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Abstract 

Structurally diverse rotaxane-based systems have been investigated extensively for 

applications as molecular machines and functional nanomaterials. Although the vast majority 

of functional molecules were assembled and function in organic solvents, to date the most 

efficient and sophisticated molecular machines are biomolecules which function in aqueous 

media. Many vital processes, such as protein folding and assembly, rely on hydrophobic 

interactions and are only possible in aqueous environment. From a supramolecular chemistry 

perspective, the hydrophobic effect is an appealing driving force for host-guest association as 

it potentially leads to high complexation affinities and no extra binding sites need to be 

installed into the respective components. Appealing macrocyclic candidates for the 

preparation of mechanically interlocked molecules in aqueous media are the synthetically 

modifiable, water-soluble cyclophanes developed and comprehensively studied by 

Diederich et al..  

The focus of this doctoral thesis was to identify suitable guest molecules for Diederich-type 

cyclophanes, allowing for the assembly of rotaxanes and also molecular daisy chains. The first 

part of the thesis describes the investigation of the aggregation behavior of amphiphiles based 

on OPE guests which are potentially capable of forming molecular daisy chains (Chapter 2). A 

deeper insight into the system was obtained through a series of rotaxane model compounds, 

basically relying on the main components of the previously examined amphiphiles (Chapter 3). 

The investigation of an extended scope of potential guest molecules via 1H NMR complexation 

studies resulted in an optimization of the molecular guest design and revealed some 

important features of suitable candidates (Chapter 4). Based on these results a water-soluble 

2,6-disubstituted naphthalene derivative was found to function as (pseudo)rotaxane axle and 

enabled the isolation and characterization of a [2]rotaxane (Chapter 5). The results obtained 

throughout this doctoral thesis allow to obtain guidelines for the successful preparation of 

interlocked molecular daisy chains. 

 

 



 

Chapter 1 provides a general introduction to mechanically interlocked molecules and 

explains basic conceptual and synthetic principles of rotaxanes and molecular 

daisy chains by means of introducing the most common recognition motifs, 

classified by different types of macrocycles, in particular Diederich-type 

cyclophanes. 

 

Chapter 2 describes the design, synthesis and aggregation studies of a series of 

amphiphilic molecules potentially capable of assembling to molecular daisy 

chains and to function as nanoscale potentiometer. Furthermore, the chapter 

contains MCBJ conductance measurements of a thiol-terminated amphiphile 

and attempts to obtain mechanically interlocked aggregates by reaction with 

bulky stopper molecules.  

 

Chapter 3 describes the design, synthesis and  investigation of the threading behavior of 

different monostoppered OPE molecules in presence of Diederich cyclophanes 

via rotaxanation as well as 1H NMR-based complexation studies.    

   

Chapter 4 describes the design, synthesis and 1H NMR spectroscopy-based complexation 

studies of a series of potential guest molecules for mechanically interlocked 

molecules, comprising different solubilizing functionalities.  

 

Chapter 5 describes the assembly, isolation and characterization of a water-soluble 

rotaxane comprising a 2,6-disubsituted naphthalene axle moiety. Furthermore, 

a series of naphthalene axle derivatives, differing in their length of solubilizing 

oligoethylene glycol chains, were investigated in their propensity to react to 

rotaxanes by applying a modular proof-of-principle analysis strategy.   

 

Chapter 6 gives a summary of the obtained results of this thesis and provides on outlook. 

 

Chapter 7 provides the experimental details, including the characterization of all 

compounds described throughout the thesis. 
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1 Introduction 

1.1 Mechanically Interlocked Molecules 

 

The Nobel Prize in Chemistry awarded jointly to Donald J. Cram, Jean-Marie Lehn, and Charles 

J. Pederson in 1987 “for their development and use of molecules with structure-specific 

interactions of high selectivity”, established supramolecular chemistry as one of the most 

important research fields in today’s chemistry. The “chemistry beyond the molecule”[1] relies 

on the noncovalent bonding interactions between molecular subunits or components, such as 

metal coordination, π-π stacking, donor-acceptor interactions, hydrogen bonding, 

hydrophobic forces, van der Waals interactions and halogen bonding.[2] Combining 

supramolecular chemistry with traditional covalent synthesis allows accessing mechanically 

interlocked molecules (MIMs). The unique properties of MIMs can be explained by the subtle 

coordinative/noncovalent interactions and features of associated robust covalent structures 

and their interplay with each other.[3] The different components of MIMs are linked together 

mechanically. Catenanes (Latin for chain) and rotaxanes (rota is Latin for wheel, and axis is 

Latin for axle) are the two basic classes in which mechanically interlocked structures are 

divided in (Figure 1). In contrast to catenanes, which consist of interlinked ring shaped 

molecules, in rotaxanes one or more rings encircle one or more dumbbell shaped molecules. 

The number of interlocked components is indicated in bracketed prefixes, e.g. the [2]rotaxane 

in Figure 1 consists of one macrocycle which encircles one dumbbell unit. As breaking of a 

covalent bond is required in order to separate the interlocked elements from each other, 

MIMs are by definition molecules and not supramolecular structures. 

 

               

Figure 1. Schematic representation of the two MIM classes; a) catenane, b) rotaxane.[2] 

               

Whereas both the first catenane[4] and rotaxane[5] synthesis relied on statistics, yielding 

molecules 1 in less than 1% and molecule 2 in 6% (Figure 2), the first directed synthesis of a 

catenane in 1964 followed a 20 step-protocol.[6] 

a) b) 
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                                          1                                                                    2 

Figure 2. The chemical structures of the first reported catenane (1) and rotaxane (2).[2]  

 

In 1983 Sauvage and coworkers successfully developed the first noncovalent directed 

synthesis, based on the coordination of the two catenane components with a transition 

metal.[7] The phenanthroline moiety of a closed macrocycle was linked via a Cu(I) ion to 

another phenanthroline located at the open precursor of the second catenane ring resulting 

in a preorganization for the final cyclization reaction. The Cu(I) template of metallo-catenane 

3 was removed via ligand-exchange with cyanide anions, resulting in catenane 4.[8]  

               

                                                3                                                        4 

Figure 3. The chemical structure of Sauvage’s metallo-catenane 3[7] and its demetalated analog 4[8].  

 

Initiated by these pioneering results, various recognition motifs for the templated MIM 

syntheses relying on noncovalent interactions have been explored resulting in a large toolkit 

(see chapter 1.3). This synthetic advancement inspired chemists to design and synthesize a 

variety of MIMs with large structural diversity and numerous functions, including artificial 

switches, molecular muscles and molecular machines in general. Aiming at their integration 

into larger functional systems, such nanomaterials find potential applications in electronic 

devices, sensors, smart materials, and drug delivery.[9]    
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1.2 Rotaxanes and Molecular Daisy Chains 

 

1.2.1 Molecular Daisy Chains 

 

Molecular daisy chains[10,11] are a subclass of rotaxanes, conceptually introduced by Stoddart 

and Williams in 1998.[10] Consisting of self-complementary monomers, which are able to form 

chain-like assemblies, reminiscent of daisy flower garlands (Figure 4a). In contrast to 

rotaxanes, the thread moiety is covalently bound to the ring, resulting in monomers which 

intermolecularly – rather than intramolecularly – assemble to cyclic or acyclic chains. Bulky 

stopper groups at the rods’ termini prevent dethreading into monomers, converting the 

supramolecular bonded components into mechanically interlocked molecules. The 

mechanical bond provides kinetical stability,[12] whereas stability and molecular weights in 

unstoppered, interlinked daisy chains are sensitive to the environmental conditions (i.e., 

concentration, temperature, solvent). The self-complementary monomers are also termed as 

plerotopic[10], hermaphroditic[13] or heteroditopic[14] in literature. Prefixes indicate the number 

of interlocked monomers [n] and specify their connectivity, in particular if they are assembled 

as an acyclic [a] or cyclic [c] chain (Figure 4b and c).     

 

                   

Figure 4. a) Daisy flower garland, b) interlocked [c2]daisy chain, c) interlocked [an]daisy chain. 

 

To date, the majority of the reported daisy chain systems were isolated as discrete cyclic 

dimers, which seem to be thermodynamically more favorable than their acyclic analogs. In 

[c2]daisy chains, there are two stabilizing host-guest interactions present, whereas in the 

[a2]assembly only one stabilizing interaction exists. The free rod and/or the respective 

macrocycle might undergo unfavorable cohesive and dispersive interactions.[11]  

The increased interest in interlinked [an]daisy chain polymers is due to their unique 

properties, such as reversibility and responsiveness to stimuli, which makes them ideal 

candidates for biomedical applications.[15–17] As the aggregation of polymeric [an]daisy chains 

is entropically unfavorable,[18] high monomer concentrations and strong host-guest binding 

a b c 
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affinities are crucial, rendering the design and synthesis of monomers challenging. For 

example, Huang and coworkers discovered that rigid threads are not necessarily the only path 

to compensate entropic cost of polymerization. In their novel approach, flexible alkyl chains 

covalently link the host and guest moiety, which, in combination with high monomer 

concentration, resulted in long polymeric [an]daisy chain fibers (see chapter 1.3.1)[19] In 

cyclodextrine-based systems, the linking position of the thread moiety on the cyclodextrin rim 

also affects the aggregation behavior, ranging between selective dimer-formation and acyclic 

daisy chains (see chapter 1.3.2).[20]  

[c2]daisy chains are of particular interest for applications as artificial molecular muscles.[21] 

Upon actuation, driven by an external stimulus, such as change of pH, metal exchange, 

variation of the solvent (protic/aprotic or polar/apolar) or oxidation/reduction, bistable 

[c2]daisy chains can access two different states.[22] In such molecular muscles, the switching 

is accompanied by linear motion along the axis’ dimension, which results in contraction or 

extension of the system.  

 

      

Figure 5. Bistable [c2]daisy chain working as an artificial molecular muscle; a) contracted and b) extended state. 

 

Like muscle fibers, the sacromers, poly[c2]daisy chains consist of numerous switchable units. 

The addition of all synchronized single nanoscale motions result then in a macroscopic motion. 

So far, only few muscle-like poly[c2]daisy chains were reported and the majority showed only 

a low degree of polymerization. In contrast to the previously reported systems bearing 5–11 

repeating units,[23–25] the groups of Buhler and Giuseppone achieved poly[c2]daisy chains of 

high molecular weight, composed of ~3000 repeating units.[26] The contour lengths of the 

extended state (15.9 µm) and the contracted system (9.4 µm) differed by remarkable 6.5 µm.     
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1.2.2 General Approaches to the Construction of Rotaxanes and Molecular Daisy Chains 

 

This subchapter schematically introduces the template-directed synthetic methodologies for 

rotaxanes[27] and the corresponding general approaches for the synthesis of molecular daisy 

chains. Scheme 1a demonstrates the stoppering method (e.g. chapter 1.3.8), in which the 

formation of a pseudorotaxane is subsequently followed by the reaction of the two thread 

termini with bulky stopper molecules.[28] In the snapping mechanism (e.g. chapter 1.3.2) a 

semirotaxane, consisting of a monostoppered axis encircled by a macrocycle, reacts with a 

second single stoppered (shorter) axle to a rotaxane.[29] This strategy is well-suited for the 

construction of unsymmetrical rotaxanes.  

 

 

Scheme 1. General approaches to the construction of rotaxanes.[22] 

 

In the third approach the clipping method (e.g. chapter 1.3.8) is exhibited, in which the ring 

molecule is formed around the dumbbell shaped unit.[30] If the macrocycle threads over a 

stopper moiety of the dumbbell, the approach is termed slipping.[31] In order to circumvent 

the elevated temperature crucial for slipping, the dumbbell may comprise small terminal 

groups, which will be increased in size after the ring encircled the axle.[32] Scheme 1e 

demonstrates the active metal template approach (e.g. chapter 1.3.6), in which a metal ion in 

the macrocycle both acts to pre-organize the rotaxane components and catalyzing the 

formation of the mechanical bond.[33] 

Usually low concentrated reaction solution are employed for the preparation of [c2]daisy 

chains in order to prevent the formation of acyclic oligomers.  The stoppering[23] method (e.g. 
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chapter 1.3.4) as well as the clipping[34] approach (e.g. chapter 1.3.6) are both well-established 

templated synthetic strategies. Scheme 2c demonstrates the less common used swelling[35] 

method (e.g. chapter 1.3.1). The terminal groups of the axle are triggered by an external 

stimulus to transform to bulky stoppers. An alternative method for the preparation of 

[c2]daisy chains is based on a rotaxane with two different stoppers. One is inert, whereas the 

other one is reactive, also called a surrogate stopper[36] (e.g. chapter 1.3.1), as it is cleaved off 

during the reaction with a functional group located at the macrocycle. 

 

 

Scheme 2. General approaches for the preparation of [c2]daisy chains. 

 

Poly[c2]daisy chains are composed of [c2]daisy chain repeating units, which bear an anchoring 

group at the thread termini for linkers, connecting the dimers to a polymer (e.g. chapter 1.3.1). 

As already mentioned in the previous chapter, acyclic polymeric daisy chains are often 

synthesized statistically in high concentrated solutions. An alternative approach is based on 

the formation of a semirotaxane, which bears at the macrocycle a thread moiety.[37] This 

moiety reacts with the unstoppered terminus of the semirotaxane axle, resulting in acyclic 

daisy chains (see chapter 1.3.1).                      
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1.3 Recognition Motifs in Rotaxanes and Molecular Daisy Chains 

 

In this subchapter the most common recognition motifs employed for the construction of 

rotaxanes and molecular daisy chains are introduced and classified by different macrocycle 

types. The characteristic structural features as well as the general complexation behavior of 

each cavitand with its typical guest molecules is explained briefly. Furthermore, this chapter 

gives a rough overview about the state of the art and seizes basic conceptual and synthetic 

principles of the mechanically bonded molecules by means of selected examples. The different 

recognition motifs are mainly discussed on the basis of the more specialized and advanced 

daisy chain systems.  

 

 

Figure 6. Common macrocycles used for rotaxane and daisy chain preparation. 
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1.3.1 Crown Ether 

 

The discovery of crown ethers and their ability to bind metal ions by Pederson in 1967[38] has 

contributed essentially to the development of supramolecular chemistry. The cyclic ethers, 

usually bridged by ethylene units, were employed as macrocycle components in numerous 

mechanically interlocked systems. Dibenzo-24-crown-8 (DB24C8), benzo-21-crown-7 (B21C7), 

bis(m-phenylene)-32-crown-10 (BMP32C10) (Figure 7) and their corresponding substituted 

derivatives, are the most prevalent crown ether hosts in MIMs, binding organic nitrogen 

cations such as (di)benzylammonium or viologen cations. The main molecular interactions are 

attributed to C-H···O hydrogen bonding and N+···O electrostatic interactions between organic 

guests and the cyclic ethers as well as π-π stacking interactions between aromatic units of host 

and guest.            

 

Figure 7. Most relevant crown ethers for the synthesis of interlocked molecules.  

 

Stoddart and Williams introduced the daisy chain terminology in 1998, when they reported 

the X-ray structure of a [c2]daisy chain obtained by the assembly of monomer 5 comprising a 

DB24C8 macrocycle and a benzylammonium thread unit.[10] The early investigations of this 

novel system[39] already approached important conceptual aspects influencing the molecular 

daisy chain systems, such as solvent polarity and character, temperature, monomer 

concentration, chain propagation and isomerism in aggregates. 

 

 

Figure 8. a) The monomeric unit (5) and the corresponding crystal structure showing the first molecular daisy 
chain as a cyclic dimer;[10] b) [25]crown-8 analogue (6)[39] of monomer 5. 
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The rather simple 1H NMR spectrum of 5 in CD3SOCD3, in which all signals could be assigned, 

remarkably contrasted the complicated spectrum of the same compound in CD3CN, indicating 

daisy chain formation in the latter, less polar solvent. In CD3SOCD3 solvation of the ammonium 

center occurred preferentially by hydrogen bonding with the solvent, whereas in CD3CN the 

cationic thread is encircled by the crown ether, resulting in [c2]daisy chains as the most 

favorable species. In CD3CN, monomeric species were observed only at elevated temperature 

(358 K) and high dilution (0.026 mM). Furthermore, aggregation could be hindered by 

deprotonation of the ammonium center, while reprotonation promoted the association again. 

An important finding was the presence of diastereoisomeric dimers in solution, which also 

contributed to the complicated 1H NMR spectrum in CD3CN. Further investigations revealed 

the presence of two different species with the ratio 5:1, strongly indicating the presence of 

the enantiomers with C2 symmetry and the centrosymmetric (Ci) meso species shown in 

Figure 9.    

  

 

Figure 9. Schematic representation of the three stereoisomers which can form upon dimerization of 
monomer  5. 

 

In attempt to circumvent the formation of diastereoisomers, the more symmetrical monomer 

6, which comprised a [25]crown-8-based macrocycle, was synthesized and studied. Acyclic 

trimeric [a3]daisy chains were observed in CD3CN upon exceeding a concentration of 1 M, 

which the authors attributed to the weaker interaction of the secondary ammonium with 

DB25C8.  

In 1987, Stoddart and coworkers demonstrated that the larger crown ether BMP32C10 binds 

paraquat in acetone.[40] On the basis of this host-guest recognition, Gibson and coworkers 

synthesized monomer 7, which undergoes chain propagation resulting in linear fibers with up 

to 50 repetition units in a 2 M solution in CD3COCD3.[41] The aggregation number n, was 
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calculated based on 1H NMR dilution studies and further evidence for polymerization were 

given by the measurement of the glass transition temperature and differential scanning 

calorimetry.        

 

 

Figure 10. Hermaphroditic monomer 50, which assembles to linear polymers in acetone.[41]  

 

The recognition motif between crown ethers and secondary ammonium and paraquat, 

respectively, is often exploited in aprotic solvents to create mechanically interlocked 

molecules that respond to pH changes.[22] Employing DB24C8 in such a pH triggerable system, 

the macrocycle has a stronger affinity to the secondary ammonium ion than to paraquat, and 

therefore predominantly binds the ammonium motif. Upon addition of base, the secondary 

ammonium is deprotonated and hence the strength of hydrogen bonding interaction with the 

macrocycle decreases. The crown ether migrates to the permanent cation paraquat and 

stabilizes the charged unit also via hydrogen bonding and π-associated donor-acceptor 

interactions. The system can be switched back to the primary state by reprotonation of the 

amine moiety. Scheme 3 shows an artificial molecular muscle system developed by Stoddart 

and coworkers, in which monomers are aggregated to form interlinked [c2]daisy chains (8), 

driven by DB24C8/ammonium recognition.[24,25] The terminal propargyl group react with the 

symmetrical azide functionalized linker 9 to oligomers, which contain up to 11 repetitive units. 

Similar to single [c2]daisy chain dimers, the change of pH value ensues migration of the 

macrocycle along the molecular axis in the oligomer and leads to a length variation between 

the elongated (10a) and the contracted state (10b) of 48%.        
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Scheme 3. Acid/base switchable [c2]daisy chain polymer in the elongated (10a) and contracted state (10b).[24,25] 

 

In 2007, Huang and coworkers demonstrated that secondary dialkylammonium salts can be 

bound by the smaller crown ether B21C7 with even higher affinity in acetone (up to 

Ka = 1.0 x 103 M-1) compared to the larger DB24C8 cavity (up to Ka = 0.3 x 103 M-1).[42] The first 

B21C7-based hermaphroditic monomer (11), which assembles to [c2]daisy chains in acetone, 

was prepared by the same research group.[43] The investigation of the chemically driven 

reversible threading and dethreading revealed the system to be dual-responsive, not only 

towards pH changes, but also towards controlled addition and removal of potassium ions. In 

the presence of an equimolar amount of KPF6 the polyether ring is occupied by K+ and 

therefore daisy chain formation is suppressed. Expanding the distance between crown ether 

and the ammonium site with the help of a flexible alkyl chain, afforded polymeric 

structures.[19] 

 

    

Figure 11. Daisy chain monomers comprising the B21C7/ dialyklammonium recognition motif found by Huang 
and coworkers. 11[43] favorably forms dimers, whereas analogue 12[19] polymerizes in solution. 
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A supramolecular network gel was obtained from the fibers by adding Pd(II) as a crosslinker, 

which binds the 1,2,3-triazol unit in the polymer backbone (Figure 12).[44] The viscosity of the 

system could be triggered by acid/base, addition of the competing crown-ether guest K+ and 

heating/cooling.    

 

Figure 12. Schematic representation of the formation of cross-linked supramolecular polymer comprising 
monomer 12 with Pd(II) as crosslinker.[44]  

 

Flexibility of the thread helped to overcome the formation of thermodynamically favored 

[c2]daisy chains, which is a premise in order to achieve the formation of acyclic polymers. The 

threading-followed-by-polymerization synthetic strategy, reported by Huang and coworkers, 

is based on the flexible semirotaxane (13).[45] Compound 13 comprises a 1,2-

bis(pyridinium)ethane unit, bound by a DB24C8 macrocycle, which is substituted with a 

flexible C8-alkyl chain. The acetyl chloride functionality polycondensates with the hydroxyl 

group of the monostoppered axle to a linear, mechanically interlocked polymer (14) 

containing approximately 45 repeating units.  

 

 

                                 13                                                                                      14 

Scheme 4. Threading-followed-by-polymerization approach based on the polycondensaion of the bifunctional 
pseudorotaxane 13.[45] 

 

Based on a similar binding motif, Stoddart and coworkers developed the surrogate stopper 

procedure for the preparation of [c2]daisy chains.[46] A rotaxane, bearing both an inert stopper 

and a triphenylphosphonium group as a reactive stopper, reacts to daisy chains without losing 
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the interlocked character during the transformation. The triphenylphosphonium group 

undergoes an intermolecular Wittig reaction with the aldehyde functionality attached to the 

25-crown-8 ether and forms a stilbenoid linked daisy chain as a mixture of cis and trans 

isomers. The dethreading of the by sodium hydride deprotonated binding site is hindered 

during the Wittig reaction. At a reaction concentration of 5 mM [c2]daisy chains (16) were 

afforded in 50% yield. The C=C double bond could be hydrogenation in the last step.        

 

                    15                                                       16                                                             17     

Scheme 5. [c2]Daisy chain synthesized via the surrogate stopper method starting from a [2]rotaxane.[46] 

 

Very recently, Tian and coworkers utilized the crown ethers DB24C8 and B21C7 for size-

dependent self-sorting and afforded the construction of a hetero[4]rotaxane in 50% yield 

(Scheme 6).[47] The structural complex product was prepared by a facile one-pot synthesis, in 

which the three starting materials self-sorted into an [c2]daisy chain and a semi[2]rotaxane, 

respectively. The interlinked compounds were connected to the hetero[4]rotaxane via mild 

copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC).[48–50] The thread moiety of 18 was 

employed as a selective site which can only be bound by the macrocycle DB24C8, but not by 

B21C7. The dialkylammonium site in axle 19 was favorable complexed by the smaller 

macrocycle B21C7, which has a higher affinity for ammonium ions than DB24C8. Hence, axle 

19 does not affect the daisy chain formation of 18, which has been shown by 1H NMR 

measurements.     

 



Introduction 

14 
 

 

Scheme 6. One-pot synthesis of a hetero[4]rotaxane by employing a self-sorting strategy.[47]  

 

The versatility of crown ethers in daisy chains is also shown in the threading-followed-by-

swelling method, in which an external trigger causes size increase of reactive terminal axle 

groups, as reported by Chiu and coworkers.[35] The symmetrical macrocycle of monomer 20, 

bearing a pyridyl unit, was chosen to prevent diastereomer formation, observed in preliminary 

experiments, despite lower binding affinity towards dibenzylammonium ions in CD3CN 

(Ka = 40 M-1) and a rather low yield. Heating a 11 mM solution of hermaphroditic monomer 20 

in chloroform/acetonitrile 10:1 at 40 °C for 120 hours afforded 77% yield of the interlocked 

[c2]daisy chain. The elevated temperature promoted the transformation of the cyclopropane 

end groups into the much bulkier cycloheptadiene stoppers. 

 

 

Figure 13. a) Hermaphroditic daisy chain monomer 20, b) the reactive end groups of the interlinked aggregate 
react to bulky cycloheptadien stoppers, resulting in interlocked [c2]daisy chains.[35]  
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1.3.2 Cyclodextrins 

 

Cyclodextrins (CDs) are macrocycles consisting of cyclic 1→4 α-linked D-(+)-glucopyranose 

units. The homologous series of CDs is distinguished by the number of incorporated 

oligosaccharide, normally comprising 6 (α-CD), 7 (β-CD) or 8 (γ-CD) units, which defines the 

ring size.  The numerous hydrophilic groups are generally directed to the outer sphere 

resulting in a hydrophobic cavity, which exhibits a truncated, funnel-like shape with primary 

hydroxyl groups at the narrow site and secondary hydroxyl substituents at the wide rim.[51]  

 

         

Figure 14. a) Chemical structure of α-cyclodextrine, b) the schematic representation of α- β- γ-cyclodextrine with 

their cavity width and corresponding internal diameters,[51] and c) the schematic structure of the first daisy chain 

monomer.                    

         

In 1982, Hirotsu, Fujita and Tabushi were the first who observed the intermolecular inclusion 

of monofunctionalized cyclodextrins[52] and hence by definition the first daisy chain, although 

the terminology was introduced later.[10]  The β-cyclodextrin was functionalized with a tert-

butylthiol group, resulting in the formation of dimers, trimers and also oligomers at high 

concentrations in aqueous medium.[52]  

In general, hydrophobic organic molecules form strong inclusion complexes with CDs in 

aqueous medium driven by hydrophobic interactions (Ka values in water between 102 M-1 and 

105 M-1)[51]. As observed in multiple rotaxane-based examples, many linear molecules, can be 

employed as guests in the syntheses of cyclodextrine-based MIMs, sufficient hydrophobicity 

and appropriate diameter size provided.[27] Alkyl chains substituted with polar solubilizing 

groups, such as [R(CH2)nR’]m+ (m =  0-2, R or R’ = pyrazine, bipyridine, amino, amido or 

carboxylic groups) are commonly used as thread molecules.  

In [c2]daisy chain muscle 21 reported by Harada et al., an amido moiety is located adjacent to 

a cinnamoyl group, the main binding site for the α-CD, in dimethyl sulfoxide.  Upon addition 

(a) (b) (c) 
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of water, the α-CD ring moves to the adjacent hexamethylene chain in order to shield it from 

the more polar solvent, resulting in a contraction of the system.[53]    

 

 

Scheme 7. Solvent-switchable molecular muscle 21 with the cinnamoyl group and the hexamethylene chains as 
recognition sites.[53] 

 

Cinnamamide is also harnessed as guest in another interesting system developed in the 

Harada group.[20] Monofunctionalized CD rings are permeated by N-methyl cinnamamide from 

the narrower rim, although entering from both sides should be possible, as affirmed by 

molecular models with unmodified CDs. Taking this phenomenon into account, depending on 

the linking position at the CD ring, either cyclic dimers or acyclic oligomers are favored (Figure 

15). [c2]daisy chains (22a) were constructed, in case of the linkage at position 6, whereas 

linkage at the wider rim in 3-position afforded oligomeric [a12]daisy chains (22b).  

 

           

          22a                      22b 

Figure 15. [c2]daisy chain of 6-cinnamonyl α-CDs, and [a12]daisy chain of 3-cinnamonyl α-CDs.[20]  

 

Very recently, Harada and coworkers reported a novel kind of molecular muscle.[54] The 

cyclodextrine-based [c2]daisy chain repeating units are linked by four-armed polyethylene 

glycol chains affording wet- as well as  dry-type gel artificial molecular muscles (23). Upon 

ultraviolet irradiation, the numerous photo-responsive azobenzene guests undergo a 
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conformational change and the macroscopic gels bend towards the light source. The fast-

responsive dry-type gel was even used as a crane arm to lift an object. 

 

 

Figure 16. Chemical structure of a polymeric [c2]daisy chain gel working as artificial molecular muscles.[54] 

 

The geometrical features of the thread also control the aggregation behavior of daisy chain 

monomers (Scheme 8). The trans-stilbene functionalized α-CD monomer 24a-trans forms 

dimeric daisy chains. Photoirradiation with λ = 340 nm leads to its cis-isomer (24a-cis), which 

forms acyclic oligomeric daisy chains at high concentrations. 2D NMR and diffusion coefficient 

studies revealed the same reversible photo-triggerable aggregation behavior in 3-substituted 

derivatives 24b, however with the opposite result. Conclusively, the aggregation behavior of 

both the 2- and 3-substituted monomeric units can conveniently be accessed and controlled 

by external physical input.           
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Scheme 8. Schematic illustration of the photo-triggered aggregation behavior of stilbene functionalized α-
cyclodextrins, dependent on the cis- or respectively trans-configuration and on the linkage position of the 
stilbene thread. Reprinted from reference.[11]   

 

Most of the CD-based mechanically interlocked rotaxanes or daisy chains were synthesized 

via the stoppering approach. As stable inclusion complexes are solely formed in aqueous or 

highly polar media, the bulky molecules for the subsequent capping reaction have to be 

soluble in polar solvents. Many daisy chains, in particular α-CD based systems, contain a 

primary amine moiety used as anchor group for bulky stoppers, with which they react under 

basic conditions via aromatic substitution (25 and 26)[53,55] or condensation (27)[56] to  

mechanically interlocked molecules. (Figure 17).   

 

NaO3S

O2N

O2N

NO2 HOOC
N

N
N

OMe

OMe

Cl

25 26 27  

Figure 17. Examples for bulky stopper molecules applied for α-CD based MIM syntheses. 

 

But also Suzuki couplings[57], which work efficiently in aqueous media, turned out to be a 

powerful method for interlocking cyclodextrine-based systems. For example in the so-called 

snapping approach, inclusion complex 28, already stoppered at one end of the thread, reacts 

in the rotaxanation step with 5-boronoisophthalic acid.[58]      
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28                                                                                           29  

Scheme 9. Snapping approach for the synthesis of rotaxane 29 based on the Suzuki coupling reaction.[58] 

 

Similarly, Anderson and coworkers comprehensively explored the behavior of organic 

semiconductors encapsulated with cyclodextrin rings. In most cases, the supramolecular 

(poly)-pseudorotaxanes were prevented from dethreading by stoppering via aqueous 

Suzuki[57] reaction. Remarkably, the “insulated molecular wires” showed increasing 

fluorescence quantum yields, electroluminescence efficiencies, and chemical stabilities 

compared to the free, unshielded semiconductors.[59–65] 

 

 

1.3.3 Cucurbiturils 

 

Cucurbit[n]urils (CB[n]) are water-soluble macromolecules consisting of n glycoluril units that 

are linked by methylene groups in the acid-catalyzed condensation reaction of glycoluril and 

formaldehyde at high temperatures. The most common CB[n]-based hosts in supramolecular 

chemistry are CB[6], CB[7] and CB[8].  

 

Figure 18. Structure and schematic representation of cucurbit[6]uril.[66]  

 

Similar to cyclcodextrins, CBs comprise an inner hydrophobic cavity, allowing the formation of 

inclusion complexes with hydrophobic guests. The remarkably strong (Ka values in water up to 

1012 M-1) and unique guest encapsulation properties are not only based on the hydrophobic 

effect, but also on the existence of polar carbonyl groups at the symmetrical cavity rim. The 

carbonyl groups allow the binding of ions and other molecule via charge-dipole and hydrogen-
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bonding interactions.[66] These interaction are also present in the first cucurbiturils-based 

rotaxane, reported by Kim in 1996.[67] A Ka value of 107 M-1 in water for the inclusion complex 

of the guest spermine and host CB[6] was obtained (Scheme 10). 

 

Scheme 10. Synthesis of the first cucurbituril rotaxane based on the CB[6]/spermine recognition motif.[67]  

 

By developing a protocol for the synthesis of monofunctionalized cucurbit[6]uril derivatives, 

Isaacs and coworkers promoted cucurbiturils-based daisy chain formation.[68] The phenol 

substituent at the CB[6] macrocycle 35 was obtained via condensation of the methylene 

bridged glycoluril hexamer 33 with phthalaldehyde derivative 34. Subsequent reaction with 

propargyl bromide led to a propargyloxy moiety enabling a CuAAC reaction in water to yield 

monomer 36.  

 

Scheme 11. Synthesis of a monofunctionalized CB[6] derivative which self-assembles in water to interlinked 
[c2] daisy chains.[68] 

 

Monomer 36 forms intermolecular inclusion complexes through its isobutyl ammonium 

group, resulting in predominantly cyclic dimeric [c2]daisy chains, revealed by diffusion 
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measurements (DOSY) and molecular models. The comparatively weak association constant 

(Ka) of 3·104 M-1 between CB[6] and the isobutyl ammonium group in water allowed reversible 

triggering of the aggregation behavior via a chemical stimulus in form of either a competing 

guests (butandiammonium) or host (CB[8]).   

 

 

1.3.4 Pillar[n]arenes 

 

This relatively novel type of molecular macrocycles is composed of n hydroquinone units 

mutually linked by methylene bridges at para position. Since the discovery of pillararenes by 

Ogoshi et al. in 2008[69], the complexation properties of pillar[5]arenes have been extensively 

investigated and widely used for the synthesis of functional systems, whereas the homologues 

consisting of n = 6 and 7 hydroquinone moieties have been rarely analyzed. With an inner 

diameter of about 5 Å,[69] pillar[5]arenes feature a cavity size comparable to β-cyclodextrins.  

 

 

Figure 19. Structure of pillar[5]arene (left) and two different corresponding schematic representations.[70] 

 

Compared to cucurbiturils, which in general exhibit similar molecular recognition properties 

to pillararenes, the latter are relatively easy to functionalize with different functional groups 

and moieties at the cavity rim. For example, the primarily reported per-hydroxylated 

pillar[5]arene 39 was synthesized via Friedel Crafts alkylation[71] of 1,4-dimethoxybenzene 37 

followed by the demethylation of pillar[5]arene 38 using borontribromide (Scheme 12). In 

contrast to the highly crystalline macrocycle 38, the per-hydroxylated pillar[5]arene 39 is well 

soluble in methanol, acetone, acetonitrile, dimethylformamide and dimethyl sulfoxide. 
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Scheme 12. Optimized synthetic pathway of the first reported per-methoxylated and per-hydroxylated 
pillar[5]arenes 38 and 39[72] as well as their schematic representation.[73]   

  

The π electron-abundant cavity render the highly symmetrical and rigid pillararenes ideal 

hosts for electron-deficient guest molecules,[74] such as paraquat and pyridinium derivatives, 

imidazolium cations, bis(imidazolium) dications and secondary ammonium ions (Figure 20).[27]   

 

 

Figure 20. Typical guest molecules for pillar[5]arenes.[27] 

 

Typically, pillar[5]arenes form 1:1 inclusion complexes with Ka values between 102 and 104 M-1 

in solvents such as methanol, DMSO, chloroform or acetone. Complexation is mainly driven 

by host-guest charge-transfer interaction and C-H···π interaction, which is the weakest kind of 

hydrogen bonding.[70] Association constants up to 105 M-1 were measured for a water-soluble 

pillar[5]arene containing ten negatively charged carboxylate groups and 1,4-

bis(pyridinium)butane derivative guests in aqueous phosphate buffer solution.[75] The water-

soluble pillar[5]arene developed by Hou and co-workers comprises neutral amino groups at 

the cavity rim and binds linear diacids in neutral, alkaline and acidic environment.[76] Huang 

and co-workers prepared a cationic pillar[5]arene with ten trimethylammonium groups which 

encapsulates sodium 1-octanesulfate in water mainly driven by hydrophobic effects and 

electrostatic interactions.[77] 

Concerning monofunctionalization of the macrocycle, a premise for daisy chain synthesis, two 

different approaches are well established (Scheme 13).[78] The substituent, in this case a 

bromoethoxy handle, is introduced into the pillararene backbone via co-cyclization (approach 

a) of 1,4-dimethoxybenzene 37 and its corresponding derivative 40.[79] Approach b) relies on 
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the deprotection of one alkoxyl group of the per-methoxylated pillararene 38 and hence 

allows for the addition of new functionality at the cavitand.[80] 
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Scheme 13. The two established synthetic approaches for the monofunctionalization of per-methoxylated 
pillar[5]arenes: a) co-cyclization; b) deprotection [79,80] 

 

Employing approach a), Huang and co-workers prepared an octyl monofunctionalized 

dimethoxybenzene pillar[5]arene which aggregates at high concentration (up to 768 mM) to 

linear polymeric daisy chain pseudorotaxanes.[81] Scanning electron microscopy revealed the 

existence of fibers with a diameter of 9.5 µm. Concentration-dependent oligomer and 

polymer formation was also achieved with Stoddart’s system (Scheme 14) comprising a 

viologen thread (43).[74] In dilute solution (0.1 mM) the functionalized pillar[5]arene forms 

intramolecular complexes (Scheme 14), whereas a polymeric organogel was obtained at 

concentrations higher than 25 mM. Strong complexation was indicated by the high Ka value of 

1.3 x 105 M-1 in dichloromethane obtained via fluorescence quenching experiments. Charge-

transfer bands resulting from the encapsulation of the electron-deficient guest into the 

electron-abundant cavity were observed in the UV/Vis spectra, accompanied with a color 

change. 

 

 

Scheme 14. Molecular modelled structure of the intramolecular (left) self-complexation in dilute solution and 
intermolecular oligomerization (right) at high concentration of the viologen-functionalized pillar[5]arene 43.[74] 

 

In 2012, Huang and co-workers synthesized an interlocked [c2]daisy chain (45) by stoppering 

an amine functionalized daisy chain pseudorotaxane (Scheme 15).[82] The preparation was 
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based on the X-ray structure of analogue bromodecyloxy copillar[5]arene. The authors 

concluded that the formation of cyclic dimeric aggregates is facilitated by the dispersive 

features of the C10 alky chains.[83] The bromine atom was substituted by a primary amine group 

via Gabriel[84] reaction and the double threaded aggregate (44) was then stoppered with 

bis(trifluoromethyl)phenyl isocyanate. 

 

 
                            44                                                                                                    45 

Scheme 15. Synthesis of the interlocked pillar[5]arene based molecular [c2]daisy chain  45.[82] 

 

In pure chloroform-d3, the pillar[5]arene rings of 45 are located near the urea-linked stopper, 

the system is present in its contracted state with a total length of 31 Å (Figure 21). In turn, the 

system is extended to 37 Å in pure DMSO-d6, where the macrocycle was found to encircle the 

middle of the alkyl chain. By varying the percentage of the two different solvents and hence 

the polarity of the solvent system, the length of the [c2]daisy chain can be changed to 

intermediate states. As there are no distinct favored binding sites for the pillararene 

macrocycles within the thread, length variation can take place continuously. The system is 

therefore acting as a molecular spring.          

 

 

Figure 21. Molecular model of the solvent-driven length variation of [c2]daisy chain 45; a) contracted state in 
chloroform-d3, and b) extended state in DMSO-d6.[82] 

  

Further development of the system incorporates the integration of terpyridine moieties at the 

thread termini.[85] The tridentate ligand works as a linker to connect [c2]daisy chain units via 

complexation with iron ions resulting in a supramolecular polymer (Figure 22). Filamentous 

fibers of the solvent responsive metallo-polymer 46 with a length of up to 40 µm and a 

diameter of 10 nm were observed with SEM and TEM measurements. The solvent-dependent 
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integrated motion within polymer 46 was investigated by dynamic light scattering 

experiments, revealing a considerably higher hydrodynamic radius in pure DMSO 

(rH = 254 nm) than in pure chloroform (rH = 104 nm). The authors attribute this finding 

predominantly to the system’s extension and only secondarily to a potential increase of rH due 

to swelling of the fibers.       

 

 

46 

Figure 22. Contracted state of the solvent-switchable supramolecular metallo-polymer 46 consisting of [c2]daisy 
chain units.[85]  

 

 

1.3.5 Calix[n]arene 
 

Calix[n]arenes are structurally related to pillar[n]arenes as both macrocycles contain 

methylene bridged aromatic units. Whereas the rigid pillararenes comprise hydroquinone 

units, in calixarenes substituted phenols, resorcinols or pyrogallols are linked together 

(Figure 23), resulting in vase-shaped cavities. Due to the relatively free rotation about the σ-

bonds of the methylene groups different conformational states can be adopted. The 

conformation strongly depends on the number n of repeating units, the substituents located 

at the benzene cores and their substitution pattern. Typically, in phenol-based calix[4]arenes 

all hydroxyl groups are oriented intra-annular interacting via hydrogen bonding and adopt the 

so called cone conformation. In other possible types of conformers the substituents are either 

oriented alternating or form a partial cone.   

   

          

Figure 23. Structures of three kinds of calix[n]arenes derived from a) phenol b) resorcinol or c) pyrogallol. The 
cavity of calix[n]arenes typically resembles the shape of a vase.  

 



Introduction 

26 
 

In general, calix[n]arenes have received less attention as macrocyclic components in the 

synthesis of mechanically interlocked molecules. However, one of the few examples for 

rotaxanes preparation based on calix[n]arenes is a collaboration of the Arduini, Credi, Venturi 

and Secchi groups.[86–88] The electron rich cavity of the tris(N-phenyl-ureido)calix[6]arene 47 

allowed the encapsulation of N,N’-dialky viologen-based axles 48 and 49 (Scheme 16). In 2000, 

the symmetrical [2]rotaxane 50 with l = m = 10 methylene units was reported as the first 

rotaxane containing a calixarene macrocycle.[86] Through X-ray analysis of the corresponding 

[2]pseudorotaxane analogue with l = m = 6, the authors identified aromatic π-π donor-

acceptor interactions, hydrogen bonding and C-H···π interactions as main stabilization forces 

between host and guest. Another important finding was the complexation of the guest’s 

counteranions via hydrogen bonding with the ureidic NH fragments of the host. The ensuing 

publication in 2004[87] focused on the effects of the nature of counteranions on both the 

stability of the complexes and the rate of the threading process. The binding constant Ka in 

dichloromethane of host 47 with the tosylate salt of the unstoppered axle 48 (6 x 106 M-1) and 

the monostoppered analog 49 with l = m = 6 (3 x 106 M-1), respectively, were higher than the 

corresponding hexafluorophosphate salt of the symmetric axle (0.8 x 106 M-1). Stopped-flow 

experiments, more precisely monitoring the absorption changes upon rapid mixing of host 47 

with the axles, revealed threading rate constants k of the tosylate salts more than two orders 

of magnitude higher than the hexafluorophosphate salt of the unstoppered axle. The obtained 

results on stability and kinetics clearly indicated that the in low polar solvents strongly pairing 

anions are components of the complex and contribute to its stabilization.[87] 

 

       47                48          49             50 
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Scheme 16. Synthesis of rotaxane 50 comprising the ureido N-phenyl substituted calix[6]arene macrocycle 47 
and the diphenyl acetate stoppered viologen axle 48/49, optionally symmetric (l = m) or unsymmetric (l ≠ m).[86–

88]  

Very recently in 2016, the synthesis and characterization of the analogue unsymmetrical 

rotaxane, in which the linker alkyl chains between the stoppers and the viologen moiety of 

the axle are different in length (l ≠ m) (Scheme 16) was published by the same collaboration.[88] 

The preferential formation of rotaxanes with the shorter span (l) close to the upper 

calix[6]arene rim and the longer span (m) oriented to the lower rim was observed. The 

oriented rotaxanes were investigated with the aim to gain information whether reduction of 

the biphenyl core, and hence weakening the host-guest interaction, induces movement within 

the rotaxane. However, no significant indication for the shuttling of the macrocycle upon 

reduction was observed by the combination of spectroelectrochemistry and electron 

paramagnetic resonance (EPR) measurements.         

The formation of calix[n]arene based molecular daisy chains were observed from monomeric 

structures comprising both a cyclodextrine binding motif and a calix[4]arene unit 

(Figure 24).[89] To the latter macrocycle four polyethylene glycol chains were attached forming 

the “lower” rim. Calix[4]arene was further functionalized at the “upper” rim with an amine 

group working as linker between the cyclodextrine and a naphthalene based chromophore. 

Dependent on the chromophore’s substitution pattern and the functional groups, either 

intramolecular (51a) or intermolecular (51b) recognition was in form of vesicles or 

poly[n]daisy chain fibers, respectively.  

 

  

Figure 24. Schematic representation of the merged monomeric structures forming either intramolecular (51a) 
or intermolecular (51b) inclusion complexes. Reprinted from reference.[11] 
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1.3.6 Tetralactam based Macrocycles 

  

The first tetralactam based macrocycles, as components in catenanes, were reported 

independently by Vögtle[90] and Hunter[91] in 1992. The macrocycles comprised isophthaloyl 

diamide groups and diarylmethane moieties which provide recognition sites with hydrogen-

bonding and π-π interaction capabilities. Profiting from the strong affinity of tetralactam 

macrocycles toward inorganic and organic anions in apolar solvents, the first anion-templated 

rotaxane synthesis was developed by Vögtle and coworkers.[92] A phenoxide anion was linked 

via hydrogen bonding to the isophthalamide motif of the host and subsequently reacted as 

supramolecular nucleophile (52) with a benzylic monostoppered axle affording rotaxane 53  

in 95% yield. In contrast to Vöglte’s rotaxane, in the templated rotaxane preparation reported 

by Schalley and coworkers the phenoxide was not consumed (54).[93] A pseudorotaxanes 

comprising the templating anion was stoppered at the amine functionalized axle termini 

remote from the phenoxide motif. 

 

 

                                52                                               53                                                      54 

Figure 25. Phenoxide templated rotaxane syntheses with diarylmethane tetralactam macrocycles, a) Vögtle’s 
approach in which the template is consumed, b) Schalley’s s templated rotaxane. 

 

The Beer group developed a strategy for halide ion templated rotaxane synthesis based on 

tetralactam macrocycles.[94] Figure 26 exhibits a molecular [c2]daisy chain (55) based on this 

chloride template concept.[95] By applying the clipping strategy in the last step, the 

preorganized pseudorotaxane was transformed into the interlocked daisy chain. In general, 

the isophthalimide motif in tetralactam based macrocycles provides an anion binding site and 

saturates the halide ion’s coordination sphere. The isophthalimide moieties in daisy chain 55 

coordinate the chloride counter anion of the methylpyridinium axle moiety in noncompetitive 

solvents, such as dichloromethane. Hydroquinone building blocks form the macrocycles’ 

cavity walls and allow π-π donor-acceptor interaction with the pyridine unit. Adjacent 
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polyethylene glycol chains work both as hydrogen bonding sites for the thread molecule and 

as linker to terminal alkene units. The vinyl units enable the clipping approach via Grubbs ring-

closing metathesis[96], which is typically applied in the halide templated rotaxane synthesis.   

       

 

                                          55                                                                                 56 

Figure 26. MIMs synthesized by harnessing a chloride templating approach. a) ringclosing metathesis of an 
pseudorotaxane comprising a pyridinium chloride ion pair resulted in [c2]daisy chain 55,[95] b) rotaxane 56 
contains an iodotriazolium chloride ion pair.[97]     

 

The macrocycle’s design also permits the construction of rotaxanes with other cationic 

threads, like imidazolium[98], triazolium[99] and even iodotriazolium[97]. The latter coordinates 

to halide anions by means of a halogen bond. For example, iodotriazolium rotaxane 56 exhibits 

a high selectivity for iodide anions (Ka = 2.2 x 103 M-1) even in competitive aqueous (10% D2O) 

solvent mixtures. 

