
Principles of c-di-GMP Signaling

Characterization of a Second Messenger System Orchestrating Bacterial Life Style

Inauguraldissertation

zur Erlangung der Würde eines Doktors der Philosophie

vorgelegt der

Philosophisch-Naturwissenschaftlichen Fakultät

Der Universität Basel

Von

Beat Christen aus Basel, Schweiz

Basel 2007



B.Christen Principles of c-di-GMP Signaling

II

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf
Antrag von

- Prof. Dr. Urs Jenal
- Prof. Dr. Guy R. Cornelis
- Prof. Dr. Christoph. Dehio

Basel, den 13.2.2007

Prof. Dr. Hans-Peter Hauri



B.Christen Principles of c-di-GMP Signaling

III

This work was performed in the laboratory of Prof. Dr. Urs Jenal in the division of
molecular microbiology at the Biozentrum of the University of Basel and was supported by
Swiss Science Foundation Fellowship 3100A0-108186 to U.J..

I would like to thank Prof Dr. Urs Jenal for giving me the opportunity to do my PhD thesis in
his group.



B.Christen Principles of c-di-GMP Signaling

IV

Abstract

Bacteria are able to switch between two mutually exclusive lifestyles, motile single cells and

sedentary multicellular communities, known as biofilms, that colonize surfaces. Recent studies

demonstrated that the global bacterial second messenger c-di-GMP orchestrates the

developmental transition between both lifestyles. In a wide variety of bacterial species high

intracellular c-di-GMP levels provoke excretion of protective and adhesive exopolymeric

substances and inhibit flagella and pili based cell motility. Synthesis and degradation of c-di-GMP

is catalyzed by diguanylate cyclases (DGC’s) and c-di-GMP-specific phosphodiesterases (PDE),

respectively. Although the enzymes responsible for the synthesis of c-di-GMP have been recently

identified, little information is available on general regulatory principles of the c-di-GMP signaling

circuitry. Here we present genetic and biochemical approaches in combination with structural

analysis to elucidate the molecular mechanisms of signal transduction, signal modulation and

signal inactivation.

In (Christen and Christen et al 2007, PNAS) we describe the isolation of several c-di-GMP binding

proteins from Caulobacter crescentus by affinity chromatography. One of these proteins, DgrA, is a

PilZ homolog involved in mediating c-di-GMP-dependent control of C. crescentus cell motility.

Biochemical and structural analysis of DgrA and homologs from C. crescentus, Salmonella

typhimurium and Pseudomonas aeruginosa identified this protein family as the first class of specific

diguanylate receptors. Our studies suggested a general mechanism for c-di-GMP binding and

signal transduction whereby increased concentrations of c-di-GMP are sensed by DgrA through

direct binding and induce conformational changes of the diguanylate receptor that block motility by

interfering with motor function rather than flagellar assembly.

In (Christen and Christen et al 2006, JBC) we demonstrate that an allosteric binding site for c-di-

GMP (I-site) is responsible for non-competitive product inhibition of DGC’s. The I-site was mapped

in both multi- and single domain DGC proteins and shown to be fully contained within the GGDEF

domain itself. In vivo evolution experiments combined with kinetic analysis of the obtained I-site

mutants led to the definition of an RXXD motif as the core allosteric binding site for c-di-GMP.

Based on these results and based on the observation that the I-site is conserved in a majority of

known and potential DGC proteins, we propose that product inhibition of DGC’s is of fundamental

importance for c-di-GMP signaling and cellular homeostasis. The definition of the I-site binding

pocket provides an entry point into unraveling the molecular mechanisms of ligand-protein

interactions involved in c-di-GMP signaling, makes DGC's a valuable target for drug design and

offers new strategies against biofilm-related diseases.
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In (Christen et al 2005, JBC) we show biochemically that CC3396, a GGDEF-EAL composite

protein from C. crescentus, is a soluble PDE. The PDE activity, rapidly converts c-di-GMP into the

linear dinucleotide pGpG is confined to the C-terminal EAL domain of CC3396, depends on the

presence of Mg2+ ions and is strongly inhibited by Ca2+ ions. Remarkably, the associated GGDEF

domain, which contains an altered active site motif (GEDEF), lacks detectable DGC activity.

Instead, this domain is able to bind GTP and in response activates the PDE activity in the

neighboring EAL domain. PDE activation is specific for GTP (KD 4 μM) and operates by lowering

the KM for c-di-GMP of the EAL domain to a physiologically significant level (420 nM). Mutational

analysis suggested that the substrate-binding site (A-site) of the GGDEF domain is involved in the

GTP-dependent regulatory function, arguing that a catalytically inactive GGDEF domain has

retained the ability to bind GTP and in response can activate the neighboring EAL domain. Based

on this we propose that the c-di-GMP-specific PDE activity is confined to the EAL domain, that

GGDEF domains can either catalyze the formation of c-di-GMP or can serve as regulatory domains

and that c-di-GMP-specific phosphodiesterase activity is coupled to the cellular GTP level in

bacteria.

In addition to the contribution in understanding the c-di-GMP signaling circuitry we characterized in

(Stephens et al 2007, JBac) the metabolic enzymes and regulators of D-xylose catabolism in C.

crescentus by genetic and biochemical methods. A saturated transposon screen was used to

define the xylXABCD operon consisting of five genes, essential for xylose degradation.

Subsequently biochemical and bioinformatical approaches were applied to provide enzymatic

functions and predict possible conversion pathways for xylose catabolism. We demonstrated that

the xylXABCD operon is tightly control via a LacI like repressor and defined determinants of the

xylose operator, critical for negative control of xylXABCD transcription.
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AC adenylate cyclase

c-di-GMP cyclic diguanylic acid

CR Congo Red

DGC diguanylate cyclase

DgcA diguanylate cyclase A (CC3285)

DGR diguanylate receptor

DgrA diguanylate receptor protein A (CC1599)

DgrB diguanylate receptor protein B (CC3165)
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EXSY exchange spectroscopy

GC guanylate cyclase

H6 hexa-histidine tag

HPLC high performance liquid chromatography
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IPTG isopropyl 1-thio- -D-galactopyranoside
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NMR nuclear magnetic resonance

NOESY nuclear overhauser effect spectroscopy
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1 Introduction
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1.1 Signal transduction

In a simple model, cells of living organisms can be interpreted as nondeterministic finite state

automata (1). Various intra and extra cellular inputs are continuously perceived by specific

receptors and transduced via complex signaling networks to affect and adapt the metabolic and

developmental cell state. Convergent signaling pathways are often used to integrated multiple

stimuli and control regulators by implementing logical operations. These regulators, in turn,

frequently modulate divergent multiple output functions. For instance, signaling cascades affect

gene expression by exercising transcriptional or translational control or modulate enzyme activities

posttranslationally over covalent or noncovalent protein modifications. The majority of prokaryotic

signal transduction systems consist of a receptor domain that is directly fused to an regulatory

output domain (2). These so called one-component systems often link transcription of metabolic

pathway genes to the availability of substrates (see chapter 4.2). The simple design of one-

component signaling systems can be extended by physical separation of input and output domains

to two different proteins interlinked via a phospho-relay. For instance, in two-component system a

receptor coupled histidine kinase protein activates the output domain of a partner response

regulator protein via phosphorylation (3). Often stimuli activated receptors do not directly interact

with downstream regulators but instead affect the intracellular concentration of diffusible molecules

that act as second messengers relaying the input information to the regulators. This signaling

principle allows to couple different sensory inputs with synthesis and degradation of the second

messenger and provides the opportunity of signal amplification and noise repression.

1.2 Bacterial second messenger systems

Small purine nucleotides are often used as second messengers in prokaryotic signaling systems

(4,5). Whereas the cyclic mononucleotide cAMP is devoted to the regulation of alternative carbon

sources catabolism and is synthesized by the action of adenylate cyclase (6), a derivative of GTP,

the alarmone ppGpp is produced by a GTP pyrophosphokinase in response to nutritional

deprivation and causes transcriptional repression of ribosomal RNA and tRNA or activates genes

for amino acid synthesis and transport (7,8). Recently the cyclic dinucleotide c-di-GMP has been

recognized as an important bacterial second messenger, widely used to orchestrate biofilm

development (9).
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1.3 Cellular function of GGDEF and EAL domain proteins

Cyclic diguanylate (c-di-GMP) was first isolated as an allosteric activator of cellulose synthase in G.

xylinum (10-12). Two enzymes, diguanylate cyclase (DGC) and c-di-GMP specific

phosphodiesterases (PDE) synthesize c-di-GMP out of two GTP molecules or hydrolyse c-di-GMP

into the linear dinucleotide pGpG, respectively. Biochemical purification studies followed by a

reverse genetic approach identified 6 isozymes composed of N-terminal PAS or GAF domains

followed by a central GGDEF and a C-terminal EAL domain. The later two domains, which are

named after a highly conserved signature sequence, are involved in enzymatic c-di-GMP turnover

(13). Further genetic studies of cellulose synthesis in R. leguminosarum confirmed that expression

of CelR2 (14), a regulator containing a putative response regulator with a C-terminal GGDEF

domain, also causes activation of cellulose production, arguing that the GGDEF domain might

possess DGC activity.

In Pseudomonades, several GGDEF and EAL domain proteins cause dramatic changes in colony

morphology (15), autoaggregative behavior (16) or affect twitching motility (17). In particular, the

ability to form small colony variants on low-osmolarity agar plates (18) was linked to the activity of

WspR that constitutes a GGDEF-type response regulator. WspR regulates the production of an

acetylated form of cellulose and controls expression of cup genes that encode a putative fimbrial

adhesin (19,20). Interestingly, PvrP, an EAL domain protein with a N-terminal response regulator

domain, was identified in a genetic screen as a regulatory protein that, unlike WspR, suppressed

autoaggregation (21). In addition, transposon mutants inactivating the GGDEF-EAL composite

protein FimX had defective type IV pili assembly and were impaired in twitching motility (17).

In Vibrio other GGDEF-EAL composite proteins were found to inversely regulate swarming and

capsular polysaccharide production. Mutations in the V. parahaemolyticus gene scrC caused a

rugose colony morphotype and blocked swarming motility (22), whereas V. cholera rocS mutants

were unable to switch to the rugose phenotype under rugose inducing growth conditions (23).

Similar to scrC, a V. cholera El Tor with a Tn10 insertion mutation in the mbaA gene results in the

overproduction of exopolysaccharide and in dramatic differences in the mature biofilm architecture,

but in contrast to scrC had no effect on the production of flagella or type IV pili (24). GGDEF and

EAL domain proteins also affect expression of virulence factors such as cholera toxin. Interestingly,

the vieA gene, coding for a response regulator protein with a central EAL domain, was discovered

to affect transcription of the cholera toxin genes (ctxAB) during V. cholera host infection (25).
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Domain organization Name Organism Ref

PleD C. crescentus (26)

CelR2 R. leguminosarum (14)

ActA M. xanthus (27,28)

WspR P. aeruginosa (19,20)

HmsT Y. pestis (29)

AdrA S. enterica (30,31)

DgcA1 G. xylinus (13)

PdeA1 G. xylinus (13)

FimX P. aeruginosa (17)

ScrC V. parahaemolyticus (22)

MbaA V. cholera (24)

RocS V. cholera (23)

PvrR P. aeruginosa (21)

VieA V. cholera (25)

Table 1: domain organization of different GGDEF and EAL proteins

The temperature dependent haemin storage (Hms) locus of Yersinia pestis has been shown to be

involved in the blockage of fleas foregut and thereby causes increased transmission of Y. pestis

from fleas to mammals (32). hmsT, coding for a GGDEF domain protein, and a four gene operon

hmsHFRS are essential for induction of a haemin absorption system and auto aggregative

behavior in the flea vector (29).

Concomitantly with curli fimbria expression, Salmonella spp. and E. coli cells develop a rough and

dry colony morphology and bind the dye Congo Red (33-35). These characteristic phenotypic

change become often manifested after prolonged incubation at temperatures below 37°C. In S.

enterica serovar Typhimurium the transcriptional activator agfD has been demonstrated to control
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this transition (30,31). AgfD not only regulates the agfBA(C) operon, encoding for fimbrial subunit

proteins, but also activates expression of the putative transmembrane protein AdrA. Interestingly,

mutants in the GGDEF domain protein AdrA lacked long-range intracellular adhesion and missed a

unknown extracellular substance.

The M. xanthus GGDEF-type response regulator ActA regulates the maximum level of the

morphogenetic C-signal, a cell surface associated protein that is required to pattern cell movement

and shape the fruiting body. As a result, actA mutants are able to undergo starvation induced

aggregation, but failed to sporulate (27,28).

1.4 Involvement of c-di-GMP signaling in C. crescentus pole development

Beside these examples, insights into the molecular function of the GGDEF domain was also

provided by studies with the model organism C. crescentus contributing substantially to a better

understanding of c-di-GMP signaling.

Figure 1: dynamic localization of PleD, PleC and DivJ over C. crescentus cell cycle

Dynamic localization of the histidine kinases PleC and DivJ and the response regulator PleD during the Caulobacter

crescentus cell cycle. Cytoplasmic PleD (light green) localizes to the differentiating swarmer pole (green circle) upon

transition into a stalked cell. Illustration according to (9,26,36).
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C. crescentus has a biphasic life cycle and divides asymmetrically into two morphological distinct

daughter cells. A planktonic, motile swarmer cell type undergoes an obligate developmental

transition into a surface attached stalked cell before it regain replication competence. This switch in

life style requires continuous remodeling of polar cell organelles including correct assembly of a

single flagellum, pili and their subsequent replacement by an adhesive holdfast at the tip of an cell

wall protuberance called stalk (see Figure 1 ).

Genetic studies lead to the identification of a two component signaling cascade responsible for

polar organelle development (37-41). Two sensor histidine kinases PleC, DivJ and the response

regulators DivK and PleD are dynamically localized to the cell poles during cell cycle (26,36,42,43).

Both histidine kinases integrate temporal and special signals and modulate the phosphorylation

state of the unorthodox response regulator PleD during cell cycle progression (26). PleD harbors

two N-terminal receiver domains and a C-terminal GGDEF domain. Genetic evidence suggested

that the phosphorylated form of PleD is recruited to the differentiating stalk pole whereby it blocks

flagellar motor function, activates flagellar ejection and initiates stalk formation (41,44). Further

studies confirmed that an intact GGDEF motif is crucial for PleD activity. Remarkably, a chimeric

PleD protein with the GGDEF domain replaced by the equivalent domain of the P. aeruginosa PleD

ortholog WspR fully retained in vivo function (44). This was consistent with the idea that GGDEF

domains are interchangeable and that their signal transduction mechanism relies probably not on

specific protein-protein or protein-DNA interactions. However, the exact output function of the

GGDEF domain remained elusive, untill an exciting biochemical analysis demonstrated that PleD

acts as a diguanylate cycles (26). Interestingly, in vitro phosphorylation of PleD by the cognate

histidine kinase DivJ stimulated the diguanylate cyclase output activity. Further, in vivo experiments

suggested that only the phosphorylated form of PleD is sequestered to the differentiating stalk

pole, arguing that spatially confined synthesis of c-di-GMP might contribute to polar organelle

development in C. crescentus (26). Subsequently resolution of the PleD crystal structure in

complex with the product c-di-GMP revealed a detailed molecular view on the structural folds, the

catalytic center and possible activation mechanisms (see Figure 2) (45). The GGDEF domain was

found to possess a fold similar to adenylate cyclase, whereby the highly conserved GGDEF motif

constitutes part of the active site (A-site).
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Figure 2: Crystal structure of PleD in complex with c-di-GMP:

Crystal structure of PleD with first response regulator domains REC1 (in blue) and REC2 (in green), and the C-terminal

GGDEF domain (in red) which harbors diguanylate cyclase activity. GTP is modeled into the active site (A-site).

Illustration according to (45).

The crystal structure of PleD exposed in addition to the catalytic site another nucleotide binding

site. Surprisingly, an intercalating dimer of c-di-GMP was bound in the interface between the

GGDEF and the central receiver like domain. While allosteric product inhibition was demonstrated

(45) it remained unclear whether this second ligand site also exists in solution and contributes to

the observed noncompetitive product inhibition of PleD.

1.5 C-di-GMP signaling survey

Interestingly, GGDEF and EAL proteins are found throughout the bacterial kingdom and, as a

unifying theme, are implicated in diverse processes such as morphogenesis of cell appendages,

production and secretion of extra-cellular carbohydrates or motility control (9,46). The GGDEF and

EAL domains are frequently fused in a modular fashion to various N-terminal sensory domains

arguing that these multi-domain proteins constitute a complex and widespread signaling system.

Recent biochemical studies demonstrated that the diguanylate cyclase activity resides within the
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GGDEF domains (26). The EAL domain, by virtue of its association with the GGDEF domain, was

therefore predicted to be a good candidate for c-di-GMP specific phosphodiesterase activity (47). It

could be hypothesized that composite proteins containing both GGDEF and EAL domains, upon

stimulation, might switch between c-di-GMP synthesizing and hydrolyzing enzymatic activities and

constitute an accurate signaling device to control intracellular c-di-GMP level. To add to the very

preliminary knowledge about regulation and action of c-di-GMP, numerous questions regarding c-

di-GMP signaling had to be answered. In particular the underlying signal transduction principles of

the c-di-GMP circuitry and mechanisms of signal inactivation, signaling amplification, noise

suppression and signal adaptation will be adressed.
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2 Aim of the thesis

Cyclic diguanylic acid (c-di-GMP) has been recognized as a novel bacterial second messenger

orchestrating surface colonization and biofilm formation in a wide variety of prokaryotes. While the

diguanylate cyclase activity, has recently been assigned to the widespread GGDEF domain, many

elements of the c-di-GMP signaling system remained elusive. The aim of this thesis was to

characterize novel signaling components involved in c-di-GMP metabolism, describe regulatory

principles and unravel the nature of c-di-GMP effectors. First, we will develop genetic and

biochemical reporter assays to monitor diguanylate cyclase and c-di-GMP specific

phosphodiesterase activity in vitro and in vivo. Second, we will apply these assays to identify c-di-

GMP specific phosphodiesterases essential for signal inactivation, test the assumption that EAL

domain proteins possess phosphodiesterase activity and investigate the function of GGDEF-EAL

composite proteins. Third, we will address the hypothesis that diguanylate cyclases are subject to

non-competitive product inhibition, design biochemical and genetic strategies to probe structural

determinants required for allosteric control and analyze the impact of feedback regulation on the

overall robustness of the c-di-GMP signaling network. Fourth, we will identify c-di-GMP effectors,

characterize the corresponding c-di-GMP binding sites at the molecular level and investigate how

the second messenger signal is transduced and causes a specific cellular response.
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3 Results
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3.1 DgrA is a member of a new family of cyclic di-GMP receptors and controls
flagellar motor functions in Caulobacter crescentus

M. Christen, B. Christen, M. G. Allan, M. Folcher, S. Moes, P. Jenö, S. Grsziek, and U. Jenal

PNAS 280:30829-30837 (2007)



B.Christen Principles of c-di-GMP Signaling Results

12

Summary

In this publication we enlighted the signal transduction mechanism of the bacterial second

messenger c-di-GMP and demonstrate the existence of diguanylate receptor proteins. We report

the biochemical purification of c-di-GMP effector proteins from C. crescentus crude extract and

describe their physiological role in c-di-GMP dependent repression of cell motility. A multitude of

biochemical, genetic and NMR experiments was used to characterize these effector proteins and

homolog from S. enterica and P. aeruginosa down to molecular level. In particular, we used [33P] c-

di-GMP UV cross linking studies, to demonstrate that these receptors specifically bind c-di-GMP in

the sub-micromolar range, and, in combination with NMR spectrometry, to elicit determinants for c-

di-GMP binding. Further more, we performed genetic suppressor analysis and epistasis

experiments with receptor deletion and point mutants, to corroborate that the identified diguanylate

receptors from C. crescentus act in vivo downstream of the second messenger c-di-GMP.
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Abstract

Bacteria are able to switch between two mutually exclusive lifestyles, motile single cells and sedentary

multicellular communities that colonize surfaces. These behavioral changes contribute to an increased fitness in

structured environments and are controlled by the ubiquitous bacterial second messenger cyclic di-GMP. In

response to changing environments, fluctuating levels of c-di-GMP inversely regulate cell motility and cell

surface adhesins. Whereas the synthesis and breakdown of c-di-GMP has been studied in detail, little is known

about the downstream effector mechanisms. Using affinity chromatography we have isolated several c-di-GMP

binding proteins from Caulobacter crescentus. One of these proteins, DgrA, is a PilZ homolog involved in

mediating c-di-GMP-dependent control of C. crescentus cell motility. Biochemical and structural analysis of

DgrA and homologs from C. crescentus, Salmonella typhimurium and Pseudomonas aeruginosa demonstrated

that this protein family represents a class of specific diguanylate receptors and suggested a general mechanism

for c-di-GMP binding and signal transduction. Increased concentrations of c-di-GMP or DgrA blocked motility

in C. crescentus by interfering with motor function rather than flagellar assembly. We present preliminary

evidence implicating the flagellar motor protein FliL in DgrA-dependent cell motility control.
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Cyclic purine nucleotides are ubiquitous second messengers involved in cell signaling. They are produced

through the action of growth factors, hormones or neurotransmitters and elicit their response by acting on a range

of downstream effector proteins like protein kinases, transcription regulators, gated ion channels, or GTPase

nucleotide exchange factors. Whereas cAMP is widespread through all kingdoms of life, cGMP seems to be

restricted to signaling in eukaryotes. Recently, a third major cyclic nucleotide messenger, cyclic di-guanosine-

monophosphate (c-di-GMP) has emerged as a ubiquitous signaling molecule in prokaryotes, where it

antagonistically controls motility and virulence of planktonic cells on one hand and cell adhesion and persistence

of multicellular communities on the other (1, 2) (supplemental Fig. 7). C-di-GMP is synthesized from two

molecules of GTP and degraded into the linear dinucleotide pGpG by the opposing activities of diguanylate

cyclases (DGC) and c-di-GMP-specific phosphodiesterases (PDE). DGC and PDE activities are comprised in

GGDEF and EAL domains, respectively (3-8), which represent two large families of output domains found in

bacterial one- and two-component signal transduction systems (9, 10).

The molecular principles of c-di-GMP signaling have been studied in the model organism Caulobacter

crescentus, where c-di-GMP coordinates the developmental transition from a motile swarmer cell to a surface

attached, replication competent stalked cell. Both acquisition of flagellar motility in the predivisional cell and its

replacement by an adhesive organelle later in development are controlled by c-di-GMP. TipF, an EAL domain

protein, is required for an early step of flagellum assembly in the predivisional cell (11), whereas the diguanylate

cyclase PleD is involved in flagellum ejection and subsequent steps in pole remodeling (3, 12-15). Similarly, the

second messenger c-di-GMP regulates motility, adhesion factors and biofilm formation in a wide variety of

bacterial pathogens including Yersinia, Pseudomonas, Vibrio and Salmonella (1, 2). C-di-GMP influences

flagellar motility as a function of growth (16) or adaptation to surfaces (17), affects pili assembly (18), and

controls the production of surface structures like fimbriae and exopolysaccaride matrices (19). The wide variety

of cellular functions that are affected by c-di-GMP calls for multiple receptors and signaling mechanisms.

However, little information is available on specific targets of c-di-GMP action. With the exception of a

component of the cellulose synthase complex from Gluconacetobacter (20, 21) and the recent prediction of a

candidate c-di-GMP binding domain (22, 23), no c-di-GMP effector proteins have been reported. We have
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designed a biochemical approach to purify and characterize c-di-GMP effector molecules from Caulobacter

crescentus crude cell extracts.
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Results:

Purification of c-di-GMP binding proteins from C. crescentus. Based on the assumption that c-di-GMP signal

transduction depends on specific receptor proteins, we designed a biochemical purification strategy to identify

such components. C-di-GMP binding proteins from C. crescentus were purified by two consecutive

chromatography steps using BlueSepharose® CL-6B and affinity chromatography with GTP immobilized on

Epoxy activated Sepharose 4B (Pharmacia). UV crosslinking with [33P]c-di-GMP was used to identify proteins

with specific binding activity for c-di-GMP (see Materials and Methods and supplemental Table II). Two

binding proteins with apparent molecular weights of 47 kDa and 36 kDa were detected in the 0.4 – 0.7 M NaCl

eluate of the BlueSepharose® column (Fig. 1A, B, lane 3) and the 0.7 – 0.9 M NaCl fraction contained several

small c-di-GMP binding proteins with apparent molecular weights of 8-12 kDa (Fig. 1A, B, lanes 4-5; Fig. 1C).

The latter fraction was dialyzed, concentrated and separated on a GTP Epoxy-Sepharose 4B affinity column

(Fig. 1A,B lane 4 and Fig. C). One of these (labeled c in Fig. 1C) was identified by MS/MS as the product of

gene CC1599, a conserved hypothetical 12.5 kDa protein that we consequently renamed as diguanylate receptor

A (DgrA). Sequence comparison disclosed DgrA as a member of the PilZ protein family, members of which

have recently been proposed by bioinformatics to be c-di-GMP effector proteins (22).

DgrA is a diguanylate receptor protein. In order to confirm that the identified protein is a c-di-GMP receptor,

dgrA was subcloned into the expression vector pET-42b and the recombinant hexahistidine-tagged protein was

purified by Ni-NTA-affinity chromatography. Like the semi-purified protein from C. crescentus (Fig. 1C), the

recombinant protein showed strong labeling upon UV crosslinking with [33P]c-di-GMP (Fig. 2A), confirming

that DgrA is a c-di-GMP receptor protein. UV crosslinking experiments with DgrA in the presence of 60 nM 33P

labeled c-di-GMP and increasing concentrations of cold c-di-GMP, GTP (200 μM), or pGpG (200 μM) indicated

that DgrA binds c-di-GMP with high affinity and specificity (Fig. 2B). Furthermore, c-di-GMP seems to bind to

DgrA in a non-covalent manner since no radiolabeled c-di-GMP was incorporated without UV irradiation (Fig.

2B). The dissociation constant for c-di-GMP of the recombinant DgrA was determined using the UV
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crosslinking assay (Table I). Saturated incorporation of radiolabeled c-di-GMP was already observed at 50 nM,

indicating that the KD of DgrA for c-di-GMP is below 50 nM.

To test if other members of the PilZ protein family also bind c-di-GMP we analyzed several ortho- or

paralogs of DgrA, including CC3165 (renamed as DgrB), YcgR from S. thyphimurium (24) and PA4608 from P.

aeruginosa (Fig. 6). As shown in Fig. 2A all four proteins were efficiently labeled with 33P c-di-GMP upon UV

crosslinking, whereas the control protein BSA did not incorporate c-di-GMP. The c-di-GMP binding constants

of DgrB, YcgR and PA4608 were determined by performing UV crosslinking experiments with 50 nM receptor

protein in the presence of increasing concentrations of 33P labeled c-di-GMP (50 - 1000 nM). All wild type

diguanylate receptor proteins exhibit a binding affinity in the nanomolar range (Table I). Taken together, these

data demonstrate that DgrA and its homologs containing a PilZ domain are members of a class of small

diguanylate receptor proteins, which bind c-di-GMP, but not other guanine nucleotides, with high affinity. Thus,

these proteins represent bona fide diguanylate receptor proteins and may be involved in the response of specific

cell functions to fluctuating concentrations of c-di-GMP (2).

