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Introduction

The applications of thin film magnetism nowadays play an important role in our
everyday life. Magnetic data storage devices for example, rely on magnetic thin
film structures for the magnetic recording media itself as well as for the read heads
of those devices. Furthermore, different types of electronic sensors exploit the
properties of magnetic thin film systems, engineered specifically for the desired
function and often relying on processes taking place at the nanometer scale3.
Magnetic Force Microscopy (MFM) provides a tool for the microscopic magnetic

characterization of these thin films and multilayers. An MFM is a variety of
Scanning Force Microscopy (SFM). Both techniques probe the interaction arising
between a sharp tip at the end of a cantilever and a sample of interest while
scanning the tip over the surface of the sample. An MFM tip is equipped with a
magnetic moment which leads to magnetic forces between the tip and the moments
of a magnetic sample and can provide high sensitivities as well as high spacial
resolution for the investigation of magnetic structures4,5. Only measurements in
vacuum with high quality factor (Q) cantilevers can exhibit a sufficient signal-
to-noise ratio (SNR) in reasonable a measurement bandwidth for a quantitative
recovery of magnetic structures in the range of 10 nm. Under vacuum conditions
the dual passage techniques often utilized for the tip sample distance control cannot
be applied6,7.
This thesis presents two novel techniques for the tip sample distance control

in MFM suitable for vacuum conditions and for high-Q cantilevers. One of these
techniques is later on used for the investigation of thin film mulitlayer samples with
interfacial Dzyaloshinskii-Moria interaction. This interaction supports magnetic
skyrmions in those films. Because of their topological stability magnetic skyrmions
are expected to play a major role in future magneto-electronic and magnetic data
storage devices.
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Outline of the thesis

Objective of the thesis was the development of improved distance control methods
for quantitative Magnetic Force Microscope (MFM) measurements in vacuum,
and the application of these techniques for the analysis of micromagnetic states in
materials with interfacial Dzyaloshinskii-Moriya (DM) interaction.
Chapter 1 introduces the concepts of non-contact SFM. The specific challenges

of distance control in the case of MFM are discussed. Furthermore, the methods
of quantitative MFM as applied in this thesis are introduced.
Instrumental developments required to perform the measurements presented in

this thesis and demagnetization procedures for samples are discussed in chapter 2.
Chapters 3 and 4 present two novel single passage measurement methods that use

bimodal cantilever excitation suitable for operation in air and in vacuum. These
are suitable for measurements performed in vacuum, and can map the topography
and magnetic stray field of a sample simultaneously. The first method relies on
the essentially different decay length of tip sample interactions of topographic
and magnetic origin. The second method utilizes the tip sample capacitance as
a proxy for the tip sample distance the tip sample distance which allows for a
feedback which is independent from other conservative tip sample interactions.
The capacitive tip sample distance control method is applied for quantitative

MFM measurements on multilayer samples with interfacial DM interactions pre-
sented in chapter 5. Data with substantially higher signal to noise ratios and
lateral resolution in comparison to existing studies8 are obtained from these mea-
surements. Based on the quantitative analysis of the data, a significant local
variation of the DM interaction in our mulitlayer systems was found.
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1 Introduction to Magnetic Force
Microscopy

A MFM is a type of Scanning Force Microscope (SFM) that is equipped with a
ferromagnetic probe in order to measure the magnetic stray field above a sample
of interest. Therefore, the general concepts of SFM are introduced in the next
section 1.1 though the focus is MFM application.

1.1 SFM and MFM

A Scanning Force Microscope uses a sharp tip at the free end of a cantilever beam
to map the interaction forces between tip and sample. The topographical structure
and physical properties of the sample determine the local tip sample interaction.
An image of the sample can be obtained from a measurement of the local tip
sample interactions while scanning the tip laterally over the sample. This has
been shown first in 1986 by G. Binnig C.F. Quate and C. Gerber and referred to
as Atomic Force Microscopy 9. A cantilever based SFM is illustrated in figure 1.1.

1.1.1 Cantilever deflection measurement

The interactions between tip and sample change the mechanical properties of the
cantilever. The latter can be determined by a measurement of the time-dependent
deflection of the cantilever. The deflection sensor has originally been implemented
by a tunnel current setup but can also utilize a capacitance measurement, a piezore-
sistive or a piezoelectric coating on the cantilever or interferometry4. Today, most
commercial instruments, like the one used in this thesis, make use of a beam de-
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PSD

Sample

Laser

xyz-Scanner

Figure 1.1: A cantilever based SFM brings the sharp tip at the end of a cantilever
in close proximity to the surface of a sample. The optical lever or
beam deflection technique that uses a PSD and a laser reflected
on the backside of the cantilever in order to detect its deflection is
illustrated.

flection sensor, similar to the illustration in figure 1.1. In this setup a laser beam is
reflected from the backside of the cantilever and a position sensitive photodetector
(PSD) is placed in the reflected beam path. In this way, depending on the distance
between cantilever and photodetector, a small deflection of the cantilever causes a
displacement of the laser spot on the detector. The detector consists of 4 photo-
sensitive quadrants such that the difference in light intensity on the quadrants is
a measure of the cantilever deflection. The flexural deflection is measured by the
difference between the two upper and two lower quadrants whereas a torsion of the
cantilever leads to a difference between the two left and two right ones. The mea-
sured electronic signal obtained from the PSD is proportional to the cantilevers
bending at the point where the laser is reflected at the backside of the cantilever
and to the reflected laser intensity. This proportionality is the sensitivity of the
beam deflection sensor and typically measured in volts per nanometer.

4



1.1.2 Operation modes

In so called contact mode SFM measurements the tip is brought into direct contact
to the sample’s surface. A constant load is applied to the tip by keeping a prede-
fined bending of the cantilever i.e., by moving the support of the cantilever up or
down while scanning over the sample. The resulting trajectory of the cantilever
support is a convolution of the sample’s topography and the SFM tip. The tips
for this operation mode have to provide a high structural stability and are thus
relatively blunt. Magnetic or electrostatic forces acting between tip and sample
change the deflection of the cantilever very little, because the tip sample contact
exhibits a high stiffness.

In non-contact mode, where the tip is scanned in close proximity above the
sample surface, a much better sensitivity for tip sample forces is achieved. There-
fore, MFM measurements are most commonly carried out in this mode. In such a
measurement the tip sample forces, among them magnetic forces, lead to a static
deflection of the cantilever at each scanning position. However, a measurement of
the static deflection of a cantilever is affected by instrumental drift which leads
to force offsets during a measurement. Additionally, 1/f -noise limits the signal-
to-noise ratio of static measurements. A dynamic detection of the tip sample in-
teraction can overcome these limitations10,11,12 and, since the preferred detection
method in MFM, is described in the following section 1.1.3.

1.1.3 Cantilever dynamics

The dynamic non-contact mode in SFM is based on the dynamics of an oscillating
cantilever beam to measure tip sample interactions.

A cantilever beam exhibits multiple resonant oscillation modes. The SFM can-
tilever is modelled by a beam with a clamped and a free end. The assumption of a
free end of the cantilever only holds when the tip sample force gradients are small
in comparison to the cantilever stiffness. The envelope of a specific oscillation
mode zn of such a beam is described by equations 1.2 and 1.2 as a function of the
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position ξ along the cantilever13,14.

zn(ξ) =
An

2
[cos(αnξ/l)− cosh(αnξ/l) (1.1)

−cos(αn) + cosh(αn)

sin(αn) + sinh(αn)
(sin(αnξ/l)− sinh(αnξ/l))

]

with:
cos (αn) cosh (αn) = −1 (1.2)

The parameter l is the length of the cantilever and the amplitude An describes the
maximum deflection, obtained for the specific oscillation mode, at the free end ξ = l

of the cantilever. The eigenvalues αn are given by the solutions of equation 1.2 and
listed in table 1.1 for n=1. . . 5. The resulting shapes for the first three oscillation
modes are illustrated in figure 1.2. Since a beam deflection sensor measures the
slope of the cantilever instead of the the deflection amplitude at the end of the
cantilever, the different slopes at the cantilever end for different oscillation modes,
all with the same amplitude An = A0, lead to a different optical sensor sensitivity
for each mode. The increase of the sensitivity for higher modes is therefore defined
by the ratio of the derivatives at the cantilevers free end z′n(ξ = l)/z′1(ξ = l) and
listed in table 1.1.

n αn fn/f1 kn/k1 z′n(l)/z′1(l)

1 1.87510 1 1 1
2 4.69409 6.26692 39.2743 3.473
3 7.85476 17.5476 307.917 5.702
4 10.9955 34.3860 1182.39 7.989
5 14.1372 56.8431 3231.14 10.27

Table 1.1: Numerical values for αn resembling the solutions of equation 1.2, and
the related ratios for higher modes frequencies, the respective modal
stiffness values and the slope at the free cantilever free end.

The resonance frequencies of those oscillation modes are given by equation 1.314

and depend on the cantilever dimensions namely thickness t and length l, and the
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material properties mass density ρ and the Young’s modulus Emod of the material.

fn =
α2

n

2πl2

√
Emodt2

12ρ
(1.3)

Furthermore, the motion of the tip at the free end of the cantilever can be
described by a point mass model where the resonance frequency of its harmonic
oscillation is15

fn =
1

2π

√
kn

m∗
. (1.4)

Here m∗ is an effective mass and kn a modal stiffness in z-direction. For the first
resonance it is related to the resonance frequency by16

k1 =
2π3
√

123

α6
1

· w
(
lf1
√
ρ
)3

√
Emod

= 59.3061 · w
(
lf1
√
ρ
)3

√
Emod

. (1.5)

Thus, the first-mode cantilever stiffness can be determined from the measured
resonance frequency f1, the E-modulus and the specific mass ρ of the cantilever
material1, and the width w and the length l of the cantilever. Taking into account
the same effective mass m∗ for all modes19 in equation 1.4 we find kn ∝ α4

n. Ac-
cording to this, the ratios for higher mode stiffnesses kn and resonance frequencies
fn are given in table 1.1. It is important to note that the higher oscillation modes
are not harmonics of the first one. The cantilever can be driven at any of its
oscillation modes. For a selected drive frequency f and applied driving force Fexc

the steady-state oscillation amplitude becomes15:

An (f) =
Fexc

4π2m∗f 2
n

·



√(

1− f 2

f 2
n

)2

+

(
f

fnQn

)2


−1

. (1.6)

As depicted in figure 1.3 the dimensionless quality factor Qn defines the width of
the resonance peak which, for Qn � 1, is

√
3 ·fn/Qn at amplitudes of A(fn)/2 and

fn/Qn at A(fn)/
√

2 respectively.

1For silicon cantilevers the material properties are: ρSi = 2330 kg
m3

17 and Emod,Si = 169GPa18
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Figure 1.2: Position dependent envelopes for a cantilever oscillating with a max-
imum deflection A0 at the free end, illustrated for the first three
resonant oscillation modes. The different slopes at the free end of
the cantilever cause different sensitivities of a beam deflection de-
tector for different modes. The relative slopes are listed in table
1.1.
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Figure 1.3: Plot of resonance curves for quality factor values of Q = 500 (blue),
Q = 5000 (orange) and Q = 50000 (green) and for a resonance fre-
quency of 50 kHz. The range of quality factors resembles the typical
difference between ambient and UHV operation conditions.
Upper: Amplitude response as a function of the driving force fre-
quency.
Lower: Phase lag between the cantilever oscillation and the drive
oscillation as a function of the driving force frequency.
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1.1.4 Quality factor of SFM cantilevers

The minimum measurable force for a given SFM cantilever and resonance mode
depends on the quality factor Qn, as described in section 1.1.6. High quality factors
are required for sensitive measurements of small tip sample interactions such as
the force gradients related to magnetic structures of small lateral size. Low noise
measurements of these force gradients are a prerequisite for a quantitative analysis
of high resolution MFM data.
Besides the relation between the resonance’s width and the quality factor of the

respective oscillation mode given in section 1.1.3, the quality factor also describes
the energy loss per cycle ∆Wn

20:

Qn = 2π
Wn

∆Wn

, (1.7)

where Wn is the total energy stored in the oscillation mode. The total energy loss
per oscillation cycle is the sum of various energy loss processes of different physical
nature. Hence, the total quality factor Qn becomes20:

1

Qn

=
1

Qenv

+
1

Qclamping

+
1

QTED

+
1

Qvolume

+
1

Qsurface

+ ... . (1.8)

The most important term is Qenv which describes the energy loss processes aris-
ing from the motion of the cantilever withing the medium surounding it. In air,
the cantilever quality factor is reduced to typically 300-500 while the same can-
tilever can reach 150 k - 200 k under ultra high vacuum (UHV) conditions. A
prerequisite for a significant influence of any of the other dissipation mechanisms
is thus the absence of viscous damping caused by gaseous or, more crucially, liquid
media around the cantilever. Clamping losses arise from the high strain at the
attachment point of the cantilever to its support chip structure and are estimated
as20 Qclamping ≈ 2.17 · l3/t3. The third contribution, the thermoelastic dissipation
(TED), is caused by the opposing expansion and compression of the cantilever
material on the upper and lower side of the cantilever during each half oscillation
cycle. This leads to respective cooler and warmer spots followed by a dissipative
heat flow among them. This mechanism becomes negligible for cantilevers with
a thickness t < 2µm because of the reduced strains. The term Qvolume refers to

10



dissipation processes at the atomic scale, for example arising from strain-induced
positional changes of atoms at lattice dislocations. Yasumara et. al20 showed that
for long, narrow and thin single crystalline SFM cantilevers, where l� w � t and
t < 2µm, the terms 1

Qclamping
, 1
QTED

and 1
Qvolume

are negligible. In this case, losses
arising from thin layers of different material at the cantilever surfaces become
the limiting factor for the cantilever’s quality factor. Different Young´s modu-
lus of surface layers and bulk material and dissipation within the surface layers,
contribute to this energy loss process. For thin surface layers with thickness σ,
modelling20 shows that Qsurface ∝ t/σ. For uncoated cantilevers, a surface layer
is present in the form of various adsorbates as for example water. The thickness
of these layers can therefore be reduced by baking the cantilever in vacuum or
controlled gas atmosphere. In UHV extended baking at high temperatures can
even remove the amorphous oxide layer on the surface of single-crystalline silicon
cantilevers. Another source of dissipation arises from additional metal layers for
example added to increase the reflectivity of the cantilever backside, or to provide
a magnetic moment to perform MFM. The dissipation arising from these coatings
can be reduced by minimizing the required coating thickness, or by limiting the
spatial extent of these layers. More details on the specific fabrication process are
given in section 2.2.

1.1.5 Measuring the resonance frequency

The cantilever is forced to oscillate at a frequency f typically chosen to match
the frequency of one of its eigenmodes. The phase shift between the oscillatory
deflection signal and the driving force of an harmonic oscillator is15

ϕn (f) = arctan

(
f · fn/Q

f 2
n − f 2

)
, (1.9)

as plotted in figure 1.3. The driving force is applied to the cantilever by a piezo-
electric shaker and an electric excitation signal, generated by the local oscillator
of the measurement electronics. For high-Q cantilevers, the shift of the resonance
frequency induced by the tip-sample interaction typically becomes much larger
than the width of the resonance peak. Hence, the electronics used to drive the
cantilever oscillation must track the actual resonance of the cantilever. This is typ-
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ically achieved by a Phase Locked Loop (PLL) system that shifts the excitation
frequency to keep the measured phase at −π/2 apart from a phase offset produced
by the electronic circuitry or arising from the mechanical coupling of the excitation
piezo to the cantilever. The frequency shift of the PLL local oscillator then reflects
the tip-sample interaction, while the deviation of the measured phase shift from
−π/2 is the error signal. The latter is typically used to tune the P,I-parameters
of the PLL to obtain an experimentally acceptable measurement bandwidth and
noise. Since the different cantilever resonance modes do not overlap, different
modes can be driven independently, using further PLL systems.

1.1.6 Tip sample interaction

The resonance frequencies of all cantilever oscillation modes (also other dynamic
properties of the cantilever) change, if the tip is approached to the surface of a
sample into the range of the relevant tip-sample interaction forces. The resonance
frequency then becomes

fn,eff(z) =
1

2π

√
〈kn,eff(z)〉

m∗
(1.10)

where m∗ is the effective cantilever mass and 〈kn,eff(z)〉 is weighted average of the
effective cantilever stiffness

〈kn,eff(z)〉 = kn − 〈kts(z)〉 . (1.11)

The tip sample stiffness kts(z) = ∂Fz(z)
∂z

is the local z-derivative of the total tip-
sample interaction force. The average tip sample stiffness 〈kts(z)〉 at the average
tip sample separation2 z is given by an integration over the oscillation path of the

2Note that in an experiment the tip sample distance dts at the lower turning point of the tip is
determined. Hence, z = dts +An.
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tip q(t) = An cos(2πfn · t)21:

〈kts(z)〉 =
2

πA2
n

∫ An

−An

Fts(z − q)
q√

A2
n − q2

dq (1.12)

=
2

πA2
n

∫ An

−An

kts(z − q)
√
A2

n − q2dq. (1.13)

For small amplitudes An the tip sample stiffness in the range of the tip oscillation
path can be approximated as kts(z − q) ≈ kts(z). In this case the integral in
equation 1.13 simplifies to a factor of π

2
A2

n and we get 〈kts(z)〉 ≈ kts(z).

