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• Rainfall erosivity is mapped intra-annu-
ally for the first time at European scale.

• The modelling is based on a developed
monthly Rainfall Erosivity Database at
European Scale (REDES).

• REDES data is modelled with WorldClim
covariates using Cubist regression trees.

• Using Cubist erosivitiy is effectively spa-
tially estimated over Europe for each
month.

• Seasonal patterns of erosivity are further
analyzed using clustering techniques.
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rainfall erosivity both spatially and temporally. Duringwintermonths, significant rainfall erosivity is present only
in part of the Mediterranean countries. A sudden increase of erosivity occurs in major part of European Union
(except Mediterranean basin, western part of Britain and Ireland) in May and the highest values are registered
during summer months. Starting from September, R-factor has a decreasing trend. The mean rainfall erosivity
in summer is almost 4 times higher (315 MJ mm ha−1 h−1) compared to winter (87 MJ mm ha−1 h−1).
The Cubist model has been selected among various statistical models to perform the spatial interpolation due to
its excellent performance, ability to model non-linearity and interpretability. The monthly prediction is an order
more difficult than the annual one as it is limited by the number of covariates and, for consistency, the sum of all
months has to be close to annual erosivity. The performance of the Cubist models proved to be generally high,
resulting in R2 values between 0.40 and 0.64 in cross-validation. The obtained months show an increasing
trend of erosivity occurring from winter to summer starting from western to Eastern Europe. The maps also
show a clear delineation of areas with different erosivity seasonal patterns, whose spatial outline was evidenced
by cluster analysis. Themonthly erosivitymaps can be used to develop composite indicators thatmap both intra-
annual variability and concentration of erosive events. Consequently, spatio-temporal mapping of rainfall erosiv-
ity permits to identify themonths and the areaswith highest risk of soil losswhere conservationmeasures should
be applied in different seasons of the year.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Rainfall is essential for plant development, biomass and agriculture
but it also is the driving force for water erosion processes through de-
tachment of soil particles and formation of surface runoff (Nyssen et
al., 2005). Soil erosion prediction is of crucial importance for appropriate
land management and soil use (Oliveira et al., 2013). Soil erosion
models play an important role in soil erosion predictions and among
them the USLE (Wischmeier and Smith, 1978) and RUSLE (Renard et
al., 1997) are the most widely used. Rainfall is the main driver for soil
erosion by water and the relationship between rainfall and sediment
yield is given by rainfall erosivity (Yang and Yu, 2015). Rainfall erosivity
is calculated from a series of single storm events bymultiplying the total
storm kinetic energy with the measured maximum 30-minute rainfall
intensity (Wischmeier and Smith, 1978).

Among the soil erosion risk factors rainfall erosivity and land cover/
management are considered themost dynamic factors to change during
the year. The rainfall erosivity variability affects agriculture, forestry, hy-
drology, water management, and ecosystem services. Consequently,
neglecting the seasonal variability of rainfall erosivity and as a result
the intra-annual soil loss variability,may lead to improper decisionmak-
ing (Wang et al., 2002). Rainfall erosivity shows different patterns
among thewet and dry seasons both in terms of magnitude and in rela-
tionship to rainfall amount (named erosivity density) (Hoyos et al.,
2005; Meusburger et al., 2012; Borrelli et al., 2016; Panagos et al.,
2016a). Monthly erosivity has been studied in some regions in Europe
suchPortugal (Ferreira andPanagopoulos, 2014; Nunes et al., 2016), Sic-
ily (D'Asaro et al., 2007) and Calabria (Terranova and Gariano, 2015) in
Italy, Ebro Catchment in Spain (Angulo-Martínez and Beguería, 2009),
western Slovenia (Ceglar et al., 2008), north-eastern Austria (Klik and
Konecny, 2013) and Czech Republic (Janeček et al., 2013). Nevertheless
an assessment of monthly erosivity over Europe is still missing.

