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I	

Summary	

Plasmodium	falciparum,	the	causative	agent	of	malaria,	is	responsible	for	over	half	a	million	

deaths	each	year	and	approximately	50%	of	the	world	population	 lives	 in	malaria	endemic	

areas.	 Despite	 strategies	 to	 reduce	 the	 burden	 of	 infection	 like	 transmission	 control	 and	

development	of	drugs	and	vaccines,	malaria	remains	a	major	public	health	concern.		

A	characteristic	of	P.	falciparum	infected	red	blood	cells	(iRBC)	is	the	ability	to	avoid	splenic	

clearance	 by	 adhering	 to	 the	 vascular	 endothelium.	 This	 pathologic	 feature	 is	 a	 major	

contributor	to	the	severity	of	malaria	tropica	and	as	a	consequence	of	the	cytoadherence	of	

iRBCs,	 a	 high	 number	 of	 parasites	 are	 sequestered	 to	 different	 tissues	 leading	 to	 vascular	

occlusion	 and	 inflammation.	 The	 major	 ligand	 for	 this	 cytoadhesion	 is	 the	 P.	 falciparum	

erythrocyte	membrane	protein	1	(PfEMP1),	anchored	in	the	erythrocyte	membrane	in	knob	

structures.	The	semi-conserved	 intracellular	acidic	 terminal	segment	 (ATS)	domain	anchors	

PfEMP1	 to	 the	 host	 cell,	 whereas	 the	 highly	 variable	 ectodomain	 is	 responsible	 for	

endothelial	receptor	binding	of	iRBCs.	Recently,	the	ATS	domain	of	PfEMP1	was	found	to	be	

a	conserved	protein	 interaction	epitope	and	was	shown	to	 interact	 in	vitro	with	 the	PHIST	

domain	 of	 PFI1780w,	 a	 member	 of	 the	 Plasmodium	 helical	 interspersed	 sub-telomeric	

(PHIST)	protein	family.	The	initial	identification	of	this	large	gene	family	counted	72	paralogs	

in	 P.	 falciparum,	 which	 are	 organized	 into	 three	 subgroups	 (PHISTa,	 PHISTb,	 PHISTc).	 All	

PHIST	proteins	contain	a	conserved	domain	of	approximately	150	amino	acids,	predicted	to	

consist	of	four	consecutive	alpha	helices.	It	is	proposed	that	PHIST	domains	facilitate	protein	

interactions	 and	 that	 the	 semi-conserved	 ATS	 epitope	 may	 be	 involved	 in	 the	 parasite`s	

cytoadherence.			

To	date,	 little	 is	known	about	the	role	of	PHIST	proteins	but	recent	data	 indicate	that	they	

might	be	 implicated	 in	knob	formation,	 in	altered	host	cell	 rigidity,	 in	 transport	of	PfEMP1	

and	 in	 adhesion	of	 iRBCs	 in	 the	brain	microvasculature.	Moreover,	members	of	 the	PHIST	

family	were	found	to	 localize	to	the	 iRBC	periphery,	to	bind	to	cytoskeletal	components	of	

the	 host	 cell,	 and	 were	 found	 in	 detergent-resistant	 membrane	 fractions	 indicating	 an	

important	role	of	PHIST	proteins	in	host	cell	refurbishment.		

The	 aim	of	 this	 thesis	was	 to	 gain	 insight	 into	 the	 functional	 role	 of	 a	 subset	 of	 exported	

PHIST	proteins	with	a	 focus	on	PFE1605w,	a	protein	of	 the	PHISTb	subclass	which	showed	

significant	 higher	 binding	 affinity	 to	 PfEMP1	 than	 PFI1780w.	 By	 immunofluorescence	 and	
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immunoelectron	microscopy	we	were	able	 to	show	that	PFE1605w	 is	exported	 to	 the	RBC	

membrane,	 co-migrates	 with	 PfEMP1	 and	 localizes	 to	 knobs.	 NMR	 and	 fluorescence	

polarization	experiments	revealed	that	its	PHIST	domain	binds	directly	to	the	C-terminus	of	

the	ATS.	Polarization	experiments	using	PFE1605w	and	a	set	of	ATS	domains	from	different	

PfEMP1	molecules	showed	substantial	variation	in	affinity	across	the	different	ATS	domains,	

suggesting	 that	 different	 PHIST	 proteins	 might	 have	 been	 optimized	 for	 interacting	 with	

different	PfEMP1	variants.	Moreover,	 in	collaboration	we	resolved	the	first	crystallographic	

structure	of	 a	 PHIST	domain	 and	derived	a	partial	model	 of	 the	PHIST-PfEMP1	 interaction	

from	nuclear	magnetic	resonance	measures.		

Inducible	 down	 regulation	 of	 PFE1605w	 levels	 using	 the	 FKBP	 destabilisation	 domain	 but	

also	 controlled	 tethering	 at	Maurer’s	 clefts	with	 the	 knocksideways	 technique	 resulted	 in	

absence	of	PFE1605w	in	knobs	and	 led	to	strongly	reduced	adhesion	properties	of	 iRBC	to	

the	 endothelial	 receptor	 CD36.	 To	 assess	 the	 specific	 selection	 of	 a	 PHIST	 protein	 for	 a	

particular	PfEMP1	molecule,	we	selected	 iRBCs	through	binding	to	different	host	receptors	

thus	 selectively	 switching	 to	different	PfEMP1	molecules.	 	 Interestingly,	 adhesion	 to	other	

endothelial	 receptors	 was	 less	 affected	 or	 even	 unaltered	 by	 PFE1605w	 depletion,	

suggesting	 that	 PFE1605w	 is	 optimized	 for	 a	 particular	 subset	 of	 PfEMP1	 molecules.	

Moreover,	 absence	 of	 PFE1605w	 in	 knobs	 did	 not	 ablate	 PfEMP1	 surface	 exposure,	 thus	

suggesting	no	role	of	PFE1605w	in	PfEMP1	transport.		

Co-immunoprecipitation	 (Co-IP)	 assays	 with	 two	 constructs	 which	 covered	 only	 the	 C-

terminal	ATS	fragment	of	each	of	the	two	main	subtypes	of	PfEMP1	molecules	but	lacked	a	

TM	domain	allowed	the	determination	of	any	in	vivo	interaction	of	PFE1605w	with	both	ATS-

C	 fragments.	 In	 a	 next	 step,	 Co-IP	 experiments	 with	 the	 full-length	 PFE1605w-HA	 fusion	

protein	revealed	a	small	number	of	host	integral	membrane	proteins	and	components	of	the	

erythrocyte	 cytoskeleton	 as	 putative	 protein	 interaction	 partners	 of	 PFE1605w.	 These	

findings	 allowed	 us	 to	 perform	 reverse	 Co-IP	 experiments	with	 specific	 antibodies	 against	

several	of	the	detected	host	cell	proteins.	Reverse	Co-IP	experiments	with	antibodies	against	

band	4.2	identified	other	components	of	the	band	3	complex,	including	band	3,	band	4.2	and	

α-	 and	 β-chains	 of	 spectrin,	 and	 ankyrin	 but	 no	 other	 P.	 falciparum	 protein	 except	

PFE1605w,	 clearly	 suggesting	 that	 PFE1605w	 interacts	with	one	or	 several	 components	 of	
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the	band	3	 complex.	 From	 this,	 it	would	be	possible	 to	map	 the	exact	 interaction	epitope	

where	PFE1605w	is	interacting	with	the	band	3	complex.	

On	 a	 side-line	 of	 this	 project	 we	 investigated	 the	 var	 gene	 expression	 and	 binding	

phenotypes	of	3D7	parasites	 selected	 to	bind	 to	 ICAM-1	and	 showed	 that	 ICAM-1	binding	

selects	for	parasites	expressing	PFL0020w	and	PF07_0050,	both	group	B	PfEMP1	molecules.	

With	a	single	PfEMP1	expressing	parasite	population	we	were	able	to	show	that	PFL0020w	

binds	recombinant	ICAM-1	through	the	DBLβ	domain.	Furthermore,	a	dual	binding	affinity	of	

PFL0020w	to	different	endothelial	receptors	was	detected.	

In	 summary,	 in	 this	 thesis	we	 show	 for	 the	 first	 time	 that	a	member	of	 the	PHIST	protein	

family	 exercises	 its	 functional	 role	 in	 knobs	 and	 interacts	 both	with	 key	molecules	 of	 the	

cytoadherence	 complex	 and	 the	 host	 cytoskeleton.	 We	 therefore	 propose	 that	 the	

functional	 role	 of	 PFE1605w	 is	 to	 anchor	 a	 variety	 of	 PfEMP1	 molecules	 to	 the	 host	

cytoskeleton.	It	remains	to	be	elucidated	how	other	PHIST	proteins	and	other	key	molecules	

of	 the	cytoadherence	complex	 further	 contribute	 to	anchoring	of	PfEMP1	within	 the	knob	

structure.	 These	 results	 clearly	 demonstrate	 the	 important	 role	 of	 the	 expanded	 PHIST	

protein	family	in	P.	falciparum	and	suggest	avenues	for	innovative	interactions.	
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Zusammenfassung	

Plasmodium	 falciparum	 ist	 der	 Erreger	 der	 Malaria	 und	 verursacht	 jährlich	 über	 500,000	

Todesfälle.	Heute	 lebt	etwa	die	Hälfte	der	Weltbevölkerung	 in	Malariarisikogebieten.	Trotz	

diversen	 Anstrengungen	 die	 Häufigkeit	 von	 Malariainfektionen	 mittels	 Kontrolle	 der	

Erregerübertragung	 oder	 durch	 die	 Entwicklung	 von	 Medikamenten	 und	 Impfstoffen	 zu	

reduzieren,	bleibt	Malaria	ein	grosses	Gesundheitsproblem	in	Endemiegebieten.				

Eine	 Besonderheit	 des	 von	 P.	 falciparum	 infizierten	 Erythrozyten	 ist	 die	 Fähigkeit	 an	

Endothelzellrezeptoren	 der	 Kapillaren	 zu	 binden	 um	 so	 der	 Filtrierung	 durch	 die	 Milz	 zu	

entgehen.	 Dieser	 Prozess	 der	 Sequestration	 von	 infizierten	 Erythrozyten	 in	 verschiedenen	

Organen	 führt	 zu	Gefässverstopfungen	und	 Entzündungen	und	 ist	 hauptverantwortlich	 für	

die	gefährlichste	Form	der	Malaria.	Der	bedeutendste	Ligand	für	diese	Zytoadhärenz	ist	das	

P.	 falciparum	 Erythrozyten	 Membran-Protein	 1	 (PfEMP1),	 welches	 in	 der	 Erythrozyten-

membran	in	sogenannten	Knob	Strukturen	verankert	ist.	Dabei	bindet	die	semi-konservierte,	

intrazelluläre	ATS	Domäne	das	PfEMP1	Molekül	an	die	Wirtszelle,	wohingegen	der	variable,	

extrazelluläre	 Teil	 für	 die	 Anhaftung	 der	 infizierten	 Erythrozyten	 an	 die	 Wirtsrezeptoren	

zuständig	ist.	Vor	kurzem	fand	man	heraus,	dass	die	ATS	Domäne	des	PfEMP1	Moleküls	ein	

konserviertes	Epitop	für	Proteininteraktionen	ist	und	es	wurde	eine	 in	vitro	 Interaktion	mit	

der	PHIST	Domäne	von	PFI1780w,	einem	Mitglied	der	Plasmodium	Helical	Interspersed	Sub-

Telomeric	(PHIST)	Proteinfamile	nachgewiesen.	Diese	grosse	Proteinfamilie	zählt	72	Paraloge	

in	P.	falciparum,	welche	in	drei	Untergruppen	(PHISTa,	PHISTb,	PHISTc)	aufgeteilt	sind.	Alle	

PHIST	 Proteine	 besitzen	 eine	 ungefähr	 150	 Aminosäuren	 lange,	 konservierte	 Domäne,	

welche	voraussichtlich	eine	Struktur	von	vier	Alpha-Helices	einnimmt.		

Zurzeit	 ist	 wenig	 über	 die	 Funktion	 der	 verschiedenen	 PHIST	 Proteine	 bekannt,	 jedoch	

weisen	neuste	Daten	daraufhin,	dass	diese	in	der	Bildung	der	Knob	Strukturen,	im	Transport	

von	 PfEMP1	 und	 in	 der	 Adhärenz	 von	 infizierten	 Erythrozyten	 in	 den	 Mikrogefässen	 des	

Gehirns	eine	Rolle	spielen.	Des	Weiteren	fand	man	heraus,	dass	einige	PHIST	Proteine	in	der	

Peripherie	der	Wirtszelle	lokalisiert	sind,	an	Komponenten	des	Wirtszellzytoskeleton	binden	

sowie	 in	 detergentienunlöslichen	 Membranfraktionen	 zu	 finden	 sind.	 Diese	 Erkenntnisse	

deuten	auf	eine	wichtige	Funktion	der	PHIST	Proteine	in	der	Modifikation	der	Wirtszelle	hin.		
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Das	Ziel	dieser	Arbeit	war	es,	einen	besseren	Einblick	 in	die	 funktionelle	Rolle	von	einigen	

PHIST	Proteinen	 zu	bekommen.	Dabei	wurde	der	 Fokus	 auf	 das	PHISTb	Protein	PFE1605w	

gerichtet,	 welches	 verglichen	 mit	 PFI1780w	 eine	 stärkere	 Bindungsaffinität	 zu	 PfEMP1	

aufzeigte.	Mittels	 Immunofluoreszenz-	 und	Elektronenmikroskopie	 konnte	 gezeigt	werden,	

dass	 PFE1605w	 gleichzeitig	 mit	 PfEMP1	 exportiert	 wird	 und	 schlussendlich	 in	 den	 Knob	

Strukturen	zu	finden	ist.	Experimente	mithilfe	NMR	und	Fluoreszenzpolarisation	zeigten	eine	

direkte	 Interaktion	 der	 PFE1605w	 PHIST	 Domäne	 mit	 dem	 C-Terminus	 der	 ATS	 Domäne.	

Weitere	Polarisationsexperimente	mit	der	PFE1605w	PHIST	Domäne	und	verschiedenen	ATS	

Domänen	 von	 einigen	 PfEMP1	 Molekülen	 zeigten	 beträchtliche	 Unterschiede	 in	 den	

Bindungsaffinitäten	 auf,	 was	 darauf	 hinweist,	 dass	 verschiedene	 PHIST	 Proteine	 eine	

optimierte	Bindungsaffinität	zu	verschiedenen	PfEMP1	Molekülen	entwickelt	haben.	In	einer	

Kollaboration	konnten	wir	ausserdem	die	erste	Kristallstruktur	einer	PHIST	Domäne	auflösen	

und	daraus	ein	Modell	für	die	PHIST-PfEMP1	Interaktion	entwickeln.		

Eine	induzierte	Reduktion	von	PFE1605w	mithilfe	einer	destabilisierenden	FKBP	Domäne	und	

kontrolliertes	Anhalten	von	PFE1605w	an	den	Maurer’schen	Spalten	mittels	einer	neuartigen	

Verankerungsmethode,	führte	zu	einer	Abwesenheit	von	PFE1605w	in	den	Knob	Strukturen	

und	 zu	 einer	 stark	 reduzierten	 Fähigkeit	 der	 infizierten	 Erythrozyten	 an	 den	

Endothelrezeptor	CD36	zu	binden.	Um	die	spezifische	Auswahl	eines	PHIST	Proteins	für	ein	

bestimmtes	PfEMP1	Molekül	zu	bestimmen,	wurden	infizierte	Erythrozyten	für	eine	Bindung	

an	 ein	 bestimmtes	 Rezeptormolekül	 selektioniert	 und	 somit	 wurde	 gleichzeitig	 für	 die	

Expression	 eines	 spezifischen	 PfEMP1	 Moleküls	 selektioniert.	 Interessanterweise	 war	 die	

Adhäsion	an	andere	Endothelrezeptoren	nach	der	induzierten	Reduktion	von	PFE1605w	nur	

leicht	oder	sogar	gar	nicht	betroffen.	Dieses	Ergebnis	deutet	darauf	hin,	dass	PFE1605w	für	

die	 Bindung	 an	 spezifische	 PfEMP1	 Moleküle	 optimiert	 wurde.	 Da	 die	 Abwesenheit	 von	

PFE1605w	 in	 den	 Knob	 Strukturen	 die	 Oberflächenpräsenz	 von	 PfEMP1	 nicht	 beeinflusst,	

kann	angenommen	werden,	dass	PFE1605w	keine	Rolle	im	Transport	von	PfEMP1	spielt.		

Co-Immunopräzipitation	 (Co-IP)	 Experimente	 mit	 zwei	 Konstrukten,	 welche	 nur	 den	 C-

terminalen	 Teil	 der	 ATS	 Domänen	 von	 zwei	 PfEMP1	 Molekülen	 umfassen,	 jedoch	 keine	

Transmembrandomänen,	 erlaubten	 die	 Bestimmung	 der	 in	 vivo	 Proteininteraktion	 von	

PFE1605w	mit	beiden	C-terminalen	Fragmenten	der	ATS	Domänen.	
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In	 einem	 weiteren	 Schritt	 ermöglichten	 Co-IP	 Experimente	 mit	 PFE1605w	 als	 HA-

Fusionsprotein	 die	 Identifikation	 diverser	 integraler	 Membranproteine	 und	 verschiedener	

Bestandteile	 des	 Zytoskeletts	 der	 Wirtszelle	 als	 potentielle	 Interaktionspartner	 von	

PFE1605w.	Diese	Resultate	ermöglichten	die	Durchführung	von	inversen	Co-IP	Experimenten	

mit	 spezifischen	 Antikörpern,	 welche	 die	 vorher	 detektierten	 Wirtszellproteine	 erkennen	

und	binden.	 Inverse	 Co-IP	 Experimente	mit	 α-Bande	 4.2	Antikörper	 identifizierten	weitere	

Komponenten	des	Bande	3	Komplexes	wie		Bande	3,	Bande	4.2	und	α-	und	β-Spektrin	sowie	

Ankyrin.	 Neben	 den	 genannten	 Wirtszellproteinen	 wurde	 PFE1605w	 als	 einziges	 P.	

falciparum	Protein	identifiziert	was	deutlich	darauf	hinweist,	dass	PFE1605w	mit	einer	oder	

mehreren	 Komponenten	 des	 Bande	 3	 Komplexes	 interagiert.	 Diese	 Resultate	 ermöglichen	

nun	 die	 genaue	 Identifikation	 der	 PFE1605w	 Bindungsstelle	 innerhalb	 des	 Bande	 3	

Komplexes.		

In	einem	Nebenprojekt	wurden	die	var	Genexpression	und	der	Bindungsphänotyp	von	3D7	

Parasiten,	 welche	 vorher	 für	 eine	 Bindung	 an	 das	 Rezeptormolekül	 ICAM-1	 selektioniert	

wurden,	 untersucht.	 Die	 selektionierten	 Parasiten	 exprimieren	 PFL0020w	 und	 PF07_0050,	

beides	PfEMP1	Moleküle,	welche	zur	Gruppe	B	PfEMP1	Moleküle	gehören.	Mittels	Selektion	

einer	Parasitenpopulation	welche	nur	ein	PfEMP1	Molekül	exprimiert,	 konnten	wir	 zeigen,	

dass	das	Rezeptormolekül	 ICAM-1	durch	die	DBLβ	Domäne	von	PFL0020w	gebunden	wird.	

Des	Weiteren	 konnten	wir	 für	 PFL0020w	 Bindungsaffinitäten	 für	 zwei	 verschiedene	 Arten	

von	Rezeptormolekülen	aufzeigen.		

Zusammenfassend	konnte	in	dieser	Arbeit	zum	ersten	Mal	gezeigt	werden,	dass	ein	Mitglied	

der	 PHIST	 Proteinfamilie	 seine	 Funktion	 in	 den	 Knob	 Strukturen	 ausübt	 und	 dabei	 mit	

Hauptkomponenten	 des	 Zytoadhärenzkomplexes	 aber	 auch	 mit	 Komponenten	 des	

Zytoskeletts	 der	 Wirtszelle	 interagieren.	 Aus	 diesem	 Grund	 nehmen	 wir	 an,	 dass	 die	

Funktion	von	PFE1605w	darin	besteht,	verschiedene	PfEMP1	Moleküle	an	das	Zytoskeleton	

zu	binden	und	somit	die	Verankerung	von	PfEMP1	in	den	Knob	Strukturen	zu	gewährleisten.	

Es	 ist	 in	Zukunft	zu	klären	wie	weitere	PHIST	Proteine	und	andere	Hauptkomponenten	des	

Zytoadhärenzkomplexes	zur	Verankerung	von	PfEMP1	in	den	Knob	Strukturen	beitragen.	Die	

Resultate	dieser	Arbeit	zeigen	deutlich	die	wichtige	Funktion	der	PHIST	Proteinfamilie	 in	P.	

falciparum	 auf	 und	 deuten	 auf	 einen	 Beitrag	 zur	 Entwicklung	 von	 neuen	

Interventionsstrategien.	
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Introduction	

1.1. Malaria	

1.1.1. Prevalence	

More	than	135	years	after	 the	military	physician	Charles	Louis	Alphonse	Laveran	observed	

malaria	parasites	in	blood	from	soldiers,	malaria	still	represents	one	of	the	most	devastating	

human	diseases	(Cox,	2010).	Besides	HIV/AIDS	and	tuberculosis,	malaria	belongs	to	the	big	

three	infectious	diseases	and	caused	estimated	200	million	clinical	cases	and	approximately	

580,000	 deaths	 annually	 (WHO,	 2014),	 mostly	 in	 sub-Saharan	 Africa.	 Almost	 90%	 of	 all	

malaria-associated	 fatal	 cases	 occur	 in	 children	 younger	 than	 five	 years	 old	 (Snow	 et	 al.,	

2005).	Nowadays,	malaria	is	restricted	to	tropical	and	sub-tropical	zones	but	in	ancient	times	

it	also	occurred	in	northern	temperate	zones	including	Canada,	the	United	States	of	America,	

Russia	 and	 Europe.	 Due	 to	 large	 eradication	 strategies,	 economic	 progress	 and	 health	

improvement,	malaria	was	eliminated	from	most	of	the	Northern	hemisphere	(Greenwood	

et	 al.,	 2008).	 Nevertheless,	 climate	 change	 may	 favour	 the	 resurgence	 of	 malaria	 in	

previously	malaria-free	areas,	albeit	this	topic	is	frequently	debated	(Caminade	et	al.,	2014;	

Gething	et	al.,	2010).		

According	to	the	WHO,	currently	3.3	billion	people	are	at	risk	of	being	infected	with	malaria	

and	African	countries	south	of	 the	Sahara	bear	 the	highest	burden	with	nearly	90%	of	 the	

worldwide	 incidence.	 In	 these	areas	this	widespread	disease	has	a	dramatic	 impact	on	the	

socio-economic	development	and	the	public	health	(Sachs	&	Malaney,	2002).		

1.1.2. The	agent	of	malaria	

Plasmodium,	 the	 causative	 agent	 of	 malaria,	 belongs	 to	 the	 phylum	 Apicomplexa,	 which	

further	 includes	 other	 important	 pathogens	 such	 as	 Babesia,	 Cryptosporidium,	 Eimeria,	

Theileria	 and	 Toxoplasma	 (Baldauf,	 2000).	 Apicomplexa,	 a	 diverse	 group	 of	 unicellular	

protozoans,	 is	 characterized	 by	 an	 electron	 dense	 structure	 at	 the	 apical	 pole	 of	 the	

merozoite,	the	invasive	form	of	the	parasite,	which	allows	the	parasite	to	invade	host	cells	

and	 to	 establish	 itself	 therein.	 Moreover,	 most	 apicomplexan	 parasites	 possess	 an	

apicoplast,	a	vestigial	plasmid	of	secondary	endosymbiotic	origin,	which	harbours	essential	

biochemical	 pathways	 and	 is	 indispensable	 for	 growth	 of	 the	 parasite	 (Lim	 &	McFadden,	
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2010).	The	absence	of	these	prokaryote-specific	pathways	 in	humans	makes	the	apicoplast	

an	attractive	target	for	chemotherapeutic	interventions	(McFadden	&	Roos,	1999).		

To	date,	 there	 are	more	 than	200	Plasmodium	 species	described	of	which	only	 five	 cause	

disease	in	humans:	P.	falciparum,	P.	vivax,	P.	malariae,	P.	ovale	and	P.	knowlesi.	The	latter,	a	

malaria	parasite	infecting	macaque	monkey,	has	been	known	to	infect	humans	a	while	ago	

(Fong	 et	 al.,	 1971)	 but	 it	 only	 has	 arisen	 epidemically	 recently	 due	 to	 displacement	 of	

monkeys	 into	 human	 settlements	 (Rayner	 et	 al.,	 2011).	 Depending	 on	 the	 Plasmodium	

subspecies	infecting	humans,	the	severity	of	malaria	differs.	The	most	severe	form	of	human	

malaria,	 falciparum	malaria	or	malaria	 tropica	 is	 caused	by	P.	 falciparum	 and	accounts	 for	

the	majority	of	malaria-associated	deaths	whereas	P.	 vivax,	P.	ovale	 and	P.	malariae	 have	

long	been	thought	to	cause	only	benign	malaria.	However,	increasing	numbers	of	severe	P.	

vivax	malaria	infections	suggest	a	more	prominent	role	of	P.	vivax	in	severe	disease	(Anstey	

et	 al.,	 2009;	Genton	 et	 al.,	 2008;	 Tjitra	 et	 al.,	 2008).	 Both,	P.	 vivax	 and	P.	 ovale	 can	 form	

hypnozoites,	dormant	liver	stages	that	can	lead	to	reoccurring	disease	relapses	a	long	time	

after	 the	 primary	 infection.	 In	 contrast,	 P.	 malaria	 and	 P.	 falciparum	 do	 not	 form	

hypnozoites	but	 relapses	of	permanent	disposable	blood	stages	have	been	reported	 for	P.	

malariae	 (Cogswell,	 1992).	 In	 regions	with	 high	P.	 falciparum	 transmission	malaria	 tropica	

often	becomes	chronic,	as	after	repeated	infections	a	person	may	develop	a	protective	semi-

immunity.	 Such	 semi-immune	 persons	 often	 carry	 parasites	 but	 may	 not	 develop	 severe	

disease	and	frequently	lack	any	typical	malaria	symptoms.		The	long-lasting	dormant	stages	

or	 chronic	 infections	 have	 a	 tremendous	 influence	 on	 eradication	 programs	 (Wells	 et	 al.,	

2010).		

The	 Plasmodium	 parasite	 is	 transmitted	 to	 the	 human	 host	 during	 a	 blood	 meal	 of	 the	

female	Anopheles	 spp.	mosquito.	 There	 are	more	 than	 30	Anopheles	 subspecies	 that	 can	

transmit	 Plasmodium	 parasites	 but	 the	 most	 important	 subspecies	 that	 accounts	 for	 the	

highest	 transmission	 rate	 in	 Africa	 is	A.	 gambiae	 and	A.	 funestus	 (Tuteja,	 2007).	 In	 other	

malaria	 endemic	 regions	 such	 as	 Asia	 or	 Latin	 America	 different	 Anopheles	 subspecies	

contribute	equally	to	the	transmission	of	the	parasite.	
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1.1.3. Pathophysiology	of	malaria	infection	

The	 incubation	 time	 of	 the	 human	 pathogenic	 Plasmodium	 subspecies	 varies	 from	

approximately	6-12	days	for	malaria	tropica	(P.	falciparum),	12-18	days	for	malaria	tertiana	

(P.	vivax	/	P.	ovale)	and	15-50	days	for	malaria	quartana	(P.	malariae)	respectively.		

All	 clinical	 symptoms	 of	 malaria	 are	 caused	 by	 the	 asexual	 blood	 stage	 of	 Plasmodium	

parasites	and	the	 three	different	etiopathologies	can	be	distinguished	 in	 infected	patients.	

However	they	all	share	classical	symptoms	of	periodic	fever	peaks,	except	for	P.	falciparum	

which	causes	asynchronous	fever	attacks	due	to	unsynchronized	egress	with	persistent	fever	

at	high	temperatures	(Miller	et	al.,	2002).	The	characteristic	reoccurring	fever	periods	can	be	

explained	 by	 the	 synchronous	 intraerythrocytic	 life	 cycle	 of	 Plasmodium.	 All	 three	

etiopathologies	 can	 cause	 anaemia,	 caused	 by	 multifactorial	 reasons	 such	 as	 removal	 of	

circulating	 red	 blood	 cells	 (RBCs),	 reduced	 production	 of	 RBCs	 in	 the	 bone	 marrow,	

polymorphisms	 in	 cytokines	 but	 also	 destruction	 of	 RBCs	 by	 the	 parasite	 upon	 host	 cell	

rupture	 (Haldar	 &	Mohandas,	 2009).	 The	 increase	 of	 body	 temperature	 during	 the	 fever	

periods	is	a	reaction	to	the	activation	of	the	immune	system	upon	contact	to	hemozoin	and	

glycosylphosphatidylinositol	(GPI)	molecules	covalently	linked	to	merozoite	surface	antigens,	

such	as	the	merozoite	surface	protein	(MSP-1)	(Schofield	&	Hackett,	1993;	Shio	et	al.,	2010).	

Hence,	innate	and	adaptive	immune	responses	such	as	pro-inflammatory	cytokine	release	by	

activated	macrophages	or	T-cell	activation	and	antibody	production	are	triggered	(Engwerda	

&	 Good,	 2005).	 Nevertheless,	 the	 interplay	 between	 the	 parasite	 and	 the	 host	 immune	

system	upon	 infection	 is	 highly	 complex	 and	 still	 subject	 of	 current	 research	 (Chua	 et	 al.,	

2013).	

The	main	 reason	 that	 P.	 falciparum	 causes	 the	most	 severe	 symptoms	 among	 all	 human	

pathogenic	Plasmodium	subspecies	is	the	distinct	feature	of	the	P.	falciparum	infected	RBCs	

(iRBCs)	to	avoid	splenic	clearance	by	adhering	to	the	vascular	endothelium.	This	pathologic	

feature	is	a	major	contributor	to	the	severity	of	malaria	tropica	(Ockenhouse	et	al.,	1992).	A	

result	 of	 the	 cytoadhesion	 is	 the	 sequestration	 of	 a	 high	 number	 of	 parasites	 in	 different	

tissues	of	the	human	body	leading	to	local	hypoxia	and	inflammation.	Affecting	the	brain,	it	

leads	to	cerebral	malaria	and	can	result	in	coma	and	death	(Medana	&	Turner,	2006).	Other	

severe	pathologic	outcomes	are	severe	anaemia,	respiratory	distress	and	renal	and	general	

organ	failure	(Miller	et	al.,	2002).	Especially	pregnant	women	face	high	risk	of	severe	malaria	
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as	massive	sequestration	of	iRBCs	in	the	placenta	has	a	devastating	effect	during	pregnancy	

such	as	maternal	morbidity,	low	bird	weight,	preterm	delivery	and	infant	mortality	(Desai	et	

al.,	2007).	

1.1.4. Anti-malaria	drugs	and	vaccines	

Today,	 a	 broad	 variety	 of	medical	 treatments	 are	 available	 to	 combat	malaria	 infections.	

After	World	War	II,	chloroquine,	a	drug	based	on	a	derivate	from	the	alkaloid	quinine,	was	a	

widely	 distributed,	 cheap	 and	 effective	 anti-malaria	 drug.	 Subsequently,	 the	 first	 cases	 of	

chloroquine	 resistant	 parasites	 were	 reported	 from	 the	 Thai-Cambodian	 border	 in	 1957	

(Wellems	&	 Plowe,	 2001).	 It	 took	 about	 20	 years	 until	 the	 resistance	was	 carried	 over	 to	

Africa	 and	 ended	 the	 successful	 story	 of	 this	 drug.	Until	 recently,	 resistance	 has	 emerged	

against	 all	 known	 classes	 of	 anti-malarial	 drugs	 except	 the	 artemisinins	 and	 its	 derivates.	

Artemisinin	is	a	sesquiterpene	extracted	from	the	wormwood	Artemisia	annua.	After	being	

discovered	as	an	anti-malaria	drug,	a	variety	of	derivates	such	as	artesunate,	artemether	and	

dihydroartemisinin	have	been	synthesized.	To	reduce	the	probability	of	parasite	resistance	

against	 artemisinins,	 the	 WHO	 recommended	 the	 application	 of	 artemisinins	 as	 a	

combination	 therapy	 (ACT)	 with	 a	 second	 anti-malaria	 drug	 (Aregawi	 et	 al.,	 2010).	

Nevertheless,	first	reports	in	2009	of	increased	clearance	time	using	artemisinin	pointed	to	

an	emerging	resistance	 in	the	parasite	population	(Dondorp	et	al.,	2009).	Today,	 increased	

tolerance	to	ACTs	has	been	confirmed	in	several	countries	of	the	Greater	Mekong	subregion	

and	mutations	 in	 the	 Kelch	 13	 (K13)	 propeller	 protein	were	 shown	 to	 be	 associated	with	

delayed	parasite	clearance	in	vitro	and	in	vivo	(Ariey	et	al.,	2013;	Dondorp	et	al.,	2009;	Noedl	

et	al.,	2008).	This	molecular	marker	can	now	enable	a	mapping	of	possible	resistance	as	the	

spread	 or	 independent	 emergence	 of	 artemisinin	 resistance	 in	 other	 parts	 of	 the	 world	

would	pose	a	major	health	risk	as	no	anti-malaria	treatment	is	available	at	present	with	the	

same	efficacy	and	applicability	as	artemisinin	combination	therapy.		

A	 recently	 identified	new	class	of	 compunds	 termed	 spiroindolones	 raises	hope	 for	a	new	

malaria	 treatment	 (Rottmann	 et	 al.,	 2010;	 Yeung	 et	 al.,	 2010).	 The	 optimized	 candidate	

NITD609	displayed	good	pharmacokinetic	properties	and	was	highly	active	against	both	P.	

falciparum	 and	P.	 vivax	 field	 isolates	 but	 also	 against	 drug	 resistant	P.	 falciparum	 strains.	

Moreover,	 the	 molecular	 target	 and	 the	 potential	 mutations	 involved	 in	 resistance	
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development	were	identified,	potentially	enabling	structural	optimization	of	the	compound	

in	case	of	occurring	resistance.		

Besides	the	long	endeavour	to	discover	new	chemotherapeutic	agents,	the	development	of	

an	efficient	vaccine	is	an	important	field	in	malaria	research.	In	recent	decades	a	remarkable	

number	 of	 different	 vaccines	 was	 developed	 targeting	 a	 variety	 of	 parasite	 stages	 and	

surface	 proteins	 and	many	 vaccine	 candidates	 are	 currently	 in	 the	 clinical	 phase	 pipeline.	