For most MFM experiments 〈kts〉 � kn holds. Then, a Taylor expansion of the
expression 1.10 gives:

fn,eff = fn + ∆fn = fn

(
1− 〈kts〉

2kn

)
, (1.14)

where ∆fn is the shift of the resonance frequency for each mode:

∆fn = −fn
〈kts〉
2kn

. (1.15)

The thermal energy, present in each oscillation mode, is the product of the
Boltzmann constant kB and measurement temperature T , leading to stochastic
fluctuations of the cantilever oscillation. This thermal noise of the cantilever fun-
damentally limits the tip sample force derivative that is measurable within a mea-
surement bandwidth 1/τm, to a minimum of12,10,22:

∂

∂z
Fz

∣∣∣∣
min

=
1

An

√
4kBTkn

Qn2πfnτm

. (1.16)

The minimally measurable ∂Fz/∂z scales inversely with the oscillation amplitude
An, which would make larger amplitudes advantageous. But as indicated above,
the measured frequency shift signal decays for higher An because larger amplitudes
average kts over a larger z-range spanning from zmin, the tip-sample distance at
the lower turning point to zmax = zmin + 2 · An. Consequently, the best signal-to-
noise ratio is obtained with an oscillation amplitude that averages over the relevant
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interaction length of the measured force gradient23.

Apart from the measurement temperature, the best obtainable sensitivity is
given by the ratio kn

fnQn
. The ratio kn

fn
is proportional to 1

αn
. Assuming a similar Qn

for all oscillation modes, which is often found experimentally in vacuum, higher
modes hence provide a smaller sensitivity.

1.1.7 Tip sample interaction force

The force between tip and sample is a superposition of individual contributions
at each lateral position of the tip as described in equation 1.17. In some cases
the different force components can be disentangled for example by modulating
one of them or changing its sign by means of an external field. Alternatively
measurement conditions can be tuned to change the relative contributions to the
measured frequency shift via differences in their interaction lengths.

Fts = Fcap + FvdW + Fatom + Fmag (1.17)

The capacitive or electric force Fcap can exhibit the longest interaction length
in the range of several hundreds of nanometres up to a few micrometres. This
force is given by the derivative of the energy stored in the capacitor that is formed
by tip and sample being in close proximity24:

Fcap =
1

2

∂C

∂z
(UBias − UCPD)2 (1.18)

The effective potential in equation 1.18 is composed of the sum of an externally
applied bias potential UBias and the contact potential difference (CPD) between tip
and sample materials UCPD. A material’s contact potential (CP) is the difference
between the fermi energy Ef and the vacuum level Evac for an electron with charge
e with UCP = (Evac − Ef) /e. The derivative of the capacitance is described by
Hudlet et al.25 for the common case of a sharp conical tip by an analytic approxi-
mation. For a tip with apex radius R, a small half opening angle ϑ0 and height h
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they find:

∂C

∂z
= 2πε0

[
R2

z(z +R)
+

(
ln tan(

ϑ0

2
)

)−4

(1.19)

·
(

ln
z +R

h
− 1 +

R

(z +R) sinϑ0

)]
.

Shorter expressions are obtained by the asymptotic limits where Fcap ≈ πε0R/z

for small distances z � R and Fcapacitive ∝ πε0 ln (h/z) for z � R. A more detailed
discussion of the capacitive tip sample interaction for the case of time dependent
bias is presented in chapter 4.

The Van der Waals force FvdW between two bodies arises from fluctuating
electrical dipoles in one of the bodies which induces a fluctuating dipole in the
second body, attracting the dipole of the first body. This interaction also occurs
between a SFM tip and a sample, where the respective interaction length is mainly
related to the tip geometry. The van der Waals force acting on a conical tip is
described by26

FvdW(z) = −H
6

(
R

z2
+

(tanϑ0)2

z +R′
− R′

z(z +R′)

)
(1.20)

The parameter R′ describes the height of the spherical tip apex and is given by
R′ = R(1 − sinϑ0), whereas H is an average Hamaker constant. Asymptotic
limits are FvdW(z) = −H

6

(
R
z2
− R

z(z+R)

)
for high aspect ratio tips with ϑ0 → 0 and

FvdW(z) = −H
6
R
z2

for short distances z � R. The latter expression is identical for
the often used spherical model of the tip.

The interatomic force Fatom results from the overlap of the tip’s and sample’s
electronic wave functions. A typical interaction length is in the order of 1Å. For
a two-body potential, the distance dependence can be described by the derivative
of a Morse potential26:

Fatom =
2U0

λ

(
exp(−2(z − z0)

λ
)− exp(−z − z0

λ
)

)
. (1.21)
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The depth of the potential is defined by U0 and is typically of the order of a few
electron volts. The repulsive part of the force crosses zero at the offset distance z0.
The latter is typically required to correctly describe the height of an atomic-scale
tip apex, or mini-tip, with respect to the conical or spherical tip with spherical
end used to model the van der Waals interaction in equation 1.20.

The magnetic tip sample force Fmag arises from the interaction between the
magnetic moment of a MFM tip and the stray field produced by the distribution
of magnetic moments or currents in the sample. Under the assumption that the
change of the micromagnetic state of the sample in the presence of the tip stray
field can be neglected, the z-component of the total magnetic force acting on the
tip is given by the integral of the derivative of the position dependent sample’s
stray field ∂

∂z
Hsample and the local magnetic moment Mtip distributed along the

tip27:

Fmag(r, z) = µ0

∫∫

V ′
Mtip(r ′, z′) · ∂

∂z
Hsample(r + r ′, z + z′) dr ′dz′, (1.22)

with the coordinate vector r = (x, y) and the vacuum permeability µ0. The inte-
gral is carried out over the tip’s volume V ′. The interaction length of the magnetic
force depends on the magnetic structure of the sample and more specifically on
the lateral size of the magnetic features present at the sample. Therefore, the
interaction length can vary from below 10 nm to 100 nm and more. Details of the
magnetic tip sample interaction and the relation to the measured frequency shift
are discussed in section 1.3. From equation 1.33 it becomes apparent that a nar-
row spacial distribution of the tip magnetic moment is needed for high resolution
measurements. Experimental details of the preparation of magnetically sensitive
tips with the mentioned prerequisites are provided in section 2.2.

1.2 Distance feedback in MFM

In order to maintain a chosen distance between tip and sample while scanning,
a feedback loop is required. The output of this feedback loop is used to control
the position of the tip in z-direction and defines the tip trajectory. This output
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is typically referred to as topography signal although this signal is only a measure
of the topography and can depart substantially from the true topography of the
sample in some measurement modes. The term z-signal gives a more adequate
description. In the absence of magnetic interactions and large variations of the
contact potential difference, the derivative of the tip sample force and consequently
the frequency shift serve as a good measure of the tip sample separation. In this
case, both parameters show a monotonic dependence on the tip sample distance
in the attractive part of the force curve, i.e., a higher attractive force derivative
corresponds to a smaller tip sample separation and vice versa.

As long the tip remains in the attractive region of the tip-sample force, the
measured frequency shift can be used as input for the feedback of the tip-sample
distance, and the feedback output signal is a good measure of the sample topogra-
phy. Note that generally feedback setpoints corresponding to a stronger tip-sample
interaction force as, for example, more negative frequency shift setpoints, will re-
duce the tip-sample distance and result in topography images with sharper local
features better representing the true topography. However, the risk of a tip crash
is increased at such setpoints, because the margin for acceptable feedback errors is
reduced at small tip-sample distances. Moreover, compared to the situation over
flat surface areas, the van der Waals force over sharp topographical features is
reduced such that the frequency shift may remain smaller than the frequency shift
setpoint even at the smallest tip-sample distance, before repulsive forces occur. In
this case, the tip collides with the sample surface. Large variations of the contact
potential, that are not compensated by an additional Kelvin feedback loop gen-
erate strong local variations of the attractive electrostatic force. Consequently, a
topography image obtained under such conditions would not be a good represen-
tation of the true sample topography. The same problem occurs in the presence
of magnetic tip-sample interaction forces. A schematic trajectory resuling from a
feedback with a constant frequency shift setpoint in the presence of magnetic forces
is shown in figure 1.4. In this case, a repulsive magnetic force gradient stronger
than the sum attractive force gradients from the van der Waals and electrostatic
forces even leads to a collision of the tip with the surface of the sample.

Several methods have been developed to map magnetic forces at well controlled
tip-sample separations which are described in the following sections 1.2.1 – 1.2.4.
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FvdW FvdW

m

Fmag

Figure 1.4: Distance feedback with a tip-sample interaction given by attractive
van der Waals forces (left) and in the presense of additional magnetic
forces (right). In the latter case the constant force contour does no
longer reflect the topography of the sample. Moreover the feedback
will fail at tip xy-positions where repulsive magnetic forces become
larger than the attractive van der Waals forces.

1.2.1 Bias induced force offset

In the presence of magnetic forces the total interaction force gradient and thus the
frequency shift can become non-monotonous or can change its sign for different xy-
positions of the tip (cf. fig. 1.4). With a sufficiently strong bias potential, applied
between tip and sample, the resulting electrostatic force dominates the magnetic
forces. The frequency shift remains monotonous and keeps a constant sign for all
xy-positions, and can then be used as input signal for the distance feedback. While
scanning, the latter adjusts the tip-sample distance such that the frequency shift
signal arising from the van der Waals and electrostatic forces compensates local
frequency shift variations of the magnetic force. The measured z-position signal
then contains both magnetic and topographical information.

1.2.2 Constant average force

A slow distance feedback can be used to keep the tip sample interaction and there-
fore their separation constant on average. The term slow refers to the character-
istic reaction time of the feedback in comparison to the time between substantial
variations of the tip-sample interaction and is therefore related to the scanning
speed. With adequate feedback parameters, the feedback solely corrects a tilt of
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the sample relative to the slow axis of the scan-plane or a drift of the tip-sample
distance. Local variations of the magnetic forces, but also local variations of the
van der Waals force arising from topography-related variations of the tip-sample
distance, generate a frequency shift signal, as the error signal of the feedback loop.

1.2.3 Lift mode

A commonly used method for MFM measurements is the lift mode technique: each
scanline is recorded twice. In order to record an accurate profile of the topography
in the first pass the tip sample separation has to be kept small such that the
interaction is dominated by non magnetic tip sample interactions. Therefore, the
topography is measured typically in an intermittent contact mode. Then the tip
is retracted by a user-selected lift-height and the same line is scanned again along
the previously recorded profile to measure the magnetic interaction. The latter
is typically determined by the phase shift between the cantilever oscillation and
the corresponding drive signal. However, the intermittent contact mode is difficult
to apply in vacuum required for high lateral resolution MFM, because the energy
loss per cycle occurring during the (intermittent) tip-sample contact is much larger
than the intrinsic energy loss of a high quality factor cantilever. Thus, a stable
oscillation of the cantilever is no longer possible.

1.2.4 Dual mode approaches

Two new single-passage methods have been developed, that allow to disentangle
magnetic force and topography. Both operation modes have in common, that
the the magnetic tip-sample interaction is reflected by the shift of the resonance
frequency of the fundamental cantilever oscillation mode, while the second mode
is used to control the tip-sample distance. Both operation modes are suitable for
operation in vacuum. Details are given in chapters 3 and 4.
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1.3 Quantitative MFM

An MFM measures stray fields emanating from the surface of a magnetic sample.
Each spatial Fourier component of the stray field decays exponentially with the
distance from the sample surface27. The relevant interaction volume of the tip
with the sample stray field thus depends on the nature of the decay of the stray
field and on the extent of the magnetic charge pattern at the surfaces of the
magnetic coating of the tip. It is convenient to describe the measured frequency
shift contrast that arises from the magnetic forces, in a two dimensional Fourier
space where the Fourier transform of a general function G(r, z) is

Ĝ(k, z) = F {G(r, z)} =

∫
G(r, z)e−ik·rdr (1.23)

with the coordinate vector in Fourier space (k, z) = (kx, ky, z).

1.3.1 Sample stray field

The Fourier transform of the stray field is

Ĥ(k, z) =

∫
H(r, z)e−ik·rdr (1.24)

In the case of ~∇ × H = µ0j = 0 a scalar potential Φm exists with H = −~∇Φm

and Ĥ = −∇̂Φ̂m. Thus the stray field is completely determined by the spectral
distribution of its z-component4,28 Ĥz(k, z) with:

Ĥ(k, z) = −1

k
∇k · Ĥz(k, z), (1.25)

where the nabla operator is

in real space: ∇ = (
∂

∂x
,
∂

∂y
,
∂

∂z
) and (1.26)

in Fourier space: ∇̂ = (ikx, iky,−k) with: k =
√
k2

x + k2
y. (1.27)
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For a film which is uniformly magnetized throughout the film thickness d, the
magnetization pattern in Fourier space hence determines the stray field with

Ĥz(k, z) = − 1

2k

[
e−kz

(
1− e−kd

)]


ikx

iky

−k


 ·M(k). (1.28)

In equation 1.28 the factor e−kz, often named as distance loss, describes the ex-
ponential decay of the magnetic stray field above the sample surface. The factor
(1− e−kd) is called thickness loss and accounts for the reduction of the stray field
arising from the finite thickness d of a thin film sample. The complete expres-
sion of equation 1.28 can also be interpreted as a superposition of the stray fields
generated by opposite equivalent magnetic surface charges at the top and bottom
surface of the magnetic film. These stray field contributions of opposite sign are
superimposed with their respective distance loss, which is e−kz for the upper and
e−k(z+d) for the lower magnetic charge distribution. Using equations 1.27 and 1.28
the z-derivative of the z-component of the stray field becomes

∂Ĥz(k, z)

∂z
= −k · Ĥz(k, z) =

1

2

[
e−kz

(
1− e−kd

)]


ikx

iky

−k


 ·M(k). (1.29)

1.3.2 Magnetic tip sample force

The force on the MFM tip placed in the stray field of a sample is28

Fmag(r, z) = µ0

∫∫

V ′

(
~∇ ·Mtip(r ′, z′)

)
Hsample(r + r ′, z + z′) dr ′dz′. (1.30)

Equation 1.30 is a two-dimensional cross-correlation of
(
~∇ ·Mtip(r ′, z′)

)∗
= ~∇ ·

Mtip(r ′, z′) and Hsample(r, z + z′). Thus we can make use of the cross-correlation
theorem3 and obtain the Fourier transform of equation 1.30 by a multiplication in

3The cross-correlation is defined by G?J =
∫∞
−∞G∗(τ)J(t+τ)dτ where ∗ dentotes the complex

conjugate. The Fourier transform of the cross-correlation product is F {G ? J} = Ĝ∗ · Ĵ.
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Fourier space:

F̂(k, z) = µ0

∫





ikx

iky

∂
∂z


 · M̂tip(k, z′)




∗

· Ĥsample(k, z + z′)dz′

= µ0

∫


−ikx

−iky

∂
∂z


 · M̂∗

tip(k, z′)Ĥsample(k, z + z′)dz′. (1.31)

Since Ĥsample(k, z + z′) = Ĥsample(k, z)e
−kz′ we can write Ĥsample(k, z) as a factor

outside the integral and obtain

F̂(k, z) = µ0

∫


−ikx

−iky

∂
∂z


 · M̂∗

tip(k, z′)e−kz
′
dz′

︸ ︷︷ ︸

·Ĥsample(k, z). (1.32)

=: σ∗tip(k)

The quantity σ∗tip(k) in equation 1.32 denotes the complex conjugate of σtip(k).
The real space equivalent of the latter, σtip(r) is the two-dimensional density of an
tip-equivalent magnetic surface charge located in a plane at the tip apex and thus
completely describes the magnetic imaging properties of an MFM tip,

F̂(k, z) = −µ0σ
∗
tip(k)

1

k
∇̂Ĥz(k, z). (1.33)

1.3.3 Measured frequency shift

The magnetic tip sample interaction described above leads to a shift of the res-
onance frequency of all oscillation modes. As described in section 1.1.6 the first
mode typically provides the highest sensitivity. It is hence convenient to acquire
the shift ∆f1 of the first mode resonance to obtain a high signal-to-noise ratio. The
latter often imposes limits when deconvolving the stray field or the magnetization
distribution of the sample from the measured MFM contrast. For this reason, all
equations in this and following sections, are given for the first cantilever oscillation
mode, although valid also for higher modes.
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Figure 1.5: Schematic of the alginment of the cantilever with respect to the
sample coordinates y and z.

