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Chapter 1

Introduction

In this thesis we present and analyze the numerical approximation of the second
order electromagnetic and acoustic wave equation by the interior penalty (IP)
discontinuous Galerkin (DG) finite element method (FEM). In Part I we focus
on time-harmonic Maxwell source problems in the high-frequency regime. Part
II is devoted to the study of the IP DG FEM for time-dependent acoustic and
electromagnetic wave equations.
We begin by stating Maxwell’s equations in time and frequency domain. We

proceed by a variational formulation of Maxwell’s equations, and describe the
key challenges that are faced in the analysis of the Maxwell operator. Then,
we review conforming finite element methods to discretize the second order
Maxwell operator. We end this general introduction with some numerical results
to highlight the performance and feasibility of conforming FEM for Maxwell’s
equations.
For an extensive discussion of Maxwell’s equations and their conforming

finite element discretization, we refer to [38, 55] and the references cited therein.

1.1 Maxwell’s equations

Amacroscopic electromagnetic field created by static electric charges with charge
density ρ and a directed flow of electric charge with current density J is de-
scribed by the four Maxwell’s equations,

∂B
∂t
+∇× E = 0, (1.1)

∇ · D = ρ, (1.2)

∂D
∂t

−∇×H = −J , (1.3)

∇ · B = 0. (1.4)

The vector fields E ,H,D,B,J and the scalar ρ are functions of position x ∈ R3
and time t.
Equation (1.1), Faraday’s law, describes the effect of a changing magnetic

induction B on the electric field intensity E . Equation (1.2) is Gauss’ law,
and links the divergence of the electric displacement D to the charge density ρ.
Equation (1.3) is Ampère’s law, and describes the effect of a changing electric

4



Introduction 5

displacement D and a flow of electric charges J to the magnetic field intensity
H. The last equation is Gauss’ law for magnetic charge, and reflects the fact
that the magnetic induction B is solenoidal.
It can be shown that from charge conservation

∇ · J + ∂ρ

∂t
= 0 (1.5)

and the fundamental field equations (1.1) and (1.3) follows

∂

∂t
(∇ · B) = ∂

∂t
(∇ · D − ρ) = 0.

Hence, the divergence constraints (1.2) and (1.4) are not independent relations,
and if they hold at one time, they hold for any time. In this sense, (1.2) and (1.4)
can be viewed as consistency conditions on the initial data.
The set of six independent equations (1.1) and (1.3) for the twelve unknown

field components is complemented by two constitutive laws that relate B to H
and D to E respectively. For the case of linear, isotropic, possibly inhomoge-
neous, media we have

D = εE , (1.6)

B = µH, (1.7)

with scalar, positive, bounded functions of position ε, µ. The relative electric
permittivity ε and relative magnetic permeability µ are material properties. One
further constitutive relation arises in conducting materials. Here, the electro-
magnetic field itself gives rise to currents. If the fields are not too strong, Ohm’s
law can be assumed.

J = σE + Js. (1.8)

The conductivity σ of the medium is a scalar function of position. σ is positive
in a conductor and vanishes in an insulator. Js describes the applied current
density.
By substituting (1.6)–(1.7) and (1.8) into (1.1) and (1.3), we obtain the

fundamental equations for the electric and magnetic field

ε
∂E
∂t

= ∇×H− σE − Js, (1.9)

µ
∂H
∂t

= −∇× E . (1.10)

By formally taking the time derivative of equation (1.9) and the rotation of
equation (1.10), we can eliminate the magnetic field H, and the first order
Maxwell system (1.9)–(1.10) reduces to a second order wave equation for the
electric field E

ε
∂2E
∂2t

+ σ
∂E
∂t
+∇×

(
µ−1∇× E

)
= −∂Js

∂t
. (1.11)

Note that (εµ)−
1
2 is the wave speed in the medium. A similar equation can be

derived for H, if σ = 0, or if ε, σ > 0 are constant.
By taking the Fourier transform in time and analyzing a single frequency

ω > 0, or in the case where the source term Js and, for consistency, the charge
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density ρ, vary sinusoidally time, the time-dependent Maxwell’s equations can
be reduced to stationary equations in frequency domain. We substitute time-
harmonic fields

E(x, t) = Re
(
exp(iωt)E(x)

)
, Js(x, t) = Re

(
exp(iωt)Js(x)

)
,

into (1.11), and obtain the second order time-harmonic Maxwell’s equation for
the complex-valued vector field E(x)

∇× (µ−1∇×E)− ω2(ε− iσ

ω
)E = j, (1.12)

with j = −iωJs.
The low-frequency approximation of (1.12), or Eddy current problem, con-

sists in neglecting ωε in the case where σ >> ωε. In turn, in the high-frequency
regime ω is large and σ << ωε, and the expression iσ

ω is neglected.
By substituting the constitutive relation (1.6) in the divergence constraint (1.2)

and combining it with the time-harmonic version of charge conservation (1.5)
and Ohm’s Law (1.8), we obtain the divergence constraint for E, if ω > 0,

∇ ·
(
ω2(ε− iσ

ω
)E

)
=
1

ω2
∇ · j.

Formally taking the divergence of equation (1.12) shows, that E automatically
satisfies this divergence condition.
We point out that although the divergence conditions (1.2) and (1.4) are

consequences of the fundamental equations (1.1) and (1.3) for the continuous
electromagnetic field, they should be taken into account when designing a nu-
merical method to discretize Maxwell’s equations. A numerical scheme should
produce a numerical approximation that satisfies in some sense discrete analogs
of the divergence conditions.

1.1.1 Variational formulation

In this section we describe the variational framework for Maxwell’s equations.
To do so, we consider the time-harmonic Maxwell’s equation (1.12) with µ = 1
in a Lipschitz domain Ω ∈ R3 and augment (1.12) with a perfectly conducting
boundary condition

n×E = 0 on Γ,

where n denotes the outward unit normal to Γ = ∂Ω. In the Sobolev space

H0(curl; Ω) := {v ∈ L2(Ω)3 : ∇× v ∈ L2(Ω)3, n× v = 0 on Γ },

endowed with the norm ‖v‖2curl := ‖v‖2L2(Ω)3 + ‖∇ × v‖2L2(Ω)3 , the weak form
reads: find E ∈ H0(curl; Ω) such that

a(E,v) :=

∫

Ω

[
∇×E · ∇ × v − ω2(ε− iσ

ω
)E · v

]
dx =

∫

Ω

j · v dx (1.13)

for all v ∈ H0(curl; Ω).
For the following discussion of existence and uniqueness of weak solutions

of (1.12) we assume ε and σ > 0 to be constant.
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For the low-frequency approximation of (1.12) the sesquilinear form a is
coercive:

|a(v,v)| =
∣∣∣∣
∫

Ω

[
∇× v · ∇ × v + iσωv · v

]
dx

∣∣∣∣
= ‖∇× v‖2L2(Ω)3 + ω2σ2‖v‖2L2(Ω)3 > γ‖v‖2curl > 0.

Hence, by the Lax-Milgram lemma, (1.13) is uniquely solvable in the low-
frequency case.
In the high-frequency regime, equation (1.12) is of Helmholtz type, with

indefinite sesquilinear from

|a(v,v)| =
∣∣∣∣
∫

Ω

[
∇× v · ∇ × v − ω2εv · v

]
dx

∣∣∣∣
= ‖∇× v‖2L2(Ω)3 − ω2ε‖v‖2L2(Ω)3 .

However, in contrast to the Helmholtz equation, we do not straightforwardly
obtain a compact perturbation of the form a and a G̊arding inequality that
implies existence and uniqueness of a high-frequency Maxwell solution. The
reason lies in the fact that the Sobolev space H(curl; Ω) associated with the
Maxwell operator is not compactly included in L2(Ω)3. Indeed, since formally
∇×(∇φ) = 0, the infinite dimensional space of gradients of H1

0 (Ω) functions lies
in the null space of the curl operator. This characteristic of the Maxwell operator
complicates the variational theory for the Maxwell problem substantially.
For a thorough analysis of the variational problem (1.13), we refer to, e. g., [55,

Chapter 4]. In particular, if ω2ε is not a Maxwell eigenvalue, the existence and
uniqueness of a solution for the high-frequency approximation of (1.13) is shown.

1.2 Conforming FEM for Maxwell’s equations

In the following, we discuss numerical approximations of the Maxwell operator
by means of finite element methods.
The electromagnetic fields governed by Maxwell’s equations typically have

low regularity. In fact, even for smooth material parameters, the electromagnetic
field components may have regularity below H1(Ω) in non–convex polyhedra or
polygons of engineering practice; see, e .g., [4]. It has been known for some
time that nodal FEM (i. e., H1(Ω)-conforming) discretizations of the Maxwell
operator, albeit stable, could converge quasi-optimally to an electromagnetic
field that misses certain singular solution components induced by reentrant
vertices or edges (for more details, see, e.g., [25, 26] and the references cited
therein). Consequently, in non–convex domains, setting the electromagnetic
fields in H1(Ω) leads to a well-posed problem where the fields lack certain sin-
gular (but physical) solution components.
The weighted regularization technique developed by Costabel and Dauge

in [26], and extended by Hasler, Schneebeli and Schötzau to problems of incom-
pressible magneto-hydrodynamics in [35], is a possible way to overcome these
difficulties. However, in this approach appropriate weight functions have to
be determined for every re-entrant corner or edge in the computational domain.
This procedure may be inconvenient for complicated domains, especially in three
dimensions.
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The first family of H(curl; Ω)-conforming finite elements was proposed by
Nédélec [58] in 1980. These elements are based on polynomial spaces R` which
are subspaces of the full polynomial spaces S` of degree ` on the reference ele-
ment. Nédélec proposed a second family of H(curl; Ω)-conforming edge elements
based on the full polynomial spaces in [59]. Nédélec’sH(curl; Ω)-conforming ele-
ments incorporate the minimal continuity of H(curl; Ω)-functions across bound-
aries of elements of a finite element triangulation of the domain Ω. In fact,
vector fields in H(curl; Ω) have continuous tangential component, whereas the
normal component is allowed to jump across element boundaries. In reference
to the degrees of freedom, which include edge and face moments, H(curl; Ω)-
conforming finite elements are also referred to as edge elements ; for an overview
on Nédélec’s edge elements on tetrahedral and hexahedral finite element meshes
see, e. g., [55, Chapters 5, 6].
Other families of H(curl; Ω)-conforming finite elements, which are better

suited for hp-FEM than Nédélec’s original elements, where proposed by Demkow-
icz and Vardapetyan in 1998 [28] and by Ainsworth and Coyle in 2001 [1].

1.3 Conforming FEM for Maxwell’s equations -

numerical experiments and applications

1.3.1 Nodal elements vs. edge elements

To illustrate the inaccuracy of nodal elements for Maxwell’s equations, we
approximate a singular solution to the low-frequency time-harmonic Maxwell
model problem

∇×∇×E+E = j in a 2d L-shaped domain Ω, (1.14)

augmented with perfectly conducting boundary conditions. The data j is chosen
such, that E ∈ ∇H1

0 (Ω) is the gradient of the strongest corner singularity of
the Dirichlet Laplacian in the L-shaped domain Ω = (−1, 1)2\[0, 1)2. Thus E
has regularity below H1(Ω). We employed the C++ classes of the finite element
library deal.II1 [8, 7] to compute an approximate solution to (1.14). In Fig-
ure 1.1, we plot the field intensity |E| of an approximation using standard nodal
elements (left plot) compared to an approximation with H(curl; Ω)-conforming
lowest order Nédélec elements of first type (right plot). We clearly see that the
corner singularity of E is not resolved by the H1(Ω)-conforming approximation.

1.3.2 An application: Near-field optical microscopy

In near-field optical microscopy, nanoscopic objects are observed in the spectrum
of optical light. Thereby, the quality of the observations can highly be influenced
by the geometry and materials of the microscope tip. However, methods for the
practical construction of tips of a given design require an intensive development
phase, and once established, a method is often limited to the production of one
specific type of tips. As a consequence, the tuning and testing of the relevant
parameters of the tip is usually not feasible by means of practical experiments.

1URL: www.dealii.org.
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Figure 1.1: Approximation of a singular electric field by nodal elements (left)
and edge elements (right). Plot of the field intensity around the re-entrant
corner of the computational domain.

The restrictions imposed by practical limitations and economical aspects can
however be overcome by the use of adequate mathematical models and simula-
tions.
The electromagnetic fields around the light source of a scanning near-field

optical microscope (SNOM) are described by the time-harmonic Maxwell’s equa-
tions (1.12). In collaboration with Prof. Dr. D. Pohl and Prof. Dr. B. Hecht
(Dept. of Physics, University of Basel) we formulated a two-dimensional model
that describes the physical phenomena around the end of the tip (the light
source) of a SNOM. Based on our implementation of Nédélec elements in deal.II,
[69], we developed a computational tool, which allows us to recover, for a wide
range of tips, the behavior of the electric and magnetic fields in the region
around the end of the tip and around a possible sample. For the solution of the
linear system resulting from the FEM discretization, we employed the sparse
direct solver PARDISO 2 developed in the group of Scientific Computing at the
University of Basel.
In Figure 1.2 we see the influence of the geometry of the tip on the electro-

magnetic fields in the presence of a nanoscopic sample.
In Figure 1.3, we can numerically observe so-called plasmon waves, which

are excited by illumination at the surface of a thin metal film on top of an
underlying glass plate.

2http://www.computational.unibas.ch/cs/scicomp/software/pardiso
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Figure 1.2: Two-dimensional model of the light source of a scanning near field
optical microscope (SNOM): Intensity of the electric field around the micro-
scope tip and a silver sample, computed by approximating the time-harmonic
Maxwell’s equations with Nédélecs edge elements of lowest order on a quadri-
lateral grid.

Figure 1.3: Two-dimensional model of the light source of a scanning near field
optical microscope: The surface electrons of a thin metal film illuminated by a
SNOM excite plasmon waves.
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Tübingen, Germany) for fruitful discussions on computational electromagnetics,
Prof. Dr. Dieter Pohl and Prof. Dr. Bert Hecht (Physics Department, Univer-
sity of Basel) for their collaboration on numerical simulation of nano-optical
phenomena, and Prof. Dr. Christoph Schwab for awakening my enthusiasm for
numerical analysis during my undergraduate studies at ETH Zurich and for
providing me a sound basis for my graduate studies.
Furthermore, my thanks go to my colleagues at the Mathematical Institute

in Basel, in particular to Viviana Palumberi, for her friendship and for bringing
touch of ”Italianità” to our office.
My special thanks go to my parents for their interest, faith and loving sup-

port in and beyond my education, to my brother for sharing my company not
only during my years in Basel, and, in particular, to Fabian Buchmann for pa-
tiently advising me in C++ programming and for wonderful years of love and
laughter.



Part I

Interior Penalty Methods

for Time-Harmonic

Maxwell’s Equations

12



Chapter 2

Interior Penalty Method for

the Indefinite Maxwell’s

Equations

The content of this chapter has been published in Numer. Math. [40] (in collab-
oration with Paul Houston 1, Ilaria Perugia 2 and Dominik Schötzau 3).

Abstract

In this chapter, we introduce and analyze the interior penalty discontinuous
Galerkin method for the numerical discretization of the indefinite time-harmonic
Maxwell equations in high-frequency regime. Based on suitable duality argu-
ments, we derive a-priori error bounds in the energy norm and the L2-norm. In
particular, the error in the energy norm is shown to converge with the optimal
order O(hmin{s,`}) with respect to the mesh size h, the polynomial degree `, and
the regularity exponent s of the analytical solution. Under additional regularity
assumptions, the L2-error is shown to converge with the optimal order O(h`+1).
The theoretical results are confirmed in a series of numerical experiments on
triangular meshes.
The thesis’ author’s principal contributions are the proof of the L2-error

bound in Section 2.6, and the proof of Lemma 2.4.1

2.1 Introduction

The main motivation for using a discontinuous Galerkin approach for the nu-
merical approximation of the time-harmonic Maxwell’s equation (1.12) is that

1Prof. P. Houston, Department of Mathematics, University of Leicester, Leicester LE1
7RH, England, email: Paul.Houston@ mcs.le.ac.uk

2Prof. I. Perugia, Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, 27100
Pavia, Italy, email: perugia@ dimat.unipv.it

3Prof. D. Schötzau,Mathematics Department, University of British Columbia, 121-1984
Mathematics Road, Vancouver V6T 1Z2, Canada, email: schoetzau@ math.ubc.ca
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DG methods, being based on discontinuous finite element spaces, can easily han-
dle non-conforming meshes which contain hanging nodes and, in principle, local
spaces of different polynomial orders; for the purposes of this chapter, we shall
only consider the h-version of the DG method. Moreover, the implementation
of discontinuous elements can be based on standard shape functions, without
the need to employ curl-conforming elemental mappings - a convenience that is
particularly advantageous for high-order elements and that is not straightfor-
wardly shared by standard edge or face elements commonly used in computa-
tional electromagnetics (see [28, 73, 1] and the references therein for hp-adaptive
edge element methods). A further benefit of DG methods is that the incorpo-
ration of inhomogeneous Dirichlet conditions in the DG context avoids explicit
evaluations of edge- and face-element interpolation operators.
The theory presented in this chapter is a continuation of a series of papers

that has been concerned with the development of DG finite element methods for
the numerical approximation of the time-harmonic Maxwell equations. Indeed,
in [62] an hp–local discontinuous Galerkin method was presented for the low-
frequency approximation of these equations in heterogeneous media. The focus
there was on the problem of how to discretize the curl-curl operator using dis-
continuous finite element spaces. The numerical experiments presented in [43]
confirmed the expected hp–convergence rates, and indicate that DG methods
can indeed be effective in a wide range of low-frequency applications with coer-
cive bilinear forms. Then, in [63], [45], and [44], several mixed DG formulations
were studied for the discretization of the time-harmonic Maxwell equations in
mixed form. The mixed form was chosen to provide control on the divergence
of the electric field and arises naturally in certain types of low-frequency mod-
els. In particular, it was shown that divergence constraints can be successfully
incorporated within the DG framework by means of suitable Lagrange multipli-
ers. Finally, we mention the recent work of [37] where extensive computational
studies of DG discretizations applied to Maxwell eigenvalue problems can be
found.
In this chapter we present the first numerical analysis of the interior penalty

DG finite element method for the numerical discretization of the indefinite time-
harmonic Maxwell equations (2.1).
We show that the error in the DG energy norm converges with the optimal

order O(hmin{s,`}) with respect to the mesh size h, the polynomial degree `, and
the regularity exponent s of the analytical solution. Under additional regularity
assumptions, we further prove that the error in the L2-norm converges with
the full order O(h`+1). The derivation of these bounds relies on two crucial
technical ingredients: the first one is that, as for conforming discretizations, the
error between the analytical solution and its interior penalty approximation is
discretely divergence-free. The second ingredient is an approximation property
that ensures the existence of a conforming finite element function close to any
discontinuous one and allows us to control the non-conformity of the method.
This approximation property has been established in [40] using the techniques
in [45, 44] for the analysis of mixed DG methods and in [49] for the study of
a-posteriori error estimation for DG discretizations of diffusion problems. We
report its original proof by Houston, Perugia and Schötzau in the Appendix 5.8.
Invoking these auxiliary results, the energy error bound is then derived by

suitably modifying the argument in [56] and [55, Section 7.2], while the L2-error
bound is obtained along the lines of the proof of [54, Theorem 3.2], adapted



Maxwell Indefinite 15

to Nédélec’s elements of second type. The theoretical error bounds and the
performance of the proposed method are tested in a series of numerical examples
in two dimensions, performed by Paul Houston.
We note that, being based on duality techniques, the analysis in this pa-

per does not cover the case of non-smooth material coefficients. This is in
contrast to the recent techniques developed for conforming methods that allow
for non-smooth coefficients. We mention here [9], where the analysis relies on
the uniform convergence of the Maxwell resolvent operator and on the abstract
theory of [10] for the approximation of nonlinear problems, and [38, 11] (see
also [12]), where the analysis is based on the theory of compactly perturbed
linear operators and on uniformly stable discrete Helmholtz decompositions.
Recently, Buffa and Perugia [13] provided an alternative approach to show

quasi-optimality of DG approximations of the indefinite Maxwell’s equations (2.1).
Their spectral theory for DG discretizations of the Maxwell Eigenproblem di-
rectly proves the well-posedness of the discrete Maxwell source problem (for
a sufficiently small mesh size). The validity of a discrete inf-sup condition,
together with consistency of the DG form, guarantees optimal order error es-
timates for the DG approximation of (2.1), also in the case of non-smooth
coefficients.
The outline of this chapter is as follows. In Section 2.2, we introduce the

interior penalty DG method for the discretization of (2.1). Our main results are
the optimal a-priori error bounds stated and discussed in Section 2.3. These
results are proved in Sections 2.4 through 2.6 and numerically confirmed in the
tests presented in Section 2.7. We end this chapter with concluding remarks in
Section 2.8.

2.1.1 Function spaces

For a bounded domain D in R3, we denote by Hs(D) the standard Sobolev
space of order s ≥ 0 and by ‖ · ‖s,D the usual Sobolev norm. When D = Ω,
we simply write ‖ · ‖s. For s = 0, we write L2(D) in lieu of H0(D). We also
use ‖ · ‖s,D to denote the norm for the space Hs(D)3. H1

0 (D) is the subspace
of H1(D) of functions with zero trace on ∂D. If Λ is a subset of ∂D, we denote
by ‖ · ‖0,Λ the L2-norm in L2(Λ) and L2(Λ)3. On the computational domain Ω,
we introduce the spaces

H(curl; Ω) =
{
v ∈ L2(Ω)3 : ∇× v ∈ L2(Ω)3

}
,

H0(curl; Ω) = {v ∈ H(curl; Ω) : n× v = 0 on Γ } ,

and endow them with the norm ‖v‖2curl := ‖v‖20 + ‖∇× v‖20. Similarly, we set

H(div; Ω) =
{
v ∈ L2(Ω)3 : ∇ · v ∈ L2(Ω)

}
,

H0(div; Ω) = {v ∈ H(div; Ω) : v · n = 0 on Γ} ,
H(div0; Ω) = {v ∈ H(div; Ω) : ∇ · v = 0 in Ω} ,

equipped with the norm ‖v‖2div := ‖v‖20 + ‖∇ · v‖20. Finally, we denote by (·, ·)
the standard inner product in L2(Ω)3 given by (u,v) :=

∫
Ω u · v dx.
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2.1.2 Model problem

We consider the indefinite time-harmonic Maxwell’s equations in a lossless medium
with a perfectly conducting boundary: find the (scaled) electric field u = u(x)
that satisfies

∇×∇× u− k2u = j in Ω,

n× u = 0 on Γ.
(2.1)

Here, Ω is an open bounded Lipschitz polyhedron in R3 with boundary Γ = ∂Ω
and outward normal unit vector n. For simplicity, we assume Ω to be simply-
connected and Γ to be connected. The right-hand side j is a given external
source field in L2(Ω)3 and k > 0 is the wave number, i.e., k = ω

√
ε0µ0, where

ω > 0 is a given temporal frequency, and ε0 and µ0 are the electric permittivity
and the magnetic permeability, respectively, of the free space. We point out
that we have assumed here that the relative material properties εr and µr are
equal to 1.
The weak form of the equations (2.1) in the Sobolev space

H0(curl; Ω) := {v ∈ L2(Ω)3 : ∇× v ∈ L2(Ω)3, n× v = 0 on Γ },

reads: find u ∈ H0(curl; Ω) such that

a(u,v) :=

∫

Ω

[
∇× u · ∇ × v − k2u · v

]
dx =

∫

Ω

j · v dx (2.2)

for all v ∈ H0(curl; Ω). Under the assumption that k
2 is not a Maxwell eigen-

value, problem (2.2) is uniquely solvable; see, e.g., [55, Chapter 4] or [38, Sec-
tion 5] for details.

2.2 Discontinuous Galerkin discretization

In this section, we introduce the interior penalty DG discretization of (2.1). To
this end, we define the following notation.
We consider conforming, shape-regular partitions Th of Ω into tetrahedra {K};

here, h denotes the granularity of the mesh Th, i.e., h = maxK∈Th hK , where
hK = diam(K) for all K ∈ Th. We denote by FI

h the set of all interior faces of
Th, by FB

h the set of all boundary faces of Th, and set Fh = FI
h ∪ FB

h .
For piecewise smooth vector- and scalar-valued functions v and q, respec-

tively, we introduce the following trace operators. Let F ∈ FI
h be an interior

face shared by two elements K+ and K− with unit outward normal vectors n±,
respectively. Denoting by v± and q± the traces of v and q on ∂K± taken from
within K±, respectively, we define the jumps across F by

[[v]]T = n
+ × v+ + n− × v−, [[q]]N = q+n+ + q−n−,

and the averages by

{{v}} = (v+ + v−)/2, {{q}} = (q+ + q−)/2.

On a boundary face F ∈ FB
h , we set analogously [[v]]T = n × v, [[q]]N = q n,

{{v}} = v and {{q}} = q.
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For a given partition Th of Ω and an approximation order ` ≥ 1, we wish to
approximate the time-harmonic Maxwell equations (2.1) in the finite element
space

Vh := {v ∈ L2(Ω)3 : v|K ∈ P`(K)3 ∀K ∈ Th}, (2.3)

where P`(K) denotes the space of polynomials of total degree at most ` on K.
Thereby, we consider the DG method: find uh ∈ Vh such that

ah(uh,v) = (j,v) (2.4)

for all v ∈ Vh. The discrete form ah(·, ·) is given by

ah(u,v) :=(∇h × u,∇h × v) − k2(u,v) −
∫

Fh

[[u]]T · {{∇h × v}} ds

−
∫

Fh

[[v]]T · {{∇h × u}} ds+
∫

Fh

a [[u]]T · [[v]]T ds.
(2.5)

Here, we use ∇h to denote the elementwise application of the operator ∇. Fur-
ther, we use the notation

∫
Fh

ϕds :=
∑

f∈Fh

∫
f
ϕds. The function a ∈ L∞(Fh)

is the interior penalty stabilization function. To define it, we first introduce h
in L∞(Fh) as

h(x) := hf , x ∈ f, f ∈ Fh,
with hf denoting the diameter of face f . Then we set

a := α h−1, (2.6)

where α is a positive parameter independent of the mesh size and the wave
number.

2.3 A-priori error bounds

In this section, we state our main results, namely optimal a-priori error bounds
for the DG method (2.4) with respect to a (broken) energy norm and the L2-
norm.

2.3.1 G̊arding inequality

Before stating the error bounds, we need to establish a G̊arding-type stability
result for the form ah(·, ·). To this end, we set

V(h) := H0(curl; Ω) +Vh,

and define the following DG seminorm and norm on V(h), respectively:

|v|2DG := ‖∇h × v‖20 + ‖h− 1
2 [[v]]T ‖20,Fh , ‖v‖2DG := ‖v‖20 + |v|2DG.

Here, we write ‖ϕ‖20,Fh :=
∑

f∈Fh
‖ϕ‖20,f . The norm ‖ · ‖DG can be viewed as

the energy norm for the discretization under consideration. With this notation,
the following G̊arding inequality holds.

Lemma 2.3.1. There exists a parameter αmin > 0, independent of the mesh
size and the wave number, such that for α ≥ αmin we have

ah(v,v) ≥ β‖v‖2DG − (k2 + β)‖v‖20 for all v ∈ Vh,
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with a constant β > 0 independent of the mesh size and the wave number.
Proof. Using standard inverse estimates, it can be readily seen that there is

a parameter αmin > 0 such that for α ≥ αmin we have

ah(v,v) ≥ β|v|2DG − k2‖v‖20 for all v ∈ Vh,

for a constant β > 0 independent of the mesh size; we refer to [5, 43, 63] for
details. The result of the lemma now follows immediately.
The condition α ≥ αmin > 0 is a restriction that is typical for interior penalty

methods and may be omitted by using other DG discretizations of the curl-curl
operator, such as the non-symmetric interior penalty or the LDG method; see,
e.g., [5, 62] for details.

2.3.2 Energy error

We are now ready to state and discuss the following a-priori bound for the error
in the energy norm ‖ · ‖DG; the detailed proof will be carried out in Section 2.5.

Theorem 2.3.2. Assume that the analytical solution u of (2.1) satisfies the
regularity assumption

u ∈ Hs(Ω)3, ∇× u ∈ Hs(Ω)3, (2.7)

for s > 1
2 . Furthermore, let uh denote the DG approximation defined by (2.4)

with α ≥ αmin. Then there is a mesh size h0 > 0 such that for 0 < h ≤ h0, we
have the optimal a priori error bound

‖u− uh‖DG ≤ C hmin{s,`}
[
‖u‖s + ‖∇× u‖s

]
,

with a constant C > 0 independent of the mesh size.
Remark 2.3.3. For a source term j ∈ H(div; Ω), the regularity assumption

in (2.7) is ensured by the embedding results in [4, Proposition 3.7]; see also
(2.8) below. In particular, assumption (2.7) is satisfied in the physically most
relevant case of a solenoidal forcing term where ∇ · j = 0. In this sense, the
smoothness requirement in (2.7) is minimal.
Proceeding along the lines of [68], we conclude from the a-priori error bound

in Theorem 2.3.2 the existence and uniqueness of discrete solutions.
Corollary 2.3.4. For a stabilization parameter α ≥ αmin, the DG method

(2.4) admits a unique solution uh ∈ Vh, provided that h ≤ h0.
Proof. We only need to establish that if j = 0, then the only solution to

(2.4) is uh = 0. In fact, if j = 0, then u = 0, and the estimate of Theorem 2.3.2
implies ‖uh‖DG ≤ 0, thereby uh = 0, for h ≤ h0.

2.3.3 Error in L2(Ω)3

Next, we state an a-priori bound for the error ‖u − uh‖0 and show that the
optimal order O(h`+1) is obtained for smooth solutions and convex domains.
To this end, we will use the following embedding from [4, Proposition 3.7]: under
the foregoing assumptions on the domain Ω, there exists a regularity exponent
σ ∈ (1/2, 1], depending only on Ω, such that

H0(curl; Ω) ∩H(div; Ω) ↪→ Hσ(Ω)3,

H(curl; Ω) ∩H0(div; Ω) ↪→ Hσ(Ω)3.
(2.8)



Maxwell Indefinite 19

The maximal value of σ for which the above embedding holds is closely related
to the regularity properties of the Laplacian in polyhedra and only depends on
the opening angles at the corners and edges of the domain, cf. [4]. In particular,
for a convex domain, (2.8) holds with σ = 1.
Furthermore, let us denote by ΠN the curl-conforming Nédéléc interpolation

operator of the second kind into Vh ∩H0(curl; Ω); see [59] or [55, Section 8.2].
Then, we have the following result.

Theorem 2.3.5. Let u denote the analytical solution of (2.1) and uh the
DG approximation obtained by (2.4) with α ≥ αmin. Then there is a mesh size
h1 > 0 such that for 0 < h ≤ h1 we have

‖u− uh‖0 ≤ Chσ‖u− uh‖DG + Chσ‖u−ΠNu‖curl + C‖u−ΠNu‖0,

with a constant C > 0 independent of the mesh size. The parameter σ ∈ (1/2, 1]
is the embedding exponent from (2.8).
Under additional smoothness assumptions on the analytical solution u, the

bound in Theorem 2.3.5 combined with the approximation properties for ΠN

and the error estimate in Theorem 2.3.2 result in the following L2-error bound:
Corollary 2.3.6. Assume that the analytical solution u of (2.1) satisfies

the regularity assumption

u ∈ Hs+σ(Ω)3, ∇× u ∈ Hs(Ω)3, (2.9)

for s > 1
2 and the parameter σ from (2.8). Let uh denote the DG approximation

obtained by (2.4) with α ≥ αmin. Then there is a mesh size h2 > 0 such that
for 0 < h ≤ h2 we have the a-priori error bound

‖u− uh‖0 ≤ C hmin{s,`}+σ
[
‖u‖s+σ + ‖∇× u‖s

]
,

with a constant C > 0 independent of the mesh size h.
Remark 2.3.7. In particular, for a convex domain where σ = 1 and an

analytical solution u ∈ H`+1(Ω)3, Corollary 2.3.6 ensures the optimal error
bound

‖u− uh‖0 ≤ Ch`+1‖u‖`+1,
holds, with a constant C > 0 independent of the mesh size.
The detailed proofs of Theorem 2.3.5 and Corollary 2.3.6 can be found in

Section 2.6.

2.4 Auxiliary results

This section is devoted to the collection of some auxiliary results which will be
required throughout the rest of this article. In Section 2.4.1 and Section 2.4.2,
we start by recalling some well-known facts from the finite element theory of
Maxwell’s equations; see, e.g., [38, 55] and the references cited therein. Then, in
Section 2.4.3, we present novel approximation results that allow us to control the
non-conformity of the interior penalty method. Note that similar approximation
techniques have been used in [45, 44] for the analysis of mixed DG methods and
in [49] for the derivation of a-posteriori error bounds for DG discretizations of
diffusion problems. In Section 2.4.4, we rewrite the interior penalty method (2.4)
in a perturbed form and establish crucial properties of this auxiliary formulation.
In particular, we show that the error u− uh is discretely divergence-free.
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2.4.1 Helmholtz decompositions

We begin by recalling the subsequent continuous Helmholtz decomposition: un-
der the foregoing assumptions on the domain, we have

L2(Ω)3 = H(div0; Ω)⊕∇H1
0 (Ω); (2.10)

the decomposition being orthogonal in L2(Ω)3; see, e.g., [31, Section 4].
A similar decomposition holds on the discrete level. To this end, we define

Vc
h to be the largest conforming space underlying Vh, that is,

Vc
h := Vh ∩H0(curl; Ω). (2.11)

In fact, Vc
h is Nédélec’s space of the second kind; see [59] or [55, Section 8.2].

The space Vc
h can then be decomposed into

Vc
h = Xh ⊕∇Sh, (2.12)

with the spaces Sh and Xh given by

Sh := { q ∈ H1
0 (Ω) : q|K ∈ P`+1(K), K ∈ Th}, (2.13)

Xh := {v ∈ Vc
h : (v,∇q) = 0 ∀q ∈ Sh}, (2.14)

respectively. The spaceXh is referred to as the space of discretely divergence-free
functions. By construction, the decomposition (2.12) is orthogonal in L2(Ω)3;
cf. [55, Section 8.2].

2.4.2 Standard approximation operators

Next, we introduce standard approximation operators and state their proper-
ties. We start by recalling the properties of the curl-conforming Nédéléc inter-
polant ΠN of the second kind.

Lemma 2.4.1. There exists a positive constant C, independent of the mesh
size, such that, for any v ∈ H0(curl; Ω) ∩Ht(Ω)3 with ∇× v ∈ Ht(Ω)3, t > 1

2 ,

‖v −ΠNv‖curl ≤ C hmin{t,`}
[
‖v‖t + ‖∇ × v‖t

]
, (2.15)

‖∇× (v −ΠNv)‖0 ≤ C hmin{t,`}‖∇ × v‖t. (2.16)

Moreover, there exists a positive constant C, independent of the mesh size, such
that, for any v ∈ H0(curl; Ω) ∩H1+t(Ω)3 with t > 0,

‖v −ΠNv‖0 ≤ C hmin{t,`}+1‖v‖1+t. (2.17)

Proof. A proof of the first two results can be found in [55, Theorem 5.41,
Remark 5.42 and Theorem 8.15].
To prove (2.17), we first consider the case t ∈ (0, 1) and establish the cor-

responding estimate on the reference tetrahedron K̂. From the stability of
the Nédéléc interpolation operator Π̂N in W

1,p(K̂)3 for any p > 2 (see [55,

Lemma 5.38], [54], and references therein) and the embedding H1+t(K̂)3 ↪→
W 1,p(K̂)3 for p = 6

3−2t (see, e.g., [55, Theorem 3.7]), we conclude that

‖v̂− Π̂Nv̂‖0, bK ≤ inf
bq∈P`( bK)3

{
‖v̂ − q̂‖0, bK + ‖Π̂N (v̂ − q̂) ‖0, bK

}

≤ C inf
bq∈P`( bK)3

‖v̂ − q̂‖W 1,p( bK) ≤ C inf
bq∈P`( bK)3

‖v̂ − q̂‖1+t, bK .
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By a Bramble-Hilbert argument for fractional order Sobolev spaces, we therefore
obtain

‖v̂ − Π̂Nv̂‖0, bK ≤ C |v̂|t+1, bK . (2.18)

The bound in (2.17) follows then from (2.18) by a scaling argument. The proof
for t ≥ 1 is carried out similarly, using the H2–stability of ΠN; see [59].
Furthermore, for any v ∈ H0(curl; Ω), we define the projection Π

cv ∈ Vc
h

by

(∇× (v −Πcv),∇×w) + (v −Πcv,w) = 0 ∀w ∈ Vc
h. (2.19)

An immediate consequence of this definition is that

‖v −Πcv‖curl = inf
w∈Vc

h

‖v −w‖curl.

Thus, from property (2.15) in Lemma 2.4.1 we obtain the following approxima-
tion result.

Lemma 2.4.2. There exists a positive constant C, independent of the mesh
size, such that, for any v ∈ H0(curl; Ω) ∩Ht(Ω)3 with ∇× v ∈ Ht(Ω)3, t > 1

2 ,

‖v −Πcv‖curl ≤ C hmin{t,`}
[
‖v‖t + ‖∇× v‖t

]
.