However,	so	far	the	most	advanced	vaccine	candidate	is	RTS,S,	also	known	as	MosquirixTM,	a	

hybrid	of	the	amino	acids	207-395	of	the	live	stage	specific	circumsporozoite	surface	protein	

(CSP)	 from	 the	 NF54	 strain	 of	 P.	 falciparum	 and	 the	 hepatitis	 B	 surface	 antigen	 HBsAg	

containing	known	B-	and	T-cell	epitopes.	The	phase	III	efficacy	and	safety	trial	of	RTS,S	was	

carried	 out	 at	 11	 sites	 in	 seven	 African	 countries	 with	 15,459	 infants	 and	 young	 children	

participating.	 The	 final	 results	 showed	 that	 vaccination	 with	 a	 three	 dose	 series	 reduced	

clinical	 malaria	 cases	 by	 28%	 in	 young	 children	 (5-17	 months)	 and	 18%	 in	 infants	 (6-12	

weeks)	to	the	end	of	the	study	(RTS,	2015).	A	booster	dose	of	RTS,S	received	18	months	after	

primary	series	reduced	the	number	of	clinical	malaria	cases	in	young	children	by	36%	and	in	

infants	by	26%	to	the	end	of	the	study	(RTS,	2015).	

Besides	 the	 identification	 and	 evaluation	 of	 new	 antigenic	 targets,	 approaches	 for	 next-

generation	vaccines	 include	whole-sporozoites	vaccines,	 virosome-	and	nanoparticle-based	

combination	vaccines	and	the	use	of	different	adjuvants	and	prime-boost	strategies	(Alonso	

&	Tanner,	2013).		

1.1.5. The	lifecycle	of	Plasmodium	

The	P.	falciparum	parasite	enters	the	human	body	during	a	blood	meal	of	a	female	mosquito	

of	 the	 genus	 Anopheles	 (Fig.	 1).	 The	 mosquito	 injects	 the	 infective	 sporozoites	 into	 the	

human	dermis	where	 they	 are	 transported	 to	 the	 liver	 via	 the	bloodstream	 (Amino	et	 al.,	

2006).	 Before	 the	 infection	 of	 hepatocytes,	 the	 sporozoites	 need	 to	 cross	 the	 sinusoidal	

endothelial	cell	 layer	by	traversing	Kuppfer	or	endothelial	cells	(Mota,	2001;	Tavares	et	al.,	

2013).	After	the	transit	of	several	hepatocytes	the	sporozoite	invades	a	final	hepatocyte	by	

the	use	of	surface	proteins	for	invasion	(e.g.	circumsporozoite	protein	and	thrombospondin-

related	 adhesins),	 which	 specifically	 bind	 heparin	 sulfate	 proteoglycans	 on	 hepatocytes	

(Frevert	et	al.,	1993).	During	 invasion,	a	parasitophorous	vacuole	 (PV)	 is	build	wherein	 the	

parasite	 undergoes	 asexual	 replication	 resulting	 in	 thousands	 of	 infective	 merozoites	
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(Prudêncio	&	Mota,	2007).	To	initiate	the	blood	stage	the	newly	build	merozoites	are	packed	

into	merosomes	which	are	 released	 into	 the	blood	stream	and	after	 rupture,	 the	 released	

merozoites	are	ready	to	invade	red	blood	cells	(Sturm	et	al.,	2006).  

Compared	to	P.	vivax,	which	is	restricted	to	infect	reticulocytes,	P.	falciparum	is	able	invade	

all	types	of	red	blood	cells,	independent	of	age.	Directly	after	invasion	of	a	red	blood	cell	the	

parasites	immediately	start	to	remodel	 its	host	cell	to	establish	a	suitable	niche	for	growth	

and	 replication	 (Fig.	 2).	 This	 stage	 of	 the	 life	 cycle	 is	 solely	 responsible	 for	 all	 symptoms	

observed	in	malaria	and	the	asexual	life	cycle	is	discussed	in	detail	in	section	1.1.6.		

 
Figure	1:	Life	cycle	of	P.	falciparum		

Sporozoites	injected	during	a	blood	meal	of	a	female	Anopheles	mosquito	(1)	migrate	to	the	liver	where	they	

invade	 hepatocytes,	 multiply	 and	 release	 thousands	 of	 merozoites	 (2).	 Parasites	 enter	 the	 asexual	

intraerythrocytic	 life	 cycle	 and	 develop	 from	 the	 ring,	 via	 the	 trophozoite	 to	 the	 schizont	 stage	 (3).	 Some	

parasites	 differentiate	 to	 sexual	 forms	 and	 are	 taken	 up	 during	 a	 blood	 meal	 of	 a	 mosquito.	 The	 sexual	

development	 resulting	 in	 sporozoite	 stages	 occurs	 in	 the	midgut	 and	 the	 basal	 lamina	 of	 the	mosquito	 (4).	

Figure	modified	from	(Boddey	&	Cowman,	2013).		
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While	 the	 asexual	 development	occurs	 in	 the	human	body,	 the	 sexual	 development	 takes	

place	in	the	female	Anopheles	mosquito.	During	the	red	blood	cell	cycle	a	small	number	of	

merozoites	differentiate	into	male	and	female	gametocytes,	the	sexual	precursor	forms	of	P.	

falciparum	gamets.	With	a	blood	meal	of	the	female	mosquito	the	gametocytes	are	taken	up	

and	 the	 subsequent	 drop	 in	 temperature	 or	 the	 presence	 of	 xanthurenic	 acid	 triggers	

gametocyte	activation.	After	reaching	the	mosquito	midgut,	the	female	macrogametocytes	

form	 haploid	 macrogametes,	 whereas	 male	 microgametocytes	 undergo	 rapid	 nuclear	

division	resulting	in	eight	motile	microgametes.	After	fertilization	of	one	macrogamete	by	a	

microgamete,	a	diploid	zygote	is	formed.	18-24	hours	later,	the	zygote	further	develops	into	

a	mobile	 ookinete	 and	migrates	 through	 the	midgut	 epithelium	 to	 the	 extracellular	 space	

between	the	midgut	epithelium	and	the	basal	lamina	where	it	arrests	and	develops	into	an	

oocyst.	When	the	proliferation	is	completed,	the	oocyst	ruptures	and	thousands	of	infective	

sporozoites	 are	 released.	 After	 migration	 and	 penetration	 into	 the	 salivary	 gland	 of	 the	

mosquito,	 the	 sporozoites	 are	 ready	 to	 be	 injected	 into	 the	 human	 skin	 to	 start	 a	 new	

infection.	Usually,	the	motile	sporozoites	are	present	in	the	mosquito	salivary	gland	from	10-

18	days	after	the	initial	blood	meal	and	remain	infective	for	1-2	months	(Tuteja,	2007).	

1.1.6. The	asexual	life	cycle	

Within	 the	 48	 hour	 intraerythrocytic	 life	 cycle,	 merozoite,	 ring,	 trophozoite	 and	 schizont	

stage	 parasite	 can	 be	microscopically	 distinguished	 (Bannister	 et	 al.,	 2000;	 Grüring	 et	 al.,	

2011).	The	non-motile	merozoites	 invade	RBCs	 through	a	 first	contact	via	proteins	 located	

on	the	merozoite	surface	and	the	subsequent	use	of	an	actin-myosin	dependent	machinery	

(Baum	et	al.,	2008).	The	invasion	of	the	RBC	occurs	within	minutes	to	minimize	contact	with	

the	host	 immune	 system.	During	 invasion	 the	 invagination	of	 the	RBC	membrane	and	 the	

formation	 of	 a	 parasitophorous	 vacuole	 membrane	 (PVM)	 forming	 the	 parasitophorous	

vacuole	 (PV)	 builds	 the	 environment	 for	 the	 further	 development	 of	 the	 parasite.	 After	

invasion,	 the	parasite	 turns	 into	 the	 ring	 stage	and	 induces	 the	 first	 steps	of	 the	host	 cell	

modification.	 Therefore	 the	 parasite	 exports	 a	 variety	 of	 proteins	 inducing	 structures	 like	

Maurer’s	 clefts	 (section	 1.2.2)	 or	 the	 tubovesicular	 network	 (TVN)	 (Atkinson	 &	 Aikawa,	

1990).	Within	 the	 PV	 the	 parasite	 proliferates	 from	 the	 ring	 to	 the	 trophozoite	 stage	 and	

increases	 its	 metabolism	 in	 order	 to	 create	 an	 appropriate	 niche	 for	 intraerythrocytic	

survival.	 To	 gain	 space	 for	 growth	 and	 for	 amino	 acid	 supply	 the	 parasite	 proteolytically	
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degrades	 haemoglobin	 and	 the	 toxic	 haematin	 by-product	 is	 converted	 into	 a	 crystalline	

form,	 known	 as	 haemozoin,	 and	 stored	 in	 the	 food	 vacuole	 (Goldberg,	 2013).	Moreover,	

during	 the	 trophozoite	 stage	which	 lasts	 approximately	 22	 to	 36	 hours	 post	 invasion,	 the	

parasite	initiates	DNA	replication,	the	number	of	ribosomes	increases	and	the	endoplasmatic	

reticulum	(ER)	prolongs.	After	36	hours	post	invasion	the	parasite	turns	into	a	schizont	stage	

parasite	and	occupies	most	of	the	host	cell.	In	this	stage	nuclear	division	continues	until	the	

parasite	ends	up	with	8-32	new	nuclei.	Finally,	a	process	called	schizogony	assembles	mono-

nucleated	merozoites,	each	containing	a	nucleus,	mitochondrion	and	plastid.	After	48	hours	

post	invasion	the	host	cell	ruptures	and	the	released	merozoites	invade	new	RBCs.		

	

 
	

Figure	2:	The	blood	stage	cycle	of	P.	falciparum	

During	 invasion	 the	 parasite	 encases	 itself	 in	 a	 parasitophorous	 vacuole	membrane.	 The	 ring	 stage	 parasite	

exports	proteins	and	generates	Maurer’s	clefts.	Cytostomes,	emarginations	in	the	parasite	periphery,	indicate	

hemoglobin	 uptake	 and	 hemozoin	 christals	 are	 observed	 in	 the	 food	 vacuole.	 The	 host	 cell	 remoldeling	

continues	as	MCs	are	tethered	to	the	RBC	membrane,	formation	of	knobs	occurs	and	PfEMP1	is	displayed	on	

the	 surface	of	 the	RBC.	Up	 to	32	new	merozoites	 are	produced	and	 their	 egress	 allows	 the	 invasion	of	new	

RBCs.	 Abbreviations:	 hpi:	 hours	 post	 invasion;	 RB:	 residual	 body;	N:	 nucleus;	 PM:	 parasite	 membrane;	 PV:	

parasitophorous	vacuole;	PVM:	parasitophorous	vacuolar	membrane;	MC:	Maurer’s	cleft;	FV:	food	vacuole;	C:	

cytostome.	Figure	modified	from	(Boddey	&	Cowman,	2013). 

1.2. Host	cell	modifications	
Besides	 the	 apicomplexan	 parasites	 Plasmodium,	 Babesia	 and	 Theileria	 (Dobbelaere	 &	

Küenzi,	2004;	Gohil	et	al.,	2010)	also	two	bacteria	Anaplasma	and	Bartonella	 (Dehio,	2004;	

Kocan	 et	 al.,	 2010)	 use	 the	 RBC	 as	 an	 environment	 for	 survival.	 Indeed,	 there	 are	 many	

advantages	for	parasites	to	choose	the	RBC	as	a	host	cell.	The	most	striking	advantage	is	that	

RBCs	 are	 not	 able	 to	 present	 antigens	 on	MHC	molecules	 and	 therefore	 the	 iRBC	 is	 less	

obvious	to	the	 immune	system.	Moreover,	the	absence	of	a	 lysosomal	degradation	system	
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protects	 the	 parasites	 from	 degradation,	 a	 threat	 that	 many	 intracellular	 pathogens	 are	

facing	 (Rohde	 et	 al.,	 2007).	However,	 the	 parasite	 also	 deals	with	major	 problems,	 as	 the	

RBC	is	a	highly	differentiated	cell	lacking	much	of	the	cellular	machinery	(like	a	nucleus	and	

the	secretory	system)	and	associated	processes	 (protein	synthesis	and	 trafficking)	 that	 the	

parasite	 could	 hijack.	 In	 the	 case	 of	P.	 falciparum,	 the	 parasite	 extensively	 refurbishes	 its	

host	 cell	 marked	 by	 changes	 in	 the	 permeability,	 rigidity,	 and	 cytoadhesive	 properties	 in	

order	to	proliferate	and	replicate	within	the	RBC.	An	overview	of	the	most	obvious	host	cell	

modifications	is	depicted	in	Fig.	3	and	in	the	sections	1.2.1	–	1.2.3.		

	
	

Figure	3:	Schematic	view	of	an	infected	red	blood	cell	

Illustration	 of	 parasite-derived	 structures	 and	 proteins	 involved	 in	 protein	 translocation	 into	 the	 iRBC.	

Abbreviations:	 	 ER:	 endoplasmatic	 reticulum;	 PV:	 parasitophorous	 vacuole;	 PVM:	 parasitophorous	 vacuolar	

membrane;	TVN:	 tubovesicular	 network;	PTEX:	Plasmodium	 translocon	 of	 exported	 proteins.	 Protein	 names	

indicated	 in	blue	represents	 resident	protein	of	 the	respective	organelle,	names	 in	green	represent	 transient	

localization	 to	 the	 indicated	 organelle	 and	 names	 in	 light	 blue	 indicates	 unknown	 subcellular	 localization	

(Mundwiler-Pachlatko	&	Beck,	2013).	
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1.2.1. New	permeation	pathways	

During	 maturation	 the	 parasite	 facilitates	 nutrient	 uptake	 by	 the	 formation	 of	 new	

permeation	pathways	(NPPs).	Although	not	well	characterized	on	a	molecular	level	the	RBC	

membrane	permeability	for	charged	and	neutral	solutes	increases	during	maturation	of	the	

parasite.	 It	 is	 still	 debated	 whether	 the	 proteins	 mediating	 transport	 across	 the	 RBC	

membrane	are	parasite	derived	or	represent	activation	of	previously	silent	RBC	transporters	

(Huber	 et	 al.,	 2002;	 Staines	 et	 al.,	 2007).	 It	 was	 suggested	 that	 NPP	 formation	 is	 actively	

mediated	by	proteins	secreted	beyond	the	parasite	(Baumeister	et	al.,	2006).	The	NPP	is	also	

termed	plasmodial	surface	anion	channel	and	is	linked	to	the	expression	of	either	of	the	two	

exported	proteins	CLAG3.1/3.2	which	are	inserted	into	the	RBC	membrane	during	merozoite	

invasion	(Nguitragool	et	al.,	2011).		

1.2.2. Maurer’s	clefts	

Another	 striking	modification	of	 iRBCs	 is	 the	appearance	of	parasite	 induced	membranous	

structures	in	the	RBC	cytoplasm,	called	Maurer’s	clefts	(Aikawa,	1971;	Hanssen	et	al.,	2007;	

Tilley	et	al.,	2007;	Wickert	&	Krohne,	2007).	First	described	by	Georg	Maurer	 in	1902	 in	P.	

falciparum	 iRBCs	 as	 dots	 stained	 with	 alkaline	 methylene	 blue	 (Maurer,	 1902),	 Maurer’s	

clefts	are	today	known	to	be	a	disk-shaped	cistern	of	about	500	nm	width	and	30	nm	height,	

bordered	by	a	single	membrane	(Bannister	et	al.,	2000;	Hanssen	et	al.,	2007;	Lanzer	et	al.,	

2006).	 Maurer’s	 clefts	 are	 heterogenous	 in	 size	 and	 morphology,	 although	 the	 overall	

heterogeneity	is	dependent	on	the	P.	falciparum	strain.	In	early	stage	parasites	the	Maurer’s	

clefts	are	very	motile	and	get	arrested	before	the	parasite	develops	to	the	trophozoite	stage	

at	around	22	hours	post	 invasion	 (Grüring	et	al.,	2011;	McMillan	et	al.,	2013).	The	sudden	

arrest	of	Maurer’s	 clefts	 requires	a	 fast	anchoring	process	and	 the	discovery	of	 tether-like	

extensions	 connecting	 Maurer’s	 clefts	 to	 the	 RBC	 membrane	 or	 to	 the	 PVM	 suggest	 an	

involvement	 of	 these	 tubular	 structures	 in	 the	 immobilization	 event.	 To	 date	 only	 the	

membrane-associated	histidine-rich	protein	2	(MAHRP2)	was	found	to	localize	specifically	to	

tethers	 (Pachlatko	 et	 al.,	 2010)	 and	 it	 remains	 to	 be	 determined	 whether	 MAHRP2	 is	

responsible	for	Maurer’s	clefts	immobilization	or	actin-like	filaments	(Haeggstrom,	2004)	are	

involved	in	this	process.	

The	 genesis	 of	Maurer’s	 clefts	 has	 only	 vaguely	 been	 described	 but	 it	 is	 thought	 to	 occur	

through	budding	from	the	PVM	(Goldberg	&	Cowman,	2010;	Spycher	et	al.,	2006).	Different	
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mechanisms	for	protein	trafficking	to	and	from	clefts	have	been	proposed	including	diffusion	

of	 proteins	 during	 MC	 genesis	 at	 the	 PVM,	 vesicular	 transport	 but	 also	 transport	 via	

chaperone-mediated	 soluble	 complexes	 (Mundwiler-Pachlatko	 &	 Beck,	 2013).	 Recently,	 it	

was	shown	that	some	proteins	arrive	at	already	existing	Maurer’s	clefts	suggesting	that	not	

all	Maurer’s	cleft	proteins	are	loaded	into	the	clefts	when	they	are	formed	at	the	PVM	but	

rather	 a	 continuous	 cargo	 to	Maurer’s	 clefts	 exists	 (Grüring	 et	 al.,	 2011;	McMillan	 et	 al.,	

2013).		

With	 the	 identification	 of	 the	 protein	 export	 motif	 Plasmodium	 export	 element	 (PEXEL)	

(section	1.3.1)	the	list	of	parasite	proteins	exported	beyond	the	parasite’s	confines	increased	

extensively.	 Out	 of	 these	 proteins	 a	 considerable	 number	 localize	 or	 transiently	 associate	

with	Maurer’s	clefts.	The	skeleton	binding	protein	1	(SBP1),	membrane-associated	histidine-

rich	 protein	 1	 (MAHRP1)	 and	 ring-exported	 protein	 1	 and	 2	 (REX1/2)	 reside	 within	 the	

Maurer’s	clefts	and	are	involved	in	Maurer’s	clefts	architecture	and	PfEMP1	transport	(Dixon	

et	al.,	2011)	(Fig.	3	&	Fig.	9).	Others,	such	as	PfEMP1,	PfEMP3,	KAHRP	and	members	of	the	

subtelomeric	 variable	 open	 reading	 frame	 family	 (STEVOR)	 are	 transiently	 associated	with	

Maurer’s	clefts.	Overall,	a	remarkable	number	of	studies	imply	that	Maurer’s	clefts	function	

as	sorting	stations	for	proteins	destined	to	the	erythrocyte	membrane.		

1.2.3. The	cytoadherence	complex	

During	the	asexual	lifecycle	the	parasite’s	maturation	is	accompanied	by	remarkable	changes	

in	 the	 topography	and	membrane	architecture	of	 the	 iRBC	 (section	1.6.2,	 Fig.	 4,	 Fig.	 9).	A	

peculiar	modification	is	the	formation	of	~100	nm	electron	dense	protrusions	termed	knobs	

during	the	second	half	of	the	asexual	 lifecycle,	which	mainly	comprise	the	knob-associated	

histidine-rich	 protein	 1	 (KAHRP)	 (Taylor	 et	 al.,	 1987)	 (Fig.	 4).	 Plasmodium	 falciparum	

erythrocyte	 membrane	 protein	 (PfEMP1),	 the	 major	 ligand	 for	 binding	 of	 iRBC	 to	 host	

receptors	 on	 vascular	 endothelium	 is	 anchored	 in	 the	 iRBC	 membrane	 within	 the	 knobs	

(Baruch	et	al.,	1995;	Smith	et	al.,	1995;	Su	et	al.,	1995).	Knockout	of	KAHRP	leads	to	absence	

of	 knobs	 and	 diffuse	 surface	 distribution	 of	 PfEMP1	 over	 the	 iRBC	membrane,	 leading	 to	

greatly	reduced	cytoadhesive	properties	under	flow	conditions	(Crabb	et	al.,	1997;	Waller	et	

al.,	1999).	This	suggests	that	although	the	protein	is	dispensable	for	PfEMP1	trafficking,	the	

physical	 interaction	 of	 KAHRP	 is	 important	 for	 the	 proper	 presentation	 of	 the	 adhesin.		

Nevertheless,	Horrocks	and	colleagues	suggest	that	this	reduction	may	occur	due	to	reduced	
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level	 of	 surface	 exposed	 PfEMP1	 rather	 than	 failure	 of	 PfEMP1	 clustering	 in	 the	 knob	

structure	(Horrocks,	2005).	

	

 

Figure	4:	Transmission	electron	micrograph	of	an	 iRBC	with	knobs	adhering	 to	a	microvascular	endothelial	

cell.	(A)	P.	falciparum	iRBC	(P)	adhering	to	the	surface	of	a	microvascular	endothelial	cell	(En).	Scale	bar	is	1	μm.	

(B)	 Detailed	 view	 of	 the	 interface	 between	 an	 iRBC	 and	 an	 endothelial	 cell.	 Arrows	 indicate	 electron	 dense	

connective	material	located	at	knobs.	A	Maurer’s	cleft	is	located	close	to	the	iRBC	surface	(M).	Scale	bar	is	100	

nm.	Figure	modified	from	(Horrocks,	2005).	

1.3. 	Protein	export	in	P.	falciparum	
By	invading	a	RBC,	the	P.	falciparum	parasite	faces	a	conceptual	problem	as	it	has	to	install	

the	capacity	for	protein	secretion	to	the	host	cell	de	novo.	Even	though	most	of	the	genes	of	

the	classical	secretion	pathway	were	found	in	the	P.	falciparum	genome,	some	features	are	

specific	 to	 the	 parasite,	 such	 as	 the	 rudimentary	 Golgi	 apparatus.	 The	 fact	 that	 parasite	

proteins	that	are	exported	beyond	the	parasite’s	confines	have	to	pass	through	the	parasite	

plasma	 membrane	 (PPM),	 the	 parasitophorous	 vacuolar	 membrane	 (PVM)	 and	 some	

proteins	even	traverse	the	RBC	membrane	suggests	that	the	parasite	developed	and	induced	

a	highly	complex	transport	mechanism	for	protein	secretion	within	the	host	cell.	Some	of	the	

exported	 proteins	 even	 do	 not	 contain	 a	N-terminal	 ER	 targeting	 signal	 peptide,	which	 in	

general	guides	translocation	of	the	proteins	into	the	endoplasmatic	reticulum	(ER)	(Crabb	et	

al.,	 2010;	 Haase	 &	 de	 Koning-Ward,	 2010;	 Lingelbach	 &	 Przyborski,	 2006;	 Spielmann	 &	

Gilberger,	2010,	2015).	
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Figure	5:	Schematic	model	of	the	protein	transport	mechanisms	in	P.	falciparum	

After	signal	sequence	cleavage,	PI3P	binding	and	plasmepsin-cleavage	may	initiate	transport	of	PEXEL	proteins	

to	the	PPM	possibly	involving	a	vesicular	pathway.	After	migration	through	the	secretory	pathway,	the	mature	

PEXEL	protein	is	released	to	the	PV.	This	process	may	involve	a	bulk	flow	transport	or	cargo	receptors	or/and	

chaperone	molecules.	 In	 the	PV	 the	proteins	 are	 unfolded	 and	pass	 the	PTEX.	 PNEPs	 are	 either	 transported	

with	the	same	vesicular	transport	or	are	trafficked	independently	to	the	PPM	with	a	first	translocon	releasing	

the	 PNEPs	 to	 the	 PV	 or	 directly	 to	 the	 PTEX	 or	 another	 translocon.	 Once	 arrived	 in	 the	 RBC	 cytoplasm	 the	

exported	 proteins	 refold	 and	 most	 proteins	 are	 transported	 to	 the	 Maurer’s	 clefts	 to	 reach	 their	 final	

destination.	 This	 step	 may	 involve	 exported	 parasite	 chaperones	 associate	 with	 J-dots	 or	 vesicles.	 Figure	

modified	from	(Spillman	et	al.,	2015).	
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1.3.1. Signal	sequences	for	export	

A	milestone	 in	deciphering	 the	export	mechanism	of	P.	 falciparum	was	 the	discovery	of	 a	

conserved	amino	acid	motif	 close	 to	 the	N-terminus	 in	a	 large	group	of	exported	proteins	

and	 led	 to	 the	 prediction	 of	 the	 Plasmodium	 exportome	 (Hiller	 et	 al.,	 2004;	Marti	 et	 al.,	

2004;	van	Ooij	et	al.,	2008;	Sargeant	et	al.,	2006).	The	Plasmodium	export	element	(PEXEL)	

(Marti	 et	 al.,	 2004)	 or	 vacuolar	 transport	 signal	 (VTS)	 (Hiller	 et	 al.,	 2004)	 consists	 of	 the	

pentameric	consensus	RxLxE/Q/D	whereas	x	represents	any	non-charged	amino	acid.	Most	

PEXEL	proteins	 also	 contain	 an	N-terminal	 signal	 sequence	 (SS)	 that	mediates	 co-	or	post-

translational	 insertion	 into	 the	 endoplasmatic	 reticulum	 (ER).	 Generally,	 this	 hydrophobic	

stretch	is	located	up	to	80	amino	acids	from	the	N-terminus.	It	was	suggested	that	in	the	ER	

the	 aspartic	 protease	 plasmepsin	 V	 (PM5)	 cleaves	 the	 PEXEL	 after	 the	 leucine	 residue	

(Klemba	 &	 Goldberg,	 2005),	 prior	 to	 N-terminal	 acetylation	 (Boddey	 et	 al.,	 2009,	 2010;	

Chang	et	al.,	2008;	Osborne	et	al.,	2010;	Russo	et	al.,	2010)	(Fig.	5).	The	enzyme	responsible	

for	acetylation	has	not	been	identified	so	far	and	the	importance	of	the	modification	of	the	

export	process	 is	unknown.	However,	N-acetylation	on	 its	own	 is	not	sufficient	to	mediate	

protein	 export	 (Boddey	 et	 al.,	 2009;	 Tarr	 et	 al.,	 2013).	 The	 PEXEL	 motif	 has	 also	 been	

reported	 to	 mediate	 phosphatidylinositol	 3-phosphate	 (PI3P)	 binding	 in	 the	 ER,	 binding	

PEXEL	 proteins	 to	 a	 unique	 trafficking	 pathway	 and	 PM5	 to	 facilitate	 release	 from	 the	

membrane	 (Bhattacharjee	 et	 al.,	 2012a).	 However,	 recent	 data	 do	 no	 support	 this	

hypothesis	(Bhattacharjee	et	al.,	2012b;	Sleebs	et	al.,	2014;	Tarr	et	al.,	2013).	The	presence	

of	PEXEL	proteins	not	only	seems	to	be	restricted	to	asexual	blood	stages	as	members	of	the	

PHIST	protein	family	(section	1.5.1)	have	an	implicated	functional	role	in	gametocytogenesis	

(Silvestrini	et	al.,	2010).		

Proteins	which	do	not	contain	an	N-terminal	hydrophobic	signal	sequence,	a	PEXEL	motiv,	or	

other	conserved	export	sequences	are	referred	to	as	PEXEL-negative	exported	proteins	and	

are	 not	 substrates	 for	 PM5	 (Boddey	 et	 al.,	 2013).	 The	 first	 PNEP	 discovered	 was	 SBP1	

(Blisnick	et	al.,	2000)	even	though	at	this	time	the	PEXEL	motif	had	not	yet	been	described.		

With	 the	 discovery	 of	 further	 PNEPs,	 namely	 REX1	 (Hawthorne	 et	 al.,	 2004),	 REX2	

(Spielmann	et	al.,	2006),	MAHRP1	(Spycher	et	al.,	2003)	and	MAHRP2	(Pachlatko	et	al.,	2010)	

it	 became	 apparently	 that	 the	 Plasmodium	 exportome	 comprises	 more	 proteins	 than	

previously	 estimated.	 Typical	 PNEPs	 contain	 a	 transmembrane	domain	 and	 lack	 a	 classical	
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signal	 peptide	 but	 recent	 work	 identified	 a	 variety	 of	 PNEPs	 including	 soluble	 and	 TM	

proteins	 with	 or	 without	 SS	 (Heiber	 et	 al.,	 2013).	 Detailed	 studies	 with	 a	 set	 of	 different	

chimeric	 reporter	proteins	suggests	 that	 the	N-terminus	of	PNEPs	can	 function	similarly	 to	

mature	PEXEL	within	the	ER	and	that	PNEP	TM	domains	mediate	ER	entry	in	the	absence	of	a	

SS	peptide	(Grüring	et	al.,	2012).		

Even	 though	 the	 function	of	many	PNEPs	has	not	yet	been	described,	knockout	 studies	of	

REX1,	 SBP1	 and	 MAHRP1	 suggest	 that	 they	 play	 an	 important	 role	 in	 Maurer’s	 clefts	

morphology	(REX1)	and	the	transport	of	PfEMP1	to	the	surface	of	the	iRBC	(SBP1,	MAHRP1)	

(Cooke,	2006;	Hanssen	et	al.,	2008;	Maier	et	al.,	2007;	Spycher	et	al.,	2008).		

The	 absence	 of	 a	 distinct	 export	 sequence	 prevented	 the	 identification	 of	 further	 PNEPs	

which	 may	 account	 for	 an	 even	 larger	 number	 of	 exported	 proteins,	 especially	 in	 other	

Plasmodium	 subspecies,	 that	 lack	 the	 PEXEL-containing	 genes	 families	 present	 in	 P.	

falciparum.	Sensitivity	to	brefeldin	A	suggests	a	shared	trafficking	mechanism	for	both	PEXEL	

proteins	 and	 PNEPs	 (Grüring	 et	 al.,	 2012).	 The	 elucidation	 of	 such	 a	 mechanism	 and	 the	

characterization	of	key	molecules	for	routing	to	the	PV	for	export	would	further	shed	 light	

into	the	complex	transport	mechanism	of	exported	proteins	in	Plasmodium.		

1.3.2. Transport	through	the	PVM	

To	reach	the	RBC	cytosol	exported	proteins	need	to	traverse	the	parasitophorous	vacuolar	

membrane	 (PVM).	 This	 process	 was	 assumed	 to	 involve	 an	 ATP-powered	 translocon	

apparatus	and	that	unfolding	of	both	soluble	PEXEL	proteins	and	PNEPs	is	required	(Ansorge	

et	al.,	1996;	Gehde	et	al.,	2009;	Heiber	et	al.,	2013).	The	subsequent	discovery	of	a	protein	

complex	termed	Plasmodium	translocon	of	exported	proteins	(PTEX)	was	the	first	indication	

of	 the	 presence	 of	 a	 PVM	 translocon	 (de	 Koning-Ward	 et	 al.,	 2009)	 (Fig.	 6).	 The	 PTEX	

complex	 comprises	 the	 single	 membrane	 protein	 component	 exported	 protein	 2	 (EXP2)	

(Fischer	et	al.,	1998)	which	 is	suggested	to	form	a	protein-conducting	channel.	The	second	

core	 component,	 consistent	 with	 the	 requirement	 of	 ATP,	 is	 HSP101,	 an	 AAA+	 ATPase	

serving	as	a	power	source	for	the	translocation	process.	 	The	third	core	component	of	the	

PTEX	complex	PTEX150	is	less	characterized	so	far	and	seems	to	be	restricted	to	Plasmodium	

species.	 Further	 components	 of	 the	 PTEX	 complex	 are	 PTEX88	 and	 thioredoxin2	 (TRX2)	

(Boucher	et	al.,	2006)	 representing	a	 smaller	proportion	of	 the	complex.	TRX2	 is	an	active	

thioredoxin	 and	may	 help	 facilitate	 protein	 unfolding	 or	 reducing	 intramolecular	 disulfide	
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bonds	(Sharma	et	al.,	2011).	Both	TRX2	and	PTEX88	are	non-essential	accessory	components	

of	 the	PTEX	translocon	as	both	genes	can	be	deleted	 in	P.	berghei	 (Matthews	et	al.,	2013;	

Matz	et	al.,	2013).	Further,	knockdown	experiments	of	PTEX150	in	P.	falciparum	and	HSP101	

in	P.	berghei	arrested	parasite	development	in	early	trophozoite	stage	and	blocked	protein	

export	(Elsworth	et	al.,	2014).	Indcucible	regulation	of	HSP101	in	P.	falciparum	resulted	in	a	

similar	growth	arrest	and	soluble	exported	proteins	accumulated	 in	the	PV	 lumen	(Beck	et	

al.,	 2014).	 Remarkably,	 both	 studies	 showed	 a	 block	 in	 protein	 export	 for	 all	 classes	 of	

exported	 proteins	 including	 soluble	 and	 TM	 proteins	 of	 both	 PEXEL	 proteins	 and	 PNEPs,	

suggesting	the	PTEX	to	be	a	universal	translocon	for	various	classes	of	exported	proteins.					

 
Figure	 6:	 Schematic	 view	 of	 the	

putative	 PTEX.	 The	 protein	

destined	 for	 the	 RBC	 cytoplasm	 is	

transported	to	the	parasitophorous	

vacuole	 (PV)	 by	 fusion	 of	 a	 vesicle	

at	 the	 parasite	 membrane	 (PM).	

The	unfolded	protein	is	fed	through	

the	 Hsp101-PTEX150	 complex	 to	

EXP2	 which	 has	 been	 proposed	 to	

be	 the	 translocation	 pore.	 The	

translocated	 protein	 is	 again	

refolded,	possibly	with	 chaperones	

involved.	 (Boddey	 &	 Cowman,	

2013).	

 

1.4. Plasmodium	falciparum	erythrocyte	membrane	protein	1	

Plasmodium	 falciparum	 erythrocyte	 membrane	 protein	 1	 (PfEMP1)	 is	 a	 family	 of	 high-

molecular	 weight	 (200-400kDa)	 proteins,	 which	 are	 exported	 to	 the	 surface	 of	 the	 iRBC	

where	 they	mediate	 adhesion	 to	 the	 vascular	 endothelium	 allowing	 the	 parasite	 to	 avoid	

splenic	clearance.	They	are	encoded	by	different	members	of	the	var	multi-copy	gene	family,	

which	 are	 mostly	 localized	 in	 subtelomeric	 regions	 but	 also	 in	 central	 regions	 of	 the	 14	

chromosomes.	All	 59	var	 genes	 in	 the	haploid	P.	 falciparum	 genome	consist	of	 two	exons	
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separated	by	a	conserved	intron	(Gardner	et	al.,	2002).	Exon	1	encodes	the	extracellular	part	

of	 the	 PfEMP1	molecule,	while	 the	 TM	 domain	 and	 the	 intracellular	 part	 are	 encoded	 by	

exon	2	(Fig.	7).	Based	on	the	chromosomal	location,	upstream	promoter	sequence	(ups)	and	

direction	of	 transcription,	var	 genes	 can	be	divided	 into	3	major	 groups	A	 (10	 genes	 in	P.	

falciparum	3D7),	B	(22	genes),	C	(13	genes)	and	intermediate	groups	B/A	(4	genes)	or	B/C	(9	

genes)	 (Gardner	et	 al.,	 2002;	 Lavstsen	et	 al.,	 2003).	Work	with	parasite	 field	 isolates	 from	

endemic	regions	revealed	that	mostly	group	A	and	B	var	genes	are	differentially	transcribed	

in	 patients	 with	 severe	 malaria	 compared	 with	 uncomplicated	 malaria	 (Jensen,	 2004;	

Rottmann	et	al.,	2006).		

