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Summary 
 

Amino acids betaines represent a ubiquitous class of simple natural products. These compounds 

are increasingly recognized as osmoprotectants, valuable additives in food and cosmetics, 

therapeutics, or as components of green ionic liquids. The best known representative of this 

class is trimethylglycine. A large majority of organisms synthesize glycine betaine via a two-step 

oxidation of choline. Because this pathway is hardly adaptable to producing other betaines, the 

biosynthetic origin of most amino acid betaines remained unclear. The biosynthetic pathways of 

ergothioneine, a histidine betaine derivative, were identified in Mycobacterium smegmatis and in 

the fungus Neurospora crassa, in 2010 and 2013 respectively. In both pathways, the Nα-histidine 

methyltransferase EgtD catalyzes the first step of the biosynthesis. We characterized EgtD as the 

first member of an amino acid methyltransferase family (Methyltransf_33) which catalyzes the 

direct permethylation of its substrate. We demonstrated the cooperativity of EgtD. We suggest 

that this unique feature among the members of the Methyltransf_33 family enables an upstream 

substrate control for the following enzyme in the mycobacterial biosynthesis of ergothioneine, 

EgtB. In addition, by compiling kinetic analysis, X-ray crystallography and bioinformatic 

searches, we were able to describe the determinants for EgtD substrate specificity and 

consequently identify new aromatic amino acid betaine synthases which were not reported until 

now. 

Ergothioneine has been recently associated with the virulence of Mycobacterium tuberculosis. As 

this small metabolite is not synthesized by the human body, it emerges as a potential drug target 

against this pathogen. Interestingly, the ΔegtD deletion mutants of mycobacteria are no longer 

able to produce this compound. This finding indicated that the presence and the activity of EgtD 

govern ergothioneine biosynthesis. Based on structural analysis and the identification of the 

substrate binding mode of EgtD, we designed a series of histidine derivatives that inhibit EgtD 

activity in vitro. Therefore, our findings could direct the development of new inhibitors of 

ergothioneine biosynthesis in mycobacteria which may be tested in vivo. 

Furthermore, we propose a mechanism for substrate activation required for the catalysis and 

two regulation pathways of EgtD activity. Firstly, we identified trimethylhistidine as an inhibitor 

of the methyltransferase. We suggest that this product inhibition is a means to avoid the 

accumulation of an unnecessary reaction intermediate, if not used by EgtB. Secondly, we also 

observed that the presence of a strong oxidant agent such as hypochlorite, down-regulates the 

activity of EgtD in vitro by oxidizing one cysteine residue of the methyltransferase. This finding 

seems counterintuitive if we consider the antioxidant properties or ergothioneine. However, as 
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mycobacteria produce both ergothioneine and mycothiol to maintain redox homeostasis, the 

regulation of the EgtD activity in an oxidative environment in vivo might also be associated with 

mycothiol. Yet, we clearly demonstrated that the rate of histidine methylation is not enhanced in 

the presence of reactive oxygen species. 
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1 Introduction: Ubiquity of amino acid betaines  
 

The term betaine refers to a sub-class of zwitterions. The cationic and negative functional groups 

consist, in most cases, of a positively charged ammonium group and a negatively charged 

carboxylate. Phosphonium and sulfonium betaines are less common and mainly occur as 

synthetic intermediates (such as in the Wittig reaction).1 

Betaines are ubiquitous among all six kingdoms of life (Figure 1). Their functions are certainly as 

diverse as the organisms in which they are found. They serve as osmoprotectants, antioxidants, 

building blocks and methyl donors, to name only a few. Most of the natural betaines are derived 

from amino acids. Theoretically, all the amino acids can be converted to their corresponding 

betaines via the trimethylation of the -amino group. There are however only a few biosynthetic 

pathways for amino acid-derived betaines that have been reported in the literature. 

 

 

Figure 1 Examples of naturally occurring betaines. Glycine betaine (1), stachydrine (2) and β-alanine betaine (3) are 

osmoprotectants present in diverse marine algae, flowering plants families, various microorganisms and animals.2 

Carnitine (4) is an important nutrient involved in fatty acid metabolism of eukaryotes.3 Damituricin (5) was isolated 

from the Mediterranean sponge Axinella damicornis.4 Sticticine (6) is a major nitrogenous compound in lichens which 

might play a role in osmoregulation.5 Plakohypaphorine B (7) and 5,6-Dibromo-L-hypaphorine (8) were identified in 

marine sponges.6,7 Ergothioneine (9), synthesized by certain types of bacteria and fungi8 and selenoneine (10), found 

in ocean fish,9 have strong antioxidant activity. Phenylalanine betaine (11) was identified from the mushroom 

Astraeus pteridis.10 Dimethylsulfoniopropionate (12) is produced by phytoplankton and related to the production of 

organic matter in the ocean.11 

 

1.1 Glycine betaine 
 

Historically, the name betaine referred to trimethylglycine (TMG) which was the first amino acid 

betaine to be identified.12,13 Since its discovery in sugar beet more than 140 years ago, glycine 

betaine was found in various microorganisms, marine invertebrates, plants and mammals.14,15 
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This section provides an overview of the chemistry and functions of this ubiquitous and 

essential compound. 

 

1.1.1 Major functions of an extensively distributed compound 
 

1.1.1.1 Osmoprotectant 

 

A common response to water stresses observed in many organisms such as plants, bacteria or 

animals, is the accumulation of highly soluble, low molecular weight compounds named 

osmolytes. These solutes maintain cell volume by absorbing and retaining water. This osmotic 

adjustment allows the organism to survive a drought or an increase in environment salinity for 

example. Osmoprotectants include several categories of compounds: betaines such as glycine 

and proline betaine (Figure 1, 1-2) which are common in bacteria; sugars like sucrose or maltose 

which are often found in plants and free amino acids such as proline which is accumulated in 

bacteria or plants under water stress.2,16  

Computational studies on glycine betaine microsolvation demonstrated that seven water 

molecules interact directly with the osmolyte through hydrogen bonding.17 Moreover, up to 

twelve water molecules can populate the hydration shell of one TMG molecule.18 Hence, the 

increase in TMG concentration leads to an increase in the number of water molecules. Due to its 

osmoprotective property (and besides its low cost and high availability), TMG is a widely used 

additive in personal care products.  

Glycine betaine is accumulated to assist cell volume regulation in bacteria, plants, marine 

animals or mammals.19,20 The levels of TMG vary significantly among these organisms in 

response to unfavorable environmental conditions. As an example, the ability of some plants to 

endure abiotic stress results from the accumulation of this quaternary ammonium.21,22 TMG is 

also found in the human plasma (20 to 70 µM), but at higher concentration in the liver and the 

kidneys (up to mM). The presence of osmolytes in the kidney is essential to balance the changes 

in salinity that occur in this organ. In addition to glycine betaine, other osmotically-active 

compounds such as myo-Inosytol, sorbitol and glycerophosphoryl-choline are also found in 

mammalian and human kidneys.23,24 Moreover, TMG protects the cells from the high 

concentration of urea which causes proteins to unfold.25 Indeed, to counteract the denaturing 

effect of urea, the presence of TMG induces a more compact protein folding. Due to the positively 

charged trimethylammonium group, TMG is in fact excluded from the protein immediate 



5 
 

hydration layer. This so-called “osmophobic effect” produces thermodynamic force that leads 

the protein to adopt a condensed structure.26  

 

1.1.1.2 Glycine betaine in homocysteine recycling 

 

As described above, TMG is also found in the human liver. In this organ, TMG mainly serves as a 

methyl donor during the synthesis of methionine (Figure 2).27  

 

 

Figure 2 Metabolic pathway of methionine in human liver. BHMT is a betaine homocysteine methyltransferase that 

catalyzes the transfer of a methyl group from TMG to homocysteine. Methionine is also synthesized from 

homocysteine in presence of methyl-tetrahydrofolate (N5-MeTHF) and the vitamin B12 as the methyl donor and 

cofactor respectively. This alternative methylation is catalyzed by the methionine synthase (MetS). S-

adenosylmethionine (SAM) is synthesized from methionine and ATP by adenosyltransferase, also named SAM 

synthetase (MAT). SAM is used as a methyl donor by another MT and the resulting S-adenosylhomocysteine (SAH) is 

then cleaved in two moieties, adenosine and homocysteine by SAH hydrolase (AHCY).28 

 

The recycling of homocysteine and the resulting methionine production in the liver are 

dependent on two reactions of equal importance: the methyl transfers from glycine betaine 

catalyzed by BHMT and from methyl-tetrahydrofolate catalyzed by MetS. SAM is also 

synthesized in the liver from methionine and adenosyltriphosphate (ATP).28 Therefore, glycine 

betaine plays an important role for the production of both methionine and SAM in the human 

body. Moreover, TMG supplementation facilitates the reduction of human 
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hyperhomocysteinemia.29 Elevated homocysteine plasma levels are correlated with various 

diseases such as insulin resistance, one of the risk factor of non-alcoholic fatty liver disease 

(NAFLD). In addition, deletion of BHMT in mice was shown to also favor the development of 

NAFLD.30 For these reasons, the use of glycine betaine to improve human hepatic health was 

considered. Nevertheless, the first results of TMG administration to humans with NAFLD did not 

alleviate the symptoms. The importance of BHMT and glycine betaine functions and potential 

use in the context of this liver disease are still under investigation.18 

 

1.1.1.3 Protectant against oxidative stress  

 

The previous paragraph gives an example which illustrates the complexity of translating animal 

studies to potential human curative treatments. Indeed, there is no doubt that the intake, 

accumulation and synthesis of TMG correlate with several (yet not fully understood) metabolic 

pathways. For example, studies on genetically modified rice which can synthesize TMG (wild 

type rice does not accumulate TMG) showed that the transgenic rice is more resistant not only to 

osmotic stress, but also to oxidative stress compared to the wild type. This stress-tolerant rice 

produces TMG by expressing the choline oxidase (EC 1.1.3.17) from Arthrobacter globiformis. In 

this bacterium, the oxidase directly converts choline to glycine betaine and H2O2.31 As H2O2 is 

known to activate stress response pathways,32 the resulting production of H2O2 from TMG 

biosynthesis could subsequently activate stress resistance mechanisms. Another example 

concerns the decrease in glutathione (GSH) concentration observed after the administration of 

ethanol to rats. Ethanol is converted by alcohol dehydrogenase to acetaldehyde which can then 

form an adduct with GSH.33 This ethanol-induced GSH depletion is reversible in the presence of 

SAM which concentration can consecutively be increased by TMG administration.34 Therefore, 

TMG may function as an antioxidant against ethanol induced oxidative injuries. 

 

1.1.1.4 Natural deep eutectic solvent 

 

The glycine betaine market is increasing with the rise of awareness about its functions (such as 

methyl donor or osmoprotectant) and its nutritional value when used in dietary supplements. As 

previously mentioned, an industrial application of glycine betaine consists of an additive in 

personal care products. A less common use of glycine betaine is in the synthesis of green ionic 

liquids (also named deep eutectic solvents). Ionic liquids (ILs) are considered less toxic than the 
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usual organic solvents because of their non-volatility. Nevertheless, ILs are, for the most part 

based on synthetic chemicals (imidazolium cations and fluorinated anions). Their synthetic 

origin is commonly a source of debate regarding their denomination as “green” solvents. 

However, a new class of ILs started to emerge. Interestingly, a mixture of choline and urea in 1:2 

mole ratio can form a deep eutectic solvent with a melting temperature of 12 °C.35 In addition, 

ILs synthesized from either glycine betaine itself or its ester derivatives are now under 

investigation to enhance solvent properties.36 Recently, new glycine betaine-based ILs were 

demonstrated as effective SO2 absorbents.37 The development of ILs prepared from naturally 

occurring small metabolites such as glycine betaine, choline or oxalic acid correspond quite well 

to green chemistry requirements. It would not be unlikely that other amino acid betaines could 

provide the cation for new bio-based ILs. Moreover, several combinations of biosynthetic ILs 

based on amino acids (proline), sugars (glucose) or organic acids (citric or malic acids) were 

reported. Their ability to solvate enzymes and maintain catalytic activity was tested. It was 

shown that a laccase could remain active in 50 % water and 50 % of malic acid:choline chloride 

(1:1). This observation supports the hypothesis that plants could synthesize ionic liquids in case 

of dehydration. ILs would provide an environment which contains less water but in which 

enzymatic reactions could still occur.38 

 

1.1.2 Glycine betaine transporters 
 

One of the key issues in understanding glycine betaine metabolism and regulation is to identify 

how this small metabolite is accumulated in the cells. 

The bacterial uptake and efflux of TMG in case of water stress are carried out by both the 

opposite actions of mechanosensitive channels and betaine transporters.39 In the case of 

hypoosmotic conditions in Escherichia coli, these channels protect the cell from lysis by 

mediating the efflux of small osmolytes.40 In high salinity environments, osmoprotectants will be 

accumulated through the action of a protein from the family of the Betaine/Carnitine/Choline 

Transporters, in order to protect the cell against dehydration.41  

Plants also accumulate TMG but little is known about specific glycine betaine transporter in 

plant cells. However, the cloning of a homologue of proline transporter and a γ-amino butyric 

acid (GABA) transporter from the plant Arabidopsis in yeast indicated that they both had a 

strong affinity for TMG. The outcome of these experiments suggests a low substrate specificity 

for these transporters which indicates that the transport of TMG in plants could occur through 

the action of both proline and GABA transporters.21 
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In mammals and especially in humans, cells in the liver and the kidneys contain specific 

transport systems needed for the uptake and accumulation of TMG. As previously described, 

TMG functions as an osmoprotectant to balance the hypertonicity and the elevated urea 

concentration in this organ where it is accumulated via a betaine-GABA transporter (BGT1). 

BGT1 is also present in the liver with the highest concentration compared to other organs. It is 

interesting to mention that the biosynthesis of this transporter is dependent on osmotic stress. 

Additionally, it is suggested that carnitine and amino acid transport systems support the glycine 

betaine uptake in the liver. The presence of several means to concentrate glycine betaine in the 

liver demonstrates its importance for this organ. 18 

Although TMG is the most studied amino acid betaine, a better understanding of the mechanism 

of intake, regulation and effects in the human body is still required. Thus, the efficiency of 

treatments based on glycine betaine supplements could be improved. 

 

1.1.3 Biosynthetic pathways  
 

TMG can be either accumulated via the transport systems described above or synthesized in the 

cell. The relative contributions to glycine betaine concentration from either biosynthesis or 

accumulation are not known yet. Several biosynthetic pathways were identified for the 

biosynthesis of TMG in bacteria, plants or mammals. The synthesis of the betaine occurs 

commonly through the oxidation of choline. However the permethylation of glycine was also 

reported.  

 

1.1.3.1 Choline oxidation  

 

Glycine betaine synthesis in Gram-positive and Gram-negative bacteria, plants or mammals 

require the oxidation of choline with betaine aldehyde as an intermediate. This two-step 

oxidation can be catalyzed by two different enzymes (Figure 3, A) or a single one (Figure 3, B). 

For Gram-negative bacteria such as E. coli or for mammals, the enzyme which catalyzes the 

oxidation of choline to betaine aldehyde is a membrane-bound choline dehydrogenase (EC 

1.1.99.1), 27,42 whereas for the Gram-positive bacteria Bacillus subtilis, this step occurs in the 

presence of an alcohol dehydrogenase (EC 1.1.1.1).43 In plants, the first step of betaine 

biosynthesis requires a choline monooxygenase (EC 1.14.15.7).44 In all these organisms, a 
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betaine aldehyde dehydrogenase (EC 1.2.1.8) is then used to catalyze the conversion of betaine 

aldehyde to glycine betaine.  

Certain Gram-positive bacteria, such as Arthrobacter globiformis, use yet a single enzyme, a 

choline oxidase (EC 1.1.3.17), to catalyze the four-electron oxidation of choline to glycine 

betaine.45 

 

 

Figure 3 Biosynthetic pathways of glycine betaine (3) from choline (1) through the intermediate betaine aldehyde 

(2). Different redox co-factors are required: pyrroloquinoline quinone (PQQ), ferredoxin (Fd), flavin adenine 

dinucleotide (FAD) or nicotinamide adenine dinucleotide (NAD+). 

 

1.1.3.2 Glycine methyl transfer 

 

A scarcer biosynthetic pathway of glycine betaine is found in several halotolerant bacteria such 

as Actinopolyspora halophile or Ectothiorhodospira halochloris. These organisms synthesize 

glycine betaine from glycine through a series of methylation reactions that require two SAM-

dependent MTs (Figure 4).46,47 The regeneration of one methyl group from SAM is an energy 

consuming process (which costs 12 ATP equivalents to the cell),48 which explains why this direct 

trimethylation of glycine is not as widespread as the oxidation of choline. No enzyme that can 

catalyze the oxidation of choline to betaine has been identified in E. halochloris.46 The use of an 

alternative and energetically expensive pathway by halophilic organisms suggests that they are 

able to regulate SAM concentration through an efficient balance mechanism. 
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Figure 4 Glycine betaine biosynthesis in halophilic bacteria. The glycine/sarcosine MT (EC 2.1.1.156) catalyzes the 

formation of either sarcosine (2) or dimethylglycine (3). Sarcosine/dimethylglycine MT (EC 2.1.1.157) methylates 

both resulting products. Both MTs present an overlap in their substrate specificities which enables them to catalyze 

the three successive methyl transfers. 

 

To summarize, the different biosynthetic pathways of TMG from either choline or glycine 

require several enzymes and cofactors. Therefore, they appear barely adaptable to other amino 

acid betaine synthases. The genes of these enzymes are in fact usually scattered through a whole 

genome, making the identification of their biosynthetic origins based on the use of genomic data 

quite challenging. However, the ubiquity of amino acid-based betaines stirs curiosity for the 

identification of their biosynthetic pathways and functions. 

 

1.2 Aromatic amino acid betaines 
 

Glycine betaine is undeniably defined as an essential osmoprotectant. In addition, quaternary 

amines such as glycine betaine or choline are important dietary sources of labile methyl groups 

in mammalian cells. Choline especially represents 60 % of the intake of methyl groups for the 

human body.49 However, the investigation of different betaines, and especially aromatic amino 

acid betaines, is of great interest as the properties of the side chains might confer additional 

physiological roles. This section will focus on histidine, tyrosine and tryptophan betaines. 
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1.2.1 Hypaphorine 
 

1.2.1.1 Occurrence and functions 

 

Hypaphorine or trimethyltryptophan (TMW) was discovered at the end of the 19th century in 

the seeds of the tropical plant Erythrina Hypaphorus. This indole alkaloid was the first naturally 

occurring tryptophan betaine derivative to be identified.50,51 TMW and its halogenated 

derivatives have since been found in diverse plants, fungi and marine invertebrates and it is 

clearly established that TMW is an important soil alkaloid. 

Hypaphorine is secreted by the ectomycorrhizal fungi of the genus Pisolithus (microcarpus and 

tinctorius).52,53 The symbiotic association between a fungus and a root involves biological 

interactions and therefore modifications in both organisms. Interestingly, hypaphorine-induced 

morphogenetic effects on the root hair of Eucalyptus globulus were observed. Root hairs are 

important for water and nutrients intakes,54 and act as sensors to detect environmental 

changes.55 The effects of different concentrations of hypaphorine were investigated. The root 

hair tips present a transitory swelling in presence of 10 to 100 µM of hypaphorine and root hair 

elongation is fully stopped at higher concentrations (500 µM and more). The in vivo 

concentration in the mycelium is 6 µM,53 therefore, the reduction of root hair growth is a 

phenomenon that can occur under physiological conditions. In addition, the contact between the 

surface of the root host and the mycelium of P. tinctorius stimulates hypaphorine accumulation 

in the mycelium.52 These findings suggest that ectomycorrhizal fungi produce hypaphorine to 

control the root hair elongation of their hosting plants.56 The structural similarity between 

auxin, also named indole-3-acetic acid (IAA) and hypaphorine (Figure 5) suggests a possible 

effect of hypaphorine on reactions or mechanisms where auxin is involved. As a matter of fact, 

auxin and hypaphorine have an opposite effect on root hair development. While hypaphorine 

alters root hair growth, the addition of auxin is able to counteract this effect.56 During the 

establishment of an ectomycorrhiza between the basidiomycete P. mycrocarpus and E. globulus, 

hypaphorine induces an increase in the concentration of calcium ions in root hairs (which plays 

a key role for their growth),57 as well as a reorganization in the actin cytoskeleton of the root 

hairs.58,59 These two reactions are related to each other and provide a reasonable explanation for 

hypaphorine effect on root hairs growth. 
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Figure 5 Structural similarity between auxin (1), hypaphorine (2) and conicamin (3). 

 

Hypaphorine was reported to compete with other auxin-binding proteins. The expression of a 

close homologue (66 % sequence identity) of an auxin-induced glutathione S-transferase in E. 

globulus is up-regulated by both auxin and hypaphorine.60 This class of enzymes (EC 2.5.1.18) is 

associated with detoxification reactions or stress responses in plants.61 However, the exact 

function of this protein within in plant host is unknown. The fungal indole alkaloid is as well a 

competitive inhibitor of the auxin binding site in the peroxidase-C found in horseradish.62 This 

outcome strongly supports the role of hypaphorine as an auxin antagonist. 

 

 

Figure 6 Generation of ROS by the oxidation of IAA catalyzed by horseradish peroxidase HPR. (1) The peroxidase 

HPR, molecular oxygen and IAA will form a ternary complex (2) where superoxide radical and activated IAA are 

generated. A binary complex (3) results from the dissociation of the superoxide radical. In the next step, IAA radical is 

oxidized to indole epoxide (4) and the activated peroxidase (5) can react with a new molecule of IAA to generate a 

new cycle. 
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Auxin is an important plant growth regulator that promotes cell elongation. The concentration of 

this hormone therefore needs to be controlled. The oxidative decarboxylation of IAA by HPR is a 

major reaction to regulate the level of IAA in this root. During this reaction, molecular oxygen is 

reduced and oxygen superoxide as well as activated auxin are formed (Figure 6).62,63 By 

competing with auxin, hypaphorine can reduce the formation of reactive oxygen species (ROS), 

which indicates an indirect antioxidant property. This inhibition might have some medical 

applications for the regulation of targeted cancer therapy based on the combination of IAA and 

HRP.64  

In addition to its function in fungal symbionts, relevant physiological functions in animals were 

assigned to hypaphorine. However, the indole alkaloid was firstly considered as a poison, but its 

non-toxicity was afterwards demonstrated.65 For example, hypaphorine has a protective effect 

against seed-eating mammals. Nevertheless it was shown to act more as a feeding deterrent than 

a toxin.66 Recently, its role as an antihyperglycemic agent was reported. Pure hypaphorine from 

the seeds of Impatiens niamniamensis was extracted and isolated then fed to a group of diabetic 

rats. As a result, a decrease in blood glucose level was observed in this group compared to a 

control.67 Hypaphorine isolated from the leguminous tree Erythrina velutina, a Brazilian 

medicinal plant, was shown to have sleep-promoting effect on mice. Different concentrations of 

pure extracted compound were administered and led to an enhancement of sleep quality.68 This 

result presents hypaphorine or hypaphorine derivatives as possible candidates for sleeping 

inducing agents. 

Halogenated hypaphorine derivatives widely occur in different species of marine 

invertebrates7,69,70 and are often involved in stress responses or defense mechanisms. Indeed, 

several halogenated tryptophan and hypaphorine derivatives isolated from marine sources have 

demonstrated such protective properties.6 In particular, compounds containing brominated 

indole rings, such as 5,6-Dibromo-L-hypaphorine (Figure 1, 8) from the marine sponge Hyrtios 

species, can act as antioxidants.6 Moreover, iodine-containing alkaloids (also named 

plakohypaphorines) from Plakortis simplex display relevant medical properties as well. In fact, 

the antihistamine activity of diiodinated plakohypaphorines (Figure 1, 7) was demonstrated in 

rats.7 In addition, conicamin, an indole derivative isolated from the tunicate Aplidium conicum 

(Figure 5, 3) was shown to also have selective histamine antagonist activity.71 Thus, these 

compounds may represent a starting point for the development of drugs with anticancer or anti-

inflammatory properties. 

Hypaphorine has been also identified in different Leguminosae species such as lentils 

(100 µg/g), peanuts (70 µg/g) and chickpeas (60 µg/g).72–74 However, no report is available to 

provide further information about hypaphorine dietary intake in humans. Nevertheless, 
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hypaphorine consumed via peanut- and lentil-containing food was found in human milk up to a 

concentration of 1.24 µM (which is a significant amount as the concentration of free tryptophan 

in the same sample is 2.23 µM). This demonstrates that hypaphorine is accumulated in the body 

through the diet.74 Therefore, identifying the properties of this indole alkaloid in our body, in 

view of the interesting properties demonstrated on rodents, is an appealing challenge.  

 

1.2.1.2 Biosynthesis 

 

In order to improve our knowledge regarding hypaphorine properties and possible use as a 

drug, it is obvious that the determination of the biosynthetic origin of this compound is a 

prerequisite. We identified two methyltransferases in the wood-degrading fungi Serpula 

lacrymans and Dichomitus squalens which permethylate tryptophan. Our findings will be 

discussed in the following Chapter. The biosynthesis of hypaphorine was unknown up until this 

point. The discovery of the gene encoding for a hypaphorine synthase is beneficial to identify 

new derivatives.  

 

1.2.2 Trimethyltyrosine 
 

Hypaphorine illustrates well that the side chain of an aromatic amino acid betaine is the basis for 

a wide variety of derivatives. In this respect, the tyrosine betaine seems to be a good scaffold for 

substitutions, even if, unlike hypaphorine, little has been reported about this compound. 

 

1.2.2.1 Occurrence and functions 

 

Trimethyltyrosine and its derivative sticticine (Figure 1, 6) were isolated more than 30 years 

ago from the lichen Lobaria laetevinens.75–77 Tyrosine betaine is also found in the 

entomopathogen fungus Metarhizium anisopliae78 as well as in the latex of the South American 

tree Moraceae79 and secreted by the beetle Oreina gloriosa.80 Sticticine was also isolated in 

Alpine and Ecuadorian Lichens.77 Little is known about its function, but the redox active tyrosine 

side chain indicates a potential role as an antioxidant. In addition, sticticine concentration can 

exceed 1 M when the thallus of Lobaria laetevinens is dehydrated (which corresponds to a water 

content of 10 to 12 %). Therefore, it might also play a role in efficient osmoregulation.5 However, 

its specific function in the lichen remains still unknown. 
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1.2.2.2 Biosynthesis 

 

The biosynthetic pathway of sticticine in Lobaria laetevinens was proposed in 1981. The first 

step is the methylation of tyrosine followed by the hydroxylation of the ring and the 

esterification of the acid moiety.5 However, no further research was carried out about the 

biosynthesis of sticticine or tyrosine betaine. 

Recently, we identified the gene encoding for a tyrosine permethylase in the fungus Aspergillus 

nidulans and we tested the activity of this enzyme. Interestingly, the presence of tyrosine betaine 

in this organism was not reported. Moreover, our results suggest that, in accordance with the 

proposed pathway of 1981, the biosynthesis of sticticine starts with the methylation of tyrosine. 

A discussion about this tyrosine methyltransferase ensues in Chapter 2. 

 

1.2.3 Trimethylhistidine and ergothioneine 
 

As hypaphorine, the trimethylhistidine derivative ergothioneine is found in the human body. Yet, 

a specific transporter which leads to the accumulation of this small metabolite in organs 

undergoing oxidative stress was identified.81 In addition, the possible role of ergothioneine for 

the virulence of Mycobacterium tuberculosis was recently reported.82 Therefore, the study of 

both the synthesis of trimethylhistidine and the regulation of ergothioneine biosynthetic 

pathway is currently of interest.  

 

1.2.3.1 Histidine betaine and its derivatives naturally occur in an extensive range of 

living organisms 

 

Ergothioneine (Figure 1, 9) was isolated for the first time in 1909 from the ergot fungus 

Claviceps purpurea.83 Trimethylhistidine (TMH) was later identified in mycobacteria as a 

precursor of ergothioneine.84 These two compounds were both recognized as fungal 

metabolites.85 Ergothioneine, TMH and their derivatives are distributed throughout the whole 

living world. Ergothioneine is not only found in a wide range of microorganisms (such as 

Ascomycota or Actinobacteria)86 but also in plants,87,88 animals89,90 and in the human body.91,92 

Recently, new S-trimethylhistidine-based alkaloids were identified in the mushroom Mycena 

pelianthina.93 However, in spite of its broad distribution, ergothioneine is known to be only 

synthesized by certain fungi, such as Neurospora crassa,85 as well as by bacteria belonging to the 
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order Actinomycetales and especially the genus Mycobacterium (tuberculosis and smegmatis).86 

Ergothioneine biosynthesis was also demonstrated to occur in cyanobacteria.94,95 To date, there 

is no evidence of endogenous ergothioneine in higher plants, animals or humans. Plants absorb 

ergothioneine via associations between soil fungi and their roots.96 As ergothioneine is present 

in common foods such as edible mushrooms (up to 5.5 mg of ergothioneine can be found in 1 g 

of dried material),97 beans or meat products, it is accumulated in animal or human tissues via 

their respective food chains.98,99 

 

1.2.3.2 Human ergothioneine is accumulated via the specific transporter OCTN1 

 

Ergothioneine is not produced in the human body but it was shown to be accumulated in most 

human tissues, particularly in red blood cells, bone marrow, seminal fluid, liver, kidneys or eyes, 

at micromolar to millimolar levels through dietary intake.89,100–102 In fact, it was only a few years 

after its discovery that the presence of this small metabolite in animals was assigned to their 

consumption of ergothioneine-containing foodstuffs.103 In addition, ergothioneine that was fed 

to rats was shown to be present in their blood and to enter the tissues.104 This interesting finding 

at that time already hinted at a mechanism for intake and accumulation of ergothioneine inside 

the cell. In 2005, Gründemann et al. identified a highly specific ergothioneine transporter, named 

OCTN1, which revealed the mechanism of ergothioneine absorption in the human body. The 

plasma membrane is not permeable to ergothioneine; therefore, only cells that can express 

OCTN1 can accumulate and retain ergothioneine. By contrast, cells which lack this transporter 

do not accumulate ergothioneine.81 
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Figure 7 Ergothioneine (1) and structurally similar compounds. OCTN1 substrate specificity was assayed with 

hercynine (2), methimazole (3), carnitine (4) and TEA (5). 

