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1. THE INTERSTELLAR MEDIUM (ISM)

13.8 billion years after the Big-Bang, the universe contains ∼ 100 billion galaxies,

containing ∼ 100 billion stars, each one containing ∼ 1057 atoms, making up a total

of ∼ 1079 atoms in the observable universe. The Milky Way, a rather large but typ-

ical spiral galaxy, is composed of 84.5% dark matter, 14% stars, and 1.5% ISM by

mass. Hydrogen (H) and helium (He) make up 99% of the ISM. Therefore, all heavy

elements only account for 0.01% of the mass of the galaxy. Despite these very low

proportions, these heavy elements are a focus of attention of astronomers for the

following reasons: chemistry, and for an even more interesting though speculative

reason, life in the universe. The elemental composition of Earth’s biosphere exem-

plifies well the importance of elements such as carbon (C), oxygen (O), and nitrogen

(N).

Stars are far too hot to allow any chemistry, and it is only by going far away e-

nough from them that appropriate physical conditions can be met. There, molecules,

clusters, crystals, ices and dust grains start to form and are the focus of interstel-

lar chemistry. Inside a galaxy, interstellar clouds (ISCls) fill inhomogeneously the

volumes between the stars, forming filaments, sheets or bubbles of various sizes and

densities. With its specific physical properties and history, each local environment

has a unique chemistry and composition. However, in the larger scales of the galaxy,

the density of ISCls is well correlated with the density of stars for the reason that

all stars are born from, and die into gas clouds.

Until the 20th century, astronomers thought that the ISM was void of matter

and of little interest. The interstellar matter was first discovered at the beginning of

the 20th century through observations of atomic absorption lines that did not belong

to the stars under scrutiny.1,2 In the middle of the 20th century, it became clear

that these atoms were indeed deep in the ISM. It was still assumed, however, that

molecules could not form and survive in the ISM. The advance of radio astronomy

enabled the next step forward, that is, the discovery of the presence of a multitude

of molecules in interstellar and circumstellar environments.



1. The interstellar medium (ISM) 7

Given this line of discoveries made over the 20th century, what could now be the

next step forward? Could complex or large biological molecules be present in the

ISM? As of 2016, we do have the evidence that a variety of large molecules form,

and even thrive in particular circumstellar and interstellar environments. However,

their compositions and the extent of their complexity is still unknown.

1.1 General aspects

Fig. 1.1: A way to introduce the ISM is to show how the solar system, or more precisely,

the solar wind, is interacting with the ISM. The solar wind, made of photons,

energetic particles, and magnetic fields is pushing away the ISM, creating a shock

wave called termination shock. The Sun is traveling through the local ISM at a

speed of 20 km s−1. Also, we see in this illustration the Voyager probes actual

locations, close to reaching the ISM3

The ISM is not all the space between the stars in the universe. The ISM is

the space between stars exclusively within galaxies, and excluding the vicinity of

the stars (circumstellar space). These intergalactic and circumstellar spaces both

have unique physical conditions. For instance, within the circumstellar space, the

radiation field is much higher than several light-years (ly) away from the star, deeper

in the ISM.4 As a consequence, pressures are characteristically lower (as within

the blue sphere in Figure 1.1) than in the ISM because of the radiation pressure

sweeping away most particles coming from the ISM. The boundary between the
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planetary system and the ISM consists of a shock wave caused by the radiation

pressure from the star keeping away the ISM material and called ”termination shock”

(Figure 1.1). The ISM then appears to be, in comparison, a milder environment than

the interplanetary space. If life, as we know it on Earth, has been possible despite

our proximity to the Sun, it is because Earth has a thick atmosphere protecting the

fragile chemistry that makes us, from UV radiation and cosmic rays. In the same

fashion, if a complex chemistry is possible in some ISCls, it is because these clouds

are either protected by other layers of gas or because they are far away enough from

surrounding stars.

ISCls have various shapes, structures, physical properties and chemical compo-

sitions. Before describing the main types of interstellar environments, we can first

point out a few characteristics that they share and that constrast with terrestrial

references. These are densities, volumes, timescales, and compositions.

Densities. There are ∼ 2×1019 molecules.cm−3 in the air we breathe, and

∼ 106 molecules.cm−3 in the best laboratory vacuums. Interstellar densities range

from∼ 106 particles.cm−3 in the core dense clouds, to∼ 10−4 cm−3 in very hot media.

Volumes. ISCls span over extremely large distances, measured in light years

(ly) ∼ 1016 m; from inf 1 ly for dense clouds to sup 100 ly for the largest and more

diluted ones.

Timescales. Unlike a star, an ISCl is rarely one proper unit. Nevertheless, their

evolution typically ranges from tens to hundreds of millions of years, while most

stars live for several billions of years. ISCls have much shorter lives because they

are much more fragile and are regularly blown away by energetic events, such as

supernovas, occurring in the neighborhood.

Compositions. Finally, they follow rather closely the cosmic elemental abun-

dances, pictured in Figure 1.2. This logarithmic scale shows that 99.8% of this gas

is merely H and He. He being chemically non-reactive, is not as relevant in astro-

chemistry, as O, C, and N. These, along with H, are the building blocks of organic

molecules on Earth, as well as of most molecules discovered so far in the ISM. Less

abundant, but still to be accounted for in the chemistry of the ISM, are elements

like silicon, iron, manganese, magnesium, sulfur or phosphorus. However, heavy

elements in the ISM are often hidden in grains, such as as silicates which constitute

by mass a large portion of the interstellar matter.

In short, long timescales and large volumes are compensating for low densities
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Fig. 1.2: Elemental abundances of the interstellar medium.5 Though C is the central

element in astrochemistry, the most abundant heavy element is O. These abun-

dances are calculated from observation of atomic lines.

and allow rare chemical events to be overall consequential. One can see here the

challenges of approaching a chemistry occurring in conditions so extraordinarily

different from to the ones known on Earth.

Astronomers realized that the ISM was not void when observing some dark

patches in the sky that hide the stars within and behind them. These patches

are ISCls which do not let short wavelengths pass through (typically ultraviolet

and visible (UV-Vis)) because of Rayleigh scattering by dust particles. On the

other hand, one can see these clouds through infrared (IR) or millimeter (mm)

wavelengths which are not scattered by the dust particles. In the early 20th century,

Edward Barnard made a list of several hundred such dark patches6,7 leading to

the conclusion, for the first time, that ”masses” of matter were present between

the stars, obstructing the light. In a 1919 paper,7 Barnard stated: ”It would be

unwise to assume that all the dark places shown on the photographs of the sky

are due to intervening opaque masses between us and the stars. In a considerable

number of cases, no other explanation is possible, but some of them are doubtless

only vacancies”. Barnard 68, shown in Figure 1.3 at different wavelengths, is a good

example of a dark interstellar cloud. It is so close to the solar system (400 ly) that

not a single star lies in between. UV-Vis light is scattered by dust particles, however,

by observing this cloud at longer wavelengths, one can learn about its composition
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Fig. 1.3: Barnard 68 is a dark cloud not far away from our solar system. UV-Vis light is s-

cattered by dust particles and does not pass through, whereas longer wavelengths

do. Photos are taken from the European Southern Observatory.

through absorption or emission lines of molecules and atoms. Before astronomers

had the telescopes for observing these ”patches” in the IR or mm regions, we were

not aware that many molecules were present in the ISM. In the second half of the

20th century, with the advent of radio astronomy, pioneered by Karl Jansky in the

1930’s, astronomers discovered that molecules were readily formed in dense clouds.

By comparing astronomical data to laboratory spectra of rotational transitions of

cold molecules, dozens of interstellar species have been identified to date8 in dense

clouds, such as the Taurus molecular cloud 1.

1.2 The three phases of the ISM

As elements can be found in different phases depending on the pressure and tem-

perature, the ISM can also be described by three thermal phases, depending on

the density and temperature of the gas. From the coolest to the hottest, they are
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described as follows:

Fig. 1.4: Conceptual view of the Milky Way’s ISM.9 It is deconstructed into three phases:

the cold neutral medium and warm neutral medium are in hatched green, and the

hot ionized medium is in hatched orange. The red hot spots are young supernova

remnants.

Cold neutral medium (CNM). Molecular clouds (H2): In these clouds, hy-

drogen is mostly in the molecular form, at the lowest temperatures of the ISM of

10 - 20 K, and the highest densities of ≥ 103 cm−3. Molecular clouds make up to

∼ 30% of the mass of the ISM, but only occupy ∼ 0.05% of its volume. Most molec-

ular clouds are gravitationally bound, and the core of the densest ones may soon

collapse to form a star. The main tracers are mm-wavelength molecular emissions

which can pass through the cloud (mostly belonging to CO).

Cold neutral atomic hydrogen gas, on the other hand, is not distributed the same

way than molecular cloud. Gravitation does not play such an important role and it

forms sheets or filaments. It occupies roughly 1 - 4% of the ISM, has temperatures

of ∼ 80 - 100 K and densities of ∼ 50 cm−3. The main tracers are UV and optical

absorption lines seen towards bright sources.

Warm neutral and warm ionized media. Warm neutral atomic hydrogen

makes up to ∼ 30% of the volume of the ISM and is mainly located in photodis-

sociation regions, on the boundaries of HII regions and molecular clouds. It has

temperatures of ∼ 8 000 K and densities of ∼ 0.5 cm−3 and the tracer is the HI 21 cm

emission.

The warm ionized medium is responsible for HII emissions. Diffuse gasses with

temperatures of 6 000 to 12 000 K, and densities ∼ 0.1 cm−3 occupy about ∼ 25% of

the volume of the ISM. Nearly 90% of the H+ in the galaxy resides in the warm

ionized medium.
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Hot ionized medium. The hot ionized medium is extremely low-density gas

heated by supernovae (orange phase in Figure 1.4). It has temperatures ≥ 106 K

and densities ≥ 0.003 cm−3, occupying ∼ 50% of the ISM. This gas is called the hot

corona of the galaxy since it is as high ∼ 100 000 ly above the galactic plane.

Dust and ices. Mixed within all phases except the hottest phase where they do

not survive, particles of dust and ice are an important component of the ISM. These

particles range in size from a couple of nanometers (nm) to several micrometers

(µm), that is, anything bigger than common molecules and smaller than little rocks.

Dust grains plays a disproportionate role compared to their share of the mass of

the ISM, for the following reasons. They are the primary source of interstellar

extinction; they scatter short wavelengths. They account for gas-phase elemental

depletion because they embed selectively some elements which cannot be detected

when the dust grain is too large. Finally, they are the cradle and the catalyst of

a chemistry which, otherwise, would not happen in the gas phase. However, the

composition of grains along with the chemistry occuring on their surface is harder

to probe than gas-phase molecules showing distinctive signatures.

In conclusion, the CNM is the coolest part of the galaxy despite being its inner

part. The densities are high enough for ISCls to be sufficiently massive to shield

themselves. On the other hand, the tenuous hot ionized medium is fully exposed

to energetic radiation. Thus, only the CNM is characterized by temperatures and

radiation fields low enough for molecules or dust particles to form.

1.3 The interstellar radiation field (ISRF)

The ISRF is the most crucial parameter to determine the physical and chemical

state of a given interstellar environment. The ISRF causes ionization and ejection

of electrons, dissociation or acceleration of atoms, molecules, and dust grains. It

sets, along with the particle density, the balance between atomic and molecular

gasses, neutrals and ionic species, and cold and hot environments. Six types of radi-

ation are dominating the ISRF, and are listed in Figure 1.5, from longer to shorter

wavelengths. Cosmic rays are worth mentioning although are not only radiation.

Synchrotron radiation is produced by relativistic charged particles which

are deflected from their trajectories by magnetic fields. These relativistic particles,

mostly electrons, spiral along the field lines emitting synchrotron radiation. The
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Fig. 1.5: Energy densities of the different interstellar radiation field components.

total energy density of galactic synchrotron radiation is small (Figure 1.5 and 1.6).

However, for wavelength λ < 30 cm, it dominates over the cosmic microwave back-

ground radiation (CMBR) and is the main form of galactic emission in the long

radio waves.

The CMBR is a nearly perfect plank spectrum with a temperature of 2.73 K.

It is not displayed in Figure 1.6 but would be on the left of dust grains emissions

with a similar energy density as shown in Figure 1.5. It dominates the ISRF for

600µm<λ< 30 cm, but the gas and dust being generally warmer, the CMBR does

not play such an important role in the energy balance of the ISM.

IR emissions from dust dominates the ISRF between 5µm<λ< 600µm. These

emissions can be divided into emissions from hot PAHs in the near-IR (middle part

of the magenta curve in Figure 1.6), and emissions from dust grains in the mid-

and far-IR (left part of the magenta curve in Figure 1.6). Most of the power is

radiated by dust grains > 50µm and resembles the emission from a black body at

17 K. The rest of the power is radiated by PAHs through a series of discrete peaks,

mainly between 3.3 and 12.7µm corresponding to IR emissions. Compared to the

dust grains, PAHs emit at much shorter wavelengths when being subjected to the

same incoming radiation because they distribute the photon energy over much less

internal degrees of freedom. A UV photon absorption sets the internal temperature
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Fig. 1.6: Overview of the different components of the interstellar radiation field comple-

menting Figure 1.5.10 Only the cosmic microwave background is missing.

of a PAH to thousands of kelvins, but the same UV photon will set the internal

temperature of a dust grain to much lower temperatures. Besides, the PAH will

quickly cool down through IVR and IR emission, while the dust grain will do so

much more slowly and at higher wavelengths.

Starlight is mostly from the near-IR to the soft-UV (right part of the magenta

curve in Figure 1.6). It sharply drops above the ionization energy of hydrogen at

13.6 eV. A common estimate of starlight component of the ISRF at λ < 2 450 nm is

a sum of three blackbody spectra, shown in Figure 1.7, at 3 000, 4 000, and 7 500 K.11

Thermal X-rays are produced by highly energetic events, though localized in

space and time. Hot ionized gasses with temperatures of more than 106 K cool via

emissions of extreme UV or X-ray photons, but their total energy density is small

(Figure 1.5).
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Fig. 1.7: Two sets of starlight and dust emission components of the interstellar radiation

field (thicker curves), equivalent to a zoom-ins of the magenta curve of Figure 1.6.

At wavelengths below 8µm, the starlight takes over dust emissions, and can be

approximated as a sum of several blackbody spectra11 (thinner curves). The

thick solid line is the sum. The upper set of curves is for a lower galactic latitude

(5 kparsec).

Nebular emission comes from ionized regions heated by a nearby massive star

to temperatures of 104 to 108 K. These are classified into free-free, free-bound and

bound-bound emission, as any of the collision partners can be a free particle or a

particle bound to another, like in an atom. Free-free emission is electromagnetic

radiation emitted from the charged particles in a plasma continuously colliding with

each other. The typical range of temperatures of this plasma will give rise to emission

from the near-IR to X-rays for plasma as hot as 108 K. It cannot be seen in Figure 1.6

since the emission spans over a very large portion of the spectrum and has a lower

energy density than most other components.

Cosmic rays act on interstellar gasses much like very energetic photons. Cos-

mic rays are baryonic particles which follow the comic elemental abundances mean-

ing that 90% are protons, 10% alpha particles, and 1% metal nuclei (Figure 1.6).

Their energy ranges from 100 MeV to 1 TeV. The energy density of cosmic rays is

∼ 2 eV.cm−3 to be compared to 0.65 eV.cm−3 of the total energy density generat-
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Fig. 1.8: Galactic, but mostly extra-galactic cosmic ray flux as a function of their energy.

A large majority are free protons. They are observed by instruments mounted on

balloons, satellites, and space crafts since most cosmic rays do not reach Earth’s

surface (Image credit: Wikimedia Commons user Sven Lafebre).

ed from starlight: They therefore play an important role in the energy balance of

interstellar gasses. Most of the cosmic-ray-induced heating of interstellar gasses is

provided by the least energetic ones (∼ 100 MeV), since they are much more numer-

ous, as seen in Figure 1.8.

1.4 The cold neutral medium (CNM): cradle of interstellar

molecules

Despite its name, the CNM described in Section 1.2, is still a harsh environment

subjected to energetic radiation and violent shocks. It holds its name from H atoms

being mostly neutral. However, heavier atoms, molecules, and dust grains, requiring

less energetic photons, are ionized in significant proportions. The CNM comprises

virtually all the types of clouds that contain molecules. These are atomic clouds,

diffuse molecular clouds, translucent clouds and dense clouds. H is mostly neutral

because the CNM receives little amount of photons with energies > 13.7 eV.

In diffuse clouds, C atoms are all ionized, and, as very reactive species, play
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a key role in the chemistry of these clouds. Table 1.9 divides the CNM into four

components where diffuse atomic clouds are the hottest phase and dark clouds the

coldest. The working definition for the CNM is that H is mostly neutral. The same

way, the defining characteristics for differentiating the four types of clouds is the

ratio of ionized over neutral, and atomic over molecular H and C. As a general

trend, the hotter the cloud, the more diluted, the more transparent, and the more

ionized it is. Within the CNM, dense clouds account for 30% of the mass, and hotter

media for 99% of the volume.

Fig. 1.9: These four types12 of environments all belong to the hatched green phase in

Figure 1.4 and constitute the CNM, the coldest part of the ISM. fn H2 and ”fn CO”

are the fractional abundances of H2 and CO compared to the total amount of

H and C atoms, respectively. ”AV ” is the opacity of the cloud, decreasing with

increasing density and volume. ”nH” is the typical density of hydrogen atoms,

roughly equal to the total density. The observation technique depends on the

transparency of the cloud.

Diffuse atomic clouds are the hottest phase of the ISM where H is still neu-

tral. However, C is a particular case, since it undergoes chemical reactions leading

to a production of C+. This process is so efficient that the density of free electrons

is approximated to the C density (see Figure 1.10). On the other hand, O and N are

significantly less ionized. In diffuse atomic clouds, extinction is very low, meaning

that the entirety of the cloud is exposed to the ISRF. All gas-phase molecules which

are not resistant to UV radiation are quickly dissociated. Most small molecules

known to be present in denser clouds do not survive there. Strickingly though,

large molecules populate atomic clouds. These large molecules have not yet been

identified and are the topic of the next chapter.

Diffuse molecular clouds are often shielded from the ISRF to some extent,

typically by a diffuse atomic cloud. An important aspect of the shielding of molecular
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Fig. 1.10: Illustration of the CNM composition12 as a function of the column density. As

in the table above, the four types of cloud presented here all belong to the

hatched green phase in Figure 1.4. The defining characteristic for a cloud is

not the column density, and this illustration represents the local conditions, or

an ideal case where one would probe a sightline with strictly only one type of

cloud.

clouds is selective spectral shielding. The attenuation of the ISRF in the outer layer

of a cloud will be strong at the absorption wavelengths of H and H2, while there

will be much less shielding at all other wavelengths since no other species have high

enough densities to have such an effect. For instance CO cannot shield itself from the

wavelengths of the ISRF where it has absorption bands. It is important, therefore,

to understand that, despite the fact that the CO bond is much stronger than the H2

bond, CO will be systematically dissociated in diffuse molecular clouds and will be

mostly in the form of C+. Higher column densities will be necessary for CO to shield

itself, as seen in Figure 1.10. Molecules like CH, H+
3 , CO, nevertheless, are detected

in diffuse molecular clouds, but this is due to a series of chemical reactions with

the omnipresent H2. Because C is mostly ionized, it allows an efficient ion-molecule

chemistry to occur. However, again, all these simple species are short-lived in diffuse

clouds since they do not shield themselves.
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Translucent clouds must be surrounded by more diffuse clouds to allow C to

be shield itself and be mostly neutral. Few translucent clouds have been observed

but their chemistry is thought to be radically different from that of diffuse clouds

since the very reactive C+ is disappearing. Their molecular population constitutes

indeed a transition between the many small molecules of dense clouds and the large

photostable molecules of diffuse clouds.

Dense clouds have several orders of magnitude of extinction, densities of at

least 104 cm−3, and temperatures down to 10 K. These are the highest densities of

the ISM and the lowest temperatures of the galaxy. They constitute the last stage

of a typical cloud evolution before it starts a gravitational collapse to become a

protostar. Most interstellar molecules have been identified only in dense clouds,

starting with CH in 193713,14 and then OH in 1963.15 Dense molecular clouds are

always shielded from the ISRF by their outer layers, and hence, it is impossible

to probe a sightline where only a dense molecular cloud will contribute. On the

contrary, diffuse atomic clouds might very well be found to be the only contributors

in a specific sightline, which makes their characterization easier.

In conclusion, a counterintuitive trend governs the chemistry of the CNM as we

go from diffuse to dense clouds: despite that the fact the ISRF is getting milder and

the densities higher in denser clouds, the chemistry actually gets slower in terms

of reaction rates. The very reactive C+ present in diffuse clouds is replaced by

the moderately reactive C in translucent clouds, itself replaced by the non-reactive

CO in denser clouds. If many simple molecules are found in dense clouds, this is

because the much higher densities cope with lower reactivities. On the contrary,

and to introduce the next Chapter, the presence of large molecules in diffuse media

seems not to be related to the presence of reactive species, since these molecules

likely originate from circumstellar envelopes (CSEs), and seem to merely survive in

the ISM.
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1.5 Thesis outline

This thesis, which is the core of a project started in 2010, is aimed at developing

an experimental technique suitable for the measurement of the electronic spectra

of cold, large, gas-phase molecular cations. Two approaches were initially target-

ed: photoinduced charge transfer and photodissociation of ionic complexes with He

atoms. Since the latter is both the simplest of the two and a universal method, most

efforts would be put toward its implementation. The project included the design

and assembly of a new apparatus, a tandem mass spectrometer centered on a 22-pole

trap. When this thesis was initiated, the apparatus was partially assembled and as

a first major task, the assembly had to be completed and characterized. For this

reason, chapters 4 and 6 treat some aspects of the obtained electronic spectra that

are not novel, but which are part of the characterization of the apparatus and the

method. Chapter 2 presents the several types of spectroscopic features that prove

that large molecules do form interstellar and circumstellar media. Observations and

laboratory experiments are used to put constraints on the responsible molecules.

The experimental apparatus and the procedure to obtain the electronic spectra are

detailed in Chapter 3, and some aspects of the characterization of the apparatus

are presented in Chapter 4. The electronic spectra of several gas-phase protonated

H+PAHs at a rotational temperature of ∼ 10 K constituted the first results of this

apparatus and are presented in Chapter 5. These molecules were not studied with

one of the two targeted methods, however, they were the firsts spectra obtained in

the gas phase for such large cations for astronomical comparison. Also studying

these five H+PAHs allowed us to get a better handling of the setup and to solve

experimental issues, as shown in Chapter 6. Chapter 7 presents the first results ob-

tained using one of the targetted methods, the electronic spectra of coronene+ and

corannulene+, extrapolated from the photodissociation (PD) spectra of their com-

plexes with He. Chapter 8 addresses the case of protonated C60, a project which has

merely been started. Finally Chapter 9 concludes and gives an outlook about the

general challenge of identifying large molecules in the ISM and CSEs.



2. SPECTROSCOPY AND LARGE UNIDENTIFIED

MOLECULES IN THE ISM

In contrast to the many small molecules identified in dark clouds, there is evidence

for the presence of large molecules in the ISM and CSEs. Molecules have been

identified in dark clouds because the number of possible structures to be assessed is

limited, and larger molecules have not been identified because the number of relevant

structures is nearly unlimited. Strikingly, small molecules do not outnumber large

ones in the ISM, and they tell more about our limited experimental means than

about the true molecular population.