DgrA and DgrB mediate c-di-GMP-dependent motility control in C. crescentus. Low concentrations of c-di-

GMP are generally associated with flagella or pili based motility of single planktonic cells, whereas increased

concentrations of c-di-GMP promote multicellular traits and efficiently block cell motility (2). In agreement with

this, C. crescentus cells are non-motile in the presence of a plasmid-borne copy of dgcA, which encodes a highly

active, soluble diguanylate cyclase (15) (Fig. 3A). Electron micrographs and immunoblot experiments showed

that these cells were flagellated and expressed similar level of flagellins (data not shown), arguing that increased

c-di-GMP concentrations interfere with flagellar function rather than with the expression or assembly of flagellar

components. To test if motility control by c-di-GMP involves dgrA or dgrB, single and double in frame deletion

mutants were generated using a two-step homologous recombination procedure (see supplemental materials). In

contrast to C. crescentus wild type, dgrA and dgrB mutants were motile even in the presence of the dgcA

plasmid (Fig. 3A strains). This was not due to a reduction of the c-di-GMP concentration, as cellular levels of c-

di-GMP in these mutants were indistinguishably high (data not shown). At low cellular concentrations of c-di-

GMP, motility phenotypes were not significantly altered in the deletion mutants (data not shown), indicating that
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DgrA and DgrB interact with cell motility primarily at conditions where the level of c-di-GMP is elevated.

Together, these data suggested that the c-di-GMP binding proteins DgrA and DgrB are part of a signal

transduction pathway that interferes with flagellar function in response to increasing concentrations of c-di-

GMP. In agreement with this, overexpression of dgrA or dgrB from a plasmid efficiently blocked motility on

swarmer plates (Fig. 3B) and in liquid media as observed microscopically (data not shown).

Analysis of c-di-GMP binding to the diguanylate receptor by NMR spectroscopy. The available NMR

structure and resonance assignments of the DgrA homolog PA4608 from P. aeruginosa (25) (PDB 1YWU;

BMRB 6514) provided an opportunity to characterize the ligand binding site on a molecular level and to

investigate the structural consequences of ligand binding. PA4608 carrying an N-terminal hexahistidine tag was

produced in uniformly 15N- and 13C-labeled form for NMR spectroscopy. The 1H and 15N chemical shifts

observed for pure PA4608 were in good agreement with those reported in BMRB entry 6514. When c-di-GMP

was added to the protein, 1H-15N-HSQC spectra changed dramatically (supplemental Fig. 8). Free and ligand-

bound PA4608 were in slow exchange on the NMR chemical shift time scale, and titration curves were in

agreement with a KD in the sub-μM range (data not shown). In order to assign resonances of the PA4608*c-di-

GMP complex, exchange (EXSY) spectra were recorded on a roughly 3:1 mixture of free and c-di-GMP-bound

PA4608; exchange within a mixing time of 800 ms was only observed after heating to 313 K. Standard triple-

resonance NMR spectra recorded on PA4608 saturated with c-di-GMP were used to complete the backbone

resonance assignments. No resonances were observed for residues M3-H12 (hexahistidine tag), H22, F33-I36,

G73, I91, E125, L128, and D130-L1381. Probably, these residues are flexible on a μs to ms time scale, and peaks

are broadened beyond detection due to intermediate chemical exchange. Secondary 13C and 13C shifts (26)

showed that the secondary structure of PA4608 remained essentially unchanged after ligand binding

(supplemental Fig. 9).

In order to localize the ligand binding site on the protein surface, backbone amide 1H and 15N chemical shifts

of the PA4608*c-di-GMP complex were compared to those of the free protein, and the differences were mapped

1 Residue numbering for PA4608 as in BMRB entry 6514, which differs from that in PDB structure 1YWU by +22, is used
throughout this text.
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on the structure of the free protein (Figs. 5, 8). Large shift differences are found on one face of the barrel

(around V58, I63), in the C-terminus (V142, A144), and in the N-terminus (R30-D39). We conclude that c-di-

GMP binds to the outside of the barrel close to V58, and that the termini, which are partially flexible in the apo

form, fold around the bound ligand. Presumably the side chain N-H group of W99 forms a hydrogen bond with

the ligand, since the 15N 1 and 1H 1 resonances strongly shift towards higher chemical shifts by 8.24 and 1.66

ppm, respectively.

Due to their distinct chemical shifts (>10.7 ppm), the H1 imino hydrogens of guanine in c-di-GMP could be

identified once the assignment of protein backbone 1HN and tryptophan 1H 1 resonances had been completed.

Since four separate H1 resonances of about equal intensity are observed for c-di-GMP in complex with PA4608,

and each molecule of c-di-GMP contains two guanine bases, c-di-GMP binds to PA4608 as a dimer. Consistent

with the ligand-binding site outlined above, two of these H1 imino resonances show intermolecular NOEs to L64

and W99 (supplemental Fig. 10).

Amide 15N T1 and T2 relaxation times and heteronuclear {
1H}-15N NOEs were measured at 20°C for free and

c-di-GMP-bound PA4608 (data not shown). Isotropic rotational correlation times ( c) were determined from

these data with the program TENSOR (27) as 11.3 and 12.3 ns for free and ligand-bound protein, respectively.

These c are in reasonable agreement with values expected for monomeric apo-PA4608 (16.7 kDa, 9.8 ns) and c-

di-GMP-bound PA4608 (18.1 kDa, 10.6 ns). Thus, PA4608 is a monomer before and after ligand binding.

C-di-GMP binding mutants of DgrA are unable to control motility. Alignments of the amino acid sequences

of PA4608, DgrA, DgrB, and YcgR revealed that the key residues that, based on NMR data, were postulated to

be involved in c-di-GMP binding to PA4608, are conserved among other diguanylate receptor proteins (Fig. 6).

To probe the c-di-GMP binding site of DgrA and to define the minimal requirements for c-di-GMP binding,

residues R11, R12, D38, and W75 were replaced with Ala and the mutant proteins were analyzed for c-di-GMP

binding. Mutants R11AR12A and W75A strongly reduce c-di-GMP binding, whereas mutant D38A is still able

to bind c-di-GMP (Fig. 5A). In agreement with this, the binding constant for the D38A mutant was marginally

increased to 740 nM, whereas the KD for the W75A mutant (6.4 μM) was increased 100-1000 fold as compared

to wild type (Table I). Binding of c-di-GMP was completely abolished in the R11AR12A mutant. To analyze the
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importance of c-di-GMP binding for DgrA mediated signaling, the dgrA mutant alleles were tested for

functionality in vivo. As indicated above, overexpression of wild type dgrA renders cells non-motile (Figs. 4B,

6B). In contrast, overexpression of dgrAD38A, dgrAR11AR12A, or dgrAW75A only partially affected motility

(Fig. 5B). In particular, changing W75 to Ala almost completely abolished the ability of DgrA to block motility

under these conditions (Fig. 5B). Similarly, when the dgrAW75A mutant allele was expressed in single copy

from its original chromosomal locus, cells were fully motile even in the presence of the dgcA plasmid, arguing

that DgrAW75A can no longer control motility in response to increased c-di-GMP levels (Fig. 3). We isolated

suppressors that alleviated the dgrA-mediated motility block (see Materials and Methods). One of the intragenic

dms (diguanylate receptor motility suppressors) mutations mapped to V74, in the immediate vicinity of the Trp

residue critical for c-di-GMP binding (Fig. 5B, Fig. 6). Other intragenic dms mutations (D62, G82) mapped to

conserved residues of DgrA, emphasizing the functional importance of these residues (Fig. 6). In conclusion,

these results support the view that ligand binding is essential for the regulatory function of the diguanylate

receptor and suggest that DgrA blocks motility in its c-di-GMP bound state.

Motility control by DgrA correlates with cellular levels of the FliL motor protein. Immunoblot analysis

revealed that overexpression of dgrA or dgrB blocks motility without interfering with the expression of known

class II, class III or class IV components of the flagellar hierarchy (Fig. 3C). Because the expression of each

class of genes depends on the successful expression and assembly of components of the preceding class of the

hierarchy (28), this result suggested that flagella are assembled normally in cells overexpressing dgrA or dgrB.

In agreement with this, flagella were readily observed by electron microscopy in these non-motile cells (data not

shown). The only flagellar protein whose concentration was severely affected in cells overexpressing dgrA was

FliL (Fig. 3C). The C. crescentus fliL gene is not part of the flagellar hierarchy and its product is not assembled

into the flagellar structure (29). However, fliL is required for flagellar rotation (29). To examine if reduced FliL

levels are linked to motility we screened the pool of dms mutants (see above) for extragenic suppressors (see

Materials and Methods). From a total of 120 independently isolated motile suppressors, only one mapped to the

chromosome. This suppressor mutation (dms0541), which mapped to gene CC3587 coding for the ribosomal

protein S1, not only restored motility but also re-established normal levels of FliL (Fig. 3C).
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Discussion:

Motility control by c-di-GMP is implemented through gene expression, organelle assembly, or motor function

(2). In C. crescentus, increased cellular concentrations of c-di-GMP block motility by interfering with motor

function rather than by altering expression or assembly of structural components of the flagellum (13). How are

increased levels of c-di-GMP sensed and how is this information transmitted to the flagellar motor? The data

presented here suggest that DgrA and DgrB are high affinity receptors for c-di-GMP that, in a ligand-bound

form, interfere with the flagellar motor either directly or indirectly. Motor control by DgrA-like proteins is not

unique to Caulobacter. E. coli H-NS mutants lack flagella because the expression of the flagellar master control

operon flhCD is reduced. Ectopic expression of flhCD restores flagellation but leaves the motors partially

paralyzed (24). Under these conditions flagellar function can be restored either by a mutation in ycgR, coding for

the E. coli DgrA homolog, or by providing multiple copies of yhjH, which encodes a presumable c-di-GMP

specific phosphodiesterase (24). Together with our data demonstrating that the Salmonella YcgR protein

specifically binds c-di-GMP, this suggests that in C. crescentus and in enteric bacteria flagellar motor function

might be controlled by c-di-GMP via similar mechanisms.

But how would DgrA or YcgR interfere with the function of the flagellum? Our data propose the FliL

protein as a candidate for such a role. FliL was the only flagellar protein that showed significantly reduced levels

in non-motile cells overexpressing dgrA. In C. crescentus the FliL protein is not part of the flagellar structure but

is required for flagellar rotation (29). Intriguingly, fliL mutant strains exhibit an identical motility phenotype like

cells that have high levels of c-di-GMP or overexpress dgrA (29). Because the expression of fliM, the gene

located immediately downstream of fliL in the same operon (30), was not affected by DgrA, FliL changes must

be the result of altered translation or protein stability. An extragenic suppressor mutation that restored motility

under these conditions also re-established normal FliL concentrations, indicating that the two phenotypes are

linked. The simplest model that is in agreement with these results predicts that DgrA, upon binding of c-di-

GMP, represses FliL by a so far unknown mechanism and through this blocks motor function. The extragenic

suppressor mutation restoring FliL levels was mapped to the coding region of rpsA (ribosomal protein S1). RpsA

enhances translation initiation by binding to mRNA regions upstream of the Shine-Dalgarno sequence and by
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tethering the mRNAs on the 30S subunit of the ribosome (31-33). We are currently investigating how DgrA and

its ligand c-di-GMP modulate FliL levels. Recently, FliL was reported to be involved in surface sensing and

virulence gene expression in the urinary tract pathogen Proteus mirabilis (34). Thus, it is possible that FliL has a

more general role in controlling the switch between a planktonic and a surface-associated lifestyle.

A bioinformatics study originally proposed that the PilZ domain is a specific c-di-GMP binding module

(22). This was recently substantiated by the demonstration that YcgR, a PilZ protein from E. coli, is able to bind

c-di-GMP (23). Here we presented genetic, biochemical, and structural evidence that further validate this

hypothesis and propose a model for ligand binding and activation of proteins containing a PilZ domain. NMR

studies with the DgrA homolog PA4608 showed that a dimer of c-di-GMP binds to a well-defined binding site

on the surface of the -barrel (Fig. 4). Large chemical shift differences between free and ligand-bound PA4608,

which indicate changes in the local environment, were also observed in both termini of the protein, with the

largest differences observed for residues R30-R32, V142, and A144. These regions are structurally ill defined in

the absence of ligand (25) and are probably flexible. The observed chemical shift differences indicate that these

regions come in direct contact with the ligand after complex formation. The N-terminal part of PA4608 contains

three consecutive Arg residues, which are conserved in most PilZ domains (22) (Fig. 6). Arg side chains are

likely to be involved in hydrogen bonds or in electrostatic or stacking interactions with c-di-GMP, as has been

shown for the allosteric binding site of the diguanylate cyclases PleD and DgcA (15, 35). Furthermore, it is

conceivable that the positively charged head groups of Arg are sufficient for transient binding to the phosphate

groups of c-di-GMP and that their position on the flexible N-terminus increases the ligand capture radius of the

protein, as in the “fly-casting mechanism” proposed in (36). Alternatively, the observed folding of previously

flexible parts of the protein may be responsible for communication of the c-di-GMP signal to downstream

elements, either by forming new interaction surfaces or by determining the relative position of neighboring

domains. Similarly, the chemical shift differences of the C-terminal part of PA4608 could be explained by a

specific role in ligand binding. However, the fact that residues V142 and A144, which showed the largest

chemical shift differences are not conserved, argues against this possibility. Several of the motile dgrA loss of

function suppressors that were isolated had frameshift mutations in the very C-terminus of DgrA (Fig. 6),

suggesting that this part of the protein is critical for its in vivo function. One possibility is that the C-terminus
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contributes to the specific readout mechanism of this protein family. Upon c-di-GMP binding to the -barrel

surface, the C-terminus could be untied to interact with downstream components. In accordance with such a

view, the very C-terminus of the P. aeruginosa PilZ protein has recently been proposed to interact with the PilF

protein required for type 4-pilus assembly (37). To complement our picture of the c-di-GMP circuitry, future

studies will have to focus on interaction partners of DgrA and related PilZ domain proteins.

It is intriguing that genetic and biochemical studies of the C. crescentus DgrA protein and structural analysis

of PA4608 from P. aeruginosa identified the same set of key amino acids involved in c-di-GMP binding (Fig.

6). This finding is a strong indication that these proteins bind c-di-GMP in a similar way and suggests that they

may share a common signaling mechanism. Based on these results we postulate that most or all PilZ domain

proteins function as diguanylate receptor proteins.
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Materials and Methods:

Strains, plasmids and media. E. coli strains were grown in Luria Broth (LB). C. crescentus strains were grown

in complex peptone yeast extract (PYE) (38) supplemented with antibiotics, where necessary. For the exact

procedure of strain and plasmid construction see supplemental material.

UV cross-linking with [33P]c-di-GMP, and isolation of DgrA. Procedures for enzymatic production of [33P]c-

di-GMP and, UV cross-linking with [33P]c-di-GMP were published earlier (6, 39). For a detailed protocol used

for the isolation of DgrA see supplemental material.

Preparation of isotope-labeled protein, NMR samples and NMR spectroscopy. The detailed procedures for

overexpression and 13C, 15N- double-labeling of PA4608 are described in supplemental material. NMR samples

(Shigemi microtubes) were prepared as 0.8 mM U-13C/15N-labeled protein in 300 μl 95 % H2O/5% D2O, 250 mM

NaCl, 10 mM DTT, 1 mM sodium azide, 10 mM Tris at pH 7.1. C-di-GMP was added at suitable molar ratios

from a 7.7 mM stock solution. NMR spectra were recorded on Bruker DRX 600 and 800 MHz spectrometers at

293 K (20°C) with the exception of EXSY spectra that were recorded at 313 K for faster exchange. Standard 1D,

2D and 3D spectra were recorded and processed as described elsewhere (40).

Isolation and mapping of motile dgrA suppressors. A plasmid carrying dgrA (pBBR::dgrA) was conjugated

into a C. crescentus recA mutant strain and 150 individual transconjugants were patched onto PYE swarmer

plates. Motile dms (diguanylate receptor motility suppressors) mutants were isolated and analyzed by

immunoblot using an -DgrA antibody. Mutants with reduced DgrA levels were discarded. The rest was

analyzed by retransforming plasmids into the recA mutant strain in order to distinguish between intra- and

extragenic suppressors. Intragenic mutations were identified by sequencing.. The extragenic suppressor

(dms0541) was mapped by Tn5 linkage (41) and co-transduction with phage CR30, and identified by

sequencing.
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Fig. 1. Isolation of c-di-GMP binding proteins from C. crescentus. A) Coomassie stained SDS-PAGE gel with

protein fractions used for UV-crosslinking with [33P]c-di-GMP. Lane 1: 100.000 g supernatant, lane 2: 60%

ammonium sulfate precipitation, lane 3: 0.4 - 0.7 M NaCl eluate from Blue Sepharose®, lane 4: 0.7 - 0.9 M NaCl

eluate from Blue Sepharose® and lane 5: 125 mM NaCl eluate from GTP-sepharose column. B) Autoradiograph

of SDS-PAGE gel shown in A. C-di-GMP binding proteins a, b, and c were identified by MS/MS and their role

in c-di-GMP signaling is under investigation. Protein c was identified by MS/MS as hypothetical protein

CC1599 and was renamed DgrA (Diguanylate receptor protein A).

Fig. 2. DgrA is a member of a novel family of c-di-GMP binding proteins. A) UV crosslinking of purified

hexahistidine-tagged diguanylate receptor proteins with [33P]c-di-GMP. The following proteins were used: DgrA

(CC1599; C. crescentus), DgrB (CC3165; C. crescentus), PA4608 (P. aeruginosa), YcgR (S. typhimurium), and

BSA (control). The Coomassie-stained gel (left) and the autoradiograph (right) are shown. B) UV crosslinking of

10 μM DgrA in the presence of 60 nM of 33P labeled c-di-GMP. Samples were supplemented with increasing

concentrations of non-labeled nucleotides as indicated. Controls carried out in the absence of UV irradiation or

with BSA are shown on the right.

Fig. 3. DgrA and DgrB are involved in motility control by c-di-GMP. Motility behavior of C. crescentus wild

type strain CB15 and mutants are shown on semisolid agar plates. Three different colonies from independent

conjugation experiment are shown. A) The following strains containing plasmid pUJ142::dgcA or control

plasmid pUJ142 were analyzed: CB15/pUJ142::dgcA (a), CB15 dgrA/pUJ142::dgcA (b),

CB15dgrAW75A/pUJ142::dgcA (c), CB15 dgrB/pUJ142::dgcA (d), CB15 dgrA dgrB/pUJ142::dgcA (e),

CB15/pUJ142 (f). B) Overexpression of dgrA or dgrB from the lactose promoter (Plac) repressed C. crescentus

motility. CB15/pBBR (vector control) (a), CB15/pBBR::dgrA (b), CB15/pBBR::dgrB (c). C) Levels of class II,

class III, and class IV structural components of the C. crescentus flagellum were determined by immunoblot

analysis for the following strains: CB15/pBBR (wild-type), CB15/pBBR::dgrA (DgrA), CB15/pBBR::dgrB

(DgrB) and the extragenic diguanylate receptor motility suppressors CB15dms0541 pBBR::dgrA (dms0541).

The motility behavior of each strain is shown on top of the graph.
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Fig. 4. Combined amide 1H and 15N shift differences ( ) between PA4608 in its free and ligand-bound form.

Shift differences are color-coded on the structure of free PA4608 (PDB 1YWU, model 12). Combined chemical

shift differences were calculated as = sqrt( [ ( H )
2 + ( N / 5)

2 ] / 2). These data are also shown in

supplemental Fig. 8. Residue W99 is shown as sticks, and N 1 and H 1 are shown in red to highlight the large

value (1.67 ppm) for these atoms.

Fig. 5. C-di-GMP binding and motility control of DgrA mutants. A) UV crosslinking of different DgrA mutant

proteins with [33P]c-di-GMP. Coomassie stained SDS-PAGE (top) and autoradiograph (bottom) with purified

wild-type and mutant DgrA proteins (10 μM). B) Motility behavior of C. crescentus wild type CB15

overexpressing different dgrA alleles. CB15/pBBR::dgrA (a), CB15/pBBR::dgrAR11AR12A (b),

CB15/pBBR::dgrAD38A (c), CB15/pBBR::dgrAV74A (d), CB15/pBBR::dgrAR11AR12AV74A (e),

CB15/pBBR::dgrAW75A (f), CB15/pBBR (vector control) (g). Three different colonies from independent

conjugation experiment are shown.

Fig. 6. Sequence alignment of the c-di-GMP binding proteins DgrA, DgrB, YcgR and PA4608 according to the

PilZ PFAM entry PF07238. The PilZ domain is highlighted in green. DgrA residues shown to be important for

c-di-GMP binding and in vivo function (red) and the positions of intragenic dms suppressor mutations (black) are

highlighted above the alignment. Residues of PA4608 with large chemical shift differences upon c-di-GMP

binding (blue) are indicated below the alignment.



Table I:
Binding constants of diguanylate receptor proteins determined by UV crosslinking with

33P c-di-GMP

Organism Protein KD in nM KD

C. crescentus DgrB 132 36

DgrA wt* < 50 14

RR11AA N. D. ** -

D38A 761 149

W75A 6200 496

S. typhimurium YcgR 182 29

P. aeruginosa PA4608 < 50 27

protein concentrations used for binding assay: 50 nM
* wt, wild type
** N.D. not detectable



Table II:
Purification of c-di-GMP binding proteins from C. crescentus CB15 crude extracts

Sample Total yield of protein Total yield of
binding activity

Purification

μg % % fold

100.000 x g supernatant 680.000 100 100 1

60 % (NH4)2SO4 precipitation 323,000 47.5 95 2

BlueSepharose 0.4 - 0.7 M NaCl 10.800 1.59 40 26

BlueSepharose 0.7 - 0.9 M NaCl 7.800 1.15 41 35

GTP Sepharose 125 mM NaCl 24 0.0035 11 3200
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Summary

In this publication we describe an important novel feature of GGDEF proteins, which produce the

ubiquitous bacterial signaling molecule cyclic-di-GMP. This paper reports the results of in depth

structure-function analysis of an allosteric feedback inhibition mechanism that generally acts to

regulate diguanylate cyclase activities in bacteria. The mechanism involves binding of the second

messenger product, c-di-GMP at an inhibition site (I-site) that is coupled via a conserved beta-

strand to the active site (A-site) of the enzyme. The study involves an array of biochemical and

genetic techniques applied on various diguanylate cyclases to establish the sequence

determinants of the I-site as well as the in vivo physiological relevance of I-site function. To assist

the interpretation of the present data and to provide information on binding induced mobility,

atomistically detailed simulations were carried out. Normal mode calculations on ligated and

unligated PleD were used to analyze the structural transitions that occur during I-site binding of c-

di-GMP. Allosteric product inhibition of diguanylate cyclases turns out to have fundamental

functional and physiological implications, including threshold setting for cyclic-di-GMP production

by particular GGDEF proteins, which can contribute to precision, robustness, noise reduction and

accelerated kinetics of cyclic-di-GMP signaling.
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Cyclic di-guanosine monophosphate is a bacterial second

messenger that has been implicated in biofilm formation, anti-

biotic resistance, and persistence of pathogenic bacteria in their

animal host. Although the enzymes responsible for the regula-

tion of cellular levels of c-di-GMP, diguanylate cyclases (DGC)

and phosphodiesterases, have been identified recently, little

information is available on the molecular mechanisms involved

in controlling the activity of these key enzymes or on the specific

interactions of c-di-GMPwith effector proteins. By using a com-

bination of genetic, biochemical, and modeling techniques we

demonstrate that an allosteric binding site for c-di-GMP (I-site)

is responsible for non-competitive product inhibition of DGCs.

The I-site was mapped in both multi- and single domain DGC

proteins and is fully contained within the GGDEF domain itself.

In vivo selection experiments and kinetic analysis of the evolved

I-sitemutants led to the definition of an RXXDmotif as the core

c-di-GMP binding site. Based on these results and based on the

observation that the I-site is conserved in a majority of known

and potential DGC proteins, we propose that product inhibi-

tion of DGCs is of fundamental importance for c-di-GMP

signaling and cellular homeostasis. The definition of the

I-site binding pocket provides an entry point into unraveling

the molecular mechanisms of ligand-protein interactions

involved in c-di-GMP signaling and makes DGCs a valuable

target for drug design to develop new strategies against bio-

film-related diseases.

A global signaling network that relies on the production of

the second messenger cyclic diguanylic acid has recently been

discovered in bacteria (1, 2). The c-di-GMP3 system emerges as

a regulatory mastermind orchestrating multicellular behavior

and biofilm formation in a wide variety of bacteria (2). In addi-

tion, c-di-GMP signaling also plays a role in bacterial virulence

and persistence (3–7). The broad importance of this novel sig-

naling molecule in pathogenic and non-pathogenic bacteria

calls for careful analysis of themolecularmechanisms that con-

trol cellular levels of c-di-GMP and regulate its downstream

targets. c-di-GMP is formed by the condensation of two GTP

molecules (8–10) and is hydrolyzed toGMPvia the linear inter-

mediate pGpG (11–14). Two widespread and highly conserved

bacterial protein domains have been implicated in the synthesis

and hydrolysis of c-di-GMP, respectively (15). The breakdown

of c-di-GMP is catalyzed by the EAL domain (12–14), and the

diguanylate cyclase (8) activity resides in the GGDEF domain

(10, 16). The highly conserved amino acid sequence GG(D/

E)EF forms part of the catalytically active site (A-site) of the

DGC enzyme (8). In agreement with this, mutations that

change the GG(D/E)EF motif generally abolish the activity of

the respective proteins (14, 16–18).

GGDEF domains are often found associated with sensor

domains, arguing that DGC activity is controlled by direct sig-

nal input through these domains (1). The best understood

example for controlled activation of a DGC is the response reg-

ulator PleD, which constitutes a timing device for Caulobacter

crescentus pole development (17, 19, 20). PleD is activated dur-

ing C. crescentus development by phosphorylation of an N-ter-

minal receiver domain and, as a result, sequesters to the differ-

entiating cell pole (17, 19). An additional layer of control was

suggested by the crystal structure of PleD solved recently in

complex with c-di-GMP (8) (Fig. 1). A c-di-GMP binding site

was identified in the crystal, spatially separated from the cata-

lytically active site (A-site). Two mutually intercalating c-di-

GMP molecules were found tightly bound to this site, at the

interface between the GGDEF and the central receiver-like

domain of PleD (Fig. 1). Based on the observation that PleD

activity shows a strong non-competitive product inhibition, it

was proposed that this site might constitute an allosteric bind-

ing site (I-site) (8). Based on the observation that functionally

important residues of the PleD I-site are highly conserved in a

majority of GGDEF proteins listed in the data base, we tested

the hypothesis that allosteric product inhibition is a general

regulatory principle of bacterial diguanylate cyclases.