As developed in equation 1.15 the first mode frequency shift is

∆f1 = − f1

2k1

〈kts〉 . (1.34)

The zn-axis of the cantilever is tilted with respect to the sample coordinate system
and parallel to the normal vector n = (0, sin(η), cos(η)), where η is the angle formed
by the long cantilever axis ξ and the y-axis of the sample coordinate system as
illustrated in figure 1.5. The relevant force derivative for the measured frequency
shift is the component parallel to the tip’s oscillation path

q(t) =




0

qy(t)

qz(t)


 = nq(t) = n · A1 cos(2πf1t). (1.35)

Thus the first mode frequency shift, caused by the magnetic interaction is

∆f̂1,mag = − f1

2k1

〈
n · ∇̂F̂n

〉
, (1.36)
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with 1.33

F̂n(k, z) = n · F̂(k, z)

= −µ0σ
∗
tip(k)n · 1

k
∇̂Ĥz(k, z)

= µ0σ
∗
tip(k)LCF (k, η)Ĥz(k, z). (1.37)

LCF (k, η) := − 1
k
n · ∇̂ defines the lever-canting-Function (LCF ). The force gra-

dient acting perpendicular to the cantilever plane and the z-derivative of the stray
field is given by:

n · ∇̂F̂n(k, z) = n · ∇̂µ0σ
∗
tip(k)LCF (k, η)Ĥz(k, z)

= −k · LCF (k, η)µ0σ
∗
tip(k)LCF (k, η)Ĥz(k, z)

= µ0σ
∗
tip(k) · LCF 2(k, η)

∂Ĥz(k, z)

∂z
. (1.38)

For small oscillation amplitudes A1 � 1
k
the Fourier transform of the measured

frequency shift can be calculated with equation 1.36:

∆f̂A1→0
1,mag (k, z) = −µ0f1

2k1

σ∗tip(k) · LCF 2(k, η)
∂Ĥz(k, z)

∂z
. (1.39)

For finite amplitudes A1 the magnetic tip sample force varies with the sinusoidal
oscillation of the cantilever q(t). The frequency shift is obtained by an integration
over one oscillation cycle. In Fourier space the component qy(t) leads to a phase
shift of eikyqy(t) whereas the qz(t) component leads to a distance loss factor of ekqz(t).
According to equations 1.13, 1.15 and 1.37, the frequency shift in Fourier space

24



becomes

∆f̂A1>0
1,mag =

f1

2k1

2

πA2
1

·
∫ A1

−A1

µ0σ
∗
tip(k) · LCF (k, η)Ĥz(k, z)e

iky sin(η)qek cos(η)q q√
A2

1 − q2
dq

using: iky sin(η) + k cos(η) = ∇̂ · n

=
f1

2k1

2

πA2
1

∫ A1

−A1

µ0σ
∗
tip(k) · LCF (k, η)Ĥz(k, z)e

∇̂·nq q√
A2

1 − q2
dq

=
f1

2k1

2

A1

µ0σ
∗
tip(k) · LCF (k, η)Ĥz(k, z)

1

πA1

(1.40)

·
∫ A1

−A1

e∇̂·nq
q√

A2
1 − q2

dq

With the definition of the first order modified Bessel function of the first kind

I1(z̃) =
1

π

∫ π

0

ez̃ cosψ cos(ψ)dψ with: z̃ = A1n · ∇̂ and cosψ =
q

A1

(1.41)

follows
1

πA1

∫ A1

−A1

e∇·nq
q√

A2
1 − q2

dq = −I1(z̃) (1.42)

and equation 1.41 becomes

∆f̂A1>0
1,mag(k, z) = −µ0f1

2k1

σ∗tip(k) · 2

A1

LCF (k, η)Ĥz(k, z)I1(z̃)

= TF (k) · 2

A1

LCF (k, η)Ĥz(k, z)I1(z̃), (1.43)

where the prefactor in equations 1.39 and 1.43 is defined as

TF (k) := −µ0f1

2k1

σ∗tip(k) (1.44)

This tip-transfer-function (TF ) is determined by characteristic parameters of the
cantilever and the conjugated Fourier transform of the tip equivalent magnetic
surface charge distribution σ∗tip(k). It describes the imaging properties of the tip
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in Fourier space.
Expressing the frequency shift in equation 1.43 as a function of the z-derivative

of the stray field yields

∆f̂A1>0
1,mag(k, z) = TF (k)· 2

A1

LCF (k, η)I1(z̃)
1

−k
∂Ĥz(k, z)

∂z︸ ︷︷ ︸
. (1.45)

=: dĤ
A1
n (k,z)
dn

∣∣∣
eff

The expression

dĤA1
n (k, z)

dn

∣∣∣
eff

:=
2

A1

LCF (k, η)I1(z̃)
1

−k
∂Ĥz(k, z)

∂z
(1.46)

denotes an effective stray field derivate along the n-axis, and can be interpreted as
a stray field derivative that generates the same frequency shift for a cantilever os-
cillating with an infinitesimally small amplitude. The following table summarizes
the results of this section.

Summary

small Amplitude limit: ∆f̂A1→0
1,mag (k, z) = TF (k) · LCF 2(k, η)∂Ĥz(k,z)

∂z

finite Amplitudes: ∆f̂A1>0
1,mag(k, z) = TF (k) · dĤ

A1
n (k,z)
dn

∣∣∣
eff

Tip transfer function: TF (k) := −µ0f1
2k1

σ∗tip(k)

effective stray field derivative: dĤ
A1
n (k,z)
dn

∣∣∣
eff

:= 2
A1
LCF (k, η)I1(z̃) 1

−k
∂Ĥz(k,z)

∂z

1.3.4 Determination of the tip-transfer-function TF

The TF is derived as the deconvolution of a known or estimated stray field dis-
tribution Hcal(r, z0) and the measured frequency shift data ∆f1(r, z0) recorded
at a fixed average distance z0 above the calibration sample. An example of such
a measurement of ∆f1 at a tip sample distance of z0 = dts + A1 = 17 nm with
dts = 12nm and A1 = 5 nm is depicted in figure 1.6(a). Note that the stray
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field gradient scales exponentially with tip sample distance and thus an accurate
measurement and control of the tip sample distance z0 is crucial for a correct
calibration. The influence of the measurement distance z, oscillation amplitude
A1, canted tip oscillation path along to n and the film thickness d is known and
included in the effective stray field gradient dĤ

A1
n (k,z)
dn

∣∣∣
eff
. Thus only TF (k) needs

to be determined from calibration measurements.

In a sample with sufficiently strong perpendicular magnetic anisotropy, the mag-
netization points up or down in the domains and rotates between the two directions
in the narrow domain walls. Hence, the white and black domains in figure 1.6(a)
can be identified as up and down domains provided the tip had a down magneti-
zation. A magnetization pattern could thus be obtained from discriminating the
measured frequency shift pattern arising from the domains in figure 1.6(a). This
however leeds to artifacts, because the stray field and hence the measured ∆f1

decay in the center of larger domains. Moreover the domain walls apear asymmet-
ric along the y-direction because of the canted oscillation of the cantilever. Both
problems can at least be partially overcome, when a frequency shift pattern ∆f1,dec

is calculated from the measured one using:

∆f̂A1=0
1,dec (k, zsim) = ∆f̂1 ·

(
LCF (k)

1

A1

I1(z̃)

)−1

· exp−k(zsim−z0) . (1.47)

The data resulting from the application of equation 1.47 with zsim=5nm is shown
in figure 1.6(b). An estimation of the magnetization pattern can then be obtained
by applying a threshold to the data shown in figure 1.6(b) and including the correct
domain wall profile. The latter can be calculated from the perpendicular magnetic
anisotropy and the exchange stiffness. The resulting estimated magnetization pat-
tern in figure 1.6(c). From this magnetization pattern the stray field derivative
(figure 1.6(d)) and effective derivative (figure 1.6(e)) at z = 17 nm are calculated
with equations 1.29 and 1.46, respectively.

According to equation 1.43, the tip-transfer function TF (k) relates the effective
stray field derivative to the the measured frequency shift as

∆f̂ subtr
1,meas(k) = TF (k)

dĤA1
n (k, z)

dn

∣∣∣
eff
. (1.48)
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Figure 1.6: Illustration of the tip calibration procedure. All images show the
real space distribution of the specified quantities. Panel (a) shows
the measured frequency shift data with a contrast scale (white to
black) of ±3.5Hz. The data was measured with a cantilever with a
stiffness k1 of 0.85N/m, a resonance frequency f1 of 50280Hz, os-
cillating with an amplitude A1 of 5 nm, and at a tip-sample distance
dts=12 nm. (b): Frequency shift obtained using equation 1.47, dis-
played at a contrast scale of ±25Hz. Note that the asymmetry of the
domain walls along the y-direction and the decay of the frequency
shift in the center of larger domains is removed. (c): estimated
magnetization pattern obtained by discrimination of the simulated
frequency shift data depicted in (b). The red and blue domains cor-
respond to positive and negative saturation magnetization ±Msat of
the sample. Msat is determined from vibrating sample magnetome-
try. (e): Simulated effective stray field gradient along the canted tip
oscillation path n. (f): The background frequency shift variation is
subtracted from the measured frequency shift data (a). (g): Transfer
function represented in real space in units of Hz·m/T. It represents
an equivalent magnetic charge distribution in a plane located at the
tip apex. (h): Simulated frequency shift data derived from the stray
field gradient in (e) and the transfer function in (g).
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From equation 1.48 TF (k) can be formally obtained by division of the frequency
shift by the effective stray field derivative. However, in practice, the effective
stray field can be small, particularly for small spatial wavelengths. This amplifies
the noise at smaller spatial wavelengths, if a simple division is performed. Equa-
tion 1.48 is hence an ill-posed problem which requires a regularization which is
discussed further in chapter 5. In the present example the measured raw data
displayed in figure 1.6(a) shows a pattern of micron sized up and down domains,
and a weaker granular frequency shift variation (background). Data acquired in
saturation proves that this granular background is not noise, but is either caused
by a local variation of the stray field or van der Waal’s force. The latter arises
from local sample roughness induced variations of the tip-sample distance, when
the tip is scanned parallel to the sample surface at a constant average tip-sample
distance (see also chapter 4). The origin of this background contrast is discussed
in detail in chapter 5. It will be further shown how this background is removed
from the measured frequency shift data before the tip-transfer function can be
determined. Data obtained after removing this background from the measured
frequency shift is depicted in figure 1.6(f). From this and the calculated effective
stray field derivative, the tip-transfer function illustrated in figure 1.6(g) can be
calculated.
The fidelity of the tip transfer function can be tested by comparing the back-

ground subtracted data with simulated MFM data in figure 1.6(h).
Note that a transfer function that is obtained from a single MFM image and from

the effective stray field derivative obtained from a magnetization image estimated
from the MFM image contains errors arising from the difference between the real
and estimated magnetization pattern and from spatial variations of the sample
thickness and tip sample distance. In order to obtain an improved estimate of the
tip-transfer function the described process must be repeated for a large number of
measurements and all obtained transfer functions must be averaged.
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2 Instrumentation

2.1 Experimental setup: hr-MFM

An hr-MFM instrument supplied by the company NanoScan is used for the ex-
periments in chapter 3 and 4. Several modifications have been made to obtain a
noise floor and drift rates sufficiently small to perform the measurements reported
in this thesis.
The scanning force microscope setup of the hr-MFM is located in a vacuum

chamber in order to obtain high vacuum conditions with base pressure of approxi-
mately 1 · 10−6 mbar. The tip can be positioned with sub-micrometer precision at
any location of a disk-shaped sample holder with a diameter of 95mm. A perpen-
dicular field option enables measurements in applied B-fields up to ≈0.6T perpen-
dicular to the sample surface. This option is implemented by a permanent magnet
which can be approached to the backside of the sample. The instrument features
a linearized flexure-stage scanner with an x× y× z range of 12µm× 12µm× 2µm.
Because of the 16 bit digital-to-analog converters (DACs), the bit-resolution is
limited to 0.18 nm laterally and 0.03 nm in the z-direction, which is sufficient for
all MFM measurements presented here. A National Instruments PXI Embedded-
Controler with one or optionally two FPGA based input/output cards with each
eight analog inputs and outputs for fast data acquisition is used as a control sys-
tem. The PLL system of Nanoscan has been replaced by a Zurich Instruments
lock in amplifier HF2PLL.

Cantilever deflection noise

The deflection of the cantilever is measured by the means of a beam deflection
sensor with a detection bandwidth of roughly 1MHz. A spectrum of the spectral
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noise density is depicted in the plots of figure 2.1.
The left-hand panel shows the spectrum of the as-delivered instrument. Several

noise peaks are apparent that have a size comparable to the thermal noise peaks
of the cantilever. Depending on the exact location of the cantilever resonance,
this prevents MFM measurements with high sensitivity. After re-configuring the
grounding of all relevant instrument components, i.e. implementing a star-like
grounding concept avoiding ground loops, peaks at 50Hz, multiples thereof and
in the high kHz range are removed and the noise background is lowered. This is
visible in the right-hand panel, where the thermal noise peaks of the first three res-
onance modes dominate the spectrum. A low white noise floor of approximately
100 fm/

√
Hz can be reached up to 200 kHz, which is above the frequency range

of first mode resonance frequencies of typical cantilevers used for magnetic force
microscopy. Note that the sensitivity of typically 90 nm/V is determined for the
first mode of a cantilever with 225µm length. For higher modes or shorter can-
tilevers a given deflection of the tip at the cantilever end leads to a larger angular
deflection. Consequently a higher sensitivity for the tip deflection is obtained (see
arrows and second scale in figure 2.1). The virtually rising noise floor towards
higher frequencies is thus more than compensated by the higher modes increased
sensitivities given in table 1.1. A profound overview on the topic of electronic noise
and practical advise is provided in references29 and30.
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Figure 2.1: Thermal noise spectrum from 10kHz to 1MHz of a 50 kHz cantilever
as measured with the hrMFM before (left-hand) and after (right-
hand) changing the grounding concept. A noise floor of 100fm/

√
Hz

is obtained. The thermally excited oscillations of the first three
resonance modes of a cantilever with k1 ≈ 0.7N/m in air are visible
in the right-hand plot.
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Replacement of the laser diode of the beam deflection system

The beam-deflection system of the hrMFM contained a laser diode. Because of the
long coherence length of the laser diode light, reflections from the sample can in-
terfere with the light reflected from the cantilever backside, generating tip-sample
distance dependent intensity modulations. After replacing the laser diode with a
super luminescent light emitting diode (SLED) EXS8310-8411 supplied by EXA-
LOS, which emits incohenrent light, this problem is solved. Further, a temperature
stabilized mount for the light source is implemented. Figure 2.2 depicts the light
intensity (left-hand) and the measured 2nd mode resonance frequency of the can-
tilever (right-hand) as a function of light source temperature. Both quantities
show an, approximately linear dependence on the temperature of the SLED in a
20-25 ◦C temperature range. The second mode resonance frequency changes with
about 0.8Hz/◦C. Similar results have been published recently by Augilar Sandoval
et al.31. If the tip-sample distance is control relies on the measured second mode
resonance frequency (see chapter 3), variations of room temperature and thus the
light source of less than one Kelvin lead to an unacceptably large change of the
tip-sample distance (as observed for the as-delivered hrMFM). The original current
control electronics of the hrMFM is therefore replaced by the combination of a cur-
rent controller LDC201CU, a temperature controller TED200C and temperature
controlled mount LDM21 all manufactured by Thorlabs.

2.2 Tip preparation

In order to achieve high resolution as well as high sensitivity in MFMmeasurements
a sophisticated preparation of the magnetic tip is required. For all results presented
in this thesis, we used uncoated single cristalline cantilevers provided by Team
Nanotec with a nominal stiffness of 0.7N/m and an Improved Super Cone (ISC)
tip.

The tip is made sensitive to magnetic fields by sputter-coating a typically 4–
10 nm thick cobalt (Co) on a 2 nm titanium (Ti) seed layer on the side of the tip
which is facing towards the cantilever support chip. The Co layer is protected
against oxidation by 2 nm of Ti. The cantilever is aligned at an angle of about
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Figure 2.2: The temperature of the SLED has a strong influence on the reso-
nance frequency of higher cantilever modes.
Left: Detector Intensity as a function of the SLED’s temperature.
Right: Shift of the second mode resonance frequency as a function
of the SLED’s temperature.

30◦ towards the sputtering direction. With this alignment a magnetic coating of
sufficient thickness is obtained at the side of the tip and on the top of the tip
apex, but the layer thickness on the cantilever remains thin. We further find that
the cantilever itself has a sufficient reflectivity such that a reflective coating of
the cantilever backside is not required. With this procedure, a high quality factor
of the cantilever of typically Q1 = 40′000 is achieved in vacuum. The coating is
performed in an ATC Orion UHV sputtering system supplied by AJA.

The Co layer thickness is adjusted to obtain a sufficient sensitivity for a par-
ticular MFM experiment and to avoid an influence of the tip field on the sample
magnetization. Depending on the sample 10 nm lateral resolution for magnetic
features can be obtained. All thickness values given above refer to normal inci-
dence and flat substrates. For comparison we use probes with the company’s ML1
coating. Without reflective coating they exhibit similar quality factors in than the
ones coated in our AJA system (35’000 – 40’000). On magnetically hard samples
a lateral magnetic resolution of 10 nm can be obtained. However the magnetic
stray field of Team Nanotec’s hr-MFM tips is too strong for the measurement of
magnetic samples with low coercivity.
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Figure 2.3: Schematic of the magnetic coating process of the MFM tips; the
cantilever is aligned at an angle of 30◦ towards the sputter target
and thus only the side of the tip facing the support chip is coated.

2.3 Sample demagnetization

In order to obtain a domain state, samples are often measured in a demagnetized
state. For this demagnetization of the samples we apply an oscillatory B-field with
an amplitude decaying from initially 0.8T to 0T. As illustrated in figure 2.4 the
amplitude of the oscillation linearly decreases to zero within the time period of
1000 oscillation cycles.

35



0 100 200 300 400 500 600

−0.5

0

0.5

1

time [a.u.]

B
-fi

el
d
[T
]

Figure 2.4: The plot illustrates the time dependent B-field during demagneti-
zation process of the samples. The maximum B-field is 0.8 T and
the envelope of the sinusoidal oscillation decreases linearly to zero in
1000 cycles. For clarity only 50 cycles are plotted.
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3 Non-contact bimodal Magnetic
Force Microscopy1

Preface

This chapter is composed from the text and figures of the reference1, published
2014 in Applied Physics Letters 104 by AIP Publishing. Authors of the paper are
J. Schwenk, M. A. Marioni, S. Romer, N. R. Joshi and H. J. Hug.

3.1 Introduction

Most magnetic force microscopes (MFM) use a two-passage method, where each
line is scanned in a intermittent contact mode to measure the topography of the
sample and subsequently with the tip lifted off the surface to record the magnetic
signal6,7. This measurement mode is robust and well applicable to samples with
arbitrary topography, e.g. rough samples or patterned media. However, the in-
termittent contact mode is difficult to apply in vacuum required for high lateral
resolution MFM as outlined in detail below. Recently, Li et al.32 reported a single
passage method that makes use of bimodal cantilever excitation introduced by Ro-
driguez and Garcia33. The cantilever was driven on its first mode at an amplitude
of several tens of nanometers and simultaneously on its second mode at a much
smaller amplitude. The first mode amplitude was kept constant by the feedback
that controls the tip-sample distance, i.e. reflects the measured topography of the
sample. The second mode amplitude and phase were used to record the magnetic
signal. Note that for a scan of this kind to be carried out in a reasonable amount
of time the oscillation amplitude must stabilize quickly at every point. Hence very
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high cantilever quality factors are impractical. Therefore work was performed in
air, resulting in low quality factors of the cantilever, i.e. 120 and 500 on the first
and second mode, respectively. Another interesting experimental approach suited
for low quality factor cantilevers is based on narrow-band intermodulation atomic
force microscopy34.