 

The specificity of this transporter was tested with hercynine, tetraethylammonium (TEA), 

methimazole and carnitine based on inhibition experiments. The resulting catalytic parameters 
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of OCTN1 indicate that the affinity for ergothioneine was at least a hundred time stronger than 

for TEA, methimazole and carnitine, and 25 times better than for hercynine.81,105,106 In addition, 

silencing of the gene encoding for OCTN1 in cell cultures inhibits the uptake of ergothioneine.107 

A similar effect was observed for OCTN1 knockout mice108,109 and zebrafish110 in which almost 

no ergothioneine could be anymore detected. This strongly suggests that no other 

transporter/mechanism of intake is present. The existence of a specific transporter in human 

cells suggests an essential function for this histidine betaine derivative.  

 

1.2.3.3 Properties of ergothioneine 

 

Chemically, ergothioneine is a derivative of histidine betaine with a sulfur atom attached to the 

position 2 of the imidazole ring (Figure 1, 9). The standard redox potentials of naturally 

occurring thiol such as glutathione (-240 mV at pH 7.0)111 or mycothiol (-240 to -260 mV at 

pH 7.0)112,113 usually sit in a range between -200 and -320 mV.8 In this aspect, ergothioneine is 

distinguishable from other biological thiol compounds. Indeed, the standard redox potential of 

ergothioneine for the thiol-disulfide couple lies outside of this range (-60 mV at pH 7.0).114 In 

addition, this small metabolite exists as tautomer in solution (Figure 8). This equilibrium tilts in 

favor of the thione form at physiological pH8 and ergothioneine is therefore considered as a 

thiourea derivative rather than a thiol compound. The prevailing thione tautomer and the 

unique redox potential of ergothioneine confers a better stability through resistance to auto-

oxidation (process that generates superoxide radicals* from H2O2 and Fe2+) in comparison with 

other naturally occurring thiols like glutathione.106,115,116  

 

 

Figure 8 Ergothioneine equilibrium between its two tautomeric forms: thiol (1) and thione (2). At physiological pH, 

the thione form is predominant. 

 

 

                                                             
*Fenton reaction. 
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1.2.3.4 Physiological properties of ergothioneine 

 

Ergothioneine is a remarkable secondary metabolite with unique properties. It can form 

complexes with divalent metal cations such as Cu2+, Ni2+, Zn2+ or Fe2+, to mention just a few.8 

Interestingly, the formation of the complex ergothioneine-copperII inactivates the metal cation 

and then protects DNA from copper-induced DNA damage.117 Ergothioneine can also serve as a 

nitrogen source for the growth of Escherichia coli or the soil bacteria from the Burkholderia 

genus (Figure 9).118,119 These organisms express an enzyme called ergothionase which cleaves 

ergothioneine in two moieties: trimethylammonium and thiolurocanic acid. However the most 

reported function of ergothioneine in the literature, is as an effective antioxidant and 

cytoprotectant.98,114 Ergothioneine is a powerful scavenger of hydroxyl radicals, hypochlorite or 

peroxynitrite and a mild reactant with H2O2.114,116,120–122  

 

 

Figure 9 Degradation of ergothioneine (1) catalyzed by the lyase ergothionase. Thiolurocanic acid (2) and 

trimethylamine (3) are the products of the reaction. 

 

Through deletion of ergothioneine or its transporter OCTN1, the antioxidant effects of the 

histidine betaine derivative have been reported in vivo in bacteria, fungi, nematode and animals. 

In mycobacteria, two low molecular weight thiol compounds are synthesized: mycothiol and 

ergothioneine (Figure 10). The mycothiol- and ergothioneine-deficient mutant is more sensitive 

to peroxide than the wild type. This suggests a protective role of both compounds against 

oxidative stress.123 Δoctn1 deletion mutant of the nematode C. elegans undergoes an increase in 

the level of oxidative protein damage.124 Similarly in mice, OCTN1 knockout decreases the 

resistance to ROS.109 Moreover, ergothioneine was found to protect mice against neuronal 

injuries caused by the two neurotoxic compounds β-amyloid125 or D-galactose.126 In the fungus 

N. crassa, ergothioneine acts as a protectant against peroxide during germination.127 
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Figure 10 Naturally occurring low molecular weight-thiol compounds: glutathione (1), mycothiol (2) and 

ergothioneine (3). 

 

During the last decade, significant progress has been made towards understanding the function 

of ergothioneine not only in fungi and bacteria, but also for higher organisms. If the protective 

role of ergothioneine is clearly demonstrated in vitro, the reactions are often carried out in non-

physiological conditions and may therefore not be relevant in vivo. Thus, its precise function in 

the human body remains still unclear. Due to its accumulation in the red blood cells, 

ergothioneine is proposed as a possible therapeutic treatment for erythrocytes disorders which 

are predisposed to oxidative damage.116 Moreover, the identification of increased level of 

ergothioneine in patients suffering of inflammatory pathologies like Crohn's disease128,129 

indicate this compound as an antioxidant in the human body.130 However, despite numerous 

recent publications about the physiological relevance of ergothioneine, much remains to be 

discovered. 

 

1.2.3.5 Biosynthesis 

 

The first step in ergothioneine biosynthesis was already suggested in the 1960s by Askari and 

Melville131 and Genghof and van Damme.132 They proposed hercynine as the first intermediate of 

the reaction which derives from histidine methylation. More than 40 years after, ergothioneine 

biosynthetic pathway was identified in Mycobacterium smegmatis.133 Ergothioneine synthesis 

requires five enzymes and is produced from histidine, cysteine, glutamic acid, SAM and 

molecular oxygen (Figure 11). The discovery of the genes encoding for these five enzymes, 

namely EgtA, B, C, D and E, provides a considerable contribution to the identification of new 

organisms producing ergothioneine. In the M. smegmatis gene cluster, egtB and egtD are co-

encoded, whereas egtA, egtC and egtE are scattered within the genome.134  
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Figure 11 Ergothioneine biosynthetic pathway in Mycobacterium smegmatis. A: The first step is catalyzed by the SAM-

dependent methyltransferase EgtD which trimethylates histidine (1). The resulting hercynine (2) reacts with γ-

glutamylcysteine (5) in the presence of oxygen and the non-heme iron enzyme EgtB. The intermediate (6) is then 

cleaved by EgtC to give hercinylcysteine sulfoxide (7). The PLP-binding protein EgtE catalyzes the last step of the 

biosynthesis and releases ergothioneine (8). B: EgtA supplies the dipeptide γ-glutamylcysteine (5) to EgtB from L-

cysteine and L-glutamate.135 

 

Another pathway was identified in the fungus Neurospora crassa (Figure 12).127,136,137 In contrast 

to the mycobacterial synthesis, a single reaction is required to form the intermediate (7) from 

hercynine. This step is catalyzed by the sulfoxide synthase Egt-1 in the presence of cysteine and 

molecular oxygen. In contrast to mycobacteria, fungi such as N.crassa, synthesize glutathione 

(Figure 10). GSH results from the condensation of γ-glutamylcysteine and glycine catalyzed by a 

GSH synthase. Thus the fungal biosynthetic pathways of ergothioneine and GSH do not compete 

with one another. 
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Figure 12 Ergothioneine biosynthetic pathway in N. crassa. Like in M. smegmatis, the first step is catalyzed by the 

SAM-dependent methyltransferase EgtD which trimethylates histidine (1). The resulting hercynine (2) reacts with 

cysteine in the presence of oxygen and the non-heme iron enzyme Egt-1 to give hercinylcysteine sulfoxide (7). As its 

mycobacterial homologue, the fungal C-S lyase EgtE catalyzes the last step of the biosynthesis and releases 

ergothioneine (8). The numbering was kept identical as Figure 11 for clarity. 

 

In both pathways, EgtD catalyzes the direct permethylation of its substrate histidine.  

 

1.2.4 First step of ergothioneine biosynthesis: histidine methylation 
 

EgtD is the first aromatic amino acid permethylase that has been reported. Up until now, only 

one enzyme has been identified as an amino acid N-trimethylase, the β-alanine betaine (Figure 1, 

3) synthase, found in the plant Limonium latifolium.138,139 This MT was found to be a close 

homologue of a plant caffeic acid O-methyltransferase (67 % sequence identity with Ziziphus 

jujuba). 

EgtD is essential for ergothioneine biosynthesis in mycobacteria. The deletion mutants ΔegtD M. 

smegmatis and ΔegtD M. tuberculosis no longer produce ergothioneine.123,133,140 Moreover, the 

biosynthesis of ergothioneine in M. tuberculosis seems to be altered by the phosphorylation of 

EgtD140 and the virulence of M. tuberculosis was demonstrated to be dependent of the presence 

of ergothioneine.113 In addition, the histidine betaine derivative contributes to the protection of 

the pathogen against the oxidative stress which results from the defense mechanism of the 

body.82 Therefore, EgtD is an important enzyme for mycobacterial resistance to oxidative 

environment. 
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1.3 Aim of the thesis 
 

The aim of this thesis was the characterization of a new family of aromatic amino acid betaine 

synthases. This project was centered on EgtD, the first member of this newly discovered 

methyltransferase family. 

The residues responsible for the specific binding of histidine in EgtD are described in Chapter 2. 

Based on this analysis, we identified fungal EgtD homologues with different substrate specificity 

than EgtD. 

The first theme addressed in Chapter 3 is the unique substrate binding mode of EgtD. The 

second theme concerns the design and analysis of histidine derivatives as inhibitors of the 

methyltransferase activity. 

In Chapter 4, we propose a mechanism for the substrate activation which is required for the 

methyl transfer to occur in EgtD. 

Lastly, the activity of EgtD in an oxidative environment is discussed in Chapter 5. 
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2 The methyltransferase EgtD reveals the structural basis of 
aromatic amino acid betaines biosynthesis 

 

EgtD is a histidine methyltransferase (EC 2.1.1.44) that catalyzes the first step of ergothioneine 

biosynthesis in Mycobacterium smegmatis.133 EgtD activity is dependent on the presence of the 

cofactor S-adenosylmethionine (SAM). SAM is the second most widely used enzyme substrate 

after adenosine triphosphate (ATP).141 More than 300 enzymatic reactions that are catalyzed by 

SAM-dependent methyltransferases (MTs) have been described*. These reactions are involved in 

protein repair, gene silencing, signal transduction or biosynthesis.142–145 In this way, SAM-

dependent MTs constitute a well characterized and important class of enzymes. 

 

 

Figure 13 EgtD catalyzes the three consecutive methyl transfers from SAM to the N of histidine (1). Hercynine (4) is 

thus the main product of this reaction. 

 

EgtD is the first identified MT that catalyzes direct aromatic amino acid permethylation (Figure 

13).146 In addition to its unique activity, none of the MT structures available in the Protein Data 

Bank (PDB) is a close homologue to EgtD. The enzyme DOT1L, a human histone lysine MT, is the 

closest structural homologue of EgtD with 14.53 % identity (PDB: 3QOX). In this Chapter, we 

investigated the structural basis of EgtD for substrate recognition. The crystal structure of the 

mycobacterial histidine MT in complex with dimethylhistidine (DMH) and S-

adenosylhomocysteine (SAH) revealed the determinants for substrate specificity. From our 

findings, we were able to convert EgtD into a proficient tryptophan permethylase by enzyme 

engineering. Moreover, we identified fungal homologs of EgtD that catalyze the methylation of 

tyrosine and tryptophan.146 

Based on kinetic analysis, X-ray crystallography and bioinformatics searches, we delineated the 

new Methyltransf_33 protein family as a group of aromatic amino acid methyltransferases. 

                                                             
* Source: enzyme.expasy.org/EC/2.1.1.- 
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2.1 EgtD activity  
 

2.1.1 Spectrophotometric coupled assay 
 

To characterize the catalytic activity of the MTs, we first implemented a coupled assay for SAM-

dependent MTs. The product of the methyl transfer reaction from SAM to histidine is SAH. In 

2006, a coupled assay was developed to continuously monitor this conversion (Figure 14).147 

 

 
 

Figure 14 General scheme for the spectrophotometric continuous coupled assay used to characterize the activity of 

SAM-dependent MTs. 

 

In this assay, the SAM-dependent MT catalyzes the transfer of the methyl group (Me) from SAM 

to the nucleophile (Nu). The resulting SAH is then cleaved by the nucleosidase into S-

ribosylhomocysteine and adenine. Adenine is deaminated to give hypoxanthine. This 

deamination is accompanied with a decrease in absorbance at 265 nm, which can 

instantaneously be monitored. Neither the adenine deaminase nor the SAH nucleosidase should 

be rate limiting. To ensure that the observed rates exclusively correspond to the MT activity, the 

corresponding concentrations of the coupled enzymes were determined prior to the study of MT 

kinetics.  

The majority of the catalytic parameters determined for the MTs presented in this thesis were 

determined using this coupled assay. However, some reactions were too slow to be monitored 

by a change in absorbance at 265 nm (the detection limit being 1.5 µM/min), in these cases, 

HPLC analysis was used instead.  
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2.1.2 EgtD is a specific histidine methyltransferase 
 

With this spectrophotometric continuous coupled assay, we first tested the activity of EgtD with 

the 20 proteinogenic amino acids as potential substrates. The high specificity of EgtD for 

histidine methylation was already established in 2010.133 This MT is indeed at least 1000 times 

more active with histidine than with the other 19 amino acids*. We then determined the catalytic 

parameters of EgtD for the methylation of histidine, methyl- and dimethylhistidine in the 

presence of 0.5 mM SAM (Table 1). 

 

Table 1 Kinetics parameters of EgtD from Mycobacterium smegmatisa.  

Substrate kcat (s-1) KM (µM) kcat / KM (M-1s-1) 

Histidine 0.57 107 5300 

Methylhistidine 0.23 10 23000 

Dimethylhistidine 0.40 28 14500 

 

aReaction conditions: 25 °C, 50 mM Tris/HCl pH 8.0, 50 mM NaCl, 200 µM MnII, 500 µM SAM, 10-500 µM histidine, 

MMH or DMH, 5 µM SAH nucleosidase, 10 µM adenine deaminase and 1 to 2 µM of EgtD. 

 

EgtD from M. smegmatis (EgtDsmeg) catalyzes the methylation of histidine, methylhistidine 

(MMH) and dimethylhistidine (DMH) with a similar turnover number. As a comparison, another 

permethylase, the phosphoethanolamine methyltransferase (PfPMT) found in Plasmodium 

falciparum catalyzes the trimethylation of phosphoethanolamine (pEA) to phosphocholine (a 

precursor of glycine betaine) with a comparable rate (kcat of PfPMT for pEA methylation is  

1.8 s-1).148 The kinetics of histone and peptide methylation performed by protein lysine 

methyltransferases (PKMTs) is also analogous to the obtained results for EgtDsmeg (kcat of 

SET7/9, a model PKMT, is 0.8 s-1 for histone methylation).149 Interestingly, EgtDsmeg is 40 times 

faster for histidine methylation than its homolog from Mycobacterium tuberculosis (kcat for 

EgtDtub is 0.013 s-1).140  

With regards to the KM values, the results differ from one substrate to another. The obtained 

Michaelis constants of MMH and DMH are lower than the one of histidine; which would suggest 

that, in order to reach substrate saturation, EgtD requires higher histidine concentration. 

                                                             
* An upper estimate of the catalytic efficiency (5 M-1s-1) was assigned to EgtD with the 19 other amino 
acids. This estimation was calculated according to the detection limit of the assay and substrate and 
enzyme concentrations. 
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However, the steady state kinetics of EgtD with different substrates is not sufficient to 

distinguish substrate preferences. The different binding affinities between the 

methyltransferase and the three substrates will be further discussed in section 2.2.2 with the 

analysis of thermodynamic parameters obtained by isothermal calorimetric titrations (ICT). 

 

Nonetheless, these observations raise the following questions: how does EgtD discriminate 

against the other 19 amino acids and how do methylated and non-methylated histidine bindings 

differ from each other?  

In order to explore these questions, we investigated the crystal structure of EgtD. 

 

2.2 EgtD crystal structure 
 

EgtD was crystallized and the resulting crystal structures were solved by Allegra Vit at the 

Helmholtz Center for Infection Research in Braunschweig (DE). 

The overall structure of EgtD consists of a typical SAM-dependent MT Rossmann-fold domain 

combined with an upper domain which is formed by residues 15 to 60 and 196 to 286 (Figure 

15).150 The Rossmann-fold domain of EgtD is comparable to the ones of two other 

permethylases: a ribosomal N-lysine MT found in bacteria (PrmA) and PfPMT from 

Plasmodium falciparum. It is also interesting to mention that, despite a low sequence similarity 

of 14 % with EgtD, the SAM/SAH binding sites of EgtD and PfPMT are highly similar.151 

As previously mentioned, no structures of any EgtD homologs exist in the PDB. The only 

structural comparisons that can be made for this enzyme is in the SAM binding sites of PfPMT 

(PDB: 3UJ7) and PrmA (PDB: 2NXE), as described above. Therefore, EgtD constitutes the first 

member of a new class of methyltransferase named Methyltransf_33 family. 
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Figure 15 Left: EgtD structure in complex with SAH and DMH (PDB: 4PIO, 1.51 Å). The substrate binding site is 

located in the gap between the Rossmann-fold domain (grey) and the upper domain (salmon). Right: Enlargement of 

the Rossmann-fold domain of EgtD. 

 

2.2.1 Identification of the essential catalytic residues 
 

2.2.1.1 Structural basis for ligand binding 

 

EgtD was crystallized in its apo form (PDB: 4PIM, 1.75 Å) and in complex with DMH (PDB: 4PIN, 

1.9 Å). The positions of the residues that define histidine binding pocket (Phe47, Tyr56, Thr163, 

Asn166, Thr213, Met252 and Glu282) generally remain unchanged in the presence or absence of 

substrates. Incidentally, Glu282 is the only residue within the active site that changes 

conformation consequently to substrate binding (Figure 16). 

Overall, the superimposition of the apoenzyme and the ternary complex reveals a pre-organized 

binding site.146 
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Figure 16 Left: Superimposition of EgtD apo (PDB: 4PIM, green) and in a binary complex with dimethylhistidine 

(PDB: 4PIN, gray). No large scale change is observed upon substrate binding. Right: Enlargement of histidine binding 

site. Only Glu282 moves towards DMH upon binding. 

 

2.2.1.2 Interactions between EgtD and the -amino and carboxylic groups of 

histidine within the catalytic site 

 

The catalytic residues within the substrate binding pocket recognize both carboxylic and -

amino groups of DMH through an array of hydrophilic interactions (Figure 17). The negative 

charge of the carboxylic group of DMH is stabilized by coordination to the side chains of Asn166 

(O···N distance: 3.0 Å), as well as Tyr56, Tyr206 and Ser284 (O···O distances: 2.7, 2.9 and 2.8 Å 

respectively). The latter two form hydrogen bonds to Lys286 (O···N distances: 2.9 and 3.3 Å 

respectively) which help to stabilize the anionic charge on the substrate. Asn166 also interacts 

with the -amino group of DMH (N···O distance 2.8 Å). The orientation of the methyl group 

suggests that the -amino group is protonated. Indeed, the tetrahedral geometry of the N of the 

substrate indicates that the proton is pointing towards the oxygen of the amide side chain of 

Asn166. To summarize, all these interactions clearly determine substrate specificity for the -

amino and carboxylic moieties. Yet, they do not provide any evident explanation for the 

preferential binding of MMH or DMH compared to histidine.  
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Figure 17 Interactions between dimethylhistidine and the catalytic residues within the binding pocket (PDB: 4PIO). 

The substrate is recognized by an array of hydrogen bonds (black) and CH···O/C/S interactions (red). 

 

2.2.1.3 Interactions between EgtD and the N-methyl groups of dimethylhistidine 

within the catalytic site 

 

We argue that additional interactions, which might be weaker than typical hydrogen bonds 

(such as van der Waals forces) could occur between the catalytic residues of the enzyme and the 

two methyl groups of DMH (Figure 17). In fact, one methyl group of DMH points to the sulfur 

atom of SAH (C···S distance: 3.4 Å, CHS angle: 105.9 °), which represents the spent methyl donor 

after the methyl transfer. This methyl group is also in van der Waals distance with several 

residues within the binding site: the oxygen atoms in the side chain of Thr163 and Tyr39 (C···O 

distances: 3.5 Å for both, CHO angles: 146.8 and 161.3 ° respectively), and the phenyl ring of 

Phe47 (C···C distance: 3.9 Å, CHC angle: 132.3 °). The second methyl group is in close contact 

with the backbone carbonyl group of Gly161 (C···O distance: 3.0 Å, CHO angle: 107.3 °) and is 

also in van der Waals contact with the oxygen atom of Thr163 (C···O distance: 3.6 Å, CHO angle: 

141.7 °). According to the distances and angles measured between the different atoms*, most of 

these interactions could be assigned as CH···O bonds. 

The impact of CH···O bonds in biological systems has been increasingly studied over the last 15 

years.152 SAM CH···O hydrogen bonds have already been shown to participate in the 

coordination of SAM methyl group in the SET domain of PKMT.153,154 Moreover, they were also 

demonstrated to stabilize the binding of the dimethyl ɛ-amine of lysine in the active site of this 

                                                             
*The distance and angular parameters used to define CH···O bonds are described by Horowitz and 
Trievel.152 The typical van der Waals distances between the carbon and oxygen atoms as well as between 
the hydrogen and oxygen atoms are 3.7 and 2.7 Å respectively. The angle defined by the three atoms C, H 
and O corresponds to the one of a weak conventional hydrogen bond, which is between 90 and 150 °.  
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MT.155 In conclusion, even if CH···O hydrogen bonds are weaker than usual hydrogen bonds 

involving heteroatoms, the accumulation of these minor interactions could end in a significant 

and stronger binding for DMH compared to histidine. 

 

2.2.1.4 Glu282, an essential residue for histidine binding in EgtD 

 

The residues interacting with both -carboxylic acid and amino groups of the substrate being 

identified, we will now focus on the recognition of the side chain of the substrate. Both nitrogen 

atoms of the imidazole ring of DMH form hydrogen bonds with two residues within the binding 

pocket: Thr213 and Glu282 (Figure 18). 

 

 

Figure 18 The imidazole side chain of DMH is immobilized through hydrogen bonds to Glu282 and to Thr213 via a 

water molecule (PDB: 4PIO). 

 

The Nτ of DMH connects to residue Thr213 through a water-mediated bond (OThr···Owater 

distance: 2.7 Å; Owater···Nτ distance: 2.8 Å). A recent study about EgtD activity in Mycobacterium 

tuberculosis shows that this particular residue could be involved, through posttranslational 

modification, in the regulation of ergothioneine biosynthesis.140 Moreover, Thr213 is conserved 

among mycobacterial histidine methyltransferases. The Nπ forms a salt bridge with residue 

Glu282 (N···O distances: 2.6 and 3.5 Å). Interestingly, this residue is the only one that changes its 

conformation upon substrate binding (Figure 16). In order to test its importance for substrate 

recognition, we constructed the E282A variant of EgtD and measured the catalytic parameters of 
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this mutant for histidine methylation. The substitution for a non-polar residue will suppress the 

interaction between the Nπ of the imidazole ring and the catalytic site. 

The resulting activity of EgtD E282A toward histidine methylation decreases by a factor of more 

than a hundred (Table 2) in comparison with the wild type (WT). As the turnover number is only 

reduced by a factor of five, this loss of catalytic efficiency can be mainly attributed to a drastic 

increase in the KM value (25 times higher than for the WT). This indicates that the elimination of 

the hydrogen bonds between Glu282 and the imidazole side chain significantly alters the affinity 

of EgtD for its substrate histidine. 

 

Table 2 Kinetics parameters of EgtD E282A compared to EgtD WTa. 

Enzyme kcat (s-1) KM (µM) kcat / KM (M-1s-1) 

EgtD E282A 0.10 2500 40 

EgtD WT 0.57 107 5300 

 

aReaction conditions: 25 °C, 50 mM Tris/HCl pH 8.0, 50 mM NaCl, 200 µM MnII, 500 µM SAM, 10-7500 µM histidine, 

5 µM SAH nucleosidase, 10 µM adenine deaminase and 5 or 1 µM of EgtD E282A or EgtD WT respectively. 

 

A sequence alignment of EgtD homologues that are encoded in ergothioneine synthetic genes 

were compared to find that Glu282 is strictly conserved.146 This strict conservation and the 

kinetics data obtained for EgtD E282A variant allow us to undoubtedly identify Glu282 as an 

essential residue responsible for substrate specificity. In addition, we did find distant EgtD 

homologs in fungi without a glutamate at position 282. As a consequence, these enzymes are 

characterized by different substrates specificities (see sections 2.3 and 2.4).  

 

2.2.2 EgtD is a cooperative enzyme 
 

2.2.2.1 Affinity enzyme-substrate 

 

EgtD catalyzes three consecutive methyl transfers. A key question is whether EgtD operates as a 

processive or distributive enzyme. The term processivity refers to the ability of an enzyme to 

catalyze consecutive reactions steps without releasing the substrate.156 This feature is 
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particularly of great importance for DNA polymerases involved in DNA replication as the binding 

of the template to the enzyme is the rate-limiting step of the process.157 EgtD would be defined 

as distributive if, in contrary, the dissociation of the complex enzyme-substrate occurs after each 

incorporation of a methyl group on histidine. To characterize the processive or distributive 

feature of EgtD, the distribution of the different products of the reaction (MMH, DMH or 

hercynine) were analyzed and the dissociation constants KD of the three substrates of EgtD were 

measured by isothermal calorimetry titration (ICT). 

A reaction containing an equimolar concentration of SAM and histidine catalyzed by EgtD was 

analyzed by ion-exchange (IE) HPLC to identify the different products. Hercynine is mainly 

formed (88 ± 4 %) whereas DMH and MMH are found in much smaller amounts (13 ± 9 and less 

than 1 % respectively). EgtD favors then the formation of the fully methylated substrate. This 

observation is consistent with the kinetic studies (Table 1) suggesting MMH and DMH as better 

substrates than histidine for the MT. Nonetheless, the affinity of EgtD for the three substrates 

can only be accurately compared into knowledge of each of the KD values (Table 3).  

The KD values were determined by ICT. The ICT experiments were performed by Allegra Vit. 

 

Table 3 Dissociation constants of EgtD substrates established by ICTa. 

 

aReaction conditions: 25°C, 20 mM Tris/HCl pH 7.5, 150 mM NaCl, 100 µM EgtD in cell, 5 mM ligand in the syringe. 

*: EgtD solution contained 7 mM of SAH. 

 

In the absence of SAH, DMH is a 70- and 17-fold better binder than histidine and MMH 

respectively. In the presence of SAH, DMH is also preferred compared to histidine and MMH (18- 

and 2-fold better binder respectively). Therefore, DMH is the favored substrate of the MT, 

regardless of the presence of SAH. These results demonstrate a preferential substrate binding 

order which provides an explanation for the almost exclusive formation of hercynine as a 

product from the methylation of histidine. Through these thermodynamics data, we were able to 

characterize EgtD as a cooperative MT (the term cooperativity describes the ability of an enzyme 

to generate underrepresented intermediate products during catalysis).158 However, this does 

not necessarily indicate processivity. 

 

Titrant His MMH DMH 
His 

(SAH)* 
MMH 

(SAH) * 
DMH 

(SAH) * 
SAH SAM 

KD (µM) 
290  
± 14 

70  
± 30 

4  
± 2 

37  
± 1 

14  
± 7 

2  
± 1 

210  
± 20 

270  
± 20 
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2.2.2.2 Probing the determinants for trimethylation 

 

The cooperativity of EgtD arises from the preferential binding of DMH. We were then interested 

in determining how EgtD favors methylated histidine binding. The structural analysis of the 

substrate binding pocket reveals interactions between the two methyl groups of DMH and 

various residues (Figure 17). The accumulation of CH···O hydrogen bonds can drive to a better 

DMH binding in comparison with histidine.  

To probe the structural basis for this unique activity, we first compared the sequences of EgtD 

and the closest EgtD homolog with known function, EasF151 (24.8 % sequence identity). This 

enzyme is found in the ergot fungus Claviceps purpurea and catalyzes the single methylation of 

dimethylallyltryptophan into chanoclavine, an intermediate in the biosynthesis of ergotamine 

and lysergic acid, a precursor of lysergic acid diethylamide.159 The sequence of an EasF homolog 

(FgaMT) found in Aspergillus fumigatus, which catalyzes the identical reaction but as an 

intermediate of fumigaclavines biosynthesis,160 was also compared to EgtD (Figure 19). The idea 

was to determine if the residues interacting with the methyl groups of DMH in EgtD are 

conserved in EasF and FgaMT or not. The residues which are in van der Waals contact with the 

methyl groups of DMH (identified in Figure 17) are indicated in grey in the following alignment. 

The majority (Tyr39, Gly161, Thr163, Ans166 and Tyr206) are also present in both fungal MTs, 

with the exception of the two residues Phe47 and Tyr56. Their non-conservation would suggest 

that these two residues can play a role in the control of the single methylation of the substrate 

 

     39      47       56   161 163 166   206 
egtD   FYDAVGSDLFDQITRLPEYYPTR…LGSTIGNLTPAP…RAYDD… 
fgaMT  FYSTKGIQHWNRHSHAADFYPRH…FGLTIGNFSRDN…RAYTA… 
easF   FYSNEGLEHWNHHSRQPDFYPRR…LGLTIGNFSRQN…RAYTS… 

 
Figure 19 Abbreviated sequence alignment of the 3 methyltransferases (EgtD numbering). The residues highlighted 

in grey in the sequence of EgtD are in van der Waals contact with the methyl groups of DMH. The corresponding 

residues indicated in red in the sequences of the two fungal methyltransferases are the only ones, in this respect, 

which differ from EgtD. 

 

No crystal structure is available for EasF. In order to check the orientation and localization of the 

residues identified for their participation in methyl group recognition, a homology model of EasF 

was generated and the resulting structure was superimposed to EgtD (Figure 20). This 

structural homology model of EasF indicates no major conformational changes for the residues 

of interest. 
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Figure 20 Homology model of EasF binding site (red) superimposed with EgtD (PDB: 4PIN, grey). The residues 

Asn166, Thr163, Tyr39 and Gly161 are conserved in both MTs and have similar positions within the binding sites. The 

same observation is made for Phe47 and Trp47, as well as Tyr56 and Phe56 (in EgtD and EasF respectively).  