Next, let us denote by Πh the L
2-projection onto Vh. The following ap-

proximation result is well-known.
Lemma 2.4.3. There exists a positive constant C, independent of the local

mesh sizes hK , such that, for any v ∈ H t(K)3, K ∈ Th, t > 1
2 ,

‖v −Πhv‖20,K + hK‖v −Πhv‖20,∂K ≤ C h2tK ‖v‖2t,K .

Finally, we recall the following result that allows us to approximate discretely
divergence-free functions by exactly divergence-free ones.

Lemma 2.4.4. For any discretely divergence-free function v ∈ Xh, define
Hv ∈ H0(curl; Ω) ∩ H(div0; Ω) by ∇ × Hv = ∇ × v. Then, there exists a
constant C > 0 such that

‖v −Hv‖0 ≤ Chσ‖∇ × v‖0,

with the parameter σ from (2.8). Moreover, there holds ‖Hv‖0 ≤ ‖v‖0.
The result in Lemma 2.4.4 is obtained by proceeding as in [38, Lemma 4.5]

and [55, Lemma 7.6] using Nédélec’s second family of elements. The L2-stability
of H is a consequence of the L2-orthogonality of the continuous Helmholtz
decomposition.

2.4.3 Conforming approximation of discontinuous func-
tions

The following approximation result is instrumental in our analysis; it allows us
to find a conforming finite element function close to any discontinuous one. This
result is obtained by using the same techniques as those in [49, Section 2.1] and
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[44, Appendix]. The proof is due to Houston, Perugia and Sch”otzau. For sake
of completeness, we report the original proof in the Appendix of this Thesis.

Proposition 2.4.5. Let v ∈ Vh. Then there is a function vc ∈ Vc
h such

that

‖v − vc‖20 ≤ C

∫

Fh

h|[[v]]T |2 ds,

‖v− vc‖2DG ≤ C

∫

Fh

h−1|[[v]]T |2 ds,

with a constant C > 0 independent of the mesh size.
Proposition 2.4.5 and the definition of the norm ‖ · ‖DG immediately imply

the following result.
Proposition 2.4.6. Let v ∈ Vh. Then the conforming approximation

vc ∈ Vc
h from Proposition 2.4.5 satisfies

‖v− vc‖DG + ‖vc‖DG ≤ C‖v‖DG,
‖v − vc‖0 ≤ Ch‖v‖DG,

with a constant C > 0 independent of the mesh size.
We will further need the following consequence of Proposition 2.4.5, which

follows from the fact that [[w]]T = 0 on Fh, for any w ∈ H0(curl; Ω), and the
definition of the norm ‖ · ‖DG.

Proposition 2.4.7. Let v ∈ Vh and w ∈ H0(curl; Ω). Let v
c ∈ Vc

h be the
conforming approximation of v from Proposition 2.4.5. Then we have

‖v− vc‖DG ≤ C‖v −w‖DG,
‖v − vc‖0 ≤ Ch‖v −w‖DG,

with a constant C > 0 independent of the mesh size.

2.4.4 Perturbed formulation

Following [5], we rewrite the method (2.4) in a slightly perturbed form. To this
end, we define for v ∈ V(h) the lifting L(v) ∈ Vh by

(L(v),w) =
∫

Fh

[[v]]T · {{w}} ds ∀w ∈ Vh. (2.20)

Then we introduce the form

ãh(u,v) := (∇h × u,∇h × v) − k2(u,v) − (L(u),∇h × v)

−(L(v),∇h × u) +

∫

Fh

a [[u]]T · [[v]]T ds.

Note that ah = ãh in Vh ×Vh although this is no longer true in V(h)×V(h).
The discrete problem (2.4) can equivalently be formulated as: find uh ∈ Vh

such that
ãh(uh,v) = (j,v) ∀v ∈ Vh. (2.21)

Next, let us establish some useful properties of the form ãh(·, ·).
Lemma 2.4.8. There holds:
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(i) For u,v ∈ H0(curl; Ω), we have

ãh(u,v) = a(u,v),

with the form a(·, ·) defined in (2.2).

(ii) There is a constant γ > 0, independent of the mesh size and the wave
number, such that

|ãh(u,v)| ≤ (k2 + γ)‖u‖DG‖v‖DG

for all u,v ∈ V(h).

Proof. The first property follows from the fact that for w ∈ H0(curl; Ω) we
have L(w) = 0 and [[w]]T = 0 on Fh. To see the second property, we note that,
by the definition of the interior penalty function a in (2.6), there is a continuity
constant γ > 0 such that

|ãh(u,v)| ≤ γ|u|DG|v|DG + k2‖u‖0‖v‖0;

see [62, Section 4] or [43, Proposition 1]. The claim now follows from the
definition of the DG norm.
For the analytical solution u of (2.1), we define the residual

rh(u;v) := ãh(u,v)− (j,v), v ∈ Vh. (2.22)

Thus, if uh is the DG approximation in (2.4), we have the error equation

ãh(u− uh,v) = rh(u;v) (2.23)

for all v ∈ Vh.
Lemma 2.4.9. Let u be the analytical solution of (2.1). Then:

(i) For v ∈ Vh ∩H0(curl; Ω), we have

rh(u;v) = 0.

(ii) Additionally, let ∇× u ∈ Hs(Ω)3 for s > 1
2 . Then

rh(u;v) =

∫

Fh

[[v]]T · {{∇ × u−Πh(∇× u)}} ds, v ∈ Vh.

Moreover, there holds

|rh(u;v)| ≤ Chmin{s,`}‖v‖DG‖∇ × u‖s,

where C is a positive constant, independent of the mesh size.

Proof. The first claim follows readily from property (i) in Lemma 2.4.8,
equation (2.2) and the definition of rh(·; ·). The residual expression in (ii) is
obtained as in [62, Lemma 4.10] or [43, Proposition 2] using integration by parts,
the definition of ãh(·, ·) and rh(·; ·), the defining properties of the L2-projection
Πh, and the differential equation (2.1). The desired bound for |rh(u;v)| follows
with the weighted Cauchy-Schwarz inequality, the definition of ‖ · ‖DG and a in
(2.6), and the approximation property in Lemma 2.4.3 for Πh.
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Finally, let us show that the error u−uh is discretely divergence-free in the
following sense.

Proposition 2.4.10. Let u be the analytical solution of (2.1) and uh the
discontinuous Galerkin approximation obtained in (2.4). Then there holds

(u− uh,∇q) = 0 ∀q ∈ Sh,

with the space Sh defined in (2.13).
Proof. Note that, for q ∈ Sh, we have ∇q ∈ Vh ∩ H0(curl; Ω). Using the

error equation (2.23) and property (i) of Lemma 2.4.9 gives

ãh(u− uh,∇q) = 0 ∀q ∈ Sh.

The definition of ãh(·, ·), property (i) of Lemma 2.4.8, and the fact that ∇h ×
∇q = 0 and [[∇q]]T = 0 on Fh result in

ãh(uh,∇q) = −k2(uh,∇q) and ãh(u,∇q) = a(u,∇q) = −k2(u,∇q).

Thereby, the statement of the proposition follows directly.

2.5 Proof of Theorem 2.3.2

The proof of Theorem 2.3.2 essentially follows the approach given in [55, Sec-
tion 7.2] and [56] for conforming finite elements, in combination with the crucial
approximation results in Proposition 2.4.5.

2.5.1 A preliminary error bound

In this section, we prove a preliminary error bound along the lines of [55,
Lemma 7.5].

Proposition 2.5.1. Let u be the analytical solution of (2.1) and uh the
approximation obtained in (2.4) with α ≥ αmin. Then there holds

‖u− uh‖DG ≤ C
[
inf
v∈Vh

‖u− v‖DG +Rh(u) + Eh(u− uh)
]
,

with a constant C > 0 independent of the mesh size. Here, we set

Rh(u) := sup
06=v∈Vh

rh(u;v)

‖v‖DG
, Eh(u− uh) := sup

06=v∈Vh

|(u− uh,v)|
‖v‖DG

.

Proof. Let v ∈ Vh be arbitrary. We first bound ‖v − uh‖DG. Using
the G̊arding inequality in Lemma 2.3.1, the definition of ãh(·, ·) and the error
equation (2.23), we obtain

β‖v − uh‖2DG ≤ ah(v − uh,v − uh) + (k
2 + β)(v − uh,v − uh)

= ãh(v − uh,v − uh) + (k
2 + β)(v − uh,v − uh)

= ãh(v − u,v − uh) + rh(u;v − uh)

+(k2 + β)(v − u,v − uh) + (k
2 + β)(u − uh,v − uh).
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From the continuity of ãh(·, ·) in (ii) of Lemma 2.4.8 and the definition of Rh

and Eh, we conclude that

‖v − uh‖DG ≤ β−1
[
(k2 + γ)‖u− v‖DG +Rh(u)

+(k2 + β)‖u− v‖DG + (k2 + β)Eh(u− uh)
]

≤ C
[
‖u− v‖DG +Rh(u) + Eh(u− uh)

]
.

Applying the triangle inequality gives

‖u− uh‖DG ≤ ‖u− v‖DG + ‖v − uh‖DG
≤ C

[
‖u− v‖DG +Rh(u) + Eh(u− uh)

]
.

Taking the infimum over v ∈ Vh gives the assertion.

2.5.2 Estimate of Eh(u− uh)

Next, we estimate the error term Eh(u− uh) defined in Proposition 2.5.1.
Proposition 2.5.2. There exists a positive constant C, independent of the

mesh size, such that

Eh(u− uh) ≤ Chσ‖u− uh‖DG,

with the parameter σ ∈ (1/2, 1] from (2.8).
Proof. Fix v ∈ Vh, and let v

c ∈ Vc
h be the conforming approximation of v

from Proposition 2.4.5. We bound (u− uh,v) in the following steps.
Step 1. Representation result: using the Helmholtz decomposition (2.12),

we decompose vc as
vc = vc0 ⊕∇r, (2.24)

with vc0 ∈ Xh and r ∈ Sh. Employing (2.24), we obtain

(u− uh,v) = (u− uh,v − vc) + (u− uh,v
c) = (u− uh,v − vc) + (u− uh,v

c
0)

= (u− uh,v − vc) + (u− uh,v
c
0 −Hvc0) + (u− uh,Hv

c
0)

≡ T1 + T2 + T3,

with Hvc0 from Lemma 2.4.4. Here, we have used the orthogonality property of
the error u − uh in Proposition 2.4.10. It remains to bound the terms T1, T2
and T3.

Step 2. Bound for T1: the Cauchy-Schwarz inequality and the approximation
result in Proposition 2.4.6 yields

|T1| ≤ ‖u− uh‖0‖v − vc‖0 ≤ Ch‖u− uh‖0‖v‖DG. (2.25)

Step 3. Bound for T2: using the Cauchy-Schwarz inequality and the approx-
imation results in Lemma 2.4.4 and Proposition 2.4.6, we have

|T2| ≤ ‖u− uh‖0‖vc0 −Hvc0‖0 ≤ Chσ‖u− uh‖0‖∇× vc0‖0
= Chσ‖u− uh‖0‖∇× vc‖0 ≤ Chσ‖u− uh‖0‖vc‖DG
≤ Chσ‖u− uh‖0‖v‖DG.

(2.26)
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Step 4. Bound for T3: to bound T3, we use a duality approach. To this end,
we set w := Hvc0 and let z denote the solution of the following problem:

∇×∇× z− k2z = w in Ω,
n× z = 0 on Γ.

(2.27)

Sincew ∈ H(div0; Ω), the solution z belongs toH(div0; Ω). As in [55, Lemma 7.7],
we obtain from the embeddings in (2.8) that z ∈ Hσ(Ω)3, ∇× z ∈ Hσ(Ω)3 and

‖z‖σ + ‖∇× z‖σ ≤ C‖w‖0, (2.28)

for a stability constant C > 0 and the parameter σ ∈ (1/2, 1] in (2.8).
Hence, multiplying the dual problem with eh := u − uh and integrating by

parts, since ∇× z ∈ H(curl; Ω), we obtain

(eh,w) = (∇× z,∇h × eh)− k2(z, eh)−
∑

K∈Th

∫

∂K

nK × eh · ∇ × z ds

= (∇× z,∇h × eh)− k2(z, eh)−
∫

Fh

[[eh]]T · {{∇× z}} ds.

Let zh = ΠNz ∈ Vc
h be the Nédélec interpolant of the second kind of z in (2.15)

of Lemma 2.4.1, and Πh the L
2–projection onto Vh. Using the definition of

ãh(·, ·), the fact that z ∈ H0(curl; Ω), the error equation (2.23), property (i) of
Lemma 2.4.9, and the definition of Πh and L, we obtain

(eh,w) = ãh(eh, z) + (L(eh),∇× z)−
∫

Fh

[[eh]]T · {{∇ × z}} ds

= ãh(eh, z− zh) + (L(eh),Πh(∇× z))−
∫

Fh

[[eh]]T · {{∇ × z}} ds

= ãh(eh, z− zh)−
∫

Fh

[[eh]]T · {{∇ × z−Πh(∇× z)}} ds.

First, we note that, employing the weighted Cauchy-Schwarz inequality, the
approximation properties in Lemma 2.4.3 and the stability bound (2.28), we
get

∣∣∣∣
∫

Fh

[[eh]]T · {{∇ × z−Πh(∇× z)}} ds
∣∣∣∣

≤ C

(∫

Fh

h−1|[[eh]]T |2 ds
) 1

2

(
∑

K∈Th

hK‖∇× z−Πh(∇× z)‖20,∂K

) 1
2

≤ Chσ‖eh‖DG‖∇ × z‖σ ≤ Chσ‖eh‖DG‖w‖0.

Furthermore, the continuity of ãh(·, ·) in Lemma 2.4.8, the approximation prop-
erty (2.15) in Lemma 2.4.1 and the stability estimate (2.28) yield

ãh(eh, z− zh) ≤ Chσ‖eh‖DG‖w‖0.

Combining the above bounds gives

(eh,w) ≤ Chσ‖eh‖DG‖w‖0.
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Since ‖w‖0 ≤ ‖vc0‖0 ≤ ‖vc‖0 ≤ C‖v‖DG, in view of Lemma 2.4.4 and Proposi-
tion 2.4.6, we conclude that

|T3| ≤ Chσ‖u− uh‖DG‖v‖DG. (2.29)

Step 5. Conclusion: referring to (2.25), (2.26) and (2.29) yields

|(u− uh,v)| ≤ Chσ‖u− uh‖DG‖v‖DG,

from where the assertion follows.

2.5.3 The error bound in Theorem 2.3.2

We are now ready to complete the proof of Theorem 2.3.2. From Proposi-
tion 2.5.1 and Proposition 2.5.2, we obtain

‖u− uh‖DG ≤ C

[
inf
v∈Vh

‖u− v‖DG +Rh(u) + Eh(u− uh)

]

≤ C

[
inf
v∈Vh

‖u− v‖DG +Rh(u) + h
σ‖u− uh‖DG

]
.(2.30)

Hence, if the mesh size is sufficiently small we can absorb the third term on the
right-hand of (2.30) into the left-hand side; thereby,

‖u− uh‖DG ≤ C

[
inf
v∈Vh

‖u− v‖DG +Rh(u)

]
.

Choosing v = ΠNu, the Nédélec interpolant of u, from the interpolation esti-
mate (2.15) in Lemma 2.4.1 and the estimate of the residual in (ii) of Lemma 2.4.9
give the result in Theorem 2.3.2.

2.6 Proof of Theorem 2.3.5 and Corollary 2.3.6

In this section, we complete the proof of Theorem 2.3.5 and Corollary 2.3.6.
Our analysis proceeds along the lines of [54, Section 4].

2.6.1 Proof of Theorem 2.3.5

In order to prove Theorem 2.3.5, let uch ∈ Vc
h be the conforming approximation

of uh from Proposition 2.4.5. We can write

‖u− uh‖20 = (u− uh,u−ΠNu) + (u− uh,ΠNu− uch) + (u− uh,u
c
h − uh).

By using the Cauchy-Schwarz inequality and Proposition 2.4.7, we have

‖u− uh‖0 ≤ ‖u−ΠNu‖0 + Ch‖u− uh‖DG +
|(u− uh,ΠNu− uch)|

‖u− uh‖0
, (2.31)

with C > 0 independent of the mesh size. For the last term on the right-hand
side of (2.31), we claim that, for a sufficiently small mesh size, there holds:

|(u− uh,ΠNu− uch)|
‖u− uh‖0

≤ C‖u−ΠNu‖0 + Chσ
[
‖u−ΠNu‖curl + ‖u− uh‖DG

]
,

(2.32)
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with C > 0 independent of the mesh size, and σ denoting the parameter in (2.8).
Inserting (2.32) into (2.31) then proves Theorem 2.3.5.
In order to prove (2.32), we proceed in several steps.
Step 1. Preliminaries: we start by invoking the Helmholtz decomposition

in (2.12) and write
ΠNu− uch =: w

c
0 ⊕∇r, (2.33)

with wc
0 ∈ Xh and r ∈ Sh, Xh and Sh being the spaces in (2.13). By using

(2.33) and the orthogonality property of the error u−uh in Proposition 2.4.10,
we have

(u− uh,ΠNu− uch) = (u− uh,w
c
0) = (u− uh,w

c
0 −w) + (u− uh,w),

where we have defined w := Hwc
0, the exactly divergence-free approximation of

wc
0 from Lemma 2.4.4. Therefore,

|(u− uh,ΠNu− uch)|
‖u− uh‖0

≤ ‖wc
0 −w‖0 + ‖w‖0, (2.34)

so that it remains to estimate ‖wc
0 −w‖0 and ‖w‖0.

Step 2: Estimate of ‖wc
0 −w‖0: we claim that

‖wc
0 −w‖0 ≤ Chσ

[
‖u−ΠNu‖curl + ‖u− uh‖DG

]
, (2.35)

with a constant C > 0 independent of the mesh size.
To prove (2.35), note that, in view of the definition of H and (2.33), there

holds
∇×w = ∇×wc

0 = ∇× (ΠNu− uch). (2.36)

Thus, the result in Lemma 2.4.4, the triangle inequality and Proposition 2.4.7
yield

‖wc
0 −w‖0 ≤ Chσ‖∇× (ΠNu− uch)‖0

≤ Chσ
[
‖∇× (ΠNu− u)‖0 + ‖∇h × (u− uh)‖0 + ‖∇h × (uh − uch)‖0

]

≤ Chσ
[
‖u−ΠNu‖curl + ‖u− uh‖DG

]
.

This completes the proof of (2.35).
Step 3: Estimate of ‖w‖0: we bound ‖w‖0 in (2.34) employing a duality

approach and claim that, for a sufficiently small mesh size, there holds

‖w‖0 ≤ C‖u−ΠNu‖0 + Chσ
[
‖u−ΠNu‖curl + ‖u− uh‖DG

]
, (2.37)

with a constant C > 0 independent of the mesh size.
Let z be the solution of the dual problem (2.27) with right-hand side w =

Hwc
0. Again, w ∈ H(div0; Ω), so that z has the same smoothness as in the

proof of Proposition 2.5.2 and (2.28) still holds. Moreover, let zh ∈ Vh solve
the discontinuous Galerkin approximation of the dual problem (2.27):

ãh(zh,v) = (w,v) ∀v ∈ Vh. (2.38)

For a sufficiently small mesh size, Theorem 2.3.2 and Corollary 2.3.4 apply
to (2.38) and ensure existence and uniqueness of zh, as well as the a-priori
bound

‖z− zh‖DG ≤ Chσ
[
‖z‖σ + ‖∇× z‖σ

]
≤ Chσ‖w‖0, (2.39)
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where we have taken into account the stability bound (2.28).
After these preliminary considerations, we multiply equation (2.27) by w

and integrate by parts to obtain

‖w‖20 = a(z,w) = a(z−Πcz,w) + a(Πcz,w), (2.40)

with the projection Πc from (2.19). By the definition of the projection Πc and
since ∇×w = ∇×wc

0, we conclude that

a(z−Πcz,w) = −(z−Πcz,wc
0)− k2(z−Πcz,w)

= −(z−Πcz,wc
0 −w)− (1 + k2)(z −Πcz,w).

The approximation result for Πc in Lemma 2.4.2 and the bound in (2.28) yield

‖z−Πcz‖0 ≤ ‖z−Πcz‖curl ≤ Chσ‖w‖0. (2.41)

For later use, we also point out that the stability of Πc and (2.28) give

‖Πcz‖0 ≤ C‖w‖0. (2.42)

Hence, the Cauchy-Schwarz inequality and the estimates (2.35) and (2.41) yield

|a(z −Πcz,w)| ≤ ‖z−Πcz‖0‖w−wc
0‖0 + C‖z−Πcz‖0‖w‖0

≤ Ch2σ‖w‖0
[
‖u−ΠNu‖curl + ‖u− uh‖DG

]
+ Chσ‖w‖20.

(2.43)

It remains to bound the term a(Πcz,w) in (2.40). To this end, in view of (2.36)
and (2.33), we first note that

a(Πcz,w) = (∇×Πcz,∇×w)− k2(Πcz,w)

= (∇×Πcz,∇× (ΠNu− uch))− k2(Πcz,w −wc
0)− k2(Πcz,wc

0)

= (∇×Πcz,∇× (ΠNu− uch))− k2(Πcz,w −wc
0)− k2(Πcz,ΠNu− uch)

= a(Πcz,ΠNu− uch)− k2(Πcz,w −wc
0).

Here, we have used that

(Πcz,∇r) = (z,∇r) = 0,

which follows readily from the definition of Πc and the fact that z is divergence-
free. From the identity (i) in Lemma 2.4.8, we further have

a(Πcz,ΠNu− uch) = a(Πcz,ΠNu− u) + ãh(Π
cz,u− uh) + ãh(Π

cz,uh − uch).

Using the symmetry of ãh(·, ·), the error equation (2.23), and part (i) of Lemma 2.4.9,
we note that ãh(Π

cz,u − uh) = 0. Thus, by further decompositions, we can
write

a(Πcz,w) =a(Πcz− z,ΠNu− u) + a(z,ΠNu− u)

+ ãh(Π
cz− z,uh − uch) + ãh(z− zh,uh − uch)

+ ãh(zh,uh − uch)− k2(Πcz,w −wc
0),

(2.44)

with zh denoting the approximation (2.38) of the dual problem (2.27).



Maxwell Indefinite 30

Using the dual problem (2.27) and the discrete formulation (2.38), we have

a(z,ΠNu− u) = (w,ΠNu− u), ãh(zh,uh − uch) = (w,uh − uch).

These identities, together with the continuity property (ii) in Lemma 2.4.8 and
the Cauchy-Schwarz inequality, give

|a(Πcz,w)| ≤C‖z−Πcz‖curl‖u−ΠNu‖curl + ‖w‖0‖u−ΠNu‖0
+ C‖uh − uch‖DG

[
‖z−Πcz‖curl + ‖z− zh‖DG

]

+ ‖w‖0‖uh − uch‖0 + C‖Πcz‖0‖w−wc
0‖0.

From Proposition 2.4.7, we have

‖uh − uch‖DG ≤ C‖u− uh‖DG, ‖uh − uch‖0 ≤ Ch‖u− uh‖DG.

Thus, using (2.41), (2.39), (2.42) and (2.35), we conclude that

a(Πcz,w) ≤‖w‖0
[
Chσ‖u−ΠNu‖curl + Chσ‖u− uh‖DG + ‖u−ΠNu‖0

]
.

(2.45)

Inserting (2.43) and (2.45) into (2.40) results in

‖w‖0 ≤ ‖u−ΠNu‖0+Chσ
[
‖u−ΠNu‖curl+ ‖u−uh‖DG

]
+Chσ‖w‖0. (2.46)

Hence, for a sufficiently small mesh size, we obtain the result in (2.37).
Step 4. Conclusion: the proof of the bound (2.32) follows now from (2.34),

(2.35) and (2.46).

2.6.2 Proof of Corollary 2.3.6

To complete the proof of Corollary 2.3.6, we note that Theorem 2.3.5, Theo-
rem 2.3.2 and the approximation property (2.17) in Lemma 2.4.1 for ΠN result
in

‖u− uh‖0 ≤ Chmin{s,`}+σ
[
‖u‖s + ‖∇× u‖s

]
+ Chmin{s+σ,`+1}‖u‖s+σ.

Since ‖u‖s ≤ ‖u‖s+σ and min{s + σ, ` + 1} ≥ min{s, `} + σ, the assertion of
Corollary 2.3.6 follows.

2.7 Numerical experiments

In this section we present a series of numerical experiments to highlight the prac-
tical performance of the DG method introduced and analyzed in this article for
the numerical approximation of the indefinite time-harmonic Maxwell equations
in (2.1). For simplicity, we restrict ourselves to two-dimensional model prob-
lems; additionally, we note that throughout this section we select the interior
penalty parameter α in (2.6) as follows:

α = 10 `2.

The dependence of α on the polynomial degree ` has been chosen in order to
guarantee the stability property in Lemma 2.3.1 independently of `, cf. [43], for
example.
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` = 1 ` = 2 ` = 3
Elements ‖u− uh‖DG r ‖u− uh‖DG r ‖u− uh‖DG r
26 1.853e-1 - 2.009e-2 - 5.044e-4 -
104 9.122e-2 1.02 5.004e-3 2.01 6.471e-5 2.96
416 4.455e-2 1.03 1.250e-3 2.00 8.131e-6 2.99
1664 2.194e-2 1.02 3.123e-4 2.00 1.017e-6 3.00
6656 1.088e-2 1.01 7.808e-5 2.00 1.271e-7 3.00

Table 2.1: Example 1. Convergence of ‖u− uh‖DG with k = 1.

2.7.1 Example 1

In this first example we select Ω ⊂ R2 to be the square domain (−1, 1)2. Further-
more, we set j = 0 and select suitable non-homogeneous boundary conditions
for u so that the analytical solution to the two-dimensional analogue of (2.1) is
given by the smooth field

u(x, y) = (sin(ky), sin(kx))T .

Here, the boundary conditions are enforced in the usual DG manner by adding
boundary terms in the formulation (2.4); see [43, 45] for details. We investigate
the asymptotic convergence of the DG method on a sequence of successively
finer (quasi-uniform) unstructured triangular meshes for ` = 1, 2, 3 as the wave
number k increases. To this end, in Tables 2.1, 2.2, 2.3 and 2.4 we present
numerical experiments for k = 1, 2, 4, 8, respectively. In each case we show the
number of elements in the computational mesh, the corresponding DG-norm
of the error and the numerical rate of convergence r. Here, we observe that
(asymptotically) ‖u − uh‖DG converges to zero at the optimal rate O(h`), for
each fixed ` and each k, as h tends to zero, as predicted by Theorem 2.3.2. In
particular, we make two key observations: firstly, we note that for a given fixed
mesh and fixed polynomial degree, an increase in the wave number k leads to an
increase in the DG-norm of the error in the approximation to u. In particular, as
pointed out in [1], where curl-conforming finite element methods were employed
for the numerical approximation of (2.1), the pre-asymptotic region increases as
k increases. This is particularly evident when k = 8, cf. Table 2.4. Secondly,
we observe that the DG-norm of the error decreases when either the mesh is
refined, or the polynomial degree is increased as we would expect for this smooth
problem.
Finally, in Figure 2.1 we present a comparison of the L2(Ω)2-norm of the

error in the approximation to u, with the square root of the number of degrees of
freedom in the finite element space Vh. Here, we observe that (asymptotically)
‖u − uh‖0 converges to zero at the rate O(h`+1), for each fixed ` and each k,
as h tends to zero. This is in full agreement with the optimal rate predicted by
Corollary 2.3.6 and Remark 2.3.7.

2.7.2 Example 2

In this second example, we investigate the performance of the DG method (2.4)
for a problem with a non-smooth solution. To this end, let Ω be the L-shaped do-
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` = 1 ` = 2 ` = 3
Elements ‖u− uh‖DG r ‖u− uh‖DG r ‖u− uh‖DG r
26 1.113 - 1.265e-1 - 1.242e-2 -
104 5.397e-1 1.04 3.217e-2 1.98 1.582e-3 2.97
416 2.635e-1 1.03 8.078e-3 1.99 1.985e-4 2.99
1664 1.302e-1 1.02 2.022e-3 2.00 2.483e-5 3.00
6656 6.477e-2 1.01 5.055e-4 2.00 3.103e-6 3.00

Table 2.2: Example 1. Convergence of ‖u− uh‖DG with k = 2.

` = 1 ` = 2 ` = 3
Elements ‖u− uh‖DG r ‖u− uh‖DG r ‖u− uh‖DG r
26 3.868 - 1.275 - 1.429e-1 -
104 2.016 0.94 2.971e-1 2.10 2.289e-2 2.64
416 9.871e-1 1.03 7.401e-2 2.01 2.952e-3 2.96
1664 4.865e-1 1.02 1.849e-2 2.00 3.715e-4 2.99
6656 2.415e-1 1.01 4.623e-3 2.00 4.650e-5 3.00

Table 2.3: Example 1. Convergence of ‖u− uh‖DG with k = 4.

main (−1, 1)2\[0, 1)×(−1, 0] and select j (and suitable non-homogeneous bound-
ary conditions for u) so that the analytical solution u to the two-dimensional
analogue of (2.1) is given, in terms of the polar coordinates (r, ϑ), by

u(x, y) = ∇S(r, ϑ), where S(r, ϑ) = Jα(kr) sin(αϑ), (2.47)

where Jα denotes the Bessel function of the first kind and α is a real number. We
set α = 2n/3, where n is a positive integer; the analytical solution given by (2.47)
then contains a singularity at the re-entrant corner located at the origin of Ω.
In particular, we note that u lies in the Sobolev space H2n/3−ε(Ω)2, ε > 0. This
example represents a slight modification of the numerical experiment presented
in [1].
In this example we again consider the convergence of the DG method (2.4) on

a sequence of successively finer (quasi-uniform) unstructured triangular meshes
for ` = 1, 2, 3 as the wave number k increases. We first consider the case
of the strongest singularity when n = 1; to this end, in Tables 2.5, 2.6, 2.7
and 2.8 we present numerical experiments for k = 1, 2, 4, 6, respectively. Here,
we observe that (asymptotically) ‖u− uh‖DG converges to zero at the optimal
rateO(hmin{2/3−ε,`}), for each fixed ` and each k, as h tends to zero, as predicted
by Theorem 2.3.2. As in the previous example, we see that the DG-norm of the
error in the approximation to u increases as the wave number k increases for
a fixed mesh size and polynomial degree; and again, that the pre-asymptotic
region increases as k increases. Moreover, even for this non-smooth example,
for a fixed mesh and wave number, an increase in the polynomial degree leads
to a decrease in ‖u − uh‖DG; this is also the case, when the DG-norm of the
error is compared with the total number of degrees of freedom employed in the
underlying finite element space, for each fixed k; for brevity these results have
been omitted.
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` = 1 ` = 2 ` = 3
Elements ‖u− uh‖DG r ‖u− uh‖DG r ‖u− uh‖DG r
26 30.73 - 9.018 - 2.451 -
104 9.434 1.70 2.118 2.09 4.051e-1 2.60
416 4.777 0.98 5.396e-1 1.97 5.245e-2 2.95
1664 2.196 1.12 1.363e-1 1.98 6.625e-3 2.99
6656 1.071 1.04 3.420e-2 1.99 8.301e-4 3.00

Table 2.4: Example 1. Convergence of ‖u− uh‖DG with k = 8.

` = 1 ` = 2 ` = 3
Elements ‖u− uh‖DG r ‖u− uh‖DG r ‖u− uh‖DG r
24 1.052e-1 - 6.185e-2 - 4.239e-2 -
96 6.175e-2 0.77 3.749e-2 0.72 2.612e-2 0.70
384 3.761e-2 0.72 2.324e-2 0.69 1.631e-2 0.68
1536 2.336e-2 0.69 1.455e-2 0.68 1.024e-2 0.67
6144 1.463e-2 0.68 9.140e-3 0.67 6.439e-3 0.67

Table 2.5: Example 2. Convergence of ‖u− uh‖DG with n = 1 and k = 1.

Analogous behavior is also observed when n = 2 and n = 4; for brevity, in
Tables 2.9 and 2.10, we present results for n = 2 and n = 4, respectively, only
for the case when k = 1. As before larger wave numbers lead to an increase in
the magnitude of the error as well as an increase in the pre-asymptotic region.
Here, we again observe that (asymptotically) ‖u− uh‖DG converges to zero at
(at least) the optimal rate O(hmin{2n/3−ε,`}), for each fixed `, as h tends to
zero, as predicted by Theorem 2.3.2. We remark that, when linear elements
are employed, in both cases with n = 2 and n = 4, we observe that a slightly
superior rate of convergence is attained in practice; analogous behaviour is also
observed when quadratic elements are employed in the case when n = 4.
Finally, we end this section by considering the rate of convergence of the

error in the approximation to u measured in terms of the L2(Ω)2-norm. To this
end, in Figure 2.2 we plot the L2(Ω)2-norm of the error in the approximation
to u, with the square root of the number of degrees of freedom in the finite
element space Vh, for n = 1, 2, 4, in the case when k = 1. Here, we observe that
(asymptotically) ‖u− uh‖0 converges to zero at the rate O(hmin{2n/3,`+1}), for
each fixed `, as h tends to zero. In the case of the strongest singularity when
n = 1, the regularity assumptions required in the statement of Corollary 2.3.6
do not hold. However, this rate is in agreement with Corollary 2.3.6 when
n = 2; in this case the embedding parameter (which only depends on Ω) is
σ = 2/3, cf. [42] and s = 2/3. For the case when n = 4, we have s = 2; thereby,
while for ` = 2, 3, the order of convergence of the L2(Ω)2-norm of the error is
in agreement with Corollary 2.3.6, the theoretically predicted rate of O(h5/3)
for ` = 1 is slightly pessimistic in comparison to the full order O(h2) that we
observe numerically. Analogous results are attained with higher wave numbers;
for brevity, these numerics have been omitted.
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Figure 2.1: Example 1. Convergence of ‖u− uh‖0 for: (a) k = 1; (b) k = 2; (c)
k = 4; (d) k = 8.

` = 1 ` = 2 ` = 3
Elements ‖u− uh‖DG r ‖u− uh‖DG r ‖u− uh‖DG r
24 1.556e-1 - 9.423e-2 - 6.613e-2 -
96 9.493e-2 0.71 5.869e-2 0.68 4.118e-2 0.68
384 5.897e-2 0.69 3.671e-2 0.68 2.582e-2 0.67
1536 3.690e-2 0.68 2.305e-2 0.67 1.623e-2 0.67
6144 2.318e-2 0.67 1.450e-2 0.67 1.022e-2 0.67

Table 2.6: Example 2. Convergence of ‖u− uh‖DG with n = 1 and k = 2.
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` = 1 ` = 2 ` = 3
Elements ‖u− uh‖DG r ‖u− uh‖DG r ‖u− uh‖DG r
24 7.467e-1 - 2.511e-1 - 1.579e-1 -
96 2.561e-1 1.54 1.278e-1 0.97 8.058e-2 0.97
384 1.251e-1 1.03 6.815e-2 0.91 4.507e-2 0.84
1536 6.747e-2 0.89 3.921e-2 0.80 2.683e-2 0.75
6144 3.916e-2 0.79 2.369e-2 0.73 1.649e-2 0.70

Table 2.7: Example 2. Convergence of ‖u− uh‖DG with n = 1 and k = 4.

` = 1 ` = 2 ` = 3
Elements ‖u− uh‖DG r ‖u− uh‖DG r ‖u− uh‖DG r
24 6.351 - 5.228e-1 - 4.033e-1 -
96 5.394e-1 3.56 3.613e-1 0.53 1.426e-1 1.50
384 2.260e-1 1.26 1.139e-1 1.67 6.983e-2 1.03
1536 1.289e-1 0.81 5.844e-2 0.96 3.810e-2 0.87
6144 5.777e-2 1.16 3.295e-2 0.83 2.238e-2 0.77

Table 2.8: Example 2. Convergence of ‖u− uh‖DG with n = 1 and k = 6.

` = 1 ` = 2 ` = 3
Elements ‖u− uh‖DG r ‖u− uh‖DG r ‖u− uh‖DG r
24 1.676e-2 - 5.049e-3 - 2.512e-3 -
96 6.138e-3 1.45 2.007e-3 1.33 9.982e-4 1.33
384 2.347e-3 1.39 7.975e-4 1.33 3.962e-4 1.33
1536 9.140e-4 1.36 3.166e-4 1.33 1.573e-4 1.33
6144 3.590e-4 1.35 1.257e-4 1.33 6.242e-5 1.33

Table 2.9: Example 2. Convergence of ‖u− uh‖DG with n = 2 and k = 1.

` = 1 ` = 2 ` = 3
Elements ‖u− uh‖DG r ‖u− uh‖DG r ‖u− uh‖DG r
24 4.811e-3 - 3.059e-4 - 3.214e-5 -
96 1.386e-3 1.80 4.556e-5 2.75 5.108e-6 2.65
384 4.195e-4 1.72 7.041e-6 2.69 8.078e-7 2.66
1536 1.338e-4 1.65 1.119e-6 2.65 1.274e-7 2.66
6144 4.448e-5 1.59 1.817e-7 2.62 2.008e-8 2.67

Table 2.10: Example 2. Convergence of ‖u− uh‖DG with n = 4 and k = 1.
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Figure 2.2: Example 2. Convergence of ‖u − uh‖0 when k = 1 for: (a) n = 1;
(b) n = 2; (c) n = 4.
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Figure 2.3: Example 3. Convergence of: (a) ‖u− uh‖DG; (b) ‖u− uh‖0.