With the recently published rotaxane 57 anion sensing was afforded even in pure D2O.[100] The 

halogen-bonding axle comprises a pyridinium motif with two adjacent iodotriazolium units 

functioning as halogen-bonding recognition site. Employing permethylated β-cyclodextrin 

stoppers render the rotaxane water-soluble.  1H NMR titration studies with rotaxane 57 in D2O 

revealed binding of iodide with remarkably high affinity (Ka = 2.2 x 103 M-1).   
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                                                                                  57 

Scheme 17. The two last steps of the water-soluble anion sensing rotaxane 57 synthesis.[100]  

 

Another important typ of tetralactame macrocycles comprising benzylamide moieties was 

develpoded by Leigh and coworkers. The first tetralactam macrocycles with benzylamide was 

synthesized in a yield of 28% via rotaxane formation in 1996.[101] Isophthaloyl dichloride and 

p-xylylenediamine were slowly added to a solution which contained the hydrogen-bonding 

template axle 58 with terminal ester linked stopper units. Isolation of the desired macrocycle 

60 was achieved by disassembly of the thread via ester hydrolysis. A higher yield (62%) could 

be obtained by harnessing a glycylglycine dipeptide axle which exhibits complementary 

binding sites to the tetralactam macrocycle.[102] 
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Scheme 18. Tetralactam macrocycle 60 synthesis via rotaxane 59 formation.[101]  

 

The rigid fumaramide motif, which forms four hydrogen bonds with the macrocycle without 

any distortion, turned out to be an even better template for the hydrogen-bonding mediated 

rotaxane synthesis, as a yield up to 97% was obtained for rotaxane 61 (Figure 27).[103]  The 

powerful recognition motif of the amide macrocycle with fumaramide or the less stongly 

binding succinamide as well as peptide based axles was applied in various artificial molecular 

machines[104], like shuttles[105], switches[106] and molecular ratchets[107].       
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Figure 27. Tetralactam based rotaxane 61 with fumaramide axle and corresponding X-ray structure.[103] 

 

 

1.3.7 Metal-ligand based Macrocycles 

 

A powerfull strategy for the preparation of interlocked molecules is exhibited by the 

transitionmetal templated synthesis. Similar to the anion templated rotaxane synthesis 

developed by Beer and coworkers, a metal ion preorganises the macrocycle and axle 

component for the rotaxanation step. The first metal-ligand controlled rotaxane preparation 

was reported in 1991 by Gibson and coworkers.[108] Macrocycle and axle both comprised a 

disubstituted 1,10-phenanthroline ligand which assembled to a pseudorotaxane via a 

tetracoordinate copper(I) complex. After stoppering, the template was removed via an 

amberlite-CN resin. Sauvage and coworkers applied the same recognition motif for the 

coordination driven assembly of a molecular [c2]daisy chain (62). The phenyl units in the 2- 

and 9-position of the 2,9-diphenyl-1,10-phenanthroline (dpp) moiety of the macrocycle were 

connected through a benzene bridged glycol chain. The benzene-moiety also served as anchor 

motif for the linear thread moiety. Upon addition of a stoichiometric amount of tetrakis-

(acetonitrile)copper(I) hexafluorophosphate in CH3CN/CH2Cl2 1:1 the hermaphroditic 

monomers assembled via complexation to interlinked double-threaded daisy chains 62  at 

room temperature.       

 

Figure 28. Molecular [c2]daisy chain assembled via Cu(I) template approach.[109]   
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In the year 2000, Sauvage introduced the concept of stimuli triggered artificial molecular 

muscles based on this kind of dimeric supermolecules.[21] A second metal binding site, a 

terpyridine ligand, monofunctionalized with a bulky stopper group was attached to the 

interlinked molecule 62 resulting in the interlocked [c2]daisy chain 63. Contraction of the 

molecular system to 27% could be induced chemically by metal exchange with an excess of 

cyanide ligand and subsequent Zn(II) phenanthroline-terpyridine complex 64 formation 

(Scheme 19).   

 

 

Scheme 19. Extended (63) and contracted (64) conformation of the first artificial molecular muscle. The muscle-
like actuation could be triggered chemically upon Cu(I)/Zn(II) exchange.[21]  

 

Leigh and Goldup developed a conceptually novel approach for rotaxane synthesis based on 

an active metal template.[33] The transition metal, endotopically bound to the macrocycle, 

both arranges the rotaxane components and mediate the formation of the mechanical bond 

as a catalyst. The new strategy allows preparation of rotaxanes in high yield and requires only 

a metal binding site on the macrocycle. A well investigated exemplary reaction for the active 

metal strategy[110,111] is the Cu-catalyzed alkyne-azide cycloaddition (CuAAC). Rotaxane 65, 

comprising a pyridine-based macrocycle as wheel component, was afforded in 94% yield with 

stoichiometric amount of [Cu(CH3CN)4(PF6)]. Using the copper source in catalytic amounts 

afforded rotaxane 65 in 82% yield after three hours. Increasing the ration of macrocycle to 

Cu(I) to 10:1 resulted in the formation of [3]rotaxane 66 as byproduct. This observation 
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indicates that under these conditions the mechanism of the CuAAC reaction involves a reactive 

intermediate that features at least two metal ions (Figure 29).                 

 

 

Figure 29. [2]Rotaxane 65 synthesized via active metal template strategy with a pyridine-based macrocycle as 
catalyst site. The formation of [3]rotaxane 66 as a byproduct provided some insight into the mechanism of the 
CuAAC reaction.[111]  

 

Other active metal template reactions have been adopted for the preparation of interlocked 

molecules, such as the Pd(II) oxidative Heck cross-coupling reaction.[112]  
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1.3. 8 Tetracationic Cyclophanes 

 

Cram and Steinberg established the term cyclophane in 1951 for compounds consisting of an 

arene motif in which two positions are bridged by an aliphatic chain, forming a cycle.[113] 

Among the countless cyclophanes synthesized to date, a well-established example is the 

tetracationic cyclobis(paraquat-p-phenylene) (CBPQT4+), initially reported by the group of 

Stoddart in 1988 (Figure 30).[114] Due to the violet blue color of its corresponding radical cation, 

which can be formed upon one-electron reduction, it is also called “blue box”. 

 

 

Figure 30. Structure of the tetracationic cyclophane cyclobis(paraquat-p-phenylene).[114] 

  

The π-electron deficient cavity binds a variety of π-electron rich guests, such as hydroquinone, 

tetrathiafulvalene (TTF) or 1,5-dioxynaphthalene (DNP). As the tetracationic cyclophane is 

easily attacked by reducing agents, bases and nucleophiles,[27] CBPQT4+ is typically prepared 

either by the clipping method using 1,4-bis(bromomethyl)benzene and the bispyridinium 

dication 67, or by the mild CuAAC reaction. Scheme 20 shows the first rotaxane preparation 

based on CBPQT4+.[115] The macrocycle precursor 67 interacts with the anisole motif of axle 

68. The preorganized components then reacts with 1,4-bis(bromomethyl)benzene to afford 

rotaxane 69 as a deep-orange colored product after 7 days in 32% yield.    

 

 

                        67                       68                                                                                      69                                             

Scheme 20. Formation of the first CBPQT4+-based rotaxane.[115] 
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Employing the CuAAC reaction as stoppering method proofed to be an efficient strategy for 

the preparation of switchable donor/acceptor rotaxanes. Stoddart introduced this approach 

with the synthesis of the bistable rotaxane 72 (Scheme 21), bearing an CBPQT4+ encircled TTF 

unit (green) and a free DNP motif (red).[116] The azide termini of pseudorotaxane 71 react with 

the propargyl moiety of stopper 70 in the presence of the catalyst system Cu(II)sulfate/ 

reducing agent ascorbic acid affording 72 in a yield of 60%.  

 

 

Scheme 21. Synthesis of the bistable CBPQT4+-based rotaxane 72 using the CuAAC reaction. Blue: CBPQT4+ 

cyclophane, green: TTF unit, red: DNP moiety. [116] 

 

Upon one- or two-electron oxidation of TTF, CBPQT4+ is electrostatically repelled and moves 

directly to the competing DNP unit. In turn, reduction back to electroneutral TTF leads to 

migration of the macrocycle back to the original position. The same principle was utilized for 

an advanced bistable [3]rotaxane system (73), bearing CBPQT4+ rings.[117] The palindromic 

interlocked molecule has two TTF and two naphthalene (NP) recognition sites for the two 

macrocycles, which are functionalized with a disulfide tether. The disulfide moieties self-

assemble to monolayers on the gold surfaces of an array of flexible atomic force microscope 

(AFM) microcantilevers. The resulting coated surfaces consisted each of 6 billion [3]rotaxanes. 

The locations of the two rings along the rotaxane axle could be controlled precisely either by 

chemical stimuli, oxidation with tri(p-bromophenyl)-amminium hexafluoroantimonate and 

reduction with Zn powder, or electrochemically using the potential of the working electrode 

in a cyclic voltammetry (CV) setup. The inter-ring distance changing in each [3]rotaxane from 
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4.2 to 1.4 nm and vice versa ensues reversible up and down bending of the attached AFM 

cantilevers 5 orders of magnitude larger in size.     

 

Figure 31. a) Chemical structure of the switchable palindromic [3]rotaxane 73 bearing a disulfide tether on the 
macrocycle; b) the redox driven mechanical switching of the bistable rotaxanes bends and releases the AFM 
cantilever reversibly.[117]  

 

A related redox-switchable molecular muscle is exhibited by [c2]daisy chain 74, one member 

of a family of related cyclic and acyclic daisy chains isolated from a one-pot click reaction in 

low yield (9%).[12] The system, developed by Stoddart and coworkers, comprises a bipyridinium 

(BIPY2+) motif and a DNP unit, which is encircled by a CBPQT4+ ring (74a). Coulombic repulsion 

between the tetracationic macrocycle and BIPY2+ prevents association between the two 

motifs. However, under reducing conditions, all six of the bipyridinium radical cations, 

including the four CBPQT2(+·) units of the macrocycle and the two axle BIPY·+ units, generated 

by one-electron reduction, become associated through spin-pairing interactions, causing an 

extension of the system (74b). The electrochemically actuated muscle behavior could 

investigated by cyclic voltammetry and spectroelectrochemistry.  

 

 

Scheme 22. Electrochemically driven actuation of [c2]daisy chain 74 , where CBPQT4+ encircles the DNP site in 
the contracted state (74a) and spin-pairing interactions associate CBPQT2(+·) with the reduced BIPY+· motif in the 
extended state (74b).[12,22]    
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1.3.9 Diederich Cyclophanes 

 

Starting in the 1980s,[118] Diederich and coworkers developed a wide variety of cyclophanes 

and comprehensively investigated their complexation behavior with aromatic guests. The 

simple, symmetrical cyclophanes 75-79 are soluble in pure water and allow for rather easy 

synthetic modification.[119]         

 

The hosts comprise quaternary ammonium centers,  which provide water-solubility at neutral 

pH values and are located remote from the binding site.[120,121] The diphenylmethane moieties 

are linked by dioxaalkane chains of variable chain length, which affords different cavity sizes. 

X-ray structures show that the lone pairs of the four ether oxygen atoms in the bond to the 

alkyl chain linker are oriented outwards, which enhances the hydrophobic character of the 

binding site. Methyl or methoxy substituents ortho to the bridging dioxaalkane ethers increase 

the cavity depth. The distance between two meta hydrogens in cyclophane 75 is ~ 4.3 Å, 

whereas the hydrogen atoms of two m-methyl groups in 78 are ~ 6.0 Å apart.[122] The deepest 

cavity, with a distance between the m-methoxy groups of ~ 8.1 Å, is formed by cyclophane 76. 

The X-ray structure (Figure 32) demonstrates that each methoxy substituent is aligned in the 

plane of the phenyl ring to which it is attached.[123] The methyl and methoxy substituents 

affect also the torsional angles about the aryl ether C-O bonds and hence influence the 

macrocyclic conformation. The torsion angles in the unsubstituted cyclophane are close to 0°. 

In contrast to that, the torsion angles are close to 90° in the methyl/methoxy-substituted 

macrocycles and the first CH2 group of every ether bridge is either twisted inwards or 

outwards from the cavity.  

 

Figure 32. Molecular structure of cyclophane 76 and two different perspectives of the corresponding X-ray crystal 
structure. The diiodide counteranions are omitted for clarity.[122,123]  
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Diederich-type cyclophanes were found to form 1:1 inclusion complexes with aromatic guests 

in protic solvents. The X-ray crystal structure of cyclophane 80, the tertiary amine precursor 

of 75, with an enclosed benzene guest demonstrates that the cyclophane adopts a rectangular 

conformation, in which the four electron-rich aromatic rings act as cavity walls. Cyclophanes 

75-79 form complexes with 1,4-disubstituted benzene substrates, whereas the larger 

cyclophanes, with n = 4 CH2 bridging units also complex 2,6-disubstituted naphthalene guests. 

 

 

Figure 33. X-ray crystal structure and skeletal structure of a benzene inclusion complex with cyclophane 80.[121]  

 

1H NMR complexation studies strongly indicate that both 1,4-substituted benzene and 2,6-

substituted naphthalene substrates generally prefer an axial-type inclusion geometry upon 

complexation in the liquid phase. The aromatic guest protons point directly into the π-cloud 

of the aromatic cavity walls, in an edge-to-face and π-offset fashion. Furthermore, in this 

geometry the substituents X and Y are oriented into solution (Figure 34), which is in particular 

favorable for highly solvating, polar groups. 
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Figure 34. Axial inclusion of an aromatic substrate with the substituents X and Y pointing outwards from the 
cavity. 

 

An important aspect for the host-guest complexation in aqueous media involves the potential 

self-association of the host and/or guest molecules, leading to structures similar to micellar 

systems. In order to avoid interference of the complexation equilibrium by additional self-

aggregation equilibria, complexation studies should be performed in a concentration regime 

below the critical aggregation concentration (cac) of the involved compounds. In this series of 
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cyclophanes the highest critical aggregation concentration in water exhibit the methoxy 

substituted macrocycles 76 and 79 (both 1 x 10-2 M). Methyl groups even caused a more 

favorable self-aggregation than in the case of the unsubstituted cyclophane. The cac of 78, 

bearing eight methyl groups was <2 x 10-5 M, whereas the critical value for 77 was determined 

as 1.6 x 10-4 M. The low cac values of 77 and 78 in pure D2O were the reason why Diederich 

and coworkers investigated the binding properties of the different cyclophanes mainly in 

D2O/CD3OD (60:40 v/v), a solvent mixture in which no self-association was observed and 

hence the determined binding constants with different guests were comparable.  

Van’t Hoff analysis revealed an enthalpically driven complexation, the entropic contribution 

to the Gibbs free energy turned out to be lower. This finding proofed that the complexation is 

driven by a nonclassical hydrophobic effect, rather than by the entropically driven classical 

hydrophobic effect.          

Association constants in D2O and/or D2O/CD3OD (60:40 v/v) of hosts 75-79 and a variety of 

1,4-disubstituted benzene and 2,6-disubstituted naphthalene guest were determined by 

1H NMR titration experiments. Table 1 exhibits Ka values, as well as free energies ΔG° of 

complexation with p-dimethoxybenzene and p-benzodinitrile, as exemplary guests featuring 

electron-donating and respectively withdrawing substituents. Regarding the Ka values of the 

C3-bridged cyclophanes in D2O, electron donor-acceptor interactions have an immense 

influence on the binding properties. For both hosts 75 and 76, the affinity between the 

electron-rich cavity and the electron-deficient guest p-benzodinitrile is much higher than the 

binding to the substrate with electron-donating tendency. In case of the unsubstituted 

cyclophane 75, ΔG° for complexation with the electron-rich guest is even positive. In turn, the 

same cyclophane provides the highest binding affinity for the electron-accepting p-

benzodinitrile. 

Concerning the larger hosts, Table 1 shows that octamethyl cyclophane 78 is the best binder. 

The sequence is followed by the octamethoxy derivative 79 and then the unsubstituted host 

77. The effect of electron donor-acceptor interactions is most pronounced in the 

complexation behavior of octamethyl cyclophane 78. In case of the methoxy cyclophane 79, 

the tendency is negligible. In pure D2O, the electron-rich guest p-dimethoxybenzene is even 

stronger complexed than the electron-accepting substrate p-benzodinitrile. 
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Table 1. Association constants Ka and free energies of complexation ΔG° at 293K for complexes of cyclophanes 
75-79 with 1,4-disubstituted benzene guests, each two bearing electron donating (D) or accepting (A) 
substituents X and Y, in D2O and D2O/CD3O (60/40 v/v). Complexation-induced upfield shifts Δδsat calculated for 
saturation binding of guest protons. [122,123] 

host R n X, Y Ka in D2O, 
M-1 

Ka in D2O/CD3O 
(60/40 v/v), M-1 

ΔG°, 
kcal mol-1 

Δδsat Hguest, 
ppm 

75 H 3 OMe (D) < 85 - < 2.6 -1.83 

75 H 3 CN (A) 1520 - -4.3 -2.13 

76 OMe 3 OMe (D) 371 - -3.45 -2.19 

76 OMe 3 CN (A) 1020 - -4.04 -2.24 

77 H 4 OMe (D) - 95 -2.66 - 

77 H 4 CN (A) - 140 -2.89 - 

78 Me 4 OMe (D) - 580 -3.72 - 

78 Me 4 CN (A) - 1580 -4.29 - 

79 OMe 4 OMe (D) - 340 -3.41 - 

79 OMe 4 CN (A) - 390 -3.48 - 

79 OMe 4 OMe (D) 10200 - -5.38 -2.03 

79 OMe 4 CN (A) 7830 - -5.23 -2.09 

 

Table 1 demonstrates that the guests’ complexation-induced upfield shifts at saturation are 

around 2 ppm in pure D2O, almost independent of the binding strength.   

Evaluation of the complexation strength with the in protic solvents low-soluble naphthalene 

guests proved to be more difficult. Only few accurate association constants and 

thermodynamic data could be determined, such as the values for host 79 with 2,6-

dimethoxynaphthalene (Ka = 4490 M-1 and ΔG° = -4.90 kcal mol-1) and 79 with 2,6-

dicyanonaphthalene (Ka = 7160 M-1 and ΔG° = -5.17 kcal mol-1) in D2O/CD3OD (60:40 v/v). In 

general, the measured association constants of octamethyl host 78 with a series of different 

2,6-disubstituted naphthalene derivatives in pure CD3OD followed the electron-donor-

acceptor theory. The measured Ka values are considerably lower than the association for the 

same host-guest couples in the binary solvent mixture.  

In none of the electronic absorption spectra of the solution complexes a charge-transfer band 

was observed. Compared to the spectra of free guests, the spectra of cyclophanes 76-79 
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threaded with benzene or naphthalene derivatives, only exhibit small bathochromic shifts (2-

4 nm), band broadening and weak hypochromicity.    

The group of Benson investigated the complexation strength of ocatmethoxy cyclophane 79 

with monosubstituted naphthalene guests via fluorescence quenching titration.[124] Formation 

of host-guest exciplexes upon photoexcitation were found for complexes of 79 with 1- and 

respectively 2-methylnaphthalene. Bulky substituents and electron-deficient guests turned 

out to hinder exciplex generation, as for example neither 1-cyanonaphthalene nor the 2-

substiuted analogue aromatic showed this behavior. The association constants for 79 

complexing 1- and 2-methylnaphthalene were determined as 1.6 x 103 M-1 and 1.3 x 105 M-1 

respectively. Interestingly, the substitution at the 1-position of naphthalene seems to be 

unfavorable for complexation, as the binding constants for 1-methylnaphthalene 

(Ka = 1.6 x 103 M-1) and 1-cycanonaphthalene (Ka = 2.1 x 104 M-1) are significantly lower.     

       

On their approach to the insulation of long conjugated π-systems via polyrotaxane formation, 

Anderson and coworkers used Diederich-type cyclophanes as well as cyclodextrins[60,63–65] as 

protective macrocycles of a water-soluble molecular axle. The octamethoxy-substituted 

cyclophane 81 presents the bis(N-ethylpiperidinium) analogue to cyclophane 79.[125] Anderson 

varied the last two synthetic steps from originally basic N-acetyl hydrolysis and subsequent 

Eschweiler-Clarke methylation[126,127] to reduction of N-acetyl with DIBAL-H, followed by 

quaternization with ethyliodide.[128] Harnessing the hydrophobic effect as driving force is  

appealing  due to the hydrophobic character of the conjugated oligophenylene ethynylene 

(OPE) axle. 1H NMR titrations and Job plot analysis confirmed the formation of stable 1:1 

complexes between host 81 and axle 82 in water with an association constant of 

Ka = 4.3 x 104 M-1. The rotaxanation step, an aqueous Glaser coupling[129,130] of a 1:1 mixture of 

81 and 82 gave after purification a product mixture containing 30% [3]rotaxane 85, 27% 

[2]rotaxane 84 and 9% dumbbell 83.  
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Scheme 23. Insulation of the π-conjugated backbone of an OPE by rotaxane synthesis in water.[125,128] 

 

Although the reaction was repeated with varying concentration ratios of the starting 

materials, the percentage of cyclophane incorporated into rotaxane was never greater than 

56%. Interestingly, the reaction with 2,6-di-O-methyl-β-cyclodextrin as an alternative host 

with a high affinity for 82 (Ka = 2.7 x 104 M-1), did not afford any rotaxane. A likely explanation 

for affording low or no rotaxane yield in both cases, might  be found in the huge excess of 

ammonium chloride (2000 eq) and copper(I) chloride (667 eq) used for the coupling reaction.  

The cyclodextrin cavity entrance might have been blocked by complexation of copper(I) 

cations with the cyclodextrin’s hydroxyl groups, whereas  some of the cyclophane might have 

been precipitated as the salt of a chlorocuprate anion. Another given conjecture was 

kinetically slower coupling of the encircled axle. The synthesis of longer polyrotaxanes (86) in 

the presence of 1,4-diethynylbenzene afforded only the incorporation of up to two units, 

probably due to precipitation of formed diethynylbenzene oligomers or elongated axle 82. 

                                                                                                         
86 

Scheme 24. Synthesis of a poly-rotaxane 86.[128] 



Introduction 

43 
 

Measurements of fluorescence spectra revealed an increase of the kinetic stability of the 

excited state and hindered quenching in the presence of cyclophane. Rotaxanes 84 and 85 

showed a 1.8 times higher fluorescence emission compared to the free dumbbell 83. Emission 

enhancement was also observed for a related rotaxane system (87) with an anionic 

naphthalene stopper moiety.[131] [3]rotaxane 87 was afforded in 35% yield under the same 

reaction conditions as rotaxanes 84 and 85. Remarkable was the strong binding strength of 

the corresponding anion stoppered OPE axle with cyclophane 81 (Ka = 4.5 x 106 M-1).  

 

 

87 

Figure 35. Anion-stoppered OPE-rotaxane.[131] 

 

Besides preparing rotaxanes with OPEs, Anderson and coworkers also protected the 

chromophore of azo dyes by rotaxanation with cyclophane 81.[132] Diazonium salts 88a and 

88b were synthesized from their corresponding amine in presence of sodium nitrite, before 

cyclophane 81 and stopper 89 were subsequently added. Rotaxanes 90a and 90b were 

isolated in 46 and 40% yield, respectively. Interestingly, no free dumbbell, but some by-

product due to dediazotization was obtained. Harnessing α- and β-cyclodextrins as 

macrocycles resulted in considerably lower yields and also more complicated 1H NMR spectra 

caused by the unsymmetrical CD rims.        
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                                                   81                                                     90a: (n=1; R=H);  90b: (n=1; R=Me)   

Scheme 25. Synthesis of water-soluble Diederich cyclophane-based azo-dye rotaxanes.[132] 

 

In 2013, Rotzler et al. reported the synthesis of an amphiphilic daisy chain monomer and 

investigated the aggregation behavior in polar solvent.[133] The design profited to a large 

extent from Andersons’ OPE-based rotaxanes with water-soluble Diederich cyclophane 

hosts.[125,128] Rotzler et al. functionalized the periphery of an N,N-ethylated analogue of 

Diederich cyclophane 75 with a unfunctionalized OPE rod, affording monomer 91.  

 
                                                                       91 

Figure 36. Unsubstituted amphiphilic daisy chain monomer 91. 

Association was observed already at very low concentrations (i.e. 10-6 mM). Concentration-

dependent 1H NMR shift experiments in combination with diffusion studies indicated the 

presence of mainly [c2]daisy chains up to a concentration of 1 mM and higher oligomers above 

this concentration.     
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2 Towards Molecular [c2]Daisy Chains as Functional Materials 

 

Inspired by the beautiful pseudo-rotaxane concept of Sauvage,[21,109] our group designed 

organic molecular structures which are suitable for the formation of molecular daisy chains. 

These supermolecules, in particular in form of polymers, are appealing candidates to realize a 

major aim of material science – precise alteration of a systems’ macroscopic physical output 

induced by a controlled change in the molecular level.  

Artificial molecular muscles and also single molecular potentiometers[134] are examples for 

systems which fulfil this objective of functional materials. In contrast to molecular muscles, 

where length variation (physical output) is triggered by changes in electrochemical potential 

or pH (input), in a molecular potentiometer mechanically induced length alteration (input) 

results in a change of conductivity (physical output).  

Encouraged by the initial results of Rotzler’s unsubstituted amphiphile 91, indicating [c2]daisy 

chain formation at concentrations below 1 mM,[133] the aim was to advance the proof-of-

principle system and to construct a molecular potentiometer (Figure 37). Introduction of a 

terminal thiol group on the OPE rod allows [c2]daisy chains to be anchored to gold electrodes 

in a mechanically controllable break junction (MCBJ)[135,136]. Acetyl was chosen as protecting 

group for the thiophenol (95) in order to prevent the formation of disulfides, but on the other 

hand allowing facile deprotection in situ in presence of tetrabutylammonium hydroxide.[137] 

Conductance through the resulting bimolecular junction is expected due to intermolecular π-

π stacking between the two complexed OPE rods of the daisy chain dimer.[138] Mechanical 

alteration of the distance between the two electrodes and hence the change in π-overlapping 

surface is expected to afford a variation in conductance.  

 

       

Figure 37. Schematic representation of a [c2]daisy chain fixed between the two gold electrodes of a mechanically 
controlled break junction. a) high conductance state; b) low conductance state due to less π-overlapping surface.  
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A further objective was to get a deeper insight into the aggregation behavior of the 

amphiphilic OPE-cyclophane system and to capture the daisy chain aggregates affording 

mechanically interlocked molecules. Therefore, a series of derivatives (92-95) with different 

functionalities (Figure 38) was prepared relying on the basic structure of amphiphile 91. 

The hydroxyl group and the free acetylene group in amphiphiles 92 and 93 were introduced 

with the objective of providing a reactive group for attaching a potential stopper molecule. A 

feasible approach might be a substitution reaction at the hydroxyl functionality of 92. In 

principle, the acetylene allows for the application of different coupling types, such as 

Glaser[129,130] coupling or CuAAC[48,49] click chemistry. Both reaction types are applicable in 

water, which is an important premise for trapping the aggregates formed by 93 in aqueous 

medium. Monomer 94, comprising a bulky anthracene moiety linked by a benzylic ether, was 

prepared as a nonthreading reference compound, especially for DOSY experiments. 

Furthermore, the conceivable influence of the OPE substituent’s electronic properties on the 

aggregation was of interest. 

 

 

2.1 General Molecular Design of Amphiphiles 91-95 

 

Monomers 91-95 are composed of two major parts, the hydrophobic OPE rod and the water-

soluble Diederich-type cyclophane comprising a hydrophobic cavity interior. Similarly to the 

design of the proceeding Diederich cyclophanes (see Chapter 1.3.9), two diphenylmethane 

units function as rigid spacers and cavity walls. One of the in total four phenyl rings is mono-

functionalized with a hydroxyl group employed as an anchor group for the OPE rod. The 

diphenylmethane units are bridged by a dioxapropane chain, defining the cavity size. Chloride 

was chosen as the counterion since dichloride cyclophanes exhibit the highest solubility in 

water.[120] The OPE rod was linked to the monofunctionalized cyclophane via a benzyl ether 

moiety, which gives the system the necessary flexibility to find an ideal spatial arrangement 

for threading the rigid OPE rod into the cyclophane cavity.  
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Figure 38. Synthesized and characterized derivatives 92-95 originated from the unsubstituted amphiphile 91[133] 

. 

 

 

2.2 General Synthetic Approach for Amphiphiles 91-95 

 

Amphiphiles 92-95 were prepared in accordance to the synthetic procedure for 91 developed 

by Rotzler et al.. The OPE rod, consisting of two phenylene ethynylene units, was coupled to 

the benzyl linker of the N-ethyl cyclophane 96 via Sonogashira cross-coupling[139]. Attachment 

of the OPE in a late stage of the synthesis allows facile alteration of the substitution pattern 

of the rod. Introduction of the amphiphilic character via quaternization with iodoethane was 

performed in the last synthetic step, avoiding Sonogashira cross-coupling with an organic salt 

and potential solubility issues.    

 

Scheme 26. Retrosynthetic strategy towards amphiphiles 91-95. 
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The synthetic protocol towards building block 96, developed by Rotzler et al.[133] was inspired 

by the previously reported synthetic routs towards monofunctionalized Diederich-type cyclo-

phanes.[120,121,140–142] The procedure composed of nine consecutive steps starting with a 

Grignard reaction[143,144] of 4-bromoanisol (97) and N-acetyl-piperidin-4-one (98). The reaction 

is followed by deprotection of the methoxy group and elimination of the alcohol in one step 

using boron tribromide. Both reactions allowed for gram scale batches since chromatographic 

purification was not required. Alkylation of phenol 100 with 1,3-dibromopropane was 

followed by a Friedel-Crafts-type reaction of guaiacol and compound 101 in presence of boron 

trifluoride diethyl etherate. After nine days reaction duration, compound 102 was obtained 

alongside 9% of a regioisomer. The undesired isomer was removed by high performance liquid 

chromatography (HPLC) after the introduction of the second alkyl chain. The key step towards 

benzyl-substituted cyclophane 96 was the intermolecular cyclization reaction of 103 with bis-

phenol 104, which was performed under dilute conditions (2.9 mM). After purification via 

column chromatography monofunctionalized cyclophane 105 was obtained in 33% yield. 

 

Scheme 27. Assembly of the macrocyclic building block of amphiphiles 91-95. a) Mg, THF, reflux, 1.5 h, then N-

acetyl-piperidin-4-one, THF, rt, 4 h; b) BBr3, CH2Cl2, reflux, 3 h; c) 1,3-dibromopropane, K2CO3, MeCN, reflux, 5 h; 
d) guaiacol, BF3·OEt2, CH2Cl2, rt, 9 d; e) 1,3-dibromopropane, K2CO3, acetone, reflux, 20 h; f) Cs2CO3, acetonitrile, 
reflux, 20 h; e) sodium thiomethoxide, DMF, 160°C, 6 h; f) 4-iodobenzyl bromide, Cs2CO3, DMF, 85°C, 20 h; g) 
LiAlH4, CH2Cl2, -10°C, 5 min, then DIBAL-H, CH2Cl2, 0°C 40 min. 
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For the selective cleavage of the methoxy group without opening the ring via cleavage of 

dioxapropane chains, nucleophilic demethylation with sodium thiomethoxide turned out to 

be the method of choice. The reaction required water-free conditions, inert atmosphere and 

high temperature in order to avoid ring opening and ensure full conversion. The benzyl linker 

was attached to the phenol group of 105 in a SN2 reaction with 4-iodobenzyl bromide in 

presence of cesium carbonate. In the subsequent reduction of cyclophane 106 with DIBAL-H 

according to Rotzler et al.[133] partial cleavage of the benzyl ether and N-deacetylation were 

observed. Side reactions could be prevented by treating the N-acetyl cyclophane 107 with 

4.0 equivalents of LiAlH4 at -10 °C for five minutes, before 2.2 equivalents of DIBAL-H were 

added to the reaction at 0 °C. The macrocyclic building block 96 for amphiphiles 91-95 could 

be obtained quantitatively.  

The preparation of the functionalized OPE building blocks, as well as the final assembly 

towards the amphiphilic monomers will be described individually for each target molecule in 

following sections.   

 

 

2.3 General Approach for the Aggregation Studies 

 

Based on the proof-of-principle publication[133] the aggregation behavior of the four novel 

amphiphiles 92-95 were investigated by applying similar analytical techniques. The association 

constant Ka, as well as the aggregation number N were obtained by concentration dependent 

1H NMR titration studies, whereas diffusion ordered spectroscopy (DOSY) measurements 

provided information about the size of the aggregates. Qualitative comparison of fluorescence 

emission spectra recorded in solvents of high polarity with those in low polarity gave an 

indication about the self-complexation behavior in different environments.  

 

2.3.1 1H NMR Dilution Studies 

 

In line with previous publications the self-aggregation behavior of molecule 91[133] as well as 

the derivatives 92-95 was investigated by performing 1H NMR dilution studies. Starting with a 

concentrated stock solution in D2O/CD3OD (60:40 v/v) a dilution series of each amphiphile was 

prepared and 1H NMR spectra were recorded after every dilution step at constant 



Towards Molecular [c2]Daisy Chains as Functional Materials 

50 
 

temperature. Comparison of the spectra revealed signal broadening and additionally a 

concentration-dependent change of the observed chemical shift δobs. This parameter is 

composed of the sums of the individual chemical shift of the monomer (δmon) and all the 

present aggregates (δagg) (equation 1): 

 

δobs = δmon(Cmon/Ctot) + δagg1(Cagg1/Ctot) + δagg2(Cagg2/Ctot) + …   (1)                   

 

The critical aggregation concentration (cac), indicating the concentration at which the 

predominant aggregate changes to another, can be determined with the plot of δobs versus 

the reciprocal of the total concentration Ctot. For instance, the cac from the transition of dimer 

to higher aggregates was determined as 1 mM for amphiphile 91.  

The association constant Ka and the aggregation number N were obtained by applying the 

following linear expression[133,145]:  

 

ln[Ctot(ǀδobs-δmonǀ)] = N ln[Ctot(ǀδagg-δobsǀ)] + lnKa + lnN – (N-1)ln(ǀδagg-δmonǀ) (2) 

 

Equation (2) was based on the simplification considering only one equilibrium for each 

aggregate and concentration range. For all equilibria the same association constant was 

assumed (Ka1 = Ka2 = Ka3 etc.). The two unknown parameters δmon and δagg were approximated 

by plotting δobs versus Ctot and δobs versus 1/Ctot, respectively, and extrapolating to the 

intercept with the y-axis (see exemplary chapter 2.3.2). Fitting a straight line with the plots of 

ln[Ctot(ǀδobs-δmonǀ)] vs. ln[Ctot(ǀδagg-δobsǀ)] gave a slope (N) and an intercept with which Ka could 

be calculated. The dilution studies were performed three times for each derivative, if not 

indicated otherwise.     
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2.3.2 DOSY Analysis  

 

Assuming a similar aggregation behavior to amphiphiles 91, the formation of predominantly 

dimeric daisy chains was also expected for derivatives 92-94 at low concentrations.  

 

  

Figure 39. Possible dimeric and trimeric aggregates formed by amphiphiles 91-94 in polar solvents. 

 

Monomer 91 can aggregate to three different dimers: 1) the acyclic head-tail [a2] HT daisy 

chain and also the first propagation step towards polymers, 2) the head-head threaded cyclic 

and thermodynamically favored dimer [c2] HH or 3) the unthreaded [a2] TT aggregate. As the 

OPE rods of the latter do not thread the cyclophane cavity no release of high energy water 

can take place as it is usually the case upon complexation driven by a nonclassical hydrophobic 

effect. For the following aggregates (N-mers) mechanically interlinked compounds can only be 

acyclic or cyclic, as exemplary demonstrated for trimers ([a3] HT and [c3] HH-3). Micellar or 

multiple stacked aggregates are possible as unthreaded version. 

By performing diffusion ordered 1H NMR (DOSY) measurements in a concentration range 

where predominantly dimerization was expected, the size of the aggregate and hence the type 

of dimer was estimated.  However, a direct comparison of the obtained diffusion coefficient 

Dagg with the one of the monomer (Dmon) was not feasible. Due to instrumental limits the 

concentration range in which monomer can be observed in the D2O/CD3OD (60:40 vv) could 

not be reached by 1H NMR experiments. Therefore, the monomethoxy-functionalized 

cyclophane lacking the OPE moiety was synthesized as a reference compound. The 
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determined diffusion coefficient Dref was used to estimate the ratio of aggregate volume Vagg 

to monomer volume Vmon by the following expression:[133] 

 

�������� = (	��� 	
��
 )����� �
��
           (3)

  

with Mmon and Mcy exhibiting the molecular weight of the monomeric amphiphile and the 

reference compound, respectively.   

Reference cyclophane 109 was synthesized starting from cyclophane 104 in two steps 

(Scheme 28). The N-acetyl unit of 104 was reduced by applying a previously reported 

procedure with boron-tetrahydrofuran complex as reductant affording 108 in 64% yield. The 

tertiary amine was then alkylated using iodoethane. Purification by column chromatography 

with a mixture of acetone: 1 m aq. ammonium chloride: acetonitrile (7:1:1 vv), Soxhlet 

extraction and ion exchange chromatography yielded 109 in 54% yield.   

 

 

Scheme 28. Synthesis of reference compound 109. a) BH3·THF, THF reflux, 18 h, then H2SO4, EtOH, reflux, 1 h; b) 
iodoethane, CH2Cl2, rt, 24 h, then ion exchange (DOWEX 1X8, Cl-).   

 

2.3.3 Fluorescence Spectroscopy 

 

The influence of the hydrophobic effect on the aggregation tendency of amphiphiles 92-95 

was investigated qualitatively by recording fluorescence emission spectra. In highly polar 

protic solvents, such as the mixture of water/methanol (3:2 v/v), aggregation was expected. 

In turn, in the less polar and aprotic acetonitrile, a solvent in which the amphiphilic monomers 

were still soluble, a significantly lower tendency for association was anticipated. This behavior 

potentially leads to a reduced emission of the aggregated, threaded rod, compared to the free 
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OPE unit. The shielding effect of the macrocycle was expected to be more pronounced in a 

more protic water/methanol mixture than in aprotic and less polar acetonitrile. Excitation at 

the absorption wavelength of the characteristic π-π* transition of the OPE moiety (between 

321 and 328 nm) was applied for measuring the fluorescence spectra.  

 

 

2.4 Synthesis and Aggregation Studies of Hydroxyl-substituted Amphiphile 92 

 

2.4.1 Synthesis of Monomer 92 

 

The hydroxyl group of the amphiphile’s OPE building block was protected by a triisopropylsilyl 

(TIPS) group (110) in order to avoid the alkylation of the OH group under the basic conditions 

of the quaternization step. The protecting group was then cleaved off in the final step. 

Building block 110 was synthesized starting from 1,4-diiodobenzene. Acetylenes with 

orthogonal protecting groups, trimethylsilyl (TMS) and dimethylpropargyl alcohol (HOP) were 

introduced via statistical Sonogashira cross-coupling reaction yielding 111 in a yield of 42%.[133] 

Selective removal of the HOP protecting group with sodium hydride afforded component 

112,[146] which was then coupled with (4-iodophenoxy)triisopropylsilane 113 under standard 

Sonogashira reaction conditions obtaining 114 in 92% yield. The TMS protecting group of 

component 114 was selectively cleaved off with potassium carbonate in methanol affording 

OPE building 115 in 85% yield.     

 

 

Scheme 29. Synthesis of the TIPS-protected oligophenylene-ethynylene building block 115. a) PdCl2(PPh3)2, CuI, 
DIPA, THF, rt, 1.) TMS-acetylene, 4 h, 2.) 2-methyl-3-butyn-2-ol, rt 16 h; b) NaOH, toluene, 80°C, 45 min; c) 113, 
PdCl2(PPh3)2, CuI, DIPA, THF, 60 °C, 3 h; d) K2CO3, MeOH, rt, 2 h. 
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OPE building block 115 was attached to iodobenzyl cyclophane 96 via Sonogashira cross-

coupling using catalyst bis(dibenzylideneacetone)palladium(0) (Pd(dba)2) in combination with 

triphenylphosphine as it had been employed for the final assembly of unsubstituted 

amphiphile 91.[133] The resulting precursor 116 was alkylated with an excess (1600 eq) of 

freshly distilled iodoethane in presence of 5 eq of base potassium carbonate. The base turned 

out to be crucial for full conversion to the alkylated product. After 40 h stirring in the dark at 

room temperature, the combined analysis method composed of high-performance liquid 

chromatography and electrospray ionization mass spectrometry (HPLC-ESI-MS) measurement 

indicated completion of the reaction and the remaining iodoethane was removed in vacuo. 

The resulting pale yellow solid was taken up in methanol in order to filter off the major part 

of excess potassium carbonate. Using dry methanol was essential to avoid cleavage of the TIPS 

protecting group. The HPLC-ESI-MS chromatogram showed the double charged hydroxyl 

amphiphile 92 as the main product (m/z = 527) besides a signal with m/z = 541, most likely 

corresponding to the O-ethylated analogue product formed from some TIPS-deprotected 

compound during the alkylation with iodoethane. Amphiphile was isolated by applying 

reverse-phase column chromatography. It turned out that addition of 5% 1 M aq. NH4Cl to the 

neutral eluent consisting of 95% acetonitrile and 5% water was crucial for eluting the target 

compound. Assuming counter-anion exchange from iodide to chloride upon during the 

chromatographic purification with ammonium chloride, the desired amphiphile was obtained 

in 45% yield.  

    

 

Scheme 30. Final assembly of amphiphile 92. a) OPE 115, Pd(dba)2, PPh3, CuI, THF, DIPA, rt, 8 h; b) 1.) EtI, K2CO3, 
rt, 40 h, 2.) aq. NH4Cl. 
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2.4.2 1H NMR Dilution Studies  

 

Figure 39 demonstrates the 1H NMR spectra of amphiphile 92 of different concentrations 

(0.13 mM – 8.0 mM) recorded in D2O/CD3OD (60:40 v/v). Most striking are the peak broadening 

as well as the change of the observed chemical shifts δobs with increasing concentrations. The 

highest change of δobs was observed for the two different signals of the OPE protons in “the 

middle” phenyl unit of the rod, which were assigned by 2D NMR spectra in CD3CN. The protons 

correspond to the chemical shift at 7.45 ppm and 7.32 ppm, respectively, in the spectrum 

recorded at 8.0 mM.     

     

 

Figure 40. Stacked 1H NMR spectra of the aromatic region of monomer 92 recorded in D2O/CD3OD (60:40 v/v) 
at 298 K on a 500 MHz NMR spectrometer. a) 8.0 mM; b) 6.0 mM; c) 4.0 mM; d) 3.0 mM; e) 2.0 mM; f) 1.5 mM; g) 
1.0 mM; h) 0.5 mM; i) 0.33 mM; j) 0.25 mM; k) 0.19 mM; l) 0.13 mM.  

 

By way of comparison, 1H NMR spectra of 92 were also recorded in acetonitrile-d3 (Figure 40). 

The spectra are well-resolved, whereas peak-broadening and changes in the chemical shifts 

are lacking. These observations confirmed that no or only minor aggregation takes place in 

the aprotic, less polar solvent.   
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Figure 41. Stacked 1H NMR spectra of the aromatic region of monomer 92 recorded in acetonitrile-d3 at 298 K on 
a 500 MHz NMR spectrometer. a) 2.4 mM; b) 1.2 mM; c) 0.6 mM. 

 

Applying the analysis method for the determination of the aggregation number N and the 

association constant Ka, introduced in chapter 2.2.1, δobs was plotted against Ctot and 1/ Ctot, 

respectively (see Figure 41 exemplary for one dilution series and for the most strongly shifting 

1H NMR signal). Linear regression of the data points in the respective linear ranges was used 

to estimate δmon (7.57 ppm) and δagg (7.31 ppm) respectively, as the intercepts with the y-axis. 

  

          

Figure 42. Plot of the observed chemical shift δobs versus the total concentration Ctot (left graph) and versus the 
inverse total concentration 1/ Ctot (right graph). Linear regression gave δmon and δagg, respectively.  

 

The cac of 92 and the other derivatives could not be determined. The method was not reliable 

as the data quality at low concentration was insufficient due to the detection limit of the NMR 

spectrometer.    
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By plotting ln[Ctot(ǀδobs-δmonǀ)] vs. ln[Ctot(ǀδagg-δobsǀ)] and utilizing linear regression a straight 

line was obtained. The slope corresponded to the aggregation number N = 2.26 (~2).  With the 

intercept and equation (2) the association constant Ka was calculated. The three 1H NMR 

dilution study series gave Ka values of 8.1 x 103 M-1, 5.4 x 103 M-1 and 7.6 x 105 M-1,  respectively, 

for the most shifting peak (at 7.32 ppm in a 8.0 mM solution). Consequently, the association 

strength of the hydroxyl-substituted, electron-rich amphiphile 92 turned out to be lower than 

the one for the unsubstituted monomer 91, confirming the EDA theory. 

 

 

Figure 43: Plot of ln[Ctot(ǀδobs-δmonǀ)] vs. ln[Ctot(ǀδagg-δobsǀ)]. The straight line represents linear regression from 
which the aggregation number N and the association constant Ka were estimated. 

 

2.4.3 DOSY Analysis 

 

Diffusion ordered spectroscopy measurements of amphiphile 92 were performed in 

D2O/CD3OD (60:40 v/v) with a 0.2 mM sample, a concentration regime in which dimers were 

expected as predominant aggregates. By using the obtained diffusion coefficient D 

(1.23 x 10-10 m2 s-1) and equation (3), the volume of the aggregate was estimated to be 1.41 

times larger than the corresponding volume of the monomer. This finding strongly indicated 

mainly the formation cyclic, double threaded daisy chain dimers ([c2] HH) under these 

conditions.   
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2.4.4 Fluorescence Spectroscopy 

 

UV and fluorescence spectra of amphiphile 92 were recorded in the binary solvent mixture 

water/methanol (60:40 v/v) as well as in acetonitrile. The maxima of the two almost identical 

UV spectra were observed for both cases at a wavelength of λ = 326 nm, corresponding to the 

π-π* transition of the OPE rod. For recording the emission spectra, compound 92 was excited 

at 326 nm in both solvent systems. The huge difference in the intensity and hence the 

fluorescence quenching in the more polar system is striking. The maximum intensity in 

water/methanol is only 3.4% of the corresponding emission in acetonitrile at the same 

concentration, strongly indicating formation of inclusion complexes in the polar solvent 

mixture.    

 

  

Figure 44. Absorption (left) and relative emission (right) spectra of amphiphile 92 in H2O/MeOH (60:40 v/v) (blue) 
and MeCN (black), respectively. The two emission spectra were recorded at a concentration of 4.0 x 10-4 mM.    

