pMan-OH-4R 31 b-D-pGal-OMe-2R 
4 a-D-pMan-OH-6R 32 b-D-pGal-OMe-3R 
5 a-D-pMan-OMe 33 b-D-pGal-OMe-6R 
6 a-D-pMan-OMe-2R 34 a-D-pGlc 
7 a-D-pMan-OMe-3R 35 a-D-pGlc-1R 
8 a-D-pMan-OMe-4R 36 a-D-pGlc-OH-2R 
9 a-D-pMan-OMe-6R 37 a-D-pGlc-OH-3R 

10 b-D-pMan-1R 38 a-D-pGlc-OH-4R 
11 b-D-pMan-OH-2R 39 a-D-pGlc-OH-6R 
12 b-D-pMan-OH-4R 40 a-D-pGlc-OMe 
13 b-D-pMan-OH-6R 41 a-D-pGlc-OMe-2R 
14 b-D-pMan-OMe 42 a-D-pGlc-OMe-3R 
15 b-D-pMan-OMe-2R 43 a-D-pGlc-OMe-4R 
16 b-D-pMan-OMe-4R 44 a-D-pGlc-OMe-6R 
17 a-D-pGal-1R 45 b-D-pGlc 
18 a-D-pGal-OH-3R 46 b-D-pGlc-1R 
19 a-D-pGal-OH-4R 47 b-D-pGlc-OH-2R 
20 a-D-pGal-OH-6R 48 b-D-pGlc-OH-3R 
21 a-D-pGal-OMe 49 b-D-pGlc-OH-4R 
22 a-D-pGal-OMe-2R 50 b-D-pGlc-OH-6R 
23 a-D-pGal-OMe-3R 51 b-D-pGlc-OMe 
24 a-D-pGal-OMe-4R 52 b-D-pGlc-OMe-2R 
25 a-D-pGal-OMe-6R 53 b-D-pGlc-OMe-3R 
26 b-D-pGal-1R 54 b-D-pGlc-OMe-4R 
27 b-D-pGal-OH-3R 55 b-D-pGlc-OMe-6R 
28 b-D-pGal-OH-4R   
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5.4.2. Comparison of different Back-propagation learning algorithms 

ANN PFG V.0.2 parameters ppm range 
Zero threshold 
Input scaling 

Shift 
Raster 

Binary patterns 

100 - 15 ppm  
0% 
1.0 

± 1 Hz 
5 points 
yes/no 

Software SNNS V4.2 
Training algorithm Standard Back-propagation 

Network size 6225 input neurons 
100 hidden neurons 
55 output neurons 

Training cycles 280 
Activation function Logistic (as described in Figure 18f) 

Output function Identity 
Init function Random (±0.5) 

Learning rate 0.1 - 1 
Momentum term 0.5 

dmax 0.1 
Flat spot elimination value 0.1 

Threshold 0.7 
Pattern shuffling activated 
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Figure 87: Different Backprop learning algorithms overview 
 
As depicted in Figure 87, the different modifications of the Back-propagation learning algorithm tend 
to find the same solution and the MSE drops asymptotically after approx. 150 cycles to zero. The 
Back-propagation modification with a momentum term finds the minimum fastest. It is not possible 
to testify if binary or analog input coding should be used. This will be explored by further separate 
experiments. 
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5.4.3. Comparison of different learning rates 

ANN PFG V.0.2 parameters ppm range 
Zero threshold 
Input scaling 

Shift 
Raster 

Binary patterns 

100 - 15 ppm  
0% 
1.0 

± 1 Hz 
5 points 

yes 
Software SNNS V4.2 

Training algorithm Standard Back-propagation 
Network size 6225 input neurons 

100 hidden neurons 
55 output neurons 

Training cycles up to 30 
Activation function Logistic (as described in Figure 18f) 

Output function Identity 
Init function Random (0.25 - 0.75) 

Learning rate 0.3 
Momentum term 0.5 

dmax 0.1 
Flat spot elimination value 0.1 

Threshold 0.7 
Pattern shuffling activated 
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Figure 88: Learning rate comparison with a logistic transfer function and a fixed hidden layer size of 

100 neurons  
 

The results show a similar picture as in Figure 81. A linear increase of the learning rate does not 
result in a similar increase in generalization rate. Therefore, in the following experiments the 
learning rate will be set > 0.4. The relatively low generalization rates still indicates fundamental 
network topology or data set problems. With the following experiments we tried to cover all possible 
solutions. 
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5.4.4. Comparison of different learning rates at 600 hidden units 

ANN PFG V.0.2 parameters ppm range 
Zero threshold 
Input scaling 

Shift 
Raster 

Binary patterns 

100 - 15 ppm  
0% 
1.0 

± 1 Hz 
5 points 

yes 
Software SNNS V4.2 

Training algorithm Standard Back-propagation 
Network size 6225 input neurons 

600 hidden neurons 
55 output neurons 

Training cycles 25 
Activation function Logistic (as described in Figure 18f) 

Output function Identity 
Init function Random (0.25 - 0.75) 

Learning rate 0.2 and 0.4 
Momentum term 0.5 

dmax 0.1 
Flat spot elimination value 0.1 

Threshold 0.7 
Pattern shuffling activated 
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Figure 89: Learning rate comparison with a logistic transfer function and fixed hidden layer size of 600 neurons 
 
An increase of the hidden layer size to 600 hidden units does not solve the problem. The 
generalization and recall rates climb approximately to the same levels as in the previous 
experiments. The only major difference is the time it takes to reach the plateau; ~15 cycles with 600 
hidden units and ~10 cycles with 100 hidden units. As the training time rises with the number of 
weights and connections, it is not advisable to choose networks with large hidden layer sizes 
(already discussed in 5.3.1.2). 
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5.4.5. Hidden layer size comparison with additional noise 

Many publications [64, 65, 77, 80-82, 302, 304-307] propose to add artificial noise (=jitter) to the input values of 
the training data to improve generalization with small training sets. 

 
ANN PFG V.0.2 parameters ppm range 

Noise 
Zero threshold 
Input scaling 

Shift 
Raster 

Block pattern 
Binary patterns 

100 - 15 ppm  
20% 
0% 
1.0 

± 1 Hz 
5 points 

no 
yes 

Software SNNS V4.2 
Training algorithm Standard Back-propagation 

Network size 6225 input neurons 
variable hidden neurons 

55 output neurons 
Training cycles 40 

Activation function Logistic (as described in Figure 18f) 
Output function Identity 

Init function Random (0.25 - 0.75) 
Learning rate 0.4 

Momentum term 0.5 
dmax 0.1 

Flat spot elimination value 0.1 
Threshold 0.7 

Pattern shuffling activated 
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Figure 90: Hidden layer size comparison with additional noise and block pattern 
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The addition of 20% artificial noise seems to have a contra productive effect on the recall and the 
generalization rate. The saturation point is shifted back to higher cycles. The graph shows again, 
that the network size has a minor influence on the performance of the neural network. A hidden 
layer size of about 100 hidden units is sufficient for passable results. 

 

5.4.6. Hidden layer size comparison without additional noise and block-
pattern 

Since it was shown that noise did not have a positive influence on the results, this approach was 
given up. Therefore the newly proposed block-pattern approach (explained and presented in 
chapter 4.9.5.3) was used for the first time. The size of the input layer could be reduced from 6225 
to 4280 neurons by increasing the raster size from five to 10 points. 

 
ANN PFG V.0.2 parameters ppm range 

Noise 
Zero threshold 
Input scaling 

Shift 
Raster 

Block pattern 
Binary patterns 

100 - 15 ppm  
none 
0% 
1.0 

± 1 Hz 
10 points 

yes 
yes 

Software SNNS V4.2 
Training algorithm Standard Back-propagation 

Network size 4280 input neurons 
variable hidden neurons 

55 output neurons 
Training cycles 40 

Activation function Logistic (as described in Figure 18f) 
Output function Identity 

Init function Random (0.25 - 0.75) 
Learning rate 0.4 

Momentum term 0.5 
dmax 0.1 

Flat spot elimination value 0.1 
Threshold 0.7 

Pattern shuffling activated 
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Figure 91: Hidden layer size comparison with a logistic transfer function, without noise and block pattern 

 
Figure 91 shows an increased homogeneity of the calculated recall and generalization rates. The 
networks seem to be insensible against minor changes of the hidden layer size. The results confirm 
the suspicion, that all learning parameters have only a minor influence on the generalization 
performance of the trained neural networks. Good training results seem to depend on an equalized 
and big enough dataset. 

 

5.4.7. Classification comparison of different initial weight initialization 
values  

As proposed in literature[232, 302], the next adjustable training parameters is the choice of the weigh 
initialization value. This value should be chosen according to the activation function – the values 
should lye in the defined range of the function. For testing purpose the range of tested init values 
ranges from ±0.001 to ±1.3, even though the sinus function is not defined at values of 1.3. 

The hidden layer size was set to 100 hidden units, because of the results from the previous 
experiments. In addition, the block patterns were maintained. 
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ANN PFG V.0.2 parameters ppm range 
Noise 

Zero threshold 
Input scaling 

Shift 
Raster 

Block pattern 
Binary patterns 

100 - 15 ppm  
none 
0% 
1.0 

± 1 Hz 
5 points 

yes 
yes 

Software SNNS V4.2 
Training algorithm Standard Back-propagation 

Network size 4280 input neurons 
100 hidden neurons 
55 output neurons 

Training cycles 25 
Activation function Sinus (as described in Figure 18e) 

Output function Identity 
Init function variable from ±0.001 – ±1.3 

Learning rate 0.5 
Momentum term 0.5 

dmax 0.1 
Flat spot elimination value 0.1 

Threshold 0.7 
Pattern shuffling activated 
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Figure 92: Weight init values comparison at a learning rate 0.4, sinus transfer function, without noise and fixed 

hidden layer size of 100 neurons 
 
The achieved generalization rate almost reaches 70% again. The optimal initialization values seem 
to be ±0.1. Higher values decrease the generalization rate. Values < ±0.1 reach the same rate, but 
it takes comparatively longer (more cycles) until the curve climbs to the same level. This experiment 
proves the results from experiment 5.4.3. 
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5.4.8. MSE comparison with different initial weight initialization values 

For the sake of completeness, the experiment 5.4.7 was repeated but only the MSE values were 
recorded and are displayed in Figure 93. 

 
ANN PFG V.0.2 parameters ppm range 

Noise 
Zero threshold 
Input scaling 

Shift 
Raster 

Block pattern 
Binary patterns 

100 - 15 ppm  
none 
0% 
1.0 

± 1 Hz 
5 points 

yes 
yes 

Software SNNS V4.2 
Training algorithm Standard Back-propagation 

Network size 4280 input neurons 
100 hidden neurons 
55 output neurons 

Training cycles 25 
Activation function Sinus (as described in Figure 18e) 

Output function Identity 
Init function variable from ±0.001 – ±1.3 

Learning rate 0.4 
Momentum term 0.5 

dmax 0.1 
Flat spot elimination value 0.1 

Threshold 0.7 
Pattern shuffling activated 
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Figure 93: Weight init values comparison with Backprop Momentum at a learning rate 0.4, logistic transfer 

function, without noise and fixed hidden layer size of 100 neurons 
 



Matthias Studer NeuroCarb - ANN for NMR structure elucidation of oligosaccharides 

- 123 - 

5.4.9. Hidden layer size comparison at learning rate 0.2  

To exclude the possibility of the Back-propagation algorithm being trapped in a local minimum, 
another set of six networks was trained with the Back-propagation momentum algorithm. This 
modification of the Back-propagation algorithm showed good and particularly fast results in 
experiment 5.4.2. 

 
ANN PFG V.0.2 parameters ppm range 

Noise 
Zero threshold 
Input scaling 

Shift 
Raster 

Block pattern 
Binary patterns 

100 - 15 ppm  
none 
0% 
1.0 

± 1 Hz 
5 points 

no 
yes 

Software SNNS V4.2 
Training algorithm Back-propagation momentum 

Network size 6225 input neurons 
variable hidden neurons 

55 output neurons 
Training cycles 25 

Activation function Logistic (as described in Figure 18f) 
Output function Identity 

Init function Random (±0.5) 
Learning rate 0.2 

Momentum term 0.5 
dmax 0.1 

Flat spot elimination value 0.1 
Threshold 0.7 

Pattern shuffling activated 
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Figure 94: Comparison of different hidden layer sizes with Backprop Momentum at a fixed learning rate 0.2, 

logistic transfer function and without noise. 
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The results did not become better than the average of the preceding experiments. The 
generalization rate of most tested networks exceeded the 64% limit only marginal. The lower 
generalization rate could be led back on the block pattern subprogram that was not activated in the 
ANN PFG. 

 

5.4.10. Hidden layer size comparison at learning rate 0.7 and shift ± 3 Hz 

To prevent high recall and low generalization rates the shift size of the ANN PFG V.0.2 was slightly 
increased to ± 3 Hz.  The idea of this approach was to generate a bigger variability of the training 
patterns. These pattern should now activate a wider range of input neurons of each peak in the 
original NMR peak list. The effect of memorization (high recall rates) should be avoided.  

 

ANN PFG V.0.2 parameters ppm range 
Noise 

Zero threshold 
Input scaling 

Shift 
Raster 

Block pattern 
Binary patterns 

100 - 15 ppm  
none 
0% 
1.0 

± 3 Hz 
5 points 

no 
yes 

Software SNNS V4.2 
Training algorithm Standard Back-propagation 

Network size 4280 input neurons 
variable hidden neurons 

55 output neurons 
Training cycles 40 

Activation function StepFunc (as described in Figure 18d) 
Output function Identity 

Init function Random (±0.5) 
Learning rate 0.7 

Momentum term 0.2 
dmax 0.1 

Flat spot elimination value 0.1 
Threshold 0.7 

Pattern shuffling activated 
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Figure 95: Comparison of different hidden layer sizes with Backprop Momentum at a fixed learning rate 0.7, 

StepFunc transfer function and binary patterns. 
 
As depicted in Figure 95, the experiment was abandoned because of very bad generalization 
results. The generalization rate my climb to levels reached in former experiments, but the amount of 
time needed to eventually reach generalization rates > 60% is disproportional. 
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5.4.11. Learning rate comparison without hidden layer and binary input 
patterns 

Another approach would be to test, if the classification problem is linearly separable. This kind of 
problems can be best approached with neural networks without hidden layers. For this purpose, the 
training and test pattern were written in binary from with the ANN PFG V.0.2. Every peak exceeding 
the 30% threshold is coded as 1. Peaks below the threshold are coded as 0. With the use of a step 
function as activation function, the network is binary. 

 
ANN PFG V.0.2 parameters ppm range 

Noise 
Zero threshold 
Input scaling 

Shift 
Raster 

Block pattern 
Binary patterns 

100 - 15 ppm  
none 
30% 
1.0 

± 1 Hz 
5 points 

yes 
yes 

Software SNNS V4.2 
Training algorithm Standard Back-propagation 

Network size 4280 input neurons 
0 hidden neurons 
55 output neurons 

Training cycles 40 
Activation function StepFunc (as described in Figure 18d) 

Output function Identity 
Init function Random (±0.1) 

Learning rate 0.1 - 1 
Momentum term 0.2 

dmax 0.1 
Flat spot elimination value 0.1 

Threshold 0.7 
Pattern shuffling activated 
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Figure 96: Comparison of different learning rates with Backprop Momentum without hidden layer, StepFunc 
transfer function and binary patterns. 

 
The results of 5.4.11 are not satisfying. All tested learning rates lead to similar recall and 
generalization rates. But the generalization rate never exceeds levels > 45%. The task of separating 
and identifying monosaccharide moieties is only partly accomplished. The fact, that all depicted 
curves are almost overlaid, indicates that good solutions with networks without hidden layers are 
independent from the used learning rate. Therefore, the idea of training neural networks without 
hidden layers was abandoned. 

 

5.4.12. Conclusion 

The experiments of this section showed again, that none of the learning parameters could really 
improve the generalization rate. A point of improvement would be the size of networks. I.e. fewer 
input units by increasing the reading step size or activating the block pattern subprogram of the 
ANN PFG. However, this improvement possibility will mostly reduce the training time and not the 
generalization performance. Therefore, the main attention should be turned to the dataset. The set 
should be drastically expanded and equalized.  

Maybe the training task is "overstrained" with too many classification groups (Table 13) and the 
training data should be separated into smaller groups. This approach would necessitate to train an 
own neural networks for each carbohydrate species.  
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5.5. Diploma work Alexeij Moor 

5.5.1. Introduction  

The main goal of this diploma work was to prove that the information contained in only six 13C-NMR 
peaks of a monosaccharide (only mannose, glucose and galactose) are sufficient to classify the 
following properties of a carbohydrate: 

• Carbohydrate species (mannose, glucose and galactose) 

• Anomeric configuration (α or β) 

• Linkage position (if the monosaccharide is linked to another carbohydrate) 

These aims should be achieved with a simple supervised ore non-supervised learning method. 
Kohonen feature maps and Counter-propagation networks were taken into close consideration. The 
most suitable network type and training algorithm should be elicited during this diploma work. 

 

5.5.2. Dataset 

The carbohydrate compounds used where found in literature [73, 96, 97, 101, 103, 106, 107, 109, 113, 119, 121, 129, 

132, 133, 135-137, 145, 149, 151, 155-157, 159, 162, 164, 166, 174-177, 181, 183, 188, 191, 193, 202, 210, 211, 221, 260, 290, 303]. They were 
collected in the first version of the FileMaker 13C-NMR database (chapter 5.4.1). The final dataset 
contained 585 different monosaccharide units with only one, two or three linkage positions. The 
moieties were randomly subdivided in a training set containing 275 units and a test set containing 
323 datasets. Finally we had 46 different monosaccharide units (= groups or output units) (Figure 
97). 
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Figure 97: Data distribution of all groups contained in the data set 
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Figure 98: Data set carbohydrate distribution 

 

5.5.3. Experiments & Results 

The raw chemical shifts from the peak list (in ppm values) out of the FileMaker 13C-NMR database 
were used as direct input to the neural network. There was no normalization or remapping of the 
ppm-values and the peak list was not processed with the ANN PFG. 
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5.5.3.1. Determination of the anomeric configuration (α / β) 

 
Software SNNS V4.2 

Network size 6 input neurons 
16 x 16 Kohonen neurons 

2 Output neurons 
Output coding binary (1= activated / 0 = deactivated) 
Training cycles 1000 

Activation function Logistic 
Output function Identity 

Init function Random (±1) 
Learn rate for Kohonen layer 0.3 

Learn rate for Grossberg layer 0.5 
Threshold 0 

Pattern shuffling activated 
 

Table 14: α / β discrimination 
 

Train (containing 275 patterns) Test (containing 323 patterns)  
wrong unknown correct wrong unknown correct 

Try 1 0.0% 0.0% 100.0% 0.0% 0.0% 100.0% 
Try 2 0.0% 0.7% 99.3% 0.0% 0.6% 99.4% 
Try 3 0.0% 0.7% 99.3% 0.0% 0.6% 99.4% 
Try 4 0.0% 0.0% 100.0% 0.0% 0.0% 100.0% 
Try 5 0.0% 0.7% 99.3% 0.0% 0.6% 99.4% 

 0.0% 0.4% 99.6% 0.0% 0.4% 99.6% 

5.5.3.2. Determination of the carbohydrate identity 

 
Software SNNS V4.2 

Network size 6 input neurons 
16 x 16 Kohonen neurons 

3 Output neurons 
Output coding binary (1= activated / 0 = deactivated) 
Training cycles 1000 

Activation function Logistic 
Output function Identity 

Init function Random (±1) 
Learn rate for Kohonen layer 0.3 

Learn rate for Grossberg layer 0.5 
Threshold 0 

Pattern shuffling activated 
 
 

Table 15: Carbohydrate discrimination 
 

Train (containing 275 patterns) Test (containing 323 patterns)  
wrong unknown correct wrong unknown correct 

Try 1 0.0% 0.7% 99.3% 0.0% 1.9% 98.1% 
Try 2 0.0% 0.7% 99.3% 0.0% 0.6% 99.4% 
Try 3 0.0% 0.7% 99.3% 0.0% 0.9% 99.1% 
Try 4 0.0% 0.0% 100.0% 0.3% 0.0% 99.7% 
Try 5 0.0% 1.1% 98.9% 0.0% 2.2% 97.8% 
Try 6 0.0% 0.0% 100.0% 0.0% 0.3% 99.7% 
Try 7 0.0% 0.0% 100.0% 0.0% 0.3% 99.7% 