In our work we developed a non-contact bimodal magnetic force microscopy
technique which can take advantage of the higher sensitivities provided by high
quality factor cantilevers. It is optimally suited for operation in vacuum or UHV
for highest sensitivity and thus best spatial resolution.

Each spatial Fourier component of the magnetic stray fields decays exponentially
with increasing distance z from the surface of a magnetic sample, Hz(k, z) =

Hz(k, 0) · exp(−kz), where Hz(k, 0) is the stray field at the surface of the sample,
and k = (kx, ky) with k = 2π/λ, where λ is the spatial wavelength4. Given a
sufficiently sharp tip with an appropiately thin magnetic coating, high resolution
imaging thus requires small tip-sample distances, correspondingly small oscillation
amplitudes, and a high sensitivity for small forces or force derivatives.

3.2 Experimental details

We used a cantilever from Team Nanotec GmbH with an ISC high aspect ratio tip
coated with about 8 nm Co. Such a thin magnetic coating leads to a correspond-
ingly small magnetic moment. This is advantageous if soft magnetic samples are
measured, but requires an excellent measurement sensitivity to detect the small
magnetic signals arising from smaller spatial wavelengths of the stray field. The
thermodynamic limit for the minimally measurable force derivative on the n-th
cantilever oscillation mode is given by22

∂

∂z
Fz

∣∣∣∣
min

[N/
√
Hz] =

1

An

√
4kBTkn
Qnωn

. (3.1)
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Figure 3.1: Schematic of the dual-PLL system required for bimodal oscillation
of high quality factor cantilevers. PLL 1 tracks the first flexural os-
cillation mode resonance frequency f1 of the cantilever. The output
amplitude is adjusted by a PI feedback (Amplitude Control 1) to keep
the (first mode) oscillation amplitude constant, e.g. at 12 nm. The
shift of the first mode resonance frequency, ∆f

(b)
1 predominantly

reflects the longer-ranged magnetic part of the tip-sample interac-
tion. PLL 2 tracks the second flexural oscillation mode resonance
frequency f2 of the cantilever. The PI feedback Amplitude Control 2
keeps the second mode amplitude constant, e.g. at 0.27 nm. At such
a small amplitude the second mode resonance frequency shift ∆f

(b)
2

predominantly arises from the van der Waals part of the tip-sample
interaction, which depends on the tip-sample distance but not on
the micromagnetic details of the sample. ∆f

(b)
2 and thus the local

tip-sample distance is kept constant by the z-feedback. Its output
then reflects the topography of the sample.

The force constant kn and the resonance frequency ωn of the n-th mode relate to
those of the first mode as

kn = k1 ·
[
αn
α1

]4

and ωn = ω1 ·
[
αn
α1

]2

(3.2)

with αi = {1.8750, 4.6941, 7.8548, 10.9955, ...}22.

According to eqs. 3.1 and 3.2 the sensitivity of a higher mode n is lower than for
the first mode by αn/α1 ·

√
Q1/Qn. The first mode is hence better suited for the

measurement of the small magnetic forces. In order to obtain higher quality factors
our MFM (a modified Nanoscan hrMFM ) with two phase-locked loops (Fig. 3.1) is
operated under vacuum conditions. The first mode force constant of the cantilever,
k1 = 0.996N/m was calculated from the measured first mode resonance frequency,
f1 = 53′059.9Hz, the length l = 225µm and the width w = 35µm. The second
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mode force constant k2 = 39.1N/m was obtained from Eq. 3.2, and the second
mode resonance frequency was measured, f2 = 327′850Hz. In vacuum, the first
and second mode quality factors were Q1 = 40′268 and Q2 = 17′205, respectively.
Such high quality factors do not permit the excitation of the cantilever at a user-
selected fixed frequency, but require PLLs to drive the first and second mode on
their respective resonance frequencies (Fig. 3.1). The amplitude response of the
deflection detector of our MFM was calibrated by a thermal noise analysis35. The
z-feedback adjusts the tip-sample distance to keep the second mode frequency shift
constant.

3.3 Measurement principle

As outlined by Giessibl et al.36 the frequency shift of a cantilever of stiffness
k oscillating in a single mode with an amplitude A in a force field derivative
∂
∂z
Fz(z) = kts(z) becomes

∆f(zltp) =
f0

2k

2

πA2

∫ A

−A
kts(zltp + A− q) ·

√
A2 − q2dq, (3.3)

where zltp is the tip-sample distance at the lower turning point, f0 is the resonance
frequency of the cantilever far away from the surface, and kts is the local stiffness
of the tip-sample interaction. In the limit of small amplitudes the frequency shift
becomes proportional to the stiffness of the tip-sample interaction force,

∆f(z) = − f0

2k
· kts(z). (3.4)

This approximation is valid as long as kts is approximately constant over the z-
range spanned by the oscillating tip. At small tip-sample distances the z-derivative
of the van der Waals force is usually much stronger than that of the magnetic force.
In that case, a frequency shift measured with a cantilever oscillating with a small
amplitude at a small tip-sample distance is dominated by the non-magnetic van
der Waals force. At considerably larger amplitudes the small amplitude approxi-
mation no longer holds and Eq. 3.3 must be used to calculate the frequency shift.
In essence, Eq. 3.3 averages kts(z) over time. The weaker but longer-ranged mag-
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netic stiffness curve dominates that of the stronger but shorter-ranged van der
Waals stiffness curve. The long range magnetic force then becomes the dominant
contribution to the measured frequency shift. Note that these observations hold
independently of the cantilever oscillation mode. So, for the same oscillation am-
plitude, the frequency shifts of the n-th mode simply scale to those of the first
mode as ∆fn = ∆f1 · α2

1/α
2
n.

In bimodal operation conditions with large A1/A2-ratios, the frequency shift
versus distance curve ∆f

(b)
2 (zltp) has a distance dependence closely resembling

what would be measured without the first mode oscillation amplitude (∆f2(zltp)).
However, the frequency shift values are smaller at all distances37. The second
mode bimodal frequency shift ∆f

(b)
2 (zltp) is thus also dominated by the short-

range van der Waals force. Consequently, if ∆f
(b)
2 is kept constant by the (fast)

z-feedback, the output of the latter corresponds to the topography of the sample.
The bimodal frequency shift of the first mode, ∆f

(b)
1 , is not affected by the presence

of the small-amplitude second mode oscillation, because the cantilever oscillation
modes are not harmonic32,37. Hence ∆f

(b)
1 reflects the long range magnetic force.

3.4 Measurements

Figure 3.2 summarizes MFM results obtained with different ratios of the first
to second mode amplitudes in bimodal operation on a multilayer structure of
Pt5nm/[Co0.4nm/Pt0.7nm]×15Pt1nm/SiOox

2 /Si with perpendicular magnetic anisotropy.
The second mode frequency shift ∆f

(b)
2 was kept constant at −6.8Hz for all data

shown here. An excellent separation of the magnetic and topographic signal is
obtained for an A1/A2-ratio of 44 (Fig. 3.2(a), (b) and (c) ). The first bimodal
frequency shift ∆f

(b)
1 data (Fig. 3.2(a) shows the up/down domain structure typi-

cal for such a sample, while the output of the z-feedback (Fig. 3.2(b) operating on
the second bimodal frequency shift ∆f

(b)
2 reflects the topography of the sample.

The instrumental drift of the sample’s z-position becomes apparent as the image
scanned from the bottom to the top and from the left to the right appears darker at
the left and brighter at the right. After subtracting the “drift-plane”, the topogra-
phy image, Fig. 3.2(c), reveals the granular structure of the polycrystalline sample
with grain sizes around 20 nm and height variations of ±0.65 nm. The magnetic
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(a) ∆f1 = ± 15 Hz

“magnetic signal” “topographical signal”
raw data after plane subrtraction

(i) ∆z = ± 1.2 nm

(g) ∆z = ± 1.0 nm

(e) ∆z = ± 0.69 nm

(b) ∆z = ± 3.7 nm (c) ∆z = ± 0.65 nm

(f) ∆f1 = ± 15 Hz

1 2
(d) ∆f1 = ± 15 Hz

(h) ∆f1 = ± 15 Hz

250 nm

Figure 3.2: Images (a) to (c) were measured with an A1 = 12 nm. (a) magnetic
image (first mode frequency shift). (b) topography image revealing
the drift of the tip-sample distance (the image was scanned from
bottom to top and left to right) and the grain structure. The latter
becomes better visible in image (c) where the drift plane has been
subtracted. Magnetic contrast and topography images for A1 equal
to 6 nm, 3 nm, and 1.5 nm are shown in panels (d) and (e), (f) and
(g), and (h) and (i), respectively. The amplitude of the second mode
was kept A2 = 0.27 nm for all measurements. Note that the ∆f or
∆z values given in the images represent the displayed grey scales, and
not the actual extrema of the image contrast. Thus corresponding
images can be directly compared. The red and blue circles in panel
(d) mark the acquisition locations of the frequency-distance curves
shown in Fig. 3.3.
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domains are faintly visible, however, (a contrast of about 0.1 nm) indicating that
the separation of magnetic and van der Waals forces is not perfect.

Reducing the A1/A2-ratio from the initial 44 down to 22 in fig. 3.2(d),(e), 11
in fig. 3.2(f),(g), and 5.6 in fig. 3.2(h),(i), the magnetic contrast in the ∆f b1-signal
decreases, while it increases in the z-feedback output images. To understand this,
note that the bimodal frequency shift ∆f

(b)
2 is smaller than the unimodal fre-

quency shift ∆f2 because in bimodal operation the ∆f
(b)
2 is averaged over the

tip-sample distance range spanned by the first mode oscillation amplitude A1.
With smaller amplitude A1 this averaging of the second mode frequency shift
occurs over a smaller z-range. In that case ∆f

(b)
2 is larger, closer to the ∆f2

that would be obtained in unimodal operation. For the data shown in Fig. 3.2,
the z-feedback setpoint was kept constant at -6.8 Hz for all selected amplitudes
A1. Consequently the z-feedback will increase the tip-sample distance if the first
mode amplitude A1 is reduced. At larger tip-sample distances the contribution
of the longer-ranged magnetic forces to the frequency shift is more prominent,
and the magnetic domain contrast becomes more apparent (Fig. 3.2(e),(g),(i) ) in
the z-feedback output data. But since the z-feedback will partially have corrected
for the spatially dependent magnetic forces, the magnetic contrast visible in the
∆f

(b)
1 -images (Fig. 3.2(d),(f),(h) ) is reduced.

We also acquired frequency shift versus distance curves simultaneously for the
first and second mode, in the middle of a black and of a white domain (Fig. 3.2(d),
points 1 and 2). We used oscillation amplitudes A1 = 6nm and A2 = 0.27nm. At
zltp = 70 nm, the contrast between the ∆f

(b)
1 values obtained on the white (wd)

and black domain (bd) corresponds to 5.9Hz (blue-red arrow in Fig. 3.3(a). 70 nm
away from the sample, the change of the force z-derivative over the tip’s oscillation
trajectory with the chosen oscillation amplitudes can then be neglected. Therefore
the small amplitude approximation, i.e. Eq. 3.4 holds and ∆f

(b)
2 (wd)−∆f

(b)
2 (bd) ≈

[∆f
(b)
1 (wd) −∆f

(b)
1 (bd)] · (α1/α2)2 = 0.94Hz agreeing well with the experimental

value of 0.89Hz (black arrows in Fig. 3.3(a). Because the second mode amplitude
is small (A2 = 0.27 nm), the second mode frequency shift, ∆f

(b)
2 is dominated by

the van der Waals force at small tip-sample distances. Hence the tip-sample dis-
tance required to correct between a magnetically attractive and -repulsive signal
is extremely small. Assuming that the magnetic forces at these two points have
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Figure 3.3: (a) First and second mode frequency distance curves measured with
A1 = 6 nm and A2 = 0.27 nm at the locations marked with a red
and blue circle in Fig. 3.2. (b) van der Waals force as a function of
distance extracted from the first mode frequency shift curves shown
in (a). Magnetic force as a function of distance for different spa-
tial wavelengths. Note that at much larger tip-sample distance (not
shown here) all ∆f -curves will approach zero and all magnetic con-
trast vanishes.

equal magnitudes but opposite signs, the average of the two ∆f
(b)
1 -curves is solely

caused by the van der Waals interaction. Using the matrix inversion method de-
scribed by Welker et al.21, the distance dependence of the van der Waals force
FvdW (zltp) (depicted in Fig. 3.3(b) ) can be extracted from the average frequency
shift ∆f

(b)
1,vdW (zltp). A model counterpart for this experimental van der Waals

force is Fvdw(z) = −c/(z − zoffs.)
2 with c = 3.87 · 10−27 Nm2 (Fig. 3.3(b), solid

black line). The constant zoffs. is required because the zero-point of the z-scale in
Fig. 3.3(a) is a priori unknown and an absolute zero-point can be defined to obtain
zoffs. = 0. For comparison we also plot exponentially decaying magnetic forces
Fmag(z) = F0 · exp(−kz) for spatial wavelengths λ = 2π/k = 200, 100, and 20 nm.
The constant F0 has been adjusted so that the 200 nm plot reproduces the ex-
perimentally determined contrast ∆f

(b)
1 (wd)−∆f

(b)
1 (bd) = 5.9Hz at a tip-sample

distance of 70 nm. Notice that the magnetic force arising from magnetization
patterns with 20 nm spatial wavelength has a decay length similar to that of the
van der Waals force. High-resolution MFM based on bimodal techniques is still
possible, however, if the van der Waals force is much larger than the magnetic
force arising from magnetic field features of small spatial wavelengths, i.e. if
∆f

(b)
2,mag(∆z) � ∆f

(b)
2,vdW (∆z). Under this condition, a change of the magnetic
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force would be compensated by a negligible change of the tip-sample distance.
Therefore the z-feedback image still reflects the topography and the ∆f

(b)
1 image

shows the magnetic image.

100 nm100 nm

(a) ± 6.8 Hz (b) ± 0.82 nm

B
L L

B

Figure 3.4: (a) high resolution magnetic image of a modern hard-disc recorded
with A1 = 12 nm. (b) topography measured simultaneously with the
magnetic signal with A2 = 0.27 nm. The grain structure is nicely
visible in both images. The 10 nm high yellow box serves as a guide
for the eye to judge the lateral resolution of the MFM image.

For high-resolution imaging (Fig. 3.4) the tip-sample distance must be kept
small. The latter can be estimated from the frequency distance curve (Fig. 3.3(a)
and the z-feedback set-point ∆f

(b)
2 = −6.8Hz that was used for the data shown

in Fig. 3.4. A lower turning point tip-sample distance of 7.6 nm is found. Note,
however, that the proper function of the z-feedback requires a low noise ∆f

(b)
2 -

signal at a reasonable measurement bandwidth. Using Eqs. 3.1 and 3.4 we find a
∆f2-noise of 0.66Hz in a 100Hz bandwidth for the high quality factor Q2 = 17′205

obtained in vacuum for A2 = 0.27 nm. This noise must be compared with the sec-
ond mode frequency shift obtained under bimodal operation. Hence, for typical
quality factors obtained in air, a stable operation of the z-feedback on ∆f

(b)
2 , at a

reasonable measurement bandwidth becomes challenging. This limits the applica-
tion of bimodal MFM as proposed here to vacuum operation and reasonably small
scan-ranges.

3.5 Conclusion

To summarize, we have presented a non-contact bimodal magnetic force microscopy
technique capable of obtaining highest resolution and sensitivity for magnetic stray
fields under vacuum conditions. However (as is also the case for conventional, lift-
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mode operation) the topography will be partly visible in the first mode frequency
shift and may easily be mistaken for small magnetic features. This is because mag-
netic forces will vary as the tip follows local topographical features. For example,
the grain structure visible inside the white bits in the magnetic image Fig. 3.4(a)
is not caused by variations of the local magnetic structure, but arises from local
changes of the average tip-sample distance. However in Fig. 3.4 in some locations
(see for example the yellow box B with a height of 10 nm) the magnetic contrast
changes from bright to dark from one grain to the next, although adjacent grains
have the same topographical height. Such a contrast change must be of magnetic
origin. Further, in some locations (see the parallel lines L) topographical features
are visible that do not appear in the magnetic image. This indicates that a lat-
eral resolution on the length scale of the grains, i.e. smaller than 10 nm could be
obtained.
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4 MFM with capacitive
tip-sample distance control2

Preface

This chapter is composed from the text and figures of the reference2, published
2015 in Applied Physics Letters 107 by AIP Publishing. Authors of the paper are
J. Schwenk, X. Zhao, M. Bacani, M. Marioni, S. Romer and H. J. Hug.