Almost all what we have learned of the Universe is through spectroscopy, with

limited information coming from cosmic rays and meteorites.16,17 For the observa-

tion of large molecules, the methods rely mostly on direct absorption through diffuse

media and fluorescence from reflection nebulae at UV-Vis and IR wavelengths. Four

main types of spectroscopical features, all bringing specific information, will be de-

scribed in this Chapter. The anomalous microwave emission is not described, but

the information it brings is mainly limited to the temperature and size distribution

of the emitting grains or molecules.
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Fig. 2.1: A Jablonski diagram showing the possible outcomes after a molecule has absorbed

a photon promoting it to an excited electronic state. Environmental effects (col-

lisions) do not play a role in the case of the ISM given the low densities. The

molecule will eventually get rid of its energy by emitting either IR (vibrational

relaxation) or visible photons (fluorescence, phosphorescence).

2.1 Unidentified infrared bands (UIBs)

The most prominent astronomical features that show evidence of large molecules

are mid-IR bands between 3.3 and 20µm, lying on top of several broader emission

features (plateaus). These emissions are observed in almost all kinds of interstellar

environments,19–21 except dark clouds on one hand, and extremely hot environments,

on the other. In virtually all other types of gasses, galactic and extragalactic, includ-

ing highly red-shifted galaxies,22–24 these emissions are present. The nature of their

carriers is debated, but it is clear that they arise from large carbon-based molecules

excited by UV photons and fluorescing in the IR via vibrational transitions. Most

of these transitions are assigned to specific vibrational modes, such as C-H and C-C
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Fig. 2.2: Overview examples of the mid-IR emission features 18 in a planetary nebulae

(NGC 7027) and a photodissociation region (Orion Bar). Both spectra will vary

depending on the location within NGC 7027 and the Orion cloud. Specific vibra-

tions are assigned to the main features, and the strengths of the C-C and C=C

stretchings attest of the carbonaceous nature of the carriers.

bendings and stretchings, but no definite molecule or mixture of molecules or their

structure have been identified to date. The main of these features are at 3.3, 6.2, 7.7,

8.6, 11.2, and 12.7µm, and are assigned in Figure 2.2 to specific vibrational modes

of hydrocarbons. Weaker emissions appear at 3.4, 5.2, 5.7, 6.0, 7.4, 12.0, 13.5, 14.2,

15.8, 16.4, 17.0, and 17.4µm, and broader features around 7, 12 and 17µm. The

peak positions of the latter can vary with the sightline.

Infrared emission arise from fluorescence, that is, spontaneous photon emis-

sions from a material which has been previously excited by another photon. The

detection generally happens perpendicularly to the source flux to avoid saturating

the detector with the much higher intensities from the source. This is the case of

the UIB carriers, typically irradiated by a very luminous neighboring star, and re-

emitting in all directions. The scheme for the UIB emissions is the absorption of a
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Fig. 2.3: Observed diffuse emissions in the infrared, normalized to the column density of

hydrogen. Taken from the Infrared Astronomical Satellite (IRAS),25 the Infrared

Telescope in Space (IRTS),26,27 Spitzer Space Telescope (Spitzer),25 and Cosmic

Microwave Explorer (COBE).28,29

UV-Vis photon promoting the molecule to an excited electronic state, followed by

internal conversion to an excited vibrational state of the electronic ground state,

followed by IR emission from vibrational de-excitation within the ground electronic

state.31,32 In Figure 2.1, it is represented by the yellow and dashed red arrow and

does not involve electronic fluorescence (in green).

The color temperature of a theoretical blackbody emission peaking at 8µm is

360 K. For the case of a photon energy of 8 eV, entirely going into the vibrations

(since there is no electronic fluorescence), the number of vibrational modes (∼ 3 N)

in the molecule is calculated as followed:33

3N =
∆E

k T
=

8 eV

k 360
= 257 (2.1)

This is the number of modes which, excited by a 8 eV photon will bring 257 modes,

or ∼ 86 atoms, to a temperature of 360 K. This is not necessarily the total number
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Fig. 2.4: The left two panels show the correlation of the mid-IR features with the continu-

um at 100 and 12µm, and the right two panels show the correlation of the 7.7µm

emission with the 6.2 and 11.3µm emissions.30 The left two panels indicate a

strong correlation of the mid-IR features with the dust emission, and the right

two panels of the mid-IR features with themselves.

of modes of the particle. Only a portion of a large molecule or a grain may be the

source of the IR emission. As such, this result gives a minimum. Also, given the

wavelength range of the UIBs and that of the exciting photons, the expectable size

range of the emitters is also very wide.

Dust continuum is a strong and smooth emission continuum at longer wave-

lengths, centered around 100 - 200µm. The curve resembles a blackbody emission,

strongly correlated with the mid-IR features,30 as shown in the two left panels of

Figure 2.4. Grains are heated by starlight and re-emit in the IR through vibrational

relaxation. This process is thought to occur since these emissions show no polar-

ization, as would be expected from scattering of starlight. These grains probably

occasionally eject molecules or clusters formed on their surface, and these, now in

the gas phase, will emit at discrete frequencies. Dust grains emit around 2/3 of the

total power in the IR and large molecules around 1/3.

PAHs emissions. The 3.3, 6.2, 7.7, 8.6, 11.2 and 12.7µm features are seen

in most reflection and emission nebulae, i.e., diffuse molecular gasses subjected to

relatively intense radiation from a nearby star. However, the radiation intensity

seems not to be a critical parameter as these features are seen against a variety of star

temperatures. Along with the various hypotheses on the nature of the carriers and

the sightline dependent profiles, this seems to suggest a variety of carriers depending
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on the local conditions. Most hypotheses stand between the two following somewhat

extreme cases. The first one is that only a few specific PAH structures of 50 - 100

atoms, very stable, maybe containing H, N, and O to some extent, survive and stand

out of the crowd of possible PAHs and are responsible for these emissions.18 The

second hypothesis is that a mix of aromatic-aliphatic compounds, with no specific

structure and a variety of sizes could be the origin of these emissions.34 Intermediates

include very small carbonaceous molecules35 or hydrogenated amorphous carbon

(HAC). Mid-IR features also have a high correlation with a high C/O ratio in the

emitting gas.36 This implies, as it was already thought, that the carriers are carbon-

based molecules. A high C/O ratio (> 1), originating from so-called carbon stars, is

not required to observe IR emissions, but is of great help for C not to be locked-up

by O in the very abundant CO, and to form other compounds.

C60 and C70 emissions. The detection of C60 (via the 18.9 and 17.4µm bands)

and C70
37 have raised a possible link to PAHs, and more generally, to the carriers

of the mid-IR features. Some of the environments in which C60 and C70 vibrational

emissions have been identified also show the mid-IR features and plateaus. However,

some do not, and given the small number of C60 and C70 detections in comparison

to the UIBs, a link is questionable.

Emission plateaus. There are three main emission plateaus centered around

7 - 8, 12 - 13, and 17 - 18µm. The first two are identified as a superposition of modes

in aromatic molecules containing aliphatic groups.34 The last one has not been

assigned, but could be due to CCC vibrations in aromatics. This plateau seems

to be present in particularly harsh environments were fully aromatic structures are

more likely to survive UV radiation than those containing aliphatic groups.

In conclusion, many experiments and calculations have been performed over

the last two decades attempting at reproducing specific emission features38,39 or the

whole ensemble40,41 using selected compounds or mixtures of compounds. However,

none has conclusively disclosed the composition of the carriers, and 40 years after

their discovery, several families of candidates still stand. One reason is the large

variety of possible families of carriers, including PAHs, mixed aliphatic aromatic

nanopaticles, dehydrogenated PAHs, PAHs with hetero-atoms, deuterium, protona-

tion, and small specific carbonaceous molecules readily produced. Another reason is

that the fluorescence yield is not proportional to the absolute amount of a specific

emitter relatively to the others. It is likely that the UIBs will give us in the future a
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more global knowledge of the molecular population in these environments, and will

not lead to the identification of distinct molecules, in contrast to the DIBs.

2.2 Red extended emission (ERE)

ERE can be seen as the electronic photoluminescence counterpart of the UIBs. They

arise from dust particles or crystals, often in CSEs, absorbing a UV-Vis photon, and

re-emitting several photons at shorter wavelengths. The carriers, still unknown, are

probably different from the UIB carriers since there is no observational correlation

between them. The emission spectrum peaking between 660 and 700 nm was first

analyzed in a study42 of HD 44179, in the red rectangle (RR). Since then, ERE has

been observed in spectra of many reflection nebulae,43,44 HII regions, in the Milky

Way and other galaxies. More generally, it has been found to be a general feature

of the dusty ISM.45 Although to date, never as bright as in the spectrum of the RR.

Fig. 2.5: (Left) Observed with Hubble space telescope, the RR was the first nebulae where

ERE was detected and is still the brightest ERE source known. The nebula is

created by a red giant carbon-rich star, coupled to a very hot white dwarf (HD

44179), both totally hidden behind their dusty ejecta. The hot white dwarf might

be the reason for the strength of this ERE. (Right) ERE spectra from nearby

galaxy M82 and two galactic nebulae. The general appearance of the feature is

the same but the peak position and FWHM vary from source to source. These

two characteristics vary as well within a specific nebula as respect to the distance

from the central star.

Photo-luminescence from far-UV photons. The carriers are thought to

absorb very energetic photon∼ 10 eV and subsequently emit one to three red photons
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from low-lying electronic states. With a quantum efficiency of more than 100%, the

process is based on the concept of inverse electronic relaxation.46 The energy from a

highly excited vibrational state of the electronic ground state is transferred to a low-

lying electronic excited state, from which it fluoresces. In Figure 2.1 on the left, that

would correspond to the dashed red arrow followed by the yellow arrow, and not the

contrary. This is possible because the transition probabilities for vibrational modes

are much lower than the ones for optical fluorescence transitions. Then, quantum

efficiencies up to 300% are possible when ERE photon energies are around 2 eV

and exciting photons energies ∼ 10 eV. As long as no collisions with other particles

occurs in the meantime. Photons of this energy and the diluted medium where ERE

comes from, to avoid collisions, meet these requirements.

Observational constraints on the carriers. The ERE is strictly only cre-

ated by far-UV photons because they are absent in reflection nebulae whose star’s

Teff≤ 104 K.47 This contrasts with ordinary PL where the absorbed photon only

needs to be slightly higher in energy compared to the emitted one and proves that

the process relies on far-UV photons coming from the central star. An interest-

ing finding from studies of different sources is that the ERE peak intensity shifts

to longer wavelengths and its FWHM increases along with the density of far-UV

photons from the source. Namely, as the UV density increases by six orders of mag-

nitude, the integrated ERE intensity increases by four orders of magnitude, and its

FWHM doubles. This strongly supports a whole family of carrier molecules shifting,

as does a blackbody signature, from small ones in the case of a lower UV irradiation

to larger ones. As the UV irradiation increases the smaller species get destroyed,

leaving less numerous and larger species yielding a broader, proportionally fainter

and red-shifted band. Fainter, maybe also because the conversion efficiency is lower

for larger molecules. Another survey of 20 planetary nebulae comprising carbon and

oxygen-rich stars found that only carbon-rich stars displayed ERE,48 leading to a

carbonaceous nature of the carriers. Finally, inside a given nebula, the ERE is not

spatially correlated to the UIBs at 3.3, 8, 11.3, 12 and 22µm. The ERE is situated

close to the illuminating star whereas UIBs appear farther away indicating more

stable structures as carriers of the ERE than the UIBs.

Proposed carriers. The original studies of the ERE suggested hydrogenated

amorphous hydrocarbons (HAC) to be the responsible, with a varying extent of

hydrogenation accounting for the shift in the peak wavelength.44 When experimental
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Fig. 2.6: On the left, thermal emission calculated for individual carbon nanoparticles heat-

ed to temperatures 1 400 to 2 400 K. For a molecule like C24, T = 2 400 K cor-

responds to the absorption of a 13.6 eV photon, and T = 1 400 K to 8 eV. On

the right, silicon nanoparticles photoluminescence spectra under excitation at

266 nm. Samples A, B, C have average particle sizes of 3.65, 3.92 and 4.95 nm,

and efficiencies of 1, 1.2, and 1.6%, respectively.49 The dashed curve represents

the ERE from NGC 2023.44

studies of these candidates came, it turned out that HAC’s PL efficiency is high when

the band-gap is high (in the blue) and drops towards the red, discarding them as

good candidates. Moreover, the discovery that silicate features are also present

in carbon-rich circumstellar environments and the correlation between H2 and the

ERE further came against the HAC hypothesis. Large PAHs and fullerenes were

also suggested, but the first ones have sharp absorption features in the blue which

are not seen in astronomical spectra, and the second have a PL efficiency which is

too low to explain the ERE. The first candidates which experimental PL spectrum

and efficiency matched the ERE,49,50 were Si nanoparticles SiOx and pure porous

Si particle, for which the variation of the size of the particle was shifting the peak

wavelength. These particles should be in the size range of a couple of nm, and as

both Si and O are abundant, the required total dust mass for the ERE strength was

only a fraction of the available Si and O. More recently, nanodiamonds have been

proposed as the carriers. Although the experimental spectra are not as strikingly

similar to the ERE,51 they have the advantage that C is more abundant than Si and

that ERE is correlated with CSEs of carbon stars.
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2.3 Diffuse interstellar bands (DIBs)

The DIBs are visible and near-IR absorption bands caused by gas-phase molecules

present in diffuse ISCls. Among all astronomical features demonstrating the pres-

ence of large molecules, they were the first to be discovered. The first observation,

at the Mont Wilson, dates back 1919,2 and their first assignment to interstellar

unidentified molecules dates back to 1936.52 Then, Merrill stated: ” four addition-

al detached lines, whose approximate wavelengths are 5 780.4, 5 796.9, 6 283.9, and

6 613.9 Å and an other one, a vague feature near 4 427 Å is suspected. The chemical

identification of these lines has not yet been made ”. Almost a hundred years later,

their chemical identification and that of hundreds of other lines has not yet been

made. These interstellar absorptions arise from electronic transitions in molecules

whose number of atoms is, a priori, from a few, to dozens or possibly hundreds. For

the assignment of any DIB to a specific molecule, a laboratory absorption spectrum

of this molecule in the gas phase and at cold temperatures (to mimic interstellar

conditions), must match with the DIB. Given the possibly large number of atoms

that the may molecules contain, the number of possibilities is extremely high. A

difficulty in finding the carriers is that each spectrum obtained in the laboratory

comes at the expense of a considerable work.

In the middle of the 20th century, with the advent of IR astronomy, a good

correlation between some of the strongest DIBs and the dust extinction was observed,

and the theory flipped to dust grains as carriers of the DIBs.54 Later, it was realized

that dust grains had a number of weaknesses that gas-phase molecules do not have.

These include varying absorption characteristics that should depend on the grain

size, polarization effects from grains, and most importantly the realization that some

molecules do form efficiently in harsh interstellar environments. Higher resolution

spectra later showed that the contour of some DIBs can indeed be assigned to

rotational profiles of electronic transitions in gas-phase molecules.

Absorption spectroscopy. The diffuse interstellar medium (DISM) is optical-

ly thin, that is, most of the visible light passes through. Following the Beer-Lambert

law, the absorbance A of a molecule, unitless, is proportional to the number of ab-

sorbing species N , the absorption cross section σ, and the path length L.

A = σ N L ( cm2 × cm−3 × cm) (2.2)

Amolecule = 10−15 × 10−3 × 1018 = 10−2 (2.3)
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Fig. 2.7: On top, the two plates recorded by Mary Lea Heger at the Lick Observatory in

1919. Red spectrum is an average of the digitization of her plates,53 and contend

the two first DIB observed. Blue spectrum is a 2001 spectrum toward the same

star, for comparison. Her observations of Zeta Persei aimed at measuring atomic

lines, and very little attention was paid to these two unidentified bands until

Merrill’s work,53 a decade later.

In the case of a typical diffuse cloud, the H density is around 102 cm−3, the C density

is around 10−2 cm−3, and the density of the most common molecules is around

10−3 cm−3. With an absorption cross section of 10−16 cm2 and a cloud of 1 ly depth,

the absorption is around 0.1%. The starting numbers are extraordinarily different

from terrestrial references, nevertheless, it is interessting to note that the resulting

column density and absorption are comparable to that of a meter of polluted air on

Earth.

There are three types of UV-Vis transitions, and they involve p, s, and n elec-

trons, charge-transfer electrons, and d and f electrons. Absorption of UV-Vis pho-

tons in organic molecules is limited to chromophores that contain valence electrons,

as shown in Figure 2.8. π → π∗ are the transitions of interest since they have the

strongest absorptions, typically in unsaturated organic compounds, thought to be
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Fig. 2.8: Electronic transitions of π, σ, and n electrons in organic molecules.55 They

are responsible for the UV bump, the DIBs, and possibly the far-UV rise of

extinction.

responsible for the DIBs. Charge-transfer absorptions are strong but less likely to be

relevant for the ISM since they are often very broad, and hence, would be difficult

to detect. Absorptions involving d and f electrons are also not very relevant for

the case of molecules in the ISM since they require large atoms whose abundances

are very low. Absorption spectroscopy can be done through a solid, liquid or gas-

phase medium. Theoretically, it could also be done through an ion cloud, however,

since ions keep far away from each others, extremely low sample densities make the

technique impractical.

Observational constraints. Every candidate molecule for laboratory study

has to be carefully selected, and observational constraints give the firsts criteria.

DIBs are observed in other galaxies and extragalactic objects and are maybe re-

vealing the largest reservoir of organic molecules in the universe. DIBs are not as

apparent as other features assigned to organic molecules, as for instance the UIBs.

DIBs are observed in absorption in the visible, and only optically thin sightlines in

the visible are relevant targets. This constitutes a strong observational constraint

meaning a high absolute quantity of the carriers.

One of the fundamental questions concerning the carriers is to find out whether

they are built on grains’ surfaces or via reactions in the gas phase (whether these

occur in the diffuse clouds themselves or a long time before in circumstellar shells).

It turns out that several DIBs among the strongest are well correlated with E(V - B),

but that a majority of small DIBs are poorly correlated with E(V - B).56,57 There
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Fig. 2.9: The diffuse interstellar bands seen toward HD183143, on an inverted log scale.

Electronic absorptions arising from interstellar molecules appear as little spikes.

even have been recently detected two DIBs with a negative correlation to dust

extinction.57

Another fundamental aspect of the problem, assuming that DIBs arise from

electronic transitions in gas-phase molecules, is to find if some of them arise from

the same carriers, or even from the same electronic transition. Analysis of the corre-

lations between individual DIBs has been widely performed, with machine learning

now bringing a lot of information.56,57 Several of them have been found to be strong-

ly correlated and are probably due to the same carrier, however, a large majority of

the DIBs actually display a poor correlation between each other, suggesting many

different carriers. Although this constitutes a significant piece of information, it does

not bode well for a long-term exhaustive assignment of the features. Nonetheless,

several classes of carriers could be extracted (such as the C2 DIBs) by correlating

their strength to that of diatomic or atomic absorption lines.

The unique case of the Red rectangle. Since its identification in 1975, the

red rectangle (RR) has probably been the most interesting astronomical object in

terms of emission features suggesting the formation of complex molecules. It does
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constitute the only known source which displays the ERE, the UIBs, and a few DIBs

together. Also, it is the only known source to feature the DIBs in emission, thus

constituing a unique piece of information toward their identification.

It is not known why the RR is so unique, and why these features are not

observed in other circumstellar or circumbinary nebulae. The central binary, HD

44179, is a C-rich post-asymptotic giant branch star coupled to a helium white d-

warf, situated ∼ 710 pc from us.58 An evolutionary scenario suggests that the stars

were 2.3 and 1.9 solar masses (MÀ) in their main sequence,58 as seen in Figure 2.10.

Now, the post-asymptotic giant branch star has a mass of 0.57 MÀ, with T = 7 500 K

and L = 6 000 LÀ, while the white dwarf mass is 0.35 MÀ with T = 60 000 K and

L = 100 LÀ. The presence of this much hotter companion may be the crucial fac-

tor giving to the RR its spectroscopic characteristics. The white dwarf blackbody

spectrum is centered at 50 nm and produces a small HII region in the inner dense

torus. What does it tell us about these major DIB carriers? (1) First, they are

present in environments differing a lot from DISM. The biconical flow has densities

of 5× 105 particles.cm−3 160 AU away fom the central star. The carriers seem to

survive all the way from the center to the interstellar medium. (2) Such dense and

irradiated environments may be the typical media where many DIB carriers form.

Once released in the ISM, they would survive for millions of years in more sterile

environments. DIB carriers may be produced from the strong UV irradiation from

the white dwarf, around the HII region. Such irradiation does not occur in a com-

mon circumstellar nebula. (3) Finally, the RR has a very low observed metallicity.

The dust formation from refractory elements seems to link the formation of these

DIB carriers to dust grains.

In conclusion, the chemistry of the RR is fascinating; particularly the presence

in emission of what is almost surely electronic transitions in the same molecules

that cause the respective DIBs. However, the evolution of the binary system in the

RR is a commonly observed scenario and raises the question of why its chemistry

seems unique. It is possible that this specific timing in the evolution of the two

stars is necessary to produce such a chemistry. Also, we are witnessing a very short-

lived phenomenon, making it rare in terms of astronomical observation, but still

significant since the molecules produced will probably soon seed the DISM.

Link with the ERE. The correlation between DIB and ERE carriers is dif-

ficult to assess because of the methods of observation. The DIBs are observed in
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Fig. 2.10: On top, the evolutionary scenario for the binary system which gave rise to the

RR.58 On the bottom, ERE from the RR around 6 800 Å, recorded at various

distances from the central binary. The measurements were done 2.9 arcseconds

from the binary (bottom trace) to 5.6 arcseconds (top trace).59 For a reference,

the image from Hubble Figure 2.5 has a total angular view of ∼ 25 arcseconds,

where the feature converges to the narrow 5 797 DIB.
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absorption toward distant stars whereas the ERE is observed in emission from clos-

er objects. Both, however, yield similar families of possible carriers, namely stable

carbon-based molecules60 and nanoparticles. The spectral density of DIBs overlaps

rather well with the ERE spectrum which suggests that the carriers might even

overlap.

We can note the recent findings of DIB carriers seen in emission, apart of the

RR. Emissions were found at 4 428 and 5 780 Å in the CSE of the fullerene-containing

planetary nebulae Tc 1,61 and at 6 613 Å in the diffuse ISM.62 This does not only

shows that some DIB carriers do fluoresce in the visible as the ERE carriers do, but

also strongly suggest their circumstellar origin.