 

 

 

 

 

 

 

 

 



Towards Molecular [c2]Daisy Chains as Functional Materials 

59 
 

2.5 Synthesis and Aggregation Studies of Acetylene-substituted Amphiphile 93 

 

2.5.1 Synthesis of Monomer 93  

 

In the final assembly of 93 (Scheme 32), the OPE moiety 122 was attached to the macrocyclic 

building block 96 via Sonogashira cross-coupling reaction. The second acetylene unit of 122 

was protected by a TIPS group. The first synthetic step towards OPE moiety 122 (Scheme 31) 

composed the introduction of the TIPS-acetylene (TIPSA) functionality to the commercially 

available (4-bromophenylethynyl)trimethylsilane 117 by a standard Sonogashira cross-

coupling protocol. Purification via column chromatography afforded OPE precursor 118 in 

66% yield, which was then deprotected with potassium carbonate in methanol to selectively 

cleave off the trimethylsilyl group. The second phenyl moiety was attached via a second 

Sonogashira cross-coupling affording the bromo-substituted compound 120. After 

chromatographic purification, 120 was coupled to TMS-acetylene (TMSA), giving a 

quantitative yield of compound 121. 121 was desilylated under basic conditions in methanol 

affording OPE moiety 122 in 92% yield.            

   

 

Scheme 31. Synthesis of the TIPS-protected oligophenylene-ethynylene building block 122. a) TIPSA, 
PdCl2(PPh3)2, CuI, NEt3, THF, 70 °C, 3 h; b) K2CO3, CH2Cl2, MeOH, rt, 6 h; c) 1-bromo-4-iodobenzene, PdCl2(PPh3)2, 
CuI, DIPA, THF, rt, 6 h; d) TMSA, PdCl2(PPh3)2, CuI, DIPA, THF, 60 °C, 3 h; e) K2CO3, MeOH, rt, 3 h. 

 

The Sonogashira cross-coupling of cyclophane 96 with OPE moiety 122 was performed with 

tetrakis(triphenylphosphine)palladium(0). Product 123 was afforded in 99% yield after 

purification via column chromatography. TIPS was cleaved off with the fluoride source 

tetrabutylammonium fluoride (TBAF) as reagent, yielding compound 124 in 74%. 

Furthermore, deprotection before alkylation prevented the challenging chromatographic 
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separation of the alkylated, amphiphilic product from tetrabutyl ammonium, which tends to 

be eluted together with the cyclophane moiety. Amine 124 was alkylated to yield the 

quaternary ammonium compound 125 by applying similar reaction conditions as used for the 

alkylation of derivative 92. After 34 hours reaction duration, the recorded LC-ESI-MS 

chromatogram indicated full conversion to the N,N´-ethylated product. The 

hexafluorophosphate salt 125 was isolated in 94% yield by subjecting the dried, crude reaction 

mixture to an aqueous solution of potassium hexafluorophosphate and subsequent extraction 

with dichloromethane. Applying chloride ion exchange chromatography afforded the target 

compound 93 in 94%.      

 

Scheme 32. Synthetic steps towards amphiphile 93. a) OPE 122, Pd(PPh3)4, CuI, THF, DIPA, rt, 18 h; b) TBAF, THF, 
rt, 45 min; c) 1.) EtI, K2CO3, dark, rt, 34 h; 2.) KPF6, CH2Cl2; d) DOWEX 1X8, Cl-.    

 

 

2.5.2 1H NMR Dilution Studies 

 

Regarding the 1H NMR spectra of 93 in D2O/CD3OD (60:40 v/v) at different monomer 

concentrations (Figure 45), evidence for aggregation, such as signal broadening at higher 

concentrations and changes in the chemical shift δobs are clearly visible. In contrast, the 
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recorded 1H NMR spectra of 93 in CD2Cl2 show sharp signals and lack any sign of aggregation 

(Figure 46). Similar to the aggregation studies of hydroxyl-substituted amphiphile 92, three 

dilution series were performed in D2O/CD3OD (60:40 v/v) and with the most strongly shifting 

signal the aggregation number N as well as the association constant Ka was determined. The 

signal chosen for the evaluation of the studies was the OPE signal at δ = 7.27 ppm in the 8 mM 

solution. Employing the linear regression method (see exemplary plots in Chapter 2.3.2), Ka 

values of 3.6 x 105 M-1, 1.1 x 105 M-1 and 9.9 x 105 M-1 were obtained. However, the three 

determined aggregation numbers N = 2.8, 2.7 and 3.0 indicated trimers as major species in 

the utilized concentration range.   

  

 

Figure 45. Stacked 1H NMR spectra of the aromatic region of amphiphile 93 recorded in D2O/CD3OD (60:40 v/v) 
at 298 K on a 500 MHz NMR spectrometer. a) 8.0 mM; b) 6.0 mM; c) 4.0 mM; d) 3.0 mM; e) 2.0 mM; f) 1.5 mM; g) 
1.0 mM; h) 0.75 mM; i) 0.5 mM j) 0.33 mM; k) 0.25 mM; l) 0.18 mM. 

 

Figure 46. Stacked 1H NMR spectra of the aromatic region of monomer 93 recorded in CD2Cl2 at 298 K on a 
500 MHz NMR spectrometer. a) 4.0 mM; b) 2.0 mM; c) 1.0 mM; d) 0.5 mM. 
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2.5.3 DOSY Analysis 

 

The diffusion coefficient in the protic, polar solvent mixture D2O/CD3OD (60:40 v/v) 

corresponding to the aggregates of 93 in the 0.2 mM sample was determined as 

D = 1.20 x 10-10 m2 s-1. This parameter revealed to be very similar to the corresponding 

diffusion coefficient of amphiphile 92 (D = 1.23 x 10-10 m2 s-1). Also the ration of aggregate 

volume (Vagg) to monomer volume (Vmon) of 1.42, estimated by employing equation (3), turned 

out to be almost identical with the ratio obtained for 92 (1.41). These ratios rather implicated 

the presence of [c2]daisy chains, which however stands in contrast to the determined 

aggregation number N of 93. 

       

2.5.4 Fluorescence Spectroscopy 

 

In line with the qualitative fluorescence studies of 92, the UV and fluorescence spectra of 

amphiphile 93 were recorded in water/methanol (60:40 v/v) as well as in acetonitrile. The 

maximum wavelength (λ = 328 nm) in the UV spectrum in acetonitrile (Figure 47, left) was 

used as excitation wavelength of both recorded emission spectra. In contrast to the 

fluorescence spectra of 92, which showed a great difference in emission intensity, the 

fluorescence quenching in the protic, more polar solvent mixture is much less distinct for 93. 

The reason for this unexpected result, which appeared to be contradicting the high association 

constant of 93 in the range of 105 M-1, was not further investigated.  

 

   

Figure 47. Absorption (left) and relative emission (right) spectra of amphiphile 93 in H2O/MeOH (60:40 v/v) (blue) 
and MeCN (black), respectively. Both emission spectra were recorded at a concentration of 6.0 x 10-5 mM.    
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2.6  Synthesis and Aggregation Studies of Anthracene-substituted Amphiphile 94 

 

2.6.1 Synthesis of Monomer 94 

 

OPE moiety 129 was prepared starting with a standard Sonogashira cross-coupling reaction of 

TIPS-protected precursor 119 with 4-iodophenol, affording phenol-OPE 126 in 99% yield. The 

anthracene component was then introduced via nucleophilic substitution reaction at OPE 128 

with 9-chloromethyl anthracene (127) under basic reaction conditions. In the last step, the 

TIPS protecting group was removed by utilizing TBAF in THF resulting in quantitative yield of 

129.   

 

 

Scheme 33. Synthesis of OPE moiety 129. a) 4-iodophenol, Pd(PPh3)2Cl2, CuI, DIPA, THF, 60 °C, 6 h; b) NaOH, 
MeCN, 5 h; c)TBAF, THF, rt, 1 h.  

 

Similar to the synthesis of the free acetylene-substituted amphiphile 93, for the assembly of 

OPE 129 with cyclophane 96 tetrakis(triphenylphosphine)palladium(0) was employed as 

catalyst for the Sonogashira cross-coupling reaction. After purification by column 

chromatography, amine 130 was obtained in 83% yield. Alkylation with iodoethane in 

presence of potassium carbonate and subsequent subjection to potassium 

hexafluorophosphate afforded 131 in 91% yield. Compound 94 was obtained after ion 

exchange from hexafluorophosphate to chloride in 86% yield.   
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Scheme 34. Assembly of amphiphile 94. a) OPE 129, Pd(PPh3)4, CuI, THF, DIPA, rt, 18 h; b) 1.) EtI, K2CO3, dark, rt, 
24 h; 2.) KPF6, CH2Cl2; c) DOWEX 1X8, Cl-.    

 

 

2.6.2 1H NMR Dilution Studies 

 

Figure 48 shows the aromatic region as well as the signal corresponding to the bridging CH2 

unit adjacent to the anthracene moiety of the 1H NMR spectra of PF6
- salt 131 in CD2Cl2 at 

different concentrations. 

 

 

Figure 48. Stacked 1H NMR spectra of the aromatic region of monomer 131 recorded in CD2Cl2 at 298 K on a 
500 MHz NMR spectrometer. a) 4.0 mM; b) 2.0 mM; c) 1.0 mM; d) 0.5 mM. 

 

Regarding the 1H NMR spectra of the same compound as chloride salt in D2O/CD3OD 

(60:40 v/v) at identical concentrations (Figure 49, left), the difference to the spectra in CD2Cl2 

and also to the corresponding ones in pure CD3OD (Figure 49, right) is striking. Whereas the 

spectra recorded in CD2Cl2 and even in pure CD3OD show sharp signals and no peak 
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broadening with increasing concentration, the influence of D2O causes an immense peak 

broadening making assignment of the signals impossible. Already at a concentration of 0.5 mM 

signals appeared very broad and could hardly distinguished from the spectrum baseline. The 

behavior is most likely attributed to unspecific intermolecular aggregation of the hydrophobic 

rod and anthracene stopper.    

         

Figure 49. Stacked 1H NMR spectra of the aromatic region of monomer 94 recorded in D2O/CD3OD (60:40 v/v) 
(left) and pure CD3OD (right) at 298 K on a 500 MHz NMR spectrometer. a) 4.0 mM; b) 2.0 mM; c) 1.0 mM; d) 
0.5 mM. 

 

2.6.3 DOSY Analysis 

 

Due to the absence of distinct signals, DOSY analysis was not feasible. The anthracene 

stoppered monomer 94 was hence not suitable as geometry-dependent DOSY reference 

compound for aggregates formed in the protic, binary solvent mixture.   

 

 

2.6.4 Fluorescence Studies 

 

The absorption spectrum of 94 of the OPE moiety shows a significantly lower emission in 

H2O/MeOH (60:40 v/v) compared to the spectrum in MeCN, standing in contrast to the 

previous systems. Emission spectra in the two different solvent systems were recorded at a 

concentration of 9.0 x 10-4 mM and the excitation wavelength for both cases was λ = 327 nm. 

The fluorescence quenching in the protic, more polar H2O/MeOH mixture might be assigned 

to π-stacking of the anthracene moieties already observed in the 1H NMR dilution studies.     
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Figure 50. Absorption (left) and relative emission (right) spectra of amphiphile 94 in H2O/MeOH (60:40 v/v) (blue) 
and MeCN (black), respectively. Both emission spectra were recorded at a concentration of 9.0 x 10-4 mM.    

 

 

 

2.7 Synthesis and Aggregation Studies of S-Acetyl-substituted Amphiphile 95 

 

2.7.1 Synthesis of Monomer 95 

 

In regard to the instability of the S-acetyl group in presence of nucleophilic bases, such as 

potassium carbonate, which is used in the quaternization step, the OPE moiety was protected 

by the trimethylsilyl ethyl protecting group. A transprotection reaction was performed in the 

final step towards the S-acetyl substituted monomer 95.  

4-bromothiophenol (132) reacted in a radical addition reaction with vinyltrimethylsilane to 

the trimethylsilyl ethyl protected thiol (SEtTMS) 133, using azobis(isobutyronitril) (AIBN) as 

radical initiator.[147] The quantitatively isolated compound 133 was transformed into the more 

reactive iodine derivative 134 by employing tert-butyl lithium for lithium halogen exchange 

and subsequent quenching with molecular iodine.[148] OPE building block 112 was coupled to 

the protected thiol 134 via Sonogashira reaction, affording compound 135 in 99% yield after 

chromatographic purification. OPE 136 was obtained by selective removal of the acetylene-

TMS protecting group at -78 °C in presence of TBAF.     
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Scheme 35. Synthesis of the SEtTMS oligophenylene-ethynylene building block 136. a) vinyltrimethylsilane, AIBN, 
95 °C, 24 h, quant.; b) 1.) tBuLi, Et2O, -70 °C, 40 min, 2.) I2, Et2O, -70 °C, 10 min, then 0 °C, 30 min; c) 112,  
PdCl2(PPh3)2, CuI, DIPA, THF, 40 °C, 5 h; d)TBAF, THF, -78 °C, 1 h. 

 

OPE 136 was attached to cyclophane 96 via Sonogashira cross-coupling, affording compound 

137 in 95% yield. Iodide salt 138 was obtained by quaternization of amine 137. After removing 

excess iodoethane and potassium carbonate, 138 was directly used for the transprotection 

reaction. In the first step, the trimethylsilyl ethyl protecting group was removed by utilizing 

TBAF at room temperature, followed by the reprotection of the thiolate with acetyl chloride 

at -10 °C. It turned out, that even for the purification by reverse-phase column 

chromatography addition of ammonium chloride was crucial for eluting 95, as it was also the 

case for the purification of hydroxyl-substituted amphiphile 92. Three purification cycles were 

necessary, until tetrabutyl ammonium could be entirely removed. Other inorganic fluoride 

sources, such as potassium or silver fluoride or silver tetrafluoro borate did not work as 

deprotecting reagent for this system. Centrifugation in water revealed to be a suitable method 

to separate the poorly water-soluble target compound 95 from the well-soluble eluate 

component ammonium chloride, affording amphiphile 95 in 53% yield.       
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Scheme 36. Last synthetic steps towards amphiphile 95. a) OPE 136, Pd(PPh3)4, CuI, THF, DIPA, rt, 18 h; b) EtI, 
K2CO3, dark, rt, 72 h; c) 1.) TBAF, THF, rt, 45 min; 2.) AcCl, THF, -10 °C, 2 h.     

 

2.7.2 1H NMR Dilution Studies 

 

The recorded 1H NMR spectra of the S-acetyl substituted amphiphile in D2O/CD3OD (60:40 v/v) 

(Figure 51) exhibit more pronounced signal broadening, than derivatives 92 and 93, which 

might indicate a stronger aggregation tendency. For example, the spectra at the concentration 

8.0 mM and 6.0 mM, respectively, could not be used for evaluation. However, the determined 

association constant revealed to be relatively low, with Ka = 2.3 x 103 M-1. The aggregation 

number was obtained as N = 2.2.  

 

Figure 51. Stacked 1H NMR spectra of the aromatic region of monomer 93 recorded in D2O/CD3OD (60:40 v/v) at 
298 K on a 500 MHz NMR spectrometer. a) 8.0 mM; b) 6.0 mM; c) 4.0 mM; d) 3.0 mM; e) 2.0 mM; f) 1.5 mM; g) 
1.0 mM; h) 0.5 mM; i) 0.33 mM; j) 0.25 mM; k) 0.19 mM; l) 0.13 mM. 
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2.7.3 DOSY Analysis 

 

Performing diffusion studies in D2O/CD3OD (60:40 v/v) with amphiphile 95 at 0.2 mM gave a 

diffusion coefficient of D = 1.25 x 10-10 m2 s-1. Applying equation (3) resulted in an aggregate 

volume (Vagg) to monomer volume (Vmon) ratio of 1.27, which is lower than the corresponding 

values for 92 (Vagg/Vmon = 1.41) and 93 (Vagg/Vmon = 1.42), but still indicates the presence of 

[c2]daisy chains rather than monomer in the measured solution.        

 

2.7.4 Further Analysis 

 

Amphiphile 95 could not be satisfactory characterized by 13C NMR spectroscopy and neither 

by fluorescence spectroscopy in different solvents due to decomposition of the sample.  The 

cleavage of the benzylic ether linker leads to a mixture of compounds with different 

characteristic fluorescence properties, rendering emission spectroscopy analysis insignificant. 

The definite reason for the cleavage of the benzylic ether linker is not clear, but a possible 

explanation might be photocatalytic decomposition, which is known from pyrene-[149] and 

anthracene-based[150] benzylic systems comprising an adjacent carbonyl group. Resynthesis of 

95 proved to be very challenging.  In some attempts, incomplete cleavage of the SEtTMS 

protecting group was observed, demanding more than three equivalents of TBAF, which 

render the already troublesome purification more challenging. In another effort, S-ethyl-

functionalized amphiphile was obtained as main product. Fortunately, a fraction containing 

pure amphiphile 95 was directly given to the group of Michel Calame at the University of Basel, 

enabling conductance measurements of 95 in an MCBJ setup.            
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2.8 Conductance Studies of Amphiphile 95   

 

2.8.1 Mechanically Controllable Break Junction 

 

As already briefly described in the beginning of Chapter 2, the aim was to mount an interlinked 

[c2]daisy chain comprising thiophenol anchoring groups between the electrodes of a 

mechanically controllable break junction (MCBJ) and measure the distance-dependent 

conductance through the supermolecule. The idea was originally inspired by the discovery of 

Wu et al. that charge transport can occur through two molecules interacting via 

intermolecular π-π stacking.[138] Monofunctionalized thiol OPE 139 was investigated in the 

MCBJ and exhibited an unexpectedly high conductance. Since 139 comprises only one 

anchoring group for the gold electrodes, the observed conductance was attributed to π-π 

stacking of the phenyl units (Figure 52).   

 
                139  

 

Figure 52. Monothiol OPE 139 (left) mounted as stacked dimer between two gold electrodes of a MCBJ (right).  

 

Figure 53 demonstrates a typical MCBJ setup:[151] an atomic wire with a constriction in the 

middle is placed on a pushing rod with two counter supports. By bending the substrate (T) 

when moving the rod upwards, the wire is stretched until it finally breaks resulting in two 

atomic-scale metallic contacts. As the distance between the nano-electrodes is only few 

Ångstroms, tunneling current through space is observed in a nonbridged MCBJ[152] as shown 

in Figure 54 a.[138] The conductance decreases exponentially with increasing distance between 

the contacts.      
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Figure 53. Schematic representation of a MCBJ setup.[151] 

 

Molecules can be deposited into the junction either in solution or by evaporation. As soon as 

a conducting molecule bridges the electrodes, the corresponding conductance (G)/distance 

(z) curve shows a plateau and a peak in the logarithmic histogram NlogG(logG) can be observed 

(Figure 54, b).[138]  

 

Figure 54. Typical conductance (G)/distance (z) curves and logarithmic histogram NlogG(logG) corresponding to a 
nonbridged MCBJ (a) and to a junction with a mounted, conducting molecule (b).[138] 

 

The junction can also be closed again, allowing minute repetition of the conductance 

measurements for several hundred times and hence a statistical data set.  
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2.8.2 Conductance Measurements 

 

Investigations of amphiphile 95 in an MCBJ setup were performed by Anton Vladyka in the 

group of Michel Calame at the University of Basel. 

A 0.2 mM sample of monomer 95 in H2O/MeOH (60/40 v/v) was used for the conductance 

experiments in the MCBJ. The acetyl protecting group of the thiophenol anchors were 

removed in situ by tetrabutylammonium hydroxide (TBAH) under argon atmosphere. The 

applied bias voltage of 0.1 V was kept constant, while 250 traces were recorded. Figure 55 

demonstrates the obtained G/z curves (a) and the corresponding logarithmic histogram 

NlogG(logG) (b), unfortunately both lacking a clear sign for the incorporation of a conducting 

molecule into the MCBJ.  

 

 

Figure 55. G/z curves (a) and corresponding logarithmic histogram NlogG(logG) (b) of measurements performed 
with amphiphile 95 in a MCBJ setup.  

 

An explanation for the obtained result might be that in [c2]daisy chains π-π stacking and hence 

charge transport between the OPE rods is hindered.  Another likely reason for the absence of 

a conductance plateau might be acyclic daisy chains or unthreaded, micellar-like aggregates 

as predominant species rather than the cyclic, dimeric daisy chains. Such aggregates are not 

capable to bridge the MCBJ nanoelectrodes as a single, conducting (super)molecule.  
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2.9 Stoppering of Interlinked Aggregates 

 

The aggregates of the hydroxyl- and respectively acetylene-substituted amphiphiles 92 and 93 

were intended to be trapped by reaction with a bulky stopper molecule. Preliminary 

experiments with 9-(chloromethyl)anthracene as stopper under basic conditions revealed 

that a nucleophilic substitution reaction at the phenol moiety of 92 is not feasible in the 

required H2O/MeOH solvent mixture most likely due to the insolubility of the stopper in this 

environment. However, the protic polar solvent is crucial for complexation driven by the 

hydrophobic effect. 

Therefore, the in aqueous media applicable Glaser[129,130] coupling as well as azide-alkyne click 

chemistry were employed as stoppering reaction and hence should give further insight into 

the aggregation behavior of the amphiphilic monomers in general. The terminal acetylene 

functionality of 93 can potentially react with the free acetylene of the water-soluble stopper 

140, which was developed by Anderson et al..[125] 140 was synthesized according to a slightly 

modified protocol which was previously reported.[128] Preliminary studies revealed that 

employing the coupling conditions utilized by Anderson[128] with 10 equivalents of stopper 140 

was not feasible for our system (Scheme 37). The large excess (200 eq) of the salts copper(I) 

chloride and ammonium chloride rendered the reaction controls by HPLC-ESI-MS as well as 

direct injection ESI-MS impractical. In the resulting spectra of low intensity only starting 

material was identified after 60 hours of reaction duration. Conversion of amphiphile 93 was 

also not observed by using copper(II) acetate (0.2 eq) and piperidine (2.0 eq) as an alternative 

catalyst system.[153]     
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Scheme 37. Attempt to trap the aggregates of amphiphile 93 in H2O/MeOH (60/40 v/v) by using Glaser coupling 
reactions a) and b): a) CuCl, NH4Cl, air, rt, 60 h; b) Cu(CO2CH3)2, piperidine, air, rt, 48 h.    

 

Another attempt to trap the aggregates of 93 was made by using the azide-functionalized, 

water-soluble stopper 142, designed and synthesized by Yves Aeschi, in a copper-catalyzed 

azide-alkyne cycloaddition (click reaction) (Scheme 38). A 0.55 mM solution of monomer 93 in 

H2O/MeOH (60/40 v/v) was subjected to excess (1.5 eq) stopper 142 and stoichiometric 

amounts of copper(II) sulfate and reductant L(+)ascorbic acid sodium salt. After 1.5 hours 

reaction duration at room temperature, full conversion of 93 towards a single product was 

observed by HPLC-ESI-MS (Figure 56).    

 

          93                                           142                                   141 

Scheme 38. Attempt to trap aggregates of 93 via click reaction resulted in the formation the stoppered monomer 
143 as exclusive product. a) CuSO4, Na-ascorbate, H2O/MeOH (60/40 v/v), rt, 1.5 h.   
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The total ion chromatogram (T.I.C.) as well as the UV chromatogram exhibit two main signals, 

which correspond to the unreacted excess amount of stopper 142 (tR = 6.25 min) and the 

stoppered monomer 143 (tR = 8.90 min). The latter signal comprised m/z values of 835 and 

557 which were assigned, also in accordance to the observed isotopic patterns, to the doubly 

positive charged product 143 and its protonated, triply charged form. In case of a stoppered 

dimer, a signal for the fivefold charged species (m/z = 668) would be expected due to 

statistical protonation of the stopper moieties. However, the chromatogram did not contain 

a relevant signal with this m/z value. A quadruply charged species, corresponding to the 

stoppered, unprotonated dimer (also m/z = 835), could only be observed in low intensity by 

high-resolution ESI-MS measurements of the crude reaction mixture. The dimer might have 

been formed only as a gas-phase aggregate of two stoppered monomers.     

 

Figure 56. Total ion chromatogram (T.I.C.) (top) and UV chromatogram (bottom) obtained by HPLC-ESI-MS 
analysis of the crude click reaction mixture of 93 with stopper 142. The signal at tR = 6.25 min corresponds to 
stopper 142 and the larger signal at tR = 8.90 min was identified to correspond to the stoppered monomer 143. 

 

The results lead to the assumption that unthreaded, stacked dimers ([a2] TT), which would be 

in accordance with the DOSY analyses, or unthreaded micellar-like aggregates rather than the 

expected [c2]daisy chains are the predominant species in protic polar solutions. 
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2.10 Conclusion     

 

The aggregation behavior of the successfully synthesized and characterized amphiphiles 92-

95 was investigated by means of 1H-NMR titration studies, DOSY experiments and by 

qualitative evaluation of emission spectra. The obtained results of these investigations clearly 

indicated aggregation in protic, polar solvent driven by a hydrophobic effect. Furthermore, 

the size and hence the shape of the aggregates in low concentrated solution was estimated. 

Unfortunately, only stoppered monomer could be trapped. The the m/z vale attributed to 

stoppered dimer was only observed in traces by HR-ESI-MS measurements, presumably 

formed in the gas-phase during the evaporation process as aggregate of two stoppered 

monomers. This finding stands also in accordance with the conductance measurements of 

amphiphile 95 in a MCBJ setup, since a conductance plateau, indicating inserted [c2]daisy 

chains between the two electrodes, was not observed. Conclusively, the presence of 

unthreaded, micellar-like species in protic, polar solvent turned out to be very likely.  

Further pursuing the objective to build mechanically interlocked molecules for potential 

application in material science demands a deeper insight into the complex aggregation 

behavior of our systems. As a consequence, basic investigations to prove inclusion of the OPE 

into the cyclophane cavity turned out to be crucial (Chapter 3).  
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3 OPE-based Rotaxane Test Systems 

 

The syntheses of rotaxanes based on monostoppered OPEs was chosen as a test system to 

shed light on the threading behavior of the rod into the cavity of Diederich-type cyclophanes 

driven by a hydrophobic effect. The amphiphilic molecular systems described in Chapter 2, 

combining an OPE-rod with a macrocycle in an amphiphilic molecule, turned out to lack 

inclusion complexation in protic, polar solvent and hence formation of interlinked daisy chain 

aggregates (Chapter 2.8.3). 

Performing rotaxane synthesis with the two separate components of the amphiphilic system 

allows facile proof of threading. The supposed inclusion complexes of monostoppered rod 

molecule and cyclophane can be potentially transformed into a mechanically interlocked 

molecule by a reaction with a bulky stopper molecule. This strategy renders the direct 

detection of the products possible. Scheme 39 demonstrates the two approaches employed 

as proof-of-principle systems for rotaxane synthesis. Approach a) incorporates the reaction of 

a monostoppered OPE with a bulky stopper in presence of cyclophane, whereas in approach b) 

the OPE is divided into two shorter moieties, both stoppered on one terminus.   

 

 

Scheme 39. Schematic representation of the two employed approaches (a and b) for preparing rotaxanes based 
on monostoppered OPEs. 

 

In addition, 1H NMR host-guest complexation studies were performed in order to get further 

insight into the aggregation behavior of Diederich cyclophanes with different guests. 
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3.1 Molecular Design of the Rotaxane Building Blocks  

 

The convenient and efficient copper mediated click chemistry, already employed in the 

stoppering reaction of acetylene-substituted amphiphile 93, was chosen as reaction to 

assemble the relevant rotaxane components. Within the performed test series, different 

combinations of OPEs, comprising a terminal acetylene moiety, and azide-functionalized 

compounds were investigated in their ability to form rotaxanes with cyclophane 81. 

Therefore, two different terminal acetylene-functionalized OPEs (144 and 145), varying in the 

number of ethynylene-phenylene units (Figure 57), were prepared for the test series. Since it 

was concluded from the aggregation studies of amphiphiles 91-95 (Chapter 2) that 

intermolecular interactions of the OPE moieties appear to be predominant over intracavitary 

complexation, OPEs 144 and 145 were shortened to two and one phenylene-ethynylene unit 

respectively in order to reduce the hydrophobic surface. Both OPEs were stoppered on one 

terminus and rendered soluble in aqueous medium by the tetraethylene glycol chains of the 

stopper. Furthermore, one azide-functionalized OPE (146), comprising two phenylene units 

and the water-soluble stopper, as well as the two stopper molecules 142 and 147 were 

synthesized as complementary rotaxane components.  

 

 

Figure 57. Building blocks for the OPE-based rotaxane test system with cyclophane 81 as macrocyclic component.     
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The cyclophane moiety of amphiphiles 91-95 was replaced by the octamethoxy-decorated 

cyclophane 81, comprising a larger (C4) alkyl chain bridged cavity than the former (C3) 

macrocyclic system. The chosen cyclophane 81 exhibits a deeper cavity and also higher binding 

affinity towards aromatic guests compared to the C3-bridged (75 and 76) as well as 

undecorated C4-bridged (77) derivatives (Table 1, Chapter 1.3.9).[122]  

 

 

3.2 Syntheses of the Rotaxane Building Blocks 

 

The preparation of the hydrophilic, monostoppered OPEs is mainly based on the stepwise 

attachment of ethynylene-phenylene units to the stopper molecule (142). The short terminal 

acetylene compound 145 was obtained in two steps, starting with a copper(I)-catalyzed 

cycloaddition of 112 to stopper 142, affording 148 in 85% yield. Cleavage of the trimethylsilyl 

protecting group in presence of potassium hydroxide and methanol afforded compound 145 

in a yield of 96% from which the longer OPEs 144 and 146 were both prepared via standard 

Sonogashira cross-coupling reaction. Using 1-azido-4-iodobenzene as reactant afforded the 

azide-functionalized OPE 146, whereas by employing (4-iodophenyl-ethynyl)trimethylsilane 

the terminal acetylene analogue 144 could be isolated after desilylation.  
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Scheme 40. Syntheses of hydrophilic OPEs 145, 146 and 147. a) [Cu(CH3CN)4]PF6, TBTA, acetone, rt, 18 h; b) KOH, 
MeOH, acetone, rt, 1 h; c) 1-azido-4-iodobenzene, Pd(PPh3)2Cl2, CuI, THF, DIPA, rt, 18 h; d) (4-iodophenyl-
ethynyl)trimethylsilane, Pd(PPh3)2Cl2, CuI, THF, DIPA, rt, 18 h; e) KOH, MeOH, acetone, rt, 1 h. 

  

The elongated azide-functionalized stopper 147 was prepared starting from 4-ethynylaniline 

(150), which was coupled to stopper 142 via CuAAC reaction. The amine was then 

subsequently transformed to an azide by a Sandmeyer reaction,[154,155] affording the product 

in an overall yield of 69%.  

 

 

                          142                                    150                                                     147 

Scheme 41. Synthesis of water-soluble stopper 147. a) 1.) [Cu(CH3CN)4]PF6, TBTA, acetonitrile, 30 °C, 55 h; 
2.) NaNO2, NaN3, aq. HCl, 0 °C, then rt, 1 h.  

 

Cyclophane 81 was prepared by Yves Aeschi according to a slightly modified procedure 

reported by Anderson et al..[128] 
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3.3 Rotaxane Assembly Test Reactions 

 

The acetylene- and azide-functionalized building blocks were each used in a concentration of 

1.0 mM. As the formation of a [3]rotaxane comprising two macrocycles is possible for the test 

systems containing the longer OPEs 144 and 146 (Scheme 42), 2.0 eq of cyclophane 81 were 

employed. Higher cyclophane concentration is expected to shift the chemical equilibrium 

towards higher concentrations of inclusion complexes. The reactions were performed in the 

two different solvent systems water and water/methanol (60/40 v/v). While the hydrophobic 

effect is expected to be more pronounced in pure water, the rotaxane components exhibit a 

higher solubility in a solvent mixture additionally comprising methanol, which eliminates 

potential solubility issues. 0.5 eq of a combination of copper(II) sulfate and L(+)ascorbic acid 

sodium salt was employed as Cu(I)-source for the CuAAC reaction. Qualitative reaction control 

was conducted by HPLC-ESI-MS. Samples were taken and analyzed, until no changes in the 

corresponding chromatograms were observed. 

Scheme 42 shows an exemplary reaction between the longer OPE 144 and azide-

functionalized compound 146. The rod-shaped molecules can undergo cycloaddition, either 

as unthreaded molecules or in form of their threaded inclusion complexes. The former results 

in a dumbbell-shaped molecule (151) while the latter ensues either [2]rotaxane (152) or 

[3]rotaxane (153)  formation.  
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Scheme 42. Formation of dumbbell 151, [2]rotaxane 152 and [3]rotaxane 153 via CuAAC as an exemplary 
reaction for the OPE-based rotaxane test system.  

 

Table 2 demonstrates the different reactant combinations and the corresponding results in 

terms of conversion of starting materials as well as rotaxane formation. A quantitative analysis 

based on the UV chromatograms obtained by HPLC-ESI-MS measurements turned out to be 

inapplicable since a signal corresponding to rotaxane was never observed in an intensity which 

allows for integration. However, due to the ionic character of the cyclophane, the macrocycle 

itself and also the rotaxanes were well-detectable by ESI-MS, enabling a qualitative proof of 

rotaxane formation. While the shorter compounds 142, 145 and 147 lead to signals of decent 

intensity in the MS chromatograms, the signal intensity of the corresponding compounds 144 

and 146 decrease dramatically with increasing number of phenylene units. The observations 

is most likely explainable by the decreased water-solubility and a lower tendency for 

ionization.  
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Table 2. Test reactions with different combinations of OPEs (144 and 145) and azide-functionalized molecules 
(142, 146 and 147) in water as well as in water/methanol (60/40 v/v). All reactions were performed in presence 
of 2.0 equivalents of cyclophane 81 and 0.5 equivalents of copper(II)sulfate as well as L(+)ascorbic acid sodium 
salt. 

# OPE Azide Conversion Rotaxane* 

1 

 

144 

 

146 

H2O: 

incomplete 

 

 

H2O/MeOH: 

incomplete 

H2O: 

traces  
 

 

H2O/MeOH: 

no rotaxane 

2 

144 

 

142 

H2O: 

incomplete  

 

 

H2O/MeOH: 

incomplete 

H2O: 

traces  
 

 

H2O/MeOH: 

traces  

3 

 

 

145 

 

 

147 

H2O: 

full 

conversion 

 

H2O/MeOH: 

incomplete 

H2O: 

no rotaxane 

 

 

H2O/MeOH: 

no rotaxane 

4 

 

 

145 

 

 

142 

H2O: 

incomplete 

 

 

H2O/MeOH: 

incomplete 

H2O: 

no rotaxane 

 

 

H2O/MeOH: 

no rotaxane 

*The molecule ion (M) refers to the corresponding [2]rotaxane; a [3]rotaxane was not observed in 
neither of the test reactions.  

  

Regarding Table 2, one of the most striking results is the incomplete conversion of starting 

materials towards dumbbell or rotaxane in almost every test reaction. This observation 

indicates that the catalyst system became inactive, before the complete starting material 

could be converted. Furthermore, the influence of the solvent system on conversion or 

respectively rotaxane formation seems to be negligible. Instead, the number of ethynylene-

phenylene units appears to be an important factor. Most obvious is that test reactions with 
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OPE 144 (entry 1 and 2) exhibit formation of [2]rotaxanes, whereas in none of the test 

reactions with the shorter OPE 145 (entry 3 and 4) conversion towards rotaxane was found. 

The observed results lead to the assumption that, in case of inclusion complexation, the 

terminal acetylene was sterically hindered by the encircling cyclophane and hence the 

reaction site was blocked. However, rotaxanes were in general only found in traces, whereas 

in each test reaction predominantly the unthreaded rod-shaped compounds reacted in a click 

reaction, resulting in mainly dumbbell formation.  

 

 

3.4 1H NMR Host-Guest Studies 

 

The threading behavior of OPE molecules 144, 145 and 147 was additionally analyzed by 

1H NMR host-guest studies. 1H NMR spectra of 1:1 mixtures of cyclophane (host) and OPE 

(guest) were recorded and the observed chemical shift (δobs) of the guest and host protons 

were compared to δobs values obtained by measuring solutions solely containing host or guest. 

In line with the rotaxanation test reactions, the measurements were performed in D2O as well 

as in D2O/MeOD (60/40 v/v). Host protons are designated by a grey dot, whereas the relevant 

guest protons are labelled with letters and shifts are indicated by arrows. Based on the 

inclusion complexation studies published by the Diederich group[122] (see exemplary Table 1, 

Chapter 1.3.9) an upfield change of around -2 ppm in the observed chemical shift (δobs) can be 

expected for guest protons in case of saturated threading of the substrate. The reliability of 

the chosen simplified complexation studies was tested in advance with dimethyl 

terephthalate (154), which according to literature[122] exhibits a high affinity for cyclophane 

81 with an association constant of Ka = 1.2 x 105 M-1 in D2O. Indeed, a change of 

Δδobs = -1.89 ppm was observed for the aromatic protons of dimethyl terephthalate in 

presence of 81 in D2O (Scheme 58, left). In compliance with Diederich’s results,[122] the host 

protons show a rather small downfield shift upon complexation. The corresponding study in 

the binary solvent mixture resulted in a shift of Δδobs = -0.64 ppm. Important to mention is the 

unknown impurity of cyclophane which can be observed in the spectra as a small signal close 

to the cyclophane signal. While the corresponding peak for cyclophane 81 shifts upon 

inclusion complexation, the signal of the impurity does not shift, indicating that it is not 

involved in complexation. However, a positive side-effect of performing inclusion 
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complexation studies with the symmetrical, octamethoxy-decorated cyclophane 81 is the 

simple aromatic region of the 1H NMR spectrum, comprising only a singlet signal.  

 

O

OO

O

154

A

 

    

Figure 58. Aromatic region of 1H NMR spectra in D2O (left) and D2O/MeOD (60/40 v/v) (right) of cyclophane 81 
only (a), dimethyl terephthalate 154 (b) and a 1:1 mixture of both compounds each in a concentration of 
0.5 mM (c).   

 

With the objective to gain further information about the threading behavior of amphiphiles 

92-95, similar inclusion complexation studies were performed with the smaller, mono-

methoxylated cyclophane 109, which was originally prepared as DOSY reference compound. 

The aromatic protons of dimethyl terephthalate exhibit a comparable change of chemical shift 

(Δδobs = -0.71 ppm) in D2O (Figure 59, left) as in presence of cyclophane 81 in D2O/MeOD. 

However, Figure 59 (right) clearly shows that the aromatic protons of dimethyl terephthalate 

hardly shift in presence of the smaller macrocycle 109 in the binary solvent mixture and hence 

almost no guest complexation occurs.     
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Figure 59. Aromatic region of 1H NMR spectra in D2O (left) and D2O/MeOD (60/40 v/v) (right) of cyclophane 109 
only (a), dimethyl terephthalate (b) and a 1:1 mixture of both compounds each in a concentration of 0.5 mM (c).  

 

The complexation experiments with OPE 145, revealed a rather small upfield shift of the 

phenylene protons A and B (Figure 60 and 61). Interestingly, Δδobs of protons A and B is larger 

in D2O/MeOD (-0.42 ppm for both signals) than in D2O (-0.21 and -0.27 ppm).  In turn, the 

signals corresponding to protons C and D exhibit a downfield shift of Δδobs = +0.48 and 

+0.44 ppm in D2O, which might be induced by unspecific aggregation. Furthermore, the 

inconsistent shifts of triazole protons in the two different solvents imply a complex 

aggregation behavior of OPE 145, especially since control experiments with stopper 142 did 

not show any change in the observed chemical shift in presence of cyclophane. 
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Figure 60. Aromatic region of 1H NMR spectra in D2O (left) and D2O/MeOD (60/40 v/v) (right) of cyclophane 81 
only (a), short OPE 145 (b) and a 1:1 mixture of both compounds each in a concentration of 0.5 mM (c).  

 

Regarding the corresponding spectra of OPE 145 in presence of cyclophane 109, the absence 

of a change in the chemical shift is striking, especially in the binary solvent mixture where the 

relevant signals of the two different molecules do not overlap.  

 

     

Figure 61. Aromatic region of 1H NMR spectra in D2O (left) and D2O/MeOD (60/40 v/v) (right) of cyclophane 109 
only (a), short OPE 145 (b) and a 1:1 mixture of both compounds each in a concentration of 0.5 mM (c).  
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Figure 62 demonstrates the 1H NMR experiments with the longer OPE 146 and cyclophane 81 

as an example of the inclusion-complexation studies with both longer OPEs (144 and 146) and 

both macrocycles in the two solvent systems. All recorded spectra in D2O of the guests 

resembled the ones in Figure 62, in which the signals can hardly be distinguished from the 

signal noise. Furthermore, the singlet corresponding to the aromatic host proton does not 

exhibit a change in the chemical shift. Similar results were obtained in D2O/MeOD, in which 

the very broad guest peaks of low intensity are slightly better visible. Obviously, the water-

soluble stopper moiety of the OPEs did not compensate for the insolubility of the hydrophobic 

phenylene-ethynylene units in both solvent systems, and neither complexation by the 

cyclophane rendered the guests well soluble. The very broad signals strongly indicate 

unspecific hydrophobic intermolecular interactions of the guest molecules, which potentially 

also hinders threading.  
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Figure 62. Aromatic region of 1H NMR spectra in D2O (left) and D2O/MeOD (60/40 v/v) (right) of cyclophane 81 
only (a), azide-functionalized OPE 146 (b) and a 1:1 mixture of both compounds each in a concentration of 0.5 mM 
(c).  
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3.5 Conclusion 

The performed test reactions clearly demonstrated the impracticability of the short OPE 145 

to react to rotaxanes, whereas traces of the mechanically interlocked molecules were 

observed in case of OPEs 144 and 146. 1H NMR aggregation studies corroborated the 

assumption that inclusion-complexes of cyclophanes 81 and 109 are not the predominant 

species and rather unspecific aggregation occurs in protic polar solvents.  

In regard to the investigated amphiphiles 92-95 in Chapter 2, composed of a undecorated 

cyclophane moiety linked by a C3 chain and different OPE rods, the results of this chapter in 

addition with the inability to obtain interlocked species allow to conclude that most likely 

these amphiphiles did not form interlinked [c2]daisy chains. The nature of the cyclophane 

cavity turned out to be only one factor influencing the intracavitary complexation. Moreover, 

hydrophobic interactions of the lipophilic OPE moieties revealed to be prevalent over the 

desired aggregation modes. Consequently, the rod-shaped moiety of the daisy chain 

monomer requires to be redesigned. Functionalization with solubilizing groups appears to be 

promising in order to overcome threading issues. 
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4 Identifying Suitable Guest Molecules 

4.1 Molecular Design of Guests 

 

With the objective to identify a suitable guest moiety for amphiphilic daisy chain monomers, 

potential substrates were screened in their ability to form inclusion-complexes with Diederich-

type cyclophanes (81 and 109) in protic polar solvents. Two classes of aromatic compounds 

were investigated (Figure 63). The first class was derived from the unfunctionalized OPE 

moiety of amphiphiles 91-95. OPE molecules composed of three and respectively two phenyl 

units, substituted with differing numbers of solubilizing carboxylate-groups were prepared as 

potential guest molecules (155, 156 and 157). The second class was based on an aromatic core 

unit substituted with water-solubility providing tetraethylene glycol chains (158 and 159). 

Naphthalene was chosen in compliance with the high affinity of cyclophane 81 towards 

naphthalene substrates in protic polar solvents, examined by the Diederich group.[122]      
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Figure 63. Schematic representation of host-guest inclusion-complexation (top) and investigated potential guest 
molecules for hosts 81 and 109 (bottom).  
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Triazole moieties were attached to a benzene ring in order to investigate, if Diederich-type 

cyclophanes are capable to encircle the click cycloaddition product. Especially in regard to 

further plans of using CuAAC for preparing mechanically interlocked molecules in general and 

also for the synthesis of amphiphilic daisy chain monomers by introducing the molecular guest 

moiety to a macrocycle. Furthermore, both compounds, 158 and 159, revealed to be 

synthetically well-accessible. 

 

 

4.2 Syntheses of Guest Molecules 

 

The quadruply carboxylate-functionalized OPE 162 was prepared in two synthetic steps 

starting from dimethyl 5-iodoisophthalate and 1,4-diethynylbenzene (Scheme 43). The two 

commercially available compounds reacted via Sonogashira cross-coupling to OPE 161. The 

methyl esters were then hydrolyzed under basic conditions following a previously reported 

protocol.[156] Protonation with aqueous hydrochloric acid afforded OPE 162 in quantitative 

yield and also allowed the characterization of the product in organic solvent. 

        

 

Scheme 43. Synthesis of OPE 162. a) 1,4-diethynylbenzene, Pd(PPh3)2Cl2, CuI, THF, DIPA, 60 °C, 18 h; b) 
1.) aq. KOH, THF/MeOH (50/50 v/v), 90 °C, 4 h, 2.) aq. HCl, rt, quant.  

 

OPE 165, comprising two carboxylate groups, was synthesized according to the same 

approach than the analogue OPE 162 (Scheme 44). Two equivalents of the commercially 

available methyl 4-bromobenzoate (163) were coupled to 1,4-diethynylbenzene affording the 

ester-functionalized OPE 164 in 89% yield. Basic ester hydrolysis was performed and OPE 165 

was obtained by protonation with hydrochloric acid.  

 

Scheme 44. Synthesis of OPE 165. a) 1,4-diethynylbenzene, Pd(PPh3)2Cl2, CuI, THF, DIPA, 60 °C, 18 h; b) 1.) 
aq. KOH, THF/MeOH (4/1 v/v), 90 °C, 4 h, 2.) aq. HCl, rt.   
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The bromine of methyl 4-bromobenzoate (163) was substituted with trimethylsilyl acetylene 

(TMSA) by applying a standard Sonogashira cross-coupling protocol. Subsequent desilylilation 

in presence of potassium carbonate afforded the terminal acetylene-functionalized 

compound 166 in a yield of 91%.[157] 166 reacted with another equivalent of methyl 4-

bromobenzoate to OPE 167, which was then transformed to the carboxylate-functionalized 

OPE 168 following a previously published procedure.[158]     

 

 

Scheme 45. Synthesis of OPE 168. a) 1.) TMSA, Pd(PPh3)2Cl2, CuI, THF, DIPA, 60 °C, 4 h, 2.) K2CO3, MeOH, DCM, 
rt, 1 h; b) methyl 4-bromobenzoate, Pd(PPh3)2Cl2, CuI, THF, DIPA, 60 °C, 18 h; b) 1.) aq. KOH, EtOH/H2O (9/1 v/v), 
35 °C, 1.5 h, 2.) aq. HCl, rt.   

 

The potential guest molecules 158 and 159 were prepared by Yves Aeschi. Compound 158 was 

obtained via transesterification of 2,6-naphthalenedicarboxylic acid dimethyl ester with 

tetraethylene glycol. The solubilizing ethylene glycol chains of molecule 159 were attached to 

1,4-diethynylbenzene via CuAAC.    