4.1 Introduction

Magnetic Force Microscopy is a versatile technique to image local magnetic fields
with high spatial resolution4. It is achieved by scanning an ultrasharp, high-
aspect ratio magnetic tip along the surface of the sample at small tip-sample
distances under vacuum conditions. The latter is required for a high Q-factor of
the cantilever, which in turn allows obtaining high sensitivity to small magnetic
forces1. Usually a dual passage method is used, where each measurement line
is scanned twice6. A first scan is carried out in the intermittent contact mode
and reveals the topography. A subsequent scan takes place without tip-sample
contact at a user selected lift height, following the topography data recorded in
the first scan. However, the use of the intermittent contact mode in vacuum
remains challenging1.
Recently single passage measurement methods have been reported that use bi-

modal cantilever excitation suitable for operation in air32 and in vacuum1. They
rely on the ability to separate magnetic from non-magnetic (van der Waals or elec-
trostatic) forces on the basis of their different decay lengths. But magnetic fields
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of small magnetic structures can have the same decay length as van der Waals
forces, making the separation of magnetic and topography-induced forces diffi-
cult in these situations. Moreover, scanning at constant average height, as is often
convenient for quantitative data analysis38,39, or operation at larger tip-sample dis-
tances becomes challenging, because the situation arises where the (longer-ranged)
magnetic forces dominate the (shorter-ranged) topographical forces. The latter
can then no longer be used for tip-sample distance control. Additional problems
arise if measurements are performed at different temperatures or external mag-
netic fields. Both change the resonance frequency of the free cantilever, requiring
a re-adjustment of the frequency shift set-point used for recording the topography.
Although such reset is possible, it is often impractical, e.g. when the magnetization
of the magnetic coating on the cantilever beam settles slowly over time leading to
a corresponding creep of the free resonance frequency.

4.2 Measurement principle

Here we propose a single passage measurement technique that overcomes these
limitations. Figure 4.1 depicts its schematic setup which is implemented using a
Zurich Instruments HF2PLL Lock-in amplifier with our modified Nanoscan hr-
MFM (see section 2.1) microscope. As in our previous work1 a first phase-locked
loop (PLL) is used to drive mechanically the cantilever on its first flexural res-
onance f1, typically with an oscillation amplitude A1 = 10 nm (zero-to-peak),
chosen to optimize the ratio between the measured magnetic force induced fre-
quency shift and the frequency noise caused by thermal fluctuations40,1. Unlike
our previous work1 the second cantilever oscillation mode at f2 = 6.27 · f1

22 is not
driven mechanically but by applying an oscillatory tip-sample bias. In general, a
bias of the form U(t) = Udc +Uac cos(2πfact) generates an electrostatic force given
by

FE(z, t) =
1

2

∂C(z)

∂z
· [ U2

dc + 2UdcUac cos(2πfact)

+ U2
ac cos2(2πfact)

]
, (4.1)
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z-feedback”topography”
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∆f1

(f2  + ∆f2 )/2

A2

z-piezo

mechanical
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Figure 4.1: Schematic of the dual-PLL system required for bimodal oscillation
of high quality factor cantilevers. The first PLL mechanically drives
the cantilever on its first mode, and tracks shifts of its resonance
frequency. The second PLL excites the cantilever via an oscillatory
electric field at half the resonance frequency of its second mode.
The z-feedback then keeps the obtained second mode oscillation
amplitude constant to map the sample topography. The required
z-travel then reflects the topography of the sample.

where C(z) is the distance dependent tip-sample capacity, Udc = U
(K)
dc +U

(a)
dc is the

sum of the contact and applied potential, and Uac is the amplitude of the potential
modulation. We see from Eq. (4.1) that FE has components at frequency fac and
2fac, the latter being:

FE,2fac(z) =
1

4

∂C(z)

∂z
· U2

ac . (4.2)

In particular, a cantilever oscillation will be induced at 2fac that is proportional
to ∂C/∂z but independent of Udc (and thus also insensitive to contact potentials).
That is significant because ∂C/∂z carries information of the tip-sample distance,
so that the amplitude at 2fac can be a measure thereof. A spatial dependence of
the contact potential U (K)

dc would lead to a corresponding variation of the first (and
second) mode frequency shift, unless the Kelvin potential is compensated through
a suitable implementation of a Kelvin feedback loop.

By setting fac = 1/2 ·f2, i.e. half the second mode resonance frequency, resonance
amplification ensures a conveniently large amplitude A2, but a second PLL is
needed to track 2fac as shown in Fig. 4.1. The latter requirement arises because
magnetic forces acting on the tip and changes of the tip-sample distances, generate
frequency shifts that can easily be larger than the width of the resonance peak and
thus would significantly change the force-to-amplitude transfer function.
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With the above setup we can obtain tip-sample distance dependent A2(z) curves,
a representative example of which is given in Fig. 4.2(a), red line. Note that the
first mode resonance frequency ∆f1(z) can be measured simultaneously with the
measurement of A2(z) – cf. Fig. 4.2(a), blue line. The monotonicity of A2(z)

shows that it is suitable for controlling the tip-sample distance, i.e. modifying the
value of z by ∆z until A2(z) equals a predefined setpoint, provided the dielectric
response of the sample remains constant within the scan area. Further, the quality
factor Q2 must remain constant. The latter could change if for example magnetic
dissipation occurred. That would however also affect the first mode quality factor
Q1, which is not the case for our measurements.

Conveniently the slope of A2(z) increases with decreasing z, whereby the signal-
to-noise ratio of the measured A2(z) is improved. This facilitates a faster control of
the tip-sample distance when it is of the same order or smaller than the height vari-
ation of topographical features. Measuring with a z-feedback that rapidly adapts
to the local conditions implies that A2(z) is (in an ideal case) constant, and that
the map of the corresponding ∆z is a measure of the topography (constant local
height imaging). Conversely, if the z-feedback is disabled, A2(z) should a priori
vary with position in accordance with the topography. Note however, that by the
unavoidable drift of the tip-sample distance the latter will change not only locally,
but on average. Such drift, but not local variations of the tip-sample distance,
will be corrected if the A2(z)-based control is retained but made sufficiently slow.
With a slow z-feedback mode a type of constant average height imaging mode is
obtained, wherein A2(z) is a measure of topography. Importantly, very small to
almost arbitrarily large average distances from the sample surface can be main-
tained, on account of the large range where ∂C(z)

∂z
varies. This represents a major

advantage to the aforementioned bimodal technique1. The second mode amplitude
A2 as well as the first mode frequency shift ∆f1 are plotted in figure 4.2 (c) as
a function of the bias voltage Udc. As argued above and expected from equation
4.1 the A2 signal is not influenced by the variation of the tip sample bias. The
frequency shift ∆f1 on the other hand, exhibits the typical parabolic behaviour.
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Figure 4.2: (a) Second mode amplitude A2(z) (red line), and first mode fre-
quency shift ∆f1(z) (blue line) as a function of tip sample distance.
(b) The measured ∆f1-signal is re-plotted as a function of A2.
(c) second mode amplitude A2 (red line) and frequency shift (blue
line) ∆f1 as a function of tip sample bias potential Udc

4.3 Experimental example

To investigate the characteristics of this control mode in greater practical detail
we work with a Ta5nm/Pt5nm/[Co0.4nm/Pt0.7nm]×4/Pt3.5nm multilayer deposited onto
a hexagonal array of domes in an anodic alumina template with 100 nm period,
similar to Ref.41. This sample provides small magnetic features, but also large
topographical ones which typically constitute a major difficulty for high-resolution
magnetic force microscopy. In prior work42 the topography of such a sample was
measured in air, with the intermittent contact mode. The typical bump-to-bump
height variation was found to be around 5 nm, but at defects much larger height
variations of up to ±8 nm – cf. Fig. 4.3(a) – were measured.
A Team-Nanotec cantilever without coating, with a length of 225µm, a width

of 35µm, and a nominal stiffness of 0.7N/m was used. Its high aspect ratio tip
was made sensitive to magnetic stray fields by sputter coating one tip side with
2 nm Ti and 4 nm Co, and subsequently magnetizing it to have a north pole at
the tip end. The contact potential of 592mV was compensated (i.e. Udc = 0 ).
An oscillatory potential Uac = 500mV was applied resulting in the A2(z) curve
depicted in red in Fig. 4.2(a) for a range of z.
Figure 4.3(a) and (b) show two simultaneously recorded channels of a first scan,

taken in zero field, in which A2 was kept constant with a fast feedback loop that
varied z. It is an example of constant local height imaging. The left panel is
the map of ±8 nm ∆z-travel required to keep A2 constant during the scan, and
is a measure of the topography ∆zm(x, y). For instance, it can be used to align
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images acquired in different fields. The corresponding Fig. 4.3(b) shows the first
mode frequency shift ∆f1(x, y, zm(x, y)). It contains a pattern of spots congruent
with Fig. 4.3(a), with an additional contrast pattern that is usually associated
with the magnetic up and down domains (cf. Ref42). The yellow/blue circles in
Figs. 4.3(b) and (c) indicate domes with an up/down magnetization. Magnetic
contrast with high spatial resolution can also be obtained between the domes, but
is generally difficult to assess whether such an area can switch its magnetization
independently from that of the adjacent domes. In most cases an area between
two domes changes its contrast from bright to dark if both adjacent domes switch
from up to down. This could be caused by the magnetic exchange coupling of the
film on the domes with the film at the location of the intermediate area, but could
also be an artifact arising from a limited spatial resolution of the MFM. However,
at least at a few positions – highlighted in the blue insets in Figs. 4.3(b), (c) and
(d) – the magnetization of the domes switch from up to down while part of areas
between the two adjacent domes remains up (white) in a field of -153mT, but
switch to down in a field of -406mT.

(a) Topography ∆z = ± 8nm  (b) ∆f1 = ± 1.1Hz; B = 0mT   

(c) ∆f1 = ± 1.1Hz; B = -153mT  (d) ∆f1 = ± 1.1Hz; B = -406mT  

500 nm

(e) B = 20mT

(a) Topography ∆z = ± 8nm  (b) ∆f1 = ± 1.1Hz; B = 0mT   

(c) ∆f1 = ± 1.1Hz; B = -153mT  (d) ∆f1 = ± 1.1Hz; B = -406mT  

500 nm

(e) B = 20mT

(a) Topography ∆z = ± 8nm  (b) ∆f1 = ± 1.1Hz; B = 0mT   

(c) ∆f1 = ± 1.1Hz; B = -153mT  (d) ∆f1 = ± 1.1Hz; B = -406mT  

500 nm

(e) B = 20mT

(a) Topography ∆z = ± 8nm  (b) ∆f1 = ± 1.1Hz; B = 0mT   

(c) ∆f1 = ± 1.1Hz; B = -153mT  (d) ∆f1 = ± 1.1Hz; B = -406mT  

500 nm

(e) B = 20mT

Figure 4.3: Data obtained with A2 kept constant, i.e. using a fast z-feedback.
(a) Signal from the topography of the sample, i.e. the ±8 nm z-
travel required to keep A2 constant during scanning. (b) ∆f1(x, y)
MFM data recorded simultaneously with (a) in zero field. The yel-
low/blue circles highlight dots with an up/down magnetization. (c)
MFM image taken at -153mT. An area between the dots with an
up magnetization is visible between the three domes inside the blue
frames. (d) MFM data acquired in a field of -406mT that saturates
the magnetic layer. (e) MFM measurement at +20mT of the area
framed in green in (d).

A salient feature of the above ∆f1(x, y, zm(x, y)) images is the presence of dark
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spots at the centers of the domes, irrespective of the underlying magnetization
orientation. In order to exclude that this contrast is of magnetic origin the area
highlighted by the green frame in Fig. 4.3 was also measured in a field of +20mT.
At such a field most of the film retains the down-state obtained at -406mT field,
as known from prior work42, but the magnetization of the tip has flipped. The
latter can be seen from the dark contrast arising from the very few areas of the
film with a magnetization direction changed from the down- to the up-state (see
Fig. 4.3(e)). The dark spots (domes) however remain the most prominent features
in the ∆f1 image, although the tip magnetization is now antiparallel to the major-
ity of the sample areas. If the contrast was of magnetic origin, the domes should
now appear as white circles which is clearly not the case. Hence, apart from a
small modification of the grey-level of the contrast at the location of the domes,
the dark spots visible in all ∆f1 images are not of magnetic origin, but arise from a
spatial variation of the van der Waals force, as already pointed our earlier work42.

However, in the present work A2 was kept constant. One might thus expect
that the local tip-sample distance, and thus also the van der Waals interaction
remains constant. Then the domes should not be visible. The data taken in
saturation (Fig. 4.3(d)), however, shows that this is not the case. The reason
for this discrepancy can be traced back to the different interaction length of two
involved tip-sample forces: electrostatic (Uac 6= 0) and attractive van der Waals
ones, and thus of the respective interaction volumes. The difference is confirmed
by the departure from linearity of ∆f1(A2) (Fig. 4.2(b)), taking into account that
the magnetic part of the interaction does not alter this fact. Therefore, the van
der Waals contribution to ∆f1 will not remain constant when the tip traces lines
of constant A2, and the z-travel ∆zm(x, y) required to keep A2 constant will differ
(slightly) from the true topography of the sample. Consequently, the domes will
remain visible even if the image is acquired in a saturating field of -406mT – cf.
Fig. 4.3(d).

A more practical limitation of the constant local height method is that because
of the small size of the A2 the signal-to-noise ratio (SNR) available for z-control
is limited. As a consequence the z-position noise and thus also the ∆f1 noise in
the image increases with the z-feedback speed, a fact that ultimately limits the
sensitivity for small magnetic forces. Samples generating only weak stray fields
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are thus best measured at constant average height, i.e. with slow proportional and
integral parameters of the z-feedback. They should be sufficiently fast to correct
drift of the tip-sample distance but slow enough that localized topographical fea-
tures encountered during the scan do not trigger a z-correction. Note that appart
from allowing to scan faster this method facilitates the quantitative interpretation
of the MFM data38.
Figure 4.4 displays one such constant average height measurement of the same

area shown in Fig. 4.3. The data were acquired in zero field, immediately after the
constant A2-scan in zero field was completed. The magnetic state of the sample
thus is the same as shown in Fig. 4.3(b). The variations of A2 (Fig. 4.4(a)) using

(a) ∆A2  = ± 11.2 mV (b) As measured ∆f1 = ± 2.8 Hz

(c) Calculated ∆f1
vdW = ± 1.25 Hz (d)  subtraction (c) from (b) ∆f1 = ± 1.1 Hz

500 nm

(a) ∆A2  = ± 11.2 mV (b) As measured ∆f1 = ± 2.8 Hz

(c) Calculated ∆f1
vdW = ± 1.25 Hz (d)  subtraction (c) from (b) ∆f1 = ± 1.1 Hz

500 nm

(a) ∆A2  = ± 11.2 mV (b) As measured ∆f1 = ± 2.8 Hz

(c) Calculated ∆f1
vdW = ± 1.25 Hz (d)  subtraction (c) from (b) ∆f1 = ± 1.1 Hz

500 nm

(a) ∆A2  = ± 11.2 mV (b) As measured ∆f1 = ± 2.8 Hz

(c) Calculated ∆f1
vdW = ± 1.25 Hz (d)  subtraction (c) from (b) ∆f1 = ± 1.1 Hz

500 nm

Figure 4.4: (a) A2(x, y) data arising from topography-induced variations of the
tip-sample distance. (b) Simultaneously measured ∆f1(x, y) fre-
quency shift data recorded at constant average tip-sample distance,
i.e. with a slow z-feedback. (c) Van der Waals force induced vari-
ations of the frequency shift ∆fvdW1 calculated from the ∆f1(A2)-
curve depicted in Fig. 4.2(c). (d) Result of subtracting the data in
(c) from that of (b), showing a magnetic interaction force-dominated
image, which resembles the MFM image measured with a fast z-
feedback shown in Fig. 4.3(b).

this measurement mode arise when local topography is (mostly) not compensated
by the feedback. These images of A2(x, y), taken at constant average height, can
be translated into a frequency shift using the ∆f vdW1 (A2) dependence plotted in
Fig. 4.2(b), which was derived from the measurements (Fig. 4.2(a)). The result of
this computation is shown in Fig. 4.4(c). It can now be subtracted from the ‘raw’
∆f1(x, y) data (Fig. 4.4(b)) to enhance the relative weight of magnetic informa-
tion in it. Figure 4.4(d) displays the result, which qualitatively and quantitatively
matches that acquired at constant local A2 (Fig. 4.3(b)). It shows a substantial
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magnetic contrast with a weak background arising from the incomplete compensa-
tion of local van der Waals force variations. Clearly, an ideally local treatment of
van der Waals and electrostatic tip-sample interactions is an approximation that
deteriorates when the sample topography is comparable to the tip that images
it. Future implementations of this techniques could rely on an explicit deconvo-
lution, utilizing separate calibration measurements, to more perfectly compensate
the topography-induced effects.
The frequency shift data acquired with a fast z-feedback with B-fields spanning

from 0mT to 400mT are depicted in figure 4.5. The series is also recorded with
slow feedback parameters. For comparison with figure4.5, figure 4.6 shows the
difference between the measured ∆f1-signal and the van der Waals force induced
frequency shift ∆f vdW1 (compare also to figure 4.4). As in the previous figures 4.3
and 4.4 all images in both measurement methods are represented in a contrast
scale of ∆f1 = ±1.1Hz for white to black. The measurements with fast and
slow feedback parameters were following each other for each B-field value. The
alignment of the data is based on the topography channel in the case of fast
feedback parameters and on the A2 channel for the data taken under slow feedback
conditions.