The recent development of theRainfall ErosivityDatabase at European
Scale (REDES) and the annual rainfall erosivitymapof Europe (Panagos et
al., 2015a) is based on high temporal resolution rainfall data collected
across all European Union countries and Switzerland. The main objective
of this study is to capture the spatial and temporal variability of rainfall
erosivity in the European Union and Switzerland based on high temporal
resolution rainfall data. Specific objectives of this study are to:

- Model monthly and seasonal rainfall erosivity based on 1568 precip-
itation stations in all countries of the EuropeanUnion and Switzerland

- Apply a spatial interpolation model which best maps R-factor spatial
and temporal distribution

- Compare the produced seasonalmaps of R-factor to the distributionof
Köppen-Geiger climate maps
- Apply a cluster analysis to assess the patterns of rainfall erosivity
across Europe

- Derive maps of the variability, density and seasonal peaks of rainfall
erosivity

2. Data and methodology

2.1. Rainfall Erosivity Database at the European Scale (REDES)

The Rainfall Erosivity Database at the European Scale (REDES) has
been developed from high temporal resolution rainfall data collected
from 1568 stations from all European Union countries and Switzerland
(Fig. 1). A participatory approach has been followed in the data collec-
tion as the high temporal resolution rainfall records have been collected
from meteorological and environmental services from countries with
the collaboration of scientists in the domain of rainfall erosivity
(Panagos et al., 2015b). REDES includes N29 × 103 years of data with
an average of 17.5 year-data per station. For further details on REDES,
please see Panagos et al. (2015a).

Wischmeier (1959) proposed the “Rainfall Erosion Index”on a season-
al or annual basis as a product of storm energy and itsmaximum30-min-
ute intensity (EI). Unfortunately, very few datasets at European scale are
available with breakpoint data (Porto, 2015). The available high temporal
resolution rainfall data are at different time resolutions (5min, 10min, 15
min, 30min and 60min). As a first step, the rainfall erosivity has been cal-
culated in the original resolution for eachmonth andprecipitation station.
Then, it was decided to transform all the calculatedmonthly R-factors to a
common resolution of 30 min. For this reasons, Panagos et al. (2016b)
have developed monthly calibration factors at different time resolutions.
Finally, 18,816 monthly R-factor values are serving for making the inter-
polations and developing the monthly R-factor maps.

2.2. Monthly rainfall erosivity calculation

Monthly rainfall erosivity (R-factor) is calculated for each of the
1568 stations as a long-term (17.5 years)monthly average of the erosiv-
ity values of a certain month. The monthly R-factor is an average value,
calculated as a summation of EI30 for each month, divided by the num-
ber of observed years. According to Brown and Foster (1987), EI30 is de-
fined as the product of the kinetic energy of rainfall events (E) and its
maximum 30-minute intensity (I30).

R j ¼
1
n

Xn
j¼1

Xmj

k¼1

EI30ð Þk ð1Þ
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Fig. 1. Rainfall stations included in the Rainfall Erosivity Database at European Scale (REDES).
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where: Rj is the average monthly rainfall erosivity (MJ mm ha−1

h−1 mo−1); n is the number of years recorded;mj is the number of ero-
sive events during a given month j; and EI30 is the rainfall erosivity
index of a single event k. The erosivity EI30 (MJ mm ha−1 h−1) of a sin-
gle event is defined as:

EI30 ¼
Xm
r¼1

ervr

 !
I30 ð2Þ

where er is the unit rainfall energy (MJ ha−1 mm−1) and vr the rainfall
volume (mm) during the r-th period of a storm which divided into m
parts. I30 is the maximum 30-minute rainfall intensity (mm h−1).

The unit rainfall energy (er) is calculated for each time interval as fol-
lows (Brown and Foster, 1987):

er ¼ 0:29 1−0:72 e −0:05irð Þ
h i

ð3Þ

where ir is the rainfall intensity during the time interval (mm h−1).
The sums of EI30 and the average R-factor have been calculated on a

monthly basis. The erosive events have been selected based on the three
criteria of Renard et al. (1997) applied by Panagos et al. (2015a).
2.3. Support covariates and spatial model approach

As evidenced by Panagos et al. (2015b) the values of the R-factor are
strongly correlated with monthly average precipitations and monthly
average temperature extremes. The climatic variables of interest were
obtained from the WorldClim (http://www.worldclim.org/) dataset
similar to the previous study (Panagos et al., 2015a). WorldClim data
layers are the interpolated values of average monthly climate data col-
lected from numerous weather stations worldwide during the period
1950–2000. The WorldClim spatial data layers have been established
by a thin plate smoothing spline with latitude, longitude and elevation
as independent variables to locally interpolate the station data
(Hijmans et al., 2005).