 

 

4.3 1H NMR Complexation Studies 

 

The convenient analysis method based on 1H NMR experiments, already introduced and 

employed in Chapter 3, was chosen to investigate the guest’s tendency to form inclusion 

complexes. Each substrate was examined in the two standard solvent systems D2O and 

D2O/MeOD (60/40 v/v). In accordance to the studies in Chapter 3, 1H NMR spectra of solely 

host or guest as well as spectra of a solution containing both molecules in a 1:1 ratio were 

measured and compared. The neutral OPEs 162, 165 and 168 were subjected to an excess of 

potassium hydroxide, affording the deprotonated OPEs 155, 156 and 157 and rendering higher 

solubility in the employed solvents. The observed changes in the chemical shift (Δδobs) of the 

guest and also host protons, allowed an estimation about the tendency to form inclusion-

complexes. The assignment of the guest signals was primarily performed according to signal 

integrals and coupling patterns. In general, an upfield shift of the guest protons upon 
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complexation was expected, as described by Anderson et al.,[122] and helped in case of doubt 

to assign the guest signals in the spectra of the 1:1 mixtures. In all spectra, the host protons 

are designated with a grey dot, while guest protons are labelled with letters and shifts are 

indicated by arrows.   

Analyzing OPE 155, the strong shift of -2.06 ppm in D2O and -2.02 ppm in D2O/MeOD of guest 

protons C in presence of cyclophane 81 is striking, whereas protons A and B show a significant 

smaller change of shift (Figure 64). The observed shift of protons C are in accord with the 

expected Δδobs for saturated complexation and indicate that the cyclophane is located on the 

“middle” phenyl ring. Additionally, the downfield shift of the cyclophane protons (0.24 and 

0.28 ppm, respectively) further underpin that an inclusion complex is formed.  
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Figure 64. Aromatic region of 1H NMR spectra in D2O (left) and D2O/MeOD (60/40 v/v) (right) of cyclophane 81 
only (a), OPE 155 (b) and a 1:1 mixture of both compounds each in a concentration of 0.5 mM (c).  

 

The corresponding study with the smaller cyclophane clearly shows much smaller changes in 

the chemical shifts (Figure 65), leading to the conclusion that OPE 155 only threads macrocycle 

109 to minor extent. The nontypical downfield shift of protons A and B in D2O/MeOD rather 

indicates other aggregation modes of the OPE rod with the cyclophane.  
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Figure 65. Aromatic region of 1H NMR spectra in D2O (left) and D2O/MeOD (60/40 v/v) (right) of cyclophane 109 
only (a), OPE 155 (b) and a 1:1 mixture of both compounds each in a concentration of 0.5 mM (c).  

 

The 1H NMR spectrum of the host-guest mixture containing OPE 156, which comprises only 

two solubilizing groups, shows broad peaks of low intensity in D2O (Figure 66). Hence, definite 

assignment of protons A and B in this spectrum proved to be impossible. Based on the well-

resolved peaks of the spectrum in D2O/MeOD (spectrum (c)), the amount of dissolved guest 

could be quantified and revealed a host-guest ratio of only 4:1. Nevertheless, the experiments 

allowed some general conclusions. For example, protons C exhibit the strongest shifts 

(Δδobs = -0.79 in D2O and -0.76 ppm in D2O/MeOD), which is in line with the results obtained 

for OPE 155. In both cases, the cyclophane is mainly encircling the “middle” phenyl ring. 

Protons B show a smaller change of Δδobs = -0.43 and -0.23 ppm, while the shift of protons A, 

adjacent to the carboxylate groups, is negligible.   
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Figure 66. Aromatic region of 1H NMR spectra in D2O (left) and D2O/MeOD (60/40 v/v) (right) of cyclophane 81 
only (a), OPE 156 (b) and a 1:1 mixture of both compounds each in a concentration of 0.5 mM (c).  

The experiments with cyclophane 109 (Figure 67) also demonstrate the low solubility of OPE 

156 and additionally absence of inclusion-complexation can be assumed due to the very small 

shift of guest protons in D2O/MeOD and also to the peaks of host protons, which do not show 

any shifting. 

    

Figure 67. Aromatic region of 1H NMR spectra in D2O (left) and D2O/MeOD (60/40 v/v) (right) of cyclophane 109 
only (a), OPE 156 (b) and a 1:1 mixture of both compounds each in a concentration of 0.5 mM (c  
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OPE 157, which comprises two phenylene-ethynylene moieties, shows Δδobs values between 

the other two investigated OPEs with Δδobs = -1.48 ppm in D2O and -1.44 ppm in D2O/MeOD 

for protons B (Figure 68). Compatible to the guests’ shifting, the host protons exhibit 

intermediate Δδobs values of 0.18 ppm in D2O and 0.16 ppm in D2O/MeOD. Interestingly, the 

guest protons A and B appear to be split into four signals in the spectra containing host and 

guest, instead of into two, as observed in the corresponding spectra solely containing OPE. 

The effect, most likely based on a slow complexation exchange rate in the NMR timescale, is 

well visible in the binary solvent mixture (indicated by arrows), but also the spectrum in D2O 

implies another pair of guest signals. It seems the more shifting and also more intense signals 

correspond to the complexed guest, while the other signals represent unthreaded OPE. 

Corroborating this assumption, a comparable low signal corresponding to free uncomplexed 

cyclophane can be observed in the spectrum in D2O/MeOD (designated by a second grey dot). 
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Figure 68. Aromatic region of 1H NMR spectra in D2O (left) and D2O/MeOD (60/40 v/v) (right) of cyclophane 81 
only (a), OPE 157 (b) and a 1:1 mixture of both compounds each in a concentration of 0.5 mM (c).  

In corresponding experiments with the smaller cyclophane 109 (Figure 69) neither host, nor 

guest protons of high intensity show a change in the chemical shift. However, a second pair of 

shifted guest signals with very low intensity is visible in spectrum (c) in D2O/MeOD. The 

observed result allows the assumption that OPE 157 is capable of threading the smaller 

Diederich cyclophane 109, even though in a minor amount. The low quality of the spectrum 

in D2O does not permit a conclusion about the threading behavior of OPE 157. 
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Figure 69. Aromatic region of 1H NMR spectra in D2O (left) and D2O/MeOD (60/40 v/v) (right) of cyclophane 109 
only (a), OPE 157 (b) and a 1:1 mixture of both compounds each in a concentration of 0.5 mM (c).  

 

Figure 70 shows the complexation experiments undertaken with naphthalene derivative 158 

and cyclophane 81. Most striking is the dramatically decreasing resolution of the guest 

protons upon mixing with host in both solvent systems. While spectra b, corresponding to 

solely 158, exhibit sharp signals, only one very broad signal can be assigned to the guest in 

spectra (c). The other signal of low intensity in spectra (c), at 6.7 ppm in D2O and 6.6 ppm in 

D2O/MeOD, correspond to the unknown impurity of cyclophane, which does not show any 

change of the chemical shift. However, in contrast to the poorly soluble OPE 156, the peak 

broadening in spectra (c) can presumably be attributed to a slow exchange rate in the NMR 

timescale of complexed and uncomplexed guest molecules and/or slow interconversion of 

different inclusion geometries. The most significant proof for complexation demonstrate the 

host protons, which shift considerably 0.31 ppm in D2O and 0.16 ppm in D2O/MeOD.   
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Figure 70. Aromatic region of 1H NMR spectra in D2O (left) and D2O/MeOD (60/40 v/v) (right) of cyclophane 81 
only (a), guest 158 (b) and a 1:1 mixture of both compounds each in a concentration of 0.5 mM (c).  

 

While the host-guest spectrum (c) in D2O/MeOD (Figure 71) looks similar to the spectra of 

solely 109 and 158 in the same solvent system, the corresponding spectrum (c) in D2O differs 

from spectra (a) and (b). The guest protons shift between -0.09 and -0.16 ppm and also the 

pattern of host protons changed, indicating some kind of aggregation.  

  

Figure 71. Aromatic region of 1H NMR spectra in D2O (left) and D2O/MeOD (60/40 v/v) (right) of cyclophane 109 
only (a), guest 158 (b) and a 1:1 mixture of both compounds each in a concentration of 0.5 mM (c).  
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Regarding the inclusion-complexation experiment with 159 in D2O (Figure 72), the guest 

behaves similar to 158 in presence of host 81. The broad signals of low intensity indicate slow 

exchange rates of the host-guest equilibrium. However, the tendency of complexation 

appears to be less. The protons B corresponding to the benzene ring show an intermediate 

change in shift (Δδobs = -0.95 ppm), which is in line with the shift of host (0.14 ppm). The 

triazole signals shift -0.55 ppm, which gives evidence that cyclophane 81 can be threaded by 

159. Comparing the spectra of D2O with D2O/MeOD (Figure 72), the influence of solvent on 

the host-guest system is significant. The change of chemical shift drops dramatically in the 

binary solvent mixture and broadening of guest signals is almost negligible.   

Figure 73 demonstrates that the smaller cyclophane 109 does not complex compound 159. 

Only in D2O a small degree of aggregation occurs, indicated by the shift of triazole signals while 

the benzene protons do not change.    
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Figure 72. Aromatic region of 1H NMR spectra in D2O (left) and D2O/MeOD (60/40 v/v) (right) of cyclophane 81 
only (a), guest 159 (b) and a 1:1 mixture of both compounds each in a concentration of 0.5 mM (c).  
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Figure 73. Aromatic region of 1H NMR spectra in D2O (left) and D2O/MeOD (60/40 v/v) (right) of cyclophane 109 
only (a), guest 159 (b) and a 1:1 mixture of both compounds each in a concentration of 0.5 mM (c).  

 

 

4.4 Conclusion 

The performed 1H NMR-based studies gave a deeper insight into the complexation behavior 

of potential guest molecules with Diederich-type cyclophanes and to further approach the 

goal of finding a suitable guest moiety for molecular daisy chains. Besides confirming that in 

D2O the aggregation is more pronounced than in the D2O/MeOD mixture and that host 81 

with lager and deeper cavity exhibits a higher complexation affinity than the smaller 

cyclophane 109, some elucidating information about the guest molecules could be afforded. 

For example, in case of the carboxylate-functionalized OPEs, the threading tendency revealed 

to be predominantly dependent on the solubility, otherwise the hydrophobic rod-shaped 

favorably form other aggregates, as already observed in Chapter 2 and 3. The double amount 

of solubilizing groups of OPE 155, compared to OPE 156 with the same molecular backbone, 

had a significant effect on the complexation and even showed strong inclusion complexation 

in presence of additive MeOD. A similar solubility-dependent tendency was observed by 

comparing 156 with the shorter and less hydrophobic OPE 157. Investigating molecules 158 

and 159, which comprise tetraethylene glycol chains, revealed that the substituents render 

enough solubility for enabling inclusion-complexation. Both compounds only threaded 

cyclophane 81, whereas the naphthalene-based molecule showed greater changes in the 
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chemical shift than compound 159. The threading behavior of the latter molecule turned out 

to be significantly depending on the solvent system. While a certain degree of complexation 

was observed in D2O, almost none occurred in the solvent mixture D2O/MeOD (60/40 v/v). 

Although the carboxylate equipped OPE 155 appears to exhibit very strong binding affinity 

towards cyclophane 81, from a synthetic perspective, naphthalene-based substrates seem to 

be more facile implementable guests for MIM preparations. Additionally, the zwitterionic 

character resulting from the negatively charged OPE in combination with the cationic 

Diederich-type cyclophane might become challenging to handle. Whereas the OPE molecules 

need to be build up from highly functionalized benzene guests, 2,6-functionalized 

naphthalene derivatives are commercially available, reducing the synthetic challenges.  
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5 Assembly of [2]Rotaxanes in Water 

 

Based on the insightful results of the 1H NMR inclusion-complexation studies of potential 

guest molecules in presence of the two different Diederich-type cyclophanes 81 and 109 

(Chapter 4), a promising host-guest system for the assembly of MIMs in water was found. In 

line with the stoppering reactions in Chapter 2.9 and Chapter 3, rotaxanation was chosen as a 

direct and simple proof-of-principle method for trapping host-guest complexes and finally 

enabled the isolation and characterization of a water-soluble [2]rotaxane. 

 

 

5.1 Introduction 

 

Cyclophane 81, which proved to be a more suitable host than cyclophane 109, was used for 

the rotaxane assembly. The water-soluble naphthalene-based guest 158 was employed as 

rotaxane axle. By choosing an assembly strategy in pure water, high association constants can 

be obtained, which is a fundamental requirement to afford high yields of interlocked 

rotaxanes. The CuAAC reaction is ideally suited for aqueous conditions due to its high 

functional group tolerance and high reaction rates. Therefore, 158 was equipped with 

terminal propargyl moieties resulting in molecule 169d. Additionally, derivatives of 169d, 

bearing propargyl terminated oligoethylene glycol esters of different length (n = 1 - 5) and 

hence varying in their hydrophilic character, were prepared and investigated as potential 

rotaxane axles (Scheme 46). Azide-functionalized stopper 142 was used to capture interlocked 

rotaxanes. Screening reactions under three different reaction conditions were performed with 

each guest molecule and analyzed semi-quantitatively by HPLC-ESI-MS. Binding constants of 

cyclophane 81 towards guests 169c-e could be determined by fluorescence quenching 

titrations.  

 

 

 



Assembly of [2]Rotaxanes in Water 

104 
 

 

 

Scheme 46. Syntheses of the [2]rotaxanes 170a-e from cyclophane 81, axles 169a-e and stopper 142 via CuAAC 
in water and dumbbell 171a-e formation as byproducts (n = 1: a; n = 2: b; n = 3: c; n = 4: d; n = 5: e). 
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5.2 Syntheses of Rotaxane Axles 

 

Axles 169a-e were synthesized starting from the appropriate ethylene glycol 172a-e (Scheme 

47), which was monosubstituted by alkylation with propargyl bromide in presence of base, 

following slightly modified previously reported protocols.[159–163] Monopropargyl 

oligoethylene glycol ethers 173a-b reacted with 2,6-naphthalenedicarboxylic dimethyl ester 

via transesterification to afford the shorter axles 169a-b. However, a considerable excess of 

the corresponding compounds 173a-b were essential and high reaction temperatures (130 °C) 

were required to drive methanol out of the equilibrium while simultaneously distilling off the 

solvent. It turned out that for the axles 169c-e, which comprise longer ethylene glycol chains 

(n = 3 - 5), a Mitsunobu reaction[164,165] starting from 2,6-naphthalenedicarboxylic acid and  

173c-e resulted in higher yields.  

    

 

Scheme 47. Synthesis of axles 169a-e. a) 1.) base, 0 °C, THF, then rt, 20 min; 2.) propargyl bromide, rt, 18 h; 173a 

66%, 173b 11%, 173c 78%, 173d 90%, 173e 41%; b) 2,6-naphthalenedicarboxylic dimethyl ester, NaH, THF, 130 
°C, 45 min, 169a  42%, 169b 14%; c) 2,6-naphthalenedicarboxylic acid, PPh3, DEAD, r.t., 16 h, 169c  82%, 169d  
64%, 169e  43%.    

 

 

5.3 Binding Studies 

 

Fluorescence quenching titrations with cyclophane 81 were only conducted for axles 169c-e 

(n = 3 - 5), since axles 169a-b revealed to be insoluble in water. Aliquots of a host 81 solution 

(0.0 – 20 eq) to the respective naphthalene derivative 169c-e solution were added and the 

changes in fluorescence intensity were recorded. As representative example the quenching of 

the fluorescence of the naphthalene axle 169d with the addition of the cyclophane 81 is 

displayed in Figure 74. The association constants in water for 81·169c, 81·169d and 81·169e 

were obtained from nonlinear regression of the titration curves (see exemplary Figure 75) as 
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Ka = 1.67 (± 0.056) x 105 M-1, Ka = 1.44 (± 0.052) x 105 M-1 and Ka = 1.18 (± 0.023) x 105 M-1, 

respectively. 

 

 

Figure 74. Titration of 20.0 µM 169d with cyclophane 81 in water at 22 °C (λexc = 333 nm). Fluorescence spectra 
correspond to added host equivalents, top down: 1) 0.0 eq; 2) 0.1 eq; 3) 0.3 eq; 4) 0.5 eq; 5) 0.7 eq; 6) 0.9 eq; 7) 
1.0 eq; 8) 1.2 eq; 9) 1.4 eq; 10) 1.6 eq; 11) 1.8 eq; 12) 2.2 eq; 13) 2.6 eq; 14) 3.0 eq; 15) 3.4 eq; 16) 3.8 eq; 17) 
4.2 eq; 18) 5.0 eq; 19) 5.5 eq; 20) 6.0 eq; 21) 7.0 eq; 22) 8.0 eq; 23) 10 eq and 24) 20 eq. 

 

 

Figure 75. Fitting curve of fluorescence titration with guest 169d.  

 

The three association constants of the supramolecular host-guest systems are of similar 

dimensions with a trend of decreasing Ka values upon increasing oligo-EG chain lengths of the 
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guests. Whether this phenomenon is based on the lower apolar character of 169e compared 

to 169c or the entropic cost of complexation cannot be rationalized with the here collected 

data. The binding strength points at the strong bias that the naphthalene core provides and is 

comparable with most common recognition motifs used in MIM systems so far (e.g. 

cyclodextrins·hydrophobic guests with Ka values in water between 102 M-1 and 105 M-1,[51,166] 

macrocyclic dibenzo-crown ethers· dialkylammonium ions with Ka values in dichloromethane 

between 103 M-1 and 106 M-1,[167] and cyclobis(paraquat-p-phenylene)·tetrathiafulvalene 

derivatives with Ka values in acetone between 103 M-1 and 104 M-1).[168] 

 

 

5.4 Screening Reactions 

 

In order to screen for suitable reaction conditions, three different conditions were 

investigated for all five axis compounds (169a-e) and the result was evaluated by determining 

the ratio between formed rotaxane vs. dumbbell. Of particular interest was to elucidate the 

influence of the ethylene glycol length of axis 169a-e on the amount of isolated rotaxanes. 

 

5.4.1 Reaction Conditions 

 

In all of the 15 reactions, axle and stopper were used in a 1:2 ratio (Table 1), consequently full 

consumption of all propargyl groups of 169a-e and azide groups of 142 can be expected. The 

reactions performed under condition 1 and 3 contained cyclophane in equimolar amount only, 

whereas under condition 2 five equivalents of 81 were employed. The solid or respectively 

oily axles 169a-b and 169c-e were directly weighted into the reaction flask, before the 

appropriate amounts of cyclophane, stopper and catalyst system (Table 1) were added from 

aqueous stock solutions allowing convenient preparation of the reaction mixtures. As catalyst 

system for the CuAAC reactions in water, the reagent combination of copper(II) sulfate with 

the mild reductant sodium ascorbate was utilized. In condition 3, tris(3-hydroxypropyl-

triazolylmethyl)amine (THPTA)[169] was additionally employed as the ligand stabilizes the 

oxidation state of Cu(I) and has shown to increase reaction rates of Cu(I)-catalyzed azide-

alkyne cycloadditions[170]  
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Table 3. Total concentrations and equivalents of reactants and reagents of the CuAAC screening reactions under 
three different conditions.* 

cond. cyclophane axle stopper CuSO4 Na ascorb. THPTA 

1 

0.5 mM  
(1.0 eq) 

0.5 mM  
(1.0 eq) 

1.0 mM  
(2.0 eq) 

0.5 mM  
(1.0 eq) 

0.5 mM  
(1.0 eq) 

 
– 
 

2 
2.5 mM  
(5.0 eq) 

0.5 mM  
(1.0 eq) 

1.0 mM  
(2.0 eq) 

0.5 mM  
(1.0 eq) 

0.5 mM  
(1.0 eq) 

 
– 
 

3 0.5 mM  
(1.0 eq) 

0.5 mM  
(1.0 eq) 

1.0 mM  
(2.0 eq) 

0.5 mM  
(1.0 eq) 

0.5 mM  
(1.0 eq) 

0.5 mM  
(1.0 eq) 

* All reactions were performed at room temperature and under argon atmosphere. 

 

5.4.2 Analysis of the Screening Reactions 

 

After two hours reaction duration, a sample was taken, diluted with water and analyzed via 

HPLC-ESI-MS. In case of the longer polyethylene glycol spacers n = 3 - 5, stopper 142 was 

entirely consumed indicating reaction completion, whereas in case of n = 1 and 2, the 

chromatograms exhibit a signal with a retention time (tR) of 6.5 min corresponding to 142. The 

chromatograms recorded of samples taken after 21 hours revealed no further decrease of the 

stopper signal. Even after prolonged reaction times the stopper was not completely 

consumed. Furthermore, no signal for the corresponding axles 169a and 169b, was observed 

in the LC-MS traces, which reflects their insolubility in water. Solubilization of 169a and 169b 

in presence of 81 might be expected, which is in fact not the case, as observed by Anderson 

et al. for lipophilic chromophores of comparable size.[128] The recorded LC-ESI-MS 

chromatograms were analyzed by extracting the m/z values of rotaxanes 170a-e and 

dumbbells 171a-e either in the form of their corresponding proton or sodium ion adducts and 

m/z values for cyclophane from the total ion chromatogram (T.I.C) (see exemplary 

chromatograms in Figure 76). The peaks were then integrated, the obtained integrals 

corresponding to the same compound were summed up, e.g. proton and sodium ion adduct 

of rotaxane (traces b and c in Figure 76), and used for a semiquantitative evaluation. 
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Figure 76. Screening reactions after two hours with tetra-EG naphthalene ester axle under the three different 
conditions 1-3. LC-ESI-MS total ion current trace (a) and extracted ion chromatograms of mainly observed 
rotaxane (b+c), dumbbell (d+e) and cyclophane (f) adducts (m/z values ±1). A signal corresponding to either axle 
169d or stopper 142, respectively, is not observed in either of the three T.I.C.s, which indicates complete 
conversion of 169d. 

 

Quantitative analysis based on the recorded UV-chromatograms turned out to be 

impracticable, since the absorption exhibits only low intensity due to the small concentrations 

required for the subsequent ESI-MS measurements (about 10-5 M). Another advantage using 

extracted ion chromatograms is that even incompletely separated compounds can be 

conveniently distinguished and integrated. On the basis of the summed up integrals of 

corresponding H+ and Na+ adducts, the ratios of the respective rotaxane/dumbbell were 

calculated (see Table 4), allowing a semi-quantitative analysis independent from the injected 

sample concentration. However, the method allows only to estimate which axle molecules 

ensues most rotaxane compared to dumbbell and does not give quantitative ratios, as the 

ionization tendency of rotaxanes most likely differs from dumbbells, which do not comprise 

an ionic cyclophane unit. 

Regarding the determined values of rotaxane/dumbbell, the significantly higher values 

obtained under condition 2 (with 5.0 equivalents of cyclophane) are striking, pointing at the 

importance to alter the chemical equilibrium by an excess of cyclophane for an efficient 

rotaxane synthesis. On average over the screening series with the five different axles, under 

condition 2 rotaxane compared to dumbbell is formed 5.5 times more than under condition 1. 

cond. 1 cond. 2 cond. 3 



Assembly of [2]Rotaxanes in Water 

110 
 

Remarkable is also the influence of THPTA which increases the CuAAC reaction rate and leads 

to a higher amount of rotaxane product compared to the reactions lacking the ligand. 

However, the screening reactions of rotaxane 170c synthesis differ from this tendency, the 

170c/171c ratio in presence of THPTA (0.31) is slightly lower than in the reaction without 

THPTA (0.35). 

The obtained rotaxane/dumbbell ratios might be rationalized as a combination of two factors, 

namely the tendency to form the supramolecular complex expressed with the Ka values for 

pseudorotaxane formation, and the length of the ethylene glycol chains of the axle subunit. 

The rotaxane formation is favored by an increased Ka value as it is more likely to trap an axle 

as preformed pseudorotaxane, and it is increased by an increasing length of the axle’s 

ethylene glycol chains which moves the capturing click reaction away from the cyclophane 

ring potentially sterically blocking the reaction center. While under the conditions 1 and 3 the 

axle 169d represents the compromise optimizing both effects, under conditions 2 the reduced 

tendency of axle 169e to coordinate the cyclophane ring is compensated by an increased 

cyclophane concentration and thus, the advantage of the longer ethylene glycol chains 

becomes clearly visible. 

 

Table 4. Summarized results of the binding studies and screening reactions under the three different conditions 
1-3, given in calculated rotaxane/dumbbell 170/171 ratios and stopper conversion, both after two hours reaction 
duration. 

n Ka  

 [x 105 M-1] 

170/171 

cond. 1 

170/171 

cond. 2  

170/171 

cond. 3  

stopper 142 

conversion a) 

1 (a) - 0.02 0.15   0.13 incomplete  

2 (b) - 0.14 0.44   0.19 incomplete 

3 (c) 1.67  0.35 2.04  0.31 complete 

4 (d) 1.44  0.43 1.40   0.56  complete 

5 (e) 1.18  0.33 2.63   0.47 complete 

a)   As the conversion cannot be quantified in our case, the remarks are based on observations of the total ion   
       current chromatograms.  
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5.5 Isolation and Characterization of [2]Rotaxane 170d 

  

Based on the results of the screening reactions, the synthesis was scaled up to characterize 

the interlocked product in order to corroborate its rotaxane nature. Despite the encouraging 

results obtained with compound 169e, we chose tetraethylene glycol chains for the axle due 

to easier purification of 169d and the corresponding rotaxane as well as the wide and 

inexpensive availability of the corresponding dialcohol 172d which is required as starting 

material for 169d. The reaction comprises a combination of screening condition 2 and 3. Axle 

169d was reacted with 2.0 eq of stopper 142 and 5.0 eq of cyclophane 81 in presence 1.0 eq 

of Cu(I)-source and 1.0 eq of THPTA. Furthermore, the concentrations of all reactants were 

quadruplicated compared to the screening reactions, resulting in an (even) higher 

rotaxane/dumbbell ratio of 9.24 (Figure 77). 

 

 

Figure 77. HPLC-ESI-MS measurement of the crude reaction solution of rotaxane synthesis 170d after 3 hours 
reaction duration: total ion current trace (a) and extracted ion chromatograms of mainly observed rotaxane 
(b+c), dumbbell (d+e) and cyclophane (f) adducts (m/z values ±1). 

 

Rotaxane 170d was then purified by size exclusion chromatography using Sephadex LH20 

beads swelled in methanol. Initial purification attempts applying either normal- or reverse 

phase silica stationary phases failed. After three size exclusion purification cycles, the 

uncomplexed dumbbell was completely removed while the eluted product fractions still 

contained a minor fraction of free cyclophane and a minute amount of an unknown 
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cyclophane impurity. Further purification by reverse-phase HPLC appeared to be impractical 

due to the required acid as eluent additive, which leads to ester hydrolysis upon concentration 

of the product fractions and hence rotaxane decomposition. A yield of 59% for rotaxane 170d 

was calculated after subtraction of the 22mol% free cyclophane as determined by 1H NMR. 

Interestingly, during the separation of the dumbbell 171d, its susceptibility to rapid hydrolysis 

in the absence of an encircling cyclophane became apparent. Even after repeated attempts, 

the dumbbell could not be isolated in a reasonably pure form.  

 

5.5.1 1D and 2D 1H NMR Experiments 
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Figure 78. 1H NMR spectra of rotaxane 170d (600 MHz, 298 K, methanol-d4, (a)), stopper 142 (500 MHz, 298 K, 
methanol-d4, (b)), axle 2d (500 MHz, 298 K, methanol-d4, (c)) and cyclophane 81 (500 MHz, 298 K, methanol-d4, 
(d)). 
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The rotaxane formation is confirmed by the 1H NMR spectrum of 170d, where the effect of 

the cyclophane on encapsulating the axle becomes clearly visible by comparing the 1H NMR 

spectra of the rotaxane 170d with its starting materials (Figure 78). The strong chemical 

upfield shift of the naphthalene protons (H30 1.55 ppm; H29 2.65 ppm; H28 0.96 ppm) is induced 

by their direct orientation into the shielding regions of the cyclophane´s diphenylmethane 

benzene rings.[122] The chemical shifts of the cyclophane methylene-cavity proton resonances 

are also significantly moved into the upfield region (HK 1.28 ppm; HL 0.79 ppm) compared to 

the corresponding signals of free cyclophane 81. Additional evidence for the interlocked 

structure reveal the distinct NOE crosspeaks (Figure 79) between naphthalene protons with 

both cyclophane´s methylene-cavity and methoxy protons as well as the crosspeaks between 

the proton of newly formed triazole and the stopper benzene ring.  

 

 

Figure 79. Partial 1H NOESY spectrum (600 MHz, 298 K, MeOD) of rotaxane 170d in which the crosspeaks, 
confirming the formation of the interlocked structure are labeled.    
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5.5.2 Optical Spectroscopy 

 

Also the optical investigation corroborates the rotaxane formation by displaying a strong 

fluorescence quenching of the naphthalene emission by the presence of the cyclophane in the 

rotaxane 170d. The absorption and emission spectra of rotaxane 170d and its reactant axle 

169d are displayed in Figure 80. The small bathochromic shift of 4 nm in the UV spectra and 

the absence of a donor-acceptor absorption band are in accordance to literature for 

complexes with 81 and naphthalene derivatives.[171]  

 

 

Figure 80: π*-π transition range of UV/Vis absorption- and emission- (excitation 333 nm) spectra of rotaxane 
170d and axle 169d in water at 295 K. Both emission spectra were recorded at a concentration of 0.02 mM.   

 

5.6 Stability Test 

 

The thermal stability of rotaxane 170d was investigated in water with a particular interest to 

corroborate the stopper character of 142 and examine if 142 is large enough to prevent 

slipping of cyclophane at elevated temperature. Therefore, a 2.0 mM aqueous solution of 

rotaxane 170d was heated at 60 °C for one hour and the temperature was then successively 

increased every further hour by 10 °C, until 120 °C was reached. A sample was taken after 

every hour and analyzed via LC-ESI-MS measurements. Until 70 °C neither slippage nor 

decomposition of the rotaxane was observed. At 80 °C a new signal with low intensity, 

corresponding to the single hydrolyzed ester, as well as a slight increase of the cyclophane 



Assembly of [2]Rotaxanes in Water 

115 
 

signal indicated starting of decomposition. Obviously, the chemical stability of the stoppered 

axle is the thermally most labile component which degrades before the mechanically 

interlocked supermolecule. 

 

5.7 Conclusion 

A series of five 2,6-naphthalenedicarboxylate oligoethylene glycol esters (n = 1 - 5) with 

propargyl termination 169a-e has been investigated in terms of their efficiency of rotaxane 

formation from their corresponding inclusion complex with cyclophane 81. The extent of 

rotaxane/dumbbell ratio proofed to depend on the concentration of supramolecular 

pseudorotaxane as well as on the length of the ethylene glycol chains, which moves the 

trapping reaction center away from the complexation site. In view of the relative ease and 

rapidity with which the potential axle molecules have been investigated, the modular 

rotaxane synthesis combined with fast analysis revealed to be a convenient strategy which 

can be applied for testing various axles for rotaxane formation, and thus also for suitability of 

these subunits for supramolecular systems of increased complexity.  

Eventually, the isolation and characterization of a mechanically interlocked molecule, based 

on a Diederich-type cyclophane and a water-soluble naphthalene guest, could be achieved via 

CuAAC reaction in water. The interlocked character of the isolated [2]rotaxane could be 

corroborated by ESI mass spectrometry, as well as 1H NMR and fluorescence studies.     
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6 Summary and Outlook 

 

The objective of the thesis was the development of architectures for rotaxane-based 

mechanically interlocked molecules in water which could pave the way for future applications 

in functional nanomaterials. Especially molecular [c2]daisy chains are appealing candidates for 

the implementation in nanomaterials and creation of systems capable of mechanical 

actuation, such as molecular muscles or potentiometers.  The first approach towards daisy 

chains as functional materials was based on amphiphilic monomers (91-95) comprising a 

Diederich-type cyclophane and an OPE rod. A series of differently functionalized, challenging 

to synthesize derivatives of the original amphiphile (91) was prepared and examined in their 

aggregation behavior, by means of 1H NMR dilution studies, diffusion ordered spectroscopy 

analysis and qualitative fluorescence spectroscopy. In general, a complex aggregation 

behavior was found, which leaves room to doubt the formation of mechanically linked 

structures. The attempt to capture daisy chain molecules revealed the absence of interlinked 

species and rather indicated unthreaded aggregates. Based on these results, the molecular 

design of components of mechanically interlocked molecules (MIMs) was improved stepwise 

by analysis of the threading behavior. The first variation was the separation of host and guest 

moiety of the origin amphiphiles into two individual molecules. A combination of 1H NMR 

complexation studies and click chemistry based rotaxanation experiments with a water-

soluble stopper molecule turned out to be an efficient investigation strategy. Rotaxanes based 

on OPEs 144 and 146 could be detected, but only in traces which most likely can be ascribed 

to a low inclusion complexation affinity and poor solubility. Introducing two or four 

carboxylate units to the OPE backbones increased the solubility, especially in case of four 

anionic groups (155). The threading behavior indeed was found to be strongly dependent on 

the solubility of the guest molecule in the absence of a host. Furthermore, the 1,4- and 2,6-

difunctionalization respectively of a benzene and naphthalene core with tetraethylene glycol 

chains rendered enough water-solubility for enabling inclusion complexation. The 1H NMR 

complexation studies and rotaxanation experiments revealed that the C4-bridged 

octamethoxy-decorated cyclophane (81) exhibits a higher binding affinity towards aromatic 

guests than the smaller and monomethoxy-decorated cyclophane (109) and is therefore a 

more suitable host, which is in accord with the results published by Diederich. The modular 

rotaxanation strategy was also employed for the screening of a series of synthetically well-
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accessible 2,6-functionalized naphthalene guests (169a-e), differing in the length of the 

ethylene glycol substituent and hence water-solubility. The soluble potential rotaxane axles 

169c-e exhibited a rather high binding affinity towards cyclophane 81 with Ka values in the 

range of 105 M-1 in water. Applying a semi-quantitative method of analysis based on HPLC-ESI-

MS measurements, it was demonstrated that the highest amount of rotaxane was formed 

with the naphthalene axle exhibiting the highest water-solubility. Finally, based on the 

optimized host-guest design, a water-soluble [2]rotaxane could be isolated and characterized, 

corroborating the interlocked nature of the afforded MIM.  

 

Aspiring higher stability of the rotaxane axle and hence facilitating the isolation of pure 

[2]rotaxane, a new axle molecule 176, lacking the labile ester moiety of the original 

component, is currently in preparation. From a synthetic point of view, 176 is potentially well 

accessible from 2,6-dihydroxy naphthalene (174) and propargyltetraethylene glycol tosylate 

(175).  

 

 

Scheme 48. Synthesis of the new rotaxane axle 176 for the preparation of a stable [2]rotaxane in water. 

 

In close analogy to the OPE rods 155, 156 and 157 presented in chapter 4, Yves Aeschi 

enhanced the design of a soluble OPE-rod and could successfully achieve the synthesis of 

interlocked molecular daisy chains in water (Figure 81). In contrast to the in this work 

presented approach, the daisy chains were assembled by employing an alkyne-functionalized 

analogue of azide-functionalized stopper 142 (Figure 82). The required azide group for CuAAC 

chemistry was attached to the OPE moiety of the amphiphilic daisy chain monomer. Isolation 

via HPLC and subsequent 1H NMR analysis revealed the formation of [c2]- and [a2]daisy chains 

as predominant species besides the stoppered monomer.    
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Figure 81. The structure as well as the corresponding cartoon representation of the isolated [c2]- and [a2]daisy 
chain.  

 

Modifying the water-soluble stopper molecule 179 appears to be a synthetically well feasible 

approach for the construction of poly[c2]daisy chains and also the realization of a thiol 

functionalized [c2]daisy chain-based molecular potentiometer. The functionalized stoppers 

primarily enable the trapping of daisy chains and allow the isolation and characterization of 

molecular [c2]daisy chains. The interlocked aggregates, comprising a reactive functionality at 

their two termini, can then be employed for further purposes. Stopper 180 exhibits a second 

acetylene group, which could be easily cleaved off after the assembly and isolation of [c2]daisy 

chains. The deprotected acetylene would then render an anchor group for a linker molecule 

comprising two azide functionalities, connecting the cyclic interlocked structures to a 
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polymeric chain. With the premise of a stable but also selectively cleavable protecting group 

(R) for the thiol moiety in 181, an isolated stoppered [c2]daisy chain could be employed for 

single molecular conductance measurements.  

 

 

Figure 82. Acetylene-functionalized stopper molecules for the preparation of MIMs in water; 179 was employed 
for the preparation of interlocked daisy chains 177 and 178. 180 potentially enables the formation of 
poly[c2]daisy chains and 181  comprises a thiol anchoring group of a MCBJ setup.   
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7 Experimental Section 

 

General Remarks 

All commercially available compounds were purchased and used as received unless explicitly 

remarked otherwise. All oxygen- or moisture-sensitive reactions were performed under argon 

atmosphere.  

 

Chromatographic Purification 

For column chromatography either silica gel Siliaflash® p60 (40 – 63 μm) from Silicycle or 

Alumina from Fluka, activated (basic Brockmann Activity I) neutral was used. Reverse-phase 

column chromatography was performed with silica gel SiliaBond® C18 R00230B from Silicycle. 

TLC was performed on silica gel 60 F254 glass plates with a thickness of 0.25 mm purchased 

from Merck. 

Size exclusion chromatography was carried out on Sephadex LH-20, using HPLC grade 

methanol.   

 

Nuclear Magnetic Resonance 

1H NMR and 13C NMR spectra were recorded either on an Oxford 400 MHz NMR equipped 

with an Avance III 400 spectrometer and with a BBFO+ probe head, respectively, on a Bruker 

UltraShield 500 MHz Avance III equipped with a BBO+ probe head with Z‐gradients or on a 

Bruker Ascend 600 MHz Avance III HD equipped with a 1.7 mm TCI cryo probe head. 2D 

Spectra were either recorded on a Bruker UltraShield 500 MHz Avance III equipped with a 

BBO+ probe head with Z‐gradients or on a Bruker Ascend 600 MHz Avance III HD equipped 

with a 1.7 mm TCI cryo probe head. The chemical shifts are reported in parts per million (ppm) 

relative to tetramethylsilane or a residual solvent peak and the J values are given in Hz. The 

order of coupling constants was specified by a superscript number (nJ). Deuterated NMR 

solvents were obtained from Cambridge Isotope Laboratories, Inc. (Andover, MA, USA). All 

spectra were recorded at 298 K. 
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Mass Spectrometry 

Low-resolution mass spectra were either recorded on a Bruker amaZonTM X for Electro Spray 

Ionization (ESI) or on a Shimadzu GCMS-QP2010 SE gas chromatography system with a ZB-5HT 

inferno column (30 m x 0.25 mm x 0.25 mm) at 1 mL/min He-flow rate (split = 20:1) with a 

Shimadzu electron ionization (EI 70 eV) mass detector. High‐resolution mass spectra (HRMS) 

were measured as HR-ESI-ToF-MS with a Maxis 4G instrument from Bruker. 

 

High-Performance Liquid Chromatography  

Analytical and semi-preparative HPLC measurements were performed on a Shimadzu LC‐20AT 

HPLC equipped with a diode array UV/Vis detector (SPD-M10A VP from Shimadzu, λ = 200 – 

600 nm). For analytical HPLC, either a Reprosil, 100 C18, 5 µm, 250 x 4.6 mm; Dr. Maisch GmbH 

column or in case of HPLC-ESI-MS a Reprospher, 100 C18 Aqua, 5 µm, 125 x 2 mm; Dr. Maisch 

GmbH column was used. Semi-prep HPLC was performed on a Reprosil, 100 C18, 5 µm, 250 x 

16 mm; Dr. Maisch GmbH column. Water filtered over a MillipakR Express 40 Filter, 0.22 µm 

from Merck Milipore, subsequently charged with 0.01% vv formic acid and HPLC grade 

acetonitrile from Avantor also charged with 0.01% vv formic acid were used as HPLC solvents. 

The HPLC method for subsequent ESI-MS was composed of a solvent gradient starting from 

10% vv water, 90% vv acetonitrile and changing to 5% vv water, 95% vv acetonitrile within 10 

min at a constant flow rate of 0.5 mL/min.  

 

UV/Vis and Fluorescence Spectroscopy 

UV/Vis measurements were performed on a Shimadzu UV spectrometer UV-1800 and 

fluorescence measurements were recorded on a Horiba FluoroMax-4 spectrofluorometer 

using 10 x 10 mm 111-QS Hellma cuvettes at room temperature. The extinction coefficient ε 

values were determined based on UV spectra at different concentrations.  All solutions were 

prepared and measured under air saturated conditions. 

 

1H NMR dilution studies  

Stock solution of amphiphiles 92-95 in D2O/CD3OD (60/40 v/v) were prepared. These solutions 

were diluted stepwise and 1H NMR spectra (500 MHz) of the corresponding samples were 

recorded. The samples were locked on CD3OD. 
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DOSY 

Self-diffusion measurements were performed with the bipolar gradient pulse sequence of Wu 

et al.[172], by using a Bruker Avance III NMR spectrometer, operating at 600 MHz and equipped 

with a 5 mm BBFO smart probe with a shielded z-gradient coil and a GAB gradient 

amplifier.[133] All samples were dissolved in a mixture of D2O and CD3OD (60/40 v/v). The 

diffusion experiments were performed at 298 K and the temperature was calibrated by using 

a methanol standard to an accuracy of 0.2 K. The gradient strength was calibrated by using a 

Shigemi tube filled with H2O to a height of 4.0 mm and imaging this water cylinder.[173] The 

resulting gradient calibration was validated by determining the diffusion coefficient of water 

at 298 K, which reproduced the literature value within 5%. Twelve single diffusion experiments 

with constant diffusion times (40 ms) and gradient lengths (2.5 ms) were performed, and the 

gradient strength was varied between 5 and 95% of the maximum strength. The decrease in 

the intensity of the signal of interest was determined and fitted with the Bruker t1/t2 software 

package suitable for DOSY experiments, which is included in the instrument software 

(TOPSPIN 3.0, Bruker Biospin GmbH, Software Dept., Rheinstetten, Germany). 

 

1H NMR Host-Guest Complexation Studies 

A 1.0 mM stock solutions of the relevant guest molecule and also of cyclophanes 109 (3.24 mg 

in 4.00 mL solvent) and 81 (4.28 mg in 4.00 mL solvent) was prepared in D2O as well as in 

D2O/CD3OD (60/40 v/v). 0.5 mM solutions of each host and guest were prepared by dilution in 

both solvent systems and 1H NMR spectra were recorded. Furthermore, 1:1 mixtures of 

respective host and guest (c = 0.5 mM/0.5 mM) were prepared by mixing 0.3 mL of host stock 

solution and 0.3 mL of guest stock solution. The mixtures in both solvent systems were 

measured by 1H NMR spectroscopy. The change of the observed chemical shift of substrate 

and also cyclophane was determined by comparing the spectra of the respective host and 

guest with the spectrum of the 1:1 mixture of host and guest.    
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Host-Guest Fluorescence Titrations of Naphthalene Ester Axles 169c-e 

 

Binding studies were performed by adding aliquots of a host 81 solution to the respective 

naphthalene derivative 169c-e solution and recording the changes in fluorescence intensity. 

Therefore, a 66.6 µM stock solution of 169c was prepared by dissolving 1.00 µmol (0.556 mg) 

in 15.0 mL water. Naphthalene derivative stock solutions of 169d and 169e with a 

concentration of 0.10 mM were prepared by dissolving 1.00 µmol of 169d (0.645 mg) and 169e 

(0.733 mg), respectively in 10.0 mL water. Each guest stock solution was diluted to the 

measurement concentration c = 20.0 µM solutions with a starting volume V = 2.00 mL. To keep 

the guest concentration constant, the host solution contained the same concentration of 

guest. To obtain the host solution with a concentration of 400 µM (20 eq) and 20.0 µM of the 

relevant guest, 1.07 mg of 81 were dissolved in 2.5 mL of a 20.0 µM guest solution. The 

fluorescence spectra were recorded in a quartz cuvette with the excitation wavelength of 

333 nm. Following instrumental parameters were used: excitation slit width 2.00 nm (front 

entrance and exit); emission slit width 1.00 nm (front entrance and exit); integration time 

0.100 s. As for each series the independent variables (total concentration of host [H]0) were 

identical, the association constants (Ka) were determined from nonlinear regression analysis 

with concatenate fitting. The applied fit function was derived from an equation described by 

Thordarson[174]: 

 

���� =	�� +	 ∆�2[�]� 	�[�]� + [�]� + 1!" −$%[�]� + [�]� + 1!"&
' − 4[�]�[�]�) 

����  the observed fluorescence; ���� =*  +; dependent variable �� fluorescence of guest solution before the guest is added; constant ∆� maximal fluorescence quench, here ∆� =*  ��, negative value; parameter [�]�  total concentration of the guest; constant [�]� total concentration of the host; [�]� =*  , ; independent variable !" association constant; parameter 
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1-(4-Hydroxy-4-(4-methoxyphenyl)piperidin-1-yl)ethanone (99) 

 

 

 

In an oven-dried 500 mL two-neck flask magnesium turnings (1.89 g, 77.9 mmol, 0.920 eq) 

were stirred neat for 10 min under argon-atmosphere. After addition of dry THF (15 mL), 4-

bromoanisol (97, 16.0 g, 84.7 mmol, 10.7 mL, 1.00 eq) was added dropwise via a dropping 

funnel until the reaction started. The remaining 4-bromoanisol in the dropping funnel was 

then diluted with dry THF (60 mL) and the solution was added dropwise by keeping the 

reaction mixture under a continuous reflux. After stirring for 1.5 hrs at reflux, the Grignard 

solution was cooled to 0 °C and while vigorously stirred, a solution of N-acetyl-4-piperidone 

(10.2 g, 70.0 mmol, 8.94 mL, 0.826 eq) in dry THF (65 mL) was added dropwise. After stirring 

the resulting milky suspension for 4 hrs at room temperature the reaction mixture was 

carefully quenched with sat. ammonium chloride solution (100 mL) and the mixture was 

stirred for 17 hrs at room temperature. THF was removed in vacuo and the remaining pale 

yellow oil was suspended in water and extracted with dichloromethane. The combined 

organic layers were dried over sodium sulfate, filtered and concentrated under reduced 

pressure. The resulting residue was washed with plenty of diethyl ether to afford alcohol 99 

(11.2 g, 64%) as a colorless solid. 

1H NMR (400 MHz, CDCl3): δ =  7.38 (d, 3J (H,H) = 8.8 Hz, 2H, Har), 6.90 (d, 3J(H,H)  = 8.8 Hz, 2H, 

Har), 4.57 – 4.52(m, 1H), 3.81 (s, 3H, OCH3), 3.72 – 3.67 (m, 1H), 3.63-3.55 (m, 1H), 3.10 (td, 

3J(H,H) = 12.9, 2J(H,H) = 3.0 Hz, 1H, Hpiperidine), 2.13 (s, 3H, C=OCH3), 2.04 – 1.89 (m, 2H), 1.96 (s, 

1H, OH), 1.85-1.75 (m, 2H) ppm; 13C-NMR (101 MHz, CDCl3): δ = 169.0 (Cq, 1C, C=O), 158.9 (Cq, 

1C, CarOCH3), 139.9 (Cq, 1C, Car), 125.8 (Ct, 2C, Car), 113.9 (Ct, 2C, Car), 71.2 (Cq, 1C, COH), 55.4 

(Cp, 1C, OCH3), 42.9 (Cs, 1C), 39.1 (Cs, 1C), 38.0 (Cs, 1C), 37.9 (Cs, 1C), 21.6 (Cp, 1C, COCH3) ppm; 

GC-MS (EI +, 70 eV): m/z (%) = 56 (23), 57 (20), 72 (15), 77 (15), 87 (19), 114 (19), 135 (100), 

206 (40), 231 (19), 249 (19) [M]+. 