4.4 Concluding remarks

At this point it is convenient to note that the technique for distance control pre-
sented here could also prove useful for large area non-contact measurements of the
Kelvin potential. The z-feedback that keeps ∆f1 (the frequency shift arising from
van der Waals or interatomic forces) constant represents the topography only if
the Kelvin potential is locally compensated. Usually this means that two feed-
backs (the Kelvin- and the distance feedback) are arranged in series, rendering the
selection of appropriate feedback parameters challenging and reducing the overall
feedback speed. From equation Eq. 4.1 follows that the A2 signal is independent
from the dc-potential (applied and Kelvin potential). Hence, a distance feedback
using the A2 signal will not be affected by the (slow) Kelvin feedback.
More fundamentally, a distance feedback relying on van der Waals (or inter-

atomic) forces requires the use of small tip-sample distances, an inherent difficulty
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0 mT -50 mT -80 mT

-120 mT -150 mT -220 mT

-260 mT -300 mT -400 mT

500 nm

Figure 4.5: The complete field series measured with fast distance feedback in
a field range from B = 0mT to B = 400mT. The white to black
contrast scale is ∆f1 = ±1.1Hz for all images.
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0 mT -50 mT -80 mT

-120 mT -150 mT -220 mT

-260 mT -300 mT -400 mT

500 nm

Figure 4.6: The complete field series measured with slow distance feedback in
a field range from B = 0mT to B = 400mT. The white to black
contrast scale is ∆f1 = ±1.1Hz for all images.
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in large area-scans of samples with substantial topography.
In conclusion, the capacitively controlled methods just discussed provide the ex-

perimenter with a robust technique for approaching, measuring and studying mag-
netic structures in the presence of non-negligible topography. It can be seen that
any Scanning Force Microscopy technique where C(z) can be measured will bene-
fit from the control of the tip-sample distance independently from non-capacitive
tip-sample interaction forces of interest.

Acknowledgments: We thank L. Piraux, S. K. Srivastava, V. A. Antohe, M.
Hehn, and T. Hauet for the preparation of the sample.
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5 Magnetic skyrmions in thin film
materials

Magnetic skyrmions are quasi-particles that are formed by spin textures with a
certain topology and were proposed by Bogdanov and Yablonskĭı43 in 1989. This
topology provides an exceptional stability for the skyrmions44 since it is not pos-
sible to annihilate the structure by a continuous transformation of their spin tex-
ture45. Responsible for the formation of magnetic skyrmions is the DM interaction
between neighboring magnetic spins in the material, which is discussed further in
section 5.1. This topological stability of the skyrmions, and the possibility of
current-induced manipulation suggest an application of magnetic skyrmions in
magneto-electronic and data-storage devices46,47.
Magnetic skyrmions where observed first in crystalline materials as in bulk MnSi

by neutron diffraction by Mühlbauer et al.48 and in thin films of Fe0.5Co0.5Si by Yu
et al. using Lorentz Transmission Electron Microscopy (TEM)49. For applications,
thin film stacks of magnetic multilayer materials, exhibiting an interfacial DM
interaction, are the most promising class of materials. Typical industrially applied
deposition tools can be used for fabrication of these films, and their magnetic
properties can be tuned via their layer stacking, materials and layer thicknesses.
Such multilayer systems are further discussed in section 5.2. Studying sputtered
multilayer systems with interfacial DM interaction has thus a high technological
relevance.
For such studies the MFM is expected to play an important role. Higher spatial

resolution is possible by spin-polarized Scanning Tunneling Microscopy (STM)50,
but only clean single crystalline surfaces can be studied and so far experiments have
only been performed at low temperatures. Lorentz TEM49 and X-ray Magnetic
Circular Dichroism (XMCD) Scanning Transmission X-ray Microscopy (STXM)51
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require electron or x-ray transparent samples, respectively, such that thin film
samples on thicker substrates can not be studied. MFM does not suffer from these
limitations.

5.1 Dzyaloshinskii-Moriya interaction

The Dzyaloshinskii-Moriya (DM) interaction favors a perpendicular alignment of
neighboring atomic spins Si and Sj

52. In addition to other magnetic energy con-
tributions a DM coupling energy can be defined as

EDM =
∑

i, j

D̃i,j · (Si × Sj). (5.1)

The vector D̃i,j describes the strength as well as the preferred relative orientation of
neighboring spins Si and Sj. For thin isotropic films an interfacial DM interaction
with an isotropic constant D̃ is described by

D̃i,j = D̃
ri − rj

|ri − rj|
× ẑ (5.2)

with the coordinate vectors ri, rj for the sites i,j and the unit vector of the film
normal ẑ and. A continuous description with the reduced magnetization vector
m = M/|M| is obtained for the energy52,43

EDM = d ·
∫
D

[(
mx

∂mz

∂x
−mz

∂mx

∂x

)
+

(
my

∂mz

∂y
−mz

∂my

∂y

)]
dr (5.3)

with an effective continuous DM interaction D and for a thin film which is homo-
geneous along its thickness direction z and has a thickness d. As a consequence of
the DM interaction one selected sense of rotation of the magnetization vector M
in a system with uni-axial anisotropy becomes favored over the other one.

The energy term EDM competes with the usual symmetric exchange energy in
ferromagnets

Eex = d ·
∫
A

[(
∂m

∂x

)2

+

(
∂m

∂y

)2
]
dr (5.4)
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with the exchange constant A and the anisotropy energy

Ean = d ·
∫
−K(m · ẑ)dr, (5.5)

where K is the uniaxial magnetic anisotropy constant.

5.1.1 Domain walls in samples with DM interaction

As pointed out by Rohart and Thiaville52 the DM interaction has no influence on
the width of a one dimensional domain wall as long as the domain wall energy (see
equation 5.8) remains positive. The DMI can however change the domain wall
type from a Bloch wall with arbitrary sense of rotation to a chiral Néel wall where
one sense of rotation is preferred.

The angle between the magnetization vector and the z-axis as a function of the
position x is hence

θ(x) = 2 · arctan

[
exp(± x− x0√

A/K
)

]
. (5.6)

The sign of the argument in the exponent is given by he sign of D and determines
the rotational sense of the domain wall i.e. its chirality. The characteristic width
of the domain wall δdw is given by the exchange stiffness A and the anisotropy
constant K with

δdw = π
√
A/K (5.7)

The areal energy density of a domain wall is53,52

σdw = 4
√
AK ∓ πD. (5.8)

5.2 Interfacial DM interaction

In thin magnetic films an interfacial DM interaction can be induced by the inter-
action at the interface between the layers of the magnetic material and an high
spin-orbit coupling material54,52.
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A DM interaction occurs at interfaces between transition-metals and heavy
elements such as iridium (Ir)/nickel (Ni)55, Ir/Co56,8, platinum (Pt)/Ni55 , or
Pt/Co56,8. In a multilayer system where the top and bottom interfaces are dif-
ferent, the DM interaction of the top interface is not compensated by that of
the bottom interface. In this case the system exhibits an overall DM interac-
tion. In the present study, Co is used as a ferromagnetic material, and the
DM interaction is generated by Pt/Co or Ir/Co interfaces. The interfacial DM
interactions at the Pt/Co interface given in previous studies vary between the
theoretically predicted value of DPt/Co = +2.59mJ/m2 given by Yang et al.57

and DPt/Co = +2.05 ± 0.3mJ/m2 determined experimentally by Boulle et al.58.
The positive sign of the interaction corresponds to a counter clockwise rotation
of the spins across the Néel type domain walls. For the Ir/Co interface val-
ues range from DIr/Co = −0.32mJ/m2 in ref.57 and an experimental estimate
of DIr/Co = +0.53±0.12mJ/m2 by Chen et al.56. For both interfaces the D-values
are given for the Co-layer on the top. The overall DM interaction for a Pt/Co/Ir
structure can thus be estimated by D ≈ DPt/Co −DIr/Co and is expected to be in
the range of D ≈ 2.91mJ/m2 and D ≈ 1.52mJ/m2.

5.3 Sample preparation

Two different multilayer samples were fabricated by sputter deposition in an UHV
AJA Orion sputtering system. Both samples are grown on silicon (100) substrates
with a native oxide layer. Argon is used as a sputter gas with a pressure of 0.2Pa
during the deposition of all metal layers. One sample with asymmetric interfaces
(ASI) is prepared with a layer structure of Pt10nm Co0.6nmPt1nm[Ir1nmCo0.6nmPt1nm]×5,
covered with 3 nm of Pt and similar to the samples fabricated by Moreau-Luchaire
et al8. A second sample with symmetric interfaces (SI) and the layer structure of
Pt10nm[Co0.6nmPt1nm]×5Pt3nm serves as a reference sample without DM interaction.
The latter is also used to determine the TF of the MFM tip. Table 5.1 summarizes
the layer thicknesses of the samples. The surface roughness as well as the density
of particles on the surfaces of these samples are sufficiently low to enable MFM
measurements at constant average tip sample distances around 10 nm. Illustra-
tions of the layer structure together with MFM images of the domains in their
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Platinum: dPt = 1nm
Iridium: dIr = 1nm
Cobalt: dCo = 0.6 nm
Pt top layer: dtop = 4nm

Table 5.1: Summary of the layer thicknesses in the samples SI and ASI.
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(b) sample ASI, as grown ∆f1 ±1.5Hz

1000 nm

(a)

Figure 5.1: The layer structure of the sample ASI is illustrated in panel (a). Panel
(b) depicts the ∆f1 data of a 5µm×5µm MFM-scan on sample in
the as grown state.

as-grown state are shown in figure 5.1 for the sample ASI and in figure 5.2 for
the sample SI. Both samples exhibit a perpendicular magnetic anisotropy which
is quantified by vibrating sample magnetometry (VSM) measurements presented
in the following section 5.4. The difference of the observed domain sizes in fig-
ures 5.1(b) and 5.2(b) arises from an interfacial DM interaction (see section 5.5).

5.4 Macroscopic magnetic characterization: VSM

In order to determine the macroscopic magnetic parameters of the samples SI
and ASI we acquired magnetization loops of both samples with VSM. The loops
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Figure 5.2: The layer structure of the sample SI is illustrated in panel (a). Panel
(b) depicts the ∆f1 data of a 5µm×5µm MFM-scan on sample in
the as grown state.

recorded in perpendicular and in-plane geometry are plotted in figure 5.3 for the
sample ASI and in figure 5.4 for sample SI. The values for the saturation mag-
netization Ms are determined under the assumption that the magnetic moments
are restricted to the volume of the cobalt layers. The total thickness of Co is
5dCo = 3 nm for the sample SI and 6dCo = 3.6 nm for the sample ASI. The value
for the exchange stiffness of A = 16 pJ/m given in the tables of figures 5.3 and 5.4
is not measured but taken from Rohart and Thiaville52.
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Figure 5.3: Magnetization curves with the field applied perpendicular perpen-
dicular (left) and in-plane geometry (right) for sample ASI, mea-
sured with vibrating sample magnetometry. The table summarizes
the magnetic properties obtained from the analysis of the loops.
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Figure 5.4: Magnetization curves with the field applied perpendicular (left) and
in-plane geometry (right) for sample SI, measured with vibrating
sample magnetometry. The table summarizes the magnetic proper-
ties obtained from the analysis of the loops.
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5.5 DM interaction and equilibrium domain size

The equilibrium domain size of a sample is determined by the minimum of the
total magnetic energy. The latter is the sum of the magnetostatic energy and the
domain wall energy that depends on the DM interaction (see equation 5.8). The
total magnetic energy density of a sample with domains is

etot =
ldw

Asample

σdw + ems, (5.9)

with the magnetostatic energy density

ems = −1/2µ0MsHd. (5.10)

The quantity σdw is the energy per unit length of a domain wall given by equa-
tion 5.8, and ldw describes the total length of all domain walls in an area Asample.
The equilibrium domain size increases with higher values of σdw, whereas a higher
contribution of the magnetostatic energy density eMS leads to a smaller equilibrium
domain size.

Measurements

Experimentally determined domain patterns for the sample ASI are depicted on the
right hand side of figures 5.5 and 5.6. The patterns are obtained from MFM data
measured on the sample as grown (fig. 5.5(a), right side) and after demagnetizing
the samples with three different procedures:

• with an oscillatory B-field applied perpendicular to the sample surface
(fig. 5.5(b) ),

• with an oscillatory B-field parallel to the sample surface (fig. 5.6(a) ),

• at a total magnetization of M ≈ 0 obtained at the coercive field after satu-
ration (fig. 5.6(b) ).

Details of the demagnetization process are described in section 2.3.
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Data Analysis

At equilibrium, the domain width is given by59

Leq =
π

2
√
e
d · exp

[
πσdw

µ0M2
s d

]
, (5.11)

where d is the thickness of the sample, Ms its saturation magnetization and σdw

the energy density per unit area of the domain walls. With σdw = 4
√
AKu − πD

(eq. 5.8) the DM interaction can be determined from equation 5.11 as

D =
4

π

√
AKu − µ0M

2
s

d

π2
ln(

2
√
e

πd
Leq). (5.12)

The measured domain pattern which is most reminiscent of a stripe domain pattern
is that obtained after demagnetization with an in-plane field. For an average hori-
zontal domain size of Leq = (246±40) nm and a sample thickness of 5dCo = 3.0 nm
for the Co layers with asymmetric interfaces, equation 5.12 yields an interfacial DM
interaction of D= (2.55 ± 0.03)mJ/m2. However, none of the observed domain
patterns in figures 5.5 and 5.6 is reminescent of a stripe domain pattern.Moreover
equation 5.11 is valid for a sample that is homogeneously magnetized throughout
its thickness d. This is not the case for the sample here where the magnetic mo-
ments are confined in the Co layers separated by the Pt and Ir layers that generate
the interfacial DM interaction.

The description of the total magnetic energy leading to equation 5.11 is thus
not justified.

In order to overcome these problems we here develop a novel method that does
not rely on a simple model domain structure, but uses the measured one, and
numerically calculates the magnetostatic energy of multilayer film systems: The
total magnetic energy density per unit film area is calculated as the sum of mag-
netostatic areal energy density and domain wall areal density (cf. eq. 5.9) for a
chosen values of D for several assumed image sizes Λ in a range from 3.6 µm to
8.8 µm using the experimental domain pattern measured over a 5µm× 5µm area
(Figs. 5.5 and 5.6). From this, a set of curves describing the dependence of the
total magnetic energy density per unit film area on the assumed image size Λ is
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obtained. Since the shape of the domain wall is independent from the DM inter-
action D 52 the domain wall width of δdw = π

√
A/Keff = 32.8 nm is valid for all

values of D.

In order to obtain the total energy density of the sample the contributions
of the domain walls and magnetostatics have to be considered specifically for the
multilayer system studied here. For the sample ASI the energy density contribution
of the domain walls in equation 5.9 is

edw =
1

Asample · 6dCo


dCo · ldwσ

s
dw︸ ︷︷ ︸

layer 1

+ 5dCo · ldwσ
as
dw︸ ︷︷ ︸

layers 2-6




=
ldw

6Asample

(5σas
dw + σs

dw) , (5.13)

where dCo = 0.6 nm is the thickness of the Co layers, ldw is the total length of the
domain wall in the sample area Asample. The areal energy density of the domain
walls is σs

dw =
√
AKu for the walls in the Co layer with symmetric interfaces and

σas
dw =

√
AKu−πD in the five Co layers with asymmetric interfaces. Note that the

magnetostatic energy contribution to the wall energy is already contained in the
calculation of the total magnetostatic energy of the sample. The magnetostatic
energy density of the sample ASI includes the magnetic energy density of the layers
and the density of the inter-layer coupling energy. The coupling energy density for
a selected layer of the stack is given by the interaction of its magnetic moments
with the stray fields emanating from all other layers. The average magnetostatic
energy density is

ems = − 1

Asample · 6dCo

1

2
µ0

·
∫

Asample

(
6dCoMsHd +

5∑

n=1

n · dCoMz(r) ·Hz(r, d
il
n +

1

2
dCo)

)
dr (5.14)

=
1

6Asample

1

2
µ0

∫

Asample

(
6MsHd +

5∑

n=1

n ·Mz(r) ·Hz(r, d
il
n +

1

2
dCo)

)
dr,

where the minus sign arises from the fact that the interaction between layers lowers
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the total magnetostatic energy density of the system. The dil
n are the inter-layer

distances:

dil
1 = 5dPt + 5dIr + 4dCo = 12.4 nm
dil

2 = 4dPt + 4dIr + 3dCo = 9.8 nm
dil

3 = 3dPt + 3dIr + 2dCo = 7.2 nm
dil

4 = 2dPt + 2dIr + dCo = 4.6 nm
dil

5 = dPt + dIr = 2.0 nm

The additional distance of 1
2
dCo in equation 5.15 is required to obtain the stray

fields in the middle of the Co layers. Plots of the total energy density etot as a
function of the virtual image size Λ, and for different values of D and different
states of the sample ASI are shown in figures 5.5 and 5.6.
All of these curves show one minimum. Its position Λmin depends strongly on

the choice of D. The DM interaction of the sample ASI, then is the D-value that
generates an energy minimum located at the measured image size of 5µm. The de-
viation of D-values from domain patterns obtained after different demagnetization
processes (figures 5.5 and 5.6) is small. We find an average value of:

Davg = (2.04± 0.04)mJ/m2.

This DM interaction is not sufficient to give rise to a negative domain wall energy
since Davg < Dcrit := 4

π

√
AKu = 3.28mJ/m2.
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(b) sample demagnetized perpendicular, D=2.00mJ/m2
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Figure 5.5: The plots on the left show the magnetic energy density of the sample
as a function of the assumed image size Λ. (a): Energy density and
domain pattern of sample ASI in the as grown state; (b): after
demagnetization with a perpendicular field.
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(b) sample at coercive field, D≈2.065 mJ/m2
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Figure 5.6: The plots on the left show the magnetic energy density of the sample
as a function of the assumed image size Λ. (a): Energy density and
domain pattern of sample ASI after demagnetization with an in-plane
field; (b): at the coercive field after saturation.
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5.6 Quantitative MFM Measurements

All MFM measurements presented in this chapter were carried out with the modi-
fied hr-MFM described in section 2.1 using a first mode oscillation amplitude A1 of
5 nm. The capacitive distance feedback method introduced in chapter 4 with slow
feedback parameters was used to keep an average tip sample distance dts of 12 nm.
During a measurement series the sensitivity of the deflection sensor can be effected
by drift of the beam deflection system or the quality factor of the second resonace
mode may change. Then the measured second mode amplitude A2 and thus the
tip-sample distance will change. To avoid changes of the tip-sample distance the
A2-setpoint that is required to keep dts=12 nm was determined from ∆f1- and A2

versus tip-sample distance curves, acquired between the acquisition of successive
∆f1 images.