2.7.3 Example 3

In this final example, we consider the performance of the DG method (2.4) in
the general setting of a non-curl free analytical solution which is non-smooth.
To this end, let Ω be the L-shaped domain employed in Example 2 above, and
select j (and suitable non-homogeneous boundary conditions for u) so that the
analytical solution u to the two-dimensional analogue of (2.1) is given, in terms
of the polar coordinates (r, ϑ), by

u(x, y) = ∇S′(r, ϑ)+ (sin(ky), sin(kx))T , where S′(r, ϑ) = (kr)2/3 sin(2ϑ/3);

here, u lies in the Sobolev space H2/3−ε(Ω)2, ε > 0.
In Figure 2.3 we show the convergence of both the DG- and L2(Ω)2-norm

of the error in the DG method (2.4) on a sequence of successively finer (quasi-
uniform) unstructured triangular meshes for ` = 1, 2, 3 and k = 1, 6. As in the
previous example, we clearly observe that (asymptotically) both ‖u−uh‖DG and
‖u− uh‖0 converge to zero at the optimal rate O(hmin{2/3−ε,`}), for each fixed
` and each k, as h tends to zero. The observed convergence rate for the error
measured in terms of the DG-norm is in agreement with the rate predicted by
Theorem 2.3.2; though as in Section 2.7.2, the regularity assumptions required
for the L2(Ω)2 error bound in the statement of Corollary 2.3.6 do not hold.
Finally, we point out that as in the previous two examples, an increase in the
wave number k leads to an increase in the size of the error (measured in terms
of both the DG- and L2(Ω)2-norm), as well as an increase in the size of the
pre-asymptotic region.

2.8 Concluding remarks

In this paper, we have presented the first a-priori error analysis of the interior
penalty discontinuous Galerkin method applied to the indefinite time-harmonic
Maxwell equations in non-mixed form. In particular, by employing a technique
in the spirit of [55, Section 7.2] and [56], combined with a crucial approximation
result for discontinuous finite element functions, we have shown that the error in
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the DG energy norm converges optimally with respect to the mesh size. Under
additional regularity assumptions, we have further shown that the error in the
L2-norm converges with the optimal order O(h`+1).
Ongoing research includes an implementation of the method for the dis-

cretization of 3D problems of engineering practice, in particular for the sim-
ulation of time-harmonic fields in the context of 3D models of optical nano-
antennas in scanning-near field optical microscopy. The hope is, that employing
a high-order (DG) discretization on a rather coarse FE mesh leads to a better
resolution and is more feasible for sparse direct linear solvers than a discretiza-
tion by low-order edge elements (see, e. g., Section 1.3.2).
For future investigation, an hp-analysis of DG methods for the indefinite

Maxwell’s equations would be interesting. As a preliminary, optimal order p-
interpolation estimates for the underlyingH(curl; Ω)-conforming FE spaces have
to be available. In [27], Demkowicz and Babuska prove such estimates in 2D.
The extension of this result to 3D is still open.
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3.1 Introduction

The series of articles [43, 44, 45, 62, 63], and Chapter 2 have been concerned with
the design and analysis of interior penalty discontinuous Galerkin methods for
Maxwell’s equations in the frequency-domain; indeed, both the low-frequency
and high-frequency regimes have been considered. In the low-frequency case,
we first mention the work [62, 43] where Houston, Perugia and Schötzau in-
troduced and analyzed several hp-version discontinuous Galerkin methods for
low-frequency models where the resulting bilinear forms are coercive. Such mod-
els typically arise in conducting materials or after time discretization of the full
time-domain Maxwell equations. In order to incorporate the divergence-free
constraint on the electric field within insulating materials, Houston, Perugia
and Schötzau then proposed a Lagrange multiplier approach and analyzed two
families of mixed interior penalty methods; see [45, 44]. The scheme in [45] is
based on elements of the same order for the approximation of the electric field
and the Lagrange multiplier, and on the introduction of a normal jump stabi-
lization term for the electric field. However, this stabilization term is unphysical
and has been observed to lead to spurious oscillations in the vicinity of strong
singularities in the underlying analytical solution. Fortunately, this stabiliza-
tion can be avoided altogether by increasing the approximation degree for the
Lagrange multiplier by one. The resulting mixed interior penalty method has
been studied in [44]; it can be viewed as a discontinuous version of the natural
pairing that is obtained when Nédélec’s second family of elements of degree `
and standard nodal elements of degree `+ 1 are employed; cf. [59, 55].
While the above interior penalty methods can be immediately extended to

the time-harmonic Maxwell equations in the high-frequency regime, their numer-
ical analysis becomes much more involved in this case, due to the indefiniteness
of the underlying problem; a discrepancy that also arises for conforming finite
element methods. In [63], a first error analysis of a stabilized mixed interior
penalty method was carried out for the indefinite Maxwell system. The analysis
there heavily relies on the introduction of certain volume stabilization terms,
which have been numerically observed to be unnecessary. In fact, much of the
efforts in [45] and [44] were directed towards reducing the stabilization of [63],
though in the context of low-frequency models.
In this chapter, we revisit the stabilized mixed interior penalty method in [63]

and devise and analyze a non-stabilized variant thereof, by using the mixed
approach of [44] for the discretization of the curl-curl operator. Thus, we propose
a new mixed interior penalty method for the indefinite time-harmonic Maxwell
equations where the stabilization terms of [63] can be avoided altogether (except
for the interior penalty terms, of course). Using the techniques introduced in
Chapter 2, we carry out the error analysis of this approach and derive optimal
a-priori error estimates in the energy-norm, as well as in the L2-norm. As
in Chapter 2, our analysis employs duality techniques (see [55, Section 7.2]),
and does not cover the case of non-smooth material coefficients. With respect
to the direct formulation in Chapter 2, the mixed formulation studied here is
equally applicable to both the low-frequency and high-frequency regimes, since
control of the divergence of the electric field is achieved by the introduction
of an appropriate Lagrange multiplier variable. Indeed, the numerical analysis
of the corresponding mixed interior penalty method for the principal operator
of the time-harmonic Maxwell equations in a heterogeneous insulating medium
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has already been undertaken in the article [44].
The outline of the chapter is as follows: In Section 3.2 we introduce the mixed

form of the indefinite time-harmonic Maxwell equations and, in Section 3.3, we
present their mixed interior penalty discretization and review some basic prop-
erties of the discrete scheme. The a-priori error bounds are stated in Section 3.4;
the proofs of these estimates are carried out in Sections 3.5 and 3.6. The nu-
merical performance of the proposed method is demonstrated in Section 3.7.
The main contributor of the section on numerical experiments is Paul Hous-

ton.
Finally, in Section 3.8 we summarize the work presented in this paper and

draw some conclusions.

3.2 Model problem

In this section, we introduce the model problem we shall consider in this paper.
We will use the notation introduced in Section 2.1.1 of Chapter 2.

3.2.1 Indefinite time-harmonic Maxwell’s equations

Let Ω ⊂ R3 be a lossless isotropic medium with constant magnetic permeability
µ, constant electric permittivity ε and a perfectly conducting boundary Γ = ∂Ω.
For a given temporal frequency ω > 0, we seek to determine the time-harmonic
electric field E(t,x) = < (exp(iωt)E(x)) whose spatial component E satisfies the
indefinite equations

∇×∇×E− k2E = j in Ω, (3.1)

n×E = 0 on Γ. (3.2)

Here, we take Ω to be an open bounded Lipschitz polyhedron with unit outward
normal vector n on Γ. In order to avoid topological complications, we assume
that Ω is simply-connected and that Γ is connected. The parameter k > 0 is
the wave number given by k = ω

√
εµ. Throughout, we assume that k2 is not an

interior Maxwell eigenvalue, i.e., for any E 6= 0, the pair (λ = k2,E) is not an
eigensolution of ∇×∇×E = λE in Ω, n×E = 0 on Γ. Finally, the right-hand
side j is a given generic source field in L2(Ω)3 corresponding to a time-harmonic
excitation.

3.2.2 Mixed formulation

The interior penalty method proposed in this article is based on a mixed for-
mulation of (3.1)–(3.2) already used in the hp-approaches of [28] and [1], as well
as in the mortar approach [16]. To this end, we decompose the field E as

E = u+∇ϕ, (3.3)

where ϕ is scalar function in H1
0 (Ω) and u belongs to H0(curl; Ω)∩H(div0; Ω).

The decomposition (3.3) is orthogonal in L2(Ω)3, which implies that

(u,∇q) = 0 ∀q ∈ H1
0 (Ω); (3.4)
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see [31] for details. Thus, upon setting

p = k2ϕ, (3.5)

we are led to consider the following system: find (u, p) such that

∇×∇× u− k2u−∇p = j in Ω, (3.6)

∇ · u = 0 in Ω, (3.7)

n× u = 0 on Γ, (3.8)

p = 0 on Γ. (3.9)

Introducing the spaces V = H0(curl; Ω) and Q = H1
0 (Ω), the weak formulation

of problem (3.6)–(3.9) consists in finding (u, p) ∈ V ×Q such that

a(u,v) − k2(u,v) + b(v, p) = (j,v),

b(u, q) = 0
(3.10)

for all (v, q) ∈ V ×Q, where the forms a and b are defined, respectively, by

a(u,v) = (∇× u,∇× v), b(v, p) = −(v,∇p).

We notice that the form a is bilinear, continuous and coercive on the kernel of
b, and b is bilinear, continuous, and satisfies the inf-sup condition; see, e.g., [28,
55, 73]. Hence, problem (3.6)–(3.9) is well-posed (provided that k2 is not an
interior Maxwell eigenvalue) and there is a constant depending on Ω and k2

such that
‖u‖curl + ‖p‖1 ≤ C‖j‖0; (3.11)

cf. [63, Proposition 1]. Moreover, under the foregoing assumptions on Ω, there
exists a regularity exponent σ = σ(Ω) > 1/2, only depending on Ω, such that

u ∈ Hσ(Ω)3, ∇× u ∈ Hσ(Ω)3, and ‖u‖σ + ‖∇× u‖σ ≤ C‖j‖0, (3.12)

for a constant C depending on Ω and k2; see [63, Proposition 2].
We recall that the regularity exponent σ = σ(Ω) > 1/2 stems from the

embeddings (2.8), and that in particular, for a convex domain, the embeddings
in (2.8) hold with σ = 1.

3.3 Discretization

In this section, we introduce an interior penalty discretization for the sys-
tem (3.6)–(3.9) and discuss its stability and consistency properties. We employ
the notation introduced in Section 2.2 of Chapter 2.

3.3.1 Interior penalty method

For a given partition Th of Ω and an approximation order ` ≥ 1, we wish to
approximate (u, p) by (uh, ph) in the finite element space Vh ×Qh, where

Vh := {v ∈ L2(Ω)3 : v|K ∈ P`(K)3 ∀K ∈ Th},
Qh = {q ∈ L2(Ω) : q|K ∈ P`+1(K) ∀K ∈ Th},
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and Pm(K) denotes the space of polynomials of total degree at most m on K.
To this end, we consider the discontinuous Galerkin method: find uh ∈ Vh and
ph ∈ Qh such that

ah(uh,v) − k2(uh,v) + bh(v, ph) = (j,v),

bh(uh, q)− ch(ph, q) = 0
(3.13)

for all (v, q) ∈ Vh ×Qh, with discrete forms ah(·, ·), bh(·, ·) and ch(·, ·) defined
by

ah(u,v) = (∇h × u,∇h × v) −
∫

Fh

[[u]]T · {{∇h × v}} ds

−
∫

Fh

[[v]]T · {{∇h × u}} ds+
∫

Fh

a [[u]]T · [[v]]T ds,

bh(v, p) = −(v,∇hp) +

∫

Fh

{{v}} · [[p]]N ds,

ch(p, q) =

∫

Fh

c[[p]]N · [[q]]N ds,

respectively. Here, ∇h is the discrete ‘nabla’ operator defined elementwise (i.e.,
∇h × v =

∑
K∈Th

∇ × v|K and ∇hq =
∑

K∈Th
∇q|K ) and use the convention

that ∫

Fh

ψ ds =
∑

F∈Fh

∫

F

ψ ds.

The functions a and c are the so-called interior penalty stabilization functions
that are taken as follows:

a = α h−1, c = γ h−1. (3.14)

Here, h is the mesh size function given by h|F ≡ hF = diam(F ) for all F ∈ Fh.
Furthermore, α and γ are positive parameters independent of the mesh size.
We observe that the jumps [[v]]T and [[q]]N are well-defined for elements of

Vh and Qh, respectively, since the elements of Vh and Qh are elementwise
polynomials, and therefore elementwise arbitrarily smooth.
The well-posedness of the method (3.13) will be established in Corollary 3.4.3

below.
Remark 3.3.1. We note that the formulation (3.13) is a non-stabilized

variant of the one proposed in [63]. Furthermore, we point out that the formu-
lation (3.13) can be easily modified in order to include non-constant material
coefficients, see [62, 63, 44]. However, while the subsequent analysis, based on
employing duality arguments, can be immediately extended to the case of smooth
material coefficients, problems with non-smooth coefficients cannot be dealt with
using this approach. Indeed, in this latter case, the error analysis of the proposed
interior penalty method remains an open issue.

Remark 3.3.2. Instead of the interior penalty approach presented here,
many other discontinuous Galerkin methods could be employed for the discretiza-
tion of the curl-curl operator; see [5] for a presentation of different discontinuous
Galerkin discretizations of second order operators, and [62] for details on the
LDG discretization of the curl-curl operator.
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3.3.2 Auxiliary forms and error equations

In order to study the discretization in (3.13), we first define how ah and bh
should be understood on the continuous level. To this end, we introduce the
spaces V(h) and Q(h) given by

V(h) = V +Vh, Q(h) = Q+Qh,

and endow them with the following DG-norms:

‖v‖2V(h) = ‖v‖20 + ‖∇h × v‖20 + ‖h− 1
2 [[v]]T ‖20,Fh ,

‖q‖2Q(h) = ‖∇hq‖20 + ‖h− 1
2 [[q]]N‖20,Fh ,

respectively. Here, we use the notation

‖ψ‖20,Fh =
∑

F∈Fh

‖ψ‖20,F .

Then, for v ∈ V(h), we define the lifted element L(v) ∈ Vh by

(L(v),w) =
∫

Fh

[[v]]T · {{w}} ds ∀w ∈ Vh.

Similarly, for q in Q(h), we define M(q) ∈ Vh by

(M(q),w) =

∫

Fh

{{w}} · [[q]]N ds ∀w ∈ Vh.

The lifting operators L and M are well-defined; see [63, Proposition 12].
Next, we introduce the auxiliary forms

ãh(u,v) = (∇h × u,∇h × v) − (L(u),∇h × v)

−(L(v),∇h × u) +

∫

Fh

a [[u]]T · [[v]]T ds,

b̃h(v, p) = −(v,∇hp−M(p)).

Then, we have

ãh = ah on Vh ×Vh, ãh = a on V ×V,

as well as
b̃h = bh on Vh ×Qh, b̃h = b on V ×Q.

Hence, ãh and b̃h can be viewed as extensions of ah and bh, as well as a and b,
to the spaces V(h) ×V(h) and V(h)×Q(h), respectively. With this notation,
we may reformulate the discrete problem (3.13) in the following equivalent way:
find (uh, ph) in Vh ×Qh such that

ãh(uh,v)− k2(uh,v) + b̃h(v, ph) = (j,v),

b̃h(uh, q) − ch(ph, q) = 0
(3.15)

for all (v, q) ∈ Vh ×Qh.
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Let (u, p) be the analytical solution of (3.6)–(3.9) and (v, q) ∈ Vh×Qh. We
define

R1(u, p;v) := ãh(u,v)− k2(u,v) + b̃h(v, p)− (j,v),
R2(u; q) := b̃h(u, q) = b̃h(u, q)− ch(p, q),

where we have used that ch(p, q) = 0 for any q ∈ Qh. The functionals R1
and R2 measure how well the analytical solution (u, p) satisfies the formulation
in (3.15). Owing to the regularity properties in (3.12), it is possible to show
that

R1(u, p;v) =

∫

Fh

[[v]]T · {{∇ × u−Πh(∇× u)}} ds,

R2(u; q) =

∫

Fh

[[q]]N · {{u−Πhu}} ds,
(3.16)

with Πh denoting the L
2-projection onto Vh; see [63, Lemma 24] for details.

In particular, we have that R1 is independent of p, and that R1(u, p;v) = 0 for
all v ∈ Vh ∩V, as well as R2(u; q) = 0 for all q ∈ Qh ∩Q.
With these definitions, it is obvious that the error (u− uh, p− ph) between

the analytical solution (u, p) and the mixed DG approximation (uh, ph) satisfies

ãh(u−uh,v)−k2(u−uh,v)+ b̃h(v, p−ph) = R1(u, p;v) ∀v ∈ Vh, (3.17)

as well as

b̃h(u− uh, q)− ch(p− ph, q) = R2(u; q) ∀q ∈ Qh. (3.18)

Here, (3.17) and (3.18) are referred to as the error equations.

3.3.3 Continuity and stability properties

Next, let us review the main stability results for the forms ãh and b̃h, as well
as some crucial properties of the discrete solution (uh, ph). To this end, we first
note that the following continuity properties hold.

Proposition 3.3.3. There are continuity constants CA and CB, indepen-
dent of the mesh size, such that

|ãh(u,v)| ≤ CA‖u‖V(h)‖v‖V(h) ∀u,v ∈ V(h),
|̃bh(v, q)| ≤ CB‖v‖V(h)‖q‖Q(h) ∀(v, q) ∈ V(h) ×Q(h).

The linear functional on the right-hand side of the first equation in (3.15) sat-
isfies

|(j,v)| ≤ ‖j‖0‖v‖V(h) ∀v ∈ Vh.

Furthermore, there is a constant CR, independent of the mesh size, such that

|R1(u, p;v)| ≤ CR‖v‖V(h)E1,h(u) ∀v ∈ Vh,

|R2(u; q)| ≤ CR‖q‖Q(h)E2,h(u) ∀q ∈ Qh.
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Here, we have set

E1,h(u)2 :=
∑

K

hK‖∇× u−Πh(∇× u)‖20,∂K ,

E2,h(u)2 :=
∑

K

hK‖u−Πhu‖20,∂K ,
(3.19)

where we recall that Πh denotes the L
2-projection onto Vh.

Proof. For the proof of the first three assertions, we refer the reader to [45,
Proposition 5.1]. The stability bounds for R1 and R2 in (3.19) follow imme-
diately from weighted Cauchy-Schwarz inequalities and the definitions of the
norms ‖ · ‖V(h), ‖ · ‖Q(h) and the parameters a, c in (3.14).
The form ãh satisfies the following G̊arding-type inequality.
Proposition 3.3.4. There exists a parameter αmin > 0, independent of the

mesh size, such that for α ≥ αmin we have

ãh(v,v) ≥ CG‖v‖2V(h) − ‖v‖20 ∀v ∈ Vh,

with a constant CG > 0 independent of the mesh size.
Proof. The G̊arding-type inequality readily follows from the fact that there

is an αmin > 0, independent of the mesh size, such that for α ≥ αmin

ãh(v,v) ≥ C
[
‖∇h × v‖20 + ‖h− 1

2 [[v]]T ‖20,Fh
]
;

see [43, 45] for details.

Next, let us recall a stability property of the form b̃h on the conforming
subspaces underlying Vh and Qh. To this end, we set

Vc
h = Vh ∩V, Qc

h = Qh ∩Q. (3.20)

Notice that Vc
h is the Nédélec finite element space of second type (see [59] or

[55, Section 8.2]), with zero tangential trace prescribed on Γ, and Qc
h is the

space of continuous polynomials of degree `+ 1, with zero trace prescribed on
Γ.
The following inf-sup condition holds on Vc

h × Qc
h; see [44, Lemma 1] for

details.
Lemma 3.3.5. There is a stability constant CS , independent of the mesh

size, such that

inf
q∈Qc

h
\{0}

sup
v∈Vc

h
\{0}

b̃h(v, q)

‖v‖V(h)‖q‖Q(h)
≥ CS > 0. (3.21)

Note that, since Vc
h ⊂ Vh, the inf-sup condition (3.21) in Lemma 3.3.5

remains valid when Vc
h is replaced by Vh, with the same inf-sup constant.

Now, define the discrete kernel

Zh = {v ∈ Vh : b̃h(v, q) = 0 ∀q ∈ Qc
h}. (3.22)

Lemma 3.3.6. Let u be the vector-valued component of the analytical so-
lution of (3.6)–(3.9) and uh its discontinuous Galerkin approximation obtained
in (3.13). Then,
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(i) uh ∈ Zh;

(ii) (u− uh,∇q) = 0 for all q ∈ Qc
h.

Proof. Since ch(ph, q) = 0 for all q ∈ Qc
h, the first claim follows immediately.

Furthermore, in view of (3.4), (u − uh,∇q) = −(uh,∇q) for all q ∈ Qc
h. Since

−(uh,∇q) = b̃(uh, q), the second claim follows from the first one.
Finally, we will make use of a discrete Helmholtz decomposition: the space

Vc
h can be written as

Vc
h = Xh ⊕∇Qc

h, (3.23)

with Xh given by

Xh := {v ∈ Vc
h : (v,∇q) = 0 ∀q ∈ Qc

h}. (3.24)

By construction, the decomposition (3.23) is orthogonal in L2(Ω)3; cf. [55, Sec-
tion 8.2].

3.4 A-priori error estimates and well-posedness

In this section, we state optimal a-priori error estimates in the DG energy-norm
and the L2-norm. We further show that the energy error estimates imply the
well-posedness of the interior penalty formulation (3.13); see [68].
The following result addresses the error in the energy-norm.
Theorem 3.4.1. Suppose that the analytical solution (u, p) of (3.6)–(3.9)

satisfies
u ∈ Hs(Ω)3, ∇× u ∈ Hs(Ω)3, p ∈ Hs+1(Ω), (3.25)

for a parameter s > 1/2. Let (uh, ph) be the mixed DG approximation obtained
by (3.13) with α ≥ αmin and γ > 0. Then, there exists a mesh size h0 > 0 such
that

‖u− uh‖V(h) + ‖p− ph‖Q(h) ≤ C hmin{s,`}
[
‖u‖s + ‖∇× u‖s + ‖p‖s+1

]

for all meshes Th of mesh size h < h0. The constant C > 0 is independent of
the mesh size.

Remark 3.4.2. We observe that the regularity assumption on p in Theo-
rem 3.4.1 is automatically fulfilled, with s = σ, as aoon as ∇ · j ∈ L2(Ω).
By proceeding along the lines of [68], well-posedness of the formulation (3.13)

can be established from the a-priori estimate in Theorem 3.4.1.
Corollary 3.4.3. For stabilization parameters α ≥ αmin > 0 and γ > 0,

and mesh sizes h < h0, the method (3.13) has a unique solution.
Proof. If j = 0, then (u, p) = (0, 0) and the estimate in Theorem 3.4.1

implies that ‖uh‖V(h) + ‖ph‖Q(h) ≤ 0 for h < h0. Hence, (uh, ph) = (0, 0) for
h < h0.
Next, we state an a-priori bound for the error ‖u− uh‖0 and show that the

optimal order O(h`+1) is obtained for smooth solutions and convex domains.
Theorem 3.4.4. Suppose the vector-valued component u of the analytical

solution (u, p) of (3.6)–(3.9) satisfies

u ∈ Hs+σ(Ω)3, ∇× u ∈ Hs(Ω)3,
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for a parameter s > 1/2 and the embedding exponent σ ∈ (1/2, 1] from (2.8).
Let uh be the DG approximation obtained by (3.13) with α ≥ αmin > 0 and
γ > 0. Then there is a mesh size 0 < h1 < 1 such that for all meshes Th of
mesh size 0h < h1 we have

‖u−uh‖0 ≤ C hmin{s,`}+σ
[
‖u‖s+σ+‖∇×u‖s

]
+C hσ

[
‖u−uh‖V(h)+‖p−ph‖Q(h)

]
,

where the constant C > 0 is independent of the mesh size.
We note that the minimal mesh sizes h0 in Theorem 3.4.1 and h1 in Theo-

rem 3.4.4 depend on the wave number k and the regularity exponent σ in the
embedding (2.8).
Theorem 3.4.4 and Theorem 3.4.1 ensure optimal L2-error estimates for

smooth solutions and convex domains.
Corollary 3.4.5. For a convex domain where σ = 1 and an analytical so-

lution (u, p) ∈ H`+1(Ω)3×H`+1(Ω), we obtain for h < min{h0, h1} the optimal
error bound

‖u− uh‖0 ≤ Ch`+1
[
‖u‖`+1 + ‖p‖`+1

]
,

with a constant C > 0 independent of the mesh size.
The proofs of Theorem 3.4.1 and Theorem 3.4.4 are given in Section 3.5

and Section 3.6, respectively. Before we start, we recall the result that allows
us to find a conforming function close to any discontinuous one. This result is
essential to the error analysis of the method in (3.13).

Theorem 3.4.6. There exist approximants A : Vh → Vc
h and A : Qh → Qc

h

such that

‖v −Av‖20 ≤ C

∫

Fh

h|[[v]]T |2 ds,

‖v −Av‖2V(h) ≤ C

∫

Fh

h−1|[[v]]T |2 ds,

‖q −Aq‖2Q(h) ≤ C

∫

Fh

h−1|[[q]]N |2 ds

for all v ∈ Vh and q ∈ Qh. The constant C > 0 solely depends on the shape-
regularity of the mesh and the polynomial degree `.
For the spaceVh, this result corresponds to the result in Proposition 2.4.5. It

has been proved in [40, Appendix A] which is also reported in Appendix 5.8. The
result for Qh can be found in [49, Section 2.1]. Theorem 3.4.6 and the definition
of the DG-norms ‖ · ‖V(h) and ‖ · ‖Q(h) immediately imply the following result.

Corollary 3.4.7. There is a constant C > 0 independent of the mesh size
such that

‖v −Av‖V(h) + ‖Av‖V(h) + h−1‖v −Av‖0 ≤ C‖v‖V(h),
‖q −Aq‖Q(h) + ‖Aq‖Q(h) ≤ C‖q‖Q(h)

for all v ∈ Vh and q ∈ Qh.
We will further need the following consequence of Theorem 3.4.6, which

follows from the fact that [[w]]T = 0 on Fh, for any w ∈ V, and the definition
of the DG-norm ‖ · ‖V(h).
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Corollary 3.4.8. Let v ∈ Vh and w ∈ V. Let A be the conforming
approximant from Theorem 3.4.6. Then we have

‖v −Av‖V(h) ≤ C‖v −w‖V(h),
‖v −Av‖0 ≤ Ch‖v −w‖V(h),

with a constant C > 0 that is independent of the mesh size.
In the analysis for (3.13) we shall further need the results on standart ap-

proximation operators stated in Section 2.4.2 of Chapter 2.

3.5 Proof of Theorem 3.4.1 (energy norm error
estimate)

In this section, we prove the result of Theorem 3.4.1 by proceeding along the
lines of Section 2.5, [56] and [55, Section 7.2].
To this end, we define

Dh(u− uh) := sup
06=v∈Vh

(u− uh,v)

‖v‖V(h)
. (3.26)

We start by proving a preliminary energy norm error bound in terms of E1,h(u),
E2,h(u) and Dh(u − uh). Then, we estimate these quantities separately; in
particular, a duality argument will be used for bounding Dh(u− uh).

3.5.1 Preliminary error bound

We first prove the following error bound.
Proposition 3.5.1. Let (u, p) be the analytical solution of (3.6)–(3.9), and

let (uh, ph) be the solution of (3.13) obtained with α ≥ αmin > 0 and γ > 0.
Then we have that

‖u− uh‖V(h) + ‖p− ph‖Q(h) ≤ C
[
‖u− v‖V(h) + ‖p− q‖Q(h)
+ E1,h(u) + E2,h(u) +Dh(u− uh)

]

for all v ∈ Vc
h and all q ∈ Qc

h, with E1,h, E2,h and Dh defined in (3.19)
and (3.26), respectively. Here, the constant C > 0 is independent of the mesh
size.

Proof. We decompose uh and ph into a conforming part and a remainder by
setting

uh = u
c
h + u

⊥
h , ph = pch + p

⊥
h , (3.27)

where uch = Auh, u
⊥
h = uh −Auh, p

c
h = Aph, p

⊥
h = ph − Aph, A and A being

the approximants from Theorem 3.4.6. We now proceed in three steps.
Step 1: Estimate of ‖p⊥

h ‖Q(h) and ‖u− uh‖V(h). We claim that

‖u− uh‖V(h) + ‖p⊥
h ‖Q(h) ≤ C

[
‖u− v‖V(h) + ‖p− q‖Q(h)
+ E1,h(u) + E2,h(u) +Dh(u− uh)

] (3.28)

for all v ∈ Vc
h and q ∈ Qc

h, with a positive constant C independent of the mesh
size.
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We start by showing that (3.28) holds for any v ∈ Vc
h ∩ Zh and q ∈ Qc

h. To
this end, fix v ∈ Vc

h ∩ Zh and q ∈ Qc
h; Theorem 3.4.6 then yields

C‖p⊥
h ‖2Q(h) ≤ ch(p

⊥
h , p

⊥
h ) = ch(ph − q, ph − q).

This, together with the G̊arding-type inequality in Proposition 3.3.4, gives the
bound

min{CG, C}
[
‖uh − v‖2V(h) + ‖p⊥

h ‖2Q(h)
]

≤ CG‖uh − v‖2V(h) + C‖p⊥
h ‖2Q(h)

≤ ãh(uh − v,uh − v) + ch(ph − q, ph − q) + (uh − v,uh − v)

≡ T1 + T2 + T3,

(3.29)

where

T1 = ãh(uh − v,uh − v) − k2(uh − v,uh − v) + b̃h(uh − v, ph − q),

T2 = −b̃h(uh − v, ph − q) + ch(ph − q, ph − q),

T3 = (k2 + 1)(uh − v,uh − v).

We now proceed to bound the three terms T1, T2, and T3.
For T1, the error equation (3.17) and the continuity properties in Proposi-

tion 3.3.3 yield

T1 = −R1(u, p;uh − v) + ãh(u− v,uh − v)

−k2(u− v,uh − v) + b̃h(uh − v, p− q)

≤ ‖uh − v‖V(h)
[
CRE1,h(u) + (CA + k2)‖u− v‖V(h) + CB‖p− q‖Q(h)

]
.(3.30)

Similarly, using the error equation in (3.18), the term T2 can be written as

T2 = R2(u; ph − q)− b̃h(u− v, ph − q) + ch(p− q, ph − q)

= R2(u; ph − q)− b̃h(u− v, ph − q),

where we also have used the fact that ch(p − q, ph − q) = 0 (since p − q ∈ Q).
Then, we observe that

b̃h(u− v, ph − q) = b̃h(u− v, pch − q) + b̃h(u− v, p⊥
h ) = b̃h(u− v, p⊥

h ),

since u is divergence-free, see (3.4), and v belongs to the kernel Zh. Further-
more, we conclude from (3.16) that R2(u; ph − q) = R2(u; p

⊥
h ). Hence, we

obtain
T2 = R2(u; p

⊥
h )− b̃h(u− v, p⊥

h ),

and the continuity properties in Proposition 3.3.3 yield

T2 ≤ ‖p⊥
h ‖Q(h)

[
CRE2,h(u) + CB‖u− v‖V(h)

]
. (3.31)

The term T3 can be estimated in a similar fashion:

T3 = (k2 + 1)(uh − u,uh − v) + (k2 + 1)(u− v,uh − v)

≤ (k2 + 1)‖uh − v‖V(h)
[
Dh(u− uh) + ‖u− v‖V(h)

]
. (3.32)
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By combining (3.29) with the estimates in (3.30)–(3.32), and by dividing the

resulting inequality by (‖uh − v‖2
V(h) + ‖p⊥

h ‖2Q(h))
1
2 , we obtain that

‖uh − v‖V(h) + ‖p⊥
h ‖Q(h) ≤C

[
(2k2 + 1 + CA + CB)‖u− v‖V(h) + CB‖p− q‖Q(h)

+ CRE1,h(u) + CRE2,h(u) + (k2 + 1)Dh(u− uh)
]
.

This bound and the triangle inequality

‖u− uh‖V(h) ≤ ‖u− v‖V(h) + ‖uh − v‖V(h)

result in

‖u− uh‖V(h) + ‖p⊥
h ‖Q(h) ≤C

[
‖u− v‖V(h) + ‖p− q‖Q(h)

+ E1,h(u) + E2,h(u) +Dh(u− uh)
]
.

This shows (3.28) for all v ∈ Vc
h ∩ Zh and all q ∈ Qc

h.
In order to complete the proof of (3.28), it remains to show that the esti-

mate (3.28) is also valid for any v ∈ Vc
h. To this end, fix v ∈ Vc

h and choose
r ∈ Vc

h such that

b̃h(r, s) = b̃h(u− v, s) ∀s ∈ Qc
h,

‖r‖V(h) ≤ C−1
S CB‖u− v‖V(h);

the existence of such a r is guaranteed by the inf-sup condition in Lemma 3.3.5.
We set w := r+ v; by construction, w ∈ Vc

h ∩ Zh. Thereby,

‖u−w‖V(h) ≤ ‖u− v‖V(h) + ‖r‖V(h) ≤ (1 + C−1
S CB)‖u− v‖V(h),

from which (3.28) follows.
Step 2: Estimate of ‖p−ph‖Q(h). Next, we address the error in the multiplier

p and show that, for any q ∈ Qc
h,

‖p−ph‖Q(h) ≤ C
[
‖u−uh‖V(h)+‖p−q‖Q(h)+‖p⊥

h ‖Q(h)+k2Dh(u−uh)
]
. (3.33)

To prove (3.33), fix q ∈ Qc
h. From the triangle inequality and the decompo-

sition ph = pch + p
⊥
h , we have

‖p− ph‖Q(h) ≤ ‖p− q‖Q(h) + ‖q − pch‖Q(h) + ‖p⊥
h ‖Q(h). (3.34)

The inf-sup condition (3.21) in Lemma 3.3.5 implies that

CS ‖q − pch‖Q(h) ≤ sup
06=v∈Vc

h

b̃h(v, q − pch)

‖v‖V(h)

= sup
06=v∈Vc

h

b̃h(v, q − p) + b̃h(v, p− ph) + b̃h(v, p
⊥
h )

‖v‖V(h)
.

Notice that the error equation (3.17) yields, for v ∈ Vc
h,

b̃h(v, p− ph) = −ãh(u− uh,v) + k
2(u− uh,v),
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where we have used the fact that R1(u, p;v) = 0 for v ∈ Vc
h. Hence,

CS ‖q − pch‖Q(h) ≤

sup
06=v∈Vc

h

b̃h(v, q − p)− ãh(u− uh,v) + k
2(u− uh,v) + b̃h(v, p

⊥
h )

‖v‖V(h)
.

Then, the continuity properties of ãh and b̃h in Proposition 3.3.3 and (3.26)
yield the bound

CS ‖q−pch‖Q(h) ≤ CB ‖p−q‖Q(h)+CA ‖u−uh‖V(h)+CB ‖p⊥
h ‖Q(h)+k2Dh(u−uh);

substituting this estimate into (3.34), we deduce (3.33).
Step 3: Conclusion. The statement of the proposition readily follows from (3.28)

and (3.33) in Step 1 and Step 2, respectively.

3.5.2 Estimate of Dh(u− uh)

To estimate Dh, we proceed along the same lines as in the proof of [63, Proposi-
tion 4.2] and in Proposition 2.5.2 of Chapter 2; to this end, the following result
holds.

Proposition 3.5.2. There exists C > 0, independent of the mesh size, such
that

Dh(u− uh) ≤ C hσ
[
‖u− uh‖V(h) + ‖p− ph‖Q(h)

]
,

with the parameter σ ∈ (1/2, 1] from (3.12).
Proof. Fix v ∈ Vh, and let v

c = Av ∈ Vc
h be the conforming approximation

of v from Theorem 3.4.6. Employing the Helmholtz decomposition (3.23), we
decompose vc as

vc = vc0 +∇r, (3.35)

with vc0 ∈ Xh and r ∈ Qc
h. Employing (3.35), we obtain

(u− uh,v) = (u− uh,v − vc) + (u− uh,v
c)

= (u− uh,v − vc) + (u− uh,v
c
0)

= (u− uh,v − vc) + (u− uh,v
c
0 −Hvc0) + (u− uh,Hv

c
0)

≡ T1 + T2 + T3,

with Hvc0 from Lemma 2.4.4. Here, we have used the orthogonality property
of the error u − uh in Lemma 3.3.6. We now proceed to estimate each of the
terms T1, T2 and T3 below.
Exploiting the Cauchy-Schwarz inequality and the approximation result in

Corollary 3.4.7 yields

|T1| ≤ ‖u− uh‖0‖v − vc‖0 ≤ Ch‖u− uh‖0‖v‖V(h). (3.36)

Similarly, using the Cauchy-Schwarz inequality and the approximation results
stated in Lemma 2.4.4 and Corollary 3.4.7, we obtain

|T2| ≤ ‖u− uh‖0‖vc0 −Hvc0‖0 ≤ Chσ‖u− uh‖0‖∇× vc0‖0
= Chσ‖u− uh‖0‖∇ × vc‖0 ≤ Chσ‖u− uh‖0‖vc‖V(h)
≤ Chσ‖u− uh‖0‖v‖V(h).