The spectroscopic data are in agreement with those previously reported.[133] 
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1-(4-(4-Hydroxyphenyl)-5,6-dihydropyridin-1(2H)-yl)ethanone (100) 

 

 

 

1-(4-hydroxy-4-(4-methoxyphenyl)piperidin-1-yl)ethan-1-one (99, 6.34 g, 27.4 mmol, 1.00 eq) 

was dissolved in dry dichloromethane (200 mL) under argon atmosphere. Boron tribromide 

solution (1.0 M in dichloromethane, 101 g, 68.6 mmol, 1.00 eq) was added dropwise and the 

resulting brown reaction-mixture was heated to reflux for three hrs. After cooling to 0 °C, the 

reaction mixture was carefully quenched with methanol (100 mL). The solvents were 

evaporated under reduced pressure and the resulting residue was washed with demin. water 

and a small amount of diethylether (product is soluble in diethylether) affording alkene 100 

(4.95 g) in 83% yield. 

1H NMR (400 MHz, MeOD): δ = 6.80 – 6.73 (m, 2H, Har), 6.29 – 6.26 (m, 2H, Har), 5.50 – 5.48 

(m, 1H, C=CHCH2), 3.71 – 3.68 (m, 2H), 3.30, 3.24 (2t, 3J(H,H) = 6.7 Hz, 2H), 2.12 – 2.00 (2m, 2H), 

1.70, 1.66 (2s, 3H, C=OCH3) ppm; 13C NMR (101 MHz, CDCl3): δ = 171.9 (Cq, 1C, C=O), 158.1 

(Cq, 1C, Car), 136.4 (Cq, 1C, Car), 133.0 (Cq, 1C, C=CCH2), 127.2, 127.1 (Ct, 2C, CHar), 118.8, 118.2 

(Ct, 1C, C=CCH2), 116.1 (Ct, 2C, CHar), 46.9, 44.7 (Cs, 1C), 39.8 (Cs, 1C), 28.1 (Cs, 1C), 21.2 (Cs, 1C, 

C=OCH3) ppm; GC-MS (EI +, 70 eV): m/z (%) = 78 (15), 89(16), 92(20), 108(23), 115(23), 

118(23), 131(30), 140(20), 146(45), 158(25), 174(70), 175(27), 217(100) [M]+.  

The spectroscopic data are in agreement with those previously reported.[133] 
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1-(4-(4-(3-Bromopropoxy)phenyl)-5,6-dihydropyridin-1(2H)-yl)ethanone (101) 

 

 

 

Alkene 100 (7.29 g, 33.6 mmol, 1.00 eq) was suspended in dry MeCN (220 mL). 1,3-

dibromopropane (69.2 g, 336 mmol, 35 mL, 10.0 eq) and potassium carbonate (23.5 g, 

168 mmol, 5.01 eq) were added and the resulting reaction mixture heated to reflux for five 

hrs. The precipitate was filtered off and washed with plenty of diethyl ether. The filtrate was 

concentrated and the crude product was purified by column chromatography (SiO2; 

dichloromethane, 5% MeOH) yielding 101 (8.10 g, 71%) as a colorless solid. 

1H NMR (400 MHz, CDCl3): δ = 7.32 – 7.28 (m, 2H, Har), 6.89 – 6.86 (m, 2H, Har), 6.00 – 5.91 

(2m, 1H, CCHCH2), 4.23 – 4.21 (m, 1H), 4.12 – 4.09 (m, 3H), 3.82 – 3.79 (m, 1H), 3.67 – 3.64 

(m, 1H), 3.61 (t, 3J(H,H) = 5.3 Hz, 2H, CH2CH2Br), 2.57 – 2.49 (m, 2H), 2.32 (quint, 3J(H,H) = 4.8 Hz, 

2H, CH2CH2CH2), 2.16, 2.14 (2s, 3H, C=OCH3) ppm; 13C NMR (101 MHz, CDCl3): δ = 169.3 (Cq, 

1C, C=O), 158.4 (Cq, 1C, Car), 136.2, 134.4 (Cq, 1C), 133.3 (Cq, 1C), 126.2 (Ct, 2C, CHar), 117.9 (Ct, 

1C, C=CHCH2), 114.6 (Ct, 2C, CHar), 65.5 (Cs, 1C, OCH2CH2), 45.9, 43.5 (Cs, 1C), 42.3, 38.4 (Cs, 

1C), 32.5 (Cs, 1C, CH2CH2CH2), 30.1 (Cs, 1C, CH2CH2Br), 28.1, 27.3 (Cs, 1C), 22.0, 21.6 (Cp, 1C, 

C=OCH3) ppm; GC-MS (EI +, 70 eV): m/z (%) = 87 (23), 91 (26), 115 (37), 131 (26), 145 (42), 146 

(42), 158 (65), 174 (63), 200 (33), 294 (50), 296 (40), 337 (100) [M]+, 339 (95) [M]+. 

The spectroscopic data are in agreement with those previously reported.[133] 
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1-(4-(4-(3-Bromopropoxy)phenyl)-4-(4-hydroxy-3-methoxyphenyl)piperidin-1-yl)ethanone 

(102) 

 

 

 

In an oven-dried Schlenk tube alkene 101 (10.8 g, 31.9 mmol, 1.00 eq) was dissolved in dry 

dichloromethane (50 mL). Boron trifluoride diethyl etherate (32.4 g, 224 mmol, 29.0 mL, 

7.02 eq) was added dropwise and caused an immediate color change of the reaction mixture 

from pale yellow to red-brown. After stirring the mixture for 9 days at room temperature, the 

solution was cooled to 0 °C and was carefully quenched with methanol (5 mL). The mixture 

was then poured into demin. water (40 mL) and was three times extracted with ethyl acetate. 

The combined organic layers were dried over sodium sulfate, filtered and concentrated under 

reduced pressure. The resulting red oil was purified by column chromatography (SiO2; 

dichloromethane, 5% MeOH) to afford compound 102 (13.8 g, 94%) as a colorless solid.  

1H NMR (400 MHz, CDCl3): δ = 7.14 (d, 3J(H,H) = 8 Hz, 2H), 6.85 – 6.86 (m, 3H), 6.73 (dd, 3J(H,H) = 

8 Hz, 4J(H,H)) = 2 Hz, 1H, H6 (4-hydroxy-3-methoxyphenyl)), 6.66 (d, 4J(H,H) = 2 Hz, 1H, H2(4-

hydroxy-3-methoxyphenyl)), 5.50 (s, 1H, OH), 4.07 (t, 3J(H,H) = 6 Hz, 2H, OCH2CH3), 3.81 (s, 3H, 

OCH3), 3.69 – 3.58 (m, 4H), 3.51 – 3.47 (m, 2H), 2.35 – 2.25 (m, 6H), 2.09 (s, 3H, C=OCH3) ppm; 

13C NMR (101 MHz, CDCl3): δ = 169.0 (Cq, 1C, C=O), 157.0 (Cq, 1C, C4(bromopropoxyphenyl)), 

146.7 (Cq, 1C), 144.0 (Cq, 1C), 138.9 (Cq, 1C), 138.8 (Cq, 1C), 128.1 (Ct, 2C), 119.8 (Ct, 1C), 114.6 

(Ct, 2C), 114.6 (Ct, 1C), 109.8 (Ct, 1C), 65.3 (Cs, 1C, OCH2CH2), 56.0 (Cp, 1C), 44.4 (Cs, 1C), 43.8 

(Cq, 1C), 38.8 (Cs, 1C), 37.3 (Cs, 1C), 36.3 (Cs, 1C), 32.5 (Cs, 1C), 30.2 (Cs, 1C), 21.6 (Cp, 1C, 

C=OCH3) ppm. 

The spectroscopic data are in agreement with those previously reported.[133] 
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1-(4-(4-(3-Bromopropoxy)-3-methoxyphenyl)-4-(4-(3-bromopropoxy)phenyl)piperidin-1-

yl)ethanone (103) 

 

 

 

Phenol 102 (9.99 g, 21.6 mmol, 1.00 eq) was dissolved in acetone (120 mL) under argon 

atmosphere in an oven-dried flask. 1,3-dibromopropane (22.2 g, 108 mmol, 11.2 mL, 5.00 eq) 

and potassium carbonate (9.06 g, 64.9 mmol, 3.00 eq) were consecutively added and the 

resulting reaction mixture was heated at reflux for 20 hrs. After cooling to room temperature, 

the suspension was filtered and the solid was washed several times with acetone. The filtrate 

was concentrated and the residue purified by column chromatography (SiO2; 

dichloromethane, 5% MeOH). Subsequent purification by HPLC using a 22.5 min gradient 

starting from 50/50 (v/v) H2O/MeCN and finishing at 5% H2O/ 95% MeCN afforded compound 

103 (8.85 g) in 70% yield.  

1H NMR (400 MHz, CDCl3): δ = 7.14 (d, 3J(H,H) = 8 Hz, 2H), 6.86 – 6.79 (m, 3H), 6.77 – 6.74 (m, 

1H, H6(4-hydroxy-3-methoxyphenyl), 6.71 (d, 4J(H,H)  = 2 Hz, 1H, H2(4-hydroxy-3-methoxy-

phenyl), 4.13 – 4.06 (m, 4H, OCH2CH2), 3.82 – 3.76 (m, 3H, -OCH3), 3.63 – 3.48 (m, 8H), 2.37 – 

2.27 (m, 8H), 2.09 (s, 3H, C=OCH3) ppm; 13C NMR (101 MHz, CDCl3): δ = 168.9 (Cq, 1C, C=O), 

156.9 (Cq, 1C, C4(bromopropoxyphenyl), 149.5 (Cq, 1C), 146.5 (Cq, 1C), 140.0 (Cq, 1C), 138.6 

(Cq, 1C), 128.0 (Ct, 2C), 119.2 (Ct, 1C), 114.5 (Ct, 2C), 113.3 (Ct, 1C), 111.4 (Ct, 1C), 66.6 (Cs, 1C, 

OCH2CH2), 65.2 (Cs, 1C, OCH2CH2), 56.2 (Cp, 1C), 44.2 (Cs, 1C), 43.7 (Cq, 1C), 38.7 (Cs, 1C), 37.0 

(Cs, 1C), 36.1 (Cs, 1C), 32.4 (Cs, 1C), 30.3 (Cs, 1C), 30.1 (Cs, 1C), 21.5 (Cp, 1C, C=OCH3) ppm. 

The spectroscopic data are in agreement with those previously reported.[133] 
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1-(4,4-Bis(4-hydroxyphenyl)piperidin-1-yl)ethanone (104) 

 

 

 

To a solution of phenol (17.0 g, 181 mmol, 2.06 eq) in demin. water (7.3 mL) N-acetyl-4-

piperidone (98, 12.5 g, 87.7 mmol, 11.0 mL, 1.00 eq) was added. Afterwards, the solution was 

cooled to 0 °C and conc. sulfuric acid (32.5 g, 325 mmol, 17.7 mL, 3.71 eq) was added. 

The yellow, highly viscous reaction mixture was led standing at room temperature for three 

d. The reaction mixture was then dissolved in a mixture of acetone/methanol (7:3; 180 mL) 

and the resulting solution was neutralized by addition of sodium carbonate solution (1.0 N; 

304 mL). Demin water (190 mL) was added to a total volume of 720 mL and the mixture was 

cooled at 0 °C for one h until precipitation was completed. The precipitate was filtered and 

washed with plenty of demin. water. The solid was recrystallized from ethanol to afford 104 

as colorless solid (22.0 g, 81%).  

1H NMR (400 MHz, DMSO-d6): δ = 9.18 (s, 2H, OH), 7.06 (d, 3J(H,H)  = 8.7 Hz, 4H, Har), 6.65 (d, 

3J(H,H)  = 8.6 Hz, 4H, Har), 3.41 – 3.34 (m, 4H, Hpiperidine), 2.27 – 2.25 (m, 2H, Hpiperidine), 2.18 – 2.15 

(m, 2H, Hpiperidine), 1.97 (s, 3H, C=OCH3) ppm, 13C NMR (101 MHz, DMSO-d6): δ = 168.0 (Cq, 1C), 

155.0 (Cq, 2C), 137.4 (Cq, 2C), 127.6 (Ct, 4C), 115.0 (Ct, 4C), 43.0 (Cs, 1C), 38.1 (Cs, 1C), 42.9 (Cs, 

1C), 38.1 (Cs, 1C), 36.0 (Cs, 1C), 35.4 (Cs, 1C), 21.3 (Cp, 1C) ppm. 

The spectroscopic data are in agreement with those previously reported.[133] 
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1,1”-Diacteyl-5’-methoxy-dispiro[piperidine-4,2’-[7,11,21,25]-tetraoxacyclopenta-

[24.2.2.23,6.212,15.217,20]hexatriaconta[3,5,12,14,17,19,26,28,29,31,33,35]dodecaene-16,4”-

piperidine] (105) 

 

 

A mixture of cesium carbonate (11.3 g, 34.3 mmol, 10.0 eq), bisphenol 104 (1.07 g, 3.43 mmol, 

1.00 eq) and dialkyl bromide 103 (2.00 g, 3.43 mmol, 1.00 eq) were suspended in acetonitrile 

(1.20 L) and heated to reflux for 20 hrs. After allowing the mixture to cool down to room 

temperature, the precipitate was filtered off and the filtrate was concentrated. The residue 

was taken up in dichloromethane and the insoluble white solid was filtered off again. The 

filtrate was concentrated and the remaining crude was purified by column chromatography 

(SiO2; dichloromethane, 5% MeOH). The colorless solid product was precipitated with ethanol, 

filtered and washed with some ethanol and a small amount of diethylether to afford 

cyclophane 105 (829 mg, 33%). 

1H NMR (400 MHz, CDCl3): δ = 7.14 – 7.10 (m, 6H, Har), 6.74 – 6.68 (m, 8H, Har), 6.61 – 6.60 

(m, 1H, Har), 4.04 – 4.03 (m, 8H), 3.82 – 3.77 (m, 1H), 3.63 – 3.53 (m, 5H, including OCH3), 2.39 

– 2.36 (m, 8H), 2.20 – 2.15 (m, 4H), 2.07 (ds, 6H, C=OCH3) ppm; 13C NMR (101 MHz, CDCl3): δ 

= 168.9 (Cq, 2C, C=O), 157.2 (Cq, 1C), 157.1 (Cq, 1C), 157.1 (Cq, 1C), 149.3 (Cq, 1C), 146.9 (Cq, 

1C), 139.9 (Cq, 1C), 138.8 (Cq, 1C), 138.6 (Cq, 1C), 127.1 (Ct, 2C), 126.8 (Ct, 4C), 117.9 (Ct, 1C), 

115.0 (Ct, 2C), 114.7 (Ct, 2C), 114.7 (Ct, 2C), 113.0 (Ct, 1C), 110.2 (Ct, 1C), 64.6 (Cs, 1C), 63.5 (Cs, 

1C), 63.3 (Cs, 1C), 63.3 (Cs, 1C), 55.9 (Cp, 1C, OCH3), 43.6 (Cq, 1C), 43.5 (CS, 2C), 43.0 (Cq, 1C), 

38.6 (Cs, 1C), 38.5 (Cs, 1C), 35.7 (Cs, 1C), 35.0 (Cs, 1C), 29.5 (Cs, 1C), 21.5 (Cp, 2C, C=OCH3) ppm. 

The spectroscopic data are in agreement with those previously reported.[133] 
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1,1”-Diacteyl-5’-hydroxy-dispiro[piperidine-4,2’-[7,11,21,25]-tetraoxacyclopenta[24.2.2.-

23,6.212,15.217,20]hexatriaconta[3,5,12,14,17,19,26,28,29,31,33,35]dodecaene-16,4”-

piperidine] (106) 

 

 

 

Cyclophane 105 (500 mg, 0.682 mmol, 1.00 eq) and sodium thiomethoxide (266 mg, 

3.41 mmol, 5.00 eq) were dissolved in dry DMF (60 mL) and stirred at 160 °C for five hrs. 

Afterwards, aq. hydrochloric acid (1 M, 35 mL) was added and the solvents were removed in 

vacuo. The remaining pale beige solid was washed once with diethylether. The crude solid was 

then purified by column chromatography (SiO2; dichloromethane, 5% MeOH) (286 mg, 75%). 

1H NMR (400 MHz, CDCl3): δ = 7.15 – 7.03 (m, 6H, Har), 6.77 – 6.61 (m, 9H, Har), 5.56 (s, 1H, 

OH), 4.10 (t, 3JH,H = 5.1 Hz, 2H, phenol-O-CH2), 4.01 (t, 3JH,H = 5.2 Hz, 6H, OCH2), 3.67 – 3.60 (m, 

4H), 3.50 – 3.46 (m, 4H), 2.41 – 2.31 (m, 8H), 2.25 – 2.09 (m, 4H), 2.07 (s, 3H, C=OCH3), 2.06 

(s, 3H, C=OCH3) ppm. 

The spectroscopic data are in agreement with those previously reported.[133] 
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1,1”-Diacteyl-5’-(1-iodo-4-phenoxymethylbenzene)-dispiro[piperidine-4,2’-[7,11,21,25]-

tetraoxacyclopenta[24.2.2.23,6.212,15.217,20]hexatriaconta[3,5,12,14,17,19,26,28,29,31,33,-

35]dodecaene-16,4”-piperidine] (107) 

 

 

 

A mixture of cyclophane 106 (263 mg, 0.366 mmol, 1.00 eq), 4-iodobenzyl bromide (172 mg, 

0.549 mmol, 1.50 eq) and cesium carbonate (241 mg, 0.732 mmol, 2.00 eq) were suspended 

in dry DMF (20 mL) under argon atmosphere. The reaction mixture was stirred at 85 °C for 

20 hrs. Afterwards, the solvent was evaporated by vacuum distillation and the residue was 

then taken up in dichloromethane and demin. water. The layers were separated and the 

aqueous one was extracted three times with dichloromethane. The combined organic layers 

were washed with demin. water and brine, dried over sodium sulfate, filtered and 

concentrated under reduced pressure. The crude was purified by column chromatography 

(SiO2; dichloromethane, 5% MeOH) yielding solid compound 107 (340 mg, 98%). 

1H NMR (400 MHz, CDCl3): δ = 7.66 – 7.61 (m, 2H, Har), 7.11 – 7.06 (m, 4H, Har), 7.00 – 6.95 

(m, 2H, Har), 6.95 – 6.90 (m, 2H, Har), 6.75 – 6.67(m, 8H, Har), 6.45 (d, 3JH,H = 2.0 Hz, 1H, Har), 

4.73 (s, 2H, CH2O), 4.08 – 4.01 (m, 8H, CqOCH2), 3.73 – 3.60 (m, 3H), 3.51 – 3.37 (m, 5H), 2.37 

(dt, 3JH,H = 12.2, 5.4 Hz, 4H), 2.30 – 2.13 (m, 8H), 2.06 (ds, 6H, CH2CH3) ppm. 

The spectroscopic data are in agreement with those previously reported.[133] 
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1,1”-Diethyl-5’-(1-iodo-4-phenoxymethylbenzene)-dispiro[piperidine-4,2’-[7,11,21,25]-

tetraoxacyclopenta[24.2.2.23,6.212,15.217,20]hexatriaconta[3,5,12,14,17,19,26,28,29,31,33,-

35]dodecaene-16,4”-piperidine] (96) 

 

 

 

Cyclophane 96 was synthesized according to a slightly modified literature-known 

procedure[133]: In an oven-dried Schlenk tube 106 (100 mg, 0.107 mmol, 1.00 eq) was 

suspended in dry dichloromethane (5 mL). After cooling to -10 °C, lithium aluminium hydride 

in THF (1 M, 0.428 mL, 0.428 mmol, 4.00 eq) was added slowly. After 5 minutes of stirring, 

diisobutyl aluminium hydride in hexane (1 M, 165 mg, 0.235 mmol, 0.235 mL, 2.20 eq) in 

hexanes was added dropwise over the course of one min stirring for 40 min at 0 °C. The 

reaction was quenched by addition of sat. aq. sodium hydrogen carbonate solution (2 mL). 

Insoluble aluminium salts were filtered off and the aqueous phase was extracted with 

dichloromethane three times. The combined organic layers were dried over sodium sulfate, 

filtered and concentrated under educed pressure. Purification by column chromatography 

(SiO2; ethyl acetate, 1% MeOH, 5% NEt3) afforded cyclophane 96 (97.0 mg, quant.) as a 

colorless solid. Regioisomers of 96 caused by the regioisomer formation in the synthesis of 

102 were separated by semi-preparative HPLC with a Reprosil 100 Si, 5 µm, 250 x 4.6 mm 

column (ethyl acetate, 2% MeOH, 0.5% NEt3, isochratic flow). The predominant and also 

desired isomer was eluted at a retention time of 45 min (77%). 

1H NMR (400 MHz, CDCl3): δ = 7.66 – 7.60 (m, 2H, Har), 7.14 – 7.05 (m, 4H, Har), 7.02 – 6.90 

(m, 4H, Har), 6.77 – 6.63 (m, 8H, Har), 6.49 (s, 1H, Har), 4.73 (s, 2H, CH2O), 4.09 – 3.99 (m, 8H, 

CqOCH2), 2.62 – 2.23 (m, 8H, NCH2CH2, 8H, NCH2CH2; 4H, NCH2CH3), 2.23 – 2.10 (m, 4H, 

OCH2CH2), 1.04 (td, J = 7.2, 3.7 Hz, 7H) ppm; 13C NMR (101 MHz, CDCl3): δ = 156.9 (Cq, 1C, 

COCH2CH2), 156.8 (Cq, 1C, COCH2CH2), 156.8 (Cq, 1C, COCH2CH2), 147.6 (Cq, 1C, CHCOCH2CCH), 

147.2 (Cq, 1C, COCH2CH2), 137.6 (Cq, 1C, Cq Cq,piperid), 137.5 (Ct, 2C, CHCqI; Cq, 3C, Cq Cq,piperid), 
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129.1 (Ct, 2C, CHCHCqI), 127.4 (Ct, 2C, CHCqCq,piperid), 127.1 (Ct, 4C, CHCq Cq,piperid), 114.5 (Ct, 3C, 

OCqCHCHCq Cq,piperid), 114.5(Ct, 2C, OCqCHCHCqCq,piperid), 114.4 (Ct, 2C, OCqCHCHCq Cq,piperid), 

93.0 (Cq, 1C, CqI), 70.4 (Cs, 1C, CH2,benzyl), 64.8 (Cs, 1C, OCH2CH2), 63.4 (Cs, 1C, OCH2CH2), 63.3 

(Cs, 1C, OCH2CH2), 63.3 (Cs, 1C, OCH2CH2), 52.5 (Cs, 2C, NCH2CH3), 50.2 (Cs, 4C, NCH2CH2), (Cq, 

1C, Cq,spiro), 42.8 (Cq, 1C, Cq,spiro), 35.5 (Cs, 2C, NCH2CH2), 35.3 (Cs, 2C, NCH2CH2), 29.8 (Cs, 1C, 

OCH2CH2), 29.7 (Cs, 1C, OCH2CH2), 12.3 (Cp, 2C, NCH2CH3) ppm. Two signals two tertiary C-

atoms at the threefold substituted benzene ring (CqCHCHCqO, expected at approx. 119.2 ppm 

and CqCHCHCqO, expected at approx. 113.8 ppm) were not observed. 

 

 

1,1’’-Diethyl-5’-methoxy-dispiro[piperidine-4,2’-[7,11,21,25]-tetraoxacyclopenta-

[24.2.2.23,6.217,20]hexatriaconta[3,5,12,14,17,19,26,28,29,31,33,35]dodecane-16,4’’-piper-

idine] (108) 

 

 

The hydroxyl decorated cyclophane 108 was synthesized according to a procedure reported 

in literature.[128] To a solution of cyclophane 105 (50.0 mg, 0.0682 mmol, 1.00 eq) in 3.5 mL 

THF borane-tetrahydrofuran complex (1.02 mL (1 M in THF), 911 mg, 1.02 mmol, 15.0 eq) was 

added under argon atmosphere. After heating the mixture at reflux for 16 hrs, excess borane 

was quenched with 5 mL methanol. The solvent was removed in vacuo and the residue was 

treated with 25 mL ethanol and concentrated sulfuric acid (0.75 mL, 1.38 mg, 14.1 mmol, 

206 eq). The suspension was refluxed until the solid was completely dissolved (about 1 h). The 

acid was then neutralized with aqueous sodium hydroxide solution (1 M). Afterwards ethanol 

was removed in vacuo and the remaining aqueous colorless suspension was made basic with 

10 mL aqueous sodium hydroxide solution (1 M). The aqueous layer was extracted three times 

with dichloromethane and the combined organic layers were dried with sodium sulfate, 
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filtered and concentrated. The residue was purified by column chromatography (SiO2; EtOAc, 

5% MeOH, 5% NEt3) and recrystallization in acetonitrile to afford diamine 108 as a colorless 

solid (64%). 

1H NMR (400 MHz, CDCl3): δ = 7.14-7.10 (m, 6H, Har), 6.72-6.65 (m, 9H, Har), 4.05-4.03 (m, 8H, 

OCH2), 3.62 (s, 3H, OCH3), 2.45 (broad s, 16H), 2.32 (q, 3JH,H = 7 Hz, 4H, NCH2CH3), 2.21-2.12 

(m, 4H, OCH2CH2), 1.04 (t, 3JH,H  = 6 Hz, NCH2CH3) ppm; 13C NMR (101 MHz, CDCl3): δ = 156.9 

(Cq, 1C), 156.8 (Cq, 2C), 156.8 (Cq, 2C), 149.1 (Cq, 2C), 146.5 (Cq, 2C), 127.1 (Ct, 2C), 127.1 (Ct, 

4C), 118.3 (Ct, 1C), 114.5 (Ct, 2C), 114.5 (Ct, 2C), 114.4 (Ct, 2C), 113.1 (Ct, 1C), 110.6 (Ct, 1C), 

63.5 (Cs, 1C), 63.4 (Cs, 1C), 63.3 (Cs, 1C), 63.3 (Cs, 1C), 55.8 (Cs, 1C), 52.5 (Cs, 2C), 50.3 (Cs, 2C), 

50.2 (Cs, 2C), 43.4 (Cq, 1C), 42.9 (Cq, 1C), 35.6 (Cs, 2C), 35.3 (Cs, 2C), 29.7 (Cs, 1C), 29.7 (Cs, 1C), 

12.3 (Cp, 2C, CH2CH3) ppm; MS (ESI, +, MeCN): m/z = 705 ([M+H]+), 353 ([M+2H]2+). 

 

 

1,1,1’’,1’’-Diethyl-5’-methoxy-dispiro[piperidine-4,2’-[7,11,21,25]-tetraoxacyclopenta-

[24.2.2.23,6.217,20]hexatriaconta[3,5,12,14,17,19,26,28,29,31,33,35]dodecane-16,4’’-piper-

idine] (109) 

 

Diamine 108 (34.3 mg, 0.0487 mmol, 1.00 eq) was treated with freshly distilled iodoethane 

(0.5 mL) under argon atmosphere and 2 mL dry dichloromethane were added to dissolve the 

whole starting material. After stirring the mixture in the dark for 24 hrs the solvent was 

removed in vacuo and the crude was purified by column chromatography (SiO2; acetone:1 M 

aqueous ammonium chloride solution:MeCN 7:1:1). The eluent was evaporated and then the 

white solid was extracted with dichloromethane (Soxhlet) for 30 hrs. After removing the 

solvent in vacuo, the obtained white solid was subjected to an ion exchange column (DOWEX 

1X8 200-400 mesh Cl-) eluting with MeCN:H2O 1:1. The obtained pale yellow solid was 

recrystallized from a MeOH:Et2O 1:1 mixture to obtain cyclophane 109 as a colorless solid 

(54%).   
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1H NMR (400 MHz, acetonitrile-d3): δ = 7.19-7.14 (m, 6H, Har), 6.84-6.67 (m, 9H, Har), 4.07-

4.03 (m, 8H, OCH2), 3.65 (broad s, 3H, OCH3), 3.27 (broad s, 14H), 2.63 (broad s, 8H), 2.14-2.10 

(m, 4H, OCH2CH2), 1.30-1.16 (m, 12H, NCH2CH3) ppm; MS (ESI, +, MeCN): m/z = 381 ([M-2Cl-

]2+), 374 ([M-2Cl—CH2]2+), 367 ([M-2Cl--2CH2]2+). 

 

 

2-methyl-4-(4-((trimethylsilyl)ethynyl)phenyl)but-3-yn-2-ol (111) 

 

 

 

In an oven-dried 250 mL Schlenk tube, 1,4-diiodobenzene (110, 10.0 g, 30.0 mmol, 1.00 eq) 

was dissolved in dry THF (50 mL) under argon atmosphere. Bis(triphenyl-

phosphine)palladium(II) chloride (1.28 g, 1.80 mmol, 6 mol%), copper iodide (345 mg, 

1.80 mmol, 6 mol%) and diisopropyl amine (21.5 g, 210 mmol, 30.0 mL 76.00 eq) were added 

and the yellow solution was degassed with argon for 10 min. Afterwards, it was slowly treated 

with TMS-acetylene (2.95 g, 30.0 mmol, 4.27 mL, 1.00 eq). The inhomogeneous reaction 

mixture was stirred for 4 hrs at room temperature before 2-methyle-3-butyn-2-ol (5.15 g, 

60.0 mmol, 5.98 mL, 2.00 eq) was added dropwise. The resulting dark brown reaction mixture 

was stirred for another 16 hrs at room temperature. Afterwards, the solvent was removed in 

vacuo and the residue was subjected to demin. water and extracted with dichloromethane 

three times. The combined organic layers were washed with water and brine, dried over 

sodium sulfate, filtered and evaporated to dryness. The dark brown residue was purified by 

flash column chromatography (SiO2; hexane: dichloromethane 3:7, then dichloromethane) to 

obtain the product as a pale yellow solid (3.20 g, 42%). 

1H NMR (400 MHz, CDCl3): δ = 7.39 (d, 3JH,H = 8.5 Hz, 2H), 7.34 (d, 3JH,H = 8.5 Hz, 2H), 1.61 (s, 

6H), 0.24 (s, 9H) ppm; 13C NMR (101 MHz, CDCl3): δ = 131.9 (Ct, 2C), 131.6 (Ct, 2C), 123.0 (Cq, 

1C), 122.9 (Ct, 1C), 104.7 (Cq, 1C)), 96.3 (Cq, 1C), 95.7 (Cq, 1C), 81.9 (Cq, 1C), 65.8 (Cq, 1C), 31.6 

(Cp, 2C), 0.1 (Cp, 3C) ppm; GC-MS (EI +, 70 eV): m/z (%) = 241 (100), 256 (23) [M]+. 

The spectroscopic data are in agreement with those previously reported.[175] 
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 ((4-ethynylphenyl)ethynyl)trimethylsilane (112) 

 

 

111 (750 mg, 2.92 mmol, 1.00 eq) was dissolved in dry toluene (12 mL) under argon 

atmosphere and was then charged with powdered sodium hydroxide (129 mg, 3.22 mmol, 

1.10 eq). After stirring the reaction mixture at 120 °C for 45 min, it was allowed to cool down 

to room temperature and the solvent was removed under reduced pressure. The resulting 

crude solid was subjected to aqueous sat. ammonium chloride solution and extracted three 

times with dichloromethane. The combined organic layers were washed with brine, dried over 

sodium sulfate, filtered and the solvent was evaporated in vacuo. The dark brown crude 

product was purified by column chromatography (SiO2; pentane: ethyl acetate 10:1) and 

product 112 was isolated as a pale yellow solid (381 mg, 76%). 

1H NMR (400 MHz, CDCl3): δ = 7.41 (s, 4H, Har), 3.16 (s, 1H, C≡CH), 0.25 (s, 9H, SiCH3) ppm; GC-

MS (EI +, 70 eV): m/z (%) = 91.6 (7), 129.1 (7), 153.0 (9), 183.0 (100), 184.0 (18), 185.0 (5), 

198.0 (25) [M]+. 

The spectroscopic data are in agreement with those previously reported.[175] 

 

 

(4-iodophenoxy)triisopropylsilane (113) 

 

 

In an oven-dried Schlenk tube 4-iodophenol (182, 100 mg 0.45 mmol, 1.00 eq) and 

triethylamine (138 mg, 1.35 mmol, 0.192 mL, 3.00 eq) were dissolved in dry DMF (3 mL) under 

argon atmosphere. The solution was stirred for five min, before triisopropyl chloride (224 mg, 

1.13 mmol, 0.248 mL, 2.50 eq) was added. The reaction mixture was stirred for 3 hours at 

50 °C and was then poured into cold demin. water and extracted with dichlormethane three 

times. The organic layer was washed with brine, dried over sodium sulfate and filtered. The 

concentrated filtrate was purified by column chromatography (SiO2; cyclohexane: ethyl 

acetate 5:1) to afford the target compound as a colorless liquid (161 mg, 95%). 
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1H NMR (400 MHz CDCl3): δ = 7.48 (d, 3JH,H  = 8.8 Hz, 2H, Har), 6.65 (d, 3JH,H  = 8.8 Hz, 2H, Har), 

1.28 – 1.17 (m, 3H, SiCH), 1.08 (d, 3JH,H  = 7.3 Hz, 18H, SiCH(CH3)2) ppm; 13C NMR (101 MHz, 

CDCl3): δ = 138.4 (Ct, 2C), 122.5 (Ct, 2C), 18.0 (Cp, 6C), 12.8 (Ct, 3C) ppm; GC-MS (EI +, 70 eV): 

m/z (%) =76.0 (21), 77.0 (13), 121.0 (31), 135.0 (30), 136.0 (36), 138.5 (42), 150.0 (41), 163.0 

(18), 164.0 (17), 178.0 (19), 206.1 (23), 246.8 (17), 262.9 (29), 276.9 (69), 304.9 (49), 333.0 

(100), 334.0 (17), 376.0 (35). 

 

 

Triisopropyl(4-((4-((trimethylsilyl)ethynyl)phenyl)ethynyl)phenoxy)silane (114) 

 

 

 

Aryl iodide 113 (107 mg, 0.283 mmol, 1.00 eq) and acetylene 112 (73.0 mg, 0.368 mmol, 

1.30 eq) and copper iodide (1.65 mg, 0.00849 mmol, 3 mol%) were dissolved in dry THF 

(10 mL) in an oven-dried 25 mL Schlenk tube under argon atmosphere. The mixture was 

degassed with argon for five min and diisopropylamine (0.7 mL) was added followed by further 

degassing for two min. Afterwards, bis(triphenylphosphine)palladium(II) chloride (6.02 mg, 

0.00849 mmol, 3 mol%) was added and the reaction mixture was stirred for three hrs at 60 °C. 

After evaporating the solvent under reduced pressure, the crude was taken up in demin. water 

and dichloromethane. The phases were separated and the aqueous one was extracted twice 

with dichloromethane. The combined organic layers were washed with brine, dried over 

sodium sulfate, filtered and concentrated. The crude was purified by column chromatography 

(SiO2; cyclohexane: dichloromethane 10:1) yielding a colorless oil (116 mg, 92%). 

1H NMR (400 MHz, CDCl3): δ = 7.42 (s, 4H, Har), 7.39 (d, 3JH,H  =  8.6 Hz, 2H, Har), 6.85 (d, 

3JH,H  =  8.6 Hz, 2H, Har), 1.30 – 1.19 (m, 3H,SiCH(CH3)2), 1.10 (d, 3JH,H  = 7.3 Hz, 18H, SiCH(CH3)2), 

0.25 (s, 9H, SiCH3) ppm; 13C NMR (101 MHz, CDCl3): δ = 133.2 (Ct, 2C), 132.0 (Ct, 2C), 131.3 (Ct, 

2C), 123.9 (Cq, 1C), 122.6 (Cq, 1C), 120.3 (Ct, 2C), 115.5 (Cq, 1C), 104.9 (Cq, 1C), 96.2 (Cq, 1C), 

91.7 (Cq, 1C),88.0 (Cq, 1C), 18.0 (Cp, 6C), 12.8 (Ct, 3C),0.1 (Ct, 3C) ppm; GC-MS (EI +, 70 eV): m/z 

(%) = 59.0 (12), 73.1 (40), 75.0 (16), 151.1 (18), 159.0 (55), 166.0 (100), 167.0 (19), 333.0 (47), 
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334.0 (15), 347.0 (69), 348.0 (22), 361.0 (13), 375.0 (42), 376.0 (15), 403.1 (51), 404.1 (19), 

446.1 (83) [M]+, 447.1 (32), 448.1 (12). 

 

 

(4-((4-ethynylphenyl)ethynyl)phenoxy)triisopropylsilane (115) 

 

 

 

Reactant 114 (318 mg, 0.712 mmol, 1.00 eq) was dissolved in dichloromethane (2 mL). 

Methanol (0.2 mL) was added, the solution was charged with potassium carbonate (299 mg, 

2.14 mmol, 3.01 eq) and was stirred at room temperature for six hrs. GC-MS indicated full 

conversion.  

The reaction mixture was treated with demin. water and extracted three times with 

dichloromethane, washed with brine, dried over sodium sulfate, filtered and the solvents 

were evaporated under reduced pressure. After purification via column chromatography 

(SiO2; cyclohexane: ethyl acetate 5:1) OPE 115 was obtained as a colorless solid (227 mg, 85%). 

1H NMR (400 MHz, CDCl3): δ = 7.45 (s, 4H, Har), 7.43 – 7.37 (m, 2H, Har), 6.88 – 6.83 (m, 2H, 

Har), 3.16 (s, 1H, C≡CH), 1.32 – 1.21 (m, 3H, SiCH(CH3)2), 1.11 (s, 18H, SiCH(CH3)2) ppm. 13C NMR 

(101 MHz, CDCl3): δ = 156.8 (Cq, 1C), 133.2 (Ct, 1C), 132.2 (Ct, 1C), 131.4 (Ct, 1C), 124.3 (Cq, 1C), 

121.6 (Cq, 1C), 120.3, 115.5, 91.8 (Cq, 1C), 87.8 (Cq, 1C), 83.5 (Cq, 1C), 78.8 (Ct, 1C), 18.0 (Cs, 

6C), 12.8 (Ct, 3C) ppm GC-MS (EI +, 70 eV): m/z (%) = 59.1(16), 75.1(35), 122.6(11), 130.6(28), 

130.6(32), 137.6(65), 137.6(98), 200.0(28), 201.0(15), 202.0(17), 261.0(63), 262.0(15), 

275.0(100), 276.0(24), 289.0(14), 303.1(51), 304.1(14), 331.1(68), 332.1(20), 374.1(82) [M]+, 

375.1(27).  
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1,1''-diethyl-3'-((4-((4-((4-((triisopropylsilyl)oxy)phenyl)ethynyl)phenyl)ethynyl)benzyl)-

oxy)dispiro[piperidine-4,2'-4,8,12,16-tetraoxa-1,3,9,11(1,4)-tetrabenzenacyclohexadeca-

phane-10',4''-piperidine] (116) 

 

 

In an oven-dried Schlenk tube, cyclophane 96 (102 mg, 0.112 mmol, 1.00 eq) and OPE 115 

(78.7 mg, 0.354 mmol, 1.00 eq) were dissolved in dry THF (11 mL) and diisopropylamine (3 mL) 

under argon atmosphere. The mixture was degassed by flushing with argon for 10 min. 

Afterwards, copper iodide (1.08 mg, 5.62 µmol, 5 mol%), bis(dibenzylideneacetone)-

palladium(0) (3.23 mg, 5.62 µmol, 5 mol%) and triphenylphosphine (22.3 mg, 0.0843 mmol, 

0.75 eq) were added and the reaction mixture was stirred at room temperature for eight hrs. 

The solvents were removed under reduced pressure, the crude mixture was then taken up in 

demin. water and was extracted three times with dichloromethane. The combined organic 

layers were washed with brine, dried over sodium sulfate, filtered and the solvents were 

removed in vacuo. Purification via column chromatography (SiO2; ethyl acetate, 5% methanol, 

5% NEt3) yielded product 116 as a pale yellow solid (53.2 mg, 41%).  

1H NMR (600 MHz, CDCl3): δ = 7.55 (d, 3JH,H = 8.0 Hz, 2H, Har,OPE), 7.49 (d, 3JH,H = 8.0 Hz, 2H, 

Har,OPE), 7.42 (d, 3JH,H = 8.4 Hz, 2H, Har,OPE), 7.41 (d, 3JH,H = 8.4 Hz, 2H, Har,OPE), 7.12 – 7.07 (m, 

2H, Har,OPE; 4H, Har,cyclophane), 6.90 (d, 3JH,H = 8.5 Hz, 2H, Har,cyclophane), 6.86 (d, 3JH,H = 8.1 Hz, 2H, 

Har,OPE), 6.78 – 6.64 (m, 8H, Har,cyclophane), 6.45 (s, 1H, Har,cyclophane), 4.85 (s, 2H, OCH2-Cq,ar), 4.10 

(t, 3JH,H = 5.3 Hz, 2H, OCH2CH2), 4.07 (t, 3JH,H = 5.3 Hz, 2H, OCH2CH2), 4.03 – 4.00 (m, 4H, 

OCH2CH2), 2.80 – 2.29 (m, 16H, NCH2CH2, NCH2CH2; 4H, NCH2CH3), 2.24 – 2.17 (m, 2H, 

OCH2CH2CH2), 2.09 – 2.08 (m, 2H, OCH2CH2CH2), 1.32 – 1.23 (m, 3H, SiCH), 1.11 – 1.10 (m, 6H, 

NCH2CH3, 18H, SiCH(CH3)2) ppm; 13C NMR (126 MHz, CDCl3): δ = 156.9 (Cq, 1C), 156.9 (Cq, 2C), 

156.8 (Cq, 1C), 147.3 (Cq, 1C), 146.3 (Cq, 1C), (139.7), 138.2 (Cq, 1C), 133.2 (Ct, 2C), 131.8 (Ct, 
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2C), 131.7 (Ct, 2C), 131.5 (Ct, 2C), 127.1 (Ct, 6C), 127.1 (Ct, 2C), 123.7 (Cq, 1C), 122.7 (Cq, 1C), 

122.3 (Cq, 1C), 120.2 (Ct, 2C), 118.9 (Ct, 1C), 115.5 (Cq, 1C), 114.6 (Ct, 6C), 114.4 (Ct, 1C), 113.8 

(Ct, 1C) 91.7 (Cq, 1C), 91.2 (Cq, 1C), 89.6 (Cq, 1C), 88.0 (Cq, 1C), 70.6 (Cs, 1C), 64.5 (Cs, 1C), 63.5 

(Cs, 1C), 63.3 (Cs, 1C), 63.1 (Cs, 1C), 52.4 (Cs, 2C), 50.0 (Cs, 4C), 43.0 (Cq, 1C), 42.7 (Cq, 1C), 34.8 

(Cs, 4C), 29.7 (Cs, 1C), 29.6 (Cs, 1C), (25.5), 18.0 (Cs, 6C), 12.8 (Ct, 3C), 11.9 (Cs, 2C) ppm. No 

signals for Cq next to the spiro centre (4C) were observed in the spectrum. The signals in 

brackets correspond to impurity; HRMS (ESI, +): calc. for C76H90N2O6Si 1153.6484 [M+H] +, 

found 1153.6487.  

 

 

1,1,1'',1''-tetraethyl-3'-((4-((4-((4-hydroxyphenyl)ethynyl)phenyl)ethynyl)benzyl)oxy)di-

spiro[piperidine-4,2'-4,8,12,16-tetraoxa-1,3,9,11(1,4)-tetrabenzenacyclohexadecaphane-

10',4''-piperidine]-1,1''-diium dichloride (92) 

 

 

 

Diamine 116 (30.0 mg, 0.026 mmol, 1.00 eq) was subjected to freshly distilled iodoethane 

(6.82 mg, 43.3 mmol, 3.5 mL, 1,666 eq) and potassium carbonate (18.1 mg, 0.13 mmol, 

5.00 eq). The resulting suspension was stirred in the dark at room temperature. After 40 hrs, 

LC-ESI-MS indicated full conversion of 116 and iodoethane was then removed in vacuo. The 

obtained pale yellow solid was taken up in methanol and the insoluble potassium carbonate 

was filtered off. Impurities were separated by reversed phase column chromatography (SiO2-

C18, acetonitrile, 10% water). For the elution of the target compound a change to a charged 

eluent (acetonitrile, 5% water, 5% 1 M aq. ammonium chloride solution) was inevitable. After 

evaporation of the solvents under reduced pressure, the resulting mixture of target 
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compound 92 and ammonium salts was subjected to a small amount of demin. water (0.5 mL). 

The dissolved ammonium salts were removed by filtration, the solid product was washed 

twice with some water and was then taken up in methanol. Evaporation of methanol afforded 

the pure target diammonium salt 92 as a pale yellow solid (13.2 mg, 45%).    

1H NMR (600 MHz, CD3CN: D2O 1:1): δ = 7.57 (d, 3JH,H = 8.4 Hz, 2H, Har,OPE), 7.49 (d, 3JH,H = 8.4 

Hz, 2H, Har,OPE), 7.36 (d, 3JH,H = 8.6 Hz, 2H, Har,OPE), 7.34 (d, 3JH,H = 8.2 Hz, 2H, Har,OPE), 7.16 – 7.07 

(m, 2H, Har,OPE; 4H, Har,cyclophane), 6.85 (d, 3JH,H = 8.5 Hz, 2H, Har,cyclophane), 6.83 – 6.80 (m, 2H, 

Har,OPE), 6.80 – 6.76 (m, 4H, Har,cyclophane), 6.74 (d, 3JH,H = 8.6 Hz, 2H, Har,cyclophane), 6.61 (d, 3JH,H = 

8.4 Hz, 2H, Har,cyclophane), 6.52 (s, 1H, Har,cyclophane), 5.10 – 5.00 (m, 2H, OCH2-Cq,ar), 4.07 (t, 3JH,H = 

5.3 Hz, 2H, OCH2CH2), 4.03 (t, 3JH,H = 5.3 Hz, 2H, OCH2CH2), 3.93 (t, 3JH,H = 5.3 Hz, 2H, OCH2CH2), 

3.89 (t, 3JH,H = 5.3 Hz, 2H, OCH2CH2), 3.17 (bs, 8H, NCH2CH3; 8H, NCH2CH2), 2.53 (bs, 8H, 

NCH2CH2), 2.17 – 2.11 (m, 2H, OCH2CH2), 1.91 – 1.89 (m, 2H, OCH2CH2), 1.15 – 1.05 (m, 12H, 

NCH2CH3) ppm; 13C NMR (151 MHz, CD3CN): δ = 157.2 (Cq, 1C), 156.9 (Cq, 1C), 156.8 (Cq, 1C), 

156.6 (Cq, 1C), 147.0 (Cq, 1C), 146.1 (Cq, 1C), 137.9 (Cq, 1C), 132.9 (Ct, 2C), 131.4 (Ct, 2C), 131.2 

(Ct, 2C), 131.0 (Ct, 2C), 127.5 (Ct, 2C), 127.4 (Ct, 2C), 127.1 (Ct, 2C), 126.8 (Ct, 2C), 123.3 (Cq, 1C), 

121.9 (Cq, 1C), 121.5 (Cq, 1C), 118.3 (Cq, 1C), 115.4 (Ct, 2C), 114.2 (Ct, 4C), 114.0 (Ct, 2C), 113.8 

(Cq, 1C), 112.9 (Cq, 1C), 112.1 (Cq, 1C), (99.6), 91.6 (Cq, 1C), 90.6 (Cq, 1C), 89.1 (Cq, 1C), 86.6 (Cq, 

1C), 69.1 (Cs, 1C), 63.5 (Cs, 1C), 63.2 (Cs, 1C), 63.0 (Cs, 1C), 62.8 (Cs, 1C), 54.7 (Cs, 8C), 41.1 (Cq, 

1C), 41.0 (Cq, 1C), 28.2 (Cs, 1C), 28.1 (Cs, 1C), 28.1 (Cs, 2C), 27.8 (Cs, 2C), 6.0 (Cp, 4C) ppm. No 

signals for Cq adjacent to the spiro centre (4C) were observed in the spectrum. The signals in 

brackets could not be assigned and correspond most likely to impurity; HRMS (ESI, +): calc. 

for C71H78N2O6 527.2924 [M – 2Cl] 2+, found 527.2931.  
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((4-bromophenyl)ethynyl)trimethylsilane (117) 

 

 

 

In an oven-dried Schlenk tube, 1-bromo-4-iodobenzene (183, 1.00 g, 3.53 mmol, 1.00 eq), bis-

(triphenylphosphine)palladium(II) chloride (125 mg, 0.177 mmol, 5 mol%) and copper iodide 

(20.3 mg, 0.106 mmol, 3 mol%) were dissolved in dry THF (5 mL) and triethylamine (5 mL) 

under argon atmosphere. The solution was degassed by flushing with argon for 10 min. 