2.4 The 217.5 nm absorption (UV bump)

The UV bump is yet another ubiquitous interstellar absorption feature whose carriers

are unidentified. It was discovered in 196564 and appears smoothly embedded in the

UV interstellar extinction curve, peaking at 217.5 nm. Its average equivalent width

is 130 Å,65,66 two order of magnitude higher than the strongest DIBs. Its specificity,

compared to other astronomical features, is that it has a constant peak wavelength

but a width varying from 36 to 77 nm along different sightlines (Figure 2.11). Many

models and experiments have tried to reproduce these characteristics, without any

consensus on the carriers to date. However, it is generally agreed that (1) the

carriers are different from the ones causing the interstellar extinction curve since

their presence are not correlated. (2) They are carbon-based particles processed by

the ISRF and containing a debated amount of hydrogen.67 (3) Some DIBs tend to

correlate with the UV bump height and anticorrelate with its width.68 This could

mean that the latter DIB carriers are strongly related with more UV-processed UV

bump carriers, the ones causing a heigher and narrower feature. In other words, these

DIB carriers would be end products of UV processing of the UV bump carriers. For

instance, UV processed fulleranes responsible for the UV bump would give fullerenes

for the DIBs.

Figure 2.12 shows the results from computations on nano-sized UV-processed

hydrogenated amorphous carbon grains (top), and from direct absorption spec-

troscopy on the fullerane C60H36 in n-hexane (bottom). From 1998 and 2009, respec-

tively, both fit remarkably well the astronomical data. Hence, it is still unknown
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Fig. 2.11: The UV interstellar extinction curve recorded toward sightlines with extinctions

from Rv = 2.75 to 5.5.63 The absorption band has various widths and intensities

but a constant peak wavelength. One can note the relative strength of the DIBs,

barely visible.

whether the carriers are from a restricted group of molecules, like specific stable

fulleranes,71–74 or from a broader family of nano-sized carbonaceous particles more

or less structured by UV radiation.69,75–77

Fulleranes are almost surely present, to some extent, in the ISM because C60,

C70, and C+
60 have identified and because of the fast reaction of C+

60 with the over-

whelming H. Fulleranes have also been detected in meteorites78 and constitute major

candidates for astronomical detection in general. The degree of hydrogenation of

fullerenes will, however, be limited by the fragility of the C-H bonds (2 to 3.5 eV).

Hence, the balance between formation and destruction will subtly depend on the

local conditions and on the accurate formation and destruction rates of the var-

ious fulleranes. Since all these are not known and will not be known accurately

in the near future, the way to identify fulleranes in the ISM is through laboratory
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Fig. 2.12: On top, computational data (solid lines) fitting the UV bump (dotted lines).

They are obtained from nano-sized, UV-processed hydrogenated amorphous car-

bon grains.69 In this model, the variation of the width is obtain by varying the

UV processing of the grains, and hence, their size distribution and hydrogena-

tion. More processing leads to smaller grains with less hydrogen and a shaper

feature. On the bottom, experimental data obtained from UV spectroscopy of

the fullerane C60H36 in n-hexane.70
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spectroscopy.

As for small carbonaceous particles, more recent experiments than the one

shown Figure 2.12 were performed,76 which confirm the conclusion, that irradiated

HAC materials are candidate carriers of the UV bump. However, the estimated

amount of carbon needed to produce the feature is higher than the C available for

interstellar dust grains. To this regard, fulleranes need less material for the same

absorption, and thus, do not suffer C availability.

2.5 Light scattering and the interstellar extinction

Interstellar extinction is mainly caused by dust particles and not by molecules and

does not belong, strictly speaking, to this chapter. However, the boundary between

large unidentified molecules and dust particles is not strict and light scattering could

be seen as spectroscopy extended to extremely large molecules.

Fig. 2.13: A nearby interstellar cloud for which no star lies between us and the cloud. The

effect of reddning is very apparent and related to the column density.

Within galaxies, the dust has a very important function despite its low share

of the mass. First, light scattering by dust grains allows the gravitational collapse

of dense clouds to protostars. By shielding the cloud’s core from UV-Vis and by

emitting far-IR radiation that can escape the cloud, dust grains create an anti-



2. Spectroscopy and large unidentified molecules in the ISM 40

greenhouse effect, which is vital for the formation of stars. Secondly, by protecting

some interstellar regions, dust allows the production of molecules, mostly H2, that

could not form as efficiently otherwise. Finally, dust grain’s surface is the catalyst

and the cradle of a chemistry which would not happen in the gas phase. Many large

unidentified molecules or their precursors probably form on their surface. On the

spectroscopic point of view, dust particles cause interstellar extinction in the UV-Vis

wavelengths (see Figure 2.11) and reradiate in the far-IR, in the form a blackbody

spectrum, centered around 60µm. Both the extinction and the blackbody spectrum,

are telling us about the temperature and size distribution of the dust particles. It

is, however, much more difficult to learn about their composition and structure.

Interstellar extinction has two components: absorption and scattering. Absorp-

tion is efficient for grains with sizes a≤λ, while scattering is most efficient for a∼λ.

Thus, because the number density of grains is steeply increasing with decreasing

size (n∝ a−3.5),79 so does the interstellar extinction with decreasing wavelengths

(Figure 2.11). As early as in 1930, it was demonstrated that the extinction depen-

dence on the wavelength can be approximated to λ−1.80 This dependence, though,

varies from one dusty environment to the other.81 The increase in extinction toward

shorter wavelengths gives rise to the effect known as reddening. As seen in Fig-

ure 2.13, the dust component within the cloud lets preferentially longer wavelengths

pass through. A measure of reddening is the ”color excess”:

EB−V = AB − AV = (B − V ) − (B − V )0 (2.4)

AB and AV denote the total extinctions at 450 and 550 nm, respectively. (B - V)0

denotes the intrinsic value of the star, which is known if the star is well identified,

and (B - V) the observed value.



3. EXPERIMENTAL METHOD

3.1 Overview of the setup

Fig. 3.1: Three-dimensional schematic of the experimental setup

Figure 3.1 displays the major components of the setup: an ion source, a hexapole

ion guide (6-pole), a first quadrupole mass selector (QMS), an octopole ion guide

leading to the cryogenic radiofrequency (RF) ion trap, a second QMS and a Daly

detector. The general design adds some modifications to a setup previously de-

scribed.82 The ion source has been regularly changed, to allow the ionization of a

variety of molecules, ranging in size from N2O+ to protonted C60. All these elements
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were housed in ultra high vacuum chambers (UHV) and split into five differential

pumping stages to ensure UHV in the trap and detector chambers. Six turbomolec-

ular pumps (TMP) were used, four of 250 L.s−1 and two of 520 L.s−1 for the higher

gas loads of the source and trap chambers. As TMP can only work against medium

vacuum at least, all of them were connected to a screw pump providing 10−2 mbar

when the source was operated. The vacuum could reach 10−9 mbar without loading

and after several weeks of pumping.

Most experiments were synchronized at 10 Hz with the laser. The 100 ms of

each cycle are devised as follows: ions from the source are being loaded in the trap

during ∼ 30 ms, then cooled for around 65 ms, here the laser is triggered, and ions

are extracted and detected during the last 5 ms. While ions are being cooled in the

trap, the next are already accumulating in the 6-pole.

3.2 Ion production

Ions were produced with different sources depending on the precursors used. The

setup embedded at the start a home-made electron-impact ionization (EI) source,

and then commercial (EI) and chemical ionization (CI) sources from Agilent. They

were exchanged, depending on the molecule targeted. Also, an electrospray ioniza-

tion (ESI) source was tried for the tentative production of H+hexabenzocoronene or

H+C60, without success. Below, their principle and use are described.

M + e − → M+ + 2e−

An EI source ionizes a compound present in the gas-phase. If the precursor

is solid (or liquid) at room temperature, a vapor can be obtained by heating it until

a sufficient vapor pressure is reached. The sample molecules are bombarded by 10 -

30 eV electrons, and ionized. In order to obtain a reasonable yield of ionization,

the electron energy is set substantially higher than the ionization potential of the

molecule. As an undesirable consequence, molecules may fragment. In some cases,

however, the aim is to fragment the molecule and study a specific fragment of the

precursor. It is the case in this thesis with C7H+
3 (Appendix), for which C7H8 vapor

(toluene) was used as the precursor. Even though the energy used to produce the

ions is controllable, EI is a harsh method of ionization. The energetic electrons are

produced via thermionic emission from a hot filament on which an external negative
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Fig. 3.2: Assembled and disassembled CI source. The main difference with the EI source

are the tiny apertures for the electrons to come in and the cations to come out,

to allow the pressure to build up.

voltage is applied to eject them with the exess kinetic energy. This filament is made

out of a refractory metal such as tungsten or rhenium. Mostly rhenium was used as

it is not as brittle as tungsten.

[R-H] + e− → [R-H]+ + 2e−

M + [R-H]+ → R + [M-H]+

A CI source ionizes the reagent gas (R) and the sample (M) is only subjected

to a proton transfer. In the case of a low proton affinity, a CI source is not a

sensible choice. As in the EI source, sample and reagent are bombarded by 10 -

30 eV electrons ejected from the glowing filament. It has the same design as an EI

source but all apertures of the inner reaction chamber are smaller to allow higher

pressures to build up, up to∼ 1 mbar. With adjusting the pressure of the reagent, the

partial pressure of the sample and the temperature of the filament, the proportion

of protonated sample molecules can be optimized. As for the EI source, an oven can

be plugged to it to sublimate solid samples. All five protonated species studied in

this thesis were produced in a CI source. For all these rather large species, samples

were solid and were heated in the oven to 90 ◦C for azatriphenylene (C17H11N),

fluoranthene (Fluo) and pyrene (Pyr), 120 ◦C for corannulene (Cora), and 160 ◦C
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for coronene (Cor) to obtain a sufficient vapor pressure. This method is softer for

the analyte, but it is indirect, yielding a lower ion count than the EI source.

Fig. 3.3: Schematic of the electrospray ionization process.

ESI sources offer a much softer ionization as they do not make use of energetic

particles. Electrospray ionization generates an aerosol from a liquid sample thanks

to high voltages (HV). The tip of a thin capillary containing the dissolved sample

(left in Figure 3.3) is exposed to a HV, typically 3 - 4 kV. A charge separation will

occur at the tip, with negative charges accumulating on the tip of the capillary, and

positive charges accumulating in the solution. These positive charges go away from

the HV, hence stretching the liquid and producing a so-called Taylor cone. This

cone, above a certain threshold voltage, surpasses the ”Taylor angle”, that is, gets

thin enough to break down and a jet is formed. This jet is loaded with positive

charges of around a mm escaping the HV. They will quickly decrease in size until

they are reduced to bare ionized molecules. The starting solution consists of the

analyte dissolved in a low boiling point solvent, to which is added an acid in minute

amount. An amount of solid precursor of 1 mg can make around 10 ml of solutionand

last several days of experimentation making this method much more economic than

the EI and CI sources. For the PAH precursors used in this thesis, up to several mg

could be used in only a single day. Then, expensive samples, such as large PAHs

obtained in minute amounts, must be preferentially studied with an ESI source.

The 6-pole ion guide provides thermalization of the ions before the mass

selection. The source is directly plugged onto the 440 mm long 6-pole. In the

latter, ions will undergo collisions at room temperature with the gas leaking from

the source, and be thermalized. The RF field had an amplitude of 60 to 120 V, a

frequency of 3.5 MHz, and a DC offset of 5 to 15 V. The 6-pole is made of two parts,

first a high-pressure cell, up to 10−2 mbar, and then a lower pressure cell where the

buffer gas simply leaks from the first cell. Ions leaving the source have a wide range
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of translational energies. Ions internal temperatures do not matter at that point and

will be cared of in the 22-pole trap, however, a broad distribution of translational

energies decreases the efficiency of the ion guiding and the mass selection. Inelastic

collisions with the buffer gas will reduce the translational and internal energies of

the ions and provide a more efficient handling of the ions.83

l =
RT√

2 π d 2N a P
(3.1)

Equation 3.1 gives the mean free path of a particle, depending on the pressure and

temperature of the gas. With a pressure of 5× 10−4 mbar at room temperature, a

0.3 nm molecule (such as pyrene) will have a mean free path of 0.5 m. We can see

that the number of collisions will not even reach unity if the molecule only passes by

the 6-pole. If the molecule stays in the 6-pole 40 ms, this corresponds to a travel of

a He atom of ∼ 50 m. If we consider a much slower molecule than He, 50 m leads to

∼ 250 collisions in 40 ms. This number is rather low but the pressure in the 6-pole

cannot be set much higher because of the neighboring QMS.

The 6-pole is separated from the QMS by a differential wall to prevent large

amounts of gas from the source to come in. This is especially useful for the use of an

ESI source. In the QMS, pressures above 10−2 - 10−3 mbar would create a discharge

due to the high RF voltages on the rods. This differential wall consists of a gate

valve which, when closed, enables to vent the source while leaving the rest of the

apparatus under UHV. This gate valve allows to clean, fix, or refill the source, while

the cryostat is still running, saving several hours.

3.3 Mass selection

The apparatus has two QMS, the first one selecting which ions from the source will

be studied in the trap, and the second one selecting the photodissociation products

to be counted. A QMS consists of four precisely set parallel rods (see Figure 3.4) on

which a potential± (U0 + V0 cos(ω.t)) is applied to opposite pairs of rods. U0 is a DC

voltage and V0 the amplitude of the RF oscillations. These oscillations are necessary

because a charged particle cannot be confined in space by constant potentials. This

fundamental principle, stated mathematically, express that no global minimum of a

potential energy surface (PES) can be created by any spatial arrangement of electric

fields around a charged particle. The way around this limitation was found by W.

Paul and H. Steinwedel in 1953 and is the use of oscillating electric fields.
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Fig. 3.4: Picture, PES, and electrical diagram of a QMS. The top PES is the instantaneous

potential. The bottom PES is the effective potential created over time, which

enables to confine the charge.

Effective potential. Oscillating electric fields still do not create a global

minimum in the PES at an instant ”t” (top PES in Figure 3.4). However, the

average over time does create an effective potential well (Bottom PES in Figure 3.4).

If the inertia of the particle suits the amplitude and the frequency of the oscillations,

the particle is confined. If the mass of the particle is too low, its inertia allows it to

escape within a single oscillation of the field. Above a certain critical mass, particles

are too slow to react, fall into the well, and are confined. The RF voltages act as an

adjustable high-pass filter, the critical mass depending on the frequency. Now, to

select a single mass, a low-pass filter has to be combined with the high-pass filter.

To achieve this, opposite DC potentials are added to the RF to opposite pairs of

rods (D-C source in the diagram of Figure 3.4). Negative DC voltages destabilize
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high masses, and positive ones, low masses. By adjusting the DC offsets, one can

make the high-pass and low-pass filters overlap over the required range.

Resolution. In the description above, the particle has no initial radial and

axial kinetic energy. The energy distribution is closely related to the most important

quality of a QMS, the resolution. The ability of a QMS to differentiate two molecules

with similar masses depends on the quality of the mechanical assembly of the rods,

the rod surfaces, the electric fields, and as an external parameter, on the quality

of the ion beam. The QMS does not operate the same way on particles of the

same mass if they have different radial and axial initial speeds. In any apparatus

containing a mass spectrometer, it will be important to obtain an ion beam with an

energy distribution as narrow as possible.

Calibration. Figure 3.5 shows two mass spectra obtained from toluene vapor

(top trace) and krypton gas (bottom trace) introduced in the EI source. These

exemplify the calibration process. The QMS is able to separate molecules with

different masses (1 amu separation between each in Figure 3.5), but the absolute

position of the peaks must be reference at least once, with a compound producing

a known mass spectrum. In top spectrum of Figure 3.5 we cannot tell, a priori,

which is the mass peak of toluene among the several dissociation and recombination

products. To do so, we identify the main peak of krypton spectrum at 81.8 amu,

compare it to the literature, which says 84 amu, and we can realize that our mass

spectrum is shifted by 2.2 amu toward lower masses. In consequence, the toluene

peak is actually the second largest of the spectrum at 89.8 amu. This means, by the

way, that most of the toluene molecules do not survive in the EI source with H-loss

dominating the spectrum.

A QMS can be a simple ion guide as well when the DC voltages are not applied.

To this regard, RF ion guides are a good solution to transport ions over a significant

distance without much losses compared to a stack of electrodes of the same length.

3.4 Ion traps

Two ion traps were used during this thesis, a 22-pole trap for three years and a wire

4-pole trap during the last year. Figure 3.6 shows the two traps side by side. The ion

trap is the heart of the setup, where the mass-selected ions will be cooled to a few

kelvins and probed by the laser. Each cycle, the trap is filled with ∼ 100 000 ions.
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Fig. 3.5: A mass spectrum of krypton, in black, and toluene, in red, produced in the EI

source. The main krypton isotope appears at 81.8 amu instead of 84 amu (dashed

black line), indicating a systematic error in our mass spectra of -2.2 amu. When

one shifts the mass spectrum of toluene of +2.2 amu, one realizes that toluene,

now at the red dashed line, is not the main product of the source. EI is indeed

not a soft method of ionization.

Ions are trapped radially by the oscillating field applied on the rods, and axially by

the electrostatic potential of the entrance and exit electrodes. He is leaked in the

trap and at the end of the trapping time, the laser is triggered. Shortly after, the

voltage of the exit electrode is lowered by 2 V, and parent ions and laser induced

dissociation (LID) products leave the trap to be mass selected (Figure 3.12).

The trap chamber is pumped by a TMP (685 l.s−1). When the buffer gas is

pulsed into the trap, the pressure reaches 10−5 mbar, and without, can go down to

10−9 mbar. The trap is mounted on the second stage of a closed cycle cryocooler

achieving of 4 K and is enclosed in an aluminum shield which cooled to 30 K by

the first stage of the cryostat. During the course of this project, the radiation
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Fig. 3.6: The quadrupole wire trap (left), compared to the 22-pole trap (right).

shield surrounding the trap was replaced for a simpler design. The previous design

was made of seven plates that had to be carefully assembled together with indium

patches between them. Disassembling and assembling this shield turned out to be

a laborious task when the trap needed regular maintenance. Figure 3.7 shows the

current design made of an aluminum block and a closing plate, and the use of indium

became unnecessary. Another aspect of the design is that the outer electrodes of

the trap are now pressed in the shield itself. Before, the trap outer electrodes were

set on the trap and exposed to the 300 K blackbody radiation. Now, the 300 K

blackbody radiation is only affecting the radiation shield. Electrical wires to the

trap are precooled along with the radiation shield, and 0.1 mm Kapton insulated

wires are used to avoid heat to be transported to the trap. Two resistive heaters

and three silicon diode temperature sensors are mounted on different parts of the

trap to have an overview of the temperature between 4 and 315 K.

He buffer gas is introduced in the trap via a piezo valve. 10 V at 3.3 kHz is

applied to resonate the piezo-element (Figure 3.8). The valve takes a couple of ms to

be in resonance and opened. There exist, however, several ways of using these valves

within the trapping cycle: One can leak the gas in continuous. This is the simplest

method, not only because one just needs a leak valve, but also because the number
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Fig. 3.7: Radiation shield with a simple design, allowing quicker maintenance on the trap.

The shield does not require the ues of indium because it is mostly made of one

block. Also, it can be removed without worrying about the wires to the trap

since these pass in some grooves between the shield and the tube.

density in the trap is always known and easily characterized. As a consequence, the

behavior of the ions is also easier to understand. One can also select within the

trapping cycle, periods of time with gas and periods without gas. This leads to a

finer monitoring of the number density depending on whether the ions are entering

the trap, already cooled or exiting. This method was used because it allows cutting

the gas before the extraction of the ions, avoiding collisions induced dissociations

(CID). CID on the way to the detector false the results when PD is the method

to detect the absorption. Also, higher He densities can be achieved compared to

the continuous regime. One can also use a burst of gas by applying a short pulse

of 100 - 300 V bending the piezo element. The advantage is to reach even higher

number densities in the trap for a few ms for a more efficient cooling. Again, to

avoid CID, a pump out period is necessary. This method can be complemented by

resonating the piezo element after the burst.

An important aspect of buffer gas cooling is the number of collisions undergone
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Fig. 3.8: Schematic of a piezo valve. It can be continuously opened with a high voltage,

or resonated with low voltage at the resonance frequency of the piezo element.

by one molecule with He during the trapping. This number depends on (1) the

axial and radial energy distributions of the incoming ion beam, ranging from 0.1 to

2 eV. Ideally, the ion beam has an energy distribution of ≤ 200 meV, but in practice,

analysis of the ion beam around the trap area showed that this was rarely the case.

(2) The mass-dependant secular and micro-motions caused by RF voltages. These

are accurately known in theory for a 4-pole trap and a given ion mass. (3) The

density and temperature of the He buffer gas. These are approximately known since

we do not measure the pressure directly in the trap but only in the vacuum chamber.

Also, we measure an average pressure when the He is actually pulsed and the He

density in the trap varies over several orders of magnitude over a trapping cycle.

Estimations using the pressure in the whole trap chamber and the flow conductance

of the trap and TMP give a He density of 2 to 5× 1015 cm−3 in the trap. (4)

During the 30 ms of filling time, the ions can arrive at any time, which can be

averaged to 15 ms. (5) The size and geometry of the molecule are known. As we

can see, several of these parameters influencing the number of collisions are not

well characterized. Assuming a He density of 5× 1015 cm−3, a mean velocity of

the He atoms of 190 m.s−1 at 6 K, a cross-section for Cor+ of 6× 10−19 m−2 and

motionless ions, we obtain 450 000 collision.s−1. This calculation does not take into

consideration both, the micro- and secular motions of the ions due to the RF, and

the initial axial and radial speed of the ions. For this reason, the true number of

collisions is probably significantly higher.

22-pole vs 4-pole ion trap. The 22-pole trap84 is 36 mm× 10 mm with RF

voltages of 40 to 80 V, f = 7.4 MHz, applied on the 2× 11 stainless steel rods. The

4-pole wire trap85 is 36 mm× 10 mm with RF voltages of 40 to 200 V, f = 2 MHz,

applied to 2× 2 pairs of poles. Each of the four poles of this trap is made of six

wires that mimic a parabolic rod, making a total of 24 wires. These wires, which are
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Fig. 3.9: Radial effective potentials created by the oscillating fields for different number

of poles. The quadrupole has a much stronger, focusing effect. On the other

hand, a high number of poles allows to store more ions, and have less interaction

between the latter and the RF.

technically 1 mm rods, are used since it is easier to set six rods to form a parabolic

shape than build such a solid rod, and the potential created is very similar. The main

difference between the two traps is the effective potential built by each arrangement.

The higher the number of poles, the wider the potential well created, and an infinite

number of poles would theoretically create a uniform (square) trapping potential

within the inscribed radius.

Veff =
q2n2V 2

0

4mω2R2
0

(R/R0)2n−2 (3.2)

The effective potential of the 22-pole interacts less with the ions and allows more

of them to be trapped than a 4-pole (as much as 40 times more) and is a sensible

choice for very low ion internal temperatures. However, the 22-pole revealed to have

a serious disadvantage. The ion cloud is much wider than the ∼ 1 mm2 laser beam

probing it. As a consequence, only a small percentage of the trapped ions are made

useful each cycle. Even worse may happen, some ions may stay close to the rods

due to patch potentials from hardware’s imperfections. This can create some spatial

mass selection that would bias the experiment. On the other hand, in a 4-pole, ions

are tightly confined in a section ≤ 1 mm2 and no such effects can happen, and most

importantly, all ions are probed by the laser. The first experiment realized with the

4-pole wire trap was done with OC4O+, whose electronic spectrum had just been
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Fig. 3.10: Electronic transition of C4O+
2 recorded via the photodissociation of their He

complexes in a 22-pole trap (red trace), and a 4-pole trap (blue trace). For

reference, the spectrum recorded via photodissociation of the bare molecule, via

the loss of CO, is shown in black. With enough laser power, the blue spectrum

is saturated to zero and shows that all the ions in the 4-pole trap can be probed

by the laser.

recorded by monitoring its photodissociation via CO-loss. This experiment proved

that the 4-pole trap was more adapted to our needs (see Figure 3.10), since the ion

cloud and the laser beam almost perfectly overlap.

