Stieb, Sara M. and Cortesi, Fabio and Sueess, Lorenz and Carleton, Karen L. and Salzburger, Walter and Marshall, N. Justin. (2016) Why UV- and red-vision are important for damselfish (Pomacentridae): Structural and expression variation in opsin genes. Molecular Ecology , 26 (5). pp. 1323-1342.
Full text not available from this repository.
Official URL: http://edoc.unibas.ch/52475/
Downloads: Statistics Overview
Abstract
Coral reefs belong to the most diverse ecosystems on our planet. The diversity in coloration and lifestyles of coral reef fishes makes them a particularly promising system to study the role of visual communication and adaptation. Here, we investigated the evolution of visual pigment genes (opsins) in damselfish (Pomacentridae), and examined whether structural and expression variation of opsins can be linked to ecology. Using DNA sequence data of a phylogenetically representative set of 31 damselfish species, we show that all but one visual opsin are evolving under positive selection. In addition, selection on opsin tuning sites, including cases of divergent, parallel, convergent and reversed evolution, has been strong throughout the radiation of damselfish, emphasizing the importance of visual tuning for this group. The highest functional variation in opsin protein sequences was observed in the short- followed by the long-wavelength end of the visual spectrum. Comparative gene expression analyses of a subset of the same species revealed that with SWS1, RH2B and RH2A always being expressed, damselfish use an overall short-wavelength shifted expression profile. Interestingly, not only did all species express SWS1 - a UV-sensitive opsin - and possess UV-transmitting lenses, most species also feature UV-reflective body parts. This suggests that damsels might benefit from a close-range UV-based 'private' communication channel, which is likely to be hidden from 'UV-blind' predators. Finally, we found that LWS expression is highly correlated to feeding strategy in damsels with herbivorous feeders having an increased LWS expression, possibly enhancing the detection of benthic algae. This article is protected by copyright. All rights reserved.
Faculties and Departments: | 05 Faculty of Science > Departement Umweltwissenschaften > Integrative Biologie > Evolutionary Biology (Salzburger) |
---|---|
UniBasel Contributors: | Salzburger, Walter |
Item Type: | Article, refereed |
Article Subtype: | Research Article |
Publisher: | Wiley-Blackwell Publishing |
ISSN: | 0962-1083 |
e-ISSN: | 1365-294X |
Note: | Publication type according to Uni Basel Research Database: Journal article |
Identification Number: |
|
Last Modified: | 25 Oct 2017 13:32 |
Deposited On: | 25 Oct 2017 13:32 |
Repository Staff Only: item control page