(3.37)
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Next, we prove the bound

|T3| ≤ Chσ‖v‖V(h)
[
‖u− uh‖V(h) + ‖p− ph‖Q(h)

]
, (3.38)

by employing a duality approach.
To this end, we set w = Hvc0 and let z denote the solution of the following

problem:
∇×∇× z− k2z = w in Ω,

n× z = 0 on Γ.
(3.39)

Since w ∈ H(div0; Ω), the solution z belongs to H0(curl; Ω) ∩ H(div0; Ω). As
in [55, Lemma 7.7], we obtain from the embeddings in (2.8) that z ∈ Hσ(Ω)3,
∇× z ∈ Hσ(Ω)3 and

‖z‖σ + ‖∇× z‖σ ≤ C‖w‖0, (3.40)

for a stability constant C > 0 and the parameter σ ∈ (1/2, 1] in (2.8).
Hence, multiplying the dual problem (3.39) with eh := u−uh and integrating

by parts, since ∇× z ∈ H(curl; Ω), we obtain

(eh,w) = (∇h × eh,∇× z)− k2(eh, z)−
∫

Fh

[[eh]]T · {{∇ × z}} ds.

Then, using the definitions of ãh, b̃h, L,M, the properties of the L2–projection
Πh, integration by parts and the fact that z ∈ H0(curl; Ω) ∩ H(div0; Ω), we
obtain

(eh,w) = ãh(eh, z)− k2(eh, z) + b̃h(z, p− ph) + (z,∇h(p− ph)−M(p− ph))

+(L(eh),∇× z)−
∫

Fh

[[eh]]T · {{∇ × z}} ds

= ãh(eh, z)− k2(eh, z) + b̃h(z, p− ph)

+

∫

Fh

[[p− ph]]N · {{z−Πhz}} ds

−
∫

Fh

[[eh]]T · {{∇ × z−Πh(∇× z)}} ds.

Let now zh = ΠNz ∈ Vc
h be the Nédélec interpolant of the second kind of z,

according to Lemma 2.4.1. Owing to the error equation (3.17) and the fact that
R1(u, p; zh) = 0 (since zh ∈ Vc

h), we have

(eh,w) = ãh(eh, z− zh)− k2(eh, z− zh) + b̃h(z− zh, p− ph)

+

∫

Fh

[[p− ph]]N · {{z−Πhz}} ds−
∫

Fh

[[eh]]T · {{∇ × z−Πh(∇× z)}} ds.

Employing the weighted Cauchy-Schwarz inequality, the approximation prop-
erties in Lemma 2.4.3 and the stability bound (3.40), we get

∣∣∣∣
∫

Fh

[[p− ph]]N · {{z−Πhz}} ds
∣∣∣∣

≤ C

(∫

Fh

h−1|[[p− ph]]N |2 ds
) 1

2

(
∑

K∈Th

hK‖z−Πhz‖20,∂K

) 1
2

≤ Chσ‖p− ph‖Q(h)‖z‖σ ≤ Chσ‖p− ph‖Q(h)‖w‖0.
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Similarly,
∣∣∣∣
∫

Fh

[[eh]]T · {{∇ × z−Πh(∇× z)}} ds
∣∣∣∣

≤ C

(∫

Fh

h−1|[[eh]]T |2 ds
) 1

2

(
∑

K∈Th

hK‖∇× z−Πh(∇× z)‖20,∂K

) 1
2

≤ Chσ‖eh‖V(h)‖∇× z‖σ ≤ Chσ‖eh‖V(h)‖w‖0.

Furthermore, the continuity of ãh and b̃h in Proposition 3.3.3, the approximation
property (2.15) in Lemma 2.4.1 and the stability estimate (3.40) give

ãh(eh, z− zh)− k2(eh, z− zh) + b̃h(z − zh, p− ph) ≤
Chσ‖w‖0

[
‖eh‖V(h) + ‖p− ph‖Q(h)

]
.

Hence, the above bounds yield

(u− uh,w) ≤ Chσ‖w‖0
[
‖u− uh‖V(h) + ‖p− ph‖Q(h)

]
.

Since ‖w‖0 ≤ ‖vc0‖0 ≤ ‖vc‖0 ≤ C‖v‖V(h), in view of Lemma 2.4.4, the L2(Ω)3–
orthogonality of the Helmholtz decomposition (3.35), and Corollary 3.4.7, we
conclude that (3.38) holds.
By combining (3.36), (3.37) and (3.38), we obtain

|(u− uh,v)| ≤ C hσ‖v‖V(h)
[
‖u− uh‖V(h) + ‖p− ph‖Q(h)

]

for all v ∈ Vh, which immediately implies the desired bound for Dh(u− uh).

3.5.3 Conclusion of the proof of Theorem 3.4.1

From the abstract estimate in Proposition 3.5.1 and the bound on Dh(u − uh)
in Proposition 3.5.2, we have that there exists h0 > 0 such that, for any h < h0,

‖u−uh‖V(h)+‖p−ph‖Q(h) ≤ C
[
‖u−v‖V(h)+‖p− q‖Q(h)+E1,h(u)+E2,h(u)

]

(3.41)
for all v ∈ Vc

h and all q ∈ Qc
h, with a constant C > 0 independent of the mesh

size. Notice that h0 also depends on the wave number and on the regularity
exponent σ.
Let us now suppose that the analytical solution (u, p) satisfies (3.25). First,

we use the Nédélec interpolant of the second kind in Lemma 2.4.1 to obtain

inf
v∈Vc

h

‖u− v‖V(h) ≤ ‖u−ΠNu‖V(h) ≤ Chmin{s,`} [‖u‖s + ‖∇× u‖s] .

Then, standard approximation properties for Qc
h give

inf
q∈Qc

h

‖p− q‖Q(h) ≤ Chmin{s,`}‖p‖s+1.

Finally, using Lemma 2.4.3, we conclude that

E1,h(u) ≤ C hmin{s,`+1}‖∇× u‖s,
E2,h(u) ≤ C hmin{s,`+1}‖u‖s.

(3.42)

Inserting these bounds into (3.41) completes the proof of Theorem 3.4.1.
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3.6 Proof of Theorem 3.4.4 (error estimate in
the L2-norm)

In this section, we present the proof of Theorem 3.4.4. Our analysis proceeds
along the lines of the proof of Theorem 2.3.5 in Chapter 2 which, in turn,
relies on the ideas of [54, Section 4] where an L2-error estimate is derived for
conforming discretizations of the indefinite time-harmonic Maxwell’s equations.

3.6.1 The bound in Theorem 3.4.4

To derive the bound in Theorem 3.4.4, we start by splitting uh into uh =
uch + u

⊥
h , where u

c
h := Auh ∈ Vc

h is the conforming approximation from The-
orem 3.4.6 and u⊥

h = uh − Auh. We further recall that ΠNu denotes the
curl-conforming Nédélec interpolant of the second kind, and write

‖u− uh‖20 = (u− uh,u−ΠNu) + (u− uh,ΠNu− uch)− (u− uh,u
⊥
h ).

By using the triangle inequality, the Cauchy-Schwarz inequality and the result
in Corollary 3.4.8, we have

‖u− uh‖0 ≤ ‖u−ΠNu‖0 + Ch‖u− uh‖V(h) +
|(u− uh,ΠNu− uch)|

‖u− uh‖0
, (3.43)

with C > 0 independent of the mesh size.
Defining

T :=
|(u− uh,ΠNu− uch)|

‖u− uh‖0
,

we claim that, for a sufficiently small mesh size,

T ≤ C‖u−ΠNu‖0+Chσ
[
‖u−ΠNu‖curl+‖u−uh‖V(h)+‖p−ph‖Q(h)

]
, (3.44)

with C > 0 independent of the mesh size, and σ ∈ (1/2, 1] denoting the embed-
ding parameter in (2.8). Combining (3.43), (3.44) and using the approximation
property (2.17) for ΠN in Lemma 2.4.1 yield

‖u− uh‖0 ≤Chmin{s+σ,`+1}‖u‖s+σ + Chmin{s,`}+σ
[
‖u‖s + ‖∇× u‖s

]

+ Chσ
[
‖u− uh‖V(h) + ‖p− ph‖Q(h)

]
.

Since ‖u‖s ≤ ‖u‖s+σ and min{s+ σ, `+ 1} ≥ min{s, `}+ σ, the error estimate
in Theorem 3.4.4 follows from Theorem 3.4.1. It remains to prove the bound
in (3.44); this is undertaken in the following section.

3.6.2 Proof of the auxiliary bound in (3.44)

In order to prove (3.44), we invoke the Helmholtz decomposition in (3.23) and
write

ΠNu− uch = w
c
0 +∇ϕ, (3.45)

with wc
0 ∈ Xh and ϕ ∈ Qc

h.
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We then let w = Hwc
0 be the exactly divergence-free approximation of

wc
0 from Lemma 2.4.4. From (3.45) and the orthogonality property (ii) in
Lemma 3.3.6, we obtain

(u− uh,ΠNu− uch) = (u− uh,w
c
0) = (u− uh,w

c
0 −w) + (u− uh,w).

Hence,
|(u− uh,ΠNu− uch)|

‖u− uh‖0
≤ ‖wc

0 −w‖0 + ‖w‖0. (3.46)

Therefore, it is sufficient to estimate ‖wc
0 −w‖0 and ‖w‖0.

Step 1: Estimate of ‖wc
0 −w‖0. We claim that

‖wc
0 −w‖0 ≤ Chσ

[
‖u−ΠNu‖curl + ‖u− uh‖V(h)

]
, (3.47)

with a constant C > 0 independent of the mesh size.
To see this, note that, in view of the definition of H and (3.45), there holds

∇×w = ∇×wc
0 = ∇× (ΠNu− uch). (3.48)

Thus, the result in Lemma 2.4.4, the triangle inequality and Corollary 3.4.8
yield

‖wc
0 −w‖0 ≤ Chσ‖∇× (ΠNu− uch)‖0

≤ Chσ
[
‖∇× (ΠNu− u)‖0 + ‖∇h × (u− uh)‖0 + ‖∇h × (uh − uch)‖0

]

≤ Chσ
[
‖u−ΠNu‖curl + ‖u− uh‖V(h)

]
,

which proves (3.47).
Step 2: Estimate of ‖w‖0. Next, we claim that, for a sufficiently small mesh

size,

‖w‖0 ≤ C‖u−ΠNu‖0 + Chσ
[
‖u−ΠNu‖curl + ‖u− uh‖V(h) + ‖p− ph‖Q(h)

]
,

(3.49)
with a constant C > 0 independent of the mesh size.
To prove (3.49) we employ a duality approach. To this end, let z be the

solution of the dual problem (3.39) with right-hand side w = Hwc
0. Again,

w ∈ H(div0; Ω) so that z ∈ Hσ(Ω)3, ∇×z ∈ Hσ(Ω)3, with σ ∈ (1/2, 1] in (2.8),
and the bound (3.40) holds. The dual problem (3.39) can be written in mixed
formulation as

∇×∇× z− k2z+∇r = w in Ω, (3.50)

∇ · z = 0 in Ω, (3.51)

n× z = 0 on Γ, (3.52)

r = 0 on Γ. (3.53)

Since w ∈ H(div0; Ω), we actually have r ≡ 0.
Let us denote by (zh, rh) ∈ Vh×Qh the discontinuous Galerkin approxima-

tion of (3.50)–(3.53) given by:

Ãh(zh,v) − b̃h(v, rh) = (w,v),

b̃h(zh, q) − ch(rh, q) = 0
(3.54)
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for all (v, q) ∈ Vh ×Qh. Here and in the following, we use the notation

Ãh(z,v) = ãh(z,v) − k2(z,v).

Up to a sign change, the formulation (3.54) is of the same form as the one
in (3.15). It can be readily seen that Theorem 3.4.1 and Corollary 3.4.3 apply
to (3.54). Hence, for a sufficiently small mesh size, the discrete solution (zh, rh)
exists and is unique. Moreover, the following a-priori error bound holds:

‖z− zh‖V(h) + ‖rh‖Q(h) ≤ Chσ
[
‖z‖σ + ‖∇× z‖σ

]
≤ Chσ‖w‖0. (3.55)

Here, we have taken into account that r ≡ 0 and have also used the stability
bound in (3.40).
After these preliminary considerations, we multiply the equation in (3.39)

by w and integrate by parts. Recalling the equivalence of the forms a and ãh
on V ×V, we obtain

‖w‖20 = Ãh(z,w) = Ãh(z−Πcz,w) + Ãh(Π
cz,w), (3.56)

with Πc denoting the Galerkin projection from (2.19).
By the definition of the projection Πc and the property ∇×w = ∇×wc

0,
we conclude that

Ãh(z−Πcz,w) = −(z−Πcz,wc
0)− k2(z−Πcz,w)

= −(z−Πcz,wc
0 −w)− (1 + k2)(z−Πcz,w).

The approximation result for Πc in Lemma 2.4.2 and the bound in (3.40) yield

‖z−Πcz‖0 ≤ ‖z−Πcz‖curl ≤ Chσ‖w‖0. (3.57)

For later use, we further point out that the stability of Πc in the norm ‖ · ‖curl
and the bound in (3.40) give

‖Πcz‖0 ≤ C‖w‖0. (3.58)

Hence, by using the Cauchy-Schwarz inequality and the estimates (3.47) and (3.57)
we conclude that

|Ãh(z−Πcz,w)| ≤ ‖z−Πcz‖0‖w−wc
0‖0 + C‖z−Πcz‖0‖w‖0

≤ Ch2σ‖w‖0
[
‖u−ΠNu‖curl + ‖u− uh‖V(h)

]
+ Chσ‖w‖20.

(3.59)

It remains to bound the term Ãh(Π
cz,w) in (3.56). To this end, in view of (3.48)

and (3.45), we first note that

Ãh(Π
cz,w) = (∇×Πcz,∇×w)− k2(Πcz,w)

= (∇×Πcz,∇× (ΠNu− uch))− k2(Πcz,w −wc
0)− k2(Πcz,wc

0)

= (∇×Πcz,∇× (ΠNu− uch))− k2(Πcz,w −wc
0)− k2(Πcz,ΠNu− uch)

= Ãh(Π
cz,ΠNu− uch)− k2(Πcz,w −wc

0).

Here, we have used that

(Πcz,∇ϕ) = (z,∇ϕ) = 0, (3.60)
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which follows readily from the definition of Πc and the fact that z ∈ H(div0; Ω).
Employing (3.58) and (3.47) we get

|Ãh(Π
cz,w)| ≤ |Ãh(Π

cz,ΠNu− uch)|+ C‖Πcz‖0‖w−wc
0‖0

≤ |Ãh(Π
cz,ΠNu− uch)|

+Chσ‖w‖0
[
‖u−ΠNu‖curl + ‖u− uh‖V(h)

]
. (3.61)

In order to estimate |Ãh(Π
cz,ΠNu− uch)|, we consider the expansion

Ãh(Π
cz,ΠNu− uch) = Ãh(Π

cz,ΠNu− u)

+Ãh(Π
cz,u− uh) + Ãh(Π

cz,uh − uch)

≡ T1 + T2 + T3,

and estimate the terms T1, T2, and T3 individually.
By further expanding T1, we have

T1 = Ãh(Π
cz− z,ΠNu− u) + Ãh(z,ΠNu− u).

Employing the variational formulation of the dual problem (3.39), we bound the
second term as follows:

Ãh(z,ΠNu− u) = (w,ΠNu− u) ≤ ‖w‖0‖ΠNu− u‖0.

Hence, by Lemma 2.4.2 and (3.40), T1 can be estimated by

|T1| ≤ C‖ΠNu− u‖curl‖Πcz− z‖curl + ‖w‖0‖ΠNu− u‖0
≤ Chσ‖w‖0‖ΠNu− u‖curl + ‖w‖0‖ΠNu− u‖0. (3.62)

For T2, we claim that

|T2| = |̃bh(Πcz, p− ph)| ≤ Chσ‖w‖0‖p− ph‖Q(h). (3.63)

Indeed, using the symmetry of Ãh and the error equation (3.17), together with
the fact that by (3.16) the residual R1(u, p;Π

cz) vanishes, we have

|Ãh(Π
cz,u− uh)| = |̃bh(Πcz, p− ph)|

≤ |̃bh(Πcz− z, p− ph)|+ |̃bh(z, p− ph)|.

The continuity of b̃ from Proposition 3.3.3 and equation (3.57) then yield

|̃bh(Πcz− z, p− ph)| ≤ C‖Πcz− z‖curl‖ph − ph‖Q(h) ≤ Chσ‖w‖0‖p− ph‖Q(h).

Estimating the residual R2(z; q) of the dual problem as in Proposition 3.3.3 and
(3.42) and using the bound in (3.40), results in

|̃bh(z, p− ph)| = |R2(z; p− ph)| ≤ CRE2,h(z)‖p− ph‖Q(h)
≤ Chσ‖z‖σ‖p− ph‖Q(h) ≤ Chσ‖w‖0‖p− ph‖Q(h),

which completes the proof of the bound (3.63) for T2.
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Finally, to bound T3, we use the continuity property in Proposition 3.3.3,
the discrete formulation (3.54) and the Cauchy-Schwarz inequality:

|T3| ≤ |Ãh(Π
cz− z,uh − uch)|+ |Ãh(z− zh,uh − uch)|+ |Ãh(zh,uh − uch)|

≤ C‖uh − uch‖V(h)
[
‖Πcz− z‖curl + ‖z− zh‖V(h)

]

+ ‖w‖0‖uh − uch‖0 + |̃bh(uh − uch, rh)|,
(3.64)

with zh denoting the first component of the approximation in (3.54). From
Corollary 3.4.8 we have

‖uh − uch‖V(h) ≤ C‖u− uh‖V(h), ‖uh − uch‖0 ≤ Ch‖u− uh‖V(h).

This, combined with the continuity of b̃h from Proposition 3.3.3, the fact that
r ≡ 0, the energy estimate from Theorem 3.4.1 applied to (3.54), and the
stability bound in (3.40), yields the following estimate for the last term in (3.64):

|̃bh(uh − uch, rh)| ≤ C‖u− uh‖V(h)‖r − rh‖Q(h)
≤ Chσ

[
‖z‖σ + ‖∇× z‖σ + ‖r‖σ+1

]
‖u− uh‖V(h)

≤ Chσ‖w‖0‖u− uh‖V(h).

Therefore, again by applying Corollary 3.4.8 and Theorem 3.4.1 to (3.54), the
stability estimate (3.40), and equation (3.57) we conclude that

|T3| ≤ hσ‖w‖0‖u− uh‖V(h). (3.65)

Gathering the estimates (3.61), (3.62), (3.63), and (3.65) gives

|Ã(Πcz,w)| ≤ Chσ‖w‖0
[
‖u−ΠNu‖curl + ‖u− uh‖V(h) + ‖p− ph‖Q(h)

]

+ ‖w‖0‖u−ΠNu‖0.
(3.66)

Inserting (3.59) and (3.66) into (3.56) then shows that

‖w‖0 ≤ Chσ‖w‖0 + C‖u−ΠNu‖0
+ Chσ

[
‖u−ΠNu‖curl + ‖u− uh‖V(h) + ‖p− ph‖Q(h)

]
.

(3.67)

Hence, for a sufficiently small mesh size, we obtain the result in (3.49).
Step 3. Conclusion. The bound (3.44) now follows from (3.46), (3.47)

and (3.49).
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` = 1 ` = 2 ` = 3
Elements ‖u− uh‖V(h) r ‖u− uh‖V(h) r ‖u− uh‖V(h) r
26 1.876e-1 - 2.009e-2 - 5.045e-4 -
104 9.135e-2 1.04 5.004e-3 2.01 6.471e-5 2.96
416 4.456e-2 1.04 1.250e-3 2.00 8.131e-6 2.99
1664 2.194e-2 1.02 3.123e-4 2.00 1.017e-6 3.00

Table 3.1: Example 1. Convergence of ‖u− uh‖V(h) with k = 1.

` = 1 ` = 2 ` = 3
Elements ‖p− ph‖Q(h) r ‖p− ph‖Q(h) r ‖p− ph‖Q(h) r
26 9.226e-2 - 1.213e-2 - 2.728e-4 -
104 2.715e-2 1.76 1.332e-3 3.19 1.489e-5 4.19
416 6.774e-3 2.00 1.551e-4 3.10 8.132e-7 4.19
1664 1.609e-3 2.07 1.867e-5 3.05 4.638e-8 4.13

Table 3.2: Example 1. Convergence of ‖p− ph‖Q(h) with k = 1.

` = 1 ` = 2 ` = 3
Elements ‖u− uh‖V(h) r ‖u− uh‖V(h) r ‖u− uh‖V(h) r
26 1.131 - 1.265e-1 - 1.243e-2 -
104 5.405e-1 1.06 3.217e-2 1.98 1.582e-3 2.97
416 2.635e-1 1.04 8.078e-3 1.99 1.985e-4 2.99
1664 1.302e-1 1.02 2.022e-3 2.00 2.483e-5 3.00

Table 3.3: Example 1. Convergence of ‖u− uh‖V(h) with k = 2.

3.7 Numerical experiments

In this section we present a series of numerical experiments to highlight the
practical performance of the mixed DG method introduced and analyzed in this
article for the numerical approximation of the indefinite time-harmonic Maxwell
equations (3.6)–(3.9). For simplicity, we restrict ourselves to two-dimensional
model problems; additionally, we note that throughout this section we select
the constants appearing in the interior penalty stabilization functions defined
in (3.14) as follows:

α = 10 `2 and γ = 1.

The dependence of α on the polynomial degree ` has been chosen in order to
guarantee the G̊arding-type inequality stated in Proposition 3.3.4 holds inde-
pendently of `, cf. [43], for example.



Maxwell Mixed 61

` = 1 ` = 2 ` = 3
Elements ‖p− ph‖Q(h) r ‖p− ph‖Q(h) r ‖p− ph‖Q(h) r
26 5.745e-1 - 7.298e-2 - 6.752e-3 -
104 1.700e-1 1.76 8.377e-3 3.12 3.652e-4 4.21
416 4.232e-2 2.01 9.933e-4 3.08 2.026e-5 4.17
1664 1.002e-2 2.08 1.209e-4 3.04 1.174e-6 4.11

Table 3.4: Example 1. Convergence of ‖p− ph‖Q(h) with k = 2.

` = 1 ` = 2 ` = 3
Elements ‖u− uh‖V(h) r ‖u− uh‖V(h) r ‖u− uh‖V(h) r
26 3.902 - 1.276 - 1.429e-1 -
104 2.017 0.95 2.971e-1 2.10 2.289e-2 2.64
416 9.871e-1 1.03 7.401e-2 2.01 2.952e-3 2.96
1664 4.864e-1 1.02 1.849e-2 2.00 3.715e-4 2.99

Table 3.5: Example 1. Convergence of ‖u− uh‖V(h) with k = 4.

3.7.1 Example 1

In this first example we select Ω ⊂ R2 to be the square domain (−1, 1)2. Further-
more, we set j = 0 and select suitable non-homogeneous boundary conditions
for u, i.e., n×u = g, where g is a given tangential trace, so that the analytical
solution to the two-dimensional analogue of (3.6)–(3.9) is given by the smooth
field

u(x, y) = (sin(ky), sin(kx))T , p = 0.

Here, the boundary conditions for u are enforced in the usual DG manner by
adding boundary terms into the formulation (3.13); more precisely, the right–
hand side of the first equation in (3.13) is replaced by the term

fh(v) = (j,v) −
∫

FB

h

g · ∇h × v ds+

∫

FB

h

ag · (n× v) ds,

see [43, 45] for details.
We investigate the asymptotic convergence of the mixed DG method on a se-

quence of successively finer (quasi-uniform) unstructured triangular meshes for
` = 1, 2, 3 as the wave number k increases. To this end, in Tables 3.1, 3.2, Ta-
bles 3.3, 3.4, and Tables 3.5, 3.6 we present numerical experiments for k = 1, 2, 4,
respectively. For each wave number k we show the number of elements in the
computational mesh, the corresponding DG-norms of the error in the numerical
approximation to both u and p, and the numerical rate of convergence r. Here,
we observe that (asymptotically) ‖u−uh‖V(h) converges to zero at the optimal
rate O(h`), for each fixed ` and each k, as h tends to zero, as predicted by
Theorem 3.4.1. On the other hand, for this mixed–order method, ‖p− ph‖Q(h)
converges to zero at the rate O(h`+1), for each ` and k, as h tends to zero; this
rate is indeed optimal, though this is not reflected by Theorem 3.4.1, cf. [44]. In
particular, we make two key observations: firstly, we note that for a given fixed
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` = 1 ` = 2 ` = 3
Elements ‖p− ph‖Q(h) r ‖p− ph‖Q(h) r ‖p− ph‖Q(h) r
26 2.077 - 6.953e-1 - 5.923e-2 -
104 5.961e-1 1.80 6.828e-2 3.35 4.982e-3 3.57
416 1.541e-1 1.95 7.722e-3 3.14 3.105e-4 4.00
1664 3.796e-2 2.02 9.207e-4 3.07 1.909e-5 4.02

Table 3.6: Example 1. Convergence of ‖p− ph‖Q(h) with k = 4.

mesh and fixed polynomial degree, an increase in the wave number k leads to
an increase in the DG-norm of the error in the approximation to both u and p.
Indeed, as pointed out in [40] (see also Chapter 2) and [1], where interior penalty
and curl-conforming finite element methods, respectively, were employed for the
numerical approximation of (3.1)–(3.2), the pre-asymptotic region increases as
k increases. Secondly, we observe that the DG-norm of the error decreases when
either the mesh is refined, or the polynomial degree is increased as we would
expect for this smooth problem.
Finally, in Figure 3.1 we present a comparison of the L2(Ω)2-norm of the

error in the approximation to u, with the square root of the number of degrees of
freedom in the finite element space Vh. Here, we observe that (asymptotically)
‖u − uh‖0 converges to zero at the rate O(h`+1), for each fixed ` and each k,
as h tends to zero. This is in full agreement with the optimal rate predicted by
Corollary 3.4.5. Numerical experiments also indicate that the L2(Ω)-norm of the
error in the approximation to p converges to zero at the optimal rate O(h`+2),
for each fixed ` and each k, as h tends to zero; for brevity, these results have
been omitted.

3.7.2 Example 2

In this second example, we investigate the performance of the mixed DG method
(3.13) for a problem with a non-smooth solution. To this end, let Ω be the L-
shaped domain (−1, 1)2\[0, 1)×(−1, 0] and select j (and suitable non-homogeneous
boundary conditions for u) so that the analytical solution (u, p) to the two-
dimensional analogue of (3.6)–(3.9) is given, in terms of the polar coordinates (r, ϑ),
by

u(x, y) = ∇S(r, ϑ), p = 0, (3.68)

where
S(r, ϑ) = (kr)2/3 sin(2ϑ/3).

The analytical solution given by (3.68) then contains a singularity at the re-
entrant corner located at the origin of Ω; in particular, we note that u lies in
the Sobolev space H2/3−ε(Ω)2, ε > 0.
In this example we again consider the convergence of the mixed DG method

(3.13) on a sequence of successively finer (quasi-uniform) unstructured trian-
gular meshes for ` = 1, 2, 3 as the wave number k increases. To this end,
in Tables 3.7, 3.8 and Tables 3.9, 3.10 we present numerical experiments for
k = 1, 4, respectively. Here, we observe that for k = 1, the error ‖u− uh‖V(h)
converges to zero at a slightly superior rate than the optimal one of O(h2/3),
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Figure 3.1: Example 1. Convergence of ‖u− uh‖0 for: (a) k = 1; (b) k = 2; (c)
k = 4.

for each `, as h tends to zero, predicted by Theorem 3.4.1, cf. Table 3.7. We re-
mark that analogous behavior is also observed when the interior penalty mixed
DG method is applied to the low-frequency problem studied in [44]. However,
for the higher wave number of k = 4, we now see that the rate of convergence
of ‖u− uh‖V(h) does seem to be slowly tending towards the optimal predicted
one, cf. Table 3.9. On the other hand, from Tables 3.8 and 3.10 we see that
‖p − ph‖Q(h) converges to zero at the optimal rate of O(h2/3), for each ` and
each k, as h tends to zero, predicted by Theorem 3.4.1, though now, the rate of
convergence tends to the optimal one from below at the smaller wave number
of k = 1. As in the previous example, we see that the DG-norm of the error in
the approximation to both u and p increases as the wave number k increases
for a fixed mesh size and polynomial degree. However, for a fixed mesh and
wave number, while an increase in the polynomial degree leads to a decrease in
‖u−uh‖V(h), the opposite behavior is observed for the error in the approxima-
tion to p; indeed, we observe that for both k = 1, 4, an increase in ` leads to an
increase of ‖p− ph‖Q(h) on a given (fixed) mesh.
Finally, we end this section by considering the rate of convergence of the error

in the approximation to umeasured in terms of the L2(Ω)2-norm. To this end, in
Tables 3.11 and 3.12 we present numerical experiments for k = 1, 4, respectively.
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` = 1 ` = 2 ` = 3
Elements ‖u− uh‖V(h) r ‖u− uh‖V(h) r ‖u− uh‖V(h) r
24 7.871e-1 - 7.339e-1 - 6.536e-1 -
96 5.073e-1 0.63 4.144e-1 0.83 3.504e-1 0.90
384 2.613e-1 0.96 1.980e-1 1.07 1.620e-1 1.11
1536 1.187e-1 1.14 8.652e-2 1.19 6.945e-2 1.22
6144 5.188e-2 1.19 3.504e-2 1.30 2.495e-2 1.48

Table 3.7: Example 2. Convergence of ‖u− uh‖V(h) with k = 1.

` = 1 ` = 2 ` = 3
Elements ‖p− ph‖Q(h) r ‖p− ph‖Q(h) r ‖p− ph‖Q(h) r
24 1.460 - 1.918 - 2.337 -
96 1.408 0.05 1.713 0.16 1.982 0.24
384 1.127 0.32 1.291 0.41 1.446 0.46
1536 7.938e-1 0.51 8.807e-1 0.55 9.718e-1 0.57
6144 5.241e-1 0.60 5.744e-1 0.62 6.305e-1 0.62

Table 3.8: Example 2. Convergence of ‖p− ph‖Q(h) with k = 1.

The regularity assumptions required in the statement of Theorem 3.4.4 do not
hold; as a consequence, the only proven result is ‖u− uh‖0 ≤ ‖u− uh‖V(h) =
O(h2/3), for each ` and k, as h tends to zero. The results obtained for the wave
number k = 4 indicate that the convergence rate is asymptotically optimal
in this case, whereas the results for k = 1 point to a convergence rate like
O(h2×2/3).

3.8 Concluding remarks

In this chapter, we have introduced and analyzed a new interior penalty method
for the indefinite time-harmonic Maxwell equations written in mixed form. The
proposed scheme can be viewed as a non-stabilized variant of the mixed DG
method proposed in [63]; in particular, except for the standard interior penalty
stabilization terms, here we exclude all the additional stabilization terms in-
troduced in the DG formulation analyzed in [63]. Employing the techniques
developed in Chapter 2, we have derived optimal a-priori estimates for the error
measured in terms of both the energy-norm, as well as the L2-norm. The cur-
rent analysis relies on exploiting duality techniques, and thereby only holds in
the case of smooth material coefficients. The extension of this work to problems
with non-smooth coefficients, by extending more general analysis approaches
for conforming methods (such as the ones in [9] or [38]) to the discontinuous
Galerkin context, is currently under investigation.
The DG method proposed in this chapter for the indefinite time-harmonic

Maxwell’s equations in mixed form could be employed in the context of incom-
pressible magneto-hydrodynamics (MHD). The equations of MHD describe the
flow of a viscous, incompressible and electrically conducting fluid. The govern-
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` = 1 ` = 2 ` = 3
Elements ‖u− uh‖V(h) r ‖u− uh‖V(h) r ‖u− uh‖V(h) r
24 8.206e-1 - 7.812e-1 - 7.175e-1 -
96 3.611e-1 1.18 3.429e-1 1.19 3.011e-1 1.25
384 1.830e-1 0.98 1.525e-1 1.17 1.289e-1 1.22
1536 1.059e-1 0.79 7.225e-2 1.08 5.741e-2 1.17
6144 6.808e-2 0.64 5.129e-2 0.49 3.827e-2 0.59

Table 3.9: Example 2. Convergence of ‖u− uh‖V(h) with k = 4.

` = 1 ` = 2 ` = 3
Elements ‖p− ph‖Q(h) r ‖p− ph‖Q(h) r ‖p− ph‖Q(h) r
24 7.661 - 9.056 - 10.00 -
96 5.293 0.53 5.847 0.63 6.404 0.64
384 3.410 0.63 3.715 0.65 4.058 0.66
1536 2.156 0.66 2.336 0.67 2.559 0.67
6144 1.364 0.66 1.475 0.66 1.607 0.67

Table 3.10: Example 2. Convergence of ‖p− ph‖Q(h) with k = 4.

ing partial differential equations are obtained by coupling the incompressible
Navier-Stokes equations with Maxwell’s equations. A conforming discretiza-
tion of the mixed formulation of the incompressible MHD equations has been
proposed by Schötzau and Schneebeli in [70] and analyzed by Schötzau in [71].
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` = 1 ` = 2 ` = 3
Elements ‖u− uh‖0 r ‖u− uh‖0 r ‖u− uh‖0 r
24 5.091e-1 - 4.651e-1 - 4.137e-1 -
96 3.248e-1 0.65 2.634e-1 0.82 2.223e-1 0.90
384 1.687e-1 0.95 1.270e-1 1.05 1.035e-1 1.10
1536 7.867e-2 1.10 5.667e-2 1.16 4.512e-2 1.20
6144 3.631e-2 1.12 2.421e-2 1.23 1.719e-2 1.39

Table 3.11: Example 2. Convergence of ‖u− uh‖0 with k = 1.

` = 1 ` = 2 ` = 3
Elements ‖u− uh‖0 r ‖u− uh‖0 r ‖u− uh‖0 r
24 3.606e-1 - 2.725e-1 - 2.213e-1 -
96 2.180e-1 0.73 1.506e-1 0.86 1.144e-1 0.95
384 1.351e-1 0.69 8.801e-2 0.78 6.426e-2 0.83
1536 8.411e-2 0.68 5.294e-2 0.73 3.797e-2 0.76
6144 5.339e-2 0.66 3.423e-2 0.63 2.469e-2 0.62

Table 3.12: Example 2. Convergence of ‖u− uh‖0 with k = 4.
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Chapter 4

Interior Penalty Method for

the Acoustic Wave

Equation

The content of this chapter has been accepted for publication in SIAM J. on Nu-
merical Analysis; see [33] (in collaboration with Marcus J. Grote 1 and Dominik
Schötzau 2).

Abstract

The symmetric interior penalty discontinuous Galerkin finite element method
is presented for the numerical discretization of the second-order scalar wave
equation. The resulting stiffness matrix is symmetric positive definite and the
mass matrix is essentially diagonal; hence, the method is inherently parallel
and, leads to fully explicit time integration when coupled with an explicit time-
stepping scheme. Optimal a priori error bounds are derived in the energy norm
and the L2-norm for the semi-discrete formulation. In particular, the error
in the energy norm is shown to converge with the optimal order O(hmin{s,`})
with respect to the mesh size h, the polynomial degree `, and the regularity
exponent s of the continuous solution. Under additional regularity assumptions,
the L2-error is shown to converge with the optimal order O(h`+1). Numerical
results confirm the expected convergence rates and illustrate the versatility of
the method.

4.1 Introduction

The numerical solution of the wave equation is of fundamental importance to
the simulation of time dependent acoustic, electromagnetic, or elastic waves.

1Prof. Dr. Marcus J. Grote, Department of Mathematics, University of Basel, Rheinsprung
21, 4051 Basel, Switzerland, email: Marcus.Grote@ unibas.ch.