Though theWorldClim data are known to be subject to spatial biases
in mountainous regions as the Alps, the Carpathians, and the Dinarides
(Machac et al., 2011; Perčec Tadić, 2010), we decided to base our
parameterization on such data for following reasons. Firstly, the
WorldClim is a global database, thus it avoids the time-consuming pro-
cess of cross-border harmonization when using regional or local data-
bases such as the HISTALP (Auer et al., 2007) or the CARPATCLIM
(Spinoni et al., 2015). Secondly, its higher spatial resolution (~1 km at
mid-European latitudes) which is more suitable for spatial models

http://www.worldclim.org
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including soil features that usually need evenhigher resolution (500m).
Other European datasets at lower resolution (e.g., the gridded E-OBS at
0.25°; Haylock et al., 2008) have been tested, but resulted in a high loss
of information at local scale. Finally, we plan extending the rainfall ero-
sivity climatology to future climatic scenarios. Consequently the avail-
ability of a downscaled set of climate simulations from the WorldClim
data (see: http://www.worldclim.org/cmip5_30s) plays a key role in
the choice of this database for this study.

Given the correlation between the R-factor and climatic data, a re-
gression approach was used in order to infer the distribution of rainfall
erosivity fromWorldClim's covariates. The climatic variables utilized in
the model were:

1. average monthly precipitation
2. average minimum & maximummonthly precipitation
3. average monthly temperature
4. bioclimatic variables

As all these layers derive directly from the WorldClim database, ref-
erences about the methodology adopted to derive them and a descrip-
tion of the files can be found in Hijmans et al. (2005).

In order to estimate the R-factor for each month a regression model
was built as:

RFi ¼
Xn
i

f j Tmi i…n; Tmx i…n; Pavgi…n;;Bioi…m
� � ð4Þ

where RFi is the R-factor value for month I, fj represent a set of func-
tions (of arbitrary complexity) selected by the learning algorithm;
Tmii…n ,Tmxi…n ,Pavgi…n, ,Bioi…m, are a set of covariates correspond-
ing layers 1–4 enumerated above. Since the relation between the R-
factor and climatic variables is likely non-linear, a more flexible
approach (compared to the linear regression) to regression has to
be used. In this case regression coefficients are substituted by generic
functions fj whose additive combination develops the model. In the
previous study by Panagos et al. (2015a), the R-factor was estimated
by using Gaussian Process Regression (GPR) (Rasmussen and
Williams, 2005) with radial basis kernels for non-linear mapping; al-
though successfully in estimating R-factor values, the GPR has the
disadvantage of being a black-box technique, meaning that identify-
ing the influence of a given input covariate on the prediction is not
straightforward. Therefore, to have a better insight into the model
structure, we chose to work with a regression tree technique, namely
Cubist (Quinlan, 1992). This choice is further motivated by Cubist's
excellent performance, its ability to model non-linearity and its in-
terpretability. In particular, Cubist can model non-linear relations
by building a series of piecewise regression models linked to form a
smoothed function. For these reasons Cubist has been used to esti-
mate and map a variety of features, such as soil organic carbon
(Somarathna et al., 2016; Viscarra Rossel et al., 2016; Akpa et al.,
2016), soil erosion by wind (Borrelli et al., 2014), forest biomass
(Blackard et al., 2008; Freeman and Moisen, 2007), soil properties
(Gray et al., 2015; Padarian et al., 2015). The Cubist model is additive
and eachmonth's R-factor model is initially fitted using the full set of
covariates. In order to avoid issues due to the collinearity among
covariates a supervised feature selection using simulated annealing
(Kirkpatrick et al., 1983) was then performed on the starting set of
covariates; then the Cubist fitting algorithm was applied on the set
of selected features. This procedure was repeated for each one of
the months to be estimated. Since only the most informative vari-
ables are selected for each model, the fitted models usually comprise
different sets of covariates.

2.4. Prediction of monthly erosivity by Cubist model

Cubist is a rule–based model, where a decision tree is grown with
the terminal leaves containing linear regression models. These models
use the predictors to split the tree branches into intermediate linear
models using a splitting criterion. As splitting criteria the standard devi-
ation of the class in a given branch is treated as ameasure of the error at
that node and each attribute at the same node is tested by estimating
the expected reduction in error. The attribute that is chosen for splitting
is the one maximizing the expected error reduction. The standard devi-
ation reduction (SDR) which is calculated by Eq. (5) corresponds to the
expected error reduction:

SDR ¼ σ Tð Þ−
X Tij j

Tj j σ Tið Þ ð5Þ

where Ti corresponds to the sets that result from splitting the node ac-
cording to the chosen attribute. At the end of the tree, the linear regres-
sion models at the leaves predict continuous numeric attributes, their
combination is analogous to a piecewise linear functions and combine
the result in a non-linear function. The splitting process terminates
when the standard deviation is only a small fraction less than the stan-
dard deviation of the original instance set or when a few instances re-
main. Prediction estimates are calculated using the linear regression
model at the terminal node of the tree and predictions are “smoothed”
by taking into account the prediction from the linear model in the pre-
vious node of the tree. The tree can be reduced to a set of rules, while
redundant rules are eliminated via pruning and/or combined for
simplification.