MATERIALS AND METHODS

Strains, Plasmids, and Media—Escherichia coli and Salmo-

nella enterica serovar Typhimurium strains were grown in

Luria broth (LB). C. crescentus strains were grown in complex

peptone yeast extract (21). For DGC activity assays in vivo,

E. coliwas plated onto LB Congo Red plates (Sigma, 50 �g/ml).

To determine the IPTG induction phenotype, 3 �l of a liquid
log phase culture was spotted onto LB Congo Red plates with-
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out and with 1 mM IPTG. Biofilm formation was quantified

after overnight growth by staining with 1% Crystal Violet as

described (22). Motility phenotypes were determined using LB

or peptone yeast extract motility plates containing 0.3% Difco-

Agar. The exact procedure of strain and plasmid construction is

available on request.

Random I-site Tetrapeptide Library—The dgcA gene

(CC3285)was amplified by PCRusing primers #1006 and #1007

(for primer list see supplemental text). The PCR product was

digested with NdeI and XhoI and cloned into pET21a (Nova-

gen). In a next step adgcA�RESDallelewith a silent PstI restric-

tion site was generated by splicing with overlapping extension

PCR using primers #1129, #670, and #1132. The resulting PCR

product was digested with NdeI and XhoI and cloned into

pET42b (Novagen) to produce pET42::dgcA�RESD. The PstI/
XhoI fragment of pET42b::dgcA�RESD was replaced by 20

independent PCR products, which had been generated using

pET42b::dgcA�RESD as a template and primers #1131 and

#670. The resulting 20 independent random libraries were indi-

vidually transformed into E. coli BL21 and screened on Congo

Red plates (LB plates supplementedwith 50�g/ml Congo Red).

As a control reaction, the deleted I-site was reverted back to the

wild-type RESD motif by cloning the PCR product generated

with primers #1130 and #670 into the PstI and XhoI site of

pET42b::dgcA�RESD.
Diguanylate Cyclase and Phosphodiesterase Activity Assays—

DGC reactions were performed at 30 °C with 0.5 �M purified

hexahistidine-tagged DgcA or 5 �M PleD in DGC reaction

buffer containing 250 mM NaCl, 25 mM Tris-Cl, pH 8.0, 5 mM

�-mercaptoethanol, and 20 mM MgCl2. For inhibition assays

the protein was preincubated with different concentrations of

c-di-GMP (1–100 �M) for 2 min at 30 °C before 100 �M

[33P]GTP (Amersham Biosciences) was added. The reaction

was stopped at regular time intervals by adding an equal volume

of 0.5 M EDTA, pH 8.0. DGC/PDE tandem assays were carried

out using 1�Mhexahistidine-taggedDgcA, which was preincu-

bated for 2 min in the presence or absence of 4.5 �M hexahisti-

dine-tagged phosphodiesterase PdeA. The reaction was started

by adding 100 �M [33P]GTP. The reactions were stopped at

regular time intervals of 15 s by adding equal volumes of 0.5 M

EDTA, pH 8.0, and their nucleotide composition was analyzed

as described below.

Initial velocity (Vo) and inhibition constants were deter-

mined by plotting the corresponding nucleotide concentration

versus time and by fitting the curve according to allosteric prod-

uct inhibited Michaelis-Menten kinetics with the program

ProFit 5.6.7 (with fit function [c-di-GMP]t � a(1)*t/(a(2) � t),

where the initial velocity Vo is defined as a(1)/a(2)) using the

Levenberg-Marquardt algorithm.Ki values were determined by

plotting Vo versus c-di-GMP concentration and using the fol-

lowing fit function, Vo[c-di-GMP] � Vo[c-di-GMP] � 0 *(1 � ([c-di-

GMP]/(Ki � [c-di-GMP])).

Polyethyleneimine Cellulose Chromatography—Samples were

dissolved in 5 �l of running buffer containing 1:1.5 (v/v) satu-

rated NH4SO4 and 1.5 M KH2PO4, pH 3.60, and blotted on

Polygram� CEL 300 polyethyleneimine cellulose TLC plates

(Macherey-Nagel). Plates were developed in 1:1.5 (v/v) satu-

rated NH4SO4 and 1.5 M KH2PO4, pH 3.60 (Rf(c-di-GMP) 0.2,

Rf(pGpG) 0.4), dried, and exposed on a storage phosphor imag-

ing screen (Amersham Biosciences). The intensity of the vari-

ous radioactive species was calculated by quantifying the inten-

sities of the relevant spots using ImageJ software version 1.33.

Vo and Ki were determined with the Software ProFit 5.6.7.

UVCross-linking with [33P]c-di-GMP—The 33P-labeled c-di-

GMP was produced enzymatically using [33P]GTP (3000

Ci/mmol) and purified according to a previous study (14). Pro-

tein samples were incubated for 10 min on ice in DGC reaction

buffer (25mMTris-HCl, pH 8.0, 250mMNaCl, 10mMMgCl2, 5

mM �-mercaptoethanol) together with 1 �M c-di-GMP and
33P-radiolabeled c-di-GMP (0.75�Ci, 6000 Ci/mmol). Samples

were then irradiated at 254 nm for 20 min in an ice-cooled,

parafilm-wrapped 96-well aluminumblock in an RPR-100 pho-

tochemical reactor with a UV lamp RPR-3500 (Southern New

EnglandUltraviolet Co.). After irradiation, samples weremixed

with 2� SDS-PAGE sample buffer (250mMTris-HCl at pH 6.8,

40% glycerol, 8% SDS, 2.4 M �-mercaptoethanol, 0.06% brom-

phenol blue, 40 mM EDTA) and heated for 5 min at 95 °C.

Labeled proteins were separated by SDS-PAGE and quantified

by autoradiography.

Nucleotide Extraction andAnalysis—2.0ml of E. coli cell cul-

tures (A600 0.4) were harvested by centrifugation, and superna-

tant was discarded. The cell pellet was dissolved in 200 �l of 0.5
M formic acid, and nucleotides were extracted for 10 min at

4 °C. Insoluble cell components were then pelleted, and the

supernatant was directly analyzed by chromatography. Nucle-

otides were extracted and separated according to a previous

study (23) on a 125/4 Nucleosil 4000-1 polyethyleneimine col-

umn (Macherey-Nagel) using the SMART-System (Amersham

Biosciences). The nucleotide peak corresponding to c-di-GMP

was verified by co-elution with a chemically synthesized c-di-

GMP standard.

DgcA Protein Expression Levels—DgcA protein expression

levels in E. coli BL21 were determined byWestern blot analysis

usingAnti-His(C-Term) antibody (Invitrogen) andhorseradish

peroxidase conjugate of goat anti-mouse IgG (Invitrogen) as

secondary antibody. The protein concentration was deter-

mined by measuring the intensities of the relevant spots using

ImageJ software version 1.33. Signals were calibrated to defined

concentrations of purified wild-type DgcA.

Molecular Modeling of PleD—All-atom simulations were

carried out using the CHARMM (24) program and the

CHARMM22/27 force field (25). For additional information

see the supplemental material.

RESULTS

Feedback Inhibition of the PleDDiguanylate Cyclase Requires

Binding of c-di-GMP to the I-site—The PleD crystal structure

indicated the existence of an allosteric binding pocket (I-site) at

the interface of theGGDEF and REC2 domains (8). Binding of a

c-di-GMP dimer in the I-site is mediated by specific electro-

static interactions with charged residues of the GGDEF and

REC2 domain (Fig. 1). To provide evidence for c-di-GMP bind-

ing to the I-site pocket in solution, trypsin digests were per-

formed with purified PleD protein (5 �M) in the presence or

absence of c-di-GMP (25 �M). The resulting peptide fragments

were separated on a C18 column and analyzed by matrix-as-

Diguanylate Cyclase Feedback Control
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sisted laser desorption ionization time-of-flight. Both chro-

matograms were identical, with the exception of two peaks that

were only detected in the absence of ligand but were protected

when c-di-GMP present during tryptic digest (supplemental

Fig. S1). One of the two peptides (T47, retention time 25.6min)

was identified by mass spectrometry and corresponds to the

amino acids 354–359 (supplemental Fig. S1), arguing that c-di-

GMP specifically protects from trypsin cleavage at Arg-359. To

provide additional evidence for ligand binding in solution, we

performedUVcross-linking assays using 33P-labeled c-di-GMP

(14). Residues Arg-148 and Arg-178 of the REC2 domain and

Arg-359, Asp-362, and Arg-390 of the GGDEF domain were

replaced with alanine, and the resulting protein variants were

analyzed. As shown in Fig. 2, mutating I-site residues of the

GGDEF domain abolished (�R359�D362) or strongly reduced
(R359A and R390A) c-di-GMP binding. In contrast, mutations

in theA-site (E370Q, E371Q, and EE370GG), which completely

abolished enzymatic activity (Table 1), had no effect on c-di-

GMP binding (Fig. 2), indicating that labeling with radioactive

c-di-GMP results from ligand binding at the I-site. Although

mutations R359A, R359V, �R359�D362, and D362A all

showed a dramatically reduced or complete loss of enzymatic

activity, mutant R390A showed wild-type-like DGC activity

(Table 1). In agreement with the reduced binding of c-di-GMP

(Fig. 2), the Ki of mutant R390A was increased �20-fold (Table

1). PleD proteins harboring mutations in the REC2 portion of

the I-site (R148A and R178A) showed an increased binding

of c-di-GMP (Fig. 2) and slightly lower Ki values than wild

type (Table 1). Surprisingly, R148A/R178A single and double

mutants displayed a 5- to 20-fold higher DGC activity com-

pared with wild-type PleD (Table 1). Finally, c-di-GMP binding

was normal in mutant proteins that either lacked the REC1

receiver domain or had a bulky tryptophan residue introduced

at the REC2-GGDEF interface (G194W, Fig. 2). Together these

results implied that the structural requirements for c-di-GMP

binding are contained within the GGDEF domain of PleD and

that residues Arg-359, Asp-362, and Arg-390 form the core of

an allosteric binding pocket for c-di-GMP.

FIGURE 1. Crystal structure of the response regulator PleD. A, domain
architecture of PleD with receiver domain REC1 (blue), receiver domain REC2
(green), and GGDEF domain harboring diguanylate cyclase activity (red). The
active site (A-site) loop and the allosteric binding site (I-site) are indicated. B,
zoom in view of the I-site pocket with a bound dimer of c-di-GMP with inter-
calated purine bases. Residues Arg-148 and Arg-178 (green) from the REC2
domain and residues Arg-359, Asp-362, and Arg-390 (red) from the GGDEF
domain make specific contacts to the ligand in the crystal structure. C, sche-
matic of c-di-GMP synthesis and degradation reactions.

FIGURE 2. c-di-GMP labeling efficiency of different PleD mutants. The
upper lane shows autoradiographs of [33P]c-di-GMP UV cross-linked hexahis-
tidine-tagged PleD mutant proteins separated by SDS-PAGE. Relative label-
ing efficiency with c-di-GMP is shown below with wild-type PleD correspond-
ing to 100%. Specific mutants in different domains are colored in gray (REC1),
dark gray (REC2) and light gray (GGDEF).
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Evidence for an in Vivo Role of I-site-mediated Feedback

Control—To test a possible role for feedback inhibition of

diguanylate cyclases in vivo, we developed a simple assay based

on the observation that in E. coli and other Enterobacteriaceae

increased cellular levels of c-di-GMP correlate with Congo Red

(CR) staining of colonies on plates (28). Low level expression (in

the absence of the inducer IPTG) of active pleD alleles caused a

red colony phenotype in the E. coli B strain BL21, whereas cells

expressing inactive pleD alleles under the same conditions

stained white (Fig. 3). Interestingly, PleDmutants with dramat-

ically different diguanylate cyclase activities in vitro showed

only minor differences of CR staining in vivo. For instance,

PleDR148A/R178A, which showed a 20-fold increased activity

(Table 1), or PleD*, a constitutively active mutant of PleD sev-

eral 100-fold more active than wild-type (9), caused virtually

identical CR values like PleD wild type (Fig. 3). In contrast,

expression of the feedback inhibition mutant PleDR390A

resulted in a significantly higher CR staining even though its in

vitro DGC activity was lower than wild-type PleD (Table 1).

This argued that in vivo steady-state concentrations of c-di-

GMP were determined mainly by the PleD inhibition constant

(as opposed to the overall activity of the enzyme) and that a

functional I-site is critical for DGC control in vivo.

DgcA, a Single Domain Diguanylate Cyclase, Is Subject to

Allosteric Product Inhibition—Sequence alignments of �1000

annotated GGDEF domain proteins revealed that that I-site

residues Arg-359 and Asp-362 of PleD are highly conserved.

57% of the proteins containing a GGDEF domain and 27% of

GGDEF/EAL composite proteins possess this motif. This sug-

gested that c-di-GMP product inhibition could be a general

regulatorymechanism of bacterial diguanylate cyclases. To test

this, hexahistidine-tagged derivatives of two C. crescentus

GGDEF domain proteins were analyzed biochemically with

respect to their DGC activities and c-di-GMP binding proper-

ties. Purified DgcA (diguanylate cyclase A, CC3285), a soluble,

single domain GGDEF protein that lacks an obvious N-termi-

nal input domain, showed strong diguanylate cyclase activity

(Fig. 5A). DgcA has an RESDmotive five amino acids upstream

of the conservedGGDEF active site andwas readily labeledwith

[33P]c-di-GMP in a cross-linking experiment (Fig. 4). Consist-

ent with this, DgcA showed strong feedback inhibition (Fig. 5A)

with its Ki (1 �M) being in the same range as the inhibition

constant determined for PleD (8). In contrast, the GGDEF

domain of PdeA (phosphodiesterase A, CC3396), which lacks

catalytic activity (14), had no conserved I-site residues and did

not bind radiolabeled c-di-GMP (Fig. 4). Thus, specific binding

of c-di-GMP correlated with the presence of a conserved I-site

motif RXXD (Fig. 4).

Diguanylate cyclase activity assays revealed strong and rapid

product inhibition of DgcA. DgcA alone was able to convert

only a small fraction of the availableGTP substrate pool into the

product c-di-GMP (Vo � 2.8 �mol of c-di-GMP �mol pro-

tein�1 min�1) (Fig. 5B). In contrast, GTP consumption and

conversion into c-di-GMP and pGpG was rapid (Vo � 43.0

�mol of c-di-GMP �mol protein�1 min�1) and almost com-

plete when the PDE CC3396 was added in excess to the enzy-

matic reaction (Fig. 5B). This argued that c-di-GMP feedback

inhibition is abolished in a sequential DGC-PDE reaction,

because the steady-state concentration of the inhibitor c-di-

GMP is kept low by continuous degradation of c-di-GMP into

the linear dinucleotide pGpG. As a consequence of rapid feed-

back inhibition, the experimentally determinedVo values of the

DGC reaction are generally underestimated. In conclusion,

these results strengthen the view that allosteric product inhibi-

FIGURE 3. In vivo activity of different PleD and DgcA mutant proteins.
E. coli BL21 strains expressing different pleD alleles and dgcA wild type were
spotted onto Congo Red plates. Relative Congo Red binding was determined
using imageJ software with BL21 corresponding to 100%. FIGURE 4. UV cross-linking of different GGDEF domains with 33P-labeled

c-di-GMP. A, Coomassie-stained SDS-PAGE and B, autoradiograph of BSA
(control), PleD�REC1, DgcA, and the isolated GGDEF domain of the c-di-GMP-
specific phosphodiesterase PdeA (CC3396) after UV cross-linking with [33P]c-
di-GMP. C, alignment of I- and A-site sequence of PleD, DgcA, and PdeA. I-site
(RXXD) and A-site residues (GGDEF) are marked in black and gray,
respectively.
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tion is a general principle of diguanylate cyclases and that high

affinity binding of c-di-GMP requires an RXXD I-site motif

positioned in close proximity to the active site.

Development of an in Vivo Assay to Genetically Probe Allos-

teric Control of DgcA—DGCs from different bacterial species

have been shown to be functionally interchangeable (17, 26, 27).

To determine if DgcA is active in vivo we expressed a plasmid-

based copy of the dgcA gene in C. crescentus, S. enterica, and

Escherichia coli B and tested the respective strains for the phe-

notypes known to result from increased cellular levels of c-di-

GMP (17, 26, 27). Consistentwith these earlier findings, expres-

sion of dgcA strongly inhibited flagellar-based motility in all

three organisms, dramatically increased the ability of S. enterica

and E. coli for surface colonization, and produced the charac-

teristic red, dry, and rough (rdar) colony morphotype when

plated on CR plates (Fig. 6, A–F) (29). The red phenotype pro-

vided the basis for a visual genetic screen on CR plates. Under

these conditions, cells producing active DgcA variants would

produce dark red single colonies, whereas cells producing inac-

tive DgcA mutants would remain white. This prompted us to

use the CR screen to isolate dgcAmutants, which had a specific

defect in feedback regulation, and to define the minimal

requirements for product inhibition of this class of enzymes.

Randomization of c-di-GMP Binding Pocket Reveals Three

Mutant Classes—To probe the minimal requirements of the

I-site for c-di-GMP binding and product inhibition, a dgcA

mutant library was constructed with the RESD signature

replaced by a randomized tetrapeptide sequence (see “Materi-

als and Methods”). In short, a dgcA gene, which carried a dele-

tion of the four I-site codons, was used as template for a PCR

reaction. For the amplification step a primer complementary to

the 3	-end of dgcA was used in combination with a mixture of

oligonucleotides that spanned the deletion site and contained

12 randomized base pairs at the position coding for the deleted

amino acids. The resulting PCR fragments were fused in-frame

with the 5	-end of dgcA in the expression plasmid pET42b and

were transformed into E. coli BL21. The resulting gene library

contains a theoretical number of 1.67� 107 (412) different dgcA

alleles, coding for DgcA variants with different combinations of

I-site residues.

When plated onCR plates, colonies transformedwith a wild-

type dgcA allele showed the typical rdar colony morphology

(Fig. 6G). Transformation of E. coli BL21 with a plasmid

expressing a mutant DgcA, which lacked the four amino acids

of the I-site (DgcA�RESD), produced white colonies on CR

plates (Fig. 6H), indicating that this mutant form had lost DGC

activity. About 10% of the clones with random tetrapeptide

insertions stained red on CR plates and thus had retained DGC

activity (Fig. 6I). This result is consistent with the observation

that alanine scanning of the PleD I-site almost exclusively pro-

duced non-active enzyme variants (Table 1) and argues that the

majority of amino acid substitutions introduced at the I-site are

detrimental for the catalytic activity of the DGC. To further

characterize active DgcA I-site variants, a total of 800 red col-

onies was isolated and patched onto CR plates without (Fig. 6, J

andK) or with the inducer IPTG (Fig. 6, L andM). This second-

ary screen was based on the observation that IPTG-induced

expression of the pleDR390A allele (Table 1), but not of the

pleDwild-type allele, abolished growth of E. coli BL21 (data not

shown). This suggested that at elevated protein levels, DGCs

that lack feedback control are toxic in vivo (see below). The

majority of the I-site library clones tested failed to grow on

plates containing IPTG, indicating that their activity is no lon-

ger controlled by product inhibition (Fig. 6, L and M). Only 7

mutants (out of 9000 colonies screened) showed a wild type-

like behavior in that they stained dark red on CR plates and

tolerated the presence of the inducer IPTG (Fig. 6, L andM).

This genetic screen led to the isolation of three different

I-site mutant classes with the following characteristics: 1) cat-

alytically inactive mutants (A�, frequency �90%); 2) feedback

control negative mutants (I�A�, frequency �10%); and wild-

type-like mutants (I�A�, frequency �0.1%). A subset of class 1

and 2 mutants and all seven class 3 mutants were selected, and

hexahistidine-tagged forms of the respective proteins were

purified for biochemical characterization. Kinetic parameters

of activity (Vo) and feedback inhibition (Ki) were determined

FIGURE 5. c-di-GMP product inhibition of DgcA. A, initial velocities of the
wild-type diguanylate cyclase DgcA (squares) and the non-feedback inhibited
I-site mutant DgcA0244 (circles) in the presence of increasing concentrations
of c-di-GMP. B, conversion of GTP into c-di-GMP by DgcA (dashed lines) and
accelerated GTP consumption, c-di-GMP synthesis, and cleavage into pGpG
by a diguanylate cyclase-phosphodiesterase tandem reaction (plain lines).
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individually using an in vitro diguanylate cyclase activity assay

(16). Consistent with their rdar-like in vivo phenotype, only

class 2 and class 3 mutants showed detectable diguanylate

cyclase activity with an initial velocity between 1.93 and 14.21

�mol of c-di-GMP �mol protein�1 min�1 (Table 2). Only

mutant proteins from the IPTG tolerant class 3 showedproduct

inhibition with Ki values close to 1 �M (Table 2). In contrast, all

proteins from class 2mutants showed no feedback inhibition in

vitro, arguing that their in vivo toxicity is the result of uncon-

trolled run-off DGC activity (Fig. 5A and Table 2). Support for

this hypothesis comes from experiments determining the cel-

lular concentration of c-di-GMP and DgcA protein expression

levels in E. coli BL21 carrying selected dgcA alleles on plasmid

pET42b (see “Materials and Methods”). Alleles dgcA0244,

dgcA1229, and dgcA1250were chosen, because the DGC activ-

ity of these enzymes is similar towild typeDgcA (Table 2). Basal

level expression (no IPTG) of dgcA0244, the allele coding for a

DGC that completely lacks feedback inhibition, resulted in a

more than 100-fold increased cellular level of c-di-GMP as

compared with cells expressing wild-type dgcA (Table 3). This

was due to an almost 100-fold higher overall turnover of the

mutant enzyme as compared with wild type (Table 3). In con-

trast, enzymatic turnover and cellular concentration of c-di-

GMP was increased only marginally in E. coli cells expressing

alleles dgcA1229, and dgcA1250 with restored feedback inhibi-

tion control (Table 3).

Sequence analysis of the tetrapeptide insertions of class 2 and

class 3 mutants revealed several important characteristics of a

functional allosteric I-site binding pocket. All catalytically

active and feedback inhibition competent mutants restored the

wild-type Arg and Asp residues at positions one and four of the

RXXDmotive (Table 2).Whereas most of themutants that had

lost feedback inhibition had altered either one or both of these

charged residues (Table 2) only two feedback inhibition

mutants had retained both charges with changes in the inter-

vening residues (Table 2). Obviously, Arg and Asp, while being

strictly required for feedback inhibition, need to be placed in

the appropriate sequence context of the I-site loop. These

experiments define the minimal requirements of the I-site core

region and demonstrate that the Arg and Asp residues that

make direct contacts to the c-di-GMP ligand in the crystal

structure are of critical functional importance for DGC feed-

back inhibition in vivo and in vitro. This provides a plausible

FIGURE 6. Phenotypic characterization of ectopically expressed diguanylate cyclase dgcA in E. coli and S. enterica. Behavior of E. coli strain BL21 with
empty pET42b plasmid (A) and pET42b::dgcA (B) on motility plates. Colony morphology of E. coli strain BL21 with empty pET42b plasmid (C ) and with
pET42b::dgcA (D) on Congo Red plates. Biofilm formation of S. enterica serovar Typhimurium trp::T7RNAP with empty pET42b (E ) and pET42b::dgcA (F ) grown
in liquid culture and stained with crystal violet. E. coli BL21 transformed with PCR-restored dgcA wild type on pET42b::dgcA (G), with the inactive allele
dgcA�RESD (pET42b::dgcA�RESD) (H), and with a library of random tetrapeptide insertions in the I-site (pET42b::dgcAXXXX) (I) and plated on Congo Red plates.
E. coli BL21 expressing different I-site mutant alleles were spotted onto Congo Red plates without (J and K ) and with 1 mM IPTG (L and M) to screen for feedback
inhibition dgcA alleles.

TABLE 1
Kinetic analysis of PleD mutants

Protein Vo �Vo Ki �Ki

�mol c-di-GMP/

(�mol protein*min)

�M

PleD wild type 0.202 
 0.023 5.8 
 1.0
PleDR359A 0.005 NDa �100 ND
PleDR359V 0.0 ND
PleD�359�362 0.0 ND
PleDD362A 0.0 ND
PleDR390A 0.076 
 0.007 115.0 
 18.1
PleDR148A 0.822 
 0.020 2.8 
 1.2
PleDR178A 0.918 
 0.292 3.6 
 0.1
PleDR148AR178A 3.75 
 0.43 2.9 
 0.6
PleDG194W 0.161 
 0.005 6.3 
 1.9
PleDEE370GG 0.0 ND
PleDE370Q 0.0 ND
PleDE371Q 0.0 ND

a ND, not determined.
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explanation for the strong conservation of the RXXD motif in

GGDEF domains.

The molecular mechanism of product inhibition through

I-site binding remains unclear. To assist the interpretation of

the present data and provide information on binding induced

mobility, atomistically detailed simulations were carried out.

Normal mode calculations on ligated and unligated PleD were

used to analyze the structural transitions that occur during

I-site binding of c-di-GMP. Normal mode calculations on the

optimized structures yielded no imaginary frequencies, and

translational and rotational frequencies were close to zero (���
� 0.02 cm�1). This indicated that the minimized structures

correspond to real minima on the potential energy surface. The

displacements calculated for the ligated and the unligated pro-

tein showed a significant decrease in mobility for both I- and

A-site residues upon complexation (supplemental Figs. S2 and

S3). Whereas motion in the I-site is suppressed due to steric

interactions upon ligand insertion, quenching of the A-site res-

idues suggested that the two sitesmight be dynamically coupled

via the short connecting �-strand (�2). Backbone C�-atoms

and side chains of the I-site and A-site loops were displaced by

an average of 1–4 Å in opposite directions, arguing that a bal-

ance-like movement centered around �2 could be responsible

for direct information transfer between the two sites (Fig. 7).

The cumulated displacements per residue over all 147 modes

(supplemental Fig. S3) showed differentmobilities in additional

regions of the protein. The C� atoms of residues exhibiting

large changes in flexibility upon ligand binding are depicted as

spheres in supplemental Fig. S3. Reduced flexibility (yellow

spheres) is found at the I-site, A-site, phosphorylation site, and

the dimer interface, whereas the flexibility is enhanced (black

spheres) at the REC1/REC2 interface. In summary, these simu-

lations show that I-site binding of c-di-GMP not only reduced

the mobility around the RXXDmotif but also of the residues of

the A-site loop.

