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Summary 

 

Summary 
Adult neurogenesis continues throughout life in the subventricular zone (SVZ) 

and the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG) of 

mammals. At the base of adult neurogenesis lie adult neural stem cells (NSCs). 

These cells can either be found in a dormant, non-dividing state (quiescent) or in a 

proliferating state (active). Over the last three decades the field of neurogenesis has 

expanded, but there are still open questions with regards to adult NSC maintenance 

and potential capacity. Over the course of my PhD studies I addressed three major 

questions of adult NSC maintenance.  

(1) What are the differences between active and quiescent NSCs?  

(2) Do NSCs have similar maintenance factors in the SVZ and the SGZ?  

(3) What are the capacities of distinct subtypes of NSCs and progenitors to 

respond to external stimuli?  

I was able to show that in the adult mouse brain, Notch2 is the gatekeeper of 

quiescent NSCs in both neurogenic niches, the SVZ and the SGZ. The loss of this 

Notch paralogue led to the activation of quiescent NSCS and a prolonged and 

abnormal activation, followed by NSCs exhaustion in the long term. If Notch1 was 

deleted in addition to Notch2, quiescent and active NSCs are no longer maintained 

properly and will differentiate to a neural fate. Thus an intricate interplay between 

Notch1 and Notch2 is needed for adult NSC maintenance in both neurogenic niches.  

In the SVZ the receptors Notch1 and Notch2 are coexpressed on NSCs. We 

addressed NSC identity also in the second neurogenic niche, the SGZ, where the 

receptors are also coexpressed by NSCs. The loss of Notch2 led to the activation of 

quiescent NSCs and an increased production of neuroblasts.  

The differential signal requirement for the maintenance of quiescent and active 

NSCs raises the question, whether these distinct cell populations might have unique 

functions in response to external physiological and/or pathological stimuli. In order to 

address this question we characterized the SGZ in great detail at different ages. In 

the geriatric SGZ active NSCs were lost and the NSCs that remained were 

quiescent. These quiescent NSCs have the capacity to replenish the active NSC pool 

upon induction of epileptic seizures. On the other hand, administration of 
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antidepressants left the NSCs unaffected initially. It was the amplifying progenitor 

pool that responded. In long-chase experiments the NSCs were then reactivated by 

either the resulting induced changes from the amplifying progenitors or a delay in 

NSC response. 

 

Figure 1: Graphical Summary; Cells of the neurogenic lineage express Notch receptors Notch1 

and Notch2 and the Notch signaling mediator Rbpj. However, only NSCs exhibit active Notch signaling 

characterized by expression of Notch effector genes such as Hes5 and BLBP. Hes5 and BLBP allow for 

the discrimination between quiescent (Hes5+BLBP-) and active (Hes5+BLBP+) NSCs as well as transient 

amplifying progenitors (TAPs/IPs) (Hes5-BLBP+). The distinct cell populations in the early neurogenic 

lineage are maintained by different signals. Notch2 maintains quiescent NSCs, whereas Notch1 

maintains active NSCs. Furthermore, the transition from quiescence to activity is fostered by induction of 

seizures, whereas ageing leads to a loss of active NSCs. The administration of antidepressants (namely 

Fluoxetine) is affecting the TAP cells, however not the NSCs.  

NSC maintenance in the adult murine brain is an intricate mechanism highly 

dependent on the proper internal and external mechanisms. In the work presented 

here, I will illustrate the importance of Notch signaling in NSC maintenance and the 

high level of heterogeneity within the NSC pool and the NSC niche.  
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Lay Summary (German)  
Das Gehirn von Säugetieren enthält bis ins hohe Alter Stammzellen, welche die 

Fähigkeit haben, die unterschiedlichsten neuronalen Zelltypen zu bilden. Die 

neuronalen Stammzellen (nSZ) liegen in zwei Zuständen vor: Die nSZ, welche sich 

selten teilen und in einem Ruhezustand befinden und die zweite Art nSZ, welche  

mehrere Zellteilungen durchläuft und schnell teilende Tochterzellen generiert. Diese 

Tochterzellen produzieren die Vorläuferzellen für vollständig entwickelte Neuronen 

und Glia, welche neu integriert werden können. Die nSZ werden in zwei klar 

definierten Regionen des Hirns gefunden, in der subventrikulären Zone zwischen 

Striatum und Seitenventrikel (SVZ) und in der subgranulären Zone (SGZ) des Gyrus 

Dentatus des Hippocampus (DG).  

Die natürliche Balance zwischen ruhenden und aktiven Stammzellen, sowie 

deren direkten Nachkommen, ist essentiell für den Erhalt dieser Zellen bis ins hohe 

Alter. Während meines Doktorats habe ich mich mit den Mechanismen beschäftigt, 

welche Stammzellen regulieren und zur Generation neuer Zellen führen. Ich habe 

mich speziell mit drei Fragen beschäftigt:  

(1) Wie werden nSZ im Ruhezustand und aktiven Zustand korrekt erhalten?   

(2) Sind nSZ in den neurogenen Zonen SVZ und DG vergleichbar?  

(3) Wie reagieren nSZ im Ruhezustand bis zuweilen aktiven Zustand auf externe 

Stimuli? 

Wir konnten zeigen, dass der Ruhezustand durch einen speziellen Zellrezeptor, 

Notch2, aufrecht erhalten wird. Ein weiterer Verwandter in dieser Zellrezeptorfamilie, 

Notch1, ist essentiell für den Erhalt des aktiven Zustands. Das Fehlen von Notch1 

und Notch2 führt zum Verlust der nSZ. Dieses Verhalten konnten wir sowohl in der 

SVZ als auch im DG beobachten.  

Um die nSZ zu testen, wurden verschiedene Stimuli verabreicht und wir konnten 

feststellen, dass die einzelnen nSZ Typen unterschiedlich reagierten. Während die 

nSZ im Ruhezustand ein Reservoir darstellten, sind die aktiven Zellen die funktionale 

Einheit. Die hier präsentierten Erkenntnisse sind wichtig für die Entwicklung von 

neuen, gezielten Therapiemöglichkeiten.  
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Introduction 
Cell diversification in the body is largely completed by birth, or shortly thereafter, 

but organs possess mechanisms to replace lost cells throughout life. To be able to 

maintain this repairing capacity many developing organs set aside somatic stem cells 

(SC). These adult stem cells (aSC) maintain some of the features of embryonic stem 

cells (eSC), such as the capacity to self-renew. aSC remain within specific regions of 

the organ and are able to differentiate into one (unipotent) but more typically many 

(multipotent) lineages (Fuchs, 2004; Schofield, 1978). As organs differ in size, 

architecture and function they are subject to different biological and physical 

challenges and therefore have different regenerative needs. Thus different ways to 

restore cell numbers have evolved. Today it is known that aSC are not only found in 

high turnover organs, such as the bone marrow, which harbors hematopoietic stem 

cells (HSCs). They are also present in organs where cell replacement is slower, 

including the brain where neural stem cells (NSCs) generate restricted neuronal cell 

types (Gage, 2000; Kempermann et al., 2015).  

Neurogenesis 
The development of the central nervous system (CNS) is an intricate process 

precisely regulated in time and space. In rodents, the majority of the cells present in 

the adult brain are produced during embryogenesis. The SCs responsible for building 

the brain are retained in the ventricular zone (VZ) These SCs give rise to all cells of 

the developing and mature CNS, including NSCs (Fuentealba et al., 2015; Kazanis et 

al., 2008). The process by which new neurons are formed from NSCs is termed 

neurogenesis.  

Neurogenesis in mammals is a complex process, which needs to be controlled 

and regulated properly as it is an energetically expensive process that bears risks 

(Kempermann, 2015). In the last years various populations of stem and progenitor 

cells have been identified in the developing and the adult brain. These distinct stem 

cells in turn can be found within specific regions of the brain. The regional specificity 

and the distinct intrinsic properties of NSCs illustrate the high complexity and 

heterogeneity of neurogenesis. Improper regulation, due to extrinsic injury or intrinsic 

genetics, can lead to aberrant wiring of newborn neurons both in the embryo and the 

adult, contributing to pathologies (Dietrich and Kempermann, 2006).  
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Embryonic neurogenesis 
Around embryonic day 8 (E8) neurulation is initiated through a combination of 

released growth factors and inhibitory signals secreted by the notochord, the dorsal 

ectoderm and the Spemann organizer (Tam and Loebel, 2007). During neurulation 

the neural plate folds and forms the neural tube, the very early precursor of the CNS.  

The neural tube is lined exteriorly by neural crest cells (NCCs) and interiorly by 

neuroepithelial progenitors (NEPs). NCCs give rise to the majority of the peripheral 

nervous system (PNS); they also generate smooth muscle cells, pigment cells and 

the cranium bone (Bhatt et al., 2013; Sauka-Spengler and Bronner, 2010). While 

NCCs give rise to the PNS, it is the NEPs in the neuroepithelium of the neural tube 

that are essential in the formation of the CNS. The neural tube follows sequential, 

competing patterning steps during brain development. An interplay of morphogen 

gradients and signaling pathways, including sonic hedgehog (Shh), retinoic acid 

(RA), fibroblast growth factor (FGF), wingless (Wnt) and bone morphogenic protein 

(BMP) (Lupo et al., 2006) regionalize the neural tube. Due to this patterning the 

NEPS of the neural tube become more specified and defined structural domains 

appear. 

The four most important segments of the regionalized tube are the forebrain, the 

midbrain, the hindbrain and the spinal cord. The forebrain contains two cortical 

structures – the neocortex and the hippocampus. Both of these structures are 

derived embryonically and early postnatally. The neocortex starts to be formed by 

E11.5 and is finished by birth whereas the hippocampus starts to be formed by E17.5 

and is finished around postnatal day 14 (P14). These two regions harbor the NSC 

niches in the adult brain.  

Development of the Neocortex 
At E9 the neuroepithelium is a single layer of NEPs. As the progenitors proliferate 

and increase in number, some will become radial glia cells (RGC), that constitute the 

ventricular zone (VZ) and will function as NSCs (Noctor et al., 2004) (Figure 2, 

adapted from Greig et al., 2013). The precursor and progenitor populations have 

distinct features. RGCs span the thickness of the cortex from the apical to the basal 

surface with their radial processes whereas intermediate progenitor cells (IPCs) are 

not connected to the surfaces. RGCs have a polarized organization, initially they 

undergo more symmetric division to increase their numbers but switch to an 

asymmetric division mode later on, with a horizontal cleavage plane, thus dividing 
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apical and basal positioning, to self-renew and produce IPCs. The IPCs are 

multipolar and lack the apical and basal process. They rapidly divide and amplify the 

precursor pool (Noctor et al., 2007). The number of divisions IPCs can undergo is 

limited and they will mostly divide symmetrically to produce neurons (Noctor et al., 

2004). Alternatively the produced daughter cell of the RGCs is differentiated, will no 

longer divide and migrate out of the ventricular zone, along the RGC process (Greig 

et al., 2013).  

Neurogenesis starts at E10.5 in the dorsal telencephalon and from the beginning 

excitatory neurons are being produced. These neurons are produced in a sequential 

manner, whether this is happening from one common RGC or whether distinct 

subtypes of RGCs mediate the generation of the individual layers is currently 

debated (Franco and Muller, 2013; Guo et al., 2013). It is accepted that the first 

neurons produced migrate away from the progenitors to form the preplate, which will 

form a boundary for neurogenesis (Marin-Padilla, 1978). Subsequently the newly 

born neurons migrate into the cortical plate in an “inside-out” fashion – early born 

Figure 2: Development of the Neocortex; This scheme shows the sequential generation of 

neocortical neuron subtypes and their migration to the appropriate layers during embryonic 

neurogenesis. Around E11.5 radial glia cells start to give rise to intermediate progenitors or directly to 

migrating neurons. Shortly after this initiation of embryonic neurogenesis NSCs are set aside for adult 

neurogenesis that will not divide until the animal reaches adulthood. The distinct projection neuron 

subtypes are born in sequential waves. During embryonic neurogenesis the newly generated neurons 

migrate to their dedicated layer where they will integrate. Neocortical layering is complete around E16.5. 

After this the remaining NSCs are thought to take on a more gliogenic fate, giving rise to astrocytes and 

oligodendrocytes. 
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neurons will be found in the deep layer, late born neurons migrate pass them and will 

be found in the superficial layers. At E17.5 cortical development is largely finished, 

the VZ will disappear and the SVZ will remain as neurogenic zone postnatally (Figure 

2, adapted from Greig et al., 2013).  

Much like neurogenesis, gliogenesis is a complex mechanism crucially 

depending on the right temporospatial input. Glial cells carry out a diverse range of 

critical functions in the brain, including nutrient supply, removal of cellular debris, 

providing a scaffold and axonal insulation (Auld and Robitaille, 2003). The two major 

types of glial cells are oligodendrocytes and astrocytes. The production of astrocytes, 

a process termed astrogliogenesis, occurs most likely from the same pool of stem 

cells that gives rise to neurons. Astrogliogenesis is thought to be a default mode of 

differentiation of the IPCs if they do not obtain the proper proneural input (Kanski et 

al., 2014). The production of oligodendrocytes, a process termed oligodendrogenesis 

occurs in two sequential, competitive waves beginning in the embryo around E12.5, 

continuing into the early postnatal brain. Whether any of the oligodendrocytes 

produced in the first embryonic waves, survive is unclear, the ones from the 

postnatal wave however are maintained (Kessaris et al., 2006). Both, 

oligodendrocytes and astrocytes produced early in life are retained into adulthood.  

Besides neurons, astrocytes and oligodendrocytes that are retained from 

embryonic neocortical development also the postnatal NSCs become regionally 

specified and put aside. These set aside NSCs remain largely quiescent until 

reactivation in the adult. The remaining embryonic NSCs diverge their lineage during 

their development. The set aside adult NSCs share a common origin with the 

embryonic NSCs (Fuentealba et al., 2015; Furutachi et al., 2015; Greig et al., 2013; 

Gridley, 1996). Similar mechanisms can be observed in the second developing 

niche, the SGZ of the hippocampal DG.  

Development of the Hippocampal Dentate Gyrus 
In hippocampal development, RGCs detach from the embryonic ventricular wall 

and move into the subgranular zone (SGZ) where they transform into elongated 

cells, similar to the RGCs in cortical development, which generate neurons of the 

granule layer (Seri, 2001; Seri et al., 2004). The granule cell layer and subgranular 

layer of the DG of the hippocampus are only fully established late into postnatal 

development around P14 (Nicola et al., 2015). The formation of the dentate gyrus 

occurs in two stages – migration to the future DG and formation of the neurogenic 

zone of the adult SGZ (Figure 3, adapted from Rolando and Taylor, 2014).  



 Introduction  

 

The first stage occurs during embryonic development. The precursor cells are led 

from the hippocampal hem to the area of the future DG. Around E17.5-E19.5 GFAP+ 

precursors cells, originating from the VZ, migrate and accumulate in the hippocampal 

hilus and future SGZ. The granule cell migration is marked by Tbr2 and is broadly 

distributed in the developing DG. At this time point, the newly settled cells do not 

have a radial orientation (Rolando and Taylor, 2014).  

The second stage occurs postnatally. The embryonically formed scaffold 

transforms into the neurogenic zone of the adult SGZ. The cells start to obtain their 

typical NSC characteristics around P7 and present their typical radial type 

morphology at P14. At this time point, the expression of Tbr2 becomes more 

restricted to the SGZ (Nicola et al., 2015). The development of the DG is completed 

just in time when young mice start to open their eyes and explore freely (Rakic, 

Figure 3: Development of the SGZ; Around E17.5 precursor cells from the VZ migrate 

into the hippocampal hilus (A). Migration, integration and maturation continue in the postnatal 

brain, the designated NSCs (green) do not display radial type morphology, the granule cell 

layer (GCL, red) and molecular layer (ML, blue) is being formed (B). Only around P14 the 

formation of the SGZ is finalized with NSCs (green) present in the SGZ, projecting through the 

GCL into the ML (C).  
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2002). The remaining stem/progenitor cells in the SGZ are retained life-long and 

continue to produce new neurons throughout adulthood (Altman and Bayer, 1990; 

Gage, 2000; Kempermann et al., 2015).  

From both the SVZ and the SGZ, developmental NSCs endure into adulthood. 

These spatially restricted zones are the ones where, under physiological conditions, 

new neurons can be formed even in the adult. The production of functioning, new 

neurons and proper integration into the adult CNS is termed as adult neurogenesis. 

Adult neurogenesis recapitulates many aspects of embryonic neurogenesis and is 

conserved among mammalian species (Faigle and Song, 2013).  

Adult Neurogenesis 
At the base of adult neurogenesis are adult NSCs, which are a rare population of 

cells that divide infrequently. The maintenance of NSCs in the adult is a life-long 

process, ensured by highly regulated control mechanisms that keep proliferation and 

differentiation in check (Faigle and Song, 2013). In order to assure a life-long 

reservoir of NSCs, the cells can be found as two distinct populations, quiescent and 

actively proliferating. This way the NSC pool renews itself while an adequate number 

of differentiated cells can be provided (Fuchs, 2009). In the adult brain we can find 

quiescent NSCs, giving rise to active NSCs, which in turn give rise to dividing 

daughter progenitors that become progressively postmitotic, and eventually provide 

various cell types such as neurons, astrocytes and oligodendrocytes to the adult 

brain (Bonaguidi et al., 2011).  

Neural Stem Cell Hierarchy 
In order to avoid stem cell depletion, an intricate hierarchy can be found in NSC 

lineage. At the beginning of the lineage are the NSCs. These can either be found as 

quiescent NSCs, potentially functioning as reserve pool or in an active, more 

frequently dividing form. The active NSCs can divide symmetrically to give rise to two 

NSCs or asymmetrically, to give rise to a stem cell and an amplifying progenitor. The 

amplifying progenitors will give rise to rarely dividing fate committed progenitors 

which in turn will give rise to the differentiated cells, either neurons or glia cells. It is 

proposed that there is an initial bias in the stem cell pools (Bonaguidi et al., 2012), 

meaning, the precursors and the amplifying progenitors will already have an intrinsic 

mechanism for either a glial fate or a neuronal fate.  
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At the beginning of the lineage are the NSCs, which are rarely dividing and 

exhibit either longer (10 - 28 days) and shorter (48 hours) cell cycle times (Encinas et 

al., 2011; Ihrie and Alvarez-Buylla, 2011). It is assumed that the stem cells with 

longer cell cycle (quiescent) are functioning as a reservoir. The more actively dividing 

cells have shorter cell cycles however maintain their stemness. Whether the active 

cells have the capacity to go back to a quiescent state or will eventually deplete is 

currently debated (Cavallucci et al., 2016; Urban et al., 2016). It is accepted that 

active NSCs give rise to transient amplifying progenitors (TAPs, called IPs in the DG 

SGZ), that are dividing faster, with a cell-cycle time of about 12 hours (Morshead, 

1994). This shorter cell cycle allows them to amplify the cell pool of the early 

progenitor state. It is under investigation whether the TAPs are already biased 

towards a fate commitment or whether they only commit at a later progenitor stage 

(Taylor, 2011). The committed progenitors, called neuroblasts in the neuronal 

lineage, will rarely divide, become postmitotic and will develop into mature neurons 

(van Praag et al., 2005). The newly integrated, matured cells are morphologically and 

physiologically indistinguishable from the embryonically developed cells (Figure 4).  

Figure 4: NSC Hierarchy; At the beginning of neurogenesis are the NSCs. NSCs can be divided in 

quiescent and active NSCs. NSCs give rise to transient amplifying progenitor cells (TAPs) which amplify 

the pool and give rise to fate committed neuroblasts. Neuroblasts undergo maximally one more division 

and become postmitotic hereafter. If they obtain the correct signals they can become mature neurons 

and integrate into existing circuits. The newly born neurons are indistinguishable from the embryonically 

generated neurons. The lineage can be analysed using distinct markers for the cell stages. Hes5 marks 

quiescent and active NSCs, BLBP marks active NSCs and TAPs. Nestin marks quiescent and active 

NSCs as well as TAPs. The proliferation marker PCNA is found in all dividing cells, namely the active 

NSCs, TAPs and few neuroblasts. Ascl1 is a marker for active NSCs and TAPs. Doublecortin (Dcx) 

labels late TAPs, neuroblasts and goes into the early neuron lineage. NeuN is a nuclear antigen for 

neurons.  
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Although adult NSCs have an intrinsic property to provide new cells throughout 

life, it is a delicate balance that ought to be tightly controlled. The SVZ and SGZ are 

stem cell niches with a defined microenvironment to avoid NSC exhaustion (Conover 

and Notti, 2008). NSC fate is regulated through cues provided by the niche, such as 

cell-cell contacts and secreted factors (Schofield, 1978; Voog and Jones, 2010). The 

specific cytoarchitectural properties found in the SVZ and the SGZ (Figure 5) 

maintain the NSC population, guide cell fate decisions and ultimately regulate the 

regenerative potential of the niche (Fuchs, 2004).  

 

Cytoarchitecture of the Adult Subventricular Zone 
The NSCs in the SVZ are found between the lateral ventricle (LV) and the 

striatum. A single layer of ependymal cells separates the SVZ from the cerebral 

spinal fluid (CSF) in the LV (Ihrie and Alvarez-Buylla, 2011). New neurons originating 

in the SVZ will migrate along the rostral migratory stream (RMS) to the olfactory bulb 

(OB) (Figure 5). Under physiological conditions, the OB is provided continuously with 

new interneurons from the SVZ (Lois, 1996). The OB is the terminal location of the 

newborn neurons and thus an interesting region to look at the fate commitment of the 

cells originating in the SVZ niche.  

 

 

Figure 5: Adult neurogenic niches of the murine brain; Schematic representation of a 

sagittal mouse brain section. Neurogenesis occurs in the SGZ of the DG (red) and the LW of the 

SVZ (green). The SGZ is a stationary niche with NSCs and progeny found in the DG. The LW of 

the SVZ contains NSCs, however the daughter cells will migrate out of the SVZ along the rostral 

migratory stream (RMS; orange) into the olfactory bulb (OB; blue). If the cells obtain the correct 

signals they can functionally integrate into the OB.   
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The NSCs found in the SVZ project bidirectionally through the ependyma into the 

CSF and radially to blood vessels (BV) to obtain systemic inputs (Merkle et al., 2007) 

(Figure 6A). Electron microscopy has revealed that the SVZ niche consists of four 

major cell types, E- (ependymal), B- (SVZ astrocytes and NSCs), C- (transitory 

amplifying) and A-cells (neuroblasts) (Figure 6A). Using whole mount techniques it 

was observed that B-cells of the lateral wall with NSC properties, defined as B1 cells 

(Ihrie and Alvarez-Buylla, 2011), can be found in a typical pinwheel structure 

(Mirzadeh et al., 2008). The core of the pinwheel contains the apical ending of a 

radial B1-cells and in its periphery are ependymal cells (Figure 6B). This typical 

embedding of B-cells within ependymal wall, blood vessels, immediate surrounding 

and own progeny allows for distinct response mechanisms of the stem cells. 

Comprised, these response mechanisms can be put in four categories.  

First, the apical ending in the core of the pinwheel contains sensory cilia that 

respond to signals in the CSF and flow of the CSF. The CSF, for example, contains 

gradients of Slit2. These gradients are partially regulated by the movement of the 

mechanocilia on the ependymal cells (Sawamoto et al., 2006). Additionally, a cellular 

response might be triggered mechanically via the flow of the CSF passing the cilia 

(Banizs et al., 2005), due to shear forces activating ion channels and Ca2+ influx 

(Yamamoto et al., 2000). The role of cilia in neurogenesis is proposed to be crucial, 

as misregulation of this dual response system potentially has severe implications for 

NSC maintenance and progenitor migration (Goetz and Stricker, 2006).  

Figure 6: NSCs of the SVZ are organized in pinwheels; NSCs of the SVZ are 

divided into B-cells (NSCs, green), C-cells (TAPs, yellow) and A-cells (neuroblasts, 

orange). They are in a tight scaffold with each other. The A-cells will migrate out of the 

SVZ, along the RMS into the OB. The radial B1 cells, projecting to blood vessels and 

through the ependyma (E, grey) are the quiescent NSCs (A). The radial B1-cells are 

characterized by their typical pinwheel morphology. In whole mount preparations the 

process projecting through the ependyma is generating this NSC typical morphology 

(yellow trace) (B).  
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Second, the B-cells are connected to another supply of extrinsic signals the BVs, 

which have a dual function. On one hand, the blood-brain barrier (BBB) in close 

proximity to the SVZ is more permeable than in the rest of the brain (Cheung and 

Rando, 2013; Shen et al., 2008), thus releasing blood-born factors including pigment 

epithelium-derived factor (Andreu-Agullo et al., 2009) and β−cellulin (Gomez-Gaviro 

et al., 2012) that are proposed to be involved in maintenance, proliferation and 

differentiation. On the other hand NSCs directly contact the epithelial cells of the BVs 

with their processes, getting input from surface receptors such as Delta-like (Dll) and 

Jagged ligands (Temple, 2001). These juxtacrine signals play a pivotal role in 

maintenance of NSCs in a quiescent and undifferentiated state (Ottone et al., 2014).  