5.6.1 Tip transfer function TF

In order to determine the TF , a thin film sample with perpendicular anisotropy,
sharp domain walls and a domains size similar to the sample of interest for a
later quantitative analysis is required. Sharp domain walls are necessary to have
magnetization structures with a short spatial wavelength, while a domain size
similar to that of the sample of interest are needed to determine the MFM tip’s
response at the relevant spatial wavelengths.

The domain wall width of the sample SI can be determined from the measured
effective anisotropy Keff and the exchange stiffness A=16pJ/m taken from the
literature52 as δdw = π

√
A/Keff) = 18 nm. A section of the magnetization pattern

Mz(r) through a domain with a domain wall width for the sample SI of δdw = 18 nm
is depicted in figure 5.7(a). The stray field gradient above the sample is the
superposition of the stray field gradients of the five individual cobalt layers as
illustrated in figure 5.7(b).

The domain size of the as-grown sample is several microns (c.f. figure 5.2),
and the calculated equilibrium domain size is around 1mm – hence orders of
magnitude larger than the film thickness. The dependence of the total magnetic
energy density on the domains size is very flat, such that the equilibrium domain
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Figure 5.7: (a): Profile of the magnetization pattern Mz(r) across a domain
calculated for the sample SI; (b): Section of the stray field gradients
dHz
dz of the five individual Co layers of the sample SI and the total
stray field gradient (superposition); the gradients are calculated at a
distance of 12 nm above the sample surface.

size (≈ 1mm) can not be obtained by demagnetizing the sample: We find that
different demagnetization processes lead to very different domain sizes, varying
from microns to a few hundred of nanometers. The latter is obtained if an in-
plane oscillatory field is used for demagnetization as depicted in figure 5.8(a). The
obtained domain size is a few hundred nanometers and hence of the same order of
magnitude than that of the sample ASI.

Background subtraction

The MFM image of the sample SI (figure 5.9(a) ) shows the expected up/down
domain contrast and an additional granular background pattern. The latter is
not measurement noise, because the same pattern is observed in successive mea-
surements and it is also present in MFM data acquired in the saturated state
(figure 5.9(b) ). Such a background contrast can either arise from a locally varying
van der Waals interaction or a local variation of the magnetic moment of the Co
layers. The latter can be caused by a corresponding variation of the film thick-
ness. A contrast induced by van der Waals interaction is independent from the
sample’s magnetization and can thus be removed from measured MFM data by
a subtraction of the data measured with the sample in its saturated state. Note
that a saturated magnetic thin film with a homogeneous magnetization does not
generate a stray field, such that a remaining contrast arises from a local variation
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(a) sample SI, demagnetized in-plane ∆f1 ±3.5Hz
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Figure 5.8: The depicted ∆f1 data is used to determine the TF for the presented
quantitative MFM measurements. Panel (a) shows the ∆f1 data
acquired on the sample SI in the in-plane demagnetized state, and
panel (b) the ∆f1 data for the sample SI in its saturated state.

of the van der Waals force. The result of this subtraction ∆f1 −∆f sat
1 is depicted

in figure 5.9(c). The granular background contrast indeed disappears inside the
black domains, but becomes doubled inside the white domains. For the sum of
the data ∆f1 + ∆f sat

1 in figure 5.9(e) the granular contrast is doubled in the area
of the black and annihilated in the area of the white domains. Consequently, the
granular contrast does not arise from a spatial variation of the van der Waals force
but must be of magnetic origin because it depends on the direction of the (local)
domain magnetization. The contrast in ∆f sat

1 thus arises from an in-homogeneous
magnetic moment distribution inside the sample.

For the tip calibration procedure, it is necessary to remove this granular back-
ground contrast from the measured frequency shift image. If this was not done,
the granular background pattern would be convoluted into the tip-transfer func-
tion extracted from the measured ∆f1 pattern and a stray-field derivative pattern
obtained from an estimated magnetization pattern with a homogenuous up/down
magnetization of ±Msat determined from magnetometry (see section 1.3). Fig-
ure 5.9(f) depicts the multiplication of the frequency shift data in saturation ∆f sat

1

with the negative normalized magnetization pattern −Mz(r)/Msat. Subtracting
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this result from ∆f1 yields the ∆f subtr
1 -pattern without the background depicted

in figure 5.9(g) which is used for the determination of the TF .
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Figure 5.9: (a): measured frequency shift ∆f1 acquired on the demagnetized
sample. The contrast is dominated by the up/down domain contrast,
but a weak granular background is also visible. (b): Frequency shift
∆f1 measured on the saturated sample; (c): Difference of (a) and
(b), the background granularity disappears only in the areas of the
black domains; (d): same as panel (b) (e): Sum of (a) and (d), the
background granularity disappears only in the area of the white do-
mains; (f): background contrast (from panel (b) ) with the negative
normalized magnetization pattern −Mz(r)/Msat; (g): Difference of
(a) and (f), no granularity is visible.
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Tikhonov Parameter

The determination of the TF from the measured frequency shift data ∆f1
1 and

the simulated effective stray field gradient of the calibration sample following the
methods described in section 1.3 as

TF (k) := ∆f̂ subtr
1,meas(k) ·

(
dĤA1

n (k, z)

dn

∣∣∣
eff

)−1

(5.15)

is an ill-posed problem and requires a regularization60. Here the Tikhonov method61,62,60

is used. The problem in equation 5.16 becomes

TF (k) ≈ ∆f̂ subtr
1,meas(k) ·


dĤ

A1
n (k, z)

dn

∣∣∣
eff

+ δ ·
dĤ

A1
n (k,z)
dn

∣∣∣
eff∣∣∣dĤ

A1
n (k,z)
dn

∣∣∣
eff

∣∣∣
2




−1

. (5.16)

Because the measured frequency shift signal decays rapidly with higher spatial
frequencies of the magnetization pattern, the noise limit of the measurement de-
termines the smallest spatial wavelength, for which the TF can be determined.
The Tikhonov parameter δ limits the minimum size of the factor in brackets of
equation 5.16 and therefore defines a cutoff at small wavelengths. The depen-
dence of the (circularly averaged) TF on the Tikhonov parameter δ is illustrated
in figure 5.10. Higher values of δ lead to a smoother tip transfer function, but
to reduced TF amplitudes at higher spatial frequencies k. Smaller values of δ
increase the value of TF at all frequencies but also generate more noise, particu-
larly at high spacial frequencies k, i.e. smaller wavelengths. A good approach to
find the best Tikhonov parameter is to study the dependence of the size of the
transfer function on the Tikhonov parameter at smaller spatial wavelengths close
to the minimally measurable wavelength λmin. The best choice for the Tikhonov
parameter δ is the highest value that does not have a significant influence on TF in
the range of λ > λmin. In this way numerical noise is suppressed and the resulting
TF describes the MFM contrast formation correctly for λ > λmin. For the data
presented here, we found that an optimal TF with λmin=30nm is obtained with a

1Note that properties without hat are in direct space, i.e. ∆f1(x, y), while hat properties, like
∆f̂(k) are in Fourier space.
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Figure 5.10: The plots illustrate the k-dependence of the tip transfer function
for different Tikhonov parameters δ. The average of all pixels with
k =

√
k2

x + k2
y i.e., the circular average in Fourier space is plotted.

Tikhonov parameter of δ = 1016.

Averaging process

We obtain an improved estimate for the TF by averaging the TF s determined from
2601 different 1.25µm × 1.25µm subimages extracted from of the 5µm × 5µm
data depicted in figure 5.8. The size of these subimages is chosen to match that
of the ∆f1 data presented in section 5.8 which have a size of 1250 nm × 1250 nm
and a resolution of 256×256 pixels. The background subtraction in figure 5.9 is
illustrated for one of these subimages. An additional circular averaging of the
TF in Fourier space over all pixels with k =

√
k2

x + k2
y reduces artifacts in the

simulated frequency shift data.

5.7 Sample ASI – an overview

5.7.1 Magnetization behavior

In a first measurement series the nature of the magnetization process of the sample
ASI was studied. The decanted and aligned frequency shift data ∆f1/LCF are
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depicted in figure 5.11. Note that the magnetization of the tip flipped when we
ramped up the external B-field from 15mT to 20mT. Images obtained after the tip
magnetization has flipped, are shown with an inverted contrast in figure 5.11. This
is to keep the same appearance of the up/down domain pattern before and after the
flipping of the tip’s magnetization. At B = −250mT the sample is saturated. At
an external B-field of B = −1mT several small circular domains are visible with a
magnetization antiparallel to the external B-field. At B = +5mT the small white
domain in the center of the image expands but retains its strong circular curvature
at the bottom (see arrow). Two further circular domains appear, indicated by the
yellow circles in figure 5.11. With increasing B-field more circular small domains
appear and existing ones expand to larger domains. Generally the domains exhibit
a strong wall curvature and at many locations expanding domains do not join, but
stay separated by narrow domains with negative (black) magnetization. When
the white domains coalesce at B = +42mT several circular black domains persist
inside the large white ones. Those small reversal domains are still present at higher
B-fields before the sample is saturated at B > 97mT.
The observed small circular domains occur only in the sample ASI and not in the

sample SI. Furthermore such small bubble domains with a diameter smaller than
100 nm are not stable in a sample without DM interaction. We hence conclude that
these small bubble domains must be skyrmions stabilized by the DM interaction
arising from the asymmetric interfaces of the sample.
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B=-1mT B=-1mT B=+5mT

B=+ 15mT B=+ 10mT B=+ 10mT

B=+20mT B=+ 25mT B=+ 30mT

B=+ 62mT B=+ 50mT B=+ 42mT

B=+ 71mT B=+ 82mT B=+ 97mT

1500 nm

Figure 5.11: Processed frequency shift data ∆f1 for a B-field series measured
on the sample ASI is depicted with a white to black contrast of
±2.5Hz. The applied processing removed effects of the canted
oscillation of the cantilever. Panels with identical B-field values
show the data of subsequent measurements.
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Figure 5.12: Processed ∆f1/LCF of the overview scans acquired at B =
−1.1mT after repeated negative saturation of the sample. The
applied processing removed effects of the canted oscillation of the
cantilever. The white to black contrast scale is ±1.4Hz for all
panels.

5.8 Measurements of individual skyrmions

In order to study individual skyrmions, overview scans with an 11µm×11µm area
were acquired in an external field of B = −1.1mT after a negative saturation of
the sample to determine locations where skyrmions appear (cf. fig. 5.12). After-
wards, selected areas were scanned with a pixel resolution of 4.9 nm per pixel. The
frequency shift data ∆f1 of the overview scans are depicted in figure 5.13. The
observed skyrmions are marked by the yellow circles in figure 5.13(a). Only a few
skyrmions exist in the 11µm×11µm area and that they often re-appear at the
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same location after repeated saturation processes. From this we conclude that the
physical properties at these locations must be substantially different from those
averaged over the whole film area.
The frequency shift ∆f1 data of the high resolution MFM scans acquired in

different fields are shown in figure 5.13. Data acquired at one location are ordered
as a column in figure 5.13. Panels (a), (e) and (i) show the ∆f1 data obtained
at B = −1.1mT after negative saturation of the sample. For this identical initial
conditions the maximum ∆f1 contrast and width of the skyrmions vary consider-
ably. The maximum frequency shift signal in the center of the skyrmions is 1.36Hz
for the upper and 1.03Hz for the lower skyrmion of group A, whereas it is 2.72Hz
for the skyrmion of group B. Further, the field dependence of the skyrmions for
fields applied antiparallel to their core magnetization also shows substantial differ-
ences. The lower skyrmion of group A vanishes during the scan in figure 5.13(b)
when it is exposed to the stray field of the tip and an externally applied B-field of
-2.1mT. The upper skyrmion of group A remains unchanged in an external B-field
of -2.9mT (fig. 5.13(c) ). Both skyrmions of this group are no longer visible in
the scan at B = −3.5mT in fig. 5.13(d). The skyrmion of group B exhibits a
much higher stability. Its shape and maximum frequency shift signal in fig. 5.13(f)
remain unchanged at an external B-field of -22.2mT. When ramping down the
field to B = −1.1mT it develops an elliptical shape, indicated by the arrow in in
fig. 5.13(g). This skyrmion is annihilated in an external field of -26.7mT. The left
skyrmion of group C already vanishes in a B-field of -2.1mT (see white arrows in
panels (i) and (j)). The right skyrmion has a slight elliptical shape at -1.1mT that
develops towards a circular shape at higher negative fields, and disappears above
B = −18.3mT. Panel (d), (h) and (l) of figure 5.13 show the saturated states.
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Figure 5.13: High resolution frequency shift data ∆f1 acquired in different B-
fields, and at different locations is illustrated. The color scale in Hz
for each group (column) is given at the bottom of the figure.
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5.9 Quantitative reconstruction of the

background

The background signal visible in figure 5.13(d), (h) and (l) arises from a spatial
variation of the magnetic moment in the Co layers. This section describes how to
reconstruct the variation of the magnetic moment averaged over all six Co layers
from the measured ∆f1 signal. The individual Cobalt layers in the sample ASI
are located at the distances z0(n) from the surface of the sample with z0(n) =

(n− 1)(dCo + dIr + dPt) + dtop i.e.:

z0(1) = 4 nm,
z0(2) = 6.6 nm,
z0(3) = 9.2 nm,
z0(4) = 11.5 nm,
z0(5) = 13.8 nm,
z0(6) = 16.1 nm,

for dCo = 0.6 nm, dIr = 1 nm, dPt = 1 nm and dtop = 4 nm. For the calculation
of the average magnetization variation pattern M̂avg

z (k), a combined wavelength
dependent distance loss factor can be defined as

α(k) =
6∑

n=1

e−k(dts+A1+z0(n)), (5.17)

where dts = 12 nm is the tip-sample distance, and A1 = 5 nm the oscillation
amplitude of the cantilever. In Fourier space such a pattern M̂avg

z (k) is linked to
the effective stray field derivative at the distance dts +A1 = 17 nm from the sample
surface by (see section 1.3)

dĤA1
n (k)

dn

∣∣∣
eff

=
1

A1

LCF (k, η)I1(z̃) · α(k) ·
(
1− e−kdCo

)
M̂avg

z (k). (5.18)

Thus the magnetization pattern Mavg
z can be recovered from the measurements

with

M̂avg
z (k) =

∆f̂1,meas(k)

TF (k) · α(k) · (1− e−kdCo)

(
1

A1

LCF (k, η)I1(z̃)

)−1

. (5.19)
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Figure 5.14: Illustration of the interaction of the tip equivalent surface charge
σtip with the individual magnetic layers of the sample ASI and the
definition of Mavg

z with the combined distance loss factor α(k)

The denominator in equation 5.19 is small for high spacial frequencies k. There-
fore some regularization procedure must be used. Here this is done by adding a
k-dependent window function WF (k) to the denominator which limits the ampli-
fication at smaller wavelengths with k > klimit. Equation 5.19 then becomes

M̂avg
z (k) =

∆f̂1,meas(k)

TF (k) · α(k) · (1− e−kdCo) +WF (k)

(
1

A1

LCF (k, η)I1(z̃)

)−1

,

(5.20)
with

WF (k) := exp

[
−
(
klimit

k

)ν ]
, (5.21)

where 1/klimit is the cutoff wavelength and ν the steepness of the exponential
filter function. The window function takes values between WF (|k| � k) = 0

and WF (|k| � k) = 1. A steep transition is i.e., obtained for ν = 36. Mavg
z (k)

is then recovered only for wavelengths larger than 1/klimit. The denominators of
equations 5.19 and 5.20 are plotted in figure 5.15 together with the original tip
transfer function TF (k).

With equation 5.20 an average magnetization pattern M̂avg
z (k) can be calcu-

lated from the measured frequency shift pattern ∆f1,meas(k) for wavelengths λ >
1/klimit = 50 nm. Hence only magnetization variations with a wavelength larger
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Figure 5.15: The signal strength of the magnetic imaging process is plotted as
a function of the spacial wavelength 1/k. The plot shows the ini-
tial transfer function of the tip TF (k) (blue curve), the trans-
fer function multiplied with distance- and thickness-loss factors
(1−e−kdCo)α(k)TF (k) for the sample ASI (red curve) and the de-
nominator of equation 5.20 TF (k) ·α(k) ·

(
1− e−kdCo

)
+WF (k)

with 1/klimit = 26 nm (dashed, green curve).
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than 50 nm can be obtained. Panel 5.16(a) depicts the background magnetiza-
tion patternMz(r) for group A based on the frequency shift data in figure 5.13(d).
Panels (d) and (g) show the same for the groups B and C, based on the data in fig-
ure 5.13(h) and 5.13(l), respectively. The simulated frequency shift patterns ∆f sim

1

in figure 5.16(b), (f) and (h) illustrate the expected MFM signals for the respective
magnetization patterns ∆Mz(r). The panels (c), (f) and (i) in the last row of fig-
ure 5.16 depict the differences between measured and simulated frequency shifts.
From these differences we draw two conclusions: Firstly, ∆fmeas1 −∆f sim

1 remain an
order of magnitude smaller than the measured frequency shift patterns, which in-
dicates that the determined magnetization patterns are valid estimates. Secondly
for all three groups noise and mazelike artifacts are visible in ∆fmeas1 −∆f sim

1 which
suggest that the signal to noise ratio of the measured frequency shift data is not
sufficient to recover ∆Mz(r) for spacial frequencies with |k| > 1/50 nm.
For the recovered variation of the magnetic moment areal density we find a

standard deviation of 66 kA/m·dCo which corresponds to 10% of Ms · dCo. The
peak-to-peak variation in the magnetic moment areal density is approximately
±1

3
Ms · dCo. This can be attributed to a variation of the Co layer thickness of

0.2 nm, corresponding to 1.2 atomic layers in each Co layer. Ab initio calculations
performed by Yang et al.57 predict a change of the DM interaction from 2.54mJ/m2

for 3 monolayers (≈ 0.6 nm) to 3.71mJ/m2 for 2 monolayers (≈ 0.4 nm) of Co on
Pt.
The variation of the local DMI determined from the MFM measurements of

individual skyrmions (3.19mJ/m2 <= D <= 3.49mJ/m2), described in the fol-
lowing section 5.10, thus is in range of values theoretically predicted for the Co
layer thickness variations determined experimentally.