 0.0% 0.5% 99.5% 0.0% 0.9% 99.1% 
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5.5.3.3. Linkage determination 

 
Software SNNS V4.2 

Network size 6 input neurons 
16 x 16 Kohonen neurons 

12 Output neurons 
Output coding binary (1= activated / 0 = deactivated) 
Training cycles 1000 

Activation function Logistic 
Output function Identity 

Init function Random (±1) 
Learn rate for Kohonen layer 0.3 

Learn rate for Grossberg layer 0.5 
Threshold 0 

Pattern shuffling activated 
 

Table 16: Linkage discrimination 
 

Train (containing 275 patterns) Test (containing 323 patterns)  
wrong unknown correct wrong unknown correct 

Try 1 0.0% 1.8% 98.2% 5.3% 1.9% 92.9% 
Try 2 0.0% 0.7% 99.3% 5.3% 0.6% 94.1% 
Try 3 0.0% 1.5% 98.5% 5.3% 0.0% 94.7% 
Try 4 0.0% 0.7% 99.3% 5.3% 0.6% 94.1% 
Try 5 0.0% 1.5% 98.5% 5.6% 1.2% 93.2% 

 0.0% 1.2% 98.8% 5.3% 0.9% 93.8% 
 

5.5.3.4. Combination of all used features (groups) 

 
Software SNNS V4.2 

Network size 6 input neurons 
16 x 16 Kohonen neurons 

46 Output neurons 
Output coding binary (1= activated / 0 = deactivated) 
Training cycles 1000 

Activation function Logistic 
Output function Identity 

Init function Random (±1) 
Learn rate for Kohonen layer 0.3 

Learn rate for Grossberg layer 0.5 
Threshold 0 

Pattern shuffling activated 
 

Table 17: Combination discrimination 
 

Train (containing 275 patterns) Test (containing 323 patterns)  
wrong unknown correct wrong unknown correct 

Try 1 0.0% 2.9% 97.1% 6.5% 0.9% 92.6% 
Try 2 0.0% 2.9% 97.1% 5.9% 3.7% 90.4% 
Try 3 0.0% 0.7% 99.3% 7.1% 0.0% 92.9% 
Try 4 0.0% 1.5% 98.5% 6.8% 0.6% 92.6% 
Try 5 0.0% 1.5% 98.5% 5.3% 3.7% 91.0% 

 0.0% 1.9% 98.1% 6.3% 1.8% 91.9% 
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Figure 99: Graphical results overview 

 
With these results, the following decision tree (Figure 100) for monosaccharide units was proposed. 
The Counter-propagation network with the best separation quality (α / β discrimination –Figure 13 ) 
will be used as a first entity to separate the test data in a first run. The following downstream 
Counter-propagation networks will be specially trained to recognize the carbohydrate identity and 
the linkage pattern of a monosaccharide unit. In this way, it should be possible to achieve a very 
high hit rate of >90% correct classified monosaccharide units (Table 17). 

 

 

 
 

Figure 100: Proposed counter propagation networks decision tree for automated 
monosaccharide moiety identification 
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5.5.4. Discussion & conclusions 

The presented results generated with the proposed decision tree show clearly, that an automated 
separation of the underlying dataset is possible. Different learning rates and initial random weights 
do not play an important role. Six 13C-NMR peaks contain enough information to make a reliable 
assignment. The approach shows also that Kohonen and Counter-propagation networks are 
suitable for this task. The monosaccharide moieties of the compounds OH1, OH6, OH7, OH8 and 
OH9 from Ole Hindsgaul (chapter 4.1.2) were correctly classified. However, with this approach it will 
never be possible to process other saccharides than monosaccharides because the Kohonen layer 
of the first network contains only six input units and cannot deal with variable input data (of e.g. 
disaccharides or carbohydrates with more than six peaks in the peak list).  

The work clearly proofed that the underlying data set still has to be enlarged to form a sufficiently 
big training and test set. The diploma work also highlighted that there are numerous mistakes 
published in 13C-NMR peak lists in literature. 

In all following experiments, only separated neural networks for each monosaccharide species 
(glucose, galactose and mannose) will be trained. 

5.6. Introduction of FileMaker 13C-NMR database 

All the following experiments are based on the fully expanded FileMaker 13C-NMR database 
explained in chapter 4.1.5. 

5.7. Kohonen feature maps 

The main purpose of the following experiments was to check if all GAM monosaccharide moieties 
can be separated by a neural network. The approach would also prove the robustness of our 
classification scheme. The new pattern files for Statsoft Statistica will be based on the results of the 
following experiments. 

Another positive effect of the Kohonen networks is the possibility to find errors in the peak lists of 
the FileMaker 13C-NMR database. These errors can originate from the literature or from the human 
data entry into the database. 

 

5.7.1. Decay factor 

The decay factor is a number, by which the learning and the neighboring function are multiplied 
(decreased) after every training cycle. As the factor is < 0, the decay is dropping asymptotically 
against zero. Kohonen feature maps trained with small decay factors ( d < 0.5) are very fast in 
training but often don't find a good local or the global minimum. The best decay factor for each 
trained Kohonen feature map was determined experimentally in advance by analyzing the 
separation ability after 5'000 training cycles at a time. These preliminary tests are not published. For 
details about Kohonen networks see chapter 4.5.3. 
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With the following equations (Equation 18 and Equation 19) it is possible to calculate the necessary 
decay factor for a given amount of learning cycles. Or the training cycles needed with a fixed decay 
rate. 

 

11 +−=
c

d  Equation 18: Kohonen feature map decay factor calculation 

 

d
c

−
=

1
1

 Equation 19: Kohonen feature map cycles calculation 

 
d = decay factor 

c = planed training cycles 
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Figure 101: Sample decay curve 

 

5.7.2. Data preparation 

All peaks lists of the all monosaccharide moieties in the FileMaker 13C-NMR database (final version) 
containing glucose, galactose and mannose were exported via ODBC directly into a Microsoft Excel 
spreadsheet. Monosaccharide moieties belonging together were merged (Table 23: Special 
characteristics and cohesions of the mannose Kohonen feature map). The whole data set finally 
contained 69 different monosaccharide moieties (= groups). From every group the average peak 
values and the associated standard deviation were calculated. The average ppm-peak-values were 
then randomly shifted ten times in the range of the according standard deviation. This led to an 
evenly distributed data set containing 690 peak lists of 69 monosaccharide moieties. The Excel 
spreadsheet was then saved into a CSV file and processed with the ANN PFG. The used 
parameters for the ANN PFG and SNNS are indicated under the following respective experiments. 
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5.7.3. Galactose 

ANN PFG parameters NMR type 
Step size 
Zero threshold 
Input coding 

13C – 32k data points 
15 
0 
binary 

Software SNNS V4.2 
Network size 261 input neurons 

20 x 20 Kohonen neurons 
27 Output neurons 

Output coding binary (1= activated / 0 = deactivated) 
Training cycles 100'000 
Activation function Logistic 
Output function Identity 
Init function Random (±1) 
Kohonen adaptation height 0.3 
Kohonen adaptation radius 0.5 
Height decrease factor 0.99999 
Radius decrease factor 0.99999 
Horizontal size 20 
Threshold 0 
Pattern shuffling activated 

 
Table 18: Galactose group allocation 

 
1 4-deoxy-b-D-Galp-OMe-6R 15 a-D-Galp-OMe-4R 
2 a-D-Galp-1R 16 a-D-Galp-OMe-6R 
3 a-D-GalpA-1R 17 b-D-Galp-1R 
4 a-D-GalpNAc-1R 18 b-D-GalpNAc-1R 
5 a-D-GalpNAc-OH-6R 19 b-D-Galp-OH 
6 a-D-GalpNAc-OMe-3R 20 b-D-Galp-OH-3R 
7 a-D-GalpNAc-OMe 21 b-D-Galp-OH-4R 
8 a-D-Galp-OH 22 b-D-Galp-OH-6R 
9 a-D-Galp-OH-3R 23 b-D-Galp-OMe 

10 a-D-Galp-OH-4R 24 b-D-Galp-OMe-2R 
11 a-D-Galp-OH-6R 25 b-D-Galp-OMe-3R 
12 a-D-Galp-OMe 26 b-D-Galp-OMe-4R 
13 a-D-Galp-OMe-2R 27 b-D-Galp-OMe-6R 
14 a-D-Galp-OMe-3R   
    

 
Figure 102: 4-deoxy-b-D-Galp-

OMe-6R 

 
Figure 103: α-D-Galp-1R 

 
Figure 104: α-D-GalpA-1R 
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Figure 105:α-D-GalpNAc-1R 

 
Figure 106: α-D-GalpNAc-OH-6R 

 
Figure 107: α-D-GalpNAc-OMe-3R 

 
Figure 108: α-D-GalpNAc-OMe 

 
Figure 109: α-D-Galp-OH 

 
Figure 110: α-D-Galp-OH-3R 

 
Figure 111: α-D-Galp-OH-4R 

 
Figure 112: α-D-Galp-OH-6R 

 
Figure 113: α-D-Galp-OMe 

 
Figure 114: α-D-Galp-OMe-2R 

 
Figure 115: α-D-Galp-OMe-3R 

 
Figure 116: α-D-Galp-OMe-4R 
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Figure 117: α-D-Galp-OMe-6R 

 
Figure 118: β-D-Galp-1R 

 
Figure 119: β-D-GalpNAc-1R 

 
Figure 120: β-D-Galp-OH 

 
Figure 121: β-D-Galp-OH-3R 

 
Figure 122: β-D-Galp-OH-4R 

 
Figure 123: β-D-Galp-OH-6R 

 
Figure 124: β-D-Galp-OMe 

 
Figure 125: β-D-Galp-OMe-2R 

 
Figure 126: β-D-Galp-OMe-3R 

 
Figure 127: β-D-Galp-OMe-4R 

 
Figure 128: β-D-Galp-OMe-6R 
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Figure 129: Euclidian distance map 

 

5.7.3.1. Discussion & Conclusion 

The following Table 19 highlights similarities between the different groups used to train the Kohonen 
feature map.  

 

Table 19: Special characteristics and cohesions in the galactose Kohonen feature map 
 
Primary activated group Secondary activation Description 

α-D-Galp-1R α-D-Galp-OH-6R 
α-D-Galp-OMe-6R All adjacent and forming a tight cluster. 

α-D-GalpNAc-OH-6R α-D-Galp-OH Both are similar but spatially separated. 

α-D-GalpNAc-OMe-3R α-D-GalpNAc-OMe 
α-D-Galp-OMe-2R 

The firs two groups are forming a 
cluster. α-D-Galp-OMe-2R is spatially 
separated. 

α-D-GalpNAc-OMe 
α-D-GalpNAc-OMe-3R 
α-D-Galp-OMe 
α-D-Galp-OMe-4R 

 

α-D-Galp-OH 
α-D-Galp-OH-3R 
α-D-Galp-OH-4R 
α-D-GalpNAc-OH-6R 

They all form spatially separated 
patches 

α-D-Galp-OH-6R α-D-Galp-OMe-6R  

α-D-Galp-OMe 
α-D-Galp-OMe-4R 
α-D-Galp-OMe-6R 
α-D-GalpNAc-OMe (weak) 

α-D-Galp-OMe, α-D-Galp-OMe-4R and 
α-D-Galp-OMe-6R are adjacent and are 
forming a compact cluster. 

α-D-Galp-OMe-2R α-D-Galp-OMe-3R Adjacent but not interacting with each 
other 

β-D-Galp-OMe β-D-Galp-OMe-4R 
β-D-Galp-OMe-6R All adjacent and forming a tight cluster. 

β-D-Galp-OMe-2R β-D-Galp-OMe-3R Spatially not related 
 
Compounds substituted at the C2 position also provoke a simultaneous activation in the activation 
area of the same compound substituted at the C3 position. Compounds substituted at the C1 
position also provoke activation in the activation area of the same compound substituted at the C6 
position and sometimes in the area of compounds substituted at the C4 position. Therefore, it is 
maybe advisable to use different neural networks to distinguish between these compounds and 
evade possible separation problems with Back-propagation algorithm. 
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A graphically α / β differentiation is not visible but possible, because there are no overlapping and 
interacting activation patches containing α or β compounds. This proves as commonly known, that 
the different substitution patterns have no effect on the anomeric configuration. In other words, the 
anomeric configuration can not be used to determine the substitution at the other carbon atoms of a 
carbohydrate moiety. 

 

5.7.4. Glucose 

 
ANN PFG parameters NMR type 

Step size 
Zero threshold 

13C – 32k data points 
15 
0 

Software SNNS V4.2 
Network size 261 input neurons 

20 x 20 Kohonen neurons 
28 Output neurons 

Output coding binary (1= activated / 0 = deactivated) 
Training cycles 100'000 
Activation function Logistic 
Output function Identity 
Init function Random (±1) 
Kohonen adaptation height 0.3 
Kohonen adaptation radius 0.5 
Height decrease factor 0.99999 
Radius decrease factor 0.99999 
Horizontal size 20 
Threshold 0 
Pattern shuffling activated 

 
Table 20: Glucose group allocation 

 
1 a-D-Glcp-1R 15 b-D-GlcpNAc-1R 
2 a-D-GlcpN-1R 16 b-D-GlcpNAc-OH-4R 
3 a-D-Glcp-OH 17 b-D-GlcpNAc-OMe-3R 
4 a-D-Glcp-OH-2R 18 b-D-GlcpNAc-OMe-4R 
5 a-D-Glcp-OH-3R 19 b-D-Glcp-OH 
6 a-D-Glcp-OH-4R 20 b-D-Glcp-OH-2R 
7 a-D-Glcp-OH-6R 21 b-D-Glcp-OH-3R 
8 a-D-Glcp-OMe 22 b-D-Glcp-OH-4R 
9 a-D-Glcp-OMe-2R 23 b-D-Glcp-OH-6R 

10 a-D-Glcp-OMe-3R 24 b-D-Glcp-OMe 
11 a-D-Glcp-OMe-4R 25 b-D-Glcp-OMe-2R 
12 a-D-Glcp-OMe-6R 26 b-D-Glcp-OMe-3R 
13 b-D-Glcp-1R 27 b-D-Glcp-OMe-4R 
14 b-D-GlcpN-1R 28 b-D-Glcp-OMe-6R 
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Figure 130: α-D-Glcp-1R 

 
Figure 131: α-D-GlcpN-1R 

 
Figure 132: α-D-Glcp-OH 

 
Figure 133: α-D-Glcp-OH-2R 

 
Figure 134: α-D-Glcp-OH-3R 

 
Figure 135: α-D-Glcp-OH-4R 

 
Figure 136: α-D-Glcp-OH-6R 

 
Figure 137: α-D-Glcp-OMe 

 
Figure 138: α-D-Glcp-OMe-2R 

 
Figure 139: α-D-Glcp-OMe-3R 

 
Figure 140: α-D-Glcp-OMe-4R 

 
Figure 141: α-D-Glcp-OMe-6R 
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Figure 142: β-D-Glcp-1R 

 
Figure 143: β-D-GlcpN-1R 

 
Figure 144: β-D-GlcpNAc-1R 

 
Figure 145: β-D-GlcpNAc-OH-4R 

 
Figure 146: β-D-GlcpNAc-OMe-3R 

 
Figure 147: β-D-GlcpNAc-OMe-4R 

 
Figure 148: β-D-Glcp-OH 

 
Figure 149: β-D-Glcp-OH-2R 

 
Figure 150: β-D-Glcp-OH-3R 

 
Figure 151: β-D-Glcp-OH-4R 

 
Figure 152: β-D-Glcp-OH-6R 

 
Figure 153: β-D-Glcp-OMe 
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Figure 154: β-D-Glcp-OMe-2R 

 
Figure 155: β-D-Glcp-OMe-3R 

 
Figure 156: β-D-Glcp-OMe-4R 

 
Figure 157: β-D-Glcp-OMe-6R 

 
Figure 158: Euclidian distance map 
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5.7.4.1. Discussion & Conclusion 

The following Table 19 highlights similarities between the different glucose groups used to train the 
Kohonen feature map.  

 

Table 21: Special characteristics and cohesions of the glucose Kohonen feature map 
 
Primary activated group Secondary activation Description 

α-D-Glcp-1R α-D-Glcp-OH Slightly blurred patches but still 
spatially separated. 

α-D-Glcp-OH 

α-D-Glcp-OMe 
α-D-Glcp-OMe-2R 
β-D-Glcp-OH 
β-D-Glcp-OMe-2R 

They all form blurred and adjacent 
patches 

α-D-Glcp-OH-3R β-D-p-Glc-OH-3R Side by side but clearly separated 

α-D-Glcp-OMe 
α-D-Glcp-OH 
α-D-Glcp-OH-2R 
α-D-Glcp-OMe-3R 

They are all forming a big but clearly 
separated cluster 

α-D-Glcp-OMe-4R α-D-Glcp-OH-4R Spatially totally separated patches 

α-D-Glc-OMe-6R α-D-Glcp-OMe Adjacent and clearly separated 
clusters 

β-D-GlcpNAc-OMe-3R β-D-GlcpNAc-OMe-4R Clearly separated patches lying side 
by side 

β-D-Glcp-OH 
α-D-Glcp-OH 
β-D-Glcp-OMe 
β-D-Glcp-OMe-2R 

Forming one big slightly blurred 
cluster 

 
The glucose Kohonen feature map does not show similarities between compounds substituted at 
the C2 and the C3, C1 and the C6 position. Instead, the feature map shows similarities between C1 
and C2 substituted compounds apart from the attached group. An α / β differentiation is also not 
visible.  
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5.7.4.2. Deconvolution of the glucose Kohonen feature map 

For illustration purpose the deconvolution steps (2'000 to 90'000) of the glucose Kohonen feature 
map are depicted in Figure 159 

 

2'000 steps 4'000 steps 8'000 steps 
 

10'000 steps 

12'000 steps 14'000 steps 16'000 steps 
 

18'000 steps 

20'000 steps 22'000 steps 24'000 steps 
 

26'000 steps 

28'000 steps 30'000 steps 32'000 steps 
 

34'000 steps 

36'000 steps 38'000 steps 40'000 steps 
 

42'000 steps 
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44'000 steps 46'000 steps 48'000 steps 50'000 steps 

52'000 steps 54'000 steps 56'000 steps 58'000 steps 

60'000 steps 62'000 steps 64'000 steps 66'000 steps 

68'000 steps 70'000 steps 72'000 steps 74'000 steps 

76'000 steps 78'000 steps 80'000 steps 82'000 steps 

84'000 steps 86'000 steps 88'000 steps 90'000 steps 
Figure 159: Deconvolution of the glucose Kohonen feature map 
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5.7.5. Mannose 

ANN PFG parameters NMR type 
Step size 
Zero threshold 

13C – 32k data points 
15 
0 

Software SNNS V4.2 
Network size 261 input neurons 

15 x 15 Kohonen neurons 
20 Output neurons 

Output coding binary (1= activated / 0 = deactivated) 
Training cycles 100'000 
Activation function Logistic 
Output function Identity 
Init function Random (±1) 
Kohonen adaptation height 0.3 
Kohonen adaptation radius 0.5 
Height decrease factor 0.99999 
Radius decrease factor 0.99999 
Horizontal size 15 
Threshold 0 
Pattern shuffling activated 

 
Table 22: Mannose group allocation 

 
1 a-D-Manp-1R 12 a-D-Manp-OMe-6R 
2 a-D-ManpNAc-1R 13 b-D-Manp-1R 
3 a-D-Manp-OH 14 b-D-ManpNAc-1R 
4 a-D-Manp-OH-2R 15 b-D-Manp-OH 
5 a-D-Manp-OH-4R 16 b-D-Manp-OH-2R 
6 a-D-Manp-OH-6R 17 b-D-Manp-OH-4R 
7 a-D-Manp-OMe 18 b-D-Manp-OH-6R 
8 a-D-Manp-OMe-2R 19 b-D-Manp-OMe 
9 a-D-Manp-OMe-3R 20 b-D-Manp-OMe-2R 

10 a-D-Manp-OMe-4R 21 b-D-Manp-OMe-4R 
11 a-D-Manp-OMe-6R   

 

 
Figure 160: α-D-Manp-1R 

 
Figure 161: α-D-ManpNAc-1R 

 
Figure 162: α-D-Manp-OH 
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Figure 163: α-D-Manp-OH-2R Figure 164: α-D-Manp-OH-4R Figure 165: α-D-Manp-OH-6R 

 
Figure 166: α-D-Manp-OMe 

 
Figure 167: α-D-Manp-OMe-2R 

 
Figure 168: α-D-Manp-OMe-3R 

 
Figure 169: α-D-Manp-OMe-4R 

 
Figure 170: α-D-Manp-OMe-6R 

 
Figure 171: β-D-Manp-1R 

 
Figure 172: β-D-ManpNAc-1R 

 
Figure 173: β-D-Manp-OH 

 
Figure 174: β-D-Manp-OH-2R 

 
Figure 175: β-D-Manp-OH-4R 

 
Figure 176: β-D-Manp-OH-6R 

 
Figure 177: β-D-Manp-OMe 
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Figure 178: β-D-Manp-OMe-2R 

 
Figure 179: β-D-Manp-OMe-4R 

 

 

         
Figure 180: Euclidian distance map 
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5.7.5.1. Discussion & Conclusion 

Table 23: Special characteristics and cohesions of the mannose Kohonen feature map 
 
Primary activated group Secondary activation Description 

α-D-Manp-1R 

α-D-Manp-OH 
α-D-Manp-OH-2R 
α-D-Manp-OH-4R 
α-D-Manp-OMe 
α-D-Manp-OMe-4R 
β-D-ManpNAc-1R 
β-D-Manp-OH-2R 
β-D-Manp-OH-6R 

Large slightly blurred and connected 
patch 

α-D-Manp-OH α-D-Manp-OH-4R Spatially separated patches 
α-D-Manp-OH-2R β-D-Manp-OH-2R Adjacent patches 

α-D-Manp-OMe β-D-Manp-OMe Adjacent patches with almost 
indistinguishable activation. 