 

Tryptophan and phenylalanine are found at position 47 and 56 in both mono 

methyltransferases. We started to investigate their possible role as determinants for 

trimethylation. The two residues Phe47 and Tyr56 of EgtD were then respectively mutated into 

a tryptophan and phenylalanine, so to mimic the catalytic site of EasF. We constructed the three 

following EgtD variants: the single mutants F47W and Y56F and the double mutant F47W Y56F. 

The qualitative analysis of the products of histidine methylation catalyzed by those three 

variants determined if the mutated residues have an effect on the consecutive methyl transfers 

and thus on EgtD cooperativity.  

The distribution of the products of histidine methylation catalyzed by either EgtD WT or the 

three mutants was analyzed by IE HPLC (Figure 21). These experiments were performed in 

presence of saturated concentrations of histidine and SAM (0.5 mM each). 

The mutations inspired by the sequences of both monoMTs EasF and FgaMT did not show the 

expected repercussion on the enzymatic activity of EgtD. As a matter of fact, both single mutants 

(EgtD F47W and Y56F) still catalyze three consecutive methyl transfers as hercynine is found as 

the main product of the reactions catalyzed by these variants (Figure 21C and D). Moreover, no 

product can be detected even after 10 hours in the presence of the double mutant EgtD F47W 

Y56F (Figure 21B). 
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Figure 21 HPLC traces of histidine methylation catalyzed by either EgtD WT or one of the three variants. Reactions 

conditions: 25 °C, 50 mM Tris/HCl pH 8.0, 50 mM NaCl, 200 µM MnII, 0.5 mM SAM, 0.5 mM histidine, 10 µM SAH 

nucleosidase, 5 µM adenine deaminase, 1 µM MT. The reactions were analyzed at four different time points: 0, 5, 60 

and 600 minutes. The numbering corresponds to the following compounds: 1: Histidine (4.4 min), 2: MMH (4.7 min), 

3: DMH (6.5 min), 4: TMH (8.9 min) and 5: SAM (10.6 min).  

 

In conclusion, engineering EgtD binding site to imitate a monoMT was not sufficient to limit the 

catalysis of EgtD to one single methyl transfer. Other interactions, yet unidentified, might then 

play a critical role in the recognition of the methylated substrate. The cooperativity of EgtD 

seems to be a complicated and deeply rooted feature of the MT. 

 

2.3 Identification of a tyrosine methyltransferase 
 

We identified Thr213, Met252 and Glu282 as the essential residues for substrate side chain 

recognition (Figure 18). In particular, kinetics data show that Glu282 is crucial for histidine 

binding through the formation of hydrogen bonds with the imidazole ring (Table 3). Therefore, 

we argued that a MT which has a different residue at this precise position has different substrate 

specificity. In order to pinpoint EgtD homologues which might accept substrates other than 
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histidine, a bioinformatics search for egtD-like genes was performed. The resulting sequences 

were compared to EgtD in order to determine which residues are present in the substrate 

binding site of these homologues.  

 

                             213        252         282 
egtD                    …DAAGVTAAFNRN…RIEMWLRARTA…MLTEVSCKFRP… 
Dichomitus squalens     …DTNGVSRRFVMN…RKRAYYKSGSD…IRVAFSHKFSE… 
Aspergillus nidulans    …DPDGINHRFVKN…AHNQYYITRAD…LLAVRSXKYDA… 
Talaromyces stipitatus  …DPEGANQRFVKN…RHSQYYYLDAD…LLAIQSHKYDS… 
Exophiala dermatitidis  …DSENRNEEFIRN…RHEQYLVPHKD…IFVVSSHKYDT… 
Baudoinia compniacensis …DKAGCNKRFILN…RHSQYVVPLTD…VYVVSSYKYDK… 
Serpula lacrymans       …DREGFAERFCLN…RHEVYYRCTHD…ILLAHSYKYAA… 
Saprolegnia diclina     …DPSGLHREFVLN…RHEAHLQSLEA…IHVAYSHKYSE… 
Glomus intraradices     …DPKGINAKFIMN…RHEAYCKVKND…INIGYSHKYNK… 

 

Figure 22 Abbreviated sequence alignment of a selection of fungal EgtD homologues. Thr213, Met252 and Glu282 

(highlighted in grey) recognize the imidazole side chain of histidine in EgtD. 

 

Interestingly, the identified fungal sequences lack the essential Glu282 residue, which indicates 

that histidine is not a substrate for these enzymes. It is principally replaced by non-polar 

residues like alanine or valine. Overall, the essential residues responsible for histidine binding at 

positions 213, 252 and 282 significantly vary among the fungal putative methyltransferases 

(Figure 22). This hints that these putative MTs may have different substrate specificities. 

 

2.3.1 Production and characterization of SticA, a tyrosine betaine synthase 
 

An egtD-like gene (28.15 % sequence identity with egtD) was found in the genome of the fungus 

Aspergillus nidulans. The residues at position 213, 252 and 282 differ from the ones found in 

EgtD sequence and are respectively replaced by Asn, Gln and Val (Figure 22). A homology model 

with EgtD shows that the substrate binding pocket is consequently widened (Figure 23), 

enabling a bigger aromatic amino acid to fit inside. Intuitively, this fungal MT was proposed to be 

specific for tyrosine, as both Asn and Gln residues could form a hydrogen bond with the 

hydroxyl group of the side chain.  
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Figure 23 Substrate binding pockets in EgtD and in the MT from A. nidulans. Left: EgtD crystal structure co-

crystallized with DMH (PDB: 4PIN). Right: Homology model of the fungal MT. The three residues which define the size 

of the hydrophobic pocket in EgtD are Thr213, Met252 and Glu282. Their corresponding homologues in the fungal MT 

are Asn213, Gln252 and Val282 (EgtD numbering). 

 

In the genome of A. nidulans, this putative tyrosine MT is co-encoded with a taurine dioxygenase 

(gene locus XP_681863). This observation allows us to suggest a pathway for the biosynthesis of 

the tyrosine betaine derivative sticticine in the fungus (Figure 24).  

Sticticine is a tyrosine betaine derivative which is thought to play a role in osmoregulation in 

lichen species such as Lobaria laetevirens.75,77 The biosynthetic pathway of sticticine in this 

organism was proposed in 1981 and involves the methylation and hydroxylation of tyrosine, 

with the methyl transfer taking place first.5 Considering that the two fungal enzymes are 

encoded together, our assumption was that a similar biosynthesis would take place in A. 

nidulans and the putative MT and dioxygenase were thereby named SticA and SticB respectively.  

In order to determine which step would be first in A. nidulans, the activity of SticA was measured 

with the 20 proteinogenic amino acids. As dihydroxyphenylalanine (DOPA) appeared as a 

possible substrate for the MT through the proposed biosynthetic pathway in Figure 24, this 

compound was also tested as a substrate for the fungal enzyme. 
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Figure 24 Proposed biosynthesis of sticticine in A.Nidulans. Two possible pathways were considered. The substrate 

tyrosine (1) can be either first methylated by SticA, and the resulting tyrosine betaine (2) is then hydroxylated to 

DOPA betaine (4) and further methylated to sticticine (5), or the first step of sticticine biosynthesis can be the 

hydroxylation of tyrosine followed by the methylation of the resulting DOPA (3).  

 

2.3.2 Kinetics 
 

As for EgtD, SticA activity was tested in vitro and the catalytic parameters of the fungal 

methyltransferase were determined using the spectrophotometric continuous assay described 

in section 2.1.1.  

 

Table 4 Kinetics parameters of SticA from Aspergillus nidulansa. 

Substrate kcat (s-1) KM (µM) kcat / KM (M-1s-1) 

Tyrosine 0.11 21 5240 

Dimethyltyrosine 0.05 43 1200 

Histidine 0.02 33 660 

Phenylalanine 0.14 5400 25 

DOPA 0.10 148 660 

 
a Reaction conditions: 25 °C, 50 mM Tris/HCl pH 8.0, 50 mM NaCl, 200 µM MnII, 500 µM SAM, 10 µM to 10 mM 

nucleophile, 5 µM SAH nucleosidase, 10 µM adenine deaminase and 2 to 5 µM of SticA. 
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SticA shows significant activity with histidine, phenylalanine, tyrosine, dimethyltyrosine (DMY) 

and DOPA*. Yet, the catalytic efficiency of the fungal methyltransferase for tyrosine methylation 

is comparable to histidine methylation catalyzed by EgtD (5300 M-1s-1, see Table 1).  

The fungal MT also catalyzes the methylation of phenylalanine with a similar turnover number 

as for tyrosine. However, as indicated by the Michaelis constants, the MT has a greater affinity 

for tyrosine (KM,Tyr is 250 times lower than KM,Phe). This observation is coherent with the analysis 

of the structural homolog of SticA (Figure 23). The binding pocket of SticA is certainly enlarged 

compared to EgtD; in this way either phenylalanine or tyrosine can fit inside. Nonetheless, 

Asn213 and Glu252 can form hydrogen bonds with the hydroxyl group of tyrosine providing a 

reasonable explanation for the preferred binding of tyrosine compared to phenylalanine. The kcat 

values of SticA with DOPA and tyrosine are also comparable but the KM,DOPA  value is seven times 

higher than for tyrosine. This difference can be interpreted in the context of the proposed 

biosynthetic pathway of sticticine (Figure 24). If tyrosine is a better substrate for the MT than 

DOPA, it suggests that the first step of sticticine biosynthesis is thus the trimethylation of 

tyrosine. Nevertheless, the similarity in turnover numbers of tyrosine and DOPA also indicates a 

certain degree of flexibility in the order of the steps involved in sticticine biosynthesis. 

Interestingly, the KM value for histidine is rather similar than the one of tyrosine. In EgtD, the 

mutation of Glu282 to alanine affects significantly substrate binding through the loss of 

hydrogen bonds with the imidazole ring. In SticA, the non-polar Val282 cannot form hydrogen 

bonds with the substrate either. However, Asn213 and Gln252 can provide a polar environment 

to histidine and compensate the presence of a non-polar residue at the position 282. 

In contrast with EgtD which favors histidine trimethylation, the methylated substrate is not 

preferred by SticA (the catalytic efficiency of the fungal MT is four times higher for tyrosine than 

for DMY). Moreover, a reaction containing an equimolar concentration of SAM and tyrosine 

catalyzed by SticA was analyzed by IE HPLC in order to identify the different products. DMY and 

TMY (trimethyltyrosine) are found in relatively similar amount (59.7 ± 5.6 % and 40.3 ± 2.8 % 

respectively). This reinforces the idea that the methyl transfers and the hydroxylation of 

tyrosine may be interchanged with each other during sticticine biosynthesis. 

To conclude, by structure analysis and bioinformatics search, we were able to identify SticA as a 

tyrosine methyltransferase with similar catalytic parameters as EgtD but different substrate 

specificity. 

 

                                                             
*As for EgtD, an upper estimate of the catalytic efficiency (5 M-1s-1) was assigned to SticA with the 17 other 
amino acids. 
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2.4 Identification of a fungal tryptophane betaine synthase 
 

To pursue our structure-guided genome-mining for betaine synthases with alternative activities, 

we considered EgtD homologs found in two wood degrading fungi. 

 

2.4.1 Identification of hypaphorine in wood degrading fungus 
 

EgtD-like proteins were found in different species of basidiomycetous fungi like Dichomitus 

squalens or Serpula lacrymans (26 % and 25 % sequence identity with EgtD respectively). The 

sequence alignment of the fungal enzymes shows differences at the positions 213, 252 and 282 

compared to EgtD sequence (Figure 22). Nevertheless, the other residues responsible for the 

recognition of both carboxylic and -amino groups of histidine are identical (Figure 25). 

 

                39    56   161  166   206   252  282  286 
egtD           …FYDA…PEYYP…FLGSTIGNLT…RAYDD…IEMWL…TEVSCKFR… 
D. squalens    …LYDE…AEYYL…FLGSSLGNFT…MAYND…KRAYY…VAFSHKFS… 
S. lacrymans   …LYNE…PDYYL…WLGSSIGNVK…RAYND…HEVYY…LAHSYKYA… 
 
Figure 25 Abbreviated sequence alignment of EgtD and EgtD homologs from the two wood degrading fungi 

Dichomitus squalens and Serpula lacrymans. The residues highlighted in grey in the sequence of EgtD interact with the 

substrate DMH in the catalytic pocket. The corresponding residues indicated in red in the sequences of the two fungal 

methyltransferases are the only ones which differ from EgtD in this respect. 

 

Valine and or alanine are found at positions 252 and 282 in the fungal enzymes. A model of the 

histidine binding site defined by these non-polar residues describes a bigger substrate binding 

pocket in which an amino acid larger than histidine or tyrosine could fit (Figure 26). Therefore, 

we suggest that these organisms could produce tryptophan betaine (also named hypaphorine), 

either as a simple metabolite or as intermediate in a biosynthetic pathway. 
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Figure 26 A: Histidine binding site within EgtD WT (PDB: 4PIN). The residues Met252 and Glu282 describe a 

hydrophobic pocket in which the substrate can fit in. B: Model of the binding pocket of Serpula lacrymans. Met252 and 

Glu282 are respectively replaced by Val and Ala residues. C: Model of the binding pocket of Dichomitus squalens. 

Met252 and Glu282 residues are both changed in Ala residues. 

 

To test this hypothesis, the extracts of both species of wood degrading fungi (Serpula lacrymans 

and Dichomitus squalens) were analyzed for the purpose of detecting the presence of 

trimethyltryptophane (TMW). First, the fungi were grown on malt extract agar for at least two 

weeks to ensure sufficient matter for analysis. The mycelia were scraped off the plates and 

extracted with a methanol-containing aqueous solution. Their respective contents were then 

analyzed by reverse-phase (RP) HPLC (Figure 27). 

 

21.0 22.5 24.0

*

 Fungal extract (Sl)
 Coinjection

Time (min)

*

21.0 22.5 24.0

Time (min)

 Fungal extract (Ds)

 Coinjection *

 

Figure 27 HPLC traces of the crude fungal extracts and co-injected with 1 mM hypaphorine. Left: no TMW was 

detected in Serpula lacrymans (Sl). Right: a compound eluting at the same time as TMW was identified in Dichomitus 

squalens (Ds). The compounds indicated with the symbol (*) are present in the crude extracts but were not identified. 

 

In the extract of Serpula lacrymans, no compound eluting at the same time as the reference 

hypaphorine could be identified; while in Dichomitus squalens, a compound with a similar 

retention time was detected. This compound was then isolated. Its elemental composition was 

determined by HRMS, which confirmed the presence of tryptophan betaine in the fungal extract 

A B C 
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(m/z calculated: 247.1441 Da, measured: 247.1441 Da, which is consistent with the elemental 

composition: 14C19H2N2O+). In addition, a second mass of 188.1 Da was also assigned to the 

presence of isolated hypaphorine. This peak is accounted for the ESI-induced fragmentation of 

TMW (Figure 28) to trimethylamine and 3-indoleacrylic acid (m/z calculated 188.1 Da, 

measured 188.1 Da). Betaines of amino acids can easily undergo Hofmann elimination during MS 

experiments.161 It is thus not unusual to detect the elimination product. 

 

 

Figure 28 Fragmentation of hypaphorine. The tryptophane betaine (1) is a good candidate to undergo trimethylamine 

elimination in basic conditions to give 3-indoleacrylic acid (2). In MS/MS experiment, this Hofmann elimination takes 

place spontaneously. 

 

The identification of hypaphorine in the extract of Dichomitus squalens strongly suggests that the 

egtD-like gene found in this wood degrading fungus encodes for a tryptophan methyltransferase. 

Moreover, it would not be absurd to propose TMW as an intermediate in a biosynthetic pathway 

for tryptophan betaine-based compounds. Therefore, the absence of TMW is the extract of 

Serpula lacrymans does not demonstrate that this fungal EgtD homologue is not a tryptophan 

methyltransferase. 

 

2.4.2 Engineered tryptophan methyltransferase 
 

Identifying compounds of interest from an extract constitutes an indirect means to demonstrate 

enzyme specific activity. Therefore, we attempted to assign the exact function of the protein 

encoded by the egtD-like gene in Dichomitus squalens through in vitro studies. The fungal 

enzyme was cloned into a suitable vector for recombinant production (pET28) in Escherichia 

Coli, as done for SticA. Nevertheless, the putative tryptophan MT was not expressed in the 

bacteria. Therefore, we tried a different approach in order to support the hypothesis that a 

bigger catalytic pocket in fungal EgtD homologs is a determinant for tryptophan binding. 

Inspired by the residues identified in the fungal putative MTs (Figures 22 and 26), we 

constructed variants of EgtD with mutations at the key positions 252 and 282. The following 
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series of variants was generated: the single mutant M252A, the double mutants E282A M252V 

and E282A M252A and the triple mutant E282A M252V N217C. These four variants were then 

tested with the 20 proteinogenic amino acids as potential substrates.  

Among the aforementioned constructs, only one variant shows significant tryptophan 

methyltransferase activity: EgtD E282A M252V. This mutant mimics the binding site of the 

fungal putative MT from Serpula lacrymans. None of the other mutants showed any MT activity 

that was able to be monitored by the spectrophotometric continuous assay. The engineered 

tryptophan MT and EgtD WT have similar catalytic efficiencies (5300 and 5500 M-1s-1 for the 

tryptophan and histidine MT respectively). Additionally, a reaction containing an equimolar 

concentration of SAM and tryptophan catalyzed by EgtD E282A M252V were analyzed by ion 

exchange HPLC in order to identify the different products. Dimethyltryptophan (DMW) is mainly 

produced (95 %), while TMW is found in significantly limited amount (less than 5 %). 

 

Table 5 Kinetics parameters of the engineered tryptophan methyltransferase EgtD E282A M252V with tryptophan 

and dimethyltryptophana. 

Substrate kcat (s-1) KM (µM) kcat / KM (M-1s-1) 

Tryptophan 0.11 20 5500 

Dimethyltryptophan 0.01 11 830 

 

aReaction conditions: 25 °C, 50 mM Tris/HCl pH 8.0, 50 mM NaCl, 200 µM MnII, 500 µM SAM, 10-500 µM tryptophan or 

DMW, 5 µM SAH nucleosidase, 10 µM adenine deaminase and 6.6 µM of EgtD E282A M252V. 

 

As shown with the analysis of the products of the reaction, the cooperativity of the MT was not 

conserved after mutating the catalytic site. We hypothesize that the artificial tryptophan binding 

pocket is not large enough to favor the last methyl transfer on DMW. However, based on our 

study of EgtD determinants for histidine recognition, we successfully engineered a proficient MT 

with different substrate specificity.  
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2.4.3 Crystal structure 
 

In order to heighten the understanding of this change in specificity arising from two point 

mutations in the substrate binding site, EgtD E282A M252V was co-crystallized as a ternary 

complex with tryptophan and SAH (Figure 29). 

 

                

Figure 29 Substrate binding pocket of the engineered tryptophan MT and the native histidine MT. Left: EgtD E282A 

M252V co-crystallized with tryptophan (PDB: 4PIP, 1.8 Å). The resulting binding pocket is larger than in the WT. 

Right: EgtD WT co-crystallized with DMH (PDB: 4PIN). 

 

In EgtD WT, Glu282 recognizes histidine via essentials hydrogen bonds and Thr213 interacts 

with the imidazole ring through a water molecule. In the engineered tryptophan 

methyltransferase, the nitrogen atom of the indole ring of the substrate coordinates in the same 

way to Thr213. The two residues Ala282 and Val252 shape a hydrophobic pocket large enough 

to enable tryptophan to fit inside, however, they do not provide additional interaction with the 

substrate.  

In summary, our model for determining substrate specificity in EgtD homologs based on 

structural analysis and bioinformatics search has proven to be efficient to identify tryptophan 

betaine synthases in wood degrading fungi.  
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2.5 Conclusions 
 

EgtD catalyzes the first step in ergothioneine biosynthesis in Mycobacterium smegmatis, namely 

the trimethylation of histidine. The methyltransferase was recombinantly produced and its 

catalytic efficiency was determined in vitro by a spectrophotometric continuous assay. EgtD is a 

cooperative enzyme with high specificity for histidine. The crystal structure of EgtD revealed 

that the mycobacterial MT does not belong to any of the 31 classes of SAM-dependent MT. 

Instead, EgtD is then the first member of a new family named Methyltransf_33. The residues 

essential for substrate recognition were delineated. Guided by these structural motifs, fungal 

tyrosine and tryptophan methyltransferases were identified in unexpected organisms. The 

catalytic efficiencies of SticA, the tyrosine betaine synthase found in Aspergillus nidulans, and 

EgtD are comparable. We engineered a proficient tryptophan MT which mimics the substrate 

binding pocket of an EgtD homolog from Serpula lacrymans. The drastic change is substrate 

specificity by only mutating two amino acids in EgtD demonstrates the promiscuity of the 

members of the Methyltransf_33 family (Table 6). 

 

Table 6 Summary of the kinetics parameters of aromatic amino acid methyltransferasesa. The kcat values are given in 

s-1 and kcat/KM in M-1s-1. 

 

 EgtD WT EgtD E282A SticA 
EgtD E282A 

M252V 

Substrate kcat kcat / KM kcat kcat / KM kcat kcat / KM kcat kcat / KM 

His 0.58 5300 0.1 40 0.002 790 - 1.9 

MMH 0.23 23000 - - - - - - 

DMH 0.43 17000 - - - - - - 

Phe - 2.4 - - 0.14 25 0.34 100 

Tyrosine - 1.1 - - 0.11 5300 - 170 

DMY - - - - 0.05 1200   

DOPA - 2.2 - - 0.1 660 - 4.5 

Trp - 2 0.02 125 - 7.2 0.11 5500 

aReaction conditions: 25°C, 50 mM Tris/HCl pH 8.0, 50 mM NaCl, 500 µM SAM, 5 µM SAH nucleosidase, 10 µM adenine 

deaminase, 0.6 to 6.6 µM MT. Data represents averages from multiple measurements. The standard error is less than 

20% of the average value. 
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Small secondary metabolites have essential functions in cell-to-cell communication. Aromatic 

amino acid betaines seem to be ubiquitous in the fungal kingdom and are likely to serve more 

sophisticated roles than glycine betaine due to their functional side chains. Hypaphorine may 

play a defensive role against oxidative stress during fungal wood degrading. It can also act as a 

protectant against desiccation stress as Serpula lacrymans can live in almost dry wood and 

betaine derivatives are known to attract water molecules. Furthermore, glycine betaine 

derivatives are commonly used for ionic liquids (ILs) synthesis.36 A more unusual role that can 

then be proposed for aromatic amino acid betaines in wood degrading fungi is as the cations of 

biosynthetic ILs. In addition to the enzymatic processes required for wood degradation, ILs 

could support the digestion of cellulose and lignin matrices.38 Yet, the prior determination of the 

biosynthetic origins of amino acid betaines is a prerequisite for a systematic study of their 

functions. Our structure-based analysis provides then a strong basis to identify aromatic amino 

acids synthases scattered across whole genomes.  

 

2.6 Experimental  
 

2.6.1 Kinetics  
 

Methyltransferase assay. Methyltransferase activity was determined following published 

protocols.147 Reactions were monitored in a 2 mm quartz cuvette at 25°C at 265 nm with a Cary 

300 spectrophotometer from Agilent. The 200 µL reactions contained 50 mM Tris/HCl pH 8.0, 

50 mM NaCl, 200 μM MnII, 500 µM SAM, 5 µM adenine deaminase, 10 µM SAH nucleosidase, 0.6 

to 6.6 µM methyltransferase and the appropriate amino acid at a concentration of 1 – 10000 µM. 

Reactions were started by addition of the methyltransferase.  

 

HPLC assay. Methyltransferase activity was assayed in 50 mM Tris/HCl pH 8.0, 50 mM NaCl, 

200 μM MnII, 500 µM SAM, 5 µM adenine deaminase, 10 µM SAH nucleosidase, 1 to 10 µM 

methyltransferase and the appropriate amino acid at a concentration of 1 – 10000 µM. Reactions 

were started by addition of the methyltransferase and incubated at 25°C. 20 µL aliquots of the 

reactions were quenched by addition of 10 μL 1 % TFA and analyzed by either cation exchange 

HPLC (20 mM phosphoric acid pH 2 as the mobile phase) on a Luna 5u SCX column (100 Å, 150 x 

4 mm, Phenomenex), or by reverse phase HPLC (water and 0.1 % TFA as the mobile phase) on a 

Zorbax Eclipse Plus C18 reverse-phase column (2.1 x 50 mm 1.8-Micron, Agilent). The 

compounds were eluted in NaCl and acetonitrile gradient respectively. All HPLC chromatograms 

were recorded at 220 nm.  
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Michaelis Menten plots. The data obtained by the methods listed above were fitted to the 

function ν = kcat · [substrate] / (KM + [substrate]). The corresponding substrates and MTs are 

indicated on each graph. The kcat and kcat/KM parameters indicated in Table 6 were determined in 

the presence of the co-substrate SAM at a concentration at least 3 fold higher than the 

corresponding KM,SAM. 
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2.6.2 Product identification after methyl transfer 
 

UPLC-MS (1290 Infinity  LC  System  /G6130BA  LCMS  Single  Quad , Agilent) analysis of the 

products formed during the methylation of tyrosine, tryptophan or histidine was performed on a 

Zorbax Eclipse Plus C18 reverse-phase column (2.1 x 50 mm 1.8-Micron, Agilent). The 

compounds were eluted with a gradient mixture of water containing 1% MeCN and 0.1% TFA 

and MeCN containing 0.1% TFA. The trimethylated products were identified by MS:  

m/z calc: 198.12, measured: 198.1 (trimethylhistidine); 

m/z calc: 224.13, measured: 224.1 (trimethyltyrosine); 

m/z calc: 247.14, measured: 247.1 (trimethyltryptophan); 

m/z calc: 240.12, measured: 240.1 (trimethylDOPA). 

 

2.6.3 Extraction and identification of trimethyltryptophan in Dichomitus squalens 
 

Dichomitus squalens was purchased from DSMZ (reference DSM 9615) and grown on 1.5% malt 

extract agar. After three weeks of incubation at 27°C with 70 % humidity, 20 g of fungus were 

collected. The mycelium was first ground in liquid nitrogen then lysed three times by sonication 

with 30 mL of MeOH:water (9:1). The lysate was then filtered, frozen and lyophilized overnight. 

The fungal dry extract was resuspended in 7 mL of ddH2O. It was then injected on RP HPLC. A 

coinjection with 1 mM hypaphorine was also performed. The compound eluting at the same time 

as trimethyltryptophan on RP HPLC was collected in order to perform a MS/MS experiment and 

to determine its mass by HRMS to get the elemental composition. 
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3 EgtD substrate binding mode provides the basis for inhibitors 
design 

 

There are different strategies to regulate metabolic pathways. Often, the final product of the 

pathway inhibits one of the enzymes needed during the biosynthesis. For instance, this feedback 

inhibition is of particular importance to balance the production of amino acids.156 In the context 

of industrial processes requiring biological catalysts (the degradation of cellulose by 

hydrolases162 or the production of lactic acid from biowaste),163 product inhibition is an 

unwanted feature that has to be reduced to improve process efficiency and to limit production 

costs. However, product inhibition is a physiologically relevant property of enzyme catalysis. 

Indeed, this control is essential for cell homeostasis to avoid the accumulation of unnecessary 

metabolites, but also helps to prevent wasting energy, nitrogen or carbon sources for products 

that will not be used by the cell.164  

By comparing the binding pocket of EgtD in presence of either histidine or DMH (Figure 30), we 

realized that both methyl groups of DMH provide additional interactions with polar residues in 

the active site of the MT.  

 

  

Figure 30 Comparison of the interactions with histidine and DMH within the substrate binding pocket of EgtD. The 

hydrogen bonds are indicated with black dashes, whereas interactions between the residues that are in van der Waals 

distance with the methyl groups of DMH are shown with red dashes. Left: EgtD co-crystallized with histidine and SAH 

(PDB: 4UY6, 2.04 Å).165 Right: EgtD co-crystallized with DMH and SAH (PDB: 4PIO).146  

 

We proposed that this accumulation of weak interactions (CH···O bond energy is commonly 

estimated as half the energy of a conventional hydrogen bond)152 contributes to a preferred 

binding of the methylated substrate which defines EgtD as a cooperative enzyme. This 
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interesting feature has, so far, not been described for any of the other members of the 

Methyltrans_33 family. It raises the question whether trimethylhistidine would also bind to the 

active site, consequently inhibit EgtD activity and thus stop ergothioneine biosynthesis. 

In this chapter, we discuss EgtD substrate binding order and the mechanism of product 

inhibition. These findings provide the basis for the design of histidine derivatives as EgtD 

inhibitors. The valuable information about the interactions between EgtD and its product and 

substrates suggest that EgtD is a key enzyme for regulating ergothioneine biosynthesis in 

Mycobacterium. 

 

3.1 EgtD is product-inhibited 
 

While the end product of the reaction SAH is a potent inhibitor of numerous SAM-dependent 

MTs,166 the inhibition by the resulting methylated nucleophile is more rare, but has already been 

reported. For example, the phospholipid N-MT PmtA from Agrobacterium tumefaciens is 

inhibited by both SAH and the product of the reaction phosphatidylcholine.167 Another SAM-

dependent MT, the N-8-demethyl-8-amino-D-riboflavin dimethyltransferase RosA is also 

inhibited by both products of the reaction.168 In our assays, the presence of the coupled enzymes 

(adenine deaminase and SAH nucleosidase) ensures that the observed inhibitory effects occur 

due to the interactions with the tested compounds solely, as SAH is not present in the reaction. 

In this way, if EgtD is product inhibited, it means that TMH competes for the histidine binding 

site.  

 

 
Figure 31 Simplified scheme of a competitive inhibition. If an inhibitor I binds reversibly to the active site of the 

enzyme E and prevents the binding of the substrate S, I and S compete for the active site and I is said to be a 

competitive inhibitor.169 
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In the absence of an inhibitor, the initial rate of an enzymatic reaction is described by the 

following equation (Eq.1): 

ν =
[୉]బ ·[ୗ]·௞ౙ౗౪

[ୗ]ା௄౉
                                                                     (Eq.1) 

Where [E]0 and [S] represent the concentrations of the enzyme and the substrate respectively. 

In the presence of a certain concentration competitive inhibitor [I], this equation becomes: 

ν =
[୉]బ ·[ୗ]·௞ౙ౗౪

[ୗ]ା௄౉ ౗౦౦ ·(ଵା 
[౅]
಼౅

) 
                                                              (Eq.2) 

Where KI, the inhibition constant is defined by: KI = [E] · [I] / [EI]. This type of inhibition is thus 

characterized by an unchanged turnover number in presence of the competitive inhibitor, but an 

increase in the KM value by a factor of (1 + [I]/KI). 