Third, the NSCs are located in regionalized portions of the SVZ innervated by 

distinct nuclei. Distinct OB interneuron subtypes are produced in finely patterned 

progenitor domains of the SVZ. These microdomains of the SVZ correlate with 

expression domains of distinct transcription factors such as Nkx6.2 and Zic-family 

members. These domains are potentially defined by the nuclei they are innervated by 

(Merkle et al., 2014). Axons from defined nuclei, such as the raphe or the pons can 

form an extensive plexus in close proximity to adult NSCs. NSCs express different 

receptors of neurotransmitters, which makes them susceptible to neuronal stimuli 

(Tong et al., 2014b). These microdomains, potentially regulated by innervation from 

CNS nuclei, exemplify the interconnectivity of NSCs and the niche.  

Fourth, the immediate progenitors are in direct contact with the NSCs, allowing 

for direct cell-cell interactions. In the SVZ, mother and daughter cells are in close 

proximity. It is presumed that this direct interaction balances the populations of NSCs 

and TAPs in the niche. Both NSCs and TAPs present and secrete a vast array of 

proteins involved in regulating neurogenesis (Drago et al., 2013; Hermann et al., 

2014). Some of the presented receptors are endodermal growth factor receptor 

(Doetsch, 2003) and Notch receptors (Aguirre et al., 2010) Notch ligands Jagged 

(Basak et al., 2012; Nyfeler et al., 2005). In parallel some of the secreted soluble 

growth factors are FGF and EGF (Deleyrolle et al., 2006; Türeyen et al., 2005). 

These paracrine mechanisms provide a feedback loop to keep neurogenesis and 

stem cell maintenance in tight control.  

Thus, the NSCs in the SVZ are controlled on a niche and hierarchical level by 

extrinsic (CSF and BVs) and intrinsic (axons and feedback loops) factors. A similar 

system can be found in the SGZ of the DG the second neurogenic niche.  
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Organization of the Adult Subgranular Zone  
The DG of the hippocampus is part of the limbic system and plays a key role in 

memory consolidation and spatial navigation. Neurogenesis in the DG is found in the 

SGZ of adult rodents, primates as well as humans (Spalding et al., 2013) and 

ongoing neurogenesis in the adult SGZ has been proposed to be important in 

learning and memory (Zhao et al., 2008).  

The nomenclature in the SGZ is different from the SVZ. One distinguishes Type-

1, Type-2 and Type-3 cells (Figure 7, adapted from Kempermann 2004), and these 

types in turn are divided in further subtypes. Type-1 cells are divided into radial, 

quiescent, and horizontal, active, NSC (Lugert et al., 2010). The Type1 cells give rise 

to the Type-2 cells, which are divided into Type-2a (early progenitors) and Type-2b 

(late progenitors). Type-2 cells are intermediate precursor cells (IPs). The Type-2 

cells give rise to Type-3 cells, which are fate-committed neuroblasts (Ehninger and 

Kempermann, 2008). Upon maturation they become neurons that potentially 

integrate into the DG circuits. In contrast to the SVZ, a single neuron-type – DG 

granule neurons - are produced (Seri et al., 2004). This population makes up 10% of 

the murine neural circuits (Kempermann et al., 2015) and 35% of the human neural 

circuits (Spalding et al., 2013). Newly generated neurons in the hippocampus 

integrate into established networks, making neurogenesis a unique form of neuronal 

plasticity. Although the neurogenic niches have distinct architectures and exhibit high 

levels of heterogeneity, the stem cells found in the SGZ and SVZ have, besides their 

differences also commonalities.  

Figure 7: NSCs of the SGZ are in close proximity to their progeny; NSCs in the 

SGZ can be found as radial or horizontal cells (Type-1, green). The radial Type-1 cells, 

projecting through the granule cell layer (GCL) divide less frequently than the horizontal 

Type-1 cells. The radial cells are characterized as quiescent, the horizontal as active. 

They give rise to Type-2 cells, which are intermediate progenitors (IPs, yellow). The Type-

3 cells are characterized as neuroblasts (orange), which are fate committed. They give 

rise to immature neurons that can mature and stably integrate into the DG circuits.  
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Due to lack of contact the SGZ NSCs do not obtain input from the CSF, however 

they are provided, just as in the SVZ with external stimuli via the vasculature. In the 

SGZ the NSCs are positioned close to endothelial cells of blood vessels. As in the 

SVZ it is presumed that the BBB in the SGZ might be more permeable, thus 

providing extrinsic signals (Cheung and Rando, 2013). Furthermore the endothelial 

cells might provide paracrine signals themselves that play into the signaling of direct 

or proximal cell-cell contact.  

Similar to the patterned SVZ (Merkle et al., 2014), there are implications that 

there is a longitudinal regionalization of the SGZ, topographically separating dorsal 

and ventral blade of the DG (Kheirbek and Hen, 2011). Although no significant 

differences in dividing cells can be observed in the dorsal and ventral blade, the 

number of Type-1 cells seems to be less in the ventral blade as compared to the 

dorsal. Alongside the number of Doublecortin+ (Dcx+) neuroblasts in the dorsal 

blade is increased. Furthermore, the neuroblasts present in the ventral blade express 

less Calretinin (CR), a marker of immature granule cells (Jinno, 2011). This 

asymmetric density in hippocampal neurogenesis might affect the strength of the 

feedback loops generated by the nearby progeny (Snyder et al., 2009).  

In the SGZ, just as the SVZ, the NSCs are in close contact with their progeny. 

One major difference of the two niches is that in the SGZ the neuroblasts and 

newborn neurons do not migrate out of the niche area. Thus, the regulation of NSCs 

by axonal inputs will be impacted additionally by a feedback of the newly generated 

neurons. Interneurons in the DG are critical niche components, coupling neuronal 

circuit activity to quiescent NSCs. The activation of NSCs is increased when the local 

circuit activity is low. Upon increase in activity of the circuit NSCs are maintained 

quiescent (Song et al., 2012). This implicates that neurogenesis can be impacted 

long-lasting if newly generated neurons are integrated wrongly, potentially causing 

pathological changes to the system.  

Adult Neurogenesis Contributes During Aging and Pathologies 
Various pathological conditions are associated with either an upregulation or a 

downregulation of adult neurogenesis (Abrous et al., 2005; Kempermann et al., 

2015). A few pathologies associated with the downregulation of neurogenesis are 

depression (Bremner et al., 1995; Gurvits et al., 1996; MacQueen et al., 2003), 

schizophrenia (Heckers, 2001; Schmajuk, 2001), drug addiction (Koob and Le Moal, 

2001; Nestler, 1997) as well as ageing and dementia (Ben Abdallah et al., 2010; 
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Lugert et al., 2010). On the other hand, diseases associated with up regulation of 

neurogenesis are epilepsy (Parent et al., 1997; Scott et al., 1998), ischemia (Kee et 

al., 2001; Liu et al., 1998; Zhang et al., 2004), Huntington’s disease (Curtis et al., 

2003; Eriksson et al., 1998), various traumatic brain injuries (Dash et al., 2001; Lu et 

al., 2003; Rice et al., 2003) as well as specific types of tumors (Giachino et al., 

2015). Whether the change in neurogenesis is causative or a consequence of the 

pathologies depends on the individual disorder and very often it is not known. 

Age-Related Decrease of Adult Neurogenesis 
Neurogenesis diminishes with age. The age-related decline in neurogenesis 

might be a result of decreased activity of NSCs, and potentially quiescence. 

Decreased levels of proliferating stem cells in the hippocampus are associated with 

impaired aspects of learning and memory. Ageing is associated with a 6-fold 

decrease in the number of neurons generated in the adult murine brain. Conversely, 

exercise elicits beneficial effects on the aged brain, and affects NSC function 

increasing the number of newborn neurons some 3-fold (van Praag et al., 1999b). 

Exercise-induced increases in neurogenesis correlate with a better performance of 

mice in spatial learning (Creer et al., 2010) and memory tasks (van Praag et al., 

1999a). These results are supported by studies in humans.  

In a large-scale investigation, 631 individuals between the ages of 60 and 77 

years underwent a 2-year multi-domain intervention, consisting of a change in diet, 

physical exercise, cognitive training and vascular risk monitoring. The physically 

active participants in the study performed significantly better than controls (n=629) 

with regards to working memory, task flexibility, problem solving and planning as well 

as processing speed (Hawkins et al., 1992; Ngandu et al., 2015). Thus, the 

neuroplasticity caused by neurogenesis itself is crucial for certain forms of learning 

and memory in the murine brain (Zhao et al., 2008) as well as the human brain 

(Ngandu et al., 2015).  

Neurogenesis and Mood Related Disorders 
In the brains of depressed patients monoamines, such as 5-hydroxytryptamine 

(5-HT, Serotonin), have a tendency to be reduced. Conventional antidepressants 

enhance the 5-HT transmission, for example by inhibiting the reuptake of the 

neurotransmitter. Problematically, a decrease in 5-HT does not immediately cause 

major depression (Mahar et al., 2014) and the administration of drugs, which 

increase 5-HT levels rapidly after administration, are not sufficient for depressive 
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amelioration immediately after intake (Hasler, 2010). These observations indicate 

that long-term mechanisms are involved in major depression. The cause for 5-HT 

impairment in patients suffering from depression has intrinsic, for example genetics 

and gender, but also extrinsic, for example drug use or stress, factors. Stress is 

being viewed as one of the most potent factors for developing major depression. 

Chronic stress has been shown to negatively regulate adult neurogenesis in the DG. 

Brain images of patients with major depression have shown hippocampal atrophy 

(Bremner et al., 1995). Decreased neurogenesis seems to underlie symptoms of 

depression (Kempermann, 2002). The high neuronal turnover in humans in the 

hippocampus supports the possibility that hippocampal neurogenesis can be 

causative in depression and/or the response to stress or antidepressants (Spalding 

et al., 2013). Hippocampal neurogenesis is regulated by monoamines (Diaz et al., 

2012) and neurotrophic factors (Waterhouse et al., 2012) and chronic antidepressant 

treatment increases neurogenesis (Dranovsky and Hen, 2006). The selective 5-HT 

reuptake inhibitor Fluoxetine has been tested for its effects on both the SVZ (Tong et 

al., 2014b) and the SGZ (Encinas et al., 2006). NSCs seem to be in close proximity 

to serotonergic axons. In both neurogenic niches the antidepressant causes an 

increase in symmetric divisions of early progenitor cells.  

Aberrant Neurogenesis and Epilepsy 
While exercise is associated with a healthy increase in DG neurons, epileptic 

seizures (SE) are associated with a pathological increase. It is known that epilepsy 

stimulates proliferation in the DG (Parent, 2007). The DG responds shortly after SE 

with an increased cell proliferation in the subgranular zone (Parent et al., 1997). 

Seizures increase the activation of quiescent cells, recruiting them into an active 

state (Lugert et al., 2010). Upon SE abnormal mossy fiber sprouting and abnormal 

basal dendrite development, as well as migration of dentate granule cells are 

observed (Jessberger et al., 2007a). This abnormal integration might cause an 

imbalance in inhibition. Making abnormal neurogenesis the potential cause for 

epileptogenesis, leading to reoccurring, acute seizures (Di Maio, 2014; Pierce et al., 

2005). In acute seizures this precocious NSC activation comes at an expense of 

long-term exhaustion for short-term plasticity (Sierra et al., 2015).  

Adult NSCs and Tumor Biology 
The idea that tumors contain a rare subset of stem-like cells capable of self-

renewal, indefinite division and differentiation is gaining acceptance (Pierfelice et al., 

2008) – this hypothesis is called the cancer-stem-cell theory. Adult neurogenesis 
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implicates the presence of undifferentiated, active stem and progenitor cells. 

Disruption of the regulatory mechanism either of the SCs or the rapidly dividing 

daughter cells is probably one cause for the formation of cancer initiating stem-like 

cells (Reya et al., 2001) also in the brain. This was underlined when neurosphere 

forming precursors with characteristic NSCs genes, such as Sox2, Musashi 

(Hemmati et al., 2003) were obtained from a human glioblastoma biopsy (Ignatova et 

al., 2002) and a human medulloblastoma (Singh et al., 2003). It appears as though 

the tumor initiating cells with neural precursor features respond to the same 

mitogens, possess some of the molecular features and seem to express similar 

markers as adult NSCs (Tamaki et al., 2002). Many tumors develop near the 

neurogenic SVZ indicating that they might derive from transformed undifferentiated 

precursor cells (Sanai et al., 2005).  

Recently it was shown that NSCs in the SVZ with deleted p53, a cell cycle control 

gene, and deleted Rbpj, the Notch signaling mediator, form tumors in the brain. Loss 

of proper NSC maintenance and additionally the cell cycle disturbance leads to the 

formation of brain tumors (Giachino et al., 2015), highlighting the essentiality of 

temporospatial proper NSC maintenance.  

Stem Cell Maintenance 
Deregulation of NSC maintenance can lead to an early exhaustion of the NSC 

pool or worse, as previously highlighted, in various pathologies. Thus, adult NSCs 

are tightly regulated and controlled in order to achieve proper physiological 

functioning and maintenance. Three crucial features characterize proper 

maintenance: proper self-renewal, controlled fate determination and preservation of 

stemness.  

Self-renewal depends on a cells capacity to undergo either symmetric or 

asymmetric cell division. While a symmetric cell division gives rise to two identical 

daughter cells, asymmetric division produces an exact copy of itself and a distinct 

daughter cell that will eventually terminally differentiate (Gotz and Huttner, 2005). 

Fate determination of stem and progenitor cells is subject to intrinsic and extrinsic 

factors. Besides the presence of a receptors on the cell surface (intrinsic) also the 

presence, timing and concentration of the extrinsic ligand will influence the cellular 

response (Fuchs, 2004). Stemness is preserved by the specific factors provided by 

the niche. These are local and environmental factors such as cytokines, growth 

factors, adhesion and signaling molecules, which are crucial for proper NSC 
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functioning and maintenance (Conover and Notti, 2008). There are multiple factors 

known to orchestrate these maintenance tasks. The best studied in terms of adult 

neurogenesis and adult NSCs maintenance are Shh, (Fuccillo et al., 2006), Wnt, 

(Zechner et al., 2003) and Notch signaling (Ables et al., 2011). These three pathways 

are implicated in regulating adult neurogenesis and potentially even crosstalk.  

Shh has been implicated in adult neurogenesis and is important in stem cell 

proliferation and progenitor specification (Alvarez-Buylla and Ihrie, 2014). Shh 

signaling functions via a surface receptor complex consisting of Patched (Ptc) and its 

G-protein-coupled co-receptor Smoothened (Smo). Ptc inhibits signal transduction of 

Smo in the absence of Shh. Once Shh binds Ptc, Smo is disinhibited, leading to the 

activation of the Shh signaling cascade. This results in the disinhibition of Gli2/3. Gli 

2/3 then function as transcription factors whose nuclear-cytoplasmic distribution is 

regulated via a protein-protein interaction with suppressor of fused (Su(Fu)) 

(Kogerman et al., 1999). Activation of proper Shh cascade leads to the transcription 

of further Gli-proteins (Gli1/7) and other Shh target genes (Philipp and Caron, 2009). 

Some known target genes of Shh signaling in the brain are Nkx2.2, Pax6 and Ptc1 

(Shahi et al., 2010). Genetic manipulation of the Shh signaling cascade via deletion 

of Ptc leads to an increase of NSC divisions and symmetric NSC divisions in adult 

neurogenesis in the SVZ (Ferent et al., 2014).  

Wnt signaling is highly conserved and has been implicated in CNS development 

and NSC differentiation (Zechner et al., 2003). In the absence of Wnt, Glycogen-

Synthetase-kinase-3 (GSK3) is forming a complex with Axin and other cofactors. 

This complex ultimately phosphorylates and ubiquitinates β-catenin, thus keeping a 

low β-catenin level in the cell. Once Wnt is binding Frizzled receptor a tertiary 

complex with Lrp6 is formed. Axin is recruited to the intracellular domain of Lrp6, 

sequestering GSK-3 away and β-catenin is no longer tagged for degradation, thus 

accumulates and can migrate into the nucleus where it is acting as a transcription 

factor (Komiya and Habas, 2008) regulating for example the expression of 

Neurogenin1 (Hirabayashi et al., 2004), Six3 (Braun et al., 2003) and NeuroD1 

(Kuwabara et al., 2009). Wnt signaling has mostly been proposed in proliferation and 

differentiation of neuronal progenitor cells. It has been shown that NeuroD1, a 

proneurogenic transcription factor, is a downstream mediator of Wnt-induced 

neurogenesis (Kuwabara et al., 2009). Inhibition of Wnt signaling via the secretion of 

Dickkopf or Secreted Frizzled-related Protein 3 in the adult SGZ has been implicated 

in downregulation of adult NSC proliferation and neuronal maturation. Interestingly, 
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Dickkopf expression is naturally increased with age, implicating a role of Wnt 

signaling in stem cell quiescence with progressed age (Wu and Hen, 2013) 

The third, crucial signaling pathway is Notch signaling. The remainder of this 

work will be focusing on the Notch signaling pathway and the role of Notch in NSC 

maintenance in the adult murine brain.  

Notch Signaling: a Summary of History 
In 1914 John S. Dexter noticed a “notched” phenotype in the wings of Drosophila 

melanogaster. The responsible allele was then found by T.H. Morgan’s group in 1917 

and through to the cloning of the gene in the 1980s (Artavanis-Tsakonas, 1983), the 

Notch family members are now recognized as essential signaling molecules that 

control a diverse array of cellular responses ranging from normal development to the 

maintenance of homeostasis in metazoans. Notch signaling components are 

evolutionarily conserved in all metazoan organisms - with a single receptor present in 

Drosophila, two in C. elegans and four in mammals (Kopan and Ilagan, 2009).  

The Notch signaling pathway, compared to Shh and Wnt signaling, is highly 

dependent on direct cell-cell interactions and niche architecture. Notch signaling 

affects a wide range of cellular processes (Andersson et al., 2011) both during 

development (Artavanis-Tsakonas et al., 1999; Harper et al., 2003) and adulthood 

including stem cell maintenance (Borggrefe and Oswald, 2009; Koch et al., 2013), 

cell proliferation (Androutsellis-Theotokis et al., 2006), differentiation (Bigas and 

Espinosa, 2012; Gaiano and Fishell, 2002) and apoptosis (Gotte et al., 2011).  

Notch Receptors and Ligands 
The four mammalian Notch receptors (Notch1-Notch4) reside on the cell surface 

as non-covalently linked heterodimers (HD) and are Type I transmembrane receptors 

(Figure 8A, adapted from Mumm and Kopan 2000). They are comprised of an 

extracellular domain, which functions as receiver and an intracellular domain which 

functions as sender of signal information. The Notch extracellular part is comprised 

of numerous EGF-like repeats. The extracellular EGF-like repeats contain Thr/Ser 

amino-acid residues that prone for Fringe-mediated O-glycosylation. These sugar 

modifications are proposed to modulate signaling outcome influencing the 

interactions of different ligands (Takeuchi and Haltiwanger, 2014). 

The extracellular and intracellular parts of Notch are combined at the 

heterodimerization (HD) domain. Two cleavage sites (S1 and S2) are found within 
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the HD domain (Mumm and Kopan, 2000). In order for all four Notch receptors to 

become mature, they need to be cleaved at the S1 site in the Golgi before integration 

into the membrane. The S2 extracellular cleavage, mediated by the metalloprotease 

Adam10 under physiological conditions (Alabi et al., 2016), and the intracellular S3, 

mediated by γ-secretase, cleavages are needed for proper signaling (Figure 8B, 

adapted from Mumm and Kopan 2000).  

The intracellular domains of all Notch paralogues contain an Rbpj associated 

molecule (RAM) domain, the nuclear localization signal (NLS), multiple Ankyrin 

(ANK) domains and the Proline-Glutamate-Serine-Threonine rich domain (PEST). 

Notch1 and Notch2 additionally contain a carboxy-terminal transactivation domain 

(TAD). The RAM domain is crucial for interaction with several cytosolic and nuclear 

proteins, including Rbpj, the transcriptional mediator of Notch signaling. The Ankyrin 

domain is important for further protein-protein interactions. The composition of 

Figure 8 Notch receptors and ligands; Notch receptors are heterodimers with an extracellular 

and an intracellular domain. There are four Notch paralogues (Notch1-4) (A). Notch receptors undergo 

three cleavages (S1-S3). S1 is a non-activating maturation cleavage occurring in the Golgi. S2 and S3 

are activating cleavages necessary for canonical Notch signaling (B). Notch ligands are composed of a 

large extracellular domain rich in EGF-repeats that interact with the extracellular domain of the Notch 

receptor. Upon interaction of ligand and receptor, the receptor undergoes a conformational change 

making the S2 cleavage site available. There are five Notch ligands, Jagged1/Jagged2, Dll1, Dll4 and 

Dll3 (C). 
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modulator proteins bound at the RAM and ANK domains lead to the formation of the 

Notch nuclear transcription complex. The TAD domain is important for transcriptional 

activation. The PEST domain, the most C-terminal component of the Notch protein, 

is essential in the regulation of Notch degradation (Kurooka et al., 1998) (Figure 8, 

adapted from Mumm and Kopan, 2000). Mutations in the HD, RAM, ANK or PEST 

domain can lead to severe phenotypes. Mutations in the HD domain can cause a 

ligand-independent activation of Notch receptors. Mutations in the RAM or ANK 

domain can cause improper or block of binding to the interaction partners (Mumm 

and Kopan, 2000). Mutations in the PEST domain can lead to an incorrect 

inactivation, and thus Notch signaling is prolonged (Chillakuri et al., 2012).  

The two most related mammalian Notch paralogues are Notch1 and Notch2. 

These two are well characterized both genetically and functionally  and share many 

structural features (Weinmaster et al., 1992). The extracellular domains of Notch1 

and Notch2 have 57% amino acid conservation the intracellular 53%. It is worth to 

mention that the intracellular PEST and TAD domains are only 37%, while the ANK 

domain is 85% conserved at the amino acid level (Liu et al., 2015b).  

The ligands of Notch signaling are receptors on the juxtapose cells. There are 

five mammalian Notch ligands: Jagged1, Jagged2, Delta-like 1 (DLL1), DLL3 and 

DLL4. These are Type I transmembrane ligands, and they provide short-range 

signals between directly opposed cells. The ligands possess a Delta/Serrate/LAG-2 

(DSL) motif on their N-terminus as well as tandem EGF-repeats (Figure 8C, adapted 

from Mumm and Kopan 2000). The EGF-repeat regions mediate the short-range 

interaction of Notch and its ligands. The specificity is then ensured by O-

Glycosylation, mediated by POFUT1 and Fringe, and by regulation of the availability 

of ligand and receptor in a temporospatial manner on the cell surfaces. Once short-

range interaction of Notch and of its ligands, Delta, or Jagged occurs, the canonical 

Notch signaling pathway is activated.  

The Notch Signaling Cascade 
In the absence of Notch ligands, the receptor is not cleaved at the S2 and S3 sites 

and Rbpj, the nuclear mediator of Notch signaling in the nucleus is bound to 

Corepressors (CoR) and histone deacetylases (HDAc) at target genes (Figure 9-1). 

The transcriptional program in NSCs, in the absence of active Notch signaling, can 

be described as proneural, the NSCs are not maintained and potentially differentiate. 

In order to maintain NSCs, the Notch receptor needs to interact with one of its 

ligands, be activated and transduce a transcriptional signal to the nucleus.  
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Canonical Notch signaling is initiated by short-range signals between directly 

opposed cells (Figure 9–2a). Notch proteins and cell bound Notch ligands (DLL, 

Jagged) interact causing a conformational change, exposing the S2 cleavage site to 

a metalloprotease family (ADAM) (Figure 9-2b). The proteolytic release of the Notch 

extracellular domain leaves the Notch receptor truncated and exposed to intracellular 

γ-secretase mediated S3-cleavage (Figure 9-2c), which releases the Notch 

intracellular domain into the cytoplasm (Figure 9-2d). This active intracellular domain 

traverses to the nucleus and interacts with Rbpj. Upon interaction the nuclear Rbpj-

complex the complex composition is changed (Figure 9-2e). CoR and HDAc are 

exchanged for Coactivators (CoA) and Histone acetyltransferases (HAcT). This 

change of the complex leads to the transcription of downstream Notch target genes, 

switching the function of Rbpj from a repressor to a transcriptional activator. 

Rbpj/NICD transcriptional complex activates a set of basic helix-loop-helix 

transcriptional repressors (Mumm and Kopan 2000).  