5.10 Calculation of the skyrmion magnetization

profiles and MFM signals

In section 5.5 the measured domain size was used to determine the average DM
interaction in the sample ASI. The obtained value for D is too small to support
a skyrmion phase. Nevertheless, a few skyrmions re-appearing at specific loca-
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Figure 5.16: Reconstruction of the background magnetization variation of the
sample ASI using equation 5.20 with 1/klimit = 50 nm. Panels (a),
(d) and (g) depict the reconstructed magnetization pattern ∆Mz(r)
for the area of the skyrmion groups A, B and C with a white to
black contrast scale of ±1

2Ms = 327 kA/m. Panels (b), (f) and
(h) illustrate the simulated MFM signal based on the reconstructed
magnetization patterns in (a), (d) and (g), respectively. Panels (c),
(f) and (i) illustrate the difference between the measured data in
saturation (see fig. 5.13) and the simulated frequency shifts from
panels (b), (f) and (h). All frequency shift data is displayed with
the color scale given on the right.
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tions were imaged by MFM (figure 5.12). This and the different contrast of the
skyrmions in figure 5.13 indicates that these locations of the films may have a
local DM interaction that is substantially different from that determined from the
domain size. This section describes the process for obtaining local D-values. This
is achieved by matching model calculations of the MFM contrast generated by a
skyrmion to measured MFM data.

The spin texture of a skyrmion is determined by the energy density

W = A
∑

i

(
∂m

∂xi

)2

−Km2
z − µ0M ·Hext −

1

2
µ0M ·Hd + wD, (5.22)

where A is the exchange stiffness, m = M/Ms the normalized magnetisation, K
the uniaxial anisotropy, Hext an externally applied field and Hd the demagnetizing
field. The energy density wD is the contribution of the DM interaction. For the
case of an interfacially induced DM interaction wD is52

wD = −D
[(
mx

∂mz

∂x
−mz

∂mx

∂x

)
+

(
my

∂mz

∂y
−mz

∂my

∂y

)]
. (5.23)

With the reduced coordinates defined by Bogdanov and Hubert63:

w :=
W

µ0HDMs

and: HD :=
D2

AK

x̃i := xi
A

D
h := H/HD

a reduced energy density w can be defined as:

w =
∑

i

(
∂m

∂x̃i

)2

− β̃m2
z −m · hext −

1

2
m · hd +

wD

D
, (5.24)

where
β̃ = β(1 +

1

Q
) (5.25)
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with β = AK/D2, Q = K/Kd, and Kd = 1
2
µ0M

2
s . Using variational energy

minimization Bogdanov and Hubert63 obtained the Euler equation

d2θ

dρ2
+

1

ρ

dθ

dρ
−
(

1

ρ2
+ β̃

)
sin(θ) cos(θ) +

sin2(θ)

ρ
− 1

2
h sin(θ) = 0, (5.26)

where the normalized magnetization m(r̃) is described in spherical coordinates as

m = (sin(θ) cos(ψ), sin(θ) sin(ψ), cos(θ))

and the coordinate vector in cylindrical coordinates as

r̃ = (ρ cos(ϕ), ρ cos(ϕ), z̃) .

The Euler equation 5.26 with boundary conditions θ(0) = π and θ(∞) = 0 de-
fines the skyrmion spin texture. Note that equation 5.26 is a two-dimensional
description of the skyrmion profile, i.e. equation 5.26 describes skyrmions that are
uniform along the z-direction. For calculations of the spin texture, it is typically
assumed that the demagnetization field is locally defined as hd = −m. In reality
the demagnetization field deviates from this approximation, and depends on the
thickness of the sample and the explicit local magnetization structure. Hence, to
describe the skyrmions in the sample ASI with the two dimensional equations 5.22
and 5.26, the magnetostatic energy term 1

2
m · hd and also β̃ (equation 5.25) need

to be adapted. For this we use a scaled magnetization Ms → αMs with α < 1 to
match a total magnetostatic energy density calculated as 1

2
α ·m · hd (eq. 5.23) to

a magnetostatic energy density calculated numerically for the layered structure of
the sample ASI. The energy density can be obtained similar to equation 5.15 as

ems = − 1

dCoAsample

1

2
µ0 (5.27)

·
∫

dCo

∫

Asample

(
MsHd(r, z) +

1

5

4∑

n=1

n ·Msk(r) ·Hz(r, d
il
n + z)

)
drdz,

with the interlayer distances dil
n described in section 5.5 for the skyrmion present

in the 5 Co layers with DM interaction. The demagnetization field Hd(r, z) and
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Figure 5.17: Scaling factor a for M in equation 5.22 as a function of the DM
interaction D.

the stray field Hz(r, d
il
n + z) are again numerically calculated. The magnetization

pattern
Msk(r) = Ms · cos (θ(r)) (5.28)

is obtained by solving the Euler equation 5.26 using the scaled magnetization αMs.
The reduction factor α must be chosen such that the magnetostatic energy density

ems =
1

2
µ0(αMs)

2 (5.29)

calculated in the local approximation matches that calculated numerically with
the expression 5.28 for the layer structure of the sample. Because the skyrmion
profile is a priori unknown, an initial scaling factor α = 0.52 is used to calculate the
magnetostatic energy as given in equation 5.28 and to find an improved alpha with
equation 5.29. This process is repeated until self-consistency is reached, which is
the case after two calculation cycles. Figure 5.17 shows the dependence of α on
the DM interaction D2.

Using the scaled magnetization with the factor alpha given in figure 5.17 the
skyrmion spin texture can be calculated by solving equation 5.22 numerically.

2It is noteworthy that the stray field of skyrmions arises from magnetic surface charges, but
also from magnetic volume charges from the skyrmion Néel type wall profiles. In this thesis
the contributions of the latter have been neglected. For this reason the obtained D values,
and skyrmion profiles differ from those of an upcoming publication64.
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Solutions for different DM interactions are plotted in figure 5.18. Note that the
skyrmion magnetization profiles are different from those of conventional bubble
domains. The latter have a constant magnetization at and near the center of
the domain, which is not the case for skyrmions. Their magnetization reaches a
perpendicular orientation only at the center and immediately rotates away from the
vertical direction with increasing distance from the center. Higher DM interaction
values lead to wider skyrmions, because the wall energy becomes smaller, but the
vertical component of the magnetization still drops off away from the center.
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Figure 5.18: Angle θ of the magnetic moments of a skyrmion as a function of
the radial position r with different DM interaction D.

From the skyrmion magnetization structure the corresponding stray field and
MFM contrast can be calculated using the quantitative MFM methods described
in section 1.3. Figure 5.19 shows the cross sections along the x-direction of MFM
for skyrmions with different D-values. A skyrmion with a DM interaction of D =

2.00mJ/m2 which is close to Davg = 2.04mJ/m2 obtained from the domain size
analysis, generates an MFM contrast of only 0.2Hz. This is much smaller than
the typical contrast observed at the center of the skyrmions (ranging from 1Hz to
2.6Hz) shown in figure 5.13, and also smaller than the background signal arising
from the variation of the Co layer thickness (see section 5.9). In order to exclude the
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existance of skymrions with such low D values, the background contrast obtained
in a field of 1mT is compared to that obtained in fields of 30mT and 80mT.
No difference of the background images is found. Consequently, skyrmions with
a D ≈ 2.00mJ/m2 do not exist. For larger D-values, skyrmions with a larger
diameter and hence a stronger MFM contrast are found. The comparison of the
MFM contrast obtained at the skyrmion center for different D-values (figure 5.19)
with the experimentally observed contrast in figure 5.20 reveals that the local D
values at the locations of the skyrmions must be between D = 3.06mJ/m2 and
D = 3.48mJ/m2, i.e. considerably larger than the average D-value of the film.
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Figure 5.19: Section along the x-direction of simulated frequency shift data ∆f1

for skyrmions with different DM interaction in the sample ASI.

A comparison of the simulated and measured frequency shift data for the skyrmions
of the groups A and B is shown in figure 5.20. In order to compare the experi-
mental and the model data directly, it is useful to subtract the background varia-
tion obtained in saturation (fig: 5.20(b) ) from the data showing the skyrmions in
fig. 5.20(a). The resulting ∆f subtr

1 -data are shown in figure 5.20(c). Figure 5.20(d)
shows the simulated ∆f1 data for DM interactions of D = 3.19mJ/m2 and D =

3.06mJ/m2 for the upper and lower skyrmion of group A and D = 3.48mJ/m2 for
the skyrmion of group B.
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The D-values are adjusted to match the observed experimental contrast at the
center of the skyrmion. Consequently, the calculated cross-section will match those
obtained from the experimental data at the center of the skyrmion (figure 5.21),
but not necessarily away from center. Indeed the simulated skyrmion profiles
are generally narrower than the experimental ones. This becomes particularly
apparent by the difference images shown in figure 5.20(d) and can be explained
by the additional influence of magnetic volume charges as mentioned above in
footnote 2, page 90. For the upper skyrmion of group A which has a circular
shape, the difference image shows a ring-like structure confirming that the radius
of the simulated skyrmion is smaller than that obtained from the experimental
data. For the skyrmions that have an elliptical shape (lower one of group A and
that of group B) the model profile matches well the experimental profile taken along
the short axis of the ellipsis (see sections in figure 5.21(c),(d) and 5.21(e), (f) ).
This explains the two lobes visible in center and right image of figure 5.20(e). Note
that a more conventional approach would be to minimize the least square deviation
between the simulated and measured ∆f1 pattern of the skyrmion. A better match
of the simulated and measured skyrmion profiles would then be obtained, but the
simulated center contrast would become too large. The least square method is not
used because the it would average between the long and short radius in the case
of elliptically shaped skyrmions such that neither the short nor the long elliptical
axis would be well matched.
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Figure 5.20: Comparison of the measured (∆fmeas
1 ) and simulated frequency

shift (∆f sim
1 ) for the upper and lower skyrmions of group A and

the skyrmion of group B. (a): measured frequency shift ∆f1 for the
upper (left image) and lower (center image) skyrmion of group A
and the skyrmion of group B (right image). (b): frequency shift
measured in saturation for the same sample areas as (a). (c): back-
ground subtracted data ∆f subtr

1 i.e. the differences of (a) and
(b). (d): frequency shift ∆f sim

1 for the individual skyrmions simu-
lated with D = 3.19, 3.06, and 3.48 mJ/m2 for the upper/lower
skyrmion of group A and for the skyrmion of group B, respectively.
(e): difference between the background subtracted measurement
data in (c) and the simulations in (d).
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Figure 5.21: Comparison of measurement (blue lines) and simulation (dashed
lines) at the locations indicated in figure 5.20(c). The data for the
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5.11 Conclusions

High sensitivity MFM performed in vacuum with capacitive tip sample distance
control (chapter 4) was used to study the evolution of the micromagnetic state
and to image skyrmions with a so far unmatched SNR that also surpasses that of
XMCD Photoemission Electron Microscopy (PEEM) measurements of skyrmions
performed by Moreau-Luchaire et al.8. A novel method for the determination of
the average DM interaction from the near-equilibrium domain structure of the
sample ASI was developed. The average value of D = 2.04 mJ/m2 is higher
than the D = 1.6 ± 0.2 mJ/m2 found by Moreau-Luchaire et al. . To date it
remains unclear whether this higher values arise from a better interface quality
of the sample ASI that consists of only five repeats of Pt/Co/Ir compared to the
ten repeats used in Ref.8, or results from the improved analysis method developed
here.

MFM images of skyrmions performed after repeated saturation processes re-
vealed that the skyrmions re-nucleate at a few specific locations of the film indi-
cating that these may have distinct physical properties. High-resolution images
of these skyrmions revealed that their MFM contrast varies substantially between
1.1 Hz and 2.8 Hz, and that some skyrmions have an elliptical shape. Local D-
values could be obtained from fitting model calculations to the measured data.
These D-values varied between D = 3.06 mJ/m2 and D = 3.48 mJ/m2 and are
thus considerably larger than the Davg = 2.04mJ/m2 determined from an analysis
of the equilibrium domain size.

Apart from the skyrmions, a background contrast that remains constant in all
applied fields was observed. Using quantitative MFM methods (section 1.3) the
spatial variation of the areal magnetic moment density could be determined. The
latter corresponds to a simultaneous standard deviation of all Co layers equiva-
lent to approximately 0.3 monolayers (ML), while the minimum-maximum span is
about ±1.2 ML. According to ab-initio calculations by Yang et al.57 performed for
Co/Pt interfaces, the DM interaction varies between 2.59mJ/m2 and 3.72mJ/m2

for 3 and 2 ML of Co on 3 ML of Pt. The span of local D-values determined
from the presented MFM data is thus contained in the D-span from Ref.57. From
this we conclude that in our films, skyrmions appear solely at location with higher
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D-values presumably arising from locally thinner Co layers. Consequently these
skyrmions are well pinned, because they can only exist at film locations providing
sufficiently high DM interaction. This explains that to date the current densities
required to manipulate skyrmions in multilayer systems with interfacial DM in-
teraction were found to be orders of magnitude higher than those found in single
crystalline materials.
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6 Summary and Outlook

Two novel methods for controlling the tip-sample distance for MFM based on bi-
modal cantilever excitation modes were developed. With these, the topography
and magnetic stray field emanating from the surface of a sample can be simulta-
neously measured in a single passage. Moreover these modes are compatible with
operation in vacuum and prevent the use of typical lift-mode operation relying on
intermittent contact mode for mapping the topography of the sample.

The first method discussed in chapter 3 makes use of different decay lengths
of magnetic and van der Waals forces acting between tip and sample. A stable
MFM operation at tip sample distances of only a few nanometers becomes possible
resulting in highest lateral magnetic resolution that can be better than 10 nm.
However, this method is limited to small tip sample distances where the van der
Waals forces become sufficiently large. This limitation is overcome by the second
distance control method presented in chapter 4. It uses the tip sample capacity as a
proxy for the sample’s topography and allows MFM measurements performed with
the tip tracing the local topography of the sample or with a tip sample distance that
is kept constant in average. Both operation modes are suitable for measurements in
externally applied B-fields, as long as possible field induced changes of the quality
factor are considered and the corresponding feedback setpoints are adjusted. The
operation at constant average height is preferred, when a later quantitative analysis
of the MFM data is considered. The theoretical background of quantiative MFM,
and the tip calibration procedures used here are reviewed in section 1.3.

In chapter 5 these data analysis and measurement techniques have been applied
to study multilayer ferromagnetic samples with perpendicular anisotropy and in-
terfacially induced DM interaction fabricated with a commercial UHV sputter de-
position system. A summary of the obtained results has been given in section 5.11.
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Outlook

Capacitive distance feedback method

The capacitive distance feeback method presented in chapter 4 requires that the
second mode quality factor remains constant at least during the acquisition of
one image, and preferably over a longer period of time. The second mode quality
factor can however be affected by dissipative tip sample interaction forces, or by
dissipation of the cantilever motion occurring in large magnetic fields. As discussed
in sections 4.2 and 5.6 a change of the second mode quality factor will result in a
corresponding change of the tip sample distance.

A future development is to modulate the electrostatic tip sample force at lower
frequencies and to use the amplitude of the second side band of the fundamental
mode resonance for distance control. The side band amplitude is not affected
by changes of the quality factor if the amplitude of the fundamental mode mode
resonance is kept constant by the amplitude feedback of the PLL.

Calibration sample for quantitative MFM

The calibration of the MFM tip is an essential step for the quantitative analysis
of MFM data. In order to determine the TF for high spacial frequencies a sam-
ple with sharp changes of the magnetization direction are required. In the Co/Pt
multilayer sample which has been used for the calibration in this thesis, the width
of the domain walls is determined by the anisotropy and exchange constants of
the continuous Co layers. Sharper transitions could be obtained in films with de-
coupled magnetic grains. This can be achieved by the co-deposition of Chromium
together with the Co, and a subsequent annealing of the sample. The anneal-
ing process drives the Cromium to the boundaries of the Co grains such that the
inter-granular exchange coupling is broken.

In addition, a further improvement of the surface roughness is required to ac-
quire MFM images at tip-sample distances considerably below 10 nm. New sputter
deposition methods and epitaxially grown samples are envisoned to obtain lower
surface roughness.
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Improved signal to noise ratio

To date, the process used to deposit magnetic material onto the tip, also coats the
Si cantilever. Although the latter layer is significantlly thinner than that on the
tip (section 2.2), the quality factor of the cantilever is lowered from about 150’000
to 200’000 down to about 50’000. The next cantilever substrate holder will include
a shadow mask and a positioning unit to prevent the coating of the cantilever.

Improved multilayer materials with interfacial DM interaction

As discussed in section 5.11 the variation of the thickness of the ferromagnetic
layers in multilayers with interfacial DM interaction gives rise to substantial spatial
variations of the latter. This leads to pinning of the skyrmions such that large
current densities are required for the manipulation of the skyrmions.
Future developments aim at the development of multilayers with atomically con-

trolled thicknesses of the ferromagnetic layers and the design of interfaces providing
strong homogeneous DM interaction.
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