DISCUSSION

Feedback Inhibition Is a General Control Mechanism of

Diguanylate Cyclases—The data presented here propose a gen-

eral mechanism to regulate the activity of diguanylate cyclases

(DGCs), key enzymes of c-di-GMP-based signal transduction

in bacteria. High affinity binding of c-di-GMP to a site distant

from the catalytic pocket (I-site) efficiently blocks enzymatic

activity in a non-competitive manner. Mutational analysis of

multi- and single-domain DGC proteins has provided convinc-

ing evidence for the role of several charged amino acids in c-di-

GMP binding and allosteric regulation. Furthermore, these

experiments indicated that the allosteric binding site is func-

tionally contained within the GGDEF domain. An in vivo selec-

tion experiment using a random tetrapeptide library, and

TABLE 2
Diguanylate cyclase activity and inhibition constant of DgcA I-site mutant proteins

Protein Motif Vo �Vo Ki �Ki

�mol c-di-GMP/

(�mol protein�min)

�M

DgcA wt RESD 2.79 
 0.01 0.96 
 0.09
DgcA1406 RQGD 5.35 
 0.05 7.02 
 2.92
DgcA1040 RLVD 4.92 
 0.19 4.52 
 1.81
DgcA1229 RGAD 2.03 
 0.01 1.84 
 0.26
DgcA1524 RSAD 3.70 
 0.13 7.36 
 2.69
DgcA1529 RLAD 2.79 
 0.04 1.01 
 0.23
DgcA0751 RCAD 3.65 
 0.10 3.51 
 0.52
DgcA1250 RGGD 2.07 
 0.02 2.24 
 0.49
DgcA�RESD 0.14 
 0.06 NDa

DgcA0207 GMGG 14.21 
 0.54 No inhibition
DgcA0244 VMGG 2.57 
 0.05 No inhibition
DgcA0613 GGVA 4.29 
 0.06 No inhibition
DgcA0646 GRDC 8.90 
 0.10 No inhibition
DgcA0913 GVGD 3.81 
 0.04 No inhibition
DgcA1300 MEGD 0.87 
 0.02 No inhibition
DgcA1733 GGNH 11.47 
 0.17 No inhibition
DgcA3018 RESE 11.1 
 0.11 No inhibition
DgcA0230 RNRD 3.02 
 0.06 No inhibition
DgcA0642 RVDS 4.17 
 0.08 No inhibition
DgcA1007 RAGG 6.06 
 0.05 No inhibition
DgcA2006 RGQD 1.93 
 0.01 No inhibition

a ND, not determined.

TABLE 3
DgcA protein levels and cellular c-di-GMP concentrations in the absence or presence of IPTG induction at 1 mM

Protein conc.a c-di-GMP conc. Turnoverb

No induction 1 mM IPTG No induction 1 mM IPTG No induction 1 mM IPTG

pmol protein/mg dry weight pmol c-di-GMP/mg dry weight pmol c-di-GMP per pmol protein

DgcA0244 4.1 22 1466.3 1570.7 357.6 71.4
DgcA1229 3.5 31 87.6 139.5 25.0 4.5
DgcA1250 2.7 43 24.2 305.4 9.0 7.1
DgcA wt 2.9 33 13.75 189.4 4.7 5.7
DgcA�RESD 3.5 23 NDc ND NAd NA

a See “Materials and Methods.”
b As derived from the cellular c-di-GMP concentration divided by the cellular protein concentration.
c ND, not detectable.
d NA, not applicable.

Diguanylate Cyclase Feedback Control

OCTOBER 20, 2006 • VOLUME 281 • NUMBER 42 JOURNAL OF BIOLOGICAL CHEMISTRY 32021

 at M
E

D
IZ

IN
B

IB
LIO

T
H

E
K

 on O
ctober 17, 2006 

w
w

w
.jbc.org

D
ow

nloaded from
 



designed to re-engineer the I-site has led to the definition of a

highly conserved RXXD core motif of the c-di-GMP binding

pocket. The RXXD motif forms a turn at the end of a short

five-amino acid �-sheet that directly connects the I-site with

the conserved catalytic A-site motif, GG(D/E)EF (Fig. 7). This

raised the question of how I-site ligand bindingmodulatesDGC

enzyme activity. In the multidomain protein PleD, c-di-GMP

bound to the I-site physically connects the GGDEF domain

with the REC1-REC2 dimerization stem. It was speculated that

product inhibition occurs by domain immobilization, which

would prevent the encounter of the twoDGC substrate binding

sites (8). Several observations argue in favor of a more direct

communication between I- and A-sites. First, with a large vari-

ety of domains found to be associated with GGDEF domains, it

seems unlikely that functional I-sites are generally formed by

the interface of a GGDEF with its neighboring domain (2). In

agreement with this, residues of the PleD REC2 domain are

not required for c-di-GMP binding and feedback inhibition.

Second, the single domain DGC protein, DgcA, shows I-site-

dependent allosteric control with aKi of 1 �M. Third, the intro-

duction of a bulky tryptophan residue (G194W) at the GGDEF-

REC2 interface did not affect activity, I-site binding, or

feedback inhibition of PleD (Fig. 2 and Table 1). Fourth, atom-

istic simulations of ligated and unligated PleD predicted a

marked drop in flexibility of C�-atoms both in the I- and A-site

upon ligand binding. Simultaneous with motion quenching, �2
and its flanking I- and A-loops undergo a balance-like move-

ment that repositions A-site residues in the catalytic active site

(Fig. 7). This is consistent with the idea that structural changes

within the GGDEF domain upon binding of c-di-GMP at the

I-site lead to repositioning of active site residues and possibly

altered kinetic parameters. Thus, we propose that c-di-GMP

binding and allosteric control represents an intrinsic regulatory

property of DGCs that contain an RXXDmotif.

Like guanylate and adenylate cyclases (GCs and ACs) and

DNApolymerases,DGCs catalyze the nucleophilic attack of the

3	-hydroxyl group on the �-phosphate of a nucleoside triphos-
phate. Despite the lack of obvious sequence similarities, the

PleD x-ray structure revealed that DGCs possess a similar

domain architecture like ACs and GCs (8, 30). Based on muta-

tional analysis (8, 14, 16) and on structural comparisons

between DGC, AC, GC, and DNA polymerases (31–34), a

model for DGC catalysis can be proposed. In contrast to the

heterodimeric ACs and GCs, DGCs form homodimers, with a

GTP molecule bound within the catalytic core of each DGC

monomer (8). Two Mg2� ions are coordinated by the highly

conserved glutamic acid residue Glu-371, which is part of the

GGDEF motif, and possibly by Asp-327 on the opposing

�-sheet. The divalent Mg2� carboxyl complex coordinates the

triphosphate moiety of GTP and activates the 3	-hydroxyl
group for intermolecular nucleophilic attack. Substrate speci-

ficity of AC and GC can be interchanged by converting a few

key residues involved in purine recognition (31, 34, 35). This

includes an arginine residue, which in PleD corresponds to the

highly conservedArg-366 located in the�-sheet connecting the
I- and A-sites. Based on the active site model, two alternative

inhibition mechanisms can be envisaged. In a first scenario,

binding of c-di-GMP to the I-site would change the orientation

of Arg-366 and would thereby disturb the guanine binding

pocket resulting in an increased Km for GTP. Alternatively,

inhibitor binding could rearrange the Mg2� carboxyl complex

and thus destabilize the active state.

In Silico Analysis of the GGDEF Protein Family Indicates

That Product Inhibition Is a General Regulatory Mechanism—

DGC activity of GGDEF domain proteins seems to strictly

depend on conserved GGDEF or GGEEF motifs in the active

site (10, 16, 18, 36–38). Consistent with this, �90% of the

GGDEF and 62% of the GGDEF/EAL composite proteins show

a conserved GG(D/E)EF A-site motif. Of the GGDEF proteins

with a highly conserved A-site motif, �60% have conserved

RXXD I-site residues and a conserved spacer length between I-

and A-site, arguing that the three-dimensional arrangement of

catalytic and allosteric pocket is likely to be similar in all DGCs.

From a total of 19 GGDEF proteins, for which convincing evi-

dence for a DGC activity exists, 14 have a conserved I-site (sup-

plemental Fig. S4). Ryjenkov and coworkers (10) reported

severe toxicity problems when expressing diguanylate cyclases

lacking I-site residues inE. coliBL21. This is consistentwith the

growth defect observed upon expression of dgcA feedback inhi-

bitionmutants inE. coliBL21 and argues that these proteins are

not feedback-controlled. The molecular basis of growth inter-

ference under these conditions is unclear. It is possible that

depletion of the GTP pool or adverse effects of unphysiologi-

cally high levels of c-di-GMP are responsible for this effect.

Although the experiments presented here define a role for the

I-site in DGC feedback inhibition, the c-di-GMP binding

pocket could also be exploited for other roles in c-di-GMP sig-

naling. It has been proposed recently that non-catalyticGGDEF

FIGURE 7. Comparison of the energy-minimized structures of the PleD
GGDEF domain with and without ligand bound to the I-site. For improved
clarity, the domain is sliced through the I-site loop/�2/A-site loop plane. The
unligated protein is shown in gray and the I-site loop (green), �2 (black), and
A-site loop (gold ) of the bound structure are shown as an overlay. GTP bound
to the active site is modeled according to the orientation of c-di-GMP bound
to the A-site in the crystal structure. The PleD amino acid sequence of I-site,
�2, and A-site is indicated below.
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domains with variant A-site motifs can fulfill regulatory func-

tions (14). It is attractive to speculate that a subgroupofGGDEF

proteins that has degenerate catalytic A-sites but conserved

c-di-GMP binding pockets, represents a novel class of c-di-

GMP effector proteins that regulate cellular functions in

response to c-di-GMP binding.

Regulatory Significance of DGC Feedback Control—GGDEF

domains are often associated with sensory domains in one- or

two-component signaling systems (39, 40). Thus it is reasona-

ble to assume that in most cases DGC activity is controlled by

direct signal input through these domains. But why then would

a substantial portion of these enzymes also be subject to feed-

back inhibition? There are several possibilities, which among

themselves are not mutually exclusive. Given the anticipated

regulatory complexity of the c-di-GMP signaling network (2,

39) and the potentially dramatic changes in cellular physiology

and behavior caused by fluctuating levels of c-di-GMP, it is in

the cell’s best interest to rigorously control the production of

the second messenger. Product inhibition of DGCs allows the

establishment of precise threshold concentrations of the sec-

ond messenger, or, in combination with counteracting PDEs,

could produce short spikes or even generate oscillations of c-di-

GMP. In addition, negative feedback loops have been impli-

cated in neutralizing noise and providing robustness in genetic

networks by limiting the range over which the concentrations

of the network components fluctuate (41, 42). Similarly, prod-

uct inhibition of DGCs could contribute to the reduction of

stochastic perturbations and increase the stability of the c-di-

GMP circuitry by keeping c-di-GMP levels in defined concen-

tration windows. Alternatively, DGC autoregulationmay influ-

ence the kinetics of c-di-GMP signaling. Mathematical

modeling and experimental evidence suggested that negative

autoregulation in combination with strong promoters substan-

tially shortens the rise-time of transcription responses (43–45).

In analogy, a desired steady-state concentration of c-di-GMP

can in principle be achieved by two regulatory designs: (a) a low

activity DGCwith no product inhibition, and (b) a high activity

DGC with built-in negative autoregulation. In cases where cir-

cuits have been optimized for fast up-kinetics, design B will be

superior. It is plausible that DGCs with or without I-site motifs

can be divided into these two kinetically different classes.

This study contributes to the emerging understanding of the

c-di-GMP regulatory network in bacteria. The current empha-

sis lies on the identification of effector molecules, regulatory

mechanisms, and processes controlled by c-di-GMP. With the

long term goal in mind of approaching a detailed systems-level

understanding of c-di-GMP signaling, kinetic parameters of

signalingmechanismswill require our particular attention.Our

experiments provide an entry point into the kinetic analysis of

individual DGCs and the quantitative assessment of the c-di-

GMP circuitry.
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SUPPLEMENTAL MATERIAL: 

MATERIALS AND METHODS: 

Purification of His-tagged proteins - E. coli BL21 cells carrying the respective expression 

plasmid were grown in LB medium with ampicillin (100 g/ml) or kanamycin (30 g/ml) and 

expression was induced by adding IPTG at OD600 0.4 to a final concentration of 0.4 mM. After 

harvesting by centrifugation, cells were resuspended in buffer containing 50 mM Tris-HCl, pH 

8.0, 250 mM NaCl, 5 mM -mercaptoethanol, lysed by passage through a French pressure cell, 

and the suspension was clarified by centrifugation for 10 min at 5,000 x g. Soluble and insoluble 

protein fractions were separated by a high-spin centrifugation step (100,000 x g, 1 h). The 

supernatant was loaded onto Ni-NTA affinity resin (Qiagen), washed with buffer, and eluted with 

an imidazol-gradient as recommended by the manufacturer. Protein preparations were examined 

for purity by SDS-PAGE and fractions containing pure protein were pooled and dialyzed for 12 h 

at 4°C. 

Molecular modeling of PleD  

All-atom simulations were carried out using the CHARMM (25) program and the 

CHARMM22/27 force field (26). The A chain of the X-ray dimer structure (PDB entry: 1W25 

(17)) was used. All titratable side chains were generated in their standard protonation state at pH 

7. Parameters and partial charges for the non-standard residue c-di-GMP were adopted from the 

extended CHARMM parameter sets for nucleic acids. The structure of the ligated (intercalated c-

di-GMP bound to the I-site) and the unligated protein, to which hydrogen atoms were added, 

were minimized using a distance-dependent dielectric with =4 and a cutoff of 12 Å for non-

bonded interactions. 5000 steps of steepest descent minimization were followed by adopted 

Newton Raphson minimization until a RMS gradient of 10-7 kcal/mol·Å was reached. Such a 

threshold is found to be sufficient for normal mode calculations (49). Normal modes were 

calculated with the diagonalization in a mixed basis (DIMB) method, as implemented in 

CHARMM. The DIMB method is an approximate scheme retaining the full atomistic description 

of the protein, where the Hessian is approximated iteratively. The total number of basis functions 

was 153 and cumulated displacements were calculated for T = 300 K.  

For ligated PleD motion is suppressed at L( 1, 1) (res.10-12), L( 3, 3) domain REC1, the C-

terminal end of 3 (res. 220-224) of domain REC2, the unstructured linker between REC2 and 

GGDEF domain (res. 282-284), the residues forming the A-site (res. 352), L( 2, 2) (res. 357-
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360, I-site), L( 2, 3) (res. 367-373, A-site) and at the C-terminal end of 3 (res. 396-398) of  the 

GGDEF domain. By contrast upon ligand binding mobility increases for 1 (res. 24), 4 (res. 96-

99) of domain REC1, residues (res. 149, 175), L( 2, 2) (res. 205-207), L( 5, 5) (res. 254-257) 

of domain REC2 and residues L( 3', 3'') (res. 404-407) and L( 4, 4) (res. 422-424) of the 

GGDEF domain. 

Primer list 

The following primers were used: #1006, ACA CGC TAC ATA TGA AAA TCT CAG GCG 

CCC GGA C; #1007, ACT CTC GAG AGC GCT CCT GCG CTT; #1129, CAA GCG GCT 

GCA GGC CAA TGT GAT CGT CGG CCG CAT GGG TGG TGA; #670, TGC TAG TTA TTG 

CTC AGC GG; #1006 ACA CGC TAC ATA TGA AAA TCT CAG GCG CCC GGA C; #1130, 

CAA GCG GCT GCA GGC CAA TGT GCG CGA AAG CGA CAT CGT CGG CCG CAT 

GGG TGG TGA; #1132, CAC ATT GGC CTG CAG CCG CTT GGC GAC; #1131, CAA GCG 

GCT GCA GGC CAA TGT GNN NNN NNN NNN NAT CGT CGG CCG CAT GGG TGG 

TGA. 
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FIGURE LEGENDS: 

Figure S1: Separation of peptides yielded from tryptic digest of PleD in the presence (red 

chromatogram) or absence of c-di-GMP (black chromatogram) on a C18 column. Peaks 

identified by ESI-MS: c-di-GMP m/z 691, tR 7.70 min, T47 (amino acids 354-359) m/z 659.3 tR

25.64 min. T49 (amino acids 367-386) m/z 2167.7 tR 47.73 min.

Figure S2: Normal modes of PleD I-site and A-site residues. The displacements for each mode 

of the ligated and unligated structures are shown in Å for the residues of the REC2 domain 

(green) and the GGDEF domain (red). Insertion of intercalated c-di-GMP in the I-site quenches 

motion in both the I-site (R359-D362, R390) and the A-site (G368-E371), suggesting that the two 

sites are dynamically coupled. 

Figure S3: Representation of the PleD protein (blue: REC1, green: REC2, red: DGC) with c-

di-GMP bound to the I-site. C -atoms at positions of considerable changes in flexibility upon 

ligand binding are shown as spheres; reduced flexibility (yellow) and enhanced flexibility (black). 

Note that binding of c-di-GMP at the I-site (I) affects mobility not only in the I-site, but also in 

other regions of the protein, e.g. A-site (A), phosphorylation site (P) and dimer interface. 

Figure S4: Alignment of I- and A-site sequence of biochemically characterized diguanylate 

cyclases.  I-site residues (RXXD) are underlined in green and A-site residues (GGDEF) are 

underlined in yellow. 
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Summary

This paper adds a striking new twist to the story of the signaling molecule cyclic-di-GMP (c-di-

GMP), which controls motility and biofilm formation in bacteria and is produced by GGDEF domain

proteins. We report the finding that the c-di-GMP specific phosphodiesterase activity resides in the

widespread EAL domain. By analyzing the enzymatic reaction products and investigating the

substrate specificity of wild type and various mutant enzymes, we demonstrate that a single EAL

domain itself catalyzes in Mg2+ dependent manner the cleavage of the second messenger c-di-

GMP into the linear dinucleotide pGpG. Furthermore we report the discovery that in a GGDEF-EAL

protein a catalytic inactive GGDEF domain can bind GTP and in response allosterically activates

the EAL domain. Thus we conclude that the GGDEF domain can have either catalytic or regulatory

function and suggest, that the cellular GTP pool may serve as an input signal into c-di-GMP-

mediated signal transduction.

Statement of my work

Beside my substantial contribution to the biochemical analysis of the c-di-GMP specific

phosphodiesterase CC3396, I constructed a multitude of constructs, analysed deletion and over

expression phenotypes and performed as well site directed mutagenesis to define crucial residues

for in vitro PDE function.
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Cyclic diguanylic acid (c-di-GMP) is a global second
messenger controlling motility and adhesion in bacte-
rial cells. Synthesis and degradation of c-di-GMP is cat-
alyzed by diguanylate cyclases (DGC) and c-di-GMP-spe-
cific phosphodiesterases (PDE), respectively. Whereas
the DGC activity has recently been assigned to the wide-
spread GGDEF domain, the enzymatic activity respon-
sible for c-di-GMP cleavage has been associated with
proteins containing an EAL domain. Here we show bio-
chemically that CC3396, a GGDEF-EAL composite pro-
tein from Caulobacter crescentus is a soluble PDE. The
PDE activity, which rapidly converts c-di-GMP into the
linear dinucleotide pGpG, is confined to the C-terminal
EAL domain of CC3396, depends on the presence of Mg2�

ions, and is strongly inhibited by Ca2� ions. Remark-
ably, the associated GGDEF domain, which contains an
altered active site motif (GEDEF), lacks detectable DGC
activity. Instead, this domain is able to bind GTP and in
response activates the PDE activity in the neighboring
EAL domain. PDE activation is specific for GTP (KD
4 �M) and operates by lowering the Km for c-di-GMP of
the EAL domain to a physiologically significant level
(420 nM). Mutational analysis suggested that the sub-
strate-binding site (A-site) of the GGDEF domain is in-
volved in the GTP-dependent regulatory function, argu-
ing that a catalytically inactive GGDEF domain has
retained the ability to bind GTP and in response can
activate the neighboring EAL domain. Based on this we
propose that the c-di-GMP-specific PDE activity is con-
fined to the EAL domain, that GGDEF domains can ei-
ther catalyze the formation of c-di-GMP or can serve as
regulatory domains, and that c-di-GMP-specific phos-
phodiesterase activity is coupled to the cellular GTP
level in bacteria.

The cyclic nucleotides cAMP and cGMP are universally used
as second messengers in intracellular signal transduction path-
ways. They mediate cellular processes such as vision, electro-
lyte homeostasis, or smooth muscle relaxation by modulating
the activity of protein kinases, GTPases, or ion channels (1, 2).
The intracellular levels of cAMP and cGMP are tightly con-
trolled by their rate of synthesis (catalyzed by adenylyl or
guanylyl cyclases) and hydrolysis (catalyzed by phosphodies-

terases). Phosphodiesterases (PDE)1 play a mayor role in the
cellular response mediated by cyclic nucleotides and are used
as primary therapeutic targets for several diseases (3). They
act as effectors of signal transduction, function as homeostatic
regulators of cyclic nucleotide levels, have been implicated in
desensitization and termination of stimulation, and may also
play an important role in controlling the diffusion of cyclic
nucleotides and in channeling cyclic nucleotide signals (4, 5)
(e.g. photoreception in human rod cells is mediated by rhodop-
sin and light signal transduction results from a dramatic re-
duction in cGMP concentrations, catalyzed by cGMP-specific
PDE (1)).

Whereas cAMP signaling is common to both prokaryotes and
eukaryotes, cGMP does not seem to be used by bacterial cells.
However, there is accumulating evidence that the cyclic dimer
of GMP, c-di-GMP, plays a critical role in bacterial signaling (6,
7). c-di-GMP is synthesized from two GTP molecules by digua-
nylate cyclases (DGCs), and hydrolyzed by PDEs via the linear
intermediate pGpG to GMP (Fig. 1A). Even though c-di-GMP
was discovered almost two decades ago (8), its global role in
bacterial signaling has become apparent only recently in the
view of the growing bacterial genome sequence information
available. In recent years, a rapidly increasing number of ge-
netic studies has linked proteins involved in c-di-GMP synthe-
sis or turnover to the ability of different bacteria to switch
between a motile, single-cell state and a multicellular behavior
associated with the production of extracellular matrix compo-
nents and surface adhesion (9–21). Biochemical studies have
associated the DGC activity with the readout domain of the
Caulobacter crescentus PleD response regulator protein (22).
This domain, termed GGDEF (after its signature amino acid
motif Gly-Gly-Asp-Glu-Phe), is widespread in bacteria but is
not found outside the bacterial kingdom (23). The observation
that GGDEF domains are often associated with domains in-
volved in signal perception or signal transduction, argued for
the existence of a dedicated regulatory network that converts a
variety of different signals into the production of the second
messenger c-di-GMP (6, 23). The resolution of the three-dimen-
sional structure of the PleD response regulator in complex with
c-di-GMP has not only revealed that the overall fold of the
GGDEF domain is virtually identical to the adenylate cyclase,
but has also proposed a catalytic mechanism for the condensa-
tion of two GTP molecules into c-di-GMP (24). In contrast to the
molecular nature of the DGC, the c-di-GMP-specific PDE ac-
tivity has remained somewhat of a mystery. Initial genetic and
biochemical studies have linked PDE activity to proteins that
contain both GGDEF and EAL domains (18, 19, 25, 26). Like
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Fellowships 31–59050.99 and 3100A0–108186/1 (to U. J.). The costs of
publication of this article were defrayed in part by the payment of page
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GGDEF, the EAL (after its signature amino acid motif Glu-
Ala-Leu) domain is found only in bacteria and its distribution
more or less mirrors that of the GGDEF domains (23, 27).
Together, this has led to the proposal that the c-di-GMP-spe-
cific PDE activity might reside in the EAL domain (23).

The PleD response regulator is required for pole develop-
ment during the C. crescentus cell cycle (11). During Cau-
lobacter cell differentiation PleD specifically sequesters to one
pole of the cell, where the morphological changes take place
(22). Polar sequestration of PleD is coupled to the activation of
the C-terminal GGDEF output domain via phosphorylation of
the N-terminal receiver domain (22). This observation was
lending support for the idea that synthesis of c-di-GMP by PleD
might be limited to one cell pole may be to locally activate
downstream targets or to restrict c-di-GMP production to one
compartment during Caulobacter asymmetric cell division (22).
One would imagine that in both cases, a potent cellular PDE
activity is required to rapidly counteract the DGC activity over
time and to maintain spatial gradients established by PleD. To
monitor and characterize the c-di-GMP-specific PDE activity in
C. crescentus, we first developed an assay based on the hydrol-
ysis of 33P-radiolabeled c-di-GMP. We then showed that the
soluble fraction of C. crescentus cell extracts indeed contains a
strong PDE activity. To characterize this activity more closely,
we concentrated on EAL proteins encoded in the C. crescentus
chromosome. A mutant lacking gene CC3396, which codes for a
GGDEF-EAL composite protein, showed a more than 80% re-
duction of the soluble PDE activity (Table I). Enzymatic assays
and UV cross-link experiments with purified full-length pro-
tein and single domain fragments confirmed that the PDE
activity is contained within the EAL domain of CC3396. Re-
markably, EAL-based PDE activity of CC3396 is allosterically
controlled by GTP. Consistent with this, the GGDEF domain of
CC3396, which contains an unorthodox active site motif (GE-
DEF), lacks DGC activity, but has retained the ability to bind
GTP at the active site. Based on this and on the finding that the
GGDEF domain is strictly required for the GTP-specific acti-
vation of the EAL phosphodiesterase, we postulate that in
CC3396 and possibly in other GGDEF-EAL protein homo-
logues, the GGDEF domain acts as an allosteric regulatory
domain for the EAL-borne PDE activity (Fig. 1B).

MATERIALS AND METHODS

Strains, Plasmids, and Media—C. crescentus strains were grown in
complex peptone yeast extract or in minimal glucose media (28). Es-
cherichia coli strains were grown in Luria broth (LB) supplemented
with antibiotics for selection, where necessary. The exact procedure of
strain and plasmid construction is available on request.

Purification of CC3396 and Preparation of C. crescentus Cell Ex-
tracts—E. coli BL21 cells carrying the respective expression plasmid
were grown in LB medium with ampicillin (100 �g/ml), and expression
was induced by adding isopropyl 1-thio-�-D-galactopyranoside at A600

0.4 to a final concentration of 0.4 mM. After harvesting by centrifuga-
tion, cells were resuspended in buffer containing 50 mM Tris-HCl, pH
8.0, 250 mM NaCl, 5 mM �-mercaptoethanol, lysed by passage through
a French pressure cell, and the suspension was clarified by centrifuga-
tion for 10 min at 5,000 � g. Soluble and insoluble protein fractions
were separated by a high-spin centrifugation step (100,000 � g, 1 h).
The supernatant was loaded onto nickel-nitrilotriacetic acid affinity
resin (Qiagen), washed with buffer, and eluted with an imidazol gradi-
ent. Protein preparations were examined for purity by SDS-PAGE, and
fractions containing pure protein were pooled and dialyzed for 12 h at
4 °C.

C. crescentus CB15 cells were grown in peptone yeast extract and
harvested by centrifugation at an A660 of 0.4. Cells were resuspended in
buffer containing 50 mM Tris-HCl, pH 8.0, 250 mM NaCl, 5 mM mer-
captoethanol, and 5 mM EDTA. Soluble and insoluble protein fractions
were separated by a high-spin centrifugation step (100,000 � g, 1 h).
The supernatant was dialyzed for 4 h in buffer containing EDTA and
then for 8 h in the same buffer without EDTA. Protein concentrations
were measured by UV absorption.