2Prof. Dr. Dominik Schötzau, Mathematics Department, University of British Columbia,
121-1984 Mathematics Road, Vancouver V6T 1Z2, Canada, email: schoetzau@ math.ubc.ca.
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For such wave phenomena the scalar second-order wave equation often serves
as a model problem. Finite element methods (FEMs) can easily handle inho-
mogenous media or complex geometry. However, if explicit time-stepping is
subsequently employed, the mass matrix arising from the spatial discretization
by standard continuous finite elements must be inverted at each time step: a
major drawback in terms of efficiency. For low order Lagrange (P1) elements,
so-called mass lumping overcomes this problem [18, 46], but for higher order
elements this procedure can lead to unstable schemes unless particular finite
elements and quadrature rules are used [24]. In addition, continuous Galerkin
methods impose significant restrictions on the underlying mesh and discretiza-
tion; in particular, they do not easily accomodate hanging nodes.
To avoid these difficulties, we consider instead discontinuous Galerkin (DG)

methods. Based on discontinuous finite element spaces, these methods eas-
ily handle elements of various types and shapes, irregular non-matching grids,
and even locally varying polynomial order; thus, they are ideally suited for hp-
adaptivity. Here continuity is weakly enforced across mesh interfaces by adding
suitable bilinear forms, so-called numerical fluxes, to standard variational for-
mulations. These fluxes are easily included within an existing conforming finite
element code.
Because individual elements decouple, DG FEMs are also inherently parallel

– see [20, 22, 23, 19] for further details and recent reviews. Moreover, the mass
matrix arising from the spatial DG discretization is block-diagonal, with block
size equal to the number of degrees of freedom per element; it can therefore
be inverted at very low computational cost. In fact, for a judicious choice of
(locally orthogonal) shape functions, the mass matrix is diagonal. Hence when
combined with explicit time integration, the resulting time marching scheme
will essentially be fully explicit.
The origins of DG methods can be traced back to the seventies, where they

were proposed for the numerical solution of hyperbolic neutron transport equa-
tions, as well as for the weak enforcement of continuity in Galerkin methods for
elliptic and parabolic problems – see Cockburn, Karniadakis, and Shu [20] for a
review of the development of DG methods. When applied to second-order hyper-
bolic problems, most DG methods first require the problem to be reformulated
as a first-order hyperbolic system, for which various DG methods are available.
In [22], for instance, Cockburn and Shu use a DG FEM in space combined with
a Runge-Kutta scheme in time to discretize hyperbolic conservation laws. Hes-
thaven and Warburton [36] used the same approach to implement high-order
methods for Maxwell’s equations in first-order hyperbolic form. Space-time DG
methods for linear symmetric first-order hyperbolic systems are presented by
Falk and Richter in [30], and later generalized by Monk and Richter in [57],
and by Houston, Jensen and Süli in [39]. A first DG method for the acoustic
wave equation in its original second-order formulation was recently proposed
by Wheeler and Rivière [67]; it is based on a non-symmetric interior penalty
formulation and requires additional stabilization terms for optimal convergence
in the L2-norm [66].
Here we propose and analyze the symmetric interior penalty DG method for

the spatial discretization of the (second-order, scalar) wave equation. In par-
ticular, we shall derive optimal a priori error bounds in the energy norm and
the L2-norm for the semi-discrete formulation. Besides the common advantages
of DG-methods mentioned above, a symmetric discretization of the wave equa-
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tion in its second-order form offers an additional advantage, which also pertains
to the classical continuous Galerkin formulation. When the finite element dis-
cretization of the spatial operator leads to a symmetric positive definite stiffness
matrix, the semi-discrete, second-order in time system of differential equations
will conserve (a discrete version of) the energy for all time; thus, it is free of
any (unnecessary) damping. The dispersive properties of the symmetric interior
penalty DG method were recently analyzed by Ainsworth, Monk and Muniz [2].
The outline of this chapter is as follows. In Section 4.2 we describe the

setting of our model problem. Next, we present in Section 4.3 the symmetric
interior penalty DG method for the wave equation. Our two main results,
optimal error bounds in the energy norm and the L2-norm for the semi-discrete
scheme, are stated at the beginning of Section 4.4 and proved subsequently.
The analysis relies on an idea suggested by Arnold et al [5] together with the
approach presented by Perugia and Schötzau in [61] to extend the DG bilinear
forms by suitable lifting operators. In Section 4.5, we demonstrate the sharpness
of our theoretical error estimates by a series of numerical experiments. By
combining our DG method with the second order Newmark scheme we obtain
a fully discrete method. To illustrate the versatility of our method, we also
propagate a wave across an inhomogenous medium with discontinuity, where
the underlying finite element mesh contains hanging nodes. Finally, we conclude
with some remarks on possible extensions of our DG method to electromagnetic
and elastic waves.

4.2 Model problem

We consider the (second-order) scalar wave equation

utt −∇ · ( c∇u) = f in J × Ω, (4.1)

u = 0 on J × ∂Ω, (4.2)

u|t=0 = u0 in Ω, (4.3)

ut|t=0 = v0 in Ω, (4.4)

where J = (0, T ) is a finite time interval and Ω is a bounded domain in Rd,
d = 2, 3. For simplicity, we assume that Ω is a polygon (d = 2) or a polyhedron
(d = 3). The (known) source term f lies in L2(J ;L2(Ω)), while u0 ∈ H1

0 (Ω)
and v0 ∈ L2(Ω) are prescribed initial conditions. We assume that the speed of
propagation,

√
c(x), is piecewise smooth and satisfies the bounds

0 < c? ≤ c(x) ≤ c? <∞, x ∈ Ω. (4.5)

The standard variational form of (4.1)–(4.4) is to find u ∈ L2(J ;H1
0 (Ω)),

with ut ∈ L2(J ;L2(Ω)) and utt ∈ L2(J ;H−1(Ω)), such that u|t=0 = u0, ut|t=0 =
v0 and

〈utt, v〉+ a(u, v) = (f, v) ∀v ∈ H1
0 (Ω), a.e. in J. (4.6)

Here, the time derivatives are understood in a distributional sense, 〈·, ·〉 denotes
the duality pairing between H−1(Ω) and H1

0 (Ω), (·, ·) is the inner product in
L2(Ω), and a(·, ·) is the elliptic bilinear form given by

a(u, v) = (c∇u,∇v). (4.7)
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It is well-known that problem (4.6) is well-posed [52]. Moreover, the weak
solution u can be shown to be continuous in time, that is

u ∈ C0(J ;H1
0 (Ω)), ut ∈ C0(J ;L2(Ω)); (4.8)

see [52, Theorems 8.1 and 8.2 in Chapter III] for details. In particular, this
result implies that the initial conditions in (4.3) and (4.4) are well-defined.

4.3 Discontinuous Galerkin discretization

We shall now discretize the wave equation (4.1)–(4.4) by using the interior
penalty discontinuous Galerkin finite element method in space, while leaving
the time dependence continuous.

4.3.1 Preliminaries

We consider shape-regular meshes Th that partition the domain Ω into disjoint
elements {K}, such that Ω = ∪K∈ThK. For simplicity, we assume that the
elements are triangles or parallelograms in two space dimensions, and tetrahedra
or parallelepipeds in three dimensions, respectively. The diameter of element K
is denoted by hK , and the mesh size h is given by h = maxK∈Th hK . We assume
that the partition is aligned with the discontinuities of the wave speed

√
c.

Generally, we allow for irregular meshes with hanging nodes. However, we
assume that the local mesh sizes are of bounded variation, that is, there is a
positive constant κ, depending only on the shape-regularity of the mesh, such
that

κhK ≤ hK′ ≤ κ−1hK , (4.9)

for all neighboring elements K and K ′.
An interior face of Th is the (nonempty) interior of ∂K+ ∩ ∂K−, where K+

and K− are two adjacent elements of Th. Similarly, a boundary face of Th is
the (nonempty) interior of ∂K ∩ ∂Ω, which consists of entire faces of ∂K. We
denote by FI

h the set of all interior faces of Th, by FB
h the set of all boundary

faces, and set Fh = FI
h ∪FB

h . Here we generically refer to any element of Fh as
a “face”, both in two and in three dimensions.
For any piecewise smooth function v we now introduce the following trace

operators. Let F ∈ FI
h be an interior face shared by two neighboring elements

K+ and K− and let x ∈ F ; we write n± to denote the unit outward normal
vectors on the boundaries ∂K±. Denoting by v± the trace of v taken from
within K±, we define the jump and average of v at x ∈ F by

[[v]] := v+n+ + v−n−, {{v}} := (v+ + v−)/2,

respectively. On every boundary face F ∈ FB
h , we set [[v]] := vn and {{v}} := v.

Here, n is the unit outward normal vector on ∂Ω.
For a piecewise smooth vector-valued function q, we analogously define the

average across interior faces by {{q}} := (q++q−)/2, and on boundary faces we
set {{q}} := q. The jump of a vector-valued function will not be used.
We note for later use that for a vector-valued function q with continuous

normal components across a face f , the trace identity

v+(n+ · q+) + v−(n− · q−) = [[v]] · {{q}} on f,
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immediately follows from the above definitions.

4.3.2 Discretization in space

For a given partition Th of Ω and an approximation order ` ≥ 1, we wish to
approximate the solution u(t, ·) of (4.1)–(4.4) in the finite element space

V h := {v ∈ L2(Ω) : v|K ∈ S`(K) ∀K ∈ Th}, (4.10)

where S`(K) is the space P`(K) of polynomials of total degree at most ` on K,
if K is a triangle or a tetrahedra, or the space Q`(K) of polynomials of degree
at most ` in each variable on K, if K is a parallelogram or a parallelepiped.
Then, we consider the following (semi-discrete) discontinuous Galerkin ap-

proximation of (4.1)–(4.4): find uh : J × V h → R such that

(uhtt, v) + ah(u
h, v) = (f, v) ∀v ∈ V h, t ∈ J, (4.11)

uh|t=0 = Πhu0, (4.12)

uht |t=0 = Πhv0. (4.13)

Here, Πh denotes the L
2-projection onto V h, and the discrete bilinear form ah

on V h × V h is given by

ah(u, v) :=
∑

K∈Th

∫

K

c∇u · ∇v dx−
∑

F∈Fh

∫

F

[[u]] · {{c∇v}} dA

−
∑

F∈Fh

∫

F

[[v]] · {{c∇u}} dA+
∑

F∈Fh

∫

F

a [[u]] · [[v]] dA.
(4.14)

The last three terms in (4.14) correspond to jump and flux terms at element
boundaries; they vanish when u, v ∈ H1

0 (Ω) ∩H1+σ(Ω), for σ > 1
2 . Hence the

above semi-discrete discontinuous Galerkin formulation (4.11) is consistent with
the original continuous problem (4.6).
In (4.14) the function a penalizes the jumps of u and v over the faces of

Th. It is referred to as interior penalty stabilization function and is defined as
follows. We first introduce the function h by

h|F =
{
min{hK , hK′}, F ∈ FI

h , F = ∂K ∩ ∂K ′,

hK , F ∈ FB
h , F = ∂K ∩ ∂Ω.

For x ∈ F , we further define c by

c|F (x) =
{
max{c|K(x), c|K′ (x)}, F ∈ FI

h , F = ∂K ∩ ∂K ′,

c|K(x), F ∈ FB
h , F = ∂K ∩ ∂Ω.

Then, on each F ∈ Fh, we set

a|F := α ch−1, (4.15)

where α is a positive parameter independent of the local mesh sizes and the
coefficient c.
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To conclude this section we recall the following stability result for the dis-
continuous Galerkin form ah.

Lemma 4.3.1. There exists a threshold value αmin > 0 which only depends
on the shape-regularity of the mesh, the approximation order `, the dimension d,
and the bounds in (4.5), such that for α ≥ αmin

ah(v, v) ≥ Ccoer
( ∑

K∈Th

‖c 12∇v‖20,K +
∑

F∈Fh

‖a 1
2 [[v]]‖20,F

)
, v ∈ V h,

where the constant Ccoer is independent of c and h.
The proof of this lemma follows readily from the arguments in [5]. However,

to make explicit the dependence of αmin on the bounds in (4.5), we present the
proof of a slightly more general stability result in Lemma 4.4.4 below. Through-
out the rest of the paper we shall assume that α ≥ αmin, so that by Lemma 4.3.1
the semi-discrete problem (4.11)–(4.13) has a unique solution.
We remark that the condition α ≥ αmin can be omitted by using other sym-

metric DG discretizations of the div-grad operator, such as the LDG method;
see, e.g., [5] for details. It can also be avoided by using the non-symmetric in-
terior penalty method proposed in [66]. However, since the symmetry of ah is
crucial in the analysis below, our error estimates (Section 4.4) do not hold for
the nonsymmetric DG method in [66].

Remark 4.3.2. Because the bilinear form ah is symmetric and coercive, for
α ≥ αmin, the semi discrete DG formulation (4.11)–(4.13) with f = 0 conserves
the (discrete) energy

Eh(t) :=
1

2
‖uht (t)‖20 +

1

2
ah(u

h(t), uh(t)).

4.4 A-priori error estimates

We shall now derive optimal a-priori error bounds for the DG method (4.11)–
(4.13), first with respect to the DG energy norm and then with respect to the
L2-norm. These two key results are stated immediately below, while their proofs
are postponed to subsequent sections.

4.4.1 Main results

To state our a-priori error bounds, we define the space

V (h) = H1
0 (Ω) + V

h.

On V (h), we define the DG energy norm

‖v‖2h :=
∑

K∈Th

‖c 12∇v‖20,K +
∑

F∈Fh

‖a 1
2 [[v]]‖20,F .

Furthermore, for 1 ≤ p ≤ ∞ we will make use of the Bochner space Lp(J ;V (h)),
endowed with the norm

‖v‖Lp(J;V (h)) =
{( ∫

J
‖v‖ph dt

)1/p
, 1 ≤ p <∞,

ess supt∈J‖v‖h, p =∞.
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Our first main result establishes an optimal error estimate of the energy norm ‖·
‖h of the error. It also gives a bound in the L2(Ω)-norm on the error in the first
time derivative.

Theorem 4.4.1. Let the analytical solution u of (4.1)–(4.4) satisfy

u ∈ L∞(J ;H1+σ(Ω)), ut ∈ L∞(J ;H1+σ(Ω)), utt ∈ L1(J ;Hσ(Ω)),

for a regularity exponent σ > 1
2 , and let u

h be the semi-discrete discontinuous
Galerkin approximation obtained by (4.11)—(4.13), with α ≥ αmin. Then, the
error e = u− uh, satisfies the estimate

‖et‖L∞(J;L2(Ω)) + ‖e‖L∞(J;V (h)) ≤ C
[
‖et(0)‖0 + ‖e(0)‖h

]

+ Chmin{σ,`}
[
‖u‖L∞(J;H1+σ(Ω)) + T‖ut‖L∞(J;H1+σ(Ω)) + ‖utt‖L1(J;Hσ(Ω))

]
,

with a constant C that is independent of T and h.
We remark that the fact that ut ∈ L∞(J ;H1+σ(Ω)) implies that u is con-

tinuous in time on J with values in H1+σ(Ω). Similarly, utt ∈ L1(J ;Hσ(Ω))
implies the continuity of ut on J with values in H

σ(Ω). In Theorem 4.4.1 we
thus implicitly assume that the initial conditions satisfy u0 ∈ H1+σ(Ω) and
v0 ∈ Hσ(Ω). Hence, standard approximation properties imply that

‖et(0)‖0 = ‖v0 −Πhv0‖0 ≤ C hmin{σ,`+1}‖v0‖σ,

‖e(0)‖h = ‖u0 −Πhu0‖h ≤ C hmin{σ,`}‖u0‖1+σ;
see also Lemma 4.4.6 below. As a consequence, Theorem 4.4.1 yields optimal
convergence in the (DG) energy norm

‖et‖L∞(J;L2(Ω)) + ‖e‖L∞(J;V (h)) ≤ Chmin{σ,`},

with a constant C = C(T ) that is independent of h.
Next, we state an optimal error estimate with respect to the L2-norm (in

space). To do so, we need to assume elliptic regularity, that is, we assume that
there is a stability constant CS , such that for any λ ∈ L2(Ω) the solution of the
problem

−∇ · (c∇z) = λ in Ω, z = 0 on Γ, (4.16)

belongs to H2(Ω) and satisfies the stability bound

‖z‖2 ≤ CS‖λ‖0. (4.17)

This condition is certainly satisfied for convex domains and smooth coefficients.
Then, the following L2-error bound holds.

Theorem 4.4.2. Assume elliptic regularity as in (4.16)–(4.17) and let the
analytical solution u of (4.1)–(4.4) satisfy

u ∈ L∞(J ;H1+σ(Ω)), ut ∈ L∞(J ;H1+σ(Ω)), utt ∈ L1(J ;Hσ(Ω)),

for a regularity exponent σ > 1
2 . Let uh be the semi-discrete discontinuous

Galerkin approximation obtained by (4.11)–(4.13) with α ≥ αmin. Then, the
error e = u− uh satisfies the estimate

‖e‖L∞(J;L2(Ω)) ≤ Chmin{σ,`}+1
[
‖u0‖1+σ+‖u‖L∞(J;H1+σ(Ω))+T‖ut‖L∞(J;H1+σ(Ω))

]
,
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with a constant C that is independent of T and the mesh size.
For smooth solutions, Theorem 4.4.2 thus yields optimal convergence rates

in the L2-norm:
‖e‖L∞(J;L2(Ω)) ≤ Ch`+1,

with a constant C that is independent of h.
The rest of this section is devoted to the proofs of Theorem 4.4.1 and The-

orem 4.4.2. We shall first collect preliminary results in Section 4.4.2. In Sec-
tion 4.4.3, we present the proof of Theorem 4.4.1. Following an argument by
Baker [6] for conforming finite element approximations, we shall then derive the
estimate of Theorem 4.4.2 in Section 4.4.4.

4.4.2 Preliminaries

Extension of the DG form ah

The DG form ah in (4.14) does not extend in a standard way to a continuous
form on the (larger) space V (h) × V (h). Indeed the average {{c∇v}} on a face
F ∈ Fh is not well-defined in general for v ∈ H1(Ω). To circumvent this
difficulty, we shall extend the form ah in a non-standard and non-consistent way
to the space V (h)×V (h), by using the lifting operators from [5] and the approach
in [61]. Thus, for v ∈ V (h) we define the lifted function, Lc(v) ∈

(
V h
)d
, d = 2, 3,

by requiring that

∫

Ω

Lc(v) ·w dx =
∑

F∈Fh

∫

F

[[v]] · {{cw}} dA, w ∈
(
V h
)d
, (4.18)

where c is the material coefficient from (4.1). We shall now show that the lifting
operator Lc is stable in the DG norm; see [61] for a similar result for the LDG
method.

Lemma 4.4.3. There exists a constant Cinv which only depends on the
shape-regularity of the mesh, the approximation order `, and the dimension d
such that

‖Lc(v)‖20 ≤ α−1c? C2
inv

∑

F∈Fh

‖a 1
2 [[v]]‖20,F ,

for any v ∈ V (h).

Moreover, if the speed of propagation c
1
2 is piecewise constant, with discon-

tinuities aligned with the finite element mesh Th, then

‖c− 1
2Lc(v)‖20 ≤ α−1C2

inv

∑

F∈Fh

‖a 1
2 [[v]]‖20,F .
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Proof. We have

‖Lc(v)‖0 = max
w∈(V h)d

∑
F∈Fh

∫
F [[v]] · {{cw}} dA
‖w‖0

≤ max
w∈(V h)d

(∑
F∈Fh

∫
F
a[[v]]2 dA

) 1
2
(∑

F∈Fh

∫
F
a−1|{{cw}}|2 dA

) 1
2

‖w‖0

≤ α− 1
2 max
w∈(V h)d

(∑
F∈Fh

∫
F
a[[v]]2 dA

) 1
2
(∑

F∈Fh

∫
F
hc−1|{{cw}}|2 dA

) 1
2

‖w‖0

≤ α− 1
2 (c?)

1
2 max
w∈(V h)d

(∑
F∈Fh

∫
F
a[[v]]2 dA

) 1
2
(∑

K∈Th
hK
∫
∂K

|w|2 dA
) 1
2

‖w‖0

Here, we have used the Cauchy-Schwarz inequality, the definition of a in (4.15),
and the upper bound for c in (4.5). We recall the inverse inequality

‖w‖20,∂K ≤ C2
invh

−1
K ‖w‖20,K , w ∈

(
S`(K)

)d
, (4.19)

with a constant Cinv that only depends on the shape-regularity of the mesh, the
approximation order ` and the dimension d. Using this bound, we obtain

(
∑

K∈Th

hK

∫

∂K

|w|2 dA
) 1

2

≤ Cinv‖w‖0,

which shows the first statement.
With c

1
2 piecewise constant, we have c−

1
2w ∈

(
V h
)d
for all w ∈

(
V h
)d
.

Hence, we can replace w by c−
1
2w in equation (4.18), and obtain as before

‖c− 1
2Lc(v)‖0 = max

w∈(V h)d

∑
F∈Fh

∫
F [[v]] · {{c

1
2w}} dA

‖w‖0

≤ α− 1
2 max
w∈(V h)d

(∑
F∈Fh

∫
F
a[[v]]2 dA

) 1
2

(∑
F∈Fh

∫
F
hc−1|{{c 12w}}|2 dA

) 1
2

‖w‖0

≤ α− 1
2 max
w∈(V h)d

(∑
F∈Fh

∫
F
a[[v]]2 dA

) 1
2
(∑

K∈Th
hK
∫
∂K

|w|2 dA
) 1
2

‖w‖0

≤ α− 1
2Cinv

(
∑

F∈Fh

‖a 1
2 [[v]]‖20,F

) 1
2

,

which completes the proof.
Next, we introduce the auxiliary bilinear form

ãh(u, v) :=
∑

K∈Th

∫

K

c∇u · ∇v dx−
∑

K∈Th

∫

K

Lc(u) · ∇v dx

−
∑

K∈Th

∫

K

Lc(v) · ∇u dx+
∑

F∈Fh

∫

F

a [[u]] · [[v]] dA.
(4.20)
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The following result establishes that ãh is continuous and coercive on the entire
space V (h)× V (h); hence it is well-defined. Furthermore, since

ãh = ah on V h × V h, ãh = a on H1
0 (Ω)×H1

0 (Ω), (4.21)

the form ãh can be viewed as an extension of the two forms ah and a to the
space V (h)× V (h).

Lemma 4.4.4. Let the interior penalty parameter a be defined as in (4.15)
and set

αmin = 4 c
−1
? c? C2

inv,

for a general piecewise smooth c, and

αmin = 4C
2
inv,

for a piecewise constant c, with discontinuities aligned with the finite element
mesh Th. Cinv is the constant from Lemma 4.4.3.

Setting Ccont = 2 and Ccoer = 1/2, we have for α ≥ αmin

|ãh(u, v)| ≤ Ccont‖u‖h‖v‖h, u, v ∈ V (h),

ãh(u, u) ≥ Ccoer‖u‖2h, u ∈ V (h).

In particular, the coercivity bound implies the result in Lemma 4.3.1.
Proof. By taking into account the bounds in (4.5) and Lemma 4.4.3, appli-

cation of the Cauchy-Schwarz inequality readily gives in the general case

|ãh(u, v)| ≤ max{2, α−1c−1? c?C2
inv + 1}‖u‖h‖v‖h.

For α ≥ αmin, the continuity of ãh immediately follows. The case of piecewis
constant c follows analogously.
To show the coercivity of the form ãh, we note that

ãh(u, u) =
∑

K∈Th

‖c 12∇u‖20,K − 2
∑

K∈Th

∫

K

Lc(u) · ∇u dx+
∑

F∈Fh

‖a 1
2 [[u]]‖20,F .

By using the weighted Cauchy-Schwarz inequality, the geometric-arithmetic in-

equality ab ≤ εa2

2 +
b2

2ε , valid for any ε > 0, the bounds in (4.5), and the stability
bound for the lifting operator in Lemma 4.4.3, we obtain for general c

2
∑

K∈Th

∫

K

Lc(u) · ∇u dx = 2
∑

K∈Th

∫

K

c−
1
2Lc(u) · c

1
2∇u dx

≤ 2
∑

K∈Th

‖c− 1
2Lc(u)‖0,K‖c 12∇u‖0,K

≤ ε
∑

K∈Th

‖c 12∇u‖20,K + ε−1c−1?
∑

K∈Th

‖Lc(u)‖20,K

≤ ε
∑

K∈Th

‖c 12∇u‖20,K + ε−1α−1c−1? c? C2
inv

∑

F∈Fh

‖a 1
2 [[u]]‖20,F ,

for a parameter ε > 0 still at our disposal. We conclude that

ãh(u, u) ≥ (1− ε)
∑

K∈Th

‖c 12∇u‖20,K +
(
1− ε−1α−1c−1? c? C2

inv

) ∑

F∈Fh

‖a 1
2 [[u]]‖20,F .

For ε = 1
2 and α ≥ αmin, we obtain the desired coercivity bound.

For a piecewise constant c we use the bound for ‖c− 1
2Lc(u)‖20 from Lemma 4.4.4

and proceed analogously.
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Error equation

Because ãh coincides with ah on V
h × V h, the semi-discrete scheme in (4.11)–

(4.13) is equivalent to:
find uh : J × V h → R such that uh|t=0 = Πhu0, uht |t=0 = Πhv0 and

(uhtt, v) + ãh(u
h, v) = (f, v) ∀v ∈ V h. (4.22)

We shall use the formulation in (4.22) as the basis of our error analysis.
To derive an error equation, we first define for u ∈ H1+σ(Ω) with σ > 1/2,

rh(u; v) =
∑

F∈Fh

∫

F

[[v]] · {{c∇u− cΠh(∇u)}} dA, v ∈ V (h). (4.23)

Here Πh denotes the L
2-projection onto (V h)d. The assumption u ∈ H1+σ(Ω)

ensures that rh(u; v) is well-defined. From the definition in (4.23) it is immediate
that rh(u; v) = 0 when v ∈ H1

0 (Ω).
Lemma 4.4.5. Let the analytical solution u of (4.1)–(4.4) satisfy

u ∈ L∞(J ;H1+σ(Ω)), utt ∈ L1(J ;L2(Ω)).

Let uh be the semi-discrete discontinuous Galerkin approximation obtained by (4.22).
Then, the error e = u− uh satisfies

(ett, v) + ãh(e, v) = rh(u; v), ∀v ∈ V h, a.e. in J,

with rh(u; v) given in (4.23).
Proof. Let v ∈ V h. Since utt ∈ L1(J ;L2(Ω)), we have 〈utt, v〉 = (utt, v)

almost everywhere in J . Hence, using the discrete formulation in (4.11)–(4.13),
we obtain that

(ett, v) + ãh(e, v) = (utt, v) + ãh(u, v)− (f, v), a.e. in J.

Now, by definition of ãh, the fact that Lc(u) = 0 and that [[u]] = 0 on all faces,
the defining properties of the L2-projection Πh, and the definition of the lifted
element Lc(v), we obtain

ãh(u, v) =
∑

K∈Th

∫

K

c∇u · ∇v dx−
∑

F∈Fh

∫

F

[[v]] · {{cΠh(∇u)}} dA.

Since utt ∈ L1(J ;L2(Ω)) and f ∈ L2(J ;L2(Ω)) we have that ∇ · (c∇u) ∈
L2(Ω) almost everywhere in J , which implies that c∇u has continuous normal
components across all interior faces. Therefore, elementwise integration by parts
combined with the trace operators defined in Section 4.3.1 yields

ãh(u, v) =−
∑

K∈Th

∫

K

∇ · (c∇u) v dx +
∑

F∈Fh

∫

F

[[v]] · {{c∇u}} dA

−
∑

F∈Fh

∫

F

[[v]] · {{cΠh(∇u)}} dA.

From the definition of rh(u, v) in (4.23), we therefore conclude that

(utt, v) + ãh(u, v) = (utt −∇ · (c∇u), v) + rh(u; v),
and obtain

(ett, v) + ãh(e, v) = (utt −∇ · (c∇u)− f, v) + rh(u; v) = rh(u; v),

where we have used the differential equation (4.1).
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Approximation properties

Let Πh and Πh denote the L
2-projections onto V h and (V h)d, respectively. We

recall the following approximation properties; see [18].
Lemma 4.4.6. Let K ∈ Th. Then:
(i) For v ∈ Ht(K), t ≥ 0, we have

‖v −Πhv‖0,K ≤ Ch
min{t,`+1}
K ‖v‖t,K ,

with a constant C that is independent of the local mesh size hK and only
depends on the shape-regularity of the mesh, the approximation order `,
the dimension d, and the regularity exponent t.

(ii) For v ∈ H1+σ(K), σ > 1
2 , we have

‖∇v −∇(Πhv)‖0,K ≤ Ch
min{σ,`}
K ‖v‖1+σ,K ,

‖v −Πhv‖0,∂K ≤ Ch
min{σ,`}+ 1

2

K ‖v‖1+σ,K ,
‖∇v −Πh(∇v)‖0,∂K ≤ Ch

min{σ,`+1}− 1
2

K ‖v‖1+σ,K ,

with a constant C that is independent of the local mesh size hK and only
depends on the shape-regularity of the mesh, the approximation order `,
the dimension d, and the regularity exponent σ.

As a consequence of the approximation properties in Lemma 4.4.6, we obtain
the following results.

Lemma 4.4.7. Let u ∈ H1+σ(Ω), σ > 1
2 . Then:

(i) We have
‖u−Πhu‖h ≤ CAh

min{σ,`}‖u‖1+σ,
with a constant CA that is independent of the mesh size and only depends
on α, the constant κ in (4.9), the bounds in (4.5), and the constants in
Lemma 4.4.6.

(ii) For v ∈ V (h), the form rh(u; v) in (4.23) can be bounded by

|rh(u; v)| ≤ CRh
min{σ,`}

(
∑

F∈Fh

‖a 1
2 [[v]]‖20,F

) 1
2

‖u‖1+σ,

with a constant CR independent of h, which only depends on α, the bounds
in (4.5), and the constants in Lemma 4.4.6.

Proof. The estimate in (i) is an immediate consequence of Lemma 4.4.6, the
definition of a and the bounded variation property (4.9). To show the bound in
(ii), we apply the Cauchy-Schwarz inequality and obtain

|rh(u; v)| ≤
( ∑

F∈Fh

∫

F

a[[v]]2 ds
) 1
2
( ∑

F∈Fh

∫

F

a−1|{{c∇u− cΠh(∇u)}}|2 ds
) 1
2

≤ α− 1
2 c

− 1
2

? c?

(
∑

F∈Fh

‖a 1
2 [[v]]‖20,F

) 1
2 ( ∑

K∈Th

hK‖∇u−Πh(∇u)‖20,∂K
) 1
2

.

Applying the approximation properties in Lemma 4.4.6 completes the proof.
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4.4.3 Proof of Theorem 4.4.1

We are now ready to complete the proof of Theorem 4.4.1. We begin by proving
the following auxiliary result.

Lemma 4.4.8. Let the analytical solution u of (4.1)–(4.4) satisfy

u ∈ L∞(J ;H1+σ(Ω)), ut ∈ L∞(J ;H1+σ(Ω))

for σ > 1
2 . Let v ∈ C0(J ;V (h)) and vt ∈ L1(J ;V (h)). Then we have

∫

J

|rh(u; vt)| dt ≤ CR h
min{σ,`} ‖v‖L∞(J;V (h))

·
[
2 ‖u‖L∞(J;H1+σ(Ω)) + T ‖ut‖L∞(J;H1+σ(Ω))

]
,

where CR is the constant from the bound (ii) in Lemma 4.4.7.
Proof. From the definition of rh in (4.23) and integration by parts, we obtain

∫

J

rh(u; vt) dt =

∫

J

∑

F∈Fh

∫

F

[[vt]] · {{c∇u− cΠh(∇u)}} dAdt

= −
∫

J

∑

F∈Fh

∫

F

[[v]] · {{c∇ut − cΠh(∇ut)}} dAdt

+
[ ∑

F∈Fh

∫

F

[[v]] · {{c∇u− cΠh(∇u)}} dA
]t=T
t=0

= −
∫

J

rh(ut; v) dt+
[
rh(u; v)

]t=T
t=0

.

Lemma 4.4.7 then implies the two estimates

∣∣∣∣
∫

J

rh(ut; v) dt

∣∣∣∣ ≤ CRh
min{σ,`} T ‖v‖L∞(J;V (h))‖ut‖L∞(J;H1+σ(Ω))

and ∣∣∣∣
[
rh(u; v)

]t=T
t=0

∣∣∣∣ ≤ 2CRh
min{σ,`}‖v‖L∞(J;V (h))‖u‖L∞(J;H1+σ(Ω)),

which concludes the proof of the lemma.
To complete the proof of Theorem 4.4.1, we now set e = u − uh and recall

that Πh is the L
2-projection onto V h. Because of (4.8), we have

e ∈ C0(J ;V (h)) ∩ C1(J ;L2(Ω)).

Next, we use the symmetry of ãh and the error equation in Lemma 4.4.5 to
obtain

1

2

d

dt

[
‖et‖20 + ãh(e, e)

]
=(ett, et) + ãh(e, et)

=(ett, (u−Πhu)t) + ãh(e, (u−Πhu)t)
+ rh(u; (Πhu− uh)t).

(4.24)



Acoustic Wave 81

We fix s ∈ J and integrate (4.24) over the time interval (0, s). This yields

1

2
‖et(s)‖20 +

1

2
ãh(e(s), e(s)) =

1

2
‖et(0)‖20 +

1

2
ãh(e(0), e(0))

+

∫ s

0

(ett, (u−Πhu)t) dt+
∫ s

0

ãh(e, (u−Πhu)t) dt

+

∫ s

0

rh(u; (Πhu− uh)t) dt.

Integration by parts of the third term on the right-hand side yields
∫ s

0

(ett, (u−Πhu)t)) dt = −
∫ s

0

(et, (u−Πhu)tt) dt+
[
(et, (u−Πhu)t)

]t=s
t=0

.

From the stability properties of ãh in Lemma 4.4.4 and standard Hölder’s in-
equalities, we conclude that

1

2
‖et(s)‖20 +

1

2
Ccoer‖e(s)‖2h ≤ 1

2
‖et(0)‖20 +

1

2
Ccont‖e(0)‖2h

+ ‖et‖L∞(J;L2(Ω))

(
‖(u−Πhu)tt‖L1(J;L2(Ω)) + 2‖(u−Πhu)t‖L∞(J;L2(Ω))

)

+ CcontT‖e‖L∞(J;V (h)) ‖(u−Πhu)t‖L∞(J;V (h))

+

∣∣∣∣
∫

J

rh(u; (Πhu− uh)t) dt

∣∣∣∣ .

Since this inequality holds for any s ∈ J , it also holds for the maximum over J ,
that is

‖et‖2L∞(J;L2(Ω)) +Ccoer‖e‖2L∞(J;V (h)) ≤ ‖et(0)‖20 +Ccont‖e(0)‖2h + T1 + T2 + T3,

with

T1 = 2‖et‖L∞(J;L2(Ω))

(
‖(u− Πhu)tt‖L1(J;L2(Ω)) + 2‖(u−Πhu)t‖L∞(J;L2(Ω))

)
,

T2 = 2CcontT‖e‖L∞(J;V (h)) ‖(u−Πhu)t‖L∞(J;V (h)),

T3 = 2

∣∣∣∣
∫

J

rh(u; (Πhu− uh)t) dt

∣∣∣∣ .

Using the geometric-arithmetic mean inequality |ab| ≤ 1
2εa

2+ ε
2b
2, valid for any

ε > 0, and the approximation results in Lemma 4.4.6, we conclude that

T1 ≤ 1

2
‖et‖2L∞(J;L2(Ω)) + 2

(
‖(u−Πhu)tt‖L1(J;L2(Ω)) + 2‖(u−Πhu)t‖L∞(J;L2(Ω))

)2

≤ 1

2
‖et‖2L∞(J;L2(Ω)) + 4‖(u−Πhu)tt‖2L1(J;L2(Ω)) + 16‖(u−Πhu)t‖2L∞(J;L2(Ω)),

≤ 1

2
‖et‖2L∞(J;L2(Ω)) + Ch

2min{σ,`}
(
‖utt‖2L1(J;Hσ(Ω)) + h

2 ‖ut‖2L∞(J;H1+σ(Ω))

)
,

with a constant C that only depends on the constants in Lemma 4.4.6. Similarly,

T2 ≤ 1

4
Ccoer‖e‖2L∞(J;V (h)) + 4

C2
cont

Ccoer
T 2‖(u−Πhu)t‖2L∞(J;V (h))

≤ 1

4
Ccoer‖e‖2L∞(J;V (h)) + T

2Ch2min{σ,`}‖ut‖2L∞(J;H1+σ(Ω)),
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where the constantC depends on Ccoer, Ccont and the constant CA in Lemma 4.4.7.
It remains to bound the term T3. To do so, we use Lemma 4.4.8 to obtain

T3 ≤ 2CRRhmin{σ,`}‖Πhu− uh‖L∞(J;V (h)),

with
R :=

[
2‖u‖L∞(J;H1+σ(Ω)) + T‖ut‖L∞(J;H1+σ(Ω))

]
.

The triangle inequality, the geometric-arithmetic mean, and the approximation
properties of Πh in Lemma 4.4.7 then yield

T3 ≤ 2CRRhmin{σ,`}
[
‖e‖L∞(J;V (h)) + ‖u−Πhu‖L∞(J;V (h))

]

≤ 1

4
Ccoer‖e‖2L∞(J;V (h)) + Ch

2min{σ,`}
[
‖u‖2L∞(J;H1+σ(Ω)) +R2

]
,

with a constant C that only depends on Ccoer, CR, and CA. Combining the
above estimates for T1, T2 and T3 then shows that

1

2
‖et‖2L∞(J;L2(Ω)) +

1

2
Ccoer‖e‖2L∞(J;V (h)) ≤ ‖et(0)‖20 + Ccont‖e(0)‖2h

+ Ch2min{σ,`}
[
‖utt‖2L1(J;Hσ(Ω)) + T

2‖ut‖2L∞(J;H1+σ(Ω)) + ‖u‖2L∞(J;H1+σ(Ω))

]
,

with a constant that is independent of T and the mesh size. This concludes the
proof of Theorem 4.4.1.

4.4.4 Proof of Theorem 4.4.2

To prove the error estimate in Theorem 4.4.2, we first establish the following
variant of [6, Lemma 2.1].

Lemma 4.4.9. For u ∈ H1+σ(Ω) with σ > 1
2 , let w

h ∈ V h be the solution of

ãh(w
h, v) = ãh(u, v)− rh(u; v) ∀v ∈ V h.

Then, we have
‖u− wh‖h ≤ CE h

min{σ,`}‖u‖1+σ,
with a constant CE that is independent of h and only depends on Ccoer, Ccont
in Lemma 4.4.4 and CA, CR in Lemma 4.4.7.

Moreover, if the elliptic regularity defined in (4.16) and (4.17) holds, we
have the L2-bound

‖u− wh‖0 ≤ CL h
min{σ,`}+1‖u‖1+σ.

with a constant CL that is independent of h and only depends on the stability con-
stant CS in (4.17), Ccoer, Ccont in Lemma 4.4.4 and CA, CR in Lemma 4.4.7.