 

3.1.1 Kinetics 
 

In presence of 0.5 mM TMH, the rate of EgtD at saturated substrate concentration (0.5 mM of 

both histidine and SAM) decreases by more than 80 %. This indicates that EgtD is inhibited by its 

product. In order to quantify the inhibitory effect of TMH, we determined the KI value. The rates 

of histidine methylation catalyzed by EgtD in presence of three concentrations of inhibitor were 

monitored by the continuous spectrophotometric assay. The resulting catalytic parameters are 

indicated in the following table.  

 
Table 7 Determination of the KI value of EgtD in presence of different concentrations of hercyninea. 

[Hercynine] (µM) kcat (s-1) KM app (µM) KI (µM) 

0 0.26 ± 0.01 51 ± 6 - 

55 0.25 ± 0.02 109 ± 31 48 

140 0.22 ± 0.02 222 ± 52 42 

280 0.26 ± 0.02 575 ± 90 27 

 

aReaction conditions: 25 °C, 50 mM Tris/HCl pH 8.0, 50 mM NaCl, 200 µM MnII, 500 µM SAM, 10-2000 µM histidine, 

5 µM SAH nucleosidase, 10 µM adenine deaminase and 2 µM EgtD. 

 



53 
 

The average of the three KI values gives an inhibition constant for L-hercynine* of 39 ± 11 µM. 

Interestingly, this KI value and the Michaelis constant for the substrate DMH are comparable 

(KM  DMH = 28 ± 6 µM, see Chapter 2). 

 
In the previous chapter, we showed that the major product of histidine methylation catalyzed by 

EgtD is hercynine. In addition, we now demonstrated that the MT is inhibited by its product. 

Interestingly, the KM value of TMH for EgtB (43 ± 10 µM),7 the second enzyme involved in 

ergothioneine biosynthesis (see Chapter 1), is similar to the KI value of TMH for EgtD. Moreover, 

EgtB accepts both DMH and TMH as substrates and catalyzes the sulfoxidation with a 

comparable catalytic efficiency (K. Goncharenko, unpublished results). These interesting 

findings support the idea that EgtD does not only control the nature of the substrate of EgtB (see 

Chapter 2), but its activity is also regulated by the substrate intake from the sulfoxide synthase. 

In other words, the cooperativity of EgtD can be assigned to an upstream control of the substrate 

of EgtB and in addition, histidine betaine synthesis self-regulates through product inhibition 

when EgtB is not present to use TMH as a substrate.  

 

To test if product inhibition is a common feature of the Methyltransf_33 family, we also probed 

the potential inhibitory effect of TMY on SticA activity. In presence of 250 µM of TMY, the activity 

of the fungal tyrosine betaine synthase is not modified. However, at higher concentration of 

product, SticA is partially inhibited: in presence of 2 mM of TMY, the remaining activity of SticA 

is 41 ± 4 %. This result indicates that TMY does in fact inhibit MT activity, but with a lower 

efficiency than the product inhibition of EgtD. We estimated the KI value of TMY to be 1 mM, that 

is to say 25 times higher than the KI value of TMH. 

 

3.1.2 Crystal structure of EgtD in complex with its product trimethylhistidine 
 

In order to identify the interactions accounting for the binding of TMH in the active site and the 

resulting inhibition, EgtD was co-crystallized in a binary complex with its product (Figure 32, 

right). 

 

                                                             
* The chirality of EgtD substrates will be discussed in Section 3.5.2. 
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Figure 32 EgtD substrate binding pocket. The hydrogen bonds are indicated with black dashes, whereas interactions 

between the residues that are in van der Waals distance with the methyl groups are shown with red dashes. Left: EgtD 

co-crystallized with DMH (PDB: 4PIN). Right: EgtD co-crystallized with TMH (unpublished results, 1.75 Å).  

 

The hydrogen bond network between the residues Tyr56, Tyr206, Lys286, Ser284 and Asn166 

with the carboxylic group of TMH is similar to the one described for DMH (see Chapter 2). Yet, 

the N is no more stabilized by hydrogen bonding to Asn166 but is instead replaced by weaker 

interactions between the carboxylic group of this residue and the additional methyl group (C···O 

distance: 3.2 Å, CHO angles: 90.2 to 94.3 ° for the 3 hydrogen atoms). Thr163 is in van der Waals 

distance with the three methyl groups of hercynine (C···O distances between 3.6 and 3.9 Å) and 

the corresponding angles defined by the three atoms C, H and O are similar (148.9 to 152.8 °). 

These measurements describe CH···O interactions according to the definition given by Horowitz 

and Trievel (see Chapter 2).152 The accumulation of weak interactions between the active site 

and the methyl groups of TMH provide a reasonable explanation for the binding of the product 

and the resulting competitive inhibition with the substrate of EgtD. 

The dense array of short contacts between the polar residues of the EgtD binding pocket and the 

three methyl groups of TMH indicates that the trimethyl ammonium moiety is an important 

recognition motif for EgtD. In order to test if this motif is indeed essential to inhibit the MT, we 

decided to probe chlorohistidine as a putative inhibitor. The drastic difference between the 

chemical characteristics of chlorine compared to trimethylammonium (such as size, absence of 

charge and low polarity) directed the choice for this -halogenated histidine derivative.  

 

3.2 Chlorohistidine is an inhibitor of EgtD 
 

The -chloro-substitution of histidine suppresses the hydrogen bond between the oxygen atom 

of the amide side chain of Asn166 and the substrate/inhibitor. In addition, the whole network of 

weak interactions established between the methyl groups of DMH or TMH and the polar 
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residues in the catalytic site is also removed. Therefore, by comparing the inhibitory effect of 

TMH and chlorohistidine (through the KI values), the importance of the trimethyl ammonium 

group regarding EgtD inhibition can be defined. 

 

3.2.1 Kinetics 
 

A racemic mixture of (D,L)-chlorohistidine was used to perform the experiments. The explanation 

for this choice of stereochemistry is given in section 3.5.2.2. 

The rate of EgtD at saturated substrate concentrations was monitored in presence of 0.5 mM 

chlorohistidine (ClHis). The activity of EgtD was lowered below the detection limit of this assay, 

suggesting that this histidine derivative is in fact an efficient inhibitor and that, despite the 

abovementioned loss of interactions resulting from the halogen substitution. Therefore, we 

determined the KI value of chlorohistidine with lower concentrations of inhibitor compared to 

TMH. The rates of histidine methylation in presence of three concentrations of chlorohistidine 

were monitored by the continuous spectrophotometric assay, as performed for TMH. The 

resulting catalytic parameters are indicated in the table below. 

 

Table 8 Determination of the KI value of EgtD in presence of different concentrations of chlorohistidinea 

[ClHis] (µM) kcat (s-1) KM (µM) KI (µM) 

0 0.40 ± 0.02 101 ± 15 - 

10 0.37 ± 0.03 230 ± 44 7.8 

25 0.41 ± 0.04 625 ± 139 4.8 

50 0.36 ± 0.02 956 ± 100 5.9 

aReaction conditions: 25 °C, 50 mM Tris/HCl pH 8.0, 50 mM NaCl, 200 µM MnII, 500 µM SAM, 50 - 2000 µM histidine, 

5 µM SAH nucleosidase, 10 µM adenine deaminase and 2 µM of EgtD. 

 

The KI value for chlorohistidine is 6.2 ± 1.5 µM, which is six times lower than the value of 

product inhibition. It seems unlikely that the ammonium moiety, which interacts with the 

catalytic site through an accumulation of van der Waals interactions, is a weaker binder than the 

relatively inert chlorine atom. We proposed then that the mechanism of inhibition by these two 

compounds differs. However, prior to mechanistic studies, EgtD was co-crystallized in a binary 
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complex with chlorohistidine to ensure the absence of interactions between the halogenated 

histidine derivative and the EgtD active site. 

 

3.2.2 Crystal structure 
 

The substitution of the N by a hardly polarizable chlorine atom does not, as expected, provide 

any additional interaction within the catalytic site (Figure 33). On the contrary, the contacts with 

Tyr39, Phe47, Gly161 and Thr163 are suppressed. Moreover, Asn166 forms solely one hydrogen 

bond with the carboxylic moiety of chlorohistidine. We also considered an electrostatic 

interaction between the -chlorine and Asn166. Indeed, halogen bonds, especially electrostatic 

interactions involving bromine atoms, have already been shown to contribute to a better binding 

of inhibitors.171 Nevertheless, the distance between the chlorine and oxygen atoms of the 

inhibitor and Asn166 indicates that chlorohistidine is not engaged in a halogen bond*.  

 

 

Figure 33 EgtD co-crystallized with chlorohistidine (unpublished results, 1.83 Å). 

 

In the light of the structural differences between TMH and chlorohistidine, we were wondering 

about the reason for the better inhibitory effect of chlorohistidine compared to hercynine. Either 

the interactions that were identified from the crystal structure between the trimethyl 

ammonium moiety and the polar residues within the EgtD binding site are in fact repulsive, or 

hercynine and chlorohistidine may inhibit EgtD according to different mechanisms. As the ITC 

measurements showed a better substrate affinity for EgtD with the methylated histidine (see 

                                                             
* Auffinger et al. define a halogen bond in a biomolecule as a short CX···O interaction where the distance 
between the halogen X and the oxygen atom is shorter than the sum of their respective van der Waals 
radii (3.27 Å).172 We measured a larger distance between the chlorine atom of the inhibitor and the 
oxygen atom of Asn166 (3.7 Å). Therefore, these two atoms cannot be engaged in such interaction. 
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Chapter 2), we were skeptical about the repulsion which could have occurred in the catalytic 

pocket of the MT with the trimethylammonium moiety. Therefore, we argued in favor of a 

different action of hercynine or chlorohistidine in the binding pocket of EgtD. 

 

3.3 Substrate binding order of EgtD 
 

In order to establish EgtD inhibition mechanism(s) by chlorohistidine and hercynine, it seemed 

pertinent to firstly understand the substrate binding mechanism which should provide some 

clarification about the catalysis itself. Moreover it will bring valuable information about the 

transition state, which, supported by structural analysis, could enable the design of efficient 

inhibitors.173 

To identify the substrate binding order of EgtD, we considered the simplified scheme of the 

histidine methylation shown below. 

 

 

Scheme 1 Sequential mechanism of histidine methylation. Either histidine (A) or SAM (B) can first bind to EgtD. The 

binding of the second substrate to the binary complex initiates the catalysis. For simplicity, we only considered a 

single methyl transfer from SAM to histidine. 

 

We were interested in determining in which sequential order (i.e. random or ordered) the 

substrates bind. In a non-sequential mechanism, also called Ping Pong mechanism, the release of 

one of the products occurs before the binding of all the substrates to the enzyme (Scheme 2). By 

contrast, in a sequential mechanism, the enzyme binds first all the substrates before product 

release (Scheme 1). 
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If we consider SAM-dependent MTs which catalyze the methylation of small molecules (no DNA 

or protein methyl transfer), only sequential mechanisms are found in the literature to describe 

substrate binding.174 Therefore, it is more than likely that SAM and histidine are bound to EgtD 

in a sequential order. In order to determine if the binding of the substrates occurs according to a 

random or an ordered sequential mechanism, the kinetics of the methylation were studied in 

presence of different concentrations of histidine and SAM.  

 

 

Scheme 2 Ping pong mechanism for a model reaction catalyzed by the enzyme E with A and B as the substrates and P 

and Q as the products. 

 

3.3.1 Catalytic parameters of EgtD in the presence of different concentrations of 
histidine 

 

The concentration of SAM was varied in the presence of a fixed concentration of histidine. The 

rates of the reactions were fitted to a double reciprocal plot (or Lineweaver-Burk plot) which is 

described by the following formula: 

ଵ

஝
=

ଵ

஝ౣ౗౮
+  

௄౉

஝ౣ౗౮·[ୗ]
                                                           (Eq.3) 

Where νmax = kcat · [E]0. 

This experiment was performed in the presence of six concentrations of histidine (25, 50, 75, 

100, 200 and 500 µM). The corresponding fittings are indicated in Figure 34 (left) with the 

different slopes that represent the ratio KM/kcat (µM s). A secondary plot (or diagnostic plot) 

ensues and the values of the slopes that can be fitted to a linear regression are represented in 

Figure 34 (right). This diagnostic plot has no physical meaning but is used to compare two 

systems. Therefore we performed the same experiment by reversing the roles of both 
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substrates. The diagnostics plots will then be correlated to determine if it is SAM or histidine 

which binds first. 
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Figure 34 Left: Primary plots with SAM as the varied reactant in presence of different concentrations of histidine (25, 

50, 75, 100, 200 or 500 µM). Reaction conditions: 25 °C, 50 mM Tris/HCl pH 8.0, 50 mM NaCl, 100 µM MnII, 10 µM 

AdoNuc, 5 µM adenine deaminase, 2 µM EgtD. Right: Secondary plot with SAM as the varied reactant in presence of 4 

different concentrations of histidine: 50, 75, 100 and 200 µM. 

 

3.3.2 Catalytic parameters of EgtD in the presence of different concentrations of SAM 
 

The concentration of histidine was varied in presence of a fixed concentration of SAM. As 

described above, this experiment was performed with five concentrations of SAM (25, 50, 75, 

100 and 200 µM). The corresponding primary and secondary plots are respectively indicated in 

Figure 35.  
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Figure 35 Left: Primary plots with His as the varied reactant in presence of different concentrations of SAM (25, 50, 

75, 100 or 200 µM). Reaction conditions: 25 °C, 50 mM Tris/HCl pH 8.0, 50 mM NaCl, 200 µM MnII, 10 µM SAH 

nucleosidase, 5 µM adenine deaminase, 2 µM EgtD. Right: Secondary plot with histidine as the varied reactant in 

presence of 4 different concentrations of SAM: 50, 75, 100 and 200 µM. 
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3.3.3 Substrate binding order 
 

In order to determine the substrate binding order of EgtD from the two diagnostic plots of SAM 

and histidine, we consider the simple bi-reactant model in Scheme 3. A is the first substrate to 

bind to the enzyme E and B binds to the resulting binary EA complex. 

 

 

Scheme 3 Simplified model of an organized Bi Bi reaction mechanism with A and B the substrates of the enzyme E. 

The first substrate to bind to the enzyme is A. Then the second substrate B binds to the binary complex EA. The 

catalysis can then carry on to the formation of products. 

 

For this mechanism, if the concentration of A is varied in order to determine the catalytic 

parameters of the enzyme (KM,A and kcat,A) in presence of different concentrations of B, the KM,A 

values remain constant regardless of these different concentrations of B. If A is the first 

substrate to bind, its affinity for the enzyme is not dependent on the concentration of the other 

substrate. Conversely, if the concentration of the second substrate to bind B is varied in order to 

determine KM,B and kcat,B in presence of different concentrations of A, the KM,B values differ from 

each other according to the different concentrations of A.  

Inspired by the kinetic analyses in “Enzyme Kinetics and Mechanism” of Cook and Cleland,175 we 

used diagnostic plots to graphically represent the binding order depicted in Scheme 3.  
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Figure 36 Predicted diagnostic plots for an ordered Bi Bi binding mechanism with A being the first substrate to bind. 
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The intercepts of these diagnostic plots indicate the binding order of the substrates. If we 

compare the models in the above figure and the graphs in Figures 34 and 35, we can conclude 

that EgtD binds its substrates in an ordered sequential mode. In addition, we identified histidine 

as the first substrate to bind. Therefore we can draw the following scheme which shows the 

substrate binding order of EgtD. 

 

 

Scheme 4 Ordered sequential substrate binding mode of EgtD. Histidine is the first substrate to bind and SAM binds 

to the binary complex EgtD-histidine. 

 

As previously mentioned, SAM-dependent small molecule MTs bind their substrates according to 

a sequential mechanism (the ordered binding mode being generally preferred).167,176–179 

Interestingly in these reactions, the nucleophile is always the second substrate to bind. In the 

following paragraph, we will discuss how the unprecedented substrate binding mode of EgtD 

can provide an explanation for the stronger inhibition of chlorohistidine compared to hercynine. 

 

3.4 Inhibition mechanisms 
 

In Sections 3.1.1 and 3.2.1, we showed that both chlorohistidine and TMH are competitive 

inhibitors for the histidine binding site. The KI value of the chloro derivative is six times lower 

than for the KI product. The crystal structure of the binary complex does not show any additional 

interactions provided by the -amino to halogen substitution (Figure 33). This seemingly 

counterintuitive discovery suggests then a different inhibition mechanism for these two 

compounds. In view of the identification of the substrate binding order of EgtD, we proposed 
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that the product of the reaction could in fact compete with the substrates histidine and SAM, 

whereas chlorohistidine only competes with histidine. In order to test this hypothesis, both 

chlorohistidine and hercynine were tested as potential inhibitors for the SAM binding site. We 

measured the rate of histidine methylation at saturated concentration of histidine and by 

varying the concentration of SAM. The experiments were performed in presence of several 

concentrations of hercynine or chlorohistidine. As depicted in Figure 31, if an inhibitor competes 

with the SAM binding site, the kcat,SAM remains unchanged but the KM,SAM value increases. On the 

other hand, if the inhibitor does not compete with the binding site of SAM, it will result in an 

noncompetitive inhibition characterized by a change in kcat,SAM but not in KM,SAM. We used 

Lineweaver-Burk plots to determine the nature of the inhibition. 

The results of these kinetic experiments are shown in the following charts.  
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Figure 37 Lineweaver-Burk plots indicating the type of inhibition provided by either chlorohistidine or hercynine. 

Reaction conditions: 25 °C, 50 mM Tris/HCl pH 8.0, 50 mM NaCl, 200 µM MnII, 10 µM SAH nucleosidase, 5 µM adenine 

deaminase and 2 µM EgtD. A: The product inhibition tested with histidine is competitive. B: The product inhibition 

tested with SAM is competitive. C: Chlorohistidine inhibition tested with histidine is competitive. D: Chlorohistidine 

inhibition tested with SAM is noncompetitive. 
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Hercynine and chlorohistidine do not compete for the same binding sites. Indeed, product 

inhibition is competitive for the binding of both substrates SAM and histidine, whereas 

chlorohistidine only competes for the histidine binding site. Therefore, from these findings, we 

conclude that their KI values cannot directly be compared. 

Product inhibition patterns are also used to determine the substrate binding order for a multi-

substrate enzyme.180,181 These results are indeed consistent with the identified sequential 

substrate binding order of EgtD. Histidine binds first, therefore the effects of hercynine will not 

only be the competitive inhibition of the histidine binding site, but also a competitive inhibition 

with the SAM binding site.  

In conclusion, TMH is an inhibitor of EgtD, but also a substrate for the sulfoxide synthase EgtB.133 

In order to test if the production of ergothioneine could be altered by inhibiting the first step of 

the biosynthesis, we were then interested in identifying and testing EgtD inhibitors which would 

not be substrates for EgtB. 

 

3.5 Design of EgtD inhibitors 
 

3.5.1 Choice of inhibitors 
 

Based on the interactions identified by structural and kinetic analyses, we sought out to 

rationally design a series of high-affinity inhibitors. EgtD inhibitors should have an essential 

property: they should be a substrate neither for the MT nor for the sulfoxide synthase. We 

therefore synthesized and tested two additional -halogen- (bromo- and fluorohistidine) and 

the -methylhistidine derivatives, for which we believed the methylation not to be feasible. We 

chose the cyclic amine derivatives pyrrolidine and morpholine as substitutes for the -amino 

group of histidine. We assumed that the rigidity of the cyclic amines in the catalytic site would 

prevent any methylation from occurring. In addition, we proposed that the cyclic amine could 

establish additional CH···O bonds with the polar residues. These supplementary weak 

interactions could result in a stronger inhibition than hercynine. 

All compounds were tested as EgtD substrates and inhibitors. In addition, chlorohistidine and 

hydroxyhistidine were tested as EgtB substrates. 
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3.5.2 Synthesis 
 

All the inhibitors were synthesized by Reto Burn. The synthesis routes of EgtD inhibitors are shown 

in the following Schemes. The MS data and chemical shifts from NMR are given in the Appendix. 

 

3.5.2.1 Hercynine 

 

Scheme 5 Synthesis of L-hercynine. 1a) CH2O (37 % aq.), 20 mM HCl in water, Pd/C, 6 bar H2, overnight, 93 %; 1b) 

MeOH, NH4OH (pH 10), MeI, overnight, RT, 42 %. 

 

3.5.2.2 Histidine derivatives 

 

Two different strategies were used to synthesize -substituted histidine derivatives. The 

first one consisted of the diazotization of the -amino group and subsequent nucleophilic 

substitution by either the halide or water in the absence of an halide (Scheme 6, route 1). 

The reaction proceeds via a double SN2 mechanism resulting in retention of the 

conformation.182 Another synthesis starting from diethylmalonate derivatives was 

developed (Scheme 6, route 2), which results in the racemization of the methyl-, fluoro- and 

amino-histidine derivatives. In order to compare the inhibitory effects of the compounds 

synthesized with both methods, the first synthesis was performed with an enantiomeric 

mixture of (D,L)-histidine. Therefore, for both synthesis routes, the products were racemic 

mixtures. 
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Scheme 6 Synthesis of α-substituted D,L-histidine derivatives. 1a) Concentrated HX, NaNO2, 0 °C to 20 °C, 4 h-20 h, 

28-51%; 1b) 4 M sulfuric acid, NaNO2, 0 °C to 20 °C, 5 d, 25%; 2a) thionylchloride, 20 °C, 1 d, 99%; 2b) morpholine or 

pyrrolidine, triethylamine, chloroform, reflux, 2 h - 1 d, 88-95%; 2c) (5), NaH, dimethylformamide, 0 °C to 20 °C, 4 h - 

2 d, 40-65%; 2d) 6 M HCl, reflux, 2 d, 80-98%; 2e) (5), NaH, dimethylformamide, 0 °C to 20 °C, 4 h - 2 d, 40-65%; 2f) 

6 M HCl, reflux, 2 d, 80-98%; 3a) thionylchloride, methanol, 0 °C to 20 °C, 1.5 h, 76%; 3b) TsCl, trimethylamine, 

chloroform, 0 °C to 20 °C, 16 h, 60%; 3c) azetidine hydrochloride, Cs2CO3, DMF, 40 °C, 6 h, 8%; 3d) LiOH, water/THF 

(1:1), 20 °C, 6h, 98%. 

 

3.5.2.3 Chirality of the substrates and inhibitors 

 

EgtD crystal structure and kinetic data showed the specificity of the enzyme for the L-substrates. 

In principle, enzymes are highly precise both in catalyzing stereospecific reactions and in only 

binding one stereoisomer of a chiral substrate. Nevertheless, there are also enzymes that can 
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produce both enantiomers of the product of the reaction in accepting either the L- or the D-

substrate. For example, the glutamate racemase (EC 5.1.1.3) catalyzes the interconversion of 

glutamate enantiomers in most bacterial strains.183 Another enzyme was reported to bind both 

enantiomers at the same time. A protein involved in phenazine biosynthesis in the Gram 

negative bacteria Burkholderia cepacia was shown to simultaneously bind both enantiomers of 

an inhibitor, as well as each individual enantiomer.184 Therefore, in order to interpret and 

compare the inhibitory effects of the tested inhibitors (available as racemic mixtures), we 

determined the possible effect of D-enantiomers concerning the binding in the catalytic site of 

EgtD. 

 

0

25

50

75

100

L-His

A)

A
ct

iv
ity

 (
%

)

Substrate: D-His
0

25

50

75

100

A
ct

iv
ity

 (
%

)

1 mM D-His: - +

B)

 

Figure 38 Only L-substrates bind to EgtD. A: Comparison of D- and L-histidine as substrates for EgtD. 

Reaction conditions: 25 °C, 50 mM Tris/HCl pH 8.0, 50 mM NaCl, 200 µM MnII, 10 µM SAH nucleosidase, 

5 µM adenine deaminase, 0.5 mM SAM, 0.5 mM D- or L-histidine and 2 µM EgtD. B: D-histidine is not a 

potential competitive inhibitor. Reaction conditions: 25 °C, 50 mM Tris/HCl pH 8.0, 50 mM NaCl, 200 µM 

MnII, 10 µM SAH nucleosidase, 5 µM adenine deaminase, 0.5 mM SAM, 0.5 mM L-histidine, 0 or 1 mM D-

histidine and 2 µM EgtD. 

 
First, we identified L-histidine as the only substrate of the MT (Figure 38A). Then we 

demonstrated that in the presence of 1 mM of D-histidine, no reduction in activity was observed 

(Figure 38B). These results suggest that EgtD does not bind D-histidine; thus for a racemic 

mixture, only the L-enantiomers will interact with the enzyme.  

 

3.5.3 KI values 
 

To determine the inhibitory effect of the histidine derivatives, the Michaelis-Menten parameters 

were determined in presence of three concentrations of each inhibitor by the continuous 
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spectrophotometric assay. The three resulting KI values were then averaged for each compound 

and are indicated in Table 9.  

Table 9 KI values for EgtD competitive inhibitorsa. 

Inhibitor Structure KI value (µM) 

Methylhistidine 

 

5.4 ± 1.6 

Chlorohistidine 

 

6.2 ± 1.5 

Bromohistidine 

 

8.2 ± 2.4 

Azetidinohistidine 

 

8.5 ± 2.1 

Fluorohistidine 

 

25 ± 1 

Hercynine  
product inhibition 

 

39 ± 10 

Pyrrolidinohistidine 

 

41 ± 6 

3-(imidazole-4-
yl) propionic acid 

 

49 ± 14 

Hydroxyhistidine 

 

72 ± 17 

Morpholinohistidine 

 

93 ± 11 
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aReaction conditions: 50 mM Tris/HCl pH 8.0, 50 mM NaCl, 200 µM MnII, 5 µM adenine deaminase, 10 µM SAH 

nucleosidase, 0.5 mM SAM, 10-2000 µM histidine, three different concentrations of each inhibitor and 2 µM EgtD. The 

concentrations of inhibitors are indicated on the Michaelis-Menten curves in the Experimental part of this Chapter. 

The inhibition constants of each inhibitor (except for hercynine) were calculated for their 

racemic mixtures. Therefore, we can assume that correct inhibition constants are equal to half of 

the values displayed in Table 9. We then observed two separate groups: the inhibitors with a 

significantly better inhibition than the product, at least 10 times stronger, (methyl-,azetidino-, 

chloro- and bromohistidine) and the others that possess either equivalent or lower inhibition 

than the product (3-(imidazole-4-yl) propionic acid, fluoro-, pyrrolidino-, hydroxyl- and 

morpholinohistidine). 

Interestingly, the compounds which are the best inhibitors do not provide additional interaction 

with the polar residues of the catalytic site (Figure 33). We expected the histidine amino 

derivatives to increase the CH···O bonding network which should have resulted in better 

inhibition. Thus, to understand why pyrrolidino- and morpholinohistidine do not have a 

stronger inhibitory effect, the binary complexes of EgtD co-crystallized with both cyclic 

aminohistidine derivatives were analyzed (Figure 39). 

 

3.5.4 Crystal structures 
 

The kinetic data in Table 9 show that neither morpholinohistidine nor pyrrolidinohistidine are 

stronger inhibitors compared to hercynine. We were then interested in identifying the 

interactions between the residues in the catalytic site and the amino moieties. 
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Figure 39 EgtD co-crystallized with either A morpholinohistidine (left, unpublished results, 1.85 Å) or B 

pyrrolidinohistidine (right, unpublished results, 1.90 Å). The hydrogen bonds are displayed with black dashes, 

whereas the possible CH···O with red dashes. 

 

In the above crystal structures, we recognize that the carboxylic groups of both inhibitors form 

an identical hydrogen-bond network with Tyr56, Tyr206, Ser284 and Lys286 as for DMH or 

TMH (Figure 32). In addition, Asn166 forms two hydrogen bonds with the carboxylic acid 

moieties and the N of the inhibitors. The same interaction was also identified in the presence of 

DMH (see Chapter 2, Figure 32 left). Tyr39 can also form potential CH···O bonds with 

morpholinohistidine (C···O distance: 3.2 Å, CHO angle 113.3 °) and pyrrolidinohistidine (3.4 Å, 

128.8 °). Gly161 forms a hydrogen bond with the oxygen atom of the morpholino ring, and is in 

close contact with two carbon atoms of the pyrrolidino derivative (3.2 Å, 96.6 and 98.7 °). While 

Thr163 can only form a CH···O bond with pyrrolidinohistidine (3.3 Å, 141.3 °), it can either be 

engaged in a hydrogen bond with the oxygen atom of morpholine or in two CH···O bonds (3.4 

and 3.7 Å, 146.8 and 128.7 °). The phenyl ring of Phe47 is also in close contact with the oxygen 

atom of the morpholine ring (3.7 Å, 112.9 °) and with the pyrrolidino ring (3.9 Å, CHC angle 

94.3°). 

Overall, both cyclic amino derivatives interact with several residues in the catalytic site of EgtD, 

which suggests a rather strong binding. However, contrary to our primary hypothesis, their 

inhibitory effect is not strengthened with respect to product inhibition. It would not be senseless 

to suggest that these histidine derivatives are, as well as for hercynine, competing for the 

binding sites of both EgtD substrates, hence the high KI values compared to chloro- or 

bromohistidine, which are therefore the best inhibitors of the MT. 

 



70 
 

3.6 Conclusions 
 

The Alberty-Fromm strategy states that the kinetics of a multi-substrate enzyme in presence of 

the products of the reaction can provide a certain understanding of the catalysis (in particular 

concerning substrate binding mode).174 Our inhibition data combined with the diagnostic plots 

demonstrate that EgtD binds the two substrates histidine and SAM in a sequential ordered 

mechanism. In addition, EgtD displays an interesting feature with the nucleophile of the reaction 

being the first substrate to bind. No other MT has been found to have such a binding order, as 

SAM is always the first substrate to bind. We did not test the effect of SAH on the kinetics of 

EgtD, but, unlike hercynine, we only expect competitive inhibition for the SAM binding pocket. 

As histidine binds before SAM, the KM value of histidine should not be affected by the presence of 

SAH. 

EgtD is inhibited by its product hercynine. As with EgtD cooperativity (see Chapter 2), product 

inhibition does not seem to be an inherent property of this enzyme family. We therefore propose 

that EgtD product inhibition is a rather unique evolved feature which aims to regulate the 

activity of the MT if EgtB is not available to use hercynine as a substrate.  