Cubist also adopts two meta-learning rules in order to improve
model performance. One is a boosting–like scheme called “committees”
(Quinlan, 1992) where iterative model trees are created in sequence
and the final prediction is an average of the predictions from each
model tree. The second is “instance based correction” where nearest–
neighbours are used to adjust the predictions from the rule–based
model. Instead of estimating a value from a single combination of covar-
iates (i.e. a stack of pixels from the covariates), Cubist founds the n clos-
est observations in features space and pools them by averaging these
training set observation. The reasoning behind this procedure is that
pooling results in better estimates, likely by limiting the influence of
noise in the data (Quinlan, 1993).

Cross-validation was used for assessing the goodness-of-fit (GOF) of
the Cubist model. Thus, N random samples containing 10% of the origi-
nal dataset were takenwith replacement and left for validation. At each
N iteration the model was calibrated with the remaining data and GOF
metrics were computed for the validation sample. The metrics used to
evaluate model performance are the coefficient of determination (R2),
the rootmean squared error (RMSE), thenormalized rootmean squared
error (NRMSE) and theMean Error Bias (MBE). This procedure (calibra-
tion and cross-validation) was repeated independently for each month.

2.5. Delimitation of R-factor spatial patterns

The maps obtained by Cubist prediction were pooled and clustered
in order to search for an optimal number of, relatively, homogenous
(in terms of rainfall erosivity seasonal patterns) areas. This can be
done by adopting a clustering algorithm in order to identify clusters
sharing similar properties. A suitable technique is using k-means
clustering. K-means clustering, in its range of slightly different
implementations, is commonly applied in soil (Carré and McBratney,
2005; Odgers et al., 2011) and climate (Favre et al., 2016; Rau et al.,
2016; Santos et al., 2016) sciences where grouping of multiple variables
is needed.

K-means (MacQueen, 1967) is a centroid-based clustering, where
clusters are represented by a central vector. The number of clusters is
fixed to k and the algorithm finds the k cluster centres and assign the
objects to the nearest cluster centre, such that the squared distances
from the cluster are minimized. Since the solution to the clustering
problem can only be numerically approximated, numerical methods
reused. In order to avoid the algorithm to get stuck in a local minimum

http://www.worldclim.org/cmip5_30s
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the best of multiple runs is selected, with the initial centres chosen
randomly.

However the number of clusters k is arbitrarily chosen by the user.
To optimize the number of clusters into which subdivide the data, we
used the Calinski-Harabasz index (Calinski and Harabasz, 1974). This
index expresses the ratio between the between-group scatter (BGSS)
and the within-group scatter (WGSS); the first quantity expressing
how far are clusters barycentre fromwhole data barycentre, the second
expressing how far is each observation in a cluster from that cluster
barycentre. The optimal number of clusters is then found by testing dif-
ferent possible number of clusters and selecting the combination with
the highest index (the one that maximizes BGSS andminimizesWGSS).
3. Results and discussion

3.1. Fits of the Cubist regression model for individual months

For each month, a different Cubist model was fitted. In general, the
cross-validation approach showed that all the models performed quite
well with performances, expressed in terms of R2, ranging between
0.46 and 0.61 (Table 1). The RMSE ranged between 34.19 and 115.45.
TheMBE is usually intended to indicate averagemodel ‘bias’; that is, av-
erage over- or underestimation.MBE values are generally low for all the
models excluding the one for the month of June which shows a more
relevant underestimation, this is also evident from Fig. 2 where a large
part of the points falls below the bisector line.

It should be noted that spring months' R-factor values are generally
less well predicted than winter and summer months' in terms of
R2(Table 1). However, in termsof NRMSE, summermonths have the larg-
est error; this is due to the higher variability of the R-factor. It is quite
clear that summer (and autumn) months tend to have a wider range
and higher variability of R-factor values, which partly accounts for the
higher error (Fig. 2). However, from the MBE it is evident that for some
months, the model is biased when predicting high values of rainfall ero-
sivity. This behaviour is evident in Fig. 2, where values of R-factor above
700–800 MJ mm ha−1 h−1 mo−1 are constantly underestimated by the
model. This is probably due to the occurrence of extremely intensive
events whose distribution cannot be captured by a model using
monthly averaged covariates. Nevertheless, given the scarce number of
extreme events with R-factor N 1000 MJ mm ha−1 h−1 in REDES
(99.9% of the events are below 989.97 MJ mm ha−1 h−1) we can trust
model predictions for what matters the main seasonal and spatial trend
of R-factor.