Afterwards ethynyltrimethylsilane (417 mg, 4.24 mmol, 0.604 mL, 1.20 eq) was added. 

Thereupon the color changed from yellow to dark green and slight warming occurred. After 

stirring at room temperature for 18 hrs, the solvents were removed under reduced pressure. 

The target compound was isolated by column chromatography (SiO2; pentane) resulting in a 

colorless solid (700 mg, 78%). 

1H NMR (400 MHz, CDCl3): δ = 7.47 – 7.39 (m, 2H, Har), 7.35 – 7.28 (m, 2H, Har), 0.25 (s, 9H, 

CH3) ppm; 13C NMR (101 MHz, CDCl3): δ = 133.5 (Ct, 2C), 131.6 (Ct, 2C), 122.9 (Cq, 1C), 122.2 

(Cq, 1C), 104.0 (Cq, 1C), 95.7 (Cq, 1C), 0.03 (Cs, 3C) ppm; GC-MS (EI +, 70 eV): m/z (%) = 53.0 

(10), 79.1 (13), 115.1 (12), 119.6 (11), 128.1 (15), 142.1 (10), 143.1 (16), 237.1 (100), 238.1 

(15), 239.1 (93), 240.1 (14), 252.1 (21) [M]+, 254.1 (21) [M]+.  

 

 

Triisopropyl((4-((trimethylsilyl)ethynyl)phenyl)ethynyl)silane (118) 

 

 

 

In an oven-dried Schlenk tube, 117 (562 mg, 2.22 mmol, 1.00 eq), bis(triphenylphosphine)-

palladium(II) chloride (47.2 mg, 0.0666 mmol, 3 mol%) and copper iodide (12.7 mg, 

0.0666 mmol, 3 mol%) were suspended in triethylamine (4 mL) and dry THF (3 mL) under 

argon atmosphere. The mixture was degassed by flushing with argon for 10 min. After heating 

up to 70 °C triisopropylsilylacetylene (500 mg, 2.66 mmol, 0.615 mL, 1.20 eq) was added 
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dropwise over a time of 5 min. The color of the reaction mixture turned from yellow to dark 

red. After 2 hrs 45 min TLC indicated full conversion of 118. The solvents were removed in 

vacuo and the crude product was purified by column chromatography (SiO2; pentane) 

resulting in a colorless solid target compound (520 mg, 66%). 

1H NMR (400 MHz, CDCl3): δ = 7.39 (s, 4H, Har), 1.12 (s, 21H, SiCH(CH3)2), 0.25 (s, 9H, SiCH3) 

ppm; 13C NMR (101 MHz, CDCl3): δ = 132.0, 131.9, 123.7, 123.1, 106.7, 104.8, 96.3, 92.9, 18.8, 

11.5, 0.1 ppm; GC-MS (EI +, 70 eV): m/z (%) = 73.0 (32), 105.0 (12), 106.0 (14), 113.0 (63), 

120.1 (84), 121.0 (14), 183.0 (15), 211.0 (10), 225.0 (12), 227.0 (15), 241.1 (95), 242.1 (32), 

243.0 (13), 255.1 (83), 256.1 (24), 257.1 (12), 269.1 (78), 270.1 (23), 283.1 (48), 284.1 (14), 

311.0 (100), 311.9 (63), 313.2 (21), 339.2 (19), 354.2 (29) [M]+, 355.2 (10). 

 

 

((4-ethynylphenyl)ethynyl)triisopropylsilane (119) 

 

Si Si Si
DCM, rt, 6 h, 70%

118

K2CO3, MeOH,

119  

 

Reactant 118 (302 mg, 0.815 mmol, 1.00 eq) was dissolved in a mixture of dichloromethane 

and wet methanol (3:1, 4 mL). The solution was charged with potassium carbonate (131 mg, 

0.937 mmol, 1.10 eq) and was stirred at room temperature for 6 hrs. GC-MS indicated full 

conversion. The reaction mixture was treated with demin. water and was extracted three 

times with dichloromethane, washed with brine, dried over sodium sulfate, filtered and the 

solvent was evaporated under reduced pressure. Compound 119 was obtained as a colorless 

solid (145 mg, 60%). 

1H NMR (400 MHz, CDCl3): δ = 7.42 (s, 4H, Har), 3.16 (s, 1H, C≡CH), 1.13 (s, 21H, SiCH(CH3)2) 

ppm; 13C NMR (101 MHz, CDCl3): δ = 132.0 (Ct, 2C), 131.9 (Ct, 2C), 123.7 (Cq, 1C), 123.1 (Cq, 

1C), 106.7 (Cq, 1C), 104.8 (Cq, 1C), 96.3 (Cq, 1C), 92.9 (Cq, 1C), 18.8 (Cs, 6C), 11.5 (Ct, 3C), 0.1 (Cs, 

3C) ppm; GC-MS (EI +, 70 eV): m/z (%) = 53.0 (12), 59.0 (15), 84.6 (12), 91.6 (32), 91.6 (13), 

103.0 (12), 129.0 (32), 145.1 (10), 153.1 (48), 154.1 (13), 155.1 (25), 159.1 (13), 169.2 (100), 

169.9 (29), 183.1 (88), 184.1 (20), 197.1 (74), 198.1 (15), 211.1 (53), 212.1 (11), 239.3 (100), 

239.9 (51), 241.1 (11), 282.2 (24) [M]+.  
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((4-((4-bromophenyl)ethynyl)phenyl)ethynyl)triisopropylsilane (120) 

 

 

 

An oven-dried Schlenk tube was charged with 119 (284 mg, 1.01 mmol, 1.30 eq) and 1-bromo-

4-iodobenzene (223 mg, 0.773 mmol, 1.00 eq) which was dissolved in dry THF (20 mL) and 

diisopropylamine (3 mL) in argon atmosphere. The mixture was degassed by flushing with 

argon for 10 min. Afterwards, copper iodide (4.44 mg, 0.0232 mmol, 3 mol%) and 

bis(triphenylphosphine)palladium chloride (16.4 mg, 0.0232 mmol, 3 mol%) were added and 

the reaction mixture was stirred at room temperature for six hrs. The solvents were removed 

under reduced pressure, the crude mixture was then taken up in demin. water and was 

extracted three times with dichloromethane. The combined organic layers were washed with 

brine, dried over sodium sulfate, filtered and the solvents were removed in vacuo. Purification 

via column chromatography (SiO2; cyclohexane) afforded product 120 as a colorless solid 

(153 mg) in 45% yield.  

1H NMR (400 MHz, CDCl3): δ = 7.51 – 7.47 (m, 2H, Har), 7.45 – 7.44 (m, 4H, Har), 7.41 – 7.36 

(m, 2H, Har), 1.13 (m, 3H, SiCH, 18H, SiCH(CH3)2) ppm; 13C NMR (101 MHz, CDCl3): δ = 133.2 

(Ct, 2C) , (132.4,) 132.2 (Ct, 2C), 131.8 (Ct, 2C), 131.5 (Ct, 2C), 129.1 (Cq, 1C), 123.8 (Cq, 1C), 

122.9 (Cq, 1C), 122.9 (Cq, 1C), 122.2 (Cq, 1C), 106.7 (Cq, 1C), 93.2 (Cq, 1C), 90.4 (Cq, 1C), 90.2 (Cq, 

1C), 18.8 (Cs, 6C), 11.5 (Ct, 3C) ppm. 

The spectroscopic data are in agreement with those   previously reported.[176] 

 

 

Triisopropyl((4-((4-((trimethylsilyl)ethynyl)phenyl)ethynyl)phenyl)ethynyl)silane (121) 
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This compound was prepared by a modification of the previously reported procedure[177] in 

order to use starting material 120 available from other synthesis. OPE 120 (134 mg, 

0.306 mmol, 1.00 eq) and trimethylsilylacetylene (39.1 mg, 0.398 mmol, 1.30 eq) and copper 

iodide (1.76 mg, 9.19 µmol, 3 mol%) were dissolved in dry THF (4 mL) in an oven-dried 25 mL 

Schlenk tube under argon atmosphere. The mixture was degassed with argon for five min and 

diisopropylamine (0.7 mL) was added followed by further degassing for two min. Afterwards, 

bis(triphenylphosphine)palladium(II) chloride (6.02 mg, 9.19 µmol, 3 mol%) was added and the 

reaction mixture was stirred for four hrs at 60 °C. After evaporating the solvent under reduced 

pressure, the crude was taken up in demin. water and dichloromethane. The phases were 

separated and the aqueous one was extracted twice with dichloromethane. The combined 

organic layers were washed with brine, dried over sodium sulfate, filtered and concentrated. 

The crude was purified by column chromatography (SiO2; cyclohexane) yielding OPE 121 as a 

pale yellow solid solid (139 mg, quant.). 

1H NMR (400 MHz, CDCl3): δ = 7.45 (s, 8H, Har), 1.13 – 1.12 (m, 3H, SiCH, 18H, SiCH(CH3)2), 0.26 

(s, 9H, Si(CH3)3) ppm. 

The spectroscopic data are in agreement with those previously reported.[177] 

 

 

((4-((4-ethynylphenyl)ethynyl)phenyl)ethynyl)triisopropylsilane (122) 

 

 

 

Reactant 121 (127 mg, 0.279 mmol, 1.00 eq) was dissolved in a mixture of dichloromethane 

(3 mL) and wet methanol (1 mL). The resulting solution was charged with potassium carbonate 

(117 mg, 0.837 mmol, 3.00 eq) and was stirred at room temperature for three hrs. GC-MS 

indicated full conversion. The reaction mixture was treated with demin. water and was 

extracted with dichloromethane three times. The combined organic layers were washed with 

brine, dried over sodium sulfate, filtered and the solvents were evaporated under reduced 

pressure. The solid, colorless target OPE 122 could be afforded in 92% yield (98.0 mg).   
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1H NMR (400 MHz, CDCl3): δ = 7.47 (s, 4H, Har), 7.45 (s, 4H, Har), 3.18 (s, 1H, C≡CH), 1.13 (s, 3H, 

SiCH, 18H, SiCH(CH3)2) ppm. 13C NMR (101 MHz, CDCl3): δ = 132.2 (Ct, 2C), 132.1 (Ct, 2C), 131.6 

(Ct, 2C), 131.5(Ct, 2C), 123.8 (Cq, 1C), 123.7 (Cq, 1C), 122.9 (Cq, 1C), 122.2 (Cq, 1C), 106.7 (Cq, 

1C), 93.2 (Cq, 1C), 91.2 (Cq, 1C), 90.7 (Cq, 1C), 83.4 (Cq, 1C), 79.2 (Ct, 1C), 18.8 (Ct, 3C), 11.5 (Cp, 

6C) ppm. 

The spectroscopic data, obtained by a slightly modified procedure, are in agreement with 

those previously reported.[178] 

 

 

1,1''-diethyl-3'-((4-((4-((4-((triisopropylsilyl)ethynyl)phenyl)ethynyl)phenyl)ethynyl)ben-

zyl)oxy)dispiro[piperidine-4,2'-4,8,12,16-tetraoxa-1,3,9,11(1,4)-tetrabenzenacyclohexa-

decaphane-10',4''-piperidine] (123) 

 

 

An oven-dried Schlenk tube was charged with cyclophane 96 (40.0 mg, 0.0441 mmol, 1.00 eq) 

and OPE 122 (33.7 mg, 0.0882 mmol, 2.00 eq) which were dissolved in dry THF (3 mL) and 

diisopropylamine (0.5 mL) under argon atmosphere. The mixture was degassed by flushing 

with argon for 10 min. Afterwards, copper iodide (0.506 mg, 2.65 µmol, 6 mol%) and tetrakis-

(triphenylphosphine)palladium(0) (3.09 mg, 2.65 µmol, 6 mol%) were added and the reaction 

mixture was stirred at room temperature for 18 hrs. The solvents were removed under 

reduced pressure, the crude mixture was then taken up in demin. water and was extracted 

three times with dichloromethane. The combined organic layers were washed with brine, 

dried over sodium sulfate, filtered and the solvents were removed in vacuo. Without further 

purification, amine 123 (51.0 mg, 99%) was directly used in the next step.  
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1,1''-diethyl-3'-((4-((4-((4-ethynylphenyl)ethynyl)phenyl)ethynyl)benzyl)oxy)dispiro[piperi-

dine-4,2'-4,8,12,16-tetraoxa-1,3,9,11(1,4)-tetrabenzenacyclohexadecaphane-10',4''-piperi-

dine] (124) 

 

 

In an oven-dried Schlenk-tube 123 (38.3 mg, 0.0330 mmol, 1.00 eq) was dissolved in dry 

tetrahydrofuran (1.5 mL) under argon atmosphere. Tetrabutylammonium fluoride solution 

(1 M in THF, 34.8 mg, 0.0396 mmol, 1.20 eq) was added and the reaction mixture was stirred 

at room temperature for 45 min. TLC (SiO2; ethyl acetate, 5% NEt3, 5% MeOH) indicated full 

conversion of the reactant. After removing the solvent under reduced pressure, the crude was 

taken up in demin. water and dichloromethane. The layers were separated and the aqueous 

one was extracted twice with dichloromethane. The combined organic layers were washed 

with brine, dried over sodium sulfate, filtered and concentrated in vacuo. The crude product 

was purified by column chromatography (SiO2; ethyl acetate, 5% NEt3, 5% MeOH) to afford 

target compound 124 as a colorless solid (24.6 mg, 74%).  

1H NMR (500 MHz, CDCl3): δ = 7.57 − 7.56 (m, 2H, Har,OPE), 7.53 − 7.51 (m, 2H, Har,OPE), 7.48 (s, 

4H, Har,OPE), 7.45 – 7.39 (m, 2H, Har,OPE), 7.15 – 7.09 (m, 2H, Har,OPE), 7.08 – 7.04 (m, 4H, Har,cyclo), 

6.88 (d, 3JH,H = 8.7 Hz, 2H, Har,cyclo), 6.77 – 6.61 (m, 8H, Har,cyclo), 6.41 (s, 1H, Har,cyclo), 4.84 (s, 2H, 

OCH2Cq), 4.11 – 4.06 (m, 4H, OCH2CH2CH2), 4.03 – 4.00 (m, 4H, OCH2CH2CH2), 3.19 (s, 1H, ≡CH), 

3.18 – 2.01 (broad m, 20H, NCH2, NCH2CH2), 2.25 – 2.15 (m, 2H, OCH2CH2CH2), 2.1 – 2.08 (m, 

2H, OCH2CH2CH2), 1.21– 1.17 (m, 6H, NCH2CH3) ppm; 13C NMR (126 MHz, CDCl3): δ = 157.2 

(Cq, 3C, COCH2CH2), 147.6 (Cq, 1C, CHCOCH2CCH), 147.6 (Cq, 1C, CHCOCH2CCH), 147. 6 (Cq, 1C, 

CHCOCH2CCH), 138.2 (Cq, 1C, OCH2Cq,OPE), 132.2 (Ct, 2C, CHOPE), 131.8 (Ct, 2C, CHar,OPE), 131.7 

(Ct, 2C, CHar,OPE), 131.7 (Ct, 2C, CHar,OPE), 131.6 (Ct, 2C, CHar,OPE), 127.1 (Ct, 2C, CHar,OPE), 127.0 

(Ct, 1C, Cq,spiroCqCH), 126.9 (Ct, 1C, Cq,spiroCqCH), 126.8 (Ct, 1C, Cq,spiroCqCH), 123.5 (Cq, 1C, 
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CHCq,OPE), 123.3 (Cq, 1C, CHCq,OPE), 123.0 (Cq, 1C, CHCq,OPE), 122.3 (Cq, 1C, CHCq,OPE), 122.2 (Cq, 

1C, CHCq,OPE), 117.7 (hmqc, Ct, 1C, Cq,spiroCqCHCH) 114.8 – 114.7 (Ct, 8C, CHcyclo), 91.4 (Cq, 1C, 

CqC≡C), 91.1 (Cq, 1C, CqC≡C), 90.9 (Cq, 1C, CqC≡C), 89.6 (Cq, 1C, CqC≡C), 83.3 (Cq, 1C, CqC≡C), 

79.2 (Cq, 1C, C≡CH), 70.5 (Cs, 1C, OCH2Cq,OPE), 63.5 (Cs, 1C, OCH2CH2CH2), 63.5 (Cs, 1C, 

OCH2CH2CH2), 63.3 (Cs, 1C, OCH2CH2CH2), 63.2 (Cs, 1C, OCH2CH2CH2), 58.9, 52.3 (Cs, 2C, 

NCH2CH3), 49.6 (Cs, 4C, NCH2CH2), 42.7 (Cq, 1C, Cq,spiro), 42.4 (Cq, 1C, Cq,spiro), 33.6 (Cs, 4C, 

NCH2CH2), 29.6 (Cs, 2C, NCH2CH2), 29.6 (Cs, 4C, NCH2CH2), 10.8 (Cp, 2C, NCH2CH3) ppm. Cq 

adjacent to the spiro center could not be detected, neither in 13C NMR spectrum, nor in 

spectra of 2D NMR experiments; HRMS (ESI, +): calc. for C69H69N2O5 1005.5201 [M+H]+, found 

1005.5191.  

 

 

 

1,1,1'',1''-tetraethyl-3'-((4-((4-((4-ethynylphenyl)ethynyl)phenyl)ethynyl)benzyl)oxy)di-

spiro[piperidine-4,2'-4,8,12,16-tetraoxa-1,3,9,11(1,4)-tetrabenzenacyclohexadecaphane-

10',4''-piperidine]-1,1''-diium potassium di-hexafluorophosphate (125) 

 

 

 

In a 10 mL one-neck flask amine 124 (21.3 mg, 0.0212 mmol, 1.00 eq) was charged with 

potassium carbonate (11.8 mg, 0.0848 mmol, 4.00 eq) and freshly distilled iodoethane (2.54 g, 

16.1 mmol, 1.30 mL, 759 eq). After stirring the suspension room temperature for 34 hrs in the 

dark, excess iodoethane was removed under reduced pressure. Potassium 

hexafluorophosphate (39.8 mg, 0.212 mmol, 10.0 eq) and dichloromethane (5 mL) were 

added to the yellow crude mixture and stirred for five min. at room temperature, before 
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demin. water was added. The layers were separated and the aqueous one was extracted twice 

with dichloromethane. The combined organic layers were filtered over cotton and the solvent 

was removed in vacuo to obtain the hexafluorophosphate salt 125 (27.0 mg, 94%) as a yellow 

solid. 

1H NMR (500 MHz, CD2Cl2): δ = 7.61 (d, 3JH,H = 7.9 Hz, 2H, Har,OPE), 7.58 – 7.45 (m, 8H, Har,OPE), 

7.30 (d, 3JH,H = 7.9 Hz, 2H, Har,OPE), 7.11 – 7.08 (m, 4H, Har,cyclo), 6.95 (d, 3JH,H = 8.4 Hz, 2H, Har,cyclo), 

6.81 – 6.69 (m, 8H, Har,cyclo), 6.56 (s, 1H, Har,cyclo), 5.02 (s, 2H, OCH2Cq), 4.07 (bs, 4H, 

OCH2CH2CH2), 4.01 – 3.99 (m, 4H, OCH2CH2CH2), 3.30 – 3.19 (m, 1H, C≡CH, 8H, NCH2CH3, 8H, 

NCH2CH2), 2.65 (bs, 8H, NCH2CH2), 2.20 – 2.18 (m, 2H, OCH2CH2), 2.08 – 2.06 (m, 2H, OCH2CH2),  

1.30 – 1.25 (m, 12H, NCH2CH3) ppm; 13C NMR (126 MHz, CD2Cl2): δ = 158.1(Cq,1C, COCH2CH2), 

158.0 (Cq, 1C, COCH2CH2), 157.9 (Cq, 1C, COCH2CH2), 148.6 (Cq, 1C, CHCOCH2CCH), 148.3 (Cq, 

1C, CHCOCH2CCH), 138.7 (Cq, 1C, OCH2Cq,OPE), 132.5 (Ct, 2C, CHOPE), 132.1 (Ct, 2C, CHOPE), 132.1 

(Ct, 4C, CHOPE), 131.9 (Ct, 2C, CHOPE), 127.7 (Ct, 2C, CHOPE), 126.5 (Ct, 3C, Cq,spiroCqCH), 123.8 (Cq, 

1C, CHCq,OPE), 123.6 (Cq, 1C, CHCq,OPE), 123.3 (Cq, 1C, CHCq,OPE), 122.6 (Cq, 1C, CHCq,OPE), 122.5 

(Cq, 1C, CHCq,OPE), 117.7 (hmqc, Ct, 1C, Cq,spiroCqCHCH), 115.2 (Ct, 4C, CHcyclo), 115.0 (Ct, 2C, 

CHcyclo), 113.4 (Ct, 1C, CHcyclo), 113.1 (Ct, 1C, CHcyclo), 91.7 (Cq, 1C, CqC≡C), 91.2 (Cq, 1C, CqC≡C), 

91.1 (Cq, 1C, CqC≡C), 89.7 (Cq, 1C, CqC≡C), 83.3 (Cq, 1C, CqC≡C), 79.5 (Cq, 1C, C≡CH), 70.8 (Cs, 1C, 

OCH2Cq,OPE), 64.3 (Cs, 1C, OCH2CH2CH2), 63.7 (Cs, 1C, OCH2CH2CH2), 63.5 (Cs, 1C, OCH2CH2CH2), 

63.4 (Cs, 1C, OCH2CH2CH2), 56.0 (Cs, 8C, NCH2), 41.8 (Cq, 1C, Cq,spiro), 41.7 (Cq, 1C, Cq,spiro), (32.3),( 

32.0), (30.1),29.6 (Cs, 1C, NCH2CH2 CH2), 29.5 (Cs, 1C, NCH2CH2 CH2), 29.0 (Cs, 2C, NCH2CH2CH2), 

29.0 (Cs, 2C, NCH2CH2CH2), 23.0, 14.3, 7.6, 7.4 (Cp, 4C,NCH2CH3) ppm. Cq adjacent to the spiro 

center could not be detected, neither in 13C spectrum, nor in spectra of 2D NMR experiments. 

The signals in brackets correspond to impurity; HRMS (ESI, +): calc. for C73H78N2O5 531.2950 

[M – 2PF6
-]2+, found 531.2954.  
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1,1,1'',1''-tetraethyl-3'-((4-((4-((4-ethynylphenyl)ethynyl)phenyl)ethynyl)benzyl)oxy)di-

spiro[piperidine-4,2'-4,8,12,16-tetraoxa-1,3,9,11(1,4)-tetrabenzenacyclohexadecaphane-

10',4''-piperidine]-1,1''-diium chloride (93) 

 

 

 

Hexafluorophosphate salt 125 (21.7 mg, 0.0160 mmol, 1.00 eq) was dissolved in acetonitrile 

(2 mL) and was subjected to an ion exchange column (Dowex 1X8, 200-400 mesh Cl-) eluting 

with acetonitrile: water 7:1. Complete ion exchange was indicated by 19F NMR experiment. 

The eluate was dried in vacuo yielding the target chloride salt 93 (17.1 mg, 94%) as a pale 

yellow solid.   

1H NMR (500 MHz, CD2Cl2): δ = 7.63 – 7.58 (m, 2H, Har,OPE), 7.58 – 7.53 (m, 2H, Har,OPE), 7.53 – 

7.45 (m, 6H, Har,OPE), 7.31 (d, 3JH,H = 8.1 Hz, 2H, Har,OPE), 7.14 – 7.10 (m, 4H, Har,OPE), 6.98 (d, 3JH,H 

= 8.9 Hz, 2H, Har,OPE), 6.79 – 6.77 (m, 4H, Har,cyclo), 6.75 – 6.73 (m, 2H, Har,cyclo), 6.71 – 6.66 (m, 

2H, Har,cyclo), 6.64 – 6.60 (m, 1H, Har,cyclo), 5.05 (s, 2H, OCH2Cq), 4.06 (t, 3JH,H = 5.3 Hz, 4H, 

OCH2CH2CH2), 3.99 (t, 3JH,H = 5.2 Hz, 4H, OCH2CH2CH2), 3.53 (bs, 8H, NCH2CH3, 8H, NCH2CH2), 

3.30 (s, 1H, C≡CH), 2.85 – 2.48 (m 8H, NCH2CH2), (2.41 (d, J = 11.0 Hz, 3H)), 2.19 (q, 3JH,H = 

5.3 Hz, 2H, 3JH,H), 2.11 – 2.03 (m, 2H, 3JH,H), 1.32 – 1.25 (m, 12H, NCH2CH3) ppm; 13C NMR 

(126 MHz, CD2Cl2): δ = 158.1 (Cq,1C, COCH2CH2), 158.1 (Cq,1C, COCH2CH2), 158.0 (Cq,1C, 

COCH2CH2), 148.6 (Cq, 1C, CHCOCH2CCH), 148.4 (Cq, 1C, CHCOCH2CCH), 138.8 (Cq, 1C, 

OCH2Cq,OPE), 132.6 (Ct, 2C, CHOPE), 132.2 (Ct, 2C, CHOPE), 132.2 (Ct, 4C, CHOPE), 132.0 (Ct, 2C, 

CHOPE), 127.8 (Ct, 2C, CHOPE), 126.8 (Ct, 3C, Cq,spiroCqCH), 123.9 (Cq, 1C, CHCq,OPE), 123.8 (Cq, 1C, 

CHCq,OPE), 123.4 Cq, 1C, CHCq,OPE), 122.7(Cq, 1C, CHCq,OPE), 122.6 (Cq, 1C, CHCq,OPE), 117.7 (hmqc, 

Ct, 1C, Cq,spiroCqCHCH), 115.3 (Ct, 4C, CHcyclo), 115.2 (Ct, 1C, CHcyclo), 115.1 (Ct, 1C, CHcyclo), 113.8 

(Ct, 1C, CHcyclo), 113.1 (Ct, 1C, CHcyclo), 91.8 (Cq, 1C, CqC≡C), 91.4 (Cq, 1C, CqC≡C), 91.2 (Cq, 1C, 

CqC≡C), 89.8 (Cq, 1C, CqC≡C), 83.5 (Cq, 1C, CqC≡C), 79.7 (Cq, 1C, C≡CH), 71.1 (Cs, 1C, OCH2Cq,OPE), 
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64.4 (Cs, 1C, OCH2Cq,OPE), 63.8 (Cs, 1C, OCH2CH2CH2), 63.6 (Cs, 1C, OCH2CH2CH2), 63.5 (Cs, 1C, 

OCH2CH2CH2), 55.6 (Cs, 4C, NCH2), 55.5 (Cs, 4C, NCH2), 42.1 (Cq, 1C, Cq,spiro), 41.9 (Cq, 1C, Cq,spiro), 

29.8 (Cs, 1C, NCH2CH2 CH2), 29.7 (Cs, 2C, NCH2CH2CH2), 29.3 (Cs, 2C, NCH2CH2CH2), 8.0 (Cp, 

4C,NCH2CH3) ppm. Cq next to the spiro center could not be detected, neither in 13C spectrum, 

nor in spectra of 2D NMR experiments; HRMS (ESI, +): calc. for C73H78N2O5 531.2950 

[M – 2Cl-]2+, found 531.2957. 

 

 

4-((4-((triisopropylsilyl)ethynyl)phenyl)ethynyl)phenol (126) 

 

 

 

An oven-dried Schlenk tube was charged with 119 (130 mg, 0.460 mmol, 1.30 eq) and 4-iodo-

phenol (78.7 mg, 0.354 mmol, 1.00 eq) which was dissolved in dry THF (20 mL) and diisopropyl-

amine (3 mL) in argon atmosphere. The mixture was degassed by flushing with argon for 10 

min. Afterwards, copper iodide (2.03 mg, 0.0106 mmol, 3 mol%) and bis(triphenylphosphine)-

palladium chloride (7.52 mg, 0.0106 mmol, 3 mol%) were added and the reaction mixture was 

stirred at 60 °C for six hrs. The solvents were removed under reduced pressure, the crude 

mixture was then taken up in demin. water and was extracted three times with 

dichloromethane. The combined organic layers were washed with brine, dried over sodium 

sulfate, filtered and the solvents were removed in vacuo. Purification via column 

chromatography (SiO2; ethyl acetate: methanol 5:2) afforded the pure product as a colorless 

solid (132 mg) in 99% yield.  

1H NMR (400 MHz, CDCl3): δ = 7.47 – 7.39 (m, 6H, Har), 6.81 (d, 3JH,H = 8.7 Hz, 2H, Har), 4.91 (s, 

1H, OH), 1.13 (m, 21H, SiCH(CH3)2) ppm; 13C NMR (101 MHz, CDCl3): δ = 156.0 (Cq, 1C, COH), 

133.5 (Ct, 2C, Car), 132.1 (Ct, 2C, Car), 131.3 (Ct, 2C, Car), 123.6 (Ct, 2C, Car), 123.1 (Cq, 1C, Car), 

115.7 (Cq, 1C, Car), 115.5 (Ct, 2C, Car), 106.9 (Cq, 1C, C≡C-Si), 92.7 (Cq, 1C, C≡C), 91.2 (Cq, 1C, 

C≡C), 88.0 (Cq, 1C, C≡C), 18.8 (Cs, 6C, CH), 11.5 (Ct, 3C, CH) ppm. GC-MS (EI +, 70 eV): m/z (%) 

= 59.1 (13), 110.6 (14), 121.1 (14), 123.5 (13), 130.7 (69), 137.7 (100), 207.1 (10), 245.1 (12), 
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247.1 (12), 261.2 (97), 262.2 (22), 275.2 (68), 276.2 (16), 289.2 (58), 290.2 (15), 303.2 (27), 

331.3 (79), 332.3 (22), 374.3 (45) [M]+, 375.3 (14). 

 

 

((4-((4-(anthracen-9-ylmethoxy)phenyl)ethynyl)phenyl)ethynyl)triisopropylsilane (128) 

 

 

 

OPE 126 (108 mg, 0.288 mmol, 1.00 eq) was dissolved in dry acetonitrile (5 mL) under argon 

atmosphere and was then charged with sodium hydroxide (17.3 mg, 0.432 mmol, 1.50 eq). 

The resulting suspension was vigorously stirred for 45 min at 45 °C. Afterwards 9-(chloro-

methyl)anthracene (127, 65.3 mg, 0.288 mmol, 1.00 eq) was added. The mixture was sitrred 

for four hrs at 45 °C and was then quenching with aq. ammonium chloride solution (0.1 M, 

5 mL). The aqueous layer was extracted three times with dichloromethane, washed with 

brine, dried over sodium sulfate, filtered and the solvents were evaporated under reduced 

pressure. Column chromatography (SiO2; cyclohexane: ethyl acetate 4:1) was performed to 

obtain 128 (138 mg, 85%) as a pale yellow solid. 

1H NMR (400 MHz, CDCl3): δ = 8.55 (s, 1H, Cq-CH-Cq), 8.28 (d, 3JH,H = 9.0 Hz, 2H, CHar,anthra), 8.09 

– 8.03 (m, 2H, CHar,anthra), 7.59 – 7.43 (m, 10H, 4 x CHar,anthra , 6 x CHar,OPE), 7.14 (d, 3JH,H = 8.8 

Hz, 2H, CHar,OPE), 6.00 (s, 2H, CH2), 1.14 (bs, 21H, SiCH(CH3)2) ppm. 13C NMR (101 MHz, CDCl3): 

δ = 159.6 (Cq, 1C, O-C), 133.4 (Ct, 2C, Car,OPE), 132.1 (Ct, 2C, Car,OPE), 131.6 (Cq, 2C, Car,anthra), 131.4 

(Ct, 2C, Car,OPE), 131.2 (Cq, 2C, Car,anthra), 129.3 (Ct, 1C, Car,anthra), 129.3 (Ct, 2C, Car,anthra), 126.8 

(Ct, 2C, Car,anthra), 126.5 (Cq, 1C, Car,anthra), 125.3 (Ct, 2C, Car,anthra), 124.0 (Ct, 2C, Car,anthra), 123.6 

(Cq, 1C, Car,OPE), 123.1 (Cq, 1C, Car,OPE), 115.8 (Cq, 1C, Car,OPE), 115.1(Ct, 2C, Car,OPE), 106.9 (Cq, 1C, 

C≡C), 92.7 (Cq, 1C, C≡C), 91.4 (Cq, 1C, C≡C), 88.3 (Cq, 1C, C≡C), 63.0 (Cs, 1C, CH2), 18.8 (Cp, 6C, 

CH3), 11.5 (Ct, 3C, CH-CH3) ppm. GC-MS (EI +, 70 eV): m/z (%) = 111 (14), 121 (11), 122 (10), 

123 (12), 131 (68), 131 (11), 138 (90), 138 (26), 207 (18), 245 (11), 247 (12), 261 (100), 262 

(24), 275 (69), 276 (17), 289 (63), 290 (16), 303 (29), 331 (87), 332 (25), 374 (52) 

[M – CH2-anthracene + H]+, 375 (17).  
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9-((4-((4-ethynylphenyl)ethynyl)phenoxy)methyl)anthracene (129) 

 

 

 

In an oven-dried Schlenk tube OPE 128 (56.9 mg, 0.101 mmol, 1.00 eq) was dissolved in dry 

THF (1.4 mL). Tetrabutylammonium fluoride solution (1 M in THF, 106 mg, 0.120 mmol, 

0.12 mL, 1.20 eq) was added and the reaction mixture was stirred at room temperature for 

45 min. TLC (SiO2; ethyl acetate, 5% NEt3, 5% MeOH) showed full conversion of the reactant. 

After removing the solvent under reduced pressure, the crude was taken up in demin. water 

and dichloromethane. The layers were separated and the aqueous one was extracted twice 

with dichloromethane. The combined organic layers were washed with brine, dried over 

sodium sulfate, filtered and concentrated in vacuo. The crude was purified by column 

chromatography (SiO2; cyclohexane: ethyl acetate 10:1) to afford product 129 as colorless 

solid (41.2 mg, 100%).  

1H NMR (400 MHz, CDCl3): δ = 8.55 (s, 1H, Cq-CH-Cq), 8.27 (d, 3JH,H = 8.8 Hz, 2H, CHar,anthra), 8.06 

(d, 3JH,H = 8.3 Hz, 2H, CHar,anthra), 7.60 – 7.41 (m, 10H, 4 x CHar,anthra , 6 x CHar,OPE), 7.17 – 7.08 

(m, 2H,  CHar,OPE), 5.99 (s, 2H, CH2), 3.18 (s, 1H, C≡CH) ppm; 13C NMR (101 MHz, CDCl3): δ = 

159.6 (Cq, 1C, O-C), 133.4 (Ct, 2C, Car,OPE), 132.2 (Ct, 2C, Car,OPE), 131.6 (Cq, 2C, Car,anthra), 131.5 

(Ct, 2C, Car,OPE), 131.2 (Cq, 2C, Car,anthra), 129.4 (Ct, 1C, Car,anthra), 129.3 (Ct, 2C, Car,anthra), 126.8 

(Ct, 2C, Car,anthra), 126.5 (Cq, 1C, Car,anthra), 125.3 (Ct, 2C, Car,anthra), 124.3 (Cq, 1C, Car,OPE), 124.0 

(Ct, 2C, Car,anthra), 121.7 (Cq, 1C, Car,OPE), 115.7 (Cq, 1C, Car,OPE), 115.1 (Ct, 2C, Car,OPE), 91.6 (Cq, 1C, 

C≡C), 88.0(Cq, 1C, C≡C), 83.5 (Cq, 1C, C≡C), 78.9 (Ct, 1C, C≡CH), 63.1(Cs, 1C, CH2) ppm. 
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3'-((4-((4-((4-(anthracen-9-ylmethoxy)phenyl)ethynyl)phenyl)ethynyl)benzyl)oxy)-1,1''-

diethyldispiro[piperidine-4,2'-4,8,12,16-tetraoxa-1,3,9,11(1,4)-tetrabenzenacyclohexa-

decaphane-10',4''-piperidine] (130) 

 

 

An oven-dried Schlenk tube was charged with cyclophane 96 (46.0 mg, 0.0507 mmol, 1.00 eq) 

and OPE 129 (43.5 mg, 0.106 mmol, 2.10 eq) which were dissolved in dry THF (4 mL) and 

diisopropylamine (1 mL) in argon atmosphere. The mixture was degassed by flushing with 

argon for 10 min. Afterwards, copper iodide (0.631 mg, 0.00330 mmol, 6 mol%) and tetrakis-

(triphenylphosphine)palladium(0) (3.55 mg, 0.00330 mmol, 6 mol%) were added and the 

reaction mixture was stirred at room temperature for 18 hrs. The solvents were removed 

under reduced pressure, the crude mixture was then taken up in demin. water and was 

extracted three times with dichloromethane. The combined organic layers were washed with 

brine, dried over sodium sulfate, filtered and the solvents were removed in vacuo. Purification 

via column chromatography (SiO2; ethyl acetate, 5% methanol, 4% NEt3) afforded 130 as a 

colorless solid (50.0 mg, 83%).  

1H NMR (500 MHz, CDCl3):  δ = 8.55 (s, 1H, Cq-CH-Cq,anthra), 8.31 – 8.24 (m, 2H, Har,anthra), 8.10 

– 8.02 (m, 2H, Har,anthra), 7.59 – 7.47 (m, 10H, Har), 7.43 (d, 3JH,H = 8.1 Hz, 2H, Har,cyclophane), 7.17 

– 7.01 (m, 8H, Har), 6.90 (d, 3JH,H = 8.8 Hz, 2H, Har,OPE), 6.78 – 6.62 (m, 8H, Har,cyclophane), 6.44 (s, 

1H, Cq-CH2-Cq-O), 6.00 (s, 2H, OCH2-Cq,anthra), 4.85 (s, 2H, OCH2-Cq,OPE), 4.12– 4.09 (m, 2H, 

O-CH2-CH2), 4.07 (t, J = 5.3 Hz, 2H, O-CH2-CH2), 4.04 – 4.01 (m, 4H, O-CH2-CH2), 2.80 – 2.46 (m, 

20H, CH2,piperidine, NCH2CH3), 2.25 – 2.15 (m, 2H, O-CH2-CH2-CH2), 2.15 – 2.03 (m, 2H, 

O-CH2-CH2-CH2), 1.18 – 1.06 (m, 6H, NCH2CH3) ppm; 13C NMR (151 MHz, CDCl3): δ = 159.6 (Cq, 

1C), 157.1 (Cq, 1C), 157.1 (Cq, 1C), 157.1 (Cq, 1C), 147.6 (Cq, 1C), 147.4 (Cq, 1C), 138.2 (Cq, 1C), 

(133.4), 133.4 (Ct, 2C), (132.6), 131.8 (Cq, 2C), 131.7 (Ct, 2C), 131.6 (Ct, 2C), 131.6 (Ct, 2C), 131.2 
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(Cq, 2C), 129.4 (Ct, 1C), 129.3 (Ct, 2C), 127.1 (Ct, 2C), 126.9 (Ct, 6C), 126.8 (Ct, 2C), 126.5 (Cq, 

1C), (125.7), 125.3 (Ct, 2C), 124.0 (Ct, 1C), 123.8 (Cq, 1C), 122.7 (Cq, 1C), 122.3 (Cq, 1C), 115.7 

(Cq, 1C), 115.1 (Ct, 2C), 114.7 (Ct, 6C), 114.6 (Ct, 3C), 91.6 (Cq, 1C), 91.2 (Cq, 1C), 89.7 (Cq, 1C), 

88.2 (Cq, 1C), 70.6 (Cs, 1C), 63.5 (Cs, 1C), 63.3 (Cs, 1C), 63.2 (Cs, 1C), 63.0 (Cs, 1C), 59.2 (Cs, 1C), 

52.4 (Cs, 4C), 49.8 (Cs, 1C), 49.8 (Cs, 1C), 42.8 (Cq, 1C), 42.5 (Cq, 1C), (34.2), (30.5), 29.8 (Cs, 1C), 

29.7 (Cs, 1C), 29.7 (Cs, 2C), 29.6 (Cs, 2C), (18.8), (11.4), 8.6 (Cp, 2C) ppm. No signals for Cq next 

to the spiro centre (4C) were observed in the spectrum. The signals put into brackets could 

not be assigned; HRMS (ESI, +): calc. for C82H80N2O6 594.3003 [M+2H]2+, found 594.3010.  

 

 

3'-((4-((4-((4-(anthracen-9-ylmethoxy)phenyl)ethynyl)phenyl)ethynyl)benzyl)oxy)-

1,1,1'',1''-tetraethyldispiro[piperidine-4,2'-4,8,12,16-tetraoxa-1,3,9,11(1,4)-tetrabenzene-

cyclohexadecaphane-10',4''-piperidine]-1,1''-diium di-hexafluorophosphate (131) 
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Amine 130 (35.0 mg, 0.0296, 1.00 eq) was charged with freshly distilled iodoethane (6.14 g, 

39 mmol, 3.15 mL, 1320 eq) and potassium carbonate (16.5 mg, 0.118 mmol, 4.00 eq). The 

mixture was stirred in the dark at room temperature for 24 hrs. LC-ESI-MS indicated full 

conversion of the amine and excess iodoethane was distilled off. The crude product was first 

subjected to potassium hexafluorophosphate (111 mg, 0.590 mmol, 20.0 eq) and then 

dichloromethane (15 mL) was added. After stirring the mixture for 10 min, demin. water was 

added and the aqueous layer was extracted with dichloromethane three times. The combined 

organic phases were dried by filtration over dry cotton. Remaining insoluble particles were 

filtered off to obtain the target compound as a pale yellow solid 41.0 mg, 91%). 
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1H NMR (600 MHz, CD2Cl2): δ = 8.58 (s, 1H, Har,anthra), 8.29 (d, 3JH,H = 8.8 Hz, 2H, Har,anthra), 8.09 

(d, 3JH,H = 8.4 Hz, 2H, Har,anthra), 7.61−7.50 (m, 4H, Har,anthra; 8H, Har,OPE), 7.29 (d, 3JH,H = 7.9 Hz, 

2H, Har,OPE), 7.15 (d, 3JH,H = 8.8 Hz, 2H, Har,OPE), 7.11−7.08 (m, 4H, Har,cycloph), 6.94 (d, 3JH,H = 8.8 

Hz, 2H, Har,cycloph), 6.81 (d, 3JH,H = 8.6 Hz, 2H, Har,cycloph), 6.78 – 6.74 (m, 4H, Har,cycloph), 6.71 (d, 

3JH,H = 8.6 Hz, 2H, Har,cycloph), 6.54 (s, 1H, Har,cycloph), 6.02 (s, 2H, OCH2-Cq,anthra), 5.02 (s, 2H, OCH2-

Cq,OPE), 4.08 – 4.06 (m, 4H, O-CH2-CH2), 4.02 – 4.00 (m, 4H, O-CH2-CH2) 3.44 – 3.06 (m, 16H, 

NCH2), 2.60 (bs, 8H, NCH2CH2), 2.24 – 2.17 (m, 2H, O-CH2-CH2), 2.11 – 2.05 (m, 2H, O-CH2-CH2), 

1.30 – 1.22 (m, 12H, CH3) ppm; 13C NMR (151 MHz, CD2Cl2): δ = 160.0 (Cq, 1C, O-Cq,OPE), 158.1 

(Cq, 1C, COCH2CH2), 158.1 (Cq, 1C, COCH2CH2), 158.0 (Cq, 1C, COCH2CH2), 148.6 (Cq, 1C, 

CHCOCH2CCH), 148.3(Cq, 1C, COCH2CH2), 138.6(Cq, 1C, OCH2Cq,OPE), 133.7 (Cq, 1C), 133.6 (Ct, 

2C, CHOPE), 132.9 (Cq,1C), 132.1 (Ct, 2C, CHOPE), 132.0 (Ct, 2C, CHOPE), 131.8 (Ct, 2C, CHOPE), 131.8 

(Ct, 2C, CHOPE), 131.8 (Cq, 2C, Cq,anthra), 131.3 (Cq, 2C, Cq,anthra), 129.5 (Ct, 3C, CH4,CH5, 

CH10anthra), 127.7 (Ct, 2C, CHOPE), 127.1 (Ct, 2C, CHOPE; Ct, 2C, CH2,CH7anthra), 127.0 (Cq, 1C, 

Cq,anthra), 126.5−126.2 (Ct, 3C, Cq,spiroCqCH), 125.6 (Ct, 2C, CH3,CH6anthra), 124.2 (Ct, 2C, 

CH1,CH8anthra), 124.1 (Cq, 1C, CHCq,OPE), 123.0 (Cq, 1C, CHCq,OPE), 122.6 (Cq, 1C, CHCq,OPE), 117.6 

(hmbc, Ct, 1C, CHcyclo) 115.8 (Cq, 1C, CHCq,OPE), 115.4 (Ct, 2C, CHOPE), 115.3− 115.1 (Ct, 6C, 

Cq,spiroCqCHCH), 113.4 (Ct, 1C, CqCHCq), 113.1 (Ct, 1C, CHcyclo), 91.9 (Cq, 1C, CqC≡C), 91.4 (Cq, 1C, 

CqC≡C), 89.9 (Cq, 1C, CqC≡C), 88.2 (Cq, 1C, CqC≡C), 70.9 (Cs, 1C, Cq,cycloOCH2Cq), 64.3 (Cs, 1C, 

OCH2CH2CH2), 63.7 (Cs, 1C, OCH2CH2CH2), 63.6 (Cs, 1C, OCH2CH2CH2), 63.4 (Cs, 1C, 

OCH2CH2CH2), 63.2 (Cs, 1C, OCH2Cq,anthra), 56.0 (Cs, 8C, NCH2), 41.9 (Cq, 1C, Cq,spiro), 41.7 (Cq, 1C, 

Cq,spiro), 32.3 (Cs, 2C, NCH2CH2), 30.1 (Cs, 2C, NCH2CH2), 29.6 (Cs, 1C, OCH2CH2CH2), 29.6 (Cs, 1C, 

OCH2CH2CH2), 29.1 (Cs, 2C, NCH2CH2), 29.0 (Cs, 2C, NCH2CH2), (23.1), (18.8), (14.3), (11.7), (9.4), 

(8.1), (7.6), 7.4 (Cp, 4C, NCH2CH3) ppm. Cq (4C) next to the spiro centre could not be detected, 

neither in 13C spectrum nor in the spectra of 2D experiments; The signals put into brackets 

could not be assigned; HRMS (ESI, +): calc. for C86H88N2O6 622.3316 [M – 2PF6
-]2+ , found 

622.3325. 
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3'-((4-((4-((4-(anthracen-9-ylmethoxy)phenyl)ethynyl)phenyl)ethynyl)benzyl)oxy)-

1,1,1'',1''-tetraethyldispiro[piperidine-4,2'-4,8,12,16-tetraoxa-1,3,9,11(1,4)-tetrabenzene-

cyclohexadecaphane-10',4''-piperidine]-1,1''-diium dichloride (94) 

 

 

 

The hexafluorophosphate salt 131 (8.31 mg, 0.00541 mmol, 1.00 eq) was dissolved in 

acetonitrile (2 mL) and was subjected to an ion exchange column (Dowex 1X8, 200-400 mesh 

Cl-) eluting with acetonitrile: water 7:1. The eluate was dried in vacuo. The resulting yellow 

solid was dissolved in dichloromethane and remaining insoluble particles were filtered off 

yielding the target chloride salt 94 (6.10 mg, 86%).   