α-D-Manp-OMe-6R α-D-Manp-OMe 
α-D-Manp-OMe-2R Adjacent activation areas. 

β-D-Manp-OH β-D-Manp-OMe Spatially separated patches lying on 
opposing sites of the network. 

β-D-Manp-OMe-2R β-D-Manp-OMe Adjacent activation areas 
 
The classification of the mannose monosaccharide moieties seem to be the most complicated task 
for a Kohonen feature map. The fact that presenting an α-D-Manp-1R to the trained Kohonen 
feature map also activates eight other mannose moieties suggests that the network is not trained 
sufficiently. However, another 50'000 training cycles did not change the separation abilities of the 
Kohonen feature map. α-D-Manp-1R seems to be a problematic monosaccharide moiety.  

The α-form of a monosaccharide moiety mostly activates also the β-form (e.g. α-D-Manp-OMe also 
activates β-D-Manp-OMe and vice versa). A test compound, which is substituted at C1 also activates 
other areas of compounds with similar substitution at the same carbon atom (e.g. β-D-Manp-OMe 
also activates β-D-Manp-OH). 

However, this cognition could not be applied to all used mannose test cases. The "rules" are not as 
clear as with the other Kohonen feature maps of glucose and galactose). If it would also be the case 
for future test compounds like fucose, xylose etc. cannot be estimated based on the presented 
results of glucose, galactose and mannose. 
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5.7.6. Combination of galactose, glucose and mannose 

In a final test, all previous pattern files (galactose, mannose and glucose) were combined into one 
single pattern file and a 25x25 Kohonen feature map was trained with it. The learning parameters 
were slightly adapted to match the new network and pattern file size. 

 
ANN PFG parameters NMR type 

Step size 
Zero threshold 

13C – 32k data points 
15 
0 

Software SNNS V4.2 
Network size 261 input neurons 

25 x 25 Kohonen neurons 
69 Output neurons 

Output coding binary (1= activated / 0 = deactivated) 
Training cycles 400'000 
Activation function Logistic 
Output function Identity 
Init function Random (±1) 
Kohonen adaptation height 0.5 
Kohonen adaptation radius 0.5 
Height decrease factor 0.999995 
Radius decrease factor 0.999995 
Horizontal size 25 
Threshold 0 
Pattern shuffling activated 

 
 Table 24: GAM Group allocation 

 
1 a-D-Manp-1R 36 b-D-Galp-OMe 
2 a-D-ManpNAc-1R 37 b-D-Galp-OMe-2R 
3 a-D-Manp-OH 38 b-D-Galp-OMe-3R 
4 a-D-Manp-OH-2R 39 b-D-Galp-OMe-6R 
5 a-D-Manp-OH-4R 40 a-D-Glcp 
6 a-D-Manp-OH-6R 41 a-D-Glcp-1R 
7 a-D-Manp-OMe 42 a-D-GlcpN-1R 
8 a-D-Manp-OMe-2R 43 a-D-Glcp-OH 
9 a-D-Manp-OMe-3R 44 a-D-Glcp-OH-2R 

10 a-D-Manp-OMe-4R 45 a-D-Glcp-OH-3R 
11 a-D-Manp-OMe-6R 46 a-D-Glcp-OH-4R 
12 b-D-Manp-1R 47 a-D-Glcp-OH-6R 
13 b-D-ManpNAc-1R 48 a-D-Glcp-OMe 
14 b-D-Manp-OH 49 a-D-Glcp-OMe-2R 
15 b-D-Manp-OH-2R 50 a-D-Glcp-OMe-3R 
16 b-D-Manp-OH-4R 51 a-D-Glcp-OMe-4R 
17 b-D-Manp-OH-6R 52 a-D-Glcp-OMe-6R 
18 b-D-Manp-OMe 53 b-D-Glcp 
19 b-D-Manp-OMe-2R 54 b-D-Glcp-1R 
20 b-D-Manp-OMe-4R 55 b-D-GlcpN-1R 
21 a-D-Galp-1R 56 b-D-GlcpNAc-1R 
22 a-D-Galp-OH 57 b-D-GlcpNAc-OH-4R 
23 a-D-Galp-OH-3R 58 b-D-GlcpNAc-OMe-3R
24 a-D-Galp-OH-4R 59 b-D-GlcpNAc-OMe-4R
25 a-D-Galp-OH-6R 60 b-D-Glcp-OH 
26 a-D-Galp-OMe 61 b-D-Glcp-OH-2R 
27 a-D-Galp-OMe-2R 62 b-D-Glcp-OH-3R 
28 a-D-Galp-OMe-3R 63 b-D-Glcp-OH-4R 
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29 a-D-Galp-OMe-4R 64 b-D-Glcp-OH-6R 
30 a-D-Galp-OMe-6R 65 b-D-Glcp-OMe 
31 b-D-Galp-1R 66 b-D-Glcp-OMe-2R 
32 b-D-Galp-OH 67 b-D-Glcp-OMe-3R 
33 b-D-Galp-OH-3R 68 b-D-Glcp-OMe-4R 
34 b-D-Galp-OH-4R 69 b-D-Glcp-OMe-6R 
35 b-D-Galp-OH-6R   

 

 
Figure 181: Euclidian distance map of the GAM Kohonen network (25 x 25 neurons) after 

400'000 training cycles 
 

5.7.7. Discussion 

After 400'000 training cycles the Kohonen feature map was still unable to distinguish clearly 
between all 69 patterns contained in the used training pattern file (blurred regions in Figure 181). 
Too many groups are overlapping and therefore the approach to classify all monosaccharide units 
with only one neural network was abandoned, as expected before. Whereas the approach with 
separated networks for each carbohydrate species (glucose, galactose and mannose) was 
perpetuated in the following experiments. Each Kohonen network was afterwards tested with the 
test pattern files of the two carbohydrate species not involved in the training process (e.g. the 
glucose Kohonen map was tested with the galactose and mannose test pattern file) and the three 
Kohonen feature maps were unable to predict monosaccharides they were not trained with. 
Therefore, it can be concluded, that the different sugars included in the FileMaker 13C-NMR 
database can be clearly differentiated with separated neural networks specialized for only one 
carbohydrate group. 

However, the experiments showed again, that the full dataset of all monosaccharide units contained 
in the in the FileMaker 13C-NMR database can be classified by means of their full 13C-NMR 
spectrum. The used group allocation is correct and will be applied to all further experiments. 
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5.8. Statistica Approach 

The data flow from the FileMaker 13C-NMR database to Statsoft Statistica is structured in three 
different major steps (depicted in Figure 182).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 182: Coarse workflow of the Statistica approach 
 

• In the first step, the peak lists of the desired Carbohydrates are exported into a CSV file and 
then manually divided into their individual monosaccharide moieties. 

• In the second step, these monosaccharide units are equalized and artificially amplified 
(shifted) with the MG (chapter 4.7) and saved into a CSV file formatted (for exact definitions 
see chapter 4.9.2.2) to serve as input for the ANN PFG. 

• In the final third step, this CSV file is processed and converted into a training pattern file 
suitable to be used as an input for Statsoft Statistica (for exact format definitions see 
chapter 4.9.2.2). 

 

1.  NMR peak list export into a format readable 
 with the modification generator (MG) 

2. Dataset equalization and artificial amplification 
 and export into a CSV file as input for the 
 ANN PFG. 

3. Pattern file generation for training with the 
 ANN software (Statsoft Statistica). 
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5.8.1. Experiment-nomenclature 

The pattern files generated with the ANN PFG and the corresponding neural networks are named 
according to the following scheme: 

 
Carbohydrate_MGversion_shift_modifications_stepsize 

 
e.g.  gal_mini4_sh05_mod80_step20 

 
Carbohydrate MG version shift size modifications step size 
the first three letters 
represent the used 
carbohydrate group 
abbreviated with gal, 
glc, man, GAM, fuc, 
etc. 

the four different 
version of the MG 
are labeled with 
mini1 – mini4 

the shift size [ppm] 
in a two digit form 
whereas the first 
digit represents the 
number before and 
the second digit the 
number after the 
decimal point. 
e.g.  05 = 0.5ppm 
 10 = 1.0ppm 
stdabw = standard 
deviation 

the number of artificial 
modifycations made 
out of each mono-
saccharide moiety. 

the reading step 
size used for the 
ANN PFG 

 
 

5.8.2. Definitions 

 Performance:  For nominal variables (classification outputs), the performance measure is the 
proportion of cases correctly classified. This takes no account of doubt options, 
and so a classification network with conservative accept and reject thresholds 
(confidence limits) may have a low apparent performance, as many cases are 
not correctly classified. 

 
 Error:  The error of the network on the subsets used during training. This is less 

interpretable than the performance measure, but is the figure actually optimized 
by the training algorithm (at least, for the training subset). This is the RMS of 
the network errors on the individual cases, where the individual errors are 
generated by the network error function, which is either a function of the 
observed and expected output neuron activation levels (usually sum-squared or 
a cross-entropy measure - see chapter 4.6) for more details. 

 
 Confidence:  Confidence levels define the accept and reject thresholds for the classifications 

task. Correct classifications result from output neuron activations higher than 
the accept threshold confidence level. False classifications result from levels 
below the reject confidence level. In all conducted experiments of the following 
chapters, the confidence levels were set to 0.75 as accept and 0.25 as reject 
threshold. 
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Patterns used for training with Statsoft Statistica are normally subdivided into three different subsets 
(the number of compounds in each subset is indicated in the next section). 

 
 Train.  Observations in the Training set will be used to train the network (i.e., to 

estimate the network weights and other parameters). 

 

 Test:  Observations in the test-set will be used to perform an "independent check" of 
the network performance during training, to avoid over-fitting the data (i.e., to 
determine when to terminate training the network). 

 

 Selection:  Observations in the selection-set will not be used during training of the network 
(estimation procedure) at all, but the fully trained network will be applied to 
those cases as a final independent check of the final network performance 
(also called the generalization). 

 
After the training step, the neural networks are classified by means of their best selection 
performance. 

 

5.8.3. Pattern file structure 

As Statistica is able to deal with three different subsets (train, test and selection), the training 
pattern file was subdivided as follows:  

Two thirds of the modifications generated with the MG were classified as training compounds. The 
remaining third belongs to the test subset. 

 

 
 

Figure 183: General pattern file structure 
 
The selection subset consists of the averaged peak lists of all monosaccharide moieties contained 
in the training pattern file and 200 randomly chosen monosaccharide peak lists directly out of the 
13C-NMR database (only from the trained monosaccharide). 
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5.8.4. Data set 

For all the following experiments data [38, 73, 76, 77, 95-291] of the FileMaker 13C-NMR database in its final 
stage of expansion was used (chapter 4.1.5). The following monosaccharide moiety classification of 
each of the three carbohydrates galactose, glucose and mannose were used for the training of the 
neural networks. 

 

Table 25: Used galactose monosaccharide moieties 
 

1 a-D-Galp-1R 11 b-D-Galp-1R 
2 a-D-Galp-OH 12 b-D-Galp-OH 
3 a-D-Galp-OH-3R 13 b-D-Galp-OH-3R 
4 a-D-Galp-OH-4R 14 b-D-Galp-OH-4R 
5 a-D-Galp-OH-6R 15 b-D-Galp-OH-6R 
6 a-D-Galp-OMe 16 b-D-Galp-OMe 
7 a-D-Galp-OMe-2R 17 b-D-Galp-OMe-2R 
8 a-D-Galp-OMe-3R 18 b-D-Galp-OMe-3R 
9 a-D-Galp-OMe-4R 19 b-D-Galp-OMe-6R 

10 a-D-Galp-OMe-6R   
 

Table 26: Used glucose monosaccharide moieties 
 

1 a-D-Glcp-1R 12 b-D-Glcp-1R 
2 a-D-Glcp-OH 13 b-D-Glcp-OH 
3 a-D-Glcp-OH-2R 14 b-D-Glcp-OH-2R 
4 a-D-Glcp-OH-3R 15 b-D-Glcp-OH-3R 
5 a-D-Glcp-OH-4R 16 b-D-Glcp-OH-4R 
6 a-D-Glcp-OH-6R 17 b-D-Glcp-OH-6R 
7 a-D-Glcp-OMe 18 b-D-Glcp-OMe 
8 a-D-Glcp-OMe-2R 19 b-D-Glcp-OMe-2R 
9 a-D-Glcp-OMe-3R 20 b-D-Glcp-OMe-3R 

10 a-D-Glcp-OMe-4R 21 b-D-Glcp-OMe-4R 
11 a-D-Glcp-OMe-6R 22 b-D-Glcp-OMe-6R 

 
Table 27: Used Mannose monosaccharide moieties 

 
1 a-D-Manp-1R 11 a-D-Manp-OMe-6R 
2 a-D-Manp-OH 12 b-D-Manp-1R 
3 a-D-Manp-OH-2R 13 b-D-Manp-OH 
4 a-D-Manp-OH-4R 14 b-D-Manp-OH-2R 
5 a-D-Manp-OH-6R 15 b-D-Manp-OH-4R 
6 a-D-Manp-OMe 16 b-D-Manp-OH-6R 
7 a-D-Manp-OMe-2R 17 b-D-Manp-OMe 
8 a-D-Manp-OMe-3R 18 b-D-Manp-OMe-2R 
9 a-D-Manp-OMe-4R 19 b-D-Manp-OMe-4R 

10 a-D-Manp-OMe-6R   
 
For the final combination experiments with GAM, the monosaccharide moieties of glucose, 
galactose and mannose were combined. The resulting pattern file contained 60 groups. 
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5.8.5. Test files 

5.8.5.1. Monosaccharide test 

The monosaccharide test files were always included directly into the training pattern file and marked 
as selection subset. This subset is always applied to the fully trained network at the end of the 
training process. The data distribution is shown in the following tables. The detailed composition of 
the test files can be found in appendix 11.3. 

 
Table 28: Data distribution of the glucose monosaccharide moiety test file 

 
frequency monosaccharide moiety 

19.69% a-D-Glcp-1R 
2.15% a-D-Glcp-OH 
1.85% a-D-Glcp-OH-2R 
2.46% a-D-Glcp-OH-3R 
6.77% a-D-Glcp-OH-4R 
4.92% a-D-Glcp-OH-6R 
2.77% a-D-Glcp-OMe 
0.92% a-D-Glcp-OMe-2R 
0.62% a-D-Glcp-OMe-3R 
0.92% a-D-Glcp-OMe-4R 
2.15% a-D-Glcp-OMe-6R 

25.85% b-D-Glcp-1R 
2.77% b-D-Glcp-OH 
1.85% b-D-Glcp-OH-2R 
2.46% b-D-Glcp-OH-3R 
7.38% b-D-Glcp-OH-4R 
4.92% b-D-Glcp-OH-6R 
1.54% b-D-Glcp-OMe 
0.62% b-D-Glcp-OMe-2R 
1.23% b-D-Glcp-OMe-3R 
4.92% b-D-Glcp-OMe-4R 
1.23% b-D-Glcp-OMe-6R 
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Table 29: Data distribution of the galactose monosaccharide moiety test file 
 

frequency monosaccharide moiety 
14.62% a-D-Galp-1R 
1.17% a-D-Galp-OH 
4.68% a-D-Galp-OH-3R 
0.58% a-D-Galp-OH-4R 
1.75% a-D-Galp-OH-6R 
5.85% a-D-Galp-OMe 
0.58% a-D-Galp-OMe-2R 
5.26% a-D-Galp-OMe-3R 
1.75% a-D-Galp-OMe-4R 
4.09% a-D-Galp-OMe-6R 

39.18% b-D-Galp-1R 
1.17% b-D-Galp-OH 
6.43% b-D-Galp-OH-3R 
1.17% b-D-Galp-OH-4R 
1.75% b-D-Galp-OH-6R 
4.68% b-D-Galp-OMe 
1.17% b-D-Galp-OMe-2R 
0.58% b-D-Galp-OMe-3R 
3.51% b-D-Galp-OMe-6R 

 
Table 30: Data distribution of the mannose monosaccharide moiety test file 

 
frequency monosaccharide moiety 

42.95% a-D-Manp-1R 
2.68% a-D-Manp-OH 
5.37% a-D-Manp-OH-2R 
3.36% a-D-Manp-OH-4R 
0.67% a-D-Manp-OH-6R 
2.68% a-D-Manp-OMe 
5.37% a-D-Manp-OMe-2R 
7.38% a-D-Manp-OMe-3R 
2.68% a-D-Manp-OMe-4R 
4.03% a-D-Manp-OMe-6R 

12.08% b-D-Manp-1R 
2.01% b-D-Manp-OH 
1.34% b-D-Manp-OH-2R 
3.36% b-D-Manp-OH-4R 
0.67% b-D-Manp-OH-6R 
0.67% b-D-Manp-OMe 
2.01% b-D-Manp-OMe-2R 
0.67% b-D-Manp-OMe-4R 
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5.8.5.2. Self-measured test compounds 

The four disaccharides Trehalose, Gentiobiose, Lactose and Saccharose (chapters  4.1.3 and 11.1 
for more details), the compounds RS1 and RS2 from Regula Stingelin (chapter 4.1.4) and the 
compounds OH1, OH3, OH5, OH7, OH8 and OH9 from Ole Hindsgaul (chapter 4.1.2) were used as 
a combined positive and negative (the Fructofuranose unit of the Saccharose was never included in 
a training pattern file) test set. All compounds were kindly measured and resolved by Brian Cutting. 

5.8.5.3. Disaccharide test file 

For the disaccharide test file, all literature disaccharides contained in the FileMaker database were 
exported. Non-glucose, galactose and mannose compounds were deleted and excess 
disaccharides with to high frequency (like α-D-Glcp-1R) were reduced. 

The test file finally contained 175 evenly distributed literature disaccharide peak lists 
(350 monosaccharide moieties). The data distribution is shown in Table 31. A detailed composition 
of the GAM test file can be found in appendix 11.4. 3 

                                                      
 
3 It is not possible to exclude the possibility that there are still incorrect literature peaks in the 
13C-NMR database. Therefore the disaccharide test performance is maybe a little bit lower than for 
the own measured in-house NMR compounds. 

Many mistakes in published literature data have already been discovered with the help of the 
trained Kohonen feature maps. 