 

Figure 9: Canonical Notch signaling 

cascade; In the absence of ligand the Notch 

receptor is integrated as Type-I receptor in the 

membrane. In the absence of ligand, the nuclear 

Rbpj complex is bound to Corepressors (CoR) and 

Histone deacetylases (HDAc) (1). In the presence 

of ligand the Notch extracellular domain and the 

ligand extracellular domain interact, leading to a 

conformational change of the Notch receptor (2a). 

This conformational change leads to the exposure 

of the S2 site and a consecutive cleavage by a 

metalloprotease (2b). After the S2 cleavage the S3 

cleavage site becomes available to a γ-secretase 

(2c). This cleavage releases the Notch intracellular 

domain (NICD) into the lumen (2d). The NICD will 

migrate into the nucleus where it can interact with 

Rbpj. The binding of NICD leads to the recruitment 

of members of the activated complex,  exchanging 

the CoR through a Coactivator (CoA) and the HDAc 

with a Histone acetyltransferase (HAcT) resulting in 

transcription of Notch effector genes (2e).  
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This conserved cascade is repeatedly used in multiple developmental processes. 

The pathway appears simple, without any second messengers or apparent cytosolic 

interactions with a binary decision. However, Notch receptors and ligands are 

influenced by a broad spectrum of posttranslational modifications. Therefore, Notch 

signaling can drive numerous mechanisms, such as stem cell differentiation and 

maintenance both in the embryo and the adult (Koch et al., 2013).  

Notch signaling is context and tissue dependent. In muscle stem cells, Notch has 

been implicated in maintenance of stem cells, self-renewal of progenitor cells and 

inhibition of terminal differentiation (Brack and Rando, 2012). In the intestine, Notch 

signaling is active in the intestinal stem cells and regulates their proliferation and the 

terminal differentiation (Barker et al., 2007). In the bone marrow HSCs, Notch does 

not seem to be essential for physiological HSC maintenance, however constitutive 

expression can lead to an expansion of these cells (Bigas and Espinosa, 2012). In 

NSCs Notch has been implicated in NSCs maintenance (Basak et al., 2012; Ehm et 

al., 2010; Imayoshi et al., 2010), inhibition of neuronal differentiation and even 

terminal differentiation into an astrocyte lineage (Gaiano and Fishell, 2002).  

Notch signaling in Neural Stem Cells 
Accumulating evidence underlines the importance of Notch signaling in NSC 

maintenance, differentiation and fate choice (Artavanis-Tsakonas et al., 1999). The 

dependence of NSCs on Notch signaling becomes evident when Rbpj, the 

downstream mediator of Notch signaling, is deleted specifically from NSCs in the 

adult murine brain. The NSCs are no longer maintained properly, this leads to an 

initial activation of the stem cell pool and an expansion of the progenitor population, 

however in the long run caused a depletion of the quiescent and active NSCs from 

the SVZ (Imayoshi et al., 2010). Interestingly when Notch1 was deleted from the 

same SC population only the active NSCs were affected (Basak et al., 2012). In 

Zebrafish, a similar observation was made - Notch signaling levels are crucial for 

maintenance of quiescent NSCs and recruitment to activity (Chapouton et al., 

2010b). In a follow-up analysis it was shown that Notch1 is dispensable in the 

maintenance of quiescent NSCs also in Zebrafish, however Notch3 is required 

(Alunni et al., 2013).  

When looking at the expression levels of Notch on NSCs in the SVZ, it appears 

as though the Notch paralogues Notch1 and Notch2 are coexpressed on all cells of 

the neurogenic lineage (Basak et al., 2012). Interestingly, Notch signaling is only 
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active, as determined by expression of Notch effector genes, in NSCs and TAPs 

(Giachino et al., 2014b). Two very prominent direct Notch target and effector genes, 

crucial for NSC maintenance are hairy-enhancer-of-split (Hes) and brain lipid binding 

protein (BLBP) genes. Hes genes are basic helix-loop-helix (bHLH) genes and 

essential effectors of Notch signaling for maintaining undifferentiated cells (Artavanis-

Tsakonas et al., 1999; Gaiano and Fishell, 2002). The single deletion of either Hes1 

or Hes5 has no apparent defects in embryonic development, thus illustrating a 

compensatory mechanism. Parts of this compensation might come from different 

upstream regulators, such as BMP4 (Kageyama et al., 2007). However, the double 

deletion causes severe phenotypes leading to disorganization of the neural tube, 

premature neuronal differentiation and loss of radial glia in the embryo (Hatakeyama 

et al., 2004).  

Another well-known direct Notch target gene is BLBP. BLBP is broadly expressed 

throughout the brain of the embryo to the adult. It is proposed to be involved in 

neuronal–glial signaling. Antibody blocking experiments have shown that BLBP is 

required for NSC morphological changes in response to neuronal cues in the embryo 

(Anton et al., 1997) and loss of BLBP in the adult leads to precocious differentiation 

and loss of the adult NSCs (Matsumata et al., 2012).  

Although the role of Notch signaling in NSCs is widely accepted as crucial, the 

distinct role of the Notch paralogues in maintenance of quiescent and active NSCs is 

only poorly understood. The goal of this thesis thus was to investigate the role of 

Notch signaling in balancing between adult NSC quiescence and heterogeneity.  
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Questions and Aims 
Multiple lines of evidence indicate that Notch1 and Notch2 might have redundant 

biological functions in certain cellular, developmental or disease context (Liu et al., 

2015b), however, have distinct functions in other contexts (Boulay et al., 2007; Chu 

et al., 2011; Kumano et al., 2003). In the intestine (Riccio et al., 2008) Notch1 and 

Notch2 seem to have redundant functions. In contrast, Notch1 and Notch2 have 

different roles in the commitment and lineage differentiation of the olfactory 

epithelium during development (Carson et al., 2006) and rather Notch1 than Notch2 

is required for differentiation in the cerebellum (Lütolf, 2002). Also in adult NSCs a 

discrepancy between the deletion of the mediator of Notch signaling Rbpj (Imayoshi 

et al., 2010) and loss of Notch1 (Basak et al., 2012) have been observed. Notch1 

maintains NSCs in their active state (Basak et al., 2012) whereas Rbpj is needed for 

maintenance of all, quiescent and active, NSCs.  

What is the role of Notch in NSC quiescence and activity?  

The factors maintaining quiescent NSCs are only sparsely understood. In order to 

assess the maintenance signals involved in quiescent NSCs we have analyzed the 

effects of active and quiescent NSCs upon the loss of Notch signaling components. 

We have been able to show that Notch2 is important in quiescent NSC maintenance 

in the SVZ and also in the dorsal medial wall (dMW), a non-neurogenic region under 

physiological conditions (Engler et al.; in preparation a). The SGZ contains NSCs 

albeit to a lesser extend than the SVZ. 

What is the function of Notch2 in the SGZ and SVZ?  

To address the importance of Notch2 in a known system, we have analyzed the 

effects of loss of Notch2 also in the SGZ of the DG (Zhang et al, in preparation). We 

showed that both the SVZ and the SGZ contain quiescent and active NSCs that are 

Notch dependent. Thus, in both niches Notch1 and Notch2 are coexpressed on the 

two NSC types. Previous studies form our lab (Giachino et al., 2014b) have shown 

the high level of heterogeneity within the stem cell populations in the SVZ niche. 

Therefore, we wanted to address the individual functions of quiescent and active 

NSCs in physiological and pathological conditions.  
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What is the level of response to physiological and pathological stimuli of 

quiescent and active NSCs?  

We addressed the physiological properties of NSCs using Notch signaling 

reporter mice, Hes5::GFP, BLBP::mCherry (Giachino et al., 2014b). We 

characterized the lineage in great detail and illustrated the high complexity and 

heterogeneity of the SGZ (Engler et al, in preparation b). We have analyzed the 

NSCs’ capacity to respond to seizures, antidepressant treatment and ageing in the 

SGZ of the DG. We distinguished the different subpopulations of NSCs and TAPs, 

which gave rise to the observed pathophysiological phenotypes.  
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Results 

Neurogenic Stem Cells in a Dormant Niche are Activated by 

Antidepressant Fluoxetine and Suppressed by Notch2 Signaling 
Authors: Anna Engler, Chiara Rolando, Claudio Giachino, Andrea Erni, Ichiko Saotome, Runrui 

Zhang, Philipp Berninger, Erik van Nimwegen, Ursula Zimber-Strobl, Freddy Radtke, Spyros 

Artavanis-Tsakonas, Angeliki Louvi and Verdon Taylor; in preparation for Cell Stem Cell, 

planned submission September 2016 

Contribution: I planned and analyzed all the experiments, prepared the figures and the 

manuscript. The Rbpj trace was contributed by PB & EN, and the Notch2-CreERT2-SAT animals 

were provided by IS, AL & SAT.  

Summary 
Active Notch signaling maintains the NSC state thereby preventing neurogenesis. The loss 

of Rbpj, the downstream mediator of all Notch signaling, leads to the loss of active and 

quiescent NSCs (Imayoshi et al., 2010). The loss of Notch1 on the other hand only leads to the 

loss of active NSCs (Basak et al., 2012). This implies that Notch signaling is crucial for both 

promoting of proliferation and quiescence, however Notch1 in particular might be dispensable 

during quiescence. However, the nature of Notch quiescence signal is unknown. We 

hypothesize that another member of the Notch family provides the maintenance signal or Notch 

receptors have an intrinsic redundancy. We demonstrated, using a uniform, combinatorial, 

conditional knockout approach, that the deletion of Notch2 from adult NSCs causes the 

activation of quiescent NSCs and therefore an increase in proliferation in all neurogenic niches. 

We recapitulated the previously observed Notch1 phenotype, the loss of active NSCs, but not 

quiescent NSCs. Loss of Notch1 and Notch2 phenocopied the loss of Rbpj, implicating that 

these two Notch family members are the main players in NSC maintenance in the adult murine 

brain.  

Surprisingly, loss of Notch2 leads to the appearance of neuroblasts in an otherwise non-

neurogenic region, the dorsal medial wall of the subventricular zone, lining the lateral septum. 

We found that this particular area is a source of quiescent stem cells with a latent neurogenic 

potential activated by Notch2 deletion. Interestingly enough, these quiescent NSCs, with intact 

Notch2 signal, can also respond to Fluoxetine treatment.   
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SUMMARY 

Age-associated declines in tissue homeostasis and regeneration correlate with reduced stem cell 

activity. In most regions of the mammalian brain, neuron production stops soon after birth. Here, we find 

that the adult brain contains bona fide neural stem cells (NSCs) outside the classical neurogenic zones and 

identify a novel population of NSCs in their niche, the dorsal septum. Resident septal NSCs are held in a 

dormant state but retain neurogenic potential, responding to antidepressants to generate new neurons in 

vivo. Notch2 but not Notch1 signaling conveys quiescence to these stem cells and their subventricular 

zone counterparts, repressing cell cycle-related genes and neurogenesis. Loss of Notch2 activates 

quiescent NSCs to proliferate and generate new neurons. Thus, NSCs outside the classic germinal zones 

of the brain are held in a reversible, inactive state by Notch2 signals. 

 

HIGHLIGHTS 

• The mammalian brain contains dormant stem cells outside the normal neurogenic niches 

• Notch1 Notch2 double knock-out phenocopies Rbpj knock-out  

• Notch2 induces NSC quiescence, Notch1 promotes maintenance of activated NSCs 

• Dormant septal NSCs are activated by antidepressants 

eTOC 

In Brief 

Using a combinatorial knockout approach Engler and colleagues systematically analyzed Notch 

signaling mutants. Their study showed the role of Notch2 in maintenance of quiescent NSCs in the adult 

murine brain not only in known neurogenic zones but also in non-neurogenic regions of the brain.  
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INTRODUCTION 

Somatic stem cells in adult tissues are the source of cells for regeneration and repair (Li and Clevers, 

2010). Adult somatic stem cells are regulated by their specialized niches, which control maintenance, 

activation and production of differentiated progeny (Cheung and Rando, 2013). Many tissues contain 

stem cells that divide infrequently and are thus mitotically quiescent (Li and Clevers, 2010). Stem cell 

quiescence preserves longevity of the progenitor pool, protects against acquisition and propagation of 

genetic mutations and counteracts hyperplasia and tumor formation. However, the interplay between 

signals that control quiescence and activation are not fully understood (Cheung and Rando, 2013). Radial 

glial stem cells produce most neurons and glia of the brain during embryonic development and 

temporospatial specification dictates their fate (Fuentealba et al., 2015; Furutachi et al., 2015; Greig et al., 

2013; Malatesta et al., 2003; Merkle et al., 2007; Noctor et al., 2001). Towards the end of embryogenesis, 

neurogenesis ceases at most locations in the brain. It is unclear why, but it is thought that NSCs in these 

regions become exhausted and are lost. Prime exceptions are the ventricular-subventricular zone of the 

lateral ventricle walls (SVZ) and the subgranular zone of the hippocampal dentate gyrus where radial glia 

in the primordium generate adult NSCs that remain active and drive neurogenesis in rodents, non-human 

primates and humans into adulthood (Doetsch, 2003; Doetsch et al., 1999; Ernst et al., 2014; Fuentealba 

et al., 2015; Furutachi et al., 2015; Spalding et al., 2013). Adult NSCs (also known as B1-cells) in the 

SVZ intercalate between ependymal cells lining the lateral ventricle and extend radial processes that can 

contact blood vessels (Fuentealba et al., 2012; Mirzadeh et al., 2008). B1-cells are mitotically quiescent, 

sporadically enter cell division to generate C-cells, a transient and highly mitotic population that gives 

rise to neuroblasts (A-cells) (Fuentealba et al., 2012; Ihrie and Alvarez-Buylla, 2011). Neuroblasts 

generated in the SVZ migrate to the olfactory bulb and differentiate into different interneuron subtypes 

(Kirschenbaum et al., 1999; Lois et al., 1996). Within the neurogenic zones, NSCs may become dormant 

or are lost in aged animals resulting in a drastic reduction in neurogenic and regenerative potential 

(Giachino et al., 2014b; Shook et al., 2012).  

Adult NSCs rely on Notch signaling, which regulates their maintenance and differentiation (Basak et 

al., 2012; Ehm et al., 2010; Giachino et al., 2014b; Imayoshi et al., 2010; Lugert et al., 2010; Nyfeler et 

al., 2005). Mammals have four Notch paralogues that regulate target gene expression, including those 

encoding the HES and HEY transcription factors (Hatakeyama et al., 2004; Zhu and Zhou, 2006). Adult 

NSCs can be isolated and genetically labeled using Hes5::GFP and Hes5::CreERT2 alleles (Giachino et 

al., 2014b; Lugert et al., 2010; Lugert et al., 2012). Deletion of Rbpj, which encodes the canonical 

transcriptional regulator of the Notch pathway, activates quiescent NSCs, blocks self-renewal and results 

in a collapse of neurogenesis (Basak et al., 2012; Imayoshi et al., 2010). Conversely, Notch1 regulates 
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maintenance and self-renewal of active NSCs but is dispensable during quiescence implying functional 

compensation by other Notch family members (Basak et al., 2012). We addressed how Notch signaling 

regulates quiescent NSCs by combinatorial conditional knockout (cKO) of Notch receptor genes. We 

deleted Notch1 and Notch2 from Hes5::CreERT2 expressing stem cells in the adult mouse and analyzed 

the forebrain. Our findings revealed that combinatorial cKO of Notch1 and Notch2 phenocopies a total 

loss of canonical Notch signaling in the forebrain and that Notch2 specifically regulates adult NSC 

quiescence. The loss of Notch2 function uncovered latent NSCs in the septal medial wall of the lateral 

ventricle. Septal NSCs activate and generate neuroblasts in response to loss of Rbpj, Notch2 and 

treatment with the antidepressant and selective serotonin reuptake inhibitor (SSRI) Fluoxetine. Thus, 

inactive stem cells in non-neurogenic regions of the brain can remain neurogenic and respond to selective 

signals in vivo. 
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RESULTS 

Distinct functions of Notch paralogues in SVZ NSC 

Notch signaling regulates SVZ NSC maintenance and cell fate (Androutsellis-Theotokis et al., 2006; 

Basak et al., 2012; Giachino et al., 2014b; Imayoshi et al., 2010). Both, conditional inactivation of Rbpj, 

to block canonical Notch signals, and inhibition of gamma-secretase, to block Notch activation, affect 

NSC activation and maintenance (Chapouton et al., 2010b; Imayoshi et al., 2010). In contrast, conditional 

deletion of Notch1 results in a loss of active NSCs in the SVZ due to defective maintenance of self-

renewal but does not affect quiescent NSCs (Basak et al., 2012). Notch1 and Notch2 expression overlaps 

in NSCs suggesting a potential functional redundancy in the quiescent NSC population (Basak et al., 

2012). To date, overlapping, redundant versus specific functions for Notch receptors in the maintenance 

of neurogenic stem cells of the adult forebrain have not been addressed. The role of Notch receptors and 

Notch signaling is a major question in brain homeostasis and repair. 

We took a combinatorial conditional gene knockout (cKO) approach in order to study the 

mechanisms controlling adult neurogenesis and unravel the role of Notch receptors in regulating adult 

forebrain NSCs (Figure 1A). We generated mutant mice deleting Notch receptors or Rbpj from 

Hes5::CreERT2+ NSCs, and followed cell autonomous changes in the fate of the deleted stem/progenitor 

cells and their progeny with Rosa26R::GFP (GFP+) (Figure 1A). GFP+ cells in the SVZ of Notch2 cKO 

animals were negative for Notch2 protein, whereas GFP- cells still expressed Notch2 (Figure S1A). Acute 

ablation of Notch2 (2-days post-Tamoxifen (TAM) treatment) resulted in an increase in proliferating 

(PCNA+) Hes5-derived (GFP+) GFAP+ NSCs without affecting the total number of progeny (GFP+) akin 

to the deletion of Rbpj (Figure 1B and S1A-C) (Basak et al., 2012; Imayoshi et al., 2010). A similar 

increase in NSC proliferation was also observed following simultaneous deletion of Notch1 and Notch2 

(Figure 1B and S1C). In line with previously published data, Notch1 cKO reduced the number of GFP+ 

progeny (Figure S1B) without affecting proliferation of GFAP+ putative NSCs (Figure 1B and S1C) 

(Basak et al., 2012). 

Although the number of GFP+PCNA+GFAP+ cells increased after gene deletion, the total density and 

number of GFP+GFAP+ cells and overall proliferation (GFP+PCNA+) were not changed in the SVZ of any 

of the cKO mutants following a 2-day chase (Figure S1C). However, neuroblast production (GFP+DCX+) 

was increased specifically in the Notch1Notch2 cKO and Rbpj cKO animals (Figure S1C). Thus, 

simultaneous cKO of Notch1 and Notch2 from NSCs in the SVZ had similar effects on proliferation and 

differentiation as the total loss of canonical Notch signaling (Rbpj cKO). In the single mutants, Notch2 
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cKO GFP+GFAP+ cells displayed an increased propensity to enter cell cycle (GFP+GFAP+PCNA+) 

(Figure 1B). 

Proliferation in the SVZ (GFP+PCNA+) of Notch2, Notch1Notch2 and Rbpj cKO animals increased 

by 21-days post-TAM, as did the generation of neuroblasts (GFP+DCX+) (Figure 1C, D). In addition, 

Notch1Notch2 cKO animals started to display a decrease in GFP+GFAP+ cells suggesting NSC loss 

(Figure S1D). Again, and in striking contrast, neurogenesis in the Notch1 cKO mice was not induced 

compared to control animals showing a trend to reduction (Figure 1D, S1C, D) (Basak et al., 2012). Thus, 

although they have overlapping expression, Notch1 and Notch2 seem to play distinct roles in regulating 

neurogenic stem cells of the SVZ. However, Notch1Notch2 cKO reveals that both receptors convey their 

signals and functions through Rbpj. 

Loss of Notch2 leads to enhanced neuroblast production 

Most NSCs of the SVZ are in a quiescent state and enter cell cycle when they initiate neuron 

production. The age-related decline in neurogenesis may be linked to stem cell exhaustion. We examined 

the SVZ 100- and 300-days after gene ablation. At 100-days, the number of Hes5-derived cells (GFP+) 

were comparable between Notch1 and Notch2 cKO animals but the total number of GFP+ progeny was 

reduced in the Notch1Notch2 and Rbpj cKO mice (Figure 2A). The number of GFP+GFAP+ putative 

quiescent NSCs was not affected in the Notch1 cKO (Figure S2A). Ablation of Notch1, Notch1Notch2 

and Rbpj caused a decrease in neuroblast production (GFP+DCX+; Figure 2B). The number of mitotic 

progeny (GFP+PCNA+) was not significantly changed in any mutants (Figure S2B). Surprisingly 

however, neuron production continued in the Notch2 cKO at the same levels as in control mice even 

though GFP+GFAP+ cells were reduced to similar levels as in the Notch1Notch2 and Rbpj cKO mice 

(Figure 2B and S2A). By 300-days post-ablation, all mutants showed a dramatic decline in the number of 

GFP+ cells in the SVZ (Figure S2B) including proliferating progenitors (GFP+PCNA+) (Figure 2C) and 

newborn neuroblasts (Figure 2D). Notch2 cKO either alone or in combination with Notch1 deletion 

correlated with the strongest reduction in GFP+GFAP+ NSCs and neuroblasts (GFP+DCX+) (Figure 2D 

and S2B).  

Although loss of Notch1 alone caused only a moderate reduction in GFP+GFAP+ NSCs, Notch2 cKO, 

Notch1Notch2 cKO and Rbpj cKO mice displayed a rapid decline in neurogenesis. This suggests that 

inactive GFAP+ NSCs are unable to compensate for the reduction in active progenitors. In contrast, loss 

of Notch2 signaling resulted in a more rapid loss of GFAP+ quiescent NSCs as a result of their potential 

activation and this initially sustained neuroblast production until both the quiescent and active NSC pools 
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became exhausted. This suggests that Notch2 plays a direct role in the maintenance of quiescent GFAP+ 

NSCs but that Notch1 does not. Comparing single Notch mutants with Notch1Notch2 and Rbpj cKO 

animals, we interpret the similarities and differences in phenotypes to indicate that NSCs enter an active 

state as a result of Notch2 cKO and are then maintained by intact Notch1 signaling.  

Notch2 gene regulation controls maintenance of quiescent NSCs 

We addressed how Notch2 regulates NSC activity by isolating Notch2 cKO cells from the SVZ early 

after ablation and analyzing genome-wide changes in gene expression (Figure 3A and S3A, S3B). We 

sorted Notch2-ablated, Hes5::CreERT2-derived cells 1-day after TAM-treatment and performed 

microarray analysis (Figure 3A). Hierarchical gene clustering of gene expression in Notch2 cKO versus 

control mRNA samples revealed significant differences (R2=0.8289, 2’126 mRNAs 2-fold, 469 mRNAs 

4-fold, and 71 mRNAs 8-fold changed; Figure 3B and Table S1). Gene ontology (GO) analysis of the 2-

fold regulated genes showed strong correlations within cellular processes, biological regulation and 

single-organism processes (Figure 3C, Table S1). Within the top GO categories were genes involved in 

neurogenesis (P=3.92 10-28), neurological processes (2.64 10-18), Notch signaling pathway (P=9.21 10-15) 

and cell cycle (P=1.47 10-8) (Figure 3D). In agreement with the phenotypes observed in the SVZ of 

Notch2 cKO mice, genes associated with stem cell maintenance (P=1.46 10-6) and cell differentiation 

(P=2.8 10-6) were also affected (Figure 3D and Table S1). Genes involved in cell division and cell growth 

were preferentially up regulated in the Notch2 cKO cells whereas genes involved in stem cell 

maintenance, DNA repair and neuronal differentiation were down regulated (Figure S3C and Table S1). 