Synthesis and Purification of [33P]c-di-GMP—33P-Labeled c-di-GMP
was produced enzymatically using �-labeled [33P]GTP (3000 Ci/mmol,
Amersham Bioscience) and purified hexahistidine-tagged PleD*, a
phosphorylation independent constitutive active form of the PleD
diguanylate cyclase (22). To a mixture of 87.5 �l of reaction buffer (250
mM NaCl, 25 mM Tris-HCl, pH 8.0, 10 mM MgCl2, 5 mM �-mercaptoeth-
anol, and 10.5 �M PleD*-H6), 12.5 �l of �-labeled [33P]GTP (125 �Ci,
41.66 pmol, 3000 Ci/mmol) was added. After 5 min at 25 °C, the reaction
was stopped by adding an equal volume of 0.5 M EDTA, pH 8.0. The
protein was precipitated by heating for 5 min at 95 °C followed by
centrifugation for 2 min at 10,000 � g. The supernatant was loaded on
a batch RP-18 column, salt was removed by washing 5 times with 200
�l of 25 mM triethylenammonium carbonate buffer, pH 7.0, containing
1% (v/v) MeOH. c-di-GMP was eluted with 2 � 200 �l of triethylenam-
monium carbonate containing 5% (v/v) MeOH. The buffer was subse-
quently removed in the SpeedVac and the purity of the compound was
tested by separation on polyethyleneimine-cellulose plates (1:1.5 (v/v)
saturated NH4SO4 and 1.5 M KH2PO4, pH 3.6).

Phosphodiesterase Assay—c-di-GMP-specific phosphodiesterase
activity was measured by monitoring the decrease of [33P]c-di-GMP
and the increase of [33P]pGpG by thin-layer chromatography. The
PDE reaction buffer for the 100,000 � g supernatant of C. crescentus
cell extracts or purified preparations of hexahistidine-tagged protein
contained 250 mM NaCl, 25 mM Tris, pH 8.0, 10 mM MgCl2, and 5 mM

�-mercaptoethanol. The GTP/protein mixtures were preincubated for
2 min prior to the addition of c-di-GMP. The reactions were carried out at
30 °C, aliquots were removed at different time points, and the reaction
was stopped by adding an equal volume of 0.5 M EDTA, pH 8.0.

Diguanylate Cyclase Assay—The reaction mixtures with purified
hexahistidine-tagged protein contained 25 mM Tris-HCl, pH 8.0, 250
mM NaCl, 10 mM MgCl2 and were started by the addition of 100 �M

[33P]GTP (Amersham Biosciences; 3000 Ci/mmol). At regular time in-
tervals the reaction was stopped with an equal volume of 0.5 M EDTA,
pH 8.0.

Polyethyleneimine-cellulose Chromatography—Samples were dissolved
in 5 �l of running buffer containing 1:1.5 (v/v) saturated NH4SO4 and 1.5
M KH2PO4, pH 3.60, and blotted on Polygram® CEL 300 polyethylenei-
mine-cellulose thin-layer chromatography plates (Macherey-Nagel).
Plates were developed in 1:1.5 (v/v) saturated NH4SO4 and 1.5 M KH2PO4,
pH 3.60 (Rf(c-di-GMP) 0.2, Rf(pGpG) 0.4), dried, and exposed on a Storage
PhosphorScreen (Amersham Biosciences). The intensity of the various
radioactive species was calculated by quantifying the intensities of the
relevant spots using ImageJ software, version 1.33.

Limited Tryptic Proteolysis—To 90 �l of purified hexahistidine-
tagged protein samples (0.5–11 mg/ml) dissolved in PDE Reaction
Buffer (see above), 10 �l of trypsin solution (2 �g/ml trypsin in 1 mM

HCl and 250 mM NaCl) was added. After incubation for 5 min at 37 °C,
2 �l of freshly prepared phenylmethylsulfonyl fluoride (AppliChem)
solution (0.1% in ethanol) was added, and the reaction was filtered
though a 0.45-�m syringe filter (Whatman) before the digest products
were separated by gel filtration. Gel filtration experiments were per-
formed on a SMART System using a Superdex 75 column (Amersham
Biosciences) at a flow rate of 80 �l/min. The buffer contained 250 mM

NaCl, 25 mM Tris, pH 8.0, 10 mM MgCl2, and 5 mM �-mercaptoethanol.
Fractions of 80 �l were collected for the phosphodiesterase activity
assay and for UV cross-linking experiments.

UV Cross-linking with [33P]GTP and [33P]c-di-GMP—Protein sam-
ples were incubated for 10 min on ice in PDE reaction buffer containing
10 �M c-di-GMP, 100 �M GTP, and [33P]c-di-GMP (0.75 �Ci, 6000
Ci/mmol) or [33P]GTP (0.75 �Ci, 3000 Ci/mmol). Samples were irradi-
ated at 254 nm for 20 min on an ice-cooled, parafilm-wrapped 96-well
aluminum block in an RPR-100 photochemical reactor with a RPR-3500
UV lamp (The Southern New England Ultraviolet Co.). After irradia-
tion, samples were mixed with 2� SDS-PAGE sample buffer (250 mM

Tris-HCl, pH 6.8, 40% glycerol, 8% SDS, 2.4 M �-mercaptoethanol,
0.06% bromphenol blue, 40 mM EDTA) and heated for 5 min at 95 °C.
Labeled proteins were separated by SDS-PAGE and quantified by
autoradiography.

HPLC Analysis and ESI-MS Mass Spectrometry—Reaction products
were analyzed on an Agilent 1100 analytical reverse phase high per-
formance liquid chromatography system with a diode array detector at
254 nm. Macherey-Nagel CC125/3 LiChrospher 100 RP-18, 5-�m par-
ticle size, was used at 30 °C with 25 mM triethylammonium carbonate
buffer, pH 7.0, containing 5% (v/v) methanol as mobile phase and a flow
rate of 0.3 ml/min. ESI-MS mass spectra were measured on an Esquire
3000plus (Bruker Daltonics) and on a TSQ7000 (Finnigan) mass spec-
trometer. Matrix-assisted laser desorption ionization spectra were
measured on a Reflex III spectrometer (Bruker Daltonics).
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RESULTS

PDE Activity in the Soluble Fraction of C. crescentus Cell
Extracts—To analyze the C. crescentus protein fractions for
c-di-GMP-specific PDE activity, we developed an enzymatic
assay, which is based on the hydrolysis of radiolabeled c-di-
GMP and separation of the products on thin layer chromatog-
raphy plates (see “Materials and Methods”). The constitutive
active PleD mutant form, PleD*-H6 (22), was purified to homo-
geneity and used to enzymatically convert [33P]GTP to [33P]-
c-di-GMP. When purified [33P]c-di-GMP was added to aliquots
of the dialyzed 100,000 � g supernatant of cell extracts of
C. crescentus wild-type strain CB15, the dicyclic nucleotide was
rapidly hydrolyzed (Table I), arguing for the presence of a
potent PDE activity in the soluble fraction of these cells.

A total of five genes encoding soluble EAL proteins were
found on the C. crescentus chromosome. To identify a candidate
PDE protein and to verify that it contributes to the enzymatic
activity found in cell extracts, we selected CC3396 for further
analysis. This decision was mainly based on the relatively
small size and simple domain architecture of CC3396 (Fig. 1B).
An in-frame deletion mutation of gene CC3396 was generated,
and extracts of the resulting mutant strain UJ2812 were as-
sayed for PDE activity in vitro. As shown in Table I, PDE
activity of strain UJ2812 was reduced by about 80% as com-
pared with wild-type, arguing that under the conditions tested,
CC3396 is responsible for a major fraction of the PDE activity
of the cell.

Purified CC3396 Is a c-di-GMP-specific PDE, Which Con-
verts c-di-GMP into the Linear Form pGpG—The above exper-
iments suggested that CC3396 is a prime candidate for a sol-
uble PDE in C. crescentus. A hexahistidine-tagged version of
the CC3396 protein was expressed in E. coli and purified to
homogeneity on a nickel affinity column. When used in the
PDE assay described above, purified fractions of the CC3396
protein could readily hydrolyze radiolabeled c-di-GMP (Table
I). Separation of the reaction mixture on TLC plates revealed
that the labeled c-di-GMP was rapidly converted into a new
nucleotide species (Fig. 2B). HPLC analysis (Fig. 2A) and mass
spectrometry identified this compound as the linearized digua-
nylate derivative pGpG (Fig. 2C, m/z� 689.0, for c-di-GMP and
m/z� 707.0 for pGpG). Although the conversion of c-di-GMP
into pGpG was relatively rapid (turnover rate: 2.42 
 0.28
min�1), GMP appeared as a secondary product of the reaction
at an about 10-fold slower rate (Table I). Thus, CC3396 specif-
ically and rapidly cleaves c-di-GMP into its linear form,
whereas the formation of GMP might be a nonspecific byprod-
uct of the enzymatic reaction. The PDE activity of CC3396 is
highly specific for the cyclic dimer of GMP and showed no
significant affinity for monocyclic nucleotides cGMP and
cAMP (data not shown). Also, whereas Mg2� ions were crit-
ical for PDE activity, Ca2� showed a strong inhibitory effect
on the hydrolysis of c-di-GMP (Table II). Under no conditions
were we able to detect DGC activity of the purified protein,
arguing that the GGDEF domain of CC3396 is not a DGC
(Table I).

Stimulation of the c-di-GMP-specific PDE Activity of CC3396
by GTP—The activity of monocyclic PDEs is controlled by bind-
ing small effector molecules (including cAMP or cGMP) to
N-terminal regulatory domains (5). To test the possibility that
CC3396 could also be allosterically regulated, we measured the
c-di-GMP-specific PDE activity of CC3396 in the presence or
absence of different nucleotides (Table II). cAMP, cGMP, and
dibuturyl-cGMP did not affect PDE activity of CC3396. Simi-
larly, AMP, ATP, GMP, and GDP showed no effect. However,
when the reaction mixture was supplemented with GTP (100
�M) the initial rate of the reaction increased by about 40-fold to
106.8 
 1.5 �mol of c-di-GMP formed per �mol of protein and
minute (Table II, Fig. 2B). The same positive effect was ob-
served for an equimolar mixture of either GTP and GDP or
GTP and GMP, arguing that both GDP and GMP do not coun-
teract the positive effect of GTP. Interestingly, the GTP-acti-
vated form of CC3396 quantitatively converted c-di-GMP into
the linear form pGpG, but failed to produce substantial
amounts of GMP (Fig. 2, A and B, Table I). Together this
suggested that the enzymatic activity of CC3396 responsible
for the cleavage of c-di-GMP into pGpG is positively controlled

FIG. 1. Schematic of c-di-GMP synthesis and degradation (A)
and model for GTP controlled PDE activity of CC3396 (B). A, the
conversion of GTP into c-di-GMP is catalyzed by diguanylate cyclases
that reside in the GGDEF domain (22, 41). Synthesis of c-di-GMP can
be subject to negative allosteric feedback regulation (24) (indicated by
the dashed line). Degradation of c-di-GMP into the linear form 5	-pGpG
is catalyzed by the EAL domain and positively regulated by GTP
(dashed line). The protein(s) responsible for the hydrolysis of pGpG into
GMP have not been identified so far. B, the PDE activity of CC3396 is
fully comprised within the EAL domain. The associated GGDEF do-
main with its altered active site motif (GEDEF) mediates activation of
the C-terminal PDE by GTP. This domain lacks DGC activity but
presumably binds GTP in a similar way, like the catalytic active GG-
DEF domains (22). We postulate that this novel role for GGDEF is
either caused by the selective loss of DGC catalytic activity because of
a slightly altered active site pocket formed by the GDEEF motif or is the
result of an altered interaction surface of the DGC that prevents
dimerization.

TABLE I
Comparison of specific PDE activities in C. crescentus crude extracts and purified CC3396

PDE activity

Strain/protein c-di-GMP-specific pGpG-specific DGC activitya

C. crescentus CB15b 0.12 
 0.02 �mol/(mg min) 0.054 
 0.004 �mol/(mg min) NDc

UJ2812 (�CC3396)b 0.02 
 0.01 �mol/(mg min) ND ND
CC3396-His6

d 2.42 
 0.28 �mol/(�mol min) 0.12 
 0.06 �mol/(�mol min) 10 
 5pmol/(�mol min)
a Diguanylate cyclase activity of purified CC3396-His6 was determined as indicated in Ref. 22.
b c-di-GMP and pGpG-specific activity of 100,000 � g supernatant as measured by TLC.
c ND, not determined.
d c-di-GMP and pGpG-specific activity of purified CC3396-His6 as measured by thin layer chromatography.
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FIG. 2. C. crescentus protein CC3396 is a phosphodiesterase. A, HPLC analysis of the PDE reaction products. Purified CC3396 protein (5
�M) was incubated for 1 min with 100 �M c-di-GMP, and 4 �M GTP. Nucleotides were separated on a RP-18 column before (top panel) and after
the enzymatic reaction (bottom panel), and fractions were analyzed by ESI-MS. GTP, which was added to activate the reaction, was not hydrolyzed.
B, PDE activity of CC3396 in the absence (open symbols) or presence of GTP (4 �M GTP, closed symbols). The c-di-GMP hydrolysis activity of
purified CC3396 is indicated as a function of the absolute concentrations of c-di-GMP (circles) and pGpG (squares) as determined by thin layer
chromatography. Reactions included 150 nM purified CC3396 protein and 20 �M c-di-GMP and were incubated at 30 °C in buffer as described under
“Materials and Methods.” The polyethyleneimine-cellulose thin layer chromatogram with the raw data is shown below the graph with each time
point spotted in triplicate (upper panel, with GTP; lower panel without GTP). C, mass spectrometry analysis of the reaction products of the CC3396
PDE. Mass spectrometry analysis of the reaction product of the PDE (top panel) and c-di-GMP (bottom panel) as shown in A and B. Top panel,
ESI-MS of pGpG (m/z�) 352.9 (pGpG)2�, and 707.0 (pGpG)�. Bottom panel, ESI-MS of c-di-GMP m/z� 689.0 [c-di-GMP*H]�, m/z� 699.9
[(c-di-GMP)2*H*Na]2�, m/z� 710.9 [c-di-GMP*Na]�. D, determination of the equilibrium constant for GTP. Initial velocities of the PDE reaction
were measured at increasing concentrations of GTP and Vmax/2 was determined to be 4 �M.
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by GTP, whereas the consecutive hydrolysis step, which gen-
erates GMP is probably a nonspecific side reaction and not
subject to allosteric control by GTP. It is important to note that
we found no indication for GTP hydrolysis during the enzy-
matic reaction in the presence of the inducer (Fig. 2A).

When logarithmically growing cells were analyzed by nucle-
otide extraction and HPLC, the internal concentration of c-di-
GMP was determined to be 1.1 �M (
 0.11 �M) (data not
shown). This is well below the Km for c-di-GMP, which was
determined for the basal level PDE activity of CC3396 (�100
�M). To test if GTP activation substantially lowers the Km for
c-di-GMP to a physiologically relevant level, PDE activity was
determined at different substrate concentrations. The Km for
c-di-GMP in the presence of 4 �M GTP (at half-maximal PDE
activity, see below) was determined to be 420 nM, close to the
cellular concentration of c-di-GMP measured in growing cells.

The intracellular concentration of GTP in bacterial cells
growing exponentially in rich medium is in the submillimolar
range (29, 30) but can drop by 70–80% upon entry into station-
ary phase (29). To find out if the concentration of GTP required
for activation of CC3396 is physiologically relevant, the KD for
GTP was determined at saturating substrate concentrations.
Half-maximal induction of CC3396 was found to occur at a GTP
concentration of 4 �M, well below the GTP concentrations nor-
mally found in bacterial cells (Fig. 2D). The Vmax of the GTP-
activated protein was 115 
 4 �mol/(�mol min) (Fig. 2D). This
argues that under physiological conditions promoting cell
growth and division, the PDE activity of CC3396 is likely to be
fully induced.

The PDE Activity of CC3396 Resides in the C-terminal EAL
Domain—The observation that CC3396 harbors PDE but lacks
DGC activity raised the question of whether the enzymatic
activity is entirely comprised within the GGDEF or the EAL
domain, or is maybe the result of a catalytic interaction be-
tween the two domains. To distinguish between these possibil-
ities, we attempted to separate the two domains by a limited
tryptic digest of the full-length CC3396 protein and to deter-
mine the enzymatic activities of the individual domains. Treat-
ment with trypsin resulted in the specific cleavage of CC3396
into two distinct peptide fragments of �30 and 27 kDa in size,
according to their migration behavior in polyacrylamide gels
(Fig. 3A). Separation of these two cleavage products by gel
filtration, followed by mass spectrometry analysis (Fig. 3,
C and D) revealed that the slightly larger peptide corresponds
to the N-terminal portion of CC3396, which includes the entire
GGDEF domain (amino acids 1–279; fractions 8 and 9 in Fig.

3C), whereas the smaller peptide corresponds exactly to the
C-terminal EAL domain (amino acids 280–554; fractions 10
and 11 in Fig. 3C). The cleavage site mapped to the Arg279

residue positioned in the center of the linker that connects the
GGDEF and the EAL domain (Fig. 3D). It is reasonable to
assume that the two domains can be separated by proteolysis
because this charged residue is easily accessible for the prote-
ase because of its position in the flexible inter-domain linker.

PDE activity was found exclusively in fractions 10 and 11 of
the gel filtration column used to separate the tryptic digest of
CC3396 (Fig. 3C). Because fractions 10 and 11 contain the
C-terminal EAL fragment, this strongly supported the view
that the c-di-GMP-specific PDE activity is fully contained
within the EAL domain. As shown in Table III, the specific
activity of the separated EAL domain is similar to the activity
found for the full-length CC3396 protein, arguing that the
overall PDE activity is not significantly reduced upon separa-
tion of the catalytically active EAL from the GGDEF domain.
Interestingly, when analyzing a CC3396 mutant with a muta-
tion in the highly conserved aspartic acid residue of the EAL
motive (E323Q), we found that both PDE activity and induction
by GTP was not affected by this change (Table III). In vivo
studies with the Vibrio cholerae EAL protein VieA had shown
that a glutamate to alanine exchange at this position resulted
in loss of activity (19). It is possible that the more conservative
mutation chosen for CC3396 might still support PDE activity.

Allosteric Activation of the PDE Activity in EAL Through
Binding of GTP to the GGDEF Domain—Whereas the EAL
signature sequence of the C-terminal EAL domain is conserved
in CC3396, the GGDEF domain has one of the highly conserved
Gly residues of the active site (A-site) motif (24) replaced by
Glu (GEDEF) (Fig. 3D). It is possible that this altered A-site in
GGDEF is still able to bind GTP but cannot catalyze the digua-
nylate cyclase reaction. Such an altered domain might have
been recruited as a regulatory module for the PDE activity
residing in the C-terminal EAL domain. This would be in
agreement with the observation that CC3396 has no apparent
DGC activity (Table I). Also, a regulatory role for the GGDEF
domain would be consistent with the finding that the isolated
EAL domain almost fully retained the specific PDE activity of
full-length CC3396, but in contrast to the intact protein could
not be activated by GTP (Table III).

To obtain evidence in support of this idea we performed UV
cross-link experiments with [33P]c-di-GMP and [33P]GTP using
purified full-length CC3396 and the two individual domains
separated by trypsin treatment (Fig. 3A). [33P]c-di-GMP spe-
cifically bound to full-length CC3396 and to the C-terminal
EAL domain, but not to the N-terminal GGDEF domain frag-
ment (Fig. 4A). In contrast, [33P]GTP, while also cross-linking
to the full-length protein, did not bind to the EAL domain
fragment but instead specifically reacted with the N-terminal
GGDEF domain fragment (Fig. 4B). This suggested that GTP
imposes allosteric control on the PDE enzyme activity of
CC3396 by binding to its regulatory GGDEF domain.

Catalytically active GGDEF domains bind GTP in their A-
site pocket, which in part is formed by a loop structure consist-
ing of the highly conserved GGDEF (often GGEEF) motif (24).
One possibility is that the slightly altered A-site motif (GE-
DEF) of the N-terminal domain of CC3396 has retained the
ability to bind GTP and in response activates the associated
EAL domain. To test this we generated a mutant CC3396
protein with the A-site motif changed to GQNEF. As shown in
Table III, the mutant fully retained its PDE activity. But in
contrast to the wild-type protein, the PDE activity was more or
less constitutive with a 10-fold higher basal level activity in the
absence of GTP as compared with wild-type (Table III). The

TABLE II
Activation of c-di-GMP-specific PDE by GTP

Specific activity (initial velocities) of purified CC3396 was deter-
mined in the presence of 10 �M c-di-GMP and one additional nucleotide
(100 �M). All reaction mixtures (except the no Mg2� control) contained
10 mM Mg2� and 10 mM Ca2� that were used to show PDE inhibition by
calcium ions.

Nucleotide PDE activity

�mol c-di-GMP/�mol min

AMP 1.93 
 0.08
ATP 2.09 
 0.22
cAMP 1.17 
 0.46
cGMP 2.13 
 0.32
dibu-cGMPa 1.79 
 0.18
GMP 1.87 
 0.20
GDP 1.92 
 0.40
GTP 106.8 
 1.5
GTP � GDP 113.2 
 1.9
GTP � GMP 97.2 
 1.5
GTP, no Mg 0.23 
 0.10
GTP � Ca 1.61 
 0.37

a 200 �M.
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FIG. 3. The PDE activity of CC3396 resides in the C-terminal EAL domain. A, SDS-polyacrylamide gel with purified full-length CC3396
(FL), CC3396 after trypsin treatment (see “Materials and Methods”) (TT), and elution fractions 8–11 of the gel filtration column used to separate
the tryptic fragments (see “Materials and Methods” and panel C). Note that lane TT was pasted from an independent gel. Samples of undigested
(B) and trypsin-digested CC3396 protein (C) were separated by gel filtration (see “Materials and Methods”), and the PDE activity of fractions 5–18
eluting from the column was determined as described under “Materials and Methods.” The TLC plates with the resolved reaction products
originating from each fraction are shown below the graphs. The bars in the graphs indicate the relative activity measured for each fraction, and
the curve shows the protein concentration as determined by UV spectrometry. The protein peak of fractions 8 and 9 in panel C corresponds to the
N-terminal GGDEF domain of CC3396, and the protein peak of fractions 10 and 11 (C) corresponds to the C-terminal EAL domain of CC3396. Note
that on the gel filtration column, the N-terminal GGDEF fragment runs at the position of a dimer, whereas the full-length CC3396 protein and
the N-terminal EAL fragment run at the equivalent position of monomers. Fraction 15 corresponds to the cleaved C-terminal His tag, as
determined by antibody staining with anti-His antibody. D, mass spectrometry analysis of the peptides originating from a tryptic digest of fractions
9 and 10 from panel C. A total of seven fragments of the GGDEF domain of CC3396 could be assigned to fraction 9, and a total of six fragments
of the EAL domain could be assigned to fraction 10 digest. The corresponding fragments are highlighted in capital letters. LC-MS analysis of the
undigested sample of fraction 10 revealed a mass of 29650.86 (�Da 4.16) (amino acids 280–554, theoretical mass: 29655.0). The proposed trypsin
cleavage site (Arg279) is highlighted.
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addition of GTP resulted in an only 3-fold activation of
the GQNEF mutant and resulted in similar activity as the
GTP-induced wild-type protein (Table III). This implied that
the amino acid changes in the A-site motif are able to switch
this domain into the regulatory ON state and is consistent with
the view that in CC3396 a catalytically inactive GGDEF do-
main imposes allosteric regulation by binding of GTP in its
substrate binding pocket (A-site).

DISCUSSION

The pioneering work of the late Moshe Benziman and collab-
orators has not only identified dicyclic guanosine monophos-
phate as a signaling molecule involved in bacterial metabolism,
but has also led to the recognition of proteins containing GG-
DEF and EAL domains as being involved in the synthesis and
breakdown of c-di-GMP (reviewed in Ref. 6). Building on this
foundation, an increasing number of genetic studies have in
recent years highlighted a global role for c-di-GMP as a signal-
ing molecule in bacteria. Most of these studies have reported
mutant and/or overexpression phenotypes of proteins contain-
ing GGDEF or EAL domains (9–21). The common pattern
appearing from these studies is that genetic changes associated
with an increase of the cellular concentration of c-di-GMP
negatively modulates cell motility and induce biofilm forma-
tion, whereas genetic modifications that led to a presumable
decrease of c-di-GMP in the cell had the opposite effect. How-
ever, limited information is available on the downstream ac-
tivities and possible targets of c-di-GMP and on the specific
biochemical properties of enzymes involved in synthesis and
hydrolysis of c-di-GMP. Genetic studies had predicted that
GGDEF domains are DGCs and that EAL domains should
harbor the c-di-GMP-specific PDE activity. But whereas many

of the several thousand bacterial GGDEF and EAL proteins
listed in the non-redundant data bases have either a GGDEF or
an EAL domain fused to other signaling domains, a large
fraction combines both domains in the same polypeptide (31). A
similar heterogeneity is found for cNMP (cAMP or cGMP)-
specific cyclases and PDEs in eukaryotic cells, where several
families of each enzyme class vary in ligand and co-factor
specificities, in regulatory properties, and in tissue distribution
(1, 4). This raised several important questions: Are the enzy-
matic activities responsible for the “make and break” of c-di-
GMP really confined to these highly modular single domains?
And if so, do all multidomain proteins that contain both a
GGDEF and an EAL domain harbor both activities or have
some of these proteins “specialized” in that they catalyze only
the synthesis or degradation of c-di-GMP, respectively? The
few examples studied so far have either been associated with
DGC or PDE activity (25). No bifunctional enzyme has been
described as yet. And finally, how would these activities be
controlled if no obvious regulatory domains are fused to GG-
DEF or EAL?