It	has	been	shown	that	the	mutually	exclusive	expression	of	a	single	var	gene	and	the	silent	

state	 of	 the	 rest	 of	 the	 family	members	 is	 epigenetically	 controlled	 and	 linked	 to	 histone	

modifications	 (Chookajorn	 et	 al.,	 2007;	 Lopez-Rubio	 et	 al.,	 2007).	 Previous	 work	

demonstrated	 that	 of	 the	 hyper	 variable	 repertoire	 of	 var	 genes	 only	 a	 single	 PfEMP1	

molecule	is	transcribed	and	expressed	on	the	surface	of	the	iRBC	at	each	life	cycle	(Dzikowski	

et	al.,	2006;	Voss	et	al.,	2005).	However,	recent	data	reported	parasites	that	co-express	two	

different	PfEMP1	antigens	at	the	surface	of	iRBCs		(Joergensen	et	al.,	2010).	

	

	

Figure	7:	Common	features	of	the	var	gene	family	

The	 members	 of	 the	 var	 gene	 family	 consist	 of	 two	 exons	 separated	 by	 a	 single	 conserved	 intron.	 Exon	 1	

encodes	the	variable	extracellular	domain	including	the	N-terminal	sequence	(NTS),	Duffy	binding	like	domains	

(DBL),	 cysteine-rich	 interdomains	 (CIDR)	 and	 a	 transmembrane	 domain	 (TM).	 Exon	 2	 encodes	 the	 semi-

conserved	intracellular	amino	acidic	terminal	segment	(ATS).	Figure	modified	from	(Scherf	et	al.,	2008).	
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1.4.1. The	ATS	domain	of	PfEMP1	

Exon	 II	encodes	 for	 the	semi-conserved	cytoplasmic	 tail	of	PfEMP1	with	an	acidic	 terminal	

sequence	 (ATS).	 The	 intracellular	ATS	domain	 is	 semi-conserved	 across	 the	PfEMP1	 family	

(Lavstsen	et	al.,	 2003),	 shares	a	unique	molecular	architecture	with	a	minimal	 folded	core	

and	three	flexible	segments	and	is	thought	to	be	a	conserved	protein	interaction	epitope	for	

anchoring	PfEMP1	within	the	knob	structure	on	the	surface	of	the	iRBC	(Mayer	et	al.,	2012).	

The	high	level	of	sequence	conservation	of	the	ATS	domains	within	the	59	PfEMP1	variants	

in	 the	P.	 falciparum	 3D7	 isolate	 suggests	 that	 parts	 of	 the	 ATS	 domain	 are	 a	 generalized	

feature	in	the	PfEMP1	family	(Mayer	et	al.,	2012).	Moreover	it	has	been	shown	that	the	ATS	

domain	associates	with	the	PHIST	domain	of	PFI1780w,	a	member	of	the	Plasmodium	helical	

interspersed	sub-telomeric	(PHIST)	protein	family	(Mayer	et	al.,	2012).		

Recombinant	 KAHRP	 is	 shown	 to	 interact	 with	 the	 ATS	 fragments	 when	 bound	 and	

immobilized	 on	 a	 surface	 (Oh	 et	 al.,	 2000;	Waller	 et	 al.,	 1999).	 Therefore	 the	 KAHRP-ATS	

interaction	 is	well	 accepted	 in	 the	malaria	 field,	 even	 though	 no	 biophysical	 studies	were	

performed.	 Conversely,	 recent	 NMR	 studies	 do	 not	 support	 the	 KAHRP-ATS	 interaction	

although	a	very	weak	interaction	could	not	be	excluded	(Mayer	et	al.,	2012).		

1.4.2. The	ectodomain	of	PfEMP1	

In	 contrast	 to	 the	 semi-conserved	 exon	 II,	 there	 is	 an	 extensive	 polymorphism	 for	 exon	 I	

within	 single	 genomes	 but	 also	 between	 genomes.	 Due	 to	 frequent	 recombination	 or	

rearrangement	events	a	vast	 repertoire	of	var	 genes	 is	generated	 in	nature.	However,	 the	

overall	function	of	PfEMP1	in	adhesion	to	endothelial	receptors	is	conserved.		

The	 highly	 variable	 extracellular	 part	 of	 PfEMP1	 usually	 includes	 an	 N-terminal	 segment	

(NTS),	 multiple	 copies	 of	 duffy	 binding	 like	 domains	 (DBL),	 1-2	 cysteine	 rich	 interdomain	

regions	(CIDR)	and	a	transmembrane	domain	(TM)	(Gardner	et	al.,	2002).	The	length	of	each	

var	gene	depends	on	the	number	and	types	of	domains	in	the	sequence.	Based	on	sequence	

similarities	 the	 DBL	 domains	 can	 be	 further	 categorized	 into	 DBL	 α,	 β,	 γ,	 ε,	 δ,	 ζ	 and	 five	

smaller	classes	(Rask	et	al.,	2010;	Smith	et	al.,	2000).	Similar	to	that,	CIDR	domains	can	be	

divided	into	α,	β,	γ,	δ	and	pam	subclasses	(Rask	et	al.,	2010;	Smith	et	al.,	2000).	Each	of	these	

subclasses	can	be	further	subdivided	into	147	subtypes	(e.g.	DBLα1.3).		

The	 binding	 specificity	 to	 endothelial	 receptors	 is	 closely	 related	 to	 the	 structural	

characteristics	of	PfEMP1	molecules.	Despite	 the	enormous	diversity	of	PfEMP1	molecules	
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only	a	 few	endothelial	 surface	molecules	have	been	confirmed	to	act	as	 receptors	of	 iRBC	

adhesion.	Therefore	it	is	assumed	that	a	number	of	PfEMP1	molecules	must	have	a	binding	

affinity	for	the	same	receptor.	A	recent	study	indicated	that	receptor	specificity	is	mediated	

by	 a	 combination	 of	 different	 domains	 referred	 to	 as	 domain	 cassette	 (DC)	 (Rask	 et	 al.,	

2010).	The	binding	sites	of	some	receptors	can	be	mapped	to	specific	CIDR	and	DBL	domains	

of	PfEMP1	 (Baruch	et	al.,	1997;	 Joergensen	et	al.,	2010).	For	 instance	parts	of	 the	CIDR1α	

domain	of	group	B	and	C	PfEMP1	molecules	 revealed	strong	binding	 to	multiple	 receptors	

including	CD36	and	 ICAM-1	 (Chen	et	 al.,	 2000;	Robinson	et	 al.,	 2003).	Concomitant,	 iRBCs	

bind	 to	 ICAM-1	 via	 the	 DBLβ3	 domain	 of	 group	 A	 PfEMP1	 molecules	 and	 the	 DBLβ-C2	

domains	of	group	B	and	C	PfEMP1	molecules	(Bengtsson	et	al.,	2013;	Howell	et	al.,	2007).		

1.4.3. Export	of	PfEMP1	to	the	surface	of	the	iRBC	

To	 date	 the	 transport	 process	 of	 PfEMP1	 to	 the	 RBC	 membrane	 is	 poorly	 understood.	

PfEMP1	 does	 not	 possess	 a	 SS	 but	 a	 TM	 domain	 in	 the	 C-terminal	 region,	 which	 bears	

resemblance	to	the	PEXEL	motiv	and	seems	to	be	essential	for	PfEMP1	transport	(Knuepfer,	

2005;	Marti	 et	 al.,	 2004).	Moreover	 the	 semi-conserved	head	 region	 (NTS,	DBL1	and	CIDR	

domains)	 and	 the	 TM	domain	with	 the	 cytoplasmic	 part	 of	 the	molecule	 are	 required	 for	

proper	export	and	display	of	PfEMP1	on	the	iRBC	(Melcher	et	al.,	2010).		

PfEMP1	 is	 found	at	 the	parasite	 surface	 after	 8-11	hours	post-invasion,	 trafficked	 to	MC’s	

and	simultaneously	with	the	arrest	of	Maurer’s	clefts	mobility	appears	on	the	surface	of	the	

iRBC	(Grüring	et	al.,	2011;	Kriek	et	al.,	2003;	Papakrivos	et	al.,	2004;	Wickham	et	al.,	2001).	

Some	 studies	 suggest	 that	 PfEMP1	 is	 transported	 through	 a	 vesicle-dependent	 process	

(Taraschi,	 2003),	 whereas	 other	 studies	 indicate	 a	 possible	 role	 for	 a	 soluble	 chaperone	

complex	 (Knuepfer,	 2005;	 Papakrivos	 et	 al.,	 2004).	 Disruption	 of	 resident	 Maurer’s	 clefts	

proteins	including	MAHRP1	(Spycher	et	al.,	2008),	SBP1	(Cooke,	2006;	Maier	et	al.,	2007),	P.	

falciparum	antigen	332	(Glenister	et	al.,	2009)	and	deletion	of	REX1	or	the	coiled-coil	region	

of	 REX1	 (Dixon	 et	 al.,	 2011;	McHugh	 et	 al.,	 2015)	 abolished	 PfEMP1	 display	 on	 the	 iRBC	

surface.	Recently,	six	PEXEL	proteins,	namely	PfEMP1-trafficking	proteins	1-6	(PTP1-6)	were	

identified	to	play	a	role	 in	PfEMP1	transport	 (Maier	et	al.,	2008).	Disruption	of	PTP3,	PTP4	

and	 PTP6	 expression	 in	 P.	 falciparum	 resulted	 in	 decreased	 PfEMP1	 level	 on	 the	 iRBC	

surface,	 whereas	 lack	 of	 PTP1,	 PTP2	 and	 PTP3	 abolished	 PfEMP1	 iRBC	 surface	 display	

suggesting	 they	 are	 all	 required	 for	 proper	 subcellular	 localization	 of	 PfEMP1.	 Moreover	
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PTP1	has	shown	to	play	a	role	for	proper	Maurer’s	clefts	formation	and	links	other	proteins	

to	 the	 iRBC	 actin	 cytoskeleton	 (Rug	 et	 al.,	 2014).	 Recent	 work	 has	 suggested	 that	

haemoglobinopathies	 HbS	 and	 HbC	 protected	 carriers	 from	 severe	 malaria	 by	 interfering	

with	parasite-induced	host	actin	remodeling,	thereby	preventing	the	parasite	to	establish	its	

own	actin	 cytoskeleton	 (Cyrklaff	et	al.,	 2011,	2012).	As	a	 result	Maurer’s	 clefts	movement	

was	 altered,	 PfEMP1	 failed	 to	 reach	 the	 host	 cell	 surface	 and	 cytoadherence	 of	 iRBC	was	

reduced	 (Cholera	 et	 al.,	 2008;	 Fairhurst	 et	 al.,	 2003).	 A	 recent	 study	 showed	 that	

hemoglobinophatic	 iRBCs	displayed	a	reduced	amount	and	slower	parasite-derived	protein	

transport	compared	to	wild	type	iRBCs	(Kilian	et	al.,	2015).				

1.5. PHIST	protein	family	

A	multi-gene	 family	 that	 is	 expanded	 in	 human-infective	 Plasmodium	 species	 and	 greatly	

expanded	 in	 P.	 falciparum	 is	 the	 recently	 identified	 Plasmodium	 helical	 interspersed	

subtelomeric	(PHIST)	family	(Sargeant	et	al.,	2006).	Initial	sequence	alignments	indicated	the	

presence	of	a	conserved	domain	of	approximately	150	amino	acids	in	length	and	the	domain	

is	 predicted	 to	 consist	 of	 four	 consecutive	 alpha	 helices	 without	 any	 similarities	 to	 other	

known	 protein	 sequences.	 A	 recent	 study	 revealed	 67	 P.	 falciparum	 specific	 proteins	

containing	 a	 conserved	 Plasmodium	 RESA	 N-terminal	 (PRESAN)	 domain	 and	 structure	

predictions	of	the	core	domain	assumed	six	conserved	helical	segments	(Oakley	et	al.,	2007).	

Noteworthy,	the	newly	discovered	multi-gene	family	underwent	a	dramatic	lineage-specific	

proliferation	only	in	P.	falciparum	and	both	studies	suggested	a	role	in	host	cell	modification	

and	 an	 interaction	 epitope	 for	 cytoplasmic	 protein	 interactions.	 A	 typical	 PHIST	 protein	

includes	 a	 two	 exon	 gene	 structure,	whereat	 the	 first	 exon	 encodes	 a	 SS	 and	 the	 second	

exon	encodes	a	PEXEL	motif,	a	PHIST	domain	and	other	additional	amino	acid	residues.	The	

genes	 encoding	 PHIST	 proteins	 are	 primarily	 encoded	 in	 subtelomeric	 regions	 of	 all	

chromosomes,	 except	 chromosome	 3	 and	 generally	 show	 transcriptional	 peaks	 in	 late	

schizont	and	ring	stages	(Le	Roch	et	al.,	2004;	Sargeant	et	al.,	2006).	A	large	number	of	PHIST	

members	also	show	variation	in	expression	during	the	parasite	life	cycle	and	among	parasite	

isolates	 (Flueck	 et	 al.,	 2009;	 Lopez-Rubio	 et	 al.,	 2009;	 Rovira-Graells	 et	 al.,	 2012;	 Salcedo-

Amaya	et	al.,	2009).		The	primal	identification	of	the	PHIST	family	revealed	72	paralogs	in	P.	

falciparum,	39	 in	P.	vivax,	27	 in	P.	knowlesi	and	P.	cynomolgi,	3	 in	P.	gallinaceum	and	one	
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each	in	P.	yoelli,	P.	berghei	and	P.	chabaudi	(Sargeant	et	al.,	2006)	(Fig.	8).	To	date	only	one	

member	 of	 the	 PHIST	 family	 has	 been	 identified	 in	 the	 four	 rodent	 parasite	 genomes,	

indicating	 radiation	 of	 the	 phist	 gene	 family	 in	 primate	 parasites.	 Although	 sharing	 a	

common	 core	 domain,	 the	 PHIST	 domain	 clusters	 into	 three	 distinct	 subgroups	 (PHISTa,	

PHISTb,	PHISTc),	distinguished	by	the	presence	and	position	of	several	conserved	tryptophan	

residues.	Moreover,	the	three	subfamilies	have	expanded	differentially	in	Plasmodia	species	

(Fig.	8).		

A	recent	comparative	analysis	and	classification	of	variant	surface	antigens	(VSA)	from	seven	

Plasmodium	 genomes	 including	 the	phist	 gene	 family	 revealed	22	 full-length	proteins	 that	

are	 currently	 not	 annotated	 as	 phist	 family	 members,	 including	 four	 P.	 falciparum	 genes	

(Frech	&	Chen,	 2013).	Moreover	 the	phist	 cluster	was	 shown	 to	be	 closely	 related	 to	 a	P.	

vivax	gene	family	of	44	genes	called	rad	(pv-fam-e)	(Carlton	et	al.,	2008).  

Figure	8:	The	PHIST	protein	family	
(Left)	Phylogenetic	tree	 illustrates	the	conservation	of	the	PHIST	domain	across	Plasmodium.	Subfamilies	and	

species	conservation	are	visualized	 in	colours.	 (Right)	Domain	map	depicts	members	of	 the	PHIST	 family	and	

illustrates	 organisatorial	 differences	 between	 subfamilies.	 Characterized	 domains	 are	 highlighted	 in	 colours.	

Figure	modified	from	(Sargeant	et	al.,	2006).	
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As	the	number	of	 identified	members,	the	classification	 into	subgroups,	and	the	criteria	to	

cluster	 the	 PHIST	 family	 greatly	 varies	 between	 recent	 publications,	 an	 elaborate	 and	

comprehensive	 analysis	 of	 all	 potential	 and	 suggested	 members	 of	 this	 highly	 divergent	

protein	family	is	urgently	needed.		

1.5.1. The	PHISTa	subfamily	

PHISTa	proteins	are	very	short	 in	size	and	some	consist	only	of	a	signal	sequence,	a	PEXEL	

motif	 and	 a	 PHIST	 domain	 (Sargeant	 et	 al.,	 2006).	 In	 contrast	 to	 the	 PHISTb	 and	 PHISTc	

subfamilies,	 PHISTa	 is	 specific	 to	 the	 P.	 falciparum	 lineage.	 PHISTa	 appear	 to	 be	

transcriptionally	 silent	 in	 3D7	 parasites	 with	 two	 exeptions,	 PFD0090c	 and	 PFL2565w	

(Sargeant	et	al.,	2006;	Scholz	&	Fraunholz,	2008).	 In	contrast,	whole	transcriptional	studies	

from	 venous	 blood	 of	 different	 patients	 highlighted	 phist-a	 transcript	 upregulation	 and	

suggested	 a	 role	 in	 iRBC	 adhesion	 in	 the	 brain	 microvasculature	 and	 potentially	 cerebral	

malaria	 (Claessens	 et	 al.,	 2012;	 Daily	 et	 al.,	 2005;	 Mok	 et	 al.,	 2007).	 Moreover,	 the	

differential	expression	of	phist-a	genes	in	these	studies	further	supported	the	findings	that	

some	 PHIST	 members	 are	 mutually	 exclusive	 expressed	 (Rovira-Graells	 et	 al.,	 2012)	 as	

originally	postulated	(Sargeant	et	al.,	2006)	

With	a	yeast	two-hybrid	screen	an	interaction	between	the	PHIST	domain	of	PFD0090c	and	

the	 erythrocyte	 cytoskeleton	 component	 band	 4.1	 was	 identified,	 even	 though	 the	

subcellular	 localization	of	 the	endogenous	protein	 at	 the	PVM	suggests	 a	different	 role	of	

this	protein	(Parish	et	al.,	2013).		

PHISTa	 proteins	may	 also	 play	 a	 role	 in	 gametocytogenesis,	 as	 two	phist-a	 genes,	 namely	

PF14_0744	and	PF14_0748	were	upregulated	in	gametocytes	(Eksi	et	al.,	2005;	Silvestrini	et	

al.,	2005,	2010).	The	proteins	were	either	localizing	in	the	gametocyte	PV	or	the	iRBC	cytosol	

indicating	that	exported	PHISTa	proteins	may	be	involved	in	the	formation	of	sexual	stages.	

1.5.2. The	PHISTb	subfamily	

The	PHISTb	 subfamily	 displays	 length	 variability	 at	 the	C-terminus	 after	 the	 PHIST	 domain	

and	a	subset	of	PHISTb	proteins	 including	the	ring	 infected	surface	antigen	(RESA)	and	the	

RESA-like	proteins	contain	a	DnaJ	domain	at	the	C-terminus.	Most	of	the	phist-b	genes	show	

transcriptional	peaks	mainly	in	early	asexual	stages	(Scholz	&	Fraunholz,	2008)	but	a	number	
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of	genes	of	this	subfamily	are	specifically	upregulated	in	early	gametocyte	stages	(Eksi	et	al.,	

2005;	Silvestrini	et	al.,	2005;	Young	et	al.,	2005).		

RESA	was	shown	to	interact	directly	with	the	erythrocyte	cytoskeleton	by	binding	to	spectrin	

tetramers,	resulting	in	increased	resistance	to	shear	stress	and	thermal	damage	(Mills	et	al.,	

2007;	 Pei	 et	 al.,	 2007;	 Da	 Silva	 et	 al.,	 1994;	 Silva	 et	 al.,	 2005).	 In	 a	 large-scale	 knockout	

approach,	several	functions	have	been	assigned	to	PHISTb	proteins	although	the	localization	

of	 the	 proteins	 has	 not	 been	 determined	 (Maier	 et	 al.,	 2008).	 Disruption	 of	 PFB0920w	

resulted	in	an	increased	rigidity	of	iRBCs,	whereas	disruption	of	PF14_0018	or	RESA	lead	to	a	

decrease	 in	 cell	 rigidity	 (Maier	 et	 al.,	 2008;	 Mills	 et	 al.,	 2007).	 Moreover,	 deletion	 of	

PFD1170c	resulted	in	loss	of	knob	structures	on	the	surface	of	iRBCs	and	a	partial	reduction	

of	 cytoadherence	 under	 flow	 conditions	 (Maier	 et	 al.,	 2008).	 Interestingly,	 in	 parasite	

isolates	 from	 placenta,	 the	 PFI1785w	 transcript	 is	 specifically	 upregluated	 (Francis	 et	 al.,	

2007;	Tuikue	Ndam	et	al.,	2008).	

Nine	 PHISTb	 proteins	 including	 PFD1170c	 were	 recently	 shown	 to	 localize	 to	 the	 iRBC	

periphery	 and	 detergent	 insolubility	 further	 supports	 a	 cytoskeleton	 association	 of	 these	

proteins	(Tarr	et	al.,	2014).	Additionally,	the	region	N-terminal	to	the	PHIST	domain	together	

with	 the	 PHIST	 domain	 contributes	 to	 a	 functional	 peripheral	 targeting	 domain	 in	 PHISTb	

proteins.	 PHISTb	 homologues	 in	 P.	 vivax	 and	 P.	 knowlesi	 exhibit	 an	 iRBC	 peripheral	

localization	indicating	a	conserved	feature	in	multiple	human	malaria	parasite	species.	

Kilili	et	al.	reported	that	the	MESA	erythrocyte	cytoskeleton-binding	(MEC)	domain	is	present	

in	 at	 least	 14	 different	 exported	P.	 falciparum	 proteins,	 among	which	 nine	 belong	 to	 the	

PHISTb	 subfamily	 (Kilili	 &	 LaCount,	 2011).	 A	 subset	 of	 these	 proteins	 bound	 to	 inside-out	

vesicles	 and	 co-precipitated	 full-length	 human	 erythrocyte	 band	 4.1	 suggesting	 the	 MEC	

domain	facilitates	binding	to	the	erythrocyte	cytoskeleton.	

Recent	work	by	Proellocks	and	colleages	identified	the	function	of	PFE1605w,	termed	lysine-

rich	membrane-associated	PHISTb	 (LyMP).	With	 inside-out	 vesicles	 experiments	 LyMP	was	

shown	to	be	associated	directly	with	the	cytoskeleton	of	iRBC	and	deletion	of	LyMP	reduced	

the	adhesion	of	iRBCs	to	CD36	by	55%	(Proellocks	et	al.,	2014).		

Overall	it	seems	that	most	PHISTb	proteins	localize	to	the	periphery	of	the	RBC	and	interact	

with	 the	 cytoskeleton	 suggesting	a	 role	 in	 the	 refurbishment	and	 rigidification	of	 the	host	

cell.		
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1.5.3. The	PHISTc	subfamily	

The	PHISTc	subfamily	 is	the	most	diverse	group	of	PHIST	proteins	and	the	PHIST	domain	 is	

mostly	 located	at	 the	very	C-terminus.	They	are	commonly	 found	 in	different	Plasmodium	

subspecies	and	 it	 seems	 that	 the	PHISTc	 subfamily	has	evolved	before	 the	 two	 lineages	P.	

falciparum	and	P.	vivax	diverged,	as	disclosed	by	the	presence	of	PHISTc	orthologs	 in	both	

subspecies	and	also	in	other	subspecies	like	P.	knowlesi	(Prajapati	&	Singh,	2013;	Sargeant	et	

al.,	2006;	Scholz	and	Fraunholz,	2008).	Some	proteins	containing	a	PHISTc	domain	have	been	

shown	to	be	essential	for	survival	of	P.	falciparum	(Maier	et	al.,	2008)	and	P.vivax	(Akinyi	et	

al.,	2012)	as	targeted	gene	disruption	failed.	A	PHISTc	protein,	MAL7P1.172	or	also	termed	

PfEMP1	 trafficking	 protein	 2	 (PTP2)	 was	 shown	 to	 localize	 in	 the	 MC’s	 lumen	 and	 gene	

disruption	resulted	in	a	reduced	level	of	PfEMP1	on	the	surface	of	iRBCs	(Maier	et	al.,	2008).	

Further,	 a	 follow-up	 study	 revealed	 that	MAL7P1.172	 localizes	 to	 exosomes	 and	mediates	

cell-cell	communication	by	plasmid	transfer	between	iRBCs	(Regev-Rudzki	et	al.,	2013).	

Very	 recently,	 the	 PHISTc	 termed	Plasmodium	 falciparum	 Gametocyte	 Exported	 Protein-5	

(PfGEXP5)	has	been	shown	to	be	exported	 into	 the	host	cell	 cytoplasm	after	14	hour	post	

invasion	of	sexually	committed	merozoites	therefore	representing	the	earliest	post-invasion	

gametocyte	marker	described	to	date	(Tiburcio	et	al.,	2015).	

Biophysical	 protein	 interaction	 studies	 identified	 the	 ATS	 domain	 of	 PfEMP1	 to	 be	 a	

conserved	protein	interaction	epitope	and	demonstrated	an	ATS	interaction	with	the	PHIST	

domain	 of	 PFI1780w	 (Mayer	 et	 al.,	 2012).	 Therefore	 the	 PHIST	 domain	 is	 proposed	 to	

facilitate	protein	interactions	and	may	be	involved	in	the	parasite	cytoadherence	system.		

1.6. The	human	red	blood	cell	

The	human	 red	blood	cell	 is	 a	biconcave	disk-shaped	cell	 lacking	a	nucleus	or	 intracellular	

organelles	and	contains	approximately	450	mg/ml	hemoglobin	in	the	cytoplasm	for	O2/CO2	

exchange.	As	the	RBC	repeatedly	passes	narrow	capillaries	in	the	peripheral	tissue	vessels	it	

is	 remarkably	 deformable	 and	 extremely	 stable.	 The	 plasma	membrane	 is	 composed	 of	 a	

bilayer	 of	 cholesterol	 and	 phospholipids	 which	 are	 anchored	 to	 a	 2	 dimensional	 elastic	

network	of	 skeletal	proteins	via	 interactions	with	 the	cytoplasmic	domains	of	TM	proteins	

embedded	in	the	lipid	bilayer	(Mohandas	&	Evans,	1994).	The	lipid	bilayer	consists	of	equal	

ratios	 of	 cholesterol	 and	 phospholipids.	 Cholesterol	 is	 suggested	 to	 be	 equally	 distributed	
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between	 the	 two	 leaflets	 of	 the	 RBC	membrane	 but	 the	 ratio	 of	 the	 four	 different	major	

phospholipids	varies	(Zwaal	&	Schroit,	1997).	This	asymmetry	is	suggested	to	be	controlled	

by	 scramblases	 and	 flippases	 (Sims	 &	 Wiedmer,	 2001)	 and	 is	 of	 functional	 relevance	 as	

phospholipids	interact	with	skeletal	proteins	such	as	spectrin	and	protein	4.1R.		

	

Figure	9:	The	membrane	organization	of	uninfected	and	P.	falciparum	infected	RBCs	

(a)	 Uninfected	 RBC.	 The	 band	 3	 complex	 is	 anchored	 via	 ankyrin	 to	 the	 spectrin	 tetramer.	 The	 membrane	

skeletal	protein	4.2	has	binding	affinity	to	both	band	3	and	ankyrin.	The	protein	4.1R	or	junctional	complex	is	

comprised	 of	 the	 ternary	 complex	 of	 spectrin,	 F-actin	 and	 4.1R	 and	 the	 actin	 binding	 proteins	 adducing,	

dermatin,	 tropomodulin	and	 tropomyosin.	The	adaptor	protein	4.1R	 ternary	binds	GPC	and	p55.	 (b)	 Infected	

RBC.	RESA	associates	with	spectrin	and	stabilizes	and	protects	the	band	3	complex.	KAHRP	self-associates	and	

binds	ankyrin	and	spectrin.	PfEMP1	localizes	 in	knobs	and	is	thought	to	 interact	with	the	cytosolic	domain	to	

spectrin.	 Pf322	 and	MESA	 are	 thought	 to	 bind	 to	 the	 4.1R	 complex	whilst	 PfEMP3	 binds	 to	 spectrin.	 REX1,	

MAHRP1	and	SBP1	are	Mauer’s	cleft	proteins.	Figure	modified	from	(Maier	et	al.,	2009).		

1.6.1. The	structural	organization	of	the	RBC	membrane	

The	RBC	owes	its	mechanical	flexibility	to	the	membrane-associates	protein	skeleton	which	

is	composed	of	spectrin	tetramers,	formed	by	self-assembly	of	α-/β-spectrin	heterodimers.	

This	 2-dimensional	 spectrin-based	 membrane	 skeleton	 is	 attached	 to	 the	 lipid	 bilayer	

through	 two	 well	 characterized	 linkages,	 the	 band	 3	 complex	 and	 the	 junctional	 4.1R	

complex	(Fig.	9).		
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The	 more	 prominent	 and	 well	 characterized	 band	 3	 complex	 forms	 	 a	 bridge	 from	 the	

integral	 membrane	 protein	 band	 3	 via	 ankyrin	 to	 spectrin	 and	 involves	 a	 variety	 of	 well	

characterized	high	affinity	protein-protein	interactions	(Mohandas	&	Gallagher,	2008;	Steck,	

1974).	Defects	or	deficiencies	of	the	band	3	anion	transport	protein	or	the	adaptor	protein	

ankyrin	lead	to	a	reduced	coherence	between	the	membrane	skeleton	and	the	lipid	bilayer	

resulting	 in	 sphere-shaped	 RBCs,	 a	 pathology	 termed	 spherocytosis	 (Costa	 et	 al.,	 1990;	

Stefanovic	 et	 al.,	 2007).	 Disruption	 of	 the	 band	 3	 complex	 by	 addition	 of	 competing	

fragments	of	either	band	3	or	ankyrin	or	 specific	monoclonal	antibodies	 led	 to	membrane	

deformation	and	emphasizes	 the	 importance	of	 the	band	3	complex-spectrin	bridge	 in	 the	

maintenance	of	the	RBC	membrane	integrity	(Van	Dort	et	al.,	2001).	

The	 second	 bridge	 of	 the	 membrane	 bilayer	 to	 the	 spectrin/actin	 skeleton	 involves	 the	

transmembrane	protein	glycophorin	C	(GPC),	which	is	anchored	to	spectrin	through	binding	

to	 the	 adapter	 protein	 4.1	 (Marfatia	 et	 al.,	 1994).	 As	 actin	 weakly	 interacts	 with	 the	 N-

terminus	of	β-spectrin,	this	interaction	is	enhanced	by	protein	4.1R	binding	and	the	ternary	

spectrin-actin-protein	 4.1R	 complex	 is	 an	 important	 regulator	 of	 mechanical	 membrane	

integrity	 (Ohanian	 et	 al.,	 1984).	 The	 cytoskeletal	 protein	 complex	 comprised	 of	 actin,	

adducin,	dematin,	protein	4.1,	tropomodulin	and	tropomyosin	builds	the	junctional	complex	

and	 spectrin	 tetramers	 extending	 to	 a	 two	dimensional	 grid	 allows	mechanical	 stability	 to	

the	 RBC	 membrane.	 GPC-deficient	 RBCs	 showed	 a	 decrease	 in	 the	 mechanical	 stability	

suggesting	the	GPC	protein	4.1	bridge	is	essential	for	RBC	integrity	(Gascard	&	Cohen,	1994;	

Reid	et	al.,	1990).	

Together,	 these	 two	 major	 protein	 complexes	 with	 the	 bridge	 to	 the	 spectrin/actin	

cytoskeleton	are	likely	to	be	responsible	for	the	structural	and	mechanical	properties	of	the	

highly	specialized	and	differentiated	red	blood	cell.	

1.6.2. Interactions	with	the	host	erythrocyte	cytoskeleton	

Uninfected	 RBCs	 possess	 a	 highly	 ordered	 but	 flexible	 cytoskeleton.	 A	 consequence	 of	 P.	

falciparum	 infection	is	the	reorganization	of	the	cytoskeletal	network	resulting	in	increased	

rigidity	of	the	host	cell	and	dramatic	changes	in	fluidity,	permeability	and	adhesiveness.	This	

improves	the	ability	of	the	iRBC	to	cytoadhere	to	host	receptors	but	also	leads	to	blocking	of	

the	microcapillaries	of	organs	resulting	in	the	major	pathology	of	malaria.	Molecular	protein-

protein	 interactions	 of	 exported	 Plasmodium	 proteins	 with	 the	 RBC	 cytoskeleton	 lead	 to	
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crosslinking	of	cytoskeletal	proteins	that	can	 increase	the	rigidity	of	the	 iRBC.	Even	though	

the	mechanism	leading	to	decreased	deformability	of	the	iRBC	is	not	understood	to	date,	the	

contribution	 of	 exported	 parasite-derived	 proteins	 to	 increase	 rigidity	 can	 most	 likely	 be	

ascribed	to	direct	or	indirect	interactions	with	the	RBC	cytoskeleton.	

One	of	the	first	proteins	exported	to	the	RBC	is	RESA	which	binds	β-spectrin	and	is	thought	

to	stabilize	the	band	3	complex	against	thermal	disruption	(Mills	et	al.,	2007;	Pei	et	al.,	2007;	

Silva	et	al.,	2005).	These	findings	are	further	supported	as	disruption	of	RESA	resulted	 in	a	

reduced	rigidity	of	the	iRBCs	(Maier	et	al.,	2008).	KAHRP	is	known	to	associate	with	spectrin,	

ankyrin	and	actin	in	the	RBC	cytoskeleton	and	is	suggested	to	crosslink	spectrin	resulting	in	

increased	rigidity	of	the	membrane	(Pei	et	al.,	2005;	Weng	et	al.,	2014).	Moreover,	KAHRP	is	

thought	to	anchor	PfEMP1	to	the	RBC	membrane	through	an	interaction	of	KAHRP	with	the	

C-terminus	of	PfEMP1	(Waller	et	al.,	1999)	although	a	recent	study	did	not	shown	evidence	

for	 this	 interaction	 in	 solution	 experiments	 under	 physiological	 conditions	 (Mayer	 et	 al.,	

2012).	 In	 case	 of	 a	 physiological	 relevant	 interaction	 of	 KAHRP	 with	 PfEMP1,	 which	 is	

inserted	 in	 the	 RBC	 membrane	 through	 a	 TM	 domain,	 this	 would	 cause	 an	 additional	

increase	in	rigidity	of	the	iRBC.	The	cytoplasmic	domain	of	PfEMP1	was	also	shown	to	bind	

spectrin,	actin	band	4.1	and	full	length	KAHRP	in	vitro	(Oh	et	al.,	2000).	The	mature	parasite-

infected	erythrocyte	surface	antigen	(MESA)	interacts	with	the	N-terminal	domain	of	protein	

4.1R,	 it	 competes	with	p55	 for	binding	 to	4.1R,	and	 therefore	may	modulate	 the	4.1R-p55	

interaction	 in	 vivo	 (Waller,	 2003).	 The	 PHISTa	 protein	 PFD0090c	 has	 also	 been	 shown	 to	

interact	with	the	regulator	protein	band	4.1	(Parish	et	al.,	2013).		

Several	 exported	 proteins	 have	 been	 implicated	 in	 the	 alteration	 of	 the	 RBC	 mechanical	

properties	 but	 the	 exact	 function	 or	 interaction	 epitopes	 have	 not	 yet	 been	 elucidated.	