Proof. We first remark that the approximation wh is well-defined, because
of the stability properties in Lemma 4.4.4 and the estimates in Lemma 4.4.7.
To prove the estimate for ‖u− wh‖h, we first use the triangle inequality,

‖u− wh‖h ≤ ‖u−Πhu‖h + ‖Πhu− wh‖h. (4.25)

From the approximation properties of Πh in Lemma 4.4.7, we immediately infer
that

‖u−Πhu‖h ≤ CAh
min{σ,`}‖u‖1+σ.
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It remains to bound ‖Πhu−wh‖h. From the coercivity and continuity of ãh in
Lemma 4.4.4, the definition of wh, and the bound in Lemma 4.4.7, we conclude
that

Ccoer‖Πhu− wh‖2h ≤ ãh(Πhu− wh,Πhu− wh)

= ãh(Πhu− u,Πhu− wh) + ãh(u− wh,Πhu− wh)

= ãh(Πhu− u,Πhu− wh) + rh(u; Πhu− wh)

≤ Ccont‖Πhu− u‖h‖Πhu− wh‖h + CRhmin{σ,`}‖u‖1+σ‖Πhu− wh‖h.

Thus,

‖Πhu− wh‖h ≤
(
CcontCA + CR

Ccoer

)
hmin{σ,`}‖u‖1+σ,

which proves the bound for ‖u− wh‖h.
We shall now prove the L2-bound. To do so, let z ∈ H1

0 (Ω) be the solution
of

−∇ · (c∇z) = u− wh in Ω, z = 0 on Γ. (4.26)

Then, the elliptic regularity assumption in (4.16) and (4.17) implies that

z ∈ H2(Ω), ‖z‖2 ≤ CS‖u− wh‖0. (4.27)

Next, we multiply (4.26) by u − wh and integrate the resulting expression by
parts. Since c∇z has continuous normal components across all interior faces,
we have

‖u− wh‖20 =
∑

K∈Th

[ ∫

K

c∇z · ∇(u− wh) dx−
∫

∂K

c∇z · nK(u− wh) dA
]

=
∑

K∈Th

∫

K

c∇z · ∇(u− wh) dx−
∑

F∈Fh

∫

F

{{c∇z}} · [[u− wh]] dA,

with nK denoting the unit outward normal on ∂K. By definition of ãh and rh,
we immediately find that

‖u− wh‖20 = ãh(z, u− wh)− rh(z;u− wh).

From the symmetry of ãh, the definition of w
h, and the fact that [[z]] = 0 on all

faces, we conclude that

‖u− wh‖20 = ãh(u− wh, z −Πhz)− rh(u; z −Πhz)− rh(z;u− wh)

=: T1 + T2 + T3.
(4.28)

We shall now derive upper bounds for each individual term T1, T2, and T3 in
(4.28).
To estimate the term T1, we use the continuity of ãh, the approximation

result in Lemma 4.4.7 with σ = 1, and the bound in (4.27). Thus,

T1 ≤ Ccont‖u− wh‖h‖z −Πhz‖h
≤ CcontCAh‖u− wh‖h‖z‖2
≤ CcontCACSh‖u− wh‖h‖u− wh‖0.
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By using Lemma 4.4.7 and the stability bound in (4.27), we can estimate T2 by

T2 ≤ CRh
min{σ,`}‖z −Πhz‖h‖u‖1+σ

≤ CRCAh
min{σ,`}+1‖z‖2‖u‖1+σ

≤ CRCACSh
min{σ,`}+1‖u− wh‖0‖u‖1+σ.

Similarly,

T3 ≤ CRh‖z‖2‖u− wh‖h ≤ CRCSh‖u− wh‖0‖u− wh‖h.

The use of these bounds for T1, T2 and T3 in (4.28) then leads to

‖u− wh‖0 ≤ Ch‖u− wh‖h + Chmin{σ,`}+1‖u‖1+σ.

which completes the proof of the lemma, since ‖u− wh‖h ≤ Chmin{σ,`}‖u‖1+σ.

Now, let u be defined by the exact solution of (4.1)–(4.4). We may define
wh(t, ·) ∈ V h almost everywhere in J by

ãh(w
h(t, ·), v) = ãh(u(t, ·), v)− rh(u(t, ·); v) ∀v ∈ V h. (4.29)

If u ∈ L∞(J ;H1+σ(Ω)), it can be readily seen that wh ∈ L∞(J ;V (h)). More-
over, if we also have ut ∈ L∞(J ;H1+σ(Ω)), then wht ∈ L∞(J ;V (h)) and

ãh(w
h
t , v) = ãh(ut, v)− rh(ut; v), v ∈ V h, a.e. in J,

as well as
ãh(w

h(0), v) = ãh(u0, v)− rh(u0; v), v ∈ V h.

Therefore Lemma 4.4.9 immediately implies the following estimates.
Lemma 4.4.10. Let wh be defined by (4.29). Under the regularity assump-

tions of Theorem 4.4.2, we have

‖(u− wh)t‖L∞(J;V (h)) ≤ CE h
min{σ,`}‖ut‖L∞(J;H1+σ(Ω)),

‖(u− wh)(0)‖h ≤ CE h
min{σ,`}‖u0‖1+σ.

Moreover, if elliptic regularity as defined in (4.16) and (4.17) holds, we have
the L2-bounds

‖(u− wh)t‖L∞(J;L2(Ω)) ≤ CL h
min{σ,`}+1‖ut‖L∞(J;H1+σ(Ω)),

‖(u− wh)(0)‖0 ≤ CL h
min{σ,`}+1‖u0‖1+σ .

The constants CE and CL are as in Lemma 4.4.9.
To complete the proof of Theorem 4.4.2, let wh ∈ L∞(J ;V (h)) be defined

by (4.29) and consider

‖e‖2L∞(J;L2(Ω)) ≤ 2‖u− wh‖2L∞(J;L2(Ω)) + 2‖wh − uh‖2L∞(J;L2(Ω)). (4.30)

The first term can be estimated from the L2-bounds in Lemma 4.4.9. We shall
now derive an estimate for the second term. First, we fix v ∈ L∞(J ;V h) and
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assume that vt ∈ L∞(J ;V h). From the definition of wh in (4.29) and the error
equation in Lemma 4.4.5, we have

((uh − wh)tt, v) + ãh(u
h − wh, v) = (uhtt, v) + ãh(u

h, v)− ãh(w
h, v)− (whtt, v)

= (uhtt, v) + ãh(u
h − u, v) + rh(u; v)− (whtt, v)

= (utt, v)− (whtt, v).

We rewrite this identity as

d

dt
((uh−wh)t, v)−((uh−wh)t, vt)+ãh(uh−wh, v) =

d

dt
((u−wh)t, v)−((u−wh)t, vt),

which yields

−((uh −wh)t, vt) + ãh(u
h −wh, v) =

d

dt
((u− uh)t, v)− ((u−wh)t, vt). (4.31)

Let τ ∈ (0, T ] be fixed, and consider the function

v̂(t, ·) =
∫ τ

t

(uh − wh)(s, ·) ds, t ∈ J.

Note that

v̂(τ, ·) = 0, v̂t(t, ·) = −(uh − wh)(t, ·), a.e. t ∈ J.

Next, choose v = v̂ in (4.31) which yields

((uh − wh)t, u
h − wh)− ãh(v̂t, v̂) =

d

dt
((u− uh)t, v̂) + ((u− wh)t, u

h − wh).

Since the DG form ãh(·, ·) is symmetric, we obtain

1

2

d

dt
‖uh − wh‖20 −

1

2

d

dt
ãh(v̂, v̂) =

d

dt
((u− uh)t, v̂) + ((u− wh)t, u

h − wh).

Integration over (0, τ) and using that v̂(τ, ·) = 0 then yields

‖(uh − wh)(τ)‖20 − ‖(uh − wh)(0)‖20 + ãh(v̂(0), v̂(0)) =

− 2((u− uh)t(0), v̂(0)) + 2

∫ τ

0

((u− wh)t, u
h − wh) dt.

(4.32)

Since ut(0) = v0, u
h
t (0) = Πhv0, and v̂(0) belongs to V

h, we conclude that

((u− uh)t(0), v̂(0)) = (v0 −Πhv0, v̂(0)) = 0.

Hence, the first term on the right-hand side of (4.32) vanishes. Moreover, the
coercivity of the form ãh in Lemma 4.4.4 ensures that ãh(v̂(0), v̂(0)) ≥ 0. This
leads to the inequality

‖(uh −wh)(τ)‖20 ≤ ‖(uh −wh)(0)‖20 + 2
∫ τ

0

‖(u−wh)t‖0‖uh −wh‖0 dt. (4.33)
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By using the Cauchy-Schwarz inequality and the geometric-arithmetic mean
inequality, we obtain

2

∫ τ

0

‖(u− wh)t‖0‖uh − wh‖0 dt ≤ 2T ‖(u− wh)t‖L∞(J;L2(Ω))‖uh − wh‖L∞(J;L2(Ω))

≤ 1

2
‖uh − wh‖2L∞(J;L2(Ω)) + 2T

2 ‖(u− wh)t‖2L∞(J;L2(Ω)).

Because this upper bound is independent of τ , it also holds for the supremum
over τ ∈ J , which yields the estimate

1

2
‖uh − wh‖2L∞(J;L2(Ω)) ≤ ‖(uh − wh)(0)‖20 + 2T 2‖(u− wh)t‖2L∞(J;L2(Ω))

≤ 2 ‖(uh − u)(0)‖20 + 2‖(u− wh)(0)‖20 + 2T 2‖(u− wh)t‖2L∞(J;L2(Ω)).

Next, we use this estimate in (4.30) to obtain

‖e‖2L∞(J;L2(Ω)) ≤ 2‖u− wh‖2L∞(J;L2(Ω))

+8 ‖u0 −Πhu0‖20 + 8‖u0 − wh(0)‖20 + 8T 2‖(u− wh)t‖2L∞(J;L2(Ω)).

From the L2-approximation properties in Lemma 4.4.6, Lemma 4.4.9, and Lemma 4.4.10
we finally conclude that

‖e‖2L∞(J;L2(Ω)) ≤ h2min{σ,`}+2
[
max{8C, 8C2

L}‖u0‖21+σ

+2C2
L‖u‖2L∞(J;H1+σ(Ω)) + 8CLT

2‖ut‖2L∞(J;H1+σ(Ω))

]
.

Here, C is the constant from Lemma 4.4.6. This completes the proof of Theo-
rem 4.4.2.

4.5 Numerical results

We shall now present a series of numerical experiments which verify the sharp-
ness of the theoretical error bounds stated in Theorem 4.4.1 and Theorem 4.4.2.
Furthermore, we shall demonstrate the robustness and flexibility of our DG
method by propagating a pulse through an inhomogeneous medium with dis-
continuity on a finite element mesh with hanging nodes.
To obtain a fully discrete discretization of the wave equation, we choose to

augment our DG spatial discretization with the second-order Newmark scheme
in time; see, e.g. [65, Sections 8.5–8.7]. The resulting scheme has been im-
plemented using the general purpose finite element library deal.II3, which
provides powerful C++ classes for the handling of the meshes, the degrees of
freedom, and the solution of linear systems of equations; see [8, 7]. In all our
examples, the DG stabilization parameter is set to α = 20.

4.5.1 Time discretization

The discretization of (4.1)–(4.4) in space by the DG method (4.11)–(4.13) leads
to the linear second-order system of ordinary differential equations

Müh(t) +Auh(t) = fh(t), t ∈ J, (4.34)

3URL: www.dealii.org.
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with initial conditions

Muh(0) = uh0 , Mu̇h(0) = vh0 . (4.35)

Here,M denotes the mass matrix andA the stiffness matrix. To discretize (4.34)
in time, we employ the Newmark time stepping scheme; see, e. g., [65]. We let
k denote the time step and set tn = n · k. Then the Newmark method consists
in finding approximations {uhn}n to uh(tn) such that

(M+k2βA)uh1 =
[
M−k2(1

2
−β)A

]
uh0 +kMvh0 +k

2
[
βfh1 +(

1

2
−β)fh0

]
, (4.36)

and

(M+ k2βA)uhn+1 =
[
2M− k2(

1

2
− 2β + γ)A

]
uhn −

[
M+ k2(

1

2
+ β − γ)A

]
uhn−1

+k2
[
βfhn+1 + (

1

2
− 2β + γ)fn + (

1

2
+ β − γ)fn−1

]
, (4.37)

for n = 1, . . . , N − 1. Here, fn := f(tn) while β ≥ 0 and γ ≥ 1/2 are free
parameters that still can be chosen. We recall that for γ = 1/2 the Newmark
scheme is second-order accurate in time, whereas it is only first order accurate
for γ > 1/2. For β = 0, the Newmark scheme (4.36)–(4.37) requires at each
time step the solution of a linear system with the mass matrix M. However,
because individual elements decouple, M is block-diagonal with a block size
equal to the number of degrees of freedom per element. It can be inverted at
very low computational cost and the scheme is essentially fully explicit. In fact,
if the basis functions are chosen mutually orthogonal,M reduces to the identity;
see [20] and the references therein. Then, with γ = 1/2, the explicit Newmark
method corresponds to the standard leap-frog scheme.
For β > 0, the resulting scheme is implicit and involves the solution of a

linear system with the symmetric positive definite stiffness matrix A at each
time step. We finally note that the second-order Newmark scheme with γ = 1/2
is unconditionally stable for β ≥ 1/4, whereas for 1/4 > β ≥ 0 the time step
k has to be restricted by a CFL condition. In the case β = 0, the condition is
k2λmax(A) ≤ 4(1− ε), ε ∈ (0, 1), where λmax(A) is the maximal eigenvalue of
the DG stiffness matrix A (which is of the order O(h−2), and also depends on
α).
In all our tests, we will employ the explicit second-order Newmark scheme,

setting γ = 1/2 and β = 0 in (4.36)–(4.37).

4.5.2 Example 1: smooth solution

First, we consider the two-dimensional wave equation (4.1)–(4.4) in J × Ω =
(0, 1)× (0, 1)2, with c ≡ 1 and data f, u0 and v0 chosen such that the analytical
solution is given by

u(x1, x2, t) = t2 sin(πx1) sin(πx2). (4.38)

This solution is arbitrarily smooth so that all our theoretical regularity as-
sumptions are satisfied. We discretize this problem using the polynomial spaces
Q`(K), ` = 1, 2, 3, on a sequence {Th}i≥1 of square meshes of size hi = 2−i.
With increasing polynomial degree ` and decreasing mesh size hi, smaller time
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Figure 4.1: Example 1.1: Convergence of the error at time T = 1 in the energy
norm and the L2-norm for ` = 1, 2, 3.
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Figure 4.2: Example 1.2: Convergence of the error at time T = 1 in the energy
norm and the L2-norm for ` = 1.

steps ki are necessary to ensure stability. We found that the choice ki = hi/20
provides a stable time discretization on every mesh. Because our numerical
scheme is second-order accurate in time, the time integration of (4.38) is exact
so that the spatial error is the only error component in the discrete solution.
In Figure 4.1 we show the relative errors at time T = 1 in the energy norm

and in the L2-norm, as we decrease the mesh size hi. The numerical results
corroborate with the expected theoretical rates of O(h`) for the energy norm
and of O(h`+1) for the L2-norm – see Theorem 4.4.1 and Theorem 4.4.2.
Next, we modify the data so that the analytical solution u is given by

u(x1, x2, t) = sin(t
2) sin(πx1) sin(πx2). (4.39)

Although u remains arbitrarily smooth, it is no longer integrated exactly in time
by (4.36)–(4.37). Since the Newmark scheme is only second-order accurate, we
repeat the above experiment only for the lowest order spatial discretization,
` = 1. Again, we set ki = hi/20. In Figure 4.2, the relative errors for the fully
discrete approximation of (4.39) show convergence rates of order h in the energy
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norm and order h2 in the L2-norm, thereby confirming the theoretical estimates
of Theorems 4.4.1 and 4.4.2.

4.5.3 Example 2: singular solution

Here, we consider the two-dimensional wave equation (4.1)-(4.4) on the L-shaped
domain Ω = (−1, 1)2\[0, 1)2. We set c = 1 everywhere and choose the data f, u0
and v0 such that the analytical solution u is given in polar coordinates (r, φ) by

u(r, φ, t) = t2 r2/3 sin(2/3φ). (4.40)

Although u is smooth in time (and can even be integrated exactly in time), it has
a spatial singularity at the origin, such that u ∈ C∞(J ;H5/3(Ω)). Hence, this
example is well-suited to establish the sharpness of the regularity assumptions in
our theoretical results. Since u is inhomogeneous at the boundary of Ω, we need
to impose inhomogeneous Dirichlet conditions within our DG discretization. We
do so in straightforward fashion by modifying the semi-discrete formulation as
follows: find uh(t, ·) : J → V h such that

(uhtt, v) + ah(u
h, v) = (f, v) +

∑

F∈FB

h

∫

F

g (av − c∇v · n) dA. (4.41)

Here, g is the boundary data and n is the outward unit normal vector on ∂Ω.
We discretize (4.41) by using bilinear polynomials (` = 1) on the same

sequence of meshes as before. Again, we set ki = hi/20 and integrate the
problem up to T = 1. For the analytical solution u in (4.40), the regularity
assumptions in Theorem 4.4.1 hold with σ = 2/3. Thus, Theorem 4.4.1 predicts
numerical convergence rates of 2/3 in the energy norm, as confirmed by our
numerical results in Table 4.5.3.
As the elliptic regularity assumptions (4.16)–(4.17) from Theorem 4.4.2 is

violated, we do not expect L2-error rates of the order 1 + σ for this problem.
Indeed, in Table 4.5.3 we observe convergence rates close to 4/3. To explain this
behavior, let us consider the following weaker elliptic regularity assumption: for
any λ ∈ L2(Ω) we assume that the solution of the problem

−∇ · (c∇z) = λ in Ω, z = 0 on ∂Ω, (4.42)

belongs to H1+s(Ω) for a parameter s ∈ (1/2, 1] and satisfies the stability bound

‖z‖1+s ≤ CS‖λ‖0, (4.43)

for a stability constant CS . The results from Lemma 4.4.9 and Lemma 4.4.10 can
be easily adapted to this case. As a consequence, the L2-bound for e = u− uh

from Theorem 4.4.2 can then be generalized to this weaker setting as

‖e‖L∞(J;L2(Ω)) ≤ Chmin{σ,`}+s
[
‖u0‖1+σ

+ ‖u‖L∞(J;H1+σ(Ω)) + T‖ut‖L∞(J;H1+σ(Ω))

]
.

For the L-shaped domain Ω and c ≡ 1, the (weaker) regularity assumption
in (4.42)–(4.43) holds with s = 2/3, which underpins the rate σ + s = 4/3
observed in Table 4.5.3.
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i cells energy-error L2-error
1 12 1.11e-01 - 1.61e-02 -
2 48 7.18e-02 0.62 5.96e-03 1.43
3 192 4.61e-02 0.64 2.27e-03 1.40
4 768 2.94e-02 0.65 8.72e-04 1.38
5 3072 1.87e-02 0.66 3.38e-04 1.37
6 12288 1.18e-02 0.66 1.32e-04 1.36

Table 4.1: Example 2: Relative errors at time T = 1 in the energy norm and
L2-norm, and corresponding numerical convergence rates.

4.5.4 Example 3: inhomogeneous medium

Finally, we consider (4.1)–(4.4) on the rectangular domain Ω = (−1, 2)×(−1, 1),
with homogeneous initial and boundary conditions and the piecewise constant
material coefficient

c(x1, x2) =

{
0.1, x1 ≤ 0,
1, else

The wave is locally excited until t = 0.2 by the source term

f(x1, x2, t) =

{
1, 0.2 < x1 < 0.4 and t < 0.2,
0, else.

We discretize the problem by the DG method (4.11)–(4.13) on a fixed mesh
Th that consists of non-matching components, which are adapted to the disconti-
nuity c; see Figure 4.5.4. The mesh Th is composed of 9312 non-uniform squares,
where the smallest local mesh size is given by hmin ≈ 0.016. The hanging nodes
are naturally incorporated in the DG-method without any difficulty. Here, the
time step k = 0.002, that is k ≈ hmin/8 proved to be sufficiently small to ensure
the stability of the explicit Newmark method (β = 0).

Figure 4.3: Example 3: Domain Ω with a finite element mesh Th that is adapted
to the values of the piecewise constant wave speed

√
c.

In Figure 4.4, the numerical solution is shown after n = 100, 300, 900 and
2000 time steps, respectively. The initial pulse splits in two planar wave fronts,
propagating to either side of the domain. After n = 300 time steps, the left
moving wave reaches the much slower medium 1, resulting in a much steeper
and narrower wave front. Meanwhile, the right moving wave rapidly arrives at
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Figure 4.4: Example 3: Wave with fixed boundaries propagating in an in-
homogeneous medium. The approximate DG solutions uhn reported at times
tn = 0.2, 0.6, 1.8, 4 reflect the qualitative behavior of a wave with data from
Example 3.

the boundary at x1 = 2, where it is reflected and eventually reaches the slow
region too. The discontinuous interface at x1 = 0 generates multiple reflections,
which interact with each other at later times.

4.6 Concluding remarks

We have presented and analyzed the symmetric interior penalty discontinuous
Galerkin finite element method (DG FEM) for the numerical solution of the
(second-order) scalar wave equation. Taking advantage of the symmetry of
the method, we have carried out an a priori error analysis of the semi-discrete
method and derived optimal error bounds in the energy norm and, under ad-
ditional regularity assumptions, optimal error bounds in the L2-norm. Our
numerical results confirm the expected convergence rates and demonstrate the
versatility of the method. The error analysis of the fully discrete scheme is the
subject of ongoing work.
Based on discontinuous finite element spaces, the proposed DG method eas-

ily handles elements of various types and shapes, irregular non-matching grids,
and even locally varying polynomial order. As continuity is only weakly en-
forced across mesh interfaces, domain decomposition techniques immediately
apply. Since the resulting mass matrix is essentially diagonal, the method is in-
herently parallel and leads to fully explicit time integration schemes. Moreover,
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as the stiffness matrix is symmetric positive definite, the DG method shares the
following two important properties with the classical continuous Galerkin ap-
proach. First, the semi-discrete formulation conserves (a discrete version of) the
energy for all time, and therefore it is non-dissipative. Second, if implicit time
integration is used to overcome CFL constraints, the resulting linear system to
be solved at each time step will also be symmetric positive definite.
The symmetric interior penalty DG FEM, applied here to the scalar wave

equation, can also be utilized for other second-order hyperbolic equations, such
as in electromagnetics (see Chapter 5) or elasticity. In fact, our error analysis
for the semi-discrete (scalar) case readily extends to the second-order (vector)
wave equation for time dependent elastic waves.
Moreover, our analysis in Sections 4.4.3 and 4.4.3 for the proof of the error

estimates can be applied to other symmetric discontinuous Galerkin schemes,
such as, e. g., the LDG method [5].
In further studies, an analysis of full discretizations of (4.11)–(4.13) should

be provided, in particular a more detailed dependence of CFL conditions on the
wave speed c and on the interior penalty stabilization parameter α. This analysis
should be feasible by a straightforward extension of techniques for conforming
FEM, and relies on the estimation of eigenvalues of the DG form ah.
In Lemma 4.4.4, we stated the independence of the minimal interior penalty

stabilization parameter αmin on wave speed c, in the case where c is piecewise
constant. For general coefficients c, our analysis led to an αmin that depends
on the ratio of the upper and lower bounds for c in the computational domain.
Numerical experiments suggest however, that this dependence is not sharp, and
that indeed αmin seems to be independent of c also for more general wave speed
coefficients. An analytical verification of this fact would be interesting.



Chapter 5

Interior Penalty Method for

Maxwell’s Equations in

Time Domain

The content of the first part of this chapter (energy error estimates) has been
accepted for publication in a special volume of Journal of Computational and
Applied Mathematics (JCAM) reflecting some of the talks presented at the
7th International Conference Mathematical and Numerical Aspects of Waves
(WAVES’05); [34] (in collaboration with Marcus J. Grote 1 and Dominik
Schötzau 2).

Abstract

We develop the symmetric interior penalty discontinuous Galerkin (DG) method
for the spatial discretization in the method of lines approach of the time-
dependent Maxwell equations in second-order form. We derive optimal a-priori
estimates for the semi-discrete error in the energy norm. For smooth solutions,
these estimates hold for DG discretizations on general finite element meshes.
For low-regularity solutions that have singularities in space, the theoretical es-
timates hold on conforming, affine meshes. Moreover, on conforming triangular
meshes, we derive optimal error estimates in the L2-norm. Finally, we valuate
our theoretical results by a series of numerical experiments.

5.1 Introduction

The development of new more sophisticated algorithms for the numerical so-
lution of Maxwell’s equations is dictated by increasingly complex applications

1Prof. Dr. Marcus J. Grote, Department of Mathematics, University of Basel, Rheinsprung
21, 4051 Basel, Switzerland, email: Marcus.Grote@ unibas.ch.

2Prof. Dr. Dominik Schötzau, Mathematics Department, University of British Columbia,
121-1984 Mathematics Road, Vancouver V6T 1Z2, Canada, email: schoetzau@ math.ubc.ca.
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in electromagnetics. In 1966 Yee [76] introduced the first and probably most
popular method, the Finite Difference Time Domain (FDTD) scheme, which
is simple and efficient. However, the FDTD scheme can only be applied on
structured (Cartesian) grids and suffers from the inaccurate representation of
the solution on curved boundaries (staircase approximation) [14, 72]. Moreover,
higher order FDTD methods are generally difficult to implement near interfaces
and boundaries.
In contrast, Finite Element Methods (FEMs) easily handle complex bound-

aries and unstructured grids, even when higher order discretizations are used.
They also provide rigorous a posteriori error estimates which are useful for local
adaptivity and error control. Different FE discretizations of Maxwell’s equa-
tions are available, such as the edge elements of Nédélec [59], the node-based
first order formulation of Lee and Madsen [51], the node-based curl-curl for-
mulation of Paulsen and Lynch [60], or the node-based least-squares FEM by
Jiang, Wu, and Povinelli [47] – see also Monk [53].
Edge elements are probably the most satisfactory from a theoretical point

of view [55], in particular because they correctly represent singular behavior
at reentrant corners. However, they are less attractive for time-dependent com-
putations, because the solution of a linear system is required at every time
iteration. Indeed, in the case of triangular or tetrahedral edge elements, the
entries of the diagonal matrix resulting from mass-lumping are not necessarily
strictly positive [29]; therefore, explicit time stepping cannot be used in general.
In contrast, nodal elements naturally lead to a fully explicit scheme when mass-
lumping is applied both in space and time [29], but cannot correctly represent
corner singularities in general.
Discontinuous Galerkin (DG) finite element methods offer an attractive al-

ternative to edge elements for the numerical solution of Maxwell’s equations,
in particular for time-dependent problems. Not only do they accomodate el-
ements of various types and shapes, irregular non-matching grids, and even
locally varying polynomial order, and hence offer great flexibility in the mesh
design, but they also lead to (block-) diagonal mass matrices and therefore
yield fully explicit, inherently parallel methods when coupled with explicit time
stepping. Indeed, the mass matrix arising from a DG discretization is always
block-diagonal, with block size equal to the number of degrees of freedom per
element; hence, it can be inverted at very low computational cost. In fact,
for constant material coefficients, the mass matrix is truly diagonal for a judi-
cious choice of (locally orthogonal) shape functions. Because continuity across
element interfaces is weakly enforced merely by adding suitable bilinear forms
(so-called numerical fluxes) to the standard variational formulation, the imple-
mentation of DG-FE methods is straightforward within existing FE software
libraries.
For first-order hyperbolic systems, various DG finite element methods are

available. In [22], for instance, Cockburn and Shu use a DG FEM in space
combined with a Runge-Kutta scheme in time to discretize hyperbolic con-
servation laws. In [50], Kopriva, Woodruff and Hussaini developed discontin-
uous Galerkin methods, which combine high-order spectral elements with a
fourth order low-storage Runge-Kutta scheme. Warburton [74], and Hesthaven
and Warburton [36] used a similar approach for their Runge-Kutta discontin-
uous Galerkin (RKDG) method, which combines high-order spatial accuracy
with a fourth order low-storage Runge-Kutta scheme. While successful, their
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scheme does not conserve energy due to upwinding. Fezoui, Lanteri, Lohrengel
and Piperno [32] used central fluxes instead, yet the convergence rate of their
scheme remains sub-optimal. Recently, Chen, Cockburn, and Reitich developed
a high-order RKDG method for Maxwell’s equations in first-order hyperbolic
form, which achieves high-order convergence both in space and time by using
a strong stability preserving (low storage) SSP-RK scheme [15]. By using lo-
cally divergence-free polynomials Cockburn, Li, and Shu developed a locally
divergence-free DG method for the first-order Maxwell system [21].
For the second order (scalar) wave equation Rivière and Wheeler proposed a

nonsymmetric formulation, which required additional stabilization for optimal
convergence [66, 67]. A symmetric interior penalty DG FEM is presented in
Chapter 4 of this thesis. Recently, Chung and Engquist [17] proposed a hybrid
DG/continuous FE approach for the acoustic wave equation.
Here, we propose and analyze the symmetric interior penalty DG method

for the spatial discretization of Maxwell’s equations in second order form. After
stating the model problem in Section 5.2, we describe the interior penalty DG
variational formulation in Section 5.3. In Section 5.4, we state optimal a-priori
error bounds in the energy norm and in the L2-norm. In the case of solutions
with smoothness beyond H1, the error bound (Theorem 5.4.1) holds for arbi-
trary DG-FE discretizations, whereas in the case of lower regularity, the error
bound (Theorem 5.4.2) only holds for conforming meshes. The optimal L2-error
bound (Theorem (5.4.3)) is valid for DG discretizations on conforming, triangu-
lar or tetrahedral meshes. The proofs of Theorems 5.4.1 and 5.4.2 and technical
approximation results are provided in Section 5.5. The proof of Theorem 5.4.3
is more involved and is presented in Section 5.6. Numerical experiments to val-
uate our DG method and the theoretical error bounds and concluding remarks
are presented in Section 5.7.

5.2 Model problem

The evolution of a time-dependent electromagnetic field E(x, t), H(x, t) propa-
gating through a linear isotropic medium is determined by Maxwell’s equations:

εEt = ∇×H− σE+ j,

µHt = −∇×E.

Here, the coefficients µ, ε, and σ denote the relative magnetic permeability, the
relative electric permittivity, and the conductivity of the medium, respectively.
The source term j corresponds to the applied current density. By eliminating
the magnetic field H, Maxwell’s equations reduce to a second-order vector wave
equation for the electric field E:

εEtt + σEt +∇× (µ−1∇×E) = jt.

If the electric field is eliminated instead, one easily finds that the magnetic
field H satisfies a similar vector wave equation.
Thus, we shall consider the following model problem: find the (electric or
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magnetic) field u(x, t), which satisfies

εutt + σut +∇× (µ−1∇× u) = f in Ω× J,

n× u = 0 in Γ× J,

u|t=0 = u0 on Ω,

ut|t=0 = v0 on Ω.

(5.1)

Here, J = (0, T ) is a finite time interval and Ω is a bounded Lipschitz polyhedron
in R3 with boundary Γ = ∂Ω and outward unit normal n. For simplicity, we
assume Ω to be simply-connected and Γ to be connected. The right-hand side
f is a given source term in L2(J ;L2(Ω)3), where Lp(J ;Hs(Ω)) denotes the
standard Bochner space of (time-dependent) functions whose ‖ · ‖s,Ω Sobolev-
norm is p-integrable in time. The standard inner product in L2(Ω)3 is denoted
by (u,v) :=

∫
Ω u · v dx.

The functions u0 and v0 are prescribed initial data with u0 ∈ H0(curl; Ω)
and v0 ∈ L2(Ω)3, where H0(curl; Ω) denotes the subspace of functions in

H(curl; Ω) = {v ∈ L2(Ω)3 : ∇× v ∈ L2(Ω)3 },

which have zero tangential component on ∂Ω, the boundary of Ω. Furthermore,
we assume that µ, ε and σ are scalar positive functions that satisfy

0 < µ? ≤ µ(x) ≤ µ? <∞, 0 < ε? ≤ ε(x) ≤ ε? <∞, x ∈ Ω, (5.2)

and
0 ≤ σ(x) ≤ σ? <∞, x ∈ Ω,

respectively. For simplicity, we also assume that µ is piecewise constant.

5.3 Discontinuous Galerkin discretization

We shall now discretize Maxwell’s equations in space using the interior penalty
discontinuous Galerkin method. First, we consider shape-regular meshes Th that
partition the domain Ω into disjoint tetrahedral or affine hexahedral elements
{K}, such that Ω = ∪K∈ThK. The diameter of element K is denoted by hK ,
and the mesh size h is given by h = maxK∈Th hK . We assume that the partition
is aligned with the discontinuities of the coefficient µ and that the local mesh
sizes are of bounded variation, that is, there exists a positive constant κ, which
depends only on the shape-regularity of the mesh, such that κhK ≤ hK′ ≤
κ−1hK , for all neighboring elements K and K ′. We denote by FI

h the set of all
interior faces, by FB

h the set of all boundary faces, and set Fh = FI
h ∪ FB

h .
For a given partition Th of Ω and an approximation order ` ≥ 1, we wish to

approximate u(·, t) in the finite element space

Vh := {v ∈ L2(Ω)3 : v|K ∈ S`(K)3,K ∈ Th},

where S`(K) is the space P`(K) of polynomials of total degree at most ` on K,
if K is a tetrahedron, and the space Q`(K) of polynomials of degree at most `
in each variable on K, if K is a parallelepiped.
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We consider the following (semi-discrete) discontinuous Galerkin formulation
of (5.1): find uh : J × V h → R such that

(εuhtt,v) + (σu
h
t ,v) + ah(u

h,v) = (f ,v), v ∈ Vh, t ∈ J, (5.3)

uh|t=0 =Πhu0,

uht |t=0 =Πhv0.

Here, Πh denotes the L
2-projection onto Vh, while the discrete bilinear form

ah, defined on V
h ×Vh, is given by

ah(u,v) :=
∑

K∈Th

∫

K

µ−1
(
∇× u

)
·
(
∇× v

)
dx−

∑

f∈Fh

∫

f

[[u]]T · {{µ−1∇× v}} dA

−
∑

f∈Fh

∫

f

[[v]]T · {{µ−1∇× u}} dA+
∑

f∈Fh

∫

f

a [[u]]T · [[v]]T dA.

We denote by [[v]]T and {{v}}, respectively, the tangential jumps and averages
of a DG function v across interior faces; see Section 2.2. On boundary faces we
set [[v]]T := n× v and {{v}} := v.
The function a penalizes the jumps of u and v over the faces of the trian-

gulation. To define it, we first introduce the function h and m by

h|f =
{
min{hK , hK′}, f ∈ FI

h , F = ∂K ∩ ∂K ′,

hK , f ∈ FB
h , f = ∂K ∩ ∂Ω,

m|f =
{
min{µK , µK′}, f ∈ FI

h , f = ∂K ∩ ∂K ′,

µK , f ∈ FB
h , f = ∂K ∩ ∂Ω.

Here, we denote by µK the restriction of the piecewise coefficient µ to elementK.
On each f ∈ Fh, we then set

a|f := α m−1h−1.

In Lemma 5.5.2 we shall show that there is a positive constant αmin, independent
of the local mesh sizes and the coefficient µ, such that for α ≥ αmin the bilin-
ear form ah is coercive. Hence the DG approximation of (5.1) is well-defined.
We note that larger values of α result in a more restrictive CFL condition in
(explicit) time discretizations of (5.3).

Remark 5.3.1. When the interior penalty DG method is used for time-
dependent computations, the FE solution consists of a superposition of discrete
eigenmodes. Because of symmetry, the energy of the semi-discrete formula-
tion (5.3) is conserved, so that all the modes neither grow nor decay. For eigen-
value computations, Buffa and Perugia [13] recently proved that the interior
penalty DG discretization of the Maxwell operator is free of spurious modes: the
discrete spectrum will eventually converge to the continuous spectrum, as h→ 0.
Nonetheless, on any fixed mesh some of the discrete eigenmodes will not corre-
spond to physical modes. Hesthaven and Warburton [36], and Warburton and
Embree [75] showed that larger values of the penalty parameter in central flux
or local discontinuous Galerkin (LDG) discretizations increase the separation
between spurious and physical eigenmodes. Alternatively, if upwinding is used
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some of the spurious modes will be damped as well.
Clearly, as the mesh is refined, the energy present in the spurious modes will
decrease and eventually vanish, as the numerical solution obtained with the in-
terior penalty DG method converges to the exact solution; see Section 5.4.

5.4 A-priori error bounds

In this section we state optimal a-priori error bounds with respect to the DG
energy norm. To that end, we set V(h) := H0(curl; Ω) +V

h and introduce the
semi-norm

|v|2h :=
∑

K∈Th

‖µ− 1
2 (∇× v)‖20,K +

∑

f∈Fh

‖a 1
2 [[v]]T ‖20,f .

The DG energy norm is then defined by

‖v‖2h := ‖ε 12 v‖20,Ω + |v|2h.

For functions v ∈ H(curl; Ω) it coincides with the standard energy norm. We
further define the norms

‖v‖Lp(J;V(h)) =
{( ∫

J ‖v‖ph dt
)1/p

, 1 ≤ p <∞,

ess supt∈J‖v‖h, p =∞,

and set

|v|Lp(J;V(h)) =
{( ∫

J |v|ph dt
)1/p

, 1 ≤ p <∞,

ess supt∈J |v|h, p =∞.