These global gene expression changes reflected the changes in cellular composition seen as a result of 

Notch2 ablation. We defined genes with a 2-fold expression change and the presence of Rbpj recognition 

motifs proximal to their transcriptional start site as potential direct Notch targets. Refined Rbpj binding 

site predictions (ISMARA) were generated by combining multiple data sets including chromatin 

immunoprecipitation, and mapped these to the mouse genome (BED file Supplementary information) for 

the in silico definition of proximal promoters. Many of the regulated genes in our Notch2 cKO microarray 

data set contained putative Rbpj recognition motifs. Within the panel of regulated genes were known 

Notch targets including Notch1, FABP7 (BLBP) and Cux2. Many of these genes, which fell within the 

GO terms cell cycle and stem cell maintenance, contained one or more Rbpj recognition motifs (Table 

S1). These in silico data suggest that Notch2 potentially regulated these genes directly in NSCs. Taken 

together, we interpret these results to indicate that loss of Notch2 induces changes in stem cell activation 

and differentiation, supporting the hypothesis that Notch2 is involved in maintenance of quiescent NSCs. 
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Non-neurogenic regions of the lateral ventricle wall contain dormant Notch2-expressing NSCs 

NSCs of the lateral ventricle wall SVZ are embedded within a well-defined niche (Doetsch, 2003; 

Fuentealba et al., 2012; Ihrie and Alvarez-Buylla, 2011; Mirzadeh et al., 2008). NSCs (B1-cells) extend 

an apical process to the lateral ventricle and organize the ependymal cells of the lining into pinwheel 

structures (Mirzadeh et al., 2008). In addition, radial B1-cells contact blood vessels in the underlying 

parenchyma (Mirzadeh et al., 2008). We found GFAP+ B1-cell like cells in the non-neurogenic dorsal 

medial ventricular wall (dMW) of the septum that displayed Notch activity (Hes5::GFP) with 

characteristic radial morphologies and blood vessel contact (Figure 4A, B). These B1-cell-like cells in the 

dMW contacted the ventricle through the ependymal lining that was organized into pinwheel-like 

structures (Figure 4C). Most Hes5::GFP+ dMW B1-cells expressed Notch2 protein (Figure S4A), which 

we confirmed by acute conditional lineage tracing in Notch2::CreERT2-SATRosa26R::tdTomato animals 

(Figure S4B). Genetically labeled dMW Notch2::CreERT2-SAT cells and their progeny expressed GFAP but 

not PCNA or DCX, which were almost absent in the dMW (Figure S4C) confirming the non-neurogenic 

nature of this part of the adult brain under homeostatic conditions. Thus, the dMW contain cells with 

Notch signaling and characteristics of NSCs (which we termed mB1-cells for medial wall B1-cells) that 

are embedded in a bona fide germinal niche-like structure (Figure 4D). 

Notch2 represses a latent neurogenic potential of dormant dMW NSCs 

NSC quiescence is a key character of maintained long-term neurogenesis (Beckervordersandforth et 

al., 2010; Furutachi et al., 2013; Giachino et al., 2014b; Pastrana et al., 2009). The role of Notch signaling 

in blocking neural commitment of self-renewing NSC by repressing proneural gene expression is well 

documented (Kageyama et al., 2007). Experimental data also indicate that Notch promotes mitotic 

quiescence of NSCs but the mechanism is unclear (Chapouton et al., 2010b). Therefore, long-term 

quiescence or dormancy of NSCs in non-neurogenic regions of the adult brain could explain the lack of 

neuron production outside the neurogenic zones.  

As Notch2 regulates NSC activation in the SVZ and is expressed by NSC-like cells in the dorsal 

septal wall (Figure 5A), we addressed the functions of Notch2 in these mB1-cells by analyzing the 

Notch2 cKO animals. Notch2 cKO induced neuroblast (GFP+DCX+) production in the dMW (Figure 5B, 

C). The increase in neuroblasts in the dMW of Notch2 cKO mice was accompanied by an increase in the 

total Hes5::CreERT2-derived GFP+ cells (Figure S5A) at the expense of GFP+GFAP+ mB1-cells (Figure 

5C). Similarly, Rbpj cKO animals also showed activation of proliferation and neurogenesis in the dMW at 

the expense of GFP+GFAP+ mB1-cells (Figure S5B, C). Consistent with the hypothesized role of Notch1 
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in regulating active but not quiescent NSCs, Notch1 cKO had no effect on proliferation (GFP+PCNA+) 

nor did it result in production of neuroblasts (GFP+DCX+) in the dMW (Figure S5D). The Notch2 and 

Rbpj cKO dMW phenotypes were also evident in Notch1Notch2 cKO animals at 21-days post-TAM 

treatment (Figure 5D and S5E). However, Rbpj and Notch1Notch2 cKO dMW NSCs were exhausted by 

100-days whereas proliferation and neurogenesis in the dMW of Notch2 cKO animals persisted (Figure 

5D and S5F). After Notch2-ablation, Hes5::CreERT2-derived GFP+NeuN+ neurons were present in the 

septum adjacent to the ventricular wall and accumulated over time (Figure 5E, F). These newborn 

neurons settled into septal nuclei (Figure S5G) and many expressed Calbindin, Calretinin or Parvalbumin 

suggesting the formation of different neuron-subtypes (not shown). 

Notch2-ablation induces neurogenesis from local NSCs 

To confirm local neurogenesis in the dMW of Notch2, Notch1Notch2 and Rbpj cKO animals, we 

analyzed the mice 2-days post-TAM treatment. Consistent with a local activation of NSCs in the dMW, 

proliferation increased in the region following ablation of Notch2 (Figure S6A, B). Unlike in the 

Notch1Notch2 cKO and Rbpj cKO animals where NSCs seemed to generate neurons directly without 

entering cell cycle, neuroblasts were not increased in the Notch2 cKO (Figure S6B). Hence, even shortly 

after deleting Notch2 or nuclear Notch signaling via ablation of Rbpj, proliferating cells and neuroblasts 

were already present in the dMW supporting that local mB1-cells were the likely origin of the 

neurogenesis. 

We confirmed that the production of neuroblasts in the dMW of Notch2 cKO mice was from local 

GFAP+ mB1-cells and not neuroblasts aberrantly migrating from the lateral wall SVZ by restricting 

ablation of Notch2 to GFAP+ cells by stereotactic injection of adeno-gfap::Cre virus into the dorsal 

septum and lineage tracing the cells (Rosa26R::GFP) (Figure 6A) (Giachino et al., 2014b; Mirzadeh et 

al., 2008). Adeno-gfap::Cre-induced genetic recombination was restricted to GFAP+ cells in the dMW 

(Figure 6B). Notch2-ablated GFAP+ cells entered the cell cycle and generated neuroblasts confirming the 

dormant neurogenic potential of these local cells and the repressive effect of Notch2 (Figure 6C, D). 

Thus, the dMW contains NSCs with latent neurogenic potential, which are repressed by Notch2. Upon 

loss of Notch2 activity, these stem cells self-renew over prolonged periods and generate neurons. 

Notch1Notch2 cKO and Rbpj cKO (complete loss of canonical Notch signaling) animals showed a similar 

but transient increase in initial neurogenesis in the dMW but subsequent progenitor exhaustion. One 

likely explanation for the persistent neurogenic activity in the Notch2 cKO mice is that the Notch2-

deficient NSCs entered an active, Notch1-dependent state and were maintained as neurogenic NSCs. 
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Dormant NSCs in the dMW activate in response to serotonin  

Serotonin released by a plexus of axons coursing over the lateral ventricle wall has been shown to 

activate NSCs in the SVZ (Tong et al., 2014b). We found that the plexus of serotonergic axons also 

extends along the septal ependymal surface lining the ventricle and is in close proximity to the 

Hes5::GFP+ mB1-cells (Figure 7A). Activation of NSCs correlates with their expression of BLBP, 

which, unlike Hes5, is retained by C-cells (Giachino et al., 2014b). In order to examine NSC activation, 

we treated Hes5::GFP, BLBP::mCherry mice with the antidepressant SSRI Fluoxetine for 7-days (Figure 

S7A). Fluoxetine treatment resulted in a rapid increase in proliferation and of Hes5::GFP- 

BLBP::mCherry+ cells (C-cells) in the dMW (Figure 7B and S7B). The increased proliferation was 

accompanied by an increase in neuroblast production (DCX+) (Figure 7B). In contrast, the number of 

Hes5::GFP+ mB1-cells was reduced in response to Fluoxetine implying a transition from quiescent to 

active neurogenic progenitors at the expense of the NSC pool (Figure S7B). The Fluoxetine-induced 

reduction in Hes5::GFP+ mB1-cells and increase in proliferation and neurogenesis continued for 3 weeks 

(Figure 7C). In order to confirm that the newly generated neuroblasts were generated by Hes5+ NSCs 

following Fluoxetine-treatment, we genetically labeled Hes5::CreERT2+ cells (Rosa26R::GFP) with a 5-

day TAM induction and subsequent treatment with Fluoxetine for 7-days. The neuroblasts generated in 

the septal wall were GFP+ and thus derived from the Hes5::CreERT2+ NSCs (Figures S7C, D).  

DISCUSSION 

Notch signaling is a key mechanism in neurogenic niches to control NSC activity and differentiation. 

Canonical Notch signaling downstream of the four Notch paralogues is mediated by the transcription 

factor Rbpj. Ablation of Rbpj or Notch1 abolishes neurogenesis in the adult SVZ, however, Rbpj and 

Notch1 cKO mice display key differences in phenotype (Basak et al., 2012; Imayoshi et al., 2010). Loss 

of Rbpj leads to activation of quiescent NSCs, a wave of enhanced neurogenesis, and depletion of the 

NSC pool, whereas, loss of Notch1 abolishes self-renewal of activated NSCs without affecting the 

quiescent stem cell pool (Basak et al., 2012; Imayoshi et al., 2010). Thus, it was unclear whether Notch 

signaling controls quiescence or whether Rbpj acts as a transcriptional repressor independent of Notch 

activity in quiescent adult NSC. To address this, here we performed a detailed combinatorial analysis of 

Notch signaling knockouts in the adult mouse brain. We show that simultaneous ablation of Notch1 and 

Notch2 from forebrain stem cells phenocopies Rbpj cKO. We show that Notch2 is required by mitotically 

inactive and dormant NSCs both in the neurogenic SVZ and, by a novel stem cell population in the non-

neurogenic dorsal septum of the adult brain. Therefore, Notch1 and Notch2 play discrete functions in 
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forebrain NSCs implying that activation of quiescent stem cells following Rbpj cKO reflects its signaling 

role downstream of Notch2 rather than a Notch independent function. 

During development, radial glia stem cells initially generate neurons and then astrocytes (Malatesta et 

al., 2003; Noctor et al., 2001). Astrocytic differentiation is considered as the end-fate of NSCs in most 

brain regions and leads to exhaustion of the progenitor pool. Stem cells of the adult SVZ are set-aside 

during the peak of neurogenesis in the developing forebrain by some radial glia in the lateral ganglionic 

eminence, which stop dividing (Fuentealba et al., 2015; Furutachi et al., 2015). These perspective adult 

NSCs incorporate into the primordium of the adult lateral ventricle wall SVZ. Outside the neurogenic 

SVZ and dentate gyrus of the hippocampus, the mammalian brain has a poor capacity for regenerating 

neurons. This has been proposed to be partially due to a lack of neurogenic stem cells. Hence, our finding 

of dormant NSCs in the septal wall seems contradictory. It is unclear whether dMW NSCs are also set-

aside during brain development. It is tempting to speculate that these cells are remnant of development. 

However, analysis of proliferation indicates cell division throughout the adult brain and the 

production of oligodendrocytes and astrocytes but not new neurons outside the neurogenic zones under 

normal conditions. Further, neural progenitors can be isolated from non-neurogenic regions of the adult 

mammalian central nervous system including the spinal cord, optic nerve, cerebral cortex and 

hypothalamus (Palmer et al., 1999; Robins et al., 2013). Once isolated and expanded in the presence of 

growth factors, these progenitors can give rise to neurons in vitro. Therefore, their neurogenic potential in 

vivo remained questionable. However, our data indicate that neurogenic stem cells do exist in non-

neurogenic regions of the adult brain and that the local environment in which these cells find themselves 

restricts their activation and neuronal determination. In support of a niche mediated fate restriction, some 

parenchyma progenitors are able to generate neurons once grafted into the DG indicating that adult 

germinal zones can instruct neuronal fate (Shihabuddin et al., 2000). Conversely, grafting of SVZ NSCs 

and putative parenchymal progenitors into ectopic non-neurogenic regions of the brain results in glial but 

not neuronal differentiation (Seidenfaden et al., 2006). Thus, local niche signals in the neurogenic zones 

contribute to maintained neurogenic potential and fate determination in vivo and Notch2 signals may 

mask their neurogenic potential in situ (Merkle et al., 2007). 

Astrocytes in non-neurogenic brain regions that retain the ability to divide may be restricted from 

adopting a neuronal fate through lateral activation of Notch signaling in local niches. While the specific 

role of Notch2 in NSC quiescence was not described previously, there were indications of specific Notch-

dependent regulation in other models for example in fish where Notch3 regulates NSC activation 

(Chapouton et al., 2010a). Loss of Notch signaling in astrocytes within the striatum after stroke results in 
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increased neurogenesis and ablation of Rbpj in striatal astrocytes initiates neuroblast production 

(Magnusson et al., 2014). These findings lend direct support to our results showing that dMW B1-cells, 

which have astrocytic characteristics, are repressed by Notch2, which prevents both entry into cell cycle 

and the generation of neurons even outside the classical neurogenic regions. Thus, it is intriguing that 

Notch2 cKO resulted in the down regulation of stem cell associated genes and up regulation of cell cycle 

genes. A number of these regulated genes contain Rbpj recognition motifs in their proximal promoter 

regions opening up the possibility of a direct and selective regulation by Notch2 in quiescent NSCs. In 

addition, recent data indicate that mutations in Notch receptors, including Notch2, are found in human 

gliomas suggesting that loss of Notch signaling in brain parenchyma progenitors could be involved in 

early stages of brain tumor formation (Cancer Genome Atlas Research et al., 2015; Giachino et al., 2015; 

Suzuki et al., 2015).  

The quiescent dMW NSCs are able to respond to environmental cues. The septal nuclei in the brains 

of humans receives input from many brain regions including the olfactory bulb, hippocampus, 

hypothalamus and thalamus and is part of the pleasure zone of the brain with a role in reward and 

reinforcement. Whether neurogenesis in the dMW is linked to pathophysiological stimuli that modulate 

neurogenesis in the classic neurogenic brain regions remains to be determined (Anthony et al., 2014). 

However, NSCs in the dorsal septal wall are in contact with a plexus of serotonin positive axons. SVZ 

NSCs rapidly divide and generate newborn neuroblasts in response to serotonin agonist (Tong et al., 

2014a; Tong et al., 2014b). dMW mB1-cells respond similarly to increased serotonin levels following 

treatment with the SSRI and antidepressant Fluoxetine with increased progenitor production and newborn 

neuroblasts.  

The crucial role of the niche is highlighted by recent advances in astrocyte reprogramming, in which 

astrocytes in the brain parenchyma can be driven to neurogenesis (Peron and Berninger, 2015). This can 

be induced by local tissue damage and by the forced expression of pro-neurogenic transcription factors 

including Ascl1, Neurog2 and NeuroD1 in vitro and in vivo (Berninger et al., 2007; Guo et al., 2014; 

Heinrich et al., 2010; Liu et al., 2015a; Masserdotti et al., 2015). Expression of the proneural transcription 

factors is repressed by Notch signaling thereby preventing NSCs adopting a neuronal fate (Kageyama et 

al., 2005). This partially explains Notch signaling control of the developmental switch in NSC fate, 

inhibiting neurogenesis whilst favoring glial fates (Zhong et al., 1997). However, proneural gene 

expression is also repressed by Notch in parenchymal astrocytes. Loss of Notch signaling in astrocytes 

within the striatum after stroke increases neurogenesis and ablation of Rbpj increases Ascl1 expression in 

striatal astrocytes and initiates their formation of neurons (Magnusson et al., 2014). We believe that our 

findings have important implications suggesting that even in regions of the adult mammalian brain which 
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no longer generate neurons, stem cells may be present in a Notch2-repressed dormant state and these can 

be rejuvenated to form new neurons. 

EXPERIMENTAL PROCEDURES 

Animals and husbandry 

Hes5::GFP, Hes5::CreERT2, Notch2::CreERT2-SAT, Rosa25R::GFP, Rosa25R::tdTomato, floxed 

Notch1, floxed Notch2, floxed Rbpj mice have been described elsewhere (Basak et al., 2012; Basak and 

Taylor, 2007; Besseyrias et al., 2007; Fre et al., 2011; Lugert et al., 2012; Schouwey et al., 2007). Mice 

were kept according to Swiss Federal and Swiss Veterinary office regulations under license numbers 2537 

and 2538 (Ethics commission Basel-Stadt, Basel Switzerland). For further information see Supplementary 

Materials and Methods. 

Administration of TAM and Fluoxetine and tissue preparation 

Adult mice 8-10 weeks of age were injected daily intraperitoneal with 2 mg TAM in sunflower oil for 

five consecutive days and killed 2, 21, 100 or 300-days after the end of the treatment. Fluoxetine (1.8 

mg/kg) was administered intraoral for seven consecutive days. Animals were sacrificed 2 or 19-days after 

treatment. Animals were given a lethal dose of Ketamin-Xylazine and perfused transcardial. Tissue was 

sectioned at 30 µm and immunostained as floating sections (see Supplementary Materials and Methods) 

(Giachino and Taylor, 2009; Lugert et al., 2010). 

Microarray analysis and quantitative RT-PCR 

Animals were sacrificed 24 hours after TAM treatment. Tissue was prepared for FACS sorting as 

described previously (Lugert et al., 2010) and GFP+ cells sorted directly into Trizol reagent (Thermo 

Fisher Scientific). RNA extracted according to manufacturers recommendations.  RNA quality was tested 

by Fragment Analyzer (Advanced Analytical). cDNA was prepared using BioScript (Bioline). qRT-PCR 

was performed using SensiMix SYBR kit (Bioline). Affymetrix expression profiling was performed on 

Affymetrix GeneChip Mouse Gene 1.0 ST arrays (ATLAS Biolabs). GO analysis was performed using 

DNASTAR Lasergene ArrayStar (DNASTAR). Large-scale target analysis was performed doing a cross 

comparison of differentially regulated genes and Rbpj promoter sites, using a ISMARA generated trace. 

For more detailed information see Supplementary Materials and  
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Stereotactic injection of adeno-gfap::Cre virus particles  

Adeno-gfap::Cre virus was described previously (Merkle et al., 2007). Animals were injected with 

stereotactic coordinates (anterior/posterior 0 mm; medial/lateral 0 mm relative to Bregma and 2.5 mm 

below the skull) into the septum with 1 ml of adeno-gfap::Cre virus (titer 1 x 1012 infection particles per 

ml) in PBS. Animals were analyzed 21-days post-injection (see Supplementary Materials and Methods). 

Quantification and statistical analysis 

Stained sections were analyzed with fixed photomultiplier settings on a Zeiss Observer with Apotome 

(Zeiss). Images were processed with Photoshop or ImageJ. Data are presented as averages of a minimum 

of three sections per region and multiple animals (n in figure legends). Statistical significance was 

determined by two-tailed Student’s T-test on mean values per animal, percentages were transformed into 

their arcsin value, Whitney-Mann U-test was used for distributions and two way ANOVA for cross-

comparison of three and more data sets. Significance was determined at * - P<0.05, ** - P<0.01, *** - P< 

0.001 or P values are given in the graphs. Deviance from mean is displayed as standard deviation if not 

otherwise indicated. Complete data tables are provided in the supplementary information. 
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FIGURES AND LEGENDS 

 

Figure 1. Notch paralogue knockouts have distinct SVZ phenotypes 

A. Schemes of floxed Notch1, Notch2 and Rbpj loci, Hes5::CreERT2 transgene and Rosa26R::GFP 
Cre-reporter allele with chromosome (Chr.), exons, LoxP, and poly-adenylation sites (pA). B. 
Quantification of Hes5::CreERT2-derived (GFP+) GFP+GFAP+PCNA+ NSCs (B1-cells) in the SVZ of the 
lateral ventricle wall of Control, Notch1 cKO, Notch2 cKO, Notch1Notch2 cKO and Rbpj cKO mice 2-
days post-TAM induction; PCNA+ mitotic radial NSC (B1-cell) in the SVZ in Notch2 cKO mice (arrow). 
C. Quantification of GFP+PCNA+ cells in the SVZ of control, Notch1 cKO, Notch2 cKO, Notch1Notch2 
cKO and Rbpj cKO mice 21-days post-TAM induction. D. Quantification of GFP+DCX+ neuroblasts in 
the SVZ of Control, Notch1 cKO, Notch2 cKO, Notch1Notch2 cKO and Rbpj cKO mice 21-days post-
TAM induction.  

Values are means ± SD; * - P<0.05, ** - P<0.01 ,*** - P<0.001, 2-day chase: Control n=4, Notch1 
cKO n=3, Notch2 cKO n=4, Notch1Notch2 cKO n=3 Rbpj cKO n=4, 21-day chase: Control n=6, Notch1 
cKO n=3, Notch2 cKO n=5, , Notch1Notch2 cKO n=6, Rbpj  cKO n=4. Scale bars = 10µm in B and 
25µm in D. 
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Figure 2. Notch2 cKO animals display potentiated long-term neurogenesis compared to Notch1, 

and Rbpj mutants. 

A. Quantification of Hes5::CreERT2-derived (GFP+) progeny in the SVZ of the lateral ventricle wall 
of control, Notch1 cKO, Notch2 cKO, Notch1Notch2 cKO and Rbpj cKO mice 100-days post-TAM 
induction. B. Quantification of GFP+DCX+ neuroblasts in the SVZ of Control, Notch1 cKO, Notch2 cKO, 
Notch1Notch2 cKO and Rbpj cKO mice 100-days post-TAM induction. Images of GFP+DCX+ 
neuroblasts in the SVZ of Notch2 cKO compared to Control and Notch1Notch2 cKO mice. C. 
Quantification of GFP+PCNA+ cells in the SVZ of the lateral ventricle wall of Control, Notch1 cKO, 
Notch2 cKO, Notch1Notch2 cKO and Rbpj cKO mice 300-days post-TAM induction. Images of 
GFP+PCNA+ cells in the SVZ of Control, Notch2 cKO and Notch1Notch2 cKO mice 300-days post-TAM 
induction. D. Quantification of GFP+DCX+ neuroblasts in the SVZ of Control, Notch1 cKO, Notch2 cKO, 
Notch1Notch2 cKO and Rbpj cKO mice 300-days post-TAM induction. 

Values are means ± SD; * - P<0.05, ** - P<0.01, *** - P<0.001, 100-day chase: Control n=5, Notch1 
cKO n=3, Notch2 cKO n=4, Notch1Notch2 cKO n=3, Rbpj cKO n=4, 300-day chase: Control n=4, 
Notch1 cKO n=3, Notch2 cKO n=3, Notch1Notch2 cKO n=3, Rbpj  cKO n=3. Scale bars = 25µm. 
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Figure 3. Gene ontology analysis of genes regulated after Notch2 ablation. 

A. Scheme of experimental setup. Following 5-days of TAM-induction mice were sacrificed 1-day 
later and Hes5::CreERT2-derived (GFP+) Control or Notch2 cKO SVZ cells were isolated by FACS and 
RNA prepared for microarray analysis. B. Scatter plot of mean Control versus Notch2 cKO gene 
expression. C. Gene ontology analysis of differentially expressed genes in Notch2 cKO versus Control 
with significance, total genes in category and percent differentially expressed. D. GEO analysis and top 
ten biological process of differentially expressed genes in Notch2 cKO versus Control with significance, 
total genes in category and percent differentially expressed. 
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Figure 4. The dorsal wall of the septum contains putative dormant NSCs 

A. Notch-signaling Hes5::GFP+ cells in the dMW have a radial type morphology and express GFAP. 
Quantification of Hes5::GFP+ cells per mm2 of the dMW and their coexpression of GFAP. B. Radial 
Hes5::GFP+ cells in the dMW project to underlying CD31+ blood vessels. C. Whole mount preparation of 
the dorsomedial septal wall showing Hes5::GFP+ cells protruding through the ependymal marked with 
the adherence junction protein b-catenin and organizing the ependymal cells into pinwheel structures. 
Quantification of Hes5::GFP+ cells containing pinwheels per mm2 of the dMW. D. Schematic 
representation of radial Hes5::GFP+GFAP+ medial wall mB1-cells and their interactions with the 
ependyma lining the lateral ventricle and blood vessels. 

Values are mean ± SD, * - P<0.05, ** - P<0.01,*** - P<0.001. Box whisker plot shows the mean, 
IQR, 1st and 3rd quartiles. Quantifications of Hes5::GFP+ cells n=5,  quantifications of pinwheels n=6 
animals. Scale bars 15 µm in A and B, 10 µm in C.  
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Figure 5. Notch2 deletion activates quiescent cells in the dMW 

A. TAM-induced genetic labeling (Rosa26R-tdTomato) of Notch2+ radial GFAP+ mB1-cells in the 
dMW in Notch2::CreERT2-SAT animals. tdTomato+ cells are mostly GFAP+ and rarely PCNA+ or DCX+ 
under physiological conditions. B. Increased DCX expression in the dMW of Notch2 cKO cells 21-days 
after TAM administration. Lineage tracing of Hes5::CreERT2-derived (GFP+) cells. C. Quantification of 
GFP+GFAP+, GFP+PCNA+, and GFP+DCX+ cells in the dMW of Notch2 cKO compared to Control 
animals, 21-days after TAM administration. D. Quantification of GFP+GFAP+, GFP+PCNA+, and 
GFP+DCX+ cells in the dMW of Notch2 cKO animals compared to Notch1Notch2 cKO and control 
animals, 100-days after TAM administration. E. Hes5::CreERT2-derived NeuN+ newborn neurons in the 
septum of Notch2 cKO animals 21-days after TAM administration. F. Quantification of GFP+NeuN+ 

neurons in the septum of Control, Notch2 cKO, and Rbpj cKO animals, 21- and 100-days after TAM 
administration. 