Recent biochemical and structural studies have proposed a
catalytic and regulatory mechanism for the synthesis of c-di-
GMP by the GGDEF protein PleD (22, 24). Here we show that
CC3396, a GGDEF-EAL protein of C. crescentus harbors c-di-
GMP-specific PDE activity but lacks DGC activity. Analysis of
the catalytic activities of the individual domains strongly sug-
gested that the PDE activity of CC3396 is confined to the
C-terminal EAL domain, and does not depend on the physical
presence of the N-terminal GGDEF domain. To our knowledge,
this is the first report that directly links an isolated EAL
domain with the ability to catalyze the hydrolysis of c-di-GMP
in vitro. Our data further propose a regulatory role for the
N-terminal GGDEF domain of CC3396. The in vitro PDE ac-
tivity of CC3396 is increased about 40-fold upon addition of
GTP. Activation of the PDE activity seems to occur via the
reduction of the Km for c-di-GMP from above 100 �M in the
absence of GTP to 420 nM when GTP was present. Several lines
of evidence suggest that GGDEF mediates this allosteric con-
trol through an interaction with the associated EAL domain. (i)
Whereas the basal level PDE activity of full-length CC3396 and
the isolated EAL domain are comparable, GTP activation could
only be detected if the GGDEF domain was present. (ii) Com-
pared with the bona fide DGC PleD (22), the GGDEF domain of
CC3396 has a slightly altered consensus sequence A-site motif
(GEDEF). Consistent with this, CC3396 does not seem to pos-
sess diguanylate cyclase activity in vitro. (iii) GTP specifically
binds to the GGDEF but not to the associated catalytic EAL
domain. (iv) A defined mutation in the A-site motif of the
GGDEF domain (GQNEF) abolished allosteric activation and
resulted in a constitutive activity of the associated EAL do-
main. This last observation implies that the GGDEF domain of
CC3396 is a GGDEF-like domain, which is still able to bind
GTP in the A-site cavity with a relatively high affinity (KD 4
�M) but does not catalyze the formation of c-di-GMP. If so, an
original GGDEF domain might have been recruited as sensory
domain for GTP through the loss of its catalytic function and
the evolution of a regulatory interaction with EAL. If such a
regulatory role of a GGDEF domain has indeed evolved from an
enzymatically active GGDEF domain, two scenarios are possi-
ble. Either the GGDEF domain has lost DGC activity because
key catalytic residues are missing, or because, in the context of
the GGDEF-EAL composite protein, it is no longer able to form
a dimeric structure required to condense two GTP molecules
into c-di-GMP (24).

Thus, we propose that GGDEF domains, depending on their
sequence conservation or on their oligomeric status, can have

TABLE III
Activation of CC3396 wild-type and mutant forms by GTP

Protein c-di-GMP-specific PDE activitya

10 �M c-di-GMP 4 �M GTP

CC3396 2.42 
 0.28 57.9 
 5.9
EAL domainb 1.32 
 0.33 2.54 
 1.10
E323Q 1.2 
 4.2 76.2 
 8.9
ED213QN 26.9 
 3.8 77.3 
 7.7

a PDE activity (initial velocities) was measured in the presence of 10
�M c-di-GMP and in the presence or absence of 4 �M GTP.

b The isolated EAL domain of CC3396 corresponds to fraction 10 of
Fig. 3C.

FIG. 4. GGDEF of CC3396 is a GTP binding regulatory domain.
Full-length CC3396 (FL) and protein from elution fractions 8–11 of the
gel filtration column used to separate the tryptic fragments were sep-
arated by SDS-PAGE (see Fig. 3A) and were used to UV cross-link with
[33P]c-di-GMP (A) or [33P]GTP (B) as outlined under “Materials and
Methods.” Samples were separated by SDS-PAGE, and the dried gels
were analyzed by autoradiography.
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two alternative biological activities and can play different roles
in the controlled formation and hydrolysis of c-di-GMP. It is
conceivable that at least a subgroup of the large family of
bacterial GGDEF-EAL composite proteins represents PDEs
with an associated regulatory GGDEF domain that can act as
GTP sensor. At the same time, GGDEF-EAL proteins may exist
that combine both a GGDEF-born DGC and an EAL-associated
PDE activity. And finally it is equally possible that the EAL
domain of GGDEF-EAL composite proteins also engages in a
regulatory function by controlling the N-terminal DGC activity
in response to the prevailing c-di-GMP concentration. Such a
regulatory mechanism has been proposed recently for the DCG
activity of the PleD response regulator, which is under tight
negative allosteric control by its own product, c-di-GMP (24). A
direct consequence of our findings is that each GGDEF or EAL
domain will first have to be carefully analyzed biochemically
before it can be assigned a catalytic or regulatory role.

The model that we propose for catalysis and regulation of the
CC3396 PDE is shown in Fig. 1B. The protein architecture with
an N-terminal regulatory and a C-terminal catalytic domain is
reminiscent of cNMP-specific PDEs found in eukaryotes (e.g.
PDE5, a phosphodiesterase highly specific for cGMP has two
non-catalytic cGMP binding sites located at the N terminus).
Binding of cGMP to these allosteric sites stimulates PDE ac-
tivity, increases cGMP hydrolysis, and thus forms a negative
feedback mechanism regulating the cellular cGMP concentra-
tion (32). Other N-terminal regulatory domains of cNMP-spe-
cific PDEs can serve as phosphorylation sites, can interact with
transducing proteins, or act as an allosteric binding site for
Ca2�/calmodulin effectors (5). It is reasonable to assume that
c-di-GMP-specific PDEs in bacteria are also tightly controlled
and that the allosteric control of CC3396 reported here repre-
sents a general phenomenon of this class of enzymes.

PDE activity is likely to be a critical component of c-di-GMP
signaling in bacterial cells. But why would phosphodiesterase
activity be coupled to the cellular concentration of GTP? Röm-
ling and colleagues (18) have reported that upon expression of
the DGC protein AdrA in Salmonella typhimurium, the cellular
GTP to c-di-GMP ratio reverses from about 100:1 to 1:10 (18).
Thus, it is possible that when c-di-GMP synthesis is fully
induced, uncontrolled hydrolysis of c-di-GMP to pGpG and
GMP would deplete the cellular GTP pool. A massive reduction
of the cellular GTP concentration has been reported as a con-
sequence of the increased production of the “alarmone” pppGpp
upon amino acid starvation in Bacillus subtilis (33). Similarly,
the GTP concentration decreases considerably upon nitrogen
starvation in C. crescentus (34). It is possible that to prevent
drainage of the cellular GTP pool, specific PDEs are quickly
turned off when the GTP concentration drops under a thresh-
old level. Considering that the KD for GTP of CC3396 is about
4 �M, one would expect such a threshold GTP concentration to
be in the low micromolar range. Together with the observation
that DGCs can be subject to tight allosteric feedback inhibition
by their own product (24), this could be interpreted as a simple
means for flux-controlled sensitivity, which would allow
breaching the threshold for signal transduction by either in-
creased production or decreased degradation of the second mes-
senger. Alternatively, the prevailing GTP level of the cell itself
could be used as a physiological signal to control the internal
concentration of c-di-GMP through the controlled activity of
PDEs. A drastic drop of the GTP concentration to the low
micromolar range could lead to a rapid and substantial in-
crease of the cellular c-di-GMP concentration through the in-
hibition of one or several key PDEs, which respond to GTP in a
similar manner as observed for CC3396. Whereas such a reg-
ulatory role for GTP remains speculative, cellular GTP pools

are known to affect developmental transitions in bacteria. A
decrease in the cellular GTP concentration, but not of other
purine or pyrimidine nucleotides, correlates with the initiation
of morphological differentiation during nutrient starvation of
B. subtilis and Streptomyces griseus (29, 35, 36). The signal
responsible for the induction of sporulation is the reduced GTP
pool, rather than pppGpp, which is formed under the same
starvation conditions (29). The cellular GTP concentration is
sensed by CodY, a transcriptional repressor of several sporu-
lation and motility genes, whose repression activity depends on
binding of GTP with a KD in the physiologically relevant mil-
limolar range (37, 38). It remains to be shown if the GTP
concentration plays a similar regulatory role in cellular c-di-
GMP signaling.

Finally, what is the physiological role of CC3396? CC3396
substantially contributes to the PDE activity in the soluble
fraction of actively growing C. crescentus cells. It is possible
that this protein adds to a more or less constant and rapid
degradation of the freely diffusible cytoplasmic pool of c-di-
GMP and would only be turned off under severe depletion of
GTP. The cellular concentration of c-di-GMP has been deter-
mined to be about 1 �M in growing C. crescentus cells (this
study) or 5–10 �M in cellulose producing Acetobacter xylinum
(39). This is in good agreement with a Km for c-di-GMP of 420
nM, which was determined for the PDE activity of CC3396 in
the presence of GTP. It has been argued that specifically local-
ized DGCs might act as “local pacemakers” of metabolic reac-
tions resulting in cellular gradients of c-di-GMP (6, 40). In such
a model, c-di-GMP synthesis and signaling would be locally
confined and one would imagine that a strong and constitutive
PDE activity is critical to spatially confine different c-di-GMP
signaling pathways. Further studies are needed to test this
idea more thoroughly.
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Summary

In this paper, we characterized the pathway for D-xylose metabolism in C. crescentus by genetic

and biochemical methods. We used a saturated transposon screen to define an operon consisting

of five genes, essential for xylose degradation. Further, bioinformatic and biochemical approaches

were applied to predict possible conversion pathways and to prove enzymatic functions. Taken

together we postulate that C. crescentus metabolize D- xylose over a similar pathway as recently

descibed for L-arabinose degradation of A. brasilense.

Statement of my work

I contributed to this work by performing a large scale transposon screen and identified mutants

defective in xylose uptake, metabolism and regulation.
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Genetic data suggest that the oligotrophic freshwater bacterium Caulobacter crescentus metabolizes D-xylose
through a pathway yielding �-ketoglutarate, comparable to the recently described L-arabinose degradation
pathway of Azospirillum brasilense. Enzymes of the C. crescentus pathway, including an NAD�-dependent xylose
dehydrogenase, are encoded in the xylose-inducible xylXABCD operon (CC0823-CC0819).

D-Xylose (“wood sugar”) is the primary constituent of xylans
that make up the bulk of hemicellulose in plant cell walls and
is one of the more abundant carbohydrates in the biosphere.
Two routes for D-xylose degradation in microorganisms have
been described. Numerous bacteria, including Escherichia coli
(15), Bacillus species (24, 25), and Lactobacillus species (16),
use xylose isomerase to convert D-xylose to xylulose, which is
then phosphorylated to enter the pentose phosphate pathway.
Although some fungi have recently been shown to use this
“bacterial” pathway (11), fungi more commonly transform D-
xylose into xylitol by using xylose reductase and xylitol dehy-
drogenase (13). The freshwater bacterium Caulobacter crescen-
tus, which readily uses D-xylose as a carbon and energy source,
expresses an NAD-dependent xylose dehydrogenase (XDH)
activity, suggesting that xylose metabolism occurs through a
distinct pathway (21).

Prior to this work, the only known mutation affecting D-
xylose utilization in C. crescentus was a Tn5-lacZ insertion that
eliminated growth on xylose and exhibited strong xylose-de-
pendent induction of �-galactosidase expression (18). The
gene in which this insertion is located, designated “xylX” by
Meisenzahl et al. (18) and later “CC0823” in the C. crescentus
genome annotation (19), does not closely resemble any gene of
known function. xylX is the first gene in a xylose-inducible
operon (CC0823-CC0819) (12), referred to here as the xyl
operon. We show that all of the genes in this operon are
involved in xylose metabolism and propose a metabolic path-
way employing these gene products.

Genetic analysis of D-xylose metabolism. To identify genes
required for D-xylose utilization, C. crescentus NA1000 was
mutagenized with a kanamycin-resistant mini-Tn5 transpo-
son (9). Insertion strains were selected on peptone-yeast
extract (PYE) medium containing kanamycin (20 �g ml�1).
Mutants in which xylose metabolism is defective were iden-
tified by patching Kanr colonies onto M2 minimal media

(10) with glucose (M2G) or xylose as a carbon source. We
also patched colonies on M2 medium containing both glu-
cose and xylose to identify strains for which xylose had
become toxic [xyl(Tox)]. Roughly 20,000 Kanr isolates were
screened. Using chromosomal DNA as the template and
primers derived from the Tn5 sequence, mutants with
growth defects were analyzed by cycle sequencing to deter-
mine the location of the transposon insertion in comparison
with that of the C. crescentus genome sequence (19). Strains
unable to use glucose but unaffected in xylose utilization had
mutations in genes previously implicated in glucose catabo-
lism (12), including components of the Entner-Doudoroff
(E-D) pathway (Fig. 1) (12, 22). The only gene identified
here that was not previously associated with C. crescentus
glucose catabolism is CC3065, which encodes a putative
LacI superfamily transcription factor of unknown function.

Twenty-two xyl mutants were isolated. Insertions were found
in 11 genes, including 4 of the 5 genes of the xyl operon
(CC0823-CC0819) (Table 1). No insertions were identified in
the CC0820 coding region, but one was found upstream, be-
tween CC0821 and CC0820. Six genes yielding the xyl mutant
phenotype were found in multiple independent isolates, sug-
gesting that the mutagenesis was approaching saturation and
that these represent most, if not all, of the genes required
specifically for xylose metabolism. None of the xyl mutant
strains had a mutation in a putative transcriptional activator,
consistent with previous suggestions (12, 18) that C. crescentus
xylose metabolism genes are controlled by an as-yet-unidenti-
fied repressor. In addition, no genes resembling transporters
were identified in this screen. Perhaps there are multiple trans-
port systems capable of importing xylose into C. crescentus, as
there are in E. coli (1, 8), so that a single mutation cannot
sufficiently impair xylose uptake to block growth.

The previously unnamed genes of the xyl operon are here-
after designated xylA (CC0822), xylB (CC0821), xylC (CC0820),
and xylD (CC0819). Because transposon insertions in upstream
genes of the operon (which is transcribed in the order xylX-
xylA-xylB-xylC-xylD) could have polar effects, the role of each
gene was assessed independently by constructing nonpolar in-
frame deletions, using a PCR-based strategy (29). Deletion of
any of the five genes rendered strains incapable of growth with
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D-xylose as the sole carbon source, confirming that all five
genes are necessary for xylose utilization.

All strains with an insertion in one of the genes of the xyl
operon exhibited a xyl(Tox) phenotype on M2G agar plates,
with colony formation blocked by inclusion of 10 mM D-xylose
in the medium. In logarithmically growing M2G broth cultures,
all the mutant strains exhibited reduced growth rates following
the addition of D-xylose (data not shown), but only the �xylD
and �xylX strains suffered a loss of viability. Xylose toxicity was
generally reduced on complex PYE medium, with the effects
on growth rate and colony appearance being less pronounced.
The exception was the �xylD strain, which generated no colo-
nies on PYE plus xylose agar medium and still lost viability
after the addition of xylose to PYE broth culture.

Analysis of D-xylose dehydrogenase activity. Poindexter (21)
observed D-xylose dehydrogenase activity in some C. crescentus
strains grown in the presence of xylose. To determine whether
any of the genes of the xyl operon encode this enzyme, XDH
activity was assayed in extracts from wild-type and mutant

strains. Cultures were grown in PYE broth at 30°C with con-
stant shaking to an optical density at 600 nm of approximately
0.5, at which time xylose was added to a final concentration of
1 mM. After 2 h, cells were harvested by centrifugation and
disrupted by sonication. XDH activity in cell extracts was mea-
sured by following the xylose-dependent reduction of NAD�,
as indicated by an increase in absorption at 340 nm (21).
Assays were carried out in a 1-ml quartz cuvette containing 50
mM phosphate buffer (pH 8), 5 mM D-xylose, and 4 mM
NAD�. If present, xylose-independent NADH production
(“background activity,” measured in control assays without
xylose) was subtracted out. XDH activity was easily detectable
in the wild-type strain induced with xylose (31.7 nmol NADH
generated min�1 mg protein�1) but was not observable above
background in cultures grown without xylose. The enzyme was
unable to use NADP� as the electron acceptor, as found by
Poindexter (21). XDH activity was observed in extracts from
the �xylX, �xylC, and �xylD mutant strains but was conspicu-
ously absent from the �xylA and �xylB strains.

FIG. 1. Proposed pathway for D-xylose metabolism in C. crescentus. The reactions shown are based on biochemically confirmed degradation
pathways for D-xylose metabolism in pseudomonads (7, 27). Both D-xylose and L-arabinose produce 2-keto-3-deoxy-pentonate. In the Dahms
pathway (7), this compound is converted by an aldolase to pyruvate and glycoaldehyde. In an alternative reaction first demonstrated by Weimberg
(27) and confirmed by Watanabe et al. (25, 26), for L-arabinose degradation in A. brasilense, a dehydratase produces 
-ketoglutarate semialdehyde,
which is then oxidized to 
-ketoglutarate. The genes identified (through mutation) in this work as necessary for growth on D-xylose (Table 1) and
the enzymes they encode are shown beside the appropriate reaction. The Entner-Doudoroff pathway and alternative reactions used in glucone-
ogenesis are shown at the upper right. TCA cycle reactions (in the box on the lower left, not shown in detail) are expected to be necessary for both
D-xylose and D-glucose metabolism; genes encoding these enzymes were probably not found in this screen because they are also necessary for
growth on PYE medium.

2182 NOTES J. BACTERIOL.



The xylA gene product was annotated by the C. crescentus
genome project as a “short-chain aldehyde dehydrogenase,”
while the xylB product was annotated as an “oxidoreductase”
(19). To determine whether XDH activity is attributable to one
of these gene products, the PCR-amplified coding regions were
cloned separately into the pCR-CT-T7-Topo expression vector
to allow production of C-terminal His-tagged proteins in E.
coli strain BL21(�DE3) pLysS (Invitrogen). Cloning was car-
ried out and protein expression was measured according to the
manufacturer’s protocols. Extracts from the E. coli strain ex-
pressing the cloned C. crescentus xylB gene displayed XDH
activity (48.1 nmol NADH min�1 mg protein�1), which was
absent from both the E. coli host strain and the strain express-
ing xylA. A 30-kDa polypeptide with XDH activity was purified
from the xylB-expressing strain by Ni-affinity chromatography
(Pharmacia nickel-nitrilotriacetic acid [nickel-NTA] column,
developed with a 0 to 300 mM imidazole gradient in 50 mM
sodium phosphate-50 mM NaCl-1 mM EDTA buffer on a
Pharmacia fast protein liquid chromatography system). This
polypeptide was confirmed as the XylB-His6 fusion protein by
liquid chromatography-mass spectrometry analysis (Midwest
Bio Services, Overland Park, KS). Affinity-purified XylB-His6

was at least 95% pure, based on sodium dodecyl sulfate-poly-
acrylamide gel electrophoresis analysis. XylB is thus responsi-
ble for XDH catalytic activity. It is not clear why the �xylA
strain lacked XDH activity; one possibility is that the xylA
deletion may have somehow affected xylB expression, even
though it was designed to be nonpolar.

Purified recombinant XDH has a strong preference for D-
xylose as a substrate. At sugar concentrations of up to 50 mM,
D-arabinose, L-xylose, D-ribose, D-galactose, D-glucose, or

D-glucose-6-phosphate produced little or no NADH. L-Arabi-
nose was active as a substrate, but analysis of XDH activity
over a range of substrate concentrations (0.1 to 500 mM D-
xylose or L-arabinose) showed that the enzyme strongly prefers
D-xylose as a substrate (for D-xylose, Km � 0.76 mM, Vmax �
27.5 �mol NADH min�1 mg�1; for L-arabinose, Km � 166
mM, Vmax � 20.5 �mol NADH min�1 mg�1). Preliminary
analysis of partially purified native C. crescentus XDH (to be
described elsewhere) showed an even lower Km for D-xylose of
70 �M, suggesting that the recombinant XylB-His6 is not com-
pletely native in structure when produced in E. coli, perhaps
due to additional amino acids at the N and C termini intro-
duced for expression and purification.

A few bacterial species have been shown to express XDH
activity (3, 6, 28, 30), but only one dehydrogenase with high
specificity for D-xylose has been identified genetically (14), in
the halophilic archeon Haloarcula marismortui. A pairwise
BLAST comparison identified no significant similarity between
the H. marismortui XDH and the C. crescentus XylB polypep-
tide sequences.

Pathway for D-xylose degradation. The two proposed path-
ways for xylose metabolism initiated by xylose dehydrogenase
are identical through the production of 2-keto-3-deoxyxylonate
(Fig. 1) (5, 7, 28). The initial series of reactions is analogous to
the Entner-Doudoroff pathway, particularly the archaeal ver-
sion of the E-D pathway in which glucose is not phosphory-
lated (23). One component of the Entner-Doudoroff and
xylose degradation pathways appears to be evolutionarily
related, since C. crescentus XylD (GenBank accession no.
AAK22804) is notably similar in sequence to bacterial 6-phos-
phogluconate dehydratases (e.g., E. coli Edd; GenBank acces-

TABLE 1. Results of Tn5 mutant screen for C. crescentus xyl and xyl(Tox) mutants

Phenotypea Interrupted gene No. of isolates Annotation Proposed function

Xyl� Gluc� xylX (CC0823) 2 Conserved hypothetical protein Unknown
[Xyl(Tox)] xylA (CC0822) 2 Aldehyde dehydrogenase 
-Ketoglutaric semialdehyde

dehydrogenase
xylB (CC0821) 1 Oxidoreductase, short-chain

dehydrogenase/reductase family
Xylose dehydrogenase

xylC (CC0820)
upstream regionb

1 CC0820: “SMP/Cgr family” Xylonolactonase

xylD (CC0819) 1 Dehydratase (IlvD/Edd family) Xylonate dehydratase
fbp (CC1385) 1 Fructose-1,6-bisphosphatase (EC 3.1.3.11) Gluconeogenesis

Xyl� Gluc� ppdK (CC1471) 4 Pyruvate phosphate dikinase (EC 2.7.9.1) Gluconeogenesis
maeB (CC2622) 1 NADP-dependent malic enzyme (EC 1.1.1.40) Gluconeogenesis
fbaA (CC3250) 2 Fructose-bisphosphate aldolase (EC 4.1.2.13) Gluconeogenesis
CC3364 1 Homoserine kinase (EC 2.1.7.13) Unknown

Xyl� Gluc� eno (CC1724) 2 Enolase (EC 4.2.1.11) Glycolysis and gluconeogenesis
pgk (CC3249) 4 Phosphoglycerate kinase (EC 2.7.2.3) Glycolysis and gluconeogenesis

Xyl� Gluc� zwf (CC2057) 1 Glucose-6-phosphate 1-dehydrogenase (EC 1.1.1.49) Entner-Doudoroff pathway
CC2056 1 6-Phospho-glucono-lactonase (EC 3.1.1.31) Entner-Doudoroff pathway
ppc (CC1493) 2 Phosphoenolpyruvate carboxylase (EC 4.1.1.31) Anaplerotic function
CC3065 1 Transcriptional regulator, LacI family Unknown

Xyl� Gluc�

�Gluc(Tox)�
eda (CC1495) 1 4-Hydroxy-2-oxoglutarate aldolase (EC 4.1.2.14) Entner-Doudoroff pathway

a The “Xyl�” phenotype refers to strains that were unable to grow on M2 medium containing 10 mM D-xylose as the sole carbon source. The “Gluc�” phenotype
refers to strains that were unable to grow on M2 medium containing 10 mM D-glucose as the sole carbon source. The “Xyl(Tox)” phenotype refers to strains that were
sensitive to the presence of D-xylose in the medium, i.e., strains that were able to grow on M2G but that did not form colonies when 10 mM D-xylose was added to M2G.

b Tn5 insertion was between the CC0821 and CC0820 coding regions.
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sion no. AAA23722; 31% identity over 446 amino acids with
XylD) (4). Based on this, we hypothesize that XylD catalyzes
the dehydration of D-xylonate to 2-keto-3-deoxyxylonate.

Watanabe et al. (26, 27) have recently shown that L-arabinose
degradation in Azospirillum brasilense follows the pathway Weim-
berg proposed for L-arabinose and D-xylose (28). L-Arabinose and
D-xylose are structurally related pentoses, and the L-arabinose in
arabinogalactan polymers also contributes substantially to hemi-
cellulose. Although the L-arabinose dehydrogenase cloned by
Watanabe et al. (26) is unrelated by amino acid sequence to the
C. crescentus XylB D-xylose dehydrogenase, other potential
pathway components are related. Caulobacter crescentus XylC
(GenBank accession no. AAK22805) aligns well with A. brasilense
arabinolactonase (GenBank accession no. AB241136.1; 34%
identity over 285 amino acids with XylC) and is thus a good
candidate to catalyze the conversion of D-xylono-�-lactone to D-
xylonate. 2-Keto-deoxypentonate is produced by the subsequent
dehydration reaction, which as noted above is predicted to be
catalyzed by XylD. In the Weimberg pathway (28), 2-keto-deoxy-
pentonate is dehydrated to 
-ketoglutarate semialdehyde and
oxidized to 
-ketoglutarate by 
-ketoglutarate semialdehyde de-
hydrogenase. The C. crescentus XylA sequence (GenBank acces-
sion no. AAK22807) aligns well with the A. brasilense 
-ketoglu-
tarate semialdehyde dehydrogenase (GenBank accession no.
AB241137; 32% identity over 475 amino acids with XylA), sug-
gesting that it executes this reaction (Fig. 1).

This strategy for D-xylose metabolism in C. crescentus could
explain the requirement for malic enzyme (maeB; CC2622) for
growth on xylose (Table 1; Fig. 1). This enzyme would divert
some malate (produced ultimately from 
-ketoglutarate) to
generate pyruvate, which is necessary for a variety of anabolic
functions, including gluconeogenesis. The requirement for
malic enzyme would be difficult to rationalize if C. crescentus
metabolized D-xylose via the Dahms pathway (Fig. 1), because
pyruvate would be generated by aldolase cleavage of 2-keto-
deoxyxylonate (7). Gluconeogenesis presumably continues
from pyruvate to phosphoenolpyruvate via pyruvate phosphate
dikinase (ppdK; CC1471) (Table 1). Sinorhizobium meliloti, a
close relative of C. crescentus, can use malic enzyme and PPDK
to support gluconeogenesis during growth on tricarboxylic acid
(TCA) cycle intermediates (20), which is comparable to what
C. crescentus would experience if xylose metabolism proceeded
via 
-ketoglutarate. Other gene products required for growth
on xylose, and likely identified in our screen because of glu-
coneogenic function, include enolase (eno; CC1724) and phos-
phoglycerate kinase (pgk; CC3249), which catalyze reversible
reactions also required for glucose catabolism (Table 1). Fruc-
tose bisphosphate aldolase (fbaA; CC3250) also catalyzes a
reversible reaction but is not necessary for growth on glucose
because the Entner-Doudoroff pathway bypasses the fructose
bisphosphate intermediate of glycolysis.

Given the similarity of the proposed C. crescentus D-xylose
degradation pathway to the A. brasilense L-arabinose pathway
and the fact that the xylB-encoded XDH can utilize L-arabi-
nose as a substrate (albeit poorly), we examined whether this
pathway has a role in L-arabinose metabolism. Wild-type C.
crescentus strain CB15 grows very poorly in liquid M2 medium
with L-arabinose as the sole carbon source but forms colonies
on M2 agar containing L-arabinose. Growth levels of CB15 and
the �xylA, �xylB, �xylC, and �xylD mutants were compared on

M2 agar plates with either D-glucose, D-xylose, or L-arabinose
(all at 10 mM) as the sole carbon sources. The strains grew
similarly on glucose (i.e., 1-mm colonies within 3 days), and
none of the mutants grew with xylose. CB15 produced 1-mm
colonies within 3 to 4 days on xylose, and after 5 to 6 days, had
formed 1-mm colonies on L-arabinose. The �xylA, �xylB, and
�xylC strains formed smaller “microcolonies” (�0.5 mm) on
L-arabinose after 5 to 6 days and thus appear to be defective
for growth on this substrate. Curiously, growth of the �xylD
strain was similar to that of the parental strain CB15 on L-
arabinose, indicating that the xylD product is dispensable for
growth on L-arabinose. Deficiencies in growth on L-arabinose
among the other xyl mutant strains were confirmed using
Biolog phenotype microarray plates PM1 and PM2 (2) to ex-
amine carbon source utilization (data not shown). Thus, with
the exception of the XylD-catalyzed step, the C. crescentus
D-xylose degradation pathway probably contributes to L-arabi-
nose degradation in vivo, but there may be an additional route
for L-arabinose utilization.