Then, we have the following error estimate.
Theorem 5.4.1. Let the analytical solution u of (5.1) satisfy

u ∈ L∞(J ;H1+s(Ω)3), ut ∈ L∞(J ;H1+s(Ω)3), utt ∈ L1(J ;Hs(Ω)3),

for s > 1
2 , and u

h be the semi-discrete discontinuous Galerkin approximation
with α ≥ αmin. Then, the error e = u− uh satisfies

‖ε 12 et‖L∞(J;L2(Ω)3) + ‖e‖L∞(J;V(h)) ≤ C
(
‖ε 12 et(0)‖0,Ω + |e(0)|h

)

+ C hmin{s,`}
(
‖u‖L∞(J;H1+s(Ω)3) + ‖ut‖L∞(J;H1+s(Ω)3) + ‖utt‖L1(J;Hs(Ω)3)

)
,

with a constant C > 0 that is independent of the mesh size.
In Theorem 5.4.1 we implicitly assume that u0 ∈ H1+s(Ω)3 and v0 ∈

Hs(Ω)3. Hence, the approximation properties of the L2-projection in Lemma 5.5.4
and Lemma 5.5.5 imply that

‖ε 12 et(0)‖0,Ω ≤ C hmin{s,`+1}‖v0‖s,Ω, |e(0)|h ≤ C hmin{s,`}‖u0‖1+s,Ω.

As a consequence, Theorem 5.4.1 yields optimal convergence of orderO(hmin{s,l})
in the DG energy norm.
In many instances, solutions to the Maxwell equations have singularities

that do not satisfy the regularity assumptions in Theorem 5.4.1. Indeed, it is
well-known that the strongest singularities have smoothness below H1(Ω)3. We
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shall now show that the DG method still converges under weaker yet realistic
regularity assumptions provided that the meshes are conforming.

Theorem 5.4.2. Let the analytical solution u of (5.1) satisfy

u, ut, ∇× u, ∇× ut ∈ L∞(J ;Hs(Ω)3) and utt, ∇× utt ∈ L1(J ;Hs(Ω)3),

for s > 1
2 . Next, let Th be a conforming triangulation of Ω into tetrahedra or

hexahedra with edges parallel to the coordinate axes, and uh be the semi-discrete
discontinuous Galerkin approximation obtained with α ≥ αmin. Then the error
e = u− uh satisfies

‖ε 12 et‖L∞(J;L2(Ω)3) + ‖e‖L∞(J;V(h)) ≤ C
(
‖ε 12 et(0)‖0,Ω + |e(0)|h

)

+ C hmin{s,`}
(
‖u‖L∞(J;Hs(Ω)3) + ‖∇× u‖L∞(J;Hs(Ω)3)

+ ‖ut‖L∞(J;Hs(Ω)3) + ‖∇× ut‖L∞(J;Hs(Ω)3)

+ ‖utt‖L1(J;Hs(Ω)3) + ‖∇× utt‖L1(J;Hs(Ω)3)

)
,

with a constant C > 0 that is independent of the mesh size.
If we additionally assume that u0 ∈ H1+s(Ω)3 for t > 0, the bound in

Theorem 5.4.2 yields again optimal convergence of the order O(hmin{s,`}) for
the error in the energy norm.
Next, note that Theorem 5.4.1 and Theorem 5.4.2 immediately imply a (sub-

optimal) bound for the error in the L2-norm ‖u − uh‖L∞(J;L2(Ω)3). With the
restriction to conforming tetrahedral meshes however, we will show that this
estimate can be improved and that optimal order O(h`+1) can be obtained for
smooth solutions and convex domains.
To this end, we recall the embedding stated in (2.8): under the foregoing

assumptions on the domain Ω, there exists a regularity exponent σE ∈ (1/2, 1],
depending only on Ω, such that

H0(curl; Ω) ∩H(div; Ω) ↪→ HσE (Ω)3,

H(curl; Ω) ∩H0(div; Ω) ↪→ HσE (Ω)3.
(5.4)

The maximal value of σE for which the above embedding holds is closely related
to the regularity properties of the Laplacian in polyhedra and only depends on
the opening angles at the corners and edges of the domain, cf. [4]. In particular,
for a convex domain, (5.4) holds with σE = 1.
We now state our second main result, an estimate for the error of the semi-

discrete solution uh in the L2-norm.
Theorem 5.4.3. Assume µ = 1 and σ = constant in (5.1).
Let the analytical solution u of (5.1) satisfy

u ∈ L∞(J,Hs+σE (Ω)3), ∇× u ∈ L∞(J,Hs(Ω)3),

ut ∈ L∞(J,Hs+σE (Ω)3), ∇× ut ∈ L∞(J,Hs(Ω)3),
(5.5)

for an s > 1
2 and the regularity exponent σE ∈ ( 12 , 1] from (5.4).

Let Th be a conforming triangulation of the domain Ω into tetrahedra and let
uh be the semi-discrete approximation obtained on Th by (5.3) with α ≥ αmin.
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Then, the error e = u− uh satisfies

‖e‖L∞(J;L2(Ω)3) ≤ Chmin{s,`}+σE
[
‖u0‖s+σE + ‖∇× u0‖s

+ (1 + σT + T 2)
[
‖u‖L∞(J;Hs+σE (Ω)3) + ‖∇× u‖L∞(J;Hs(Ω)3)

]

+ T
[
‖ut‖L∞(J;Hs+σE (Ω)3) + ‖∇× ut‖L∞(J;Hs(Ω)3)

]
,

with a constant C > 0 independent of h and T .
A variant of Theorem 5.4.3 for non-constant conductivity σ will be com-

mented on in Remark 5.6.6 in Section 5.6.
For smooth solutions on convex domains (σE = 1), Theorem 5.4.3 thus yields

optimal convergence rates in the L2-norm:

‖e‖L∞(J;L2(Ω)3) ≤ Ch`+1.

The bounds in Theorem 5.4.1 and Theorem 5.4.2 are proven in the next
section. The proof of Theorem 5.4.3 is given in Section 5.6.

5.5 Proofs of Theorems 5.4.1 and 5.4.2

5.5.1 Extension of the DG form and stability properties

The bilinear DG form ah, while well-defined on V
h, is not well-defined on the

larger space V(h). To extend the DG form to V(h), we follow an approach
similar to [61] and introduce the auxiliary form

ãh(u,v) =
∑

K∈Th

∫

K

µ−1
(
∇× u

)
·
(
∇× v

)
dx−

∑

f∈Fh

∫

f

[[u]]T ·{{µ−1Πh(∇× v)}} dA

−
∑

f∈Fh

∫

f

[[v]]T · {{µ−1Πh(∇× u)}}dA+
∑

f∈Fh

∫

f

a [[u]]T · [[v]]T dA,

where we recall that Πh is the L
2-projection onto Vh. Note that ãh coincides

with ah on V
h × Vh and is well-defined on H0(curl; Ω) × H0(curl; Ω). This

follows from the following result.
Lemma 5.5.1. For v ∈ V(h) and z ∈ L2(Ω)3 there holds

∑

f∈Fh

∫

f

[[v]]T {{µ−1Πhz}} dA ≤ Cinvα
− 1
2

( ∑

f∈Fh

‖a 1
2 [[v]]T ‖20,f

) 1
2 ‖µ− 1

2 z‖0,Ω,

with a constant Cinv that only depends on the shape-regularity of the mesh and
the approximation order `.

Proof. By the Cauchy-Schwarz inequality and the definition of the stabiliza-
tion function a we have

∑

f∈Fh

∫

f

[[v]]T {{µ−1Πhz}} dA ≤ α− 1
2

( ∑

f∈Fh

‖a 1
2 [[v]]T ‖20,f

) 1
2

·
( ∑

f∈Fh

‖m 1
2 h

1
2 {{µ−1Πhz)}}‖20,f

) 1
2

.



Maxwell Wave 101

Using the definition of m and h and the assumption that µ is piecewise constant,
we can bound the last term above by

∑

f∈Th

‖m 1
2 h

1
2 {{µ−1Πhz}}‖20,f ≤

∑

K∈Th

hKµK‖µ−1
K Πhz‖20,∂K

=
∑

K∈Th

hK‖Πh(µ
− 1
2

K z)‖20,∂K .

Recalling the inverse inequality

‖w‖20,∂K ≤ C2
invh

−1
K ‖w‖20,K , w ∈

(
S`(K)

)3
,

with a constant Cinv that only depends on the shape-regularity of the mesh
and the approximation order `, and using the stability of the L2-projection, we

obtain
∑

K∈Th
hK‖Πh(µ

− 1
2

K z)‖20,∂K ≤ C2
inv‖µ− 1

2 z‖20,Ω. This completes the proof.

We are now ready to show the continuity and coercivity of ãh on V(h).
Lemma 5.5.2. Set αmin = 4C2

inv, with Cinv denoting the constant from
Lemma 5.5.1. For α ≥ αmin we have

|ãh(u,v)| ≤ Ccont|u|h|v|h, ah(v,v) ≥ Ccoer|v|2h, u,v ∈ V(h),

with Ccont =
√
2 and Ccoer =

1
2 .

Proof. The continuity of ãh is a straightforward application of the result in
Lemma 5.5.1 and the Cauchy-Schwarz inequality. The coercivity property of ãh
follows similarly by employing Lemma 5.5.1 and the geometric-arithmetic mean
inequality:

ãh(u,u) ≥ (1− α− 1
2Cinv)


 ∑

K∈Th

‖µ− 1
2 (∇× u)‖20,K +

∑

f∈Fh

‖a 1
2 [[u]]T ‖20,f


 ,

which proves the coercivity of ãh with Ccoer =
1
2 provided that α ≥ αmin.

5.5.2 Error equation

We shall use the form ãh as the basis of our error analysis, similarly to the
approach in Chapters 2 and 3. To do so, we define for v ∈ V(h)

rh(u;v) =
∑

f∈Fh

∫

f

[[v]]T · {{µ−1(∇× u)− µ−1Πh(∇× u)}} dA. (5.6)

In order for rh(u;v) to be well-defined, we also need to assume that ∇ × u ∈
Hs(Ω)3 for s > 1/2.
We note that from the definition in (5.6) immediately follows

rh(u;v) = 0 when v ∈ H0(curl; Ω). (5.7)

Lemma 5.5.3. Let the analytical solution u of (5.1) satisfy

∇× u ∈ L∞(J ;Hs(Ω)3), ut, utt ∈ L1(J ;L2(Ω)3),
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for s > 1
2 . Let uh be the semi-discrete discontinuous Galerkin approximation

obtained with α ≥ αmin. Then the error e = u− uh satisfies

(εett,v) + (σet,v) + ãh(e,v) = rh(u;v), v ∈ Vh, a.e. in J.

Proof. Since [[u]]T = 0 across all faces, we have

ãh(u,v) =
∑

K∈Th

∫

K

µ−1
(
∇×u

)
·
(
∇×v

)
dx−

∑

f∈Fh

∫

f

[[v]]T ·{{µ−1Πh(∇×u)}} dA.

Integration by parts then leads to

ãh(u,v) =
∑

K∈Th

∫

K

(
∇× (µ−1 (∇× u))

)
· v dx

+
∑

f∈Fh

∫

f

[[v]]T · {{µ−1 (∇× u)}} dA

−
∑

f∈Fh

∫

f

[[v]]T · {{µ−1Πh(∇× u)}} dA.

Therefore, we conclude that

(εutt,v) + (σut,v) + ãh(u,v)

= (εutt + σut +∇× (µ−1∇× u),v) + rh(u;v)

= (f ,v) + rh(u;v),

(5.8)

where in the last step we have used the fact that u solves (5.1). This immediately
yields the desired error equation.

5.5.3 Approximation results

In this section, we provide the approximation results that we need to prove
Theorem 5.4.1 and Theorem 5.4.2.
To begin we recall the approximation properties of the L2-projection; see [18].

Here, we denote by |·|1,D the standard semi-norm on the Sobolev spaceH1(D)3.
Lemma 5.5.4. Let K ∈ Th. Then:

(i) For v ∈ Hs(K)3, s ≥ 0, we have

‖v −Πhv‖0,K ≤ Ch
min{s,`+1}
K ‖v‖s,K .

(ii) For v ∈ H1+s(K)3, s > 0, we have

|v −Πhv|1,K ≤ Ch
min{s,`}
K ‖v‖1+s,K .

(iii) For v ∈ Hs(K)3, s > 1
2 , we have

‖v −Πhv‖0,∂K ≤ Ch
min{s− 1

2
,`+ 1

2
}

K ‖v‖s,K .
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The constants C are independent of the local mesh sizes and only depend on
the shape-regularity of the mesh, the approximation order `, and the regularity
exponent s.
The approximation properties in Lemma 5.5.4 imply the following result.
Lemma 5.5.5. Let u ∈ H1+s(Ω)3, for s > 1

2 . Then we have

‖u−Πhu‖h ≤ CAh
min{s,`}‖u‖1+s,Ω,

with a constant CA that is independent of the mesh size and only depends on α,
the bounds for the coefficients µ and ε, the shape-regularity of the mesh, the
constant κ of the mesh variation, and the approximation order `.
Similarly, the approximation properties for the L2-projection and the Cauchy-

Schwarz inequality imply that rh(u;v) in (5.6) can be bounded as follows; cf. [45,
Proposition 6.2] or in Lemma 2.4.9 of Chapter 2.

Lemma 5.5.6. Let u be such that ∇ × u ∈ Hs(Ω)3, for s > 1
2 . Then,

rh(u;v), defined in (5.6), satisfies

|rh(u;v)| ≤ CRh
min{s,`+1}|v|h‖∇× u‖s,Ω, v ∈ V(h),

with a constant CR that is independent of the mesh size and only depends on α,
the bounds for the coefficient µ, the shape-regularity of the mesh, the constant κ
of the mesh variation, and the approximation order `.
Consequently, we also obtain the following result.
Lemma 5.5.7. Let u satisfy

∇× u ∈ L∞(J ;Hs(Ω)3), ∇× ut ∈ L∞(J ;Hs(Ω)3),

for s > 1
2 . Let v ∈ C0(J ;Vh) and vt ∈ L∞(J ;Vh). Then there holds
∫

J

|rh(u;vt)| dt ≤ CR h
min{s,`+1} |v|L∞(J;V(h))

·
(
2‖∇× u‖L∞(J;Hs(Ω)3) + T‖∇× ut‖L∞(J;Hs(Ω)3)

)
,

with CR denoting the constant from Lemma 5.5.6.
Proof. Using integration by parts, we have

∫

J

rh(u;vt) dt

=

∫

J

∑

f∈Fh

∫

f

[[vt]]T · {{µ−1 (∇× u)− µ−1Πh(∇× u)}} dAdt

= −
∫

J

∑

f∈Fh

∫

f

[[v]]T · {{µ−1 (∇× ut)− µ−1Πh(∇× ut)}} dAdt

+
[ ∑

f∈Fh

∫

f

[[v]]T · {{µ−1 (∇× u)− µ−1Πh(∇× u)}} dA
]t=T
t=0

= −
∫

J

rh(ut;v) dt +
[
rh(u;v)

]t=T
t=0

.

Lemma 5.5.6 then implies
∣∣∣∣
[
rh(u;v)

]t=T
t=0

∣∣∣∣ ≤ 2CRh
min{s,`}|v|L∞(J;V(h))‖∇× u‖L∞(J;Hs(Ω)3).
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Similarly, using Hölder’s inequality,
∣∣∣∣
∫

J

rh(ut;v) dt

∣∣∣∣ ≤ CRh
min{s,`}T |v|L∞(J;V(h))‖∇× ut‖L∞(J;Hs(Ω)3).

This concludes the proof.
Finally, we recall an approximation result for the Nédélec interpolant ΠN

of the first kind that; see [58] or [55]. This result is restricted to conforming
meshes Th; cf. Theorem 5.4.2.

Lemma 5.5.8. Let Th be a conforming triangulation of the domain Ω into
tetrahedra or hexahedra, with edges parallel to the coordinate axes, and assume
that u ∈ Hs(Ω)3, ∇× u ∈ Hs(Ω)3, for s > 1

2 . Then, we have

‖u−ΠNu‖0,Ω + ‖∇× (u−ΠNu)‖0,Ω ≤ Chmin{s,`}
(
‖u‖s,Ω + ‖∇ × u‖s,Ω

)
,

with a constant C > 0 that is independent of the mesh size and only depends on
the shape-regularity of the mesh and the approximation order `.
Since for u ∈ H0(curl; Ω) the jumps [[u−ΠNu]]T vanish, Lemma 5.5.8 implies

the following approximation result.
Lemma 5.5.9. Let Th be a conforming triangulation of the domain Ω into

tetrahedra or hexahedra, with edges parallel to the coordinate axes, and assume
that u ∈ Hs(Ω)3, ∇× u ∈ Hs(Ω)3, for s > 1

2 . Then, we have

‖u−ΠNu‖h ≤ CNh
min{s,`}

(
‖u‖s,Ω + ‖∇× u‖s,Ω

)
,

with a constant CN > 0 that is independent of the mesh size and only depends
the bounds for the coefficients µ and ε, the shape-regularity of the mesh and the
approximation order `.

5.5.4 Proof of Theorem 5.4.1

Set e = u − uh = η + θ with η = u − Πhu and θ = Πhu − uh. Using the
symmetry of the form ãh and the error equation in Lemma 5.5.3, we obtain for
any t ∈ J

1

2

d

dt

(
‖ε 12 et‖20,Ω + ãh(e, e)

)
+ ‖σ 1

2 et‖20,Ω = (εett, et) + ãh(e, et) + (σet, et)

= (εett, ηt) + ãh(e, ηt) + (σet, ηt) + rh(u; θt).

Integrating this identity over (0, s), s ∈ J , and using the fact that 0 ≤ ‖σ 1
2 et‖20,Ω

yields

1

2
‖ε 12 et(s)‖20,Ω +

1

2
ãh(e(s), e(s)) ≤

1

2
‖ε 12 et(0)‖20,Ω +

1

2
ãh(e(0), e(0))

+

∫ s

0

(εett, ηt) dt+

∫ s

0

ãh(e, ηt) dt+

∫ s

0

(σet, ηt) dt+

∫ s

0

rh(u; θt) dt.

By integration by parts, we rewrite the third term on the right-hand side above
as follows:

∫ s

0

(εett, ηt) dt = −
∫ s

0

(εet, ηtt) dt+
[
(εet, ηt)

]t=s
t=0

.
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Taking into account the continuity and coercivity properties of ãh in Lemma 5.5.2,
and using standard Hölder inequalities, we conclude that

1

2
‖ε 12 et(s)‖20,Ω +

1

2
Ccoer |e(s)|2h ≤ 1

2
‖ε 12 et(0)‖20,Ω +

1

2
Ccont |e(0)|2h

+ ‖ε 12 et‖L∞(J;L2(Ω)3)

(
‖ε 12 ηtt‖L1(J;L2(Ω)3) + 2‖ε

1
2 ηt‖L∞(J;L2(Ω)3)

)

+ Ccont T |e|L∞(J;V(h))|ηt|L∞(J;V(h))

+

∣∣∣∣
∫

J

(σet, ηt) dt

∣∣∣∣+
∣∣∣∣
∫

J

rh(u; θt) dt

∣∣∣∣ .

Since this inequality holds for any s ∈ J , we obtain

‖ε 12 et‖2L∞(J;L2(Ω)3) + Ccoer|e|2L∞(J;V(h)) ≤‖ε 12 et(0)‖20,Ω + Ccont|e(0)|2h
+ T1 + T2 + T3 + T4,

with

T1 = 2‖ε 12 et‖L∞(J;L2(Ω)3)

(
‖ε 12 ηtt‖L1(J;L2(Ω)3) + 2‖ε

1
2 ηt‖L∞(J;L2(Ω)3)

)
,

T2 = 2Ccont T |e|L∞(J;V(h)) |ηt|L∞(J;V(h)),

T3 = 2

∫

J

| (σet, ηt)| dt,

T4 = 2

∫

J

|rh(u; θt)| dt.

Using the geometric-arithmetic mean inequality, the bounds for ε and the ap-
proximation results for the L2-projection in Lemma 5.5.4 gives

T1 ≤
1

4
‖ε 12 et‖2L∞(J;L2(Ω)3)

+ Ch2min{s,`}
(
‖utt‖2L1(J;Hs(Ω)3) + h

2‖ut‖2L∞(J;H1+s(Ω)3)

)
.

Similarly, using the approximation result in Lemma 5.5.5,

T2 ≤
1

4
Ccoer|e|2L∞(J;V(h)) + CT

2h2min{s,`}‖ut‖2L∞(J;H1+s(Ω)3).

Due to the bounds for σ and ε we obtain

T3 ≤ 2T‖σ 1
2 et‖L∞(J;L2(Ω)3)‖σ

1
2 ηt‖L∞(J;L2(Ω)3)

≤ 1

4
‖ε 12 et‖2L∞(J;L2(Ω)3) + CT

2h2min{s,`}+2‖ut‖2L∞(J;H1+s(Ω)3).

It remains to bound the term T4. To do so, we use Lemma 5.5.7 and obtain

T4 ≤ 2CRhmin{s,`} |θ|L∞(J;V(h))R,

with
R :=

(
2‖∇× u‖L∞(J;Hs(Ω)3) + T‖∇× ut‖L∞(J;Hs(Ω)3)

)
.
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The triangle inequality, the geometric-arithmetic mean inequality, and the ap-
proximation properties in Lemma 5.5.5 then yield

T4 ≤ 1

4
Ccoer|e|2L∞(J;V(h))

+Ch2min{s,`}
(
‖u‖2L∞(J;H1+s(Ω)3) + T

2‖ut‖2L∞(J;H1+s(Ω)3)

)
.

Combining the above estimates for T1, T2, T3 and T4 shows that

1

2
‖ε 12 et‖2L∞(J;L2(Ω)3) +

1

2
Ccoer|e|2L∞(J;V(h)) ≤ ‖ε 12 et(0)‖20,Ω + Ccont|e(0)|2h

+ Ch2min{s,`}
(
‖utt‖2L1(J;Hs(Ω)3) + ‖ut‖2L∞(J;H1+s(Ω)3) + ‖u‖2L∞(J;H1+s(Ω)3)

)
,

with a constant C that is independent of the mesh size. This proves the desired
estimate with respect to the semi-norm | · |L∞(J;V(h)). The result for the full
L∞(J ;V(h))-norm is readily obtained by noting that

‖ε 12 e(s)‖0,Ω ≤ ‖
∫ s

0

ε
1
2 et(t) dt‖0,Ω + ‖ε 12 e(0)‖0,Ω

≤ T‖ε 12 et‖L∞(J;L2(Ω)3) + ‖ε 12 e(0)‖0,Ω.

This concludes the proof of Theorem 5.4.1.

5.5.5 Proof of Theorem 5.4.2

The proof of the energy estimate in Theorem 5.4.2 follows the lines of the proof
of Theorem 5.4.1. However, due to the lower spatial regularity of the analyti-
cal solution u, we replace the L2-projection Πh by the Nédélec interpolant of
the first kind ΠN from Lemma 5.5.8. Analogously, we use Lemma 5.5.8 and
Lemma 5.5.9 to estimate u − ΠNu, or time derivatives thereof. With these
modifications, the proof of Theorem 5.4.2 proceeds exactly as in Theorem 5.4.1.

5.6 Proof of the L2-error bound

In this section, we present the proof of our third main result in Theorem 5.4.3.
The analysis follows the ideas of the proof for the L2-estimate of the error of the
IP DG FEM for the scalar second-order wave equation, as we have presented
in Chapter 4. However, in the Maxwell case the analysis is more involved. We
employ techniques developed for the analysis of the IP DG FEM for Maxwell’s
equations in frequency domain in Chapter 2 to tackle the additional difficulties
imposed by the Maxwell operator.
Throughout this section, we assume conforming tetrahedral meshes Th and

the coefficient µ to be constant µ = 1.

5.6.1 Auxiliary results

Since the finite element spaces of degree ` formed by the first kind of Nédélec’s
curl-conforming edge elements do not exhibit optimal approximation proper-
ties in the L2-norm (see, e. g., [58], [55, Theorem 5.41]), we will use the curl-
conforming Nédéléc interpolant ΠN of the second kind in the analysis of the
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L2-error of our DG method. This is however to the expense of the restriction
of our analysis to tetrahedral meshes.
For our analysis, we refer to the properties of the Nédélec interpolant of

second kind ΠN stated in Sections 2.4.1, 2.4.2 and 2.4.3 of Chapter 2.
We begin by establishing the following result, a variant of [6, Lemma 2.1].
Lemma 5.6.1. On V(h) ×V(h), define the bilinear form

Ãh(u,v) := ãh(u,v) + (u,v). (5.9)

For u ∈ Hs(Ω), ∇× u ∈ Hs(Ω) with s > 1
2 , let w

h ∈ Vh be the solution of

Ãh(w
h,v) = Ãh(u,v)− rh(u;v) ∀v ∈ Vh.

Then, we have

‖u−wh‖h ≤ CE h
min{s,`}

[
‖u‖s + ‖∇ × u‖s

]
,

with a constant CE that is independent of h and only depends on Ccoer, Ccont
in Lemma 5.5.2 CR in Lemma 5.5.6 and CN in Lemma 2.4.1.

Proof. We first remark that because of definition 5.9 and the stability prop-
erties in Lemma the form Ãh is continuous and coercive in the full DG norm
‖ · ‖h on V(h)×V(h):

Ãh(u,v) ≤ Ccont‖u‖h‖v‖h u,v ∈ V(h),
Ãh(v,v) ≥ Ccoer‖v‖2h v ∈ V(h),

(5.10)

with the constants Ccont, Ccoer from Lemma 5.5.2. Hence, together with the esti-
mates in Lemma 5.5.6, the Lax-Milgram Lemma implies that the approximation
wh is well-defined.
To prove the estimate for ‖u−wh‖h, we first use the triangle inequality,

‖u−wh‖h ≤ ‖u−ΠNu‖h + ‖ΠNu−wh‖h.

From the approximation properties ofΠN in Lemma 2.4.1, we immediately infer
that

‖u−ΠNu‖h ≤ CNh
min{s,`}

[
‖u‖s + ‖∇× u‖s

]
.

It remains to bound ‖ΠNu−wh‖h. From (5.10), the definition of wh, and the
bounds in Lemma 2.4.1 and Lemma 5.5.6, we conclude that

Ccoer‖ΠNu−wh‖2h ≤ Ãh(ΠNu−wh,ΠNu−wh)

= Ãh(ΠNu− u,ΠNu−wh) + Ãh(u−wh,ΠNu−wh)

= Ãh(ΠNu− u,ΠNu−wh) + rh(u;ΠNu−wh)

≤ (CcontCN + CR)hmin{s,`}
[
‖u‖s + ‖∇× u‖s

]
‖ΠNu−wh‖h.

Thus

‖ΠNu−wh‖h ≤
(
CcontCN + CR

Ccoer

)
hmin{s,`}

[
‖u‖s + ‖∇× u‖s

]
,

which proves the bound for ‖u−wh‖h.
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With wh from Lemma 5.6.1, we have the following orthogonality property,
a key ingredient for our further analysis.

Lemma 5.6.2. Let the analytical solution of (5.1) satisfy u ∈ HsΩ, ∇×u ∈
Hs(Ω) and let wh be the projection from Lemma 5.6.1. Then the expression
u−wh is discretely divergence free in the following sense

(u−wh,∇ϕh) = 0 ∀ϕh ∈ Sh,

with Sh ⊂ H1
0 (Ω) from (2.13).

Proof. We recall that ∇Sh ⊂ H0(curl; Ω). Hence, from the definition of Ah

and wh, and the residual property (5.7) we have

ãh(u−wh,∇ϕh) + (u−wh,∇ϕh) = rh(u;∇ϕh) = 0.

Moreover, ∇×∇ϕh = 0 and [[∇ϕh]]T = 0, thus

ãh(u−wh,∇ϕh) = 0.

The statement of the Lemma now follows directly.
In the next Lemma, we state the approximation result for the projection

wh, which will be a central element of the proof of Theorem 5.4.3.
Lemma 5.6.3. Let u ∈ Hs+σE (Ω), ∇ × u ∈ Hs(Ω) with s > 1

2 and
σE ∈ ( 12 , 1] the embedding parameter from (5.4), and let wh be defined as in
Lemma 5.6.1. We have the L2-bound

‖u−wh‖0 ≤ CL h
min{s,`}+σE

[
‖u‖s+σE + ‖∇× u‖s

]
.

with a constant CL that is independent of h and only depends on CE in Lemma 5.6.1,
CR in Lemma 5.5.6, CN in Lemma 2.4.1, CP in Lemma 2.4.2, Cc in Proposi-
tion 2.4.5, Ch in Lemma 2.4.4 and a stability constant CS to be specified in the
proof of this Lemma.

Proof. For the proof of the bound for ‖u−wh‖0, we proceed along the lines
of Section 2.6 in Chapter 2.
To this end, let wc ∈ Vc be the conforming approximation of wh from

Proposition 2.4.5. We can write

‖u−wh‖20 = (u−wh,u−ΠNu) + (u−wh,ΠNu−wc) + (u−wh,wc −wh).

By using the Cauchy-Schwarz inequality and Proposition 2.4.7, we have

‖u−wh‖0 ≤ ‖u−ΠNu‖0 + Cch‖u−wh‖h +
|(u−wh,ΠNu−wc)|

‖u−wh‖0
. (5.11)

For the last term on the right-hand side of (5.11), we claim that there holds:

|(u−wh,ΠNu−wc)|
‖u−wh‖0

≤ C‖u−ΠNu‖0 + ChσE
[
‖u−ΠNu‖h + ‖u−wh‖h

]
,

(5.12)
with C > 0 independent of the mesh size and depending only on Cc, CR, CH ,
CP , CS , and with σE denoting the parameter in (5.4).
In order to prove (5.12), we proceed in several steps.
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Step 1. Preliminaries: we start by invoking the Helmholtz decomposition
in (2.12) and write

ΠNu−wc =: w0 ⊕∇r, (5.13)

with w0 ∈ Xh and r ∈ Sh, Xh and Sh being the spaces in (2.13)) and (2.14)).
By using (5.13) and the orthogonality property u−wh in Lemma 5.6.2, we have

(u−wh,ΠNu−wc) = (u−wh,w0) = (u−wh,w0 −w) + (u−wh,w),

where we have defined w :=Hw0, the exactly divergence-free approximation of
w0 from Lemma 2.4.4. Therefore,

|(u−wh,ΠNu−wc)|
‖u−wh‖0

≤ ‖w0 −w‖0 + ‖w‖0, (5.14)

so that it remains to estimate ‖w0 −w‖0 and ‖w‖0.
Step 2: Estimate of ‖w0 −w‖0: we claim that

‖w0 −w‖0 ≤ CHCch
σE
[
‖u−ΠNu‖h + ‖u−wh‖h

]
, (5.15)

with constants CH from Lemma 2.4.4 and Cc from Proposition 2.4.5.
To prove (5.15), note that, in view of the definition of H and (5.13), there

holds
∇×w = ∇×w0 = ∇× (ΠNu−wc). (5.16)

Thus, the result in Lemma 2.4.4, the triangle inequality and Proposition 2.4.7
yield

‖w0 −w‖0 ≤ CHh
σE‖∇× (ΠNu−wc)‖0

≤ CHh
σE
[
‖∇× (ΠNu− u)‖0 + ‖∇h × (u−wh)‖0 + ‖∇h × (wh −wc)‖0

]

≤ CHCch
σE
[
‖u−ΠNu‖h + ‖u−wh‖h

]
.

This completes the proof of (5.15).
Step 3: Estimate of ‖w‖0: We claim that there holds

‖w‖0 ≤ C‖u−ΠNu‖0 + ChσE
[
‖u−ΠNu‖h + ‖u−wh‖h

]
, (5.17)

with constant C > 0 depending only on the constants CP , CS , Cc, CR and CH .
We will prove this bound for ‖w‖0 by employing techniques of the duality

approach presented in Section 2.6 in Chapter 2.
To this end, let z be the solution of the problem

∇× (∇× z) + z = w in Ω,

n× z = 0 on Γ.
(5.18)

Since the right hand side of (5.18) w = Hw0 is in H(div0; Ω), we obtain as
in [55, Lemma 7.7] that z,∇× z ∈ Hσ

E(Ω) and

‖z‖σE + ‖∇× z‖σE ≤ CS‖w‖0, (5.19)

with a stability constant CS and the regularity parameter σE ∈ ( 12 , 1] from the
embedding (5.4). With Ãh from Lemma 5.6.1 and rh from (5.6) holds

Ãh(z,v) − (w,v) = rh(z;w) v ∈ Vh. (5.20)
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This identity is derived analogously to (5.8) in the proof of Lemma 5.5.3. For
the procession of our analysis, we further introduce the bilinear form

A(u,v) := (∇× u,∇× v) + (u,v) u,v ∈ H0(curl; Ω).

Note that with this definition, the projection defined in (2.19) is the A(·, ·)-
projection of H0(curl; Ω)-functions onto the spaceV

c. Moreover, since [[v]]T = 0
for all v ∈ H0(curl; Ω), the identity

A(u,v) = Ãh(u,v) u,v ∈ H0(curl; Ω) (5.21)

holds with the form Ãh from Lemma 5.6.1.
After these preliminary considerations, we multiply equation (5.18) by w

and integrate by parts to obtain

‖w‖20 = A(z,w) = A(z −Πcz,w) +A(Πcz,w), (5.22)

with the projectionΠc from (2.19). Since ∇×w = ∇×w0 and by the definition
of the projection Πc, we conclude that

A(z −Πcz,w) = −(z−Πcz,w0) + (z−Πcz,w)

= (z−Πcz,w −w0).

The approximation result for Πc in Lemma 2.4.2 and the bound in (5.19) yield

‖z−Πcz‖0 ≤ ‖z−Πcz‖h ≤ CPCSh
σE‖w‖0. (5.23)

For later use, we also point out that the stability of Πc and (5.19) give

‖Πcz‖0 ≤ CPCS‖w‖0. (5.24)

Hence, the Cauchy-Schwarz inequality and the estimates (5.15) and (5.23)
yield

|A(z−Πcz,w)| ≤ ‖z−Πcz‖0‖w−w0‖0
≤ Ch2σE‖w‖0

[
‖u−ΠNu‖h + ‖u−wh‖h

]
,

(5.25)

with constant C = CPCSCHCc.
It remains to bound the term A(Πcz,w) in (5.22). To this end, in view

of (5.16), (5.13) and (2.19), we first note that

A(Πcz,w) = (∇×Πcz,∇×w) + (Πcz,w)

= (∇×Πcz,∇× (ΠNu−wc)) + (Πcz,w −w0) + (Πcz,w0)

= (∇×Πcz,∇× (ΠNu−wc)) + (Πcz,w −w0) + (Πcz,ΠNu−wc)

= A(Πcz,ΠNu−wc) + (Πcz,w −w0)

= A(z,ΠNu−wc) + (Πcz,w −w0).

(5.26)

Here, we have used that

(Πcz,∇r) = (z,∇r) = 0,
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which follows readily from the definition of Πc and the fact that z is divergence-
free. From the identity (5.21) we further have

A(z,ΠNu−wc) = A(z,ΠNu− u) + Ãh(z,u−wh) + Ãh(z,w
h −wc).

Using the symmetry of Ãh(·, ·), the definition of wh in Lemma 5.6.1 and iden-

tity (5.7), we note that Ãh(z,u−wh) = rh(u; z) = 0. Thus, using the variational
formulation of problem (5.18) and the identity (5.20) we obtain

A(z,ΠNu−wc) = (w,ΠNu− u) + (w,wh −wc) + rh(z,w
h −wc).

Using the Cauchy-Schwarz identity, Lemma 5.5.6, (5.19) and Proposition 2.4.7
yields

A(z,ΠNu−wc) ≤ ‖w‖0
[
‖ΠNu− u‖0 + ‖wh −wc‖0

]
+ CRh

σE‖∇ × z‖σE‖wh −wc‖h

≤ Cc‖w‖0
[
‖ΠNu− u‖0 + h‖wh − u‖0 + CSCRhσE‖wh − u‖h

]

≤ C‖w‖0
[
‖ΠNu− u‖0 + hσE‖wh − u‖h

]
,

with C > 0 depending only on the constants Cc, CR, CS . Thus, after using the
Cauchy-Schwarz inequality, (5.24) and (5.15) in (5.26), we conclude

A(Πcz,w) ≤ C‖w‖0‖u−ΠNu‖0 + ChσE‖w‖0
[
‖u−ΠNu‖h + ‖u−wh‖h

]
,

(5.27)
with a constant C > that depends only on the constants Cc, CR, CS , CP and
CH .
Combining now (5.22), (5.25) and (5.27) proves claim (5.17).
Step 4. Conclusion: the proof of the bound (5.12) follows now from (5.14),

(5.15) and (5.17).
To conclude the proof of the bound for ‖u−wh‖0 we insert (5.12) into (5.11)

and use the approximation results for ΠN in Lemma 2.4.1 and the bound for
‖u−wh‖h in Lemma 5.6.1 to obtain

‖u−wh‖0 ≤ Chmin{s+σE ,`+1}‖u‖s+σE + Chmin{s,`}+σE
[
‖u‖s + ‖∇ × u‖s

]
,

with C > 0 independent of the meshsize and depending only on the constants
Cc, CR, CH , CP , CS and CE from Lemma 5.6.1. We also used that h

σE ≤ h
for the embedding parameter σE from (5.4). Finally, since ‖u‖s ≤ ‖u‖s+σE and
min{s+ σE , `+ 1} ≥ min{s, `}+ σE , the bound in Lemma (5.6.3) follows.
Now, let u be defined by the exact solution of (5.1), and assume u,ut ∈

L∞(J ;Hs(Ω)3), ∇ × u,∇ × ut ∈ L∞(J ;Hs(Ω)3), with s > 1
2 . With Âh from

Lemma 5.6.1, we may define wh(t, ·) ∈ Vh almost everywhere in J by

Ãh(w
h(t, ·),v) = Ãh(u(t, ·),v) − rh(u(t, ·);v) ∀v ∈ Vh. (5.28)

It can be readily seen that wh ∈ L∞(J ;Vh). Moreover, wh
t ∈ L∞(J ;Vh) and

Ãh(w
h
t ,v) = Ãh(ut,v)− rh(ut;v), v ∈ Vh, a.e. in J,

as well as

Ãh(w
h(0),v) = Ãh(u0,v) − rh(u0;v), v ∈ Vh.
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Therefore, Lemma 5.6.3 immediately implies the following estimates.
Lemma 5.6.4. Let wh be defined by (5.28). Under the regularity assump-

tions of Theorem 5.4.3, we have

‖u−wh‖L∞(J;L2(Ω)3) ≤ CL h
min{s,`}+σE

[
‖u‖L∞(J;Hs+σE (Ω)3) + ‖∇× u‖L∞(J;Hs(Ω)3)

]
,

‖(u−wh)t‖L∞(J;L2(Ω)3) ≤ CL h
min{s,`}+σE

[
‖ut‖L∞(J;Hs+σE (Ω)3) + ‖∇× ut‖L∞(J;Hs(Ω)3)

]
,

‖(u−wh)(0)‖0 ≤ CL h
min{s,`}+σE

[
‖u0‖s+σE + ‖∇× u0‖s

]
.