As a note, RF heating effects, that is, increased micro and secular motions of

the ions due to the RF, are higher in a 4-pole than in higher order multipoles. Hence,

they could be seen as a limitation of the 4-pole trap for the purpose of obtaining

He complexes. However, it has been shown that these effects only play a significant

role at very low temperatures of ≤ 1 K,86 and hence, are not a concern.
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Fig. 3.11: Schematic of a Daly detector.

3.5 Detection and data correction

Mass-selected products of the photodissociation (PD) are collimated and accelerat-

ed by three electrodes into the Daly detector (Figure 3.11). Cations are directed

toward the center of a polished stainless-steel surface set at -30 kV. The hit releases

a shower of electrons which are accelerated away onto a scintillator. From these, the

scintillator produces photons emitted toward a photomultiplier (PMT). The Daly

detector can count ions at a rate of 108 s−1. This is observed experimentally as the

signal saturates at around 90 million ions per second. Typically, such a strong sig-

nal is only attainable with a pure He or Ar ion beam guided from the source to the

detector without trapping. Pulses from the PMT > 5 mV are selected and amplified

by a discriminator and counted by a 400 MHz frequency counter.

The Daly detector relies on a somewhat complicated cascade of events and

simpler schemes for ion detection exist. However, the -30 kV of the Daly detector

does not have an intrinsic mass selection and has a high count rate, whereas other

types of detectors using much lower voltages have an undesirable lower sensitivity

at higher masses, and count rates of around 10 MHz. Furthermore, ions only strike

the dynode, allowing the whole detector to have a longer lifetime.

As shown in Figure 3.12, a Labview program sends some commands to the

pump laser, piezo valve, and trapping electrodes, while acquiring the number of ions

from the counter (Figure 3.12). This constitutes the raw signal, that is, the number

of ions of a specific mass leaving the trap, per second.
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Fig. 3.12: Voltages involved in the trapping cycle and spectrum aqcuisition.
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Not all the ions of the product mass are relevant. Some of them, the most

energetic ones, may have passed over the voltage barriers of the trap, during the

trapping time, and reach the detector without being trapped. In order to avoid

taking them into account, only the ions exiting the trap during the 5 ms of extraction

are counted. This latter count, recorded as a function of the laser wavelength, must

be calibrated in wavelength (x-axis) and power-corrected (y-axis). The dye laser sets

the wavelength by monitoring the position of the step motor tilting the gratings.

This system does not give a reliable wavelength and a calibration is done with a

wavemeter. Also, the power of the laser beam is not a constant function of the

wavelength and will dramatically influence the PD efficiency. To account for this,

the emission spectrum of the dye used is recorded and the spectrum of the molecule

is corrected as follows. The dependence of the PD on the laser power is measured,

as shown in Figure 3.13. If all molecules need only one photon to be dissociated

within the millisecond scale of their exiting the trap, the power dependence will be

linear. In Figure 3.13 it can be seen, by fitting the measurements to a polynomial

function, that the power dependence is quadratic. This function is then applied to

the emission curve of the dye used, as seen in the top of Figure 3.14. The raw signal

can now be divided by the corrected dye emission curve. As seen in the bottom of

Figure 3.14, the original data, in black, were distorted by the dye emission curve,

which moreover, have a quadratic dependence on the PD.
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Fig. 3.13: Example of the power dependence of the PD on a logarithmic scale. The fit

shows a quadratic dependence.
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Fig. 3.14: On top, the dye emission curve before (black) and after (red) correction. The

fit of the power dependence showed in Figure 3.13 is applied to the black curve,

to account for the quadratic power dependence. On the bottom, the original

spectrum (black) is divided by the corrected dye curve (red). The origin band,

previously the less intense band, becomes the most intense.



4. TESTING THE SETUP

4.1 Some aspects of the newly built setup

The electrical reference. The apparatus was not referenced to the ground since

it contained too much electrical noise for the experiment. Instead, all electrical

potentials of the apparatus were referenced to a master potential (MP), with the

exception of the two commercial QMS, which are not electrically floatable devices.

This master potential was connected to the vacuum chambers. If the MP was 5 V,

and a guiding electrode had 12 V, then, the voltage between this electrode and the

surrounding vacuum chamber was 17 V. Ideally, by varying the MP, one could have

more control over the translational energy of the ion beam. Raising the MP would

slow down the ions and possibly stop them if the MP is higher than their initial

kinetic energy. To be effective, the MP must absolutely be applied to every single

device. However, the two QMS cannot be referenced to the MP, and made it lose

its value.

Concerning the energy of the ions within the guiding elements, large pres-

sure gradients, and hardware’s imperfections likely render any estimation of the

ion beam’s behavior flawed. When significant gas loads are present such as around

the source and the trap, the ion optics do not behave ideally anymore due to un-

known pressure gradients and gas flows. Also, inhomogeneities in the electric fields

of the electrodes, due to mechanical imperfections, or noise on the DC voltages,

create unpredictable effects on the ions. Slight deviations from theoretical behavior

in any part of the apparatus undergo a snowball effect downstream. A realistic

simulation of the behavior of the ions need simulation tools taking accurately these

phenomena into account, and not merely electrostatic effects.

In contrast to a theoretical approach, the method which did allow to control,

to some extent, the ion beam was to track the ion current along the setup. Thanks

to a very senstitive current meter (down to pico-ampere), we optimized the voltages

upstream from where we measured the ion beam intensity. This has to be done for
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every potential one by one, starting from the source were it is straigthforward to

”find” the ion beam, until the detector. This method is laborious but robust and

allows to spot any malfunction along the way. We did this procedure every time we

did a major modification or maintenance on the setup.

Fig. 4.1: Simulated and color-coded transversal probability distributions of ions in a 22-

pole trap.87 The trapping electrodes voltages was varied and resulted in small

changes in the ion temperatures but in large changes in the cylindrical distri-

bution of the ion cloud. With increasing electrode voltage, the ions are pushed

closer to the RF rods.

Ion distribution in the 22-pole trap. A major issue encountered during

the first experiments on H+Pyr and H+Cor was the absence of observed PD of the

ions. We then realized that PD does appear when the laser is triggered during the

filling or extraction periods, but does not appear when it is triggered during the

trapping time. Probing the ions during the filling time is obviously wrong since the

ions are not cold yet. For this reason, and before finding the cause of this issue, we



4. Testing the setup 60

triggered the laser during the extraction. We suspected the ion density in the center

of the trap to be lower than that toward the rods, forming a cylindrical torus ion

cloud. Geometrical imperfections, as well as increased voltages, do create distorted

ion clouds. In particular, it has been demonstrated that in non-ideal situations, as

seen in Figure 4.1, ions in a 22-pole trap tend to gather toward the rods.87,88 In this

simulation, the temperature increase is not as worrying as the distortion of the ion

cloud.

On the other hand PD was observed when triggering the laser during filling or

extraction because when the ions pass through the entrance or exit electrode, they

concentrate in the center. There, they are along this axis and accessible to the laser

beam. As a consequence, when using the 22-pole trap, we recorded the spectra of

internally cold molecules by triggering the laser around 100µs after that we lowered

the exit electrode voltage. As it will be detailed in Chapter 6, the method consisted

in a subtle adjustment of this timing, dependent on the trap voltages, so that the

ions are probed ”on their way out” but still inside the trap to avoid collisions with

the rest gas. With an increased experience of the apparatus and a better adjustments

of the trapping parameters this issue has tended to wear off. Nevertheless, this ion

cloud distortion, already significant at rather low voltages (see top right simulation,

with 0.5 V, in Figure 4.1), constitutes a serious issue of the 22-pole trap, and will

be further discussed in Chapter 6 and 7.

4.2 Internal temperature of N2O
+

N2O+, whose gas-phase electronic spectrum had already been recorded at low tem-

peratures,89,90 was chosen to assess quantitatively the buffer gas cooling of the ions

thanks to the analysis of the rotational profile of the bands. The Ã 2Σ+ (2,0,0)←
X̃ 2Π+

3/4(0,0,0) transition of N2O+ had was recorded. The energy of one photon

lies above the dissociation threshold. Figure 4.2 shows the experimental spec-

trum. Using Pgopher,91 the rotational profile was simulated using the constants

A′′= 132 cm−1, B′′= 0.412 cm−1, D′′= 2.99× 10−7cm−1, B′= 0.433 cm−1, and

D′= 2.86× 10−7 cm−1. By comparison with simulated rotational profiles, it was con-

cluded that the rotational temperature of N2O+ ions was 11 K. This constitutes a

slight improvement compared to the 10 - 15 K of the latest experiment.90

A more qualitative way to assess the low internal temperature of the ions is
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to observe the formation of complexes with He. The formation of the complexes

depends on the He density, the interaction time with the buffer gas, and the mass

and geometry of the ions themselves. A measurement of the number of parent ions

and complexes produced in the trap as a function of the trapping time is given

Figure 4.3. More He attach to the ions as the interaction time is increased, but

counteracting effects dissociating the complexes seem to be acting in the trap and

prevent a complete conversion.

3 0 9 0 0 3 0 9 0 5 3 0 9 1 0 3 0 9 1 5 3 0 9 2 0 3 0 9 2 5
υ(c m - 1 )

E x p

1 1  K

Fig. 4.2: The Ã 2Σ+ (2,0,0)← X̃ 2Π+
3/4(0,0,0) transition of N2O+ recorded by monitoring

the number of NO+ fragments exiting the trap, as a function of the laser wave-

length. A simulated profile of the band at a rotational temperature of 11 K shows

the best match with the experiment.
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Fig. 4.3: Production of He - N2O+ complexes as a function of the trapping time. The

longer the interaction time, the higher the conversion. Unknown effects in the

trap were at play, causing a saturation of the conversion at higher trapping times.



5. MEDIUM-SIZED PROTONATED PAHS (H+PAHS)

After that the setup was successfully tested with N2O+, medium-sized H+PAHs

were targeted, for two reasons. First, they were suggested as DIB carriers and

this will be detailed in the next section. Also, they were easier targets in terms

of photochemistry than other possible projects for this setup such as bare PAH or

fullerene cations. The electronic spectra of medium-sized H+PAHs can be recorded

by monitoring their photodissociation via H-loss, following the absorption of only

two visible photons. The reasons are their lower dissociation threshold and an IVR

favorable to H-loss on the protonation site. In contrast, medium-sized PAHs or

fullerenes do not fragment upon the absorption of two visible photons and require

a more elaborate detection technique (see Chapter 7). Hence, before going for more

challenging species, medium-sized H+PAHs appeared as a good start for the setup.

The experimental setup has been described in Chapter 3. All five H+PAHs were

produced from a solid sample of the PAHs heated to ∼ 90 - 160 ◦C in a CI source.

90 ◦C for the smaller pyrene and fluoranthene molecules, 120 ◦C for azatriphenylene

and corannulene, and 160 ◦C for coronene. The vapor created was bombarded with

20 - 50 eV electrons in the presence of toluene (C7H8) vapor. The proton affinity of

C7H8 is 784 kJ mol−1 and is lower than that of all studied PAHs+. These are 869,

861, 816, ∼ 950, 829 kJ mol−1,92 for Pyr, Cor, Cora, C17H11N and Fluo, respectively.

The following protonation reaction is thus exothermic:

C7H9
+ + CxHy→CxH+

y+1 + C7H8

For all spectra, visible radiation from a tunable dye laser was used (0.07 cm−1 band-

width with ≤ 1 mJ of energy per pulse). The electronic spectra measured were

calibrated with a wavemeter, and the intensities of the recorded absorption features

were power-corrected.
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5.1 Introduction

Short timeline

• 1980s: PAHs are probably responsible for the UIBs, so they might also be

responsible for the DIBs.31,93,94

• 1990s: Experimental electronic spectra of small PAHs: no match with the

DIBs.95 However, PAHs react with hydrogen, so H+PAHs might populate the

ISM.

• 2000s: H+PAHs should have strong transitions in the visible.

• 2010 - 2012: Matrix and gas-phase electronic spectra of small protonated PAH-

s.

Results encourage the study of larger species.

50 years after the discovery of the first DIBs, a new kind of spectroscopic feature

was observed, the UIBs. The UIBs are generally attributed to vibrational transitions

in gas-phase molecules with aromatic and/or aliphatic structure. It was suggested

in the 1990’s that the elusive DIBs could also be due to PAHs.31,93,94 Although,

PAHs would be more likely in the cationic form in the DISM. The spectra of many

small PAHs, cationic and neutral, were recorded in cryogenic rare gas matrices.95

In 30 years of laboratory investigations, no match with any DIB was found. The

attention was then brought toward protonated PAHs (H+PAHs) when the reaction

rates of some PAHs+ with H, O and N atoms (mostly neutral in diffuse clouds) was

measured.96 It was estimated that H+PAHs are likely to deplete PAHs+ if the later

are originally formed. Radiative association, photodissociation, photoionization,

and electron recombination are the main physical processes competing in the ISM

to produce PAHs in various charged and hydrogenation states. To know which

specific members of this immense family to study in the laboratory, one must obtain

first all the molecule specific reaction rates in the laboratory, as inputs of simulations

of specific interstellar environments.
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5.2 PAH+ chemistry with H

The first estimates of the hydrogenation states of PAHs in diffuse clouds obtained

in a selected ion flow tube gave significant reaction rates of Pyr+ and anthracene+

with H atoms,96 and were confirmed by later studies,96–100 as shown in Figure 5.1

for Cor+. In the case of Pyr in a diffuse cloud, with nH ∼ 10 cm−3, T ∼ 100 K,

and the derived rate coefficient k= 3.1×10−10 cm3 s−1, from the first study in the

1998, the hydrogenation timescale of Pyr+ was estimated to be tH = 1/(nH × k)

= 1/(10×3.1×10−10) = 10.2 yr, and similarly, the one of anthracene+ was found to

be 7.6 yr. Electron recombination timescale was found to be te = tH×6. The authors

then suggested that protonated species could dominate the PAH+ population, how-

ever, they conclude that laboratory studies should focus on large H+PAHs. Indeed,

PD processes were omitted in these estimations, and some models had already pre-

dicted at the time that small species like anthracene would not survive the typical

IRSF.101

Fig. 5.1: Reaction rates of some small H+PAHs with H, O and N measured in a selected

ion flow tube experiment.96–100

The amount of H atoms covering PAHs is mostly a balance between UV-Vis

induced fragmentation via H-loss and reactions with atomic H. Later models showed

that, not only PD is a key process, but that the chemical state of a PAH is extreme-

ly sensitive to the H density and the ISRF. As a consequence, it is still currently

impossible to accurately determine the charge and hydrogenation state of a specific

PAH. However, general conclusions could be drawn, such that small PAHs like Pyr

and anthracene will be destroyed,102 and that much larger PAHs can be treated

without taking into account PD, as they will be able to internally distribute the
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Fig. 5.2: Charge and hydrogenation states of five different PAHs sizes102 (C16Hn, C24Hn,

C32Hn, C50Hn, and C80Hn). The environmental parameters for the diffuse cloud

are nH = 100 cm−3, f = 0.5, T = 100 K, ne = 10−4nH cm−3.

photon energy, without even an H-loss. Figure 5.2 shows the results of the calcu-

lation applied for typical diffuse cloud conditions. Even a molecule like Cor will be

dehydrogenated, and only around ∼ 50 - 100 atoms, the protonated form of a PAH

becomes appreciable.

5.3 H+PAH expected transitions

Since no laboratory electronic spectra of isolated H+PAH in the gas phase or rare gas

matrices were reported at that time, calculations were performed on some H+PAH.

Closed-shell neutral PAHs and isoelectronic H+PAHs have many of their electron-

ic transitions falling in the UV. However, the case of coronene and ovalene have

been studied theoretically,103 and has shown that the protonation can lift electronic

degeneracy and strong transitions in the visible are predicted for these medium-
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Fig. 5.3: TD-DFT absorption spectra for (a) protonated coronene and (b) neutral

coronene.

sized H+PAHs. Figure 5.3 shows the expected transitions of protonated and neutral

coronene exemplifying the trend. The results were similar for ovalene, except that

the protonated form has four isomers. The conclusion was that large H+PAH are

good candidate carriers of the DIBs and that efforts should be done to obtain ex-

perimental spectra. The first experimental spectrum showing the absorption in the

visible of a H+PAH was done on naphthalene.104 The spectrum contained dozens

of absorption bands around 500 nm and did not match any DIB, but this is one of

the smallest PAHs and the work was asking for the spectra of larger species. The

H+PAH hypothesis has weaknesses even for candidates containing around 60 - 100

carbon atoms. Protonation weakens, in two ways, the intensity of the electronic

transitions. First, protonated species appear in several isomeric structures in most
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cases, and also, by decreasing the symmetry of the molecule, protonation often dis-

tributes the absorption over more vibrational modes, as seen Figure 5.3 for H+Cor.

Astronomical detection becomes then much less likely than for bare PAHs+, given

that most DIBs show little correlation which each other.

The spectra of medium-sized H+PAHs presented in the next sections were,

in view of the above-mentionned constraints, already largely doomed in terms of

astronomical identification, however, their obtention does not only constitute an

experimental validation of the models, but also a necessary step if one wants to be

able to obtain the spectra of even larger and more challenging species.

For all H+PAH studied in this thesis, a direct absorption spectrum had already

been obtained in a rare gas matrix. These spectra were complemented by theoretical

calculations for the assignment of the absorptions features to the different isomers

potentially present in the matrix. These matrix data made the task of obtaining

the spectrum in the gas phase much easier since the positions and strengths of the

absorption bands were known, but also the structural assignment was done.



5. Medium-sized protonated PAHs (H+PAHs) 69

5.4 Protonated pyrene (H+Pyr)

The absorption is monitored by a one-color two-photon process; the 1 1A′←X 1A′

electronic transition (Figure 5.4) of H+Pyr is resonant with the first photon. The ex-

cited electronic state lies below the threshold for the H-loss, and thus, the absorption

of a second photon is used to bring the system to the fragmentation continuum. The

excess energy is sufficient such that H-loss is fast enough and the residual C16H+
10

is detected. Visible radiation from a tunable dye laser (R∼ 270 000, with ∼ 3 mJ

energy per pulse) was used.

According to the data obtained in the 6 K neon matrix,105 the most stable isomer

of H+Pyr is the one shown in Figure 5.4, and its 1 1A′←X 1A′ allowed electronic

transition has an origin band around 487.5 nm. The absorption in the gas phase was

found on the basis of these data, and other less stable isomers were not detected.

In the spectra obtained, the relative intensities are likely distorted from a linear

measurement. PD is dependent on the specific vibrational mode excited since some

of them will lead to faster H-loss than others, and artificially increase the intensity

of specific bands. However, the extent of this distortion can be assessed to some

extent by comparing the gas phase and matrix spectra.

In the bottom spectrum, obtained first, the bands are broader and hot bands can

be seen ∼ 1.3 nm to the red of the strongest absorptions. A low energy vibrational

mode of the ground electronic state was populating almost 10% of the ions. In the

top spectrum of Figure 5.4, all transitions originate from the lowest vibrational level

of the ground electronic state. A narrowing of the bands also reveals colder ions.
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Fig. 5.5: Absorption profile of the origin band in the 1 1A′←X 1A′ electronic transition

of protonated pyrene (bottom) and the simulated profile at 15 K (middle) and

100 K (top).

To assess experimentally the temperature of the ions, the origin band was

recorded with a resolution of 0.001 nm and compared to simulated spectra at d-

ifferent temperatures (Figure 5.5). Simulating the rotational contour of the o-

rigin requires knowing the rotational constants of the ground and electronic s-

tates. Since these are not known for the excited state, a procedure used for large

molecules is followed.106 The molecular constants of the 1 1A′ ground state were cal-

culated using B3LYP/ccpVTZ theory (Gaussian 09107) yielding A′′= 0.03383 cm−1,

B′′= 0.01817 cm−1 and C′′= 0.01185 cm−1. In the calculation, these values were

fixed and the values for the 1A’ were varied along with the temperature. Assum-

ing a Boltzmann distribution and parallel b-type transition, the simulation is fitted

to the experimental profile. The best agreement is obtained with the following val-

ues: A′= 0.0348 cm−1, B′= 0.0168 cm−1, C′= 0.0118 cm−1, ν̃00 = 20575.35 cm−1, and

a rotational temperature of 15 K. The most significant change between the 1 1A′ and

1A′ states is for the B constant (8%), and indicates a decrease in the CH2 bond

angle at the protonation site. Also, the shoulder to the red of the origin band is

comparable for the simulation at 100 K and the bottom spectrum in Figure 5.4, giv-

ing an estimate of the temperature for the later. Given the accuracy of the fit, one

can also confirm the assignment of the spectrum to the isomer shown in Figure 5.4.
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5.5 Protonated coronene, (H+Cor)

Coronene protonation sites on the peripheral C are all equivalent. Isomers with

inner H+ addition are energetically higher by ∼ 65 kJ mol1 and are not expected in

the CI source.108,109 The (1) 1A′← X 1A′ symmetry-allowed transition of H+Cor

was first observed in a 6 K neon matrix. The transition was sought in the gas

phase on the basis of these data and is presented Figure 5.6. The origin band is

measured at 695.22 nm, 0.4 nm blue-shifted from the matrix. The (1) 1A′ excited

state lies ∼ 2.5 eV below the thermodynamic threshold for H-loss; therefore, two or

more photons are required to bring H+Cor to the fragmentation continuum.

Protonated coronene is of Cs symmetry and has 105 vibrations, 70 of a′ and 35

of a′′ symmetry. Band positions and suggested assignments are given in Table 5.1.

The experimental values assigned are in agreement with the calculated excited-state

frequencies (B3LYP/cc-pVTZ level of theory), except in the lowest vibration ν105;

theory predicts it to be at 64 cm−1, whereas the experiment gives 55 cm1, which

is deduced from double quanta excitations. The intensity ratio of the 2ν105 to the

origin band suggests that the fragmentation pathway goes through the CH2 rocking,

leading to H-loss. This dissociation is the lowest energy channel for all smaller

H+PAHs110 except for protonated benzene,111 where H2 loss dominates. Molecular

hydrogen loss is not observed for H+Cor. As for H+Pyr, the relative intensities of

the bands in Figure 5.6 are probably distorted due to the PD processes, involving

two to three photons.