 



Matthias Studer NeuroCarb - ANN for NMR structure elucidation of oligosaccharides 

- 159 - 

 

Table 31: Disaccharide test set data distribution 
 

frequency monosaccharide moiety frequency monosaccharide moiety 

5.71% a-D-Galp-1R 1.43% a-D-Galp-OMe-3R 
5.71% b-D-Galp-1R 1.14% a-D-Galp-OMe-4R 

17.71% a-D-Glcp-1R 1.43% a-D-Galp-OMe-6R 
15.71% b-D-Glcp-1R 0.57% b-D-Galp-OMe-2R 
6.29% a-D-Manp-1R 0.57% b-D-Galp-OMe-3R 
1.43% b-D-Manp-1R 0.57% b-D-Galp-OMe-4R 
0.57% a-D-Galp-OH-3R 1.71% b-D-Galp-OMe-6R 
0.57% a-D-Galp-OH-6R 0.86% a-D-Glcp-OMe-2R 
0.86% b-D-Galp-OH-3R 0.57% a-D-Glcp-OMe-3R 
0.57% b-D-Galp-OH-4R 0.57% a-D-Glcp-OMe-4R 
0.57% b-D-Galp-OH-6R 1.43% a-D-Glcp-OMe-6R 
2.00% a-D-Glcp-OH-2R 0.57% b-D-Glcp-OMe-2R 
2.29% a-D-Glcp-OH-3R 0.86% b-D-Glcp-OMe-3R 
2.29% a-D-Glcp-OH-4R 3.14% b-D-Glcp-OMe-4R 
2.57% a-D-Glcp-OH-6R 1.43% b-D-Glcp-OMe-6R 
2.00% b-D-Glcp-OH-2R 2.00% a-D-Manp-OMe-2R 
2.29% b-D-Glcp-OH-3R 2.00% a-D-Manp-OMe-3R 
2.86% b-D-Glcp-OH-4R 0.86% a-D-Manp-OMe-4R 
2.57% b-D-Glcp-OH-6R 1.14% a-D-Manp-OMe-6R 
0.57% a-D-Manp-OH-2R 0.86% b-D-Manp-OMe-2R 
0.57% a-D-Manp-OH-4R   
0.57% b-D-Manp-OH-4R   

 
 

number fraction carbohydrate 
77 22.00% Galactose 

216 61.71% Glucose 
57 16.29% Mannose 

 

5.8.5.4. Negative test 

The respective pattern files, the network was not trained with, were used as a negative test. 

• The galactose networks were tested with the selection subset of the glucose and mannose 
pattern files. 

• The glucose networks were tested with the selection subset of the galactose and mannose 
pattern files. 

• The mannose networks were tested with the selection subset of the glucose and galactose 
pattern files 
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5.8.6. Preliminary experiments with Statsoft Statistica 

To prepare systematic experiments, some preliminary test had to be done. Factorial design would 
have been advisable, but was not used because there was already good knowledge from the 
preceding experiments and their results. 

The introduction of new features in the MG and the ANN PFG mad it inevitable to test again some 
good findings of the NMR and ANN problem like the amount of modification, the step size, the 
learning rate, shift etc. 

5.8.6.1. Modification comparison 

To estimate the pattern file size necessary to give good generalization results, different pattern files 
for galactose were generated containing 10, 20, 40 60, 80, 100, 150 and 200 modifications. 

All eight networks were trained 10 times each with 2000 cycles Back-propagation (learning rate 0.1, 
0.01 noise and pattern shuffling enabled) followed by 1000 cycles Conjugated-Gradient (=CG). 
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Figure 184: Average Error and performance values for different numbers of modifications 
(gal_mini3_sh05_modxxx) 

 
To have an idea of the location of the best performance, the average selection performance values 
of all ten tested networks are drawn against the number of hidden units and are depicted in Figure 
185. 

 



Matthias Studer NeuroCarb - ANN for NMR structure elucidation of oligosaccharides 

- 161 - 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 20 40 60 80 100 120 140

Hidden units

Se
le

ct
io

n 
pe

rf
or

m
an

ce

20 modifications 40 modifications 60 modifications 80 modifications
 

Figure 185: Average selection performance of different numbers of modifications 
(gal_mini3_sh05_modxxx) 
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Figure 186: Average training time (1 – 200 hidden units) for a Back-propagation neural network  

 
Eighty modifications will be taken as an optimal standard in all following experiments if not noted. 
More modifications lead only to a minor improvement of the selection performance. Moreover, 
computational times of over 20 hours cannot be realized. Not mentioning the amount of time 
needed to generate the pattern files at all. The processing of 200 modifications with the 
ANN PFG V.0.9 takes about 8 hours. 
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In a first approximation, an ideal network hidden layer size seams to be around 10 - 20 hidden units 
and pattern files with 80 modifications of each monosaccharide moiety lead to good network 
generalization rates (selection performance). 

5.8.6.2. Learning rate comparison with 40 and 80 modifications 

To find the range of the best learning rate, 19 neural networks with different learning rates were 
trained for 2000 cycles (1000 cycles Back-propagation, learning rate 0.1, shuffling enabled and 
followed by 1000 cycles CG) 10 times each. The hidden layer size was kept fixed at 10 hidden units 
(because of the preceding experiment). 
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Figure 187: Lowest error and best performance values for different learning rates (gal_mini2_sh05_mod40 
10hu) 
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Figure 188: Learning rate overview 
(gal_mini2_sh05_mod80 10hu) 

 
As concluded in experiment 5.4.3, the results of these two experiments show again, that the 
classification of carbohydrate moieties is not learning rate dependent. Whereas the experiments 
show again, that a larger number of modifications slightly improves the selection performance. The 
performance and error curves move closer together. The selection performance increases only 
about 3%. 

5.8.6.3. Momentum term comparison 

Another parameter closely related to the learning rate is the momentum term. It is theoretically 
possible that every newly trained neural network finds another local minimum (or even the global 
minimum). To raise the chance of finding a better minimum, different networks with momentum 
terms from 0.1 – 0.9 were trained for 2000 cycles (1500 cycles Back-propagation, learning rate 
0.01, shuffling enabled and followed by 500 cycles CG) 10 times each. 
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Figure 189: Momentum term comparison 
(gal_mini3_sh05_mod80 step 20) 

 
Figure 189 shows clear without ambiguity, that the classification task does not depend on the used 
momentum term during training. 

5.8.6.4. Noise values 

As shown in literature [300, 305, 308-311], the addition of Gaussian noise to the input values of the training 
pattern file can improve the generalization ability of a neural network. Therefore 26 neural networks 
with different noise values and 10 hidden units were trained 10 times (1000 cycles Back-
propagation, learning rate 0.1, pattern shuffling enabled and followed by 1000 cycles CG). 

Noise can also be regarded as vertical shift. Shifting the ppm-values up and down results in a 
horizontal shift. 
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Figure 190: Performance and error comparison of different noise levels 
(Exp11: gal_mini3_sh05_mod80 step 20) 

 
To much noise starts to "disturb" the learning process of a Back-propagation neural network as 
shown in the figure by the decreasing performance and increasing error values. Whereas the 
performance of networks trained without any noise is significantly lower than networks trained with 
only a little noise. An optimal value for noisy training seems to be around 0.1. 

5.8.6.5. Optimal pattern step size determination 

The step size defines the number of data points, by which an NMR peak is represented in the 
pattern file. Or defines the number of adjacent input units who are activated by one NMR peak. The 
step size is the only ANN PFG parameter to directly affect the input layer size of the neural network. 
Therefore, an optimal step size value has to be determined experimentally. 

For this purpose five neural networks (step size 10, 15, 20, 25 and 30) were trained 10 times 
(2000 cycles Back-propagation, learning rate 0.1, pattern shuffling enabled and followed by 
1000 cycles CG). The whole setup was repeated with pattern files with ±0.5ppm horizontal shift. 
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Figure 191: Selection performance of different pattern step sizes (gal_mini4_sh01_mod80) 
 
All testes pattern files have a selection performance maximum around 15 – 22 hidden units. The 
maximum values of the curves differ only a little around 20 hidden units. It cannot be excluded, that 
step sizes > 20 data points will miss out important NMR peaks. Therefore, all future pattern files will 
be processed with a step size of 20 at most. 
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Figure 192: Selection performance of different pattern step sizes (gal_mini4_sh05_mod80) 
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As seen in the previous experiment with 0.1 ppm shift, the curves show the same order. But they 
are settled in a narrower region between 90% and 100% selection performance. The best 
performance is also achieved in the region of 20 hidden units. A step size of 20 points seems to be 
the best choice. Smaller sizes lead to bigger networks with more input units (and longer training 
times) and lager step sizes hold the possibility of missing peaks. 

5.8.6.6. Conclusion of the preliminary experiments 

The experiments in chapter 5.8.6 lead to the following conclusions: 

• The network hidden layer size will be defined in the region of 10 – 20 hidden neurons 

• The pattern files will contain 80 modifications of each monosaccharide moiety. Patterns with 
more than 100 modifications lead to a slightly better network performance but the amount of 
time needed to generate the pattern files is too big. 

• The 80 modifications will be shifted in the range of the standard deviation of the 
corresponding peak of the same monosaccharide moiety. 

• The ANN PFG will parse the input file with a grid size of 20 points 

• The noise level during training will be fixed at ± 0.1 

• The learning rate will be kept constant at 0.1 and likewise the momentum term 
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5.8.7. Glucose 

Table 32: Training parameters for glucose network 
 

Training pattern file Glucose (Table 25) 
Test pattern file Glucose (Table 28) 
Modifications 80 
Shift standard deviation 
ANN PFG V.0.9 reading step size 20 points 
Total training cycles 3000 cycles 

2000 cycles Back-propagation 
1000 cycles conjugated gradient 

Learning rate 0.1 
Momentum term 0.5 
Noise level ± 0.1 
Pattern shuffling enabled 
Number of networks trained 32 
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Figure 193: Glucose performance and error visualization chart 
(glc_mini3_sh_stdabw_mod80 step 20) 

 
Surprisingly the best performing network had a hidden layer size of 40 hidden units. The selection 
performance of the glucose monosaccharide moiety test file was 98.72% with a selection error of 
0.32. The following tests were carried out with this trained neural network. 
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Table 33: Glucose disaccharide test results of self measured test compounds 
 

 Reference output Recognition Confidence
OH1 β-D-Galp-1-4-β-D-Glcp-OMe β-D-Glcp-OMe-4R 0.8725 

OH2 α-L-Fucp-1-3-(α-L-Fucp-1-2)-β-D-GlcpNAc-OMe β-D-Glcp-OMe-4R 0.8622 
OH3 α-L-Fucp--1-3-β-D-Galp-OMe - - 

OH5 α-D-Fucp--1-3-β-D-GlcpNAc-OMe - - 

OH7 α-D-Glcp-1-4-β-D-Glcp-OMe α-D-Glcp-OH-4R 0.7689 

OH8 α-D-Glcp-1-4-α-D-Glcp-OMe α-D-Glcp-1R 0.9547 

OH9 α-D-Glcp-1-6-α-D-Glcp-OMe α-D-Glcp-OMe-6R 0.9136 

RS1 β-D-Glcp-OMe β-D-Glcp-OMe 0.9712 

RS2 β-D-Glcp-1-6-β-D-Glcp-OMe β-D-Glcp-1R 0.8657 

Trehalose α-D-Glcp-1-1-α-D-Glcp α-D-Glcp-1R 0.9829 

Gentiobiose β-D-Glcp-1-6-β-D-Glcp α-D-Glcp-OH 0.7761 

Lactose β-D-Galp-1-4-β-D-Glcp - - 

Saccharose α-D-Glcp-1-2-β-Fruf α-D-Glcp-1R 0.8108 

 
The orange highlighted test compounds OH7, OH8, OH9, RS2 and Gentiobiose show the biggest 
problem of this approach. If disaccharides with two monosaccharide moieties from the same sugar 
(like Glc-Glc in OH7, OH8, OH9, RS2 and Gentiobiose) are presented to the trained galactose 
neural network, only one monosaccharide moiety exceeds the confidence level of 0.75 because the 
corresponding output neuron is the winner of this test run. The other monosaccharide moiety is also 
activated but is not exceeding the confidence level. This finding also explains the relatively poor test 
results of the following disaccharide test results in Table 34. 

 
Table 34: Disaccharide test analysis for glucose network 

 
Positive test Total test moieties Correct Not recognized false positive 

Glucose 216 100 (= 46.30%) 116 (=53.70%) 25 

Negative test     

Mannose 167   19 

Galactose 189   21 
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5.8.8. Galactose 

Table 35: Training parameters for galactose network 
 

Training pattern file Galactose (Table 25) 
Test pattern file Galactose (Table 29) 
Modifications 80 
Shift standard deviation 
ANN PFG V.0.9 reading step size 20 points 
Total training cycles 3000 cycles 

2000 cycles Back-propagation 
1000 cycles conjugated gradient 

Learning rate 0.1 
Momentum term 0.5 
Noise level ± 0.1 
Pattern shuffling enabled 
Number of networks trained 36 
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Figure 194: Galactose performance and error visualization chart 
(gal_mini3_sh_stdabw_mod80 step 20) 

 
The visualization of the galactose networks reflects the findings of the preliminary experiments. The 
best selection performance of 97.8% (selection error 0.33) is reached with a network of 20 hidden 
units. The following tests were carried out with this network architecture. 
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Table 36: Galactose disaccharide test results of self-measured test compounds 
 

 Reference output Recognition Confidence 
OH1 β-D-Galp-1-4-β-D-Glcp-OMe β-D-Galp-OMe 0.9924 

OH2 α-L-Fucp-1-3-(α-L-Fucp-1-2)-β-D-GlcpNAc-OMe - - 

OH3 α-L-Fucp--1-3-β-D-Galp-OMe α-D-Galp-OMe-3R 0.7810 

OH5 α-D-Fucp--1-3-β-D-GlcpNAc-OMe - - 

OH7 α-D-Glcp-1-4-β-D-Glcp-OMe α-D-Galp-OMe-2R 0.8023 

OH8 α-D-Glcp-1-4-α-D-Glcp-OMe - - 

OH9 α-D-Glcp-1-6-α-D-Glcp-OMe - - 

RS1 β-D-Glcp-OMe - - 

RS2 β-D-Glcp-1-6-β-D-Glcp-OMe - - 

Trehalose α-D-Glcp-1-1-α-D-Glcp β-D-Galp-1R 0.7629 

Gentiobiose β-D-Glcp-1-6-β-D-Glcp - - 

Lactose β-D-Galp-1-4-β-D-Glcp β-D-Galp-1R 0.7546 

Saccharose α-D-Glcp-1-2-β-Fruf - - 

 
The OH1 disaccharide test compound in Table 36 shows other difficulties of this single network 
approach. The neural network cannot separate the 13C signals according to their spin system. In the 
example of OH1 the network doesn't know if the OMe peak belongs to the galactose or the glucose 
moiety. A possibility to master this problem is the introduction of the combination generator into the 
ANN PFG V.0.9 as explained in chapter 4.9.6.4. This subprogram was not used during this PhD 
thesis. Ongoing experiments of Andreas Stoeckli are very promising to solve the spin system 
separation problem. 

 
Table 37: Disaccharide test analysis for galactose network 

 
Positive test Total test moieties Correct Not recognized false positive 

Galactose 189 73 (= 38.62%) 116 (=61.38%) 14 

Negative test     

Mannose 167   17 

Glucose 216   28 
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5.8.9. Mannose 

Table 38: Training parameters for mannose network 
 

Training pattern file Mannose (Table 26) 
Test pattern file Mannose (Table 29) 
Modifications 80 
Shift standard deviation 
ANN PFG V.0.9 reading step size 20 points 
Total training cycles 3000 cycles 

2000 cycles Back-propagation 
1000 cycles conjugated gradient 

Learning rate 0.1 
Momentum term 0.5 
Noise level ± 0.1 
Pattern shuffling enabled 
Number of networks trained 40 
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Figure 195: Mannose performance and error visualization chart  
(man_mini3_sh_stdabw_mod80 step 20) 

 
Figure 195 reflects again the findings of the preliminary experiments. The best selection 
performance of 94.15% (selection error 0.051) is reached with a network of 20 hidden units. The 
following tests were carried out with this network architecture. 
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Table 39: Mannose disaccharide test results of self-measured test compounds 
 

 Reference output Recognition Confidence 
OH1 β-D-Galp-1-4-β-D-Glcp-OMe - - 

OH2 α-L-Fucp-3-(α-L-Fucp-1-2)-β-D-GlcpNAc-OMe - - 

OH3 α-L-Fucp-1-3-β-D-Galp-OMe - - 

OH5 α-D-Fucp-1-3-β-D-GlcpNAc-OMe - - 

OH7 α-D-Glcp-1-4-β-D-Glcp-OMe - - 

OH8 α-D-Glcp-1-4-α-D-Glcp-OMe α-D-Manp-1R 0.8842 
OH9 α-D-Glcp-1-6-α-D-Glcp-OMe - - 

RS1 β-D-Glcp-OMe - - 

RS2 β-D-Glcp-1-6-β-D-Glcp-OMe - - 

Trehalose α-D-Glcp-1-1-α-D-Glcp - - 

Gentiobiose β-D-Glcp-1-6-β-D-Glcp α-D-Manp-OH 0.7925 
Lactose β-D-Galp-1-4-β-D-Glcp - - 

Saccharose α-D-Glcp-1-2-β-Fruf β-D-Manp-OMe-4R 0.7502 
 
Because there are no mannose disaccharides in the test file, the results are not completely 
comparable with the two previous disaccharide test evaluations of glucose and galactose. The three 
false positive mannose recognitions and their high confidence level cannot be explained. 

 
Table 40: Disaccharide test analysis for mannose network 

 
Positive test Total test moieties Correct Not recognized false positive 

Mannose 167 91 (= 54.49%) 76 (=45.51%) 27 

Negative test     

Glucose 261   18 

Galactose 189   21 
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5.8.10. Combination of glucose, galactose and mannose (GAM) 

As a final experiment of this section, all training and test pattern files were merged into one single 
pattern file. 

 
Training pattern file Combination of galactose, glucose 

and mannose data sets 
Test pattern file Combination of galactose, glucose 

and mannose test data sets 
Modifications 80 
Shift standard deviation 
ANN PFG V.0.9 reading step size 20 points 
Peak Mask GAM 
Total training cycles 2000 cycles 

1500 cycles Back-propagation 
500 cycles conjugated gradient 

Learning rate 0.1 
Momentum term 0.5 
Noise level ± 0.1 
Pattern shuffling enabled 
Number of networks trained 36 
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As already shown in experiment 5.7.6, it is not possible to classify all monosaccharide moieties of 
galactose, glucose and mannose with one single Kohonen feature map. The same task cannot be 
satisfyingly accomplished with a single Back-propagation neural network. The best performing 
networks are located in the region of 10 – 20 hidden units. 
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Table 41: Mannose disaccharide test results of self-measured test compounds 
 

 Reference output Recognition Confidence 
OH1 β-D-Galp-1-4-β-D-Glcp-OMe - - 

OH2 α-L-Fucp-1-3-(α-L-Fucp-1-2)-β-D-GlcpNAc-OMe - - 

OH3 α-L-Fucp--1-3-β-D-Galp-OMe - - 

OH5 α-D-Fucp--1-3-β-D-GlcpNAc-OMe - - 

OH7 α-D-Glcp-1-4-β-D-Glcp-OMe - - 

OH8 α-D-Glcp-1-4-α-D-Glcp-OMe α-D-Manp-1R 0.8842 
OH9 α-D-Glcp-1-6-α-D-Glcp-OMe - - 

RS1 β-D-Glcp-OMe - - 

RS2 β-D-Glcp-1-6-β-D-Glcp-OMe - - 

Trehalose α-D-Glcp-1-1-α-D-Glcp - - 

Gentiobiose β-D-Glcp-1-6-β-D-Glcp α-D-Manp-OH 0.7925 
Lactose β-D-Galp-1-4-β-D-Glcp - - 

Saccharose α-D-Glcp-1-2-β-Fruf β-D-Manp-OMe-4R 0.7502 
 
The results in Table 41 show the same problems already discussed in chapter 5.8.7 and 5.8.8. The 
single neural network trained with galactose, glucose and mannose can only recognize one 
monosaccharide moiety at once. The other moiety is not exceeding the confidence level of 0.75. 
And the problem of the spin system separation persists. 