Disruption	of	the	P.	falciparum	antigen	332	(Pf322),	glycophorin	binding	protein	130,	PTP3,	

PF13_0073,	PFB0920w	and	PF10_0159	lead	to	increase	in	rigidity	of	the	iRBCs	(Glenister	et	

al.,	 2009;	 Maier	 et	 al.,	 2008),	 whereas	 reduced	 levels	 of	 MAL8P1.154,	 PF14_0018	 and	

FIKK4.2	resulted	in	a	decrease	in	rigidity	(Kats	et	al.,	2014;	Maier	et	al.,	2008).	STEVOR	and	

RIFIN	 proteins	 measureable	 contribute	 to	 the	 rigidity	 of	 the	 iRBC,	 although	 it	 cannot	 be	

excluded	 that	 this	 effect	 is	 an	 indirect	 consequence	 of	 STEVOR/RIFIN	 export	 to	 the	 iRBC	

membrane	(Sanyal	et	al.,	2012).	



Chapter	1	–	Introduction	

 

29	

A	recent	study	suggested	that	parasite-induced	actin	remodeling	leads	to	reorganization	of	

the	cytoskeletal	network	 (Cyrklaff	et	al.,	2011).	 In	addition	 to	 the	exported	proteins	which	

directly	 interact	 with	 the	 host	 cytoskeleton	 there	 are	 also	 exported	 proteins	 which	 post-

translationally	 modify	 cytoskeletal	 components.	 Recently,	 FIKK4.1	 (PFD1165w)	 has	 been	

shown	to	phosphorylate	band	4.9	at	the	spectrin	actin	interface	(Brandt	&	Bailey,	2013).		
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1.7. Outline	of	the	thesis	

The	main	aim	of	this	thesis	was	to	gain	insight	 into	the	function	of	a	subset	of	exported	P.	

falciparum	PHIST	proteins	in	host	cell	refurbishment,	their	influence	on	the	transport	of	the	

major	 virulence	 factor	PfEMP1	 to	 the	 iRBC	 surface	and	 to	 reveal	potential	 protein-protein	

interactions	at	the	parasite-host	interface.	The	specific	objectives	of	this	thesis	were:		

	

(i) Identification	 of	 the	 subcellular	 localization	 of	 PFE1605w	 within	 the	 iRBC	 and	

investigation	of	a	potential	association	of	 the	PFE1605w	PHIST	domain	with	the	

ATS	domain	of	different	PfEMP1	molecules	(chapter	2	&	3).	

	

(ii) Investigation	of	the	function	of	PFE1605w	using	different	approaches	to	deplete	

PFE1605w	 in	 its	 functional	 compartment	 and	 identification	 of	 potential	 protein	

interactions	with	parasite-derived	or	host	cell	proteins	(chapter	3).	

	

(iii) Investigation	of	 the	var	 expression	 and	binding	phenotypes	 of	 ICAM-1	 selected	

3D7	parasite	lines	(chapter	4).		
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A Plasmodium falciparum PHIST protein binds the
virulence factor PfEMP1 and comigrates to knobs on
the host cell surface
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ABSTRACT Uniquely among malaria parasites, Plas-
modium falciparum-infected erythrocytes (iRBCs) de-
velop membrane protrusions, known as knobs, where
the parasite adhesion receptor P. falciparum erythrocyte
membrane protein 1 (PfEMP1) clusters. Knob forma-
tion and the associated iRBC adherence to host endo-
thelium are directly linked to the severity of malaria
and are functional manifestations of protein export
from the parasite to the iRBC. A family of exported
proteins featuring Plasmodium helical interspersed sub-
telomeric (PHIST) domains has attracted attention,
with members being implicated in host-parasite protein
interactions and differentially regulated in severe dis-
ease and among parasite isolates. Here, we show that
PHIST member PFE1605w binds the PfEMP1 intracel-
lular segment directly with Kd ! 5 " 0.6 #M, comi-
grates with PfEMP1 during export, and locates in
knobs. PHIST variants that do not locate in knobs
(MAL8P1.4) or bind PfEMP1 30 times more weakly
(PFI1780w) used as controls did not display the same
pattern. We resolved the first crystallographic structure
of a PHIST protein and derived a partial model of the
PHIST-PfEMP1 interaction from nuclear magnetic res-
onance. We propose that PFE1605w reinforces the
PfEMP1-cytoskeletal connection in knobs and discuss
the possible role of PHIST proteins as interaction hubs
in the parasite exportome.—Oberli, A., Slater, L. M.,
Cutts, E., Brand, F., Mundwiler-Pachlatko, E., Rusch,
S., Masik, M. F. G., Erat, M. C., Beck, H.-P., Vakonakis,
I. A Plasmodium falciparum PHIST protein binds the
virulence factor PfEMP1 and comigrates to knobs on

the host cell surface. FASEB J. 28, 4420–4433 (2014).
www.fasebj.org

Key Words: cytoadherence ! exported proteins ! interactions !
malaria ! protein structure

During the intraerythrocytic cycle, Plasmodium
falciparum completely refurbishes the human erythro-
cyte by establishing membranous networks and new
permeation pathways (1). This refurbishment involves
export of hundreds of proteins into the cytosol of the
infected red blood cell (iRBC) and dramatic changes in
the host cell membrane. The infected cell increases its
permeability (2) and becomes more rigid (3, 4), and
electron-dense surface protrusions called knobs form,
conveying cytoadherence of mature iRBCs to the endo-
thelial lining (5). The major parasite virulence factor P.
falciparum erythrocyte membrane protein 1 (PfEMP1)
is embedded in these knob structures through a trans-
membrane helix and comprises a highly variable ec-
todomain and a semiconserved intracellular segment
[acidic terminal segment (ATS)] anchoring the mole-
cule to the host cell (6). The presentation of PfEMP1
on the host cell surface is thought to be a major cause
of pathological changes (7).

The importance of parasite-exported proteins in
these host cell modifications has been acknowledged,
but little is known about their function and interac-
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Abbreviations: ATS, acidic terminal segment; AUC, analyt-
ical ultracentrifugation; DAPI, 4=,6=-diamidino-2-phenylin-
dole; DTT, dithiothreitol; GAPDH, glyceraldehyde-3-phos-
phate dehydrogenase; GFP, green fluorescent protein; GST,
glutathione S-transferase; HA, hemagglutinin; hpi, hours
postinfection; IFA, immunofluorescence assay; iRBC, infected
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NMR, nuclear magnetic resonance; PFA, paraformaldehyde;
PfEMP1, P. falciparum erythrocyte membrane protein 1;
PHIST, Plasmodium helical interspersed subtelomeric; PBS,
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tions. Transport of proteins through the parasito-
phorous vacuole into the host cell has been shown to be
facilitated by a short amino-terminal sequence termed
PEXEL or VTS (8, 9). The majority of exported pro-
teins carry this PEXEL motif, which allowed the estab-
lishment of the P. falciparum exportome with !400
members (8). A smaller but unknown number of
parasite proteins are exported despite lacking an iden-
tifiable motif (10). In both groups, only a few proteins
have been studied in detail; these include some constit-
uents of the translocon (11) and, in particular, knob
components such as PfEMP1 (12) and others (13–16).
More recently, PEXEL-negative proteins localizing in
membrane structures formed in the host erythrocyte
(Maurer’s clefts), such as SBP1 (17) and MAHRP1
(18), have also been studied in greater detail. Maier et
al. (4) used these predictions and identified through a
knockout strategy a number of proteins that were
essential for the transport of PfEMP1 to the surface,
including members of the Plasmodium helical inter-
spersed subtelomeric (PHIST) family. PHIST proteins
comprise 72 variants in the P. falciparum 3D7 reference
genome (19) and are organized into 3 subfamilies
according to their species distribution: PHISTa pro-
teins are entirely P. falciparum specific, PHISTb proteins
are present in Plasmodium vivax and Plasmodium knowlesi
but have extensively expanded in P. falciparum, and
PHISTc proteins are shared between P. falciparum and
P. vivax and appear as single-copy genes in the Plasmo-
dium berghei lineage (19).

To date, no molecular function has been assigned to
any of the PHIST proteins despite their wide distribu-
tion within infected cells. Yeast 2-hybrid analysis iden-
tified PHIST proteins as putative interactors with SBP1
(20) and erythrocyte band 4.1 (21). Transcriptome
data suggest differences in PHIST expression during
the parasite life cycle (19, 22–24) and among parasite
isolates (25) and up-regulation of a specific PHIST
member in parasites targeting the brain endothelium
(26). Proteome data show a consistent presence of
PHIST proteins in iRBC membrane fractions (27–29).
Recently, a member of the PHIST family was identified
within the Maurer’s clefts (4); there is also evidence for
a PHIST protein in J dots, and very recently PfPTP2, a
PHISTb protein, was shown to be present in exosomes,
a newly discovered means of P. falciparum communica-
tion (30). The PHISTc protein PFI1780w
(PF3D7_0936800) has been detected in detergent-resis-
tant membrane fractions (31), and we identified the
same variant as an interaction partner with the ATS of
PfEMP1, demonstrating the first direct association for a
PHIST protein (32).

In this study, we show that another PHIST variant,
PFE1605w (PF3D7_0532400), directly binds ATSs with
higher affinity than PFI1780w. Both PFI1780w and
PFE1605w were shown to localize to the iRBC mem-
brane, but only PFE1605w is transported similar to
PfEMP1 in time and space, and it locates specifically to
knobs. Finally, we elucidate the first PHIST crystallo-
graphic structure from PFI1780w and suggest a partial

model for the PHIST-ATS complex. This is the first
functional information for any PHIST protein and
provides evidence that PHIST proteins might be in-
volved in PfEMP1 function and certainly are constitu-
ents of knobs.

MATERIALS AND METHODS

Cloning and protein production

PHIST domains

P. falciparum PFI1780w residues 85–247 or 98–247, PFD1170c
residues 132–309, and MAL8P1.163 residues 131–284 were
cloned in vector pGEX-6P-2 (GE Healthcare Life Sciences,
Glattbrugg, Switzerland), and transformed into Escherichia coli
BL21(DE3). PFE1605w residues 122–335 and MAL8P1.4 res-
idues 310–456 were cloned in pOPINF vector (Oxford Pro-
tein Production Facility, Harwell, UK), and transformed into
E. coli Rosetta2pLacI. Recombinant MAL8P1.4 for antibody
production was derived from a full-length codon-optimized
gene cloned into psCodon (Eurogentec, Seraing, Belgium)
and expressed in the CherryCodon system (Eurogentec).
Cells were grown in Luria-Bertani medium, supplemented with
1% (w/v) glucose for PFE1605w and MAL8P1.4. For nuclear
magnetic resonance (NMR) samples, cells were grown in M9
medium supplemented with 15NH4Cl and 13C6 d-glucose, and
after protein induction were grown for 16 h at 18°C .

Cells were resuspended in phosphate-buffered saline (PBS;
150 mM NaCl and 20 mM Na2HPO4, pH 7.4) and lysed by
sonication; lysates were spun at 24,000 g for 30 min. Lysate
supernatants of PHIST domains cloned in pGEX-6P-2 were
incubated with glutathione Sepharose resin (GE Healthcare
LifeSciences) equilibrated in PBS, and proteins were eluted
in a 50 mM Tris-Cl (pH 7.8), 12 mM reduced glutathione
buffer. The glutathione S-transferase (GST) tag was removed
by 3C protease cleavage, followed by buffer exchange to PBS
using a Sephadex G-20 column (GE Healthcare Life-
Sciences). GST was retained by reverse glutathione Sepharose
affinity.

Lysate supernatants of pOPNIF-cloned PHIST domains
were applied to a Talon HiTrap column (GE Healthcare
LifeSciences) equilibrated in 20 mM Na2HPO4 (pH 7.4) and
300 mM NaCl and eluted with a gradient to an imidazole-
containing buffer (20 mM Na2HPO4, pH 7.4; 300 mM NaCl;
and 500 mM imidazole). For PFE1605w, the His6 tag was
removed by 3C protease cleavage during dialysis in 50 mM
Tris-Cl (pH 7.5), 150 mM NaCl, and 2 mM dithiothreitol
(DTT), followed by dialysis in 20 mM 2-(N-morpholino)eth-
anesulfonic acid (MES; pH 6.0), 50 mM NaCl, and 2 mM
DTT. PFE1605w was then applied to an SP ion exchange
column (GE Healthcare LifeSciences) equilibrated in the
dialysis buffer and eluted with a NaCl gradient (20 mM MES,
pH 6.0; 1 M NaCl, and 2 mM DTT). For MAL8P1.4, the His6
tag was removed by 3C protease cleavage, followed by dialysis
in 20 mM Na2HPO4 (pH 7.0), 150 mM NaCl, and 2 mM DTT.

Final purification of all PHIST domains was performed by
size-exclusion chromatography over a Superdex S75 column
(GE Healthcare LifeSciences) equilibrated in PBS supple-
mented with 1 mM DTT or buffer A (50 mM NaCl; 20 mM
Na2HPO4, pH 7.0; and 1 mM DTT).

PfEMP1 intracellular segments

The cloning and protein production of PfEMP1 intracellular
segments, both full-length segments and fragments, and
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fluorescent labeling of the PF08_0141 ATS were described
earlier (32). A further 5 fluorescent-labeled full-length ATS
variants were produced in an analogous manner by substituting
single amino acids for cysteines; these are PFF0010 (G156C),
PFB1055c (Q161C), PFC1120c (Q182C), PF08_0103 (H154C),
and PFF0845c (H159C).

Biophysical characterization

Protein identity was confirmed by matrix-assisted laser de-
sorption ionization-time of flight mass spectrometry. Unless
otherwise noted, all biophysical experiments were performed
in buffer A, except for analytical ultracentrifugation (AUC)
experiments in which 1 mM tris(2-carboxyethyl)phosphine
was used instead of DTT. Fluorescence polarization measure-
ments were recorded at 20°C with a 5-FAM label using a
PHERAstar FS fluorimeter (!ex"485 nm, !em"520 nm; BMG
Labtech, Ortenberg, Germany). Differences in fluorescence
polarization were fit using a single binding model in the
program Origin (OriginLab, Northampton, MA, USA). AUC
velocity experiments were performed on 25 #M protein
samples using an Optima XL-I analytical ultracentrifuge
(Beckman Coulter, Fullerton, CA, USA). Sedimentation ve-
locities were recorded by measuring absorbance at 280 nm,
with 200 scans every 4 min at 10°C and 35,000 rpm. Data were
processed using SEDPHIT (33). The protein partial specific
volume was calculated from the amino acid sequence.

Crystallization and structure determination

Crystals were obtained using the sitting drop vapor-diffusion
technique at 20°C. A Mosquito robot (TTP LabTech, Mel-
bourn, UK) was used to set up 200-nl sized drops with a 1:1
ratio of protein to mother liquor. PFI1780w residues 85–247
at a concentration of 4.0 mg/ml were mixed with 0.1 M
sodium acetate (pH 4.6) and 2.0 M NaCl buffer. Crystals
developed in 7 d were cryoprotected by a brief incubation in
mother liquor supplemented with 22.5% (v/v) glycerol, flash-
cooled in liquid nitrogen, and diffracted up to 2.35 Å at the
Diamond Light Source (Harwell, UK), beamline I04. The
space group was determined to be P3121 with 2 molecules/
asymmetric unit. For phasing experiments, the crystals were
incubated with 250 mM 5-amino-2,4,6-triiodoisophthalic acid
(Hampton Research, Aliso Viejo, CA, USA) for 5 min before
cooling.

Crystallographic data were integrated in XDS (34) and
scaled in SCALA (35). Phase information for PFI1780w was
obtained from a 2.44-Å resolution data set collected at a
wavelength of 1.6531 Å using the Diamond Light Source,
beamline I04. Phasing by single-wavelength anomalous dif-
fraction was performed using PHENIX.autosol (36), which
located and refined 27 iodine atoms to produce a density map
with initial figure of merit of 0.51. Initial model building was
done with PHENIX.autosol (247 residues built and 184
identified). Iterative model building was performed with
COOT (37) and refinement against the native 2.35 Å data was
performed with BUSTER 2.10 (38).

Crystallographic data processing and refinement statistics
are provided in Supplemental Table S1. Model quality was
assessed by MolProbity (39). For graphical representation, we
used PyMOL (40). The model and associated data have been
deposited in the Research Collaboratory for Structural Bioin-
formatics (RCSB) Protein Data Bank (http://www.rcsb.org)
under accession number 4JLE.

ATS structure prediction

CS-Rosetta (41) structure prediction was performed on resi-
dues 306–346 of ATSs using backbone 15N, 1HN, and 13C=

chemical shifts recorded in the presence of the PFI1780w
PHIST domain and extrapolated to complex saturation. Data
were processed by TALOS$ (42) before input in CS-Rosetta
for fragment selection and generation of 12,800 models.
Model superposition with a 3-Å root mean square deviation
(RMSD) cutoff yielded large clusters of which the top 3 had
1313, 943, and 719 members. These clusters showed charac-
teristic %-sheet structures but incomplete convergence due to
flexible loops between % strands. Superposition using the
most stable secondary structure elements (residues 311–314,
320–324, and 329–333) and 1-Å RMSD cutoff resulted in
model convergence as judged by the funnel-shaped plot of
model score vs. pairwise RMSD.

NMR

Sequence-specific resonance assignments of ATSs have been
reported previously (32). Assignments of PFI1780w were
performed at 37°C using triple-resonance experiments on a
600-MHz Avance III spectrometer (Bruker, Newark, DE,
USA) with a cryogenic probehead. NMR samples for assign-
ments consisted of 0.2 mM 13C/15N-enriched PFI1780w resi-
dues 98–247 in buffer A (pH 6.5) supplemented with 0.1 mM
4,4-dimethyl-4-silapentane-1-sulfonic acid, 0.02% (w/v) NaN3,
and 5% (v/v) D2O. The limited sample concentration and
stability under these conditions (typical lifetime of &2 d)
necessitated the use of multiple samples to obtain a sufficient
signal/noise ratio. Assignments have been deposited in
BioMagResBank (University of Wisconsin, Madison, WI, USA;
http://www.bmrb.wisc.edu/) under accession number 19719.

Perturbations in 1H and 15N chemical shifts were com-
bined as '((1H,15N) using the formula

!"(1H, 15N) # {["(1H)complex $ "(1H)free]2

% 0.04 * [!"(15N)complex $ "(15N)free]2}1⁄2

Similar perturbations of carbonyl 13C resonances were
expressed as '((13C) " ((13C)free ) ((13C)complex.

Plasmodium culture, transfection, and protein analysis

Full-length PFI1780w and PFE1605w inserts were C-terminally
fused either to green fluorescent protein (GFP) into pARL1a-
GFP (kindly provided by T. Spielmann, Bernhard Nocht
Institut, Hamburg, Germany; ref. 43) or C-terminally to
hemagglutinin (HA) into pBcamR_3xHA (44). P. falciparum
strain 3D7 was cultured in human 0$ erythrocytes according
to standard procedures (45). Transfected parasites were drug
selected with either 10 nM WR99210 (Jacobs Pharmaceuti-
cals, Cologne, Germany) or 2.5 mg/ml blasticidin (Life
Technologies, Zug, Switzerland).

Parasite proteins were obtained through saponin lysis of
synchronized parasites (5–10% parasitemia) after 2 sorbitol
treatments within 4 h and Percoll purified after 30 h. Parasite
aliquots were taken every 8 h. Samples were run on a 12.5%
(w/v) SDS-PAGE column with complete protease inhibitor
cocktail (Roche, Rozkreuz, Switzerland) and transferred to a
nitrocellulose membrane (Hybond-C Extra; GE Healthcare
LifeSciences). Antibodies were diluted in 5% (v/v) milk-PBS:
mouse monoclonal anti-GFP (1:1000; Roche), rabbit anti-HA
(1:20; Invitrogen, Zug, Switzerland), rabbit anti-MAHRP1 (1:
5000), rabbit anti-MAHRP2 (1:1000), mouse monoclonal anti-
glyceraldehyde-3-phosphate dehydrogenase (GAPDH;
1:20,000), mouse anti-PFE1605w (1:500), mouse anti-PFI1780w
(1:500), and mouse anti-MAL8P1.4 (1:500). Binding was made
visible by chemiluminescence (SuperSignal West Pico, Thermo
Scientific, Reinach, Switzerland). Parasite protein solubility was
analyzed as described previously (46).
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Immunofluorescence assay (IFA) and live cell imaging

Blood smears of infected parasite cultures were fixed in 100%
acetone for 30 min (47) and blocked with 3% (v/w) bovine
serum albumin. Primary antibodies, rabbit anti-MAHRP1
(1:500), mouse anti-PFI1780w (1:100), mouse anti-PFE1605w
(1:100), mouse anti-MAL8P1.4 (1:200), mouse anti-GFP (1:
100, Roche), and mouse anti-ATS (1:50), were incubated for
1 h (48). Secondary antibodies (goat anti-mouse Alexa 488,
goat anti-mouse Alexa 594, and goat anti-rabbit Alexa 594;
Invitrogen) were incubated with 1 !g/ml 4=,6=-diamidino-2-
phenylindole (DAPI; Roche) for 1 h at 1:200 dilution. Alter-
natively, iRBCs were fixed with 4% paraformaldehyde (PFA)-
0.01% glutaraldehyde and permeabilized with 0.1% Triton
X-100. Slides were viewed with a Zeiss LSM 700 confocal
microscope (Carl Zeiss GmbH, Jena, Germany), with a "63
oil-immersion lens (1.4 numerical aperture).

Transgenic parasites expressing GFP fusion proteins were
imaged as described previously (49). Live parasites were imaged
with a Leica DM 5000B fluorescence microscope using a "100
oil immersion lens (1.4 numerical aperture) with an attached
Leica DFC300FX camera and Leica Application Suite software
(Leica Microsystems, Heerbrugg, Switzerland).

Immunoelectron microscopy

PFE1605w-HA and PFI1780w-GFP transfected mature para-
sites were purified by Percoll density gradient, fixed in 2%
PFA-0.2% glutaraldehyde in phosphate buffer, and prepared
according to Tokuyasu (50). Ultrathin sections (70#90 nm)
prepared on an FC7/UC7-ultramicrotome (Leica Microsys-
tems) at #120°C were immunogold-labeled with rabbit an-
ti-HA (1:20; Invitrogen) or rabbit anti-GFP (1:20; Abcam,
Cambridge, UK) antibodies and 5 nM protein A-gold (1:70;
UMC, Utrecht, The Netherlands). Sections were stained with
4% uranyl acetate-methylcellulose (1:9) and examined with a
transmission electron microscope (CM10 or CM100; Philips,
Eindhoven, The Netherlands) at 80 kV.

RESULTS

PFE1605w interacts with the PfEMP1 intracellular
domain

Previously, we showed that intracellular segments (re-
ferred to as ATSs) from members of the PfEMP1 family
comprise a stably folded core and 3 flexible regions
(32). We demonstrated that the PHISTc protein
PFI1780w interacts with moderate strength (Kd$150
!M) with the ATS of PfEMP1 variant PF08_0141.
However, it was not clear whether PFI1780w is a physi-
ological partner of PfEMP1. Thus, we produced PHIST
domains from proteins that had been reported as
important for cytoadherence of iRBCs (PFD1170c; ref.
4), that are adjacent on the genome to the locus of
PfEMP1 variant PF08_0141 (MAL8P1.163), or, alterna-
tively, that were identified in proteomic studies on
tethers (PFE1605w) and tested them for interactions
with the ATS. As a negative control, we produced a
PHIST member that was shown not to localize to the
iRBC membrane and thus would not be expected to
associate with the ATS (MAL8P1.4). Polarization exper-
iments showed that PFE1605w, a PHISTb member,

bound fluorescently labeled ATS PF08_0141 with $30-
fold higher affinity (Kd%5&0.6 !M) than PFI1780w
(Fig. 1A). NMR experiments suggest that the PHIST
interaction occurs at the C terminus of the ATS (see
below), and polarization experiments using a fluores-
cently labeled ATS C-terminal construct (residues 293–
392) showed that this fragment is sufficient for strong
PFE1605w binding (Fig. 1D).

To test whether different PfEMP1 members retain the
PFE1605w interaction, we produced fluorescently labeled
ATSs from PfEMP1 variants PFF0010, PFB1055c, PFC1120c,
PF08_0103, and PFF0845c, which were selected on the basis
of sequence divergence (32). Intriguingly, polarization
experiments with PFE1605w showed up to 25-fold differ-
ence in affinities (Kd range, 2.7–67 !M; Fig. 1B) across
ATS variants. Similar experiments with PFI1780w showed
only $2.5-fold different affinities between ATS members
(Fig. 1C). PFF0845c, a C-terminally truncated ATS variant
(Supplemental Fig. S1A), showed little affinity to either
PFE1605w or PFI1780w (Fig. 1B, C). Whether these
differences reflect closer associations of PFE1605w with
particular PfEMP1 members in vivo remains to be studied;
however, time course experiments did suggest a closer
association of PFE1605w with PfEMP1 than PFI1780w
during transport.

PFI1780w and PFE1605w are membrane associated
and exported to the iRBC membrane

To test whether these PHIST proteins are exported and to
determine their subcellular localizations, they were C-ter-
minally GFP tagged and episomally expressed in 3D7
parasites under the control of the crt promoter. The
integrity of the GFP-fusion proteins was shown on West-
ern blots (Fig. 2A). The full-length PFI1780w-GFP was
exported to the iRBC cytosol similarly to the previously
reported GFP-tagged N terminus (19), but full-length
PFI1780w-GFP additionally revealed fluorescence at the
periphery of iRBCs (Fig. 2B; top panel), suggesting a
localization close or adjacent to the erythrocyte mem-
brane (Fig. 2B; panel 2). Immunofluorescent 3-dimen-
sional reconstructions of fixed iRBCs with PFI1780w-GFP-
expressing parasites showed focal fluorescence in parasite
cytosol and uniform fluorescence around the biconcave
rim of the iRBC (Fig. 2C), confirming this location. From
all available GFP-tagged PHIST proteins only PFE1605w-
GFP gave a similar fluorescent pattern except that the
rim-like fluorescence was observed at discrete foci instead
of a uniform signal (Fig. 2B, panels 4 and 5), indicating
that both PFI1780w and PFE1605w were transported close
to the iRBC membrane.

Next, we tested the solubility of these 2 PHIST
proteins (ref. 46 and Fig. 2D). The soluble parasite
protein GAPDH was found as expected in the superna-
tant after hypotonic lysis, and MAHRP1, an integral
Maurer’s cleft membrane protein (51), was detected in
the Triton X-100 supernatant. Both PFI1780w-GFP and
PFE1605w-GFP lack a predicted transmembrane do-
main and were shown to be membrane-associated pro-
teins by solubilization in sodium carbonate similar to
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MAHRP2, a membrane-associated protein localizing to
Maurer’s cleft tethers (46). This result was further
confirmed by the fluorescent labeling of the iRBC mem-
brane of a ruptured schizont expressing PFI1780w-GFP
(Fig. 2B, panel 3).

PFI1780w localizes underneath the iRBC membrane
and PFE1605w to knob structures

The subcellular localization of both PHIST proteins was
shown by postembedding immunoelectron microscopy.
Gold labeling of PFI1780w-GFP was found in proximity to
the iRBC membrane but was clearly absent from knobs
(Fig. 3A) and frequently at Maurer’s clefts (Fig. 3B). In
contrast, PFE1605w-3xHA (Fig. 3C) and PFE1605w-GFP
were clearly localized in knobs, and in trophozoite stage
parasites, PFE1605w-GFP was also frequently found in
Maurer’s clefts (Fig. 3D), suggesting that it localizes un-
derneath the iRBC membrane, whereas PFE1605w local-
izes to knobs, but both proteins seem to be transiently
transported through the Maurer’s clefts.

Immunofluorescence reveals a similar trafficking
pathway and timing of export for PFE1605w and
PfEMP1

Specific antisera against PFI1780w (aa 80–280) recog-
nized a single band of !45 kDa in agreement with its
predicted mass of 45.5 kDa (Fig. 4A), and antisera
against PFE1605w (aa 122–335) recognized a band of
!55 kDa and a faint band of 50 kDa. Western blotting
using samples from 6 time points of the intraerythro-
cytic cycle showed that both proteins were present
throughout the cycle, which is in agreement with their
transcription profile (52, 53). Both proteins were max-
imally expressed in trophozoite stages (Fig. 4A).

We performed IFAs to visualize expression and ex-
port of PFE1605w/PFI1780w throughout the intra-
erythrocytic cycle using tightly synchronized parasites at
6 time points (Fig. 4B, C) and compared the timing of
export of PfEMP1 using anti-ATS antibodies (Fig. 4D
and ref. 48). PFE1605w was first observed at !0–8 h
postinfection (hpi) in a “necklace of beads” pattern at

Figure 1. PHIST domains directly interact with ATS. A) Fluorescence polarization titrations of labeled ATS PF08_0141 with
PHIST domains. Error bars derive from 5 measurements. Solid lines correspond to fits to single-site association models when
possible. B, C) Similar titrations with different labeled PfEMP1 intracellular domains and PFE1605w (B) or PFI1780w (C).
Binding by PfEMP1 variant PFF0845c was weak and could not be fit. In panel B, the fits of ATS variants PFF0010w and PF08_0103
overlap closely. D) Titrations of ATS PF08_0141 full-length or C-terminal fragment (residues 293–392) with PFE1605w.
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the parasite surface (Fig. 4B; top panel) and in young
trophozoites (16–24 hpi) most fluorescence was ob-
served in the parasite with few fluorescent foci beyond
the parasite’s confines. After 24–32 hpi, the number of
fluorescent foci in the iRBC cytosol increased, and faint
fluorescence was visible at the iRBC membrane. Schi-
zont stage parasites showed faint fluorescent dots at the
iRBC membrane, similar to those seen with live cell
images of PFE1605w-GFP (Fig. 2B). Bright fluorescent
foci indicated that PFE1605w is exported via Maurer’s
clefts to the iRBC membrane and knobs.

PfEMP1 is known to display a necklace of beads
pattern at the parasite surface at !8–11 hpi (54), which
was confirmed (Fig. 4D) and was similar to the pattern
observed for PFE1605w (Fig. 4B). Both proteins tran-
siently associated with Maurer’s clefts at !16–24 hpi

(ref. 54 and Fig. 4B, D) before being transferred to the
iRBC membrane, suggesting cotransport of PFE1605w
with PfEMP1.

In contrast to PFE1605w, PFI1780w was found within
the parasite cytosol until !24–32 hpi with limited focal
fluorescence in the iRBC cytosol (Fig. 4C). In schizonts,
PFI1780w was exported to the iRBC surface as shown in
live cell imaging (Fig. 2B) with no distinct intermediate
locations, although a few fluorescent foci and immuno-
electron microscopy data (Fig. 3B) suggest that Maur-
er’s clefts are intermediate transport compartments.

To confirm the transient location of PFE1605w at
Maurer’s clefts, we colocalized the protein with
MAHRP1 in ring, trophozoite, and schizont stage par-
asites. While in ring stages, MAHRP1 already appeared
in Maurer’s clefts and PFE1605w exclusively localized

Figure 2. PHIST domains are exported to the iRBC
membrane. A) Western blots of extracts from cell lines
used in this study. All extracts are derived from saponin-
released parasites, and the origin is indicated on top.
Decoration of the same Western blot with GAPDH as
loading control is shown at bottom. B) Live cell imaging
of 3D7 parasites expressing PFI1780w-GFP and
PFE1605w-GFP. For panels 2 and 5, the focal plane of
the GFP signal was set on the surface of the iRBC, and
the DAPI/differential interference contrast (DIC) mi-
croscopy signal was kept on the previous focal plane.
Nuclei were stained with DAPI. Scale bar " 2 #m. Panel
3 shows a rare schizont with already ruptured erythro-
cyte membrane. C) Confocal immunofluorescence anal-

ysis of 3D7 parasite expressing PFI1780w-GFP. Merge image of GFP/DAPI/DIC channels representing stack 32 of 69 in
total. Scale bar " 1 #m. D) Western blot of protein fractions of solubility assays of 3D7 parasites expressing PFI1780w-GFP
and PFE1605w-GFP. Lane 1, soluble proteins; lane 2, peripheral membrane proteins; lane 3, Triton X-100 extract; lane 4,
insoluble pellet.
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within the parasite cytosol (Supplemental Fig. S2A, top
panel). In young trophozoites PFE1605w and MAHRP1
colocalized to Maurer’s clefts with a partial overlap of
signals, suggesting subdomains in Maurer’s clefts as
described previously for MAHRP1 and PfEMP1 (54).
This is also evidence for PFE1605w transport to already
formed Maurer’s clefts and proof that cargo arrives at
clefts independent of their formation as reported pre-
viously (54, 55). At later stages, PFE1605w dissociates
from Maurer’s clefts and is transported to the iRBC
membrane or knobs (Supplemental Fig. S2A, panel 3).

In contrast to PFE1605w and PFI1780w, MAL8P1.4,
which does not interact with the ATS domain (Fig. 1A),
showed persistent Maurer’s cleft localization in IFAs
(Supplemental Fig. S2B).

PHIST domains compete for a conserved epitope at
the ATS C terminus

Despite our efforts, the PFE1605w PHIST domain
evaded crystallization alone or in complex with ATS

fragments and was unsuitable for extensive NMR anal-
ysis due to limited solubility. Thus, we turned to
PFI1780w, which also interacts with ATS, to gain infor-
mation on the PHIST-ATS complex. To delineate the
specific PHIST-ATS interaction site, we performed
NMR titrations of 13C/15N-enriched ATS PF08_0141
(32) with the unenriched PFI1780w PHIST domain
(residues 98–247). As shown in Fig. 5A!C, the largest
chemical shift perturbations, indicative of complex
formation, span a wide region at the flexible C termi-
nus of the ATS. Although sequence similarity across the
C terminus of PfEMP1 intracellular segments is rela-
tively low (32), !75% of the amino acids most per-
turbed on PFI1780w binding are conserved (I311, I313,
I330, L331, D336, I338, Y339, Y340, and W391) or
conservatively substituted (T329, D332, E335, I372, and
V390) in the majority of members of the PfEMP1 family
(Supplemental Fig. S1A). We were able to perform
similar experiments on 13C/15N-enriched ATS with
unenriched PFE1605w under dilute conditions and
recorded the loss of ATS resonance intensity in the

Figure 3. PFE1605w localizes to knobs. Shown here are postembedding immunoelectron microscopy images of iRBCs expressing
PFI1780w-GFP (A, B), PFE1605w-HA (C), and PFE1605w-GFP (D). Insets: enlarged views of boxed sections. White arrows, 5 nM
gold. Knobs (K) and Maurer’s clefts (MC) are labeled. Scale bars " 200 nm (A); 500 nm (C); 250 nm (B, D).
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Figure 4. PFE1605w is cotranslocated with PfEMP1. A) Western blot with extracts from stage-specific parasites (hpi indicated for
each lane). GAPDH was used as loading control. B!D) Confocal immunofluorescence analysis of tightly synchronized 3D7
parasites. Samples were collected at 8-h intervals and stained with antibodies recognizing PFE1605w (B), PFI1780w (C), or ATS
(D) and costained with DAPI. Scale bars " 2 #m. DIC, differential interference contrast microscopy.