In general, each month R-factor is predicted by a different set of co-
variates automatically selected by the Cubistmodel. The resulting resid-
uals of the Cubist regression showed no spatial correlation, so a
subsequent kriging of the residuals was not done.
Table 1
Cubist model cross-validation performances for monthly R-factor interpolation (R2:
coefficient of determination, RMSE: Root Mean Squared Error, NRMSE: Normalized Root
Mean Squared Error, MBE: Mean Bias Error).

R2 RMSE NRMSE MBE

Jan 0.498 42.07 0.064 −0.60
Feb 0.504 38.09 0.061 −1.71
Mar 0.508 36.12 0.058 −0.21
Apr 0.473 34.19 0.077 −0.82
May 0.462 53.03 0.075 2.76
Jun 0.494 79.82 0.082 15.14
Jul 0.519 92.66 0.076 0.92
Aug 0.590 87.51 0.076 3.05
Sep 0.613 97.20 0.061 7.52
Oct 0.475 115.45 0.058 0.45
Nov 0.536 91.61 0.065 −2.86
Dec 0.607 59.72 0.066 −1.23
3.2. Monthly R-factor predicted maps

The twelve fitted models were applied on the spatially exhaustive
set of covariates in order to produce monthly maps of the estimated
R-factor (Figs. 3–5). During winter, part (or the totality) of the precipi-
tation is constituted by snow; for this reason, areas where the average
maximum monthly temperature is below 0°C are whitened in the
maps. In these areas the model still predicts a value for R-factor, but
the predictions are likely to be unrealistic.

The pattern of the R-factor follows the typical seasonality of precip-
itations that characterizes different European climatic zones. The Medi-
terranean area shows high rainfall erosivity values from September to
January, while the area surrounding the Alps, the Carpathians and the
Balkans shows its maximum erosivity from June to August.

The northern Atlantic coast, Ireland, Wales and part of Scotland
show higher summer rainfall erosivity values, although the intensity
in this areas is lower than in the Mediterranean or the Alpine region.
Eastern Europe and Sweden follow the same seasonal pattern, but
with generally lower values of rainfall erosivity.

Remarkably, the sumofmonthly R-factor values,with a smallmargin
of approximation, correspondswell to the yearly estimates presented by
Panagos et al. (2015a). By calculating the difference between the two
maps the resulting difference has amean value of 15.3MJmmha−1 h−1

and a standard deviation of 159 MJ mm ha−1 h−1. These values imply
that the estimates of the R-factor derived by the cumulative sum are,
on average, 2% higher than those obtained by the direct estimation of
the yearly R-factor. This difference is still within the 0.95 confidence in-
terval for the difference of the means (as calculated by a Welch Two
Sample t-test,Welch, 1947) of both the yearly estimates and themonth-
ly estimates sum of the R-factor.

While cross-validation ensures that themodels are properly fitted, it
cannot provide an assessment of the prediction where observations are
not present.

3.3. Seasonal R-factor

In the European Union and Switzerland, the mean rainfall erosivity in
summer is 315 MJ mm ha−1 h−1 which is almost 4 times higher than in
winter (87MJmmha−1 h−1). Due to higher values in theMediterranean
basin, themean rainfall erosivity in autumn is 203MJmmha−1 h−1 com-
pared to the 116 MJ mm ha−1 h−1 in spring. With the exception of the
Mediterranean basin, the general spatial patterns of rainfall erosivity
both in seasonal maps (Fig. 6) and monthly maps (Figs. 3–5) exhibit a
smooth increase of R-factor fromwinter to spring, followed by a sharp in-
tensification in summer and then a smooth decrease in autumn. The
highest divergence is noticed in autumn (followed by winter) with low
mean values in Central and Northern Europe and very high values in
the southern part. The objective of the seasonal R-factor maps (Fig. 6) is
to show the seasonal patterns in European Union.We recognize that sea-
sons are not the same around Europe, but we preferred a simplified ap-
proach based on aggregation of data on 3-month basis. Due to
availability of data, end-users may do their customized seasonal maps in
any region of European Union.