The constant CL is as in Lemma 5.6.3, and σE is the embedding parameter
from (5.4).

5.6.2 Proof of Theorem 5.4.3

To complete the proof of Theorem 5.4.3, let wh ∈ L∞(J ;Vh) be defined
by (5.28) and consider

‖e‖2L∞(J;L2(Ω)3) ≤ 2‖u−wh‖2L∞(J;L2(Ω)3) + 2‖wh − uh‖2L∞(J;L2(Ω)3). (5.29)

The first term can be estimated from the L2-bounds in Lemma 5.6.1. We shall
now derive an estimate for the second term. First, we fix v ∈ L∞(J ;Vh)

and assume that vt ∈ L∞(J ;Vh). From the definition of the form Ãh in
Lemma 5.6.1 and wh in (5.28), and the error equation in Lemma 5.5.3, we
have

((uh −wh)tt,v) + ãh(u
h −wh,v) = (uhtt,v) + ãh(u

h,v) − ãh(w
h,v) − (wh

tt,v)

= (uhtt,v) + ãh(u
h − u,v) + rh(u;v) − (u−wh,v) − (wh

tt,v)

= (utt,v) + σ(et,v) − (u−wh,v)− (wh
tt,v).

We rewrite this identity as

d

dt
((uh −wh)t,v)− ((uh −wh)t,vt) + ãh(u

h −wh,v)

=
d

dt
((u−wh)t,v)− ((u−wh)t,vt) + σ

d

dt
(e,v)− σ(e,vt)− (u−wh,v),

which yields

−((uh −wh)t,vt) + ãh(u
h −wh,v) =

d

dt
(et,v)− ((u−wh)t,vt)− ((u−wh)t,vt)

+ σ
d

dt
(e,v)− σ(e,vt)− (u−wh,v).

(5.30)

Let τ ∈ (0, T ] be fixed, and consider the function

v̂(t, ·) =
∫ τ

t

(uh −wh)(s, ·) ds, t ∈ J.

It follows by this definition that

v̂(τ, ·) = 0, v̂t(t, ·) = −(uh −wh)(t, ·), a.e. t ∈ J.
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For later use, we note that for any t ∈ J

‖v̂(t)‖0 = ‖
∫ τ

t

(uh −wh)(s) ds‖0 ≤
∫ T

0

‖(uh −wh)(s)‖0 ds

≤ T‖uh −wh‖L∞(J;L2(Ω)3).

(5.31)

and because this bound is independent of t, it also holds for the supremum over
t ∈ J . Now, choose v = v̂ in (5.30) which yields

((uh −wh)t,u
h −wh)− ãh(v̂t, v̂) =

d

dt
(et, v̂) + ((u−wh)t,u

h −wh)

+ σ
d

dt
(e, v̂) + σ(e,uh −wh)− (u−wh, v̂).

Since the DG form ãh(·, ·) is symmetric, we obtain

1

2

d

dt
‖uh −wh‖20 −

1

2

d

dt
ãh(v̂, v̂) =

d

dt
(et, v̂) + ((u−wh)t,u

h −wh)

+ σ
d

dt
(e, v̂) + σ(e,uh −wh)− (u−wh, v̂).

Integration over (0, τ) and using that v̂(τ, ·) = 0 then yields

‖(uh −wh)(τ)‖20 − ‖(uh −wh)(0)‖20 + ãh(v̂(0), v̂(0))

= −2(et(0), v̂(0)) + 2
∫ τ

0

((u−wh)t,u
h −wh) dt

− 2σ(e(0), v̂(0)) + 2σ
∫ τ

0

(e,uh −wh) dt− 2
∫ τ

0

(u−wh, v̂) dt

=: T1 + T2 + T3 + T4 + T5.

(5.32)

Since e(0) = u0−Πhu0, et(0) = v0−Πhv0 and v̂(0) belongs toV
h, we conclude

that
T1 = −(et(0), v̂(0)) = 0, T3 = −(e(0), v̂(0)) = 0,

Moreover, the positive semi-definiteness of the form ãh in Lemma 5.5.2 ensures
that ãh(v̂(0), v̂(0)) ≥ 0. This leads to the inequality

‖(uh −wh)(τ)‖20 ≤ ‖(uh −wh)(0)‖20 + T2 + T4 + T5. (5.33)

By using the Cauchy-Schwarz inequality, a standard Hölder inequality and the
geometric-arithmetic mean inequality, we obtain

T2 ≤ 2T ‖(u−wh)t‖L∞(J;L2(Ω)3)‖uh −wh‖L∞(J;L2(Ω)3)

≤ 1

4
‖uh −wh‖2L∞(J;L2(Ω)3) + 4T

2 ‖(u−wh)t‖2L∞(J;L2(Ω)3),

T4 = 2σ

∫ τ

0

(u−wh,uh −wh) dt− 2σ
∫ τ

0

(uh −wh,uh −wh) dt

≤ 2σT‖u−wh‖0‖uh −wh‖0
≤ 1

4
‖uh −wh‖2L∞(J;L2(Ω)3) + 4σ

2T 2 ‖u−wh‖2L∞(J;L2(Ω)3),
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where we have also used that−σ‖uh−wh‖20 ≤ 0, and, employing the bound (5.31),

T5 ≤ 2T ‖u−wh‖L∞(J;L2(Ω)3)‖v̂‖L∞(J;L2(Ω)3)

≤ 2T 2 ‖u−wh‖L∞(J;L2(Ω)3)‖uh −wh‖L∞(J;L2(Ω)3)

≤ 1

4
‖uh −wh‖2L∞(J;L2(Ω)3) + 4T

4 ‖u−wh‖2L∞(J;L2(Ω)3).

The upper bounds for T2, T4, T5 are independent of τ , and hold therefore
also for the supremum over τ ∈ J . Thus, (5.32) yields the estimate

‖uh −wh‖2L∞(J;L2(Ω)3) ≤
3

4
‖uh −wh‖2L∞(J;L2(Ω)3) + ‖(uh −wh)(0)‖20

+4T 2‖(u−wh)t‖2L∞(J;L2(Ω)3) + 4(σ
2T 2 + T 4)‖u−wh‖2L∞(J;L2(Ω)3)

which leads to

1

4
‖uh −wh‖2L∞(J;L2(Ω)3) ≤ 2‖(uh − u)(0)‖20 + 2‖(u−wh)(0)‖20
+4T 2‖(u−wh)t‖2L∞(J;L2(Ω)3) + 4(σ

2T 2 + T 4)‖u−wh‖2L∞(J;L2(Ω)3).

Next, we use this estimate in (5.29) to obtain

‖e‖2L∞(J;L2(Ω)3) ≤ 16 ‖u0 −Πhu0‖20 + 16‖(u−wh)(0)‖20
+32T 2‖(u−wh)t‖2L∞(J;L2(Ω)3) + (2 + 32σ

2T 2 + 32T 4)‖u−wh‖2L∞(J;L2(Ω)3).

From the approximation properties in Lemma 5.5.4 and Lemma 5.6.4, we con-
clude that

‖e‖2L∞(J;L2(Ω)3) ≤ 16C2h2min{s+σE ,`+1}‖u0‖s+σE
+ 16C2

Lh
2(min{s,`}+σE)

[
(‖u0‖s+σE + ‖∇× u0‖s)2

+ 2T 2
(
‖ut‖L∞(J;Hs+σE (Ω)3) + ‖∇× (ut)‖L∞(J;Hs(Ω)3)

)2

+ 2(1 + σ2T 2 + T 4)
(
‖u‖L∞(J;Hs+σE (Ω)3) + ‖∇× (u)‖L∞(J;Hs(Ω)3)

)2 ]
.

Here, C is the constant from Lemma 5.5.4 and CL is the constant from Lemma 5.6.1.
Finally, since ‖u‖s ≤ ‖u‖s+σE and min{s + σE , ` + 1} ≥ min{s, `} + σE , the
proof of Theorem 5.4.3 follows.

Remark 5.6.5. From the proof of Theorem 5.4.3 we see that the O(T 2)-term
in the bound for the L2-error arises from the fact that we used the augmented
variant Ãh of the form ãh in the definition of the auxiliary function wh. This
modification of the form ãh was essential to obtain the orthogonality property of
u−wh in Lemma 5.6.2. It can however be renounced in the case of divergence-
free data and initial conditions. Then u, ut, utt can shown to be divergence-free,
and the DG approximations uh, uht , u

h
tt are in the space Xh from (2.14). In

this case, the entire analysis in Section 5.6 can be performed with Vh replaced
by Xh and Ãh replaced by ãh. In particular, from the definition of wh ∈ Xh by

ãh(w
h,v) = ãh(u,v)− rh(u;v) ∀v ∈ Xh,

the orthogonality property in Lemma 5.6.2 follows immediately and the bound
in Theorem 5.4.3 holds without the O(T 2)-term.
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Remark 5.6.6. If the coefficient σ ∈ L∞(Ω) is not constant, an additional
term CT hmin{s+σE ,`+1}‖u0‖s+σE has to be added in the bound for the L2-error
in Theorem 5.4.3. This term stems from the expression T3 in the proof of the
bound for ‖uh−wh‖2L∞(J;L2(Ω)3), which in this case does not vanish, but can be
bounded by

2(σe(0), v̂(0)) ≤ 2‖σ‖∞T‖e(0)‖0‖uh −wh‖L∞(J;Ω)3)

≤ 1

8
‖uh −wh‖2L∞(J;Ω)3) + 8‖σ‖2∞T 2‖e(0)‖20,

using the Cauchy-Schwarz inequality, the bound (5.31) and the geometric-arithmetic
mean inequality.

5.7 Numerical results

In this section, we validate the theoretical error bounds derived in the previ-
ous sections, as well as the feasibility of our method for the approximation of
travelling electromagnetic waves in general media and geometries.
Applying DG method (5.3) to the model problem (5.1) results in a symmetric

system of linear second-order ODE’s

M(ε)üh(t) +M(σ)u̇h(t) +Auh(t) = fh(t), t ∈ J, (5.34)

with initial conditions

Muh(0) = uh0 , Mu̇h(0) = vh0 . (5.35)

Here,M denotes the mass matrix, A the DG stiffness matrix, andM(ε),M(σ)
denote the mass matrices with weights ε, σ, respectively. To obtain a full dis-
cretization of (5.3), we approximately solve (5.35) by a time stepping scheme.
We implement the fully discrete scheme using the C++ classes of deal.II3;

see [8, 7]. We note here that deal.II only supports quadrilateral and hexahe-
dral finite element meshes. As a consequence, the requirements on the grid Th
in Theorem 5.4.3 for optimal L2-convergence are not met, and numerical exper-
iments based on the deal.II library cannot validate the theoretical L2-bound
from Theorem 5.4.3.
All numerical examples are based on the two-dimensional version of the

model problem (5.1).

5.7.1 Time discretization

We let k denote the time step and set tn = n · k. For the choice of the time
stepping method for finding approximations {uhn}n to uh(tn) we differentiate
between two cases. If the medium Ω is non-conducting, i. e., σ ≡ 0,M(σ) = 0,
we choose the second-order explicit Newmark scheme (see Chapter 4, Section
4.5.1). This corresponds to the leap-frog scheme

Muh1 =
[
M− k2

2
A
]
uh0 + kMvh0 +

k2

2
fh0 , (5.36)

3URL: www.dealii.org.
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and
Muhn+1 =

[
2M− k2A

]
uhn −Muhn−1 + k

2fn,

for n = 1, . . . , N − 1 and fn := f(tn).
For materials with conducting regions where σ > 0,M(σ) 6= 0, the Newmark

scheme is always implicit; see, e.g. [65, Sections 8.5–8.7]. Therefore, we employ
the classical explicit fourth-order Runge-Kutta scheme in this case .
The DG mass matrix M(ε) is block-diagonal, with block size equal to the

number of degrees of freedom per element. We invert M(ε) blockwise in the
assembling process. As a result, we do not need to solve any linear systems in
the time integration procedure and obtain a fully explicit scheme.

Remark 5.7.1. Higher order explicit and centered schemes for (5.34) with
M(σ) = 0 can be derived using the so-called modified equation approach; see,
e. g. [48, pp. 216]. The idea is here, to employ equation (5.34) ) to represent
higher order time derivatives in the Taylor expansion of y(t) :=M(ε)uh(t). For
example, a centered fourth order scheme is derived by replacing

ÿ(t) = fh(t)−Auh(t), y(3)(t) = ḟh(t)−Au̇h(t)

and

y(4)(t) = f̈h(t)−Aüh(t) = f̈h(t)−A
[
M−1(ε)fh(t)−M−1(ε)Auh(t)

]

in the Taylor expansions

y(t1) = y(t0) + kẏ(t0) +
k2

2
ÿ(t0) +

k3

3!
y(3)(t0) +

k4

4!
y(4)(t0) +O(k5)

y(tn+1) = 2y(tn)− y(tn−1) + k
2ÿ(tn) +

k4

4!
y(4)(tn) +O(k6).

Since the DG mass matrix M(ε) is essentially diagonal, the resulting scheme is
fully explicit.

5.7.2 Example 1: smooth solution

In a first set of examples, we consider (5.1) on the two-dimensional domain
Ω = (0, 1) and for times J = [0, T ] with T = 0.5. In this section, we assume
homogeneous material parameters ε = µ = 1.
We first study the approximation of a wave evolving through an isolating

medium Ω, that is we set σ = 0 (Example 1.1).
We choose the initial and source data such, that the solution is given by the

smooth vector field

u(x1, x2, t) =
t2

2

(
cos(πx1) sin(πx2)
− sin(πx1) cos(πx2)

)
. (5.37)

We discretize (5.1) on a sequence {Th}i≥1 of square meshes of size hi = 2−i

using the polynomial spaces Q`(K), ` = 1, 2, 3. We choose the stabilization
parameter α = 30. We note that αmin depends on the polynomial degree of the
discretization, and for ` = 1, 2, α = 20 would have sufficed for stability of the
DG method.
We approximate the semi-discrete solution at time T = 0.5 by employing

the leap-frog scheme (5.36)–(5.37) with time step ki = hi/20 on mesh Thi. We
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Example 1.2

Figure 5.1: Examples 1.1 and 1.2: Convergence of the relative errors at time
T = 0.5 in the energy norm (−) and the L2-norm (·) for ` = 1, 2, 3.

found that this choice of ki provides a stable time discretization on every mesh
and for every polynomial degree. Because the leap-frog scheme is second-order
accurate in time, the time integration of (5.37) is exact. The spatial error is the
only error component in the discrete solution.
Next, we modify the source data from Example 1.1 such, that the smooth

field (5.37) solves our model problem in a conductor Ω with σ = 1 (Example 1.2).
For an explicit time integration, we employ the classical fourth order Runge-
Kutta scheme. Again, setting the time step ki = hi/20 on mesh Thi showed to
be sufficient for stability, and the time integration is exact.
In Figure 5.1, we report the relative errors in the energy- and the L2-norm

for the fully discrete approximation of (5.37), in an insulator (Example 1.1, left
plot) and in a conductor (Example 1.2, right plot) respectively. The analytical
solution (5.37) is arbitrarily smooth, so that the assumptions of Theorem 5.4.1
are met. Indeed, for the error in the DG energy norm, we observe optimal order
convergence O`(h) in the mesh size h (dash-dotted lines).
In order to predict the convergence of the discrete solution in the L2-norm,

we can however not refer to Theorem 5.4.3, which states optimal L2-rates. By
discretizing in space on quadrilateral meshes, we have violated one assumption of
this Theorem. Therefore, we have to fall back on the estimate in Theorem 5.4.1
for a theoretical bound of the L2-error. Indeed, in Figure 5.1 we observe only
sub-optimal convergence rates of order O`(h) for the error in the L2-norm (dot-
ted lines). This proves that the restriction of the error bound in Theorem 5.4.3
to triangular meshes cannot be released.
We note here, that sub-optimal L2-convergence is also observed for the un-

derlying conforming FE discretizations, using full polynomial spaces Q`(K) on
quadrilateral or hexahedral meshes. To illustrate this, we report in Table 5.1
the convergence rates obtained by approximating (5.37) in the setting of Ex-
ample 1.1 with Nédélec’s lowest order H(curl; Ω)-conforming edge elements of
second kind. As with the DG discretization, the convergence order in the energy
norm (the H(curl; Ω)-norm) is optimal, whereas it is one order sub-optimal for
the convergence in the L2-norm. This deficiency stems from the fact that the
approximation with full polynomial spaces Q`(K) insufficiently separates the
discrete gradients from discretely divergence free functions; a discrete Helmholtz
decomposition in the sense of (2.12) does not exist for Nédélec’s second family
of edge elements on quadrilaterals or hexahedrals; see, e. g., [55, Section 8.2.3].
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] elements Energy error L2-error
4 1.232e+01 - 5.152e+00 -
16 1.389e+00 3.15 4.900e-01 3.39
64 3.793e-01 1.87 2.755e-01 0.83
256 1.044e-01 1.86 1.435e-01 0.94
1024 3.298e-02 1.66 7.252e-02 0.98
4096 1.299e-02 1.34 3.636e-02 1.00
16384 5.975e-03 1.12 1.819e-02 1.00

Table 5.1: Example 1.1, conforming : Discretization on a sequence of square
meshes using Nédélec’s second family of edge elements of polynomial order ` = 1.
On quadrilateral and hexahedral meshes, these elements yield only sub-optimal
convergence rates of the error in the L2-norm.

5.7.3 Example 2: singular solution

In order to validate the error bound for an analytical solution with low spatial
regularity in Theorem 5.4.2, we consider the two-dimensional Maxwell’s equa-
tion (5.1) on the L-shaped domain Ω = (−1, 1)2\[0, 1)2. We set µ = ε = 1
and σ = 0 everywhere and choose the source and initial data such, that the
analytical solution is given in polar coordinates (r, φ) by

u(r, φ, t) =
t2

2
∇(r2/3 sin(2/3φ)). (5.38)

Since the tangential part of u is inhomogeneous at the boundary of Ω, we
need to impose inhomogeneous Dirichlet conditions n × u = g on ∂Ω within
our DG discretization. We do so in straightforward fashion by modifying the
semi-discrete formulation as follows: find uh(t, ·) : J → Vh such that

(uhtt,v) + ah(u
h,v) = (f ,v) +

∑

F∈FB

h

∫

F

g (a(n× v) − µ−1∇× v) dA. (5.39)

Here g is the boundary data (which is scalar in 2d) and n is the outward unit
normal vector on ∂Ω.
We discretize (5.39) by using bilinear polynomials (` = 1) on the same

sequence of meshes as before. We set the stabilization parameter α = 20 and
integrate the problem up to T = 1 employing the leap-frog scheme with time
step ki = hi/20 on mesh Thi.

u is smooth in time (and is integrated exactly in time by the leap-frog
scheme). The spatial part of u is the gradient of the strongest corner singular-

ity of the Dirichlet-Laplacian on Ω, the H
5
3 (Ω)-function r2/3 sin(2/3φ). Hence,

u ∈ C∞(J ;H2/3(Ω)2) and ∇× u = 0, and the regularity assumptions in Theo-
rem 5.4.2 are satisfied by the field (5.38) with regularity exponent σE = 2/3.
Thus, Theorem 5.4.2 predicts numerical convergence rates of 2/3 in the

energy norm (and in the L2-norm), as confirmed by our numerical results in
Table 5.7.3.
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i ] elements energy-error L2-error
1 48 2.132e-01 - 1.719e-01 -
2 192 1.322e-01 0.69 1.162e-01 0.57
3 768 8.247e-02 0.68 7.628e-02 0.61
4 3072 5.166e-02 0.67 4.926e-02 0.63
5 12288 3.243e-02 0.67 3.150e-02 0.65

Table 5.2: Example 2: Numerical convergence rates for the approximation of
the low regularity solution (5.39) on L-shaped domain.

5.7.4 Example 3: inhomogeneous medium

As a third numerical experiment, we approximate an electromagnetic wave
evolving through the domain Ω in Figure 5.2. Ω is composed of materials with
different electric permeability ε and conductivity σ:

ε =





1, white region
10, grey region
100, dark region

, σ =

{
0, white and grey region
0.3, dark region

.

The magnetic permeability µ is constant equal to 1 everywhere in Ω. We im-

Figure 5.2: Example 3: Domain Ω composed of different materials.

pose homogeneous initial and source data. The wave is excited through the
inhomogeneous boundary data at the top edge of the domain Ω

g(x, t) = cos(2πt)
1√
2πb
e

−x2

2b2 , b = 0.2. (5.40)

On the rest of the boundary ∂Ω is perfectly conducting, that is, u satisfies
homogeneous Dirichlet conditions.
We discretize the model problem (5.1) by the DG method (5.3) using poly-

nomial of degree ` = 2 on a fixed mesh Th that consists of non-matching com-
ponents (generating at most one hanging node per edge), which are adapted
to the discontinuities of ε (recall that the wave speed in the medium is given

by (µε)−
1
2 ); see Figure 5.7.4. The mesh Th is composed of 4608 non-uniform

rectangles, where the smallest local mesh size is given by hmin ≈ 0.01. The
hanging nodes are naturally incorporated in the DG-method without any dif-
ficulty. Compared to the square meshes used in Sections 5.7.2 and 5.7.3, the
aspect ratio of the elements in Th has deteriorated. We have to account for
this in the choice of the IP stabilization parameter α, which is set to 50 in
this computation. For the time integration, we have employed the implicit Eu-
ler method with time step k = 0.01 to approximate the solution u up to time
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Figure 5.3: Example 3: Domain Ω with a finite element mesh Th that is adapted
to the values of the piecewise constant wave speed

√
c.

T = 10. (When using the explicit fourth-order Runge-Kutta scheme, a time step
k = 0.15 · hmin was necessary to ensure a stable integration for longer times.)
In Figure 5.4, the intensity |u| =

√
(u21 + u

2
2) is shown for times tn =

2, 3.5, 5, 7. At time tn = 2 the wave excited at the top edge of the computational
domain Ω has already hit the slowest medium (the dark region in Figure 5.2).
At the corners of the interface of the two media, strong field intensities appear.
At time tn = 3.5, the wave enters the region with medium wave speed (the grey
region in Figure 5.2) from the side. At time tn = 5, the wave front travelling
through the slow (dark) region reaches the grey region as well. Finally, at time
tn = 5, the wave has traveled through the entire domain and reflections at the
perfectly conducting boundaries give rise to interference patterns. Moreover, we
can observe a superposition of the two wave fronts that have entered the grey
region from the sides and from the dark region above respectively.
In summary, although one cannot exclude the presence of spurious modes

in the DG solution computed on a quadrilateral mesh, the discrete solution can
adequately reflect the qualitative behavior of the electromagnetic wave.

5.8 Concluding remarks

We have presented and analyzed the symmetric interior penalty discontinuous
Galerkin (DG) method for the time-dependent Maxwell equations in second-
order form. For smooth solutions, we derive optimal a-priori error estimates in
the energy norm on general finite element meshes (Theorem 5.4.1). On con-
forming meshes, we derive optimal a-priori error estimates in the energy norm
for low-regularity solutions that have singularities in space (Theorem 5.4.2).
Moreover, on conforming triangular or tetrahedral meshes, we derive optimal
a-priori estimates in the L2-norm.
The 2d numerical experiments in Section 5.7 validate the theoretical esti-

mates for the energy error in Theorems 5.4.1 and 5.4.2. However, the use of
C++ classes of the employed FE library deal.II is restricted to quadrilateral
and hexahedral meshes. Therefore, we could not validate the theoretical L2-
error bound from Theorem 5.4.3. In fact, we observe only sub-optimal L2-rates
on quadrilateral meshes. This deficiency is not inherent to our DG method; the



Maxwell Wave 121

Figure 5.4: Example 3: Electromagnetic wave propagating through an inhomo-
geneous medium. The intensity of the approximate DG solutions uhn is reported
at times tn = 2, 3.5, 5, 7. It reflects the qualitative behavior of the electric field
component of an electromagnetic wave excited at the top edge of the computa-
tional domain by the data in (5.40), and meeting perfectly conducting bound-
aries at the remaining three edges.

same sub-optimal rate is obtained with the conforming FE discretization when
using Nédélec’s curl-conforming elements of second type.
Based on discontinuous finite element spaces, the proposed DGmethod easily

handles elements of various types and shapes, irregular non-matching grids, and
even locally varying polynomial order. As continuity is only weakly enforced
across mesh interfaces, domain decomposition techniques immediately apply.
Since the resulting mass matrix is essentially diagonal, the method is inherently
parallel and leads to fully explicit methods when coupled with explicit time
integration. Moreover, as the stiffness matrix is symmetric positive definite, the
interior penalty DG method shares the following important property with the
standard continuous Galerkin approach: the semi-discrete formulation conserves
(a discrete version of) the energy for all time; therefore, it is non-dissipative.
For future work it would be nice to be able to do computations with our

proposed DG method on triangular FE meshes. Moreover, in view of fully
explicit time stepping methods, it would be interesting to study the topic of
local time stepping, where the time step is adapted to the local spatial mesh
size. We note that in the recent research paper [64], Piperno proposed such
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a time stepping method, coupled with a DG discretization of the first-order
Maxwell’s equations (1.9)–(1.10).
Finally, the topics for future research raised in Section 4.6 of Chapter 4 for

the IP DG FEM of the acoustic wave equation carry over to the Maxwell case.
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Appendix: A norm-equivalence property

We report the proof of the key approximation result that is stated in Proposi-
tion 2.4.5. The proof is due to Houston 4, Perugia 5 and Schötzau 6 and has
been presented in [40]. The techniques in [45, 44] for the analysis of mixed
DG methods and in [49] for the study of a-posteriori error estimation for DG
discretizations of diffusion problems are employed.

Step 1 (Preliminaries). We begin by introducing the following notation.

Recall that each element K ∈ Th is the image of the reference element K̂
under an affine mapping FK ; that is, K = FK(K̂) for all K ∈ Th, where
FK(x̂) = BK x̂+ bK and BK ∈ R3×3, bK ∈ R3. Without loss of generality, we
assume that detBK > 0. We define

D
`(K) = {q : q ◦ FK =

1

detBK
BK q̂, q̂ ∈ P`−1(K̂)3 ⊕ P̃`−1(K̂) x̂ },

where P̃`−1(K̂) denotes the space of homogeneous polynomials of total degree

exactly ` − 1 in x̂ = (x̂1, x̂2, x̂3) on K̂. A polynomial q ∈ D
`(K) can be

represented as q(x) = r(x) + s̃(x)x, with r ∈ P`−1(K)3 and s̃ ∈ P̃`−1(K).
Next, we assign to each face f ∈ Fh a unit normal vector nf . Then there

is a unique element K ∈ Th such that f ⊂ ∂K and f is the image of the
corresponding reference face f̂ on K̂ under the elemental mapping FK , and
such that nf = B−T

K n̂bf/|B
−T
K n̂bf |, where n̂bf is the outward unit normal vector

to f̂ ; cf. [55, Equation (5.21)]. We set

D
`(f) = {q|f : q ◦ FK = BK q̂, q ∈ D`(K̂), q̂ · n̂bf = 0 }.

In local coordinates x on the face f , a function q|f ∈ D`(f) is given by q|f (x) =
r(x)+ s̃(x)x, where r ∈ P`−1(f)2 and s̃ ∈ P̃`−1(f). Notice that q|f is tangential
to f .
Finally, we assign to each edge e a unit vector te in the direction of e, and

denote by P`(e) the space of polynomials of degree at most ` on e.
Step 2 (Moments for Nédélec’s elements of the second type). We introduce a

basis for P`(K)3 based on the moments employed in the definition of Nédélec’s
second family of elements introduced in [59]. Following [55], we use the fol-

lowing moments that are identical on K and K̂, up to sign changes, under the
transformation v ◦ FK = B−T

K v̂ (this can be easily seen as in [55, Lemma 5.34
and Section 8]).

For an edge e, let {qie}Nei=1 denote a basis of P`(e). Similarly, let {qif}
Nf
i=1 be

a basis of D`−1(f) for a face f , and {qiK}Nbi=1 a basis of D`−2(K) for element K.
4Prof. P. Houston, Department of Mathematics, University of Leicester, Leicester LE1

7RH, England, email: Paul.Houston@ mcs.le.ac.uk
5Prof. I. Perugia, Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, 27100

Pavia, Italy, email: perugia@ dimat.unipv.it
6Prof. D. Schötzau,Mathematics Department, University of British Columbia, 121-1984

Mathematics Road, Vancouver V6T 1Z2, Canada, email: schoetzau@ math.ubc.ca
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Fix K ∈ Th and let v ∈ P`(K)3. We introduce the following moments:

Me
K(v) =

{∫

e

(v · te)qie ds : i = 1, . . . , Ne

}
, for any edge e of K,

Mf
K(v) =

{
1

area(f)

∫

f

v · qif ds : i = 1, . . . , Nf

}
, for any face f of K,

M b
K(v) =

{∫

K

v · qiK dx : i = 1, . . . , Nb

}
.

It is well-known that the above moments uniquely define the polynomial v ∈
P
`(K)3; see [59, 55]. For a face f of K, the tangential trace nf × v is uniquely

determined by the moments M f
K and the moments {M e

K}e∈E(f), where E(f) is
the set of the edges of f ; see [59, Section 3.1] or [55, Lemma 8.11]. Hence, any
v ∈ P`(K)3 can be written in the form

v =
∑

e∈E(K)

Ne∑

i=1

viK,eϕ
i
K,e +

∑

f∈F(K)

Nf∑

i=1

viK,fϕ
i
K,f +

Nb∑

i=1

viK,bϕ
i
K,b. (41)

Here, we use E(K) and F(K) to denote the sets of edges and faces of K, respec-
tively. The functions {ϕiK,e}, {ϕiK,f}, and {ϕiK,b} are Lagrange basis functions
on P`(K)3 with respect to the moments given above.

Step 3 (Bound on the elemental H(curl)–norm). Let v ∈ P`(K)3 be repre-
sented as in (41). We prove the following elemental bound on the H(curl)–norm
in terms of the moments in Step 2: there exists a positive constant C, indepen-
dent of the mesh size, such that

h−2
K ‖v‖20,K + ‖∇× v‖20,K

≤ Ch−1
K



∑

e∈E(K)

Ne∑

i=1

(viK,e)
2 +

∑

f∈F(K)

Nf∑

i=1

(viK,f )
2 +

Nb∑

i=1

(viK,b)
2


 . (42)

On the reference element, this follows from the representation (41) and the
Cauchy-Schwarz inequality. On a general element K, we note that since the
transformation v ◦ FK = B−T

K v̂ preserves the moments in Step 2, and that

‖v‖20,K ≤ ChK‖v̂‖2
0, bK

, ‖∇× v‖20,K ≤ Ch−1
K ‖∇̂ × v̂‖2

0, bK
,

with a constant independent of the mesh size (see, e.g., [3, Lemma 5.2]), the
bound in (42) is obtained.

Step 4 (Bound on the tangential jumps). Given an interior face f , shared
by two elements K1 and K2, we write E(f) to denote the set of edges of f .
Given v1 ∈ P`(K1)

3 and v2 ∈ P`(K2)
3, we prove that, using the representation

in (41), there exist positive constants C1 and C2, independent of the mesh size,
such that

∫

f

|nf × (v1−v2)|2ds ≤ C1



Nf∑

i=1

(viK1,f−v
i
K2,f )

2+
∑

e∈E(f)

Ne∑

i=1

(viK1,e−v
i
K2,e)

2


,
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and


Nf∑

i=1

(viK1,f − viK2,f )
2 +

∑

e∈E(f)

Ne∑

i=1

(viK1,e − viK2,e)
2




≤ C2

∫

f

|nf × (v1 − v2)|2 ds. (43)

To see this, we first consider the case where K1 and K2 are of reference size.
Since the moments on f and on the edges e ∈ E(f) uniquely determine the
jump nf × (v1 − v2), the claim follows from the equivalence of norms in finite
dimensional spaces. For general elements K1 and K2, the claim is obtained
from a scaling argument taking into account that the transformation v ◦ FK =
B−T
K v̂ preserves tangential components and the moments in Step 2, modulo sign
changes.
The analogous bound holds on the boundary. Let K be the element con-

taining the boundary face f and v ∈ P`(K)3. Using the representation in (41),
there exist positive constants C1 and C2, independent of the mesh size, such
that

∫

f

|nf × v|2 ds ≤ C1



Nf∑

i=1

(viK,f )
2 +

∑

e∈E(f)

Ne∑

i=1

(viK,e)
2


 ,

and 

Nf∑

i=1

(viK,f )
2 +

∑

e∈E(f)

Ne∑

i=1

(viK,e)
2


 ≤ C2

∫

f

|nf × v|2 ds.

Step 5 (Approximation property). Let us now prove the result in Propo-
sition 2.4.5. To this end, it is sufficient to show the following result: for all
v ∈ Vh, there exists v ∈ Vc

h such that

‖v − v‖20 ≤ C‖h 1
2 [[v]]T ‖2Fh , (44)

‖v − v‖20 + ‖∇× (v − v)‖20 ≤ C‖h− 1
2 [[v]]T ‖2Fh , (45)

with a positive constant C, independent of the mesh size.
To prove the claims above, let {viK,e}, {viK,f} and {viK,b} denote the moments

of v, according to (41). Further, we write N(e) to denote the set of all elements
that share the edge e, and by N(f) the set of all elements that share the face
f . The cardinality of these sets are denoted by |N(e)| and |N(f)|, respectively.
Due to the shape-regularity of the meshes Th, we have that 1 ≤ |N(e)| ≤ N ,
uniformly in the mesh size; additionally, 1 ≤ |N(f)| ≤ 2. Let v ∈ Vc

h be the
unique function whose edge moments are

viK,e =

{ 1
|N(e)|

∑
K′∈N(e) v

i
K′,e if e ∈ EI

h ,

0 if e ∈ EB
h ,

i = 1, . . . , Ne, whose face moments are

viK,f =

{ 1
|N(f)|

∑
K′∈N(f) v

i
K′,f if f ∈ FI

h ,

0 if f ∈ FB
h ,
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i = 1, . . . , Nf , and whose remaining moments are

viK,b = viK,b, i = 1, . . . , Nb.

Obviously, the function v defined by the above moments belongs to Vc
h.

From the bound in (42) in Step 3, we have

h−2
K ‖v − v‖20,K + ‖∇× (v − v)‖20,K

≤ Ch−1
K



∑

e∈E(K)

Ne∑

i=1

(viK,e − viK,e)
2 +

∑

f∈F(K)

Nf∑

i=1

(viK,f − viK,f )
2


 .

Let e first be an interior edge in E(K) and denote by F(e) the faces sharing
the edge e. For f ∈ F(e), we denote by Kf and K

′
f the elements that share f .

Employing the definition of uiK,e, the Cauchy-Schwarz inequality, bound (43)
from Step 4, and the shape-regularity assumption gives

Ne∑

i=1

(viK,e − viK,e)
2 ≤ C

∑

K′∈N(e)

Ne∑

i=1

(viK,e − viK′,e)
2

≤ C
∑

f∈F(e)

Ne∑

i=1

(viKf ,e
− viK′

f
,e)

2

≤ C
∑

f∈F(e)

∫

f

|[[v]]T |2 ds.

An analogous result holds for a boundary edge e.
Similarly, for an interior face f ∈ F(K), we have

Nf∑

i=1

(viK,f − viK,f )
2 ≤ C

∑

K′∈N(f)

Nf∑

i=1

(viK,f − viK′,f )
2 ≤ C

∫

f

|[[v]]T |2 ds,

where we have again used the bound (43) from Step 4. An analogous results
holds for boundary faces.
Combining the above estimates yields

h−2
K ‖v − v‖20,K + ‖∇ × (v − v)‖20,K

≤ Ch−1
K


 ∑

e∈E(K)

∑

f∈F(e)

∫

f

|[[v]]T |2 ds+
∑

f∈F(K)

∫

f

|[[v]]T |2 ds


.

Summing over all elements, taking into account the shape-regularity of the mesh,
we deduce (44) and (45).
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