4427PHIST STRUCTURE AND FUNCTION IN MALARIA ADHERENCE



Chapter	2	–	PHIST	structure	and	function	in	malaria	adherence	

 

56	
	

Figure 5. NMR analysis of the PFI1780w-ATS interaction. A) Combined perturbations of backbone amide nuclei of 0.1 mM
13C/15N-enriched ATS on titration with 0.2 mM unenriched PFI1780w PHIST domain. Data were recorded at 10°C and pH 7.0.
Schematic representation of ATS structure (32) is shown at top. B) Expansion of panel A for the ATS C-terminal section. Dashed
line denotes the level of average perturbation plus 1 sd; residues with perturbations above this line are considered as
significantly affected. C) Carbonyl perturbations of the same ATS region as in panel B. Residues judged as significantly affected
in either amide or carbonyl perturbations are colored based on their conservation: red if identical or orange if conservatively
substituted in !75% of PfEMP1 members in P. falciparum isolate 3D7. D) 15N-heteronuclear single quantum coherence spectra
overlay from 0.1 mM 15N-enriched PFI1780w PHIST domain alone (red) or in the presence of 0.2 mM unenriched ATS
C-terminal fragment (residues 309–392, green). Spectra were recorded at 37°C and pH 6.5. Perturbations in peak positions
show formation of the PFI1780w-ATS complex. E) Expansion of overlaid spectra from 50 !M PFI1780w PHIST domain alone
(red), in the presence of 50 !M ATS residues 309–392 (black), after addition of 0.6" stoichiometric ratio of unenriched
PFE1605w PHIST domain (blue), or after addition of 1.2" stoichiometric ratio of PFE1605w (green). PFE1605w addition
reverses PFI1780w perturbations caused by ATS binding, suggesting that the 2 PHIST proteins compete for the same ATS
binding site. F) Per-residue combined perturbations of backbone amide 1H and 15N nuclei from the PFI1780w spectra shown
in panel D. Dashed line identifies significantly perturbed residues as in panel B.
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presence of PFE1605w (Supplemental Fig. S3A). Map-
ping interaction interfaces using this type of informa-
tion is less sequence specific than that with the chemi-
cal shift perturbations observed with PFI1780w, as loss
of resonance intensity may reflect interactions by a
specific residue or its neighbors. Nonetheless, the data
(Supplemental Fig. S3B) suggest that PFE1605w affects
a wide span of the ATS C terminus that includes the
PFI1780w interaction epitope (Fig. 5B, C). In addition,
PFE1605w makes additional contacts with the ATS C
terminus that span residues 303–309 and 353–362;
these additional contacts may contribute to the higher
ATS affinity of this PHIST variant.

To confirm that the 2 PHIST proteins compete for
the same ATS interaction epitope, we performed NMR
experiments using 15N-enriched PFI1780w and unen-
riched ATS C terminus and PFE1605w (Fig. 5D). Per-
turbations on PFI1780w resonances caused by ATS are
reversed by PFE1605w (Fig. 5E), which supports the
competition between these PHIST domains.

Structure of the PFI1780w PHIST domain

We obtained crystals of a PFI1780w fragment spanning
residues 85–247 and solved the resulting structure to
2.35-Å resolution (Supplemental Table S1). The final

model showed 2 protein chains forming a tight helix-
swapped dimer in the crystal (Fig. 6A); however, AUC
velocity experiments showed that PFI1780w is mono-
meric in solution under physiological conditions (Fig.
6B). Thus, we concluded that the dimer is a crystalliza-
tion artifact and consider only the monomeric unit of
the PHIST domain.

PFI1780w residues 98–247 adopted a highly !-helical
configuration (Fig. 6C), in agreement with structure
predictions (19) and circular dichroism data (32). A
short initial helix (!1) is followed by an antiparallel
bundle of 3 long helices (!2"!4), which are up to 51
aa in length. The PFI1780w triple-helical bundle is of
length (#6.5 nm) comparable to that of a spectrin
repeat; however, in contrast to spectrin, it adopts a
right-handed twist (Fig. 6D). PHIST domains show
remarkable sequence divergence, and PFI1780w be-
longs to the most variable PHISTc subtype of this family
(19). Alignment of the PFI1780w PHIST domain with
its 5 closest relatives showed just 4% identical and
20.7% conservatively substituted residues (Supplemen-
tal Fig. S1B). The vast majority of these conserved
amino acids, including all tryptophans characteristic of
the PHIST family (19), are involved in the protein
hydrophobic core and do not form a continuous sur-
face area. Nonetheless, the PFI1780w structural model

Figure 6. Structure of PFI1780w.
A) Crystallographic model of
the PFI1780w PHIST domain,
showing the dimer (blue and
red chains). Residues 85–97
(purple) are visible in only one
polypeptide chain. B) AUC ve-
locity experiment of PFI1780w
residues 85–247. Data analysis
yielded a narrow distribution at
1.65 S, with best friction ratio of
1.61 and 19,919 Da correspond-
ing molecular mass. C) Mono-
meric model of the PFI1780w
PHIST domain. D) Twist of the
triple-helix bundle for PFI1780w
and spectrin (RCSB 3KBT). Both
models are visualized with their C
termini below the page.
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is sufficient to model with 98–100% confidence the
domain structures for all members of this family using
automated prediction pipelines.

Structural analysis of the PHIST-ATS interaction

The chemical shift perturbations of PFI1780w on ATS
binding allowed us to map the binding site on the
PHIST structure (Fig. 5F). The most significant
changes localized at the middle of the PFI1780w triple-
helical bundle, and, in particular, over a continuous
surface on helices !2 and !3 (Fig. 7C and Supplemen-
tal Fig. S1B). The amino acids forming this ATS-
binding interface (K136, E138, E139, H167, F168, and
Q171) are not conserved between PFI1780w and
PFE1605w, which probably contributes to the different
ATS affinities of these proteins. Nonetheless, because
PFI1780w and PFE1605w compete for the same ATS
epitope, we reasoned that an analysis of the PFI1780w-
ATS interaction may provide a partial model of the
high-affinity complex.

The number of ATS-binding residues on PFI1780w is
remarkably small compared with the broad span of
perturbations observed on the ATS C terminus (Fig.
5A). In particular, the continuous surface identified on
PFI1780w !2–!3 can only accommodate approximately
6 aa in an extended conformation. To understand how
these observations relate, we predicted the transient
structure adopted by the ATS C-terminal epitope (res-
idues 306–346) on PFI1780w binding using CS-Rosetta
(41). As shown in Fig. 7A, B, the structure prediction
converged to a single " sheet formed by ATS residues
311–314 ("1), 320–324 ("2), 328–334 ("3), and 337–

343 ("4). Formation of a single " sheet by ATS residues
306–346 may explain the widespread chemical shift
changes seen in this construct on PFI1780w binding, as
nearly all residues would transit from a random coil to
an extended conformation. Yet, at the same time, the
single ATS " sheet could provide a relatively narrow
interaction interface with PFI1780w along the "-sheet
edge. Thus, we propose that an ATS associates along
one "-sheet edge with PFI1780w (Fig. 7D).

DISCUSSION

The extensive remodeling of host erythrocytes by invad-
ing Plasmodia is an impressive feat of biological engi-
neering necessary for the parasites to grow, replicate,
and evade the immune system; thus, it has clear impli-
cations for the human host. The unique alterations
induced by P. falciparum resulting in iRBC cytoadher-
ence are linked to disease severity (7). Yet our under-
standing of this process is largely incomplete, especially
at a mechanistic level. Although iRBC remodeling
involves hundreds of proteins, few interactions and
even fewer structures have been examined in detail.
Here, we present the first structural-functional insights
on PHIST proteins, which comprise a large subset of
the P. falciparum exportome (4, 19). Notably, our study
suggests strong links between a specific PHIST member
and PfEMP1, the parasite receptor responsible for
cytoadherence.

PHIST domains, as demonstrated here by PFI1780w
(Fig. 6), are characterized by a relatively simple !-heli-

Figure 7. Structure prediction for the ATS C terminus and analysis of
the PFI1780w-ATS interaction. A) Plot of CS-Rosetta model score vs.
backbone RMSD. Models were predicted for a C-terminal fragment of
ATS spanning residues 306–346, using chemical shift restraints that
correspond to the PFI1780w-complexed state of ATS. A characteristic
funnel shape in this plot suggests that the calculation converged to a
single subset of solutions. B) Schematic representation of a low-energy
ATS model from panel A. C) Opposite views of the PFI1780w PHIST
domain surface, with areas significantly affected by ATS binding in NMR
titrations shown in red. D) Proposed mode of PFI1780w-ATS binding
based on the predicted structure of ATS residues 306–346.
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Figure S2 

 

Figure S2: PFE1605w associates transiently with Maurer’s clefts and is exported to the iRBC. A) Co-

localization IFA of acetone-fixed 3D7 parasites with antibodies recognizing MAHRP1 and PFE1605w. DAPI 

was used to stain nuclei. Scale bar, 2 µm. B) Similar IFA using antibodies recognizing MAHRP1 and 

MAL8P1.4.
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Figure S3 

 
Figure S3: NMR analysis of the PFE1605w – ATS interaction. A) 

1
H-

15
N spectra overlay from 50 μM 

13
C/

15
N-enriched ATS C-terminus alone (red) or in the presence of equimolar amount of unenriched PFE1605w 

PHIST domain (green). Spectra were recorded at 10
o
C and pH 6.5. Specific loss of resonance intensity suggests 

formation of a PFE1605w – ATS complex. B) Plot of fractional intensity loss versus residue number for the 

ATS C-terminus. Compared to the PFI1780w interaction (Fig. 5B,C), PFE1605w shows additional contacts to 

ATS residues 303-309 and 353-362.   
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Table S1: Crystallographic data collection and refinement statistics 
Protein PFI1780w PFI1780w  (I3Ca-derivative) 
PDB entry ID 4JLE – 
Space group P31 2 1 P31 2 1 
Unit cell (Å) a = 71.04; 

b = 71.03; 
c = 146.40 

a = 71.11; 
b = 71.11; 
c = 154.42 

Beamline DLS/I04 DLS/I04 
Wavelength (Å) 0.9795 1.6531 
Resolution range (Å) 
High resolution shell (Å) 

146.40-2.35 
2.48-2.35 

56.71-2.44 
2.57-2.44 

RMerge
b 0.063 (0.494) 0.087 (0.431) 

RPim
b 0.038 (0.300) 0.057 (0.280) 

Completenessb (%) 99.9 (100) 97.5 (93.0) 
Multiplicityb 3.6 (3.7) 5.8 (5.7) 
I/V(I)b 11.8 (2.4) 14.9 (4.3) 
Phasing   
No. of I sites – 27 
Resolution – 56.71-2.44 
FOM initialc – 0.51 
FOM DMd – 0.81 
Refinement statistics   
Rwork (reflections) 0.2055 (17490) – 
Rfree(reflections) 0.2480 (947) – 
Number of atoms   
Protein atoms  2694 – 
Ligands 10 – 
Waters 47 – 
Average B factors (Å2)   
Protein atoms 66.6 – 
Water 58.0 – 
RMSD from ideal values   
Bonds / angles (Å/°) 0.010 / 0.95 – 
Protein statisticse   
Ramachandran favored (%) 99.67 – 
Ramachandran disallowed (%) 0.0 – 
Clashscore (percentile) 2.61 (100%) – 
MolProbity score (percentile) 1.05 (100%) – 

a 5-amino-2,4,6-triiodoisophthalic acid 
b Values in parentheses correspond to the high resolution shell 
c From PHASER (1) 
d From RESOLVE (2) 
e From MolProbity (3)  
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Summary

Adherence of Plasmodium falciparum-infected
erythrocytes to host endothelium is conferred
through the parasite-derived virulence factor P.
falciparum erythrocyte membrane protein 1
(PfEMP1), the major contributor to malaria severity.
PfEMP1 located at knob structures on the erythro-
cyte surface is anchored to the cytoskeleton, and
the Plasmodium helical interspersed subtelomeric
(PHIST) gene family plays a role in many host cell
modifications including binding the intracellular
domain of PfEMP1. Here, we show that conditional
reduction of the PHIST protein PFE1605w strongly
reduces adhesion of infected erythrocytes to the
endothelial receptor CD36. Adhesion to other
endothelial receptors was less affected or even
unaltered by PFE1605w depletion, suggesting that
PHIST proteins might be optimized for subsets of
PfEMP1 variants. PFE1605w does not play a role in
PfEMP1 transport, but it directly interacts with both
the intracellular segment of PfEMP1 and with
cytoskeletal components. This is the first report

of a PHIST protein interacting with key molecules
of the cytoadherence complex and the host
cytoskeleton, and this functional role seems
to play an essential role in the pathology of
P. falciparum.

Introduction

After invading the human erythrocyte, the malaria parasite
Plasmodium falciparum refurbishes its host cell dramati-
cally. The most important changes lead to sequestration of
infected cells to the microvasculature of human organs –
the sole cause of morbidity and mortality in malaria
tropica. These changes also allow the malaria parasite to
grow in a parasitophorous vacuole inside the erythrocyte
and enable nutrient uptake. The parasite invests approx-
imately 10% of its proteome to refurbish the host cell in
this way. Hundreds of exported parasite proteins fall into
one of two groups (Spillman et al., 2015). The first group is
well defined and consists of proteins containing a
pentameric motif, termed PEXEL/HT (Plasmodium export
element/host targeting signal) (Hiller et al., 2004; Marti
et al., 2004), which allows the establishment of a P.
falciparum exportome with approximately 400 proteins
(Sargeant et al., 2006). A second group of exported
proteins, which do not contain a PEXEL/HT motif or any
other identifiable export motif, has also been observed
(PEXEL-negative exported proteins). It is difficult to predict
the true number of PEXEL-negative exported proteins and
hence the total number of exported proteins (Heiber et al.,
2013). The export of both groups of proteins results in
profound structural and morphological changes in the
erythrocyte. For example it causes the formation of
electron-dense protrusions on the erythrocyte surface,
called knobs (Watermeyer et al., 2016), alters red blood
cell (RBC) rigidity (Maier et al., 2008) and increases
membrane permeability (Nguitragool et al., 2011).

A key molecule and ligand for binding infected red blood
cells (iRBCs) to host cell receptors on the vascular
endothelium is the P. falciparum erythrocyte membrane
protein 1 (PfEMP1). This major parasite virulence factor is
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embedded in the knobs through a transmembrane helix
and comprises a highly variable ectodomain and a
semiconserved intracellular segment, the acidic terminal
segment (ATS) (Lavstsen et al., 2003; Mayer et al., 2012).
The extracellular part of PfEMP1 consists of multiple
adhesion domains, enabling the infected cell to bind to
host adhesins including CD36, intercellular adhesion
molecule-1 (ICAM-1) and chondroitin sulfate A (CSA).
This binding leads to iRBC sequestration within the
microvasculature (Kraemer and Smith, 2006). In contrast,
the cytoplasmic domain is relatively conserved and was
previously thought to interact with the knob-associated
histidine-rich protein (KAHRP) (Crabb et al., 1997) and,
potentially, with the erythrocyte cytoskeleton components
actin and spectrin (Kilejian et al., 1991; Waller et al., 1999,
2002; Oh et al., 2000). Recent data, however, do not
support a direct ATS–KAHRP interaction but rather an
ATS interaction with PHIST proteins PFI1780w and
PFE1605w (Mayer et al., 2012; Oberli et al., 2014).
The proteins encoded by the phist multigene family are

defined by the presence of a 150-amino acid domain
consisting of four consecutive α-helices. Almost all members
include a signal sequence and a PEXEL motif (Sargeant
et al., 2006). The phist family underwent dramatic lineage-
specific proliferation in P. falciparum and is suspected of
playing a major role in host cell modifications in cytoplasmic
protein associations (Sargeant et al., 2006; Oakley et al.,
2007; Frech and Chen, 2013). To date, only a few PHIST
proteins have been partially characterized and almost no
molecular functions have been assigned, despite their wide
distribution within the iRBC. So far, members of the PHIST
protein family have been implicated in knob formation (Maier
et al., 2008), in altered host cell rigidity (Mills et al., 2007;
Maier et al., 2008), in trafficking of and interaction with
PfEMP1 (Maier et al., 2008; Mayer et al., 2012; Oberli et al.,
2014) and in iRBC adhesion to the brain microvasculature
(Daily et al., 2005; Claessens et al., 2012). Moreover, PHIST
proteins have been shown to localize to the iRBC periphery
(Tarr et al., 2014), possibly binding erythrocyte cytoskeletal
components (Kilili and LaCount, 2011; Parish et al., 2013;
Proellocks et al., 2014). They have also been found in
detergent-resistant membrane fractions (Sanders, 2005)
and in exosomes mediating cell–cell communication
(Regev-Rudzki et al., 2013).
Previously, we showed that PFE1605w, another mem-

ber of the PHIST protein family, is exported to knobs and
binds directly to the PfEMP1 ATS domain, displaying
similar temporal and spatial export as PfEMP1 (Oberli
et al., 2014). This finding differs somewhat from those of
Proellocks et al. (2014), who suggested an alternative
localization. Fluorescence polarization experiments using
PFE1605w and a set of ATS domains from different
PfEMP1 molecules showed substantial variation in bind-
ing affinity, suggesting that different PHIST proteins might

have been optimized for different PfEMP1 members
(Oberli et al., 2014). Here we present the first functional
analysis of a PHIST protein by using inducible downreg-
ulation of PFE1605w and also a unique controlled system
that blocks PFE1605w at Maurer’s clefts. Both ap-
proaches showed that reduced levels of PFE1605w within
the knobs lead to strongly reduced adhesion of iRBC to
endothelial receptors, but that PFE1605w plays no role in
transporting PfEMP1 or its surface exposure. PFE1605w
directly binds the C-terminus of different ATS domains
in vitro and in iRBC and interacts with components of band
3 and junctional complexes at the erythrocyte membrane.
This is the first report of a functional role for PFE1605w,
which anchors a variety of PfEMP1 variants to the
cytoskeleton of the iRBC.

Results

Inducible regulation of PFE1605w

To investigate the function of PFE1605w, we generated a
parasite cell line that allowed a conditional expression of
the endogenous protein by using the human FK506
binding protein (FKBP) destabilization domain (DD)
technique (Banaszynski et al., 2006; Armstrong and
Goldberg, 2007). For this, parasites were generated that
expressed endogenous PFE1605w as a C-terminally
tagged green fluorescent protein–DD fusion protein and
whose PFE1605w–DD was rapidly degraded if not
stabilized by Shield-1. The integration of the plasmid
containing the coding sequence for the PFE1605w–DD
construct at the correct locus was confirmed by Southern
blot (Fig. S1A). Immunofluorescence assays (IFAs)
showed the expected localization of tagged PFE1605w
at Maurer’s clefts and at the iRBC membrane (Fig. 1A) as
previously shown with non-modified protein (Oberli et al.,
2014). In parasites grown for 96 h without Shield-1
(PFE1605wOFF), PFE1605w levels were highly reduced
and the residual protein was visible only within the
parasite. Parasites grown for 96 h under the presence of
Shield-1 (PFE1605wON) displayed normal levels and
distribution of PFE1605w. Western blot analysis of
synchronized PFE1605wON/PFE1605wOFF parasites with
polyclonal antibodies against PFE1605w showed signifi-
cantly reduced levels of PFE1605w in PFE1605wOFF

parasites compared with PFE1605wON and 3D7 wild-type
parasites (Fig. 1B). To test the PFE1605wON/
PFE1605wOFF parasites’ adherence to recombinant
CD36, a semistatic adhesion assay was performed.
PFE1605wOFF parasites showed a 50% (±9%, n=3)
decrease in adhesion to CD36 (Fig. 1C) compared with
PFE1605wON parasites, a result similar to that observed
with a PFE1605w gene disruption (Proellocks et al.,
2014). Subsequent addition of Shield-1 to the cultures
(PFE1605wRES) restored adhesion to CD36 to the same

1416 A. Oberli et al.
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level as that for PFE1605wON parasites (Fig. 1C). This
indicates that reduced levels of exported PFE1605w
results in a significant reduction of adhesion of iRBCs.

Inducible tethering of PFE1605w at Maurer’s clefts

To confirm the importance of PFE1605w presence in knobs
for cytoadherence, an alternative approach was used. By
conditionally tethering PFE1605w to the cytoplasmic domain
of a Maurer’s cleft protein, we prevented its transport to the
knobs, thereby blocking the presence of PFE1605w at the
knob structure. The technique is based on the
heterodimerization of the FKBP12 to the FKBP-rapamycin
binding (FRB) domain of human mechanistic target of
rapamycin in the presence of rapamycin (Haruki et al.,
2008; Busch et al., 2009; Robinson et al., 2010; Xu et al.,
2010). First, we generated parasites that expressed
PFE1605w C-terminally fused to FKBP under the control of
the endogenous promoter (Fig. S1A). These parasites were
subsequently transfected with a plasmid that episomally
expressed membrane-associated histidine-rich protein 1
(MAHRP1) fused to an mCherry tag and an FRB domain
under the mal7 promoter (Figs 2A and S1C). In ring-stage
parasites, the MAHRP1–FRB fusion protein was exported to
theMaurer’s clefts,whereas theFKBP-taggedPFE1605wstill
resided within the parasite (Fig. 2B). In trophozoite and
schizont parasites, PFE1605w–FKBPwas correctly exported
toMaurer’s clefts and to knobsaspreviously described (Oberli
et al., 2014). Upon adding 100nM rapalog (a rapamycin
analogue) to ring-stage parasites, a ternary complex at the
Maurer’s clefts composed of MAHRP1–FRB, rapalog and
PFE1605w–FKBPwas formedas soonasPFE1605w–FKBP
was exported to Maurer’s clefts (Fig. 2B) and PFE1605w–
FKBP was blocked from localizing in the knobs. Next, we
tested the cytoadhesive properties of parasites grown in the
presence or absence of rapalog (PFE1605w+RAP/
PFE1605w!RAP) to recombinant CD36. Parasites cultured
in the presence of rapalog (PFE1605w+RAP) showed a 62%
(±9%, n=3) reduction in binding to CD36 compared with
parasites grown without rapalog (PFE1605w-RAP) (Fig. 2C).
To demonstrate that endogenous untagged PFE1605w
does not bind MAHRP1–FRP upon addition of the
rapalogue, 3D7 wild-type parasites were transfected with
the MAHRP1–FRB plasmid. In both cases (control+RAP/
control!RAP), the parasites showed comparable levels of
binding to CD36, indicating that no heterodimerization
occurred (Fig. 2C).

PFE1605w has no significant role in P. falciparum
erythrocyte membrane protein 1 transport

To test whether PFE1605w reduction or tethering impairs
transport of other well-characterized exported proteins,
we analysed the PFE1605wON/PFE1605wOFF/
PFE1605w+RAP/PFE1605w!RAP parasites by IFA by
using antibodies against PfEMP1, PfEMP3, KAHRP,

Fig. 1. Conditional depletion of PFE1605w. Confocal immunofluorescence
and Western blot analysis of synchronized 3D7 parasites expressing
endogenous PFE1605w as a C-terminally tagged DD fusion protein grown
for 96 h in the presence (PFE1605wON) or absence (PFE1605wOFF) of
625 nM Shield-1.
A. Confocal immunofluorescence.
B. Western blot. The specificity of affinity-purified polyclonal α-PFE1605w
antibodies is described in Fig. S1B. The nuclei were stained with DAPI.
Scale bar = 3μm. GAPDH was used as loading control.
C. Semistatic adhesion assay of RBCs infected with PFE1605wON/
PFE1605wOFF parasites to immobilized recombinant CD36 at
50 μgml!1. The graph displays mean values across triplicate samples
normalized to 3D7 wild-type parasite binding. The error bars represent
SDs of three independent experiments. An arbitrary threshold (dashed
line) for unspecific binding was calculated as the mean level of iRBC
binding to 1% w/v BSA plus 2 SDs. P values were calculated by using a
two-tailed Student’s t-test, asterisk indicates P ≤ 0.05.

PHIST proteins anchor PfEMP1 to the cytoskeleton 1417
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mature parasite-infected erythrocyte surface antigen
(MESA), ring-infected erythrocyte surface antigen
(RESA), MAHRP1, MAHRP2 and HSP70x. All tested
proteins revealed correct subcellular localization in
parasites (data shown for PFE1605wON/PFE1605wOFF

parasites; Fig. S2).
To test whether the observed reduction inCD36bindingwas

due to a reduction of PfEMP1 surface exposure, we treated
iRBCs with trypsin. In all parasite cultures, PfEMP1 was
correctly displayed on the iRBC surface (Fig. 3A and B) as
evident by PfEMP1 proteolysis that yields intact ATS domains.
The trypsin cleavage assay also revealed that the size of
PfEMP1 in all parasites were identical, suggesting that the
same PfEMP1 variant was expressed in the parasite lines
compared. Scanning electron microscopy (SEM) showed the
presence of knobs in all parasite cell lines (Fig. S3); thus, the
reduction in cytoadherence observed in PFE1605wOFF

and PFE1605w+RAP parasites was not due to decreased knob
formation.

Cytoadhesive properties of infected red blood cells
expressing different P. falciparum erythrocyte membrane
protein 1 in the absence of PFE1605w

Previously, we showed that the recombinant PHIST
domain of PFE1605w interacted with six different ATS
variants with up to 25-fold differences in affinity (Oberli
et al., 2014). This suggested that PFE1605w might be
optimized for binding to a subset of PfEMP1 variants;
hence, it might be relevant only for iRBC binding to a
subset of endothelial receptors. Therefore, we selected
parasites expressing PFE1605w–DD on different host
receptors, including CD36, ICAM-1 and CSA, in order to
isolate parasites expressing different PfEMP1 molecules.
After four rounds of pre-selection, we obtained parasites
binding to CD36, ICAM-1, or CSA (Fig. 4). Expression of
var genes in all the pre-selected parasite lines was tested
by quantitative PCR (qPCR) and showed a clear
differential expression of var genes, suggesting the

Fig. 2. Controlled tethering of PFE1605w at Maurer’s clefts.
A. Schematic representation of controlled PFE1605w tethering. The episomally expressed MAHRP1-FRB fusion protein is exported to Maurer’s
clefts (1) prior to the export of C-terminally FKBP-tagged PFE1605w (2). Upon close proximity of the two fusion proteins and addition of rapalog (3),
heterodimerization of the FKBP domain and the FRB domain occurs (4) and PFE1605w is immobilized at Maurer’s clefts.
B. Confocal immunofluorescence analysis of parasites grown in the absence (PFE1605w!RAP) or presence (PFE1605w+RAP) of 100 nM rapalog.
The nuclei were stained with DAPI. Scale bar = 2 μm.
C. Semistatic adhesion assay of PFE1605w!RAP/PFE1605w+RAP parasites to immobilized recombinant CD36 protein at 50 μgml!1 concentration.
The graph displays mean values across triplicate samples, and the error bars represent the SDs of three independent experiments. An arbitrary
threshold (dashed line) for unspecific binding was calculated as the mean level of iRBC binding to 1% w/v BSA plus two SDs. P values were
calculated by using a two-tailed Student’s t-test; the asterisks indicate P ≤ 0.0001.
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display of a distinct PfEMP1 variant on the iRBC surface
(Fig. 4B). Pre-selected parasites were grown with and
without Shield-1 and after 96 h they were allowed to bind

to their respective receptor in a semistatic adhesion
assay. Parasites grown in the absence of Shield-1
showed an approximately 64% reduction in binding to

Fig. 3. PfEMP1 surface exposure is
not impaired upon PFE1605w
depletion in knobs. Determination of
PfEMP1 surface exposure by
detecting trypsin cleavage in 3D7 wild
type, PFE1605wON/PFE1605wOFF

and PFE1605w+RAP/PFE1605w!RAP

parasites.
A. PFE1605wON/PFE1605wOFF.
B. PFE1605w+RAP/PFE1605w!RAP

parasites. Trophozoites of each
parasite line were treated with trypsin
(+) or without trypsin (!), and the
extracts were analysed by Western
blot by using antibodies against ATS
domains.

Fig. 4. iRBCs expressing a different PfEMP1 variant show different level of reduction in cytoadherence upon conditional depletion of PFE1605w.
A. Preselected iRBCs binding to either recombinant CD36, ICAM-1 or CSA immobilized on tissue-treated glass slides at 50 μgml!1 (CD36, ICAM-1)
or 20 μgml!1 (CSA) concentrations. Parasites expressing PFE1605w as a C-terminally tagged DD fusion protein were grown for 96 h in the
presence (PFE1605wON) or absence (PFE1605wOFF) of 625 nM Shield-1. The graphs display overall mean values across triplicate experiments
using linear regression with a random effect for experiment. The error bars represent the SDs of the triplicate experiments. An arbitrary threshold
(dashed line) for unspecific binding was calculated as the mean level of iRBC binding to 1% w/v BSA plus two SDs. P values were calculated by
using a two-tailed Student’s t-test. The asterisks indicate P ≤ 0.0001. ‘ns’ indicates P ≥ 0.05.
B. Pie charts show the var transcript distribution in the selected lines. qPCR was performed with specific primers for each var gene as previously reported.

PHIST proteins anchor PfEMP1 to the cytoskeleton 1419
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CD36 (Fig. 4A). Binding to ICAM-1 was reduced by 30%
and binding to CSA showed no reduction at all (Fig. 4A),
indicating that PFE1605w plays no role in CSA-mediated
cytoadherence.

PFE1605w binds the C-terminal part of the acidic
terminal segment

Previously, we showed that the recombinant PHIST
domain of PFE1605w binds with low-micromolar affinity
to the C-terminal part of the ATS domain (ATS-C) of
PfEMP1 variant PF08_0141 (Oberli et al., 2014). Se-
quence conservation among ATS domains suggested that
ATS-C provides the PFE1605w binding epitope in most
PfEMP1 variants. To test this, we performed in vitro
fluorescence polarization binding experiments by using
the PFE1605w PHIST domain and fluorescein-labelled
recombinant ATS-C fragments from PfEMP1 variants
dominantly expressed in preselected parasites (Figs 4B
and S4A). In almost all cases, we observed direct

PFE1605w–ATS-C binding with dissociation constants
(Kd) in the 4–90μM range (Fig. 5A).

To test whether PFE1605w binds to ATS-C in P.
falciparum iRBCs, we designed two mini-PfEMP1 con-
structs consisting of an N-terminal part of a PEXEL protein
(PF13_0275) including a signal sequence and a PEXEL
motif, the ATS-C of two PfEMP1 variants and a 3xHA tag to
allow detection (Figs 5B and S4B). The PfEMP1 variants
selected, PF08_0141 and PFF0010w, display approximate-
ly 13-fold difference in in vitro affinity (5 and 65μM Kd

respectively) for the PHIST domain of PFE1605w (Oberli
et al., 2014). Because the fusion proteins were expressed
under the crt promoter, theywere found early in the life cycle.
Due to the lack of a TM domain, the mini-PfEMP1 was
soluble and exported to the erythrocyte cytosol with the
predicted size (Fig. S1D). Potential ATS-C interaction
partners were detected by co-immunoprecipitation (Co-IP)
followed by mass spectrometry (MS) for protein identifica-
tion. Trophozoite extracts from parasites expressing a mini-
PfEMP1 fusion protein were used to isolate potential

Fig. 5. PFE1605w directly binds the ATS C-terminus.
A. Fluorescence polarization titrations of 5-FAM-labelled ATS-C constructs from PfEMP1 variants (Fig. S4A) with unlabelled PFE1605w PHIST
domain. Data points, normalized to the fraction of ATS-C bound at each PFE1605w concentration, are shown as coloured circles. The error bars
were derived from four technical replicates. The solid lines correspond to data fitted with a single-site association model. Equilibrium dissociation
constants (Kd) for the PFE1605w–ATS-C interaction are shown. The interaction of PfEMP1 variant PFD0615c with PFE1605w could not be fitted.
B. Schematic representation of the mini-PfEMP1 construct for Co-IP experiments. C and D. LC-ESI-MS/MS results of two independent Co-IP
experiments using parasites expressing mini-PfEMP1 constructs composed of the C-terminal part of PF08_0141 (C) or PFF0010w (D).
Only peptide hits detected in both of the duplicate experiments are shown. Samples were also analysed by Western blot with α-HA and α-
PFE1605w antibodies. IN, input; SN, supernatant; W, wash; E, elution.
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interacting proteins through an hemagglutinin (HA)-affinity
matrix. As a negative control, parasite extract with an excess
of soluble HA peptide was added during the affinity-matrix
binding of the mini-PfEMP1 fusion proteins. Western blot
analysis confirmed that the mini-PfEMP1 fusion proteins
were successfully purified and that PFE1605wwas coeluted
with both mini-PfEMP1 constructs (Fig. 5C and D). In
addition, from duplicate Co-IP experiments, the liquid
chromatography–mass spectrometry (LC-MS)/MS analysis
detected from both mini-PfEMP1 constructs more than 10
peptide hits for PFE1605w (Fig. 5C and D). These results
demonstrate a direct protein–protein interaction of
PFE1605w with the C-terminal part of the ATS domain of
different PfEMP1 variants.

Potential PFE1605w interaction partners

To detect other potential PFE1605w interaction partners,
we performed Co-IP experiments with parasites express-

ing the PFE1605w–3xHA fusion protein, followed by MS-
based protein identification. Different components of the
human erythrocyte cytoskeleton were detected, in addition
to two Plasmodium proteins of unknown function (Fig. 6A).

To confirm these potential PFE1605w interaction part-
ners from the human cytoskeleton, we performed reverse
Co-IP experiments with 3D7 wild-type parasite lysate and
specific antibodies against human bands 3 and 4.2, both of
which locate equally at band 3 and junctional complexes
(Mankelow et al., 2012), and ankyrin 1. From the elution of
reverse Co-IP with antibodies against human band 4.2,
Western blots detected a dominant band, identified as
PFE1605w (Fig. 6C). MS identified other components of
band 3 and junctional complexes, including band 3, band
4.2, band 4.1, the α- and β-chains of spectrin and ankyrin,
but no other Plasmodium protein except PFE1605w (Fig.
6B), again suggesting that PFE1605w interacts with one or
several cytoskeletal components.

Fig. 6. PFE1605w binds to the RBC
cytoskeleton.
A. LC-ESI-MS/MS results of two
independent Co-IP experiments using
parasites expressing PFE1605w-HA.
B. LC-ESI-MS/MS results of two
independent reverse Co-IP
experiments with α-band 4.2
antibodies coupled to protein G
Dynabeads. All experiments were
performed twice.
C. Elution fractions of the reverse Co-
IP experiment were also analysed by
Western blot with α-PFE1605w
antibodies.
D. Fluorescence polarization titrations
of 5-FAM-labelled PFE1605w-C with
unlabelled band 3 cytosolic domain or
BSA as a negative control. Data points,
normalized to the fraction of
PFE1605w-C bound at each titrant
concentration, are shown as coloured
circles. The error bars were derived
from three replicates. The fit to a single-
site associationmodel is shownas solid
line. The interaction of PFE1605w-C
with BSA could not be fitted.
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To further probe the cytoskeletal interactions of
PFE1605w, we produced a fluorescein-labelled recombi-
nant PFE1605w fragment (PFE1605w-C) comprising the
C-terminal tail of this protein that follows the PHIST
domain. PFE1605w-C was previously shown to bind to
inside-out vesicles prepared from uninfected erythrocytes
(Proellocks et al., 2014). In the fluorescence–polarization
binding experiments, PFE1605w-C interacted with recom-
binant band 3 with approximately 1.5μM Kd (Fig. 6D). This
result demonstrates the direct interaction of PFE1605w
with a specific cytoskeletal protein, although we do not
exclude the possibility that PFE1605w partakes in a larger
multiprotein complex.