3.4. Seasonal erosivity by Köppen-Geiger climate classification and cluster
analysis

Themap of Köppen-Geiger climate classification is commonly used by
researchers to evaluate the output of climatemodelling (Peel et al., 2007);
an updated map is available at a 0.1° resolution by Peel et al. (2007). The
inspiration of Köppen classification stem fromvegetationmapping and as
such the classification is based on more parameters than simple precipi-
tation intensity. A different approach is to use the R-factor values itself
to identify relatively homogeneous areas in terms of rainfall erosivity sea-
sonal patterns by cluster analysis. In this study the best split according to
the Calinski-Harabasz index is given by a split in six clusters. Fig. 7 depicts
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the spatial distribution of the clusters (on the left) and Köppen-Geiger cli-
matic zones (right). At afirst glance, it is evident that clusters' distribution
does not follow the Köppen-Geiger climate subdivision. This in an inter-
esting result as Köppen-Geiger classes are often used to discriminate be-
tween different climatic zones, but in the case of rainfall erosivity they
appear to be a non-optimal choice. Nevertheless, while accounting for
the different resolution of the twomaps, some of the subdivisions are re-
markably similar. The demarcation between eastern and western Italy
and Greece and the north-south subdivision of Portugal. However the
transition between Temperate and Continental climates appears to be
placed further East in the Köppen map. Moreover clustering shows a
marked division along the south-west to north-east direction that is pres-
ent, but not so evident in the Köppen map.

Nevertheless clusters capture most of the variability of the R-factor
in Europe. The fact that different clusters represent quite different pre-
cipitation regimes can be evidenced by plotting values of R-factor den-
sities by month and cluster. Fig. 8 shows how much each month
contributes to different values of R-factor per cluster. Each box repre-
sents a different cluster, while the coloured area represents each
month's contribution to a given level of R-factor. So, as an example, for
cluster 3 the totality of events with an R-factor between 150 and
175 MJ mm h−1 ha−1 occurs in July.

Cluster 1 represents areas with a prevalence of highly erosive events
in autumn (Figs. 8). Clusters 2 and 3 have a prevalence of events in late
spring and early summer, with cluster 2 experiencing more events in
summer. Cluster 4 presents important contribution of late spring and
early autumn months. Cluster 5 shows a prevalence of high R-factor
values in autumn and a still significant contribution of winter months.
Cluster 6 is peculiar for its limited spatial extension, however, it shows
very high values of R-factor during summer months that are quite un-
common in other clusters.

Another comparison between Köppen climate zones and clusters can
be made by plotting the seasonal trend for each cluster/class. Figs. 9 and
10 show R-factor and precipitation trends grouped by cluster/class.
Monthly Erosivity Density (MED)was added to the plots for comparison.
MED is obtained by diving the monthly erosivity by average monthly
rainfall (Bonilla and Vidal, 2011; Kinnell, 2010). Regions and seasons of
high erosivity density indicate a higher risk of erosive rainstorms and,
as a consequence, high erosion and flooding (Dabney et al., 2011;
Panagos et al., 2016a). Clusters 2, 5 and 6 are characterised by high ero-
sivity density during winter months as are climate zones Df (Cold with-
out dry season) and E (Polar). However, in the map, class E corresponds
only to high altitude areas and is probably subject to estimation issues.

3.5. Ratio of the least erosive month to the most erosive

The estimation of R values for the twelve months of the year allows
the production of several indicator maps, something that would not be
possible with just yearly estimates. Themonthlymaps of Fig. 3–5 depict
a quite large difference in erosivity. Across Europe, a comparable differ-
ence is present in the temporal dimension where the same area can
have values of R orders of magnitude dissimilar in different times of
the year. While the maps of Fig. 3–5 give a general idea about the
areas with the highest variability in rainfall erosivity across the year, a
better understanding can be obtained by creating a map of the ratio be-
tween the lowest and the highest erosivity values. The ratio value can be
calculated as

φ j ¼
min Xi¼1;…;12; j

� �þ 1
max Xi¼1;…;12; j

� �þ 1
ð6Þ

Where j denotes a specific pixel in each of the twelve imonthly ras-
ters and X denotes the values of rainfall erosivity. The constant value of 1
is added to avoid values of φj tending to 0 when the lowest values of X
tends to zero.

The resultingmap is shown in Fig. 11, where values close to 0 repre-
sent areaswhere the difference in R between themost and the least ero-
sive months is larger. Fig. 11 also shows an East-West demarcation
analogue to the Köppen map, with lower ratios in North-Eastern
Europe, South Portugal and Western Andalusia.