Genes necessary for growth on D-xylose to which we cannot
assign a role include xylX (CC0823) and CC3364. The xylX
product falls into COG3970, the fumarylacetoacetate hydro-
lase family. CC3364 is annotated as a “homoserine kinase” due
to weak similarity to the Pseudomonas aeruginosa thrB gene
product. Functional characterization of these genes is an im-
portant future goal for understanding D-xylose metabolism in
C. crescentus.

The basis for growth inhibition by xylose in strains with
mutations in the xyl operon is not known. Interruption of a
metabolic pathway can lead to toxicity if harmful intermediates
accumulate. The �xylD mutant suffers the most severe effects
in the presence of D-xylose, which could conceivably be due to
the accumulation of D-xylonate, but we have no direct evidence
at present to support that hypothesis. Excessive uptake of a
nonmetabolized sugar, or the effects of xylose on gene expres-
sion, could also result in metabolic alterations that are harmful
in the absence of metabolite flux through the xylose catabolic
pathway. For example, xylose increases isocitrate lyase expres-
sion in C. crescentus (12). During growth on glucose in the
absence of productive xylose metabolism, an increase in isoci-
trate lyase activity could excessively channel isocitrate into the
glyoxylate bypass at the expense of critical TCA cycle interme-
diates, such as 
-ketoglutarate, that are no longer being gen-
erated (directly or indirectly) from D-xylose. Potential expla-
nations of the xyl(Tox) phenotype must also take into account
the observation that growth inhibition is less severe in the
complex PYE medium than in the defined M2 medium. If a
metabolic imbalance is leading to growth inhibition, the diver-
sity of organic metabolites present in PYE may alleviate some
of the problems.

This route of D-xylose metabolism is not unique to C. crescen-
tus, having been identified originally in a Pseudomonas strain (28),
but a preliminary survey of other sequenced genomes suggests
that this pathway is not common. Using BLAST, we were able to
identify only three other bacteria containing possible operons
with component genes closely related to most or all of the C.
crescentus xyl operon genes: Caulobacter strain K31 (a freshwater

-proteobacterium isolated from chlorophenol-contaminated
groundwater) (17), Burkholderia xenovorans strain LB400 (a PCB-
degrading �-proteobacterium isolated from a landfill), and Chro-

2184 NOTES J. BACTERIOL.



mohalobacter salexigens strain DSM 3043 (a halophilic �-pro-
teobacterium). These three genome sequences have not been
described in publications but are available through the U.S. De-
partment of Energy’s Joint Genome Institute website (http:
//genome.jgi-psf.org/mic_home.html). Caulobacter strain K31 ex-
presses D-xylose-inducible XDH activity (data not shown), but to
our knowledge, xylose metabolism has not been further examined
in these diverse species. We speculate that they share with C.
crescentus a common pathway for D-xylose degradation, encoded
in a gene cluster that may have been horizontally transferred in
aquatic and/or soil habitats.
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4 Unpublished results
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4.1 Isolation of S. enterica Transposon Mutants Impaired in c-di-GMP
Dependent EPS Production.
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4.1.1 Introduction

One fundamental characteristic of bacterial behavior is the elaborat adaptation to various

environments. Bacteria dominate extreme niches such as hot springs, highly acidic stockpiles or

live inside hosts, under steady confrontation with the host immune system (48). Under such

conditions, bacteria often switch from a unicellular, dispersal into a multicellular, sedentary lifestyle

(49) (Figure 3), whereby cells are physically protected by a self-secreted shelter made of extra

polymeric substances (EPS) (50). The biofilm EPS are composed of polysaccharides (51-53) but

may also comprise fimriae, pili (54) or even DNA (55).

Figure 3: S. enterica phenotypic changes upon conversion from planktonic to biofilm state.

A) Biofilm formation in liquid culture, phase contrast microscopy. B) EPS in the core of the biofilm visualized by

polysaccharide specific calcofluor staining, fluorescent microscopy. C) Smooth and white morphotype of S. enterica with

low cellular levels of c-di-GMP on Congo Red plates D) Red, dry and rough morphotype of S. enterica with high cellular

levels of c-di-GMP on Congo Red plates.

Recent studies have demonstrated that the novel bacterial second messenger c-di-GMP

orchestrates the developmental transition between the two lifestyles (56,57). The enzymes

diguanylate cyclase and phosphodiesterase, which synthesize and degrade the second messenger

c-di-GMP have been characterized down to the molecular level (26,58-61). High intracellular c-di-

GMP levels induce dramatic phenotypic changes such as massive production of EPS and inhibition
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of flagella and pili based motility (46,56,62). However, the nature of effector proteins and signaling

mechanisms involved have not been studied.

4.1.2 Results and Discussion

Identification of transposon mutants blocked in c-di-GMP dependent EPS production - To define

how c-di-GMP controls EPS production in S. enterica serovar Typhimurium, a genetic screen for

transposon mutants blocked in c-di-GMP dependent EPS production was designed. A strain with a

constitutive active diguanylate cyclase under the control of the arabinose promoter was

constructed. Induction with arabinose caused an elevated cellular c-di-GMP level, as detected by

total nucleotide meassurements using HPLC methodes, and results in a dramatic upregulation of

EPS secretion. Under these conditions, colonies develop a red, dry and rough (rdar) morphotype

(33-35,63) on reporter plates containing the EPS binding dye Congo Red (Figure 3C and D).

Figure 4: S. enterica Tn10dTc mutant screened on Congo Red plates

The morphotype red, dry and rough (rdar) produce massive amounts of EPS whereas transposon mutants with a smooth

and white (saw ) morphotype are deficient in EPS production.

20'000 independent Tn10dTc (64) insertion mutants were visually screened on Congo Red plates

(Figure 4). Thereof, 25 mutants, presumably deficient in c-di-GMP dependent EPS production,

were detected by their smooth and white colony morphotype. Co-transduction experiments

followed by sequencing transposon boundaries revealed three distinct mutant classes. In the first

class, 11 out of 25 Tn10dTc mutants were linked to the arabinose locus. These mutants abolished

ectopic expression the constitutive diguanylate cyclase (dgcA) and had insertions in the
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transcriptional regulator araC or in the arabinose promotor PBAD. The second mutant class (2 out of

25) mapped to an astA homolog, coding for a putative arylsulfate sulfotransferase (stm4098). This

enzyme catalyzes the transfer of sulfate groups from phenylsulfate esters to phenolic compounds

(65) and was identified in Edwardsiella tarda in a screen for mutants defective in virulence and

siderophore production (66). The exact role of astA in c-di-GMP dependent EPS production

remains unclear. Either astA is involved in EPS modification or it interferes directly or indirectly with

a component essential for EPS production. The third mutant class (12 out of 25) mapped to the

bacterial cellulose synthase (bcs) locus.

Figure 5: Components involved in c-di-GMP dependent cellulose production in S. enterica.

Tn10dTc insertion mutants defect in cellulose synthesis. yhjH putative diguanylate cyclase/phosphodiesterase domain 3,

kdgK ketodeoxygluconokinase, yhjJ putative Zn-dependent peptidase, dctA DAACS family, C4-dicarboxylic acids

transport protein, yhjK putative diguanylate cyclase/phosphodiesterase, bcsC Cellulose synthase operon protein C, bcsZ

Cellulose synthase operon protein Z endo 1,4-D-glucanase, bcsB Cellulose synthase operon protein B, bscA Cellulose

synthase operon protein A glycosyltransferase, yhjQ putative ATPase involved in chromosome partitioning, yhjR putative

cytoplasmic protein, yhjS putative cytoplasmic protein, yhjT putative inner membrane protein, yhjU putative inner

membrane protein.

Some of these mutants were entirely smooth and white and had insertions in bscA, bcsB and

bcsC. All of these genes code for essential subunits of the bacterial cellulose synthase complex.

Three mutants only showed the smooth and white morphotype at the rim of the colony. These

transposon insertions are located upstream of the bsc-operon in yhjR and yhjS both annotated as

putative cytoplasmic proteins. Whereas yhjS shows weak homology to a putative protease, the

function of yhjR remain elusive. Since EPS production was only reduced but not completely

abolished, yhjR and yhjS presumably define auxiliary or regulatory rather than essential

components for EPS production. Despite near saturation of the genetic screen, most transposon

insertions mapped to the cellulose synthase locus. This strongly suggests that in S. enterica
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serovar Typhimurium, the cellulose synthase complex is activated by c-di-GMP and that cellulose

is the main EPS component that binds Congo Red, leading to a red, dry and rough morphotype.

This model is consistent with the findins from G. xylinum, where c-di-GMP was initially

biochemically isolated as an allosteric regulator of the cellulose synthase a complex(67).

Cellulose synthesis and motility are controlled via independent pathways - The c-di-GMP controlled

transition from the unicellular lifestyle into biofilm mode is not only characterized by massive

production of EPS, but also by a block of flagella and pili based motility (57). In principle inhibition

of cell motility could be explained by two models. Either increased EPS secretion makes the cells

sticky and physically blocks motility or c-di-GMP inhibits flagella-based motility via a second, EPS

independent pathway. If increased cellulose production rendered cells nonmotile, mutants deficent

in cellulose synthesis would consequently regain motility despite a high intracellular c-di-GMP

level. Swimming behaviour of two S. enterica strains both ectopically expressing a constitutive

diguanylate cyclase, in either wild type or mutated bcsA background, was analysed. The bcsA

mutant as well as the control strain were nonmotile, suggesting that c-di-GMP blocks motility over a

cellulose synthase independet pathway.

4.1.3 Material and Methods

Ectopic expression of the diguanylate cyclase dgcA under PBAD - A linear DNA fragment containing

the C. crescentus diguanylate cyclase allele dgcA flanked by 40bp homologous to the araBAD

locus was PCR amplified and electroporated into the recombinogenic S. enterica strain TH6706

araB::Tn10dTc / pKD46. Double homologous recombinants replacing the entire araBAD::Tn10dTc

with the dgcA allele were selected by tetRA counter selection on fusaric acid plates. TetS

recombinants were screened onto Congo Red plates supplemented with arabinose for correctly

inserted dgcA alleles under control of the arabinose promoter PBAD. One strain with an arabinose

dependent red dry and rough morphotype was isolated, and named BC478 (LT2 PBAD::dgcA).

Transposon mutagenesis using Tn10dTc – Plasmid pNK2880 expressing transposase was

transduced into BC478 by standard P22 phage transduction. Tn10dTc elements were delivered via

a second P22 transduction from the donor strain TH338 proAB47 / F’ Pro Lac zzf1831::Tn10dTc.

Transposon insertions in strain BC478 were selected on LA plates supplemented with Tetracycline

(10μg/ml), EGTA (1mM), Arabinose (0.2%), Congo Red (50μg/ml) and putative EPS deficient

mutants were visual identified by their smooth and white colony morphology.
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Identification of transposon insertions with deficient dgrA expression – Smooth and white

transposon mutants were transduced into S. enterica LT2 and analysed on minimal arabinose

plates. Transposon mutants that abolish dgcA expression because of insertions in araC, PBAD or

dgcA are linked to the defective araBAD locus (araB::dgcA) and were identified as Ara-

transductants and discarded.

Mapping of Transposon mutants deficient in c-di-GMP dependent EPS production – exact insertion

sites of transposon mutants not linked to the araBAD locus were sequenced by arbitrary PCR

technique.



B.Christen Principles of c-di-GMP Signaling Unpublished results

87

4.2 Genetic Identification of the Xylose Repressor xylR and the Xylose
Operator xylO site
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4.2.1 Introduction

C. crescentus is an oligotroph and metabolize various monosaccharides such as glucose, xylose,

galactose and mannose (68). While glucose is catabolized via the Entner-Doudoroff pathway to

pyruvate (69,70), xylose is probably degraded through a pathway yielding -ketoglutarate (71),

similar to the L-arabinose degradation pathway of A. brasilense (72). Biochemical studies showed

that C. crescentus induce NAD-linked xylose dehydrogenase activity is specifically induced when

xylose is present in the growth media (68). Recently, xylose dehydrogenase was allocated to the

xylB gene that together with other genes essential for xylose degradation forms the xylXABCD

operon (71). Global transcriptome analysis (70) as well as lacZ reporter studies (73) revealed that

transcription of the xylXABCD operon is repressed when xylose is absent, but so far no regulatory

components affecting the xylose dependent promoter (Pxyl) were identified. Here, we

demonstrated that the xylXABCD operon is tightly control via a LacI like repressor and define

determinants of the xylose operator xylO critical for repressor operator interactions.

Figure 6: Organization of the xylose operon xylXABCD

Xylose induced genes high lighted in green as determined by microarray analysis (70). The xylose inducible promoter

PxylX is positioned 70 bp upstream of xylX
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4.2.2 Results and Discussion

In order to genetically identify the xylose repressor (xylR) gene as well as the xylose operator

(xylO) element, a C. crescentus strain was engineered, that expressed the only copy of clpX

ectopically from the xylose promoter PxylX. Because ClpX is essential for cell cycle progression (74),

the resulting strain was conditional lethal and required xylose for growth. In a first attempt, putative

transposon insertions in xylR were isolated by selecting for growth in absence of the inducer

xylose. Five independent transposon mutants that showed a strict linkage of the transposon

resistance to the xylose independent growth phenotype were mapped to gene CC3065 (Figure 7).

Figure 7: Tn5 insertion sites in xylR

Five independent miniTn5 insertions isolated from the xylose repressor selection were mapped to CC3065 that codes for

a LacI like repressor protein

CC3065, renamed xylR, codes for a LacI-like transcriptional repressor with an N-terminal LacI DNA

binding domain and a C-terminal sugar binding domain. To validate the hypothesis that XylR is

responsible for the repression of the xylXABCD operon, LacZ reporter studies were performed in a

xylR::Tn5 mutant strain (UJ3002). A lacZ operon fusion to xylX was derepressed even when xylose

of was absent, whereas wild type showed tight repression under these (Figure 8). These data

suggested that xylR encodes a repressor of the xylose operon.
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Figure 8: -galactosidase activity of PxylX::lacZ reporter construct

The -galactosidase activity of a xylX::lacZ gene fusion (pCS225) was determined in a wild type xylR (UJ3000) or

xylR::Tn5 mutant strain (UJ3002) and compared to basal -galactosidase activity of a control strain (UJ0046, NA1000 /

pLac290). All strains were analysed in triplicates when grown in normal PYE, PYE supplemented with 0.2% glucose

(PYE + Glu) or PYE supplemented with 0.2% xylose (PYE + Xyl).

To further define the XylR repressor binding site within the xylose promoter region, rare point

mutants in the xylose operator (xylO) allowing xylose independent growth of the Pxyl::clpX clpX

strain were selected and further separated from spontaneous xylR loss of function mutations by

chromosomal linkage cross as described in materials and methods (see section 4.2.3).

Sequencing the xylose promoter region revealed that four discreet point mutations close to the

annotated transcriptional start site of xylX were independently isolated several times (Figure 9A).

Interestingly, all point mutants identified reside in a 12 bp nearly palindromic DNA region that

partially overlaps with the annotated Pribnow box. This makes this region a good candidate for the

xylose operator xylO, where XylR binds DNA, an idea that is supported by the fact that the isolated

point mutation were not exclusively symmetrically distributed within the palindrome. For instance

both point mutations at the 5th and 8th position in the xylO motif miss their symmetrical counterpart

(10th and 7th position, see Figure 9A) arguing that these non mutated positions are essential for

promoter function and probably constitute part of the Pribnow box.
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Figure 9: Overview of xylO suppressor mutations

Independently isolated point mutations in the upstream region of xylX were mapped to a 14 bp nearly palindromic region,

palindromic sites (7th and 10th position) that were not mutated are framed, mutated residues are high lighten in red (A).

the xylose operator xylO overlaps with the annotated -10 Box of the xylose dependent promoter of xylX (B).

The genetically defined xylO element provided an excellent opportunity to predict other putative

members of the xylose regulon. 14 putative xylR binding sites were detected by blastn search

whereof 12 were located in intergenic regions of the C. crescentus genome (Figure 10). To validate

these predicted xylO elements in vivo and define further XylR controlled genes, the global

transcriptome of wt and xylR mutant was compared.

Microarray analysis revealed that over 30 genes were at least 3-fold derepressed in a xylR mutant

strain compared to wild type (Table 2), including the xylXABCD operon and two additional genes

from this gene cluster, which were strongly up regulated (3-40 fold) confirming the xylX::lacZ



B.Christen Principles of c-di-GMP Signaling Unpublished results

92

reporter studies. In addition, 4 genes (CC0505, CC2152, CC2804 and CC2805) harboring a

predicted xylO element in their upstream region, were 2-4 fold stronger expressed in the xylR::Tn5

mutant background (Figure 10).

Figure 10: predicted xylO elements

Putative xylO boxes were identified based on following assumptions: 1) the genetically defined critical residues for xylR

binding should be 100% conserved ( highlighted in Red), 2) other nucleotides in the putative xylO box should show 80%

similarity to the xylO motif upstream of xylX. 3) The putative xylO box should be located not more that 400bp upstream of

an annotated gene. The ratio of expression change, as determined by MA analysis. is color coded according to the left

panel.

The exact role of CC0505, CC2152, CC2804 and CC2805 in xylose metabolism remains to be

determined. These findings argue that XylR not only acts as a repressor of the xylXABCD operon

but in addition adjusts the expression of other genes of the xylose regulon. Based on the presented

genetic, bioinformatic and microarray data we propose the following model: The xylose repressor

XylR binds as a dimer to the xylose operator site when xylose is absent and prevents RNA-

polymerase from binding to the promoter region. If xylose is present XylR no longer binds to xylO

allowing transciption initiation (Figure 11). Biochemical foot printing analysis and mobility shift

experiments with the purified XylR repressor could be useful to verify and refine the proposed
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model and enable the accurate design of a tight xylose inducible expression system for C.

crescentus.

Figure 11: Model for xylose dependent repression of the xylXABCD operon:

The xylose repressor XylR (in yellow) binds as a dimer to the xylose operator (xylO) site when xylose is absent and

prevents RNA-polymerase from transcription initiation. Only if xylose is present, XylR no longer bind to xylO and RNA

polymerase (in fawn) starts transcibing the xylose regulon
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Table 2: Global transcriptom comparison of xylR::Tn5 mutant strain versus a xylR wild type strain

Xylose Metabolism and Regulation

Name allele function ration1

CC0821 xylB Xylonate dehydratase 42.4

CC0822 xylA a-Ketoglutaric semialdehyde dehydrogenase 32

CC0823 xylX hypothetical protein 10.1

CC0814 - MFS transporter, sugar:H+ symporter 8.3

CC0819 xylD Xylonate dehydratase 6.7

CC0820 xylC Xylonolactonase 5.3

Sugar metabolism Pathway Genes

Name allel function ration

CC2057 zwf glucose-6-phosphate 1-dehydrogenase 9

CC3054 xarB xylosidase/arabinosidase 6.8

CC2055 edd phosphogluconate dehydratase 6.4

CC1724 eno enolase 3.2

CC2056 pgl 6-phospho-glucono-lactonase 2.7

Other genes

Name allel function ration

CC0874 - conserved hypothetical protein 6.8

CC3028 - transcriptional regulator, ArsR family 6.8

CC3079 - hypothetical protein 6.8

CC3663 - conserved hypothetical protein 6.8

CC3681 - putative tellurium resistance protein 6.8

CC0536 GntR family transcriptional regulator 6.6

CC0682 - hypothetical protein 6.4

CC0718 - hypothetical protein 6.2

CC2838 - hypothetical protein 6.1

CC0163 - hypothetical protei 4.3

CC0366 atpF' ATP synthase F0, B' subunit 4.1

CC1343 - hypothetical protein 3.9

CC2804 - TonB-dependent receptor 3.9

CC0360 - putative ornithine decarboxylase 3.5

CC1344 - FF domain protein 3.4

CC2152 - hypothetical protein 3.3

CC3063 - sulfite reductase (NADPH 0.06

1 Ratio: xylR::Tn5 versus wildtype
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Figure 12: Effect of xylR on expression of sugar conversion pathways genes:

Beside the xylXABCD operon, genes defining the Entner-Doudoroff pathway are up regulated in a xylR mutant strain

compared to wild type grown on PYE.
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4.2.3 Material and Methods

Construction of a conditional clpX mutant strain - Two artificial xylose auxotropic strains (UJ200

and UJ270, (74)) were constructed by inserting either the suicide plasmid pUJ174 (Tet) or pUJ167

(Km), both carrying a translational clpX fusion to the first 18 base pairs of xylX , into the xylX locus

and deleting the chromosomal wild type clpX locus as described in (74).

Transposon mutagenesis to define the xylose repressor xylR – The miniTn5 Transposon was

delivered on a suicide plasmid (pUT_Km1) into UJ200 by conjugation. Transposon insertion

mutants were selected on PYE plates supplemented with nalidixic acid (20μg/ml) and kanamycin

(20μg/ml). Potential xylR::Tn5 insertions were verified by transducing the Tn5 marker into strain

LS1280 harboring a xylX::gusA insertion and assaying for glucuronidase activity in the absence of

xylose. The Tn5 insertion site of transductants with derepressed gusA were mapped by cycle

sequencing out of the Tn5 with primer 699 (5’-TAC CGA GCT CGA ATT CGG-3’) using genomic

DNA as template.

Isolation of suppressor mutations in xylO - Spontaneous xylose independent mutants were isolated

by plating 108-109 cells to PYE plates lacking xylose. Point mutations in xylO that disable binding of

XylR were expected to be rare compared to spontaneous xylR loss of function mutations. To

distinguish between these 2 classes, spontaneous xylose-independent-mutants were transduced

into strain UJ200 in a chromosomal linkage cross using the tetracycline resistance of the inserted

pUJ174 as a xylO linked selection marker. Xylose-independent, tetracycline-resistant colonies

were isolated and suppressor mutations in xylO were identified by PCR amplifying their xylX

promoter region using primers 920 (5’-CAG GTC GTC GTG GTC CAG CA-3’) and 921 (5’-CCA

GGA CTT CGC AGA TTT CG-3’) and sequencing the PCR product using primer 922 (5’-CTT TCC

GCA GAA AGA GCA GT-3’).

-galactosidase activity assay of xylX::lacZ reporter strains – Three independent xylR::Tn5

insertions were transduced with phage CR30 into NA1000 wild type strain carrying a xylX::lacZ

fusion on plasmid pCS225 (73). LacZ activity was determined by the standard Miller assay and

compared to NA1000 / pCS225 wild type strain in presence or absence of xylose and glucose.

Background lacZ activity of C. crescentus was determined using a NA1000 wild type strain

harboring an nontranscibed lacZ copy on plasmid pLac290.

Microarray analysis – mRNA of C. crescentus wild type strain and a xylR::Tn5 mutant strain was

extracted from PYE log phase cultures with RNeasy Kit (Roche). mRNA was reverse transcribed
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by Superscipt II Kit (invitrogen) and direct labeled with either Cy3-dCTP or Cy5-dCTP. mRNA was

degraded via NaOH hydrolysis and cDNA was purified over a QiaQuick column (Qiagen). Labeled

cDNA from both conditions were hybridized onto oligo based C. crescentus Microarray slides and

analyzed as reported in (75).
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5 Discussion
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Cellular homeostasis requires the ability to react on environmental and physiological changes

continuously with metabolic and developmental adjustments. Therefore signaling cascades have to

sense external and internal signals by a wide variety of receptors and transmit information to

regulatory components that accomplish an adequate cellular response. Frequently receptors do not

directly interact with their downstream regulators but instead affect the synthesis and turnover of

small diffusible molecules called second messengers. This signaling principle allows information

propagation between spatially separated signaling components and enable beside signal

integration also signal amplification. Beside the well described cAMP and ppGpp signaling systems

involved in carbon source catabolism (6) and stringent response (7,8), bacteria widely use the

nucleotide derivative c-di-GMP as a second messenger to orchestrate biofilm formation

(46,57,62,76,77). Based on our recent data and findings, we will postulate a comprehensive c-di-

GMP signaling model, provide insights into essential signaling components on a molecular level

and discuss general principles of signal conversion, signal transduction and modulation.

c-di-GMP is synthesized by diguanylate cyclases – Biochemical and structural studies

demonstrated that the GGDEF domain harbors diguanylate cyclase activity (26,45) and perform

the condensation of two GTP molecules into c-di-GMP. Like guanylate and adenylate cyclases

(GC, AC), DGC's possess a similar domain architecture but in contrast to, catalyse the

intramolecular nucleophilic attack of the 3’ hydroxyl group on the -phosphate of a nucleoside

triphosphate. While AC’s and GC’s build heterodimers, DGC's form homodimers, with a GTP

molecule bound within the catalytic core of each DGC monomer. Residues of the highly conserved

GGDEF motif and a close by Asp on the opposing -sheet, form the enzymatic active-site (A-site)

by coordinating two Mg2+ cations involved in catalysis (26,45).

c-di-GMP specific phosphodiesterase hydrolyse c-di-GMP – Intracellular signaling molecule should

only be transiently present if a perceived stimuli afore has activated the corresponding signaling

pathway. Therefore signal inactivation is a fundamental principle of signaling cascades crucial for

information transfer. We showed that CC3396, a GGDEF-EAL composite protein of C. crescentus

harbors c-di-GMP-specific phosphodiesterase (PDE) activity and catalyse the cleavage of c-di-

GMP into the linear dinucleotide pGpG. Biochemical characterization of the individual domains

demonstrated that the PDE activity of CC3396, responsible for second messenger inactivation, is

confined to the C-terminal EAL domain, and does not dependent on the physical presence of the

N-terminal GGDEF domain (59). The solved crystal structure of YkuI from B.subtilis suggested that
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the EAL domain possess a TIM barrel fold consisting of eight -helices and eight parallel -strands

alternating along the peptide backbone . The active site, catalyzing the Mg2+ dependent hydrolysis

of c-di-GMP, is presumably located in the central core and build by the EAL motif and other nearby

located negatively charged residues.

Figure 13: Overview of the c-di-GMP signaling pathway

Synthesis of c-di-GMP out of two GTP is catalyzed by diguanylate cyclases activity residing within the GGDEF domain (in

red) and degraded by the action of c-di-GMP-specific phosphodiesterases activity constrained to the EAL, domain (in

blue) into the linear dinucleotide pGpG respectively. The second messenger is sensed via a diguanylate receptor (DGR)

module (in green) that mediate diverse output functions as inhibition of flagellar motor function and activation of EPS

synthesis.