Values are mean ± SD, * - P<0.05, ** - P<0.01, *** - P<0.001. 21-day chase: Control n=6, Notch2 
cKO n=5, 100-day chase: Control n= 5, Notch2 cKO n=5, Notch1Notch2 cKO n=3.  Scale bars 10 µm in 
A and 100 µm in B and 20 µm in E.  
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Figure 6. Neurogenesis in the dMW is mediated by local NSCs 

A. Schematic representation of adeno-gfap::Cre infection (Rosa26R-GFP) of mB1-cells in the dMW 

in Control and Notch knockout animals. B. Stereotactic infection of radial mB1-cells in the dMW only in 

GFAP+ cells. C. Stereotactic infection of radial mB1-cells in the dMW with adeno-gfap::Cre virus 

showing the generation and lineage tracing (Rosa26R-GFP) of mitotic cells (GFP+PCNA+) and 

neuroblasts (GFP+DCX+) in the Notch2 cKO but not in Control animals. D. Quantification of GFP+DCX+ 

neuroblasts derived from adeno-gfap::Cre progenitors in the dMWs 21-days post-infection of Notch2 

cKO and Control animals.  

Mean values are shown ± SD, P-values are shown * - P<0.05, n.s. – not significant. Control n= 3, 

Notch2 cKO n=3. Scale bars 25 µm in A. 
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Figure 7. mB1-cells in the dMW are responsive to antidepressant SSRI treatment 

A. Serotonergic afferents in the dMW coursing over the ependyma of the septal, medial ventricular 

wall in close proximity to the Hes5::GFP+ mB1-cells. B. Quantification of mitotic (PCNA+) cells in the 

dMW 2-days after administration of the SSRI Fluoxetine. C. Quantification of mitotic cells (PCNA+), 

neuroblasts (DCX+), Hes5::GFP+ mB1-cells, BLBP::mCherry+ activated progenitors and 

Hes5::GFP+BLBP::mCherry+ activated NSCs in the dMW 19-days post-Fluoxetine treatment. 

Values are mean ± SD, * - P<0.05, ** - P<0.01, *** - P<0.001. 2-day chase: Vehicle n=3, Fluoxetine 

n=4, 19-day chase: Vehicle n=3, Fluoxetine n=3. Scale bars 100 µm in left panel, 15 µm in middle and 

right panels in A 
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Supplemental Figures and Legends 

Figure S1. Notch paralogue cKOs have distinct SVZ phenotypes 

A. Immunohistochemistry and quantification of GFP+Notch2+ cells in Control Hes5::CreERT2 

transgene and Rosa26R::GFP Cre-reporter and Notch2 cKO animals. B. Quantification of 

Hes5::CreERT2-derived GFP+ cells in the SVZ of the lateral ventricle wall of Control, Notch1 cKO, 

Notch2 cKO, Notch1Notch2 cKO and Rbpj cKO mice 2-days post-TAM induction. C. Quantification of 

GFP+GFAP+, GFP+PCNA+ and GFP+DCX+ cells in the SVZ of Control, Notch1 cKO, Notch2 cKO, 

Notch1Notch2 cKO and Rbpj cKO mice 2-days post-TAM induction D. Quantification of GFP+GFAP+ B-

cells in the SVZ of Control, Notch1 cKO, Notch2 cKO, Notch1Notch2 cKO and Rbpj cKO mice 21-days 

post-TAM induction. Values are means ± SD; * - P<0.05, ** - P<0.01, *** - P<0.001, 2-day chase: 

Control n=4, Notch1 cKO n=3, Notch2 cKO n=4, Notch1Notch2 cKO n=3 Rbpj cKO n=4, 21-day chase: 

Control n=6, Notch1 cKO n=3, Notch2 cKO n=5, Notch1Notch2 cKO n=6, Rbpj  cKO n=4. Scale bars = 

10µm  
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Figure S2. Notch2 cKO animals display potentiated long-term neurogenesis compared to 

Notch1, and Rbpj mutants. 

A. Quantification of Hes5::CreERT2-derived GFP+GFAP+ B-cells and GFP+PCNA+ dividing cells in 

the SVZ of the lateral ventricle wall of Control, Notch1 cKO, Notch2 cKO, Notch1Notch2 cKO and Rbpj 

cKO mice 100-days post-TAM induction. B. Quantification of Hes5::CreERT2-derived (GFP+) progeny in 

the SVZ of the lateral ventricle wall of Control, Notch1 cKO, Notch2 cKO, Notch1Notch2 cKO and Rbpj 

cKO mice 300-days post-TAM induction. Values are means ± SD; * - P<0.05, ** - P<0.01,*** - P<0.001, 

100-day chase: Control n=5, Notch1 cKO n=3, Notch2 cKO n=4, Notch1Notch2 cKO n=3, Rbpj cKO 

n=4, 300-day chase: Control n=4, Notch1 cKO n=3, Notch2 cKO n=3, Notch1Notch2 cKO n=3, Rbpj  

cKO n=3.  

Figure S3. Gene ontology analysis of genes regulated after Notch2 ablation. 

A. Schemes of floxed Notch2, Hes5::CreERT2 transgene and Rosa26R::GFP Cre-reporter allele with 

chromosome (Chr.), exons, LoxP, and poly-adenylation sites (pA).B. qPCR analysis of Control and 

Notch2 cKO for b-actin and Notch2. C. GO analysis of differentially expressed genes in Notch2 cKO 

versus Control with significance, percent differentially expressed up versus down regulated genes.  

Figure S4. The dorsal wall of the septum contains putative dormant NSCs 

A. Notch-signaling Hes5::GFP+ cells in the dMW have a typical radial type morphology and express 

Notch2. Quantification of Hes5::GFP+Notch2+ cells per mm2 of the dMW B. Schemes of 

Notch2::CreERT2-SAT, Rosa26R::tdTomato Cre-reporter allele with chromosome (Chr.), exons, LoxP, and 

poly-adenylation sites (pA). C. Images of Notch2::CreERT2-SAT, Rosa26R::tdTomato co-stained with 

GFAP and DCX. Values are means ± SD; Hes5::GFP animals  n=5, Scale bars 15 µm.  

Figure S5. Notch signaling manipulation activates quiescent cells in the dMW 

A. Quantification of Hes5::CreERT2-derived GFP+ cells in the SVZ of the dorsal medial wall of 

Control, Notch1 cKO, Notch2 cKO, Notch1Notch2 cKO and Rbpj cKO mice 21-days post-TAM 

induction. B. TAM-induced genetic labeling (Rosa26R-GFP) of Hes5+ radial GFAP+ mB1-cells in the 

dMW in Control and knockout of Rbpj (Rbpj cKO) animals, stained for PCNA and DCX. Upon loss of 

Notch signal mediator cells in the dMW are activated. C. Quantification of GFP+GFAP+, GFP+PCNA+, 

and GFP+DCX+ cells in the dMW of Rbpj cKO compared to Control animals, 21-days after TAM 

administration. D. Quantification of GFP+GFAP+, GFP+PCNA+, and GFP+DCX+ cells in the dMW of 

Notch1 cKO animals compared Control animals, 21-days after TAM administration. E. Quantification of 
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GFP+GFAP+, GFP+PCNA+, and GFP+DCX+ cells in the dMW of Rbpj cKO animals compared Control 

animals, 100-days after TAM administration. F. TAM-induced genetic labeling (Rosa26R-GFP) of 

Noch1Notch2 knockout animals (Notch1Notch2 cKO) animals. G. Overview image of septum of Notch2 

cKO animals. Circles represent position of neurons. Values are mean ± SD, * - P<0.05, ** - P<0.01, *** - 

P<0.001. 21-day chase: Control n=6, Notch2 cKO n=5, Rbpj cKO n= 4, 100-day chase: Control n= 5, 

Notch2 cKO n=5, Notch1Notch2 cKO n=3, Rbpj cKO n= 4; Scale bars 10 µm in A, C, E and 100 µm in 

F. 

Figure S6. Neurogenesis in the dMW is mediated by local NSCs 

A. TAM-induced genetic labeling (Rosa26R-GFP) of Hes5+ mB1-cells in the dMW in Control and 

Notch knockout animals, stained for PCNA and DCX. B. Quantification of GFP+GFAP+ mB1-cells, 

GFP+PCNA+ proliferating cells and GFP+DCX+ neuroblasts 2-days post-TAM of different Notch 

knockouts and Control animals.  

Mean values are shown ± SD, P-values are shown * - P<0.05, n.s. – not significant. Control n= 4, 

Notch1 cKO n= 3, Notch2 cKO n= 4, Notch1Notch2 cKO n= 3, Rbpj cKO n= 4. Scale bars 25 µm in A. 

Figure S7. mB1-cells in the dMW are responsive to antidepressant serotonin uptake inhibitor 

treatment 

A. Schemes of Hes5::GFP and BLBP::mCherry transgenes with exons. Scheme of the induction of 

Fluoxetine and chase periods. B. Quantification of labeled quiescent (Hes5::GFP+) and active 

(Hes5::GFP+BLBP::mCherry+) stem cells and progenitors (BLBP::mCherry+) 2-days after administration 

of the serotonin uptake inhibitor Fluoxetine. C. Schemes of Hes5::CreERT2 transgene and Rosa26R::GFP 

Cre-reporter allele with chromosome (Chr.), exons, LoxP, and poly-adenylation sites (pA). 

Representation of TAM-administration (5 days) and Fluoxetine (7-day) for GFP-reported lineage tracing. 

D. Administration of the serotonin uptake inhibitor Fluoxetine leads to proliferative activation of GFP+ 

cells and generation of GFP+DCX+ cells in the dMW.  

Values are mean ± SD, * - P<0.05, ** - P<0.01, *** - P<0.001. 2-day chase: Vehicle n=3, Fluoxetine 

n=4, 19-day chase: Vehicle n=3, Fluoxetine n=3, TAM-Vehicle n= 2, TAM-Fluoxetine n=2. Scale bars 

25 µm in left and right panels, 10 µm in middle panels.  
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Supplemental Figures 

Figure S1 

 
Figure S2 
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Figure S3 

 
Figure S4 
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Figure S5 
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Figure S6 

 
Figure S7 

 
Supplemental Data Tables  

Supplemental Data Tables refer to Figure 1-7 and Supplemantal Figures S1-S7 and Table S8, containing 
Top Ten GO Raw Data and Rbpj Trace, relating to Figurte 3 and S3 can be found on the CD of this 
thesis.  
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Supplemental Experimental Procedures 

Animals and husbandry 

Hes5::GFP, Hes5::CreERT2, Notch2::CreERT2-SAT, Rosa25R::GFP, Rosa25R::tdTomato, 
floxed Notch1, floxed Notch2, floxed Rbpj mice have been described elsewhere (Basak et al., 
2012; Basak and Taylor, 2007; Besseyrias et al., 2007; Fre et al., 2011; Lugert et al., 2012; 
Schouwey et al., 2007). Mice were maintained on a C57Bl6 genetic background and kept on a 
12-hour day/night cycle with food and water ad libitum under specified pathogen free conditions 
and according to Swiss Federal and Swiss Veterinary office regulations under license numbers 
2537 and 2538 (Ethics commission Basel-Stadt, Basel Switzerland). 

Administration of Tamoxifen and Fluoxetine and tissue preparation for 
immunochemical staining 

Adult mice 8-10 weeks of age were used in the experiments. Hes5::CreERT2 mice carrying 
floxed Rbpj, floxed Notch1 or floxed Notch2 alleles were injected daily intraperitoneal (i.p.) with 
2mg Tamoxifen in corn oil (100 µl of 20 mg/ml) for five consecutive days and killed 2, 21, 100 
or 300 days after the end of the treatment. 8-10 weeks old Hes5::GFP, BLBP::mCherry animals 
were administered Fluoxetine (18 mg/kg)  intraoral (i.o.) doses, for seven consecutive days and 
were killed 2 or 19 days after the treatment. Control animals received gelatin. A cohort of 
Hes5::CreERT2 animals underwent a double treatment of five days i.p injection of TAM and 
seven days i.o. treatment with Fluoxetine, respectively gelatine. Animals were injected i.p. with a 
lethal dose of Ketamin-xylazine and perfused with ice-cold phosphate buffered saline (PBS) 
followed by 4% PFA in PBS. Brains were excised, fixed overnight in 4% PFA in PBS, 
cryoprotected with 30% sucrose in PBS at 4°C 48 hours, embedded and frozen in OCT 
(TissueTEK), and 30 µm floating sections cut by cryostat (Leica). For whole-mount 
immunostaining of the dMW, brains of mice were excised and fixed overnight in 4% PFA in 
PBS, washed in PBS followed by micro-dissection under a binocular, and immunostained as 
described previously (Mirzadeh et al., 2008). 

Ex vivo Microarray Analysis of Tamoxifen induced, recombined cells 

Adult mice 8-10 weeks of age were used in the experiments. Hes5::CreERT2 mice carrying 
floxed Notch2 alleles were injected daily intraperitoneal (i.p.) with 2mg Tamoxifen as stated 
previously. After five days consecutive administration animals were sacrificed 24 hours after the 
end of the treatment. Animals were euthanized in CO2, brains were dissected in L15 Medium 
(GIBCO) and cut into 0.55 mm thick sections using a McIllwains tissue chopper. The SVZ was 
microdissected under a binocular microscope avoiding contamination from the striatum, and 
digested using a Papain solution an mechanical dissociation (previously described – Lugert et al, 
2010). Cells were resuspended in Leibovitz medium (Life Technologies), filtered through a 40 
µm cell strainer (Miltenyi Biotec) and sorted on a BD FACS Aria III. Cells were discriminated 
by forward and side-scatter (for live cells – from the control) and gated for GFP-negative (wild-
type levels) or GFP+ populations. Cells were directly sorted into cooled Trizol (Life 
Technologies). Appropriate amount of Chloroform was added and RNA extraction was 
performed using Isopropanol with LiCl (0.75M). RNA was immediately frozen to -80°C. RNA 
quality was tested on a Fragment Analyzer (Advanced Analytical) using a high sensitivity RNA 
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analysis kit (DNF-472). Samples were sent for Expression Profiling with Atlas Biolabs. Samples 
were subjected to a second quality control on an Agilent 2100 Bioanalyzer, small samples were 
amplified using the Ovation Picokit (NuGen) and then run on an Affymetric Biochip. GO 
analysis was done using DNAStar Lasergene Arraystar (DNAStar) software.  

Predicting RBPJ binding sites in mouse promoter regions genome-wide 

We curated a comprehensive set of mouse promoters (using the GRCm38/mm10 assembly) 
by combining data from CAGE experiments with Gencode annotations. In particular, we 
obtained a list of transcription start site (TSS) coordinates for mouse mRNA and lincRNA 
transcripts from Gencode (Harrow et al., 2006). We then complemented this set of putative TSSs 
with the robust CAGE peaks from (Consortium et al., 2014) which were converted to mm10 
coordinates using liftOver (Hinrichs et al., 2006). We then created a set of promoter regions plus 
associated transcripts from this data using the following clustering procedure: 

1. Initially, each CAGE peak and each TSS of a Gencode transcript were placed in a separate 
cluster. 

2. At each iteration, the two nearest clusters were joined under the constraint that there can be 
no more than one CAGE peak per cluster. The distance between two clusters is defined as 
the distance of their nearest pair of TSSs. 

3. Clustering stopped when there were no more clusters within 150 nucleotides of each other 
(i.e. roughly a single nucleosome).  

4. All clusters that contained at least 1 transcript from Gencode were retained, i.e. CAGE peaks 
without associated transcripts were discarded.  

Using this procedure, we obtained 30'114 mouse promoters, where each promoter corresponds to 
the genomic region spanned by the TSSs in the corresponding cluster. 

A position specific weight matrix motif (WM) describing the binding specificity of the RBPJ 
transcription factor (TF) was obtained from the SwissRegulon collection of mammalian WMs 
(Pachkov et al., 2013). For each promoter, the promoter region was defined as the promoter plus 
500 nucleotides upstream and 500 nucleotides downstream of the promoter. Binding sites for 
RBPJ were annotated in each promoter region as follows. For any potential binding segment of 
length l (where l=16 for RBPJ), a WM score was calculated as 

S_0=∑_(i=1)^log((w_(s_i)^i)/b_(s_i ) ) , where s_i  is the nucleotide occurring at position i 
in the length-l segment, w_(s_i)^i is the WM entry at position i for this nucleotide, and b_(s_i ) is 
the background probability for the same nucleotide. Here we have simply set b_s=1/4 for all 
nucleotides. To account for the fact that TFs are also attracted to the DNA by an electrostatic 
binding force that is not sequence specific, we transformed this score as follows: 

S=log(e^(S_0 )+e^(E_0 ) ), where we have set the non-specific binding energy E_0 equal to 
zero. The posterior probability P for the segment corresponding to a binding site is then given in 
terms of the score S as 

P=e^(S_0+τ_0 )/(1+e^(S_0+τ_0 ) ), where τ_0 is a parameter accounting for the (unknown) 
log-concentration of the TF. We set this concentration parameter τ_0 so as to maximize the 
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variance in the probability of binding site occurrence across all promoters. In particular, the 
probability Q_x for a given promoter x to have at least one binding site is given by: 

Q_x=1-∏_(s ∈x)P_s , where the product is over all sequence segments s in promoter x, and 
P_s is the posterior probability that s is a binding site. We set τ_0 so as to maximize the variance 
of Q_x across the promoters. Finally, we discard all binding sites with a posterior less than 0.1. 
Using this procedure we obtained 21'087 RBPJ binding sites across the 30'114 mouse promoters. 

Quantitative PCR confirmation of Notch2 knockout 

Ex vivo mRNA was prepared as described above. Isolated RNA was treated with DNaseI 
(Roche). cDNA was prepared using BioScript (Bioline) and random hexamer primers. qPCR was 
performed using SensiMix SYBR kit (Bioline). Primers for PCR reactions are as follows:  

GAPDH    Fwd: CTCCCACTCTTCCACCTTCG 

    Rev: CCACCACCCTGTTGCTGTAG 

β−Actin   Fwd: AGGTGACAGCATTGCTTCTG 

    Rev: GGGAGACCAAAGCCTTCATA 

Notch2 (Exon 26/27) Fwd: CAGGAGGTGATAGGCTCTAAG 

    Rev: GAAGCACTGGTCTGAATCTTG 

Immunofluorescence staining of floating sections and antibodies 

Immunostaining on sections was performed as described previously (Giachino and Taylor, 
2009; Lugert et al., 2010). Briefly, sections were blocked at room temperature for 30 minutes 
with 10% normal donkey serum or normal goat serum (Jackson Immunoresearch) in PBS 
containing 0.5% TritonX-100. Primary antibodies diluted in 2.5% donkey serum blocking 
solution were incubated overnight. Sections were washed with PBS and incubated at room 
temperature for 1-2 hours with the corresponding secondary antibodies in 5% donkey serum 
blocking solution and counter-stained with DAPI (1 µg/ml). Sections were mounted on glass 
slides (SuperFrost, Menzel) in DABCO mounting media and visualized using a Zeiss Observer 
with Apotome (Zeiss). For PCNA detection, the antigen was recovered at 80°C for 20 minutes in 
Sodium Citrate (10 mM, pH7.4). 

Primary antibodies used were as follows: Anti-β-Catenin (rabbit, 1:1000, Sigma, C2206), 
anti-Calbindin D28k (rabbit, 1:5000, Swant, 300), anti-Calretinin (rabbit, 1:5000, Swant, 
7609/4), anti-CD31 (Rat, 1:500, BD Pharmingen), anti-Doublecortin (goat, 1:500, Santa Cruz, 
sc-8066), anti-dsRed (rabbit, 1:500, CloneTech Takara, 632496), anti-Glial fibrillary acidic 
protein (mouse, 1:500, Sigma, G3893), anti-Glial fibrillary acidic protein (rabbit, 1:1000, Sigma, 
G9269), anti-Green fluorescent protein (chicken, 1:250, AvesLab, GFP-1020), anti-GFP (rabbit, 
1:500, Invitrogen, A11122), anti-GFP, (sheep, 1:250, AbD Serotec, 4745-1051), anti-Neuronal 
nuclear antigen (mouse, 1:800, Millipore, MAB377), anti-Parvalbumin (mouse, 1:5000, Swant, 
Mc-AB235), anti-Proliferating cell nuclear antigen (mouse 1:1000, DAKO, M0879), anti-S100β 
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(rabbit, 1:1000, Swant, 37), anti-Sox2 (goat, 1:250, Santa Cruz, sc-17320), anti-Notch2 (rat, H. 
Robson Lausanne, 1:200).  

Secondary antibodies used were as follows: Donkey anti-rabbit Ig Cy3 conjugated (1:500, 
Jackson Immunoresearch, 711165152), donkey anti-mouse Ig Cy3 conjugated (1:500, Jackson 
Immunoresearch, 715165151), donkey anti-rabbit Ig Cy5 conjugated (1:300, Jackson 
Immunoresearch, 711496152), donkey anti-mouse Ig Cy5 conjugated (1:300, Jackson 
Immunoresearch, 715175151), donkey anti-rabbit Ig 488 conjugated (1:500, Jackson 
Immunoresearch, 711545152), donkey anti-sheep Ig 488 conjugated (1:500, Jackson 
Immunoresearch, 713095147), donkey anti-goat Ig Cy3 conjugated (1:500, Jackson 
Immunoresearch, 705165147), and donkey anti-rat Ig Cy3 conjugated (1:500, Jackson 
Immunoresearch, 712160153).  

Generation of adeno-gfap::Cre virus particles 

Generation of adeno-gfap::Cre virus was described previously (Merkle et al., 2007). Briefly, 
Cre was placed under the control of the mouse gfap promoter (GFAPp) previously confirmed to 
be specifically active in GFAP+ cells. The pAd/PLGFAPp- NLSCre-pA vector was transfected 
into HEK293 cells to produce replication-defective adenovirus, which was purified twice by 
cesium chloride banding. The titer was 1 x 1012 infectious particles/ml. 

Stereotactic injection of adeno-gfap::Cre virus particles  

Adult (8-10 week old) mice were anesthetized in a constant flow of Isoflurane (1-3%) in 
oxygen and immobilized on a stereotaxic apparatus (David Kopf instruments)(Giachino and 
Taylor, 2009). Mice were injected with Temgesic subcutaneous (0.05 mg/kg body weight). The 
skull was exposed by an incision in the scalp and a small hole (1 mm) drilled through the skull. 
Animals were stereotactically injected with 1 mL of titrated adeno-gfap::Cre virus (titer 1 x 1012 
infection particles per ml) in saline, 0.1% bovine serum albumin using sharpened Borosilicate 
glass capillaries (Kwick-FilTM)  at the coordinates: anterior/posterior 0 mm; medial/lateral 0 
mm; dorsal/ventral 2.5 mm below the skull and relative to Bregma. Wounds were closed using 
surgical clips. One day after the surgery the animals received a second dose of Temgesic 
subcutaneous (0.05 mg/kg body weight) and were analyzed 21 days post-injection. 
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Notch2 Maintains Adult Neural Stem Cell Quiescence in the 

Hippocampal Subgranular Zone 
Authors: Runrui Zhang, Anna Engler, Claudio Giachino, Ichiko Saotome, Angeliki 

Louvi, Ursula Zimber-Strobl, Verdon Taylor; in preparation 

Contribution: I planned, conducted and analyzed the Notch levels in the DG and 

prepared the corresponding figure. I planned and conducted Tamoxifen 

administrations for the conditional knock-out animals used for IHF and FACS 

experiments. I set and operated the FACS for the experiments.  

Summary 
We demonstrated, that the deletion of Notch2 from adult NSCs causes an 

activation of quiescent NSC population in the SVZ and an otherwise dormant niche 

the dMW. This was due to the activation of quiescent NSCs (Engler et al., in 

preparation). Based on these data we investigated the role of Notch2 in the 

neurogenic hippocampal DG. We were able to show that in the DG, as the SVZ, the 

expression of Notch1 and Notch2 overlap on Hes5 expressing cells. To date, the role 

of Notch2 has not been addressed in the DG. In order to analyze the role of Notch2 

in the hippocampal DG, we deleted the Notch2 gene from Hes5 expressing NSCs in 

the subgranular zone and traced their fate.  