A partly explanation of the bad selection performance is depicted in the following figure: 
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Figure 196: Number of activating patterns per input neuron 
 
This figure shows the accumulated input activations per input neuron of all modifications of the 
combined GAM training and test patter file. The region between input neuron 100 and 190 shows 
heavy overlaps of all three sugars. Therefore, the neural network cannot consult this region for its 
decision making and has to depend on the remaining input regions. As the results of the preceding 
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experiments show clearly, this problem does not occur if separated neural networks are trained for 
each sugar. Another approach to help to overcome the problem would be to generate selective 
peak masks for every sugar in the ANN PFG. Therefore, it's possible to exclude at least some 
peaks regions of the other monosaccharide types not needed in the pattern file. 

The combined approach was now completely abandoned. 

5.9. Ensemble approach 

5.9.1. The concept 

The basic idea of the so called ensemble approach is the feature of Statsoft Statistica to build an 
ensemble of a group of similar trained neural networks. The intelligent problem solver (IPS) is an 
algorithm who creates networks and automatically trains them for a certain time or until a certain 
performance level is reached. The user decides how many networks should finally be retained and 
stored in an ensemble. The classification threshold when to accept or the reject a network can also 
be chosen individually. 

When a neural network is trained several times with the same training pattern file and the same 
training parameters, its performance (generalization ability) will be different for every network 
because of different random starting weight values, Gaussian noise and pattern shuffling. The 
training algorithm will find a different minimum on the error surface. Therefore, the idea arose to 
train at least 20 similar neural networks for each monosaccharide (glucose, galactose and 
mannose). Every single trained network of this ensemble will be a kind of a specialist for certain 
monosaccharide moieties. When a test compound is simultaneously presented to all the networks 
of the ensemble, every single "expert" network will recognize its favorite monosaccharide moiety. 
There will also be false predictions but the prediction with the highest frequency will be assessed as 
the winner. Therefore, all the predictions of the ensemble can be statistically analyzed and a 
likelihood can be calculated. 

In each of the following experiments, the IPS was running for 48 hours and the 20 networks with the 
best selection performance were retained and joined into an ensemble. 

All experiments were carried out with a maximum limit of 3000 cycles per network (2000 cycles 
Back-propagation and 1000 cycles CG). The pattern files were generated with 22-point raster size 
and a combined GAM mask (combination of glucose, galactose and mannose mask file). 
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5.9.2. Glucose ensemble networks with one and two hidden layers  
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Figure 197: Graphical IPS performance and error comparison for glucose ensemble networks with one hidden 
layer 

 
Table 42: Glucose IPS ensemble performance and error summary (one hidden layer) sorted by hidden layer 

size. 
 

Profile Training 
Perf. 

Selection 
Perf. 

Test 
Perf. 

Training 
Error 

Selection 
Error 

Test 
Error 

Training 

MLP 244-45-23 100.00% 99.07% 95.03% 0.000003 0.280000 1.564000 BP2000,CG44b

MLP 244-48-23 100.00% 99.64% 94.89% 0.000271 0.185791 1.525683 BP2000,CG37b

MLP 244-50-23 100.00% 99.60% 94.74% 0.001723 0.178278 1.343558 BP2000,CG32b

MLP 244-71-23 100.00% 99.58% 95.31% 0.007425 0.137773 1.034577 BP2000,CG38b

MLP 244-72-23 100.00% 98.93% 93.32% 0.000001 0.347000 1.400000 BP2000,CG41b

MLP 244-74-23 100.00% 99.69% 94.46% 0.001823 0.144796 1.363462 BP2000,CG45b

MLP 244-82-23 100.00% 99.49% 95.03% 0.002369 0.167917 1.378030 BP2000,CG37b

MLP 244-83-23 100.00% 99.63% 95.03% 0.000689 0.115678 1.178307 BP2000,CG35b

MLP 244-84-23 100.00% 99.30% 94.03% 0.009855 0.169066 1.249409 BP2000,CG24b

MLP 244-88-23 100.00% 99.63% 96.88% 0.003035 0.119123 1.023239 BP2000,CG30b

MLP 244-91-23 100.00% 99.55% 95.45% 0.004790 0.119619 1.043912 BP2000,CG26b

MLP 244-93-23 100.00% 99.43% 94.46% 0.004948 0.146625 1.088620 BP2000,CG25b

MLP 244-98-23 100.00% 99.66% 94.46% 0.000904 0.138716 1.450450 BP2000,CG37b

MLP 244-99-23 100.00% 99.67% 95.45% 0.000423 0.136588 1.260370 BP2000,CG25b

MLP 244-100-23 100.00% 99.72% 95.31% 0.000312 0.130668 1.576228 BP2000,CG30b

MLP 244-119-23 100.00% 99.50% 95.60% 0.001541 0.199001 1.282266 BP2000,CG32b

MLP 244-142-23 100.00% 99.53% 95.17% 0.001119 0.176200 1.267603 BP2000,CG25b

MLP 244-145-23 100.00% 99.46% 95.45% 0.003791 0.146485 1.021856 BP2000,CG26b

MLP 244-149-23 100.00% 99.67% 95.03% 0.000353 0.134548 1.413274 BP2000,CG26b
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The single layer neural networks show a very good performance distribution. The selection 
performance is almost independent from the hidden layer size and stays in a very narrow band 
around 95%. All networks were trained within the requested 3000 cycles maximum training time. A 
rising selection error curve cannot be noticed. The twenty trained neural networks in Table 42 form 
an optimal ensemble for the glucose recognition task. 
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Figure 198: Graphical IPS performance and error comparison for glucose ensemble networks with two hidden 
layers 

 
The networks with more free parameters (= more hidden layers) do not reach the selection 
performance of the single hidden layer networks trained with exactly the same pattern and test files. 
The two-hidden layer networks show a bigger scatter of the error and performance values. In 
contrast to the preliminary experiments, the selection error curve is slightly decreasing instead of 
increasing to higher error values. Because of the relatively large test errors, no dual layer network 
was used in the ensemble for the following tests. 
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Table 43: Glucose IPS ensemble performance and error summary (two hidden layers) sorted by 
hidden layer size. 
 

Profile Training 
Perf. 

Selection 
Perf. 

Test 
Perf. 

Training 
Error 

Selection 
Error 

Test 
Error 

Training 

MLP 244-66-70-23 98.97% 95.76% 85.23% 0.476894 2.199564 5.837237 BP2000,CG29b 

MLP 244-85-74-23 99.48% 95.12% 85.51% 0.228416 2.095198 6.735819 BP2000,CG33b 

MLP 244-87-56-23 100.00% 98.82% 90.42% 0.000003 0.689957 3.344393 BP2000,CG45b 

MLP 244-94-63-23 100.00% 98.79% 90.77% 0.000001 0.641492 3.032390 BP2000,CG41b 

MLP 244-95-61-23 100.00% 98.45% 90.77% 0.000001 0.909111 3.843496 BP2000,CG47b 

MLP 244-96-80-23 100.00% 97.87% 90.63% 0.000005 1.586145 4.837241 BP2000,CG37b 

MLP 244-102-64-23 100.00% 98.11% 91.05% 0.000111 0.715020 2.569745 BP2000,CG32b 

MLP 244-106-60-23 100.00% 98.35% 88.94% 0.000001 0.952447 3.026520 BP2000,CG43b 

MLP 244-116-90-23 100.00% 99.04% 89.29% 0.000004 0.520583 2.497200 BP2000,CG41b 

MLP 244-120-68-23 100.00% 99.02% 91.29% 0.000045 0.520457 2.055503 BP2000,CG35b 

MLP 244-141-85-23 100.00% 99.39% 91.38% 0.000149 0.222354 1.655640 BP2000,CG33b 

MLP 244-150-111-23 100.00% 99.52% 89.00% 0.000026 0.252739 2.129605 BP2000,CG34b 
 

Table 44: Glucose disaccharide test results of self-measured test compounds 
 
 Reference output Recognition 
OH1 β-D-Galp-1-4-β-D-Glcp-OMe  - 20 β-D-Glcp-OMe-4R 

OH2 α-L-Fucp--1-3-(α-L-Fucp--1-2)-β-D-GlcpNAc-OMe  -  - 

OH3 α-L-Fucp--1-3-β-D-Galp-OMe  -  - 

OH5 α-D-Fucp--1-3-β-D-GlcpNAc-OMe  -  - 

OH7 α-D-Glcp-1-4-β-D-Glcp-OMe 8 β-D-Glcp-OMe-4R 8 α-D-Glcp-1R 

OH8 α-D-Glcp-1-4-α-D-Glcp-OMe  -  - 

OH9 α-D-Glcp-1-6-α-D-Glcp-OMe 9 α-D-Glcp-1R 3 α-D-Glcp-OMe-6R 

RS1 β-D-Glcp-OMe 12 β -D-Glcp-OMe  - 

RS2 β-D-Glcp-1-6-β-D-Glcp-OMe 7 β -D-Glcp-1R 4 β-D-Glcp-OMe-6R 

Trehalose α-D-Glcp-1-1-α-D-Glcp 8 α-D-Glcp-1R   

Gentiobiose β-D-Glcp-1-6-β-D-Glcp ?? 6 β-D-Glcp-OH-6R 

Lactose β-D-Galp-1-4-β-D-Glcp 5 β-D-Galp-1R 12 α-D-pGlc-OH-3R 
Saccharose α-D-Glcp-1-2-β-Fruf 6 α-D-Glcp-1R   

 
The outstanding disaccharide test results prove that the new ensemble approach leads to the desired network 

recognition performance. The test analysis in  
Table 44 shows only one false recognition in the Lactose test compound and a missing 
monosaccharide moiety in the Gentiobiose test compound. However, it must be said, that the first 
monosaccharide moiety (b-D-Glcp-1R) nearly reached the necessary confidence level of 0.75 (it 
was 0.723). The Trehalose compound shows the only known drawback of the ensemble approach: 
if a disaccharide consists of two identical monosaccharide moieties, it is not possible to recognize 
them as two separate units. The corresponding NMR peak list only consists out of six peaks and 
contains no information about a second monosaccharide moiety. A possible solution would be to 
take the peak intensities into account. But this information is hardly available in literature data and 
was not included in the whole concept of this thesis. 
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Table 45: Disaccharide test analysis for glucose networks 
 

Positive test Total test moieties Correct Not recognized false positive 

Glucose 216 163 (= 75.46%) 53 (=24.54%) 8 

Negative test     

Mannose 167   9 

Galactose 189   5 

 
In comparison with Table 34, there is a significant improvement of the number of correct recognized 
glucose test compounds.  

 

5.9.3. Galactose ensemble networks with one and two hidden layers 
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Figure 199: Graphical IPS performance and error comparison for galactose ensemble networks with one 
hidden layer 
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Table 46: Galactose IPS ensemble performance and error summary (one hidden layer) 
 

Profile Training 
Perf. 

Selection 
Perf. 

Test 
Perf. 

Training 
Error 

Selection 
Error 

Test 
Error 

Training 

MLP 244-44-20 100.00% 99.19% 94.60% 0.000732 0.387476 1.431000 BP2000,CG35b 

MLP 244-50-20 100.00% 99.32% 94.60% 0.019897 0.228701 1.566552 BP2000,CG21b 

MLP 244-62-20 99.97% 99.41% 93.04% 0.034192 0.191590 1.256100 BP2000,CG21b 

MLP 244-68-20 100.00% 99.43% 94.03% 0.012840 0.215844 1.335803 BP2000,CG23b 

MLP 244-69-20 100.00% 99.46% 94.18% 0.000744 0.273424 1.657000 BP2000,CG33b 

MLP 244-73-20 100.00% 99.36% 94.46% 0.019675 0.221567 1.172396 BP2000,CG20b 

MLP 244-76-20 100.00% 99.41% 93.61% 0.007247 0.220668 1.490012 BP2000,CG23b 

MLP 244-78-20 100.00% 99.39% 94.46% 0.013372 0.214837 1.488324 BP2000,CG24b 

MLP 244-82-20 100.00% 99.46% 94.60% 0.005956 0.224582 1.368620 BP2000,CG25b 

MLP 244-89-20 100.00% 99.21% 93.32% 0.012719 0.213383 1.593564 BP2000,CG21b 

MLP 244-90-20 100.00% 99.36% 94.03% 0.009454 0.256370 1.388920 BP2000,CG25b 

MLP 244-95-20 99.99% 99.32% 93.61% 0.021049 0.248335 1.510969 BP2000,CG21b 

MLP 244-100-20 100.00% 99.29% 92.90% 0.023423 0.203255 1.396639 BP2000,CG11b 

MLP 244-117-20 100.00% 99.39% 94.18% 0.014260 0.211702 1.317706 BP2000,CG20b 

MLP 244-130-20 100.00% 99.52% 94.46% 0.001453 0.278101 1.394156 BP2000,CG27b 

MLP 244-144-20 100.00% 99.36% 94.46% 0.011766 0.212916 1.178078 BP2000,CG22b 

MLP 244-147-20 100.00% 99.35% 93.89% 0.011529 0.220940 1.422639 BP2000,CG20b 

MLP 244-149-20 100.00% 99.52% 94.74% 0.005050 0.279242 1.466692 BP2000,CG20b 

MLP 244-150-20 100.00% 99.58% 94.60% 0.003345 0.261268 1.525276 BP2000,CG20b 

 
Figure 199 shows a very similar distribution of the error and performance values like the glucose 
ensemble. The selection performance of all networks lies around a very good value of 95% while 
the selection error stays at a low level of 0.25. No networks have to be excluded from the ensemble 
and will be used for the following disaccharide tests. 
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Figure 200: Graphical IPS performance and error comparison for galactose ensemble networks with two 
hidden layers 

 
Table 47: Galactose IPS ensemble performance and error summary (two hidden layer) 

 
Profile Training 

Perf. 
Selection 

Perf. 
Test 
Perf. 

Training 
Error 

Selection 
Error 

Test 
Error 

Training 

MLP 244-73-72-20 99.07% 96.18% 90.48% 0.247851 1.211898 3.929880 BP2000,CG44b 

MLP 244-74-67-20 99.08% 96.68% 90.91% 0.319151 1.466726 3.901390 BP2000,CG34b 

MLP 244-95-61-20 100.00% 97.89% 90.48% 0.012841 0.962914 4.063470 BP2000,CG30b 

MLP 244-96-62-20 100.00% 99.15% 92.16% 0.000001 0.630087 3.790584 BP2000,CG41b 

MLP 244-97-65-20 100.00% 99.07% 90.00% 0.000230 0.516452 2.779150 BP2000,CG33b 

MLP 244-105-66-20 100.00% 98.93% 93.47% 0.000011 0.745294 3.539168 BP2000,CG37b 

MLP 244-107-77-20 100.00% 98.73% 92.90% 0.001576 0.352067 2.394478 BP2000,CG28b 

MLP 244-113-85-20 100.00% 98.42% 92.33% 0.000001 1.265037 5.035661 BP2000,CG41b 

MLP 244-116-70-20 100.00% 98.28% 93.18% 0.009099 0.586528 1.882266 BP2000,CG23b 

MLP 244-118-95-20 100.00% 97.98% 92.76% 0.000429 0.884356 4.225017 BP2000,CG30b 

MLP 244-137-86-20 100.00% 99.21% 90.59% 0.005148 0.336823 2.090991 BP2000,CG22b 

MLP 244-138-85-20 100.00% 99.21% 90.51% 0.000636 0.378535 2.315195 BP2000,CG26b 

MLP 244-149-93-20 100.00% 99.15% 93.32% 0.001094 0.332417 2.016792 BP2000,CG23b 

MLP 244-150-98-20 100.00% 99.27% 91.20% 0.000495 0.359954 2.467834 BP2000,CG25b 

 
The two-hidden layer networks lack of the same bad selection error and a somewhat lower 
selection performance. This ensemble will not be used for the following disaccharide test. 
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Table 48: Galactose disaccharide recognition test results of self-measured test compounds 
 
 Reference output Recognition 
OH1 β-D-Galp-1-4-β-D-Glcp-OMe  - 4 β-D-Galp-1R 

OH2 α-L-Fucp--1-3-(α-L-Fucp--1-2)-β-D-GlcpNAc-OMe  -  - 

OH3 α-L-Fucp--1-3-β-D-Galp-OMe  - 4 β-D-Galp-OMe-3R 

OH5 α-D-Fucp--1-3-β-D-GlcpNAc-OMe  -  - 

OH7 α-D-Glcp-1-4-β-D-Glcp-OMe  -  - 

OH8 α-D-Glcp-1-4-α-D-Glcp-OMe  -  - 

OH9 α-D-Glcp-1-6-α-D-Glcp-OMe  -  - 

RS1 β-D-Glcp-OMe  -  - 

RS2 β-D-Glcp-1-6-β-D-Glcp-OMe -  - 

Trehalose α-D-Glcp-1-1-α-D-Glcp 4 α-D-pGal-OH-4R  - 

Gentiobiose β-D-Glcp-1-6-β-D-Glcp -  - 

Lactose β-D-Galp-1-4-β-D-Glcp 8 β-D-Galp-1R  - 

Saccharose α-D-Glcp-1-2-β-Fruf -  - 

 
The galactose disaccharide test summary shows outstanding recognition capabilities. Only for the 
Trehalose test disaccharide α-D-Glcp-1-1-α-D-Glcp a number of four networks deliver a false 
positive recognition. 

Table 49: Disaccharide test analysis for galactose networks 
 

Positive test Total test moieties Correct Not recognized false positive 

Galactose 77 63 (= 82.82%) 14 (=18.18%) 4 

Negative test     

Mannose 167   2 

Glucose 347   4 

 
As expected from the glucose test results, the ensemble approach also seems to be the right 
approach for the recognition of galactose monosaccharide moieties. 
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5.9.4. Mannose ensemble networks with one and two hidden layers 
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Figure 201: Graphical IPS performance and error comparison for mannose ensemble networks with one 
hidden layer 

 
Table 50: Mannose IPS ensemble performance and error summary (one hidden layer) 

 
Profile Training 

Perf. 
Selection 

Perf. 
Test 
Perf. 