Saini et al showed recently that ergothioneine plays a role for the virulence of Mycobacterium 

tuberculosis.82 They demonstrated that ergothioneine is essential for bacterial survival in mice, 

as well as in macrophages. Moreover, bacterial ΔegtD strains of M. tuberculosis and smegmatis do 

not produce ergothioneine.123,133,140 This suggests that the first enzyme involved in the 

biosynthetic pathway can regulate the whole biosynthesis. As ergothioneine is not synthesized 

by the human body, they propose EgtD as a potential target for anti-tuberculosis treatment. 

Therefore, there is an increasing interest in inhibiting the activity of the mycobacterial EgtD. We 

identified a series of histidine derivatives which, in addition to not being substrates of EgtB 

(apart from pyrrolidino- and morpholinohistidine), demonstrate a 10 times better inhibitory 

effect on EgtD activity than the product hercynine. It would be interesting to test in vivo if either 

chloro- or methylhistidine could alter ergothioneine biosynthesis. 

In order to strongly reduce EgtD activity, the KI value of the inhibitors should be as low as 

possible. From our kinetic analyses, we observed that the tested compounds showed 

competitive inhibition for either one or both substrate binding sites. We propose that more 

effective inhibitors should in fact compete more actively for both binding sites at the same time. 

However to provide stronger inhibition of the SAM binding site, we suggest that the substitution 

on the N of histidine should mimic the SAM scaffold.185 
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3.7 Experimental 
 

Standard conditions for all reactions: 25°C, 50 mM Tris/HCl pH 8.0, 50 mM NaCl, 200 µM MnII, 

10 µM SAH nucleosidase, 5 µM adenine deaminase, 2 µM EgtD WT. 

3.7.1 Kinetics 
 

Methyltransferase assay. Methyltransferase activity was determined following published 

protocols.147 The 200 µL reactions were monitored in a 2 mm quartz cuvette at 25°C at 265 nm 

with a Cary 300 spectrophotometer from Agilent. The concentrations of the substrates are 

indicated on the graphs. Reactions were started by addition of the methyltransferase.  

 

Michaelis Menten plots. The obtained data were fitted to the function: 

ν = kcat · [substrate] / (KM + [substrate]). The corresponding substrates are indicated in abscissa 

of each graph.  

3.7.1.1 EgtD WT_substrate binding order 

The concentrations of histidine and SAM are indicated on the graphs. 
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3.7.1.2 EgtD inhibition 

 

Determination of KI values. EgtD was analyzed by UV spectrophotometric continuous coupled 

assay1 under the standard conditions in presence of 0.5 mM SAM. The data were fitted to the 

function ν = kcat · [His] / (KM app + [His]). 

The changes in the apparent KM values (but not in kcat) revealed a competitive mode of inhibition 

which allowed the determination of the corresponding KI values (summarized in Table 9) using 

the following equation derived from (Eq.2): 
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ூܭ =
௄౉ ·[୍୬୦୧ୠ୧୲୭୰]

௄౉ ౗౦౦ି௄౉
                                                                         (Eq.4) 

 

Where KM and KM,app indicate the Michaelis constants in the absence and the presence of inhibitor 

respectively. The different concentrations of inhibitor are indicated in each graph.  
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3.7.1.2.2 Histidine derivatives as EgtD inhibitors 
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 Additional data: Azetidinohistidine 
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3.7.1.3 SticA inhibition 
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3.7.1.4 EgtB substrates 

 

The reactions were carried out at 26°C and followed by IE HPLC at 220 nm. They contained 100 

mM HEPES buffer pH 8.0, 100 mM NaCl, 2 mM of TCEP, 2 mM of ascorbate, 40 µM of FeSO4, 0.5 

mM of γ-glutamylcysteine, 0.5 mM of each histidine derivative and 1 µM of EgtBsmeg.  

Hercynine is the substrate of EgtB in ergothioneine biosynthetic pathway.133 After one hour, all 

the substrate is converted into the sulfoxide intermediate (see Chapter I, Figure 11). Chloro-, 

methyl-, azetidino- and hydroxyhistidine are as bad substrates as histidine. 
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3.7.2 HPLC traces of the inhibitors 
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Figure 40 HPLC traces of EgtD competitive inhibitors. The purity and concentration of the compounds were 

determined by cation-exchange HPLC (20 mM phosphoric acid pH 2 as the mobile phase) on a Luna 5u SCX column 

(100 Å, 150 x 4 mm, Phenomenex). The compounds were eluted in NaCl gradients. All HPLC chromatograms were 

recorded at 220 nm. 

 

The concentrations of each inhibitor were determined by IE HPLC using the calibration curve of 

histidine. 
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Figure 41 Histidine calibration curve for IE HPLC. 
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4 An active site asparagine catalyzes methyl transfer by stabilizing a 
near attack conformation 

 

EgtD catalyzes the SAM-dependent methylation of the -amino group of histidine, -

methylhistidine and -dimethylhistidine. The -amino group of histidine is characterized, with a 

pKa of 9.2, hence it is 99 % protonated under physiological conditions. The crystal structures of 

EgtD in complex with DMH (Chapter 2, Figure 17)146 and several histidine derivatives (Chapter 

3, Figures 32 and 39) suggest that the protein binds the ammonium form of the ligand. What is 

however clear, is that the methyl transfer from SAM can only occur to the amino form of the 

substrate.  

The general mechanism for SAM-dependent methyltransferase is a SN2 reaction.186–188 The 

substrate needs to be activated for the nucleophilic attack on the methyl group of SAM. Based on 

structural, kinetic and computational analysis, different catalytic mechanisms have been 

identified in SAM-dependent MTs that catalyze the trimethylation of amines. Several relevant 

examples will be presented with particular attention to the nucleophile activation pathways. 

 

4.1 N-methyltransferases 
 

4.1.1 Phosphoethanolamine methyltransferase 
 

Like EgtD, phosphoethanolamine MT (PfPMT) also catalyzes the N-trimethylation of its 

substrate.148 The resulting phosphocholine (Figure 42, 4) is critical in plasmodial membrane 

biogenesis. 

 

 

Figure 42 Sequential methylation of phosphoethanolamine (1) to phosphomethylethanolamine (2), 

phosphodimethylethanolamine (2) and phosphocholine (3) in P. falciparum catalyzed by PfPMT. 

In most of the SN2 methyl transfers catalyzed by SAM-dependent MTs, a proton is abstracted 

from the substrate by a catalytic base. In the reaction catalyzed by PfPMT, phosphoethanolamine 

(pEA) must first be deprotonated, in order to perform nucleophilic attack on the methyl group of 
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Figure 43 Left: Active site structure illustrating the two proposed pathways for the activation of the N of pEA 

through proton transfer (PT) in PfPMT (Saen-oon et al. 2014). Right: Mechanistic schemes for Nα proton abstraction 

occurring through (A) the catalytic dyad Tyr19-His132 or (B) Asn128 residue, mediated by a water molecule. 

SAM.148 Saen-oon et al. propose two different mechanisms for N proton abstraction (Figure 43, 

left). Based on site-directed mutagenesis analysis, they first suggested that the activation of the 

N could occur through the deprotonation catalyzed by the dyad Tyr19-His132 (Figure 43, right 

A).148 The histidine residue would act as the base, abstracting the proton from the hydroxyl side 

chain of the tyrosine residue. Then the resulting negatively charged oxygen atom would interact 

with the proton of the amine substrate. However, after performing QM/MM calculations, they 

were able to also identify another residue, Asp128, which seems critical for the methylation of 

pEA. Thus they could propose an alternative mechanism in which the deprotonation of the 

substrate would be catalyzed by Asp128, mediated by a water molecule (Figure 43, right B).189 

 

  

 

 

 

 

 

 

4.1.2 Protein lysine and arginine methyltransferases 
 

Histones consist in the main protein component of chromatin, the scaffold in which eukaryotic 

DNA is packaged. Histones are subject to post-translational modifications (PTMs), especially on 

their flexible tails. Seven residues are known to be covalently modified: lysine, arginine, serine, 

threonine, tyrosine, histidine and glutamate. Most of the PTMs on lysine and arginine proteins 

correspond to the addition of rather small moieties such as methyl, acetyl or phosphate 

groups. 190 PTMs of non-histone arginine or lysine protein were not as extensively reviewed as 

their histone homologues. However, there is an increasing interest in understanding such 

modifications that occur to RNA or tumor proteins due to their suspected involvement in the cell 
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cycle, in the regulation of transcription factors or in RNA processing and transcriptional 

elongation.191 

Histone lysine methylation has been correlated with both gene activation and silencing. In 

particular, this methylation of the N-terminal lysine was shown to serve to recruit DNA damage 

repair proteins that recognize methyl-lysyl residues. These modified lysine residues can be 

found in Nɛ-monomethylated, dimethylated and trimethylated states.155,190 Structural and 

functional studies of the SET domain of protein lysine MTs (PKMTs) revealed that the general 

mechanism of substrate activation requires the presence of active site water molecules. During 

substrate binding, the ɛ-amino group of the lysine forms hydrogen bonds with the hydroxyl 

group of a tyrosine residue, as well as with two water molecules in the catalytic site. These two 

latter play a role in both the alignment of the ɛ-amino group of the lysine for the methyl 

transfers with SAM and in the deprotonation of the ɛ-amine. Indeed, MM calculations showed a 

decrease of two pH units of the lysine pKa upon the formation of the Michaelis complex. Thus a 

chain of water molecules was proposed to participate in the deprotonation of the substrate prior 

to the methyl transfer.155 Consequently to the successive methyl transfers, the rearrangement or 

the removal of these solvent molecules provides a larger active site to accommodate the 

increasing size of the methylated ɛ-amino group. Interestingly in the SET domain of the lysine 

MT, water molecules (in addition to two tyrosine residues) were also identified to govern the 

product specificity, that is mono-, di- or trimethylation of the lysine ɛ-amino group.192 

 

The histone arginine methylation plays a crucial role in influencing various cellular functions as 

well, including cellular development and tumorigenesis. The arginine side chain can be either 

monomethylated or dimethylated (asymmetrically or symmetrically) at the guanidinium η 

positions.190 In protein arginine MTs (PRMTs), the higher pKa of the side chain indicates that a 

different proton transfer mechanism might occur because at physiological pH, solvent molecules 

are not strong enough to deprotonate the guanidinium group. In addition, the structural 

analyses of different PRMTs do not suggest the presence of a conserved water molecule which 

might support the deprotonation of the guanidine moiety.193 As for PfPMT, a catalytic dyad (His-

Asp) was first proposed to participate in the deprotonation of the arginine nitrogen atom.194 

However, in an alternative mechanism, it is proposed that the deprotonation of the arginine side 

chain is not essential, even prior to the transfer of the methyl group from SAM to substrate.194,195 

In that case, the positive charge on the guanidinium group is distributed between the two η-

nitrogen atoms. This leaves an electron lone-pair on the nucleophilic Nη2 which can attack the 

methyl group of SAM (Figure 44). 
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Figure 44 Proposed catalytic mechanism of the human PRMT1. The residues Arg54 and Glu144 (1) help to position 

the Nη2 of the substrate for attack on the methyl group of SAM (R represents the adenosyl moiety of SAM). Glu153 

plays a role in positioning the arginine substrate as well as initiating an electron rearrangement that leads to the 

formation of a more nucleophilic guanidinium moiety (2). The methyl transfer results in the formation of a di-cation 

intermediate (3) that then undergoes the loss of a proton to form the first methylation product (4). A second 

methylation occurs via the same mechanism to form the final product dimethylpeptidyl-arginine. 

 

4.1.3 DNA adenine methyltransferase 
 

DNA methylation is an epigenetic mechanism involved in various biological functions in 

prokaryotes and eukaryotes. In the thermophilic bacterium Thermus aquaticus, the DNA-

(adenine-N6)-MT is involved in the protection against foreign DNA (restriction-modification 

systems). The crystal structure indicates that the adenine base of DNA needs to be rotated, in 

order to bring the nitrogen atom in close proximity to the methyl donor SAM. It was first 

proposed that the hydrogen bonds established between the amino group of adenine and the 

backbone oxygen atom of a proline residue and the terminal oxygen of an asparagine residue of 

the MT could activate the substrate (Figure 45). The nucleophilic attack would then occur due to 

an increase in the electron density on the nitrogen atom. However, QM calculations indicated 

that a change in the hybridization from sp2 to sp3 of the attacking nitrogen takes place during 

catalysis (the product of the reaction, the methylated adenine is in sp3 geometry). This distortion 
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from the planar adenine to the tetrahedral geometry is not observed in the binary complex 

[MT:adenine]. Thereby, the hydrogen bonds, shown in Figure 45, do not change the 

hybridization of the nucleophile nitrogen atom of adenine to activate it for nucleophilic attack. It 

is in fact the optimal positioning of both substrates in the catalytic site of the enzyme that 

enhances the rate of the methyl transfer.  

 

 

Figure 45 Stabilization of the adenine base in the active site of the DNA-(adenine-N6)-MT of T. aquaticus. (PDB: 1G38, 

2.0 Å). Distances are given in Å. 

 

The formation of hydrogen bonds within the catalytic site positions the substrate such that the 

lone-pair electrons on the nucleophilic nitrogen point towards the incoming methyl group of 

SAM. When SAM binds, it shifts the nitrogen atom away from a sp2 geometry, towards sp3. This 

mechanism was then shown to occur in a stepwise manner, with the methyl transfer occurring 

first, followed by proton abstraction. In the tetrahedral conformation, the N6 atom is significantly 

more acidic than in the planar geometry and can be deprotonated by a weak base (such as 

Asn105) or an active site water molecule, to be transferred to bulk solvent through a water 

bridge.196 

 

4.1.4 Requirements for methyl transfer 
 

The examples discussed above all demonstrate that the N-methyl transfers proceeding via a SN2 

reaction require either the activation of the nucleophile by a general acid/base-mediated 

catalysis (with deprotonation of the nitrogen atom as in PfPMT) or an optimal positioning of the 

substrates (as for the DNA-(adenine-N6)-MT). The identification of the residues responsible for 
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the activation of the N of histidine is a key point to understanding the SN2 mechanism of EgtD. 

Interestingly, inspection of the crystal structure of EgtD in complex with DMH and SAH (Chapter 

2, Figure 17) did not reveal a clear candidate for a catalytic base in the proximity of the 

substrate. This indicates that, as for the DNA-(adenine-N6)-MT, the orientation of histidine in the 

catalytic site of EgtD may be more crucial for preparing the N for nucleophilic attack. 

 

4.2 Substrate activation in EgtD 
 

Analysis of the EgtD crystal structure (s) shows that the recognition of the substrate is made via 

hydrophilic interactions.146 In particular, Asn166 forms two hydrogen bonds with the 

protonated -amino and carboxylic groups of the substrate (Figure 46). No other residue 

interacts with the N of histidine (or MMH or DMH). 

 

 

Figure 46 Hydrogen bonds between Asn166 and the substrate DMH. The red sphere represents an active site water in 

proximity of Asn166 (distance O···O: 3.4 Å). Distances are given in Å 

 

The negative charge of the carboxylic group of DMH is stabilized by coordination to the side 

chains of Asn166 (O···N distance: 3.0 Å). Asn166 also interacts with the -amino group of DMH 

(N···O distance 2.6 Å). The orientation of the methyl groups suggests that the -amino group is 

protonated. The angle defined by the two methyl groups and the N of the substrate indicates a 

tetrahedral geometry with the proton pointing towards the oxygen of the amide side chain of 

Asn166. Therefore, we propose Asn166 as the catalytic base which abstracts the proton of the 

N of the substrate and drives the nucleophilic substitution of the methyl group (Figure 47). 
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However, asparagine residues are unlikely catalytic bases given the very high acidity of their 

conjugated acids (the pKa of an amide group is usually above 17). In addition, asparagine and 

glutamine residues are rarely implicated as catalytic acids or bases during catalysis. Typically, a 

histidine, aspartate, glutamate, tyrosine or lysine residue are involved in acid/base 

mechanisms.197 However, as mentioned for the DNA adenine MT, the formation of the Michaelis 

complex (with the approaching sulfonium group increasing the acidity of the nitrogen 

nucleophile) can lower the pKa of the nucleophile, allowing a weak base, such as arginine, to 

abstract the proton.  

 

Figure 47 Proposed mechanism for the methylation of histidine catalyzed by EgtD at pH 8. The deprotonated 

carboxylate of histidine abstracts the proton of the amine group of Asn166, which in turn abstracts a proton from the 

α-amino group of His, activating it as a nucleophile. The resulting lone pair of N can then attack the methyl group of 

SAM. R corresponds to the adenosyl group of SAM. 

 

As already mentioned, it is the ammonium form of the substrate which seems to be bound to 

EgtD. The proton transfer from the ammonium substrate to Asn166 may be coupled to the 

binding of SAM, in a similar mechanism as described for the DNA-(adenine-N6)-MT. The 

incoming sulfonium ion would certainly lower the pKa of the ammonium group and might 

therefore mitigate pKa mismatch between the ammonium group and the protonated Asn166 

(Figure 47). Therefore, Asn166 would contribute to catalysis by bringing the methyl group 

donor and acceptor in a near attack conformation and consequently stabilizing the Michaelis 

complex ([EgtD:DMH:SAM]). During the three successive methyl transfers of histidine, Asn166 

requires to be deprotonated after each step. An active water molecule could abstract the proton 

of Asn166, enabling EgtD to perform another methylation (Figure 46, a water molecule was 

identified in proximity of Asn166). In addition, based on their crystal structure of EgtD in 

complex with histidine and SAH (PDB: 4UY6), Jeong et al. also suggested that EgtD catalyzes the 

methyl transfer by a proximity and orientation effect (the lone pair of electrons from the N of 

histidine being oriented toward Asn166 by the hydrogen bonds shown in Figure 46).165 
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To examine our proposal, we constructed the EgtD variant Asn166Asp. The idea behind this 

mutation was to compare the results obtained for the EgtD WT and N166D for the experiments 

listed below, in order to evaluate if Asn166 is indeed the catalytic base in the methyl transfer 

reaction: 

i. Determination of the MT activity at different pH values; 

ii. Activity of the MT in the presence of histidinamide as a substrate; 

iii. Determination of the catalytic parameters. 

 

4.3 EgtD wild type and N166D activities are pH-dependent 
 

4.3.1 Theory 
 

We proposed Asn166 as the catalytic residue which activates the N of the nucleophile, driving 

the methyl transfer in EgtD. Thus we expected a drastic decrease in activity for the aspartate 

mutant at pH 8 compared to the WT (Figure 48). Although a salt bridge forms between the N of 

the substrate and the carboxylate of the side chain of Asp166, the deprotonation of histidine 

appears to be difficult. Indeed, the repulsion between the carboxylic groups of the substrate and 

of the Asp166 residue does not favor the stabilization of the substrate within the catalytic site of 

the variant. However, by lowering the pH value of the reaction, we proposed that the activity of 

EgtD N166D would be enhanced. Indeed, at lower pH values, two hydrogen bonds could be 

established between the substrate and the protonated Asp166, as occurring in the WT. Thereby, 

at low pH, the aspartate residue of the mutant can mimic the role of the asparagine residue in 

the WT and activate the nucleophile. The pKa of the carboxylic side chain of aspartate is 3.9. 

However, within the enzyme, the pKa of the aspartate 166 residue might be higher (due to the 

presence of other nucleophile residues such as Tyr39 or Thr163). Taking this into account, some 

activity might be detectable at a pH of 5 or 6. 
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Figure 48 Mechanistic rationale of EgtD N166D activity at different pH values. At high pH (pH >> pKa of Asp166), the 

side chain of Asp166 is fully deprotonated and carries one negative charge which enables the proton abstraction on 

the substrate and the consecutive methyl transfer to take place. At pH values close to the pKa of Asp166, half of these 

residues will be protonated. Therefore the N can be activated through deprotonation and leads to the similar 

nucleophilic attack on the methyl group of SAM as described for the WT. R corresponds to the adenosyl group of SAM. 

 

4.3.2 Results 
 

Four reactions were carried out at pH 5, 6, 7 and 8 with saturated concentrations of SAM* and 

histidine (0.5 mM of both substrates). These reactions were monitored by IE HPLC and analyzed 

at the following time points: 0, 1, 2, 3 and 24 hours (Figure 49). During the course of the 

reaction, the methyl group of SAM (3) is transferred to histidine and the resulting SAH is cleaved 

by the SAH nucleosidase which leads to adenine (1) formation. The nucleosidase is one of the 

coupled enzymes used to perform the spectrophotometric continuous coupled assay (see 

Chapter 2, Figure 14). Its presence ensures that no SAH is accumulated during the reaction, as it 

might inhibit MT activity (see Chapter 3). 

EgtD N166D catalyzes the synthesis of TMH (2) at all the tested pH values. In addition, no MMH 

or DMH was formed in the course of the reaction. Therefore, the mutation does not change MT 

activity in respect to its cooperativity (see Chapter 2). From this we can conclude that Asn166 

does not play the role as determinant for trimethylation.  

                                                             
* See Section 4.5 for the KM values of SAM and histidine. 
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Figure 49 HPLC traces of histidine methylation catalyzed by EgtD N166D at different pH values. The chromatograms 

were recorded at 220 nm. Reaction conditions: 25 °C, Britton-Robinson buffer pH 5.0 to 8.0, 50 mM NaCl, 10 µM SAH 

nucleosidase, 500 µM SAM, 500 µM histidine and 50 µM EgtD N166D. The numbers 1, 2 and 3 correspond to adenine 

(7.5 min), TMH (9.9 min) and SAM (12.5 min) respectively.  

 

Contrary to our hypothesis, the rate of histidine methylation is not increased by lowering the pH 

of the reaction. If we compare the consumption of SAM during the course of the reaction, we 

could determine that after one hour, the reactions at pH 6, 7 and 8 are near to completion; 

whereas at pH 5, the rate of the reaction is obviously slower. For clarity, the concentration of 

SAM over time is shown in Figure 50. 
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Figure 50 Decrease in relative SAM concentration at different pH values during histidine methylation catalyzed by 

EgtD N166D. 
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Therefore, the activity of EgtD N166D is clearly not enhanced at lower pH values. However, the 

results of this experiment do not necessary imply that the proposed mechanism is incorrect. 

The activity of EgtD WT is more than 10 times lower at pH 5 compared to pH 8 (Figure 51). In 

general, the properties of enzymes are dependent on the external environmental factors of the 

reaction, such as the temperature or the pH. The external pH influences enzyme stability and can 

affect the binding of the substrate to the enzyme and the ionization of the catalytic residues or of 

the substrate. For example, at a pH value below 6, the majority of the substrate histidine will be 

protonated (the pKa imidazole side chain is 6.0). This can destabilize the formation of the 

complex [enzyme-substrate]. Therefore, this weakened binding could lead to a decrease of 

activity at low pH for the wild type, but also for the Asn166Asp variant. 
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Figure 51 The activity of EgtD WT is dependent on the pH value. Reaction conditions: 25 °C, Britton-Robinson buffer 

pH 5.0 to 8.0, 50 mM NaCl, 200 µM MnII, 10 µM SAH nucleosidase, 500 µM SAM, 500 µM histidine and 2 µM EgtD WT. 

 

As previously mentioned, we expected a drastic enhancement of the methylation rates of 

histidine catalyzed by EgtD N166D at low pH values (especially at pH 5) compared to the 

reaction taking place at pH 8. Nevertheless, the results of these preliminary pH-dependency 

experiments were not sufficient to support our hypothesis and the establishment of the pH-

activity profile of the variant would be required to do so.  

Our next experiment was to assay the possible formation of a different [Enzyme-Substrate] 

binary complex in the presence of EgtD N166D and a new substrate. We proposed that by 

inverting the location of the amide and carboxylic groups in the complex [EgtD WT:Histidine], 

the same type of interactions described in Figure 47 could take place. Therefore, we tested the 

activity of EgtD N166D with histidinamide (His-NH2) as a substrate.  
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4.4 Histidinamide as a substrate of EgtD N166D 
 

4.4.1 Theory 
 

We proposed that His-NH2 could be a better substrate than histidine for EgtD N166D (Figure 

52). The rationale is that a hydrogen bond could form between the side chain carboxylate of 

Asp166 and the N of histidinamide (as observed in EgtD WT and histidine in Figure 46). The 

amide moiety is also stabilized by a second hydrogen bond. Thus, the complex [EgtD N166D:His-

NH2] should mimic the configuration in the wild type with histidine. In addition, the Michaelis 

complex formed upon the following SAM binding would imitate the one of the wild type. 
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Figure 52 Proposed mechanism for histidinamide methylation catalyzed by EgtD N166D. Histidinamide might be a 

better substrate for EgtD N166D than histidine at pH 8. R corresponds to the adenosyl group of SAM. 

 

4.4.2 Results 
 

The methylation rates of histidine and histidinamide were determined at saturated 

concentrations of substrate* (0.5 mM of each nucleophile and SAM) for EgtD WT and EgtD 

N166D. The comparison of the different rates is shown in the following Table. 

 

                                                             
* See Section 4.5 for the KM values of SAM and histidine. 
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Table 10 Rates (s-1) of histidine or histidinamide methylation catalyzed by either EgtD WT or EgtD N166D.a 

SAM concentration Substrate EgtD WT EgtD N166D 

0.5 mM 
Histidine 4.2 x 10-1 5.7 x 10-4 

Histidinamide 6.1 x 10-4 4.3 x 10-4 

1.0 mM Histidinamide 7.6 x 10-4 7.5 x 10-4 

2.0 mM Histidinamide 9.9 x 10-4 10.8 x 10-4 

 
aReaction conditions: 25 °C, 50 mM Tris/HCl pH 8.0, 50 mM NaCl, 200 µM MnII, 10 µM SAH nucleosidase, 0.5, 1 or 2 

mM SAM, 500 µM histidine (first line) or His-NH2, 1 or 25 µM EgtD WT or EgtD N166D respectively. 

 

As expected, histidine is a significantly better substrate for EgtD WT than His-NH2. The rate of 

His-NH2 methylation is more than 3300 times lower than for histidine methylation in the 

presence of 0.5 mM SAM. The two amide moieties from the Asn166 side chain and the tested 

substrate are stabilized by two hydrogen bonds, but as no negative charge is present, the 

deprotonation of histidinamide seems difficult (Figure 53).  

 

 

Figure 53 Hydrogen bonds between Asn166 of EgtD WT and histidinamide. 

 

The reaction catalyzed by EgtD N166D with histidine as a substrate is 700 times slower than for 

EgtD WT. However, histidinamide is not a better substrate for the variant compared to the wild 

type (independently of the concentration of SAM). This observation disproves the proposed 

favored formation of the binary complex [EgtD N166D:His-NH2] compared to [EgtD WT:His-NH2] 

in Figure 52.  

 

4.5 Catalytic parameters of EgtD N166D 
 

The kcat and KM values of histidine, MMH, DMH and SAM were determined for EgtD N166D. The 

rates of methylation catalyzed by this mutant are significantly slower than for the wild type. 
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Thus the spectrophotometric continuous coupled assay described in Chapter 2 could not be 

employed to monitor those reactions. Instead, the rates were analyzed by IE HPLC. Our goal was 

to compare the catalytic parameters of EgtD N166D and the WT. If the turnover number kcat 

decreases due to this point mutation, it would mean that Asn166 plays a role in the catalytic 

mechanism and not in the binding of the substrate. And conversely, if the KM value increases 

drastically, it would suggest that this residue’s main function is associated with substrate 

binding. 

 

Table 11 Catalytic parameters of EgtD WT and N166Da. The kcat and KM values are given in s-1 and µM respectively.  

Co-substrate 
Catalytic 

parameters 
WT N166D 

His 
kcat, SAM 1.08 ± 0.06 0.018 ± 0.004 

KM, SAM 156 ± 16 1690 ± 550 

MMH 
kcat, SAM 0.99 ± 0.03 0.16 ± 0.01 

KM, SAM 117 ± 7 2174 ± 235 

DMH 
kcat, SAM 0.88 ± 0.08 0.35 ± 0.03 

KM, SAM 181 ± 39 1760 ± 220 

SAM 

kcat, His 0.66 ± 0.03 0.0049 ± 0.0004 

KM, His 79 ± 10 512 ± 59 

kcat, MMH 0.65 ± 0.06 0.029 ± 0.002 

KM, MMH 39 ± 9 456 ± 63 

kcat, DMH 0.43 ± 0.03 0.052 ±0.005 

KM, DMH 30 ± 7 586 ± 186 

 

aReaction conditions: 25 °C, 50 mM Tris/HCl pH 8.0, 50 mM NaCl, 200 µM MnII, 5 µM SAH nucleosidase, 10 µM adenine 

deaminase, and either 1 µM of EgtD WT or10 µM of N166D. The kcat, SAM and KM, SAM values were determined in the 

presence of saturated concentrations of co-substrate (0.5 mM and 2 mM for EgtD WT and EgtD N166D respectively). 

The kcat and KM values of the three substrates histidine, MMH and DMH were determined with a non-saturated SAM 

concentration of 0.5 mM. 

 

The KM value of histidine is not drastically affected by the mutation (the KM, His in N166D 

compared to the WT increases by a factor of six), whereas the affinity of the mutant for DMH 
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seems to be more altered (KM, DMH increases by a factor of 20). However, the KM value of SAM 

increases by a factor of 10 (the kcat and KM values of SAM were determined in the presence of 

either 2 mM histidine, MMH or DMH, which is at least 4-fold higher than their respective KM 

values). Since SAM does not directly interact with Asn166 (see Chapter 2, Figure 17), this 

suggests that the mutation destabilizes the EgtD:DMH conformer that can bind SAM with respect 

to the conformer that cannot bind SAM. Inspection of the crystal structures of EgtD:DMH:SAM 

(PDB: 4PIO) and EgtD:TMH suggests that the second methyl group should change its position in 

order to allow SAM to bind (Figure 54). Also, we have previously shown that product inhibition 

by TMH shows both histidine and SAM-competitive behavior (see Chapter 3). Thus, the high 

KM, SAM value in EgtD N166D can be explained by the circumstance that SAM binding is dependent 

on histidine binding. 

 

 

Figure 54 Superimposition of EgtD co crystallized with SAH and DMH (light grey) and with TMH (dark grey). The 

methylated amino group of DMH should rotate to enable the binding of SAM and the last methyl transfer step to occur. 