Notch2 deletion caused an activation of the quiescent NSCs in the DG of adult and 

geriatric mice. The activation of NSC proliferation led to the production of neuroblasts 

and a depletion of the quiescent NSC pool. In contrast, the overexpression of Notch2 

intracellular domain led to an arrest of proliferation in the DG. Overall the results 

indicate that Notch2 is a key signal to maintain NSCs in a quiescent state in the adult 

brain. 
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Contribution 

 

Figure: Notch1 and Notch2 are coexpressed by GFAP+ cells in the DG SGZ 

Immunohistochemistry of double transgenic Hes5::GFP, BLBP::mCherry animals 

co-stained with Notch1 (A) or Notch2 (B) antibodies. Quantification of the co-stained 

cells showed significant overlap of Notch1 and Notch2 with a slight preference for 

Notch2 expression by Hes5::GFP+BLBP::mCherry- quiescent NSCs and Hes5::GFP-

BLBP::mCherry+ IPs and a slight increase in Notch1 expression by 

Hes5::GFP+BLBP::mCherry+ active NSCs relative to Notch2. Notch1 and Notch2 are 

prominently coexpressed by GFAP+ cells (D) Notch1 and Notch2 overlap (D’). Almost 

all GFAP+ radial Type-1 DG NSCs express Notch2 (E).  
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Adult Hippocampal Heterogeneity and its Modulation Under 

Physiological and Pathological Conditions 
Authors: Anna Engler, Chiara Rolando, Claudio Giachino, Andrea Erni, Onur Basak, 

Verdon Taylor; in preparation for Glia 

Contribution: I planned, conducted and analyzed the experiments, prepared all the 

figures and the manuscript. CR conducted the Fluoxetine experiments.  

Summary 
Recent works have highlighted the cellular heterogeneity within the SVZ (Codega 

et al., 2014; Giachino et al., 2014b). In the SGZ of the adult DG, NSCs (Type-1 cells) 

produce intermediate progenitor cells (IP, Type-2a), which retain expression of some 

stem and progenitor markers and therefore it is difficult to unequivocally distinguish 

them. In addition, two morphologically different types of NSCs, radial and horizontal 

exist in the DG (Lugert et al., 2010). Our previous results have shown that quiescent 

and active NSCs have distinct requirements for maintenance both in the SVZ (Engler 

et al., in preparation), and the DG (Zhang et al., in preparation). The detailed 

mechanisms of NSC maintenance in the DG are only poorly understood. We 

addressed the question whether distinct DG NSC subpopulations respond differently 

to external stimuli. We aimed to discriminate different NSC populations and we 

hypothesized that they might be reacting differently to aging, epilepsy and 

antidepressant.  

The maintenance of quiescent and active NSCs is Notch signaling dependent. 

Thus, we used the Notch signaling reporters, Hes5::GFP, BLBP::mCherry double 

transgenic animals to analyze DG SGZ cellular composition in young and aged 

animals. We found a high level of NSC heterogeneity in the DG. Active NSCs, 

characterized by Hes5::GFP, BLBP::mCherry coexpression are lost upon aging. This 

active NSC pool can be replenished by induction of status epilepticus. The 

antidepressant and 5-HT uptake inhibitor Fluoxetine leads to the activation of 

Hes5::GFP- BLBP::mCherry+ IPs, however, the NSCs remain unaffected.  

We concluded that hippocampal NSCs exhibit a high level of heterogeneity. 

Quiescent and active NSCs respond differently to distinct pathophysiological stimuli. 

However, it remains unclear what are the molecular mechanisms behind NSC 

quiescence and activity and will be the scope of future investigation.   
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Abstract 

OBJECTIVES: Adult neural stem cells (NSCs) are found in the adult hippocampal 

dentate gyrus (DG). We addressed the level of heterogeneity in the neurogenic DG and aimed 

to discriminate different stem cell populations and their responsiveness to ageing, epilepsy 

and antidepressant treatment.  

EXPERIMENTAL DESIGN: We used Hes5::GFP, BLBP::mCherry double transgenic 

mice to analyze hippocampal heterogeneity in physiological conditions in young and aged 

animals, as well as in pathophysiological conditions such as seizure induction by kainic acid 

and manipulation of serotonin levels by administration of Fluoxetine.  

PRINCIPAL OBSERVATIONS: We found a high level of heterogeneity in the DG niche. 

Active NSCs, characterized by Hes5::GFP and BLBP::mCherry coexpression, are lost upon 

ageing and can be induced by kainic acid (KA) induced seizures whereas quiescent 

Hes5::GFP+BLBP::mCherry- NSCs remain. The antidepressant fluoxetine leads to the 

activation of Hes5::GFP-BLPB::mCherry+ transient amplifying progenitors most prominently 

in the young DG.  

CONCLUSION: The hippocampal NSC pool exhibits a high level of heterogeneity. 

Quiescent and active NSCs respond to distinct (patho-) physiological stimuli in distinct 

manners. The here presented animals provide a tool for quick, direct screening of effects on 

hippocampal neurogenesis. 
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Text:  

INTRODUCTION 

The adult central nervous system contains neural stem cells (NSCs) that can replace 

postmitotic cells within restricted brain regions (Gage, 2000). Adult NSCs reside in the 

ventricular zone of the lateral ventricle wall (SVZ) and the subgranular zone (SGZ) in the 

hippocampal dentate gyrus (DG). Adult neurogenesis occurs throughout life in both regions 

and it is regulated by intrinsic and extrinsic mechanisms. In the SGZ new neurons are 

generated from NSCs throughout life in rodents (Kempermann et al., 2004) and also in 

humans (Eriksson et al., 1998; Spalding et al., 2013).  

Neurogenesis is a dynamic process responsive to external stimuli, including epilepsy, 

ischemia, physical activity, learning, drug addiction stress, and depression (Abrous et al., 

2005; Kempermann, 2015). Also, neurogenesis diminishes with age and it might be a result of 

decreased activity and/or depletion of NSCs (Encinas and Sierra, 2012; Lugert et al., 2010). 

Following injury or pathological challenge, NSCs can respond by increasing proliferation and 

differentiation, even in the aged brain. Seizures (SE) are associated with increased number of 

proliferating, neurogenic cells. Interestingly, seizures increase the activation of quiescent 

cells, recruiting them into an active state even in the aged DG (Lugert et al., 2010).  

Prolonged seizures decrease adult neurogenesis possibly due to an exhaustion of NSCs. 

Seizures induce massive release of neurotransmitters (NT), neurotrophins and small signaling 

molecules, which are known to modulate neurogenesis (Sierra et al., 2015). Besides 

pathological stimuli, the administration of drugs including the 5-HT uptake inhibitor 

Fluoxetine, has also been shown to have an effect on the SGZ. NSCs seem to be in close 

proximity to serotonergic axons. The administration of antidepressants leads to an increase in 

symmetric divisions of early progenitor cells (Encinas et al., 2006).  

The adult NSCs in the SGZ responsible for the changes observed in neurogenesis are 

defined as type-1 cells and are subdivided into radial (Kempermann et al., 2004) and 

horizontal (Lugert et al., 2010; Steiner et al., 2006; Suh et al., 2007) populations. The radial 

type NSCs display characteristics of quiescent NSCs, whereas the horizontal NSCs are more 

proliferative and therefore more frequently express the cell cycle marker PCNA. NSCs are 

able to self-renew and give rise to differentiated progeny. Clonal analysis showed that single 

NSCs have the potential to activate, return to quiescence and reenter the cell cycle (Bonaguidi 

et al., 2011; Encinas et al., 2011). These complex dynamics in the DG NSC population make 

it critical to develop specific tools to examine individual stem cell subpopulations and states 
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(Bond et al., 2015). Type-1 NSCs produce intermediate Type-2a progenitor cells. Upon 

neuronal determination, Type-2b cells express NeuroD1 and Doublecortin (Dcx) (Steiner et 

al., 2006). Type-2b cells generate Type-3 neuroblasts, which exit cell cycle before fully 

maturing into granule neurons.  

In the SGZ the NSCs and progeny are found in direct cell-cell contact within their niche. In 

this context active Notch signaling promotes NSC maintenance (Ables et al., 2011). 

Canonical Notch signaling leads to the transcription of Notch target genes of the Hes/Hey 

family. Among these, expression of Hes5 is relatively restricted to NSCs. Hes5 expressing 

NSCs in the DG can be subdivided into radial, quiescent NSCs and horizontal more active 

NSCs (Lugert et al., 2010). Activated NSCs in the SVZ express brain lipid binding protein 

(BLBP) (Giachino et al., 2014b), another direct Notch signaling target (Anthony et al., 2005). 

In order to determine the level of heterogeneity in the DG and discriminate quiescent and 

active NSCs within their niche we analyzed Hes5::GFP BLBP::mCherry  double-transgenic 

animals.  
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MATERIALS AND METHODS 

Animals 

Transgenic mice with a C57BL/6 background expressing GFP under the Hes5 promoter 

(Basak and Taylor, 2007) and mCherry under the BLBP promoter (Giachino et al, 2013) were 

used at 8 weeks and 52 weeks. The genotypes of the mutants were confirmed by PCR 

analysis of genomic DNA. All experiments were performed in accordance with the guidelines 

of the Swiss Veterinary office and approved by the Canton council (2538 and 2537).  

Tissue Generation  

Animals were euthanized with Ketamin-Xylazine and intracardial perfusion was 

performed using PBS and 4% freshly prepared PFA in PBS. Perfused animals were 

decapitated and brains were isolated. The tissue was cryoprotected in 30% Sucrose in PBS. 

Tissue was cut in 30 µm thick coronal sections and used for immunohistochemistry.  

Immunohistochemistry 

Immunostaining on sections was performed as described previously(Giachino and Taylor, 

2009; Lugert et al., 2010). Briefly, sections were washed thoroughly and blocked at room 

temperature for 30 minutes (with 10% normal donkey serum (Jackson Immunoresearch) in 

PBS containing 0.5% TritonX-100. Primary antibodies diluted in 2.5% normal donkey serum 

blocking solution were incubated overnight. Sections were washed with PBS and incubated at 

room temperature for 1-2 hours with the corresponding secondary antibodies in 5% normal 

donkey serum blocking solution and counter-stained with DAPI (1 µg/ml (roughly)). Sections 

were mounted on glass slides (SuperFrost, Menzel) in DABCO mounting media and 

visualized using a Zeiss Observer with Apotome (Zeiss),. For PCNA detection, the antigen 

was recovered at 80°C for 20 minutes followed by 25°C for 45 minutes in Sodium Citrate (10 

mM, pH7.4). 

Primary antibodies used were as follows: anti-BrdU (rat, 1:1000, AbSerotec, OPT0030), 

anti-Doublecortin (goat, 1:500, Santa Cruz, sc-8066), anti–dsRed (rabbit, 1:500, CloneTech 

Takara, 632496), anti-Glial fibrillary acidic protein (mouse, 1:500, Sigma, G3893), anti-Glial 

fibrillary acidic protein (rabbit, 1:1000, Sigma, G9269), anti-Green fluorescent protein 

(chicken, 1:250, AvesLab, GFP-1020), anti-GFP (rabbit, 1:500, Invitrogen, A11122), anti-

GFP, (sheep, 1:250, AbD Serotec, 4745-1051), anti-Proliferating cell nuclear antigen (mouse 

1:1000, DAKO, M0879), anti-S100b (rabbit, 1:1000, Swant, 37), anti-Sox2 (goat, 1:250, 

Santa Cruz, sc-17320), anti-Tbr2 (rabbit, 1:500, Abcam, AB23345). Secondary antibodies 
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used were as follows: Donkey anti-rabbit Ig Cy3 conjugated (1:500, Jackson 

Immunoresearch, 711165152), donkey anti-mouse Ig Cy3 conjugated (1:500, Jackson 

Immunoresearch, 715165151), donkey anti-rabbit Ig Cy5 conjugated (1:300, Jackson 

Immunoresearch, 711496152), donkey anti-mouse Ig Cy5 conjugated (1:300, Jackson 

Immunoresearch, 715175151), donkey anti-rabbit Ig 488 conjugated (1:500, Jackson 

Immunoresearch, 711545152), donkey anti-sheep Ig 488 conjugated (1:500, Jackson 

Immunoresearch, 713095147), donkey anti-goat Ig Cy3 conjugated (1:500, Jackson 

Immunoresearch, 705165147), and donkey anti-rat Ig Cy3 conjugated (1:500, Jackson 

Immunoresearch, 712160153).  

Quantification and statistical analysis 

Stained sections were analyzed with fixed photomultiplier settings on a Zeiss Observer 

with Apotome (Zeiss). Images were processed with Photoshop or ImageJ. Data are presented 

as averages of a minimum of three sections per region and multiple animals (n in figure 

legends). Statistical significance was determined by Student’s T-test on mean values per 

animal, and two-way ANOVA for cross-comparison of 3 and more data sets. Significance 

was determined at * - P<0.05, ** - P<0.01, *** - P< 0.001 or P values are given in the graphs. 

Deviance from mean is displayed as standard deviation if not otherwise indicated.  

FACS 

Adult Hes5::GFP, BLBP::mCherry animals (8 weeks or 52 weeks) were killed in a CO2 

atmosphere and decapitated. The brain was isolated and DG was microdissected from 0.5 mm 

vibratome sections The tissue was dissociated in Papain:Ovomucoid at 37ºC. After 

dissociation Ovomucoid was additionally added, the sample was filtered through a 30µm 

filter and centrifuged (5min, 1000 rpm). The supernatant was removed and cells were 

resuspended in Leibowitz Medium without Phenolred. Single cells were analyzed and 3 

populations, GFP high, BLBP high and GFP and BLBP high all from endogenous fluorescent 

protein expression discriminated. We would like to stress the importance of the appropriate 

age-matched negative controls. Autofluorescence of isolated cells is increased in aged animal.  

Seizure Induction 

Animals obtained a single dose i.p. injection with Kainic Acid (10mM) (ToCris, Cat.No° 

0222/65). Young animals obtained a 20mg/kg dose, aged animals 15mg/kg and were 

monitored for 2 hours. Seizure severity was determined according to previously set standards 

in which 1 represented an injected mouse without phenotype and 6 a mouse with severe 

seizures. Animals in analyses were required to reach seizure level 4, which was identified by 
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prolonged freezing and uncontrolled, seated seizing. Animals were sacrificed after 4 days and 

tissue was used for immunohistochemical analysis.  

Fluoxetine Treatment 

8-10 week old and 52 week old Hes5::GFP, BLBP::mCherry animals obtained daily 

intraoral (i.o.) doses of 18mg/kg Fluoxetine (Gelatine in Vehicle controls), for seven 

consecutive days and were killed 2 days after the end of treatment. A cohort of 8-10 week old 

Hes5::GFP, BLBP::mCherry  animals underwent a 19-day chase experiment.  

 

RESULTS 

Comparative analysis of adult hippocampal dentate gyrus heterogeneity of young and 

aged animals 

We analyzed the DGs of adult, 8-week old Hes5::GFP BLBP::mCherry double positive 

animals (GFP+ mCherry+). We observed GFP+ mCherry+, GFP+ mCherry- and GFP- mCherry+ 

cell subpopulations (Figure 1A, Figure 1E), similar to what we observed previously in the 

SVZ (Giachino et al., 2014b). GFP+ mCherry- cells had a radial morphology and expressed 

the astrocytic marker GFAP whereas GFP+ mCherry+ cells had a horizontal morphology and 

did not express GFAP (Figure 1B). GFP+ mCherry+ cells and GFP- mCherry+ cells were more 

frequently positive for the proliferative marker PCNA than GFP- mCherry+ cells (Figure 1C).  

Of the GFP- mCherry+ population, a large proportion was Tbr2+, characterizing them as 

Type-2b cells and some of expressed Dcx indicating that they were Type-3 neuroblasts. These 

GFP-mCherry+Dcx+cells were morphologically distinguishable from GFP-mCherry-Dcx+ 

only, type-3 neuroblasts (Figure 1D) 90% of the total GFP- mCherry+ cells were co-stained 

for BLBP protein validating the transgene expression. The few mCherry+ cells that were 

negative for BLBP immunostaining were all Dcx+ with a typical morphology of newly 

generated neuroblasts suggesting perdurance of the mCherry protein or lower sensitivity of 

the antibody staining (data not shown). Thus, using Hes5::GFP, BLBP::mCherry animals we 

could subdivide NSCs (GFP+) and their immediate progeny GFP- mCherry+ into 

subpopulation with distinct antigenic and proliferative properties.  

Upon advanced aging neurogenesis decreases in the DG (Jessberger et al., 2007b). We 

compared the DG of 8-week old young adult Hes5::GFP BLBP::mCherry animals with aged 

(52-week old) and geriatric (78/102-week old) animals (Supplementary Figure 1A, B). The 
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number of GFP+ mCherry+ and GFP- mCherry+ cells was drastically reduced in the aged 

animals. In contrast, the number of GFP+ mCherry- cells was only slightly reduced (Figure 

1E). The remaining GFP+ mCherry- cells frequently showed a radial rather than horizontal 

morphology, suggesting maintenance of the quiescent NSCs and a potential transition from an 

active to a more quiescent state within the NSC pool (Supplementary Figure 1B).  

The decrease of cell proliferation in aged DG prompted the question how proliferation is 

changing in the fluorescently labeled cell populations. We examined cell proliferation with 

proliferating cell nuclear antigen (PCNA) as a marker of proliferating cells (Figure 1F) and 

short BrdU pulse analysis. In young animals, the GFP+ mCherry+ NSCs were actively 

dividing, 23.2% incorporated BrdU in a 2-hours pulse and 78.1% were positive for PCNA 

(Supplementary Figure 1F, G). Most GFP+ mCherry- NSCs have an astrocytic character 

(84.2%), expressing glial fibrillary acidic protein (GFAP) (Supplementary Figure 1F). Of 

these GFP+mCherry-GFAP+ cells only a fraction (16.8%) co-stained for the astrocyte marker 

S100β in young mice. The number of S100β+ cells in the DG was slightly increased with age 

suggesting astrocytosis (Supplementary Figure 1E). Although the number of proliferating 

cells was significantly reduced with age and the number of GFP+ mCherry+ cells drastically 

reduced (Figure 1E, F, G), a fraction of the remaining double positive cells was still 

proliferating albeit to a lower extent (Supplementary Figure 1F, G). All classes of cells, 

except radial type-1 cells, were significantly reduced in the aged animals (Figure 1 E-I, K 

Supplementary Figure S1A-C).  

We further validated these data by ex vivo FACS analysis using the transgenic animals 

expressing fluorescent proteins GFP and mCherry (Figure 1J). GFP+ mCherry- quiescent 

NSCs were the largest population of transgene expressing cells in the SGZ, followed by GFP- 

mCherry+ IPs and GFP+ mCherry+ active NSCs. In aged animals these ratios were drastically 

changed. While the GFP+ mCherry- population was not reduced, the GFP- mCherry+ and 

GFP+ mCherry+ cells were barely detectable (Figure 1K), supporting our conclusions from the 

histological analysis that quiescent NSCs remain in the aged DG but active NSCs and IP are 

lost (Figure 1E). Thus, active NSCs (GFP+ mCherry+) and IPs (GFP- mCherry+) are lost 

during aging, but the quiescent NSCs (GFP+ mCherry-) remain largely unaffected.  

Change in Hippocampal Composition upon Seizures Induction by Kainic Acid 

Treatment 

Epileptic seizures are associated with a loss of hippocampal neurons and increased 

proliferation of SGZ NSCs (Parent, 2007). In the adult mouse, models of temporal lobe 

epilepsy, seizures (SE) increases progenitor proliferation in the DG (Lugert et al., 2010; 
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Parent et al., 1997; Sierra et al., 2015). We addressed whether the fluorescently labeled, 

distinct DG populations respond differently to pathological activating stimuli and 

administered epileptogenic kainic acid (KA) systemically to stimulate seizures in young and 

aged mice (Figure 2A). Seizures started 20 minutes after administration and lasted on average 

for 2 hours. Animals were sacrificed 5 days after treatment.  

We observed changes in GFP and mCherry expressing populations both in young and 

aged animals. The GFP+ mCherry-, quiescent NSCs were significantly increased in young 

animals after KA, and a tendency for increase was observed in the GFP+ mCherry+ active 

NSCs (Supplementary Figure 2A). We observed a significant increase in actively dividing 

PCNA+ cells (Supplementary Figure 2B). The NSCs that stayed proliferating were GFP+ 

mCherry- and GFP+ mCherry+ (Figure 2B, C) Interestingly, we saw a decrease in the GFP-

mCherry+Tbr2+ type-2 cell pool (Figure 2D), accompanied by an increase in Dcx+ newborn 

neurons (Fig2 E, F) after seizures. This increase in Dcx+ was accounted for by an increase in 

GFP-mCherry+Dcx+ (Supplementary Figure 2C) likely as a result of accelerated progenitor 

differentiation. 

Change in Hippocampal Composition upon Administration of Antidepressant 

Fluoxetine 

After looking at the behavior of NSC subpopulations in a pathological situation in which 

many NTs are released, we looked at a more physiological stimulus. We administered 

animals with the Serotonin (5-HT) reuptake inhibitor Fluoxetine to modulate the levels of 5-

HT specifically. In order to address which cells in the hippocampus respond following 

Fluoxetine administration, we treated animals for 7 days and analyzed the short term effects 

on the NSC populations in young and aged animals (Figure 3A).  

The number of GFP+ mCherry- cells was not changed either in young or aged animals 

(Supplementary Figure 3A) and actively dividing stem cells (GFP+ mCherry+) were not 

affected (Figure 3B). The number of dividing NSCs was not changed after Fluoxetine 

treatment (Supplementary Figure 3C, D). Interestingly, we observed a substantial increase in 

the GFP- mCherry+ cell population after Fluoxetine treatment (Figure 3B, C). We also 

observed a significant increase in total PCNA+ dividing cells (Supplementary Figure 3B). 

This proliferative response to Fluoxetine treatment was mainly due to Type-2, GFP- mCherry+ 

IPs (Figure 3D). The dividing Type-2a cells were most likely the origin of the increase in 

Type-2b, GFP-mCherry+Dcx+ cells (Figure 3E). These Type-2b cells also accounted for the 

increased Dcx+ cells in the SGZ of young animals we observed after Fluoxetine treatment 
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(Supplementary Figure 3E). Therefore, the increase in proliferating cells observed in the DG 

is mainly due to the increased number of dividing GFP- mCherry+ IPs.  

Our detailed analysis of Hes5::GFP, BLBP::mCherry double transgenic animals revealed 

that hippocampal progenitor heterogeneity is comparable to the heterogeneity within the SVZ. 

Here, we showed that hippocampal NSCs/progenitors have a high heterogeneity. Our results 

indicate that the different populations of NSCs and progenitors are not only part of a lineage 

but on its own have crucial functions in responds to pathophysiological stimuli.  

DISCUSSION 

In this study we were identified distinct NSC and progenitor populations that were at the 

base of ageing, epilepsy and antidepressant administration in adult neurogenesis. We showed 

that young Hes5::GFP BLBP::mCherry transgenic mice have a high level of neurogenic 

progenitor heterogeneity in the hippocampal DG SGZ and can be used to discriminate 

quiescent and active cells. GFP+ mCherry- cells are infrequently dividing and they are 

characterized as quiescent NSCs. GFP+ mCherry+ cells are frequently dividing and a high 

percentage are in S-Phase, but do not express IP markers and are therefore characterized as 

active NSCs. GFP- mCherry+ cells are frequently dividing and frequently found in S-Phase 

and they represent IPs. These mice will allow for molecular analysis of the distinct NSC 

populations in future experiments.  

Our findings substantiate the current knowledge regarding DG (Giachino et al., 2014b; 

Lugert et al., 2010) and its activation following seizures and Fluoxetine treatment (Encinas et 

al., 2006; Jessberger et al., 2005). We were able to localize the responsive cell populations 

underlying the observed effects in response to KA and Fluoxetine. Especially in the case of 

Fluoxetine this gave a more detailed insight into the cellular population activated in response 

to increase Serotinin levels. It was previously shown that Fluoxetine treatment leads to a 

proliferative activation of early progenitors (Encinas et al., 2006), here we identified the 

activated population to be GFP- mCherry+ IPs. Furthermore, our results combined with recent 

publications in the SVZ (Llorens-Bobadilla et al., 2015) make it worth to consider that 

quiescent and active cells might have further intrinsic increments of complexity.  

Quiescent and active NSCs respond in distinct manners to different stimuli. Aging, 

epilepsy and increase of NTs reportedly affect adult neurogenesis. Upon SE, which causes a 

massive release of NTs, neurotrophins and ions, the NSCs are increased due to an increase in 

proliferation but the IPs are decreased due to enhanced differentiation. Analyzing newly 

generated Dcx+ cells we assume that the decrease of the IP pool is due to a direct transition of 
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the cells to early neuroblasts without undergoing extensive expansion. Whether the observed 

activation of NSCs is an independent effect or whether the decrease of IPs contributed to this 

effect by an unknown feedback mechanism, or a combination of both, remains to be 

investigated.  