Fig. 3.Maps of estimated R-factor from January to April.
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Fig. 4.Maps of estimated R-factor from May to August.
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Fig. 5.Maps of estimated R-factor from September to December.
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Fig. 6. Rainfall erosivity (MJ mm ha−1 h−1) per season (winter – spring – summer –autumn).
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3.6. Weighted erosivity density

The annual erosivity gives information on the total rainfall energy,
but provides no information about the time distribution of the events.
Moreover it tells nothing about the concentration of extreme events
during the year. The same annual erosivity can result from numerous
events with little relative energy or from few very energetic events; ob-
viously with a different outcome.



Fig. 7. Spatial distribution of R-factor clusters (left) compared to Köppen-Geiger climate zones (right).
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Fig. 9. Monthly R-factor, Precipitation and Erosivity Density contribution in each cluster. The horizontal axis is month of the year. The shaded regions represent the 0.95 confidence
intervals.

Fig. 10. Monthly R-factor, Precipitation and Erosivity Density by Köppen-Geiger main climatic zones (BS: Steppe, BW: Desert; Cf: Temperate without dry season; Cs: Temperate, dry
summer; Df: Cold without dry season; Ds: Cold, dry summer; E: Polar). The shaded regions represent the 0.95 confidence intervals.
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Fig. 11. Ratio between the least and the most erosive month R-factor.
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An assessment of the distribution of erosivity over the year is critical
for management and mitigation procedures, so the development of
composite indicators expressing not only the yearly estimate, but also
the relative impact of extreme events is critical for soil conservation.

In this studywe attempted to develop a composite indicator summa-
rizing the intra-annual variability as well as its dependence by extreme
events. This indicator is expressed as the ratio between annual erosivity
density and the Coefficient of Variation (CV) ofmonthly erosivity density.

The CV is expressed as the ratio between the standard deviation (σ)
and the mean (μ) and shows the extent of variability in relation to the
mean. In the context of rainfall erosivity density the CVMEDwas calculat-
ed as:

CVMED ¼ σMED

μMED

where : μMED ¼
X12

i¼1
MEDi

12
;σMED ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX12

i¼1
MEDi−μMED

2

12

s ð7Þ

Where MEDi is the value of estimated monthly erosivity density for
month i. The value of CVMED is maximised when the monthly values of
MED differ a lot over the year (σMED≫μMED) and minimized when the
values are more or less evenly distributed (σMED≪μMED) (Fig.12). Thus,
multiplying the annual Erosivity Density value by CVMED it is possible to
obtain a map of the Weighted Erosivity Density (WED) showing the
areaswhere extremely energetic events aremore likely to occur (Fig. 13).

Compared to themap of R-factor map by Panagos et al. (2015a), the
map of WED (Fig.13) shows a different distribution with higher values
in central Spain, Sicily and Sardinia and lower values along the Atlantic
coast (Galicia, Bay of Biscay, Western Scotland, andWales) and in parts
Northern Italy. The map of the WED is an advancement of the annual
erosivity density map (Panagos et al., 2015a) as it incorporates the
monthly variation. This is particularly important for area where intense
events have a potentially dramatic impact on soil erosion (Martınez-
Casasnovas et al., 2002).

3.7. Months with highest and lowest erosivity

Another essential information about rainfall erosivity is the time of
the year when erosivity is at its maximum as well as when it is at its
minimum. The monthly estimation of the R-factor allows the mapping



Fig. 12.Map of the Coefficient of Variation of theMonthly Erosivity Density. Areas with values b 1 are subject to more evenly distributed events, while areas where CV N 1 are subject to a
more heterogeneous precipitation regime during the year.
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of month of the year corresponding to the most erosive one (Fig. 14).
The same intensity of rainfall erosivity will result in a different
effect on the soil erosion according to the time of the year when
it occurs. This depends on different factors, like crop cover, that change
during the year. Knowledge about the time of the year when the
highest erosivity occurs is then critical for management practices, as
it allows optimize mitigation procedures. For example in areas
where the maximum erosivity occurs between September and October
leaving crop residues on the ground as erosion protection would be
recommended.

4. Data availability, limitations and comparability with local studies

Themonthly erosivity datasets (GeoTIFF format) at 500m resolution
are available for free download in the European Soil Data Centre
(ESDAC): http://esdac.jrc.ec.europa.eu, while the calculated erosivity
values per station in REDES will become available in the future based
on the agreed copyright issues with data providers.
Themonthly erosivity datasets produced in this study should not be
seen as challenging any local or regional erosivity maps. Local erosivity
maps using local data of better quality (higher resolution or longer
time-series) are of course more accurate. It is auspicable that local
data and knowledge could be used to further improve the REDES data-
base in the future.