 

It is worth mentioning that the kinetic parameters of histidine, MMH and DMH are 

underestimated. Indeed, they were determined in the presence of 0.5 mM SAM, which is lower 

than KM, SAM. This means that in the reaction assay the mutant could not be saturated with SAM. 

Nevertheless, we observed a significant difference for the turnover numbers of EgtD N166D 

when histidine, MMH or DMH are the substrates for the reaction. The kcat value of histidine 

decreases by 135-fold, in contrast to only 2.5-fold for DMH. This observation for DMH clearly 

shows that Asn166 is not involved in the transition state stabilization. Moreover, the charge 

distribution in the N166D mutant compared to the WT could lead to misalignment of methyl 

acceptor with donor. Therefore, the reduced kcat in the case of histidine compared to DMH could 

be accounted for a greater conformational flexibility of the ternary complex, due to less steric 
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bulk. In addition, the turnover number of EgtD N166D for MMH methylation sits between the 

values determined for histidine and DMH. The monomethylated substrate presents more steric 

bulk than histidine but less than DMH. This observation supports the hypothesis of 

conformational flexibility of the substrate in EgtD N166D. 

 

4.6 Conclusions and future directions 
 

In the DNA-(adenine-N6)-MT, coulomb attraction has been implicated as a factor in aiding 

substrate orientation to drive the nucleophilic attack. Weak bases such as asparagine or a 

solvent water molecule were demonstrated to be strong enough to deprotonate the substrate 

upon the approach of the sulfonium group of SAM.196  

In EgtD, we proposed that the increase in the acidity of the N proton of histidine, induced by 

the positioning of substrate in the catalytic site by Asn166 would drive the methyl transfer. 

Asn166 is conserved in all EgtD type amino acid betaine synthases and was identified as a 

determinant for the formation of the Michaelis complex. However, more complex studies are 

required to fully assess the role of residue for the catalysis, such as the determination of the pH-

activity profile of EgtD N166D (for this experiment, we must also emphasize that the possible 

increase in activity at lower pH values for EgtD N166D could be counteracted by a decrease in 

activity which was observed for EgtD WT). If a shift in the optimum pH value would be observed 

for the mutant compared to the wild type, this would indicate that our proposed mechanism 

displayed in Figure 47 is correct. 

 

4.7 Experimental 
 

Standard conditions for all the reactions (except the pH-dependency experiments): 25°C, 50 mM 

Tris/HCl pH 8.0, 50 mM NaCl, 200 µM MnII, 10 µM SAH nucleosidase, 5 µM adenine deaminase 

and 2 µM to 25 µM methyltransferase (either EgtD WT or N166D). The concentrations of the 

substrates are indicated on the graphs. For the comparison of the MTs activities at different pH 

values, Britton-Robinson buffer was used instead of Tris/HCl pH 8.0. The pH values were then 

adjusted with 10 M NaOH. 

HPLC assay. Reactions were started by addition of the methyltransferase and incubated at 25°C. 

20 µL aliquots of the reactions were quenched by addition of 10 μL 1 % TFA and analyzed by 

ion-exchange HPLC (20 mM phosphoric acid pH 2 as the mobile phase) on a Luna 5u SCX column 
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(100 Å, 150 x 4 mm, Phenomenex). The compounds were eluted in an NaCl gradient All HPLC 

chromatograms were recorded at 220 nm.  

Michaelis Menten plots. The reaction rates obtained for EgtD WT and EgtD N166D were fitted 

to the function ν = kcat · [substrate] / (KM + [substrate]). The corresponding substrates are 

indicated in abscissa of each graph.  
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5 Oxidative regulation of EgtD 
 

5.1 EgtD in an oxidative environment: A way to regulate ergothioneine 
biosynthesis? 

 

In the structure of EgtD co-crystallized with DMH and SAH (PDB: 4PIO), we observed that 

Cys285 is present in an oxidized form, as a sulfinic acid (Figure 55). Due to this oxidation two 

arginine residues (Arg172 and Arg249) are now able to interact with the additional oxygen 

atoms of Cys285. The resulting sulfinic acid moiety forms two hydrogen bonds (one direct, one 

water-mediated) with Arg172. Arg249 residue rotates and adopts an alternative conformation 

to form a new hydrogen bond with the second oxygen atom of the oxidized Cys285. 

 

                   

 

Figure 55 Superimposition of EgtDred (PDB: 4PIN, light grey) and EgtDox (PDB: 4PIO, deep teal). The oxidative 

modification of Cys285 leads to the formation of new hydrogen bonds (black dashes) with two arginine residues. The 

red sphere on the right represents a water molecule. Distances are given in Å. 

 

Aside from this oxidation and formation of three new hydrogen bonds, the oxidized and reduced 

structures are superimposable, with the oxidation of Cys285 not changing the overall 

conformation of EgtD. 
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Given the suggested involvement of ergothioneine as an antioxidant in mycobacteria (see 

Chapters 2 and 3),8,82 the observed modification raises the possibility of oxidation as a regulator 

of the first step in ergothioneine biosynthesis. We were therefore interested in determining the 

activity of EgtD in an oxidative environment to evaluate if the production of hercynine can be 

either up- or down-regulated in the presence of reactive oxygen species (ROS). This could thus 

consequently influence the biosynthetic pathway of ergothioneine. 

 

5.2 EgtD wild type activity in the presence of oxidants 
 

5.2.1 Suggested mechanisms of regulation 
 

As mentioned in Chapter 3, ergothioneine biosynthesis is likely to be regulated in accordance 

with a cellular need for redox homeostasis. Recently, a redox sensor protein was demonstrated 

to modulate the production of ergothioneine in M. tuberculosis in response to the catabolism of 

various carbon sources (mainly fatty acids) in the bacteria.82 However, as mycobacterial ΔegtD 

strains of tuberculosis and smegmatis do not synthesize ergothioneine in contrast to their wild 

types,123,133,140 the regulation of the whole pathway might be dependent on the activity of EgtD. 

Several mechanisms are currently proposed to control the ergothioneine biosynthetic pathway 

through modifications to EgtD. The activity of MT in M. tuberculosis is proposed to be regulated 

via the phosphorylation of Thr163.140 In EgtD from M. smegmatis, this conserved residue is 

important for substrate recognition as it interacts with the imidazole side chain of histidine 

through a water-mediated hydrogen bond (see Chapter 2, Figure 18). However, in smegmatis, 

the positioning of this residue in the active site (Figure 56) suggests that Thr163 is not 

accessible for a kinase. Taking this structural insight into account, this post-translational 

modification is thus unlikely to occur in smegmatis. 

We demonstrated that EgtD is inhibited by its product hercynine with an inhibitory constant of 

39 µM. We explored the hypothesis that product inhibition in EgtD may regulate the whole 

biosynthetic pathway of ergothioneine (see Chapter 3). 
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Figure 56 Surface representation of EgtD in its apo form (PDB: 4PIM). Thr163 (red) is buried within the catalytic site 

of the MT, between the upper and lower domains, hindering kinase access. 

 

In this Chapter, we proposed an alternative mechanism for the regulation of EgtD. In the crystal 

structure of EgtD in complex with SAM and DMH (Figure 55), the observed oxidized Cys285 

suggests that EgtD could also be subject to oxidative (up- or down-) regulation. Therefore, we 

investigated whether this oxidative modification on Cys285 modulates EgtD activity. 

 

5.2.2 EgtD activity in presence of the physiological oxidant hydrogen peroxide 
 

Hydrogen peroxide (H2O2) is the most abundant ROS in vivo. In aerobic organisms, it is 

continuously produced intracellularly (as a byproduct of aerobic metabolism)198 and 

extracellularly (as a result of phagocyte activation).199 H2O2 also plays a role in redox signaling 

and can modulate gene expression through the modification of cysteine residues on 

transcription factors.200 The activation of these sulfhydryl sensors takes place via the 

nucleophilic attack of the thiolate on H2O2. Considering this reactivity of H2O2 with thiol groups 

and the observed sulfinic-Cys285 in the crystal structure, we probed the potential oxidant effect 

of H2O2 on EgtD. 

 

In order to determine the effect of H2O2 on EgtD, the MT was incubated on ice, for one hour with 

different concentrations of H2O2 (0, 1 or 10 mM). The activity of the H2O2-incubated EgtD was 
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then measured (Figure 57). To ensure that H2O2 does not interfere with the coupled enzymes, 

1 µM catalase was added in the reaction mixture. 
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Figure 57 Relative activity of EgtD in presence of H2O2. 100 µM of EgtD was incubated with 0, 1 or 10 mM H2O2 for 1 

hour on ice and the activity of the MT was then determined by spectrophotometric continuous coupled assay in 

presence of 1 µM catalase. Reaction conditions: 25 °C, 50 mM Tris/HCl pH 8.0, 50 mM NaCl, 200 µM MnII, 5 µM 

adenine deaminase, 10 µM SAH nucleosidase, 500 µM SAM, 500 µM histidine and 2 µM pre-treated EgtD.  

 

These kinetic studies showed that the activity of EgtD is not altered by the presence of 1 mM 

H2O2. This concentration is rather high compared to physiological levels of H2O2 measured in 

different organisms (usually a concentration above 50 μM is considered as cytotoxic in a wide 

range of animal, plant and bacterial cells in culture).201 Therefore, we concluded that under 

physiological conditions, H2O2 is not an effector of EgtD. However, the observation that EgtD 

slowly inactivates over a period of 48 hours in absence of any added oxidant (Figure 58) 

promotes further investigation into an oxidation-based regulation mechanism. 

During protein purification (see Appendix), EgtD is dialyzed for approximately 12 to 16 hours 

against 50 mM Tris/HCl pH 8.0 and 50 mM NaCl at 4 °C. If the enzyme is kept in the dialysis 

buffer at 4 °C for two more days, it loses its catalytic activity. Interestingly, this inactivation 

could be partially reversed upon the addition of a reducing agent such as DTT (Figure 58). This 

result suggests thus a reversible oxidative modification of EgtD. 
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Figure 58 Relative activity of EgtD WT after 12 or 60 hours of dialysis against 50 mM Tris/HCl pH 8.0 and 50 mM 

NaCl at 4 °C. The activity of the MT was then determined by spectrophotometric continuous coupled assay. Reaction 

conditions: 25 °C, 50 mM Tris/HCl pH 8.0, 50 mM NaCl, 200 µM MnII, 5 µM adenine deaminase, 10 µM SAH 

nucleosidase, 500 µM SAM, 500 µM histidine, 2 µM EgtD WT and 0 (-) or 2 (+) mM DTT. 

 

In order to identify the nature of this modification, we chose to test the activity of EgtD in 

presence of a stronger oxidant: HOCl, which we expected to oxidize faster the enzyme than H2O2. 

 

5.2.3 EgtD activity in presence of HOCl 
 

HOCl is a powerful antimicrobial agent in the immune system it is however present at much 

lower concentrations than H2O2 (the concentration in zebra fish for example do not exceed 

0.5 µM).202 Nevertheless, the purpose on this experiment was not to determine the effect of HOCl 

at physiological concentration, but to provide information about the possible EgtD modifications 

occurring under oxidative conditions.  

Prior to determining the effect of HOCl on EgtD activity, we first had to establish that this oxidant 

would not interfere with the activities of the adenine deaminase and the SAH nucleosidase used 

in the assay. As the tested concentrations of HOCl did not influence the coupled enzymes, a 

similar experiment as for H2O2 was performed. After a one-hour-long incubation on ice of EgtD 

in the presence of different concentrations of HOCl, the activity of the MT was measured 

(Figure 59).  

In the presence of one equivalent of HOCl, EgtD loses more than 95 % of its activity. We 

concluded that HOCl oxidizes EgtD with a 1:1 stoichiometry and that this oxidation leads to the 

inactivation of the MT. 
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Figure 59 Relative activity of EgtD in presence of HOCl. 50 µM of EgtD were incubated with 0, 25, 50 or 200 µM HOCl 

for 1 hour on ice and the activity was then determined by spectrophotometric continuous coupled assay in the 

conditions described in Figure 57. 

 

EgtD is recombinantly produced with an N-terminal His-tag which is required for the 

purification step performed by affinity chromatography (see Appendix). As the presence of a 

His-tag might influence the activity of the enzyme203 and to ensure the inactivation is in fact due 

to a modification on EgtD, the activity of the His-tag free EgtD was also determined. However, 

the protocol for proteolysis requires a two-day-long dialysis of the MT in presence of a protease 

at 4 °C. We have previously showed that, under these conditions, EgtD with His-tag undergoes 

auto-oxidation (Figure 58). Therefore, it was not surprising to observe that after proteolysis, the 

MT did not show any activity in presence or absence of the oxidant. Yet, the addition of 2 mM 

DTT could reactivate the enzyme, suggesting, as for the His-tagged EgtD, that this auto-oxidation 

is indeed a reversible modification (Figure 60). In both the absence and presence of a N-terminal 

His Tag, EgtD is subjected to auto-oxidation. This reveals that the His-tag does not influence the 

inactivation process due to the oxidation of EgtD. 
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Figure 60 EgtD activity after cleavage of the His-tag by the TEV protease. 50 µM of His-tag free EgtD were incubated 

with either no redox active compound (-) or 2 mM DTT for 1 hour on ice and the activity was then determined by 

spectrophotometric continuous coupled assay under the conditions described in Figure 57. 

 

As we demonstrated that the His-tag is not the cause of the EgtD loss in activity observed in the 

presence of one equivalent of HOCl, we were interested in determining if the rate of inactivation 

of EgtD was dependent on the concentration of oxidant. This information would provide a 

valuable element to understand the mechanism of oxidative inactivation of the MT.  

The inactivation rates induced by five different concentrations of HOCl were determined and 

compared (Figure 61). Thus, we could observe that the rate of HOCl-based inactivation is 

dependent on the ratio between EgtD and the oxidant. We concluded that the inactivation of the 

MT seems to be dependent on the concentration of HOCl.  
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Figure 61 Decay constants of MT activity in presence of five concentrations of HOCl. The rates of inactivation of EgtD 

were monitored in presence of different concentrations of HOCl (2, 4, 6, 8 and 10 µM). Reaction conditions: 25 °C, 50 

mM Tris/HCl pH 8.0, 50 mM NaCl, 200 µM MnII, 5 µM adenine deaminase, 10 µM SAH nucleosidase, 500 µM SAM, 500 

µM histidine, the corresponding concentration of HOCl and 2 µM EgtD WT. 
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5.2.4 Can EgtB protect EgtD from oxidative damage? 
 

Another experiment aiming at understanding the mechanism of inactivation of EgtD in oxidative 

environment was to determine if the presence of EgtB (the second enzyme involved in the 

biosynthesis of ergothioneine) could protect the MT against oxidative damages. EgtB is an 

oxygen-dependent sulfoxide (see Chapter 1, Figure 11)133 and might then be less sensitive than 

EgtD to the presence of an oxidant. Moreover, we already discussed in Chapter 3 about EgtD 

cooperativity and the upstream control of the EgtB substrate. Therefore, we hypothesized that 

another collaboration mechanism between EgtD and EgtB could be possible.  

To test this hypothesis, 50 µM of EgtD were incubated with four different concentrations of HOCl 

as described in Figure 61, but in presence of 50 µM EgtB. The different rates of histidine 

methylation were then measured (Figure 62). In the presence of 1 and 4 equivalents of HOCl, 

EgtD loses 65 and more than 95 % of catalytic activity respectively. The remaining activity in the 

stoichiometric reaction (1:1) is certainly due to the amount of HOCl that reacts on EgtB instead 

of EgtD. This interpretation results from the complete inactivation of the MT in the presence of 4 

equivalents of HOCl. This experiment shows that EgtB cannot directly protect EgtD from 

oxidative modification. The presence of the sulfoxide synthase only provides a new site for HOCl 

to react. 
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Figure 62 Inactivation of EgtD in presence of EgtB. 50 µM of EgtD and 50 µM of EgtB were incubated with 0, 0.5, 1 and 

4 equivalents of HOCl for one hour on ice. The activity was determined by the spectrophotometric coupled assay using 

the standard conditions described in Figure 57. 
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5.2.5 Reversibility of the oxidative inactivation 
 

EgtD WT with His tag is inactivated by HOCl, but not by H2O2 (only at a high and non-

physiological concentration of 10 mM). As we showed that the auto-oxidation of EgtD was a 

reversible phenomenon (Figures 58 and 60), we were interested to determine if the oxidative 

induced by HOCl would be reversible as well. This reversibility would indicate that another 

modification than the oxidation to a sulfinic acid would result from the addition of an oxidant in 

the solution (conversely to the modification observed on the crystal structure in Figure 55). 

Indeed, the oxidation of a cysteine residue to its sulfinic acid state cannot be reversed by the sole 

presence of a reducing agent. The reduction of protein sulfinic acids have already been reported 

however this reaction is catalyzed by specific enzymes (such as sulfiredoxins).204 

EgtD was incubated with four equivalents of HOCl as described in Figure 59. Its inactivation was 

confirmed by the measurement of the rate of histidine methylation. Following this, 2 mM DTT 

were added to the solution containing EgtD and HOCl. After five minutes incubation time on ice, 

the activity of EgtD was tested again (Figure 63). As for the auto-oxidation, the HOCl-induced 

oxidation is reversible. This strongly supports that the sulfinic acid observed on Cys285 on the 

crystal structure does not correspond to the modifications occurring upon the addition of HOCl. 
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Figure 63 EgtD reactivation after addition of a reducing agent. EgtD was inactivated by incubation with 4 equivalents 

of HClO as described in Figure 59. Then, the MT could be reactivated by the addition of 2 mM of DTT. The activity was 

determined by the spectrophotometric coupled assay using the standard conditions described in Figure 57. 

 

EgtD contains two cysteine residues; Cys139 and 285. However as the observations from the 

crystal structure and the kinetic data were not consistent with respect to the nature of the 
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oxidative modification, we investigated the oxidative modifications that could occur to each 

cysteine residue separately. Therefore, we constructed the following variants: C139A, C285A, 

C285D and C285S, and tested them as for the wild type. These three chosen residues (alanine, 

aspartate and serine) cannot be oxidized upon the addition of an oxidant but can reveal the 

functions of Cys139 and Cys285. 

 

5.3 EgtD Cys139 and Cys285 
 

Cysteine is one of the least abundant amino acid incorporated in protein scaffolds. However this 

residue has essential functions in catalysis and regulation such as redox sensor, catalytic 

nucleophile, or in the formation of structural disulfide.205 In addition, the oxidation of specific 

cysteine residues found within redox-sensitive target proteins leads to the regulation of 

intracellular signaling pathways.200,206 The reactive cysteine can be oxidized to a sulfenic form 

(Cys-SOH) and further to the sulfinic species (Cys-SO2H). In case of high oxidative stress (excess 

in peroxide), sulfonic acid (Cys-SO3H) can be generated.207 We were interested in determining if 

one of these oxidative modifications could occur on either Cys139 or Cys285 in the presence of 

HOCl. 

Site-directed mutagenesis allows testing the importance of a single residue in an enzyme. If a 

cysteine residue is engaged in the formation of a disulfide bond in the regulation of its activity, 

the mutation to an alanine, aspartate or serine residue would drastically alter the enzymatic 

activity. The mutation to the inert and non-bulky alanine is often used to determine if the 

cysteine residue contributes in any form, to catalysis. The presence of alanine instead of cysteine 

suppresses the hydrogen bonding or nucleophilicity of this residue and can therefore lead to 

inactivation of the enzyme. If Cys285 is engaged in stabilizing hydrogen bonds, the change to a 

serine would slightly alter EgtD activity. Indeed, cysteine is more hydrophobic and a better 

nucleophile than serine. However serine can still participate in hydrogen bonding. In our study, 

the mutation of Cys285 to an aspartate residue aimed to structurally mimic the oxidative 

modification observed in Figure 55. Therefore, this variant should indicate the consequence of 

the sulfinic-Cys285 modification on MT activity. 
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5.3.1 Localization of the two cysteine residues 
 

Under physiological conditions, cysteine is generally considered the most effective nucleophile 

of all amino acid residues. Subsequently, the thiol side chain can undergo a wide array of 

oxidative modifications. The formation of intra- and intermolecular disulfide bonds or 

nitrosothiols, the oxidation to sulfenic/sulfinic/sulfonic acids, are a few of them.208 Theoretically, 

both cysteine residues in EgtD can be modified by a ROS. The oxidative modification on Cys285 

described in Figure 55 maps to the hinge region of the two-lobed structure of EgtD (Figure 64). 

On the other hand, Cys139 is more surface exposed than Cys285, which suggests that Cys139 

could also be available for oxidative modification. 

 

 

Figure 64 Localization of Cys139 and Cys285 residues (indicated in yellow) in EgtD. The Rossmann-fold and upper 

domains are represented in grey and salmon respectively. The symbol (*) displays the position of the cysteine residue 

other than that indicated. 

 

5.3.2 Activity of the variants 
 

5.3.2.1 Cys285X variants activity is dependent on the presence of a reducing agent 

 

Prior to the study of the cysteine variants in an oxidative environment, the rate of histidine 

methylation catalyzed by these mutants was first determined in the presence of 0.5 mM of 

histidine and SAM to ensure their activity. In the absence of DTT, none of the Cys285 variants 

showed significant turnover numbers. The addition of 2 mM DTT reactivated these three 
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mutants which then showed a similar methylation rate than EgtD WT. Only EgtD C139A was 

active in both in absence or presence of reducing agent (Figure 65). This outcome attests that 

the auto-oxidation of the Cys285X variants is faster than for the wild type. EgtD C139A shows a 

similar activity to the wild type in the absence or presence of DTT. This observation indicates 

that Cys139 is more prone to oxidative modifications than Cys285. 
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Figure 65 Histidine methyltransferase activity for EgtD WT and 4 variants: C139A and C285A/D/S. Reactions 

contained 50 mM Tris/HCl pH 8.0, 50 mM NaCl, 200 µM MnII, 5 µM adenine deaminase , 10 µM SAH nucleosidase, 

0.5 mM histidine , 0.5 mM SAM, 2 µM MT and 0 (-) or 2 mM (+) DTT. 

 

5.3.2.2 Catalytic parameters of the cysteine variants under reducing conditions 

 

The two cysteine residues are not in a close proximity to the substrate binding site. However, to 

determine if the mutations to an alanine, aspartate or serine residue would affect the MT 

activity, the catalytic parameters of the four cysteine variants were determined in the presence 

of 2 mM DTT.  

The resulting kcat, His and KM, His values obtained for the EgtD C285A/D/S variants are similar to 

the WT. (Table 12).*  

                                                             
* Previous measurements showed that the turnover number of EgtD C285D was 10 times lower than the 
WT (see Section 5.7 Experimental). EgtD C285D is the closest analogue to the cysteine-sulfinic acid 
observed in the crystal structure in Figure 55. This loss of activity suggested that the sulfinic acid on 
Cys285 was not a beneficial modification for the activity of EgtD. However, a new batch of EgtD C285D 
was tested and showed that the mutation of the cysteine 285 to an aspartate residue had similar impact 
on the MT activity than the alanine or serine mutations. 



111 
 

Table 12 Catalytic parameters of the cysteine variants and EgtD WTa. 

 kcat (s-1) KM (µM) 

WT 0.57 ± 0.03 107 ± 12 

C139A 0.30 ± 0.02 101 ± 20 

C285A 0.28 ± 0.01 114 ± 11 

C285D 0.33 ± 0.02 52± 12 

C285S 0.32 ± 0.03 149 ± 33 

 
aReactions contained 50 mM Tris/HCl pH 8.0, 50 mM NaCl, 200 µM MnII, 5 µM adenine deaminase , 10 µM SAH 

nucleosidase, 0.5 mM SAM, 25-750 µM histidine, 2 mM DTT and 2 µM MT. 

 

5.3.2.3 Activity of EgtD C139A in presence of HOCl 

 

Unlike the C285X variants, EgtD C139A does not require the addition of a reducing agent to 

catalyze methyl transfer (Figure 65). Therefore, among the constructed variants, EgtD C139A 

was the only mutant which could be tested with HOCl* and compared to the WT. EgtD C139A 

was incubated on ice with 0, 0.5, 1 and 4 equivalents of HOCl and the catalytic activity was 

determined as performed with EgtD WT (Figure 66). 
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Figure 66 Activity of EgtD C139A in presence of different concentrations of HOCl. 50 µM of the variant were 

incubated HOCl for 1 hour on ice with 0, 25, 50 or 200 µM of HOCl. The MT activity was then determined by coupled 

assay using the standard conditions described in Figure 57. 

                                                                                                                                                                                              
 
*As for the wild type, the same experiment was performed for the His-tag free C139A variant. The results 
obtained in both the presence and absence of the His-tag demonstrated that EgtD C139A is not inactivated 
by HOCl and that the MT activity is not lost during proteolysis. 
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In the presence of 1 or 4 equivalents of HOCl, EgtD C139A does not lose more than 20 % of its 

catalytic activity. EgtD C139A appears to be less sensitive to the tested oxidative environment 

than the WT, which is oxidized and inactivated by HOCl with a 1:1 stoichiometry (Figure 59). 

This result means that either Cys285 is not modified in presence of HOCl, or that the resulting 

oxidative modification on this residue does not affect the enzyme activity. In order to determine 

which of these two hypotheses is correct, the quaternary structures of EgtD wild type and 

variants were analyzed to detect the possible formation of intermolecular disulfide bonds. 

Moreover, the molecular weight of the different MTs was measured in order to identify the 

possible addition of oxygen atoms on the cysteine residues. 

 

5.4 Change in quaternary structure induced by oxidative environment 
 

The quaternary structures of EgtD WT and variants in different redox environments were 

determined by size-exclusion chromatography. For the WT, both His-tagged and His-tag free 

enzymes were analyzed, whereas for the Cys285X variants, only the nature of quaternary 

structures of the His-tagged proteins was studied. In order to correlate the analysis of the 

molecular weight and the kinetic data of each MT, the activity of the enzymes used to perform 

the study on the quaternary structure was always measured prior to the analysis by size-

exclusion chromatography. For clarity, the traces which correspond to an active enzyme are 

displayed in black and the ones corresponding to an inactive enzyme are displayed in red. 

 

5.4.1 EgtD wild type 
 

EgtD WT was incubated (A) without any redox active compound, (B) with 2 mM DTT, (C) with 1 

mM H2O2 and (D) with 1 equivalent of HOCl (Figure 67). After one-hour-long incubation on ice, 

the four samples were analyzed by size-exclusion chromatography to determine the quaternary 

structure of EgtD WT in each oxidative environment. The same experiment was performed with 

the His-tag free enzyme, but only in (A) the absence or (B) the presence of DTT. 

The active enzymes for both His-tagged and His tag free EgtD WT are clearly monomers (*, the 

elution volume is 2.08 mL which corresponds to a species with a molecular weight of 38.2 kDa); 

whereas inactivated enzyme is present as a mixture of monomer and dimer (**, the elution 

volume of 1.85 mL corresponds to a molecular weight of 56.8 kDa) according to the established 

calibration curve (see Experimental part). 
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Figure 67 Quaternary structures of EgtD with (left) and without (right) His-tag in different oxidative environments, 

A: without any redox compound, B: in presence of 2 mM DTT; C: in presence of 1 mM H2O2 and D: in presence of 1 

equivalent of HOCl. The black and red traces represent the active and inactivated MT respectively. The symbols (*) 

and (**) correspond to the monomer and dimer of the MT. 

 

Given that the dimerization is not total but that EgtD is almost completely inactivated after the 

incubation with 1 equivalent of HOCl (Figure 59), we concluded that dimerization is not the sole 

cause of the inactivation. The inactivation of EgtD WT rather arises from the oxidation of one or 

both cysteine residues. Taking into consideration the kinetic results of EgtD C139A and EgtD 

C285X (Figure 65), we suggested that it is the oxidation of Cys139 which leads to the loss of the 

MT activity.  

 

5.4.2 EgtD cysteine variants 
 

In order to determine which cysteine residue leads to the observed change in quaternary 

structure of the WT in oxidizing environment, the same analysis as for the WT was performed 

for each of the cysteine mutants.  
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5.4.2.1 Cys139Ala variant 

 

As for the WT, EgtD C139A was incubated for one hour on ice (A) without any redox active 

compound, (B) with 2 mM DTT, (C) with 1 mM H2O2 and (D) with 1 equivalent of HOCl. The four 

samples were then analyzed by size-exclusion chromatography. 
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Figure 68 Quaternary structures of EgtD C139A with His-tag in different oxidative environments, A: in the absence of 

any redox compound, B: in presence of 2 mM DTT; C: in presence of 1 mM H2O2 and D: in presence of one equivalent 

HOCl In contrast with the WT, EgtD C139A stays as a monomer (*) in the tested conditions (the retention volume of 

2.06 mL corresponds to a molecular weight of 39.5 kDa). 

 

The resulting quaternary structures in Figure 68 clearly show that EgtD C139A is present in its 

monomeric form (*) in oxidative environment, in presence of either 1 equivalent HOCl or 1 mM 

H2O2. This analysis corroborates the results obtained for EgtD WT, which indicated that the 

active form of the MT is a monomer. The absence of dimerization demonstrates that Cys285 is 

not engaged in an intermolecular disulfide bond. In addition, on the crystal structure, we 

observed that Cys285 is oxidized in sulfinic acid. However, the kinetic data indicate that, even if 

this oxidation occurs, it does not have an impact on the MT activity. In order to determine if in 

oxidative environment Cys285 is not oxidized at all or if the modification to a sulfinic acid is 
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present without altering the catalytic activity, the determination of the exact molecular weight of 

the protein is required (see Section 5.5). 

 

5.4.2.2 Cys285X variants 

 

If Cys285 is mutated to a non-oxidisable residue, the oxidative stress has a negative impact on 

the MT activity. In order to test if the C285X variants are more prone to oxidative damage and to 

the formation of disulfide bonds, the quaternary structures of the active and inactive MT were 

analyzed. EgtD C285A/D/S were incubated for one hour on ice (A) without any redox active 

compound and (B) with 2 mM DTT (Figure 69). 
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Figure 69 FPLC traces of the three Cys285X variants of EgtD in absence or presence of reducing agent, A: without any 

redox compound and B: in the presence of 2 mM DTT. 50 µM of each mutant were incubated on ice with either (A) 0 

or (B) 2 mM DTT. The red color indicates an inactive enzyme. The symbols (*) and (**) correspond respectively to the 

monomer (2.06 mL) and dimer (1.85 mL) of the MTs. 