Interestingly, increased Serotonin induced by the addition of the 5-HT uptake inhibitor 

Fluoxetine, does not affect NSC proliferation. The Hes5::GFP-BLBP::mCherry+ IPs are 

activated in the young animals in response to Fluoxetine. In the aged animals this activation 

was not observed, presumably due to a lack of this GFP- mCherry+ population. These results 

indicate that the increased number of GFP- mCherry+ was due to a direct activation of this 

population rather than a transition of GFP+ mCherry+ active NSCs to IPs. In addition to the 

activation of IPs, quiescent NSCs transitioned from a radial to a horizontal morphology, 

however, they did not up regulate mCherry, indicating a transition state between quiescence 

and active. We predict that this is a feedback mechanism due to the increased IP pool on the 

NSCs.  

Our study highlights the differences between young and aged adult neurogenesis in the 

rodent. We underlined the potential of reactivation of quiescent NSCs in the aged DG, which 

might be beneficial for healthy ageing in humans. It might be of interest for future studies to 

analyse if there is a single released factor by seizures that could induce quiescent NSC 

maintenance for future clinical applications. Indeed, recent results from studies carried out in 

humans (Ngandu et al., 2015) indicate that cognitive functions of the brain by physical 

exercise and proper cognitive training can be jumpstarted. The prospect for enhancing 

regenerative potential in the brain with oral medication is tantalizing. The here present mice 

will allow a simple approach to discriminate quiescent and active NSCs from TAPs by means 

of fluorescent protein expression and thus are a beneficial tool for drug screenings for 

rejuvenating drugs. 
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FIGURE LEGENDS 

Figure 0: TOCI; Hippocampal Heterogeneity and Responds to Pathological Stimuli 

 

 

 

The hippocampus is a highly heterogeneous structure. Hes5::GFP, BLBP::mCherry 

double transgenic animals allow discrimination of NSCs subpopulations. Radial GFP+ cells 

represent quiescent NSCs and express the astrocytic marker GFAP. Horizontal GFP+ cells 

represent a morphologically distinct SC population, which will becomes mCherry+ upon 

activation and express the proliferation marker PCNA. As they progress in the lineage NSC 

lose the expression of GFP+ and become IPs. Early IPs express mCherry but lack Tbr2 

expression and late IPs are defined as mCher+Tbr2+ Type-2b cells. Only the earliest Dcx+ 

cells will still express mCherry; although they will be BLBP-. This residual mCherry allows 

for discrimination of newly generated Dcx+ cells and older Dcx+ cells in the DG. Type-1 cells 

respond to epileptic seizures and mCherry+ only, Type-2a cells that respond to Fluoxetine 

treatment with increased proliferation.  
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Figure 1: Comparative analysis of adult hippocampal dentate gyrus heterogeneity of 

young and aged animals 

Immunohistochemistry of young (8-week old animals) dentate gyri, stained with GFP, 

mCherry (A) and astrocytic marker GFAP (B) or PCNA (C) or Dcx (D). Quantification of 

composition of GFP+ and mCherry+ cells in young and aged animals (E); heterogeneity is 

decreasing with progressive age; Quantification of dividing cells (PCNA+) (F) and cells in S-

Phase (G) in the dentate gyrus of young and aged animals. Proliferation is decreasing with 

age; GFP+mCherry+ double positive and mCherry+ cells are the major dividing populations. 

Quantification of mCher+Tbr2+ cells (H) and Dcx+ cells (I) in the SGZ of the DG. 

Experimental setup for ex vivo sorting of GFP+ and mCherry+ cells from the DG (J) and 

FACS analysis (K). Full arrow = quiescent NSCs; Empty arrow = active NSCs; Asterisk = 

transient amplifying progenitor cells; NB = neuroblast; Scale bars indicate 100 µm in A, B; 

20 µm in E; 10 µm in F, G, H, I; Significances: Values are means ± stdev; * - P<0.05, ** - 

P<0.01, *** - P<0.001, 
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Figure 2: Change in Hippocampal Composition upon Seizure Induction by Kainic 

Acid Treatment 

Schematic representation of experimental setup: Animals were injected at 8 weeks or 52 

weeks of age with Kainic Acid or Saline respectively. Seizures were achieved within half an 

hour and lasted for about 2 hours; animals were chased for 5 days (A). Quantification of 

GFP+PCNA+ dividing quiescent stem cells (B); (GFP+mCherry+PCNA+ dividing active stem 

cells (C) and mCherry+Tbr2+ cells (D) as well as Dcx+ cells (E). The number of dividing, 

stem cells is significantly increased in both young and aged animals after kainic acid 

administration. The number of Type-2 cells was reduced upon seizure. A slight, albeit non-

significant increase was observed in young animals; the responds of aged animals reached 

significant levels. Immunohistochemistry of young (8 weeks) and aged (52 weeks) animals, 

analyzed post-seizure (F); Control animals were treated with Saline; Young animals showed 

an increase in GFP+ Type-1 cells and a slight decrease of mCherry+ cells Type-2 cells post-

seizure. Aged animals showed and increase in DCX+ cells and a significant increase in 

GFP+mCherry+ active Type-1 cells, albeit at low levels; Full arrow = quiescent NSCs; Empty 

arrow = active NSCs; Asterisk = transient amplifying progenitor cells; NB = neuroblast; Scale 

bars indicate 25 µm; Significances: Values are means ± stdev; * - P<0.05, ** - P<0.01, *** - 

P<0.001,  
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Figure 3: Change in Hippocampal Composition upon Administration of 

Antidepressant Fluoxetine 

Schematic representation of experimental setup: Animals were administered with 

Fluoxetine or Gelatine at 8 weeks or 52 weeks of age for 7 consecutive days. Animals were 

sacrificed 2 days after last treatment (A). Quantification of radial GFP+ only cells in the SGZ 

after Fluoxetine treatment (B), mCherry+ TAPs and GFP+mCherry+ active NSCs (C), 

mCherry+PCNA+ proliferating cells (D) and mCherry+Dcx+ newborn early neuroblasts (E). 

Number of radial GFP+ cells was significantly reduced in young animals and displayed a 

tendency of reduction in aged animals. We saw a significant increase of mCherry+ cells in 

both young and aged animals. Double positive, active NSCs only showed a significant 

increase in the aged animals. The major dividing population in the DG after Fluoxetine 

administration is the TAPs in young animals. This diminished population in the aged could 

not respond. Immunohistochemistry of young (8 weeks) and aged (52 weeks) animals, 

analyzed post Fluoxetine treatment (F); Control animals were treated with a Gelatine Vehicle; 

Full arrow = quiescent NSCs; Empty arrow = active NSCs; Asterisk = transient amplifying 

progenitor cells; NB = neuroblast; Scale bars indicate 25 µm; Significances: Values are 

means ± stdev; * - P<0.05, ** - P<0.01, *** - P<0.001  
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Figure 4:  Graphical Summary of Hippocampal Heterogeneity in Physiological and 

Pathological Conditions 

Summary of the temporary and pathological changes occurring in the adult hippocampal 

dentate gyrus. Under control conditions young DG displays a high heterogeneity and this 

diversity is dramatically reduced in the aged brain. Upon administration of epileptogenic 

Kainic Acid, the young DG becomes proliferative and the aged DG is regaining a certain 

level of heterogeneity, indicated by the appearance of active Type-1 cells and an increased 

number of late Type-2b cells. Administration of Fluoxetine has no effect on the aged DG, but 

it induces an increased number of proliferating Type-2a cells in the young DG.  
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Supplementary Figure 1: Comparative analysis of adult hippocampal dentate gyrus 

heterogeneity of young and aged animals;  

Comparison of GFP+ and mCherry+ cells in young (8 weeks), and aged (52 weeks) 

animals analyzing GFP+, mCherry+ cells and GFAP+ (A) and Dcx+ (B) cells. Quantification of 

percentage GFP+ cells in regards to their radial or horizontal properties (C), the coexpression 

with GFAP (D) and the triple expression of GFAP and S100β (E). Quantification of dividing, 

PCNA+ cells (F) and BrdU+ cells in S-Phase (G) positive for GFP and mCherry. Proliferation 

is significantly decreasing with age however the few remaining GFP+ mCherry+ cells maintain 

at large their proliferative property. Control FACS analysis of young, aged and geriatric 

animals (H); Note: auto-fluorescence is slightly increased in the aged tissue; Hippocampal 

heterogeneity is drastically reduced with age (I). Significances: Values are means ± stdev; * - 

P<0.05, ** - P<0.01, *** - P<0.001  
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Supplementary Figure 2: Change in Hippocampal Composition upon Seizures 

Induction by Kainic Acid Treatment 

(A) Quantification of Hes5::GFP; BLBP::mCherry animals in young and aged conditions 

5 days after saline or kainic acid administration. GFP+ only cells were slightly increased in 

the young, whereas the composition of mCherry+ only cells did not significantly change; a 

slight increase of GFP+ mCherry+ active stem cells was observed in aged animals after kainic 

acid administration. Quantification of dividing PCNA+ cells (B) and mCherry+ Dcx+ early 

neuroblasts after seizure (C); Significances: Values are means ± stdev; * - P<0.05, ** - 

P<0.01, *** - P<0.001, 
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Supplementary Figure 3: Change in Hippocampal Composition upon 

Administration of Antidepressant Fluoxetine 

The total number of GFP+ cells in the DG is not changed significantly after Fluoxetine 

treatment (A). Quantification of total number of proliferating PCNA+ cells (B) quiescent 

GFP+PCNA+ cells (C) and active GFP+ mCherry+ PCNA+ cells (D) as well as the total number 

of Dcx+ neuroblasts (E) in the SGZ; Significances: Values are means ± stdev; * - P<0.05, ** - 

P<0.01, *** - P<0.001 
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Thesis Discussion 
The main focus of my PhD thesis was the study of Notch signaling and the role of 

individual Notch receptors in the regulation of adult neurogenesis and NSC 

quiescence. In my work I demonstrated that Notch signaling is essential for adult 

NSC maintenance. Importantly, I identified for the first time a specific role for Notch2 

that is not compensated by the other Notch receptors. Notch2 functions as a key 

signal in the maintenance of quiescent NSCs. I provided the first evidence that a 

vestigial quiescent population of NSCs reside in the dorsal medial wall (dMW) of the 

SVZ. This newly discovered population of cells is capable of forming new neurons 

upon Notch2 inhibition. Furthermore, these quiescent dMW NSCs are responsive to 

antidepressants and can be activated by Fluoxetine treatment.  

Notch2 promotes quiescence of both SVZ and SGZ NSCs. Interestingly, Notch1 

and Notch2 are coexpressed in the stem cells in both adult neurogenic regions, 

despite their non-redundant roles in the regulation of NSC behavior. To get a better 

understanding of NSC heterogeneity and Notch dependence we characterized the 

composition of the SGZ niche in great detail. Using transgenic reporter mice for 

Notch signaling effectors Hes5 and BLBP, namely Hes5::GFP, BLBP::mCherry 

(Giachino et al., 2014b) we identified distinct subpopulations of quiescent and active 

NSCs and progenitors in the adult hippocampus. Furthermore, we took advantage of 

these transgenic tools to better characterize the responses of NSCs subpopulations 

to physiological and pathological stimuli in vivo.  

Neurogenic Stem Cells in a Dormant Niche are activated by 

antidepressant Fluoxetine and suppressed by Notch2 signaling 

Notch2 signaling keeps quiescent NSCs in check 
Our combinatorial analysis of conditional knockouts for Notch signaling 

components represents an unprecedented study of Notch signaling in NSCs of the 

adult murine brain. Notch is a key pathway that controls NSC activity and 

differentiation in the adult neurogenic niches. Canonical Notch signaling downstream 

of the four Notch paralogues is mediated by the transcription factor Rbpj. Previous 

data indicate that loss of canonical Notch signals disturbs adult neurogenesis and the 

production of new neurons (Basak et al., 2012; Imayoshi et al., 2010). However, in 

the SVZ of the lateral ventricular wall, Notch1 and Rbpj cKO experiments 
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demonstrate a central difference in phenotype. Whereas loss of Rbpj lead to 

activation of quiescent NSCs, a wave of enhanced neurogenesis and depletion of 

both the active and quiescent NSC pools, loss of Notch1 impaired the self-renewing 

and neurogenic potential of activated NSCs without affecting the quiescent NSC pool 

(Basak et al., 2012; Imayoshi et al., 2010).  

The work presented here leads to three main conclusions. Firstly, the Rbpj cKO 

phenotype was by-end-large phenocopied by combined loss of Notch1 and Notch2 

thus indicating that these two receptors are the major players in activating the 

canonical Notch signal in the murine SVZ. Secondly, although coexpressed, Notch1 

and Notch2 have distinct functions depending on the NSC activation state. We 

confirmed previous results showing that Notch1 is important for activated NSCs and 

Rbpj is essential for the maintenance of both active and quiescent NSCs (Basak et 

al., 2012; Imayoshi et al., 2010) whereas, Notch2 is required by mitotically inactive, 

dormant NSCs. Thirdly, we showed that this function of Notch2 is conserved 

between stem cells in the neurogenic but also non-neurogenic regions, and that in 

the latter neurogenesis can be re-activated upon Notch2 inhibition.  

Progenitors in non-neurogenic regions of the adult brain may be controlled in vivo 

by Notch2 signals, which mask their neurogenic potential in situ. For example, 

astrocytes that retain the ability to divide in non-neurogenic brain regions may be 

restricted from adopting a neuronal fate through lateral activation of Notch signaling 

in local niches. Intriguingly, recent data indicate that mutations in Notch receptors, 

including Notch2, are found in human glioma subtypes suggesting that impaired 

Notch signaling in stem cells and/or parenchymal progenitors could be involved in 

brain tumor formation (Cancer Genome Atlas Research et al., 2015; Giachino et al., 

2015; Suzuki et al., 2015). 

While the specific role for Notch2 in NSC quiescence was not described 

previously, there were indications of Notch dependent regulation of quiescence in 

other models. Notch3 is essential for NSC quiescence in fish (Chapouton et al., 

2010b). Loss of canonical Notch signaling in astrocytes within the mouse striatum 

after stroke results in increased neurogenesis and ablation of Rbpj in striatal 

astrocytes initiates neuronal production (Magnusson et al., 2014) although the 

receptor involved remains unknown. These findings lend direct support to our results 

showing that dMW B1-cells are repressed by Notch2, which prevents both entry into 

cell cycle and the generation of neurons even outside the classical neurogenic 

regions.  
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The dorsal medial wall is a vestigial niche of the SVZ 
Previous works reported the presence of neural progenitors outside the classic 

neurogenic niches including the forth ventricle, the optic nerve, the cerebral cortex, 

the striatum and the hypothalamus of the adult brain (Luo et al., 2015; Luzzati et al., 

2006; Magnusson et al., 2014; Nato et al., 2015; Palmer et al., 1999; Robins et al., 

2013). In all of these reports the crucial role of the niche is highlighted. The 

homeostatic balance between NSC maintenance and differentiation is determined by 

the microenvironment and the intrinsic determinants. Upon local damage or by forced 

expression of pro-neurogenic transcription factors including Ascl1, Neurog2 and 

NeuroD1 in vitro and in vivo dormant progenitors and astrocytes are activated 

(Berninger et al., 2007; Guo et al., 2014; Heinrich et al., 2010; Liu et al., 2015; 

Masserdotti et al., 2015). Expression of the proneural transcription factors is 

repressed by Notch signaling thereby preventing NSCs adopting a neuronal fate 

(Kageyama et al., 2005). This partially explains how Notch signaling controls the 

developmental switch of NSC fate during differentiation, inhibiting neurogenesis 

whilst favoring astroglial fate (Gaiano et al., 2000).  

The dMW seems to promote NSC maintenance and neurogenesis over 

gliogenesis, but the dormant stem cells do not generate neurons unless they enter 

the cell cycle. Although the complete molecular and cellular structure of the dMW 

niche has not been defined we were able to show that the NSCs present in the 

dorsal septal wall are embedded in pinwheel structures of ependymal cells. They bi-

directionally contact the lateral ventricle with protrusion through the ventricular lining 

and blood vessels in the subependymal zone. In the lateral wall it has been proposed 

that direct contact with the vascular niche can promote NSCs maintenance (Shen et 

al., 2008) and even quiescence (Ottone et al., 2014). Besides the contacts to blood 

vessels, NSCs are in close proximity to axons. In the classic neurogenic niches 

neurogenesis is modulated by several neurotransmitters for instance via GABA 

receptors (Giachino et al., 2014a; Song et al., 2012) glutamate receptors (Nochi et 

al., 2012), Serotonin (Encinas et al., 2006; Tong et al., 2014b) and Acetylcholine 

(Paez-Gonzalez et al., 2014). 

The quiescent NSCs in our study are able to respond to environmental cues (loss 

of Notch signaling, increase of 5-HT) to generate new neurons. The septal nuclei in 

the brain of humans receive input from many brain regions including the olfactory 

bulb, hippocampus, hypothalamus and thalamus and they are part of the pleasure 

zone of the brain with a role in reward and reinforcement. Whether neurogenesis in 
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the dMW is linked to pathophysiological stimuli that modulate neurogenesis in the 

classic neurogenic brain regions remains to be determined (Anthony et al., 2014). 

The NSCs in the dorsal septal wall are in contact with a plexus of serotonergic 

axons. SVZ NSCs rapidly divide and generate newborn neuroblasts in response to 

the antidepressant and serotonin-uptake inhibitor Fluoxetine (Tong et al., 2014a; 

Tong et al., 2014b). dMW mB1-cells respond similarly to the antidepressant 

treatment with an increase in progenitor production potentially due to a direct signal 

from Serotonin.  

Stem cells of the adult SVZ are set-aside during embryonic development. During 

the peak of neurogenesis in the developing forebrain, some NSCs in the lateral 

ganglionic eminence stop dividing (Fuentealba et al., 2015; Furutachi et al., 2015). 

These NSCs become incorporated into the primordial of the postnatal lateral ventricle 

wall and originate the neurogenic stem cells of the SVZ in the adult. It is unclear 

whether dMW NSCs are also set-aside during brain development. It would be of 

major interest to understand whether dMW NSCs are remnant from development.  

Notch2 Maintains Adult Neural Stem Cell Quiescence in the 

Hippocampal Subgranular Zone 
Our recent findings (Engler et al., in preparation) establish that even in non-

neurogenic regions of the adult mammalian brain, NSCs may be present but remain 

in a Notch2-repressed dormant state and these can be reactivated to form new 

neurons. The SGZ of the DG is one of the two major neurogenic niches of the murine 

brain that contains quiescent and active NSC subpopulations. Also in the SGZ 

Notch1 and Notch2 protein are coexpressed on the quiescent and active NSCs 

(Zhang et al., in preparation). We could show that in the SGZ, loss of Notch2 leads to 

activation of the quiescent NSCs and increased production of neuroblasts, similar to 

what was observed in the SVZ (Engler et al., in preparation; Zhang et al., in 

preparation). Thus, the role of Notch2 in maintaining quiescence of adult NSCs is 

conserved in both canonical adult neurogenic niches and also in dormant stem cells 

residing in non-neurogenic regions. Although Notch2 appears to be essential for 

quiescent NSC maintenance throughout the brain, the molecular mechanism remains 

unknown.  

Upon loss of Notch2 the quiescent NSC are activated and lost in the long run, 

illustrating the essential role of this receptor. The DNA binding motif of Rbpj (Engler 
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et al., in preparation), the canonical Notch signaling mediator, can be found in close 

proximity to various known quiescence genes such the bHLH gene Id1 (Rodriguez 

Viales et al., 2015), Nfix (Martynoga et al., 2013) and various Forkhead box O gene 

members (FoxO) (Renault et al., 2009) suggesting a direct regulation of these factors 

by Notch family members. On the other hand it is possible, that the same gene 

families (Id, NFI, FoxO) are needed for a proper feedback loop for the maintenance 

of quiescent stem cells. NFI binding motifs are an indication for quiescence specific 

enhancers. Interestingly, NFI binding motifs are found amongst others in the Notch2, 

Foxo3, Id1 and Ascl1 locus (Martynoga et al., 2013).  

It is possible that these feedback loops are broken by the loss of one member. 

Besides the regulation on the direct transcriptional level, Notch target genes might be 

an additional measure to keep quiescence in check. Although there are no putative 

Rbpj binding sites in Ascl1, Notch regulates the expression of Ascl1 indirectly via 

Hes1 and Hes5. The proneural factor Ascl1 has been shown not only to be involved 

in differentiation but also more recently stem cell proliferation (Castro et al., 2011). 

Hes transcription factors are known to repress the expression of various proneural 

genes, such as Ascl1 during embryogenesis (Kageyama et al., 2007). A similar 

mechanism might occur in the adult, especially due to the recently described role of 

Ascl1 in transition from quiescence to active NSCs (Andersen et al., 2014) while the 

degradation of Ascl1 by Huwe1 causes a return to quiescence (Urban et al., 2016). 

Interestingly, there are four putative Rbpj binding sites in close proximity to the 

Huwe1 gene start site.  

The maintenance of quiescent NSCs is a delicate interplay of different 

transcription factors up- and downstream of Notch signaling. Understanding the role 

of quiescent NSCs and the mechanisms underlying their long-term maintenance will 

be of importance for future studies.  

Adult Hippocampal Heterogeneity and its Modulation Under 

Physiological and Pathological Conditions 
Notch receptors and Rbpj are present throughout the neurogenic lineage, but 

only quiescent and active NSCs and their early progeny express Notch signaling 

mediators Hes5 (Lugert et al., 2010; Ohtsuka et al., 1999) and BLBP (Anthony et al., 

2005; Giachino et al., 2014b). Interestingly, quiescent NSCs only express Hes5, 

active NSCs express Hes5 and BLBP and early progenitors (TAPs) express BLBP 

but not Hes5. Thus, to easily distinguish quiescent and active NSCs from their early 
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progeny in the SVZ we have recently developed double transgenics with GFP and 

mCherry driven by the Hes5 (Hes5::GFP) and BLBP (BLBP::mCherry)  promoters 

and regulatory elements, respectively (Giachino et al., 2014b).  

We extended our previous work and exploited Hes5::GFP, BLBP::mCherry 

double transgenic animals to examine distinct NSC and progenitor populations in the 

SGZ of the DG. We addressed the effects of ageing, epilepsy and antidepressant 

administration on NSCs and progenitors. We showed that young adult Hes5::GFP, 

BLBP::mCherry animals display a high level of heterogeneity in the hippocampal DG. 

We found that quiescent and active NSCs can be discriminated in the DG on the 

basis of Hes5 and BLBP expression. Moreover, we identified the cell population that 

are responsive to Fluoxetine (Encinas et al., 2006) and seizures (Jessberger et al., 

2005). These findings demonstrate how Hes5 and BLBP expression could be used to 

precisely define the identity of cell populations in the SGZ that respond to drugs, 

neurotransmitters, hormones and other stimuli that can modulate neurogenesis.  

At the current point in time the mechanisms underlying ageing of NSCs are only 

poorly understood. In geriatric animals it is observed that the NSCs left are radial 

type quiescent NSCs. Most likely a combination of intrinsic and extrinsic factors lead 

to the depletion of active NSCs and the maintenance of quiescent NSCs in the adult. 

The loss of active NSCs can be explained in two ways.  

1. There are no more stem cells provided from the quiescent pool and the 

actively dividing cells eventually exhaust. 

2. Active NSCs go back to a quiescent state if Ascl1 is down regulated upon the 

up regulation of Huwe1 (Urban et al., 2016). Whether Ascl1 is down regulated 

physiologically upon ageing is not known.  

With age NSCs most likely accumulate DNA damage, undergo epigenetic 

changes and accumulate damaged cellular components. In the young NSCs, a 

diffusion barrier leads to the asymmetric segregation of cellular components and 

damaged proteins, thus the daughter cells do not inherit damaged cellular 

compounds. With age, this barrier is weakened and damaged proteins will be 

distributed more symmetrically (Moore et al., 2015). Potentially this accumulation of 

damage will force the cells towards quiescence.  

Besides the intrinsic factors, extrinsic supporting factors and signals are changed 

in the geriatric niche. One of the known properties changing with age is the 
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permeability of the BBB leading to decreased levels of glucose influx (Mooradian, 

1988). Additionally, the increase of quiescent NSCs will automatically lead to a 

decrease in neurogenesis and thus a loss of daughter cells within close proximity to 

the NSCs. A loss of the feedback mechanism from the progenitor cells might add to 

the quiescent phenotype observed in the aged animals.  