The excitation of the in-plane a′ modes in the (1) 1A′ state is observed at +347.9,

+357.7, +369.8, and +373.8 cm−1. They are attributed to the ν70, ν69, ν68, and ν67

modes, respectively, listed in Table 5.1. In the neon matrix spectrum, the excitation

of the vibrational mode ν69 (ring deformation) in the excited state is observed at

+361 cm−1, which is comparable to the gas-phase recording at +357.7 cm−1. There

are more distinct absorption bands in the (1) 1A′← X 1A′ transition of H+Cor in the

gas phase than in a neon matrix. In crystalline neon, low-frequency bending modes

are not pronounced because their larger amplitudes are hindered, and solid-state

effects broaden the spectrum.
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Tab. 5.1: Band Maxima (± 0.2 cm−1) and suggested assignments of the vibrational bands

in the (1) 1A← X 1A electronic transition of H+Cor in Figure 5.6

Label λ/nm ν̃/cm−1 ∆ν̃/cm−1 Assignment

00
0 695.22 14 383.8 0 00

0

a 689.93 14 494.2 110.4 2×ν105

b 687.71 14 541.1 157.3 ν105 + ν104

c 687.20 14 551.8 168.0 2×ν104

d 686.53 14 565.9 182.1 ν105 + ν103

e 686.10 14 575.2 191.4 ν105 + ν102

f 685.43 14 589.4 205.6 ν104 + ν103

g 684.61 14 606.8 223.0 4×ν105

h 684.46 14 610.0 226.2 ν104 + ν102

i 683.79 14 624.4 240.6 2×ν103

j 683.15 14 638.1 254.3 ν103 + ν102

k 681.98 14 663.2 279.4 2×ν105 + 2×ν104

l 681.60 14 671.4 287.6 ?

m 681.25 14 678.8 295.0 ν105 + ν100

n 680.52 14 694.7 310.9 ν102 + ν101

o 679.99 14 706.0 322.2 ν104 + ν100

p 679.34 14 720.2 336.4 6×ν105

q 679.18 14 723.7 339.9 4×ν104

r 678.93 14 729.1 345.3 2×ν105 + 2×ν103

s 678.81 14 731.7 347.9 ν70

t 678.36 14 741.5 357.5 ν69

u 677.80 14 753.6 369.8 ν68

v 677.62 14 757.6 373.8 ν67

w 677.46 14 761.1 377.3 2×ν105 + 2×ν102
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5.6 Protonated corannulene, (H+Cora)

Cora+ possesses three non-equivalent protonation sites: rim, spoke, and hub, from

the outer to the inner C of the structure.112 According to DTF/PBE0 and ri-MP2

calculations, the lowest energy C20H+
11 structure is the hub-isomer. The rim is

located only 7 and 20 kJ mol−1 above the hub by these methods. This difference is

too small to exclude the rim isomer. On the other hand, the calculations exclude

the spoke isomer.

A weak electronic transition around 520 nm and a much stronger one starting at

396.55 nm were detected (Table 5.3). The 3 1A excited state lies below the ∼ 2.5 eV

thermodynamic threshold for H-loss. Therefore, one photon promotes C20H11
+ to

the 3 1A state and a second into the fragmentation continuum. The 520 nm feature

(Figure 5.7) is broad and no vibrational structure in the 3 1A← X 1A electronic

transition is discernible. The relationship between the bandwidth and the excited

state lifetime τ is given by ∆ν= 1/2.π.τ , with ∆ν in Hz. The whole absorption

has FWHF of ∼ 50 nm, however, if the main bands which are blended within this

absorption are significantly separated in wavelength, the true natural bandwidth will

not be revealed. This absorption, however, fits to a Lorentzian function of 53 nm

FWHM (blue dotted trace in Figure 5.7), and the lifetime in the 3 1A state is ∼ 3 fs,

a particularly extrem value.

The 397 nm system is compared with the spectrum of rim-H+Cora measured in

a 6 K neon matrix (Figure 5.8). The origin of the 4 1A← X 1A electronic transition

in the gas phase is blue shifted by ∼ 140 cm−1 with respect to the position in a neon

matrix. The gas-phase to matrix shift is within the expected 1 % energy range of

the electronic transition.113 Excess excitation energy of 4 1A state was sufficient for

PD; however, two photons were absorbed so that C20H10
+ was detectable on a µs

timescale. The origin band of the 4 1A← X 1A electronic transition of C20H11
+ was

scanned with a dye laser; however, no rotational structure was apparent. A ∼ 0.2 ps

lifetime in the 4 1A state is inferred by the width of the origin band.

A well-resolved vibrational structure is seen for the 4 1A← X 1A electronic tran-

sition of C20H11
+ in the gas phase. The next most intense absorption lies 123 cm−1 to

higher energy of the origin band. In the matrix spectrum, a weak shoulder 127 cm−1

to the blue of the origin is present. This band is assigned to the CH2 rocking mode

ν87 of the protonation site on the basis of the vibrational frequencies calculated with
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Tab. 5.2: Excitation energies in eV and oscillator strengths of hub- and rim-isomers of

H+Cora calculated with TDDFT, SAC-CI, and CC2 methods using ground state

equilibrium structures obtained from DFT/PBE0 and ri-MP2.

hub-X 1A′

TDDFT/PBE0 SAC-CI/PBE0 SAC-CI/MP2 CC2/MP2

1 1A′ 2.67 0.09 1.80 0.1 1.77 0.1 2.53 0.1

2 1A′ 3.74 0.03 3.34 0.05 3.22 0.04 3.61 0.06

3 1A′ 3.89 0.02 3.52 0.01 3.56 0.005 3.90 0.005

4 1A′ 4.22 0.2 3.94 0.3 3.80 0.3 4.13 0.3

1 1A′′ 2.32 0.004 1.75 0.03 1.77 0.06 2.35 0.02

2 1A′′ 2.66 0.05 1.82 0.04 1.79 0.0 2.54 0.05

3 1A′′ 3.96 0.2 3.82 0.2 3.57 0.2 3.88 0.2

4 1A′′ 4.66 0.0 4.47 0.04 4.61 0.05 4.57 0.02

rim-X 1A

TDDFT/PBE0 SAC-CI/PBE0 SAC-CI/MP2 CC2/MP2

1 1A 1.88 0.003 1.19 0.003 1.15 0.003 1.78 0.007

2 1A 2.14 0.007 1.54 0.01 1.46 0.01 2.11 0.01

3 1A 2.60 0.09 1.94 0.08 1.88 0.08 2.46 0.1

4 1A 3.47 0.1 3.03 0.2 3.01 0.2 3.37 0.2

5 1A 3.78 0.02 3.64 0.02 3.50 0.02 3.81 0.03

the DFT method. The calculated energy of this mode is 127 cm−1. This excited-

state frequency of ν87 is more than double in H+Pyr and H+Cor for a similar nuclear

motion.114,115 This is due to the tertiary structure of C20H11
+. Double quanta ex-

citation of ν87 in the 4 1A state is also observed at 25 464 cm−1. The ν87, 2ν87, ν81

and ν77 vibronic bands in the 4 1A excited state have 50−90 % of the intensity of

the origin and are stronger than these observed in the neon matrix. This reflects

a dependence of the dissociation rate on the excess excitation energy supplied to

the cation. Photofragmentation takes place from a highly excited vibration in the

ground state of H+Cora and leads to the formation of Cora+ and H. This is similar

for protonated pyrene and coronene.114,115 The band maxima of the 4 1A← X 1A

transition are given in Table 5.3.
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Tab. 5.3: Observed band maxima in the 3, 4 1A← X 1A transitions of the rim-isomer of

H+Cora, in the gas phase.

λ/nm ν̃/cm−1 ∆ν̃/cm−1 Assignment

521 19 200 0 3 1A← X 1A

396.53 25 219 0 4 1A← X 1A

394.60 25 342 123 ν87

392.7 25 464 245 2× ν87
392.0 25 510 291 ν81

390.20 25 628 409 ν77

4 4 0 4 6 0 4 8 0 5 0 0 5 2 0 5 4 0 5 6 0 5 8 0 6 0 0
n m

( 3 ) 1 A  -  X 1 A
      1 0 K

Fig. 5.7: Absorption assigned to the 3 1A← X 1A transition of H+Cora. In dotted blue

is a Lorentzian fit demonstrating a natural broadening of 53 nm FWHM due to

a 3 fs lifetime of the 3 1A state.
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380 385 390 395 400 405

nm

6 K Neon

15 K Gas Phase

+

Fig. 5.8: 4 1A← X 1A electronic transition of H+Cora detected in a 6 K neon matrix

(black trace) and the spectrum in the gas phase at 15 K (red trace).
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5.7 Protonated fluoranthene, (H+Fluo)

As it is the case of Cora+, Fluo+ share a similarity with C60 by possessing a five-

membered ring. H+Fluorene electronic spectrum has already been recorded116 and

H+Fluo is a step toward large species. The study of H+Fluo in a neon matrix,117

along with quantum chemical calculations, assigned all three visible absorption sys-

tems to the most stable of the five isomers of H+Fluo (shown in Figure 5.10). Of

these (2, 3, 4) 1A′←X 1A′ transitions, only the (2, 3) 1A′←X 1A′ were sought for in

the gas phase. The 4th transition is the weakest, and being around 380 nm, is less

relevant for an astronomical comparison.

In Figure 5.9, a comparison of the 6 K neon matrix and gas-phase spectra of the

2 1A′←X 1A′ transition is presented. The origin band at 558.28 nm is blue-shifted

by 1 nm from that in solid neon. The line widths of the gas-phase spectrum are

narrower than in the matrix, however, the main absorption features are similar in

both. There is a large change in geometry in the 2 1A′ excited state, as seen by

the rich vibrational progressions in the gas-phase spectrum (Figure 5.9, red trace).

The origin band has a half width of ∼ 4 cm−1, corresponding to a lifetime in the

2 1A′ state of around 1 ps. Sometimes fluorescence is observed in solid neon because

the caged environment rapidly quenches the low-frequency modes in contrast with

the gas phase. In Figure 5.10, the 3 1A′←X 1A′ electronic transition of H+Fluo in

the gas-phase is shown along with the absorption spectrum in a 6 K neon matrix.

The origin band at 474.92 nm is blueshifted to the matrix spectrum by 1.4 nm. The

Franck-Condon envelope of the 3 1A′←X 1A′ transition of H+Fluo is less pronounced

than that of the 2 1A′←X 1A′ one. This is most likely due to the fact that there is a

slight geometry change in the 3 1A′ state and therefore fewer vibrational excitations

will be prevalent within this electronic transition and the transition will constitute

a better reference for astronomical comparison.
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5 4 0 5 5 0 5 6 0

0 0
0

λ / ( n m )
Fig. 5.9: Matrix (black) and gas-phase (red) spectra of the 2 1A′←X 1A′ transition of

H+Fluo.

4 6 0 4 6 5 4 7 0 4 7 5 4 8 0

0 0
0

λ / ( n m )
Fig. 5.10: Matrix (black) and gas-phase (red) spectra of the 3 1A′←X 1A′ transition of

H+Fluo.
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5.8 C17H11N
+

Azatriphenylene, C17H11N+, has Cs symmetry when triphenylene (C18H12) has D3h.

Because of the N substitution, it also has all non-equivalent protonation sites. The

proton affinity of 1-azatriphenylene is assumed to be similar to that of pyridine

(930 kJ mol−1) and acridine (973 kJ mol−1), which are both relatively high compared

to that of toluene (784 kJ mol−1). 12 different protonation sites of C17H12N+ were

calculated at the B3LYP/cc-pVDZ level to determine on which atom the additional

H is chemically bound. Theoretically, the lowest energy isomer of C17H12N+ is

protonated on the N and the next highest one is at 134 kJ mol−1 (Table 5.4). All

other structures on the ground state potential energy surface are stable, but would

not be produced in a CI source. No inner C were considered to be protonated

because these isomers would be energetically higher.

Tab. 5.4: Relative energies of the X 1A′ ground states of protonated azatriphenylenes cal-

culated at the B3LYP/ccpVDZ level of theory and their computed proton affin-

ity. Labeling of atoms is given Figure 5.11 a

atom E/kJ mol−1 PA/kJ mol−1 atom E/kJ mol−1 PA/kJ mol−1

labeling labeling

1 0 1009 9 151 858

2 181 828 10 146 864

3 154 855 13 134 875

4 197 813 14 148 862

7 151 859 15 137 872

8 147 863 16 142 868

Protonated azatriphenylene was initially considered to be the absorbing species

of the three electronic transitions in the visible because azatriphenylene was the pre-

cursor used in the CI source. However, as the calculated excitation energies (gray

column in Table 5.5) for the electronic transitions differ by > 1 eV with the observed

spectra, it was concluded that a different isomeric structure was responsible for the

absorptions. The protonation in the CI source can deposit excess energy into 1H+-

1-Azat and dissociate one of the bonds, causing a ring-opening in the conjugated

Π-system or H-loss. Therefore, bond cleaving mechanisms, based on the 1H+-1-Azat
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Fig. 5.11: Optimized geometry structures of the open-ring isomer (left) of C17H12N+ and

protonated azatriphenylene (right).

Mulliken charge distribution were investigated. Two mechanisms, having the same

m/z as 1H+-1-Azat, were considered, one in which the (18)CNH bond is broken

(Figure 5.11 b) and the other being between (2)CNH (labeling of the atoms is given

in Figure 5.11 a). In case 1, the geometry of C17H12N+ is that seen in Figure 5.11 b.

There is H migration from (2)C to (18)C, making a cyanoethyl-substituted phenan-

threne. In case 2, the calculated structure is not a minimum on the potential energy

surface, and converges to 1H+-1-Azat. The recorded electronic transitions were

finally assigned to the structure shown in Figure 5.11 b. Theoretical vertical exci-

tation energies are 1.92, 2.21, and 3.17 eV for the 1, 2, and 3 1A←X 1A electronic

transitions and 1.80, 2.00, and 2.92 eV for the experimental data (Table 5.5). The

theoretical oscillator strengths for the 1 1A←X 1A and 2 1A←X 1A transitions are

approximately 1:6, also similar to the relative intensities in the recorded spectrum

(Figure 5.12).

1 1A′ ← X 1A′ electronic transition. The 1 1A′ ← X 1A′ electronic transi-

tion of C17H12N+ (Figure 5.12) has an origin at 14 519± 30 cm−1. The 00
0 band is

broad, having a FWHM of 158± 15 cm−1 and no rotational structure. From this,

the excited state lifetime of the 1 1A′ system is inferred to be ∼ 30 fs.

There is a vibrational structure within the 1 1A′ ← X 1A′ electronic transition

of C17H12N+; however, all absorptions are lifetime broadened. Three distinct fea-

tures (Figure 5.12) are observed in the spectrum at 15 292, 15 509, and 15 721 cm−1,

having a similar FWHM as the assigned origin band. The absorption maxima are

collected in Table 5.6.

2 1A′ ← X 1A′ electronic transition. A stronger, broader absorption is
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1 4 5 0 0 1 5 0 0 0 1 5 5 0 0 1 6 0 0 0

0 0
0

1 1 A  -  X  1 A

ν  /  ( c m - 1 )

2 1 A  -  X  1 A

0 0
0

Fig. 5.12: 1 1A←X 1A and 2 1A←X 1A electronic transitions of C17H12N+ measured with

a 0.07 cm−1 bandwidth laser.

blueshifted by ∼ 1600 cm−1 relative to the 00
0 band of the 1 1A′ ← X 1A′ electron-

ic transition. This feature has a larger FWHM of 307 cm−1 compared to the one

observed at 14 519 cm−1 and is assigned to the origin of the 2 1A′ ← X 1A′ transi-

tion. It is most probable that the 1 1A′ excited state vibrations also absorb in this

region of the visible, causing a wider, structureless feature to be observed. From the

FWHM of the 00
0 band, a 2 1A′ excited state lifetime of 17 fs is extracted.

3 1A′ ← X 1A′ electronic transition. The 3 1A′ ← X 1A′ electronic transi-

tion of C17H12N+ is observed in the optical in the 23 500 – 24 600 cm−1 region, having

an origin at 23 586± 1 cm−1. The 00
0 band has a FWHM of 7 cm−1, corresponding

to an excited state lifetime of ∼ 750 fs.
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2 3 6 0 0 2 3 8 0 0 2 4 0 0 0 2 4 2 0 0 2 4 4 0 0 2 4 6 0 0
ν ( c m - 1 )

0 0
0 3 1 A  -  X  1 A

Fig. 5.13: 3 1A←X 1A electronic transition of C17H12N+. Vibrational bands within the

3 1A excited state are listed in Table 5.6.

Tab. 5.5: Vertical excitation energies SAC-CI/cc-pVDZ and B3LYP compared to exper-

imental values. Results in gray were performed on protonated azatriphenylene

(Figure 5.11 a), which was thought at the start to be the carrier of the ab-

sorptions. Protonated azatriphenylene does not match the experimental results,

however, cyanoethyl-substituted phenanthrene does.

SAC-CI* SAC-CI B3LYP Exp.

transition E/eV f E/eV E/eV f E/eV

(1) 1A′ ← X 1A′ 3.14 0.04 1.81 1.92 0.02 1.80

(2) 1A′ ← X 1A′ 3.33 0.17 1.89 2.21 0.13 2.00

(3) 1A′ ← X 1A′ 4.12 0.14 3.20 3.17 0.25 2.92

(4) 1A′ ← X 1A′ 4.28 0.10 4.46 3.54 0.06

(5) 1A′ ← X 1A′ 4.64 0.19 4.58 3.83 0.01
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Tab. 5.6: Band maxima of the 3 1A′ ← X 1A′ transition of C17H12N+.

ν̃/cm−1 ∆ν̃/cm−1 assignment

14 519 0 00
0 1 1A′ ← X 1A′

15 292 773

15 509 990

15 721 1202

16 120 0 00
0 2 1A′ ← X 1A′

23 586 0 00
0 3 1A′ ← X 1A′

a 23 825 239 ν61

b 23 836 250 ν60

c 24 014 428 ν59

d 24 020 434 ν58

e 24 083 497 ν57

f 24 094 508

g 24 100 514

h 24 207 621

i 24 215 629 ν55

j 24 230 644 ν54

k 24 240 654 ν53

l 24 402 816 ν51

m 24 411 825 ν50

n 24 422 836

o 24 467 881

p 24 473 887

q 24 487 901

r 24 500 914
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5.9 Discussion

Upper limit of the column density. All spectra with sufficiently narrow bands

were compared to both astronomical spectra toward HD 183143 and HD 204827.

None of them showed a match with any DIB and an upper limit of the column

density can be estimated. In the case of optically thin media:

N(cm−2) = 1.13 × 1020 EW (A)

f . λ(A)2
(5.1)

Table 5.7 summarizes the estimations, assuming 5 mA equivalent width (EW) as a

minimum for a detectable DIB toward HD 183143 and HD 204827.

Tab. 5.7: Upper limits of the column densities for the five H+PAHs studied. f values were

computed along with the matrix spectra that allowed the gas-phase study. For

each transition, the origin band was taken, and its share of the f value was

estimated from the spectrum.

Molecule transition used f value 000 Col. density (cm−2)

H-Pyr+ 1 1A′←X 1A′ 0.18 10% ≤ 1012

H-Cor+ 1 1A′← X 1A′ 0.11 10% ≤ 2.1012

C17H11N+ 3 1A’←X 1A’ 0.25 5% ≤ 1012

H-Cora+ 4 1A← X 1A 0.09 10% ≤ 2.1012

H-Fluo+ 3 1A′←X 1A′ 0.20 25% ≤ 4.1011

Astronomical relevance of H+PAHs. These results show that medium-sized

H+PAHs, and likely as well medium-sized hetero-H+PAH, are not major constituents

of the diffuse ISM. The spectra obtained for C17H11N+ are less relevant for astronomy

because of the structure inferred by the calculations. However, the opening of the

azatriphenylene structure upon protonation rules out the isomers were the N is

replacing one of the outer C. Even if protonation does not occur in diffuse clouds

for medium-sized PAHs, the strong UV flux will likely have an even worse effect.

However, this does not extend to the more stable isomers with N located on the

central benzene ring. It has been shown for example that N-substitution of PAHs

gives consistent results for reproducing the UIBs,118,119 and N heterocycles have

been identified in meteorites.120 Then, in the case of diffuse clouds, if the molecule

contains 60 or more C, N-substitution seems a very reasonable option. Nevertheless,
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in the case of the present work, if medium-sized H+PAH are ruled out, medium-sized

H+NPAH can also safely be ruled out.

Larger protonated species, such as hexabenzocoronene and ovalene, were

considered since the method was working well. An ESI source was borrowed and

their production was attempted, without success. No stable or reproducible ion

beam from the ESI source could be introduced in the 6-pole and guided through

the machine. After several modifications, such as testing other skimmers (100 and

200µm), needles and capillaries, the project was casted-off. From this point onward,

we targeted the PD of He complexes for the study of species that do not fragment

easily, such as medium-sized PAHs+ or fullerenes+.



6. THE ELECTRONIC SPECTRUM OF H+COR AS AN

EXPERIMENTAL PLAYGROUND.

Although only the two or three most relevant spectra have presented in the publi-

cations on H+Py and H+Cor, a large number of them have been obtained along the

project. These two molecules were the first ones to be studied, and the influence of

many parameters on the electronic spectra was tentatively assessed to have better

control over the apparatus. Among the amount of data accumulated, some are of

interest and are presented here.

For the purpose of comparing the spectrum of a molecule to astronomical data,

a spectrum at a rotational temperature of ≈ 20 K is satisfying. However, electronic

spectra of molecules in the gas phase are often recorded at temperatures as low

as possible, as it is the case in this thesis, close to 10 K. The reason for this has

nothing to do with astronomy but with spectroscopy. The effect of increasing the

temperature of a molecule is to populate more vibrational and rotational levels in the

electronic ground state. By greatly increasing the number of possible transitions,

the effect of higher temperatures on the electronic spectrum is to congest it and

broaden the bands, as shown by blue and magenta traces in Figure 6.1. The colder

the molecule, the easiest it is to assign the few bands that it will be made of. In

Figure 6.1, the hot bands (HBs) present in the red spectrum obtain at 20 K could

be confused with a vibrational mode in the excited state. Then, it is important for

the reliability of the assignment of the vibrations to obtain spectra of ions as cold

as possible.
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6 7 0 6 7 5 6 8 0 6 8 5 6 9 0 6 9 5 7 0 0
λ / n m

 1 2 0  K
 8 0  K
 2 0  K
 5  K

Fig. 6.1: Electronic spectra of H+Cor recorded with trap temperatures of 5, 20, 80, and

120 K. The power on the trap heater was varied while keeping the cryostat on,

and an equilibrium could be reached. The disappearance of any HBs in the black

spectrum, which makes easier the assignment of the vibrational bands, shows the

importance of obtaining spectra as cold as possible.
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6.1 Collision-induced heating

The spectra of the H+PAHs obtained during the first two years of this thesis consis-

tently contained undesired HBs. Undesired, not only from the spectroscopic point of

view mentioned above but also from the experimental point of view showing that the

cooling of the molecules was not proper. At a temperature of ≈ 10 K, no vibrational

state should be populated. First, the length of the trapping period was invoked to

explain the phenomenon, and longer trapping periods would cool molecules of this

size. However, it became apparent with the time that molecules of this size can

be cool very fast, and that HBs had nothing to do with the length of the trapping

period. Figure 6.2 shows the spectra of H+Cor recorded with different ”filling +

trapping” (F+T) periods. For the various timings, no difference is seen, and mul-

tiplying F+T by 100 does not seem to cool any further the ions. Besides this, the

black trace in Figure 6.2 shows that ions, virtually just passing by the trap, can be

cooled already decently.