The seasonal R-factor maps were qualitatively compared with re-
gional studies in Italy, Spain, Portugal, Austria, Slovenia and Czech Re-
public. In the Ebro Catchment (Spain), Angulo-Martínez and Beguería
(2009) have modelled the highest erosivity during November, October,
September andMaywhich is very similar to our monthly R-factor maps
(Figs. 4, 5, 14). In this catchment, the lowest erosivity is estimated in
summer and winter months. In Calabria (Italy), similar to the maps of
Terranova and Gariano (2015), we predicted higher erosivity in January
compared to March while October and November are the most erosive
months and August the least erosive (Fig. 14). In Sicily (Italy), D'Asaro
et al. (2007) estimated the summer erosivity to be equal to or slightly
higher than the winter one while we noticed the highest values during

http://esdac.jrc.ec.europa.eu


Fig. 13. Weighted Erosivity Density (WED). Areas with the highest WED are more subject to extreme erosive events.
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September and October. In Algrave region, our results show similar pat-
terns to de Santos Loureiro and de Azevedo Coutinho (2001) who have
modelled the highest erosivity in October, November and December
and the lowest in summer months. In Southern part of Portugal, similar
to Nunes et al. (2016), we have estimated the highest erosivity the 3-
months October–December followed by erosivity the erosivity during
January–March while the lowest erosivity is during summer. Similar
to our results, In South-eastern Portugal (Alqueva Dam Watershed)
Ferreira and Panagopoulos (2014) have modelled the highest erosivity
during autumn (c.a. 50%) and the lowest in summer while winter and
spring have similar patterns. In the northeaster part of Austria, Klik
and Konecny (2013) calculated the rainfall erosivity most dominant
during the period May to July (60% of the total) followed by the period
August to October (37%) which are very similar to our spatial patters
(Figs. 4 and 5). Comparing our results to the local study of Ceglar et al.
(2008) in western Slovenia, the most erosive period is August to Sep-
tember (Fig. 14). In Czech Republic, Janeček et al. (2013) estimated
that 85% of erosivity is taking place during summer which is close to
our estimate (Fig. 6).
5. Conclusions

The spatial models' prediction of monthly European R-factors was
satisfactory in terms of R2 and RMSE. Spring months are in general
less well predicted than the rest of the year. However, the largest
error is noticed in summermonths due to higher variability of the R-fac-
tor.ThepredictionsofR-factormonthlyvaluesover800MJmmha−1h−1

are underestimated by themodel, however, there are very few observa-
tions with values that are so high.

The intra-annual variability of rainfall erosivity is very high in
Europe with July having a mean value of 115.1 MJ mm ha−1 h−1

which is almost 5 times higher than themean value of January. Summer
is the period with the highest R-factor and it is remarkable that around
55% of total rainfall erosivity in Europe takes placewithin only 4months
(June–September). However, the intra-annual distribution of erosivity
and the concentration of extreme events have a high spatial variability
in Europe. The clustering of erosivity in Europe (by k-means) showed
that Köppen-Geiger climate classification is always not optimal for
representing the spatio-temporal patterns of rainfall erosivity. Cluster



Fig. 14.Map of the month of the year with the highest value of R (left) and lowest (right).
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analysis outlines a different andmore complex spatial pattern of rainfall
erosivity.

In this context, the monthly erosivity maps allowed the develop-
ment of indicators for studying the intra-annual variability of erosivity
and the concentration of erosive events. The variation of monthly ero-
sivity and the ratio between the lowest/highest erosive month showed
that Ireland, UK, west France, North west Spain, central south Italy and
Greece have much lower intra-annual erosivity variation, compared to
Eastern Europe and Scandinavia. Theweightedmonthly erosivity densi-
ty allows to identify higher concentration of erosive events in southern
Italy and central Spain compared to the Atlantic coast. Finally, the iden-
tification of the most erosive month allows to recommend certain agri-
cultural management practices (crop residues, reduced tillage) in
regions with high erosivity.

The spatio-temporal rainfall erosivity analysis at European scale is a
first step towards developing dynamic (monthly, seasonal) maps of soil
loss by water erosion. Besides soil erosion mapping, the intra-annual
analysis of rainfall erosivity is an important step towards flood preven-
tion, hazard mitigation, ecosystem services, land use change and agri-
cultural production.
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