Adult NSCs in a quiescent state are irreversibly dormant. They can be reactivated by 

genetic and pathological means. The loss of Notch2 leads to the activation of 

quiescent NSCs both in the young animals in the LW and dMW of the SVZ as well as 

the SGZ. In aged animals the loss of Notch2 lead to the activation of quiescent NSCs 

in the LW of the SVZ and the SGZ, however not the dMW (Zhang et al., in 

preparation). The thought of pharmacologically stimulating neurogenesis in the aged 

brain can have broad applications. However, forced reactivation of quiescent SCs 

might have long-term side effects. Recent studies conducted on HSCs in aged mice 

have shown a forced exit from quiescence, and thus the reentry into mitosis, leads to 

an exhaustion of the HSC pool (Walter et al., 2015). Similar observations were also 

made in the murine brain after continuous induction of seizures, which ultimately 

resulted in the terminal differentiation of the NSCs into astrocytes and the depletion 

of the NSC pool (Sierra et al., 2015). In a more extreme situation the loss of dormant 

SCs might be the induction of a continuous, uncontrolled proliferative state, 

potentially leading to cancer development (Ignatova et al., 2002).  
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Outlook 
We have studied the contribution of the individual Notch receptor paralogues Notch1 

and Notch2 to adult neurogenesis in detail with a combinatorial conditional gene 

knockout approach (Engler et al., in preparation). Our analysis and the exciting 

results underlined the complexity of NSC maintenance. Notch2 regulates activation 

of quiescent NSCs in the SVZ, maintaining them in a mitotically inactive state, 

whereas Notch1 is essential for active NSC maintenance (Basak et al., 2012). These 

findings suggested that Notch1 and Notch2 signaling are both required for different 

aspects of NSC biology. In support of this, the Rbpj phenotype was phenocopied by 

the combined deletion of both Notch1 and Notch2 indicating that, although 

coexpressed by quiescent and active NSCs, they play non-compensatory roles as 

regulators of adult NSCs (Engler et al., in preparation). Based on their coexpression 

and lack of compensatory function, these results strongly suggest that Notch1 and 

Notch2 have distinct downstream pathways and gene targets.  

Identification of distinct molecular targets of Notch signaling 
To identify the distinct targets of the individual Notch paralogues Notch1 and 

Notch2. For this reason we have established two novel mouse lines, containing flag-

tags in the endogenous 3’-end of the Notch locus. We are expecting to gain insight 

into distinct Notch1 and Notch2 target genes from these animals and to explain the 

distinct roles of the Notch receptors in maintenance of quiescent and active NSC 

states.  

Using a CRISPR-Cas9 based approach we generated animals where the 

endogenous Notch1 and Notch2 proteins have been C-terminally tagged with a Flag 

epitope. These mice allow for the analysis of the endogenous Notch1 and Notch2 

signaling. We hypothesize that the two paralogues have distinct gene targets. We will 

examine the Notch1 and Notch2 endogenous gene targets in NSCs and their distinct 

functions in active and quiescent NSCs. We hope to obtain genome wide traces of 

Notch1 versus Notch2-ChiP-Seq, which in combination with the available Rbpj trace 

will allow the identification of canonical Notch signal targets of the distinct paralogue.  
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Conclusion 
 

Since the early 1990s, adult neurogenesis and NSCs have evolved from a topic 

of interest of a few scientists to an established field that has made tremendous 

progress impacting our perspective of brain plasticity (Bond et al., 2015). Initially the 

process of adult neurogenesis was characterized, followed by efforts to identify 

underlying mechanisms and its functional significance. Though our understanding of 

adult NSCs has come a long way, there are still challenges for future research. 

The here presented work continued to examine and manipulate NSC regulatory 

mechanisms. We underlined that adult NSCs are a very heterogeneous population of 

cells. Using lineage analysis, cell tracing and genetic manipulation we distinguished 

between different temporal states and distinct populations in vivo. Future studies will 

benefit from our and others’ identification of sub-populations and distinct responsive 

capacities. Furthermore, we have taken a closer look at NSC quiescence. We were 

able to show that Notch2 mediates the choice between quiescence and activation. 

Our future research will focus on Notch molecular targets and potential interactions 

between signaling pathways to comprehend the molecular hierarchy in NSCs.  

Additionally, our work has demonstrated that NSCs are found outside of the 

classical neurogenic regions, in more dormant states. One of the many differences 

between rodent and human is the lesser extend of active adult neurogenesis. 

Potentially in humans, adult neurogenesis is less defined by the classical neurogenic 

regions, but more by the dormant astrocyte like cells. These dormant cells might be 

reactivated upon injury by endogenous manipulation of the Notch signaling pathway. 

It is the ultimate goal of adult neurogenesis research to manipulate NSCs to improve 

human brain health. The contribution provided in this work and by others will 

hopefully give new insights into the mechanisms of neurogenesis mediated plasticity 

and brain repair. It is up to future studies to explore the potential and limits of NSCs 

in human health.  
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Materials and Methods 

Animals and Husbandry 
Hes5::GFP, Hes5::CreERT2, Notch2::CreERT2-SAT, Rosa25R::GFP, 

Rosa25R::tdTomato, floxed Notch1, floxed Notch2, floxed Rbpj mice have been 

described elsewhere (Basak et al., 2012; Basak and Taylor, 2007; Besseyrias et al., 

2007; Fre et al., 2011; Lugert et al., 2012; Schouwey et al., 2007). Notch1-flag and 

Notch2-flag lines were generated using Crispr-Cas9 as described below. Mice were 

kept according to Swiss Federal and Swiss Veterinary office regulations under 

license numbers 2537 and 2538 (Ethics commission Basel-Stadt, Basel Switzerland). 

Mice were maintained on a C57Bl6 genetic background and kept on a 12-hour 

day/night cycle with food and water ad libitum under specified pathogen free 

conditions. The genotypes of the mutants were confirmed by PCR analysis of 

genomic DNA. Transgenic mice were used at distinct time points – 8 weeks, 52 

weeks, 74 weeks, and 106 weeks – for analysis.  

Table 1: List of Genotyping primers with conditions and expected band sizes.  

Genotype Primer Sequence Annealing Band size 
Hes5::GFP  Fwd: TCCGCTCCGCTCGCTAATC 

Rev:  AGCTCGCCGCCACTACCAG 
Rev: TCCCGACGCATCTTCTCCAC 

58°C 1min wt: 210 bp 
tg: 360 bp 

BLBP::mCherry Fwd: AGGCCCCGCTGACTTCC 
Rev: TCGGGGGTTTCTAAGGAT 
Rev: CACGCGCTCCCACTTGA 

54°C 45 s wt: 500 bp 
tg: 650 bp 

Hes5::CreERT2 Fwd: ACCAGGTTCGTTCACTCATGG 
Rev: AGGCTAAGTGCCTTTCTACAC 

53°C 1min tg: 300bp 

CAG-Stop-GFP Fwd: CTTCAGCCGCTACCCCGACCACA 
Rev: ATCGCGCTTCTCGTTGGGGTCTTT 

58°C 1 min tg: 500bp 

Notch1flox/flox Fwd: CTGACTTAGTAGGGGGAAAAC 
Rev:  AGTGGTCCAGGGTGTGAGTGT 

58°C 1.5 
min 

wt: 300 bp 
tg: 380 bp 

Notch2flox/flox Fwd: GTGAGATGTGACACTTCTGAGC 
Rev:  GAGAAGCAGAGATGAGCAGATG 

58°C 1min wt: 230 bp 
tg: 300 bp 

Rbpj flox/flox Fwd: GAAGGTCGGTTGACCCAGATAGC 
Rev:  GCAATCCATCTTGTTCAATGGCC 

58°C 1min tg: 600bp 

Notch1-flag Fwd: CTGAAGCACTGGAAAGGACTC 
Rev:  GCCCTGCCCACATCACTGC 

58°C 1 min wt: 320 bp 
tg: 420 bp 

Notch2-flag Fwd: ATAACCTTCACTCGCCCCTCAGC 
Rev: GTGCCAACCTATCATCCTTTCC 

58°C 1min wt: 350 bp 
tg: 450 bp 
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Administration of Chemicals 
Tamoxifen Administration 

Adult mice 8-10 weeks of age were injected daily intraperitoneal (i.p.) with 2 mg 

TAM in sunflower oil (100 µl of 20 mg/ml) for five consecutive days and killed 2, 21, 

100 or 300-days after the end of the treatment.  

Kainic Acid Administration 

Adult mice 8-10 weeks and aged 52-weeks of age were injected intraperitoneal 

(i.p.) with Kainic Acid and sacrificed 4-days post induction. Animals obtained a single 

dose Kainic Acid (10mM) (ToCris, Cat.No° 0222/65). Young animals obtained a 

20mg/kg dose, aged animals 15mg/kg and were monitored for 2 hours. Seizure 

severity was determined according to set standards (listed below) in which 1 

represented an injected mouse without phenotype and 6 a mouse with severe 

seizures. Animals in analyses were required to reach seizure level 4, which was 

identified by prolonged freezing and uncontrolled, seated seizing. Animals were 

sacrificed after 4 days and tissue was used for immunohistochemical analysis.  

Fluoxetine Treatment 

Adult mice 8-10 weeks and aged 52-weeks of age were injected intraoral (i.o.) 

with Fluoxetine and sacrificed 2-days or 19-days after the last treatment. Animals 

obtained Fluoxetine (1.8 mg/kg) for seven consecutive days. Vehicle control animals 

obtained i.o. gelatin solution.  

Tissue Generation 
Animals were euthanized i.p. with a lethal dose of Ketamin-Rompun and 

perfused with ice-cold phosphate buffered saline (PBS) followed by 4% PFA 

in PBS. Brains were excised, fixed overnight in 4% PFA in PBS, cryoprotected 

with 30% sucrose in PBS at 4°C 48 hours, embedded and frozen in OCT 

(TissueTEK). Tissue was sectioned into 30 µm floating sections cut by 

cryostat (Leica). Tissue was stored at -20°C in Anti-freeze solution.  

For whole-mount tissue preparation, the dMW of the SVZ was dissected. Brains 

of mice were excised, cut in half and fixed overnight in 4% PFA in PBS, washed in 

PBS followed by micro-dissection under a binocular of the medial wall and the lateral 
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wall, as previously described (Mirzadeh et al., 2008). Stainings were done after 

dissection was finished.  

Immunohistochemistry 
Immunostainings were performed as follows: Sections were washed thoroughly 

and blocked at room temperature for 30 minutes with 10% normal donkey serum 

(Jackson Immunoresearch) in PBS containing 0.5% TritonX-100. Primary antibodies 

diluted in 2.5% blocking solution were incubated overnight. Sections were washed 

with PBS and incubated at room temperature for 1-2 hours with the corresponding 

secondary antibodies in 5% blocking solution and counter-stained with DAPI (1 

µg/ml). Sections were mounted on glass slides (SuperFrost, Menzel) in DABCO 

mounting media and visualized using a Zeiss Observer with Apotome (Zeiss). For 

PCNA detection, the antigen was recovered at 80°C for 20 minutes and 25°C for 45 

minutes  in Sodium Citrate (10 mM, pH7.4). 

Westernblot 
Cultured cells were collected and lysed in Ripa. Whole cell extracts were 

fractionated by SDS-Page and transferred to a polyvinylidene difluoride (PVDF) 

membrane using Transblot Turbo (BioRad) according to manufacturer’s protocol. 

After transfer membrane was blocked with 5% non-fat milk in TBST (10mM Tris, pH 

8.0, 0.5% Tween 20) for 60 min, at room temperature. Primary antibodies were 

added in fresh, 5% milk and incubated over night, at 4°C with light agitation. After 

primary antibody incubation, membranes were washed three times, 10 minutes with 

TBST and incubated with secondary antibody in 5% milk, for 1-2 hours at room 

temperature, with light sample agitation. Blots were washed three times, 10 minutes 

with TBST. Blots were rinsed in PBS and developed with ECL system (Amersham 

Biosciences) according to manufacturer’s protocol for 5 minutes. Blots were 

developed on ChemiDoc MP Imaging System (BioRad). Imaging took place every 5 

minutes for 1 hour.  

 

 

 



 Materials and Methods  
 

 127 

Table 2: Primary antibody list: Antibodies were used for indicated purposes according to dilution 

provided.  

Antigen Species Use Dilution Provider/Cat.No. 
Acetylated-Tubulin mouse IHCv 1:700 Sigma/ T6793 
β−Catenin rabbit IHCv 1:1000 Sigma/ C2206 

BLBP rabbit 
IHC 
IF 

1:300 
1:500 

Millipore/ ABN14 

BrdU* rat IHC 
1:1000 
1:2000 

AbSerotec/ OPT0030 

Calbindin D28K rabbit IHC 1:5000 Swant/ 300 
Calretinin rabbit IHC 1:5000 Swant/ 7609/4 

CD31 rat IHC 1:500 
BD Pharmingen/ 
550274 

Cleaved Caspase 3 
(Casp3) 

rabbit IHC 1:1000 Cell Signaling/ 9664S 

Doublecortin (Dcx) goat 
IHC 
IF 

1:500 
1:750 

Santa Cruz/ sc-8066 

Ds-Red rabbit 
IHC 
IF 

1:500 
1:700 

CloneTech Takara/ 
632496 

Flag mouse WB 1:2000 Sigma/ F3165 
Glyceraldehyde 3-
phosphate 
dehydrogenase 
(GAPDH) 

mouse WB 1:1500 Calbiochem7 CB1001 

Glial Fibrillary 
Acidic Protein 
(GFAP) 

mouse 
 

IHC 1:500 Sigma/ G3893 

rabbit 
IHC 
IF 

1:1000 
1:1000 

Sigma/ G9269 

chicken 
IHC 
IF 

1:500 
1:700 

Abcam/ ab4674 

Green Fluorescent 
Protein (GFP) 

rabbit 
IHC 
IF 

1:500 
1:750 

Invitrogen/ A11122 

chicken 
IHC 
IF 

1:250 
1:300 

AvesLab/ GFP-1020 

WB 1:1000 Millipore/ 06-896 

sheep 
IHC 
IF 

1:250 
1:300 

AbD Serotec/ 4745-
1051 

Neuronal nuclear 
antigen (NeuN) 

mouse IHC 1:800 Millipore/ MAB377 

Notch1 
rabbit 
 

IHC 
IF 

1:700 
1:1000 

Animal 3, D120 
(Nyfeler et al., 2005) 

WB 1:1000 Cell Signaling/ 3608S 
rat IF 1:500 Gift H. Robson 

Notch2 
rat IHC 1:200 Gift H Robson 

rabbit 
IF 
WB 

1:2000 
1:1000 

Cell Signaling/ 5732P 
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Olig2** rabbit IHC 1:1000 Chemicon/ AB9610 
Parvalbumin mouse IHC 1:5000 Swant/ Mc-AB235 
Proliferating cell 
nuclear antigen 
(PCNA)** 

mouse 
IHC 
IF 

1:700 
1:1000 

DAKO/ M0879 

S100β 
Rabbit IHC 1:1000 Swant/ 37t 
mouse IHC 1:700 Sigma/ S2532 

Sox2 goat IHC 1:250 Santa Cruz/ sc-17320 
Tbr2 rabbit IHC 1:500 Abcam/ AB23345t 

*with HCl retrieval; **with Cytrate Retrieval; vwhole mount stainings; 
tdiscontinued;  
 

Table 3: Secondary antibody list; Antibodies were used for indicated purposes according to 

dilution provided. All secondary antibodies in use were raised in donkey and purchased from Jackson 

Immunoresearch 

Fluorochrome Species Use Dilution Cat.No 

Alexa488 

rabbit 
mouse 
sheep 
goat 
rat 
chicken 
Streptavidin 

IHC 
IF 

1:500 
1:700 

711-545-152 
715-546-151 
713-545-147 
705-545-147 
712-546-153 
703-545-155 
016-540-084 

Cyanine 3 (Cy3) 

rabbit 
mouse 
sheep 
goat 
rat 
Streptavidin 

IHC 
IF 

1:500 
1:700 

711-165-152 
715-165-151 
713-165-147 
705-165-147 
712-166-153 
016-160-084 

Cyanine 5 (Cy5)  

rabbit 
mouse 
goat 
rat 
Streptavidin 

IHC 
IF 

1:300 
1:500 

711-496-152t  
715-175-151  
705-176-147t  
712-175-153 
016-170-084 

DyLight 649 

rabbit 
mouse 
goat 
Streptavidin 

IHC 
IF 

1:500 
1:700 

711-496-152t 
715-495-151t 
705-495-147t 

016-490-084t 

DyLight 647 

rabbit 
mouse 
goat 
chicken 

IHC 
IF 

1:500 
1:700 

711-605-152 
715-605-150 
705-605-147 
703-605-155 
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Horse Radish 
Peroxidase (HRP)  

rabbit 
mouse 
goat 
chicken 
Streptavidin 

TSA 
WB 

1:500 
1:10000 

711-035-152 
715-035-151 
705-035-147 
703-035-155 
016-030-084 

Fluorescein 
isothiocyanate (FITC) 

sheep 
goat 

IHC 
IF 

1:300 
1:500 

713-095-147 
705-093-147 

Biotin 

rabbit 
mouse 
sheep 
rat 
chicken 

IHC 1:300 

711-065-152 
715-065-151 
713-066-147 
712-065-153 
703-065-155 

tdiscontinued;  
 

Fluorescent Activated Cell Sorting (FACS) 
Animals were euthanized in CO2, brains were dissected in L15 Medium (GIBCO) 

and cut into 0.55 mm thick sections using a McIllwains tissue chopper. The region of 

interest was microdissected under a binocular microscope avoiding contamination 

from other tissues, and digested using a Papain solution an mechanical dissociation 

(previously described – Lugert et al, 2010). The tissue was dissociated in Papain 

(7min), 0.5 volumes of Ovomucoid were added and dissociation continued (12 min) 

at 37ºC. After dissociation Ovomucoid was additionally added (2 volumes) and 

dissociated manually by gentle up and down pipetting. The sample was filtered 

through parachute (30 µm) and centrifuged (5min, 1000 rpm). The supernatant was 

removed and cells were resuspended in Leibowitz medium (Life Technologies) and 

sorted on a BD FACS Aria III. 

FACS Analysis from Hes5::GFP, BLBP::mCherry 

Hes5::GFP, BLBP::mCherry animals were sacrificed at 8, 26, 52, 76 and 106 

weeks of age. Hippocampal DG were microdissected and processed as described 

above. FACS gates were set with age-matched controls, BL6J, Hes5::GFP single, 

BLBP::mCherry single animals. Analysis was done using FACS Aria III. Subsequent 

evaluation using FlowJo 

FACS Sorting from Hes5-CreERT2, CAG-GFP 

Transgenic animals containing Notch2flox/flox, Hes5-CreERT2, CAG-GFP (Control 

without Notch allele) animals were injected for 5 consecutive days with Tamoxifen, 

as described above and sacrificed 24 hours after the last treatment. Hippocampal 
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DG and SVZ were microdissected and processed as described above. FACS gates 

were set with age matched BL6J animals. Sorting was done using FACS Aria III. 

Cells were discriminated by forward and side-scatter (for live cells – from the control) 

and gated for GFP-negative (wild-type levels) or GFP+ populations. Cells were 

directly sorted into cooled Trizol (Life Technologies) and RNA isolation performed as 

described below. Separate samples were collected for Reanalysis. Subsequent 

evaluation was performed using FlowJo.  

Microarray analysis  
Animals were sacrificed 24 hours after TAM treatment. Tissue was prepared for 

FACS sorting as described above and GFP+ cells sorted directly into Trizol reagent 

(Thermo Fisher Scientific) and RNA extracted according to manufacturers 

recommendations. RNA quality was tested using a Fragment Analyzer (Advanced 

Analytical). Samples were sent for Expression Profiling with Atlas Biolabs. Samples 

were subjected to a second quality control on an Agilent 2100 Bioanalyzer, small 

samples were amplified using the Ovation Picokit (NuGen) and then run on an 

Affymetric Biochip. Affymetrix expression profiling was performed on Affymetrix 

GeneChip Mouse Gene 1.0 ST arrays (ATLAS Biolabs). GO analysis was performed 

using DNASTAR Microarray software (DNASTAR).  

RNA extraction 

Cell samples were collected in Trizol (Life Technologies). Appropriate amount of 

Chloroform (1:4) was added to Trizol. Samples were shaken vigorously and 

centrifuged for 30 minutes at 13’000 rpm. Aqueous phase RNA extraction was 

performed using Isopropanol with LiCl (0.75M) and Glycoblue. RNA was immediately 

frozen to -80°C. RNA quality was tested on a Fragment Analyzer (Advanced 

Analytical) using a high sensitivity RNA analysis kit (DNF-472).  

Quantitative PCR  
Animals were sacrificed 24 hours after TAM treatment. Tissue was prepared for 

FACS sorting as described above and GFP+ cells sorted directly into Trizol reagent 

(Thermo Fisher Scientific) and RNA extracted according to manufacturers 

recommendations. RNA quality was tested using a Fragment Analyzer (Advanced 

Analytical). cDNA was prepared using BioScript (Bioline). qRT-PCR was performed 

using SensiMix SYBR kit (Bioline). 
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Ex vivo mRNA was prepared as described above. Isolated RNA was treated with 

DNaseI (Roche). cDNA was prepared using BioScript (Bioline) and random hexamer 

primers. qPCR was performed using SensiMix SYBR kit (Bioline). Primers for PCR 

reactions are as follows:  

Table 4: Quantitative PCR primers 

Gene Primer Sequence 
GAPDH* Fwd: CTCCCACTCTTCCACCTTCG 

Rev:  CCACCACCCTGTTGCTGTAG 
β−Actin* Fwd: AGGTGACAGCATTGCTTCTG 

Rev:  GGGAGACCAAAGCCTTCATA 
Rpl29* Fwd: ACAGAAATGGCATCAAGAAACCC 

Rev:  TCTTGTTGTGCTTCTTGGCAAA 
Notch2 (Exon 26/27) Fwd: CAGGAGGTGATAGGCTCTAAG 

Rev:  GAAGCACTGGTCTGAATCTTG 
Cdk1 Fwd: AAATTGGAGAAGGTACTTACGG 

Rev: CTCCTTCTTCCTCGCTTTC 
Foxo3 Fwd: CTGCGGGCTGGAAGAACTC 

Rev:  TTGCCCGTGCCTTCATTC 
CCNE1 Fwd: CTAATGGAGGTGTGCGAAG 

Rev:  AAGAAGTCCTGTGCCAAGTAG 
* normalizing genes 
 

Generation of adeno-gfap::Cre virus particles 
Generation of adeno-gfap::Cre virus was described previously (Merkle et al., 

2007). Briefly, Cre was placed under the control of the mouse gfap promoter 

(GFAPp) previously confirmed to be specifically active in GFAP+ cells. The 

pAd/PLGFAPp- NLSCre-pA vector was transfected into HEK293 cells to produce 

replication-defective adenovirus, which was purified twice by cesium chloride 

banding. adeno-gfap::Cre virus (titer 1 x 1012 infection particles per ml) in saline 

containing 0.1% bovine serum albumin.  

Stereotactic injection of adeno-gfap::Cre virus particles  
Adult (8-10 week old) mice were anesthetized in a constant flow of Isoflurane (1-

3%) in oxygen and immobilized on a stereotaxic apparatus (David Kopf 

instruments)(Giachino and Taylor, 2009). Mice were injected with Temgesic 

subcutaneous (0.05 mg/kg body weight). The skull was exposed by an incision in the 

scalp and a small hole (1 mm) drilled through the skull. Animals were stereotactically 

injected with 1 µL of titrated adeno-gfap::Cre virus (titer 1 x 1012 infection particles 

per ml) in saline, 0.1% bovine serum albumin using sharpened Borosilicate glass 



 Materials and Methods  
 

 132 

capillaries (Kwick-FilTM) at the coordinates: anterior/posterior 0 mm; medial/lateral 0 

mm; dorsal/ventral 2.5 mm below the skull and relative to Bregma. Wounds were 

closed using surgical clips. One day after the surgery the animals received a second 

dose of Temgesic subcutaneous (0.05 mg/kg body weight) and were analyzed 21 

days post-injection.  

Quantification and statistical analysis 
Stained sections were analyzed with fixed photomultiplier settings on a Zeiss 

Observer with Apotome (Zeiss). Images were processed with Photoshop or ImageJ. 

Data are presented as averages of a minimum of three sections per region and 

multiple animals. Statistical significance was determined by Student’s T-test on mean 

values per animal, Whitney-Mann U-test was used for distributions and two way 

ANOVA for cross-comparison of 3 and more data sets. Significance was determined 

at * - P<0.05, ** - P<0.01, *** - P< 0.001 or P values are given in the graphs. 

Deviance from mean is displayed as standard deviation if not otherwise indicated. 

 

Abbreviations 

 

SVZ Subventricular zone E8 Embryonic day (8) 

SGZ Subgranular zone P19 Postnatal day (19) 

LW Lateral wall NCC Neural crest cells 

DG Dentate gyrus NEP Neuroepithelial progenitors 

NSC Neural stem cells PNS Peripheral nervous system 

dMW Dorsal medial wall SVZ Subventricular zone 

aSC Adult stem cells RGC Radial glia cells 

eSC Embryonic stem cells VZ Ventricular zone 

CNS Central nervous system IPC Intermediate progenitor cells 

BV Blood vessel BBB Blood brain barrier 

TAP Transient amplifying progenitor SE seizure 

IP Intermediate precursor SSRI Selective Serotonin reuptake 
inhibitor 
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