Discussion

The remarkable number of exported PHIST proteins
predicted and the dramatic lineage-specific proliferation
of this multigene family in P. falciparum only (Sargeant
et al., 2006) suggest an important role for PHIST proteins
in host cell modifications. These modifications lead to the
dramatic morbidity and mortality observed with this
parasite. This observation is reflected in the number of
recent publications showing that PHIST proteins are
involved in altering host cell rigidity (Mills et al., 2007;
Maier et al., 2008), binding erythrocyte components
(Silva et al., 2005; Mills et al., 2007; Pei et al., 2007a;
Parish et al., 2013; Proellocks et al., 2014), reducing
cytoadherence under flow (Maier et al., 2008; Proellocks
et al., 2014), mediating cell–cell communication
(Regev-Rudzki et al., 2013), cytoskeletal association (Tarr
et al., 2014) and elevated transcript levels of some phist
genes in patients (Daily et al., 2005; Mok et al., 2007;
Claessens et al., 2012). Although it has been assumed
that most PHIST proteins contain one or more interaction
epitopes (Sargeant et al., 2006), to the best of our
knowledge, no detailed characterization of protein inter-
actions directly linked to the functional role of a PHIST
protein has been reported.
Here, we have functionally characterized PFE1605w,

which has been shown to bind to the ATS domain of
PfEMP1, comigrates with PfEMP1 in space and time and
localizes to Maurer’s clefts and knobs (Oberli et al., 2014),
although an alternative localization has been suggested
(Proellocks et al., 2014). In addition to the well-known and
frequently used conditional post-translational regulation
using an FKBP DD, we applied a ‘knock-sideways’ or
‘anchor-away’ system (Haruki et al., 2008; Busch et al.,
2009; Robinson et al., 2010; Xu et al., 2010). With this
method, we took advantage of the rapalog-induced
heterodimerization of the FKBP12 and FRB domains to
tether PFE1605w at Maurer’s clefts, the transient location
for a variety of parasite proteins destined to the iRBC
membrane and surface. The tethering technique is a

powerful way of revealing the function of an exported
protein in host cell refurbishment and helps to dissect the
role of these proteins within the export pathway. Both
methods, tethering of PFE1605w at Maurer’s clefts
and protein destabilization, confirmed that mislocalization
or depletion of PFE1605w did not result in reduced
surface exposed PfEMP1, suggesting no obvious role
for PFE1605w in PfEMP1 transport. At the same
time, however, both methods of PFE1605w depletion
from knobs resulted in large reduction of cytoadherence
to CD36.

The different levels of reduction in parasite cytoadherence
to specific endothelial receptors upon PFE1605w depletion
suggest a highly specialized role for this protein. Previously,
we tested six PfEMP1 ATS variants for binding the PHIST
domain of PFE1605w (Oberli et al., 2014) and revealed up to
25-fold differences in binding affinities. This suggests that
sequence variation in ATS has optimized PFE1605w for
binding to a PfEMP1 subset and that perhaps other
PHIST proteins might have coevolved with specific ATS
domains to create interaction pairs with maximum
binding strength. In this simplified model, differences in
the PFE1605w–ATS binding affinity might be expected to
account for differences in the cytoadherence phenotype
upon PFE1605w depletion.

Our assays partly support this model of PFE1605w
function, as evidenced by the lack of an effect of
PFE1605w depletion on cytoadherence observed for
CSA-binding parasites, where the ATS-C fragment of the
dominantly expressed PfEMP1 variant (PFL0030c,
VAR2CSA) had a very weak binding affinity to the
PFE1605w PHIST domain (Kd ~ 90μM). In contrast, the
ATS-C fragments of PfEMP1 variants most often found in
ICAM-1-binding parasites, PF07_0050 and PFL0020w,
have up to sixfold higher PFE1605w affinity, and ICAM-1
parasite cytoadherence is reduced by 30% upon
PFE1605w depletion.

The complete picture, however, is more nuanced. Co-IP
assays coupled with MS robustly detected the in vivo
association of PFE1605w with two mini-PfEMP1 con-
structs encompassing the ATS-C fragment of two PfEMP1
variants. These variants represent the two main subtypes
of PfEMP1 ATS, groups A (PF08_0141) and B
(PFF0010w). The in vitro affinity of these ATS domains
for the PFE1605w PHIST, however, varies by more than
10-fold. We also observed that the ATS-C fragment of the
PfEMP1 variant dominantly expressed in CD36-binding
parasites, PFD0615c, displays essentially no direct affinity
for PFE1605w, despite the large decrease in CD36
cytoadherence upon PFE1605w depletion. The result
seems to contradict the simple PFE1605w functional
model presented above.

To reconcile these results, we must consider the
following: PFE1605w directly binds the majority of ATS

1422 A. Oberli et al.

© 2016 The Authors. Cellular Microbiology published by John Wiley & Sons Ltd, Cellular Microbiology, 18, 1415–1428



Chapter	3	–	PHIST	proteins	anchor	PfEMP1	to	the	cytoskeleton	

 

76	

	
	

domains tested here and in previous studies (Oberli et al.,
2014). This interaction is present in vivo for both strongly
and weakly associated PFE1605w–ATS pairs. PFE1605w
does not affect PfEMP1 transport and it colocalizes to
knobs with PfEMP1 (Oberli et al., 2014). Indeed, the
significant reduction in receptor binding upon tethering
PFE1605w to Maurer’s clefts strongly indicates that this
protein exercises its functional role in knobs. There,
PFE1605w is likely to be joined by (and might act together
with) other ATS-binding PHIST proteins such as
PFI1780w (Mayer et al., 2012; Oberli et al., 2014), thereby
accounting for the partial disruption of cytoadherence
upon PFE1605w depletion. Further, in certain PfEMP1
variants, such as the CD36-binding PFD0615c, the
PFE1605w–ATS interaction might be mediated or strongly
reinforced by other PHIST proteins. Because most of the
PHIST proteins are expressed simultaneously, it seems
that partnering must occur in the cytosol of the host or
directly at the periphery (Fig. 7). Transcriptome analyses
of all selected cell lines grown with or without shield
excluded a possible upregulation of certain PHIST (data
not shown).

To date, only a few direct interactions of exported
proteins with cytoskeletal components of erythrocytes
have been described and confirmed, e.g. KAHRP (Pei

et al., 2005; Weng et al., 2014), PfEMP3 (Pei et al.,
2007b), RESA (Pei et al., 2007a) and MESA (Magowan
et al., 2000). Both KAHRP and PfEMP3 are required for
correct trafficking and functional PfEMP1 display on the
erythrocyte surface (Crabb et al., 1997; Waterkeyn et al.,
2000), while PFE1605w is not. Co-IP experiments with the
full-length PFE1605w–HA fusion protein identified a
number of host integral membrane proteins and compo-
nents of the erythrocyte cytoskeleton as putative binders,
and fluorescence polarization experiments confirmed the
direct interaction of the PFE1605w C-terminus with the
cytosolic domain of band 3. Thus, we have now shown the
presence of two interaction epitopes within PFE1605w, at
its PHIST domain and the C-terminus, making it an
anchoring molecule between PfEMP1 and the host
cytoskeleton. The findings are consistent with previous
assays suggesting an association of PFE1605w C-
terminal fragments with erythrocyte-derived inside-out
vesicles (Proellocks et al., 2014). Both co-IP and in vitro
experiments suggest that PFE1605w, and thus PfEMP1,
targets the host’s band 3 and junctional complexes, while,
interestingly, PFE1605w was the only parasite protein
detected. The next step would be to map the exact
interaction epitopes of PFE1605w with band 3 and
possibly other cytoskeletal proteins. In addition to eluci-

Fig. 7. Schematic representation of the
proposed functional role of PFE1605w within
the iRBC knob structure.
A. Both Co-IP experiments and in vivo
experiments showed that the PHIST domain of
PFE1605w binds the C-terminal part of
different ATS domains and the C-terminal part
of PFE1605w targets the host band 3 and
junctional complexes, thus making it an
anchoring molecule between PfEMP1 and the
host cytoskeleton.
B. As various PHIST domains interacted with
the same PfEMP1 epitope but with different
affinities, it is conceivable that another PHIST
protein might take over the function of
PFE1605w depending on the surface exposed
PfEMP1 molecule.

PHIST proteins anchor PfEMP1 to the cytoskeleton 1423
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dating the complex that anchors PfEMP1 to the cytoskel-
eton, it would be valuable to study whether other PHIST
proteins might bind PfEMP1 variants, in particular
VAR2CSA, where CSA cytoadherence was not reduced
upon depletion of PFE1605w. The PHIST interactome
invites further studies to fully understand the remodelling
of the host cell leading to pathology.
In summary, we show that the PHIST protein

PFE1605w binds not only to PfEMP1 but also to members
of band 3 and junctional complexes of the host cell.
PFE1605w, however, plays no role in the transport of
PfEMP1. We also show that various PfEMP1 molecules
interact differently with PFE1605w and binding to endo-
thelial receptors is partially disrupted upon conditional
knock-down or misplacement of PFE1605w. A profound
analysis of other exported PHIST proteins and their
interaction partners should help to reveal key components
of the cytoadherence complex.

Experimental procedures

Parasite culture and transfection

Plasmodium falciparum 3D7 cell culture and transfection were
performed according to standard procedures (Ljungström et al.,
2008). Transfected parasites were grown in the presence of the
indicated combinations of 10 nM WR99210 (Jacobs Pharmaceu-
ticals, Cologne, Germany), 2.5mgml!1 blasticidin (Life Technol-
ogies, Zug, Switzerland), 625 nM Shield-1 and 100 nM A/C
Heterodimerizer (Clontech).

Plasmid constructs

Primers 5′-ATTTGGATCCATGAGGTTTACTAATTCATTATATTCG-
3′ and 5′-ATATGCTAGCATTTTTTTTTTTATTTTCTTTTCCAGA
TTTG-3′ were used to clone full-length PFE1605w into pBcamR–
3xHA (Flueck et al., 2009) via BamHI and NheI restriction sites. To
fuse the FKBP DD to the C-terminus of PFE1605w in 3D7 wild-type
parasites, a 785bp flank of the 3′ end of PFE1605w was cloned into
pARL-DD via BglII and AvrII restriction sites by using the primers 5′-
ATATAGATCTTAACAGCAAATAGATTTT TATGGAG-3′ and 5′-
ATATCCTAGGATTTTTTTTTTTATTTTCTTTTCCAGATTTG-3′.
MAHRP1 was cloned into mal7–mCherry–FRB (kindly provided by
Tobias Spielmann (Grüring et al., 2011)) via XhoI and KpnI restriction
sites by using the primers 5′-ATATCTCGAGATGGCAGAGCAA
GCAGC-3′ and 5′-CAGCGGTA CCATTATCTTTTTTTTCTTGTT
CTAATTTTGC-3′. Mini-PfEMP1 constructs were synthesized
(Fig. S4B) and cloned into pBcamR-3xHA via NcoI and NheI
restriction sites.

Western blot analysis

Parasite proteins were obtained as previously described (Oberli
et al., 2014), and samples were run on 12% w/v polyacrylamide
bis-Tris, 4–12% w/v polyacrylamide bis-Tris or 3–8% w/v
polyacrylamide Tris-acetate NuPAGE gels (Invitrogen). Proteins
were detected by using rabbit antibodies directed against the

PFE1605w PHIST domain (α-PFE1605w) (Pacific Immunology
Inc.) (Fig. S1B), rabbit α-HA (Roche 1:100), mouse α-glyceralde-
hyde-3-phosphate dehydrogenase (α-GAPDH) (1:20 000), rat α-
mCherry (Life Technologies; 1:1000) and mouse α-ATS (1:500).
PfEMP1 was extracted as described (Van Schravendijk et al.,
1993) and detected with the mouse α-ATS (1:500) antibody.

Southern blot analysis

Genomic DNA of saponin-lysed parasites was isolated as
previously described (Beck, 2002). DNA was digested with AflII
and XhoI restriction enzymes (New England Biolabs), separated
on a 0.8% w/v agarose gel and transferred to a Amersham
Hybond–N+ membrane (GE Healthcare). The blot was probed
with [32P]-dATP-labelled hdhfr PCR fragments.

Fluorescence microscopy

Immunofluorescence assays were performed on acetone-fixed
blood smears of infected parasite cultures (Spielmann et al.,
2003) and blocked with 3% v/w BSA. Primary antibodies included
rabbit α-PFE1605w (1:200), mouse α-KAHRP (1:200), mouse α-
RESA (1:250), rabbit α-MESA (1:250), mouse α-ATS (1:100),
mouse α-PfEMP3 (1:100), rabbit α-MAHRP1 (1:200), rabbit α-
HSP70x (1:500) and rat α-mCherry (Life Technologies; 1:200).
Secondary antibodies (goat α-rabbit Alexa 594, goat α-mouse
Alexa 594, goat α-rabbit Alexa 488, goat α-rat Alexa 594;
Invitrogen) were incubated with 1 μg ml!1 4,6-diamidino-2-
phenylindole (DAPI; Roche) at 1:200 dilution. Images were taken
with a Zeiss LSM 700 confocal microscope (Carl Zeiss GmbH,
Jena, Germany), with ×63 oil-immersion lens (1.4 numerical
aperture) and processed in PHOTOSHOP CS6.

Scanning electron microscopy

Af ter knob select ion and Percol l pur i f icat ion, the
erythrocytes/iRBCs were fixed in 2% v/v glutaraldehyde in
phosphate buffer for 1 h at room temperature. After three washes
in PBS, the samples were transferred to coverslips preliminary
coated with poly-L-lysine (Sigma), dehydrated in increasing
concentration of ethanol (10% v/v, 25% v/v, 50% v/v, 75% v/v,
90% v/v and 2× 100% v/v, 10min each) and dried at the critical
point. Finally, coverslips were mounted onto stubs, sputtered with
5 nm platinum (LEICA EM ACE600) and imaged at 5 kV with a
SEM Versa 3D (FEI). The micrographs were coloured in
PHOTOSHOP CS6.

Trypsin cleavage assay

For trypsin cleavage, Percoll-purified trophozoite stage parasites
were incubated either in L-(tosylamido-2-phenyl) ethyl
chloromethyl ketone-treated trypsin (Sigma, 100 μg ml!1 in
PBS) or in trypsin and 1mgml!1 soybean trypsin inhibitor
(Sigma, 1mgml!1 in PBS) for 15min at 37°C. The digest was
stopped by the addition of soybean trypsin inhibitor to a final
concentration of 1mgml!1. PfEMP1 extraction and subsequent
analysis was done as previously described (Van Schravendijk
et al., 1993; Waterkeyn et al., 2000).
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Selection for receptor binding with recombinant protein

Subpopulations of parasites were selected by panning the
parental parasite cell line (3D7) over purified human recombinant
CD36 (50 μgml!1), CD31 (50 μgml!1), ICAM-1 (50 μgml!1),
Thrombospondin-1 (50 μgml!1), endothelial protein C receptor
(50 μgml!1) and CSA (20 μgml!1) according to Ockenhouse
et al. (1991). Recombinant proteins were dissolved in double-
distilled H2O to the indicated final concentration and absorbed to
a six-well tissue culture plate (Falcon 353045, Corning, NY, USA)
overnight at 4°C. The wells were blocked with 1% w/v BSA in
RPMI medium for 1 h at 37°C. and the parasite culture was added
for 2 h with a gentle shake of the tissue culture plate every 15min.
Unbound parasites were removed by five gentle washes with
RPMI-Hepes and uninfected RBCs (5% haematocrit) were added.
After 24 h of incubation allowing late-stage parasites to release
merozoites to invade new RBCs, the newly invaded RBCs were
transferred into continuous cell culture. The panning procedure
was repeated four times prior to RNA isolation and cytoadhesion
assays.

Cytoadhesion assay

Purified recombinant protein was spotted on wells of an eight-
chamber polystyrene vessel tissue culture-treated glass slide
(Falcon, Big Flats, NY, USA) with concentrations as indicated
and coated overnight at 4°C to allow proteins to absorb to the
surface. The wells were blocked with 1% w/v BSA in RPMI
medium for 1 h at 37°C. Selected parasite cell lines were split
and cultured separately with or without 500 nM Shield-1 for 96 h.
Parasites were washed twice with RPMI-Hepes and spotted
onto immobilized recombinant protein and cultured for 2 h under
continuous and simultaneous shaking (140 r.p.m., proBlot 25
Rocker; Labnet International Inc., NY, USA) (105 r.p.m.,
Lab-Therm LT-W, Kühner, Switzerland) at 37°C. Non-bound
erythrocytes were removed by gently flooding each well with
RPMI-Hepes six times with simultaneous shaking for 2 min.
Bound iRBCs were fixed with 2% v/v glutaraldehyde in
RPMI-Hepes overnight and stained with Giemsa for 1 h and
microscopically quantified. Results are shown as mean
number of parasites bound per square millimetre and normal-
ized to 1% parasitaemia.

Quantitative PCR for P. falciparum erythrocyte membrane
protein 1 expression

Synchronized cultures of PFE1605w–DD expressing parasites
preselected to bind CD36, ICAM-1 or CSA were split and cultured
96 h in the presence (+) or absence (!) of Shield-1, and ring-
stage parasites were used for var transcript profiling, as
previously described (Dahlbäck et al., 2007). Transcript abun-
dance of each 3D7 var gene was determined relative to internal
control transcripts by qPCR by using gene-specific primers and
complementary DNA synthesized from total RNA extracted from
pelleted infected erythrocytes dissolved in TRIzol.

Recombinant protein expression

Codon-optimized genes encoding the ATS-C fragments of
PfEMP1 variants (Fig. S4A) were cloned in a modified pET-16
vector (Merc Millipore). Gene fragments coding for amino acids
300–528 of PFE1605w (PFE1605w-C) or amino acids 1–379 of
human erythrocytic band 3 were cloned in a pFloat2 vector
(Rogala et al., 2015), which provides an N-terminal His6 tag.

Purification and fluorescent labelling of ATS-C and PFE1605w-
C was performed as previously described (Mayer et al., 2012);
briefly, clones were transformed in Escherichia coli strain BL21
(DE3), grown in Luria–Bertani medium and protein expression
was induced with 0.1mM isopropyl β-D-1-thiogalactopyranoside.
Cells were lysed by sonication, and proteins were purified from
lysate supernatants by using metal-affinity, ion-exchange and
size-exclusion chromatography. Fluorescent labelling was per-
formed by N-(5-fluoresceinyl)maleimide (5-FAM; Invitrogen)
conjugating to a single cysteine residue at the protein N-
terminus that was added during cloning. Labelled ATS-C and
unreacted dye were separated by size-exclusion chromatogra-
phy. Protein identity and 5-FAM labelling was confirmed by
electrospray ionisation (ESI) MS.

Purification of the PFE1605w PHIST domain and the cytosolic
band 3 domain was performed as previously described (Zhang
et al., 2000; Oberli et al., 2014).

Fluorescence polarization binding assays

Fluorescence polarization measurements were recorded at 20°C
by using a CLARIOStar fluorimeter (BMG Labtech; λex = 485 nm,
λem = 520 nm). Five hundred nanomolar 5-FAM-labelled ATS-C
variants in 50mM NaCl, 20mM Na2HPO4 pH 6.5 buffer were
titrated with defined concentrations of PFE1605w PHIST domain
in the same buffer. For the band 3–PFE1605w-C interaction,
0.5 μM 5-FAM-labelled PFE1605w-C in 50mM NaCl, 20mM
Na2HPO4 pH 7.0 buffer was titrated with unlabelled band 3.
Changes in fluorescence polarization were fitted by using a single
binding model in the program ORIGIN (OriginLab).

Coimmunoprecipitation experiments

Three hundred millilitres of cell culture (5% haematocrit, 5-8%
parasitaemia) of 3D7 parasites or 3D7 parasites episomally
expressing PFE1605w–3xHA/mini-PfEMP1 was cross-linked in
1% v/v formaldehyde. The reaction was stopped after 10min by
adding 2.5M glycine. Immunoprecipitation was performed as
previously described (Dietz et al., 2014). For the Co-IP
experiments with the mini-PfEMP1 fusion protein, Pierce α-HA
magnetic beads (Thermo Scientific) were used. For the reverse
Co-IP with α-band 4.2 antibodies, Dynabeads Protein G were
used together with the cross-linking reagent BS3 to avoid
coelution of antibodies, according to the manufacturer’s protocol
(Life Technologies). The eluted fraction was analysed on a 4–
12% w/v polyacrylamide bis-Tris gel (Invitrogen) and fractions of it
or TCA precipitated pellets were sent to the central core facility for
LC-MS/MS analysis.
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Figure S4

ATS-C constructs 
 
PF08_0141 
 1 GPLGSCNDGG NVPIDNRSLN TDVWIEIDMD DPKGKKEFSN MDTILDDIED DIYYDVNDDE 60 
61 NPSVDNIPMD HNKVDVPKKV HVEMKILNNT SNGSLEPEFP ISDVWNI               107   
 
PF07_0050       
 1 GPLGSCTHSG NTHPSDSNKT LNTDVSIQIH MDDPKPINQF TNMDTILEDL EKYNEPYYDV 60 
61 QDDIYYDVND HDTSTADSNA MDVPSKVQIE MDVNTKLVKE KYPIADVWDI            110 
 
PFL0020w         
 1 GPLGSCTHSG NTHPSDSNKT LNTDVSIQIH MDNPKPINQF TNMDTILEDL EKYNEPYYDV 60 
61 QDDIYYDVND HDASTVDSNN MDVPSKVQIE MDVNTKLVKE KYPIADVWDI            110 
 
PFL0030c          
 1 GPLGSCRKEY LLDIQPSTLD DIHKINDETY NIISTNNIYD HPSQETPLQL LGSTNIIPSY 60 
61 ITTEQNNGLR TNISMDTYID ETNNNNVVAT SIIGDDQMEN SYNS                  104 
  
PFD0615c          
  1 GPLGSCTHSG NKHNGIQSNI PSSDIHPSDI HSGKLSDTPS DNNIHSDIPY VLNSDVSIQI 60 
 61 HMDNPKPTNE DNVVDSNPVG NNIYVDNNPN QTFPSNPNPV ENNTYVNAPT NVQIEMDVNN 120 
121 HKVVKEKYPI SDMLDI                    136 
 

Mini-PfEMP1 constructs 
 
PF08_0141 
  1 MKTYNSLNNI MGFQGEHNST VPSYNKSSME KSSNIRNNRG RVYSFHFLVK IFACSLFIWT 60 
 61 LYVSHNGNVS TNVDVVNTTQ GLSKGRILTQ GDHHEETEDV NHKAHHTGER TSNDGGNVPI 120 
121 DNRSLNTDVW IEIDMDDPKG KKEFSNMDTI LDDIEDDIYY DVNDDENPSV DNIPMDHNKV 180 
181 DVPKKVHVEM KILNNTSNGS LEPEFPISDV WNI            213 
 
PFF0010w 
  1 MKTYNSLNNI MGFQGEHNST VPSYNKSSME KSSNIRNNRG RVYSFHFLVK IFACSLFIWT 60 
 61 LYVSHNGNVS TNVDVVNTTQ GLSKGRILTQ GDHHEETEDV NHKAHHTGER TSTHSGNTHP 120 
121 SDSNKTLNTD VSIQIHMDNP KPINQFTNMD TILEDLEKYN EPYYDVQDDI YYDVNDHDAS 180 
181 TVDSNAVNVP SKVQIEMDVN TKLVKEKYPI ADVWDI                216 
  

A

B
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Figure	legends	

Figure	S1:	Plasmid	maps,	Southern	blot	and	Western	blots	of	extracts	from	cell	lines	used	

in	this	study	

(A)	Schematic	map	of	the	endogenous	pfe1605w	locus	before	and	after	plasmid	integration	

in	 PFE1605wON	 parasites.	 AflII	 and	 XhoI	 restriction	 sites	 are	 indicated	 in	 blue	 and	

pARLddFKBP	vector	is	indicated	in	red.	Southern	blot	shows	integration	into	the	endogenous	

pfe1605w	locus.	3D7	wild-type	gDNA	was	used	as	a	control.	(B)	Specificity	of	the	polyclonal	

affinity-purified	α-PFE1605w	antibody.	α-PFE1605w	Western	blot	with	extracts	from	stage-

specific	 3D7	wild-type	parasites	 (hours	post-invasion	 indicated	 for	 each	 lane).	GAPDH	was	

used	 as	 a	 loading	 control.	 (C)	Western	 blot	 of	 extracts	 from	3D7	wild-type	 parasites,	 3D7	

parasites	 episomally	 expressing	 MAHRP1-FRB	 fusion	 protein	 and	 of	 double	 transfected	

parasites	expressing	PFE1605w	C-terminally	fused	to	FKBP	but	also	the	MAHRP1-FRB	fusion	

protein.	Decoration	of	the	same	Western	blot	with	α-PFE1605w	(different	molecular	weight	

is	due	to	the	successful	integration	of	the	FKBP	domain)	and	α-GAPDH	as	loading	control	is	

shown	 at	 the	 bottom.	 (D)	Western	 blots	 of	 saponin-lysed	 parasites	 expressing	 PF08_0141	

and	PFF0010w	mini-PfEMP1	constructs.	SN=	supernatant	after	saponin	lysis,	P=	pellet	after	

saponin	lysis.		

Figure	S2:	Localization	of	well-characterized	exported	proteins	upon	PFE1605w	reduction	

Confocal	 immunofluorescence	analysis	 of	 3D7	parasites	 expressing	endogenous	PFE1605w	

as	 a	 C-terminally	 tagged	 GFP-DD	 fusion	 protein	 grown	 for	 96	 hours	 in	 presence	

(PFE1605wON)	or	absence	(PFE1605wOFF)	of	625	nM	Shield-1.	Nuclei	were	stained	with	DAPI.	

Scale	bar	=	3	μm.	

Figure	S3:	Reduced	levels	of	PFE1605w	do	not	alter	knob	formation		

Scanning	electron	microscopy	of	an	uninfected	RBC,	an	 iRBC	with	a	3D7	wild-type	parasite	

and	iRBCs	with	PFE1605wON/PFE1605wOFF/PFE1605w+RAP/	PFE1605w-RAP	parasites.	Scale	bar=	

1	μm.		
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Figure	S4:	ATS-C	and	mini-PfEMP1	constructs	

(A)	 Protein	 sequences	of	ATS-C	 constructs	 used	 in	 this	 study.	 Constructs	were	 cloned	 in	 a	

modified	pET16	vector	for	recombinant	expression	in	E.	coli,	leading	to	the	inclusion	of	a	six	

amino	 acid	 cloning	 artefact	 at	 the	 construct	 N-terminus	 (illustrated	 in	 blue)	 in	 the	 final	

purified	 material.	 The	 ATS-C	 sequence,	 derived	 from	 the	 indicated	 PfEMP1	 variant,	 is	

illustrated	 in	 green.	 In	 all	 cases	 fluorescent	 labelling	 of	 ATS-C	 was	 performed	 by	 5-FAM	

conjugation	 to	 amino	acid	C6	of	 each	 construct.	 To	 avoid	 the	 inclusion	of	multiple	 5-FAM	

labels	 existing	 cysteines	 in	 the	ATS-C	 sequences	 of	 variants	 PFL0030c	 and	PFD0615c	were	

conservatively	substituted	to	serine;	the	substituted	amino	acids	are	underlined.	(B)	Protein	

sequences	 of	 the	 mini-PfEMP1	 constructs	 cloned	 into	 pBcamR_3xHA.	 The	 N-terminus	 of	

PF13_0275	 includes	 a	 SS	 and	 PEXEL	 motif	 and	 is	 indicated	 in	 blue.	 The	 C-termini	 of	 ATS	

domains	from	PF08_0141	and	PFF0010w	are	illustrated	in	green.		
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Abstract	

Sequestration	of	red	blood	cells	infected	with	the	malaria	parasite	Plasmodium	falciparum	to	

host	 endothelial	 cells	 has	 been	 associated	 with	 severe	 forms	 of	 the	 disease.	 This	

phenomenon	is	mediated	by	a	number	of	host	endothelial	receptors	and	PfEMP1,	parasite-

derived	variant	antigens	expressed	on	the	surface	of	 the	 infected	red	blood	cell	 (iRBC).	An	

important	 host	 receptor	 is	 the	 intercellular	 adhesion	 molecule-1	 (ICAM-1)	 and	 there	 is	

evidence	 that	 ICAM-1	 play	 a	 role	 in	 the	 pathology	 of	 cerebral	malaria.	 The	 current	 study	

examined	the	PfEMP1	expression	and	ICAM-1	binding	phenotype	of	3D7	parasites.	We	show	

that	 PFL0020w,	 a	 group	 B	 PfEMP1	 variant,	 binds	 ICAM-1	 through	 the	 DBLβ	 domain.	

Moreover,	 for	 the	 first	 time	 we	 provide	 direct	 evidence	 for	 a	 dual	 binding	 affinity	 of	 an	

identified	PfEMP1	variant	to	different	endothelial	receptors	in	3D7	 in	vitro	culture.	Overall,	

this	study	contributes	to	the	understanding	of	ICAM-1	binding	domains	and	its	relevance	to	

disease.	
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Introduction	

Sequestration	of	infected	red	blood	cells	(iRBCs)	in	the	microvasculature	of	human	organs	is	

key	to	the	pathogenesis	of	severe	Plasmodium	falciparum	malaria.	This	process	is	mediated	

by	 the	 interaction	 between	 the	 antigenic	 variable	 parasite	 adherence	 ligand	 Plasmodium	

falciparum	erythrocyte	membrane	protein	1	 (PfEMP1)	on	the	surface	of	 the	 iRBC	and	host	

receptors	on	vascular	endothelium.	Severe	malaria	is	associated	with	parasites	expressing	a	

particular	subset	of	PfEMP1	(Jensen,	2004;	Lavstsen	et	al.,	2012;	Turner	et	al.,	2013),	which	

elicit	severe	symptoms	probably	by	conferring	a	particularly	strong	and/or	detrimental	host	

receptor	interaction.	Several	human	receptors	have	been	suggested	as	interaction	partners	

for	PfEMP1	associated	with	severe	disease,	but	evidence	from	studies	of	parasite	binding	ex	

vivo	is	for	most	candidates	scarce	and	often	ambiguous	(Rowe	et	al.,	2009).	Instead,	answers	

to	 the	question	of	which	PfEMP1-human	receptor	 interaction	characterizes	 severe	malaria	

infections	has	emerged	from	studies	focussing	on	typing	var/PfEMP1	sequences	and	relating	

these	 to	 expression	 in	 patients	 and	 specific	 receptor	 interactions	 (Jensen	 et	 al.,	 2004;	

Lavstsen	et	al.,	2012;	Nielsen	et	al.,	2002).	PfEMP1	molecules	have	acquired	an	extraordinary	

large	sequence	diversity,	but	consist	of	relatively	ordered	compositions	of	Duffy	binding	like	

(DBL)	domains	and	two	cysteine-rich	inter-domain	regions	(CIDR)	(Rowe	et	al.,	2009).	Based	

on	N-terminal	untranslated	upstream	regions	and	DBL-CIDR	domains,	PfEMP1	can	be	divided	

into	 two	main	 groups:	 A	 (having	DBLα1-CIDRα1,	 β,γ	 or	 δ	 domains)	 or	 B/C	 (having	DBLα0-

CIDR2-6	 domains).	 Evidence	 from	 studies	 of	 var	 expression	 in	 patients,	 protein-protein	

interactions	 and	 phenotype	 selected	 parasite	 clones	 converges	 towards	 the	 notion	 that	 a	

subset	of	group	A	PfEMP1	with	CIDRα1	domains	elicite	severe	malaria	(Turner	et	al.,	2013).	

This	 appears	 to	 be	 mediated	 by	 binding	 to	 endothelial	 protein	 C	 receptor	 (EPCR),	 while	

parasites	 expressing	 group	 B/C	 PfEMP1	 molecules	 bind	 CD36	 via	 CIDRα2-6	 domains	 and	

rarely	cause	severe	malaria	symptoms	(Cabrera	et	al.,	2014).	However,	all	PfEMP1	contain	2-

7	additional	DBL	or	CIDR	domains,	and	it	remains	unknown	what	role	other	domains	might	

play	 in	 cytoadhesion	 or	 pathogenicity.	 In	 particular,	 the	 intercellular	 adhesion	molecule	 1	

(ICAM-1)	 has	 been	 suggested	 to	 play	 a	 role	 in	 iRBC	 binding	 to	 cerebral	 blood	 vessels	

(Joergensen	 et	 al.,	 2010;	 Oleinikov	 et	 al.,	 2009)	 leading	 to	 cerebral	 malaria,	 although	 an	

association	with	 severe	malaria	 and	 PfEMP1	 expression	 phenotype	 has	 remained	 unclear.	

ICAM-1	binding	has	been	mapped	to	different	DBLβ	domains	found	in	group	A	and	B/C	genes	
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(Joergensen	et	al.,	2010;	Oleinikov	et	al.,	2009;	Smith	et	al.,	1995)	based	mainly	on	studies	of	

recombinant	 proteins.	 A	 few	 parasites,	 including	 both	 group	 A	 and	 B	 PfEMP1	 expressing	

lines,	have	been	demonstrated	to	bind	ICAM-1	(Bengtsson	et	al.,	2013).	In	the	current	study,	

we	investigated	the	var/PfEMP1	expression	and	binding	phenotypes	of	ICAM-1	selected	3D7	

parasite	 lines	to	identify	which	PfEMP1	types	readily	mediate	binding	to	ICAM-1.	We	show	

that	ICAM-1	binding	selects	for	parasites	that	express	group	B	PfEMP1,	which	bind	ICAM-1	

through	their	DBLβ	domain.		

Results	

iRBC	binding	to	ICAM-1	and	CD36	

To	create	a	set	of	parasite	populations	with	well-defined	ICAM-1	binding	characteristics,	P.	

falciparum	3D7	parasites	were	selected	by	sequential	panning	on	either	recombinant	ICAM-

1	or	CD36.	After	four	rounds	of	selection	RNA	was	collected	and	qPCR	with	specific	primers	

for	all	3D7	var	gene	variants	was	performed.	The	var	transcript	profiling	after	the	repetitive	

selection	 for	 CD36	 or	 ICAM-1	 binding	 revealed	 a	 single	 dominant	 transcript	 from	 gene	

PFD0615c	for	parasites	binding	to	CD36	(Fig.	1B)	and	predominantly	from	genes	PF07_0050	

and	 PFL0020w	 for	 the	 parasites	 selected	 for	 binding	 to	 ICAM-1	 (Fig.	 1C;	 referred	 to	 as	

3D7_ICAM-1_1st).	 In	 order	 to	 generate	 a	 single	 PfEMP1	 expressing	 parasite	 population,	

antibodies	raised	against	a	recombinant	protein	covering	the	DBLγ14-DBLζ5-DBLε4	region	of	

PFL0020w	 (Fig.	 1A)	was	 used	 to	 select	 PFL0020w	 expressing	 parasites.	When	 tested	 after	

four	rounds	of	selection	a	PFL0020w	transcript	dominated	the	var	transcript	profile	(Fig.	1D;	

referred	 to	 as	 3D7_ICAM-1_PFL0020w).	 To	 characterize	 the	 binding	 properties	 of	 these	

parasites	 binding	 to	 immobilized	 recombinant	 ICAM-1,	 CD36,	 EPCR	 and	 CSA	 was	 assayed	

under	semi-static	conditions.	Overall,	these	parasites	showed	binding	to	recombinant	ICAM-

1	 and	 CD36	 but	 no	 significant	 binding	 to	 EPCR	 and	 CSA	 could	 be	 observed	 (Fig.	 2A).	 In	 a	

similar	 approach	parasites	 selected	 for	 CD36	binding	 expressing	mainly	 PFD0615c	 showed	

binding	only	to	recombinant	CD36	but	no	significant	binding	to	either	ICAM-1,	EPCR	or	CSA	

(Fig.	2B).	