Training 
Error 

Selection 
Error 

Test 
Error 

Training 

MLP 244-81-20 100.00% 99.58% 94.18% 0.000001 0.418552 5.696214 BP2000,CG42b 

MLP 244-85-20 100.00% 99.89% 94.74% 0.000000 0.113067 2.037000 BP2000,CG40b 

MLP 244-92-20 100.00% 99.86% 95.17% 0.000001 0.153221 2.066000 BP2000,CG41b 

MLP 244-106-20 100.00% 99.84% 93.75% 0.000001 0.114024 1.651000 BP2000,CG43b 

MLP 244-107-20 100.00% 99.83% 93.89% 0.000001 0.115503 1.718000 BP2000,CG46b 

MLP 244-108-20 100.00% 99.83% 94.18% 0.000001 0.123083 1.554000 BP2000,CG45b 

MLP 244-115-20 100.00% 99.78% 93.61% 0.000067 0.095984 1.786000 BP2000,CG34b 

MLP 244-116-20 100.00% 99.80% 94.32% 0.000011 0.105275 1.486000 BP2000,CG43b 

MLP 244-117-20 100.00% 99.75% 94.60% 0.000199 0.117472 1.612000 BP2000,CG33b 

MLP 244-123-20 100.00% 99.89% 95.17% 0.000041 0.098102 1.583000 BP2000,CG37b 

MLP 244-137-20 100.00% 99.84% 94.03% 0.000041 0.132934 1.747000 BP2000,CG37b 

MLP 244-146-20 100.00% 99.78% 93.89% 0.000492 0.080875 1.758495 BP2000,CG32b 

MLP 244-150-20 100.00% 99.92% 94.89% 0.000001 0.030058 1.544000 BP2000,CG47b 

MLP 244-161-20 100.00% 99.81% 95.31% 0.000162 0.063055 1.871560 BP2000,CG35b 

MLP 244-174-20 100.00% 99.88% 94.89% 0.000368 0.065395 1.838493 BP2000,CG28b 

MLP 244-190-20 100.00% 99.89% 94.74% 0.000089 0.046283 1.612000 BP2000,CG35b 

MLP 244-195-20 100.00% 99.89% 94.74% 0.000056 0.049694 1.477000 BP2000,CG34b 

MLP 244-196-20 100.00% 99.91% 94.89% 0.000002 0.058156 1.641000 BP2000,CG39b 

MLP 244-197-20 100.00% 99.91% 94.89% 0.000005 0.048571 1.631000 BP2000,CG33b 

MLP 244-198-20 100.00% 99.88% 94.89% 0.000003 0.082562 1.593000 BP2000,CG34b 
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The test and performance summary shows the best values of all tested single-hidden layer 
networks (glucose and galactose). The selection performance values stay at a comparable high 
level of about 95% like glucose and galactose but the corresponding selection error is relatively low. 
No network had to be rejected from the mannose ensemble. 
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Figure 202: Graphical IPS performance and error comparison for mannose ensemble networks with two hidden 
layers 

 
Table 51: Mannose IPS ensemble performance and error summary (two hidden layers) 

 
Profile Training 

Perf. 
Selection 

Perf. 
Test Perf. Training 

Error 
Selection 

Error 
Test 
Error 

Training 

MLP 244-48-50-20 99.90% 96.52% 90.77% 0.089775 2.010963 8.827342 BP2000,CG45b 
MLP 244-57-46-20 100.00% 98.46% 91.11% 0.000008 0.898265 4.445000 BP2000,CG40b 
MLP 244-64-58-20 99.43% 96.20% 89.77% 0.270075 2.288524 6.584868 BP2000,CG45b 
MLP 244-66-41-20 100.00% 99.61% 90.24% 0.000001 0.267535 3.393818 BP2000,CG53b 
MLP 244-78-74-20 100.00% 97.39% 92.47% 0.009916 2.031911 5.974671 BP2000,CG33b 
MLP 244-83-63-20 100.00% 99.77% 89.37% 0.000003 0.168075 2.442332 BP2000,CG39b 
MLP 244-86-73-20 99.99% 97.25% 90.77% 0.013263 1.868208 8.073456 BP2000,CG26b 
MLP 244-87-58-20 100.00% 99.86% 91.90% 0.000001 0.081578 3.151437 BP2000,CG42b 
MLP 244-94-72-20 100.00% 99.78% 90.00% 0.000235 0.081471 1.862420 BP2000,CG29b 
MLP 244-96-67-20 100.00% 99.80% 89.72% 0.000007 0.138711 2.386843 BP2000,CG39b 
MLP 244-97-73-20 100.00% 99.89% 90.33% 0.000000 0.084114 3.072368 BP2000,CG39b 

MLP 244-100-80-20 100.00% 99.86% 90.00% 0.000102 0.137767 2.091864 BP2000,CG26b 
MLP 244-124-76-20 100.00% 99.38% 93.61% 0.000099 0.306600 2.376244 BP2000,CG30b 
MLP 244-138-77-20 100.00% 99.78% 89.29% 0.000015 0.146612 2.441308 BP2000,CG35b 
MLP 244-147-92-20 100.00% 99.53% 89.81% 0.000413 0.170073 2.126683 BP2000,CG24b 
MLP 244-148-93-20 100.00% 99.70% 88.68% 0.000006 0.108296 2.389680 BP2000,CG38b 
MLP 244-149-93-20 100.00% 99.69% 91.11% 0.000023 0.223935 2.047243 BP2000,CG31b 

MLP 244-150-100-20 100.00% 99.63% 92.00% 0.000013 0.181686 2.821365 BP2000,CG30b 
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The mannose two hidden layer summary shown in Figure 202 displays the same disorder like the 
two predecessor two-hidden layer networks from glucose and galactose. The networks have too 
many degrees of freedom and do not make up  

 

Table 52: Mannose disaccharide recognition test results of self-measured compounds 
 
 Reference output Recognition 
OH1 β-D-Galp-1-4-β-D-Glcp-OMe  -  - 

OH2 α-L-Fucp--1-3-(α-L-Fucp--1-2)-β-D-GlcpNAc-OMe  -  - 

OH3 α-L-Fucp--1-3-β-D-Galp-OMe  -  - 

OH5 α-D-Fucp--1-3-β-D-GlcpNAc-OMe  -  - 

OH7 α-D-Glcp-1-4-β-D-Glcp-OMe  -  - 

OH8 α-D-Glcp-1-4-α-D-Glcp-OMe  - 2 α-D-pMan-OMe-2R 
OH9 α-D-Glcp-1-6-α-D-Glcp-OMe  -  - 

RS1 β-D-Glcp-OMe  -  - 

RS2 β-D-Glcp-1-6-β-D-Glcp-OMe -  - 

Trehalose α-D-Glcp-1-1-α-D-Glcp -  - 

Gentiobiose β-D-Glcp-1-6-β-D-Glcp -  - 

Lactose β-D-Galp-1-4-β-D-Glcp -  - 

Saccharose α-D-Glcp-1-2-β-Fruf -  - 

 
As expected, The mannose neural network ensemble shows an outstanding recognition 
performance. Except for one false positive recognition, the networks show no confusion with other 
moieties from glucose or galactose. In addition, the fucose and the Fructofuranose do not interfere 
with the mannose recognition. 

 

Table 53: Disaccharide test analysis for mannose networks 
 

Positive test Total test moieties Correct Not recognized false positive 

Mannose 37 32 (= 86.49%) 5 (=13.51%) 10 

Negative test     

Glucose 347   5 

Galactose 189   2 

 
The mannose disaccharide test delivers by far the best test recognition rate. The false positive 
classified galactose and glucose test compounds are very low. 
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5.9.5. Discussion of the ensemble approach 

The ensemble networks finally brought the long looked-for breakthrough in the disaccharide 
recognition. There is still room for some performance improvements by expanding and normalizing 
the underlying literature dataset or picking the trained neural networks to be combined into the final 
ensemble by hand.  

The results of the literature disaccharide test are only partly comparable because there are not the 
same numbers of test compounds of each carbohydrates in the respective test set (61.7%, 22% 
galactose and 16.3% mannose). Nevertheless, the test sets were good enough to discover the 
drawbacks of the ensemble method. The ensemble approach seems to be the only way to identify 
monosaccharide moieties out of disaccharides or oligosaccharides in a later stage. 
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6. Discussion summary & conclusions  
 
As all experiments are already discussed in the corresponding chapters, this section has to be 
considered as a summary of all achievements and problems. The main objective to develop a 
neural network based identification system capable of identifying monosaccharide moieties out of 
disaccharides from spectroscopic 13C-NMR data has been fully achieved. The success of this PhD 
thesis is to be judged on the basis of the aims formulated in chapter 3.5: 

 

• Reproduction of the results and the neural network approach to identify 1H-NMR spectra of 
five alditols of Meyer et al. [80-82].  

Because the sugar alditols were not available, the compounds were replaced with five 
methyl pyranosides (chapter 4.1.1). The methyl pyranosides had the advantage to be 
clearly defined at the anomeric carbon and the information of the difference between α and 
β configuration could be included into the training data of the neural networks. It turned out 
quickly, that the five methyl pyranosides did not suffice to train a neural network with good 
generalization rates in spite of the artificial modifications made with the ANN PFG V.0.1. 
The presence of the methyl peak was a distinct feature for the monosaccharide recognition. 
Input regions of other remaining 1H-NMR peaks did not take part in the recognition process 
(the weights of the associated input neurons were set to negative values). 

 

• What kind of NMR data provide information about the anomeric configuration and the 
substitution pattern of a carbohydrate (1H or 13C-NMR)? 

The idea to develop a structure elucidation system for 1H-NMR spectra was abandoned 
shortly after the start of the PhD thesis because of the better signal to noise ratio of 
13C-NMR spectra, because there are no disturbing water peaks in a 13C-NMR spectrum and 
because of the clear identification of the anomeric configuration. A 13C-NMR spectrum can 
easily be converted into a binary format because of the very sharp and narrow peaks. 
Whereas the wide peaks of a 1H-NMR spectrum produce extremely large binary files and 
would need to be Fourrier or Hadamard transformed, before they can be used as an input 
for a neural network. 

The neural networks trained with methyl pyranosides zeroed in on the methyl peak (chapter 
5.3). This peak had the biggest intensity of all peaks and was characteristic for the 
identification of the selected compounds. 
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• What information is available/accessible through NMR spectroscopy? (monomer identity, 
anomeric configuration, substitution pattern). 

The Diploma thesis of Alexeij Moor (chapter 5.5) and the Kohonen feature maps trained in 
chapter 5.7 proved that the information content of a 13C-NMR peak list of a monosaccharide 
is high enough to clearly identify the compound. Apart from the monosaccharide identity, it 
is possible to recognize the anomeric configuration.and the substitution pattern of the 
moiety. The big drawback of this approach is the fact, that a Kohonen network architecture 
can never identify monosaccharide moieties from disaccharides because the algorithm only 
selects one winning neuron after the input pattern is presented. A second monosaccharide 
moiety can therefore not be detected. An obvious solution would be to convert the peak list 
back into an JCAMP DX for NMR file (chapter 4.9.5.1) and present it point by point to the 
network instead of a peak list with six numbers. This conversion and later data compression 
task can be handled with the ANN PFG software, developed during this PhD thesis. 

However, an advantage of the Counter-propagation networks is the supervised learning 
method and the easy interpretation of the test results because of the Grossberg layer.   

 

• How can spectroscopic data be transferred into a neural network? 

As discussed in the previous sections, there are several ways to feed spectroscopic data 
(especially 13C-NMR) into a neural network. The most important point to consider is that a 
neural network has a fixed number of input units. A test pattern file has to have the exact 
same dimension as the pattern file the neural network was trained with. Thus, similar 
features of the training data should always activate similar input neurons. Therefore, it is 
obvious, that an NMR peak list can only serve as a direct input for a neural network if there 
are always the same numbers of peaks in the file. Methylated monosaccharides and 
compounds without methyl peak cannot be analyzed with the same network. The only fast 
reasonable way to input spectroscopic data from an NMR into a neural network would be to 
use the spectrum itself and assign each input neuron to a certain part (ppm or Hz range) of 
the spectrum. An ideal format to save and handle spectroscopic data is the IUPAC 
JCAMP-DX data exchange protocol (chapter 4.4).  

As mentioned in the previous section, the spectroscopic data handling can be accomplished 
with the ANN PFG software (chapter 4.9). The software is an indispensable tool for 
generating and reading of JCAMP DX files and for the proper data compression and writing 
of the training and test pattern files. The development of the different versions of the ANN 
PFG and its complimentary subprograms was the major part of this PhD thesis. All 
necessary features needed during this work are included in the final version 0.9. 
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• Which network architecture, learning algorithm and learning parameters lead to optimal 
results? 

The identification of monosaccharides is achievable with the help of multi-layer perceptrons, 
Kohonen feature maps and Counter-propagation networks. The monosaccharide peak list 
can serve directly as inputs to a neural network and does not have to be processed with a 
software tool like the ANN PFG. However, monosaccharide moieties out of disaccharides 
can only be identified with the help of multi-layer perceptrons (MLP) and the Back-
propagation learning algorithm. But the final breakthrough was achieved only with an 
ensemble of at least 20 optimal trained neural networks. Each of these networks acts as a 
little expert and the "opinion" of all experts can then be statistically interpreted. 

 

As demonstrated with all different major approaches, the whole monosaccharide moiety 
recognition problem depends almost exclusively on the underlying dataset. The amount of 
correct literature data sets and the number of modifications are essential for good 
recognition results. Learning parameters have only a minor influence on the performance. 
The network size plays a secondary role, however it is increasing the training time.  

 

• Is an identification of monosaccharide moieties out of saccharide-mixture possible at all? 

As proved in the newest ensemble approach (chapter 5.9), it is possible to identify 
monosaccharide moieties out of 13C-NMR disaccharide spectra with a very high recognition 
rate between 80% and 90%. The trained networks were not optimized at all. The last 
section of the thesis has to be regarded as a proof-of-concept approach only. Andreas 
Stöckli showed in his ongoing PhD thesis, that specific optimized neural networks for e.g. 
fucose recognition can reach monosaccharide moiety identification rates of >95%.  

The limits of the methods are not identifiable yet. No other compounds than disaccharides 
have been tested with the ensemble neural networks. A possible problem could become the 
identification of non-linear (branched) oligosaccharides, if the substitutions are located at 
two adjacent carbon atoms and their effect on the neighboring carbon atoms is 
superimpose. But this is only a hypothesis and can hopefully be disproved. 

The identification of tri- or later oligosaccharides was not an aim of this work. Therefore, the 
only test compounds were isolated mono- and disaccharides. Test with mixtures of different 
carbohydrates or with interfering compounds and ions were not accomplished and will be 
part of future experiments. 

The question whether monosaccharide moieties can be identified out of mixtures could not 
be answered completely. All carried out experiments with ensembles of neural networks 
indicate that the identification is possible.  
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7. Outlook 
 
 
In order to successfully to resume the performed work, the following steps are considered:  

• To avoid problems with disaccharides with two identical monosaccharide units the 
combination approach will be advanced. First results from the PhD thesis of Andreas 
Stöckli are very promising.  

• The algorithm to generate all possible combinations of n peaks will be optimized and 
accelerated. 

• The FileMaker database should be expanded with further carbohydrates like fructose, 
xylose, and rhamnose etc. 

• More literature data for GlcNAc, GlcN, GalNAc and ManNAc should be included into the 
training process of the existing ensembles. 

• Two-fold substituted monosaccharide units will be included int the training process for the 
identification of tri- or oligosaccharides.  

• To gain some insight into the knowledge of the trained networks, methods of feature 
extraction [312-316] should be applied. This will help to understand, what properties or parts of 
a certain 13C-NMR spectrum are important for a correct recognition of the monosaccharide 
moieties. The feature extraction method will also help to develop further data compression 
algorithms and speed up the training and test phases in general. Based on the extracted 
features an optimized network architecture (e.g. with feedback neurons) for each type of 
carbohydrate could possibly be developed. With the knowledge of important or unimportant 
parts of the input layer, this regions can be strengthened or attenuated by activating or 
inhibiting feedback neurons (Figure 20). 

• Finally, all steps of the data preparation, pattern file generation, training and recognition 
process will be unified within one single application. 

• This application will be equipped with a user friendly web interface to offer online access for 
other research institutes united under EuroCarb DB. 
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11. Appendix 
 

11.1. Peak lists of disaccharide test compounds 

11.1.1. Trehalose 

DU=/z, USER=Matthias, NAME=Mar21-2003, EXPNO=10, PROCNO=1 
F1=230.000ppm, F2=-10.000ppm, MI=0.00cm, MAXI=10000.00cm, PC=1.400 
     #     ADDRESS            FREQUENCY         INTENSITY 
                           [Hz]        [PPM] 
     1     18537.1    11764.879      93.5519        18.10 
     2     21250.5     9160.900      72.8456        11.69 
     3     21298.3     9115.061      72.4811        16.76 
     4     21443.8     8975.376      71.3704        13.34 
     5     21620.2     8806.070      70.0241        13.56 
     6     22822.7     7652.064      60.8477        11.58 
     7     26789.8     3844.975      30.5745         4.33 
 

11.1.2. Gentiobiose 

DU=/z, USER=Matthias, NAME=Mar21-2003, EXPNO=20, PROCNO=1 
F1=230.000ppm, F2=-10.000ppm, MI=0.00cm, MAXI=10000.00cm, PC=1.400 
     #     ADDRESS            FREQUENCY         INTENSITY 
                           [Hz]        [PPM] 
     1     17295.7    12956.201     103.0251        14.55 
     2     18175.3    12112.034      96.3124        11.61 
     3     20803.3     9590.095      76.2585        15.58 
     4     20841.1     9553.790      75.9698        18.10 
     5     20939.9     9458.955      75.2157        14.34 
     6     21052.3     9351.135      74.3583         8.12 
     7     21175.6     9232.776      73.4172        13.77 
     8     21630.1     8796.618      69.9489        13.13 
     9     21649.3     8778.212      69.8026        10.88 
    10     21736.5     8694.454      69.1365        10.96 
    11     22795.9     7677.824      61.0525        10.16 
    12     26789.2     3845.588      30.5793        10.04 
 

11.1.3. Lactose 

DU=/z, USER=Matthias, NAME=Mar21-2003, EXPNO=30, PROCNO=1 
F1=230.000ppm, F2=-10.000ppm, MI=0.00cm, MAXI=10000.00cm, PC=1.400 
     #     ADDRESS            FREQUENCY         INTENSITY 
                           [Hz]        [PPM] 
     1     17267.2    12983.592     103.2429        15.02 
     2     18719.0    11590.327      92.1639        10.51 
     3     20475.3     9904.800      78.7610        12.21 
     4     20875.9     9520.402      75.7043        18.10 
     5     21247.1     9164.148      72.8714        16.66 
     6     21392.1     9024.991      71.7649        12.52 
     7     21427.2     8991.291      71.4969        12.94 
     8     21451.0     8968.426      71.3151        15.16 
     9     21564.0     8859.996      70.4529        14.87 
    10     21765.4     8666.732      68.9161        12.27 
    11     22750.5     7721.332      61.3985        13.08 
    12     22895.9     7581.831      60.2892        10.52 
    13     26789.9     3844.835      30.5733        10.41 
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11.1.4. Saccharose 

DU=/z, USER=Matthias, NAME=Mar21-2003, EXPNO=40, PROCNO=1 
F1=230.000ppm, F2=-10.000ppm, MI=0.00cm, MAXI=10000.00cm, PC=1.400 
     #     ADDRESS            FREQUENCY         INTENSITY 
                           [Hz]        [PPM] 
     1     17167.8    13078.979     104.0014        18.10 
     2     18675.1    11632.410      92.4986        16.22 
     3     20091.1    10273.515      81.6929        14.11 
     4     20745.8     9645.195      76.6966        11.24 
     5     21060.7     9343.015      74.2938        12.99 
     6     21245.8     9165.380      72.8812        15.35 
     7     21267.2     9144.867      72.7181        14.61 
     8     21441.3     8977.755      71.3893        13.33 
     9     21685.2     8743.742      69.5285        13.45 
    10     22582.1     7882.967      62.6838        13.29 
    11     22718.9     7751.672      61.6397        12.38 
    12     22879.1     7597.959      60.4174        12.77 
    13     26789.9     3844.867      30.5736         9.58 

11.2. Regula Stingelin compounds 

11.2.1. β-D-pGlc-OMe 

DU=/z, USER=Matthias, NAME=Mar20-2003, EXPNO=10, PROCNO=1 
F1=230.000ppm, F2=-10.000ppm, MI=0.00cm, MAXI=10000.00cm, PC=1.400 
     #     ADDRESS            FREQUENCY         INTENSITY 
                           [Hz]        [PPM] 
     1     17278.8    13078.979     103.9211        16.20 
     2     18851.1     9636.936      76.5718        15.27 
     3     19685.1     9635.589      76.5611        15.08 
     4     20472.8     9286.405      73.7866        12.04 
     5     20773.7     8870.731      70.4838        13.05 
     6     21394.8     7754.071      61.6112        15.85 
     7     21984.2     7259.071      57.6781        14.11 
     8     26789.9     3844.867      30.5736         9.62 
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11.2.2. β-D-pGlc-1-6-β-D-pGlc-OMe 

DU=/z, USER=Matthias, NAME=Mar20-2003, EXPNO=20, PROCNO=1 
F1=230.000ppm, F2=-10.000ppm, MI=0.00cm, MAXI=10000.00cm, PC=1.400 
     #     ADDRESS            FREQUENCY         INTENSITY 
                           [Hz]        [PPM] 
     1     17167.8    13114.467     104.2914        18.01 
     2     18675.1    13052.674     103.7986        15.72 
     3     20091.1     9681.857      76.9929        14.78 
     4     20745.8     9681.064      76.9866        13.14 
     5     21060.7     9543.645      75.8938        10.78 
     6     21245.8     9279.243      73.7912        13.87 
     7     21267.2     9217.236      73.2981        14.61 
     8     21441.3     8928.161      70.9993        13.41 
     9     21685.2     8902.911      70.7985        16.02 
    10     22582.1     7833.445      62.2938        13.44 
    11     22718.9     7368.912      58.5997        12.89 
    12     26789.9     3844.867      30.5736         9.58 
 