Collision induced heating. The reason why the timings seem made no dif-

ference in Figure 6.2 was because the ions were probed ”on their way out” of the

trap, and not inside the trap. The reason for this was given in Chapter 4. The

low ion density in the center of the 22-pole trap forced us to trigger the laser when

the ions were passing through the exit electrode. A side effect was that the ions

had time to collide with the rest gas before being probed by the laser. Hence, care

should be taken not to probe the ions too late on their way out, not to give them

time to collide with the rest gas. In Figure 6.3 presented three spectra for which

only the timing of the laser trigger was varied. When the laser is triggered too late,

ions are already out of the trap, subjected to room temperature rest gas. With a

precise adjustment of the timing (ions released ≈ 100µs before that the laser is trig-

gered), which depends on the trapping voltages, the ions are concentrated toward

the axis, but not yet out of the trap. In conclusion, the spectra in Figure 6.2 are

from ions which were cooled properly but later heat up out of the trap just before

being probed. The problem had nothing to do with the cooling efficiency. Moreover,

ions of this size can be cooled in a couple of ms with a reasonable He density of

≈ 4.1015cm−3.
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6.2 Isotopic substitutions

D+Cor for an easier mass selection. One difficulty in obtaining the electronic

spectrum of the protonated form of large molecules is to resolve the two mass peaks

separated by only one amu. Only the protonated form should go in the trap to have

the advantage of a background-free experiment. In chapter 9, it has been shown to

be a real issue with H+C60. Most of the signal was cut away when applying a good

mass selection between 720 and 721 amu. One way around this problem is the use

of deuterium. The mass selection issue is still not negligible, but much less serious

than before. The first electronic transition of D+Cor was recorded to observe the

effect of the deuteration and is shown in Figure 6.4. The two main effects are a

shift of the spectrum by ≈ 0.8 nm to the red, and a large increase in the number of

vibrational bands. As much as this spectrum can be a rich source of information

on the molecular level, it has, from the astronomical point of view, a debatable

importance. That is, the cosmic D/H ratio (≈ 2.5×10−5121) is very low, however, D

seems to accumulate in some interstellar environments due to some widespread but

subtle processes working more efficiently with one of the isotopes. For this reason,

it is not known to which extent D substituted species must be considered.

H+C13
x C24−xH12 electronic spectra and their astronomical implication-

s. The bigger a carbon-based molecule, the most likely it will contain one or more

C13. This is as much inevitable in the lab as it is the ISM, and one should mind

this isotopic substitution when recording spectra of large PAHs and fullerenes. The

ratio C12/C13 is 0.011 and a significant proportion of molecules containing several

dozens of carbon atoms will have at least one isotopic substitution. For the case of

the DIBs, this means that the influence of this substitution on the electronic spectra

should be carefully considered. Isotopic substitution of C is supposed to bring only

very small changes on the electronic structure of H+Cor since it does not break

the Cs symmetry. This contrasts with the D substitution. Although the variations

should be imperceptible, the spectra will represent a superposition of all config-

urations of C substitutions within the molecule. In Figure 6.5 are presented four

spectra of H+C13
x C24−xH12, with x =0, 1, 2, 3. All spectra are recorded by monitoring

an H-loss. The substitution does not modify the general aspect of the spectrum.

However, as shown in Figure 6.6, which is a zoom-in of Figure 6.5 on the origin band,

isotopic substitution does slightly shift the spectrum. It has been suggested in the
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past that isotopic substitution of C-bearing molecules can explain the substructure

of some DIB such as λ6614.122 A later model has shown that a superposition of

peaks following an isotopic distribution reproduces the latter DIB.123 However, this

hypothesis does not explain the variations from sightlines to sightlines of the respec-

tive strengths and widths of the subpeaks. On the other hand, rotational contour

in molecules with varying temperatures124,125 explains very well the observations

and isotopic shifts were ruled out. Nevertheless, in the laboratory, if the electronic

spectrum is recorded from a specific mass, e.g. 301 amu for H+Cor, it will inevitably

yield narrower and shifted bands compared to astronomical data which represent

the true, whole isotopic distribution of the molecule. This fact should be considered

when comparing laboratory and astronomical spectra of sufficiently large molecules.
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Fig. 6.6: A detailed view on the origin band of the spectra of H+C13
x C24−xH12, with

x =0, 1, 2, 3. The isotopic shift is now visible and increases with the number

of substituted C atoms. The shift is ≈ 0.03 nm per C substitution for the origin

band, and ≈ 0.04 nm for the HB on the right.



7. CORONENE+ AND CORANNULENE+ (COR+ AND CORA+)

Following the exchange of the 22-pole trap to a 4-pole trap, the gas-phase electronic

spectra of He-Cor+, He-Cora+, and 2He-Cora+ complexes have been recorded by

monitoring their photodissociation. He-Cor+ spectrum displays two strong features,

belonging to the D1 ←D0 and D9 ←D0 electronic transitions, at 9 436 and 4 570 Å,

respectively. Cora+ has two Jahn-Teller structures in its electronic ground state,

leading to the (3) 2A′ ←X 2A′′ and (3) 2A′′ ←X 2A′ transitions, with origin bands

at 5 996.15 Å and 5 882.65 Å, respectively, in a region where many diffuse interstellar

bands (DIBs) lie. Also, the spectrum of 2He-Cora+ was recorded to estimate the

perturbation brought by the He.

7.1 Long-standing DIB candidates

Since the diffuse interstellar bands (DIBs) are attributed to interstellar gas-phase

molecules, polycyclic aromatic hydrocarbons (PAHs) have been among the major

candidates.31,93,126 Some reasons include the tendency of carbon to form large

molecules such as PAHs, the cosmic abundance of carbon, and the stability of PAH-

s regarding UV photodissociation. Also, the unidentified infrared emission bands,

generally assigned to vibrational de-excitation of aromatic and aliphatic compound-

s,33,96,127 show that PAHs+ could be widespread in interstellar media.

For the identification of a specific molecule as a DIB carrier, its electronic ab-

sorption spectrum is usually obtained in a rare gas matrix, and subsequently, in

the gas phase at cold temperatures. For this purpose, over the last decades, such

spectra have been recorded for dozens of carbon chains and rings in the gas phase,

mostly neutral and cationic, without any match with the DIBs.128 A number of

medium-sized neutral PAHs have also been studied in supersonic expansions, find-

ing no match with DIBs.95,129,130 Large PAHs+, have only been studied in rare gas

matrices131 and remain a challenge for gas-phase laboratory measurements.132,133

Gas-phase electronic spectra are generally recorded by monitoring the photofrag-
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mentation of the molecule as a function of the wavelength. However, a molecule is

a good candidate carrier of the DIBs, if it is photo-resistant to the UV-Vis flux of

the interstellar medium, making the laboratory detection via photofragmentation as

inefficient as the molecule is a good candidate. For this reason, no gas-phase elec-

tronic spectrum could be recorded so far for large or even medium-sized PAH+.132

H+PAHs were also proposed as candidates, but have been ruled out by models and

experiments.

A method to obtain the electronic spectrum of larger molecules consists in

attaching a rare gas atom to the cold molecule and monitoring the photodissociation

of the complex.134 A number of electronic spectra were obtained using Ar as a tag

atom, but the shift and broadening of the absorption bands, induced by Ar, are too

large to make a reliable comparison with astronomical spectra. In this regard, the

attachment of a He atom brings significantly less disruption.135,136 These complexes

have binding energies from hundreds cm−1 with He to thousands cm−1 with Ar. The

efficient production of He complexes requires the use of an ion trap to increase the

interaction time with the buffer gas.137,138

Cor (C24H12) and Cora (C20H10) are two major members of the PAH family.

Cor is a typical highly symmetric PAH (D6h), while Cora (C5v), presents some

unique properties in terms of astronomical detection. Cora has a high symmetry

and a dipole moment of 2.1 D.139 Structurally, Cora is the smallest PAH having a

curved shape, given by its central five-membered ring, relating it to C60. Recently,

laboratory spectra140 confirmed that gas-phase C+
60 is a DIB carrier, making Cora+

of special interest.

7.2 Experiemental

Ions were created in the EI source from a solid Cor or Cora sample heated to

∼ 150 ◦C. Ions from the source are then mass selected and guided to the trap. Effi-

cient production of He complexes is best achieved in an ion trap,137,138 as compared

to supersonic expansions. However, the 22-pole trap is not suitable for such an

experiment as shown in Chapter 3 with C4O+
2 . That is, since the PD of complexes

is not background-free, a good SNR requires a 4-pole trap. The wire 4-pole trap85

that was used is described in chapter 3. Figure 7.1 shows two mass spectra recorded

with and without laser radiation at 5 996.15 Å. Most Cora+ are tagged by one or
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more He, and a significant proportion of He-Cora+ is depleted. It has not been

clearly understood why the complexes with one He have always been preferentially

depleted. The broadening of the bands due to the successive additions of He atoms

may be one reason because it weakens the absorption at a specific wavelength.

2 4 8 2 5 2 2 5 6 2 6 0 2 6 4 2 6 8

 L a s e r  o f f
 L a s e r  o n  a t  5 9 9 6 . 1  Å

a m u
Fig. 7.1: Mass spectra of HexCora+, x = 0...4. The absorption of 5 996.15 Å photons de-

plete the complexes.

The sequence was 200 ms for filling the cations into the trap, followed by

∼ 800 ms of cooling, and a few ms to extract the ions. The laser was continu-

ously triggered at 10 Hz, submitting the ions to 8 - 10 shots per trapping cycle, while

He-Cor+ or He-Cora+ complexes were continuously produced by interactions with

the buffer gas. Toward the end of the 1 s cycle, the buffer gas was pumped out before

that the ions were ejected and counted. A piezo-valve introduced helium buffer gas

into the trap from the beginning of the filling period, achieving after a few ms a

helium density of ∼ 4× 1015 cm−3. The depletion of the complexes is monitored as

a function of the laser wavelength to record the electronic spectrum.
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7.3 Results

The electronic spectrum of Cor+ in the 4 000 - 10 000 Å region was first recorded

as far back as 1992 in a 4 K neon matrix,141 and showed two sharp absorption-

s at 4 590 Å and 9 465 Å with respective oscillator strengths of 0.012 and 0.0018.

Cor+ was later investigated in an FT-ICR cell,142 however, the spectrum is broad

(∼ 150 Å) because of the multi-photon dissociation technique heating up the ions

during the process. Using the photodissociation of He-Cor+ complexes, we provide

a gas-phase electronic spectrum at temperatures below 10 K. The spectra are pre-

sented Figure 7.2 (black traces). The spectrum of the D9 ←D0 electronic transition

consists mainly of one broad feature at 4 575 Å, blue-shifted 0.15 Å compared to the

neon matrix. A vibrational band, weaker, is visible at 4 525 Å. There is almost no

difference in width between the matrix and the gas-phase spectra (∼ 20 Å), indi-

cating an excited state lifetime of ∼ 50 fs. The D1←D0 transition consists of one

band at 9 436 Å, blue-shifted 29 Å to the neon matrix. It has a width ∼ 5 Å, likely

due to the laser bandwidth, indicating an excited state lifetime ≥ 0.2 ps. The red

trace on the left panel of Figure 7.2 was recorded by monitoring the depletion of the

complexes, and the black trace was recorded by monitoring the parent ions, Cor+.

The two features at 9 436 Å and 4 575 Å do not match with any DIB in the lines of

sight of HD 183143 and HD 204827,143,144 confirming that Cor+ is not a carrier.

The electronic spectrum of Cora+ in the 6 000 Å region was recently recorded

in a 6 K neon matrix, after mass selected deposition.145 The gas-phase electronic

spectrum, recorded by monitoring the photodissociation of their complexes with He,

is presented Figure 7.4. Cora+ has two Jahn-Teller structures in its electronic ground

state leading to the two origin bands and vibrational progressions. The spectrum

is similar to the one recorded in the neon matrix, from which the two origin bands,

at 5 996.15 and 5 882.65 Å, are blue-shifted by 16 Å. The weakness of the complex

bonding, the predicted 0.2 oscillator strength, and the use of a 4-pole trap, allows a

strong depletion, and a good SNR was achieved.

To estimate the influence of He on Cora+, the spectrum with 2 He attached

was also recorded with a resolution of 0.05 Å (Figure 7.3). For the origin band

at 5 882.65 Å the full width at half maximum (FWHM) increases from 0.45 to

0.7 Å with no significant shift. For the origin band at 5 996.15 Å the FWHM in-

creases from 0.5 to 0.55 Å with a red shift of 0.1 Å. We can expect the positions of the



7. Coronene+ and corannulene+ (Cor+ and Cora+) 102

4 3 0 0 4 4 0 0 4 5 0 0 4 6 0 00
2
4
6
8

1 0

λ/ Å

H e

 H e - C 2 4 H 1 2
+  C h a n n e l

Ion
 co

un
t / 

1 0
00

Ion
 co

un
t / 

10
 00

0

 C 2 4 H 1 2
+  C h a n n e l

 H e - C 2 4 H 1 2
+  C h a n n e l

λ/ Å

9 4 2 0 9 4 4 0 9 4 6 0
3 . 6
3 . 8
4 . 0
4 . 2
4 . 4
4 . 6
4 . 8

H e

H e

Fig. 7.2: Gas-phase electronic spectra of He-Cor+ recorded with a laser of 1 Å bandwidth

in the visible, and 10 Å bandwidth in the infrared. On the left panel, the ab-

sorptions induced ∼ 50% depletion of the He-Cor+ (black traces). Red trace was

recorded by monitoring the mass-channel of the bare ion, C24H12
+. On the right

panel, a single-peak Gaussian fit is overlayed to the spectrum.
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origin bands of the bare Cora+ to be ∼ 0.1 Å to the blue, and ∼ 0.1 - 0.2 Å narrower

compared to the measurements with one He attached. These results are sufficient for

a comparison to astronomical data. The band A is similar in position and width to

the around 5 995.9 Å (DIB 104144). However, a comparison of band B and other less

intense bands to the astronomical spectra shows that this is merely a coincidence.

Thus, Cora+ is not a carrier of the DIBs.

5 9 9 5 . 5 5 9 9 6 . 0 5 9 9 6 . 5 5 9 9 7 . 05 8 8 2 . 0 5 8 8 2 . 5 5 8 8 3 . 0 5 8 8 3 . 5

A

λ / Å

 H e - C o r a +

 2 H e - C o r a +

λ / Å

D

Fig. 7.3: The bands A and D of Figure 7.4, recorded with a laser power of 50 µJ / pulse

and a resolution of 0.01 Å (black traces). Red traces were recorded with two He

attached on Cora+.

The power dependence of the contour of the band ”C” have been recorded

with a laser power as low as the experiment allowed. Figure 7.5 shows the spectra

measured with laser powers of 400, 100, 50, and 20µJ/pulse. Because the band

seems power-broadened even with 20µJ/pulse, the inferred FWHM is ≤ 0.45 Å and

indicates an excited state lifetime ≥ 60 ps.
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Fig. 7.5: Band ”C” from Figure 7.4 recorded with different laser powers.

7.4 Conclusion

The electronic spectra of He-Cor+, He-Cora+ and 2He-Cora+ have been recorded in

the gas-phase. Because the technique requires He to bind to the sample ions, the

spectra obtained are inherently the ones of cold ions. The method does not provide

the genuine spectra of Cor+ and Cora+ but is sufficient for astronomical comparison.

For the case of Cora+, the shifts of the origin bands caused by the second He are

≤ 0.1 Å, and the broadenings ≤ 0.25 Å. Comparison to astronomical spectra shows

that neither Cor+ nor Cora+ is a carrier of any DIBs. Models predict PAHs+ of this

size to be dehydrogenated in diffuse clouds.102 The method used here can be utilized

to obtain the spectra of larger PAHs+, fullerenes+, or dehydrogenated PAHs+.



8. PROTONATED C60 (H+C60)

The last project targeted C+
58 and H+C60. The two cations were investigated through

the photodissociation of C+
58 - He and H+C60 - He. No visible absorption was found for

C+
58 - He, and no reliable electronic spectrum was obtained for H+C60 - He, neverthe-

less, since such project will likely be followed in the near future, it is worth mention-

ing what has been obtained so far. As a note, many other species could be observed

in the mass spectra, such as C2+
60 , C3+

60 , C+
70, C2+

70 , C+
56, (H2O)nC+

60 (n = 1 ..≈ 20),

N2C+
60, O2C+

60. The latter complexes formed because of the presence of rest gas in

the trap chamber.



8. Protonated C60 (H+C60) 107

8.1 Introduction

Fullerenes have a unique history in molecular science since they were discovered

on Earth thanks to research attempting at finding the composition of the ISM.146

Later studies made us realize that fullerenes are naturally present in many differ-

ent environments such as soots on Earth, meteorites,78 and in the gas phase in the

DISM140,147 and CSEs.37 Despite a seemingly serendipitous discovery, the original

experiment could not perform better since the class of molecules they produced did

provide, as of today, the best candidate carriers for many interstellar features. Ac-

tually, in three decades, fullerenes and fulleranes have been proposed as possible

carriers of virtually all unidentified spectrocopic interstellar features, from anoma-

lous microwave emission, to the UIBs, the ERE, the DIBs (especially the 4 430AA

feature71), the UV bump, and to the interstellar extinction.125,148–155 The only ob-

stacle to their assignment in the ISM is the lack of conclusive experimental data. In

this regard, electronic spectroscopy of the cold molecules, in the gas phase, stands

out from other techniques as it can provide unambiguous assignments. It includes,

however, the difficult choice of the relevant species among a large number of possi-

bilities, and the luck related to the rather unpredictable strength of their electronic

transitions.

8.2 Challenging production of C+
60 and H+C60

At the start, no protonation could be obtained in the CI source, despite a proton

affinity of C60 of 857 kJ.mol−1.156,157 The reason is not known for sure but is probably

because the sample of C60 had to be heated to around 550 ◦C to obtain a sufficient

ion signal. In principle, 300 ◦C should already provide an efficient sublimation, and

in previous experiments, strong and stable signal of Pyr+ and Cor+ were obtained

with 90 and 160 ◦C, respectively. The significant internal energy of the C60 molecules

exiting the oven at 550 ◦C may have prevented the protonation reaction, despite the

relatively high pressure in the CI source (≈ 0.1 mbar). Several protonation agents

were tried, such as toluene, methane, H2, without success. Additionally, the high

temperatures needed to obtain C+
60 caused significant troubles since the source is not

built for such temperatures. To obtain a good signal with lower oven temperatures,

a new design of the CI source was made, and is presented Figure 8.2.

In the CI source (presented Figure 8.1), the electrons from the filament, entering
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Fig. 8.1: Original design of the CI source reproduced on Solidworks. A workable C+
60 signal

could not be obtained unless heating the sample to around 550 ◦C. Electrons are

directed toward the repeller plate, without crossing the zone where the sample

density is the highest, at the exit of the oven.

Fig. 8.2: Re-designed CI source to obtain C+
60 with reduced temperatures, and protonation.

The electrons are directed toward the sample and the gas. The repeller is no more

a plate but a tip with a 1 mm hole. Around this tip, the electrons, the gas, and

the sample densities are all much higher than in the previous design.
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the reaction chamber, are attracted by the repeller. The purpose of the repeller is

to push away the newly formed cations toward the extraction electrodes. However,

attracting the electrons is an undesirable side effect since they do not meet efficiently

the sample molecules coming out perpendicularly from the oven. If there is no

repeller, as in the source bought from Agilent and presented in Chapter 3, the

electrons would just fly anywhere in the reaction chamber of the source, or be

directed toward some possible patch potentials. In any case they do not interact

very efficently with the sample.

In the new design (Figure 8.2), the heated sample molecules and the carrier

gas, both come out of the repeller itself. The intention was to direct precisely the

electrons toward the sample and the gas. The repeller is not a plate anymore but

a tip with a 1 mm hole, from which the vapor comes out. Around this tip, the

electrons, the gas, and the sample all meet idensities are all much higher than in

the commercial design. The repeller now consists in an oven, with a little container

for the sample, and is electrically insulated by a ceramic. This ceramic has the

additional advantage of thermally insulating the rest of the source from the oven.

This design proved immediately successful. Not only a workable signal of C+
60 could

be obtained at only 300 ◦C, but also the protonation of C+
60 with CH4 and H2.

8.3 H+C60-He around 700 nm

Ever since fullerenes were discovered, fulleranes have been considered as a likely

component of the ISM153,158,159 and, in the context of this thesis, as a possible

carrier of the DIBs .158,160,161 The reasons for this being the overwhelming presence

of H in the ISM and a barrierless reaction of C60 with H.162 However, with an average

binding energy of 2.6 eV per H atom in C60H36,162,163 fulleranes will be efficiently

dissociated in the DISM. Accurate rate coefficients and binding energies of H onto

H+
n C60 are not known, so that currently, even rough estimates on the fullerane

population in the ISM cannot be done.161,164

H+C60 was chosen since it is the first on the list and was the main fullerane

produced in the newly modified source. It also has the advantage of having only

one isomer. To our knowledge, no spectroscopy of any kind has been performed on

singly hydrogenated or protonated C60 alone. For this experiment, once H+C60 was

readily produced, the main obstacle was the mass selection in the first QMS, which
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Fig. 8.3: In black, a mass spectrum obtained by heating C60 to 300 ◦C without reagent,

showing its normal isotopic distribution. In red, a mass spectrum obtained in

the presence of D2. This mass spectrum shows 50% conversion. In blue, a

mass spectrum obtained in the presence of H2. This mass spectrum shows 90%

conversion. For all, the first QMS is in guide mode.

was had to select the peak at 721 amu, among the isotopic distribution of C60. When

this mass selection was done properly, the resulting ion count was very low. The

pronounced isotopic distribution of C60 makes the experiment more difficult than

with smaller molecules. To help with the mass selection, deuterium can be used

instead, as shown in the mass spectrum Figure 8.3.

The photodissociation of H+C60-He was recorded around 700 nm and is shown

Figure 8.4. This PD is strongly correlated with the dye emission. Nevertheless,

it indicates a very broad absorption in this region. Particularly around 705 nm

onward, since there the dye emission decreases more that the PD. This observation

is consistent with calculations predicting an absorption with onset around 728 nm

(indicated by the dashed line on Figure 8.4). Further experiments are on the way,

notably on expected near IR transitions expected to be sharper.
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Fig. 8.4: PD of H+C60-He recorded with a dye laser around 700 nm. In black is the count

of H+C60, in red and blue, two different scans showing the count of H+C60-He.

In purple, is the recorded emission curve the dye which was used for these scans,

Styryl 1. The strong correlation between the dye emission and the complexes

dissociation indicates that the red and blue traces are not genuine spectra of

H+C60-He. However, they do indicate broad absorptions in this region.
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As part of the project of identifying the carriers of the DIBs, we recorded the elec-

tronic spectra of cold medium-sized H+PAHs and PAHs+ in the gas phase. The setup

used was a tandem mass spectrometer, centered on a cryogenic ion trap. In a first

phase, we assembled the apparatus, and tested it by recording the already known

gas-phase electronic spectrum of N2O+. In a second phase, we recorded the visi-

ble electronic spectra of five medium-sized H+PAHs and estimated their rotational

temperature to 10 - 15 K. In a third phase, we recorded the visible electronic spectra

of He-Cor+ and He-Cora+ by monitoring the photodissociation of their complexes

with He. We also recorded the spectrum of 2He-Cora+ to estimate the influence of

the He and extrapolate the spectrum of Cora+. Using the same method, we started

a project to obtain the electronic spectra of H+C60 and C+
58. All the spectra were

compared to astronomical spectra, and since none showed a match, upper limits of

their respective column density were inferred.