1H NMR (500 MHz, CD2Cl2): δ = 8.58 (s, 1H, CHar,anthra), 8.31 – 8.28 (m, 2H, CHar,anthra), 8.10 – 

8.08 (m, 2H, CHar,anthra), 7.61 – 7.46 (m, 4H, CHar,anthra; 8H, CHar,OPE), 7.29 (d, 3JH,H = 8.0 Hz, 2H, 

CHar,OPE), 7.18 – 7.05 (m, 2H, CHar,OPE, 4H, CHar,cycloph), 6.97 (d, 3JH,H = 8.9 Hz, 2H, CHar,cycloph), 

6.82 – 6.67 (m, 2H, CHar,cycloph, 4H, CHar,cycloph, 2H, CHar,cycloph), 6.59 (d, 4JH,H = 2.1 Hz, 1H, 

CHar,cycloph), 6.02 (s, 2H, OCH2-Cq,anthra), 5.04 (s, 2H, OCH2-Cq,OPE), 4.10 – 4.04 (m, 4H, O-CH2-

CH2), 4.01 (t, 3JH,H = 5.2 Hz, 4H, O-CH2-CH2), 3.63 – 3.33 (m, 16H, NCH2), 2.68 (bs, 8H, NCH2CH2), 

2.21 (t, 3JH,H = 5.5 Hz, 2H, O-CH2-CH2), 2.08 (t, 3JH,H = 5.5 Hz, 2H, O-CH2-CH2), 1.33 – 1.23 (m, 

12H, CH3) ppm; HRMS (ESI, +): calc. for C86H88N2O6 622.3316 [M – 2Cl-]2+ , found 622.3321.  
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(2-((4-bromophenyl)thio)ethyl)trimethylsilane (133) 

 

 

 

A 25 mL pressure tube was subjected to 4-romothiophenol (132, 1.60 g, 8.29 mmol, 1.00 eq), 

vinyltrimethylsilane (3.43 g, 33.2 mmol, 4.97 mL, 4.00 eq) and AIBN (69.5 g, 0.415 mmol, 

5 mol%), the pressure tube was sealed and was heated to 95 °C for 24 hrs. After allowing the 

reaction mixture to cool down to room temperature, excess vinyltrimethylsilane was 

evaporated under reduced pressure. The resulting crude brown liquid was purified by column 

chromatography (SiO2; cyclohexane: ethyl acetate 5:1) to obtain a colorless liquid (2.44 g, 

quant.). 

1H NMR (400 MHz, CDCl3): δ = 7.39 (d, 3JH,H = 8.5 Hz, 2H, Har), 7.16 (d, 3JH,H = 8.5 Hz, 2H, Har), 

2.97 – 2.89 (m, 2H, CH2), 0.95 – 0.87 (m, 2H, CH2), 0.04 (s, 9H, CH3) ppm; 13C NMR (101 MHz, 

CDCl3): δ = 136.6 (Cq, 1C), 132.0 (Ct, 2C), 130.6 (Ct, 2C), 119.5 (Cq,1C), 29.8 (Cs, 1C), 16.9 (Cs, 

1C), -1.6 (Cq, 3C) ppm; GC-MS (EI +, 70 eV): m/z (%) = 58 (8), 59 (5), 63 (3), 69 (3), 73 (100), 

74 (12), 75 (8), 101 (11), 108 (13), 151 (3), 165 (4), 166 (5), 245 (4), 247 (4), 260 (5), 262 (5), 

288 (3) [M]+, 290 (3) [M]+. 

The spectroscopic data are in agreement with those previously reported.[147] 

 

 

(2-((4-iodophenyl)thio)ethyl)trimethylsilane (134) 

 

 

 

In an oven-dried 100 mL-Schlenk tube, aryl bromide 133 (510 mg, 1.76 mmol, 1.00 eq) was 

dissolved in dry diethyl ether (30 mL) under argon atmosphere. The solution was cooled 

to -70 °C via a dry ice/acetone cooling bath and the cooled solution was then slowly charged 

with a tert-butyllithium solution (1.9 M, in pentane; 1.47 g, 4.23 mmol, 2.23 mL, 2.40 eq). In 
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another Schlenk tube iodine (582 mg, 2.29 mmol, 1.30 eq) was dissolved in dry diethyl ether 

(30 mL) under argon atmosphere and was cooled to -70°C. The cooled iodine solution was 

then slowly cannulated to the Schlenk tube containing the reaction mixture of aryl bromide 

and t-BuLi. After stirring for another 10 min at -70°C, the mixture was allowed to warm up to 

room temperature and was stirred for further 30 min. The crude mixture was then washed 

with a conc. aq. sodium thiosulfate solution in a separation funnel. The organic layer was 

washed with brine and dried over sodium sulfate to afford aryl iodide 134 (531 mg, 90%) as a 

brown liquid. 

1H NMR (400 MHz, CDCl3): δ = 7.58 (d, 3JH,H= 8.5 Hz, 2H, Har), 7.03 (d, 3JH,H =  8.5 Hz, 2H, Har), 

2.96 – 2.90 (m,2H, CH2), 0.94 – 0.88 (m, 2H, CH2), 0.04 (s, 9H, Si(CH3)3) ppm. 

The spectroscopic data are in agreement with those previously reported.[148] 

 

 

Trimethyl((4-((4-((2-(trimethylsilyl)ethyl)thio)phenyl)ethynyl)phenyl)ethynyl)silane (135) 

 

 

 

An oven-dried Schlenk tube was charged with 112 (97.0 mg, 0.489 mmol, 1.70 eq) and iodo-

aryl 134 (96.9 mg, 0.288 mmol, 1.00 eq) which was dissolved in dry THF (8 mL) and diisopropyl-

amine (0.7 mL) under argon atmosphere. The mixture was degassed by flushing with argon 

for 10 min. Afterwards, copper iodide (1.68 mg, 8.63 µmol, 3 mol%) and bis(triphenyl-

phosphine)palladium chloride (6.12 mg, 8.63 µmol, 3 mol%) were added and the reaction 

mixture was stirred at 40 °C for five hrs. The solvents were removed under reduced pressure, 

the crude mixture was then taken up in demin. water and was extracted three times with 

dichloromethane. The combined organic layers were washed with brine, dried over sodium 

sulfate, filtered and the solvents were removed in vacuo. Purification via column 

chromatography (SiO2; cyclohexane: ethyl acetate 10:1) afforded the pure product as a 

colorless solid (117 mg) in 99% yield.  
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1H NMR (400 MHz, CDCl3): δ = 7.44 (s, 4H, Har), 7.43 – 7.40 (m, 2H, Har), 7.26 – 7.20 (m, 2H, 

Har), 3.07 – 2.91 (m, 2H, CH2), 1.01 – 0.88 (m, 2H, CH2), 0.26 (s, 9H, C≡CSi(CH3)3) 0.06 (s, 9H, 

CH2Si(CH3)3) ppm; 13C NMR (101 MHz, CDCl3): δ = 138.8 (Cq, 1C, S-Cq), 132.0 (Ct, 2C, CHar), 132.0 

(Ct, 2C, CHar), 131.5 (Ct, 2C, CHar), 127.9 (Ct, 2C, CHar), 123.5 (Cq, 1C, Cq,ar), 123.0 (Cq, 1C, Cq,ar), 

119.8 (Cq, 1C, Cq,ar), 104.8 (Cq, 1C, C≡CCq), 96.4 (Cq, 1C, C≡CCq), 91.3 (Cq, 1C, C≡CCq), 89.4 (Cq, 

1C, C≡CCq), 29.0 (Cs, 1C, CH2), 16.8 (Cs, 1C, CH2), 0.1 (Cp, 3C, C≡C-Si(CH3)3), -1.6 (Cp, 3C, 

CH2Si(CH3)3) ppm; GC-MS (EI +, 70 eV): m/z (%) = 73.1 (100), 378.0 (22), 406.0 (14) [M]+.  

 

 

(2-((4-((4-ethynylphenyl)ethynyl)phenyl)thio)ethyl)trimethylsilane (136) 

 

 

 

In a 10 mL-Schlenk tube, OPE 135 (126 mg, 0.310 mmol, 1.00 eq) was dissolved in dry THF 

(4 mL) under argon atmosphere. The solution was cooled to -78 °C via a dry ice/isopropanol 

cooling bath. Afterwards, tetrabutylammonium fluoride solution (1 M in THF, 273 mg, 

0.310  mol, 0.310 mL, 1.00 eq) was added and the resulting yellow reaction mixture was stirred 

for one h at -78 °C. The mixture was treated with dichloromethane and water and the aqueous 

layer was extracted with dichloromethane three times. The combined organic layers were 

washed with brine, dried over sodium sulfate, filtered and the solvents were evaporated in 

vacuo. The crude yellow solid was further purified by column chromatography (SiO2; 

cyclohexane: ethyl acetate 10:1) to obtain a colorless solid (104 mg, 99%). 

1H NMR (400 MHz, CDCl3): δ = 7.46 (s, 4H, Har), 7.43 (d, 3JH,H = 8.4 Hz, 2H, Har), 7.24 (d, 3JH,H = 

8.4 Hz, 2H, Har), 3.17 (s, 1H, C≡CH), 3.03 –2.94 (m, 2H, CH2), 0.99 – 0.91 (m, 2H, CH2), 0.06 (s, 

9H, CH2Si(CH3)3) ppm; 13C NMR (101 MHz, CDCl3): δ = 138.9 (Cq, 1C, S-Cq), 132.2 (Ct, 2C, CHar), 

132.0 (Ct, 2C, CHar), 131.5 (Ct, 2C, CHar), 127.9 (Ct, 2C, CHar), 123.9 (Cq, 1C, Cq,ar), 121.9 (Cq, 1C, 

Cq,ar), 119.8 (Cq, 1C, Cq,ar), 91.4 (Cq, 1C, Cq≡C), 89.2 (Cq, 1C, Cq≡C), 83.4 (Cq, 1C, Cq≡C), 79.0 (Ct, 

1C, C≡CH), 29.0 (Cs, 1C, CH2), 16.8 (Cs, 1C, CH2), -1.6 (Cp, 3C, Si(CH3)3) ppm; GC-MS (EI +, 70 eV): 

m/z (%) = 73.1 (100), 306.0 (23), 334.0 (13) [M]+. 
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1,1''-diethyl-3'-((4-((4-((4-((2-(trimethylsilyl)ethyl)thio)phenyl)ethynyl)phenyl)ethynyl)-

benzyl)oxy)dispiro[piperidine-4,2'-4,8,12,16-tetraoxa-1,3,9,11(1,4)-tetrabenzenacyclohexa-

decaphane-10',4''-piperidine] (137) 

 

 

In an oven-dried Schlenk tube cyclophane 96 (58.3 mg, 0.0643 mmol, 1.00 eq) and OPE 136 

(43.0 mg, 0.129 mmol, 2.00 eq) were dissolved in dry THF (4 mL) and diisopropylamine 

(0.7 mL) under argon atmosphere. The mixture was degassed by flushing with argon for 

10 min. Afterwards, copper iodide (1.23 mg, 6.43 µmol, 10 mol%) and tetrakis(triphenyl-

phosphine)palladium(0) (4.50 mg, 3.86 µmol, 6 mol%) were added and the reaction mixture 

was stirred at room temperature for 18 hrs. The solvents were removed under reduced 

pressure, the crude mixture was then taken up in demin. water and was extracted three times 

with dichloromethane. The combined organic layers were washed with brine, dried over 

sodium sulfate, filtered and the solvents were removed in vacuo. Purification via column 

chromatography (SiO2; ethyl acetate, 5% MeOH, 1% NEt3) yielded amine 137 (68.0 mg, 95%). 

1H NMR (500 MHz, CDCl3): δ = 7.71 – 7.67 (m, 2H, Har,OPE), 7.60 – 7.44 (m, 8H, Har,OPE, 4H), 7.31 

– 7.25 (m, 2H, Har,OPE), 7.17 – 7.06 (m, 4H, Har,cycloph), 6.95 – 6.88 (m, 2H, Har,cycloph), 6.79 – 6.64 

(m, 8H, Har,cycloph), 6.48 (s, 1H, Har,cycloph), 4.88 (s, 2H, OCH2-Cq,ar), 4.13 – 4.05 (m, 4H, OCH2CH2), 

4.04 – 4.01 (m, 4H, OCH2CH2), 3.04 – 2.97 (m, 2H, SCH2), 2.91 – 2.24 (m, 16H, NCH2CH2, 

NCH2CH2; 4H, NCH2CH3), 2.24 – 2.16 (m, 2H, OCH2CH2CH2), 2.12 – 2.07 (m, 2H, OCH2CH2CH2), 

1.11 – 1.06 (m, 6H, NCH2CH3), 0.99 – 0.93 (m, 2H, SCH2CH2), 0.08 (s, 9H, Si(CH3)3) ppm; 13C 

NMR (126 MHz, CDCl3): δ = (177.2), 156.9 (Cq, 1C), 156.9 (Cq, 1C), 156.8 (Cq, 1C), 147.4 (Cq, 1C), 

147.3 (Cq, 1C), 138.8 (Cq, 4C), 138.2 (Cq, 1C), (133.0), 132.2 (Ct, 2C), 132.1 (Ct, 2C), (132.0), 

132.0 (Ct, 2C), 132.0 (Ct, 2C), (131.7), 131.7 (Ct, 2C), (131.6), 128.6 (Ct, 2C), 128.5 (Ct, 2C), 127.8 

(Ct, 2C), 127.0 (Ct, 2C), 123.3 (Cq, 1C), 123.0 (Cq, 1C), 122.2 (Cq, 1C), 119.7 (Cq, 1C), 114.5 (Ct, 

6C), 114.4 (Ct, 2C), 91.3 (Cq, 1C), 91.3 (Cq, 1C), 89.5 (Cq, 1C), 89.4 (Cq, 1C), 70.6 (Cs, 1C), 63.4 (Cs, 
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1C), 63.2 (Cs, 1C), 63.1 (Cs, 1C), 58.7 (Cs, 1C), 52.2 (Cs, 2C), 49.7 (Cs, 2C), 49.7 (Cs, 2C), 42.8 (Cq, 

1C), 42.5 (Cq, 1C), 34.6 (Cs, 2C), 34.5 (Cs, 2C), (29.8), 29.6 (Cs, 1C), 29.6 (Cs, 1C), 28.9 (Cs, 1C), 

(23.5), (22.8), 16.7 (Cs, 1C), 11.6 (Cs, 1C), 11.6 (Cs, 1C), (8.4), -1.7 (Cp, 3C) ppm. This assignment 

is not based on 2D NMR experiments, it was derived from the spectra of derivatives of amin 

137. The signal of one Ct at the threefold substituted aromatic ring, which would be expected 

at ~ 120 ppm, was not observed in the spectrum. The signals in brackets correspond to 

impurity. 

 

 

1,1,1'',1''-tetraethyl-3'-((4-((4-((4-((2-(trimethylsilyl)ethyl)thio)phenyl)ethynyl)phenyl)ethy-

nyl)benzyl)oxy)dispiro[piperidine-4,2'-4,8,12,16-tetraoxa-1,3,9,11(1,4)-tetrabenzenacyclo-

hexadecaphane-10',4''-piperidine]-1,1''-diium iodide (138) 

 

 

 

In a one-neck flask, amine 137 (68.0 mg, 0.0611 mmol, 1.00 eq) was charged with freshly 

distilled iodoethane (2.47 mL, 30.6 mmol, 500 eq) and potassium carbonate (17.9 mg, 

0.128 mmol, 2.10 eq). The resulting suspension was stirred in the dark for 3 days at room 

temperature. Afterwards, the excessive iodoethane was removed under reduced pressure. 

The resulting yellow crude mixture was then taken up in THF and the insoluble solid was 

filtered off. The solution was dried in vacuo and the resulting product (75.4 mg, 87%) was 

directly used in the next step without further purification.  
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3'-((4-((4-((4-(acetylthio)phenyl)ethynyl)phenyl)ethynyl)benzyl)oxy)-1,1,1'',1''-tetraethyldi-

spiro[piperidine-4,2'-4,8,12,16-tetraoxa-1,3,9,11(1,4)-tetrabenzenacyclohexadecaphane-

10',4''-piperidine]-1,1''-diium chloride (95) 

 

 

 

An oven-dried Schlenk tube was charged with the quaternary ammonium salt 138 (45.0 mg, 

0.0316 mmol, 1.00 eq) which was dissolved in dry THF (2.5 mL) in an inert atmosphere. The 

solution was rigorously degassed by flushing with argon, before tetrabutylammonium fluoride 

(1 M in THF, 2.48 mg, 0.0947 mmol, 2.81 mL. 3.00 eq) was added, which caused the former 

colorless solution to turn orange immediately. After 45 min of stirring at room temperature, 

the reaction mixture was cooled down to –10 °C and afterwards, previously degassed acetyl 

chloride (55.0 mg, 0.694 mmol, 0.050 mL, 22.0 eq),  was added dropwise which caused a 

subsequent color change to yellow. After further two hrs in the cooling bath, the reaction was 

cautiously quenched by the addition of saturated NaHCO3 solution (0.6 mL). The solvents were 

evaporated under reduced pressure. The resulting crude product was further purified three 

times by column chromatography (SiO2-C18; acetonitrile, 10% water; then acetonitrile 10% 

water, 2% 1 M NH4Cl solution), the fractions containing target compound were concentrated 

and the resulting solid was then taken up in some demin. water. The poorly soluble target 

compound was separated from the aqueous ammonium salt solution by centrifugation 

affording 95 (20.0 mg) as a pale yellow solid in 53% yield. 

1H NMR (700 MHz, Deuterium Oxide): δ = 7.72 (d, 3JH,H = 8.2 Hz, 2H, Har,OPE), 7.71 – 7.65 (m, 

4H, Har,OPE), 7.55 (d, 3JH,H = 8.2 Hz, 2H, Har,OPE), 7.49 (d, 3JH,H = 8.0 Hz, 2H, Har,OPE), 7.28 (d, 3JH,H = 

7.9 Hz, 2H, Har,OPE), 7.25 – 7.22 (m, 4H, Har,cycloph), 7.00 (d, 3JH,H = 8.5 Hz, 2H, Har,cycloph), 6.90 (d, 

3JH,H = 8.4 Hz, 4H, Har,cycloph), 6.86 (d, 3JH,H = 8.3 Hz, 2H, Har,cycloph), 6.75 (d, 3JH,H = 8.3 Hz, 2H, 

Har,cycloph), 6.64 (s, 1H, Har,cycloph), 5.15 (s, 2H, OCH2-Cq,ar), 4.07 (t, 3JH,H = 5.3 Hz, 2H, OCH2CH2), 
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4.04 (t, 3JH,H = 5.3 Hz, 2H, OCH2CH2), 3.33 (bs, 8H, NCH2CH3, 8H, NCH2CH2), 2.66 (bs, 8H, 

NCH2CH2), 2.50 (s, 3H, C=OCH3), 1.23 (t, 3JH,H = 6.7 Hz, 12H, NCH2CH3) ppm. The signals for the 

two OCH2 protons are located below the water signal at 4.17 ppm; HRMS (ESI, +): calc. for 

C73H80N2O6S 556.2863 [M – 2Cl]2+, found 556.2867.  

 

 

Experiment to Stopper Aggregates of Amphiphile 92   

 

 

Amphiphile 92 (1.30 mg, 1.15 µmol, 1.00 eq) was placed into a 10 mL flask and dissolved in 

5.0 mL of water/methanol (60/40 v/v). Sodium hydroxide (0.06 mg, 1.38 µmol, 1.30 eq) was 

added and the resulting yellow suspension was stirred for 1 hour at room temperature. The 

mixture was charged with 9-(chloromethyl)anthracene (0.782 mg, 0.00345 mmol, 3.00 eq) 

and the mixture was stirred for additional three hours at room temperature. Reaction control 

via HPLC-ESI-MS only showed a signal corresponding to amphiphile 92 (m/z = 527). Neither 

stoppered aggregates or stoppered monomer (94), nor 9-(chloromethyl)anthracene was 

detected.   
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1,1-Di-4-pyridylprop-2-yn-1-ol (185) 

 

 

 

Ethynylmagnesium bromide (0.5 mM in THF, 0.117 mmol, 0.234 mL, 1.20 eq) was added under 

argon atmosphere to a 10 mL Schlenk tube containing in 1.8 mL dry THF dissolved di-4-pyridyl-

methanone (184, 18.0 mg, 0.0977 mmol, 1.00 eq). After stirring overnight, the reaction 

mixture was quenched with aqueous 2 M ammonium chloride solution. The product was 

extracted three times with dichloromethane, the combined organic layers were washed with 

brine, dried over sodium sulfate, filtered and the solvent was removed under reduced 

pressure. The pale brown solid was recrystallized from methanol:chloroform 1:1 by layered 

addition of light petroleum to afford product  185 as a light beige colored solid in 79% yield. 

1H NMR (400 MHz, Methanol-d4): δ = 8.51 (m, 4H, Har), 7.71 – 7.66 (m, 4H, Har), 3.50 (s, 1H, 

C≡CH) ppm; 13C NMR (101 MHz, MeOD): δ = 155.7 (Cq, 2C), 150.4 (Ct, 4C), 122.4 (Ct, 4C), 85.1 

(Cq, 1C), 78.2 (Ct, 1C), 73.0 (Cq, 1C) ppm. 

The spectroscopic data are in agreement with those previously reported.[128] 

 

 

4,4'-(1-hydroxyprop-2-yne-1,1-diyl)bis(1-methylpyridin-1-ium) (140) 

 

 

 

Stopper 140 was synthesized according to a slightly modified synthetic procedure for the 

analogue of 140 comprising a phenylene ethynylene unit:[128] In a two-neck flask equipped 

with a reflux condenser, methyl iodide (0.17 mL, 381 mg, 2.66 mmol, 100 eq) was added to a 

solution of 185 (5.59 mg, 0.0266 mmol, 1.00 eq) in 3.0 mL 2-butanone. The mixture was left 

at 90 °C for three hours and was then stirred at room temperature overnight. After filtering 

the resulting dark purple precipitate, the solid was dissolved in water:methanol (1:1 v/v) and 
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passed through an ion exchange column (DOWEX 1X8, 200-400 mesh, Cl-) with the same 

binary solvent mixture as eluent. Recrystallization from methanol by layer addition of 

diisopropyl ether yielded 4.1 mg of dark red compound 140 (50%). 

1H NMR (400 MHz, Methanol-d4): δ = 8.98 – 8.92 (m, 4H, Har), 8.42 – 8.37 (m, 4H, Har), 4.40 (s, 

6H, NCH3), 3.94 (s, 1H, C≡CH) ppm. 

 

 

Experiment to Stopper Aggregates of Amphiphile 93 via Glaser Coupling Using Copper(II) 

Acetate  

 

 

The stoppering experiment was performed according to a modified previously reported 

synthetic protocol for Glaser coupling:[153] In a 10 mL flask amphiphile 93 (1.50 mg, 0.00132 

mmol, 1.00 eq) was dissolved in 1.3 mL of a H2O/MeOH (60/40 v/v) (resulting c = 1 mM). 

Stopper 140 (4.11 mg, 0.0132 mmol, 10.0 eq) was added, the solution was charged with 

copper(II) acetate monohydrate (0.054 mg, 0.264 µmol, 0.20 eq) and piperidine (0.227 mg, 

2.64 µmol, 2.00 eq) and was stirred at 25 °C under air for two days. The recorded HPLC-ESI-

MS chromatogram did not show conversion of 93.  
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Experiment to Stopper Aggregates of Amphiphile 93 via Glaser-Hay Coupling Using Copper(I) 

Chloride   

 

 

The stoppering experiment was performed according to a modified, previously reported 

synthetic protocol for Glaser coupling:[128] A solution of amphiphile 93 (1.50 mg, 1.32 µmol, 

1.00 eq) and stopper 140 (1.50 mg, 1.32 µmol, 1.00 eq) in 1.3 mL H2O/MeOH (60/40 v/v) was 

charged with copper(I) chloride (26.9 mg, 0.264 mmol, 200 eq) and ammonium chloride 

(14.3 mg, 0.264 mmol, 200 eq). The mixture was vigorously stirred at room temperature under 

air. After 60 hrs reaction duration, reaction control via HPLC-ESI-MS was performed, whereas 

only a signal corresponding to unreacted amphiphile 93 (m/z = 531) could be identified in the 

chromatogram of low intensity. Neither m/z values corresponding to stopper, nor to trapped 

monomer (141), dimer or timer could be observed.  

 

 

Experiment to Stopper Aggregates of Amphiphile 93 via Click Chemistry   
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In a NMR tube free acetylene-substituted monomer 93 (0.50 mg, 4.41 x 10-4 mmol, 1.00 eq) 

was dissolved in 0.8 mL of a D2O/CD3OD (60/40 v/v) mixture, resulting in a concentration of 

c = 0.55 mM. After degassing with argon for five min at room temperature, stopper 142 

(0.40 mg, 6.61 x 10-4 mmol, 1.50 eq) was added and the resulting yellow suspension was 

charged with copper(II) sulfate (0.07 mg, 4.41 x 10-4 mmol, 1.00 eq)  and L(+)ascorbic acid 

sodium salt (0.09 mg, 4.41 x 10-4 mmol, 1.00 eq) and was degassed again for two min. The 

solution was stirred for 1.5 hrs, when the HPLC-ESI-MS chromatogram indicated full 

conversion of free acetylene 93 to the stoppered monomer 143. 

LC-MS (ESI, +): m/z = 557.0 (48), 606.4 (26) [142+H]+, 628.4 (18) [142+Na]+, 834.6 (75), 835.0 

(100) [143+H]+, 835.4 (59). 

 

 

2,2'-((((((((5-(4-(4-((trimethylsilyl)ethynyl)phenyl)-1H-1,2,3-triazol-1-yl)-1,3-phenylene)-

bis(1H-1,2,3-triazole-4,1-diyl))bis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl))bis(oxy))-

bis(ethane-2,1-diyl))bis(oxy))bis(ethan-1-ol) (148) 

 

 

In a 10 mL Schlenk tube OPE precursor 112 (90.1 mg, 0.454 mmol) and stopper 142 (250 mg, 

0.413 mmol) were dissolved in acetone (3.5 mL). After flushing argon into the orange solution 

for 10 min, [Cu(CH3CN)4]PF6 (61.6 mg, 0.165 mmol, 0.4 eq) and TBTA (87.7 mg, 0.165 mmol, 

0.4 eq) were added. The mixture was degassed again for 2 min and was stirred at room 

temperature for 18 hrs. LC-ESI-MS indicated full conversion of stopper 142. Without previous 

workup of the reaction mixture column chromatography (SiO2; ethyl acetate: methanol 5:2) 

was performed.  The eluents were evaporated in vacuo, resulting in a mixture of target 

compound and silica which was then dissolved in ethyl acetate and the insoluble silica was 

filtered off to yield 148 as a colorless oil (281 mg, 85%).  

1H NMR (400 MHz, CD3CN): δ = 8.83 (s, 1H,Htriazol), 8.40 – 8.39 (m, 3H, Htriazol, Har), 8.29 – 8.28 

(m, 2H, Har), 7.93 (d, 3JH,H = 8.3, 2H, Har), 7.57 – 7.50 (m, 2H, Har), 4.59 (dd, 3JH,H = 5.7, 4.4 Hz, 
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4H, CH2), 3.92 (dd, 3JH,H = 5.7, 4.4 Hz, 4H, CH2), 3.63 – 3.45 (m, 20H, CH2), 3.40 (dd, 3JH,H = 5.4, 

4.1 Hz, 4H, CH2), 2.89 (t, 3JH,H = 5.8 Hz, 2H, CH2), 0.26 (s, 9H, Si(CH3)3) ppm. 13C NMR (101 MHz, 

CD3CN): δ = 148.0, 146.5, 139.1, 134.5, 133.3, 131.8, 126.5, 123.5, 123.4, 123.0, 120.7, 117.0, 

105.7, 95.9, 73.2, 71.1 (2 signals), 71.0, 71.0, 69.9, 61.9, 51.3, -0.1 ppm; LC-MS (ESI, +): m/z 

(%) = 804.4 (23.4) [M + H]+, 805.4 (11.2), 826.4 (100), 827.4 (46.1) ) [M + Na]+, 828.4 (13.9); 

HRMS (ESI, +): calc. for C39H54N9O8Si 804.3859 [M+H]+ , found 804.3864.  

 

 

2,2'-((((((((5-(4-(4-ethynylphenyl)-1H-1,2,3-triazol-1-yl)-1,3-phenylene)bis(1H-1,2,3-triazole-

4,1-diyl))bis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl))bis-

(oxy))bis(ethan-1-ol) (145) 

 

 

148 (93.0 mg, 0.116 mmol) was dissolved in a 1:1 mixture of acetone: methanol (5 mL). 

Potassium hydroxide (9.19 mg, 0.139 mmol) was added and the resulting suspension was 

stirred at room temperature for 1 hour. The mixture was filtered and the filtrate was diluted 

with ethyl acetate (20 mL) and charged with demin. water (5 mL), the aqueous layer was 

extracted three times with each 20 mL of ethyl acetate. The combined organic layers were 

washed with brine, dried over sodium sulfate, filtered and the solvents were evaporated 

under reduced pressure. 145 was obtained as a pale yellow oil (81.3 mg, 96%). 

1H NMR (400 MHz, CD3CN): δ = 8.88 (s, 1H, Htriazol), 8.43 (t, 4JH,H = 1.5 Hz, 1H, Har), 8.42 (s, 2H, 

Htriazol), 8.33 (d, 4JH,H = 1.5 Hz, 2H, Har), 7.97 (d, 3JH,H = 8.5 Hz, 1H, Har), 7.62 (d, 3JH,H = 8.4 Hz, 1H, 

Har), 4.60 (t, 3JH,H = 5.1 Hz, 4H, CH2), 3.93 (t, 3JH,H = 5.1 Hz, 4H, CH2), 3.63 – 3.59 (m, 4H, CH2), 

3.58 – 3.54 (m, 4H, CH2), 3.54 – 3.48 (m, 12H, CH2), 3.41 (dd, 3JH,H = 5.5, 4.1 Hz, 4H, CH2), 3.28 

(s, 1H, C≡CH) ppm; 13C NMR (101 MHz, CD3CN): δ = 148.0, 146.5, 139.1, 134.6, 133.6, 132.1, 

126.5, 123.5, 123.1, 122.7, 120.8, 118.3, 117.0, 84.0, 79.7, 73.2, 71.1 (2 signals), 71.0, 70.9, 

69.9, 61.9, 51.3 ppm; LC-MS (ESI, +): m/z (%) = 732.4 (100) [M+H]+, 733.4 (46), 734.4 (12), 
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754.4 (54) [M+Na]+, 755.4 (25), 1463.7 (18), 1464.7 (15), 1485.6 (10); HRMS (ESI, +): calc. for 

C36H46N9O8 732.3464 [M+H]+ , found 732.3465.  

 

2,2'-((((((((5-(4-(4-((4-azidophenyl)ethynyl)phenyl)-1H-1,2,3-triazol-1-yl)-1,3-phenylene)-

bis(1H-1,2,3-triazole-4,1-diyl))bis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl))bis(oxy))-

bis(ethane-2,1-diyl))bis(oxy))bis(ethan-1-ol) (146) 

 

 

In an oven-dried Schlenk tube, 148 (40 mg, 0.0547 mmol) and 1-azido-4-iodobenzene 

(0.109 mL of a 0.5 M in tert-butyl methyl ether, 0.0547 mmol) were dissolved in dry THF (2 mL) 

and diisopropylamine (0.7 mL) in argon atmosphere. The mixture was degassed by flushing 

with argon for 10 min. Afterwards, copper iodide (0.314 mg, 1.64 µmol, 3 mol%) and bis-

(triphenylphosphine)palladium chloride (1.16 mg, 1.64 µmol, 3 mol%) were added and the 

reaction mixture was stirred at room temperature for 18 hrs. TLC (SiO2; ethyl acetate: 

methanol 5:2) indicated full conversion of 148. Column chromatography (SiO2; ethyl acetate: 

methanol 5:2) was performed, by subjecting the crude reaction mixture without previous 

workup to the column. A yellow solid (18.5 mg) was obtained in a yield of 40%. 

1H NMR (400 MHz, CD3CN): δ = 8.91 (s, 1H, CHtriazole), 8.45 (t, 4JH,H = 1.5 Hz, 1H, CHar), 8.44 (s, 

2H, CHtriazole), 8.35 (d, 4JH,H = 1.5 Hz, 2H, CHar), 8.01 (d, 3JH,H = 8.3 Hz, 2H, CHar), 7.66 (d, 3JH,H = 

8.3 Hz, 2H, CHar), 7.58 (d, 3JH,H = 8.6 Hz, 2H, CHar), 7.12 (d, 3JH,H = 8.6 Hz, 2H, CHar), 4.62 (t, 3JH,H 

= 5.5 Hz, 4H, NCH2), 3.93 (t, 3JH,H = 5.5 Hz, 4H, NCH2CH2), 3.65 – 3.47 (m, 20H, OCH2), 3.44 – 

3.41 (m, 4H, OCH2), 2.97 (s, 2H, OH) ppm; 13C NMR (101 MHz, CD3CN): δ = 148.1, 146.5, 141.4, 

139.0, 134.5, 134.0, 133.0, 131.5, 126.6, 123.5, 123.5, 123.0, 120.6, 120.3, 116.9, 100.9, 90.3, 

90.1, 73.1, 71.0, 71.0, 70.9, 70.8, 69.9, 61.8, 51.2 ppm; LC-MS (ESI, +): m/z = 837.4 (27), 838.4 

(15), 849.5 (57) [M+H]+, 850.4 (31), 853.4 (24), 854.4 (13), 859.4 (53), 860.4 (30), 861.4 (11), 

871.5 (100) [M+Na]+, 872.4 (54), 873.4 (17), 875.4 (42), 876.4 (23); HRMS (ESI, +): calc. for 

C42H48N12NaO8 871.3610 [M+Na]+ , found 871.3608.  
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2,2'-((((((((5-(4-(4-((4-((trimethylsilyl)ethynyl)phenyl)ethynyl)phenyl)-1H-1,2,3-triazol-1-yl)-

1,3-phenylene)bis(1H-1,2,3-triazole-4,1-diyl))bis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-

diyl))bis(oxy))bis(ethane-2,1-diyl))bis(oxy))bis(ethan-1-ol) (149) 

 

 

 

An oven-dried Schlenk tube was charged with 145 (11.0 mg, 0.0150 mmol, 1.00 eq) and (4-

iodophenylethynyl)trimethylsilane (4.64 mg, 0.0150 mmol, 1.00 eq) which was dissolved in 

dry THF (10 mL) and diisopropylamine (3 mL) in argon atmosphere. The mixture was degassed 

by flushing with argon for 10 min. Afterwards, copper iodide (0.0861 mg, 0.45 µmol, 3 mol%) 

and bis(triphenylphosphine)palladium chloride (0.319 mg, 0.45 µmol, 3 mol%) were added 

and the reaction mixture was stirred at room temperature for 18 hrs. The solvents were 

removed under reduced pressure, the crude mixture was then taken up in demin. water and 

was extracted three times with ethyl acetate. The combined organic layers were washed with 

brine, dried over sodium sulfate, filtered and the solvents were removed in vacuo. Purification 

via column chromatography (SiO2; ethyl acetate: methanol 5:2), dissolving the solvent-freed 

product fractions in ethyl acetate separation and filtering off silica afforded the pure product 

as a yellow solid (39.3 mg) in 92% yield. 

1H NMR (400 MHz, CD3CN): δ = 9.06 (s, 1H, CHtriazole), 8.57 (s, 2H, CHtriazole), 8.42 (t, 4JH,H = 

1.5 Hz, 1H, CHar), 8.33 (d, 4JH,H = 1.5 Hz, 2H, CHar), 8.05 – 7.98 (m, 2H, CHar), 7.63 (d, 3JH,H = 7.0 

Hz, 2H, CHar), 7.58 – 7.51 (m, 2H, CHar), 7.51 – 7.46 (m, 2H, CHar), 4.63 (t, 3JH,H = 5.0 Hz, 4H, 

OCH2), 3.97 (t, 3JH,H = 5.1 Hz, 4H, OCH2), 3.71 – 3.46 (m, 24H, OCH2), 2.93 (s, 2H, OH), 0.27 (s, 

9H, C) ppm; 

13C NMR (101 MHz, CD3CN): δ = 148.0, 146.5, 139.0, 134.3, 133.1, 132.8, 132.5, 131.8, 126.6, 

124.2, 123.8, 123.8, 123.2, 122.9, 120.9, 116.9, 105.2, 97.3, 92.1, 90.3, 72.8, 70.9, 70.7, 70.6, 

70.5, 70.0, (68.7), (68.3), 61.5, 51.2, (30.3), (21.3), (21.1), (19.5), (18.7), (14.5), -0.2 ppm. The 

signals in brackets correspond to impurity; LC-MS (ESI, +): m/z = 904.5 (57) [M+H]+, 905.5 (37), 
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906.5 (15), 926.5 (100) [M+Na]+, 927.5 (64), 928.5 (25); HRMS (ESI, +): calc. for C47H57N9NaO8Si 

926.3992 [M+Na]+, found 926.3990.  

2,2'-((((((((5-(4-(4-((4-ethynylphenyl)ethynyl)phenyl)-1H-1,2,3-triazol-1-yl)-1,3-phenylene)-

bis(1H-1,2,3-triazole-4,1-diyl))bis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl))bis(oxy))-

bis(ethane-2,1-diyl))bis(oxy))bis(ethan-1-ol) (144) 

 

 

 

In a 10 mL round-neck flask reactant 149 (12.5 mg, 0.0138 mmol, 1.00 eq) was dissolve in a 

mixture of acetone (3.0 mL) and methanol (1.5 mL). The solution was charged with potassium 

carbonate (3.81 mg, 0.0276 mmol, 2.00 eq) and was stirred at room temperature. According 

to HPLC-ESI-MS, the reaction was completed after one hour. Excess potassium carbonate was 

filtered off and was washed with methanol. The solvents of the filtrate were removed under 

reduced pressure yielding a yellow solid (7.00 mg, 61%). 

1H NMR (400 MHz, CD3CN): δ = 9.21 (s, 1H, CHtriazole), 8.67 (s, 2H, CHtriazole), 8.49 (t, 4JH,H = 

1.5 Hz, 1H, CHar), 8.41 (d, 4JH,H = 1.5 Hz, 2H, CHar), 8.10 – 8.05 (m, 2H, CHar), 7.66 (d, 3JH,H = 

8.4 Hz, 2H, CHar), 7.54 (d, 3JH,H = 3.9 Hz, 4H, CHar), 4.69 – 4.62 (m, 4H, OCH2), 3.97 – 3.95 (m, 

4H, OCH2), 3.68 – 3.46 (m, 24H, OCH2), 2.91 (s, 2H, OH) ppm; 13C NMR (101 MHz, CD3CN): δ = 

148.1, 146.6, 139.1, 134.4, 133.1, 133.1, 132.5, 131.9, 126.7, 124.4, 124.1, 124.1, 123.3, 123.0, 

121.2, 117.1, 100.9, 83.6 (2 signals), 80.9, 72.4, 70.7, 70.4, 70.2, 68.6, 61.2, 51.1, (19.5), (19.2) 

ppm; LC-MS (ESI, +): m/z (%) = 416.7 (88), 417.2 (48), 417.7 (15), 427.7 (11), 832.5 (100) 

[M+H]+, 833.4 (55), 834.4 (16), 854.4 (59) [M+Na]+, 855.4 (33); HRMS (ESI, +): calc. for 

C44H49N9NaO8 854.3596 [M+Na]+ , found 854.3607.  
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2,2'-((((((((5-(4-(4-azidophenyl)-1H-1,2,3-triazol-1-yl)-1,3-phenylene)bis(1H-1,2,3-triazole-

4,1-diyl))bis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl))-

bis(oxy))bis(ethan-1-ol) (147) 

 

 

 

A 10 mL Schlenk tube was charged with 4-ethynylaniline (15.0 mg, 0.124 mmol) and stopper 

molecule 142 (75.1 mg, 0.124 mmol) and were dissolved in acetonitrile (3.0 mL) under argon 

atmosphere. After flushing argon into the solution for 10 min, [Cu(CH3CN)4]PF6 (9.24 mg, 

0.0248 mmol, 0.2 eq) and TBTA (13.2 mg, 0.0248 mmol, 0.2 eq) were added. The mixture was 

degassed again for 2 min and was stirred at room temperature over the weekend (55 hrs). The 

reaction mixture was diluted with ethyl acetate (30 mL), treated with demin. water (10 mL) 

and the aqueous layer was extracted three times with ethyl acetate (30 mL each). The 

combined organic phases were washed with brine, dried over sodium sulfate, filtered and the 

solvents were removed in vacuo. The formed amine was dissolved in half concentrated aq. 

hydrochloric acid (4mL) and cooled to 0 °C. Sodium nitrite was added in small portions. The 

reaction mixture was stirred at 0 °C for 20 min, before sodium azide was added portion-wise 

at 0 °C. When the addition was complete, the reaction was allowed to warm to room 

temperature and further stirred for 1 h. The reaction mixture was then neutralized with solid 

NaHCO3, diluted with demin. water (5 mL) and extracted three times with ethyl acetate 

(25 mL each). The combined organic layers were dried over sodium sulfate, filtered and 

evaporated. The crude product was obtained as an amber oil (50 mg, 69%).  According to 

1H NMR the product contaieds 13 mol% TBTA. 

1H NMR (400 MHz, CD3CN): δ = 8.80 (s, 1H, Htriazole), 8.42 – 8.41 (m, 3H, Htriazole (2H), Har (2H)), 

8.31 (d, 4JH,H = 1.5 Hz, 2H, Har), 8.00 – 7.94 (m, 2H, Har), 7.73 (s, 0.4 H, Htriazole TBTA), 7.40 – 7.31 

(m, 1.2H, Har TBTA), 7.30 – 7.25 (m, 0.8H, Har TBTA), 7.20 – 7.18 (m, 2H, Har), 5.51 (s, 0.8H, 

CH2,triazole), 4.61 – 4.59  (m, 4H, NCH2), 3.96 – 3.89 (m, 4H, OCH2), 3.65 – 3.47 (m, 21H, 

OCH2(20H), NCH2 TBTA(0.8H)), 3.44 – 3.39 (m, 4H, OCH2), 2.92 (s, 2H, OH) ppm; 
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13C NMR (101 MHz, CD3CN): δ = 148.1, 146.6, 140.9, 139.2, 134.5, 129.8, 129.2, 128.8, 128.4, 

128.0, 124.7, 123.5, 123.0, 120.6, 120.1, 117.0, 73.2, 71.1, 71.1, 70.9, 70.9, 69.9, 61.9, 51.3 

ppm, 13C NMR spectrum contains four signals in the down field region (between 150 – 115 

ppm) corresponding to TBTA; LC-MS (ESI, +): m/z (%) = 370.2 (100), 370.7 (46), 371.2 (12), 

375.2 (35), 375.7 (16), 381.2 (14), 531.3 (59), 532.3 (23), 553.3 (19), 749.4 (20) [M+H]+, 771.4 

(10) [M+Na]+;  HRMS (ESI, +): calc. for C34H45N12O8 749.3478 [M+H]+ , found 749.3477.  

 

 

General Procedure for the OPE-based Rotaxane Test Systems 

A test series composed of the two mono-stoppered OPE molecules 144 and 145 and the three 

stopper molecules 142, 146 and 147 was performed by investigating various combinations of 

the reactants in their ability to form rotaxanes with cyclophane 81 via click chemistry:    

OPE 144 and respectively 145 (1.00 µmol) was subjected to a 10 mL two-neck flask and 

1.00 mL of a 1.00 mM solution of an azide-functionalized stopper (142, 146 or 147) in water 

(1.00 µmol in 1.00 mL water) was added. The mixture was charged with cyclophane 81 

(2.00 mg, 2.00 µmol). After flushing with argon for five min, copper(II)sulfate (0.08 mg, 

0.50 µmol) and L(+)ascorbic acid sodium salt (0.10 mg, 0.50 µmol) was added. The solution 

was put under argon again and was stirred at room temperature.  Samples were taken and 

analyzed by HPLC-ESI-MS measurements, until the recorded chromatograms did not show any 

changes, typically after 15 hours.   

The reaction mixture comprising the combination of OPE 144 and stopper 142 was measured 

by high-resolution ESI-MS, confirming [2]rotaxane (M) formation: 

HRMS (ESI, +): calc. for C128H172N20NaO8 820.0844 [M+Na]3+ , found 820.0853. 
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Tetramethyl 5,5'-(1,4-phenylenebis(ethyne-2,1-diyl))diisophthalate (161) 

 

 

 

In an oven-dried Schlenk tube dimethyl 5-iodoisophthalate (160) (558 mg, 1.74 mmol) and 

1,4-diethynylbenzene (100 mg, 0.793 mmol) were dissolved in dry THF (10 mL) and diiso-

propylamine (3 mL) under argon atmosphere. The mixture was degassed by flushing with 

argon for 10 min. Afterwards, copper iodide (4.55 mg, 0.0238 mmol, 3 mol%) and bis-

(triphenylphosphine)palladium chloride (16.9 mg, 0.0238 mmol, 2 mol%) was added and the 

reaction mixture was stirred at room temperature for 18 hrs. After one hour the solution was 

already cloudy due to a formed pale yellow precipitate. Tlc (SiO2; dichloromethane) showed 

full conversion of the diacetylene and the ester (160). The precipitate was separated from the 

solvent by filtration, was washed with THF and then dissolved in DCM. The solution was 

extracted twice with demin. water. The combined organic layers were washed with brine, 

dried over sodium sulfate, filtered and the solvents were removed under reduced pressure. 