11.3. Monosaccharide test files 

FM Ref. = Internal FileMaker 13C-NMR database record number 

11.3.1. Glucose 

Table 54: Detailed composition of the glucose monosaccharide test file 
 

FM Ref. Monosaccharide moiety FM Ref. Monosaccharide moiety FM Ref. Monosaccharide moiety
4 a-D-Glcp-1R 163 a-D-Glcp-OH-6R 798 b-D-Glcp-1R 

19 a-D-Glcp-1R 165 a-D-Glcp-OH-6R 813 b-D-Glcp-1R 

23 a-D-Glcp-1R 167 a-D-Glcp-OH-6R 814 b-D-Glcp-1R 

24 a-D-Glcp-1R 173 a-D-Glcp-OH-6R 831 b-D-Glcp-1R 

42 a-D-Glcp-1R 177 a-D-Glcp-OH-6R 831 b-D-Glcp-1R 

43 a-D-Glcp-1R 179 a-D-Glcp-OH-6R 873 b-D-Glcp-1R 

46 a-D-Glcp-1R 187 a-D-Glcp-OH-6R 874 b-D-Glcp-1R 

51 a-D-Glcp-1R 795 a-D-Glcp-OH-6R 879 b-D-Glcp-1R 

52 a-D-Glcp-1R 797 a-D-Glcp-OH-6R 880 b-D-Glcp-1R 

64 a-D-Glcp-1R 868 a-D-Glcp-OH-6R 881 b-D-Glcp-1R 

65 a-D-Glcp-1R 870 a-D-Glcp-OH-6R 883 b-D-Glcp-1R 

68 a-D-Glcp-1R 874 a-D-Glcp-OH-6R 908 b-D-Glcp-1R 

70 a-D-Glcp-1R 880 a-D-Glcp-OH-6R 909 b-D-Glcp-1R 

77 a-D-Glcp-1R 905 a-D-Glcp-OH-6R 263 b-D-Glcp-OH 

78 a-D-Glcp-1R 265 a-D-Glcp-OMe 272 b-D-Glcp-OH 

79 a-D-Glcp-1R 275 a-D-Glcp-OMe 279 b-D-Glcp-OH 

80 a-D-Glcp-1R 280 a-D-Glcp-OMe 284 b-D-Glcp-OH 

81 a-D-Glcp-1R 300 a-D-Glcp-OMe 406 b-D-Glcp-OH 

96 a-D-Glcp-1R 397 a-D-Glcp-OMe 416 b-D-Glcp-OH 

115 a-D-Glcp-1R 417 a-D-Glcp-OMe 432 b-D-Glcp-OH 

120 a-D-Glcp-1R 433 a-D-Glcp-OMe 438 b-D-Glcp-OH 

123 a-D-Glcp-1R 443 a-D-Glcp-OMe 470 b-D-Glcp-OH 

124 a-D-Glcp-1R 444 a-D-Glcp-OMe 75 b-D-Glcp-OH-2R 

152 a-D-Glcp-1R 11 a-D-Glcp-OMe-2R 83 b-D-Glcp-OH-2R 

155 a-D-Glcp-1R 15 a-D-Glcp-OMe-2R 152 b-D-Glcp-OH-2R 

156 a-D-Glcp-1R 708 a-D-Glcp-OMe-2R 154 b-D-Glcp-OH-2R 

159 a-D-Glcp-1R 13 a-D-Glcp-OMe-3R 788 b-D-Glcp-OH-2R 

160 a-D-Glcp-1R 17 a-D-Glcp-OMe-3R 790 b-D-Glcp-OH-2R 

163 a-D-Glcp-1R 8 a-D-Glcp-OMe-4R 77 b-D-Glcp-OH-3R 
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164 a-D-Glcp-1R 19 a-D-Glcp-OMe-4R 85 b-D-Glcp-OH-3R 

167 a-D-Glcp-1R 21 a-D-Glcp-OMe-4R 156 b-D-Glcp-OH-3R 

168 a-D-Glcp-1R 24 a-D-Glcp-OMe-6R 158 b-D-Glcp-OH-3R 

175 a-D-Glcp-1R 28 a-D-Glcp-OMe-6R 184 b-D-Glcp-OH-3R 

176 a-D-Glcp-1R 67 a-D-Glcp-OMe-6R 792 b-D-Glcp-OH-3R 

177 a-D-Glcp-1R 68 a-D-Glcp-OMe-6R 794 b-D-Glcp-OH-3R 

178 a-D-Glcp-1R 69 a-D-Glcp-OMe-6R 877 b-D-Glcp-OH-3R 

189 a-D-Glcp-1R 70 a-D-Glcp-OMe-6R 79 b-D-Glcp-OH-4R 

190 a-D-Glcp-1R 113 a-D-Glcp-OMe-6R 87 b-D-Glcp-OH-4R 

202 a-D-Glcp-1R 4 b-D-Glcp-1R 160 b-D-Glcp-OH-4R 

203 a-D-Glcp-1R 27 b-D-Glcp-1R 162 b-D-Glcp-OH-4R 

411 a-D-Glcp-1R 28 b-D-Glcp-1R 170 b-D-Glcp-OH-4R 

413 a-D-Glcp-1R 29 b-D-Glcp-1R 172 b-D-Glcp-OH-4R 

581 a-D-Glcp-1R 31 b-D-Glcp-1R 176 b-D-Glcp-OH-4R 

582 a-D-Glcp-1R 31 b-D-Glcp-1R 182 b-D-Glcp-OH-4R 

706 a-D-Glcp-1R 32 b-D-Glcp-1R 186 b-D-Glcp-OH-4R 

746 a-D-Glcp-1R 32 b-D-Glcp-1R 190 b-D-Glcp-OH-4R 

777 a-D-Glcp-1R 33 b-D-Glcp-1R 192 b-D-Glcp-OH-4R 

785 a-D-Glcp-1R 42 b-D-Glcp-1R 194 b-D-Glcp-OH-4R 

788 a-D-Glcp-1R 62 b-D-Glcp-1R 773 b-D-Glcp-OH-4R 

792 a-D-Glcp-1R 63 b-D-Glcp-1R 777 b-D-Glcp-OH-4R 

796 a-D-Glcp-1R 82 b-D-Glcp-1R 779 b-D-Glcp-OH-4R 

851 a-D-Glcp-1R 83 b-D-Glcp-1R 871 b-D-Glcp-OH-4R 

852 a-D-Glcp-1R 84 b-D-Glcp-1R 875 b-D-Glcp-OH-4R 

859 a-D-Glcp-1R 85 b-D-Glcp-1R 881 b-D-Glcp-OH-4R 

868 a-D-Glcp-1R 86 b-D-Glcp-1R 883 b-D-Glcp-OH-4R 

869 a-D-Glcp-1R 87 b-D-Glcp-1R 885 b-D-Glcp-OH-4R 

870 a-D-Glcp-1R 88 b-D-Glcp-1R 910 b-D-Glcp-OH-4R 

871 a-D-Glcp-1R 89 b-D-Glcp-1R 915 b-D-Glcp-OH-4R 

872 a-D-Glcp-1R 100 b-D-Glcp-1R 923 b-D-Glcp-OH-4R 

907 a-D-Glcp-1R 100 b-D-Glcp-1R 928 b-D-Glcp-OH-4R 

932 a-D-Glcp-1R 107 b-D-Glcp-1R 81 b-D-Glcp-OH-6R 

934 a-D-Glcp-1R 108 b-D-Glcp-1R 89 b-D-Glcp-OH-6R 

935 a-D-Glcp-1R 110 b-D-Glcp-1R 164 b-D-Glcp-OH-6R 

955 a-D-Glcp-1R 117 b-D-Glcp-1R 166 b-D-Glcp-OH-6R 

262 a-D-Glcp-OH 118 b-D-Glcp-1R 168 b-D-Glcp-OH-6R 

271 a-D-Glcp-OH 121 b-D-Glcp-1R 174 b-D-Glcp-OH-6R 

278 a-D-Glcp-OH 122 b-D-Glcp-1R 178 b-D-Glcp-OH-6R 

405 a-D-Glcp-OH 124 b-D-Glcp-1R 180 b-D-Glcp-OH-6R 

415 a-D-Glcp-OH 125 b-D-Glcp-1R 188 b-D-Glcp-OH-6R 

437 a-D-Glcp-OH 125 b-D-Glcp-1R 796 b-D-Glcp-OH-6R 

464 a-D-Glcp-OH 153 b-D-Glcp-1R 798 b-D-Glcp-OH-6R 

74 a-D-Glcp-OH-2R 154 b-D-Glcp-1R 867 b-D-Glcp-OH-6R 

82 a-D-Glcp-OH-2R 157 b-D-Glcp-1R 869 b-D-Glcp-OH-6R 

151 a-D-Glcp-OH-2R 158 b-D-Glcp-1R 873 b-D-Glcp-OH-6R 

153 a-D-Glcp-OH-2R 161 b-D-Glcp-1R 879 b-D-Glcp-OH-6R 

787 a-D-Glcp-OH-2R 162 b-D-Glcp-1R 904 b-D-Glcp-OH-6R 

789 a-D-Glcp-OH-2R 165 b-D-Glcp-1R 266 b-D-Glcp-OMe 

76 a-D-Glcp-OH-3R 166 b-D-Glcp-1R 276 b-D-Glcp-OMe 

84 a-D-Glcp-OH-3R 171 b-D-Glcp-1R 281 b-D-Glcp-OMe 

155 a-D-Glcp-OH-3R 172 b-D-Glcp-1R 398 b-D-Glcp-OMe 

157 a-D-Glcp-OH-3R 179 b-D-Glcp-1R 471 b-D-Glcp-OMe 

183 a-D-Glcp-OH-3R 180 b-D-Glcp-1R 12 b-D-Glcp-OMe-2R 

791 a-D-Glcp-OH-3R 185 b-D-Glcp-1R 16 b-D-Glcp-OMe-2R 

793 a-D-Glcp-OH-3R 186 b-D-Glcp-1R 7 b-D-Glcp-OMe-3R 

878 a-D-Glcp-OH-3R 188 b-D-Glcp-1R 14 b-D-Glcp-OMe-3R 
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78 a-D-Glcp-OH-4R 191 b-D-Glcp-1R 18 b-D-Glcp-OMe-3R 

86 a-D-Glcp-OH-4R 192 b-D-Glcp-1R 44 b-D-Glcp-OMe-3R 

159 a-D-Glcp-OH-4R 193 b-D-Glcp-1R 20 b-D-Glcp-OMe-4R 

161 a-D-Glcp-OH-4R 194 b-D-Glcp-1R 22 b-D-Glcp-OMe-4R 

169 a-D-Glcp-OH-4R 200 b-D-Glcp-1R 45 b-D-Glcp-OMe-4R 

171 a-D-Glcp-OH-4R 218 b-D-Glcp-1R 47 b-D-Glcp-OMe-4R 

175 a-D-Glcp-OH-4R 412 b-D-Glcp-1R 48 b-D-Glcp-OMe-4R 

181 a-D-Glcp-OH-4R 413 b-D-Glcp-1R 50 b-D-Glcp-OMe-4R 

185 a-D-Glcp-OH-4R 414 b-D-Glcp-1R 64 b-D-Glcp-OMe-4R 

189 a-D-Glcp-OH-4R 414 b-D-Glcp-1R 65 b-D-Glcp-OMe-4R 

191 a-D-Glcp-OH-4R 429 b-D-Glcp-1R 66 b-D-Glcp-OMe-4R 

193 a-D-Glcp-OH-4R 429 b-D-Glcp-1R 90 b-D-Glcp-OMe-4R 

774 a-D-Glcp-OH-4R 430 b-D-Glcp-1R 195 b-D-Glcp-OMe-4R 

776 a-D-Glcp-OH-4R 430 b-D-Glcp-1R 246 b-D-Glcp-OMe-4R 

778 a-D-Glcp-OH-4R 431 b-D-Glcp-1R 247 b-D-Glcp-OMe-4R 

872 a-D-Glcp-OH-4R 591 b-D-Glcp-1R 249 b-D-Glcp-OMe-4R 

876 a-D-Glcp-OH-4R 599 b-D-Glcp-1R 815 b-D-Glcp-OMe-4R 

882 a-D-Glcp-OH-4R 677 b-D-Glcp-1R 832 b-D-Glcp-OMe-4R 

886 a-D-Glcp-OH-4R 773 b-D-Glcp-1R 9 b-D-Glcp-OMe-6R 

911 a-D-Glcp-OH-4R 774 b-D-Glcp-1R 30 b-D-Glcp-OMe-6R 

916 a-D-Glcp-OH-4R 786 b-D-Glcp-1R 35 b-D-Glcp-OMe-6R 

929 a-D-Glcp-OH-4R 786 b-D-Glcp-1R 813 b-D-Glcp-OMe-6R 

80 a-D-Glcp-OH-6R 790 b-D-Glcp-1R   

88 a-D-Glcp-OH-6R 794 b-D-Glcp-1R   
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11.3.2. Galactose 

Table 55: Detailed composition of the galactose monosaccharide test file 
 

FM Ref. Monosaccharide moiety FM Ref. Monosaccharide moiety FM Ref. Monosaccharide moiety 
1 a-D-Galp-1R 630 a-D-Galp-OMe-3R 767 b-D-Galp-1R 

39 a-D-Galp-1R 814 a-D-Galp-OMe-3R 768 b-D-Galp-1R 

40 a-D-Galp-1R 120 a-D-Galp-OMe-4R 778 b-D-Galp-1R 

41 a-D-Galp-1R 122 a-D-Galp-OMe-4R 779 b-D-Galp-1R 

49 a-D-Galp-1R 816 a-D-Galp-OMe-4R 806 b-D-Galp-1R 

98 a-D-Galp-1R 23 a-D-Galp-OMe-6R 808 b-D-Galp-1R 

603 a-D-Galp-1R 27 a-D-Galp-OMe-6R 815 b-D-Galp-1R 

662 a-D-Galp-1R 37 a-D-Galp-OMe-6R 817 b-D-Galp-1R 

689 a-D-Galp-1R 41 a-D-Galp-OMe-6R 903 b-D-Galp-1R 

721 a-D-Galp-1R 55 a-D-Galp-OMe-6R 928 b-D-Galp-1R 

724 a-D-Galp-1R 427 a-D-Galp-OMe-6R 929 b-D-Galp-1R 

763 a-D-Galp-1R 428 a-D-Galp-OMe-6R 939 b-D-Galp-1R 

804 a-D-Galp-1R 6 b-D-Galp-1R 940 b-D-Galp-1R 

807 a-D-Galp-1R 7 b-D-Galp-1R 941 b-D-Galp-1R 

816 a-D-Galp-1R 8 b-D-Galp-1R 961 b-D-Galp-1R 

832 a-D-Galp-1R 9 b-D-Galp-1R 962 b-D-Galp-1R 

887 a-D-Galp-1R 10 b-D-Galp-1R 964 b-D-Galp-1R 

904 a-D-Galp-1R 34 b-D-Galp-1R 965 b-D-Galp-1R 

905 a-D-Galp-1R 35 b-D-Galp-1R 968 b-D-Galp-1R 

917 a-D-Galp-1R 37 b-D-Galp-1R 969 b-D-Galp-1R 

918 a-D-Galp-1R 44 b-D-Galp-1R 1021 b-D-Galp-1R 

919 a-D-Galp-1R 45 b-D-Galp-1R 1022 b-D-Galp-1R 

920 a-D-Galp-1R 47 b-D-Galp-1R 295 b-D-Galp-OH 

966 a-D-Galp-1R 48 b-D-Galp-1R 488 b-D-Galp-OH 

967 a-D-Galp-1R 54 b-D-Galp-1R 242 b-D-Galp-OH-3R 

435 a-D-Galp-OH 55 b-D-Galp-1R 765 b-D-Galp-OH-3R 

482 a-D-Galp-OH 56 b-D-Galp-1R 853 b-D-Galp-OH-3R 

766 a-D-Galp-OH-3R 59 b-D-Galp-1R 855 b-D-Galp-OH-3R 

854 a-D-Galp-OH-3R 60 b-D-Galp-1R 857 b-D-Galp-OH-3R 

856 a-D-Galp-OH-3R 61 b-D-Galp-1R 862 b-D-Galp-OH-3R 

858 a-D-Galp-OH-3R 71 b-D-Galp-1R 863 b-D-Galp-OH-3R 

864 a-D-Galp-OH-3R 72 b-D-Galp-1R 865 b-D-Galp-OH-3R 

866 a-D-Galp-OH-3R 90 b-D-Galp-1R 906 b-D-Galp-OH-3R 

981 a-D-Galp-OH-3R 97 b-D-Galp-1R 982 b-D-Galp-OH-3R 

984 a-D-Galp-OH-3R 99 b-D-Galp-1R 983 b-D-Galp-OH-3R 

986 a-D-Galp-OH-4R 105 b-D-Galp-1R 907 b-D-Galp-OH-4R 

768 a-D-Galp-OH-6R 106 b-D-Galp-1R 985 b-D-Galp-OH-4R 

988 a-D-Galp-OH-6R 195 b-D-Galp-1R 767 b-D-Galp-OH-6R 

998 a-D-Galp-OH-6R 196 b-D-Galp-1R 987 b-D-Galp-OH-6R 

282 a-D-Galp-OMe 247 b-D-Galp-1R 997 b-D-Galp-OH-6R 

282 a-D-Galp-OMe 248 b-D-Galp-1R 214 b-D-Galp-OMe 

299 a-D-Galp-OMe 259 b-D-Galp-1R 283 b-D-Galp-OMe 

299 a-D-Galp-OMe 564 b-D-Galp-1R 301 b-D-Galp-OMe 

399 a-D-Galp-OMe 564 b-D-Galp-1R 301 b-D-Galp-OMe 

399 a-D-Galp-OMe 571 b-D-Galp-1R 400 b-D-Galp-OMe 

454 a-D-Galp-OMe 572 b-D-Galp-1R 400 b-D-Galp-OMe 

454 a-D-Galp-OMe 574 b-D-Galp-1R 489 b-D-Galp-OMe 

483 a-D-Galp-OMe 575 b-D-Galp-1R 489 b-D-Galp-OMe 

483 a-D-Galp-OMe 576 b-D-Galp-1R 817 b-D-Galp-OMe-2R 

288 a-D-Galp-OMe-2R 577 b-D-Galp-1R 833 b-D-Galp-OMe-2R 

40 a-D-Galp-OMe-3R 583 b-D-Galp-1R 97 b-D-Galp-OMe-3R 
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54 a-D-Galp-OMe-3R 589 b-D-Galp-1R 25 b-D-Galp-OMe-6R 

119 a-D-Galp-OMe-3R 623 b-D-Galp-1R 29 b-D-Galp-OMe-6R 

121 a-D-Galp-OMe-3R 686 b-D-Galp-1R 98 b-D-Galp-OMe-6R 

290 a-D-Galp-OMe-3R 725 b-D-Galp-1R 99 b-D-Galp-OMe-6R 

391 a-D-Galp-OMe-3R 765 b-D-Galp-1R 105 b-D-Galp-OMe-6R 

392 a-D-Galp-OMe-3R 766 b-D-Galp-1R 106 b-D-Galp-OMe-6R 
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11.3.3. Mannose 

Table 56: Detailed composition of the mannose monosaccharide test file 
 
FM Ref. Monosaccharide moiety FM Ref. Monosaccharide moiety FM Ref. Monosaccharide moiety 