Medium-sized H+PAHs and PAHs+ have been dismissed by astrochemical mod-

els as candidate carriers of the DIBs. The results obtained in this thesis confirm

experimentally that the major members of medium-sized H+PAHs and PAHs+ are

not among the carriers. Such species are expected to be dissociated by the UV

radiation present in the DISM, and a large number of carbon atoms (≥∼ 60) is cur-

rently thought to be necessary for such molecules not to be dehydrogenated. The

technique used for obtaining the spectra of Cor+ and Cora+ can be employed to

study virtually any molecular cation that would be a candidate.

The two next sections of this Chapter present (1) what could be obtained in the

near future by simplifying the experimental setup, and (2) what approach seems to

be the most promissing for the long term assignment of the large molecules present

in the ISM.
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9.1 Simplified experimental setup

An experimental setup is suggested with the goal of reducing the time needed for

performing an experiment and the amount of troubleshooting and maintenance.

It consists of three components: an ion trap, a QMS, and a micro-channel plate

(MCP) detector (see top setup of Figure 9.1). The main feature of this design is

that the sample ions are produced directly in the trap. A UV laser, focused inside

a conical cavity, made in the back trapping electrode itself, will vaporize and ionize

the sample (see top setup of Figure 9.2). The sample is simply coated on the surface

of the cone. The ions produced will automatically fall in the tapping potential, while

being cooled by the buffer gas entering the trap via this cone. The method for the

obtention of the electronic spectrum remains the PD of complexes with He, followed

by mass selection and detection.

The main limitation of the top setup of Figure 9.1 is the lack of mass selection

of the ions produced. However, some experiments can be performed with pure

PAH, and fullerene samples, especially when very little amounts are needed. In

this case mass selection is not a requirement, and the experiment is performed on

the whole isotopic distribution of the molecule. If a mass selection is necessary for

a specific experiment, the bottom setup Figure 9.1) can be used. In this setup,

the products of the ion source will be mass selected before being introduced in the

trap. The spectrum acquisition is the same. Although the UV laser and the dye

laser have to be carefully aligned, the overall experiment rely on a very limited

amount of parameters. That is, around three times less than to the current setup.

Each element of a setup represents as many possible electrical and mechanical issues

occurring during an experiment or maintenance. This design allows concentrating

on the one thing of interest, the cold ions in the trap.

Introducing the buffer gas and the sample from the same cavity allows the newly

produced ions to be automatically immersed in a high density buffer gas. The conical

cavity, with a volume of ∼ 10 mm2, allows remarquably high number densities, while

keeping the whole trap and vacuum chamber under reasonable pressures. This

somewhat ”surgical” buffer gas cooling might allow to obtain a full conversion of

the sample to He complexes almost instantly. Obtaining a full conversion provides

a background free experiment. With He density of 1017 cm−3, in the cavity at 5 K,

gives a mean free path of He in respect to a 3 nm molecule of 300 nm. With a He
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speed of 100 m.s−1 at 5 K, a sample molecule will undergo ∼ 3× 105 collisions in a

single ms. At this rate, a few ms are enough to cool any molecule, and the pressure

in a 10 L vacuum chamber will only be ∼ 10−6 mbar.

Fig. 9.1: 3-D overview of two experimental setups for the obtention of the cold electronic

spectra of gas-phase cations. The top setup consists of a 4-p trap, a QMS, a

4-pole bender, an ion source, and an MCP detector. The bottom setup consists

of a 4-p trap, a QMS, and an MCP detector. If ions cannot be produced by laser

vaporisation-ionization inside the trap back electrode (see Figure 9.2), they can

be produced in a separated ion source (setup 1).

Molecules obtainable with decent purity would constitute a target for the

setup without prior mass selection, provided a suitable UV radiation for ionizing the

sample without excessive fragmentation in the trap. By adjusting the laser power,

the beam focus, and the He density in the cone, the number of ionized molecules

should be set ideally to as little as required for the experiment, that is, between

1 000 and 100 000 per cycle.

Dehydrogenated PAHs+ could be obtained if the amount of UV radiation

irradiating the sample and the amount being in the axis of the trap can be tuned. For
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Fig. 9.2: A view of the 4-pole trap. The back trapping electrode is made transparent

for the cone inside it to be visible. The housing of the trap is very compact to

decrease to the minimum the unnecessary volume outside the trap. A large slit

facing the pump and a 1 mm aperture in the exit electrode ensure that small

amounts of buffer gas go to the QMS. The inset shows the conical cavity from

which the buffer gas enters the trap, and in which the sample is coated.

instance, if the laser beam, tightly focused onto the 1 mm ion cloud, would mostly be

in a 1 mm2 section in the axis of the cone, the ion cloud would be highly irradiated

while the sample not. The way to tune the proportion of UV radiation going to the

sample, and to the ion cloud, could be by varying with the laser beam diameter.

Following the absorption of a few UV photons, the PAHs+ would deyhdrogenate

will being kept cold by the He buffer gas.

Hydrogenated fullerenes+ might be obtained with a mixture of H2 and He

at 20 K as buffer gas. Some H2 molecules would be dissociated by the UV laser

beam, provided a suitable laser radiation. H atoms could bind to the fullerene ions,

continuously cooled by the buffer gas, while H2 would not bind. By tuning the

H2 / He ratio, the power of the UV beam, and the density of the buffer gas, various

degrees of hydrogenation might be reached. Spectroscopy could be done through

the photodissociation of the produced fulleranes. Also, this experiment could give
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an insight into the production and destruction of fulleranes in the ISM, although

free electrons would be missing in the picture.

Over the four years of this thesis we have experienced that the biggest obstacle

for the obtention of the results we were aiming at, was not the difficulty of the

method itself, but the regular occurrence of issues with the hardware. The setup

suggested in this section must surely be more thought of. However, all efforts put

into designing a setup which is as simple and technically elegant as possible could

be highly rewarding during the course of its use.

9.2 The challenge of identifying large molecules in space

Many unidentified spectroscopical features, observed since several decades, show the

presence of large molecules in the ISM and CSEs. They appear in a wide energy

range, from microwave emissions to VUV absorptions. Despite considerable exper-

imental, observational, and theoretical efforts put into identifying the responsible

molecules, the carriers remain extremely elusive. However, seeing that already the

identification of new molecules in dark clouds remains a challenge despite candidates

containing only five to ten atoms, the identification of much larger molecules can be

expected to be highly challenging. The method for the identifying small molecules

in dark clouds and large molecules in the DISM and CSEs is essentially the same. It

is a top-down approach using laboratory spectra of selected molecules, compared to

astronomical spectra for a match or a fail. Since every other attempt is successful

for molecules of a few atoms, one can expect a very low success rate for molecules

of dozens of atoms.

Although being a significant discovery, the case of C+
60 is a good illustration of

this issue. The hint of the presence of this molecule in the DISM was given 20 years

ago by a spectrum obtained in a neon matrix.165 Many experiments and calcula-

tions were performed on other fullerenes and derivatives166,167 such the molecule was

an outstanding candidate. One could think that the confirmation of C+
60 as a DIB

carrier would trigger a chain reaction in which some derivatives would be identified

as well. It is not the case. Not because no major derivatives could be studied s-

ince,166 but because the ones which have been studied, unfortunately, did not match,

the same way than dozens of exciting candidates did not match in the past. We

see ourselves facing the same issue than when C+
60 was not identified, that is, an
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Fig. 9.3: Expectable fullerene derivatives in interstellar and circumstellar environments.

For a single fullerene in a specific charge state, such as C60, an order of magnitude

of the number of relevant structures is given, for each type of derivative. For

instance, C60Hx has much more than 100 isomers, but if we only take into account

some of the most relevant fulleranes like C60H2, C60H4, C60H18 and C60H36, the

number of isomers is in the order of a hundred. Each of these molecules would

have a specific electronic spectrum which would require a dedicated laboratory

experiment.

overwhelming number of candidates.161 Figure 9.3 shows the families of fullerenes

derivatives with an estimate of the number of the most probable structures. For

instance, the single family of NxSiyC60−x−y, for the most important, counts a few

dozen of possibilities. This number, already high in terms of experimental validation

of a candidate, becomes incommensurable when isomers, combinations with other

derivatives, and charge states are included. Ironically, the unique starting point that

is C+
60 shows that when we deal with such large molecules, and unless the condition-

s where they exist are accurately described, the chances of guessing a right carrier

molecule is very low. It might be early to draw such a conclusion concerning the case

of C60 derivatives since the discovery is rather recent. However, it is probably not

too early to draw this conclusion concerning the general case of large unidentified

molecules in the ISM. For a more global understanding of the chemistry leading to
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these molecules, and an exhaustive assignment of the strong DIBs in the long term,

a bottom-up approach simulating the conditions seems to be the most promising.

Surface chemistry on dust grains is a key to disclose the identity of most large

gas-phase molecules, whether these are in reflection nebulae, CSEs, or the DISM. As

fo the DISM, one could argue that there is a lack of significant correlation between

many DIBs and dust extinction.57,168 This is because the precursors of the carriers

are likely formed in CSEs,61 and the carriers themselves merely surviving in the

DISM, hence the lack of correlation. On the other hand, these precursors may

themselves very well be processed on dust grains in CSEs.

An approach to this chemistry consists in irradiating so-called ”interstellar ice

analogs”169–174 (IIAs) or hydrogenated amorphous carbon76,174,175 (HAC) with UV

photons representing the ISRF. The detection of the product of this UV-induced

cold surface chemistry can be achieved through a combination of temperature pro-

grammed desorption of the ice sample and mass spectroscopy or IR spectroscopy

on the ice sample. It is shown that complex molecules are efficiently synthesized.

Among these, stable species may regularly be desorbed to become a part, at least

temporarily, of the gas-phase budget. However, these experiments are done on

thermostated substrates, which would somehow mimic extremely large dust grains.

Therefore, these IIAs or HAC samples may not be very realistic. In contrast, chem-

istry and desorption processes on the small and much more abundant ”gas-phase

dust grains” might be significantly different. Besides, the end products of these ex-

periments are not detectable in astronomical spectra since the focus is on the solid

phase. A complete bottom-up approach would not only reveal which molecules are

most produced on and desorbed from dust particles, but also which of them survive

the circumstellar and/or ISRF.

The DIB carriers are likely formed in CSEs subsequently diluting in the ISM,

and probably little chemistry occurs later DISM. As a consequence, the problem can

be divided into two experimental parts. First, a simulation of the formation and

desorption of large molecules from grains occurring in denser media and high UV-

Vis flux. Then, a simulation of the survival of the latter molecules in more diffuse

media under the ISRF. The grains formed in CSEs are processed along the way, and

their surface composition and size range is always evolving, depending on the local

conditions. Positively charged dust grains could be grown and irradiated within ion

traps. The setup presented in the previous section could perfom such experiments
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since it allows a production within the trap. The formation of the grains and that of

the molecules which desorb from them could be studied under VUV irradiation. The

first experiments may not mimic accurately interstellar conditions but the refinment

with the time of such experimental simulations may be the most promissing approach

for eventually identifying many large species, along with understanding the key

processes occuring on dust grains.
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[129] A. Staicu, G. Rouillé, O. Sukhorukov, Th. Henning, and F. Huisken*. Cavity

ring-down laser absorption spectroscopy of jet-cooled anthracene. Mol. Phys.,

102(16-17):1777–1783, 2004.

[130] F. Salama, G. A. Galazutdinov, J. Kreowski, L. Biennier, Y. Beletsky, and In-

Ok Song. Polycyclic aromatic hydrocarbons and the diffuse interstellar bands:

A survey. Astrophys. J., 728(2):154, 2011.

[131] A. L. Mattioda, D. M. Hudgins, and L. J. Allamandola. Experimental near-

infrared spectroscopy of polycyclic aromatic hydrocarbons between 0.7 and

2.5 µm. Astrophys. J., 629(2):1188, 2005.

[132] F. Salama and P. Ehrenfreund. A critical review of pahs as dib carriers-

progress and open questions. Proceedings of the IAU, 9(S297):364–369, 2013.
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[159] J. J. Dı́az-Luis, D. A. Garćıa-Hernández, A. Manchado, and F. Cataldo. A

search for hydrogenated fullerenes in fullerene-containing planetary nebulae.

Astron. Astrophys., 589:A5, 2016.

[160] A. Webster. On the carriers of the diffuse interstellar bands. Mon. Not. R.

Astron. Soc., 263(2):385–393, 1993.

[161] A. Omont. Interstellar fullerene compounds and diffuse interstellar bands.

Astron. Astrophys., 590:A52, 2016.
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Fig. 10.1: On the left, a mass scan of Pyr+ (202 amu) and He-Pyr+(206 amu) isotopic dis-

tributions. On the right, a mass scan of Cor+ (300 amu) and He-Cor+ (304 amu).

From ≈ 106 parent ions in the trap, only ≈ 103 - 104 complexes were detected.

After that medium-sized H+PAHs have been studied, the best-suited candidates

had now to be agreed on. The family of bare PAHs+ was one of the main objectives

of this apparatus. To obtain their electronic spectra, and since these do not fragment

following the absorption of 1 - 2 visible photons, a method of choice is to monitor

the PD of their complexes with He. However, the production of He complexes

in the trap was not efficient. As seen in Figure 10.1, only a few thousands of

complexes were formed at a trap temperature of ≈ 5.5 K. In itself, a few thousand

ions is almost enough to perfom an experiment, however, in light of the results

obtained with N2O+ (chapter 4), a much more efficient production of complexes

is expected. Also, for recording the above mass spectra, the second QMS is not

switched on. When it is switched on for an experiment, the overall signal significantly

decreases. Later, modifications on the trap were done, and the trap temperature



10. Appendix. Side project on three carbon chains 138

went down to 3.5 - 4 K, and the production of complexes was back to normal, at

≈ 50 % conversion. Nevertheless, these two degrees of difference are not enough to

explain such a decrepancy, and the reason for the inefficient production shown in

Figure 10.1 is still not completely understood.

Modifications in the trap region are, a priori, often time-consuming and risky

maneuvers. Thus, other candidates were found (C7H+
3 , OC4O+ and C6H2O+) and

that could be studied with the current technique, before attempting some improve-

ments on the setup.
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ABSTRACT

The gas-phase electronic spectra of linear OC4O
+ and a planar C6H2O

+ isomer were obtained at a rotational
temperature of ≈10 K. Absorption measurements in a 6 K neon matrix were followed by gas-phase observations
in a cryogenic radiofrequency ion trap. The origin bands of the P ¬ PX1 u g

2 2 transition of OC4O
+ and the

1 2A ¬ X2
2B1 of HCCC(CO)CCH+ lie at 417.31 ± 0.01 nm and 523.49 ± 0.01 nm, respectively. These

constitute the first electronic spectra of oxygenated carbon chain cations studied under conditions that are relevant
to the diffuse interstellar bands (DIBs), as both have a visible transition. The recent analysis of the 579.5 nm DIB
indicates that small carriers, five to seven heavy atoms, continue to be possible candidates (Huang & Oka 2015).
Astronomical implications are discussed regarding this kind of oxygenated molecules.

Key words: astrochemistry – line: identification – methods: laboratory: molecular – techniques: spectroscopic

1. INTRODUCTION

Oxygen does not make as complex molecules as carbon, but
is the most abundant heavy element in the interstellar medium
(ISM); oxides of the most common elements were identified in
dense clouds or circumstellar envelopes through pure rotational
transitions (Bujarrabal et al. 1994; Furuya et al. 2003;
Tenenbaum et al. 2007; Tenenbaum & Ziurys 2009; Kamiński
et al. 2013). Silicates such as olivine and pyroxene were also
found as a component of circumstellar dust in oxygen-rich stars
(Molster & Kemper 2005; Aller et al. 2014). Nevertheless, the
chemistry in the latter is not as complex as in their carbon-rich
counterparts, where unidentified features having a molecular
origin are still present. This constrains the possibility for
oxygen to be incorporated into gas-phase molecules when the
envelope is ejected into interstellar space. However, these
silicates and metal oxides are not present in large enough
quantities in either dense or diffuse media to deplete elemental
oxygen (Li & Draine 2001; Jenkins 2009; Whittet 2010), which
is almost an order of magnitude more abundant than silicon,
iron, and magnesium combined. An estimated 20% to 40% of
oxygen appears to be unaccounted for in dense and diffuse
clouds (Whittet 2010). An unknown reservoir of oxygen in the
diffuse ISM is suggested to be larger grains composed of either
O-bearing carbonaceous matter or amorphous silicates, both of
which are opaque to infrared radiation (Hincelin et al. 2011).
The substantial uncertainty of its identity leaves a possibility
for other oxygenated-compounds. Moreover, if the role of
oxygen is to terminate a carbon chain, availability should not
be a problem.

In the context of the diffuse interstellar bands (DIBs; Snow
& McCall 2006), molecules could desorb from oxygenated
carbonaceous dust under the UV flux present in the diffuse
ISM. It has been shown that large aliphatic/aromatic structures
are possible carriers of the unidentified infrared emissions
(Kwok & Zhang 2013) and better fits of the 11.3 μm feature are
obtained when oxygen was included in the PAH mixture
(Sadjadi et al. 2015). As particulate matter is in the diffuse
ISM, oxygenated molecules could be candidates of the DIBs if
these species are readily produced on grains.

Few DIBs allow for a rotational contour analysis; however, a
study of the 579.71 nm DIB led to the conclusion that the most

likely carrier is a molecule with five to seven heavy atoms
(Huang & Oka 2015). In the past two decades, electronic
spectra of a number of small carbon chains and their ions with
visible and near-infrared electronic transitions were obtained in
the gas phase at low temperatures, 10 to 30 K (Zack &
Maier 2014). It could be shown that systems comprising up to a
dozen or so carbon atoms are not responsible for the strongest
DIBs. Electronic spectra of cyano-polyacetylene cations were
also recorded in the gas phase with no matches found with any
DIBs (Zack & Maier 2014). Therefore, a search began for
systems which may have been omitted from laboratory
measurements until now, such as the cumulenic species
H2C7H

+ (Rice et al. 2015). Also absent from the list of
studied molecules are oxygen-containing chains.
Electronic absorptions in the visible were recorded for two

oxygen-containing carbon chain molecules: OC4O
+, a linear

species, and planar HCCC(CO)CCH+. In this article the
approach adopted to obtain gas-phase spectra under conditions
as in diffuse interstellar clouds with vibrational and rotational
degrees of freedom equilibrated to ≈10 K is described and then
the laboratory data are compared with the astronomical
observations. Measurements involve the use of a radio-
frequency (rf) trap, collisional cooling with 5 K helium, and a
laser excitation-dissociation scheme.

2. METHOD

The strategy for obtaining the gas-phase electronic spectrum
of an astrophysically relevant molecular ion consists in
recording initally the absorptions of mass-selected species in
a 6 K neon matrix, supported by theoretical calulations to
identify the geometric structures. Once the main characteristics,
such as the wavelength of the transitions and oscillator
strengths are known, the gas-phase spectrum can be measured
for a direct comparison with astronomical data.

2.1. Matrix Isolation

2.1.1. Experimental

The experimental approach is a combination of mass spectro-
metry and matrix-isolation (Nagy et al. 2013). OC4O

+ ions were
produced in a hot-cathode source from carbon suboxide, C3O2,
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in helium. Positive species were guided, deflected 90° by an
electrostatic bender to eliminate neutrals, and transported to a
quadrupole mass selector (QMS). Cations (m/z= 80) are co-
deposited with neon onto the matrix substrate, a rhodium-coated
sapphire plate held at 6 K. CH3Cl in a 1:30,000 ratio with neon
undergoes dissociative electron capture and reduces space-charge
effects. After a three to four hr deposition, a typical thickness of
the matrix was 100 to 150 μm. Absorption spectra were
measured from 250 to 1100 nm in a wave-guide arrangement
by passing broadband radiation from halogen and xenon arc
lamps. Light was passed through the 20mm length of the matrix,
transmitted to a spectrograph via optical-fibers, wavelength
dispersed, and recorded by a CCD camera.

2.2. Gas Phase

The experimental setup (Hardy et al. 2015) is a tandem mass
spectrometer in which ions are cooled and probed in a
cryogenic 22-pole rf ion trap. The OC4O

+ and C6H2O
+

isomers were produced by electron impact from C3O2 and a
mixture of C3O2 and HC4H, respectively. Cations from the
source were guided to a hexapole and cooled to room
temperature by collisions with background gas. A first QMS
selected the mass of interest, and after passing through an
einzel lens, a 90° deflector, and an rf-only octupole, ions
arrived in a 22-pole rf ion trap. The latter was held at 4 K by a
closed-cycle helium cryostat, where ions underwent collisions

with helium. After a couple of milliseconds, a helium density
of 4 × 1015cm−3 was achieved via a piezo valve. The trap was
loaded for 30 ms, whereby positive species were thermalized
with cold helium and axially and radially confined. At the end
of one period, a 5 ns pulsed-dye laser, having 0.002 nm
bandwidth, was triggered. Sequentially, the exit electrode was
lowered by 2 V for 5 ms to release both photoproducts and
parent ions. To record an electronic spectrum, a second QMS
monitored the photodissociation yield as a function of the laser
wavelength, and selected cations were transported to a Daly
detector. The entire experiment was synchronized at a
repetition rate of 10 Hz.

2.2.1. Computational

The linear structure OC4O
+ was optimized with density

functional theory (DFT) at the B3LYP/cc-pVTZ level (Becke
1988; Lee et al. 1988) and the equilibrium coordinates were
employed to calculate the excited-state energies with multi-
state complete active space perturbation theory (MS-CASPT2;
Andersson et al. 1990, 1992) implemented in Molcas
(Aquilante et al. 2010). In CASPT2, an active space was
constructed from 11 electrons distributed over 12 orbitals.
Previous theoretical predictions for HCCC(CO)CCH+ are from
Chakrabory et al. (2015).

Figure 1. Mass spectra of carbon suboxide in a hot-cathode source (the top trace) and from carbon suboxide mixed with diacetylene (the bottom trace). The top
overlays two spectra recorded with different pressures and the higher of which (black) produces OC4O

+ more efficiently.

2
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3. RESULTS

A mass spectrum was first recorded with gaseous carbon
suboxide and then one of carbon suboxide mixed with
diacetylene (Figure 1) using a hot-cathode discharge source.
Peaks due to OC4O

+ and C6H2O
+ are indicated. Both

oxygenated species are made in the plasma and OC4O
+ forms

through an ion-molecule reaction of C2O
+ with C2O. This is

inferred from the four-fold increase of m/z = 80 when the
pressure within the source is doubled from 0.02 to 0.04 mbar.

3.1. Electronic Spectrum of OC4O
+

The absorption spectrum was first recorded in a 6 K neon
matrix after mass-selected deposition of C4O

+
2 and revealed

several transitions in the 370 to 420 nm region (Figure 2, the
middle trace). Thereafter, the matrix was exposed to photons with
wavelengths below 270 nm photons causing electron detachment
from Cl−. After UV-irradiation of the matrix, a decrease in the
absorption intensities demonstrates the cationic origin of the
absorber because of electron recombination (Figure 2, the bottom
trace). A proportional decrease of all bands indicates that they
arise from a single electronic transition with an onset at 417.0 nm.