 

The auto-oxidation/inactivation of the variants is, as for EgtD WT, accompanied with a change in 

the quaternary structure. The inactive form of the C285A/D/S variants is clearly a dimer (**). 
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The active form of the Cys285X variants in the presence of DTT is also a monomer (*), like for 

the WT.  

Taking together the results from the four EgtD variants C139A and C285A/D/S, we got strong 

indication that the oxidative modifications leading to the dimerization of EgtD take place on the 

Cys139 residue. 

 

5.5 Chemical modifications induced by oxidative environment 
 

5.5.1 EgtD wild type 
 

The crystal structure of EgtDox indicates the presence of a sulfinic acid moiety on Cys285. As the 

oxidation to a sulfinic acid is known to be irreversible upon the addition of a reducing agent,204 

this oxidative modification is detectable by mass spectrometry with the addition of 32 Da. 

Moreover, if DTT is added to the oxidized enzyme, this additional mass should remain. 

The MS of EgtD WT (with and without) His-tag were recorded in different oxidative 

environments. EgtD WT was incubated for one hour on ice (A) without any redox active 

compound, (B) with 2 mM DTT and (C) with 1 equivalent of HOCl (Figure 70). 

The inactive form of EgtD WT (red traces) is accompanied with an increase in mass of 32 Da. The 

addition of 2 mM DTT to the inactivated EgtD (Figure 70 D) leads to the elimination of the 

signals at M+32 and M+64 Da. Therefore, we concluded that the formation of a sulfinic acid does 

not occur following the incubation of HOCl. 
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Figure 70 Mass spectra of EgtD WT with (left) and without (right) His-tag. The respective molecular weights of each 

of the MTs were measured after incubation A: without any reducing or oxidative agent, B: with 2 mM DTT, C: with one 

equivalent of HOCl and D: C after addition of 2 mM DTT. M represents to the respective molecular weights of EgtD WT 

with and without Histag (36 989.6 and 35243.7 Da). The symbol (**) corresponds to an addition of 32 Da with respect 

to the previous peak. 

 

5.5.2 EgtD cysteine variants 
 

The recorded MS for EgtD indicate the additions of 32 and 64 Da to the molecular weight of the 

MT. From the kinetic data and the analysis of the crystal structure of the cysteine variants, we 

suspected that these additions would only occur for the C285X variants. To test our assumption, 

we analyzed the molecular weights of the C139A and C285X variants in their active and inactive 

form. 

 

5.5.2.1 EgtD C139A 

 

The MS of EgtD C139A were recorded in different redox environments as performed for the WT. 

Egtd C139A was incubated one hour on ice (A) without any redox active compound, (B) with 2 

mM DTT and (C) with 1 equivalent of HOCl (Figure 71). 
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Figure 71 Mass spectra of EgtD C139A. The respective molecular weights of each of the MT were measured after 

incubation A: without any reducing or oxidative agent, B: with 2 mM DTT and C: with one equivalent of HOCl. M 

represents to the molecular weight of EgtD C139A (36957.6 Da). 

 

No additional mass was measured on Cys139A variant in the presence of HOCl. Therefore, the 

oxidative modification on Cys285 observed in Figure 56 does not occur in the tested conditions. 

 

5.5.2.2 EgtD C285X 

 

The molecular weights of EgtD C285A/D/S were measured in (A) the presence and (B) the 

absence of DTT (Figure 72). If the reducing agent is present, only the mass of the monomer (M) 

is observed, whereas in the absence of DTT, both monomer and dimer (2M) are present. These 

results are consistent with the quaternary structures determined by size-exclusion 

chromatography (Figure 72). The dimers of the C285X variants are also found with the addition 

of 32 and 64 Da. However, the nature of these oxidative modifications could not be identified. 
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Figure 72 MS spectra of the three EgtD Cys285 variants in presence (B) or absence (A) of 2 mM DTT. The red and 

black traces indicate the inactive and active enzymes respectively. M corresponds to the molecular weight of each 

variant (see Appendix). The symbol (*) indicates a glycosylated protein*. The symbol (**) corresponds to an addition 

of 32 Da with respect to the previous peak 

 

The changes in molecular weight of EgtD WT and the cysteine variants are summarized in the 

following table. In the absence of an oxidant, the molecular weight of the monomer EgtD is 

detected. In the presence of one equivalent of HOCl two additional peaks are observed, each with 

an increase in mass of 32 Da. This could be either the addition of two sulfur atoms or four 

oxygen atoms. But in each case, the modification would have to be reversible as the enzyme is 

reduced in presence of DTT. 

 

                                                             
* The glycosylation of His-tagged protein is a common modification in E.coli209 and does not influence the 
activity of EgtD. The addition of a glucose unit which corresponds to an addition of 178 Da is observed for 
EgtD WT and C139A, but is not shown in Figures 71 and 72. The cleavage of the His-tag for EgtD wild type 
suppressed the peak at M+178 Da. 
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Table 13 Molecular weights of the different MTs without any redox agent (Ø), in the presence of 1 equivalents of HOCl 

and in the presence of 2 mM DTT. M: corresponding molecular weight of each MT (see Appendix). For clarity, the 

glycosylated proteins are not indicated. 

 
Ø HOCl DTT 

WT M M+32+32 M 

C139A M M M 

C285A 2M+32+32 - M 

C285D M, 2M+32+32 - M 

C285S M, 2M+32+32 - M 

 

The presence of the dimeric EgtD or the addition of 32 Da (which either correspond to a sulfur 

atom or two oxygens atoms, but no sulfinic acid) and 64 Da are features of the inactive form of 

the MT. 

 

5.6 Conclusions and discussion 
 

The active form of EgtD is a monomer. EgtD undergoes auto-inactivation through a slow 

oxidation by oxygen present in the buffer; however the catalytic activity is not altered by 1 mM 

H2O2. The study of EgtD inactivation was performed under non-physiological concentrations of 

HOCl. In this respect, we could only conclude that the presence of a strong oxidant might reduce 

the activity of the MT, but EgtD is certainly not up-regulated in an oxidative environment. The 

loss of MT activity in the presence of one equivalent of HOCl can be fully recovered upon the 

addition of DTT. Therefore, different oxidative modifications rather than the irreversible 

formation of a sulfinic- or sulfonic-cysteine occur. The mass spectra show modifications, through 

the change in the molecular weight of EgtD when both Cys139 and Cys285 are present and no 

change when only Cys285 is conserved. The structural analysis shows that Cys285 is oxidized as 

a sulfinic acid. However, kinetic data and analyses of the quaternary structures suggest instead 

that the modification on Cys139 affects the activity of EgtD. In addition, as we could not observe 

the oxidized Cys285 in the presence of 200 µM HOCl, it seems that the formation of the sulfinic-

Cys285 is unlikely to take place due to the only presence of an oxidant. 
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Cys285 does not participate in catalysis (EgtD C285A/D/S have similar turnover numbers than 

the WT), but it seems that the mutation on Cys285 renders Cys139 more prone to oxidative 

modification. So far, we did not identify the nature of the additional 32 Da observed by MS. 

However, analysis of tryptic digested fragments of EgtD might answer this question. EgtD C285D 

is the closest analogue to the sulfinic-Cys285 observed in the crystal structure. We first observed 

that this point mutation lowers the MT activity by a factor of 10 (see Experimental section 5.7.1). 

Taking into account the location of this residue, residing in the hinge of the two domains of EgtD, 

we suggested that this mutation could also interfere with the binding of SAM and subsequently 

lead the significant decrease in catalytic activity of the C285D variant. Jeong et al. described the 

inactive “open” conformation of the apo-EgtD and the active “closed” conformation of the MT in 

the ternary complex [EgtD:His:SAH]165. Therefore, we proposed that the presence of two 

additional oxygen atoms in the hinge of the two domains of EgtD could prevent the formation of 

the closed, namely active, conformation of the MT. Thus, SAM would not be as tightly bound in 

the catalytic site and the enzyme would then be less active. However, a new batch of EgtD C285D 

was tested and showed similar activity as EgtD C285A/S variants. Therefore the hypothesis of 

the inactive open conformation of EgtD due to the point mutation Cys285Asp appeared unlikely.  

 

5.7 Experimental 
 

5.7.1 Kinetics 
 

5.7.1.1 Inactivation of EgtD WT 

 

Reactions contained 50 mM Tris/HCl pH 8.0, 50 mM NaCl, 200 µM MnII, 5 µM adenine 

deaminase, 10 µM SAH nucleosidase, 0.5 mM SAM, 0.5 mM histidine, 2 mM DTT and 2 µM EgtD 

WT. 

0 2 4 6 8 10 12
0.0

0.1

0.2

0.3
EgtD:HOCl = 1:1

  
(s

-1
)

Time (min)

R-sq= 0.971

t = 1.94 ± 0.46 min-1

0 4 8 12 16
0.0

0.1

0.2

0.3

R-sq= 0.994

t = 1.38 ± 0.09 min-1

  
(s

-1
)

EgtD:HOCl = 1:2

Time (min)  



122 
 

0 2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4
 

(s
-1
)

R-sq= 0.977

t = 0.80 ± 0.10 min-1

EgtD:HOCl = 1:3

Time (min)
0 2 4 6 8 10 12

0.0

0.1

0.2

R-sq= 0.957

t = 0.66 ± 0.15 min-1 
(s

-1
)

EgtD:HOCl = 1:4

Time (min)  

0 2 4 6 8 10
0.0

0.1

0.2

0.3

R-sq= 0.954

t = 0.48 ± 0.11 min-1

 
(s

-1
)

EgtD:HOCl = 1:5

Time (min)  

 

5.7.1.2 Activity of EgtD variants 

 

Methyltransferase assay. Methyltransferase activity was determined following published 

protocols.147 Reactions were monitored in a 2 mm quartz cuvette at 25°C at 265 nm with a Cary 

300 spectrophotometer from Agilent. The 200 µL reactions contained 50 mM Tris/HCl pH 8.0, 

50 mM NaCl, 200 μM MnII, 500 µM SAM, 1-1000 µH histidine, 5 µM adenine deaminase, 10 µM 

SAH nucleosidase, 2 mM DTT and 2µM methyltransferase. Reactions were started by addition of 

the methyltransferase. The MT is indicated on each graph. The data were fitted to the function:  

ν = kcat · [substrate]/(KM + [substrate]). 
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5.7.2 Histag cleavage 
 

TEV protease recognizes the cleavage site: E-N-L-Y-F-Q-/-G. The sequence of EgtD in pET19 

vector was modified in order to contain this cleavage sequence right after the His-tag at the N-

terminal of EgtD.  

EgtD was incubated with TEV protease in a dialysis bag in a EgtD:TEV ratio of 14:1. The reaction 

was dialyzed overnight in 50 mM Tris, 50 mM NaCl at 4 °C. The dialysis buffer was renewed for 

additional 24 hours (in total, 48 hours are required for the complete cleavage of the His-tag). 
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The mixture was then applied to Ni-beads and the flow through was collected. To approximate 

the concentration of the eluted Histag free protein, the measurements of the absorption at 

280 nm were performed with a Nanodrop2000 and the molar absorption coefficient Ɛ280(EgtD) = 

36440 M-1 cm-1 was used. 

 

 Sequence of His-tag free EgtD: 
GHHHHHHAENLYFQGHMALSLANYLAADSAAEALRRDVRAGLTATQKSLPPKWFYDAVGSDLFDQITRLPEYYPT
RTEAQILRTRSAEIISAAGADTLVELGSGTSEKTRMLLDAMRDAELLRRFIPFDVDAGVLRSAGAAIGAEYPGIE
IDAVCGDFEEHLGKIPHVGRRLVVFLGSTIGNLTPAPRAEFLSTLADTLQPGDSLLLGTDLVKDTGRLVRAYDDA
AGVTAAFNRNVLAVVNRELSADFDLDAFEHVAKWNSDEERIEMWLRARTAQHVRVAALDLEVDFAAGEEMLTEVS
CKFRPENVVAELAEAGLRQTHWWTDPAGDFGLSLAVR 

m/z (EgtD Histag free): calc.: 35243.7 Da, measured: 35242.5 Da 
 

The sequence in italic and light grey is cleaved by the protease. 

 

5.7.3 FPLC analysis 
 

Quaternary structures were analyzed by FPLC (Äkta FPLC, GE Healthcare) using a Superdex 200 

5/150 GL column. 0.1 mg of protein were injected and eluted in an isocratic flow of 0.2 mL/min 

in a degassed buffer containing 50 mM Tris/HCl pH 8.0 and 200 mM NaCl. 
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Figure 73 Calibration curve established for the analysis of the quaternary structures of the MTs by size-exclusion 

chromatography. 
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6 Appendix 
 

6.1 Cloning and Protein production 
 

EgtD WT and variants. EgtD WT and variants were expressed in E. coli BL21 cells grown in LB 

medium at 37 °C with the appropriate antibiotics (50 mg/L Kanamycin or 100 mg/L Ampicillin 

and 34 mg/L Chloramphenicol) and induced at OD600 = 0.5 with 0.1 mM IPTG at 18 °C for at least 

16 h. The cells were harvested by centrifugation and frozen until use. The cell pellets were 

resuspended in lysis buffer (50 mM phosphate buffer pH 8.0 and 300 mM NaCl) and lysed by 

sonication. The lysates were clarified by centrifugation. The clear lysates were mixed with NiII-

NTA agarose at 4°C for 20 min. The agarose beads were filtered on disposable plastic columns 

and washed with lysis buffer containing 10 and 20 mM imidazole. The protein was eluted in a 

lysis buffer containing 250 mM imidazole. The purified proteins were dialyzed against 50 mM 

Tris/HCl buffer pH 8.0, 50 mM NaCl and stored at -80°C. To approximate the concentration of 

the prepared proteins, the measurements of the absorption at 280 nm were performed with a 

Nanodrop2000 and the molar absorption coefficient Ɛ280(EgtD) = 36440 M-1 cm-1 was used. 

 

Adenosylhomocysteine Nucleosidase. SAH nucleosidase was expressed in E. coli BL21 cells 

grown in LB medium at 37 °C with the appropriate antibiotics (50 mg/L Kanamycin and 34 

mg/L Chloramphenicol) and induced at OD600 = 0.5 with 0.1 mM IPTG at 37 °C for 3 h. The cells 

were harvested by centrifugation and frozen until use. The cell pellets were resuspended in lysis 

buffer (50 mM phosphate buffer pH 8.0 and 300 mM NaCl) and lysed by sonication. The lysates 

were clarified by centrifugation. The clear lysate was mixed with NiII-NTA agarose at 4°C for 20 

min. The agarose beads were filtered on disposable plastic columns and washed with lysis buffer 

containing 10 and 20 mM imidazole. The protein was eluted in a lysis buffer containing 250 mM 

imidazole. The purified protein was dialyzed against 50 mM Tris/HCl buffer pH 8.0, 50 mM NaCl 

and stored at -80°C. To approximate the concentration of the prepared protein, the 

measurements of the absorption at 280 nm were performed with a Nanodrop2000 and the 

molar absorption coefficient Ɛ280(AdoNuc) = 5960 M-1 cm-1 was used. 

 

Adenine deaminase. Adenine deaminase was expressed in E. coli BL21 cells grown in LB 

medium with 50 mM bipyridine at 37 °C with the appropriate antibiotics (50 mg/L Kanamycin 

and 34 mg/L Chloramphenicol) and induced at OD600 = 0.5 with 0.1 mM IPTG and 1 mM MnCl2 at 

37 °C for 3 h. The cells were harvested by centrifugation and frozen until use. The cell pellets 

were resuspended in lysis buffer (50 mM phosphate buffer pH 8.0, 0.1% Tween 20, 10 % 
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glycerol and 300 mM NaCl) and lysed by sonication. The lysates were clarified by centrifugation. 

The clear lysate was mixed with NiII-NTA agarose at 4°C for 20 min. The agarose beads were 

filtered on disposable plastic columns and washed with lysis buffer containing 10 and 20 mM 

imidazole. The protein was eluted in a lysis buffer containing 250 mM imidazole. The purified 

protein was dialyzed against 50 mM Tris/HCl buffer pH 8.0, 50 mM NaCl, 10 % glycerol and 

stored at -80°C. To approximate the concentration of the prepared protein, the measurements of 

the absorption at 280 nm were performed with a Nanodrop2000 and the molar absorption 

coefficient Ɛ280(deaminase) = 41370 M-1 cm-1 was used. 

 

Cloning and production of SticA. The gene coding for the methyltransferase domain (protein 

family 10017) of the hypothetical protein AN8594.2 from Aspergillus nidulans was purchased 

from GeneScript with codon adaptations for optimal production in Escherichia coli. This 

fragment was cloned into a pOPIN-expression vector using restriction free protocols. The 

resulting vector (pOPIN_SticA) encodes SticA as a fusion with an N-terminal hexahistidine tag. 

SticA was produced in E. coli Bl21 cell following the same procedure as described for EgtD.  

 

 Sequence of SticA: 
AHHHHHHSSGLEVLFQGPSQTSSVAQIDIRSDKKDVELRVSLQQSIHSDDAALPDLLLWDEQGLRYFEDVTYCPS
YYLTREEGLLKKYSLQIAEHIQPGSMLVELGSGNLRKTKILLDALEELGRPVDYFALDVSYPELKRTLRPVGAGV
YQHVRCYGLLGTYDDGRKWLQHPDLQSRPKTILYLGSTLGNFEKPDAAQFLASFAQPNTSFLLGLDGCKNEKQVL
QAYNDPDGINHRFVKNGLVRANHILGHEAFDLDKWDVTGAWDEESGAHNQYYITRADVSLDGVDIPAGHKLLAVR
SHKYDADDRKNLCGSAGLKVVDFWASESEY 

m/z(SticA): calc.: 37217.7 Da, measured: 41641.0 Da 
 
Construction of EgtD variants: Synthetic oligonucleotides were purchased from Microsynth, 
Switzerland. We used site directed mutagenesis to engineer the variants of interest. The 
different inserts were obtained by PCR using the following primers: 
 
EgtDs: 5’-ATA TCA TAT GGC GCT CTC ACT GGC CAA-3’ 
EgtDa: 5’-ATA TCT CGA GTC ACC GCA CCG CCA GCG ACA-3’ 
M252Vs: 5’-ATC GAG GTT TGG TTG CGT GCC CGC A-3’ 
M252Va: 5’-CAC GCA ACC AAA CCT CGA TGC GTT CCT-3’ 
M252As: 5’-ATC GAG GCT TGG TTG CGT GCC CGC A-3’ 
M252Aa: 5’-CAC GCA ACC AAG CCT CGA TGC GTT CCT-3’ 
E282As: 5’-GAT GCT CAC CGC AGT GTC CTG CAA GTT-3’ 
E282Aa: 5’-TGC AGG ACA CTG CGG TGA GCA TCT CCT-3’ 
F47Ws  5’-TGG GAC CAG ATC ACC CGT CTC CCT GAG TAT TA-3’ 
F47Wa: 5’-ACG GGT GAT CTG GTC CCA CAG ATC ACT G-3’ 
F47W Y56Fs: 5’-TGG GAC CAG ATC ACC CGT CTC CCT GAG TCC TA-3’ 
Y56Fs  5’-CTC CCC GAG TTC TAC CCC ACC- 3’ 
Y56Fa  5’-GGT GGG GTA GAA CTC GGG GAG- 3’ 
N166Da: 5’-GGT GTC AGA TCG CGG ATG GT-3’ 
N166Ds: 5’-ACC ATC GGC GAT CTG ACA CC-3’ 
C139As: 5’-GGT AGC TGG CGA TTT CGA GGA ACA T-3’ 
C139Aa: 5’-TCG AAA TCG CCA GCT ACC GCG TCG ATC T-3’ 
C285As: 5’-ACC GAG GTG TCC GCT AAG TTC CGT CCC GAG A-3’ 



127 
 

C285Aa: 5’-GAC GGA ACT TAG CGG ACA CCT CGG T-3’ 
C285Ds: 5’-GGT GTC CGA TAA GTT CCG TCC CGA GA-3’ 
C285Da: 5’-GAC GGA ACT TAT CGG ACA CCT CGG T-3’ 
C285Ss: 5’-ACC GAG GTG TCC AGC AAG TCC CGT CCC GAG-3’ 
C285Sa: 5’-GAC GGA ACT TGC TGG ACA CCT CGG T-3’ 
N217s and N217a: N/A 

 
The gel purified amplified fragments were then digested with NdeI and XhoI restriction enzymes 

and inserted into a pET19 with modified cleavage site or pET28 expression vectors. The proteins 

were produced and purified with the same protocol as EgtD WT. 

 

 Sequence of EgtD WT: 
GHHHHHHAENLYFQGHMALSLANYLAADSAAEALRRDVRAGLTATQKSLPPKWFYDAVGSDLFDQITRLPEYYPT
RTEAQILRTRSAEIISAAGADTLVELGSGTSEKTRMLLDAMRDAELLRRFIPFDVDAGVLRSAGAAIGAEYPGIE
IDAVCGDFEEHLGKIPHVGRRLVVFLGSTIGNLTPAPRAEFLSTLADTLQPGDSLLLGTDLVKDTGRLVRAYDDA
AGVTAAFNRNVLAVVNRELSADFDLDAFEHVAKWNSDEERIEMWLRARTAQHVRVAALDLEVDFAAGEEMLTEVS
CKFRPENVVAELAEAGLRQTHWWTDPAGDFGLSLAVR 

m/z (EgtD WT): calc.: 36989.6 Da, measured: 36990.0 Da 
 
 Sequence of EgtD E282A: 
GHHHHHHAENLYFQGHMALSLANYLAADSAAEALRRDVRAGLTATQKSLPPKWFYDAVGSDLFDQITRLPEYYPT
RTEAQILRTRSAEIISAAGADTLVELGSGTSEKTRMLLDAMRDAELLRRFIPFDVDAGVLRSAGAAIGAEYPGIE
IDAVCGDFEEHLGKIPHVGRRLVVFLGSTIGNLTPAPRAEFLSTLADTLQPGDSLLLGTDLVKDTGRLVRAYDDA
AGVTAAFNRNVLAVVNRELSADFDLDAFEHVAKWNSDEERIEMWLRARTAQHVRVAALDLEVDFAAGEEMLTAVS
CKFRPENVVAELAEAGLRQTHWWTDPAGDFGLSLAVR  

m/z (EgtD E282A): calc.: 36931.6 Da, measured: 36931.3 Da 
 
 Sequence of EgtD E282A M252V: 
GHHHHHHAENLYFQGHMALSLANYLAADSAAEALRRDVRAGLTATQKSLPPKWFYDAVGSDLFDQITRLPEYYPT
RTEAQILRTRSAEIISAAGADTLVELGSGTSEKTRMLLDAMRDAELLRRFIPFDVDAGVLRSAGAAIGAEYPGIE
IDAVCGDFEEHLGKIPHVGRRLVVFLGSTIGNLTPAPRAEFLSTLADTLQPGDSLLLGTDLVKDTGRLVRAYDDA
AGVTAAFNRNVLAVVNRELSADFDLDAFEHVAKWNSDEERIEVWLRARTAQHVRVAALDLEVDFAAGEEMLTAVS
CKFRPENVVAELAEAGLRQTHWWTDPAGDFGLSLAVR  

m/z (EgtD M252V E282A): calc.: 36899.5 Da, measured: 36899.1 Da 
 
 Sequence of EgtD E282A M252A: 
GHHHHHHAENLYFQGHMALSLANYLAADSAAEALRRDVRAGLTATQKSLPPKWFYDAVGSDLFDQITRLPEYYPT
RTEAQILRTRSAEIISAAGADTLVELGSGTSEKTRMLLDAMRDAELLRRFIPFDVDAGVLRSAGAAIGAEYPGIE
IDAVCGDFEEHLGKIPHVGRRLVVFLGSTIGNLTPAPRAEFLSTLADTLQPGDSLLLGTDLVKDTGRLVRAYDDA
AGVTAAFNRNVLAVVNRELSADFDLDAFEHVAKWNSDEERIEAWLRARTAQHVRVAALDLEVDFAAGEEMLTAVS
CKFRPENVVAELAEAGLRQTHWWTDPAGDFGLSLAVR 

m/z(EgtD M252A E282A): calc.: 36871.5 Da, measured: 36870.8 Da 
 
 Sequence of EgtD E282A M252A N217C: 
GHHHHHHAENLYFQGHMALSLANYLAADSAAEALRRDVRAGLTATQKSLPPKWFYDAVGSDLFDQITRLPEYYPT
RTEAQILRTRSAEIISAAGADTLVELGSGTSEKTRMLLDAMRDAELLRRFIPFDVDAGVLRSAGAAIGAEYPGIE
IDAVCGDFEEHLGKIPHVGRRLVVFLGSTIGNLTPAPRAEFLSTLADTLQPGDSLLLGTDLVKDTGRLVRAYDDA
AGVTAAFCRNVLAVVNRELSADFDLDAFEHVAKWNSDEERIEVWLRARTAQHVRVAALDLEVDFAAGEEMLTAVS
CKFRPENVVAELAEAGLRQTHWWTDPAGDFGLSLAVR 

m/z (EgtD E282A M252A N217C): calc.: 36888.6 Da, measured: 36888.4 Da 
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 Sequence of EgtD F47W: 
GHHHHHHAENLYFQGHMALSLANYLAADSAAEALRRDVRAGLTATQKSLPPKWFYDAVGSDLWDQITRLPEYYPT
RTEAQILRTRSAEIISAAGADTLVELGSGTSEKTRMLLDAMRDAELLRRFIPFDVDAGVLRSAGAAIGAEYPGIE
IDAVCGDFEEHLGKIPHVGRRLVVFLGSTIGNLTPAPRAEFLSTLADTLQPGDSLLLGTDLVKDTGRLVRAYDDA
AGVTAAFNRNVLAVVNRELSADFDLDAFEHVAKWNSDEERIEMWLRARTAQHVRVAALDLEVDFAAGEEMLTEVS
CKFRPENVVAELAEAGLRQTHWWTDPAGDFGLSLAVR 

m/z (EgtD F47W): calc.: 37028.6 Da, measured: 37028.0 Da 
 
 Sequence of EgtD Y56F: 
GHHHHHHAENLYFQGHMALSLANYLAADSAAEALRRDVRAGLTATQKSLPPKWFYDAVGSDLFDQITRLPEFYPT
RTEAQILRTRSAEIISAAGADTLVELGSGTSEKTRMLLDAMRDAELLRRFIPFDVDAGVLRSAGAAIGAEYPGIE
IDAVCGDFEEHLGKIPHVGRRLVVFLGSTIGNLTPAPRAEFLSTLADTLQPGDSLLLGTDLVKDTGRLVRAYDDA
AGVTAAFNRNVLAVVNRELSADFDLDAFEHVAKWNSDEERIEMWLRARTAQHVRVAALDLEVDFAAGEEMLTEVS
CKFRPENVVAELAEAGLRQTHWWTDPAGDFGLSLAVR 

m/z (EgtD Y56F): calc.: 36973.6 Da, measured: 36975.1 Da 
 
 Sequence of EgtD F47W Y56F: 
GHHHHHHAENLYFQGHMALSLANYLAADSAAEALRRDVRAGLTATQKSLPPKWFYDAVGSDLWDQITRLPEFYPT
RTEAQILRTRSAEIISAAGADTLVELGSGTSEKTRMLLDAMRDAELLRRFIPFDVDAGVLRSAGAAIGAEYPGIE
IDAVCGDFEEHLGKIPHVGRRLVVFLGSTIGNLTPAPRAEFLSTLADTLQPGDSLLLGTDLVKDTGRLVRAYDDA
AGVTAAFNRNVLAVVNRELSADFDLDAFEHVAKWNSDEERIEMWLRARTAQHVRVAALDLEVDFAAGEEMLTEVS
CKFRPENVVAELAEAGLRQTHWWTDPAGDFGLSLAVR 

m/z (EgtD F47W Y56F): calc.: 37012.6 Da, measured: 37011.7 Da 
 
 Sequence of EgtD N166D: 
GHHHHHHAENLYFQGHMALSLANYLAADSAAEALRRDVRAGLTATQKSLPPKWFYDAVGSDLFDQITRLPEYYPT
RTEAQILRTRSAEIISAAGADTLVELGSGTSEKTRMLLDAMRDAELLRRFIPFDVDAGVLRSAGAAIGAEYPGIE
IDAVCGDFEEHLGKIPHVGRRLVVFLGSTIGDLTPAPRAEFLSTLADTLQPGDSLLLGTDLVKDTGRLVRAYDDA
AGVTAAFNRNVLAVVNRELSADFDLDAFEHVAKWNSDEERIEMWLRARTAQHVRVAALDLEVDFAAGEEMLTEVS
CKFRPENVVAELAEAGLRQTHWWTDPAGDFGLSLAVR 

m/z (EgtD N166D): calc.: 36990.6 Da, measured: 36989.4 Da. 
 

 Sequence of EgtD C139A: 
GHHHHHHAENLYFQGHMALSLANYLAADSAAEALRRDVRAGLTATQKSLPPKWFYDAVGSDLFDQITRLPEYYPT
RTEAQILRTRSAEIISAAGADTLVELGSGTSEKTRMLLDAMRDAELLRRFIPFDVDAGVLRSAGAAIGAEYPGIE
IDAVAGDFEEHLGKIPHVGRRLVVFLGSTIGNLTPAPRAEFLSTLADTLQPGDSLLLGTDLVKDTGRLVRAYDDA
AGVTAAFNRNVLAVVNRELSADFDLDAFEHVAKWNSDEERIEMWLRARTAQHVRVAALDLEVDFAAGEEMLTEVS
CKFRPENVVAELAEAGLRQTHWWTDPAGDFGLSLAVR 

m/z (EgtD C139A): calc.: 36957.6 Da, measured: 36956.6 Da. 
 