ICAM-1	inhibition	assay	

Both	PFL0020w	and	PF07_0050	are	group	B	genes	containing	a	DBL	domain	C-terminally	to	

their	DBLα-CIDRα	domains.	To	detect	whether	ICAM-1	binding	of	PFL0020w	and	PF07_0050	
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was	mediated	 by	 the	DBLβ	 domains	 as	 predicted	 from	previous	 studies	 (Bengtsson	 et	 al.,	

2013;	Howell	et	al.,	2008)	the	 ICAM-1	binding	 inhibitory	effect	of	antibodies	raised	against	

recombinant	 DBLβ	 domain	 (SM11/12)	 of	 PFL0020w	 were	 tested.	 As	 control	 served	

antibodies	raised	against	the	DBLγ14-DBLζ5-DBLε4	region	(51/56)	of	PFL0020w	and	a	mix	of	

antibodies	raised	binding	to	the	DBLδ3,	DBLβ6	and	3	domain	head	of	PF11_0521.	PF11_0521	

is	not	expressed	in	any	of	the	tested	parasite	cultures	(indicated	as	control).	The	binding	of	

3D7_ICAM-1_1st	 (expressing	 both	 PF07_0050	 and	 PFL0020w)	 to	 ICAM1	 was	 reduced	 by	

27.2%	(n=3)	by	anti-DBLβ	antibodies,	whereas	no	reduction	in	binding	was	seen	using	any	of	

the	 control	 antibodies	 (Fig.	 2C).	 Similarly,	 only	 anti-DBLβ	 antibodies	 showed	 a	 strong	

inhibitory	effect	on	ICAM1	binding	of	3D7_ICAM-1_PFL0020w	parasites,	reducing	binding	by	

80.05%	 (n=3)	 (Fig.	 2D)	 clearly	 indicating	 that	 the	 major	 binding	 epitope	 of	 PFL0020w	 to	

ICAM-1	is	located	at	least	partly	in	the	DBLβ	domain	of	this	PfEMP1	molecule.		

Discussion	

Despite	 recent	 advances	 in	 unravelling	 PfEMP1	 mediated	 host-parasite	 interactions	 in	 P.	

falciparum	malaria,	the	full	interactome	of	the	PfEMP1	protein	family	is	yet	to	be	described	

and	the	relative	clinical	 importance	of	different	established	receptor	 interactions	 resolved.	

To	begin	answering	these	questions	it	is	important	to	establish	strong	associations	between	

PfEMP1	domain	variants	and	human	receptor	binding	capabilities.	Studies	of	patient	isolates	

are	 challenged	 both	 by	 the	 difficulty	 of	 identifying	 the	 PfEMP1	 mediating	 an	 observed	

binding	 phenotype,	 lack	 of	 knowledge	 on	 which	 receptor	 interaction	 to	 test	 and	 how	 to	

recapitulate	 the	 in	vivo	 conditions	of	parasite	binding	 to	endothelial	 cells.	One	of	 the	best	

studied	interactions	is	the	binding	to	ICAM-1	via	PfEMP1	DBLβ	domains	(Howell	et	al.,	2008;	

Janes	 et	 al.,	 2011;	 Smith	 et	 al.,	 2000).	 ICAM-1	 binding	 has	 been	 demonstrated	 from	 very	

diverse	DBLβ	domains	subtypes	unique	to	either	of	group	A	(DBLβ3)	and	group	B/C	(DBLβ5)	

PfEMP1	 (Oleinikov	et	al.,	2009).	The	association	of	 ICAM1	binding	with	severe	malaria	has	

been	unclear.	It	is	thought	that	a	first	wave	of	cerebral	sequestration	is	mediated	by	EPCR-

binding	PfEMP1	(Turner	et	al.,	2013)	causing	down-regulation	of	EPCR	and	thrombomodulin	

on	 the	 endothelium	 (Moxon	 et	 al.,	 2013).	 EPCR	 loss	 and	 probably	 pro-inflammatory	

responses	to	iRBC	binding	causes	upregulation	of	ICAM-1	(Moxon	et	al.,	2013;	Tripathi	et	al.,	

2007),	 which	 leads	 to	 adhesion	 of	 iRBCs	 expressing	 ICAM-1-binding	 group	 A	 PfEMP1	

molecules.	 It	 is	 possible	 that	 these	 ambiguous	 results	 reflect	 binding	 of	 parasites	 often	
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causing	severe	pathology	(group	A	PfEMP1	expressing)	as	well	as	parasites	that	rarely	lead	to	

severe	 symptoms	 (group	 B	 PfEMP1	 expressing).	 Our	 current	 study	 expands	 our	

understanding	of	which	PfEMP1	variants	bind	 ICAM-1.	The	 successful	 selection	of	group	B	

type	PfEMP1	suggests	 that	parasites	expressing	 these	variants	have	also	a	high	affinity	 for	

ICAM-1.	 However,	 group	 A	 PfEMP1s	 are	 often	 very	 scarcely	 expressed	 in	 long	 term	

established	in	vitro	parasite	cultures,	and	it	is	possible	that	insufficient	group	A	PfEMP1	were	

expressed.	However,	it	is	also	possible	that	the	static	ICAM-1	binding	assay,	also	commonly	

used	 in	 field	 studies,	 preferentially	 selects	 for	 the	 smaller	 group	 B	 PfEMP1	 molecules.	

Nevertheless,	our	results	add	to	the	detailed	 list	of	PfEMP1	with	validated	 ICAM-1	binding	

capability.	

Interestingly,	the	parasite	line	expressing	PFL0020w	also	exhibited	strong	capability	to	bind	

CD36.	Although	these	data	cannot	show	that	the	same	parasites	could	bind	both	receptors,	

it	is	the	most	likely	explanation	given	the	uniform	expression	of	PFL0020w.	This	cooperative	

binding	 has	 previously	 been	 suggested	 (Ockenhouse	 1992;	McCormick,	 1997;	 Yipp,	 2007;	

Rowe,	 2009),	 and	 is	 in	 agreement	 with	 the	 prediction	 of	 CD36	 binding	 of	 the	 PFL0020w	

CIDRα	domain.	To	our	knowledge,	these	data	are	the	first	to	provide	experimental	proof	of	a	

specific	 PfEMP1	 molecule	 involved	 in	 a	 dual	 receptor	 binding.	 Current	 data	 support	

involvement	 of	 group	 A	 PfEMP1	 (and	 the	 group	 A	 like	 DC8	 PfEMP1)	 in	 severe	 malaria	

(Lavstsen	 et	 al.,	 2012),	 suggesting	 that	 parasites	 expressing	 CD36-binding	 PfEMP1	 and	

possibly	 ICAM-1-binding	 PfEMP1	 rarely	 lead	 to	 severe	 malaria.	 However,	 var	 transcript	

analysis	 of	 patient	 isolates	 based	 on	 PCR	 assays	 have	 been	 unable	 to	 target	 this	 type	 of	

PfEMP1	specifically,	and	more	studies	are	required	to	elucidate	if	PfEMP1	predicted	with	this	

phenotype	are	associated	with	SM.		

Single	parasites	express	only	one	PfEMP1	variant	at	 the	 time,	although	one	particular	3D7	

clone	 has	 been	 reported	 to	 express	 multiple	 variants.	 Within	 a	 population	 of	 parasites	

different	 PfEMP1	 variants	 will	 be	 expressed.	 The	 qPCR	 results	 of	 ICAM-1	 1st	 (Fig.	 1C)	

suggests	 a	 population	of	 parasites	 expressing	 two	 to	 three	PfEMP1	 variants	 including	 two	

upsB	group	var	genes	with	a	DBLβ	domain.	Further	selection	with	specific	antibody	binding	

to	the	DBLβ	domain	of	PFL0020w	led	to	the	ICAM-1	binding	3D7_ICAM-1_PFL0020w	which	is	

mainly	 expressing	 PFL0020w	 (Fig.	 1D).	 The	 binding	 of	 the	 preselected	 parasite	 cell	 line	

3D7_ICAM-1_PFL0020w	to	ICAM-1	was	strongly	inhibited	with	antibodies	targeting	the	DBLβ	
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domain	of	PFL0020w,	indicating	that	the	interaction	can	be	mapped	to	the	DBLβ	domain	of	

PFL0020w.	The	small	amount	of	 iRBCs	binding	to	 ICAM-1	might	be	explained	by	binding	of	

iRBCs	expressing	PFL2665c	(Fig.	1D).	Notably,	the	inhibition	of	binding	3D7_ICAM-1_1st	was	

only	reduced	by	27.2%	compared	to	the	same	parasite	culture	 in	absence	of	 the	SM11/12	

Abs.	 This	 smaller	 amount	 of	 reduction	most	 probably	 is	 referred	 to	 the	 subpopulation	 of	

parasites	expressing	PFL0020w.	

In	 summary	 our	 study	 shows	 that	 the	 DBLβ	 domain	 of	 PFL0020w	 is	 associated	 with	

recombinant	 ICAM-1	binding	as	specific	blocking	antibodies	resulted	 in	strong	 inhibition	of	

ICAM-1	 binding.	 We	 provide	 the	 first	 experimental	 proof	 for	 dual	 receptor	 binding	 of	 a	

PfEMP1	 variant	 as	 parasites	 expressing	 PFL0020w	 revealed	 comparable	 binding	 levels	 to	

ICAM-1	and	CD36.	Overall	this	study	adds	to	the	effort	to	map	binding	domains	and	thus	to	

functionally	 define	 PfEMP1	 molecules	 and	 their	 involvement	 in	 the	 various	 disease	

presentations.		

Materials	and	Methods	

Parasite	culture	

P.	 falciparum	 3D7	 parasites	 were	 cultured	 in	 human	 AB+	 erythrocytes	 (5%	 haematocrit)	

using	 complete	 RPMI	 medium	 with	 0.5%	 Albumax	 according	 to	 standard	 procedures	

(Ljungström	et	al.,	2008).	All	binding	assays	were	performed	three	weeks	after	selection	and	

PCR	confirmation	was	done	with	the	identical	material.	

Selection	for	receptor	binding	with	recombinant	protein	

Subpopulations	 of	 parasites	 were	 selected	 by	 panning	 the	 parental	 cell	 line	 over	 purified	

human	 recombinant	 CD36	 (50µg/ml,	 Life	 Tech.,	 10752-H08H)	 and	 ICAM-1	 (50µg/ml,	 Life	

Tech.,	 10346-H03H)	 according	 to	 Ockenhouse	 et	 al.	 (Ockenhouse	 et	 al.,	 1991).	 Briefly,	

recombinant	 proteins	 were	 dissolved	 in	 ddH2O	 to	 the	 indicated	 final	 concentration	 and	

absorbed	to	a	6	well	tissue	culture	plate	(Falcon	353045,	Corning,	NY,	USA)	overnight	at	4°C	

in	 a	 humid	 chamber.	Unbound	 sites	were	blocked	with	 3%BSA	 in	RPMI	medium	 for	 1h	 at	

37°C	and	parasite	culture	was	added	for	2h,	by	gently	shaking	the	tissue	culture	pate	every	

15	 min.	 Unbound	 parasite	 were	 removed	 by	 five	 gentle	 washes	 with	 RPMI-HEPES	 and	

uninfected	RBCs	were	added.	After	24h	of	incubation	allowing	late	stage	parasites	to	release	

merozoite	to	invade	unbound	RBCs,	the	newly	invaded	RBCs	were	removed	from	the	culture	
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plate	and	placed	 into	continuous	cell	culture.	This	panning	procedure	was	done	four	times	

prior	to	RNA	isolation	and	adhesion	assays.		

Selection	for	receptor	binding	with	specific	antibodies	

Additionally,	a	subset	of	parasites	was	selected	for	expressing	a	specific	PfEMP1	variant	on	

the	 surface	 of	 the	 iRBC	 using	 the	 following	 var	 gene	 domain	 specific	 antibodies:	 rat	 anti-

PFL0020w	DBLγ14-DBLζ5-DBLε4	(51/56),	rabbit	anti-PFL0020w	DBLβ	(SM11/12),	rabbit	anti-

PF11_0521	DBLδ3,	rabbit	anti-PF11_0521	DBLβ6,	rabbit	anti-PF11_0521	3	domain	head.	For	

this,	200	µl	of	parasite	culture	was	washed	twice	with	RPMI-HEPES	and	resuspended	in	2ml	

filter-sterilized	RPMI-HEPES	with	100µl	antibodies.	After	incubation	of	40	min	at	37°C	under	

shaking	 conditions	 the	 parasite	 culture	 was	 washed	 twice	 with	 washing	 medium	

(RPMI+gentamycin).	The	RBCs	were	resuspended	 in	2ml	RPMI-HEPES	 including	50µl	Biotin-

conjugated	 anti-rat	 antibodies	 (B7139	 Sigma)	 and	 incubated	 for	 35	 min	 at	 37°C	 under	

shaking	 conditions.	After	washing	50µl	 streptavidin	 coated	dynabeads	 (M280	Sigma)	were	

added	and	 incubated	 for	15min	at	37°C	under	 shaking	 conditions.	 The	parasite	expressing	

the	specific	PfEMP1	variant	on	the	surface	were	collected	by	a	magnet	allowing	the	beads	to	

stick.	 Unbound	 parasites	were	 removed	 by	washing	 the	 beads	 for	 six	 times	with	washing	

medium.	The	parasites	bound	 to	 the	beads	were	 then	placed	 into	continuous	cell	 culture.	

The	panning	procedure	was	done	four	times	prior	to	all	performed	experiments.			

Quantitative	PCR	

Ring	 stage	 cultures	 of	 parasites	 preselected	 to	 bind	 either	 CD36	 or	 ICAM-1	were	 used	 as	

template	 for	 var	 transcript	 profiling,	 as	 previous	 described	 (Dahlbäck	 et	 al.,	 2007).	 The	

transcript	 abundance	 of	 each	 3D7	 var	 gene	 was	 determined	 relative	 to	 internal	 control	

transcripts	by	quantitative	PCR	using	gene	specific	primers	and	cDNA	synthesized	from	total	

RNA	extracted	from	pelleted	infected	erythrocytes	dissolved	in	TRIzol.		

Cytoahesion	assay	

Purified	 recombinant	protein	was	 spotted	on	wells	of	8	chamber	polystyrene	vessel	 tissue	

culture	treated	glass	slide	(Falcon,	Big	Flats,	NY,	USA)	with	concentrations	as	 indicated	and	

coated	 overnight	 at	 4°C	 to	 allow	 proteins	 to	 absorb	 to	 the	 surface.	 Unbound	 sites	 were	

blocked	with	1%	BSA	in	RPMI	medium	for	1h	at	37°C.	The	parasite	cell	line	obtained	by	the	

repeated	 panning	 procedures	 were	 washed	 twice	 with	 RPMI-HEPES	 and	 spotted	 onto	
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immobilized	recombinant	protein	and	cultured	under	continuous	and	simultaneous	shaking	

(140	rpm,	proBlot	25	Rocker,	Labnet	International	Inc,	NY,	USA)	(105	rpm,	Lab-Therm	LT-W,	

Kühner,	Switzerland)	at	37°C	by	 fixing	the	ProBlot	25	Rocker	onto	the	shaking	plate	of	 the	

Lab-Therm	shaking	incubator	for	continuous	suspension	of	the	parasite	culture	over	the	2h	

incubation	 time.	Non-bound	RBCs	were	 removed	by	 gently	 flooding	 each	well	with	 RPMI-

HEPES	and	simultaneous	shaking	for	2	min	in	a	total	of	six	times.	For	quantification,	bound	

RBCs	 were	 fixed	 with	 2%	 glutaraldehyde	 in	 RPMI-HEPES	 overnight	 and	 stained	 with	 10%	

Giemsa	for	1h.	The	results	are	shown	as	mean	number	of	parasites	bound	per	mm2	and	1%	

parasitemia	or	as	percentage	of	the	control	binding.		
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Figure	legends	
	
Figure	1:	Selection	for	iRBCs	expressing	PfEMP1	variants	binding	to	ICAM-1	and	CD36.	(A)	

Schematic	 presentation	 of	 detected	 3D7	 var	 gene	 ectodomains	 and	 the	 corresponding	

antibody	epitopes.	(B-D)	qPCR	results	of	3D7	parasites	selected	for	binding	to	recombinant	

CD36	 (B)	 ICAM-1	 (C)	 or	 specific	 PFL0020w	 antibodies	 (D).	 All	 selection	 experiments	 were	

performed	four	times	prior	to	RNA	extraction.	

Figure	 2:	 Binding	 of	 selected	 iRBCs	 to	 different	 endothelial	 surface	 proteins.	 Binding	 of	

iRBCs	to	different	endothelial	receptors	selected	for	expressing	PFL0020w	(A),	or	PFD0615c	

(B).	The	results	show	the	mean	of	binding	(iRBC/	mm2/	1%	parasitemia).	The	effect	of	a	set	

of	antibodies	binding	to	different	domains	of	PFL0020w	on	the	binding	of	iRBCs	selected	to	

express	(C)	PF07_0050	and	PFL0020w	or	(D)	only	PFL0020w	(also	see	Fig.	1C/1D).	The	results	

are	expressed	as	the	percentage	of	binding	of	the	selected	population	to	ICAM-1	against	the	

percentage	of	 the	binding	 to	 ICAM-1	without	antibodies	 (%	of	 reference	binding).	The	bar	

graphs	display	overall	mean	values	across	triplicate	experiments	using	linear	regression	with	

a	random	effect	for	experiment	and	error	bars	represent	the	s.d.	of	triplicate	experiments.	

An	arbitrary	threshold	(black	dashed	line)	for	unspecific	binding	was	calculated	as	the	mean	

level	of	iRBC	binding	to	1%	BSA	plus	two	s.d.	All	recombinant	proteins	were	immobilized	in	

20µl	spots	at	50µg/ml	except	for	CSA	(20µg/ml).		
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General	discussion	

Despite	global	efforts	towards	control	and	elimination	of	the	disease,	the	deadliest	form	of	

malaria	 caused	 by	 Plasmodium	 falciparum	 is	 still	 responsible	 for	 approximately	 580,000	

deaths	every	year,	most	of	 them	children	under	5	year	of	age	 (WHO,	2014).	All	pathology	

observed	 is	exclusively	attributable	 to	 the	asexual	 red	blood	cell	 stages	of	 the	parasite.	As	

the	erythrocyte	neither	possess	internal	organelles	nor	a	protein	export	system,	the	parasite	

extensively	 remodels	 its	 host	 cell.	 The	 parasite	 exports	 a	 large	 number	 of	 proteins	 and	

generates	 membranous	 structures	 like	 Maurer’s	 clefts,	 which	 are	 important	 structural	

components	of	the	protein	export	system.	Maurer’s	clefts	may	be	a	major	gateway	through	

which	 both	 soluble	 and	 membrane	 proteins	 reach	 the	 RBC	 membrane.	 Moreover	 the	

parasite	induces	formation	of	characteristic	knob-like	surface	protrusions,	which	harbor	the	

major	virulence	factor,	Plasmodium	falciparum	erythrocyte	membrane	protein	1	(PfEMP1).	

The	 surface	 exposure	 of	 PfEMP1	 mediates	 binding	 to	 endothelial	 receptors	 leading	 to	

adherence	and	sequestration	of	iRBCs.	The	subsequent	obstruction	of	blood	vessels	leads	to	

severe	forms	of	malaria	including	organ	failure	and	cerebral	malaria.	Recently,	the	conserved	

intracellular	ATS	domain	of	PfEMP1	was	found	to	be	a	conserved	protein	interaction	epitope	

(Mayer	 et	 al.,	 2012).	 It	 was	 shown	 that	 this	 epitope	 interacts	 with	 the	 PHIST	 domain	 of	

PFI1780w,	a	member	of	the	Plasmodium	Helical	Interspersed	Sub-Telomeric	(PHIST)	protein	

family.	 Therefore,	 Mayer	 and	 colleagues	 proposed	 that	 PHIST	 domains	 facilitate	 protein	

interactions	 and	 that	 the	 conserved	 ATS	 epitope	may	 be	 targeted	 to	 disrupt	 the	 parasite	

cytoadherence	(Mayer	et	al.,	2012).		

Previous	 work	 in	 our	 lab	 showed	 that	 the	Membrane	 Associated	 Histidine-Rich	 Protein	 2	

(MAHRP2)	was	 found	 to	be	 located	at	Maurer’s	 clefts	 tethers	 (Pachlatko	et	al.,	 2010).	Co-

immunoprecipitation	 experiments	 identified	 several	 potential	 interaction	 partners	 of	

MAHRP2	and	among	these,	four	belonged	to	the	PHIST	protein	family.	The	initial	aim	of	this	

dissertation	was	 to	 reveal	 the	potential	 interaction	network	of	a	 subset	of	PHIST	proteins,	

their	function	in	host	cell	refurbishment	and	their	 influence	on	the	transport	of	PfEMP1	to	

the	iRBC	surface.	

Despite	 recent	 progress	 in	 functional	 studies	 using	 forward	 or	 reverse	 genetics	 in	

combination	with	phenotypic	read-out	strategies,	little	is	known	about	the	role	of	exported	

proteins	 and	 their	 relevance	 to	 disease.	 In	 a	 recent	 study,	 Sargeant	 et	 al.	 developed	 an	
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algorithm	for	the	prediction	of	exported	proteins	in	the	genus	Plasmodium	(Sargeant	et	al.,	

2006).	 This	 software,	 termed	 ExportPred,	 uses	 a	 hidden	Markov	model	 to	 simultaneously	

model	 the	 PEXEL	 motif	 and	 SS	 features	 required	 for	 transport	 beyond	 the	 parasite’s	

confines.	This	model	allowed	clustering	of	exported	Plasmodium	proteins	and	identified	the	

PHIST	 protein	 family.	 Several	 studies	 further	 contributed	 to	 the	 classification	 of	 PHIST	

proteins	(Frech	and	Chen,	2013;	Oakley	et	al.,	2007)	resulting	in	currently	89	paralogs	in	P.	

falciparum,	subgrouped	into	28	PHISTa,	6	PHISTa-like,	24	PHISTb,	7	PHISTb	DnaJ,	18	PHISTc	

and	 6	 PHIST	 proteins	 without	 sub-classification	 (own	 research,	 unpublished).	 Future	

structure	prediction	of	exported	Plasmodium	proteins	might	result	even	in	a	higher	number	

of	PHIST	proteins	as	structural	similarities	of	proteins	are	difficult	to	detect	on	the	basis	of	

primary	 amino	 acid	 sequences.	 Currently,	 the	 P.	 falciparum	 exportome	 is	 predicted	 to	

comprise	 of	 about	 550	 proteins	 	 (Spielmann	 &	 Gilberger,	 2015)	 and	 therefore	 the	 PHIST	

proteins	 account	 for	 approximately	 16%	 of	 all	 exported	 proteins.	 The	 growing	 body	 of	

information	 on	 PHIST	 proteins	 suggests	 that	 they	 are	 mainly	 involved	 in	 two	 processes:	

cytoadherence	and	host	cell	remodeling	during	asexual	development.		

In	this	dissertation	I	focused	on	the	characterization	of	the	PHISTb	protein	PFE1605w,	which	

is	 localizing	 to	 knobs,	 is	 found	 in	 membrane	 fractions	 of	 lysed	 iRBCs,	 interacts	 with	 the	

intracellular	ATS	domain	of	PfEMP1	and	co-migrates	with	PfEMP1	in	a	temporal	and	spatial	

manner	(Oberli	et	al.,	2014).	Initially,	the	objective	of	the	thesis	was	to	elucidate	the	function	

of	 four	 PHIST	 proteins,	 namely	 MAL8P1.4,	 PF08_0137,	 MAL7P1.172	 and	 PFE1605w.	

However,	work	on	MAL8P1.4	was	embedded	in	a	Master	thesis	(J.	Warncke)	and	PF08_0137	

had	been	 identified	 to	be	 located	 in	 J-dots,	and	was	not	 further	 followed	up.	MAL7P1.172	

had	already	been	studied	and	reported	by	Maier	and	colleagues	(Maier	et	al.,	2008).		

MAL8P1.4	was	shown	to	be	a	soluble	protein	mainly	localized	in	the	RBC	cytosol.	Moreover,	

a	faint	focal	pattern	along	the	periphery	of	the	RBC	cytoplasm	was	detected	(Warncke	et	al.,	

unpublished).		Interestingly,	the	PHIST	domain	of	MAL8P1.4	was	not	shown	to	interact	with	

the	ATS	domain	of	PfEMP1	(Oberli	et	al.,	2014).	PF08_0137,	a	PHISTc	and	the	longest	of	all	

PHIST	 protein	 in	 terms	 of	 amino	 acid	 sequence	 was	 found	 to	 co-localize	 with	 HSP70x,	

suggesting	 localization	 to	 J-dots.	 Another	 PHISTc	 protein,	 MAL7P1.172	 or	 also	 termed	

PfEMP1	trafficking	protein	2	(PTP2)	was	shown	to	localize	to	the	Maurer’s	clefts	lumen	and	

gene	disruption	resulted	in	a	reduced	level	of	PfEMP1	exposure	on	the	RBC	surface	(Maier	et	
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al.,	2008).	Moreover,	in	a	follow-up	study	PTP2	was	found	to	localize	to	exosomes,	a	newly	

discovered	 means	 of	 P.	 falciparum	 communication	 by	 plasmid	 transfer	 between	 iRBCs	

(Regev-Rudzki	et	al.,	2013).	Already	the	localization	and	function	of	the	PHIST	proteins	of	this	

small	subset	of	four	proteins	illustrates	the	diverse	distribution	and	highlights	the	important	

role	of	PHIST	proteins	in	host	cell	refurbishment	and	cytoadherence.		

As	the	PHISTc	protein	PFI1780w	was	found	to	biophysically	interact	with	the	ATS	domain	of	

PfEMP1	 (Mayer	 et	 al.,	 2012)	 and	 a	 GFP	 tagged	 N-terminal	 PFI1780w	 reporter	 construct	

revealed	a	localization	in	the	RBC	cytosol	(Sargeant	et	al.,	2006)	we	decided	to	include	this	

protein	in	our	list	of	PHIST	proteins	to	be	characterized	within	the	framework	of	this	thesis.		

Live	 cell	 imaging	 and	 solubility	 assays	 with	 both	 PFI1780w-GFP	 and	 PFE1605w-GFP	

expressing	parasites	suggested	for	both	proteins	a	localization	close	or	adjacent	to	the	iRBC	

membrane.	Post-embedding	immunoelectron	microscopy	and	immunofluorescence	analysis	

of	tightly	synchronized	3D7	parasites	revealed	that	both	PFE1605w	and	PfEMP1	is	exported	

at	 approximately	 16-24	 hpi	 to	Maurer’s	 clefts	 prior	 to	 localize	 to	 knobs,	 suggesting	 a	 co-

transport	 of	 PFE1605w	 with	 PfEMP1.	 The	 hypothesis	 of	 PHIST	 proteins	 to	 function	 as	

chaperones	for	protein	translocation	emerged	from	the	first	description	and	report	of	PHIST	

proteins	(Prajapati	&	Singh,	2013;	Sargeant	et	al.,	2006).	This	assumption	probably	emerged	

because	 a	 subset	 of	 PHISTb	 feature	 a	 DnaJ	 domain,	 which	 is	 a	 cardinal	 characteristic	 of	

HSP40	chaperones	and	is	thought	to	mediate	translocation	of	proteins	beyond	the	parasite’s	

confines.	 Notably,	 studies	 to	 unravel	 the	 export	 mechanism	 of	 PfEMP1	 transport	 also	

indicated	a	possible	role	of	a	soluble	chaperone	complex	(Knuepfer,	2005;	Papakrivos	et	al.,	

2004).		

With	inducible	down-regulation	of	PFE1605w	but	also	with	inducible	tethering	of	PFE1605w	

at	 Maurer’s	 clefts	 we	 could	 show	 that	 in	 absence	 of	 PFE1605w	 in	 knobs	 PfEMP1	 is	 still	

exposed	 on	 the	 iRBC	 membrane,	 suggesting	 no	 significant	 role	 of	 PFE1605w	 in	 PfEMP1	

transport.	These	 findings	are	 in	accordance	 to	previous	 results	 reported	by	Proellocks	and	

colleagues,	 as	 ablation	 of	 PFE1605w	 in	 3D7	 parasites	 showed	 no	 change	 in	 the	 surface	

exposure	 of	 PfEMP1	 compared	 to	wild-type	 3D7	 parasites	 (Proellocks	 et	 al.,	 2014).	 Using	

cryo-immunoelectron	microscopy,	 the	 authors	 suggest	 that	 PFE1605w	 localizes	 exclusively	

to	regions	of	the	iRBC	membrane	between	knobs	even	though	they	mentioned	the	detection	

of	 one	 single	 gold	 particle	 at	 a	 knob.	 As	 the	 published	 EM	 image	 of	 iRBCs	 expressing	
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PFI1780w-HA	 displays	 atypical	 knob	 structures,	 the	 proposed	 localization	 of	 PFE1605w	 by	

Proellocks	and	colleagues	is	debatable.		

In	contrast	to	the	knob	localization	of	PFE1605w,	we	detected	PFI1780w	in	close	proximity	

to	the	RBC	membrane	but	clearly	absent	 in	knobs,	 indicating	a	different	functional	role	for	

PFI1780w.	Moreover	 we	 could	 not	 observe	 an	 intermediate	 step	 of	 protein	 translocation	

from	the	parasite	confine	to	the	RBC	membrane	and	 inducible	destabilization	of	PFI1780w	

upon	Shield-1	removal	was	achieved	to	a	limited	amount	only.	Despite	the	different	timing	

of	 export	 for	 PFI1780w	 and	 PfEMP1,	 it	 might	 be	 possible	 that	 PFI1780w	 is	 involved	 in	

trafficking	of	PfEMP1	as	we	detected	a	moderate	binding	affinity	of	the	PHIST	domain	with	

the	ATS	domain	of	a	subset	of	PfEMP1	variants.	As	competitional	binding	experiments	with	

PFE1605w,	which	has	a	 stronger	binding	affinity	 to	ATS,	 showed	 that	PFE1605w	 is	 able	 to	

dissolve	 the	 PFI1780w-ATS	 interaction	 upon	 addition,	 one	 could	 think	 of	 PFI1780w	 being	

involved	in	PfEMP1	transport	to	the	RBC	membrane	and	then	being	replaced	by	PFE1605w,	

which	anchors	PfEMP1	to	the	RBC	cytoskeleton.	As	we	have	tested	only	five	PHIST	domains	

for	direct	binding	of	the	PfEMP1	intracellular	segment,	it	is	likely	that	among	the	89	detected	

PHIST	proteins	other	PHIST	domains	show	binding	affinity	to	PfEMP1.	Moreover,	as	we	have	

shown	 that	 PFE1605w	displays	 up	 to	 25-fold	 differences	 in	 binding	 affinity	 to	 different	 C-

terminal	 ATS	 domains	 of	 different	 PfEMP1	 variants,	 different	 PHIST/PfEMP1	 combinations	

may	 have	 emerged	 influencing	 the	 cytoadhesive	 properties	 of	 the	 iRBC	 and	 therefore	

affecting	 pathology.	 However,	 we	 have	 no	 experimental	 proof	 to	 corroborate	 this	 theory	

and	further	work	is	needed	to	reveal	the	function	of	PFI1780w.	

The	PEXEL	motif	of	PFI1780w	deviates	from	the	canonical	pattern	by	having	K	at	position	1	

(KSLAE)	 and	 therefore	 referred	 to	 as	 non-canonical	 PEXEL	 (Pick	 et	 al.,	 2011)	 which	 was	

considered	not	 to	be	 functional	 in	P.	 falciparum	 (Boddey	et	al.,	 2013;	Sleebs	et	al.,	 2014).	

Our	full-length	PFI1780w-GFP	fusion	protein	was	exported	to	the	iRBC	cytosol	as	previously	

reported	for	a	GFP-tagged	PFI1780w	N-terminus	reporter	construct	(Sargeant	et	al.,	2006),	

but	additionally	 revealed	a	 localization	adjacent	 to	 the	RBC	membrane.	A	 recent	 study	on	

the	export	of	non-canonical	PEXEL	proteins	included	the	expression	of	truncated	reporter	as	

GFP	fusion	proteins	in	P.	falciparum	(Schulze	et	al.,	2015).	The	study	demonstrates	that	the	

PFI1780w	 PEXEL	motif	 is	 correctly	 cleaved	 and	 N-acetylated	 indicating	 that	 non-canonical	

PEXEL	 proteins	 are	 functional	 in	 accordance	 with	 a	 supportive	 sequence	 environment.	
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Changing	K	at	position	1	to	A	(ASLAE)	led	to	processing	further	downstream	at	an	unknown	

site,	indicating	PEXEL	independent	translocation.	Substitution	of	K	with	E	(ESLAE)	resulted	in	

an	 unprocessed	 and	 not	 exported	 fusion	 protein.	 Interestingly,	 the	 N-terminal	 truncated	

PFI1780w	 reporter	 fusion	 protein	 comprised	 of	 aa	 1-383	 revealed	 a	 similar	 fluorescent	

pattern	as	we	observed	with	the	full-length	fusion	protein,	but	the	reporter	protein	including	

aa	1-90	showed	uniform	RBC	cytosol	localization.	These	findings	lead	to	the	assumption	that	

the	aa	90-383	region	mediates	aggregation	at	the	RBC	membrane	and	may	contain	a	protein	

interaction	 epitope	 to	 bind	 iRBC	 membrane/cytoskeleton	 components.	 Interestingly,	 the	

PHIST	domain	of	PFI1780w	comprises	aa	98-247	and	therefore	might	be	responsible	for	the	

RBC	membrane	localization	of	the	reporter	construct.		