Other ground-state geometries were unstable on the potential
energy surface compared with the linear form. Vertical excitation

energies of OC4O
+ were calculated. OC4O

+ was optimized at the
M06-2X/cc-pVTZ level and these coordinates were used for the
MS-CASPT2 method (Table 1). According to CASPT2, OC4O

+

possesses a visible transition P ¬ PX1 u g
2 2 at 3.19 eV with an

oscillator strength of 0.004, in agreement with the observation at
2.97 eV (417 nm). In Figure 2 every two adjacent peaks are
separated by 150 to 170 cm−1, indicating a Franck-Condon active
bending mode in the excited state.
The gas-phase spectrum of the P ¬ PX1 u g

2 2 electronic
transition of OC4O

+ is shown in Figure 2 (the top trace). The
origin band at 417.31 nm (Figure 2, inset), redshifted 0.31 nm
compared with the absorption in the matrix, has a FWHM of
0.06 nm due to a short excited-state lifetime of ≈1 ps. The

Figure 2. Gas-phase absorption spectrum of the P ¬ PX1 u g
2 2 transition of OC4O

+ (the top trace) compared with the matrix recording (the middle trace). The
bottom spectrum was recorded after 17 minutes UV (<270 nm) irradiation of the matrix and the decrease in band intensity indicates a cation.

Table 1
Electronic Excitation Energies Ecal (eV) and Oscillator Strength f of the Dipole-
allowed Electronic Transitions for OC4O

+ Calculated by the MS-CASPT2
Method

Transition Ecal f Eexp

P ¬ PX1 u g
2 2 3.19 0.004 2.97

P ¬ PX2 u g
2 2 3.24 0.000 L

P ¬ PX3 u g
2 2 3.78 0.000 L

P ¬ PX4 u g
2 2 4.04 0.001 L

3
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thermodynamic dissociation threshold of OC4O
+ via CO loss is 3

to 3.6 eV, and a laser power of ≈20μJ/pulse had to be used to
prevent saturation effects. The vibrational progression in the
excited state is similar to the one recorded in the matrix, with one

band 155 cm−1 from the origin, arising from a low-frequency
bending mode with double-quanta excitation of pu symmetry. A
tentative assignment of the vibrational transitions in the absorption
spectrum of OC4O

+ is given in Table 2.

Table 2
Electronic Absorption Band Maxima of the P ¬ PX1 u g

2 2 Transition of OC4O
+ and 1 2A ¬ X2

2B1 of HCCC(CO)CCH
+

λ/nm ñ/cm−1 ñD /cm−1 Assignment A/cm−1 B/cm−1 C/cm−1

OC4O
+

417.31 23,956 0 00
0 L L L

A 414.33 24,128 172 n´2 13 (pu) L L L
B 412.11 24,265 309 n´2 12 (pu) L L L
C 406.87 24,571 615 n´4 12 (pu) L L L
D 406.52 24,592 636 L L L L
E 404.23 24,667 711 L L L L
F 403.62 24,769 813 n´2 13+ 4 n´ 12 L L L

HCCC(CO)CCH+

523.49 19,103 0 00
0 0.101 0.079 0.045

A 521.62 19,171 69 L 0.101 0.078 0.044
B 509.33 19,238 135 L L L L
C 503.37 19,282 179 n8(a1) L L L
D 503.37 19,634 531 n7(a1) 0.102 0.079 0.044
E 503.37 19,656 553 L L L L
F 503.37 19,702 599 L L L L
G 503.37 19,727 624 L L L L
H 503.37 19,748 645 L L L L
I 503.37 19,772 669 n6(a1) L L L
J 503.37 19,814 701 L L L L
K 503.37 19,866 761 n5(a1) 0.102 0.078 0.044

Note. Ground-state vibrations were calculated at the MP2/cc-pVDZ level of theory for OC4O
+. Rotational constants in the 1 2A2 state of HCCC(CO)CCH

+ are from
the simulations, whereas those for X 2B1 are taken from M06-2X/cc-pVTZ calculations. A, B, C, etc. correspond to the labels in Figures 2 and 3.

Figure 3. Electronic spectra of the 1 2A ¬ X2
2B1 transition of C6H2O

+ recorded in a 6 K neon matrix (top) and the gas phase (bottom) at 10 K with a 0.002 nm
laser bandwidth. The top trace is redshifted 4 nm for comparison.
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3.2. Electronic Spectrum of C6H2O
+

The absorption spectrum of mass-selected C6H2O
+ in a 6 K

neon matrix was recorded together with theoretical calculations of
different isomers (Chakrabory et al. 2015). The study revealed
two structures with visible absorptions. The 2-ethynylbut-3-yn-1-
enone-1-ylide isomer (C2v symmetry and previously labelled F+)
has the 1 2 A ¬ X2

2B1 electronic transition starting around
528 nm ( f = 0.11), and the (2-ethynylcycloallyl) methanone
cation (Cs symmetry and labelled B+), around 497 nm
( f = 0.024), the latter being broader and weaker. Only F+ was
chosen for a gas-phase measurement because its electronic

transition is in the 400–900 nm region with a dominant origin
band and larger oscillator strength.
The electronic spectrum (Figure 3) was produced by

monitoring the CO loss from C6H2O
+. The origin band of the

1 2A ¬ X2
2B1 transition at 523.49 nm has a FWHM of

0.07 nm. Vibrational progressions in the 1 2A2 excited state are
similar to those observed in the absorption spectrum in a neon
matrix (Chakrabory et al. 2015). These are slightly more intense
in the dissociation spectrum as the fragmentation process used
for detection can distort the intensities in comparison with a
direct absorption technique. Moreover, the solid neon environ-
ment can hinder nuclear motion, especially bending vibrations,
yielding discrepancies in relative intensities in the two spectra.
Nevertheless, the gas-phase spectrum, blueshifted ≈5 nm from
the neon value, can be attributed without doubt to the isomer
observed in the matrix study.
The origin band at 523.49 nm was recorded with a 0.002 nm

bandwidth laser and is compared with simulated profiles
(Figure 4). The X 2B1 ground-state rotational constants
¢¢A = 0.100 cm−1, ¢¢B = 0.089 cm−1, and ¢¢C = 0.047 cm−1

were used from DFT calculations and the temperature along with
the spectroscopic parameters for the 1 2A2 excited state were
varied. As expected from previous studies (Rice et al. 2015), the
best fit was with Trot≈10 K. The molecular constants in the
1 A2

2 excited state are ¢A = 0.101 cm−1, ¢B = 0.079 cm−1, and
¢C = 0.045 cm−1. The most intense vibrational bands (Table 2)

in the 1 2A2 excited state lie at +69 cm−1, +532 cm−1, and
+764 cm−1 from the origin band and show similar P- and
R-branches. They were also recorded (Figure 4) with 0.002 nm
resolution and compared with simulations. The profiles confirm
that the isomeric structure F+ inferred in the matrix study
(Chakrabory et al. 2015) is also the one observed in the gas
phase. The rotational constants indicate a substantial change of
geometry in the excited electronic state, with ¢¢ > ¢B B differing
by more than 10%.
A change of the angle between the two acetylenic side-chains

in the lower and upper state from 127.5° to 119.5° is evident
based on theoretical calculations at the M06-2X/cc-pVTZ
level. This corresponds to a rotational transformation of the
internal A- and B-axes. The low-frequency totally symmetric a1
modes are assigned in the spectrum shown in Figure 3 and
given in Table 2. When higher-resolution recordings of bands

Figure 4. Origin band of the 1 2A ¬ X2
2B1 electronic transition of C6H2O

+

in the gas phase (in red) and simulated profiles at rotational temperatures of 4,
10, and 20 K using a 0.002 nm Gaussian linewidth.

Figure 5. Rotationally resolved vibrational bands in the 1 2A ¬ X2
2B1 electronic transition of HCCC(CO)CCH+ in the gas phase with band maxima at (A)

521.62 nm, (D) 509.33 nm, and (K) 503.37 nm. Molecular constants used for the contour fit are given in Table 2. A, D, and K are labelled in Figure 3.
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involving n7 and n8 (a1 symmetry) excitations are examined
(Figure 5), the profiles have a similar contour to that of the
origin band and thus have comparable A, B, and C rotational
constants.

Higher-resolution spectra (Figure 5) are affected by satura-
tion even when recorded with 10 μJ/pulse as indicated by
narrower FWHM with lower laser fluence. Below this power, a
decent quality spectrum could not be recorded. The thermo-
dynamic threshold for the molecule via CO loss is ≈2 eV,
much less than the 5 eV for H-loss, indicating that a single
photon (528 nm, 2.3 eV) can lead to dissociation. Upon 528 nm
radiation, H-loss, leading to HC6O

+, was also detected, but two
to three orders of magnitude weaker than CO fragmentation.
This is, however, a multiphoton process and the probability is
less likely given a lower laser fluence.

4. CONCLUSION

The P ¬ PX1 u g
2 2 and 1 2A ¬ X2

2B1 electronic transi-
tions of linear OC4O

+ and a planar HCCC(CO)CCH+ were
recorded in the gas phase with a rotational temperature of
≈10 K, following absorption measurements in 6 K neon
matrices. The study was motivated by the fact that no
electronic spectra of oxygen containing carbon chain cations
are available for comparison with astronomical data and that
both molecules have a visible transition. However, neither
the origin band of HCCC(CO)CCH+ nor OC4O

+ show a
match with known DIBs (Hobbs et al. 2008, 2009). Upper
limits of the column densities can be estimated using
N(cm−2) = 1.13 × 1020(EW(Å))/(λ(Å) ´ f2 ). The f-value
of the A band of OC4O

+ (Figure 2) is approximated by
20% of the theoretically calculated 0.004 for the
whole electronic transition. Taking a 10 mÅ equivalent width
as the value of a detectable DIB around 400 nm leads to
N(OC4O

+)< 7 × 1013 cm−2, and with f = 0.11 at 528 nm,
N(HCCC(CO)CCH+) < 2 × 1012 cm−2.

Under near-UV/visible irradiation, these two radical cations
undergo photodegradation. The thermodynamic threshold for CO
loss is approximately 2−3.3 eV. Faster dissociation rates are
achieved with larger excess energy due to multiphoton absorption
and can cause other fragmentation pathways to be accessible. The

strength of the CO-unit constrains small oxygenated species more
than small hydrocarbons when the stability to photodestruction is
considered as a criterion in the ISM. Thus, despite the possible
presence in diffuse interstellar environments of oxygen-containing
hydrocarbon dust particles, such small molecules with a bound

ºC O group are unprobable gas-phase DIB candidates. How-
ever, structures, such as cumulenic H2C +n2 1O

+ or OC +n2 1O
+

n = 2,3,K, are more likely to have a higher photofragmentation
threshold and redistribute energy into the vibrational degrees of
freedom after electronic excitation.

This work was supported by the European Research Council
(ERC-AdG-ElecSpecIons:246998) and the Swiss National
Science Foundation (project no. 200020-140316/1).
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ABSTRACT

The analysis of the λ5797.1 diffuse interstellar band (DIB) by Huang & Oka concludes that the carrier is a chain-
like molecule with five to seven heavy atoms with a large oscillator strength, f≈ 1, for the electronic transition. The
spectra of carbon chains of this size with transitions in the visible have been obtained in the gas phase, but the
f-values are too small. We have now found that certain carbon-chain cations with transitions in the DIB range have
large f-values. An example is the origin band at 4387.7Å of the 1 1A X1

1¬ A1 electronic transition of the
H2C7H

+ chain with f≈ 0.3. This could be measured in the gas phase at 10 K in an ion trap. Astrophysical
relevance of such cations is discussed.

Key words: ISM: general – ISM: lines and bands – ISM: molecules – methods: laboratory: molecular –
techniques: spectroscopic

1. INTRODUCTION

In the discussion of the likely molecules that could be
responsible for the diffuse interstellar bands (DIBs), carbon
chains came to prominence for two reasons. First, polar carbon
chains were detected by radioastronomy in dense clouds
(Kroto 1981), and second, Douglas (1977) indicated that bare
carbon chains may have electronic transitions in the visible and
their photophysical properties could lead to line broadenings
comparable to DIB widths. The latter often have asymmetric
absorption profiles, and some have several peak structures
reminiscent of unresolved rotational contours of larger
molecules (Kerr et al. 1996). A major development in this
area has been the identification of the two DIBs at 9632 and
9577Å due to C60

+ (Campbell et al. 2015). It remains a quest
to discover other carriers.

Our initial strategy was to choose species already identified
in dense interstellar clouds by radioastronomy, e.g., C6H and
C8H (Suzuki et al. 1986; Cernicharo & Guélin 1996), which are
open-shell systems and have electronic transitions in the
visible. This was then extended to related non-polar molecules,
e.g., C4 and C5, and ionic species, such as C7

- and HC6H
+

(Rice & Maier 2013). The successful concept adapted was to
locate the electronic transitions initially in 6 K neon matrices
using mass selection, followed by gas-phase measurements
using several techniques, cavity ring-down absorption spectro-
scopy, resonant two-photon ionization on neutral radicals, and
cation radiofrequency (rf) traps. Though gas-phase spectra
could be obtained for many such carbon-containing systems
and directly compared with astronomical measurements, results
were negative, except for C3 detection (Maier et al. 2001), and
only upper limits of the column densities could be inferred,
generally <1011–1012 cm−2 (Motylewski et al. 2000).

The important conclusion from these studies was that only
species that possess electronic transitions with much larger
oscillator strength, f> 0.5, remain as potential candidates in
order to be consistent with a reasonable column density
(≈1012 cm−2), as well as possessing the EW of the stronger
DIBs (Maier et al. 2004). Identified among these were the
longer carbon chains, C15, C17, C19,K, with very strong
absorptions in the visible. These pure carbonaceous species
have been measured in neon matrices; however, gas-phase
spectra could not yet be obtained. Along with these arguments,

other much larger molecules are being brought into considera-
tion, primarily because the some of the electronic transitions
could be intense and lie in the visible.
A recent development has been the analysis of the apparent

rotational profile of the λ5797.1 DIB by Huang & Oka (2015).
Their conclusion is that a linear or linear-like molecule
comprising five to seven heavy atoms is the most probable
carrier. However, in this category, the electronic spectra of a
number of carbon chains were obtained in the gas phase, e.g.,
C6H, C ,7

- HC6H
+, HC5N, but they have no match with the

DIBs (Motylewski et al. 2000) and possess f < 0.1 values.
Thus, the question arises whether certain molecular types have
hitherto been neglected.
During our studies of the absorption spectra of hydrocarbon

radicals and their cations in neon matrices, various isomeric
structures could be identified via their electronic transitions
combined with theoretical calculation. For example, in the
investigation of C H5 3

+ C5H3 (Fulara et al. 2015) and
C H C H7 3 7 3

+ (Chakraborty et al. 2014) species, several isomers
were produced in an ion source, the mass-selected ions then
deposited in a 6 K neon matrix, and the absorptions measured.
Those of the neutrals were obtained through neutralization of
the ions by the release of electrons in the neon solid.
Theoretical calculations of the possible structural isomers
enabled the assignment of the electronic absorptions. The
significant result is that some of the cation isomers have large
oscillator strengths (range 0.1–1) for their lowest-energy
electronic transitions, an order of magnitude larger than the
neutrals. Thus, such species would fulfill the criteria from the
analysis of the 5797.1ÅDIB (Huang & Oka 2015)—five to
seven heavy atoms and large f-values.
The C H7 3

+ isomer, with the structure given in Figure 1, is an
example. The origin band of the 1 1A X1

1¬ A1 electronic
transition in a neon matrix lies at 4413Å. It is the most intense
in the absorption system, and the oscillator strength of the
origin band is around 0.3. The present article reports the
successful recording of this absorption in the gas-phase
spectrum at 10 K, and the results are discussed in relation to
the DIB aspects. The approach used for the measurement is
based on mass selection of C H7 3

+ and a radiofrequency (rf) ion
trap, where the rotational and vibrational degrees of freedom
are equilibrated to around 10 K by collisions with cryogenically

The Astrophysical Journal Letters, 812:L4 (3pp), 2015 October 10 doi:10.1088/2041-8205/812/1/L4
© 2015. The American Astronomical Society. All rights reserved.

1



cold helium atoms. Thus, as in space, relaxation to a low
temperature is achieved. The electronic spectrum is obtained by
laser excitation of the transition followed by fragmentation.

2. EXPERIMENTAL METHOD

The experimental setup has been described by Hardy et al.
(2015). Ions created in an electron impact source from a 1:1
mixture of diacetylene and propyne are injected into a 440 mm
long hexapole composed of two parts. Positive species are
confined within the second 6-pole and cooled for 50 ms by
collisions with helium, narrowing the kinetic energy distribu-
tion of cations from the source. The exit electrode potential is
then lowered, and the ions released into a quadrupole mass
selector (QMS), which selects m/z = 87 with a resolution of
±0.5 u. The ion beam is turned 90° by a quadrupole deflector
(QB), injected into an rf-only octupole ion guide, and
transported to a 22-pole trap.

A 36× 10 mm2 22-pole rf trap (Gerlich 1992) was filled
with ≈105 ions per cycle. The sequence is 40 ms for filling the
trap, then 50 ms confinement, followed by laser irradiation and
the release of the ions for detection of the photofragmentation
products. The 22-pole is mounted on a closed-cycle cryostat
at 3.2 K. Helium buffer gas is leaked into the trap via a piezo-
valve, achieving a density of ≈4 × 1015 cm−3 after a few ms
and leading to approximately one collision with C H7 3

+ per
microsecond. After exiting the trap, ions are collimated by
several electrodes and deflected 90° by a QB into a second
QMS. The latter selects C H7 2

+ fragments, products of
photodissociation. The ion beam is then focused by an einzel
lens and counted via a Daly detector. The experiment is

synchronized with a dye laser (resolving power = 240,000 at
4400Å) at a repetition rate of 10 Hz.

3. ABSORPTION OF C H7 3
+ IN THE VISIBLE

The electronic spectrum of H2C7H
+ in the 4400Å region

was first observed in a 6 K neon matrix after mass-selected
deposition (Chakraborty et al. 2014). Its structure was inferred
to be the cumulenic form H2CCCCCCCH

+ of C2v symmetry.
The origin band of the 1 1A X1

1¬ A1 electronic transition of
H2C7H

+ in the gas phase is observed at 4387.7Å, blueshifted
from the neon matrix value at 4413Å. The spectrum has a
dominant origin band. The transitions to higher energy,
corresponding to the excitation of vibrations in the upper
1 1A1 electronic state, are weaker by more than an order of
magnitude.
In Figure1, the origin band profile measured with a

resolving power of 240,000 is shown. The two broad features,
peak width ≈1.2Å, are unresolved P- and R-branches.
Saturation effects were avoided by reducing laser power until
the FWHM of the origin band did not change. Because the
electronic transition is not rotationally resolved, it is necessary
to rely on calculations to obtain information concerning the
spectroscopic properties of the excited states. Time-dependent
density functional theory at the M06–2X/cc-pVTZ level was
carried out (Dunning 1989; Zhao & Truhlar 2008; Frisch et al.
2013). This predicts a dipole-allowed electronic transition at
4092Å. When the transition moment is along the internuclear
axis A, the selection rule for the K quantum number is ΔK = 0.
No K structure is seen for parallel bands; however, with the
laser bandwidth and possible lifetime broadening, the Q-branch
would not be observed. For a perpendicular one, K components
should be identifiable even at ≈15 K. Therefore, the origin
band observed in the spectrum is assigned as 1 1A X1

1¬ A1,
a parallel a-type transition.
The spectrum of an asymmetric top is characterized by the

rotational constants A, B, and C in the ground and excited
states, the transition energy, temperature, spin-statistical
weights, and FWHM of Gaussian line shapes. The ground
state molecular constants A″ = 9.581 cm−1, B″ = 0.0276 cm−1,
and C″ = 0.0275 cm−1 were fixed to the results from the DFT
calculation; the transition frequency was taken from the
experimental data; and the rotational temperature was varied.
In Figure 1, simulations with 3, 10, and 50 K are used. As the
temperature is decreased, the P- and R-branches start to merge
together, having an FWHM of approximately 0.3Å. At 50 K,
the band maximum of the R-branch is at 4387.5Å blueshifting
from that at 3 K by 0.2Å. The most probable rotational
temperature of the C H7 3

+ ions in the trap is 10 K, which is
inferred by comparing the experimental and simulated spectra.
The spectroscopic constants obtained from the best fit to the
experimental band profile for the 1A1 excited state are
A′ = 9.616 cm−1, B′ = 0.0273 cm−1, and C′ = 0.0272 cm−1.
The lowest-energy electronic transition of the H2C n2 1+ H+

series shows a redshifting pattern as a function of carbon-chain
length, similar to the H2C2nH

+ polyacetylenic chains (Dzhon-
son et al. 2007). If the origin band wavelength maximum in the
electronic absorption spectrum in 6 K neon matrices is plotted
as a function of n (n = 1, 2, 3), a linear fit can be applied to the
data: En/Å = n × (870± 30)/Å+ (1790± 60)/Å, where n is
an integer and En is the transition energy. For n = 3–8, this lies
in the 4000–9000Å region, the DIB range. Also, the oscillator
strength of these transitions increases as the conjugated

Figure 1. Origin band of the 1 1A X1
1¬ A1 electronic transition of H2C7H

+

measured with a 0.02 Å laser bandwidth in the gas phase (trace c). The
simulated profiles shown are at the indicated rotational temperatures.
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π-system gets longer. The calculated f-value for these
electronic transitions of H2C5H

+ and H2C7H
+ is 0.2 and 0.3,

respectively.

4. ASTRONOMICAL CONSIDERATIONS

The measurement of the gas-phase electronic spectrum of
H2C7H

+ was motivated by the conclusions drawn by Huang &
Oka (2015) on the likely carrier of λ5797.1 DIB. Because the
electronic spectra of many of the “evident” carbon-chain
molecules, such as C6H, HC6H

+, and HC5CN
+, have already

been measured in the gas phase with no match to known DIBs
and the oscillator strength of the transitions is moderate, ≈0.05,
other candidates were sought.

The cumulenic cation H2C7H
+ has been found to have the

generally correct characteristics, a transition in the DIB range, a
dominant origin band at 4387.7Å, and an f-value around 0.3.
Unfortunately, this transition overlaps with a He I line, and one
cannot discern if a DIB is present there. Assuming that the
maximum column density of H2C7H

+ in the diffuse clouds is
1012 cm−2, the EW of the DIB at 4387.7Åwould be ≈50 mÅ.

The cations H2C n2 1+ H+, which include H2C7H
+ studied

here, are isoelectronic with the cumulenes H2C .n2 1+ The latter
are well characterized by millimeter-wave spectroscopy, and
the n = 1, 2, 3 members have been identified in dense clouds
(Thaddeus & McCarthy 2001). These types of molecules were
suggested by Huang & Oka (2015) to be among the candidates
for the λ5797.1 DIB carrier. Their lowest allowed electronic
transitions have comparably larger oscillator strengths than the
H2C n2 1+ H+ species, but the absorptions for the ones compris-
ing five to seven heavy atoms lie toward the UV. This has been
measured in the gas phase for H2C5 at ≈3000Åwith f≈ 0.1

(Steglich et al. 2015). That of H2C7 and H2C9 are expected in
the 4000–5000Å region. On the other hand, the strong
transitions of H2C9H

+ will lie in the 5300Å region. The
measurement of the absorptions of these types of molecules in
the gas phase should be pursued.
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