Allosteric control mechanisms - The existence of multiple GGDEF and EAL domain proteins within

the same bacterial species and the occurrence of GGDEF-EAL composite proteins pose the

question how c-di-GMP turnover is regulated and wasteful hydrolysis of GTP is circumvented.

Often GGDEF and EAL domains are fused to various sensory domains arguing that the activity of

both DGC's and PDE's are tightly controlled by diverse signaling input. In principles a perceived

stimuli could either modulate DGC or PDE activity by lowering the substrate affinity, induce

conformational changes that liberate the catalytic pocket or in the case of DGC’s change

dimerization properties. Furthermore the c-di-GMP circuitry has adopted allosteric regulation and

feedback control mechanisms that link the degradation of c-di-GMP to the cellular GTP pool or

increase signaling robustness.
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Diguanylate cyclases are subjected to allosteric feedback inhibition - We showed by genetic,

biochemical and bioinformatic approaches that noncompetitive product inhibition is a general

regulatory principle of DGC's. High affinity binding of c-di-GMP to an inhibition site (I-site) distant

from the catalytic pocket efficiently blocks enzymatic activity. The I-site pocket is formed by a

conserved RXXD motif whereby the Arg and Asp residue participate directly in ligand recognition.

The RXXD motif is positioned within a turn at the end of a short five amino acid -sheet that directly

connects the I-site with the conserved catalytic GGDEF motif. Molecular dynamic calculation

supported the idea that balance like movements of the interconnecting five amino acid -sheet

cause, upon binding of c-di-GMP at the I-site, a repositioning of active site residues and thereby

possibly alter DGC activity. The fact that the I-site motif is highly conserved among GGDEF domain

proteins with biochemically verified DGC activity argues that negative feedback inhibition is a

regulatory key feature of DGC’s (78). Using highly active DGC’s with an implemented negative

feedback loop could potentially increase signaling robustness, decrease the rise-time of the

signaling system and enable accurate adjustment of the intracellular second messenger

concentration.

Figure 14: Model for the allosteric feedback inhibition of DGC’s

Binding of a c-di-GMP dimer to the I-site motif RXXD (green) cause structural changes at the active site loop (gold)

through balance like rearrangement of the interconnecting 5 amino acid spanning -sheet.
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c-di-GMP specific phosphodiesterase activity is regulated by GTP - Beside DGC’s also PDE

enzymes are subjected to an allosteric control mechanism. The biochemical characterization of the

PDE CC3396 from C. crescentus suggested that a subgroup of the large family of bacterial

GGDEF-EAL composite proteins represents PDE’s with an associated regulatory GGDEF domain

that can act as GTP sensor but has lost DGC activity. Thereby the sensory GGDEF domain

activates the neighboring EAL domain, only if the cellular GTP concentration is above a certain

threshold level, probably by increasing the KM for c-di-GMP hydrolysis (59). What could be the

regulatory reason to couple PDE activity to the availability of GTP? First, In case both DGC’s and

PDE’s are simultaneously active, the above-mentioned allosteric activation mechanism could

circumvent the rapidly exhaustion of the cellular GTP pool. Second, a drastic drop of the GTP

concentration could lead to a rapid and substantial increase of the cellular c-di-GMP concentration.

This would provide the opportunity to cross connect the c-di-GMP signaling system with other

signaling systems, as for example the stringent response, known to affect the cellular GTP pool.

Figure 15: Model for the allosteric regulation of PDE activity by GTP

The PDE activity of CC3396 is fully comprised within the EAL domain. The associated, enzymatic inactive, GGDEF

domain with its altered active site motif (GEDEF) mediates allosteric activation of the C-terminal PDE by GTP.

Diguanylate receptor proteins sense the intracellular c-di-GMP concentration - C-di-GMP

influences flagellar motility as a function of growth (79) or adaptation to surfaces (22), affects pili

assembly (80), and controls the production of surface structures like fimbria and exopolysaccharide

matrices (62,81-83). The wide variety of cellular functions that are orchestrated by c-di-GMP calls

for divergent signaling output architecture and multiple receptors. Using affinity chromatography we

have isolated several c-di-GMP binding proteins from C. crescentus. One of these proteins, DgrA,

is a PilZ homolog and function as a negative regulator of flagellar motility. Whereby the c-di-GMP
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bound form of DgrA cause inhibition of flagellar motor function probably over a posttranscriptional

mechanism affecting FliL expression . In C. crescentus the FliL protein is not part of the flagellar

structure but is required for flagellar rotation (84). Biochemical and structural analysis of DgrA and

homolog from C. crescentus, S. enterica and P. aeruginosa demonstrated that this family of

diguanylate receptor is able to bind specifically an intercalated dimer of c-di-GMP with high affinity.

Figure 16: NMR shift map of PA4608 between free and c-di-GMP bound form

Combined amide 1H and 15N shift differences between PA4608 in its free and ligand-bound form are color-coded on the

structure of free PA4608 (PDB 1YWU, model 12). Combined chemical shift differences were calculated as

= sqrt ( [ ( )2 + (( N / 5)2 ] / 2).

NMR and site directed mutagenesis experiments revealed that the diguanylate receptor function is

contained within a six-stranded anti-parallel -barrel flanked by three helices whereby the binding

site is probably built by conserved key residues, clustered within a discrete patch at the surface of

the -barrel. C-di-GMP dependent motility control is not unique to C. crescentus. Also in S. enterica

the YcgR protein (85), harboring an N-terminal DgrA-like domain, regulates motor function and

specifically binds c-di-GMP, thus suggesting that c-di-GMP dependent motility control is generally

exerted via similar diguanylate receptor proteins. Beside inhibition of flagellar based motility, c-di-

GMP has also been identified as an activator of EPS production (10,11,23,86-88). Interestingly the

DgrA-like c-di-GMP effector module is a component of the glycosyltransferases BcsA and

neighboring alg44 responsible for cellulose respective alginate synthesis in Enterobacteriacae and

Pseudomonades (89). Often multiple versions of this receptor type are encoded within the same
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bacteria species either as single domain proteins or fused to a variety of accessory domains, thus

giving the possibility to control various output functions in a modular way over a common signal

transduction mechanism.

Table 3: Domain organization of diguanylate receptors

Domain Organization Organism KD in nM KD Output function

DgrA C. crescentus <50 14 motor function

DgrB C. crescentus 132 36 motor function

PA4608 P. aeruginosa <50 27 unknown

YcgR S. enterica 182 29 motor function

BcsA S. enterica N.D cellulose synthesis

KD = binding constant for c-di-GMP in nM

Flexibility of c-di-GMP signaling – Often bacteria encode multiple DGC and PDE enzymes and

possess several DgrA-like effectors. In principle two different signaling architectures could be used

to transfer information. In a first model, different stimuli would be perceived and integrated by a

convergent signaling architecture. Thereby the input information from different DGC’s or PDE’s

could not be discerned and the diguanylate receptors would only sense the overall cellular level of

c-di-GMP. In a second signaling model, subsets of DGC’s and PDE’s would process information in

parallel pathways only toward discrete receptors. For instance DGC’s characterized by different

product inhibition constants could be used to increase stepwise the cellular c-di-GMP level.

Depending on different binding affinities, various diguanylate receptors could be consecutively

activated. Furthermore, allosteric regulation mechanisms could also be adopted to convert stimuli

information into oscillating c-di-GMP levels whereby certain diguanylate receptors would only

respond to defined frequency modes. Alternative recognition specificity could be achieved if c-di-

GMP is directly delivered from DGC’s to specific receptors but would require specially restricted
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signaling systems. Further studies will be used to discriminate between these models and will

unravel the complexity of c-di-GMP signaling systems.
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6 Outlooks

The presented studies allow for the first time a detailed view on fundamental aspects and

mechanisms of the c-di-GMP signaling circuitry. Beside the characterization of key components

regulating c-di-GMP turnover and the specification of all relevant protein ligand interactions on a

molecular level we describe a diguanylate receptor module involved in sensing the intracellular c-

di-GMP concentration and mediating diverse output functions. To acquire a profound

understanding about signal transduction, signal specificity and cross connectivity to other signaling

systems, and to determine the role of c-di-GMP signaling in virulence, it will be crucial to implement

our established genetic and biochemical tools on various model organisms and address the

following outstanding questions:

• What kind of stimuli are perceived and integrated by the c-di-GMP signaling network?

• How are DGC’s and PDE’s activated in general?

• Do bifunctional composite GGDEF-EAL domain proteins exist, what is their activation

mode?

• Are other enzymes involved in c-di-GMP metabolism?

• Do beside the DgrA-like receptors also other c-di-GMP effectors exist?

• What is the function of catalytically inactive EAL and GGDEF domains?

• What is the underlying signaling architecture of the c-di-GMP signaling circuitry, do parallel

signal transduction pathway exist, how signal specificity is ensured?

• What is the output function of DgrA-like receptors. Do these receptors mediate protein-

protein interactions? What is the nature of interaction partners?

• What is the spacial organization of DGC, PDE and DGR components?

• How does the c-di-GMP signaling cascade affect the cellular nucleotide pool?

• How are other signaling cascades cross connected to the c-di-GMP system.

• How does the second messenger c-di-GMP orchestrate biofilm formation and affect

virulence of pathogenic bacteria.
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7 Appendix
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List of Strains

Strain Genotype Reference

BC425 S. enterica LT2 trp::T7RNAP Christen unpublished

BC428 E. coli S17-1/ pAS22::pdeA Christen et al 2005, JBC

BC430 E. coli S17-1/ pNPTS138::KOdgcA Christen et al 2006, JBC

BC431 E. coli S17-1/ pNPTS138::KOpdeA Christen et al 2005, JBC

BC432 E. coli S17-1/ pUJ142::dgcA Christen et al 2006, JBC

BC433 E. coli S17-1/ pAS22::dgcA Christen et al 2006, JBC

BC434 E. coli S17-1/ pUJ142::pdeA Christen et al 2006, JBC

BC478 S. enterica LT2 araBAD::dgcA Christen et al 2006, JBC

BC480 S. enterica LT2/ pET42b::dgcA5002-his6 Christen unpublished

BC482 S. enterica LT2 trp::T7RNAP/ pET42b::dgcA5002-his6 Christen unpublished

BC498 S. enterica LT2 araBAD::dgcA bcsA::Tn10dTc Christen unpublished

BC500 S. enterica LT2 araBAD::dgcA bcsA::Tn10dTc Christen unpublished

BC506 E. coli BL21(DE3)/ pET42b::ycgR Christen et al 2007, PNAS

BC512 E. coli BL21(DE3)/ pET42b::dgrAD38A Christen et al 2007, PNAS

BC514 E. coli BL21(DE3)/ pET42b::dgrARR11AA Christen et al 2007, PNAS

BC516 E. coli S17-1/ pBBR::dgrA-his6 Christen et al 2007, PNAS

BC517 E. coli S17-1/ pBBR::dgrB-his6 Christen et al 2007, PNAS

BC535 C. crescentus CB15ATCC/ pBBR::dgrA-his6 Christen et al 2007, PNAS

BC538 C. crescentus CB15ATCC/ pBBR::dgrB-his6 Christen et al 2007, PNAS

BC541 C. crescentus CB15ATCC/ pBBR Christen et al 2007, PNAS
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Strain Genotype Reference

BC546 E. coli S17-1/ pNPTS138::KOdgrA Christen et al 2007, PNAS

BC547 E. coli S17-1/ pNPTS138::KOdgrB Christen et al 2007, PNAS

BC548 E. coli DH10B/ pBBR::dgrA-his6 Christen et al 2007, PNAS

BC558 E. coli S17-1/ pBBR::dgrA-his6 Christen et al 2007, PNAS

BC559 E. coli S17-1/ pBBR::dgrB-his6 Christen et al 2007, PNAS

BC562 C. crescentus CB15ATCC dgrB Christen et al 2007, PNAS

BC568 C. crescentus CB15ATCC dgrA Christen et al 2007, PNAS

BC680 C. crescentus CB15ATCC dgrA dgrB Christen et al 2007, PNAS

BC695 S. enterica LT2 trp::T7RNAP/ pET42b Christen et al 2006, JBC

BC719 C. crescentus CB15ATCC/ pBBR::dgrAV74A-his6 Christen et al 2007, PNAS

BC777 C. crescentus CB15ATCC/ pUJ142 Christen et al 2007, PNAS

BC779 C. crescentus CB15ATCC/ pAS22::dgrA Christen et al 2007, PNAS

BC827 E. coli BL21(DE3)/ pET42b::dgrAW75A Christen et al 2007, PNAS

BC831 E. coli S17-1/ pBBR::dgrAW75A-his6 Christen et al 2007, PNAS

BC834 E. coli S17-1/ pBBR::dgrA-his6 Christen et al 2007, PNAS

BC862 E. coli S17-1/ pBBR::dgrARR11AA-his6 Christen et al 2007, PNAS

BC864 E. coli S17-1/ pBBR::dgrAD41A-his6 Christen et al 2007, PNAS

BC867 E. coli S17-1/ pBBR::dgrAW75A-his6 Christen et al 2007, PNAS

BC871 C. crescentus CB15ATCC/ pUJ142::dgcA Christen et al 2007, PNAS

BC877 C. crescentus CB15ATCC dgrA/ pUJ142::dgcA Christen et al 2007, PNAS

BC880 C. crescentus CB15ATCC dgrA/ pAS22::dgcA Christen et al 2007, PNAS

BC883 C. crescentus CB15ATCC dgrB/ pUJ142::dgcA Christen et al 2007, PNAS
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Strain Genotype Reference

BC886 C. crescentus CB15ATCC dgrB/ pAS22::dgcA Christen et al 2007, PNAS

BC889 C. crescentus CB15ATCC dgrA dgrB/ pUJ142::dgcA Christen et al 2007, PNAS

BC892 C. crescentus CB15ATCC dgrA dgrB/ pAS22::dgcA Christen et al 2007, PNAS

BC913 E. coli S17-1/ pBBR::dgrARR11AA-his6 Christen et al 2007, PNAS

BC915 C. crescentus CB15ATCC/ pBBR::dgrARR11AAV74A-his6 Christen et al 2007, PNAS

BC918 C. crescentus CB15ATCC/ pBBR::dgrAD38A-his6 Christen et al 2007, PNAS

BC921 C. crescentus CB15ATCC/ pBBR::dgrAW75A-his6 Christen et al 2007, PNAS

BC939 C. crescentus NA1000 recA/ pBBR::dgrA-his6 Christen et al 2007, PNAS

BC940 C. crescentus NA1000 recA/ pBBR::dgrA-his6 Christen et al 2007, PNAS

BC941 C. crescentus NA1000 recA/ pBBR::dgrA-his6 Christen et al 2007, PNAS

BC942 C. crescentus NA1000 recA/ pBBR::dgrA-his6 Christen et al 2007, PNAS

BC943 C. crescentus NA1000 recA/ pBBR::dgrA-his6 Christen et al 2007, PNAS

BC944 C. crescentus NA1000 recA/ pBBR::dgrA-his6 Christen et al 2007, PNAS

BC945 C. crescentus NA1000 recA/ pBBR::dgrA-his6 Christen et al 2007, PNAS

BC946 C. crescentus NA1000 recA/ pBBR::dgrA-his6 Christen et al 2007, PNAS

BC947 C. crescentus NA1000 recA/ pBBR::dgrA-his6 Christen et al 2007, PNAS

BC948 C. crescentus NA1000 recA/ pBBR::dgrA-his6 Christen et al 2007, PNAS

BC949 C. crescentus NA1000 recA/ pBBR::dgrA-his6 Christen et al 2007, PNAS

BC950 C. crescentus NA1000 recA/ pBBR::dgrA-his6 Christen et al 2007, PNAS

BC951 C. crescentus NA1000 recA/ pBBR::dgrA-his6 Christen et al 2007, PNAS

BC952 C. crescentus NA1000 recA/ pBBR::dgrA-his6 Christen et al 2007, PNAS

BC953 C. crescentus NA1000 recA/ pBBR::dgrA-his6 Christen et al 2007, PNAS
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BC954 C. crescentus NA1000 recA/ pBBR::dgrA-his6 Christen et al 2007, PNAS

BC955 C. crescentus NA1000 recA/ pBBR::dgrA-his6 Christen et al 2007, PNAS

BC956 C. crescentus NA1000 recA/ pBBR::dgrA-his6 Christen et al 2007, PNAS

BC961 C. crescentus CB15ATCC/ pBBR::dgrAR11AA-his6 Christen et al 2007, PNAS

BC965 E. coli S17-1/ pMR10::CC2058-CC2069 Christen unpublished

BC966 E. coli S17-1/ pMR10::fliLM Christen unpublished

BC972 C. crescentus NA1000 ::Tn5Tc rpsAH323R/ pBBR::dgrA-his6 Christen et al 2007, PNAS

BC973 C. crescentus NA1000 ::Tn5Tc rpsAH323R/ pBBR::dgrA-his6 Christen et al 2007, PNAS

BC974 C. crescentus NA1000 ::Tn5Tc rpsAH323R/ pBBR::dgrA-his6 Christen et al 2007, PNAS

BC975 C. crescentus NA1000 ::Tn5Tc rpsAH323R/ pBBR::dgrA-his6 Christen et al 2007, PNAS

BC976 C. crescentus NA1000 ::Tn5Tc rpsAH323R/ pBBR::dgrA-his6 Christen et al 2007, PNAS

BC977 C. crescentus NA1000 ::Tn5Tc Christen et al 2007, PNAS

BC978 C. crescentus NA1000 ::Tn5Tc Christen et al 2007, PNAS

BC979 C. crescentus NA1000 ::Tn5Tc Christen et al 2007, PNAS

BC980 C. crescentus NA1000 ::Tn5Tc Christen et al 2007, PNAS

BC981 C. crescentus NA1000 ::Tn5Tc Christen et al 2007, PNAS

BC995 E. coli BL21(DE3)/ pET21c::dgcA Christen et al 2006, JBC

BC997 E. coli BL21(DE3)/ pET21c::pdeA Christen et al 2005, JBC

BC999 E. coli BL21(DE3)/ pET21c::dgcB Christen unpublished

BC1000 E. coli BL21(DE3)/ pET21c::pdpA Christen unpublished

BC1001 E. coli BL21(DE3)/ pET21c::CC3148 Christen unpublished

BC1002 E. coli BL21(DE3)/ pET15::pleD 1-290 Christen et al 2006, JBC
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BC1003 E. coli BL21(DE3)/ pET21::pleD 1-290 Christen et al 2006, JBC

BC1004 E. coli BL21(DE3)/ pET21b Christen et al 2005, JBC

BC1005 E. coli BL21(DE3)/ pET21c Christen et al 2005, JBC

BC1007 E. coli BL21(DE3) Christen unpublished

BC1008 E. coli BL21(DE3)/ pET42b::pdeAE323Q Christen et al 2005, JBC

BC1009 E. coli BL21(DE3)/ pET21c::pdeAED213QN Christen et al 2005, JBC

BC1010 E. coli BL21(DE3)/ pET21c::pdeAthrb Christen et al 2005, JBC

BC1011 E. coli BL21(DE3)/ pET21c::pdeA 1-112 Christen et al 2005, JBC

BC1012 E. coli BL21(DE3)/ pET21c::pdeAhybrid Christen unpublished

BC1013 E. coli BL21(DE3)/ pET21c::dgrA Christen et al 2007, PNAS

BC1014 E. coli BL21(DE3)/ pET21c::dgrB Christen et al 2007, PNAS

BC1015 E. coli BL21(DE3)/ pET15::PA4608 Christen unpublished

BC1016 E. coli BL21(DE3)/ pET21::CC0095short Christen unpublished

BC1017 E. coli BL21(DE3)/ pET21c::flmAshort Christen unpublished

BC1018 E. coli BL21(DE3)/ pET21c::ppx Christen unpublished

BC1019 E. coli BL21(DE3)/ pET42b::cheYII Christen unpublished

BC1020 E. coli BL21(DE3)/ pET42b::flmA Christen unpublished

BC1021 E. coli BL21(DE3)/ pET42b::pdeB Christen unpublished

BC1022 E. coli BL21(DE3)/ pET42b::dgcA0207 Christen et al 2006, JBC

BC1023 E. coli BL21(DE3)/ pET42b::dgcA0230 Christen et al 2006, JBC

BC1024 E. coli BL21(DE3)/ pET42b::dgcA0244 Christen et al 2006, JBC

BC1025 E. coli BL21(DE3)/ pET42b::dgcA0306 Christen et al 2006, JBC
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BC1026 E. coli BL21(DE3)/ pET42b::dgcA0347 Christen et al 2006, JBC

BC1027 E. coli BL21(DE3)/ pET42b::dgcA0427 Christen et al 2006, JBC

BC1028 E. coli BL21(DE3)/ pET42b::dgcA0613 Christen et al 2006, JBC

BC1029 E. coli BL21(DE3)/ pET42b::dgcA0617 Christen et al 2006, JBC

BC1030 E. coli BL21(DE3)/ pET42b::dgcA0642 Christen et al 2006, JBC

BC1031 E. coli BL21(DE3)/ pET42b::dgcA0646 Christen et al 2006, JBC

BC1032 E. coli BL21(DE3)/ pET42b::dgcA0913 Christen et al 2006, JBC

BC1033 E. coli BL21(DE3)/ pET42b::dgcA1007 Christen et al 2006, JBC

BC1034 E. coli BL21(DE3)/ pET42b::dgcA1040 Christen et al 2006, JBC

BC1035 E. coli BL21(DE3)/ pET42b::dgcA1229 Christen et al 2006, JBC

BC1036 E. coli BL21(DE3)/ pET42b::dgcA1230 Christen et al 2006, JBC

BC1037 E. coli BL21(DE3)/ pET42b::dgcA1231 Christen et al 2006, JBC

BC1038 E. coli BL21(DE3)/ pET42b::dgcA1300 Christen et al 2006, JBC

BC1039 E. coli BL21(DE3)/ pET42b::dgcA1301 Christen et al 2006, JBC

BC1040 E. coli BL21(DE3)/ pET42b::dgcA1307 Christen et al 2006, JBC

BC1041 E. coli BL21(DE3)/ pET42b::dgcA1311 Christen et al 2006, JBC

BC1043 E. coli BL21(DE3)/ pET42b::dgcA1406 Christen et al 2006, JBC

BC1044 E. coli BL21(DE3)/ pET42b::dgcA1524 Christen et al 2006, JBC

BC1045 E. coli BL21(DE3)/ pET42b::dgcA1529 Christen et al 2006, JBC

BC1046 E. coli BL21(DE3)/ pET42b::dgcA1724 Christen et al 2006, JBC

BC1047 E. coli BL21(DE3)/ pET42b::dgcA1733 Christen et al 2006, JBC

BC1048 E. coli BL21(DE3)/ pET42b::dgcA1840 Christen et al 2006, JBC
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BC1049 E. coli BL21(DE3)/ pET42b::dgcA3011 Christen et al 2006, JBC

BC1050 E. coli BL21(DE3)/ pET42b::dgcA3016 Christen et al 2006, JBC

BC1051 E. coli BL21(DE3)/ pET42b::dgcA3018 Christen et al 2006, JBC

BC1052 E. coli BL21(DE3)/ pET42b::dgcA3123 Christen et al 2006, JBC

BC1053 E. coli BL21(DE3)/ pET42b::dgcA3200 Christen et al 2006, JBC

BC1054 E. coli BL21(DE3)/ pET42b::dgcA3203 Christen et al 2006, JBC

BC1055 E. coli BL21(DE3)/ pET42b::dgcA0751 Christen et al 2006, JBC

BC1056 E. coli BL21(DE3)/ pET42b::dgcA1250 Christen et al 2006, JBC

BC1057 E. coli BL21(DE3)/ pET42b::dgcA2006 Christen et al 2006, JBC

BC1058 E. coli BL21(DE3)/ pET42b::dgcAwt Christen et al 2006, JBC

BC1059 E. coli BL21(DE3)/ pET42b::dgcA RESD Christen et al 2006, JBC

BC1060 E. coli S17-1/ pPHU281::fliLM Christen unpublished

BC1110 C. crescentus CB15ATCC dgrAW75A Christen et al 2007, PNAS

BC1113 C. crescentus CB15ATCC dgrAW75A/ pUJ142::dgcA Christen et al 2007, PNAS

BC1116 C. crescentus CB15ATCC dgrAW75A/ pAS22::dgcA Christen et al 2007, PNAS

BC1119 S. enterica LT2 PBAD::dgcA bcsC::Tn10dTc (rcv1030) Christen unpublished

BC1120 S. enterica LT2 PBAD::dgcA yhjS::Tn10dTc (rcv1041) Christen unpublished

BC1121 S. enterica LT2 PBAD::dgcA yhjS::Tn10dTc (rcv1122) Christen unpublished

BC1122 S. enterica LT2 PBAD::dgcA yhjR::Tn10dTc (rcv1133) Christen unpublished

BC1123 S. enterica LT2 PBAD::dgcA bcsA::Tn10dTc (rcv1141) Christen unpublished

BC1124 S. enterica LT2 PBAD::dgcA bcsA::Tn10dTc (rcv1151) Christen unpublished

BC1125 S. enterica LT2 PBAD::dgcA bcsB::Tn10dTc (rcv1161) Christen unpublished
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BC1126 S. enterica LT2 PBAD::dgcA bcsA::Tn10dTc (rcv1170) Christen unpublished

BC1127 S. enterica LT2 PBAD::dgcA bcsB::Tn10dTc (rcv1132) Christen unpublished

BC1128 S. enterica LT2 PBAD::dgcA stm4098::Tn10dTc (rcv1191) Christen unpublished

BC1130 S. enterica LT2 PBAD::dgcA stm4098::Tn10dTc (rcv1132) Christen unpublished

UJ2505 C.cresentus NA1000 clpX:: xylX::pUJ175 xylR0012::Tn5 Christen unpublished

UJ2506 C.cresentus NA1000 clpX:: xylX::pUJ175 xylR0042::Tn5 Christen unpublished

UJ2507 C.cresentus NA1000 clpX:: xylX::pUJ175 xylR0046::Tn5 Christen unpublished

UJ2510 C.cresentus NA1000 clpX:: xylX::pUJ175 xylO0304 Christen unpublished

UJ2511 C.cresentus NA1000 clpX:: xylX::pUJ175 xylO0305 Christen unpublished

UJ2512 C.cresentus NA1000 clpX:: xylX::pUJ175 xylO0512 Christen unpublished

UJ2513 C.cresentus NA1000 clpX:: xylX::pUJ175 xylO0601 Christen unpublished

UJ2514 C.cresentus NA1000 clpX:: xylX::pUJ175 xylO0607 Christen unpublished

UJ2515 C.cresentus NA1000 clpX:: xylX::pUJ175 xylO0612 Christen unpublished

UJ3000 C.cresentus NA1000 / pCS225 Christen unpublished

UJ3002 C.cresentus NA1000 xylR0012::Tn5 / pCS225 Christen unpublished

UJ3003 C.cresentus NA1000 xylR0042::Tn5 / pCS225 Christen unpublished

UJ3004 C.cresentus NA1000 xylR0046::Tn5 / pCS225 Christen unpublished
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