As	PHIST	proteins	are	 shown	to	play	a	 role	 in	host	cell	modification	and	cytoadherence,	 it	

might	be	possible	that	PFI1780w	or	other	PHIST	proteins	not	only	bind	the	intracellular	ATS	

domain	of	PfEMP1	but	also	other	intracellular	domains	of	variant	surface	antigens	(VSA),	like	

RIFIN,	 STEVOR	 and	 PfMC-2TM,	 which	 are	 shown	 to	 be	 exposed	 on	 the	 RBC	 surface	

(Bachmann	et	al.,	2015;	Fernandez	et	al.,	1999;	Niang	et	al.,	2009).	Besides	the	well-studied	

PfEMP1,	the	smaller	VSA	families	RIFIN,	STEVOR	and	PfMC-2TM	are	also	assumed	to	play	an	

important	 role	 in	 pathogenicity	 of	 malaria.	 Recently	 STEVORs	 were	 shown	 to	 bind	

glycophorin	C	on	erythrocytes,	 therefore	mediating	 rosetting	 (Niang	et	 al.,	 2014)	 and	also	

RIFINs	were	detected	to	be	involved	in	sequestration	and	rossetting	of	blood	group	A	iRBCs	

(Goel	et	al.,	2015).	Structural	predictions	of	the	three	large	protein	families	suggested	that	

the	 variable	 domains	 are	 exposed	on	 the	 iRBC	 surface	 and	 the	 conserved	N-terminal	 part	

protrudes	 into	the	RBC	cytosol	(Cheng	et	al.,	1998;	Sam-Yellowe	et	al.,	2004).	Therefore,	 it	

might	 be	 possible	 that	 PHIST	 proteins	 or	 other	 exported	 proteins	 bind	 the	 conserved	

domains	 of	 different	 VSAs	 and	 anchor	 these	 molecules	 to	 the	 RBC	 cytoskeleton	 alike	

PFE1605w	anchors	different	PfEMP1	variants	to	the	RBC	cytoskeleton.	However,	there	is	no	

experimental	evidence	 for	 this	hypothesis	and	an	 improved	 structure	prediction	algorithm	

for	most	RIFIN	proteins	suggests	that	the	conserved	N-terminal	is	exposed	on	the	surface	of	

the	iRBC	(Bultrini	et	al.,	2009).	As	the	conditional	regulation	of	PFI1780w	by	the	use	of	the	

destabilization	 domain	 was	 only	 partially	 successful,	 classical	 knockout	 strategies	 and	

tethering	 of	 PFI1780w	 using	 the	 knocksideway	 technique	 will	 hopefully	 reveal	 the	 exact	

function	of	PFI1780w.		
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Recent	 work	 on	 the	 subcellular	 localization	 of	 a	 subset	 of	 PHISTb	 proteins	 showed	 a	

predominant	 and	uniform	 localization	at	 the	RBC	periphery	 (Tarr	 et	 al.,	 2014).	Within	 this	

subset,	 only	 one	 GFP-tagged	 PHISTb	 protein	 did	 not	 depict	 a	 peripheral	 localization.	

However,	 originally	 annotated	 as	 a	 PHISTb	 protein	 (Sargeant	 et	 al.,	 2006)	 it	 has	 recently	

been	classified	as	a	PHISTc	protein	(Frech	&	Chen,	2013).	Moreover,	Tarr	et	al.	postulate	that	

the	PRESAN	domain	(PHIST	domain	with	extended	amino	residues)	is	the	target	sequence	for	

correct	localization	of	these	proteins	in	the	RBC	periphery.	Truncated	version	of	two	PHISTb	

proteins,	 namely	 PFD0080c	 and	 RESA	 indicated	 that	 both	 PRESAN	 domains	 with	 an	

additional	N-terminal	sequence	mediate	peripheral	 localization	in	the	iRBC	periphery		(Tarr	

et	al.,	2014).	Current	work	in	our	lab	to	reveal	the	localization	of	a	set	of	12	PHISTb	proteins	

also	showed	a	peripheral	localization	for	all	GFP-fusion	proteins	(Jan	Warncke,	unpublished	

data).	 Even	 though	 little	 is	 known	about	 the	 function	of	PHISTb	proteins,	 the	 few	existing	

functional	data	and	 localization	studies	suggest	or	show	interaction	with	host	cytoskeleton	

components	either	directly	or	in	a	protein	complex.		

The	MESA	erythrocyte	cytoskeleton-binding	 (MEC)	motif	was	 found	 to	be	present	 in	14	P.	

falciparum	proteins	which	are	predicted	to	be	exported.	This	motif	 is	suggested	to	act	as	a	

protein	 module	 responsible	 for	 linking	 exported	 P.	 falciparum	 proteins	 to	 the	 RBC	

membrane	 (Kilili	 &	 LaCount,	 2011).	 Notably,	 nine	 of	 the	 14	 proteins	 comprising	 the	MEC	

motif	 belong	 to	 the	PHISTb	protein	 family.	Moreover,	 six	proteins	with	a	MEC	motif	were	

shown	to	bind	inside-out	vesicles	(IOVs)	and	half	of	them	belong	to	the	PHISTb	family.	These	

findings	 further	 support	 the	 hypothesis	 that	 PHISTb	 proteins	 are	 exported	 to	 the	 iRBC	

membrane	 and	 are	 involved	 in	 host	 cell	 remodeling	 and	 cytoadhesion	 by	 binding	 to	

components	 of	 the	 RBC	 cytoskeleton	 and	 to	 the	 intracellular	 part	 of	 RBC	 transmembrane	

proteins.	

Members	 of	 large	 gene	 families	 of	 apicomplexan	 parasites	 are	 mostly	 encoded	 at	

chromosome	ends	 and	 are	often	 involved	 in	 antigenic	 variation	or	 undergo	diversification	

(Brayton	et	al.,	2007;	Gardner	et	al.,	2002).	This	 is	also	 the	case	 for	phist	 genes	which	are	

encoded	 in	 the	 sub-telomeric	 regions	of	 the	chromosomes	 (except	chromosome	3).	A	 few	

studies	 showed	 that	 the	 variation	 in	 expression	 of	 this	 large	 gene	 family	 is	 regulated	 by	

reversible	modifications	to	chromatin	and	not	by	copy	number	variation	(Flueck	et	al.,	2009;	

Lopez-Rubio	 et	 al.,	 2009;	 Rovira-Graells	 et	 al.,	 2012;	 Salcedo-Amaya	 et	 al.,	 2009).	 Thus,	
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epigenetic	 processes	 may	 control	 the	 expression	 of	 these	 genes	 to	 allow	 the	 parasite	 to	

rapidly	 respond	 to	 changes	 in	 the	environment	 such	as	antibody	 recognition,	 reduction	of	

nutrients	 or	 changes	 in	 the	 host	 cell	 ligand.	 As	 we	 hypothesized	 that	 there	 are	 different	

PHIST/PfEMP1	 combinations	 depending	 on	 the	 PfEMP1	 variant	 expressed,	 we	 performed	

microarray	analysis	 to	detect	whether	changes	 in	phist	expression	has	been	observed	as	a	

response	by	the	parasite	to	the	expression	of	a	different	PfEMP1	variant	and	the	conditional	

reduction	of	PFE1605w	level	(Fig.	1A&B,	Appendix).	Comparative	transcriptional	profiling	of	

all	three	selected	PFE1605wON/PFE1605wOFF	parasite	lines	revealed	no	increase	or	decrease	

of	phist	or	var	gene	expression	upon	conditional	depletion	of	PFE1605w.	These	findings	are	

not	very	surprising	as	the	parasite	would	need	a	feedback	mechanism	in	order	to	respond	to	

the	 lack	 of	 PFE1605w	 in	 knobs	 by	 either	 up-regulation	 of	 pfe1605w	 transcription	 as	 the	

parasite	would	 try	 to	maintain	 the	 status	 quo	 or	 by	 expressing	 another	phist	 gene	which	

would	then	take	over	the	function	of	the	missing	pfe1605w	gene	product.	However,	such	a	

feedback	mechanism	has	never	been	reported	in	P.	falciparum	and	is	unlikely	to	exist.		

To	find	phist	genes	differentially	expressed	due	to	selection	of	a	specific	PfEMP1	molecule,	

the	fold	change	in	phist	genes	between	parasites	binding	to	CD36,	 ICAM-1	and	CSA	should	

be	 compared.	 Interestingly,	 for	 some	 phist	 genes	 such	 changes	 were	 detected	 (Fig.	 1A,	

Appendix).	 However,	 we	 cannot	 state	 that	 the	 observed	 transcriptional	 variation	 in	 the	

preselected	parasite	 lines	 is	due	 to	 switching	 in	expression	of	PfEMP1	as	we	profiled	RNA	

from	 ring	 stage	 parasites	 and	 the	 time	 point	 of	 RNA	 harvesting	 may	 vary	 between	 the	

different	samples.	Thus,	the	different	preselected	parasite	lines	cannot	be	compared	against	

one	 another.	 Nevertheless,	 the	 detection	 of	 few	 dominantly	 expressed	 var	 genes	 is	 in	

accordance	to	our	qPCR	results	shown	in	chapter	3	(Fig.	1B,	Appendix).			

It	 may	 also	 be	 that	 the	 cell-culture	 adapted	 parasite	 does	 not	 epigenetically	 control	 the	

expression	 of	 many	 exported	 proteins	 during	 the	 RBC	 cell	 cycle	 but	 rather	 exports	 a	

controlled	basic	amount	of	a	variety	of	proteins	regardless	of	the	expenses	for	this	massive	

amount	 of	 exported	 proteins	 and	 the	 need	 of	 these	 proteins	 in	 the	 RBC	 cytoplasm.	 This	

might	be	different	in	vivo	as	there	are	only	limited	resources	available.	It	may	be	that	several	

PHIST	 proteins	 have	 the	 same	 or	 a	 comparable	 affinity	 for	 a	 specific	 PfEMP1	 variant	 and	

therefore	 another	 exported	 PHIST	 protein	 might	 take	 over	 the	 function	 of	 PFE1605w,	

resulting	in	no	significant	reduction	of	cytoadherence	upon	reduction	of	PFE1605w	levels,	as	
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seen	for	parasite	selected	to	bind	to	CSA.	One	could	argue	that	the	time	period	of	Shield-1	

removal	 (96	hours)	was	 too	short	and	therefore	no	significant	change	of	 transcription	was	

observed	comparing	the	+/-	Shield-1	parasite	cultures.	However,	the	 inducible	degradation	

of	 PFE1605w	 occurs	 fast	 and	 previous	 studies	 highlighted	 that	 transcriptional	 changes	 in	

parasite	 cultures	 upon	 removal	 of	 proteins	 or	 induced	 heat	 shocks	 occur	 rapidly	 (Rovira-

Graells	et	al.,	2012;	Silva	et	al.,	2005).		

Different	 transcriptional	 studies	 showed	 that	 the	 PHISTa	 protein	 PF14_0752	 was	

dramatically	 up-regulated	 after	 selection	 for	 binding	 to	 CD36	 (Mok	 et	 al.,	 2007),	 in	 field	

isolates	 (Daily	 et	 al.,	 2005)	 and	 in	 3D7	 gametocytes	 (Eksi	 et	 al.,	 2005).	 	 PF14_0752	 has	 a	

transcriptional	 peak	 in	 ring	 stages	 and	 therefore	may	 be	 translated	 before	 the	 particular	

PfEMP1	variant	is	exposed	on	the	surface	of	the	iRBC	(Le	Roch	et	al.,	2004).		

So	 far	 PFE1605w	 is	 the	 only	 protein	 of	 the	 PHIST	 family	 reported	 to	 localize	 to	 knobs.	

However,	the	growing	amount	of	information	about	PHIST	proteins	and	unpublished	data	on	

the	 constituents	 of	 knobs,	 namely	 the	 “knobosome”,	 suggests	 a	 temporal	 or	 residential	

localization	of	a	variety	of	PHIST	proteins	to	knobs.	PHISTb	or	PHIST	proteins	in	general	are	

suggested	to	be	involved	in	the	structural	organization	of	knobs,	as	disruption	of	PFD1170c	

resulted	 in	 a	 knobless	 iRBC	 surface	 and	 a	 partial	 reduction	 of	 cytoadherence	 under	 flow	

conditions	(Maier	et	al.,	2008).	This	reduced	cytoadhesive	properties	of	RBCs	infected	with	

parasites	 lacking	 PFD1170c	 is	 most	 probably	 the	 result	 of	 absent	 knob	 structures	 as	 we	

showed	no	association	of	 the	PHIST	domain	of	PFD1170c	with	 the	ATS	domain	of	PfEMP1	

(Oberli	et	al.,	2014).	

The	knob	structure	appears	as	an	electron-dense	nanoscale	protrusion	on	the	iRBC	surface	

and	it	is	assumed	that	besides	KAHRP,	PfEMP1,	PfEMP3	and	MESA	(Cooke	et	al.,	2002)	many	

other	parasite-encoded	proteins	localize	to	knobs.	Interestingly	,	a	very	recent	study	showed	

that	 the	 knob	 density	 on	 the	 iRBC	 surface	 depends	 on	 the	 PfEMP1	 variant	 expressed	

(Subramani	 et	 al.,	 2015).	 Therefore	 it	 might	 be	 that	 knob	 organization	 and	 PfEMP1	

expression	are	evolutionary	related	phenotypes.	These	findings	would	suggest	that	variable	

but	specific	requirements	for	PfEMP1	surface	presentation	and	structural	organization	of	the	

knobs	 exist.	 This	 would	 then	 provide	 optimal	 receptor	 affinities	 in	 different	 tissues	 with	

different	 needs	 for	 the	 iRBC	 such	 as	 speed	 of	 blood	 flow	 or	 abundance	 of	 the	 receptor	

molecules.	 This	would	 be	 in	 accordance	with	 our	 hypothesis	 that	 different	 PHIST/PfEMP1	
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combinations	may	 have	 emerged.	 The	 results	 in	 chapter	 3	 show	 that	 down-regulation	 of	

PFE1605w	levels	in	parasites	expressing	different	molecules	resulted	in	strong	differences	in	

cytoadherence,	 except	 for	 parasites	 preselected	 to	 bind	 CSA.	 Furthermore,	 the	 ATS-C	

fragment	of	VAR2CSA	has	a	weak	binding	affinity	 to	 the	PFE1605w	PHIST	domain	 (Kd	~	40	

μM)	 compared	 to	 other	 ATS-C	 fragments	 of	 other	 PfEMP1	molecules.	 Taken	 into	 account	

that	the	blood	flow	in	the	placenta	is	very	low	compared	to	other	human	body	tissues	and	

CSA	 is	 very	abundant,	only	moderate	anchoring	of	VAR2CSA	might	be	 required	within	 the	

knob.	 In	 contrast,	 adhesion	 to	 infrequent	 receptors	 in	 organs	with	 high	 speed	 blood	 flow	

needs	 stronger	 anchoring	 and	 better	 presentation	 of	 this	 specific	 PfEMP1	 variant.	 As	 it	 is	

shown	 that	 PHIST	 domains	 bind	 different	 PfEMP1	 variants	 with	 different	 affinities,	 such	

PHIST/PfEMP1	 combination	may	have	 evolved	due	 to	 different	 needs	 of	 surface	 exposure	

and	 already	 small	 differences	 in	 the	 semi-conserved	 ATS	 sequence	 may	 influence	 the	

capacity	 to	 bind	 PHIST	 proteins	 and	 impact	 the	 organization	 of	 knobs	 and	 therefore	 the	

anchorage	of	the	corresponding	PfEMP1	variant.	

The	cytoadherence	complex	is	essential	for	structurally	insert	PfEMP1	in	the	iRBC	membrane	

and	is	composed	of	different	exported	proteins	(Wickham	et	al.,	2001).	The	best-studies	and	

probably	the	main	structural	component	of	knobs	is	KAHRP.	KAHRP	is	shown	to	interact	with	

spectrin	,	actin	and	ankyrin	(Chishti	et	al.,	1992;	Kilejian	et	al.,	1991;	Magowan	et	al.,	2000;	

Oh	et	al.,	2000)	and	is	essential	for	the	formation	of	knobs	(Crabb	et	al.,	1997).	Infected	RBCs	

loaded	with	 recombinant	 fragments	 of	 spectrin	 or	 ankyrin	 led	 to	 a	 diffuse	 distribution	 of	

KAHRP	throughout	the	iRBC	cytosol,	indicating	that	the	interaction	with	spectrin	and	ankyrin	

is	necessary	for	appropriate	membrane	localization	of	KAHRP	(Pei	et	al.,	2005;	Weng	et	al.,	

2014).	 Parasites	 lacking	 KAHRP	 do	 not	 form	 knobs	 but	 still	 express	 PfEMP1	 on	 the	 RBC	

surface	but	display	reduced	levels	of	rigidity	and	adhesion	compared	to	wild-type	parasites	

(Crabb	et	al.,	1997;	Maier	et	al.,	2008;	Rug	et	al.,	2006).	Different	studies	with	recombinant	

ATS	and	KAHRP	fragments	showed	an	interaction	when	immobilized	on	a	surface	(Oh	et	al.,	

2000;	Waller	et	al.,	1999,	2002).	Thus,	the	ATS-KAHRP	interaction	is	widely	accepted	in	the	

malaria	 field	 even	 though	 no	 direct	 biophysical	 studies	 or	 in	 vivo	 data	 support	 the	 ATS-

KAHRP	 association.	 Recent	 NMR	 and	 fluorescence	 anisotropy	 experiments	 under	

physiological	conditions	do	not	support	this	interaction	(Mayer	et	al.,	2012).	Nevertheless,	a	

very	 weak	 interaction	 with	 an	 affinity	 constant	 in	 the	 mM	 range	 cannot	 be	 excluded.	
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However,	 such	 an	 interaction	 would	 be	 1,000	 times	 weaker	 as	 previously	 reported	 with	

experiments	using	recombinant	ATS	and	KAHRP	(Oh	et	al.,	2000;	Waller	et	al.,	1999,	2002)	

and	therefore	the	physical	relevance	of	this	interaction	is	questionable.		

It	is	undisputed	that	knob	formation	and	therefore	KAHRP	is	important	for	PfEMP1-mediated	

cytoadherence.	 However,	 loss	 of	 KAHRP	 does	 not	 reduce	 PfEMP1	 trafficking	 to	 the	 iRBC	

surface	but	it	dramatically	reduce	cytoadherence	under	physiological	flow	conditions.	This	is	

consistent	with	the	suggestion	that	KAHRP	does	not	directly	bind	the	ATS	domain	of	PfEMP1.	

As	KAHRP	is	the	main	constituent	of	knobs,	it	might	be	that	KAHRP	generates	the	structural	

matrix	 of	 the	 knobs	 but	 shows	 no	 direct	 interaction	 to	 the	 ATS	 domain	 within	 the	

cytoadherence	 complex.	 Therefore	 it	 is	 likely	 that	 other	molecules	 are	 involved	 in	 linking	

PfEMP1	 to	 the	 iRBC	 cytoskeleton.	 As	we	 report	 that	 PFE1605w	directly	 interacts	with	 the	

ATS	domain	of	 PfEMP1	but	 also	 cytoskeletal	 components	of	 the	host	 cell	we	 suggest	 that	

PFE1605w	 and	 maybe	 other	 PHIST	 proteins	 anchor	 a	 variety	 of	 PfEMP1	 molecules	 to	

cytoskeleton	components	of	the	band	3	and	the	4.1R	complex	in	the	knob	structures.		

Adhesion	 of	 iRBC	 to	 host	 endothelial	 cells	 has	 been	 associated	 with	 severe	 form	 of	 the	

disease.	This	phenomenon	is	mediated	by	the	variable	ectodomain	of	PfEMP1	and	a	number	

of	endothelial	receptors	which	have	been	described	in	detail	(Craig	&	Scherf,	2001).	Berendt	

and	 colleagues	 identified	 ICAM-1	 as	 an	 adhesion	 receptor	 for	 iRBCs	 (Berendt	 et	 al.,	 1989)	

and	 sequestration	 of	 iRBCs	 binding	 to	 ICAM-1	 has	 repeatedly	 been	 implicated	 in	 cerebral	

malaria	 pathogenesis	 (Turner	 et	 al.,	 1994).	 The	 binding	 of	 PfEMP1	 to	 ICAM-1	 is	 shown	 to	

occur	 via	 one	 of	 seven	 Duffy-binding-like	 (DBLβ)	 domains	 and	 from	 diverse	 DBLβ	 domain	

subtypes	which	are	unique	to	group	A	(DBLβ3)	and	group	B/C	(DBLβ5)	PfEMP1	(Oleinikov	et	

al.,	2009).	The	knowledge	of	the	binding	site	for	PfEMP1	on	ICAM-1	DBLβ	interaction	mainly	

derives	 from	 studies	using	 recombinant	proteins	or	binding	 adhesion	 studies	with	 isolates	

from	patients	(Howell	et	al.,	2008;	Janes	et	al.,	2011;	Madkhali	et	al.,	2014;	Oleinikov	et	al.,	

2009;	Smith	et	al.,	2000;	Springer	et	al.,	2004).	

	The	 successful	 selection	 of	 group	 B	 type	 PfEMP1	 in	 3D7	 parasite	 culture	 suggests	 that	

parasites	expressing	PF07_0050	and	PFL0020w	had	the	highest	affinity	for	ICAM-1.	However,	

it	could	be	that	group	A	PfEMP1s	are	underrepresented	in	long	term	in	vitro	parasite	culture	

or	that	in	static/semi-static	ICAM-1	adhesion	assays	ICAM-1	is	preferentially	bound	by	group	

B	PfEMP1.	Moreover,	a	very	recent	study	compared	different	 in	vitro	cultivation	conditions	
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and	 showed	 that	 iRBC	 cultured	 with	 AlbuMAX	 displayed	 a	 stronger	 reduction	 in	

cytoadhesion	 to	 endothelial	 receptors	 than	 iRBCs	 cultured	with	 human	 serum	 (Tilly	 et	 al.,	

2015).		

Interestingly,	 iRBCs	 expressing	 PFL0020w	 showed	 strong	 capability	 to	 bind	 CD36.	 Such	 a	

synergistic	interaction	between	ICAM-1	and	CD36	in	mediating	iRBC	binding	was	previously	

reported	using	human	dermal	microvascular	endothelial	cells	 (HDMEC)	which	express	both	

ICAM-1	 and	 CD36	 (McCormick	 et	 al.,	 1997).	Mc	 Cormick	 and	 colleagues	 claimed	 that	 this	

synergistic	 interaction	only	occurs	on	endothelial	cells	and	fails	when	the	chosen	adhesion	

molecules	 are	 immobilized	on	plastic.	We	 could	 show	 that	parasites	 expressing	PFL0020w	

revealed	binding	to	both	ICAM-1	and	CD36	even	though	we	cannot	definite	be	sure	that	the	

exact	 same	 parasites	 can	 bind	 both	 receptors,	 as	 we	 also	 detected	 moderate	 pfl2665c	

transcripts	 in	the	3D7_ICAM-1_PFL0020w	parasite	 line.	Even	though	this	CD36	binding	was	

predictable,	as	PFL0020w	comprises	a	CIDRα5	domain	and	binding	to	CD36	is	known	to	be	

mediated	by	CIDRα2-6	domains	(Smith	et	al.,	2003),	 this	 is	 the	first	experimental	proof	of	a	

specific	PfEMP1	molecule	 involved	 in	dual	 receptor	binding	 in	3D7	 in	 vitro	 culture.	 Such	a	

dual	 selection	 for	binding	both	CD36	and	 ICAM-1	has	been	 reported	 for	different	parasite	

lines	(Cooke	et	al.,	1994;	Janes	et	al.,	2011).	The	CD36	adhesion	phenotype	is	associated	with	

uncomplicated	malaria	(Ochola	et	al.,	2011)	and	it	may	be	that	these	dual	receptor	binding	

PfEMP1	molecules	evolved	 to	adhere	 in	 tissues	other	 than	 the	brain	as	CD36	 is	absent	on	

cerebral	 endothelium	 (Wassmer	 et	 al.,	 2011).	 This	 theory	 might	 explain	 the	 equivocal	

mechanism	of	cerebral	malaria	with	the	involvement	of	a	combination	of	endothelial	surface	

moieties	(Esser	et	al.,	2014).			

	

In	 this	 thesis	 we	 show	 that	 members	 of	 the	 PHIST	 protein	 family	 bind	 the	 intracellular	

domain	of	PfEMP1	through	their	PHIST	domain.	Moreover,	in	collaboration	we	resolved	the	

first	crystallographic	structure	of	a	PHIST	protein	and	derived	a	partial	model	of	the	PHIST-

ATS	interaction	from	NMR	measures.	This	allowed	us	to	propose	a	mechanistic	model	of	the	

function	of	PHIST	molecules	 in	cytodherence.	 In	a	cell	biological	approach	we	were	able	to	

show	that	the	PHISTb	protein	PFE1605w	is	exported	to	knobs,	binds	the	C-terminal	part	of	

the	ATS	domain	and	 further	 interacts	with	components	of	 the	RBC	cytoskeleton.	 Inducible	

regulation	of	PFE1605w	but	also	controlled	tethering	at	Maurer’s	clefts	resulted	in	reduced	
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adhesion	of	iRBCs	to	CD36	but	did	not	ablate	PfEMP1	surface	exposure.	Down-regulation	of	

PFE1605w	 levels	 in	 parasites	 expressing	 different	 PfEMP1	 molecules	 resulted	 in	 strong	

differences	 in	 cytoadherence	 suggesting	 (i)	 different	 affinities	 for	 different	 ATS	 /	 PfEMP1	

combinations	or	(ii)	different	roles	for	proteins	of	the	cytoadherence	complex	in	anchoring	

PfEMP1	in	knobs,	depending	on	the	expressed	PfEMP1	variant.		

We	also	investigated	the	var	expression	and	binding	phenotypes	of	ICAM-1	selected	parasite	

lines	and	showed	that	ICAM-1	binding	selects	for	parasites	expressing	PFL0020w,	a	group	B	

PfEMP1,	and	binding	 is	mediated	 through	 the	DBLβ	domain.	Furthermore	we	show	a	dual	

binding	affinity	of	PFL0020w	to	different	endothelial	receptors.		

In	conclusion,	we	report	for	the	first	time	that	a	PHIST	protein	 interacts	with	both	PfEMP1	

and	the	host	cytoskeleton	and	propose	a	functional	role	of	PFE1605w	in	anchoring	different	

PfEMP1	molecules	to	the	cytoskeleton	thus	influencing	the	cytoadhesive	properties	of	iRBCs.	

It	 remains	 to	 be	 elucidated	 how	 other	 PHIST	 proteins	 and	 other	 key	 molecules	 of	 the	

cytoadherence	complex	further	contribute	to	sequestration	of	iRBCs.		
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In	this	dissertation	we	have	identified	the	PHISTb	protein	PFE1605w	to	play	a	functional	role	

in	 cytoadherence	 of	 iRBC	 by	 anchoring	 different	 PfEMP1	 variants	 to	 cytoskeletal	

components	of	the	host	cell.	Furthermore,	we	resolved	the	first	crystallographic	structure	of	

a	PHIST	protein	 confirming	 the	predicted	α-helical	 conformation	of	 the	PHIST	domain	and	

derived	 a	model	 of	 the	 PHIST-PfEMP1	 interaction.	 Although	 this	 thesis	 contributes	 to	 the	

better	understanding	of	the	cytoadhesion	process	and	sheds	light	on	protein	interactions	at	

the	 host-parasite	 interface,	 additional	 work	 remains	 to	 validate	 and	 elucidate	 the	 overall	

role	of	PHIST	proteins	in	cytoadherence	and	host	cell	refurbishment.				

First,	 the	 different	 levels	 of	 reduction	 in	 cytoadherence	 detected	 upon	 reduction	 of	

PFE1605w	levels	in	parasite	lines	preselected	to	express	a	particular	PfEMP1	variant	on	the	

surface	of	the	iRBC	should	be	explained.	For	this	purpose	we	selected	a	cell	biological	and	a	

biochemical	 approach.	 With	 exported	 mini-PfEMP1	 constructs	 consisting	 of	 a	 PEXEL/SS	

motif,	the	ATS	domain	of	the	detected	PfEMP1	variants	(PFD0615c,	PF07_0050,	PFL0020w,	

PFL0030c)	 and	 a	 tag,	 proteins	 interacting	 with	 the	 ATS	 domain	 of	 the	 particular	 PfEMP1	

molecule	 should	 be	 detected.	 This	 approach	 could	 lead	 to	 the	 detection	 of	 potential	

PHIST/PfEMP1	combinations.		

Co-IP	and	reverse	Co-IP	experiments	with	PFE1605w	and	α-band	4.2	antibodies	respectively,	

revealed	 different	 components	 of	 the	 band	 3	 complex	 and	 the	 4.1R	 complex	 as	 potential	

interaction	 partners	 of	 PFE1605w.	 In	 a	 next	 step	 these	 different	 potential	 interaction	

partners	 should	 be	 tested	 for	 a	 direct	 interaction	with	 PFE1605w	and	may	 be	mapped	 to	

specific	residues	or	a	specific	domain	of	PFE1605w.		

As	 Co-IP	 experiments	 with	 components	 normally	 enriched	 at	 the	 interface	 of	 the	 iRBC	

membrane/cytoskeleton	are	complex	and	a	challenging	task	we	plan	to	generate	a	construct	

encompassing	 the	human	erythrocyte	band	4.2	protein.	The	construct	would	be	similar	 to	

our	mini-PfEMP1	constructs	but	instead	of	the	ATS-C	fragment	of	PfEMP1	the	fusion	protein	

comprises	a	full-length	human	erythrocyte	band	4.2	fragment.	Thus,	the	idea	would	be	that	

the	 parasite	 exports	 soluble	P.	 falciparum	 codon-optimized	 full-length	 human	 erythrocyte	

band	4.2	fragments	and	Co-IP	experiments	coupled	with	mass	spectrometry	would	enable	us	

to	detect	potential	band	4.2	 interaction	partners.	 If	 successful,	we	could	 replace	 the	band	
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4.2	 sequence	 by	 any	 other	 P.	 falciparum	 codon-optimized	 sequence	 or	 fragment	 of	 a	

component	of	the	host	cytoskeleton.			

Third,	 the	 function	 of	 PFI1780w	 should	 be	 identified.	 As	 the	 PFI1780w-DD	 fusion	 protein	

could	 not	 be	 degraded	 upon	 Shield-1	 removal	 I	would	 suggest	 to	 tether	 PFI1780w	 at	 the	

PVM	by	using	 the	 knocksideways	 technique	 (e.g.	 heterodimerization	with	 Exp1)	 to	dissect	

the	transport	and	to	reveal	the	function	of	PFI1780w.	Furthermore	one	could	try	to	tether	

PFI1780w	 at	 Maurer’s	 clefts	 (e.g.	 heterodimerization	 with	 MAHRP1)	 even	 though	 no	

transient	 localization	of	PFI1780w	at	Maurer’s	clefts	has	been	observed	so	far.	 In	addition,	

further	attempts	to	generate	a	PFI1780w	knockout	parasite	line	should	be	made.		

Newly	 established	 methods	 like	 transfection	 of	 merozoites,	 CRISPR/Cas9	 and	 the	

knocksideways	 technique	 in	 our	 lab	 has	 opened	 the	 door	 to	 faster	 identify	 and	 target	

parasite	 gene	 products	 that	may	 play	 a	 role	 in	 pathogenesis	 and	 disease	 outcome.	 Thus,	

instead	of	focusing	on	the	characterization	of	a	single	protein,	a	selection	of	related	proteins	

can	simultaneously	be	analyzed	and	characterized.		

A	 large-screen	 approach	 to	 test	 the	 interaction	 of	 different	 PHIST	 domains	 with	 the	 ATS	

domain	 of	 PfEMP1	may	 identify	 additional	 members	 of	 the	 PHIST	 protein	 family	 to	 bind	

PfEMP1.	Here,	the	focus	would	be	on	members	of	the	PHISTb	and	PHISTc	subclass,	as	many	

PHISTb/c	proteins	were	shown	to	localize	to	the	periphery	of	the	iRBC.	Moreover,	potential	

binding	 of	 PHIST	 domains	 to	 the	 semi-conserved	 intracellular	 domain	 of	 other	 variant	

surface	antigens	like	RIFINs	and	STEVORs	should	be	tested.		

The	work	 in	 this	dissertation	 focused	on	asexual	RBC	stages	of	P.	 falciparum.	Recent	work	

indicates	 that	parasite	protein	export	profoundly	marks	early	 sexual	differentiation	and	P.	

falciparum	 gametocyte-exported	 proteins	 (PfGEXPs)	 contribute	 to	 host	 cell	 remodeling.	

Recent	data	on	a	PHISTc	protein,	namely	PfGEXP5,	being	early	exported	from	gametocytes	

into	 the	 host	 cell	 cytoplasm	 and	 transcriptional	 upregulation	 of	 some	 phista	 genes	 in	

gametocytes	indicate	that	members	of	the	PHIST	protein	family	might	contribute	to	host	cell	

refurbishment	in	this	phase	of	the	lifecycle.	Therefore	it	would	be	important	to	unravel	the	

function	of	PHIST	proteins	in	gametocytes.		



Appendix	

 

123	

Appendix	

Transcriptional	changes	upon	conditional	depletion	of	PFE1605w	

Method	

Synchronized	 cultures	 of	 PFE1605w-DD	 expressing	 parasites	 preselected	 to	 bind	 either	

CD36,	 ICAM-1	or	CSA	were	split	and	cultured	96	hours	 in	presence	 (ON)	or	absence	 (OFF)	of	

Shield-1.	 Subsequently,	when	 the	parasites	became	 ring	 stage	parasites,	RNA	was	 isolated	

from	30ml	culture	(5%	haematocrit,	2-5%	parasitemia)	using	RiboZol	RNA	extraction	reagent	

(Amresco)	 and	 cDNA	 synthesis	 was	 carried	 out	 as	 described	 (Bozdech	 et	 al.,	 2003).	 Cy5-

labeled	cDNA	was	hybridized	against	a	Cy3-labeled	3D7	cDNA	reference	pool	generated	from	

mixed	stages	from	five	consecutive	timepoints	of	the	RBC	cell	cycle.	Equal	amounts	of	Cy5-	

and	 Cy3-samples	 were	 hybridized	 on	 an	 Agilent	 P.	 falciparum	 glass	 slide	 microarray	 as	

described	(Painter	et	al.,	2013).	Slides	were	washed	twice	with	6xSSPE/0.005%	SDS,	once	in	

0.06xSSPE/0.005%	SDS,	dried	and	 scanned	using	a	GenePix	4000B	microarray	 scanner	and	

GenePix	 pro	 7	 software.	 Normalization	 and	 background	 elimination	 was	 performed	 with	

Acuity	4.1	software.	Heatmaps	were	generated	using	TreeView	software.		

Lack	of	transcriptional	changes	in	absence	of	PFE1605w	

We	 formulated	 the	 hypothesis	 that	 specific	 combinations	 of	 PHIST	 and	 PfEMP1	 variants	

might	 have	 evolved	 to	 anchor	 PfEMP1	 within	 the	 knobs.	 To	 test	 this	 proposition	 we	

conducted	 comparative	 transcriptional	 profiling	 of	 all	 pre-selected	

PFE1605wON/PFE1605wOFF	parasites.	We	profiled	RNA	from	the	same	batch	of	parasites	that	

were	tested	in	binding	assays.	To	identify	genes	differentially	expressed	in	direct	response	to	

selection	 we	 focussed	 our	 analysis	 on	 the	 members	 of	 the	 phist	 (Fig.	 1A)	 and	 var	 gene	

families	 (Fig.	 1B).	 No	 significant	 increase	 or	 decrease	 of	 phist	 gene	 expression	 upon	

conditional	 depletion	 of	 PFE1605w	 was	 observed.	 The	 detection	 of	 few	 dominantly	

expressed	var	genes	are	in	accordance	to	our	performed	qPCR	results	shown	in	chapter	3.	
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Figure	1:	Conditional	depletion	of	PFE1605w	 in	parasites	expressing	a	particular	PfEMP1	

variant	does	not	alter	phist	expression	

Relative	expression	profiles	(Cy5/Cy3	log2	ratios)	and	fold	change	(FC)	in	gene	expression	of	

all	phist	(A)	and	var	(B)	genes	in	parasites	selected	for	binding	to	either	recombinant	CD36,	

ICAM-1	or	CSA.	Parasites	expressing	PFE1605w-DD	were	grown	for	96	hours	in	presence	(e.g.	

CD36ON)	or	absence	(e.g	CD36OFF)	of	625	nM	Shield-1.	
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