3 a-D-Manp-1R 826 a-D-Manp-1R 394 a-D-Manp-OMe-3R 

3 a-D-Manp-1R 853 a-D-Manp-1R 431 a-D-Manp-OMe-3R 

36 a-D-Manp-1R 854 a-D-Manp-1R 738 a-D-Manp-OMe-3R 

39 a-D-Manp-1R 855 a-D-Manp-1R 824 a-D-Manp-OMe-3R 

50 a-D-Manp-1R 856 a-D-Manp-1R 848 a-D-Manp-OMe-3R 

51 a-D-Manp-1R 888 a-D-Manp-1R 93 a-D-Manp-OMe-4R 

53 a-D-Manp-1R 910 a-D-Manp-1R 103 a-D-Manp-OMe-4R 

91 a-D-Manp-1R 911 a-D-Manp-1R 739 a-D-Manp-OMe-4R 

92 a-D-Manp-1R 912 a-D-Manp-1R 825 a-D-Manp-OMe-4R 

93 a-D-Manp-1R 925 a-D-Manp-1R 36 a-D-Manp-OMe-6R 

94 a-D-Manp-1R 930 a-D-Manp-1R 94 a-D-Manp-OMe-6R 

101 a-D-Manp-1R 978 a-D-Manp-1R 104 a-D-Manp-OMe-6R 

102 a-D-Manp-1R 1038 a-D-Manp-1R 253 a-D-Manp-OMe-6R 

103 a-D-Manp-1R 1042 a-D-Manp-1R 740 a-D-Manp-OMe-6R 

104 a-D-Manp-1R 293 a-D-Manp-OH 826 a-D-Manp-OMe-6R 

111 a-D-Manp-1R 439 a-D-Manp-OH 114 b-D-Manp-1R 

112 a-D-Manp-1R 441 a-D-Manp-OH 857 b-D-Manp-1R 

113 a-D-Manp-1R 476 a-D-Manp-OH 858 b-D-Manp-1R 

253 a-D-Manp-1R 287 a-D-Manp-OH-2R 859 b-D-Manp-1R 

254 a-D-Manp-1R 418 a-D-Manp-OH-2R 860 b-D-Manp-1R 

254 a-D-Manp-1R 420 a-D-Manp-OH-2R 861 b-D-Manp-1R 

255 a-D-Manp-1R 912 a-D-Manp-OH-2R 913 b-D-Manp-1R 

255 a-D-Manp-1R 925 a-D-Manp-OH-2R 914 b-D-Manp-1R 

256 a-D-Manp-1R 930 a-D-Manp-OH-2R 919 b-D-Manp-1R 

256 a-D-Manp-1R 931 a-D-Manp-OH-2R 920 b-D-Manp-1R 

257 a-D-Manp-1R 1045 a-D-Manp-OH-2R 921 b-D-Manp-1R 

257 a-D-Manp-1R 909 a-D-Manp-OH-4R 922 b-D-Manp-1R 

257 a-D-Manp-1R 913 a-D-Manp-OH-4R 923 b-D-Manp-1R 

258 a-D-Manp-1R 917 a-D-Manp-OH-4R 924 b-D-Manp-1R 

258 a-D-Manp-1R 921 a-D-Manp-OH-4R 926 b-D-Manp-1R 

258 a-D-Manp-1R 926 a-D-Manp-OH-4R 927 b-D-Manp-1R 

567 a-D-Manp-1R 741 a-D-Manp-OH-6R 979 b-D-Manp-1R 

568 a-D-Manp-1R 297 a-D-Manp-OMe 980 b-D-Manp-1R 

569 a-D-Manp-1R 407 a-D-Manp-OMe 440 b-D-Manp-OH 

570 a-D-Manp-1R 434 a-D-Manp-OMe 442 b-D-Manp-OH 

573 a-D-Manp-1R 477 a-D-Manp-OMe 480 b-D-Manp-OH 

573 a-D-Manp-1R 53 a-D-Manp-OMe-2R 419 b-D-Manp-OH-2R 

576 a-D-Manp-1R 91 a-D-Manp-OMe-2R 421 b-D-Manp-OH-2R 

577 a-D-Manp-1R 101 a-D-Manp-OMe-2R 908 b-D-Manp-OH-4R 

582 a-D-Manp-1R 111 a-D-Manp-OMe-2R 914 b-D-Manp-OH-4R 

595 a-D-Manp-1R 115 a-D-Manp-OMe-2R 918 b-D-Manp-OH-4R 

596 a-D-Manp-1R 117 a-D-Manp-OMe-2R 922 b-D-Manp-OH-4R 

597 a-D-Manp-1R 737 a-D-Manp-OMe-2R 927 b-D-Manp-OH-4R 

597 a-D-Manp-1R 823 a-D-Manp-OMe-2R 849 b-D-Manp-OH-6R 

627 a-D-Manp-1R 33 a-D-Manp-OMe-3R 408 b-D-Manp-OMe 

627 a-D-Manp-1R 52 a-D-Manp-OMe-3R 116 b-D-Manp-OMe-2R 

699 a-D-Manp-1R 92 a-D-Manp-OMe-3R 118 b-D-Manp-OMe-2R 

823 a-D-Manp-1R 102 a-D-Manp-OMe-3R 594 b-D-Manp-OMe-2R 

824 a-D-Manp-1R 112 a-D-Manp-OMe-3R 10 b-D-Manp-OMe-4R 

825 a-D-Manp-1R 393 a-D-Manp-OMe-3R   
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11.4. GAM disaccharide test file 

Table 57: Detailed composition of the GAM disaccharide test file 
 
a-D-Galp-1-1-a-D-Galp a-D-Glcp-1-4-a-D-Galp-OMe b-D-Galp-1-3-a-D-Galp b-D-Glcp-1-3-a-D-Galp-OMe 

a-D-Galp-1-3-a-D-Galp-OMe a-D-Glcp-1-4-a-D-Glcp b-D-Galp-1-3-a-D-Galp-OMe b-D-Glcp-1-3-a-D-Glcp 

a-D-Galp-1-4-a-D-Galp-OMe a-D-Glcp-1-4-a-D-Glcp b-D-Galp-1-3-b-D-Galp b-D-Glcp-1-3-a-D-Glcp 

a-D-Galp-1-4-a-D-Galp-OMe a-D-Glcp-1-4-a-D-Glcp b-D-Galp-1-3-b-D-Galp b-D-Glcp-1-3-a-D-Glcp 

a-D-Galp-1-4-b-D-Galp-OMe a-D-Glcp-1-4-a-D-Glcp-OMe b-D-Galp-1-3-b-D-Galp-OMe b-D-Glcp-1-3-a-D-Glcp 

a-D-Galp-1-4-b-D-Glcp a-D-Glcp-1-4-b-D-Galp b-D-Galp-1-3-b-D-Galp-OMe b-D-Glcp-1-3-a-D-Glcp-OMe 

a-D-Galp-1-4-b-D-Glcp-OMe a-D-Glcp-1-4-b-D-Glcp b-D-Galp-1-3-b-D-Glcp-OMe b-D-Glcp-1-3-a-D-Manp-OMe 

a-D-Galp-1-6-a-D-Galp-OMe a-D-Glcp-1-4-b-D-Glcp b-D-Galp-1-4-a-D-Glc b-D-Glcp-1-3-a-D-Manp-OMe 

a-D-Galp-1-6-a-D-Glcp a-D-Glcp-1-4-b-D-Glcp b-D-Galp-1-4-a-D-Glcp b-D-Glcp-1-3-b-D-Glcp 

a-D-Galp-1-6-a-D-Glcp a-D-Glcp-1-4-b-D-Glcp-OMe b-D-Galp-1-4-b-D-Galp-OMe b-D-Glcp-1-3-b-D-Glcp 

a-D-Galp-1-6-b-D-Galp-OMe a-D-Glcp-1-4-b-D-Glcp-OMe b-D-Galp-1-4-b-D-Glcp b-D-Glcp-1-3-b-D-Glcp 

a-D-Galp-1-6-b-D-Glcp a-D-Glcp-1-6-a-D-Galp-OMe b-D-Galp-1-4-b-D-Glcp b-D-Glcp-1-3-b-D-Glcp 

a-D-Galp-1-6-b-D-Glcp a-D-Glcp-1-6-a-D-Glcp b-D-Galp-1-4-b-D-Glcp-OMe b-D-Glcp-1-3-b-D-Glcp-OMe 

a-D-Glcp-1-1-a-D-Glcp a-D-Glcp-1-6-a-D-Glcp b-D-Galp-1-4-b-D-Glcp-OMe b-D-Glcp-1-4-a-D-Galp-OMe 

a-D-Glcp-1-1-a-D-Glcp a-D-Glcp-1-6-a-D-Glcp b-D-Galp-1-4-b-D-Glcp-OMe b-D-Glcp-1-4-a-D-Glcp 

a-D-Glcp-1-1-a-D-Glcp a-D-Glcp-1-6-a-D-Glcp-OMe b-D-Galp-1-4-b-D-Glcp-OMe b-D-Glcp-1-4-a-D-Glcp 

a-D-Glcp-1-1-a-D-Glcp a-D-Glcp-1-6-a-D-Glcp-OMe b-D-Galp-1-4-b-D-Glcp-OMe b-D-Glcp-1-4-a-D-Glcp 

a-D-Glcp-1-1-a-D-Glcp a-D-Glcp-1-6-b-D-Galp-OMe b-D-Galp-1-4-b-D-Glcp-OMe b-D-Glcp-1-4-a-D-Glcp-OMe 

a-D-Glcp-1-1-b-D-Glcp a-D-Glcp-1-6-b-D-Glcp b-D-Galp-1-6-a-D-Galp b-D-Glcp-1-4-a-D-Manp 

a-D-Glcp-1-2-a-D-Glcp a-D-Glcp-1-6-b-D-Glcp b-D-Galp-1-6-a-D-Galp-OMe b-D-Glcp-1-4-b-D-Glcp 

a-D-Glcp-1-2-a-D-Glcp a-D-Glcp-1-6-b-D-Glcp b-D-Galp-1-6-a-D-Galp-OMe b-D-Glcp-1-4-b-D-Glcp 

a-D-Glcp-1-2-a-D-Glcp a-D-Glcp-1-6-b-D-Glcp-OMe b-D-Galp-1-6-b-D-Galp b-D-Glcp-1-4-b-D-Glcp 

a-D-Glcp-1-2-a-D-Glcp a-D-Manp-1-1-a-D-Galp b-D-Galp-1-6-b-D-Galp-OMe b-D-Glcp-1-4-b-D-Glcp-OMe 

a-D-Glcp-1-2-a-D-Glcp-OMe a-D-Manp-1-1-a-D-Manp b-D-Galp-1-6-b-D-Galp-OMe b-D-Glcp-1-4-b-D-Manp 

a-D-Glcp-1-2-a-D-Manp-OMe a-D-Manp-1-2-a-D-Manp b-D-Galp-1-6-b-D-Galp-OMe b-D-Glcp-1-6-a-D-Galp-OMe 

a-D-Glcp-1-2-b-D-Glcp a-D-Manp-1-2-a-D-Manp-OMe b-D-Galp-1-6-b-D-Glcp-OMe b-D-Glcp-1-6-a-D-Glcp 

a-D-Glcp-1-2-b-D-Glcp a-D-Manp-1-2-a-D-Manp-OMe b-D-Galp-1-6-b-D-Glcp-OMe b-D-Glcp-1-6-a-D-Glcp 

a-D-Glcp-1-2-b-D-Glcp a-D-Manp-1-2-a-D-Manp-OMe b-D-Glcp-1-1-a-D-Glcp b-D-Glcp-1-6-a-D-Glcp 

a-D-Glcp-1-2-b-D-Glcp a-D-Manp-1-2-a-D-Manp-OMe b-D-Glcp-1-1-a-D-Glcp b-D-Glcp-1-6-a-D-Glcp 

a-D-Glcp-1-2-b-D-Glcp-OMe a-D-Manp-1-2-a-D-Manp-OMe b-D-Glcp-1-1-a-D-Glcp b-D-Glcp-1-6-a-D-Glcp-OMe 

a-D-Glcp-1-2-b-D-Manp-OMe a-D-Manp-1-3-a-D-Manp-OMe b-D-Glcp-1-1-b-D-Glcp b-D-Glcp-1-6-b-D-Galp-OMe 

a-D-Glcp-1-3-a-D-Galp-OMe a-D-Manp-1-3-a-D-Manp-OMe b-D-Glcp-1-1-b-D-Glcp b-D-Glcp-1-6-b-D-Glcp 

a-D-Glcp-1-3-a-D-Glcp a-D-Manp-1-3-a-D-Manp-OMe b-D-Glcp-1-2-a-D-Glcp b-D-Glcp-1-6-b-D-Glcp 

a-D-Glcp-1-3-a-D-Glcp a-D-Manp-1-3-a-D-Manp-OMe b-D-Glcp-1-2-a-D-Glcp b-D-Glcp-1-6-b-D-Glcp 

a-D-Glcp-1-3-a-D-Glcp a-D-Manp-1-4-a-D-Manp-OMe b-D-Glcp-1-2-a-D-Glcp b-D-Glcp-1-6-b-D-Glcp 

a-D-Glcp-1-3-a-D-Glcp a-D-Manp-1-4-a-D-Manp-OMe b-D-Glcp-1-2-a-D-Glcp-OMe b-D-Glcp-1-6-b-D-Glcp-OMe 

a-D-Glcp-1-3-a-D-Glcp-OMe a-D-Manp-1-4-a-D-Manp-OMe b-D-Glcp-1-2-a-D-Glcp-OMe b-D-Glcp-1-6-b-D-Glcp-OMe 

a-D-Glcp-1-3-a-D-Manp-OMe a-D-Manp-1-4-b-D-Glcp-OMe b-D-Glcp-1-2-a-D-Manp-OMe b-D-Manp-1-2-b-D-Manp-OMe 

a-D-Glcp-1-3-b-D-Galp a-D-Manp-1-6-a-D-Glcp-OMe b-D-Glcp-1-2-b-D-Glcp b-D-Manp-1-4-a-D-Glcp 

a-D-Glcp-1-3-b-D-Glcp a-D-Manp-1-6-a-D-Manp-OMe b-D-Glcp-1-2-b-D-Glcp b-D-Manp-1-4-a-D-Manp 

a-D-Glcp-1-3-b-D-Glcp a-D-Manp-1-6-a-D-Manp-OMe b-D-Glcp-1-2-b-D-Glcp b-D-Manp-1-4-b-D-Glcp 

a-D-Glcp-1-3-b-D-Glcp a-D-Manp-1-6-a-D-Manp-OMe b-D-Glcp-1-2-b-D-Glcp-OMe b-D-Manp-1-4-b-D-Manp 

a-D-Glcp-1-3-b-D-Glcp a-D-Manp-1-6-a-D-Manp-OMe b-D-Glcp-1-2-b-D-Manp-OMe b-D-Manp-1-6-a-D-Glcp-OMe 

a-D-Glcp-1-3-b-D-Glcp-OMe b-D-Galp-1-2-b-D-Galp-OMe b-D-Glcp-1-3-a-D-Galp-OMe  
 



Curriculum Vitae 
 

 
Matthias Dominik Studer-Imwinkelried 

eidg. dipl. pharm 

 
 

 

 

 

 

 

Born: 11th June 1974 in Basel 

 

 

 

 

 

 

 

 

 

 

 

 



 

   

 
 
May 2005 – May 2006 

 
 
 
 
 
 
 
September 2005 
 
January 2001- May 2005 

 
 
 
 
 
   
 
November 2000 
 
  
 
 
 
 
 
 
1994 – 2000 
 
December 1993 
 
 
  
2000 – 2004 
 
 
 
2000 – 2003 
 
 
 
 
since 2000 
 
 
 

 
 

Postdoctoral fellow Bioinformatics / Chemoinformatics
University of Basel 

Design Studies related to the development of distributed, Web-
based European carbohydrate databases (EUROCarbDB)  
www.eurocarbdb.org 
 

 
Education 
 

Ph.D. exam (magna cum laude) 
 

Ph.D. thesis - University of Basel 

 
In the filed of Bioinformatics (Artificial Neural Networks / 
Pharmaceutical Chemistry / NMR spectroscopy / Carbohydrates) 
In the group of Prof. Beat Ernst – Institute of Molecular Pharmacy 
 
Title  "NeuroCarb - Artificial Neural Networks for NMR Structure 
 Elucidation of Oligosaccharides"   www.neurocarb.ch  

 
Swiss federal diploma in pharmacy 

 
Diploma work 

 
Focused on molecular modeling - In the group of Prof. Beat Ernst 
 
Title "Homology Modeling und Molecular Dynamics Studien 
  von E-Selectin" 

 
Pharmacy studies - University of Basel 

  
Federal maturity exam (economics) - Grammar school Liestal 

 
Teaching experience 
 

Supervision of undergraduate students 
Molecular modeling for students of 
pharmaceutical sciences 

Prof. Beat Ernst
Prof. Angelo Vedani

 
Lectures 
"Homology Modeling"  
In the context of the lecture course 
"Advanced Molecular Modeling" 

Prof. Angelo Vedani
Biographics Laboratory 3R

 
Computer administrator 
- Responsible for IT infrastructure of the 
 Institute of Molecular Pharmacy 
- Further training courses and seminars for 
 students, graduate student and postdocs. 

Pof. Beat Ernst

 



 

   

 
 
2004 - 2005 
 
 
 
 

 
 
 
1994 
 
 
   
 
 
 
 
1997 – 1998 
 
 
 
1998 
 

 
 
 
since 1990 
 
 
 
 
 
 
 
 
 
 
 
 

Further university training 
 

"venture challenge"  
venturelab FJ Institut für Jungunternehmen 
Semester course in 
entrepreneurship (~60 lectures) 

Company analysis, marketing,  
communication, sales, law 

financing and business plans

 
Internships 
 

F. Hoffmann-La Roche AG, Basel - Solida POMF-IP 
In process control of solid drug 
formulations 

Dr. Werner Erni (interpharma)
Dr. Gregor Wolany 

 
 
Work experience 

 

F. Hoffmann-La Roche AG, Basel - Liquida  PTFP-IP 
- In process control of i.v. formulations 
- Qualification of high sterile production 
 lines (class 100) 
- Validation and documentation of 
 computer systems 
- Documentation of computer systems 
- Collaboration in a GMP-laboratory 

Dr. Werner Erni 
(interpharma) 

Dr. Gregor Wolany  

 
1996 – 1997 
 
 
 
 
 
 

Adler Apotheke Liestal & Apotheke Bubendorf  

Pharmacist H.J. & U. Studer-Schweizer 

Birs Apotheke Birsfelden 
Internship in a public pharmacy 
during pharmacy studies 

Ursula Refardt 

  
Kantonsspital Bruderholz 
Clinical internship Dr. Hans-Martin Grünig 



 

   

 Language and computer skills 
 

Languages German 
English 
French 

mother tongue 
fluent (oral and written) 
good knowledge 

  
Computer Skills 
 

UNIX (SGI IRIX) * 
Linux (RedHat 7 - 9 ES/WS) * 
Mac OS X* 
Windows (all versions) * 
 
Apache Web Server*, IIS Web Server, 
Samba File Server*, SSH*/SFTP/VPN,  
FileMaker Server*, MySQL 

Software 
 
- Molecular Modeling 

 
 
Tripos SYBYL* 
Schroedinger Macromodel 
Biograf: Yeti, PrGen, Quasar 

- Neural Networks SNNS*, JavaNNS*,  
(Statsoft Statistica) * 

- NMR Bruker XWIN-NMR 
- Data analysis software Statsoft Statistica 
- Office Microsoft Office (incl. Visio)* 
- Development platforms Microsoft Visual Studio 

Eclipse 
-  Chemistry SciFinder Scholar 

Beilstein Crossfire 
 
Web Technologies XML/HTML*, PHP, CDML* 
  
Web Development Tools Macromedia Dreamweaver* 

Macromedia Fireworks* 
  
Programming languages Visual Basic .NET 
 C++ 

 
    * High degree of proficiency 
 
 

 

 

 

 

 

 
 

 
 



 

   

 
 
Januar 2006 
 
 
 
 
Summer 2006 
 

Publications 
 

Bioinformatics for Glycobiology and Glycomics (Wiley – in press) 
Dr. Claus-Wilhelm von der Lieth (DKFZ Heidelberg) 

Chapter :  Neural Networks for structure elucidation of   
 oligosaccharides 

Publication in preparation (Journal of Organic Chemistry): 
Artificial neural networks for NMR structure elucidation of 
disaccharides / M. Studer, A. Stoeckli and B. Ernst  

 
Posters & Public lectures 
 

Posters: 

-  2002 World Congress on Computational Intelligence 
 Honolulu, Hawaii (Mai 2002) 
- Swiss Chemical Society - Fall Meeting, Lausanne 
 (October 2003) 
 
Public lectures: 

- DKFZ, Heidelberg (April 2005) 
- Bijvoet Center for Biomolecular Research, Utrecht 
 (December 2005) 
- Computer Chemistry Center, Erlangen (December 2005) 

 

 

 

 

 

 

Basel, 2006 
 
 
 
 
M. Studer 
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