 Sequence of EgtD C285A: 
GSSHHHHHHSSGLVPRGSHMALSLANYLAADSAAEALRRDVRAGLTATQKSLPPKWFYDAVGSDLFDQITRLPEY
YPTRTEAQILRTRSAEIISAAGADTLVELGSGTSEKTRMLLDAMRDAELLRRFIPFDVDAGVLRSAGAAIGAEYP
GIEIDAVCGDFEEHLGKIPHVGRRLVVFLGSTIGNLTPAPRAEFLSTLADTLQPGDSLLLGTDLVKDTGRLVRAY
DDAAGVTAAFNRNVLAVVNRELSADFDLDAFEHVAKWNSDEERIEMWLRARTAQHVRVAALDLEVDFAAGEEMLT
EVSAKFRPENVVAELAEAGLRQTHWWTDPAGDFGLSLAVR 

m/z (EgtD C285A): calc.: 37049.7 Da, measured: 37048.9 Da. 
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 Sequence of EgtD C285D: 
GSSHHHHHHSSGLVPRGSHMALSLANYLAADSAAEALRRDVRAGLTATQKSLPPKWFYDAVGSDLFDQITRLPEY
YPTRTEAQILRTRSAEIISAAGADTLVELGSGTSEKTRMLLDAMRDAELLRRFIPFDVDAGVLRSAGAAIGAEYP
GIEIDAVCGDFEEHLGKIPHVGRRLVVFLGSTIGNLTPAPRAEFLSTLADTLQPGDSLLLGTDLVKDTGRLVRAY
DDAAGVTAAFNRNVLAVVNRELSADFDLDAFEHVAKWNSDEERIEMWLRARTAQHVRVAALDLEVDFAAGEEMLT
EVSDKFRPENVVAELAEAGLRQTHWWTDPAGDFGLSLAVR 

m/z (EgtD C285D): calc.: 37093.6 Da, measured: 37092.7 Da. 
 

 Sequence of EgtD C285S: 
GSSHHHHHHSSGLVPRGSHMALSLANYLAADSAAEALRRDVRAGLTATQKSLPPKWFYDAVGSDLFDQITRLPEY
YPTRTEAQILRTRSAEIISAAGADTLVELGSGTSEKTRMLLDAMRDAELLRRFIPFDVDAGVLRSAGAAIGAEYP
GIEIDAVCGDFEEHLGKIPHVGRRLVVFLGSTIGNLTPAPRAEFLSTLADTLQPGDSLLLGTDLVKDTGRLVRAY
DDAAGVTAAFNRNVLAVVNRELSADFDLDAFEHVAKWNSDEERIEMWLRARTAQHVRVAALDLEVDFAAGEEMLT
EVSSKFRPENVVAELAEAGLRQTHWWTDPAGDFGLSLAVR 

m/z (EgtD C285S): calc.: 37065.7 Da, measured: 37064.7 Da. 
 

6.2 Synthesis of the Inhibitors 
 

The syntheses of all the inhibitors were performed by Reto Burn. Only 3-(imidazole-4-yl) 

propionic acid was purchased from Sigma-Aldrich. 

General. All reagents used were purchased from commercial sources without further 

purification. All solvents used in reactions were purchased in HPLC-grade quality and used as 

such. Dry solvents were purchased in HPLC-grade quality and used as such. Chromatographic 

purifications (flash) were performed with SiliaFlash P60 from Silicycle (40-63 um; (230-400) 

mesh). NMR spectra were acquired on a Bruker 400 MHz or a Bruker 500 MHz instrument. 1H 

and 13C chemical shifts are quoted relative to solvent signals unless for 13C NMRs in D2O t-

butanol was added as internal standard. ESI-MS spectra were obtained were obtained on a 

Bruker Esquire3000plus spectrometer by direct injection in positive polarity of the ion trap 

detector. 

 

Synthesis of D,L-α-bromo histidine ($1)210. To a stirred solution of D,L-

Histidine (500 mg, 3.22 mmol, 1 eq.) in concentrated hydrobromic acid (4 

ml) was added sodium nitrite (444 mg, 6.4 mmol, 2 eq.) dissolved in water 

(2 ml) at 0°C. The mixture was stirred for 30 minutes at 0°C and 4 hours at 

room temperature. Then sodium nitrite (222 mg, 3.2 mmol, 1 eq.) dissolved in water (2 ml) was 

added at 0 °C. The mixture was stirred over night at room temperature. The solvent was 

removed in vacuo and co-evaporated 3 times with water to remove excess hydrobromic acid. 

The solid residue was extracted 3 times with acetone. The solvent was removed in vacuo to yield 

the title compound (492 mg, 1.64 mmol, 51%) as brown solid.1H NMR (400 MHz, DMSO-d6, 

OH

O
Br

N
HN
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δ/PPM) 14.23 (s, 3H), 9.11 (d, J = 1.4 Hz, 1H), 7.57 (d, J = 1.3 Hz, 1H), 4.78 (dd, J = 8.7, 6.1 Hz, 

1H), 3.47 (dd, J = 15.7, 6.1 Hz, 1H), 3.26 (dd, J = 15.7, 8.7 Hz, 1H). 13C NMR (101 MHz, DMSO, 

δ/ppm) 169.83, 134.05, 129.22, 117.43, 44.26, 29.58. ESI-MS m/z calcd. for C6H8BrN2O2 [M+H]+ 

218.98 (100.0%), 220.97 (97.3%), found 218.9, 221.0. HRMS m/z calcd. for C6H7BrN2NaO2 

[M+Na]+ 240.9583, found 240.9582, Δ (ppm) = 0.1. 

Synthesis of  D,L-α-chloro histidine ($2)211. To a stirred solution of 

D,L-histidine (500 mg, 3.22 mmol, 1 eq.) in concentrated HCl (7.5 ml) 

was added at 0°C a cold solution of sodium nitrite (800 mg, 11.6 mmol, 

3.6 eq.) in water (1.5 ml). The reaction was stirred for 2 hours at 0°C 

and additional 5 hours at room temperature. The precipitate was removed by filtration and 

washed with conc. HCl. The solvent was removed in vacuo. The solid residue was extracted with 

acetone (3 x 10 ml). The solvent was removed in vacuo to yield the title compound (190 mg, 0.90 

mmol, 28%) as yellowish solid. 1H NMR (400 MHz, DMSO-d6, δ/ppm) 14.70 (m, 2H), 9.06 (s, 

1H), 7.52 (s, 1H), 4.92 (dd, J = 8.7, 5.3 Hz, 1H), 3.41 (dd, J = 15.5, 5.3 Hz, 1H), 3.22 (dd, J = 15.5, 

8.8 Hz, 1H). 13C NMR (101 MHz, DMSO-d6, δ/ppm) 169.36, 133.79, 128.50, 117.41, 55.56, 

29.53. ESI-MS m/z calcd. for C6H8ClN2O2 [M+H]+ 175.03, found 174.88. HRMS m/z calcd. for 

C6H8ClN2NaO2 [M+H]+ 175.0269, found 175.0268, Δ (ppm) = 0.3;   

 

Synthesis of  D,L-α-hydroxy histidine ($3). To a stirred solution of D,L-

histidine in 4 M sulfuric acid was added sodium nitrite (667 mg, 9.66 

mmol, 3.0 eq.) dissolved in water (3.0 ml) at 0°C. The mixture was stirred 

for 48 hours at room temperature and then sodium nitrite (222 mg, 3.22 

mmol, 1 eq.) dissolved in water (2ml) was added at 0°C and the mixture was stirred for further 

72 hours at room temperature. The mixture was neutralized with sodium hydrogencarbonate 

and the solvent was removed in vacuo. The solid was extracted with ethanol (20 ml) to yield the 

title compound as brown solid (124 mg, 0.79 mmol, 25%).1H NMR (400 MHz, D2O, δ/ppm) 

7.65 (d, J = 1.2 Hz, 1H), 6.97 – 6.84 (m, 1H), 4.23 (dd, J = 8.0, 4.1 Hz, 1H), 3.03 (ddd, J = 15.1, 4.1, 

0.9 Hz, 1H), 2.87 (ddd, J = 15.1, 8.0, 0.7 Hz, 1H).13C NMR (101 MHz, MeOD, δ/ppm) 180.63, 

135.60, 133.74, 120.88, 73.28, 33.01. ESI-MS m/z calcd. for C6H9N2O3 [M+H]+ 157.06, found 

156.9. HRMS m/z calcd. for C6H9N2O3 [M+H]+ 157.0608, found 157.0608, Δ (ppm) = -0.2.  

 

Synthesis of 4-(chloromethyl)-1H-imidazole hydrochloride ($4)212. 

To 4-(hydroxymethyl)imidazole (613 mg, 6.25 mmol, 1 eq.) was added 

thionyl chloride (2.2 ml, 31,3 mmol, 5 eq.). The mixture was stirred for 1 

day then the solvent was removed at the HV to obtain the title compound (950 mg, 6.2 mmol, 

99%) as a beige solid. 1H NMR (400 MHz, DMSO-d6, δ/ppm)  14.81 (bs, 2H), 9.16-9.10 (m, 1H), 
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7.88 – 7.64 (m, 1H), 4.88 (s, 2H). 13C NMR (400 MHz, DMSO-d6, δ/ppm) 135.15, 129.42, 

118.46, 34.29. 

 

Synthesis of diethyl 2-((1H-imidazol-4-yl)methyl)-2-methylmalonate 

($5)212. To a stirred solution of diethyl methylmalonate (0.15 ml, 0.87 

mmol, 1 eq.)  in DMF (3ml) was added sodium hydride (60% mineral oil 

dispersion, 60 mg, 1.5 mmol, 2.3 eq.) at 0°C. To this mixture was added $4 

(100 mg, 0.65 mmol, 1.0 eq.) portion wise. The mixture turned yellow. Stirred for 24 h at room 

temperature. The reaction was diluted with ethylacetate (10 ml), washed with 1 M sodium 

hydroxide (3x 10 ml) and dried over sodium sulfate. The solvent was removed in vacuo and the 

crude was purified by column chromatography (DCM/MeOH 94:4) to yield the title compound as 

white solid (67 mg, 0.26 mmol, 40%). 1H NMR (400 MHz, DMSO-d6, δ/ppm) 11.80 (s, 1H), 7.49 

(d, J = 1.2 Hz, 1H), 6.73 (s, 1H), 4.35 – 3.85 (m, 4H), 3.01 (s, 2H), 1.25 (s, 3H), 1.16 (t, J = 7.1 Hz, 

6H). 13C NMR (101 MHz, DMSO-d6, δ/ppm) 171.23, 134.73, 132.39 (HMBC), 117.20 (HMQC), 

60.81, 53.69, 32.73, 19.51, 13.86. ESI-MS m/z calcd. for C12H19N2O4 [M+H]+ 255.13, found 255.0. 

 

Synthesis of 3-(1H-imidazol-4-yl)-2-methylpropanoic acid ($6)213. To a 

stirred solution of $5 (30 mg, 0.12 mmol, 1 eq.) in water (0.35 ml) was 

added concentrated HCl (0.35 ml). The mixture was heated to reflux and 

stirred for 48 hours. The solvent was removed in vacuo to yield the title compound as colorless 

oil (22 mg, 0.12 mmol, 98%). 1H NMR (400 MHz, D2O, δ/ppm) 8.59 (d, J = 1.4 Hz, 1H), 7.29 – 

7.26 (m, 1H), 3.09 – 2.76 (m, 3H), 1.25-1.15 (m, 3H). 13C NMR (400 MHz, D2O, δ/ppm, t-

butanol as internal standard)  180.39, 133.59, 131.58, 116.99, 39.79, 28.11, 16.70. ESI-

MS m/z calcd. for C7H11N2O2 [M+H]+ 155.08, found 154.9. HRMS m/z calcd. for C7H11N2O2 [M+H]+ 

155.0815, found 155.0816, Δ (ppm) = -0.5. 

 

Synthesis of diethyl 2-((1H-imidazol-4-yl)methyl)-2-fluoromalonate 

($7)212. To a stirred solution of diethyl fluoromalonate (0.13 ml, 0.825 

mmol, 1.26 eq.) in DMF (3 ml) was added sodium hydride (60 % mineral 

oil dispersion, 60 mg, 1.5 mmol, 2.29 eq.) at 0°C. The ice bath was removed 

and the reaction was stirred for 15 min at room temperature. The mixture turned slightly 

yellow. Then the mixture was cooled to 0°C and $4 (100 mg, 0.653 mmol, 1 eq.) was added. The 

cooling bath was removed and the mixture was stirred at room temperature for 4 hours. The 

color turned red. The reaction was diluted with ethyl acetate (10 ml) and washed with water (3 

x 10 ml). The organic layer was dried over sodium sulfate and the solvent was removed in vacuo. 

The crude was purified by flash column chromatography (ethylacetate 100%) to yield the title 

NH
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compound (75 mg, 0.29 mmol, 45%). 1H NMR (400 MHz, DMSO-d6, δ/ppm) 7.51 (d, J = 1.1 Hz, 

1H), 6.88 (bs, 1H), 4.22 (qd, J = 7.1, 1.4 Hz, 4H), 3.42-3.28 (m, 1H), 1.19 (t, J = 7.0 Hz, 6H). 13C 

NMR (101 MHz, DMSO, δ/ppm) 165.33 (d, J = 25.8 Hz), 135.04, 130.18 (HMBC), 117.29, 93.81 

(d, J = 197.7 Hz), 62.30, 32.34 (d, J = 22.0 Hz), 13.75. ESI-MS m/z calcd. for C11H16FN2O4 [M+H]+ 

259.1, found 259.0. 

 

Synthesis of D,L-2-fluoro-3-(1H-imidazol-4-yl)propanoic acid ($8)213. $7 

(75 mg, 0.29 mmol, 1 eq.) was dissolved in concentrated HCl (1.5 ml) and 

heated to reflux. The mixture was stirred for 34 hours at reflux. The solvent 

was evaporated in vacuo to obtain the title compound as beige solid (45 mg, 

0.23 mmol, 80%). 1H NMR (400 MHz, D2O, δ/ppm) 8.65 (d, J = 1.3 Hz, 1H), 7.37 (s, 1H), 5.47 – 

5.12 (m, 1H), 3.53 – 3.30 (m, 2H).13C NMR (400 MHz, MeoD, δ/ppm) 171.15 (d, J = 23.6 Hz), 

135.34 , 129.53 , 118.76 , 88.16 (d, J = 184.6 Hz), 28.76 (d, J = 21.8 Hz). ESI-MS m/z calcd. for 

C6H7FN2NaO2 [M+Na]+ 181.0, found 180.9. HRMS m/z calcd. for C6H8FN2O2 [M+H]+ 159.0564, 

found 159.0565, Δ (ppm) = -0.7. 

 

Synthesis of diethyl 2-(pyrrolidin-1-yl)malonate ($9)214. Diethyl 

bromomalonate (0.5 ml, 2.93 mmol, 1 eq.), pyrrolidine (0.36 ml, 4.4 mmol, 1.5 

eq.) and triethylamine (0.82 ml, 5.86, 2 eq.) were dissolved in chloroform (38 

ml) and stirred at reflux for 2 hours. The mixture was cooled to room 

temperature and diluted with NaOH (1M, 40 ml). The phases were separated and the aqueous 

phase was extracted with ethylacetate (3 x 20 ml). The combined organic layers were washed 

with water and brine and dried over sodium sulfate. The solvent was removed in vacuo. The 

crude was purified by flash column chromatography (cyclohexane/ethylacetate 7:3) to yield the 

title compound as yellowish oil (639 mg, 2.79 mmol, 95%). 1H NMR (400 MHz, DMSO-d6, 

δ/ppm) 4.27 (s, 1H), 4.16 (q, J = 7.1 Hz, 4H), 3.65 – 3.49 (m, 4H), 2.75 – 2.60 (m, 4H), 1.20 (t, J = 

7.1 Hz, 6H). 13C NMR (400 MHz, DMSO-d6, δ/ppm) 167.13, 67.03, 60.72, 49.43, 23.65, 13.98. 

ESI-MS m/z calcd. for C11H20NO4 [M+H]+ 230.14, found 230.0. 

 

Synthesis of diethyl 2-morpholinomalonate ($10)214. Diethyl 

bromomalonate (0.5 ml, 2.93 mmol, 1 eq.), morpholine (0.39 ml, 4.4 mmol, 

1.5 eq.) and triethylamine (0.82 ml, 5.86, 2 eq.) were dissolved in chloroform 

(38 ml) and stirred at reflux for 20 hours. The reaction was cooled to room 

temperature and diluted with NaOH (1M, 40 ml). The phases were separated 

and the aqueous phase was extracted with ethylacetate (3 x 20 ml). The combined organic layers 

were washed with water and brine and dried over sodium sulfate. The solvent was removed in 
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vacuo. The crude was purified by flash column chromatography (cyclohexane/ethylacetate 7:3) 

to yield the title compound as yellowish oil (635 mg, 2.59 mmol, 88%). 1H NMR (400 MHz, 

DMSO-d6, δ/ppm) 4.27 (s, 1H), 4.16 (q, J = 7.1 Hz, 4H), 3.65 – 3.49 (m, 4H), 2.75 – 2.60 (m, 4H), 

1.20 (t, J = 7.1 Hz, 6H). 13C NMR (400 MHz, DMSO-d6, δ/ppm) 166.68, 69.46, 66.42, 60.79, 

49.75, 14.03. ESI-MS m/z calcd. for C11H19NNaO5 [M+Na]+ 268.12, found 268.0. 

 

Synthesis of diethyl 2-((1H-imidazol-4-yl)methyl)-2-(pyrrolidin-1-

yl)malonate ($11)212.To a stirred solution of $9 (225 mg, 0.98 mmol, 1.5 

eq.) in DMF (3 ml) sodium hydride (60% mineral oil dispersion, 65 mg, 1.64 

mmol, 2.5 eq.) was added at 0°C. The mixture was stirred for 10 min, then $4 

(100 mg, 0.65 mmol, 1 eq.) was added. The mixture was stirred for 36 hours, 

then the reaction was diluted with ethyl acetate (10 ml) and washed with 1 M NaOH (3 x 10 ml) 

and brine (5 ml). The organic layer was dried over sodium sulfate. The solvent was removed in 

vacuo. The crude was purified by column chromatography (DCM/MeOH 95:5) to yield the title 

compound as a yellowish oil (130 mg, 0.42 mmol, 65 %). 1H NMR (400 MHz, DMSO-d6, δ/ppm) 

11.66 (s, 1H), 7.58 – 7.34 (m, 1H), 6.74 (s, 1H), 4.20 – 4.05 (m, 4H), 3.20 (s, 2H), 2.84 – 2.78 (m, 

4H), 1.68 – 1.54 (m, 4H), 1.14 (t, J = 7.1 Hz, 6H). 13C NMR (400 MHz, DMSO, δ/ppm) 168.28, 

134.12, 131.42 (HMBC), 117.77 (HSQC), 73.10, 60.46, 47.20, 32.80, 23.63, 14.02. ESI-MS m/z 

calcd. for C15H24N3O4 [M+H]+ 310.18, found 310.10. 

 

Synthesis of diethyl 2-((1H-imidazol-4-yl)methyl)-2-

morpholinomalonate ($12)212. To a stirred solution of $10 (200 mg, 0.815 

mmol, 1.5 eq.) in DMF (3 ml) at 0°C sodium hydride (60% mineral oil 

dispersion, 55 mg, 1.36 mmol, 2.5 eq.) was added. The mixture was stirred 5 

min at 0°C then additional 5 min at room temperature. To this mixture $4 (83 

mg, 0.54 mmol, 1 eq.) was added at 0°C. The mixture was stirred at room 

temperature for 48 hours, diluted with ethyl acetate (10 ml), washed with saturated NaHCO3 (3 

x 10 ml) and brine (5 ml). The organic layer was dried over sodium sulfate and the solvent was 

removed in vacuo. The crude was purified by column chromatography (DCM/MeOH 94:6) to 

yield the title compound as a colorless crystals (55 mg, 0.184 mmol, 31%).The aqueous phase 

was reextracted with DCM (3x 10 ml). The combined organic layers were washed with brine and 

dried over sodium sulfate. The solvent was evaporated in vacuo. The crude was purified by 

column chromatography (DCM/MeOH 94:6) to yield the title compound as white crystals (30 

mg, 0.092 mmol, 17%). 1H NMR (400 MHz, DMSO-d6, δ/ppm) 11.71 (s, 1H), 7.47 (d, J = 1.2 Hz, 

1H), 6.83 – 6.75 (m, 1H), 4.22 – 4.02 (m, 4H), 3.62 – 3.50 (m, 4H), 2.68 – 2.60 (m, 4H), 1.15 (t, J = 

7.1 Hz, 6H). 13C NMR (400 MHz, DMSO-d6, δ/ppm) 167.68, 134.17, 131.47 (HSQC), 117.20 
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(HMBC), 74.12, 66.70, 60.65, 48.35, 14.01. ESI-MS m/z calcd. for C15H24N3O5 [M+H]+ 326.17, 

found 326.1. 

 

Synthesis of D,L-α-morpholino histidine ($13)213. $11 (55 mg, 

0.17 mmol, 1 eq.) was dissolved in half concentrated HCl (2 ml) 

and stirred at reflux for 48 hours. The solvent was removed in 

vacuo to obtain the title compound as beige solid (42 mg, 0.16 

mmol, 95%).1H NMR (400 MHz, D2O, δ/ppm) 8.65 (d, J = 1.4 Hz, 1H), 7.38 (s, 1H),4.09 – 3.84 

(m, 5H), 3.65 – 3.40 (m, 5H), 3.30 (dd, J = 14.9, 10.2 Hz, 1H). 13C NMR (101 MHz, D2O, δ/ppm, t-

butanol as internal standard) 169.47, 134.43, 126.67, 118.46, 67.91, 64.01, 51.00, 22.61. ESI-

MS m/z calcd. for C10H16N3O3 [M+H]+ 226.12, found 226.0. HRMS m/z calcd. for C10H16N3O3 

[M+H]+ 226.1186, found 226.1188, Δ (ppm) = -0.7. 

 

Synthesis of D,L-α-pyrrolidino histidine ($14)213. $12 (74 mg, 

0.24 mmol, 1 eq.) was dissolved in half concentrated HCl (2 ml) 

and stirred at reflux for 48 hours. The solvent was evaporated in 

vacuo to obtain the title compound as beige solid (52 mg, 0.21 

mmol, 88 %). 1H NMR (400 MHz, D2O, δ/ppm) 8.56 (d, J = 1.4 Hz, 1H), 7.29 (d, J = 1.2 Hz, 1H), 

3.89 (dd, J = 9.6, 4.5 Hz, 1H), 3.81 – 2.90 (m, 6H), 1.98 (br, 4H). 13C NMR (101 MHz, D2O, δ/ppm, 

t-butanol as reference) 170.22, 134.49, 126.37, 118.54, 66.47, 55.40, 52.80, 24.85, 23.35 (bs). 

ESI-MS m/z calcd. for C10H16N3O2 [M+H]+ 210.12, found 210.0. HRMS m/z calcd. for C10H16N3O2 

[M+H]+ 210.1237, found 226.1239, Δ (ppm) = -1.0. 

 

Synthesis of methyl 2-bromo-3-(1H-imidazol-4-yl) propanoate ($15). L-

-bromo histidine (1 g, approx. 1.83 mmol, 1 eq.) was dissolved in MeOH (5 

ml) and cooled to 0°C. There to thionyl chloride (0.2 ml, 2.75 mmol, 1.5 eq.) 

was added dropwise. The mixture was stirred at 0°C for 30 min, then allowed 

to reach room temperature. After 1 hour at room temperature, the solvent was removed on the 

HV and the crude was dissolved in water (approx. 30 ml), basified with sat. sodium carbonate 

solution, extracted with ethyl acetate (approx. 3 x 30 ml) and dried over sodium sulfate. The 

solvent was removed in vacuo to yield $15 (324 mg, 1.39 mmol, 76%). No further purification 

was performed.1H NMR (400 MHz, Chloroform-d, δ/ppm) 7.62 (d, J = 1.2 Hz, 1H), 6.92 (d, J = 

1.1 Hz, 1H), 4.56 (dd, J = 8.3, 6.6 Hz, 1H), 3.59 – 3.09 (m, 2H). ESI-MS m/z calcd. for 

C7H10BrN2O2[M+H]+ = 233.0, found: [M+H]+ = 233.0. 
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Synthesis of methyl 2-bromo-3-(1-tosyl-1H-imidazol-4-yl)propanoate 

($16). $15 (300 mg, 1.29 mmol, 1 eq.) was dissolved in chloroform (6 ml). 

TEA (0.18 ml, 1.29 mmol, 1 eq.) was added. The mixture was cooled to 0°C. 

Then TsCl (246 mg, 1.29 mmol, 1 eq.) was added. The reaction was stirred 

for 10 min at 0°C then allowed to reach room temperature. Stirred overnight. The reaction was 

diluted with chloroform (10 ml) and then washed with water (3x 5 ml), 0.1 M acetic acid (3x 5 

ml) and brine (1x 5 ml). The organic layer was dried over sodium sulfate and then concentrated 

in vacuo. The crude was purified by silica gel column chromatography (cyclohexane/ethyl 

acetate 7:3) to yield $16 (300 mg, 0.77 mmol, 60%). 1H NMR (400 MHz, DMSO-d6, δ/ppm) 8.29 

(m, 1H), 7.94 (m, 2H), 7.57 (m, 1H), 7.53 – 7.45 (m, 2H), 4.70 (m, 1H), 3.64 (s, 3H), 3.31 – 3.02 

(m, 2H), 2.40 (s, 3H). ESI-MS m/z calcd. for C14H16BrN2O4S [M+H]+ 387.0, found 387.0. 

 

Synthesis of methyl 2-(azetidin-1-yl)-3-(1-tosyl-1H-imidazol-4-

yl)propanoate ($17). $16 (1000 mg, 2.6 mmol, 1 eq.) was dissolved in DMF 

(15 ml). Cesium carbonate (1260 mg, 3.9 mmol, 1.5 eq) and azetidine 

hydrochloride (266 mg, 2.8 mmol, 1.1 eq.) were added. The reaction was 

stirred at 40°C. The mixture was diluted with ethyl acetate (250 ml) after 6 hours. The organic 

layer was washed with sat. sodium bicarbonate solution (3x 100 ml), brine (100 ml) and dried 

over sodium sulfate. The solvent was removed in vacuo. The crude was purified by silica gel 

column chromatography (DCM/MeOH 195:5) to yield the product as a slightly brown oil (75 mg, 

0.196 mmol 7.6 %). 1H NMR (400 MHz, Chloroform-d, δ/ppm) 7.89 (m, J = 1.4 Hz, 1H), 7.78 (m, J 

= 8.4 Hz, 2H), 7.33 (m, J = 8.0, 0.8 Hz, 2H), 7.07 – 6.98 (m, 1H), 3.57 (s, 3H), 3.31 (dd, J = 7.9, 5.6 

Hz, 1H), 3.24 (t, J = 7.1 Hz, 4H), 2.86 – 2.68 (m, 2H), 2.42 (s, 3H), 2.11 – 1.97 (m, 2H). 13C NMR 

(400 MHz, Chloroform-d, δ/ppm) 171.81, 146.17, 140.98, 136.29, 135.08, 130.36, 127.30, 

114.49, 68.91, 53.47, 51.59, 28.87, 21.70, 17.43. 

 
Synthesis of 2-(azetidin-1-yl)-3-(1H-imidazol-4-yl)propanoic acid 

($18). To a stirred solution of $17 (70 mg, 0.19 mmol, 1 eq.) in 

tetrahydrofuran (1.1 ml) was added 1 M aqueous lithium hydroxide solution 

(1.1 ml, 1.1 mmol, 6 eq.). The reaction was stirred for 6 hours then the 

solvent was removed in vacuo. The crude was purified by ion exchange column chromatography. 

The sample was dissolved in 1 M HCl (4 ml) and diluted with water (approx. 50 ml) then loaded 

on Dowex 50 W X 4 (2 ml resin), washed with water (40 ml) and eluted with 0.125 M ammonia 

solution. The solvent was lyophilized and $18 was obtained as off-white solid (37 mg, 0,19 

mmol, 98 %).1H NMR (400 MHz, D2O, δ/ppm) 7.70 (d, J = 1.2 Hz, 1H), 6.98 (d, J = 1.1 Hz, 1H), 

4.18 (q, J = 8.9 Hz, 2H), 4.11 – 4.01 (m, 3H), 3.22 – 3.01 (m, 2H), 2.42 (p, J = 8.3 Hz, 2H). 13C NMR 

(400 MHz, D2O, δ/ppm) 172.31, 136.09, 131.58, 116.49, 69.31, 54.15, 26.02, 15.68. ESI-MS m/z 
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calcd. for C9H14N3O2 [M+H]+196.10, found 196.0. HRMS m/z calcd. for C9H14N3O2 [M+H]+ 

196.1081, found 196.1081, Δ (ppm) = -0.5. 
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List of abbreviations 
 

AHCY   S-adenosylhomocysteine hydrolase 

ATP   Adenosine triphosphate 

BHMT   Betaine homocysteine methyltransferase 

ClHis  -chlorohistidine 

DMH  Dimethylhistidine 

DMW  Dimethyltryptophan 

DMY  Dimethyltyrosine 

DNA  Deoxyribonucleic acid  

DOPA  3,4-dihydroxyphenylalanine 

Ds  Dichomitus squalens 

EC  Enzyme class 

Egt  Ergothioneine 

FAD  Flavin adenine dinucleotide 

Fd  Ferredoxin 

FPLC  Fast protein liquid chromatography 

GABA  γ-amino butyric acid 

GSH  Glutathione 

HPLC  High performance liquid chromatography 

HPR  Horseradish peroxidase 

HRMS  High resolution mass spectroscopy 

IAA  Indole-3-acetic acid 

ICT  Isothermal calorimetric titration 

IE HPLC Ion-exchange high performance liquid chromatography 

IL  Ionic liquid 

LSD  Lysergic acid diethylamide 

MAT  S-adenosylmethionine synthetase 

Me  Methyl (group) 

MetS  Methionine synthase  

MMH  Methylhistidine 
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MS  Mass Spectroscopy 

MT  Methyltransferase 

OCTN  Organic cation transporter novel 

OD600  Optical density measured at 600 nm 

NAD  Nicotinamide adenine dinucleotide 

NAFDL  Non-alcoholic fatty liver disease 

Nu  Nucleophile 

PDB  Protein data bank 

pEA  Phosphoethanolamine 

PfPMT  Phosphoethanolamine methyltransferase 

PKMT  Protein lysine methyltransferase 

PQQ  Pyrroloquinoline quinone 

PRMT  Protein arginine methyltransferase 

ROS  Reactive oxygen species 

RP HPLC Reverse-phase high performance liquid chromatography 

RT  Room temperature 

SAH  S-adenosylmethionine 

SAM  S-adenosylhomocysteine 

Sl  Serpula lacrymans 

TEA  Tetraethylammonium 

THF  Tetrahydrofolate 

TMG  Trimethylglycine 

TMH  Trimethylhistidine 

TMW  Trimethyltryptophan 

TMY  Trimethyltyrosine 

UV  Ultraviolet 

WT  Wild type 
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