The product was obtained as an orange solid (327 mg, 81%). 

1H NMR (400 MHz, CDCl3): δ = 8.64 (t, 4JH,H = 1.6 Hz, 2H, Har), 8.37 (d, 4JH,H = 1.7 Hz, 4H, Har), 

7.55 (s, 4H, Har), 3.97 (s, 6H, CH3) ppm; 13C NMR (101 MHz, CDCl3): δ = 165.7 (Cq, 4C, COOMe), 

136.6 (Ct, 4C, CHar), 131.9 (Ct, 4C, CHar), 131.2 (Ct, 2C, CHar), 130.4 (Cq, 4C, CCOOMe), 124.2 (Cq, 

2C, Cq,ar), 123.0 (Cq, 2C, Cq,ar),90.9 (Cq, 2C, C≡C), 89.5 (Cq, 2C, C≡C), 52.7 (Cq, 4C, CH3) ppm; LC-

MS (ESI, -): m/z (%) = 453.3 (100) [M-H]-, 454.1 (32), 680.2 (16), 907.3 (46), 908.2 (26).  
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5,5'-(1,4-phenylenebis(ethyne-2,1-diyl))diisophthalic acid (162) 

 

 

 

162 was synthesized according to a slightly modified procedure described in literature:[156] 

Tetramethyl-5,5'-(1,4-phenylenebis(ethyne-2,1-diyl))diisophthalate (150 mg, 0.294 mmol) 

was dissolved in a mixture of MeOH/THF (1:1, 3 mL). After addition of aq. KOH (3 M, 6 mL, 

18.0 mmol), the reaction mixture was heated under reflux for 4 hrs. Afterward, the solvent 

was evaporated under reduced pressure and the aq. solution was acidified with aq. HCl (6 M) 

to give a precipitate, which was filtered and dried in vacuo. Product 162 was obtained as a 

pale orange solid (133 mg, quant.). 

1H NMR (400 MHz, DMSO-d6): δ = 13.59 (s, 4H, COOH), 8.46 (t, 4JH,H = 1.6 Hz, 2H, Har), 8.28 (d, 

4JH,H = 1.6 Hz, 4H, Har), 7.71 (s, 4H, Har) ppm.  

The spectroscopic data are in agreement with those previously reported.[156] 

 

 

Dimethyl 4,4'-(1,4-phenylenebis(ethyne-2,1-diyl))dibenzoate (164) 

 

 

 

An oven-dried Schlenk tube was charged with methyl 4-bromobenzoate (163, 114 mg, 

0.524 mmol) and 1,4-diethynylbenzene (30.0 mg, 0.238 mmol) which were then dissolved in 

dry THF (5 mL) and diisopropylamine (1 mL) under argon atmosphere. The mixture was 

degassed by flushing with argon for 10 min. Afterwards, copper iodide (1.37 mg, 7.14 µmol, 

3 mol%) and bis(triphenylphosphine)palladium chloride (5.06 mg, 7.14 µmol, 3 mol%) was 

added and the reaction mixture was stirred at 60 °C for 18 hrs. THF was removed under 

reduced pressure and the resulting solid was dissolved in DCM and charged with demin. water 
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(10 ml). In an separation funnel the layers were separated and the aqueous one was extracted 

with DCM twice. The combined organic layers were washed with brine, dried over sodium 

sulfate, filtered and the solvents were removed under reduced pressure. The brown crude 

product was purified by column chromatography (SiO2; DCM) to obtain product 164 as a 

yellow solid (83.5 mg, 89%). 

1H NMR (500 MHz, CD2Cl2): δ = 8.05 – 8.00 (m, 4H, Har), 7.64 – 7.60 (m, 4H, Har), 7.57 –7.55 

(m, 4H, Har), 3.91 (s, 6H, CH3) ppm; 13C NMR (126 MHz, CD2Cl2): δ = 166.2 (Cq, 2C, C=O), 131.5 

(Ct, 4C, CHar), 129.5 (Ct, 4C, CHar), 127.5 (Cq, 2C), 123.0 (Ct, 4C, CHar), 91.5 (Cq, 2C, C≡C), 90.6 

(Cq, 2C, C≡C), 52.1 (Cp, 2C, CH3) ppm. 2 x Cq,ar could not be observed. 

 

 

4,4'-(1,4-phenylenebis(ethyne-2,1-diyl))dibenzoic acid (165) 

 

 

 

OPE 164 (11.0 mg, 0.0279 mmol) was dissolved in 2.5 mL of THF/methanol (4:1 v/v). Aqueous 

potassium hydroxide solution (3.0 M, 0.30 mL, 0.90 mmol) was added and the mixture was 

stirred at 85 °C for one hour. The reaction mixture was allowed to cool down to room 

temperature and was then charged dropwise with conc. hydrochloric acid, until the 

precipitation process was finished. The resulting colorless solid was filtered and dried in vacuo, 

affording 165 (10.1 mg) in a yield of 99%. 

1H NMR (400 MHz, DMSO-d6): δ = 13.19 (s, 2H, COOH), 8.02 – 7.95 (m, 4H, Har), 7.75 – 7.68 

(m, 4H, Har), 7.66 (s, 4H, Har) ppm; 13C NMR (101 MHz, DMSO): δ = 166.6 (Cq, 2C, COOH), 131.9 

(Ct, 4C, CHar), 131.6 (Ct, 4C, CHar), 130.8 (Cq, 2C, Car), 129.6 (Ct, 4C, CHar), 126.2 (Cq, 2C, Car), 

122.4 (Cq, 2C, Car), 91.4 (Cq, 2C, C≡C), 90.8 (Cq, 2C, C≡C) ppm. 

The spectroscopic data are in agreement with those reported previously.[179] 
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Methyl 4-ethynylbenzoate (166) 

 

 

 

166 was synthesized according to a slightly modified procedure described in literature.[157] In 

an oven-dried Schlenk-tube, reactant 163 (93.0 mg, 0.428 mmol, 1.00 eq) was dissolved in 

2 mL dry THF and 0.7 mL DIPA under argon atmosphere. The mixture was degassed by flushing 

with argon for 10 min. Afterwards, trimethylsilylacetylene (73.1 µL, 50.4 mg, 0.514 mmol, 

1.20 eq), copper iodide (2.46 mg, 0.0128 mmol, 3 mol%) and bis(triphenylphosphine)-

palladium chloride (9.10 mg, 0.0128 mmol, 3 mol%) were added and the reaction mixture was 

stirred for 4 hours at 60 °C. The solvents were removed under reduced pressure. Short column 

chromatography (SiO2; dichloromethane) was performed. The dried product was dissolved in 

1 mL dichloromethane and 0.3 mL methanol and was charged with potassium carbonate 

(119 mg, 0.86 mmol, 2.00 eq). After 1 hour stirring at room temperature, the solid was filtered 

off and column chromatographic purification was performed (SiO2; dichloromethane), 

affording 166 (62.7 mg) in 91% yield. 

1H NMR (400 MHz, CDCl3): δ = 7.92 – 7.87 (m, 2H, Har), 7.47 – 7.42 (m, 2H, Har), 3.82 (s, 3H, 

CH3), 3.13 (s, 1H, C≡CH) ppm;  13C NMR (101 MHz, CDCl3): δ = 166.6 (Cq, 1C, C=O), 132.2 (Ct, 

2C, CHar), 130.3 (Cq, 1C), 129.6 (Ct, 2C, CHar), 126.9 (Cq, 1C), 82.9 (Cq, 1C, C≡CH), 80.2 (Ct, 1C, 

C≡CH), 52.4 (Cs, 1C, CH3) ppm. 

The spectroscopic data are in agreement with those reported previously.[157] 
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Dimethyl 4,4'-(ethyne-1,2-diyl)dibenzoate (167) 

 

 

 

In an oven-dried Schlenk tube, methyl 4-bromobenzoate (12.2 mg, 0.0562 mmol), acetylene 

166 (9.00 mg, 0.0562 mmol) and bis(triphenylphosphine)palladium chloride (1.20 mg, 

1.69 µmol, 3 mol%) were dissolved in dry THF (2 mL) and diisopropylamine (0.5 mL) under 

argon atmosphere. The mixture was degassed by flushing with argon for 10 min. Afterwards, 

copper iodide (0.716 mg, 1.69 µmol, 3 mol%) was added and the reaction mixture was stirred 

at 60 °C for 18 hrs. The solvents were evaporated and the resulting brown crude product was 

dissolved in dichloromethane and demin. water (10 mL) was added. The aqueous layer was 

extracted three times with dichloromethane (20 mL each). The combined organic layers were 

washed with brine, dried over sodium sulfate and the solvents were removed under reduced 

pressure. The brown solid was purified by column chromatography (SiO2; dichloromethane) 

to obtain 167 in a yield of 24% (4.00 mg). 

1H NMR (400 MHz, CDCl3): δ = 8.08 – 7.99 (m, 4H, Har), 7.66 – 7.55 (m, 4H, Har), 3.94 (s, 6H, 

CH3) ppm;  13C NMR (101 MHz, CDCl3): δ = 166.6 (Cq, 2C, C=O), 131.8 (Ct, 4C, CHar), 130.1 (Cq, 

2C, Car), 129.7 (Ct, 4C, CHar), 127.5 (Cq, 2C, Car), 91.5 (Cq, 2C, C≡C), 52.4 (Cs, 2C, CH3) ppm. 

 

 

4,4'-(ethyne-1,2-diyl)dibenzoic acid (168) 

 

 

 

4,4'-(ethyne-1,2-diyl)dibenzoic acid (168) was prepared according to a literature-known 

procedure.[158] Compound 167 (3.50 mg, 0.0119 mmol, 1.00 eq) was dissolved in 1 mL of an 

ethanol/ mixture (9:1 v/v) and charged with potassium hydroxide (3.34 mg, 0.0595 mmol, 
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5.00 eq). The mixture was heated to 35 °C for 1.5 hours. Ethanol was removed under reduced 

pressure and 0.2 mL demin. water were added. The resulting aqueous solution was washed 

with dichloromethane and then acidified with conc. hydrochloric acid, until no more solid 

precipitated. The solid was filtered, washed with demin. water and dried in vacuo, affording 

product 168 (3.12 mg) in 99% yield.  

The 1H NMR sample was previously charged with 2 eq of KOH to form the potassium salt of 

168. 

1H NMR (400 MHz, Deuterium Oxide): δ = 7.89 – 7.81 (m, 4H, Har), 7.66 – 7.59 (m, 4H, Har) 

ppm. 

The spectroscopic data are in agreement with those reported previously.[158] 

 

 

General procedure for the syntheses of 173a-e 

 

 

A 100 mL Schlenk tube was charged with the appropriate ethylene glycol derivative which was 

then diluted with dry THF (10% vv) under argon atmosphere. The solution was cooled to 0 °C 

with an ice-bath and base was then added portion-wise at 0 °C. Afterwards, the solution was 

allowed to warm up to room temperature and was stirred at this temperature for 20 min. 

Propargyl bromide solution (80% in toluene, 1.0 eq) was added dropwise and the reaction 

mixture was stirred for 18 hrs at room temperature. The solvent was removed under reduced 

pressure and the crude oil was purified via column chromatography. 

 

2-(prop-2-yn-1-yloxy)ethan-1-ol (173a) 

Ethylene glycol (7.76 g, 125 mmol, 6.99 mL, 5.0 eq), potassium hydroxide (3.30 g, 50.0 mmol, 

2.0 eq), propargyl bromide solution (3.71 g, 25.9 mmol, 2.69 mL, 1.0 eq); column 

chromatography (SiO2; dichloromethane: methanol 96:4); 66% yield (1.64 g); colorless oil.  

1H NMR (400 MHz, CDCl3): δ = 4.21 (d, 4JH,H = 2.4 Hz, 2H, CH2C≡CH), 3.80 – 3.75 (m, 2H, CH2), 

3.69 – 3.64 (m, 2H, CH2), 2.46 (t, 4JH,H = 2.4 Hz, 1H, C≡CH), 2.08 (s, 1H, OH) ppm. 

The spectroscopic data are in agreement with those previously reported.[159] 
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2-(2-(prop-2-yn-1-yloxy)ethoxy)ethan-1-ol (173b) 

Diethylene glycol (9.65 g, 90.0 mmol, 8.69 mL, 2.0 eq), potassium tert-butoxide (5.26 g, 

45.4 mmol, 1.01 eq), propargyl bromide solution (6.69 g, 45.0 mmol, 4.85 mL, 1.0 eq); column 

chromatography (SiO2; ethyl acetate); 11% yield (700 mg); colorless oil. 

1H NMR (400 MHz, CDCl3): δ = 4.20 (d, 4JH,H = 2.4 Hz, 2H, CH2C≡CH), 3.78 – 3.66 (m, 6H, CH2), 

3.64 – 3.57 (m, 2H, CH2), 2.44 (t, 4JH,H = 2.4 Hz, 1H, C≡CH) ppm. 

The spectroscopic data are in agreement with those previously reported.[160] 

 

2-(2-(2-(prop-2-yn-1-yloxy)ethoxy)ethoxy)ethan-1-ol (173c) 

Triethylene glycol (9.01 g, 59.4 mmol, 8.04 mL, 3.0 eq), sodium hydride 60% dispersion in 

mineral oil (800 mg, 20.0 mmol, 1.01 eq), propargyl bromide solution (2.94 g, 19.8 mmol, 

2.13 mL, 1.0 eq); column chromatography (SiO2; ethyl acetate); 78% yield (2.92 g); colorless 

oil.  

1H NMR (400 MHz, CDCl3): δ = 4.20 (d, 4JH,H = 2.4 Hz, 2H, CH2C≡C), 3.75 – 3.64 (m, 10H, CH2), 

3.64 – 3.58 (m, 2H, CH2OH), 2.43 (t, 4JH,H = 2.4 Hz, 1H, C≡CH) ppm. The spectroscopic data are 

in agreement with those previously reported.[161] 

 

3,6,9,12-tetraoxapentadec-14-yn-1-ol (173d) 

Tetraethylene glycol (25.0 g, 129 mmol, 22.3 mL, 2.80 eq), sodium hydride 60% dispersion in 

mineral oil (1.00 g, 41.7 mmol, 2.24 eq), propargyl bromide solution (2.76 g, 18.6 mmol, 

2.00 mL, 1.00 eq); column chromatography (SiO2; ethyl acetate); 90% yield (3.90 g); colorless 

oil.  

1H NMR (400 MHz, CDCl3): δ = 4.21 (d, 4JH,H = 2.4 Hz, 2H, CH2C≡C), 3.77 – 3.64 (m, 14H, CH2), 

3.64 – 3.59 (m, 2H, CH2), 2.64 (s, 1H, OH), 2.43 (t, 4JH,H = 2.4 Hz, 1H, C≡CH) ppm. 

The spectroscopic data are in agreement with those previously reported.[162] 

 

3,6,9,12,15-pentaoxaoctadec-17-yn-1-ol (173e) 

Pentaethylene glycol (1.70 g, 7.11 mmol, 1.50 mL, 2.8 eq), sodium hydride 60% dispersion in 

mineral oil (101 mg, 2.51 mmol, 0.99 eq), propargyl bromide solution (378 mg, 2.54 mmol, 

0.274 mL, 1.0 eq); column chromatography (SiO2; ethyl acetate, 5% methanol); 41% yield 

(286 mg); colorless oil.  
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1H NMR (400 MHz, CDCl3): δ = 4.21 (d, 4JH,H = 2.4 Hz, 2H, CH2C≡CH), 3.75 – 3.64 (m, 18H, CH2), 

3.64 – 3.58 (m, 2H, CH2), 2.43 (t, 4JH,H = 2.4 Hz, 1H, C≡CH) ppm. 

The spectroscopic data are in agreement with those previously reported.[163] 

 

 

General procedure for the syntheses of 169a and 169b 

 

 

A 10 mL-Schlenk tube was charged with sodium hydride 60% dispersion in mineral oil under 

argon atmosphere. A solution of 173a or respectively 173b in dry THF was added dropwise 

and the foaming suspension was stirred at room temperature, until the hydrogen formation 

stopped (2 min). Then the septum was loosened, 2,6-naphthalenedicarboxylic acid dimethyl 

ester was added and the reaction mixture was heated to 130 °C while slowly distilling off THF 

and formed methanol. After 45 min the suspension was allowed to cool to room temperature 

and was diluted with ethyl acetate and demin. water. The aqueous phase was extracted with 

ethyl acetate three times. The combined organic layers were washed with brine, dried over 

sodium sulfate, filtered and the solvents were removed under reduced pressure to afford a 

colorless solid. 

 

Bis(2-(prop-2-yn-1-yloxy)ethyl) naphthalene-2,6-dicarboxylate (169a): Propargyl-ethylene 

glycol 173a (205 mg, 2.05 mmol, 5.0 eq), sodium hydride 60% dispersion in mineral oil 

(32.7 mg, 818 μmol, 2.0 eq), 2,6-naphthalenedicarboxylic acid dimethyl ester (99.9 mg, 

409 μmol, 1.0 eq), THF (50 mL); 42% yield (66.0 mg, 174 μmol); colorless solid. 

1H NMR (400 MHz, CDCl3): δ = 8.68 – 8.65 (m, 2H, Har), 8.15 (dd, 3JH,H = 8.4 Hz, 4JH,H  = 1.6 Hz, 

2H, Har), 8.01 (d, 3JH,H  = 8.6 Hz, 2H, Har), 4.62 – 4.54 (m, 4H, OCH2), 4.28 (d, 3JH,H = 2.4 Hz, 4H, 

OCH2), 3.97 – 3.91 (m, 4H, CH2C≡CH), 2.47 (t, 4JH,H = 2.4 Hz, 2H, CH2C≡CH) ppm; 13C NMR 

(101 MHz, CDCl3): δ = 166.4 (Cq, 2C, C=O), 134.8 (Cq, 2C, Car), 131.0 (Ct, 2C, Car), 129.7 (Ct, 2C, 

Car), 129.6 (Cq, 2C, Car), 126.2 (Ct, 2C, Car), 79.4 (Cq, 2C, C≡CH), 75.1 (Ct,2C, C≡CH), 67.9 (Cs, 2C, 
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CH2), 64.4 (Cs, 2C, CH2), 58.6 (Cs, 2C, CH2) ppm; HRMS (ESI, +): calc. for C22H20NaO6 403.1152 

[M+Na]+, found 403.1157.  

 

 

Bis(2-(2-(prop-2-yn-1-yloxy)ethoxy)ethyl) naphthalene-2,6-dicarboxylate (169b): Propargyl-

ethylene glycol 173b (488 mg, 3.38 mmol, 5.0 eq), sodium hydride 60% dispersion in mineral 

oil (27.1 mg, 677 μmol, 1.00 eq), 2,6-naphthalenedicarboxylic acid dimethyl ester (165 mg, 

677 μmol, 1.00 eq),  THF (30 mL); 14% yield (45.0 mg, 96 μmol); colorless solid. 

1H NMR (400 MHz, CDCl3): δ = 8.66 – 8.62 (m, 2H, Har), 8.12 (dd, 3JH,H = 8.5, 4JH,H = 1.6 Hz, 2H, 

Har), 7.99 (d, 3JH,H = 8.6 Hz, 2H, Har), 4.58 – 4.52 (m, 4H, OCH2), 4.21 (d, 4JH,H = 2.4 Hz, 4H, 

CH2C≡CH), 3.92 – 3.83 (m, 4H, OCH2), 3.78 – 3.70 (m, 8H, OCH2), 2.41 (t, 4JH,H = 2.4 Hz, 2H, 

CH2C≡CH) ppm; 13C NMR (101 MHz, CDCl3): δ = 166.4 (Cq, 2C, C=O), 134.7 8 (Cq, 2C, Car), 130.9 

(Ct, 2C, Car), 129.7 (Ct, 2C, Car), 129.6 (Cq, 2C, Car), 126.2 (Ct, 2C, Car), 79.7 (Cq, 2C, C≡CH), 74.7 

(Ct,2C, C≡CH), 70.6 (Cs, 2C, CH2), 69.4 (Cs, 2C, CH2), 69.2 (Cs, 2C, CH2), 64.5 (Cs, 2C, CH2), 58.6 

(Cs, 2C, CH2) ppm; HRMS (ESI, +): calc. for C26H29O8 469.11857 [M+H]+, found 469.1857;  calc. 

for C26H28NaO8 491.1676 [M+Na]+, found 491.1682. 

 

 

General procedure for the syntheses of 169c-e 

 

 

 

To a suspension of the relevant propargyl ethylene glycol derivative 173c, 173d or 173e, 

respectively, (2.0 eq), 2,6-naphthalene-dicarboxylic acid (1.0 eq) and triphenylphosphine 

(2.2 eq) in dry THF, a diethyl azodicarboxylate solution (DEAD) (40% in toluene, 2.2 eq) was 

slowly added under argon atmosphere. The suspensions turned into a clear, pale yellow 

solution. After stirring the mixture for 16 hrs, the solvents were removed and the crude yellow 

oil was subjected to demin. water (10 mL) and was extracted with methyl tert-butyl ether (100 

mL) three times. The combined organic layers were washed with brine, dried over sodium 
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sulfate, filtered and the solvents were removed under reduced pressure. The crude product 

was purified by column chromatography. 

 

 

Bis(2-(2-(2-(prop-2-yn-1-yloxy)ethoxy)ethoxy)ethyl) naphthalene-2,6-dicarboxylate (169c) 

Propargyl-ethylene glycol 173c (550 mg, 2.92 mmol, 2.0 eq), 2,6-naphthalenedicarboxylic acid 

(316 mg, 1.46 mmol, 1.0 eq), triphenylphosphine (842 mg, 3.21 mmol, 2.2 eq), DEAD (1.40 g, 

3.21 mmol, 1.47 mL, 2.2 eq), dry THF (45 mL); column chromatography (Al2O3, basic; ethyl 

acetate); 82% yield (669 mg, 1.20 mmol); colorless solid.  

1H NMR (400 MHz, CDCl3): δ = 8.67 – 8.63 (m, 2H, Har), 8.14 (dd, 3JH,H = 8.5 Hz, 4JH,H  = 1.5 Hz, 

2H, Har), 8.01 (d, J = 8.5 Hz, 2H, Har), 4.59 – 4.52 (m, 4H, OCOCH2), 4.18 (d, 4JH,H = 2.4 Hz, 4H, 

CH2C≡CH), 3.92 – 3.84 (m, 4H, OCOCH2CH2), 3.79 – 3.73 (m, 4H, OCH2), 3.72 – 3.66 (m, 12H, 

OCH2), 2.40 (t, 4JH,H = 2.4 Hz, 2H, C≡CH) ppm; 13C NMR (101 MHz, CDCl3):  δ = 166.5 (Cq, 2C, 

C=O), 134.7 (Cq, 2C, Car), 130.9 (Ct, 2C, Car), 129.7 (Ct, 2C, Car), 129.6 (Cq, 2C, Car), 126.2 (Ct, 2C, 

Car), 79.8 (Cq, 2C, C≡CH), 74.7 (Ct,2C, C≡CH), 70.9 (Cs, 2C, CH2), 70.8 (Cs, 2C, CH2), 70.7 (Cs, 2C, 

CH2), 69.4 (Cs, 2C, CH2), 69.3 (Cs, 2C, CH2), 64.6 (Cs, 2C, CH2), 58.6 (Cs, 2C, CH2) ppm; HRMS 

(ESI, +): calc. for C30H36Na2O10 301.1046 [M+2Na]2+ , found 301.1048.  

 

 

Di(3,6,9,12-tetraoxapentadec-14-yn-1-yl) naphthalene-2,6-dicarboxylate (169d) 

Propargyl-ethylene glycol 173d (729 mg, 3.14 mmol, 2.0 eq), 2,6-naphthalenedicarboxylic acid 

(339 mg, 1.57 mmol, 1.0 eq), triphenylphosphine (906 mg, 3.45 mmol, 2.2 eq), DEAD (1.50 g, 

3.45 mmol, 1.48 mL, 2.2 eq), dry THF (45 mL); column chromatography (rp-SiO2 C18; 

water:acetone 5:4); 64% yield (646 mg, 1.00 mmol); colorless solid.  

1H NMR (400 MHz, CDCl3): δ = 8.68 – 8.63 (m, 2H, Har), 8.14 (dd, 3JH,H = 8.4, 4JH,H = 1.5 Hz, 2H, 

Har), 8.01 (d, 3JH,H  = 8.6 Hz, 2H, Har), 4.59 – 4.51 (m, 4H, OCOCH2), 4.18 (d, 4JH,H = 2.4 Hz, 4H, 

CH2C≡CH), 3.93 – 3.86 (m, 4H, OCOCH2CH2), 3.75 – 3.72 (m,  4H, OCH2), 3.71 – 3.58 (m, 20H, 

OCH2), 2.42 (t, 4JH,H = 2.4 Hz, 2H, C≡CH) ppm; 13C NMR (101 MHz, CDCl3): δ = 166.6 (Cq, 2C, 

C=O), 134.8 (Cq, 2C, Car), 131.0 (Ct, 2C, Car), 129.8 (Ct, 2C, Car), 129.7 (Cq, 2C, Car), 126.3 (Ct, 2C, 

Car), 79.9 (Cq, 2C, C≡CH), 74.8 (Ct,2C, C≡CH), 71.0 (Cs, 2C, CH2), 70.9 (Cs, 2C, CH2), 70.9 (Cs, 2C, 

CH2), 70.9 (Cs, 2C, CH2), 70.7 (Cs, 2C, CH2), 69.5 (Cs, 2C, CH2), 69.3 (Cs, 2C, CH2), 64.7 (Cs, 2C, 
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CH2), 58.6 (Cs, 2C, CH2) ppm; HRMS (ESI, +): calc. for C34H44NaO12 667.2729 [M+Na]+, found 

667.2725.  

 

 

Di(3,6,9,12,15-pentaoxaoctadec-17-yn-1-yl) naphthalene-2,6-dicarboxylate (169e) 

Propargyl-ethylene glycol 173e (558 mg, 2.02 mmol, 2.0 eq), 2,6-naphthalenedicarboxylic acid 

(218 mg, 1.01 mmol, 1.0 eq), triphenylphosphine (583 mg, 2.22 mmol, 2.2 eq), DEAD (967 mg, 

2.22 mmol, 1.02 mL, 2.2 eq), dry THF (30 mL); column chromatography (rp-SiO2 C18; 

water:acetone 5:4); 44% yield (322 mg, 439 μmol); colorless solid.  

1H NMR (400 MHz, CDCl3): δ 8.68 – 8.63 (m, 2H, Har), 8.14 (dd, 3JH,H = 8.5, 4JH,H = 1.6 Hz, 2H, 

Har), 8.01 (d, 3JH,H  = 8.6 Hz, 2H, Har), 4.58 – 4.52 (m, 4H, OCOCH2), 4.19 (d, 4JH,H  = 2.4 Hz, 4H, 

CH2C≡CH), 3.92 – 3.86 (m, 4H, OCOCH2CH2), 3.77 – 3.72 (m, 4H, OCH2), 3.72 – 3.58 (m, 28H, 

OCH2), 2.42 (t, 4JH,H = 2.4 Hz, 2H, C≡CH) ppm; 13C NMR (101 MHz, CDCl3): δ = 166.5 (Cq, 2C, 

C=O), 134.7 (Cq, 2C, Car), 130.9 (Ct, 2C, Car), 129.7 (Ct, 2C, Car), 129.6 (Cq, 2C, Car), 126.2 (Ct, 2C, 

Car), 79.8 (Cq, 2C, C≡CH), 77.4 (Cs, 2C, CH2), 74.7 (Ct,2C, C≡CH), 70.9 (Cs, 2C, CH2), 70.8 (Cs, 2C, 

CH2), 70.8 (Cs, 2C, CH2), 70.8 (Cs, 2C, CH2), 70.7 (Cs, 2C, CH2), 70.6 (Cs, 2C, CH2), 69.4 (Cs, 2C, 

CH2), 69.2 (Cs, 2C, CH2), 64.6 (Cs, 2C, CH2), 58.5 (Cs, 2C, CH2) ppm; HRMS (ESI, +): calc. for 

C38H52NaO14 755.3249 [M+Na]+, found 755.3239.  

 

 

General Procedure of the Screening Condition 1  

 

A 10 mL two-neck flask was charged with the relevant naphthalene axle (1.00 µmol, 1.00 eq) 

to which then 1.55 mL of demin. water was added. In case of derivatives 169d the flask was 

charged with the relevant substrate solution (1 mM in demin. water; 1.00 mL, 1.00 eq) and 

was then diluted with 0.55 mL of demin. water. A stock solution of stopper 142 (10 mM in 

demin. water; 200 µL, 2.00 eq) and cyclophane 81 (20 mM in demin. water; 50.0 µL, 1.00 eq) 

were added. After flushing with argon for 10 min. under vigorous stirring, the mixture of 

reactants was subjected to copper(II)sulfate stock solution (10 mM in demin. water; 100 µL, 

1.00 eq) and L(+)ascorbic acid sodium salt solution (10 mM in demin. water; 100 µL, 1.00 eq) 

and the mixture was again flushed with argon for 10 min. Two hours after addition of catalyst 

and reducing agent, a sample was taken and measured by HPLC-ESI-MS. In case of an 
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incomplete conversion of naphthalene rod or stopper, a sample was taken again after three 

hours, and respectively 21 hrs and analyzed by HPLC-LC-MS. The extracted mass peaks of the 

cyclophane and the products were integrated and quantitatively analyzed.        

 

Table 5:  Total concentrations and equivalents of reactants and reagents of the CuAAc screening 

under the three different conditions 1-3. 

Cond. cyclophane axle stopper CuSO4 Na ascorb. THPTA 

1 

1.0 mM  
(1.0 eq) 

1.0 mM  
(1.0 eq) 

2.0 mM  
(2.0 eq) 

1.0 mM  
(1.0 eq) 

1.0 mM  
(1.0 eq) 

 
– 
 

2 
2.5 mM  

(5.0 eq) 
1.0 mM  
(1.0 eq) 

2.0 mM  
(2.0 eq) 

1.0 mM  
(1.0 eq) 

1.0 mM  
(1.0 eq) 

 
– 
 

3 1.0 mM  
(1.0 eq) 

1.0 mM  
(1.0 eq) 

2.0 mM  
(2.0 eq) 

1.0 mM  
(1.0 eq) 

1.0 mM  
(1.0 eq) 

1.0 mM  

(1.0 eq) 

 

 

General Procedure of the Screening Condition 2 

 

The procedure of screening conditions 2 resembled the one of variation 1. The difference 

between both conditions is the amount of cyclophane, the total concentration of the other 

reactants and reagents stayed the same. The screening reactions were performed with 5.00 

eq of cyclophane 81 (20 mM in demin. water; 250.0 µL) at which the same stock solution as in 

variation 1 was used. Consequently, the solid naphthalene rods 169a-c (1.00 µmol, 1.00 eq) 

were charged with 1.35 mL demin water, instead of 1.55 mL as in variation 1, whereas the 

naphthalene rod solutions of 169a-c (1 mM in demin. water; 1.00 mL, 1.00 eq) were diluted 

with 0.35 mL demin. water, instead of 0.55 mL. The screening reactions were analyzed as in 

variation 1. 
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General Procedure of the Screening Condition 3 

 

The procedure of screening conditions 2 resembled the reactions of variation 1. In contrast to 

screening variation 1, the reactions were performed with the aid of co-catalyst tris(3-hydroxy-

propyltriazolylmethyl)amine (10 mM in demin. water; 100 µL, 1.00 eq). As a stock solution of 

the co-catalyst was used and to gain the same total concentration of all reactants the same as 

under conditions 1, the naphthalene rods 169a-c were charged with 1.45 mL, or in case of 

169d-e diluted with 0.45 mL of demin. water. The screening reactions were analyzed as in 

variation 1.   

 

 

Rotaxane 170d 

 

In a 50 mL two-neck flask, stopper 142 (36.3 mg, 060 µmol, 2.0 eq), naphthalene rod 169d 

(19.3 mg, 30 µmol, 1.0 eq) and cyclophane 81 (150 mg, 150 µmol, 5.0 eq) were dissolved in 

miliQ water (6.0 mL) under argon atmosphere. The resulting pale orange solution was 

degassed by flushing with argon for 15 min.  Afterwards, a copper(II)sulfate solution (10 mM 

in water, 3.00 mL, 30 µmol, 1.0 eq), a L(+)ascorbic acid sodium salt solution (10 mM in water, 

3.00 mL, 30 µmol, 1.0 eq) and tris(3-hydroxypropyltriazolylmethyl)amine (10 mM in water, 

3.00 mL, 30 µmol, 1.0 eq) were added and the solution was degassed again for 5 min. After 

stirring at room temperature for 2 hours, HPLC-ESI-MS was recorded which indicated full 

conversion of stopper 142. After stirring for 3 hours and 20 minutes, the solvent was removed 

under reduced pressure. The solid crude product was dissolved in methanol (2.0 mL) and was 

subjected to a short column (Al2O3, basic; methanol) for separating the copper species salts. 
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Further purification was performed via size exclusion chromatography (Sephadex LH20, 

methanol). The fractions containing rotaxane were combined, the eluate was concentrated in 

vacuo and the size exclusion procedure was repeated twice. Remaining twice-stoppered rod 

(7% according to 1H NMR spectrum after 3 x size exclusion) was separated from the rotaxane 

by washing the solid product mixture with a small amount (0.3 mL) of acetone. In the end, the 

product was dissolved in acetonitrile: water (7:1) and passed through an ion exchange column 

(DOWEX, 1X8 400 Cl) affording 59.0 mg of product. According to the 1H NMR spectrum, the 

product contains 22% of free cyclophane 81 resulting in a calculated yield of 59% for the pure 

rotaxane.   

1H NMR (600 MHz, Methanol-d4): δ = 8.59 (s, 2H, H15), 8.53 (s, 4H, H9), 8.36 (t, 4JH,H = 1.5 Hz, 

2H, H12), 8.22 (d, 4JH,H = 1.5 Hz, 4H, H13), 7.17 – 7.15 (m, 2H, H28), 7.14 (s, 2H, H30), 6.84 (s, 8H, 

HG), 6.67 (d, J = 4.3 Hz, Himpurity), 6.61 (s, HG, free cycloph), 5.47 (d, 3JH,H = 8.4 Hz, 2H, H29), 4.71 (s, 

4H, H17), 4.68 – 4.64 (m, 8H, H8), 4.49 – 4.45 (m, 4H, H25), 3.97 (t, 3JH,H = 5.0 Hz, 8H, H7), 3.95 – 

3.89 (m, HK, free cy), 3.83 – 3.81 (m, 4H, H24), 3.78 – 3.39 (m, 112H, H1 (8H), H2 (8H), H3 (8H), H4 

(8H), H5 (8H), H6 (8H), H18 (4H), H19 (4H), H20 (4H), H21 (4H), H22 (4H), H23 (4H), HB (8H), HC (8H), 

HI (24H)), 2.99 (bs (NOESY), 8H, HD), 2.78 (s, HD,free cycloph), 2.69 – 2.62 (m, 8H, HK), 1.77 (s, HL, free 

cycloph), 1.33 (t, 3JH,H = 7.2 Hz, 12H, HA), 1.30 – 1.29 (m, HA, free cycloph),  1.00 – 0.98 (m, 8H, HL) 

ppm; 13C NMR (151 MHz, Methanol-d4): δ = 167.0 (Cq, 2C, C26) , 155.0 (Cq, 8C, CH), 154.9 (Cq, 

8C, CH,cy free), 147.2 (Cq, 2C, C16), 147.0 (Cq, 4C, C10), 139.4 (Cq, 2C, C14), 136.9 (Cq, 4C, CJ, cy free), 

136.5 (Cq, 4C, CJ), 134.9 (Cq, 2C, C31), 134.6 (Cq, 4C, C11), 131.1 (Ct, 2C, C30), 130.6 (Ct, 2C, C29), 

129.8 (Cq, 2C, C27), 125.9 (Ct, 2C, C28), 124.2 (Ct, 4C, C9), 123.5 (Ct, 2C, C12), 123.3 (Ct, 2C, C15), 

117.4 (Ct, 4C, C13), 105.4 (Ct, 8C, CG, cy free), 104.1 (Ct, 8C, CG), 73.6 (Cs, 4C, CK), 72.9 (Cs, 4C, CD), 

71.7 (Cs, 2C, C19), 71.7 (Cs, 2C, C21), 71.7 (Cs, 2C, C23), 71.5 (Cs, 8C, C1, C3), 71.5 (Cs, 4C, C5), 71.4 

(Cs, 4C, C6), 71.4 (Cs, 8C, C2, C4), 71.1 (Cs, 6C, C18, C20, C22), 70.4 (not assigned; corr. in HMQC 

with rotaxane sign. 3.97 ppm), 70.3 (Cs, 4C, C7), 65.7 (Cs, 2C, C25), 65.1 (Cs, 2C, C17), 62.2 (not 

assigned; corr. in HMQC with rotaxane sign. 3.57 ppm), 57.1 (Cs, 4C, CB), 57.0 (Cs, 4C, CB, cy free), 

56.9 (Cs, 4C, CC, cy free), 56.9 (Cs, 4C, CC), 56.8 (Cp, 8C, OCH3, C24), 56.6 (Cp, 8C, CI), 51.7 (Cs, 4C, 

C8), (49.8), (45.6), 45.1 (Cq, 2C, CE, cy free), (45.0), 44.6 (Cq, 2C, CE), (30.5), 30.4 (not assigned; 

corr. in HMQC with free cyclophane sign. 1.71 ppm), (30.2), (29.5), (28.4), (27.6), 27.2 (Cs, 4C, 

CL,cy free), 26.4 (Cs, 4C, CL), 7.6 (Cs, 4C, CA), 7.5 (Cs, 4C, CA, cy free) ppm. The signal for Cq (expected 

at ~ 141 ppm) next to the spiro center was not observed; signals in brackets correspond to 

impurity; HRMS (ESI, +): calc. for C144H206N20NaO40 959.4860 [M+Na –2Cl]3+ , found 959.4876.  
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Dumbbell 171d 

 

 

In a 25 mL two-neck flask, stopper 142 (78.7 mg, 30 µmol, 2.70 eq) and axle 169d (31.0 mg, 

48.1 µmol, 1.0 eq) were dissolved in a 5:2 mixture of miliQ water and methanol (3.5 mL). The 

resulting solution was degassed by flushing with argon gas for 10 min. Afterwards, 

copper(II)sulfate (7.75 mg, 48.1 µmol, 1.0 eq) and L(+)ascorbic acid sodium salt (9.53 mg, 

48.1 µmol, 1.0 eq) was added and the solution was degassed again for further five min. After 

stirring at room temperature for 18 hours, LC-ESI-MS indicated full conversion of axle 

169d.The solvents were removed under reduced pressure and the crude product was purified 

by short column chromatography (Al2O3, basic, EtOAc/MeOH: 7/1). The fractions which 

contained target compound were concentrated in vacuo and were subjected to preparative 

thin layer chromatography (Al2O3, EtOAc/MeOH: 7/1), and the isolated compound was 

analyzed by 1H NMR spectroscopy. One hour after concentration of the pure target compound 

at the rotary evaporator, the ester bonds of dumbbell 171d  were entirely cleaved, indicated 

by the single signal in the LC-ESI-MS T.I.C. chromatogram which corresponds to the proton 

adduct of the decomposition product (m/z 838).   

1H NMR (400 MHz, Methanol-d4): δ = 8.71 (s, 2H, H15), 8.68 (d, 4JH,H = 1.1 Hz, 2H, H30), 8.61 (s, 

4H, H9), 8.47 (t, 4JH,H = 1.5 Hz, 2H, H12), 8.35 (d, 4JH,H = 1.5 Hz, 4H, H13), 8.12 (d, 4JH,H = 1.0 Hz, 

4H, H28 H29), 4.78 (s, 4H, H17), 4.71 – 4.68 (m, 8H, H8), 3.99 (s, 4H), 3.99 – 3.97 (m, 8H, H7), 3.79 

– 3.74 (m, 4H, H25), 3.73 – 3.69 (m, 4H, H24), 3.69 – 3.45 (m, 66H), 3.49 – 3.43 (m, 8H) ppm. 

Due to no available 2D NMR spectra, the peaks of dumbbell 171d were assigned with the help 

of the spectra of corresponding reactant axle 169d, stopper 142 and rotaxane 170d.  
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9 Appendix 

9.1 Abbreviations 

 

δagg  chemical shift of aggregate 

δmon  chemical shift of monomer 

δobs  observed chemical shift 

δ  chemical shift 

ΔG°  Gibbs free energy 

λ  wavelength 

Å  Ångström 

AFM  atomic force microscopy 

ar  aryl 

B21C7  benzo-21-crown-7 

BIPY  bipyridine 

BMP32C10 bis(m-phenylene)-32-crown-10 

c  concentration 

Cagg  concentration of aggregate 

cac  critical aggregation concentration 

CB  cucurbituril 

CBPQT4+ tetracationic cyclobis(paraquat-p-phenylene) 

CD  cyclodextrin 

Cmon  concentration of monomer 

Cp  primary carbon 

Cq  quaternary carbon 

Cs  secondary carbon 

Ct  tertiary carbon 

Ctot  total concentration 

CuAAC  copper(I)-catalyzed alkyne-azide cycloaddition 

CV  cyclic voltammetry 

DB24C8 dibenzo-24-crown-8 

D  diffusion coefficient 



Curriculum Vitae 

 

 
 

DCM  dichloromethane 

DIPA  diisopropylamine 

DMSO  dimethyl sulfoxide 

DOSY  diffusion ordered spectroscopy 

dpp  2,9-diphenyl-1,10-phenanthroline 

EG  ethylene glycol 

EPR  electron paramagnetic resonance 

eq  equivalents 

ESI  electrosprays 

G  conductance 

h  hour 

HH  head-head 

HOP  dimethylpropargyl alcohol 

HPLC  high-performance liquid chromatography 

HT  head-tail 

hrs  hours 

K  Kelvin   

Ka  association constant 

LC  liquid chromatography 

m  multiplett 

M  molar 

m/z  mass-to-charge ratio 

MCBJ  mechanically controllable break junction 

MIM  mechanically interlocked molecule 

min  minute 

MS  mass spectrometry 

n  number 

N  aggregation number 

nm   nanometer 

NMR  nuclear magnetic resonance 

NOESY  nuclear Overhauser effect spectroscopy 

NP  naphthalene 



 

 
 

OPE  oligophenylene ethynylene 

ppm  parts per million 

quant.   quantitative 

R  residual group 

rH  hydrodynamic radius 

rt  room temperature 

s  singlet 

SEM  single electron microscopy 

SEtTMS S-ethyl trimethylsilyl 

t  triplet 

TBAF  tetrabutylammonium fluoride 

TBAH  tetrabutylammonium hydroxide 

TEM  transmission electron microscopy 

THF  tetrahdrofuran 

TIPS  triisopropylsilyl 

TIPSA  triisopropylsilylacetylene 

T.I.C.  total ion current 

TLC  thin layer chromatography 

TMS  trimethylsilyl 

TMSA  trimethylsilylacetylene 

TT  tail-tail 

TTF  tetrathiafulvalene 

UV  ultraviolet 

Vagg  volume of aggregate 

VIS  visible 

Vmon  volume of monomer 

z  distance 

 

 

 



Curriculum Vitae 

 

 
 

9.2 Contributions 

My colleague Yves Aeschi synthesized important compounds, as indicated at the relevant 

passages in this thesis. During his “Wahlpraktikum” Rajesh Mannancherry helped to prepare 

building blocks for the synthesis of amphiphiles 92-95 and did a scale-up of the cyclophane 96 

preparation. During their “Nanopraktikum” or “Schlussversuche” Niels Burzan, Lukas Gubser 

and Severin Freud supported the preparation of building blocks of amphiphiles 92-95. The 

MCBJ conductance measurements were performed by Anton Vladyka from the group of Prof. 

Dr. Michel Calame at the University of Basel. PD Dr. Daniel Häussinger performed the DOSY 

measurements, determined the corresponding diffusion coefficients and helped to develop 

the indirect evaluation method described in Chapter 2. The compound for the diffusion-based 

analysis of amphiphile 92 was prepared by Dr. Jürgen Rotzler. 2D-NMR spectra were recorded 

by PD Dr. Daniel Häussinger and Kaspar Zimmermann, who did the full assignment of the 

signals of amphiphile 92 and  the nonquaternized precursor 116. The NMR signals of rotaxane 

170d were assigned by Felix Raps. All high-resolution ESI-MS spectra were recorded by Dr. 

Heinz Nadig. The basic structure for all pictures were made by Dr. Michel Rickhaus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

9.3 Chromatograms of Screening Reactions 

 

Penta-EG naphthalene ester axle (169e): 

 

   

Figure 83. Screening reactions after two hours with penta-EG naphthalene ester axle 169e under the three 
different conditions 1-3. A signal for stopper 142 is not observed; the low signals with retention time tR = 8.0 min 
and tR = 8.9 min corresponds to some single-stoppered and unconsumed axle 169e, respectively. 

 

Tri-EG naphthalene ester axle (169c), after 2 hours: 

 

      

Figure 84. Screening reactions after two hours with tri-EG naphthalene ester axle 169c under the three different 
conditions 1-3. A signal corresponding to stopper 142 (tR = 6.5 min) is not observed in neither of the three T.I.C.s, 
whereas the low signal under condition 3 indicates some unconsumed axle 169c (tR = 9.0 min).  
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Di-EG naphthalene ester axle (169b), after 2 hours: 

 

     

Figure 85. Screening reactions after two hours with di-EG naphthalene ester axle 169b under the three different 
conditions 1-3. The signal at tR = 6.5 min in each T.I.C. corresponds to stopper 142 and indicates incomplete 
conversion after two hours; axle 169b cannot be observed due to its insolubility in pure water.    

 

 

Di-EG naphthalene ester axle (169b), after 21 hours: 

 

      

Figure 86. Screening reactions after 21 hours with di-EG naphthalene ester axle 169b under the three different 
conditions 1-3. The signal at tR = 6.5 min in each T.I.C. corresponds to stopper 142 and indicates incomplete 
conversion after two hours; axle 169b cannot be observed due to its insolubility in pure water.    
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Mono-EG naphthalene ester axle (169a), after 2 hours: 

 

      

Figure 87. Screening reactions after two hours with mono-EG naphthalene ester axle 169a under the three 
different conditions 1-3. The signal at tR = 6.5 min in each T.I.C. corresponds to stopper 142 and indicates 
incomplete conversion after two hours; axle 169a cannot be observed due to its insolubility in pure water.    

 

Mono-EG naphthalene ester axle (169a), 21 hours: 

 

       

Figure 88. Screening reactions after two hours with mono-EG naphthalene ester axle 169a under the three 
different conditions 1-3. The signal at tR = 6.5 min in each T.I.C. corresponds to stopper 142 and indicates 
incomplete conversion after two hours; axle 169a cannot be observed due to its insolubility in pure water.  
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